# DataShadowArchive **Repository Path**: AiGenApps/data-shadow-archive ## Basic Information - **Project Name**: DataShadowArchive - **Description**: Data Shadow 是一个强大的数据对比工具,专注于多源数据对比分析。支持多种数据源(数据库、Excel、CSV、JSON等),提供友好的可视化界面展示对比结果。适用于数据迁移验证、系统数据同步校验、数据质量核查等场景。(归档项目,新项目见:https://gitee.com/AiGenApps/data-shadow) - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: https://gitee.com/AiGenApps/data-shadow - **GVP Project**: No ## Statistics - **Stars**: 17 - **Forks**: 4 - **Created**: 2025-01-07 - **Last Updated**: 2026-01-06 ## Categories & Tags **Categories**: dbmanager **Tags**: Python, 数据对比, Oracle, MySQL, Excel ## README # Data Shadow - Data Comparison Tool ## Project Overview Data Shadow is a powerful data comparison tool focused on multi-source data analysis. It supports multiple data sources (databases, Excel, CSV, JSON, etc.), provides a friendly visual interface to display comparison results. Suitable for data migration verification, system data synchronization verification, data quality inspection and other scenarios. ## Screenshots ![Software Interface Screenshot](screenshots/home_page.png) ![Software FAQ Screenshot](screenshots/faq.png) ## Product Description ### Features 1. Multi-source Data Support - Relational databases (MySQL/Oracle), Excel, CSV, JSON files - Smart field mapping and alias configuration - Support primary key/composite key configuration - Save and load mapping schemes 2. Efficient Comparison and Display - Fast comparison based on primary keys, supports large data volumes - Data differences highlighting - Toggle between full/difference data - Custom column name display (code/name) 3. Result Export - Support Excel, CSV, JSON formats - Custom export templates ### Development Plan - [x] Oracle database support optimization - [ ] MySQL database support optimization - [ ] Batch comparison functionality - [ ] Custom comparison rules - [ ] Performance optimization and UI beautification ## Usage Guide ### Quick Start 1. Environment Setup ```bash git clone https://gitee.com/yourusername/data-shadow.git cd data-shadow pip install -r requirements.txt ``` 2. Database Support (Optional) ```bash pip install PyMySQL oracledb ``` ### Basic Operations 1. Configure data sources and mappings 2. Set comparison rules 3. Execute comparison and view/export results ## Development ### Tech Stack - Python 3.7+ - tkinter (GUI) - pandas (Data Processing) - PyMySQL/oracledb (Database Connection) - openpyxl (Excel Processing) ### Build from Source 1. Clone the repository ```bash git clone https://gitee.com/AiGenApps/data-shadow.git cd data-shadow ``` 2. Install dependencies ```bash pip install -r requirements.txt pip install pyinstaller ``` 3. Run the build script for your operating system Windows: ```bash build_exe.bat ``` macOS: ```bash chmod +x build_macos.sh ./build_macos.sh ``` Linux: ```bash chmod +x build_linux.sh ./build_linux.sh ``` 4. After building, the executable will be in the `dist` directory - Windows: `dist/DataShadow.exe` - macOS: `dist/DataShadow` - Linux: `dist/DataShadow` Note: - Ensure Python 3.7+ is installed - macOS requires Command Line Tools - Linux may need additional system dependencies (e.g., tkinter) ```bash # Ubuntu/Debian sudo apt-get install python3-tk # CentOS/RHEL sudo yum install python3-tkinter ``` ### Contributing Issues and Pull Requests are welcome to help improve the project. ## Contact - Author: ns-cn - Email: ns-cn@qq.com - Project URL: https://gitee.com/AiGenApps/data-shadow - Issues: https://gitee.com/AiGenApps/data-shadow/issues