# CSMGAN **Repository Path**: bigaisesec/CSMGAN ## Basic Information - **Project Name**: CSMGAN - **Description**: Code for ACM MM2020 paper: Jointly Cross- and Self-Modal Graph Attention Network for Query-Based Moment Localization - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-02-08 - **Last Updated**: 2023-02-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CSMGAN Code for ACM MM2020 paper **Jointly Cross- and Self-Modal Graph Attention Network for Query-Based Moment Localization**
**[[Paper](https://arxiv.org/abs/2008.01403)]**
### Main Results ##### Activity Caption | R@1, IoU=0.3 | R@1, IoU=0.5 | R@1, IoU=0.7 | R@5, IoU=0.3 | R@5, IoU=0.5 | R@5, IoU=0.7 | | ---------- | :-----------: | :-----------: | :-----------: | :-----------: | :-----------: | | 68.52 | 49.11 | 29.15 | 87.68 | 77.43 | 59.63 | ##### TACoS | R@1, IoU=0.1 | R@1, IoU=0.3 | R@1, IoU=0.5 | R@5, IoU=0.1 | R@5, IoU=0.3 | R@5, IoU=0.5 | | ---------- | :-----------: | :-----------: | :-----------: | :-----------: | :-----------: | | 42.74 | 33.90 | 27.09 | 68.97 | 53.98 | 41.22 | ##### Charades-STA | R@1, IoU=0.5 | R@1, IoU=0.7 |R@5, IoU=0.5 | R@5, IoU=0.7 | | ---------- | :-----------: | :-----------: | :-----------: | | 60.04 | 37.34 | 89.01 | 61.85 | ##### DiDeMo | R@1, IoU=0.5 | R@1, IoU=0.7 |R@5, IoU=0.5 | R@5, IoU=0.7 | | ---------- | :-----------: | :-----------: | :-----------: | | 29.44 | 19.16 | 70.77 | 41.61 | ### Prerequisites * Python 3.6 * Pytorch >= 0.4.0 ### Preparation * Download Pretrained [Glove Embeddings](http://nlp.stanford.edu/data/glove.840B.300d.zip) * Download Extracted Features of [Activity Caption](http://activity-net.org/challenges/2016/download.html) * Download Extracted Features of [TACoS](https://drive.google.com/file/d/1kK_FTo6USmPhO1vam3uvBMtJ3QChUblm/view) * Download Pretrained model on [Google Drive](https://drive.google.com/drive/folders/149wIt533qSnrY_rgDaqfufL-Kn58aLw5?usp=sharing) ### Evaluation $ python main.py --word2vec-path /yourpath/glove_model.bin --dataset ActivityNet --feature-path /yourpath/ActivityCaptions/ActivityC3D --train-data data/activity/train_data_gcn.json --val-data data/activity/val_data_gcn.json --test-data data/activity/test_data_gcn.json --max-num-epochs 20 --dropout 0.2 --warmup-updates 300 --warmup-init-lr 1e-06 --lr 8e-4 --num-heads 4 --num-gcn-layers 2 --num-attn-layers 2 --weight-decay 1e-7 --evaluate --model-load-path ./models_activity/model_6852 $ python main.py --word2vec-path /yourpath/glove_model.bin --dataset TACOS --feature-path /yourpath/TACOS/TACOS --train-data data/tacos/TACOS_train_gcn.json --val-data data/tacos/TACOS_val_gcn.json --test-data data/tacos/TACOS_test_gcn.json --max-num-epochs 40 --dropout 0.2 --warmup-updates 300 --warmup-init-lr 1e-07 --lr 4e-4 --num-heads 4 --num-gcn-layers 2 --num-attn-layers 2 --weight-decay 1e-8 --evaluate --model-saved-path models_tacos --batch-size 64 --model-load-path ./models_tacos/model_4274 ### Citation If you use this code please cite: ``` @inproceedings{liu2020jointly, title={Jointly Cross- and Self-Modal Graph Attention Network for Query-Based Moment Localization}, author={Liu, Daizong and Qu, Xiaoye and Liu, Xiaoyang and Dong, Jianfeng and Zhou, Pan and Xu, Zichuan}, booktitle={Proceedings of the 28th ACM International Conference on Multimedia (MM’20)}, year={2020} } ```