# jetson-containers **Repository Path**: SeasonMay/jetson-containers ## Basic Information - **Project Name**: jetson-containers - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-15 - **Last Updated**: 2024-11-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![a header for a software project about building containers for AI and machine learning](https://raw.githubusercontent.com/dusty-nv/jetson-containers/docs/docs/images/header.jpg) # Machine Learning Containers for Jetson and JetPack [![l4t-pytorch](https://img.shields.io/github/actions/workflow/status/dusty-nv/jetson-containers/l4t-pytorch_jp51.yml?label=l4t-pytorch)](/packages/l4t/l4t-pytorch) [![l4t-tensorflow](https://img.shields.io/github/actions/workflow/status/dusty-nv/jetson-containers/l4t-tensorflow-tf2_jp51.yml?label=l4t-tensorflow)](/packages/l4t/l4t-tensorflow) [![l4t-ml](https://img.shields.io/github/actions/workflow/status/dusty-nv/jetson-containers/l4t-ml_jp51.yml?label=l4t-ml)](/packages/l4t/l4t-ml) [![l4t-diffusion](https://img.shields.io/github/actions/workflow/status/dusty-nv/jetson-containers/l4t-diffusion_jp51.yml?label=l4t-diffusion)](/packages/l4t/l4t-diffusion) [![l4t-text-generation](https://img.shields.io/github/actions/workflow/status/dusty-nv/jetson-containers/l4t-text-generation_jp51.yml?label=l4t-text-generation)](/packages/l4t/l4t-text-generation) Modular container build system that provides various [**AI/ML packages**](packages) for [NVIDIA Jetson](https://developer.nvidia.com/embedded-computing) :rocket::robot: | | | |---|---| | **ML** | [`pytorch`](packages/pytorch) [`tensorflow`](packages/tensorflow) [`onnxruntime`](packages/onnxruntime) [`deepstream`](packages/deepstream) [`tritonserver`](packages/tritonserver) [`jupyterlab`](packages/jupyterlab) [`stable-diffusion`](packages/diffusion/stable-diffusion-webui) | | **LLM** | [`transformers`](packages/llm/transformers) [`text-generation-webui`](packages/llm/text-generation-webui) [`text-generation-inference`](packages/llm/text-generation-inference) [`llava`](packages/llm/llava) [`llama.cpp`](packages/llm/llama_cpp) [`exllama`](packages/llm/exllama) [`llamaspeak`](packages/llm/llamaspeak) [`local_llm`](packages/llm/local_llm) [`awq`](packages/llm/awq) [`AutoGPTQ`](packages/llm/auto_gptq) [`MiniGPT-4`](packages/llm/minigpt4) [`MLC`](packages/llm/mlc) [`langchain`](packages/llm/langchain) [`optimum`](packages/llm/optimum) [`nemo`](packages/nemo) | | **L4T** | [`l4t-pytorch`](packages/l4t/l4t-pytorch) [`l4t-tensorflow`](packages/l4t/l4t-tensorflow) [`l4t-ml`](packages/l4t/l4t-ml) [`l4t-diffusion`](packages/l4t/l4t-diffusion) [`l4t-text-generation`](packages/l4t/l4t-text-generation) | | **VIT** | [`NanoOWL`](packages/vit/nanoowl) [`NanoSAM`](packages/vit/nanosam) [`Segment Anything (SAM)`](packages/vit/sam) [`Track Anything (TAM)`](packages/vit/tam) | | **CUDA** | [`cupy`](packages/cuda/cupy) [`cuda-python`](packages/cuda/cuda-python) [`pycuda`](packages/cuda/pycuda) [`numba`](packages/numba) [`cudf`](packages/rapids/cudf) [`cuml`](packages/rapids/cuml) | | **Robotics** | [`ros`](packages/ros) [`ros2`](packages/ros) [`opencv:cuda`](packages/opencv) [`realsense`](packages/realsense) [`zed`](packages/zed) | | **VectorDB** | [`NanoDB`](packages/vectordb/nanodb) [`FAISS`](packages/vectordb/faiss) [`RAFT`](packages/rapids/raft) | | **Audio** | [`whisper`](packages/audio/whisper) [`riva`](packages/audio/riva-client) [`audiocraft`](packages/audio/audiocraft) | See the [**`packages`**](packages) directory for the full list, including pre-built container images and CI/CD status for JetPack/L4T. Using the included tools, you can easily combine packages together for building your own containers. Want to run ROS2 with PyTorch and Transformers? No problem - just do the [system setup](/docs/setup.md), and build it on your Jetson like this: ```bash $ ./build.sh --name=my_container pytorch transformers ros:humble-desktop ``` There are shortcuts for running containers too - this will pull or build a [`l4t-pytorch`](packages/l4t/l4t-pytorch) image that's compatible: ```bash $ ./run.sh $(./autotag l4t-pytorch) ``` > [`run.sh`](/docs/run.md) forwards arguments to [`docker run`](https://docs.docker.com/engine/reference/commandline/run/) with some defaults added (like `--runtime nvidia`, mounts a `/data` cache, and detects devices)
> [`autotag`](/docs/run.md#autotag) finds a container image that's compatible with your version of JetPack/L4T - either locally, pulled from a registry, or by building it. If you look at any package's readme (like [`l4t-pytorch`](packages/l4t/l4t-pytorch)), it will have detailed instructions for running it's container. ## Documentation * [Package List](/packages) * [Package Definitions](/docs/packages.md) * [System Setup](/docs/setup.md) * [Building Containers](/docs/build.md) * [Running Containers](/docs/run.md) Check out the tutorials at the [**Jetson Generative AI Lab**](https://www.jetson-ai-lab.com)! ## Getting Started Refer to the [System Setup](/docs/setup.md) page for tips about setting up your Docker daemon and memory/storage tuning. ```bash sudo apt-get update && sudo apt-get install git python3-pip git clone --depth=1 https://github.com/dusty-nv/jetson-containers cd jetson-containers pip3 install -r requirements.txt ./run.sh $(./autotag l4t-pytorch) ``` Or you can manually run a [container image](https://hub.docker.com/r/dustynv) of your choice without using the helper scripts above: ```bash sudo docker run --runtime nvidia -it --rm --network=host dustynv/l4t-pytorch:r35.4.1 ``` Looking for the old jetson-containers? See the [`legacy`](https://github.com/dusty-nv/jetson-containers/tree/legacy) branch. ## Gallery > [Multimodal Voice Chat with LLaVA-1.5 13B on NVIDIA Jetson AGX Orin](https://www.youtube.com/watch?v=9ObzbbBTbcc) (container: [`local_llm`](/packages/llm/local_llm))
> [Interactive Voice Chat with Llama-2-70B on NVIDIA Jetson AGX Orin](https://www.youtube.com/watch?v=wzLHAgDxMjQ) (container: [`local_llm`](/packages/llm/local_llm))
> [Realtime Multimodal VectorDB on NVIDIA Jetson](https://www.youtube.com/watch?v=wzLHAgDxMjQ) (container: [`nanodb`](/packages/vectordb/nanodb))
> [NanoOWL - Open Vocabulary Object Detection ViT](https://www.jetson-ai-lab.com/tutorial_nanoowl.html) (container: [`nanodb`](/packages/vit/nanoowl))