# MakeDiffSinger **Repository Path**: atonystyle/MakeDiffSinger ## Basic Information - **Project Name**: MakeDiffSinger - **Description**: No description available - **Primary Language**: Python - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-10-19 - **Last Updated**: 2023-10-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MakeDiffSinger Pipelines and tools to build your own DiffSinger dataset. For the recommended standard dataset making pipelines, see: - acoustic-forced-alignment: make dataset from scratch with MFA for acoustic model training - variance-temp-solution: temporary solution to extend acoustic datasets into variance datasets For other useful pipelines and tools for making a dataset, welcome to raise issues or submit PRs. ## DiffSinger dataset structure - dataset1/ - raw/ - wavs/ - recording1.wav - recording2.wav - ... - transcriptions.csv - dataset2/ - raw/ - wavs/ - ... - transcriptions.csv - ... ## Essential tools to process and label your datasets Dataset tools now have their own repository: [dataset-tools](https://github.com/openvpi/dataset-tools). There are mainly 3 components: - AudioSlicer: Slice your recordings into short segments - MinLabel: Label *.lab files containing word transcriptions for acoustic model training. - SlurCutter: Edit MIDI sequence in *.ds files for variance model training.