# MiniCPM **Repository Path**: Yang-chl/MiniCPM ## Basic Information - **Project Name**: MiniCPM - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-11 - **Last Updated**: 2024-09-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

中文 | English

MiniCPM 技术博客 | MiniCPM 知识库 | MiniCPM 论文 | MiniCPM-V 仓库 | 加入我们的 discord微信群

## 更新日志🔥 - [2024.09.05] 发布 [**MiniCPM3-4B**](https://huggingface.co/openbmb/MiniCPM3-4B)!该模型的表现超越 Phi-3.5-mini-instruct 和 GPT-3.5-Turbo-0125,并且能够比肩 Llama3.1-8B-Instruct、Qwen2-7B-Instruct、GLM-4-9B-Chat 等多个 7B-9B 参数量的模型。 - [2024.07.09] MiniCPM-2B 已经支持使用 [SGLang](#sglang-推理) 推理! - [2024.07.05] 发布 [MiniCPM-S-1B](https://huggingface.co/openbmb/MiniCPM-S-1B-sft)!该模型在保持下游任务性能无损的前提下,FFN 层实现了 87.89% 的平均稀疏度,将 FFN FLOPs 降低了 84%。 - [2024.04.11] 发布 [MiniCPM-2B-128k](https://huggingface.co/openbmb/MiniCPM-2B-128k)、[MiniCPM-MoE-8x2B](https://huggingface.co/openbmb/MiniCPM-MoE-8x2B) 和 [MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16)!点击[这里](https://openbmb.vercel.app/?category=Chinese+Blog)查看技术博客。 - [2024.03.16] MiniCPM-2B 的 30 余个中间检查点开放了![HuggingFace链接](https://huggingface.co/openbmb/MiniCPM-2B-history) - [2024.02.01] 发布 [**MiniCPM-2B**](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)!该模型在公开评测集上与 Mistral-7B 表现相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。 ## 目录 - [模型下载](#模型下载) - [MiniCPM 3.0](#minicpm-30) - [评测结果](#评测结果) - [综合评测](#综合评测) - [工具调用能力](#工具调用能力) - [长文本能力](#长文本能力) - [模型推理](#模型推理) - [HuggingFace](#huggingface) - [vLLM](#vllm) - [llama.cpp](#llamacpp) - [模型微调](#模型微调) - [LLaMA-Factory](#llama-factory) - [进阶功能](#进阶功能) - [工具调用](#工具调用) - [代码解释器](#代码解释器) - [MiniCPM 2.0](#minicpm-20) - [MiniCPM 1.0](#minicpm-10) ## 模型下载 | HuggingFace | ModelScope | |-------------|------------| |[MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B)|[MiniCPM3-4B](https://www.modelscope.cn/models/OpenBMB/MiniCPM3-4B)| |[MiniCPM-2B-sft](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)|[MiniCPM-2B-sft](https://modelscope.cn/models/OpenBMB/miniCPM-bf16)| |[MiniCPM-2B-dpo](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16)|[MiniCPM-2B-dpo](https://modelscope.cn/models/OpenBMB/MiniCPM-2B-dpo-bf16/summary)| |[MiniCPM-2B-128k](https://huggingface.co/openbmb/MiniCPM-2B-128k) |[MiniCPM-2B-128k](https://modelscope.cn/models/openbmb/MiniCPM-2B-128k/summary)| |[MiniCPM-MoE-8x2B](https://huggingface.co/openbmb/MiniCPM-MoE-8x2B) |[MiniCPM-MoE-8x2B](https://modelscope.cn/models/OpenBMB/MiniCPM-MoE-8x2B)| |[MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) | [MiniCPM-1B](https://modelscope.cn/models/OpenBMB/MiniCPM-1B-sft-bf16) | |[MiniCPM-S-1B](https://huggingface.co/openbmb/MiniCPM-S-1B-sft)|[MiniCPM-S-1B](https://modelscope.cn/models/OpenBMB/MiniCPM-S-1B-sft)| 注: 更多模型版本见[这里](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f)。 ## MiniCPM 3.0 MiniCPM 3.0 是一个 4B 参数量的语言模型,相比 MiniCPM1.0/2.0,功能更加全面,综合能力大幅提升,多数评测集上的效果比肩甚至超越众多 7B-9B 模型。 * **支持工具调用🛠️(Function Calling)和代码解释器💻(Code Interpreter)**:[Berkeley Function Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html) 上取得 9B 规模以下 SOTA,超越 GLM-4-9B-Chat、Qwen2-7B-Instruct。 * **超强的推理能力🧮**:数学能力方面,[MathBench](https://open-compass.github.io/MathBench/) 上的效果超越 GPT-3.5-Turbo 以及多个 7B-9B 模型。在非常具有挑战性的 [LiveCodeBench](https://livecodebench.github.io/) 上,效果超越 Llama3.1-8B-Instruct。 * **出色的中英文指令遵循能力🤖**:英文指令遵循 [IFEval](https://huggingface.co/datasets/google/IFEval)、中文指令遵循 [FollowBench-zh](https://huggingface.co/datasets/YuxinJiang/FollowBench) 效果超越 GLM-4-9B-Chat、Qwen2-7B-Instruct。 * **长文本能力**:原生支持 32k 上下文长度,32k 长度内大海捞针全绿。提出 **LLM x MapReduce** ,理论可处理的上下文长度达到 +∞。 * **RAG能力**:我们发布了 [MiniCPM RAG 套件](https://huggingface.co/collections/openbmb/minicpm-rag-suite-66d976b4204cd0a4f8beaabb)。基于 MiniCPM 系列模型的 [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)、[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) 在中文、中英跨语言检索测试中取得 SOTA 表现;针对 RAG 场景的 [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) 在开放域问答等多项任务上超越 Llama3-8B、Baichuan2-13B 等模型。 ### 评测结果 #### 综合评测
评测集 Qwen2-7B-Instruct GLM-4-9B-Chat Gemma2-9B-it Llama3.1-8B-Instruct GPT-3.5-Turbo-0125 Phi-3.5-mini-Instruct(3.8B) MiniCPM3-4B
英文能力
MMLU 70.5 72.4 72.6 69.4 69.2 68.4 67.2
BBH 64.9 76.3 65.2 67.8 70.3 68.6 70.2
MT-Bench 8.41 8.35 7.88 8.28 8.17 8.60 8.41
IFEVAL (Prompt Strict-Acc.) 51.0 64.5 71.9 71.5 58.8 49.4 68.4
中文能力
CMMLU 80.9 71.5 59.5 55.8 54.5 46.9 73.3
CEVAL 77.2 75.6 56.7 55.2 52.8 46.1 73.6
AlignBench v1.1 7.10 6.61 7.10 5.68 5.82 5.73 6.74
FollowBench-zh (SSR) 63.0 56.4 57.0 50.6 64.6 58.1 66.8
数学能力
MATH 49.6 50.6 46.0 51.9 41.8 46.4 46.6
GSM8K 82.3 79.6 79.7 84.5 76.4 82.7 81.1
MathBench 63.4 59.4 45.8 54.3 48.9 54.9 65.6
代码能力
HumanEval+ 70.1 67.1 61.6 62.8 66.5 68.9 68.3
MBPP+ 57.1 62.2 64.3 55.3 71.4 55.8 63.2
LiveCodeBench v3 22.2 20.2 19.2 20.4 24.0 19.6 22.6
工具调用能力
BFCL v2 71.6 70.1 19.2 73.3 75.4 48.4 76.0
综合能力
平均分 65.3 65.0 57.9 60.8 61.0 57.2 66.3
#### 工具调用能力 我们在 [Berkeley Function Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html) 上测试了模型的工具调用能力,MiniCPM3-4B 在该榜单上的表现超越了多个 7B-9B 参数量的模型,优于 GPT-3.5-Turbo-0125。
模型 总体准确率 AST Summary Exec Summary Irrelevance Detection Relevance Detection
MiniCPM3-4B 76.03% 68.55% 85.54% 53.71% 90.24%
Llama3.1-8B-Instruct 73.28% 64.61% 86.48% 43.12% 85.37%
Qwen2-7B-Instruct 71.61% 65.71% 79.57% 44.70% 90.24%
GLM-4-9B-Chat 70.08% 60.69% 80.02% 55.02% 82.93%
Phi-3.5-mini-instruct 48.44% 38.89% 54.04% 46.78% 65.85%
Gemma2-9B-it 19.18% 5.41% 18.50% 88.88% 7.32%
