# ChartLlama-code **Repository Path**: Gowi/ChartLlama-code ## Basic Information - **Project Name**: ChartLlama-code - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-02 - **Last Updated**: 2024-09-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## ___***ChartLlama: A Multimodal LLM for Chart Understanding and Generation***___
                 

[![Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue)](https://huggingface.co/listen2you002/ChartLlama-13b)       [![Dataset](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-blue)](https://huggingface.co/datasets/listen2you002/ChartLlama-Dataset) [**Yucheng Han***](http://tingxueronghua.github.io), [**Chi Zhang***(Corresponding Author)](https://icoz69.github.io/), [Xin Chen](https://chenxin.tech/), [Xu Yang](https://cse.seu.edu.cn/2021/1126/c23024a392593/page.htm), [Zhibin Wang](https://openreview.net/profile?id=~Billzb_Wang1)
[Gang Yu](https://www.skicyyu.org/), [Bin Fu](https://openreview.net/profile?id=~BIN_FU2), [Hanwang Zhang](https://personal.ntu.edu.sg/hanwangzhang/)

(* equal contributions) From Tencent and Nanyang Technological University.
## 🔆 Introduction 🤗🤗🤗 We first create an instruction-tuning dataset based on our proposed data generation pipeline. Then, we train ChartLlama on this dataset and achieve the abilities shown in the figure. ### Examples about the abilities of ChartLlama.

Redraw the chart according to the given chart, and edit the chart following instructions.

Draw a new chart based on given raw data and instructions

## 📝 Changelog - __[2023.11.27]__: 🔥🔥 Update the inference code and model weights. - __[2023.11.27]__: Create the git repository.
## ⚙️ Setup Refer to the LLaVA-1.5. Since I have uploaded the code, you can just install by ```bash pip install -e . ``` ## 💫 Inference You need to first install LLaVA-1.5, then use model_vqa_lora to do inference. The model_path is the path to our Lora checkpoints, the question-file is the json file containing all questions, the image-folder is the folder containing all your images and the answers-file is the output file name. Here is an example: ```bash CUDA_VISIBLE_DEVICES=1 python -m llava.eval.model_vqa_lora --model-path /your_path_to/LLaVA/checkpoints/${output_name} \ --question-file /your_path_to/question.json \ --image-folder ./playground/data/ \ --answers-file ./playground/data/ans.jsonl \ --num-chunks $CHUNKS \ --chunk-idx $IDX \ --temperature 0 \ --conv-mode vicuna_v1 & ``` ## 📖 TO-DO LIST - [ ] Create and open source a new chart dataset in Chinese. - [ ] Open source the training scripts and the dataset. - [ ] Open source the evaluation scripts. - [ ] Open source the evaluation dataset. - [x] Open source the inference script. - [x] Open source the model. - [x] Create the git repository. ## 😉 Citation ```bib @misc{han2023chartllama, title={ChartLlama: A Multimodal LLM for Chart Understanding and Generation}, author={Yucheng Han and Chi Zhang and Xin Chen and Xu Yang and Zhibin Wang and Gang Yu and Bin Fu and Hanwang Zhang}, year={2023}, eprint={2311.16483}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## 📢 Disclaimer We develop this repository for RESEARCH purposes, so it can only be used for personal/research/non-commercial purposes. ****