# cryptoquant **Repository Path**: aenjon/cryptoquant ## Basic Information - **Project Name**: cryptoquant - **Description**: An Quantatitive trading library for crypto-assets 数字货币量化交易框架 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 6 - **Created**: 2021-10-23 - **Last Updated**: 2021-10-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # An Quantatitive trading library for crypto-assets 数字货币量化交易框架

# cryptoquant CryptoQuant is an algorithmic trading library for crypto-assets written in Python. It allows trading strategies to be easily expressed and backtested against historical data (with daily and minute resolution), providing analytics and insights regarding a particular strategy's performance. cryptoquant also supportslive-trading of crypto-assets starting with many exchanges (Okex,Binance,Bitmex etc) with more being added over time. CryptoQuant是一套基于Python的量化交易框架,帮助个人/机构量化人员进行数字货币量化交易。框架具有回测/实盘交易功能。 策略框架支持多个平台切换回测。 并提供交易所实盘交易接口(如OKEX) 。 全新的《Python数字货币量化投资实战》系列在线课程,已经在微信公众号[**StudyQuant**]上线,一整套数字货币量化解决方案。覆盖CTA等策略(已完成)等内容。 ## Features - Ease of Use: CryptoQuant tries to get out of your way so that you can focus on algorithm development. - **开箱即用** : CryptoQuant提供一套量化框架帮助您专注策略开发 - **回测**:回测框架支持数据导入,自定义交易订单号,多线程回测、遗传算法寻优等功能 - **实盘交易**: 框架提供数字货币交易所接口DEMO - **文档支持**:[**官方社区论坛**](https://docs.studyquant.com/) ## 环境准备 * 支持的系统版本:Windows 7以上/Windows Server 2008以上/Ubuntu 18.04 LTS * 支持的Python版本:Python 3.6 64位/ 3.7+ ## Installation **Windows** 使用要安装Python,激活环境,进入cryptoquant/install目录下的运行install.bat 安装依赖库 安装dependencies 中的依赖库 ## Quickstart ### 如何导入数据 ```Python from cryptoquant.trader.constant import Direction, Exchange, Interval, Offset, Status, Product, OptionType, OrderType import pandas as pd from cryptoquant.app.data_manage.data_manager import save_data_to_cryptoquant if __name__ == '__main__': df = pd.read_csv('IF9999.csv') symbol = 'IF9999' save_data_to_cryptoquant(symbol, df, Exchange.CFFEX) ``` ### 如何回测 ```Python from datetime import datetime from cryptoquant.app.cta_backtester.engine import BacktestingEngine, OptimizationSetting from cryptoquant.app.cta_strategy.strategies.atr_rsi_strategy import ( AtrRsiStrategy, ) #%% engine = BacktestingEngine() engine.set_parameters( vt_symbol="IF9999.CFFEX", interval="1m", start=datetime(2020, 1, 1), end=datetime(2020, 4, 30), rate=0.3/10000, slippage=0.5, size=300, pricetick=0.2, capital=1_000_0, ) setting = {} engine.add_strategy(AtrRsiStrategy,setting) # 导入数据 engine.load_data() # 开始回测 engine.run_backtesting() #计算收益 df = engine.calculate_result() # 开始统计 engine.calculate_statistics() # 开始画图 engine.show_chart() ``` ```Python from cryptoquant.trader.constant import Direction, Exchange, Interval, Offset, Status, Product, OptionType, OrderType import pandas as pd from cryptoquant.app.data_manage.data_manager import save_data_to_cryptoquant if __name__ == '__main__': df = pd.read_csv('IF9999.csv') symbol = 'IF9999' save_data_to_cryptoquant(symbol, df, Exchange.CFFEX) ``` ### 实盘交易 ```Python from cryptoquant.api.okex.okex_spot_exchange import OkexSpotApi #导入交易所接口密钥 from cryptoquant.config.config import ok_api_key, ok_seceret_key, ok_passphrase from cryptoquant.api.okex.spot_api import SpotAPI from cryptoquant.api.api_gateway.apigateway import ApiGateway # 实例化OKEX接口的类 api = SpotAPI(ok_api_key, ok_seceret_key, ok_passphrase, True) # 实例化自己封装好接口类 api_gateway = OkexSpotApi(api) # 实例化策略与交易所接口之间的中间通道类 exchange = ApiGateway(api_gateway) kline_df = exchange.get_kline_data(symbol, minutes) print(kline_df) ticker = exchange.get_ticker(symbol) print(ticker) # 买单 order_data = exchange.buy(symbol,3,1) # 卖单 # order_data = exchange.sell(symbol, 6, 1) ``` ## 捐助 如果您觉得我们的开源软件对你有所帮助,请扫下方二维码购买课程支持。

## Questions? - QQ社群:1032965883 如果无法解决请前往[**官方社区论坛**](https://docs.studyquant.com/)的 ## 贡献代码 非常希望大牛来贡献代码,完善项目功能。 在提交代码的时候,请遵守以下规则,以提高代码质量: * 使用[autopep8](https://github.com/hhatto/autopep8)格式化你的代码。运行```autopep8 --in-place --recursive . ```即可。 * 使用[flake8](https://pypi.org/project/flake8/)检查你的代码,确保没有error和warning。在项目根目录下运行```flake8```即可。 ## 开发日志 2021-01-15 v1.1 - 添加了APIGATEWAY 模板 - 支持回测,遗传算法调优。 - 数据导入 - 自定义订单号 - 实盘交易demo 2020-08-15 v1.0 - 开源框架