#### 长文本能力 在 32k 的上下文长度进行[大海捞针](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)测试,结果如下图: ![needle](assets/eval_needle.jpeg) ### 模型推理 #### Huggingface ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch.manual_seed(0) path = 'openbmb/MiniCPM3-4B' tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) responds, history = model.chat(tokenizer, "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。", temperature=0.7, top_p=0.7) print(responds) ``` #### vLLM * 安装 vllm ```shell pip install git+https://github.com/OpenBMB/vllm.git@minicpm3 ``` * 推理 ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "openbmb/MiniCPM3-4B" prompt = [{"role": "user", "content": "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。"}] tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_name, trust_remote_code=True, tensor_parallel_size=1 ) sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024) outputs = llm.generate(prompts=input_text, sampling_params=sampling_params) print(outputs[0].outputs[0].text) ``` #### llama.cpp * 安装 llama.cpp ```shell git clone https://github.com/OpenBMB/llama.cpp.git git checkout minicpm3 cd llama.cpp make ``` * 创建模型目录 ```shell cd llama.cpp/models mkdir Minicpm3 ``` * 下载 MiniCPM3 模型所有文件到 `llama.cpp/models/Minicpm3` ```shell cd llama.cpp/models/Minicpm3 git clone https://huggingface.co/openbmb/MiniCPM3-4B ``` * 将模型转换为 gguf 格式,并且量化: ```python python3 -m pip install -r requirements.txt # 将pytorch模型转化为fp16的gguf python3 convert-hf-to-gguf.py models/Minicpm3/ --outfile /your/path/llama.cpp/models/Minicpm3/CPM-4B-F16.gguf # 完成以上步骤,llama.cpp/models/Minicpm3目录下有一个CPM-4B-F16.gguf的模型文件 ./llama-quantize ./models/Minicpm3/CPM-4B-F16.gguf ./models/Minicpm3/ggml-model-Q4_K_M.gguf Q4_K_M # 使用本行代码执行成功后,./models/Minicpm3下将存在ggml-model-Q4_K_M.gguf的4bit量化文件 ``` * 推理 ```shell ./llama-cli -c 1024 -m ./models/Minicpm/ggml-model-Q4_K_M.gguf -n 1024 --top-p 0.7 --temp 0.7 --prompt "<|im_start|>user\n请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。<|im_end|>\n<|im_start|>assistant\n" ``` ### 模型微调 #### LLaMA-Factory 目前模型微调支持 [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory),使用方法参考 [LLaMA-Factory 微调](https://modelbest.feishu.cn/docx/Z7USdW4lloZzkZxQ14icJ3senjb?from=from_copylink)。 ### 进阶功能 对于以下进阶功能,我们推荐使用 [vLLM](#vllm)。 #### 工具调用 我们提供了使用 MiniCPM3 调用工具的示例代码: ```bash cd demo/minicpm3/function_call python function_call.py ``` 如果你想启动一个能够调用工具的推理服务,使用以下代码: ```bash cd demo/minicpm3/function_call pip install -r requirements.txt python openai_api_server.py \ --model openbmb/MiniCPM3-4B \ --served-model-name MiniCPM3-4B \ --chat-template chatml.jinja \ --dtype auto \ --api-key token-abc123 \ --tensor-parallel-size 1 \ --trust-remote-code ``` 下面是一个调用搜索工具回答问题的演示: ![function_call](./assets/function_call.gif) #### 代码解释器 我们提供了一个 MiniCPM3 使用代码解释器的示例代码: ```bash cd demo/minicpm3/code_interpreter pip install -r requirements.txt python code_interpreter.py openbmb/MiniCPM3-4B ``` 下面是一个使用代码解释器生成二维码的演示: ![code_interpreter](./assets/code_interpreter.gif) ## MiniCPM 2.0
查看 MiniCPM 2.0 的详细信息 MiniCPM 2.0 系列模型对 MiniCPM 进行了多个维度的升级,包括以下模型版本: - MiniCPM-2B-128k:将 MiniCPM-2B 的上下文长度从 4k 扩展至 128k,在 InfiniteBench 测试集上优于 ChatGLM3-6B-128k、Yi-6B-200k 等更大参数量的模型。 - MiniCPM-MoE-8x2B:基于 MiniCPM-2B 进行 MoE 扩展,综合表现相比于 MiniCPM-2B 平均提高 4.5 个百分点。 - MiniCPM-1B:相比于 MiniCPM-2B 成本下降 60%,综合表现仍然优于 LLaMA2-13B。 - MiniCPM-S-1B:在保持下游任务性能无损的前提下,FFN 层实现了 87.89% 的平均稀疏度,将 FFN FLOPs 降低了 84%。结合 PowerInfer 推理框架,解码速度提升约 2.8 倍。 ### 评测结果 #### MiniCPM-2B-128k 模型评测 | Model | avg | avg w/o code&math | passkey | number_string | kv_retrieval | longbook_choice_eng | longbook_qa_chn | longbook_qa_eng | longbook_sum_eng | longdialogue_qa_eng | math_calc | math_find | code_debug | code_run | |-------------------------------------|-------|-------------------|---------|---------------|--------------|---------------------|-----------------|-----------------|------------------|---------------------|-----------|-----------|------------|----------| | LWM-Text-128k | 24.45 | 33.62 | 100 | 97.8 | 0.6 | 28.82 | 15.93 | 14.31 | 9.99 | 1.5 | 0 | 3.43 | 20.05 | 1 | | Yarn-Mistral-7b-128k | 19.84 | 27.36 | 92.71 | | 0 | 27.95 | 15.49 | 9.55 | 9.06 | 7.5 | 0 | 17.14 | 0.76 | 1.25 | | Mistral-7B-Instruct-v0.2(ABF 1000w) | 27.75 | 36.9 | 100 | 78.98 | 3.6 | 37.12 | 11.74 | 17.37 | 21.12 | 9.5 | 0 | 29.43 | 17.51 | 0 | | Yi-6B-200k | 22.15 | 32.54 | 100 | 94.92 | 0 | 36.68 | 15.07 | 9.2 | 0.92 | 3.5 | 0 | 4.29 | 0.51 | 0.75 | | chatglm3-6b-128k | 25.58 | 36.57 | 89.93 | 99.66 | 5.2 | 46.29 | 10.7 | 8.38 | 25.91 | 6.5 | 0 | 8 | 5.33 | 1 | | MiniCPM-2.4B-128k | 27.32 | 37.68 | 98.31 | 99.83 | 9 | 29.69 | 23.06 | 16.33 | 15.73 | 9.5 | 0 | 4.29 | 22.08 | 0 | #### MiniCPM-MoE-8x2B 模型评测
Model BBH MMLU CEval CMMLU HumanEval MBPP† GSM8K MATH
Llama2-34B* 44.1 62.6 - - 22.6 33.0 42.2 6.24
Mistral-7B-Instruct-v0.2 39.81 60.51 42.55 41.92 36.59 39.63 40.49 4.95
Gemma-7B* 55.1 64.3 - - 32.3 44.4 46.4 24.3
Qwen1.5-7B* 40.2 61 74.1 73.1 36 37.4 62.5 20.3
Deepseek-MoE(16B)* - 45.0 40.6 42.5 26.8 39.2 18.8 4.3
MiniCPM-2.4B 36.87 53.46 51.13 51.07 50.00 35.93 53.83 10.24
MiniCPM-MoE-8x2B 39.22 58.90 58.11 58.80 55.49 41.68 61.56 10.52
注:* 表示结果取自技术报告。† 表示评测集为MBPP全集。 #### MiniCPM-S-1B 评测结果 - 代码生成:在 HumanEval(0-shot)和 MBPP(3-shot)上的平均 pass@1 得分。 - 常识推理:在 PIQA、SIQA、HellaSwag、WinoGrande 和 COPA 上的平均 0-shot 准确率。 - 阅读理解:在 BoolQ、LAMBADA 和 TyDi QA 上的平均 0-shot 准确率。 其他测试集:我们报告在GSM8K(8-shot)、MMLU(5-shot)、BBH(3-shot)和 AGI-Eval(0-shot)上的平均准确率。 | Setting | Average
Sparsity | Average
Performance | Code
Generation | Commonsense
Reasoning | Reading
