# PW-FNet **Repository Path**: atari/pw-fnet ## Basic Information - **Project Name**: PW-FNet - **Description**: 同步 https://github.com/deng-ai-lab/PW-FNet - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2026-01-09 - **Last Updated**: 2026-01-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## [Global Modeling Matters: A Fast, Lightweight and Effective Baseline for Efficient Image Restoration] (Under Review) Official implementation. #### News Since our paper is currently under review, we are only open-sourcing the rain removal-related code at this stage. Once the paper is accepted, we will open-source all the code. If you have any other academic-related requests or discussions, please feel free to raise them in the issue section or contact me via email. **We sincerely hope that if you find our work useful, you will kindly star our project and cite our paper appropriately! Thank you very much!** - **Aug 13, 2025:** Our paper is available at [https://arxiv.org/pdf/2507.13663](https://arxiv.org/pdf/2507.13663).
## Prepare Datasets **Deraining Datasets:** Rain200L/Rain200H DDN-Data DID-Data Train DID-Data Test SPA-Data Raindrop **Motion Deblur Datasets:** Motion Blur(GoPro) **Super-resolution Datasets:** DIV2K Set5 Set14 B100 Urban100 Manga109 **More Datasets:** Todo ## Pretrained model **Deraining models:** Rain200L Rain200H DID DDN SPA-Data **More models:** Todo ## Visual Results
Deraining Dataset Rain200L Rain200H DID DDN SPA-Data Raindrop 4K-Rain13k
Baidu NetDisk Download Download Download Download Download Download Download
Super-resolution Dataset X2 X3 X4
Baidu NetDisk Download Download Download
Motion Deblurring Dataset GoPro
Baidu NetDisk Download
## References If you find our work useful, please cite our paper: @article{jiang2025global, title={Global Modeling Matters: A Fast, Lightweight and Effective Baseline for Efficient Image Restoration}, author={Jiang, Xingyu and Gao, Ning and Dou, Hongkun and Zhang, Xiuhui and Zhong, Xiaoqing and Deng, Yue and Li, Hongjue}, journal={arXiv preprint arXiv:2507.13663}, year={2025} } ## Contact If your submitted issue has not been noticed or there are further questions, please contact jxy33zrhd@buaa.edu.cn.