# ASIS **Repository Path**: Analyst2020/ASIS ## Basic Information - **Project Name**: ASIS - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-07 - **Last Updated**: 2025-09-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Associatively Segmenting Instances and Semantics in Point Clouds The full paper is available at: https://arxiv.org/abs/1902.09852. Qualitative results of ASIS on the S3DIS and vKITTI test fold: ![](misc/s3dis_asis.png) ![](misc/vkitti_asis.png) ## Overview ![](misc/fig.png) ## Dependencies The code has been tested with Python 2.7 on Ubuntu 14.04. * [TensorFlow](https://www.tensorflow.org/) * h5py ## Data and Model * Download 3D indoor parsing dataset ([S3DIS Dataset](https://docs.google.com/forms/d/e/1FAIpQLScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1)). Version 1.2 of the dataset is used in this work. ``` bash python collect_indoor3d_data.py python gen_h5.py cd data && python generate_input_list.py cd .. ``` * (optional) Trained model can be downloaded from [here](https://drive.google.com/open?id=1UF2nfXdWTOa1iXXmD54_c09rM7pr-kMK). ## Usage * Compile TF Operators Refer to [PointNet++](https://github.com/charlesq34/pointnet2) * Training ``` bash cd models/ASIS/ ln -s ../../data . sh +x train.sh 5 ``` * Evaluation ``` bash python eval_iou_accuracy.py ``` Note: We test on Area5 and train on the rest folds in default. 6 fold CV can be conducted in a similar way. ## Citation If our work is useful for your research, please consider citing: @inproceedings{wang2019asis, title={Associatively Segmenting Instances and Semantics in Point Clouds}, author={Wang, Xinlong and Liu, Shu and Shen, Xiaoyong and Shen, Chunhua, and Jia, Jiaya}, booktitle={CVPR}, year={2019} } ## Acknowledgemets This code largely benefits from following repositories: [PointNet++](https://github.com/charlesq34/pointnet2), [SGPN](https://github.com/laughtervv/SGPN), [DGCNN](https://github.com/WangYueFt/dgcnn) and [DiscLoss-tf](https://github.com/hq-jiang/instance-segmentation-with-discriminative-loss-tensorflow)