Comprehension | GSM8K | MMLU | BBH | AGI Eval | | :-------------------: | :----------------: | :----------------------: | :----------------------: | :---: | :---: | :---: | :---------: | :-----: | :-----------------: | | LLaMA2-7B | - | 37.96 | 16.37 | 69.59 | 61.87 | 12.96 | 44.45 | 32.96 | 27.53 | | ReluLLaMA-7B | 66.98 | 37.62 | 15.85 | 69.64 | 70.54 | 5.84 | 38.64 | 35.07 | 27.73 | | **ProSparse-7B**\* | 88.11 | 38.31 | 19.47 | 66.29 | 63.33 | 12.74 | 45.21 | 33.59 | 27.55 | | **ProSparse-7B** | **89.32** | **38.46** | 19.42 | 66.27 | 63.50 | 12.13 | 45.48 | 34.99 | 27.46 | | LLaMA2-13B | - | 44.06 | 20.19 | 72.58 | 71.55 | 22.21 | 54.69 | 37.89 | 29.33 | | ReluLLaMA-13B | 71.56 | 42.74 | 20.19 | 70.44 | 73.29 | 18.50 | 50.58 | 37.97 | 28.22 | | **ProSparse-13B**\* | 87.97 | **45.07** | 29.03 | 69.75 | 67.54 | 25.40 | 54.78 | 40.20 | 28.76 | | **ProSparse-13B** | **88.80** | 44.90 | 28.42 | 69.76 | 66.91 | 26.31 | 54.35 | 39.90 | 28.67 | | MiniCPM-1B | - | 44.44 | 36.85 | 63.67 | 60.90 | 35.48 | 50.44 | 35.03 | 28.71 | | **MiniCPM-S-1B**\* | 86.25 | **44.72** | 41.38 | 64.55 | 60.69 | 34.72 | 49.36 | 34.04 | 28.27 | | **MiniCPM-S-1B** | **87.89** | **44.72** | 42.04 | 64.37 | 60.73 | 34.57 | 49.51 | 34.08 | 27.77 | 注: 1. ReluLLaMA-7B 和 ReluLLaMA-13B 的下载链接分别是 [7B](https://huggingface.co/SparseLLM/ReluLLaMA-7B) and [13B](https://huggingface.co/SparseLLM/ReluLLaMA-13B)。"ProSparse-7B\*"、"ProSparse-13B\*" 和 "MiniCPM-S-1B\*" 代表没有激活阈值偏移的 ProSparse 版本。 2. 对于 PIQA、SIQA、HellaSwag、WinoGrande、COPA、BoolQ、LAMBADA、TyDi QA 和 AGI-Eval,我们根据各个选项的 PPL 来进行答案选择。对于 GSM8K、MMLU 和 BBH,我们直接生成答案。 ### 模型推理 #### HuggingFace、vLLM推理 参考 MiniCPM 1.0 中的[模型推理](#huggingface-推理)部分。 #### Powerinfer 推理 针对 MiniCPM-S-1B 模型,我们可以使用 Powerinfer 进行推理加速,使用方法如下: 1. 保证cmake版本3.17以上,如果已经安装过,则跳过此步骤 ```bash # 下载安装包 sudo wget https://cmake.org/files/v3.23/cmake-3.23.0.tar.gz # 解压安装包 sudo tar -zxvf cmake-3.23.0.tar.gz # 配置安装环境 sudo ./configure sudo make -j8 # 编译安装 sudo make install # 查看安装后版本 cmake --version # 返回版本号则安装成功 #cmake version 3.23.0 ``` 2. 安装powerinfer: ```bash git clone https://github.com/SJTU-IPADS/PowerInfer cd PowerInfer pip install -r requirements.txt # install Python helpers' dependencies ``` 3. cpu版本powerinfer编译,如果你的机器只有cpu,或者只想使用cpu进行推理,则运行以下命令: ```bash cmake -S . -B build cmake --build build --config Release ``` 4. gpu版本powerinfer编译,如果你的机器有gpu,则可以运行以下命令: ```bash cmake -S . -B build -DLLAMA_CUBLAS=ON cmake --build build --config Release ``` 5. 获取稀疏模型 ```bash git clone https://huggingface.co/openbmb/MiniCPM-S-1B-sft-gguf/tree/main #or git clone https://modelscope.cn/models/OpenBMB/MiniCPM-S-1B-sft-gguf ``` 6. 模型推理: ```bash cd PowerInfer # 以下是命令模版,output_token_count为最大输出tokens,thread_num 为线程数,prompt为输入prompt字符 #./build/bin/main -m /PATH/TO/MODEL -n $output_token_count -t $thread_num -p $prompt # 以下是示例 ./build/bin/main -m /root/ld/ld_model_pretrain/1b-s-minicpm/MiniCPM-S-1B-sft.gguf -n 2048 -t 8 -p '<用户>hello,tell me a story please.' ```
