# Kafka-sample-study
**Repository Path**: Protector_hui/kafka-sample-study
## Basic Information
- **Project Name**: Kafka-sample-study
- **Description**: No description available
- **Primary Language**: Java
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-03-26
- **Last Updated**: 2021-03-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## 3.1 前言
毕竟是要搭建环境和简单实用,所以文中有大量的代码和配置文件。
前置条件:你的电脑已经安装 Docker
主要内容:
1. 使用 Docker 安装
2. 使用命令行测试消息的生产和消费消息队列功能使用
3. zookeeper和kafka可视化管理工具
4. Java 程序中简单使用Kafka
## 3.2 使用 Docker 安装搭建Kafka环境
### 3.2.1 单机版
**下面使用的单机版的Kafka 来作为演示,推荐先搭建单机版的Kafka来学习。**
> “
>
> 以下使用 Docker 搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose 。当然,你也可以按照官方提供的来:https://github.com/wurstmeister/kafka-docker/blob/master/docker-compose.yml 。
>
> ”
新建一个名为 `zk-single-kafka-single.yml` 的文件,文件内容如下:
```yaml
version: '2.1'
services:
zoo1:
image: zookeeper:3.4.9
hostname: zoo1
ports:
- "2181:2181"
environment:
ZOO_MY_ID: 1
ZOO_PORT: 2181
ZOO_SERVERS: server.1=zoo1:2888:3888
volumes:
- ./zk-single-kafka-single/zoo1/data:/data
- ./zk-single-kafka-single/zoo1/datalog:/datalog
kafka1:
image: confluentinc/cp-kafka:5.3.1
hostname: kafka1
ports:
- "9092:9092"
environment:
KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 1
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
volumes:
- ./zk-single-kafka-single/kafka1/data:/var/lib/kafka/data
depends_on:
- zoo1
```
运行以下命令即可完成环境搭建(会自动下载并运行一个 zookeeper 和 kafka )
```bash
docker-compose -f zk-single-kafka-single.yml up
```
如果需要停止Kafka相关容器的话,运行以下命令即可:
```bash
docker-compose -f zk-single-kafka-single.yml down
```
### 3.2.2 集群版
> “
>
> 以下使用 Docker 搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose 。
>
> ”
新建一个名为 `zk-single-kafka-multiple.yml` 的文件,文件内容如下:
```bash
version: '2.1'
services:
zoo1:
image: zookeeper:3.4.9
hostname: zoo1
ports:
- "2181:2181"
environment:
ZOO_MY_ID: 1
ZOO_PORT: 2181
ZOO_SERVERS: server.1=zoo1:2888:3888
volumes:
- ./zk-single-kafka-multiple/zoo1/data:/data
- ./zk-single-kafka-multiple/zoo1/datalog:/datalog
kafka1:
image: confluentinc/cp-kafka:5.4.0
hostname: kafka1
ports:
- "9092:9092"
environment:
KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 1
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
volumes:
- ./zk-single-kafka-multiple/kafka1/data:/var/lib/kafka/data
depends_on:
- zoo1
kafka2:
image: confluentinc/cp-kafka:5.4.0
hostname: kafka2
ports:
- "9093:9093"
environment:
KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka2:19093,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9093
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 2
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
volumes:
- ./zk-single-kafka-multiple/kafka2/data:/var/lib/kafka/data
depends_on:
- zoo1
kafka3:
image: confluentinc/cp-kafka:5.4.0
hostname: kafka3
ports:
- "9094:9094"
environment:
KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka3:19094,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9094
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
KAFKA_BROKER_ID: 3
KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
volumes:
- ./zk-single-kafka-multiple/kafka3/data:/var/lib/kafka/data
depends_on:
- zoo1
```
运行以下命令即可完成 1个节点 Zookeeper+3个节点的 Kafka 的环境搭建。
```bash
docker-compose -f zk-single-kafka-multiple.yml up
```
如果需要停止Kafka相关容器的话,运行以下命令即可:
```bash
docker-compose -f zk-single-kafka-multiple.yml down
```
## 3.3 使用命令行测试消息的生产和消费
一般情况下我们很少会用到 Kafka 的命令行操作。
1. **进入 Kafka container 内部执行 Kafka 官方自带了一些命令**
```bash
docker exec -it containerID bash
```
2. **列出所有 Topic**
```bash
root@kafka1:/# kafka-topics --describe --zookeeper zoo1:2181
```
3. **创建一个 Topic**
```bash
root@kafka1:/# kafka-topics --create --topic test --partitions 3 --zookeeper zoo1:2181 --replication-factor 1
Created topic test.
