# PyAdvancedControl **Repository Path**: Sudo_Felix/PyAdvancedControl ## Basic Information - **Project Name**: PyAdvancedControl - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2022-07-24 - **Last Updated**: 2022-07-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PyAdvancedControl [![Build Status](https://travis-ci.org/AtsushiSakai/PyAdvancedControl.svg?branch=master)](https://travis-ci.org/AtsushiSakai/PyAdvancedControl) Python Codes for Advanced Control # Dependencies - Python 3.7.x - cvxpy 1.0.x - ecos 2.0.7 - cvxopt 1.2.x - scipy 1.1.0 - numpy 1.15.0 - matplotlib 2.2.2 # lqr_sample This is a sample code of Linear-Quadratic Regulator This is LQR regulator simulation. ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/lqr_sample/Figure_1.png) This is LQR tracking simulation. ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/lqr_sample/Figure_2.png) # finite_horizon_optimal_control This is a finite horizon optimal control sample code ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/finite_horizon_optimal_control/result.png) # mpc_sample This is a sample code of a simple Model Predictive Control (MPC) regulator simulation ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/mpc_sample/result.png) # mpc_tracking This is a sample code of a Model Predictive Control (MPC) traget tracking simulation ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/mpc_tracking/result1.png) # mpc_modeling This is a sample code for model predictive control optimization modeling without any modeling tool (e.g cvxpy) This means it only use a solver (cvxopt) for MPC optimization. It includes two MPC optimization functions: 1 opt_mpc_with_input_const() It can be applied input constraints (not state constraints). 2 opt_mpc_with_state_const() It can be applied state constraints and input constraints. This figure is a comparison of MPC results with and without modeling tool. ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/mpc_modeling/result.png) ## inverted_pendulum_mpc_control ![1](https://github.com/AtsushiSakai/PyAdvancedControl/blob/master/inverted_pendulum_mpc_control/animation.gif) This is a inverted pendulum mpc control simulation. # tools ## c2d This is a API compatible function of MATLAB c2d function. [Convert model from continuous to discrete time MATLAB c2d](https://jp.mathworks.com/help/control/ref/c2d.html)