# AD-NeRF **Repository Path**: Jerrisk/AD-NeRF ## Basic Information - **Project Name**: AD-NeRF - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-05-17 - **Last Updated**: 2024-05-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis ![](paper_data/pipeline.png) PyTorch implementation for the paper "[AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis (ICCV 2021)](https://arxiv.org/abs/2103.11078)".
Authors: [Yudong Guo](https://yudongguo.github.io/), [Keyu Chen](http://kychern.github.io/), [Sen Liang](https://scholar.google.com/citations?user=Yv_olnAAAAAJ&hl), [Yong-Jin Liu](https://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm), [Hujun Bao](http://www.cad.zju.edu.cn/home/bao/) and [Juyong Zhang](http://staff.ustc.edu.cn/~juyong/). ## Prerequisites - You can create an anaconda environment called adnerf with: ``` conda env create -f environment.yml conda activate adnerf ``` - [PyTorch3D](https://github.com/facebookresearch/pytorch3d) Recommend install from a local clone ``` git clone https://github.com/facebookresearch/pytorch3d.git cd pytorch3d && pip install -e . ``` - [Basel Face Model 2009](https://faces.dmi.unibas.ch/bfm/main.php?nav=1-1-0&id=details) Put "01_MorphableModel.mat" to data_util/face_tracking/3DMM/; cd data_util/face_tracking; run ``` python convert_BFM.py ``` ## Train AD-NeRF - Data Preprocess ($id Obama for example) ``` bash process_data.sh Obama ``` - Input: A portrait video at 25fps containing voice audio. (dataset/vids/$id.mp4) - Output: folder dataset/$id that contains all files for training - Train Two NeRFs (Head-NeRF and Torso-NeRF) - Train Head-NeRF with command ``` python NeRFs/HeadNeRF/run_nerf.py --config dataset/$id/HeadNeRF_config.txt ``` - Copy latest trainied model from dataset/$id/logs/$id_head to dataset/$id/logs/$id_com - Train Torso-NeRF with command ``` python NeRFs/TorsoNeRF/run_nerf.py --config dataset/$id/TorsoNeRF_config.txt ``` - You may need the [pretrained models](https://github.com/YudongGuo/AD-NeRF/tree/master/pretrained_models) to avoid bad initialization. [#3](https://github.com/YudongGuo/AD-NeRF/issues/3) ## Run AD-NeRF for rendering - Reconstruct original video with audio input ``` python NeRFs/TorsoNeRF/run_nerf.py --config dataset/$id/TorsoNeRFTest_config.txt --aud_file=dataset/$id/aud.npy --test_size=300 ``` - Drive the target person with another audio input ``` python NeRFs/TorsoNeRF/run_nerf.py --config dataset/$id/TorsoNeRFTest_config.txt --aud_file=${deepspeechfile.npy} --test_size=-1 ``` ## Citation If you find our work useful in your research, please consider citing our paper: ``` @inproceedings{guo2021adnerf, title={AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis}, author={Yudong Guo and Keyu Chen and Sen Liang and Yongjin Liu and Hujun Bao and Juyong Zhang}, booktitle={IEEE/CVF International Conference on Computer Vision (ICCV)}, year={2021} } ``` If you have questions, feel free to contact . ## Acknowledgments We use [face-parsing.PyTorch](https://github.com/zllrunning/face-parsing.PyTorch) for parsing head and torso maps, and [DeepSpeech](https://github.com/mozilla/DeepSpeech) for audio feature extraction. The NeRF model is implemented based on [NeRF-pytorch](https://github.com/yenchenlin/nerf-pytorch).