# rowboat **Repository Path**: ailist/rowboat ## Basic Information - **Project Name**: rowboat - **Description**: Rowboat 是一款低代码 AI IDE,用于构建连接多智能体助手的 MCP 工具。Rowboat Copilot 会根据你的需求为您构建智能体,并且你也可以选择手动完成所有操作 - **Primary Language**: TypeScript - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-04-24 - **Last Updated**: 2025-06-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![ui](/assets/banner.png)

Let AI build multi-agent workflows for you in minutes

rowboatlabs%2Frowboat | Trendshift

Docs Discord Website YouTube LinkedIn Y Combinator

- ✨ **Start from an idea -> copilot builds your multi-agent workflows** - E.g. "Build me an assistant for a food delivery company to handle delivery status and missing items. Include the necessary tools." - 🌐 **Connect MCP servers** - Add the MCP servers in settings -> import the tools into Rowboat. - 📞 **Integrate into your app using the HTTP API or Python SDK** - Grab the project ID and generated API key from settings and use the API. Powered by OpenAI's Agents SDK, Rowboat is the fastest way to build multi-agents! ## Quick start 1. Set your OpenAI key ```bash export OPENAI_API_KEY=your-openai-api-key ``` 2. Clone the repository and start Rowboat ```bash git clone git@github.com:rowboatlabs/rowboat.git cd rowboat ./start.sh ``` 3. Access the app at [http://localhost:3000](http://localhost:3000). Note: We have added native RAG support including file-uploads and URL scraping. See the [RAG](https://docs.rowboatlabs.com/using_rag) section of our docs for this. Note: See the [Using custom LLM providers](https://docs.rowboatlabs.com/setup/#using-custom-llm-providers) section of our docs for using custom providers like OpenRouter and LiteLLM. ## Demo #### Create a multi-agent assistant with MCP tools by chatting with Rowboat [![Screenshot 2025-04-23 at 00 25 31](https://github.com/user-attachments/assets/c8a41622-8e0e-459f-becb-767503489866)](https://youtu.be/YRTCw9UHRbU) ## Integrate with Rowboat agents There are 2 ways to integrate with the agents you create in Rowboat 1. HTTP API - You can use the API directly at [http://localhost:3000/api/v1/](http://localhost:3000/api/v1/) - See [API Docs](https://docs.rowboatlabs.com/using_the_api/) for details ```bash curl --location 'http://localhost:3000/api/v1//chat' \ --header 'Content-Type: application/json' \ --header 'Authorization: Bearer ' \ --data '{ "messages": [ { "role": "user", "content": "tell me the weather in london in metric units" } ], "state": null }' ``` 2. Python SDK You can use the included Python SDK to interact with the Agents ``` pip install rowboat ``` See [SDK Docs](https://docs.rowboatlabs.com/using_the_sdk/) for details. Here is a quick example: ```python from rowboat import Client, StatefulChat from rowboat.schema import UserMessage, SystemMessage # Initialize the client client = Client( host="http://localhost:3000", project_id="", api_key="" ) # Create a stateful chat session (recommended) chat = StatefulChat(client) response = chat.run("What's the weather in London?") print(response) # Or use the low-level client API messages = [ SystemMessage(role='system', content="You are a helpful assistant"), UserMessage(role='user', content="Hello, how are you?") ] # Get response response = client.chat(messages=messages) print(response.messages[-1].content) ``` Refer to [Docs](https://docs.rowboatlabs.com/) to learn how to start building agents with Rowboat.