```
我们创建了一个名为 test 的 Topic, partition 数为 3, replica 数为 1。
4. **消费者订阅主题**
```bash
root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test
send hello from console -producer
```
我们订阅了 名为 test 的 Topic。
5. **生产者向 Topic 发送消息**
```bash
root@kafka1:/# kafka-console-producer --broker-list localhost:9092 --topic test
>send hello from console -producer
>
```
我们使用 `kafka-console-producer` 命令向名为 test 的 Topic 发送了一条消息,消息内容为:“send hello from console -producer”
这个时候,你会发现消费者成功接收到了消息:
```bash
root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test
send hello from console -producer
```
## 3.4 IDEA相关插件推荐
### 3.4.1 Zoolytic-Zookeeper tool
这是一款 IDEA 提供的 Zookeeper 可视化工具插件,非常好用!我们可以通过它:
1. 可视化ZkNodes节点信息
2. ZkNodes节点管理-添加/删除
3. 编辑zkNodes数据
4. ......
实际使用效果如下:

使用方法:
1. 打开工具:View->Tool windows->Zoolytic;
2. 点击 “+” 号后在弹出框数据:“127.0.0.1:2181” 连接 zookeeper;
3. 连接之后点击新创建的连接然后点击“+”号旁边的刷新按钮即可!
### 3.4.2 Kafkalytic
IDEA 提供的 Kafka 可视化管理插件。这个插件为我们提供了下面这写功能:
1. 多个集群支持
2. 主题管理:创建/删除/更改分区
3. 使用正则表达式搜索主题
4. 发布字符串/字节序列化的消息
5. 使用不同的策略消费消息
实际使用效果如下:

使用方法:
1. 打开工具:View->Tool windows->kafkalytic;
2. 点击 “+” 号后在弹出框数据:“127.0.0.1:9092” 连接;
## 3.5 Java 程序中简单使用Kafka
> 代码地址:https://github.com/Snailclimb/springboot-kafka/tree/master/kafka-intro-maven-demo
1. **新建一个Maven项目**
2. **`pom.xml` 中添加相关依赖**
```xml
org.apache.kafka
kafka-clients
2.2.0
```
3. **初始化消费者和生产者**
`KafkaConstants`常量类中定义了Kafka一些常用配置常量。
```java
public class KafkaConstants {
public static final String BROKER_LIST = "localhost:9092";
public static final String CLIENT_ID = "client1";
public static String GROUP_ID_CONFIG="consumerGroup1";
private KafkaConstants() {
}
}
```
`ProducerCreator` 中有一个 `createProducer()` 方法方法用于返回一个 `KafkaProducer`对象。
```java
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
/**
* @author shuang.kou
*/
public class ProducerCreator {
public static Producer createProducer() {
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST);
properties.put(ProducerConfig.CLIENT_ID_CONFIG, KafkaConstants.CLIENT_ID);
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
return new KafkaProducer<>(properties);
}
}
```
ConsumerCreator 中有一个`createConsumer()` 方法方法用于返回一个 `KafkaConsumer` 对象
```java
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.util.Properties;
public class ConsumerCreator {
public static Consumer createConsumer() {
Properties properties = new Properties();
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST);
properties.put(ConsumerConfig.GROUP_ID_CONFIG, KafkaConstants.GROUP_ID_CONFIG);
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
return new KafkaConsumer<>(properties);
}
}
```
4. **发送和消费消息**
```java
public class Main {
private static final String TOPIC = "test-topic";
public static void main(String[] args) {
sendMessage();
consumeMessage();
}
static void sendMessage() {
Producer producer = ProducerCreator.createProducer();
ProducerRecord record =
new ProducerRecord<>(TOPIC, "hello, Kafka!");
try {
//send message
RecordMetadata metadata = producer.send(record).get();
System.out.println("Record sent to partition " + metadata.partition()
+ " with offset " + metadata.offset());
} catch (ExecutionException | InterruptedException e) {
System.out.println("Error in sending record");
e.printStackTrace();
}
producer.close();
}
static void consumeMessage() {
Consumer consumer = ConsumerCreator.createConsumer();
// 循环消费消息
while (true) {
//subscribe topic and consume message
consumer.subscribe(Collections.singletonList(TOPIC));
ConsumerRecords consumerRecords =
consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord consumerRecord : consumerRecords) {
System.out.println("Consumer consume message:" + consumerRecord.value());
}
}
}
}
```
5. **测试**
运行程序控制台打印出:
```
Record sent to partition 0 with offset 20
Consumer consume message:hello, Kafka!
```