## MiniCPM 1.0
查看 MiniCPM 1.0 的详细信息 MiniCPM-2B 语言模型有 24亿(2.4B)的非词嵌入参数量, 总计 2.7B 参数量。 - 经过 SFT 后,MiniCPM-2B 在公开评测集上与 Mistral-7B 表现相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。 - 经过 DPO 后,MiniCPM-2B 在 MTBench 上也超越了 Llama2-70B-Chat、Vicuna-33B、Mistral-7B-Instruct-v0.1、Zephyr-7B-alpha 等众多代表性开源大模型。 注意:为了保证在学术研究用途上模型的通用性,我们**未对 MiniCPM-2B 进行任何身份认同训练**。同时由于我们用 ShareGPT 开源语料作为部分训练数据,模型可能会输出类似 GPT 系列模型的身份认同信息。 ### 评测结果 #### 评测设置 * 由于大模型评测难以统一,且大量评测也没有公开的prompt和测试代码,对于具体评测方式,我们只能尽量做到适合各类模型。 * 整体而言,我们测试时采用统一的prompt输入,并按照各模型对应的模板进行输入调整。 * **评测脚本及prompt已开源在我们的Github仓库中,也欢迎更多开发者来不断改进我们的评测方式。** * 文本评测部分,采用了我们的开源大模型能力评测框架[UltraEval](https://github.com/OpenBMB/UltraEval)。以下为开源模型复现流程: * 安装UltraEval ```shell git clone https://github.com/OpenBMB/UltraEval.git cd UltraEval pip install -e . ``` * 下载相关数据并解压处理 ```shell wget -O RawData.zip "https://cloud.tsinghua.edu.cn/f/71b5232264ae4833a4d0/?dl=1" unzip RawData.zip python data_process.py ``` * 执行评测脚本(提供了模板,可自定义) ```shell bash run_eval.sh ``` #### 部署模式 * 因为MiniCPM采用Mup的结构,与现有模型在具体计算上有细微差别,我们是基于vllm=0.2.2版本进行了我们模型的实现。 * **对于非MiniCPM模型,我们采用了vllm=0.2.7的最新版本进行推理。** #### 评测度量 * 对于QA任务(选择题任务),我们选用两种方式进行测试: * PPL:将选项作为题目生成的延续,并根据各个选项的PPL来进行答案选择; * 第二种是直接生成答案选项。 * 对于不同模型,这两种方式得到的结果差异较大。MiniCPM两种模式上的结果较为接近,而Mistral-7B-v0.1等模型在PPL上表现较好,直接生成上效果较差。 * 在具体评测时,我们以两种评测方式得分的最高者为最终结果,以此保证对比的公平性(以下表格中*号表示采用PPL)。 #### 文本模型评测 **越级比较:** |模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag| |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| |Llama2-7B|35.40|36.21|31.765|32.42|31.11|44.32|12.2|27.17|13.57|1.8|33.23|75.25|42.75|75.62*| |Qwen-7B|49.46|47.19|59.655|58.96|60.35|57.65|17.07|42.15|41.24|5.34|37.75|83.42|64.76|75.32*| |Deepseek-7B|39.96|39.15|43.64|42.82|44.45|47.82|20.12|41.45|15.85|1.53|33.38|74.58*|42.15*|75.45*| |Mistral-7B|48.97|49.96|44.54|46.12|42.96|62.69|27.44|45.2|33.13|5.0|41.06|83.92|70.73|80.43*| |Llama2-13B|41.48|42.44|37.19|37.32|37.06|54.71|17.07|32.55|21.15|2.25|37.92|78.87*|58.19|79.23*| |MPT-30B|38.17|39.82|30.72|29.34|32.09|46.56|21.95|35.36|10.31|1.56|38.22|78.66*|46.08*|79.72*| |Falcon-40B|43.62|44.21|40.93|40.29|41.57|53.53|24.39|36.53|22.44|1.92|36.24|81.94*|57.68|83.26*| |MiniCPM-2B|52.33|52.6|51.1|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25| **同级比较:** |模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag| |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| |TinyLlama-1.1B|25.36|25.55|24.525|25.02|24.03|24.3|6.71|19.91|2.27|0.74|28.78|60.77*|28.15*|58.33*|Qwen-1.8B|34.72|31.87|47.565|49.81|45.32|43.37|7.93|17.8|19.26|2.42|29.07|63.97*|43.69|59.28*| |Qwen-1.8B|34.72|31.87|47.57|49.81|45.32|43.37|7.93|17.80|19.26|2.42|29.07|63.97*|43.69|59.28*| |Gemini