# MegEngine **Repository Path**: C-BAND/MegEngine ## Basic Information - **Project Name**: MegEngine - **Description**: MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架,具备训练推理一体、超低硬件门槛和全平台高效推理 3 大核心优势,可帮助企业与开发者大幅节省产品从实验室原型到工业部署的流程,真正实现小时级的转化能力。作为旷视新一代 AI 生产力平台 Brain++的最核心组件,MegEngine 在 2020 年 3月正式向全球开发者开源。 - **Primary Language**: C++ - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: https://www.megengine.org.cn/ - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 31 - **Created**: 2022-09-14 - **Last Updated**: 2024-05-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MegEngine

Documentation | 中文文档

[![](https://img.shields.io/badge/English-%E4%B8%AD%E6%96%87-green.svg)](README_CN.md) [![](https://img.shields.io/badge/Website-MegEngine-green.svg)](https://megengine.org.cn/) [![](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE) [![](https://img.shields.io/badge/Chat-on%20QQ-green.svg?logo=tencentqq)](https://jq.qq.com/?_wv=1027&k=jJcBU1xi) [![](https://img.shields.io/badge/Discuss-on%20Zhihu-8A2BE2.svg?labelColor=00BFFF&logo=zhihu)](https://www.zhihu.com/people/megengine-bot) MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. * **Unified core for both training and inference** * You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. * After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. Check the usage [here](https://www.megengine.org.cn/doc/stable/zh/user-guide/model-development/traced_module/index.html). * **Lowest hardware requirements helped by algorithms** * In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the [DTR algorithm](https://www.megengine.org.cn/doc/stable/zh/user-guide/model-development/dtr/index.html). * Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner * **Inference efficiently on all-platform** * Inference fast and high-precision on x86/Arm/CUDA/RoCM * Support Linux/Windows/iOS/Android/TEE... * Save more memory and optimize speed by leveraging [advanced usage](https://www.megengine.org.cn/doc/stable/zh/user-guide/deployment/lite/advance/index.html) ------ ## Installation **NOTE:** MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl) or install the Windows distribution directly. Many other platforms are supported for inference. ### Binaries To install the pre-built binaries via pip wheels: ```bash python3 -m pip install --upgrade pip python3 -m pip install megengine -f https://megengine.org.cn/whl/mge.html ``` ## Building from Source * CMake build details. please refer to [BUILD_README.md](scripts/cmake-build/BUILD_README.md) * Python binding build details, Please refer to [BUILD_PYTHON_WHL_README.md](scripts/whl/BUILD_PYTHON_WHL_README.md) ## How to Contribute * MegEngine adopts [Contributor Covenant](https://contributor-covenant.org) as a guideline to run our community. Please read the [Code of Conduct](CODE_OF_CONDUCT.md). * Every contributor of MegEngine must sign a [Contributor License Agreement (CLA)](CONTRIBUTOR_LICENSE_AGREEMENT.md) to clarify the intellectual property license granted with the contributions. * You can help to improve MegEngine in many ways: * Write code. * Improve [documentation](https://github.com/MegEngine/Docs). * Answer questions on [MegEngine Forum](https://discuss.megengine.org.cn), or Stack Overflow. * Contribute new models in [MegEngine Model Hub](https://github.com/megengine/hub). * Try a new idea on [MegStudio](https://studio.brainpp.com). * Report or investigate [bugs and issues](https://github.com/MegEngine/MegEngine/issues). * Review [Pull Requests](https://github.com/MegEngine/MegEngine/pulls). * Star MegEngine repo. * Cite MegEngine in your papers and articles. * Recommend MegEngine to your friends. * Any other form of contribution is welcomed. We strive to build an open and friendly community. We aim to power humanity with AI. ## How to Contact Us * Issue: [github.com/MegEngine/MegEngine/issues](https://github.com/MegEngine/MegEngine/issues) * Email: [megengine-support@megvii.com](mailto:megengine-support@megvii.com) * Forum: [discuss.megengine.org.cn](https://discuss.megengine.org.cn) * QQ Group: 1029741705 ## Resources - [MegEngine](https://megengine.org.cn) - [MegStudio](https://studio.brainpp.com) - mirror repo - OPENI: [openi.org.cn/MegEngine](https://www.openi.org.cn/html/2020/Framework_0325/18.html) - Gitee: [gitee.com/MegEngine/MegEngine](https://gitee.com/MegEngine/MegEngine) ## License MegEngine is licensed under the Apache License, Version 2.0 ## Citation If you use MegEngine in your publication,please cite it by using the following BibTeX entry. ``` @Misc{MegEngine, institution = {megvii}, title = {MegEngine:A fast, scalable and easy-to-use deep learning framework}, howpublished = {\url{https://github.com/MegEngine/MegEngine}}, year = {2020} } ``` Copyright (c) 2014-2021 Megvii Inc. All rights reserved.