# QAT.axera **Repository Path**: axera-opensource/QAT.axera ## Basic Information - **Project Name**: QAT.axera - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-14 - **Last Updated**: 2025-09-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # QAT.axera axera QAT demo 包含一个最小导出 demo 和一个 resnet50 训练 demo ## minimum export demo ```bash python -m minimum.minimum_demo ``` ## resnet50 train ```bash # download imagenet dataset cd QAT.axera mkdir -p dataset/imagenet && cd dataset/imagenet wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_train.tar --no-check-certificate wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar --no-check-certificate wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz --no-check-certificate # download resnet50 pretrained model cd QAT.axera wget -O resnet50/resnet50_pretrained_float.pth https://download.pytorch.org/models/resnet50-0676ba61.pth # train cd QAT.axera mkdir -p resnet50/checkpoint python -m resnet50.train # 4bit 量化位宽时参考 resnet50/config_4w4f 配置,并用 simplify_and_fix_4bit_dtype 替代 onnx_simplify # test cd QAT.axera python -m resnet50.test ``` ## Validate on board [请点击查看上板测试文档。](pulsar2/README.md)