# machine_learning_security **Repository Path**: LightInfection/machine_learning_security ## Basic Information - **Project Name**: machine_learning_security - **Description**: Source code about machine learning and security. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-25 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Machine Learning and Security Source codes about machine learning and security. ## Line up. * [Cyber security and Machine Learning course](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Security_and_MachineLearning) The elementary training course of Machine learning for security engineer. * [Vulnerabilties of Machine Learning](https://github.com/13o-bbr-bbq/machine_learning_security/blob/master/Vulnerabilities_of_ML/) Summary of Machine Learning vulnerability. * [Analytics](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Analytics) Analyzing packet capture data using k-means. * [CNN_test](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/CNN_test) Generate adversarial example against CNN. * [Deep Exploit](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/DeepExploit) Fully automatic penetration test tool using Machine Learning. Deep Exploit was presented at **[Black Hat USA 2018 Arsenal](https://www.blackhat.com/us-18/arsenal/schedule/index.html#deep-exploit-11908)** and **[DEF CON 26! AI Village](https://aivillage.org/posts/accepted-talks/)**. * [GyoiThon](https://github.com/gyoisamurai/GyoiThon) Next generation penetration test tool. GyoiThon was presented at **[Black Hat ASIA 2018 Arsenal](https://www.blackhat.com/asia-18/arsenal/schedule/index.html#gyoithon-9651)** and **[DEF CON 26! Demo Labs](https://www.defcon.org/html/defcon-26/dc-26-demolabs.html)**. * [Generator](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Generator) Fully automatically generate numerous injection codes for web application assessment. * [Recommender](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Recommender) Recommend optimal injection code for detecting web app vulnerabilities. * [SAIVS (Spider Artificial Intelligence Vulnerability Scanner)](https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Saivs) SAIVS is an artificial intelligence to find vulnerabilities in Web applications. SAIVS was presented at **[Black Hat ASIA 2016 Arsenal](http://www.blackhat.com/asia-16/arsenal.html#saivs-spider-artificial-intelligence-vulnerability-scanner)**. ## Contact us Isao Takaesu takaesu235@gmail.com [https://twitter.com/bbr_bbq](https://twitter.com/bbr_bbq)