# SAPD **Repository Path**: RomanticWithoutStatus/SAPD ## Basic Information - **Project Name**: SAPD - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-13 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SAPD (Soft Anchor Point Object Detection) This is an implementation of [SAPD](https://arxiv.org/abs/1911.12448) for object detection on Keras and Tensorflow. The project is based on [fizyr/keras-retinanet](https://github.com/fizyr/keras-retinanet), [qubvel/efficientnet](https://github.com/qubvel/efficientnet), [xuannianz/EfficientDet](https://github.com/xuannianz/EfficientDet) and [xuannianz/FSAF](https://github.com/xuannianz/FSAF). The pretrained EfficientNet weights files are downloaded from [Callidior/keras-applications/releases](https://github.com/Callidior/keras-applications/releases) Thanks for their hard work. This project is released under the Apache License. Please take their licenses into consideration too when use this project. ## Train ### build dataset 1. Pascal VOC * Download VOC2007 and VOC2012, copy all image files from VOC2007 to VOC2012. * Append VOC2007 train.txt to VOC2012 trainval.txt. * Overwrite VOC2012 val.txt by VOC2007 val.txt. 2. MSCOCO 2017 * Download images and annotations of coco 2017 * Copy all images into datasets/coco/images, all annotations into datasets/coco/annotations 3. Other types please refer to [fizyr/keras-retinanet](https://github.com/fizyr/keras-retinanet)) ### train * STEP1: `python3 train.py --snapshot imagenet --phi {0, 1, 2, 3, 4, 5, 6} --gpu 0 --random-transform --compute-val-loss --freeze-backbone --batch-size 32 --steps 1000 pascal|coco datasets/VOC2012|datasets/coco` to start training. The init lr is 1e-3. * STEP2: `python3 train.py --snapshot xxx.h5 --phi {0, 1, 2, 3, 4, 5, 6} --gpu 0 --random-transform --compute-val-loss --freeze-bn --batch-size 4 --steps 10000 pascal|coco datasets/VOC2012|datasets/coco` to start training when val mAP can not increase during STEP1. The init lr is 1e-4 and decays to 1e-5 when val mAP keeps dropping down. ## Evaluate 1. PASCAL VOC * `python3 eval/common.py` to evaluate pascal model by specifying model path there. * The best evaluation results (score_threshold=0.01, mAP50) on VOC2007 test are: | phi | 0 | | ---- | ---- | | mAP50 | [0.7896](https://drive.google.com/open?id=1Ga3NC327LyUeulifzIihUdTiwpZXAKge) | | weights size | 17M | 2. MSCOCO * `python3 eval/coco.py` to evaluate coco model by specifying model path there. ## Test `python3 inference.py` to test your image by specifying image path and model path there. ![image1](test/004456.jpg) ![image2](test/005291.jpg) ![image3](test/005770.jpg)