Nano-3B|-|-|-|-|-|-|-|27.2(report)|22.8(report)|-|42.4(report)|-|-|-| |StableLM-Zephyr-3B|43.46|46.31|30.62|30.34|30.89|45.9|35.37|31.85|52.54|12.49|37.68|73.78|55.38|71.87*| |Phi-2-2B|48.84|54.41|23.78|23.37|24.18|52.66|47.56|55.04|57.16|3.5|43.39|86.11|71.25|73.07*| |MiniCPM-2B|52.33|52.6|51.10|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25| **Chat模型比较:** |模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag| |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| |ChatGLM2-6B|37.98|35.17|50.63|52.05|49.21|45.77|10.37|9.38|22.74|5.96|32.6|74.45|56.82|58.48*| |Mistral-7B-Instruct-v0.1|44.36|45.89|37.51|38.06|36.96|53.56|29.27|39.34|28.73|3.48|39.52|81.61|63.99|73.47*| |Mistral-7B-Instruct-v0.2|50.91|52.83|42.235|42.55|41.92|60.51|36.59|48.95|40.49|4.95|39.81|86.28|73.38|84.55*| |Qwen-7B-Chat|44.93|42.05|57.9|58.57|57.23|56.03|15.85|40.52|42.23|8.3|37.34|64.44*|39.25*|74.52*| |Yi-6B-Chat|50.46|45.89|70.995|70.88|71.11|62.95|14.02|28.34|36.54|3.88|37.43|84.89|70.39|74.6*| |Baichuan2-7B-Chat|44.68|42.74|53.39|53.28|53.5|53|21.34|32.32|25.25|6.32|37.46|79.63|60.15|69.23*| |Deepseek-7B-chat|49.34|49.56|48.335|46.95|49.72|51.67|40.85|48.48|48.52|4.26|35.7|76.85|63.05|76.68*| |Llama2-7B-Chat|38.16|39.17|33.59|34.54|32.64|47.64|14.02|27.4|21.15|2.08|35.54|74.28|54.78|75.65*| |MiniCPM-2B|52.33|52.6|51.10|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25| **DPO后模型比较:** |模型|MT-bench| |---|---| |GPT-4-turbo|9.32| |GPT-3.5-turbo|8.39| |Mistral-8*7b-Instruct-v0.1|8.30| |Claude-2.1|8.18| |Zephyr-7B-beta|7.34| |**MiniCPM-2B**|**7.25**| |Vicuna-33B|7.12| |Zephyr-7B-alpha|6.88| |LLaMA-2-70B-chat|6.86| |Mistral-7B-Instruct-v0.1|6.84| |MPT-34B-instruct|6.39| ### 快速上手 #### 在线体验 - [Colab](https://colab.research.google.com/drive/1tJcfPyWGWA5HezO7GKLeyeIso0HyOc0l?usp=sharing) #### 基于Gradio的网页版Demo * 使用如下命令启动基于Gradio的网页版demo: ```shell # generation powered by vllm python demo/minicpm/vllm_based_demo.py --model_path # generation powered by huggingface python demo/minicpm/hf_based_demo.py --model_path ``` #### HuggingFace 推理 ##### MiniCPM-2B 安装`transformers>=4.36.0`以及`accelerate`后,运行以下代码: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch.manual_seed(0) path = 'openbmb/MiniCPM-2B-dpo-bf16' tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.5, top_p=0.8, repetition_penalty=1.02) print(responds) ``` ##### MiniCPM-2B (Llama Format) 我们将MiniCPM的模型权重转化成了Llama代码可以直接调用的[格式](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16-llama-format),以便大家尝试: ```python import torch from transformers import LlamaTokenizerFast, LlamaForCausalLM model_path = "openbmb/MiniCPM-2B-dpo-bf16-llama-format" tokenizer = LlamaTokenizerFast.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) prompt="Now you act like a terminal situated within a beginner's C++ practice repository folder, please provide the output for the command: `ls -l`" input_ids = tokenizer.encode("<用户>{}".format(prompt), return_tensors='pt', add_special_tokens=True).cuda() responds = model.generate(input_ids, temperature=0.3, top_p=0.8, repetition_penalty=1.02, max_length=1024) responds = tokenizer.decode(responds[0], skip_special_tokens=True) print(responds) ``` #### vLLM 推理 安装 [vLLM](https://github.com/vllm-project/vllm)。 ```shell pip install "vllm>=0.4.1" ``` 具体推理代码见[这里](#vllm)。 #### SGLang 推理 安装 [SGLang](https://github.com/sgl-project/sglang)。 * 首先需要启动一个服务: ```bash python -m sglang.launch_server --model-path openbmb/MiniCPM-2B-dpo-fp16 --trust-remote-code --port 30000 ``` * 下面是一个推理代码的样例: ```python from sglang import function, gen, set_default_backend, RuntimeEndpoint @function def text_qa(s, question): s += "<用户>" + question + "" s += gen("answer", max_tokens=1024, temperature=0.7, top_p=0.7) set_default_backend(RuntimeEndpoint("http://localhost:30000")) state = text_qa.run( question="What is the capital of China?", ) print(state["answer"]) ``` #### llama.cpp、Ollama、fastllm、mlx_lm推理 MiniCPM支持[llama.cpp](https://github.com/ggerganov/llama.cpp/) 、[ollama](https://github.com/ollama/ollama)、[fastllm](https://github.com/ztxz16/fastllm)、[mlx_lm](https://github.com/ml-explore/mlx-examples)推理。感谢[@runfuture](https://github.com/runfuture)对llama.cpp和ollama的适配。 请参考 MiniCPM 知识库中的[量化指南](https://modelbest.feishu.cn/wiki/EatbwdLuvitbbMk2X5wcX6h5n7c)。 #### 模型微调 - 一张 1080/2080 可实现高效参数微调:[代码](https://github.com/OpenBMB/MiniCPM/tree/main/finetune) - mlx 微调:[教程](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#share-ASrDdvFAloHtycxfy85cLNhAnd3) - [xtuner](https://github.com/InternLM/xtuner): [MiniCPM高效率微调的不二选择](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#AMdXdzz8qoadZhxU4EucELWznzd) - [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory.git):[MiniCPM微调一键式解决方案](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#BAWrdSjXuoFvX4xuIuzc8Amln5E)
## 开源协议 #### 模型协议 * 本仓库中代码依照 [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) 协议开源 * MiniCPM 模型权重的使用则需要遵循 [MiniCPM 模型商用许可协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%E6%A8%A1%E5%9E%8B%E5%95%86%E7%94%A8%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.md)。 * MiniCPM 模型权重对学术研究完全开放,在填写[问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)进行登记后亦允许免费商业使用。 #### 声明 * 作为一个语言模型,MiniCPM 通过学习大量的文本来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。 * 因此用户在使用 MiniCPM 生成的内容时,应自行负责对其进行评估和验证。 * 如果由于使用 MiniCPM 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。 ## 开发机构 本项目由以下机构共同开发: - [面壁智能](https://modelbest.cn/) - [清华大学自然语言处理实验室](https://nlp.csai.tsinghua.edu.cn/) ## 工作引用 * 如果觉得MiniCPM有助于您的工作,请引用我们的[论文](https://arxiv.org/abs/2404.06395) ``` @article{hu2024minicpm, title={MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies}, author={Hu, Shengding and Tu, Yuge and Han, Xu and He, Chaoqun and Cui, Ganqu and Long, Xiang and Zheng, Zhi and Fang, Yewei and Huang, Yuxiang and Zhao, Weilin and others}, journal={arXiv preprint arXiv:2404.06395}, year={2024} } ```