# Deep-Learning-for-PET-Imaging **Repository Path**: Heconnor/Deep-Learning-for-PET-Imaging ## Basic Information - **Project Name**: Deep-Learning-for-PET-Imaging - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-03 - **Last Updated**: 2025-07-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: reconstruction ## README # Deep-Learning-for-PET-Imaging - URL: https://github.com/AlessandroGuazzo/Deep-Learning-for-PET-Imaging - Author: Alessandro Guazzo - Description: A collection of codes that I developed during my master thesis project at KTH ## Reference [1] A. Guazzo and M. Colarieti-Tosti, “Learned Primal Dual Reconstruction for PET,” Journal of Imaging, vol. 7, no. 12, 2021, doi: 10.3390/jimaging7120248. ## 目录结构 ### Denoising - **Encoder-Decoder** - `2D-TrainED3LayersVariableNoise.py` - 用于训练具有检查点策略的3层去噪编码器-解码器的Python代码 - `2D-ED3LayersResultsEvaluationVariableNoise.ipynb` - 用于评估3层去噪编码器-解码器结果的Jupyter Notebook - **U-Net** - `2D-TrainUnet3LayersVariableNoise.py` - 用于训练具有检查点策略的3层去噪U-Net的Python代码 - `2D-Unet3LayersResultsEvaluationVariableNoise.ipynb` - 用于评估3层去噪U-Net结果的Jupyter Notebook ### Reconstruction - **Learned Primal-Dual** - `2D-TrainLPD3IterVariableNoise.py` - 根据渐进式学习策略,从2次迭代开始训练3次迭代的学习型原始对偶算法的Python代码 - `2D-LPD3IterResultsEvaluationVariableNoise.ipynb` - 用于评估3次迭代学习型原始对偶算法结果的Jupyter Notebook - **Learned Update with Memory** - `2D-TrainLUM4IterVariableNoise.py` - 从4次学习更新算法开始训练4次迭代的学习更新与内存算法的Python代码 - `2D-LUM4IterResultsEvaluationVariableNoise.ipynb` - 用于评估4次迭代学习更新与内存算法结果的Jupyter Notebook - **Learned Update** - `2D-TrainLU4IterVariableNoise.py` - 根据渐进式学习策略,从3次迭代开始训练4次迭代的学习更新算法的Python代码 - `2D-LU4IterResultsEvaluationVariableNoise.ipynb` - 用于评估1次、2次、3次、4次迭代学习更新算法结果的Jupyter Notebook ### miniPET - **LPD Reconstruction** - `2D-TestLPD3miniPET.ipynb` - 用于测试LPD在miniPET数据上的性能的Jupyter Notebook - `2D-Train3LPDminiPETHybrid.py` - 用于使用Hybrid方法训练LPD算法的Python代码 - `2D-Train3LPDminiPETOnly.py` - 用于使用仅miniPET方法训练LPD算法的Python代码 - **Measurments** - `IQphantom.sino.mnc` - 包含从miniPET测量获得的直接正弦图的文件 - `MeasureSimulatorMouse.xlsx` - 用于设置带有老鼠模体的测量的Excel文件 - `MeasureSimulatorP1.xlsx` - 用于设置带有第一个模体的测量的Excel文件 - `MeasureSimulatorP2.xlsx` - 用于设置带有第二个模体的测量的Excel文件 - `MeasureSimulatorP3.xlsx` - 用于设置带有第三个模体的测量的Excel文件 - `Measurements Description.txt` - 用于报告所有执行测量的有效活动水平的文件 - `processing.sh` - 用于处理miniPET采集提供的.clm.lr5文件的Linux bash文件 ## 描述 这些文件夹包含用于不同深度学习模型的训练脚本和评估Notebook,这些模型用于正电子发射断层扫描(PET)中的图像重建和去噪。此外,miniPET文件夹包含用于实际miniPET设备数据的训练脚本和数据处理工具。