# tensorflow-cifar100 **Repository Path**: boxjod/tensorflow-cifar100 ## Basic Information - **Project Name**: tensorflow-cifar100 - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-18 - **Last Updated**: 2023-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # tensorflow-cifar100 Tensorflow implementation on cifar100. All models have achieved high accuracy (> 0.7). ### Usage Requirements: 1. tensorflow-gpu=1.11.1 2. tensorlayer=1.11.0 download dataset: [Download Website](https://www.cs.toronto.edu/~kriz/cifar.html ) download repo: ``` $ git clone https://gitee.com/boxjod/tensorflow-cifar100.git ``` train: ``` $ python3 -u train.py train --batch_size 64 --epoch 200 --network resnet50 --opt momentum --train_path /data/ChuyuanXiong/up/cifar-100-python/train --test_path /data/ChuyuanXiong/up/cifar-100-python/test ``` params: * batch_size: 64 default * epoch: 200 is best * network: resnet18/resnet50/resnet110/resnet152/seresnet50/seresnet110/seresnet152/densenet121/densenet169/densenet161/densenet201/resnext50/resnext110/resnext152/seresnext50/seresnext110/seresnext152/densenet100bc/densenet190bc * opt: adam/momentum/nesterov * train_path: your train path * test_path: your test path Have Done ``` ResNet18 ResNet34 ResNet50 ResNet110 ResNet152 ResNeXt50 ResNeXt110 ResNeXt152 SENet50 SENet110 SENet152 SE-ResNext50 SE-ResNext110 SE-ResNext152 DenseNet121 DenseNet169 DenseNet201 DenseNet100BC DenseNet190BC # TODO preresnet mobilenet ``` test: ``` python3 -u train.py test --network resnet18 --test_path '/data/ChuyuanXiong/up/cifar-100-python/test' --ckpt 'params/resnet18/Speaker_vox_iter_58000.ckpt' ``` params: * network: resnet18/resnet50 * test_path: your test path * ckpt: your pre-trained model. You can try the [\$THIS_REPO/params/resnet18/Speaker_vox_iter_58000.ckpt] Also, If you have the pre-trained model, you can try the interface to quickly access to the test results. Just try this: ``` $ cd [to the root directory of this repo] $ python >>> from pretrained.cifar100 import cifar100 >>> model = cifar100(model='resnet18') >>> model.test() ``` Or you can cd to the dir and then edit and run example.py. ### Results dataset | network | top1 acc | epoch (lr=0.1) | epoch (lr=0.02) | batch_size | initializer | warmup | weight decay| --------|---------|---------|-----------------|----------------|--------------|-------------|---------|--------------| cifar100| resnet18 | 0.740 | 60 | > 60 | 128 | msra | 0 | 0 cifar100| densenet169| 0.743 | 60 | > 60 | 64 | orth | 1 | 5e-4 cifar100| densenet100bc| 0.728 | 60 | > 60 | 32 | orth | 1 | 5e-4 cifar100| densenet201| 0.753 | 60 | > 60 | 64 | orth | 1 | 5e-4 cifar100| seresnet110| 0.725 | 60 | > 60 | 64 | orth | 1 | 5e-4 // TODO * preresnet18 * ... ### Pre-trained model download Continuous update! 1. [ResNet18,Accuracy=0.740](https://github.com/Ecohnoch/tensorflow-cifar100/tree/master/params/resnet18) 2. [DenseNet169,Accuracy=0.743,Password=7qj2](https://pan.baidu.com/s/1Watp2FzcuLBym_x4FyrzBA) 3. [DenseNet100-BC,Accuracy=0.728,Password=fwi4](https://pan.baidu.com/s/1A6esP4TdC2NxmIfj30DG3w) 4. [Se-ResNet110,Accuracy=0.725,Password=we64](https://pan.baidu.com/s/1p8U3W1HOOrYV5hzZQFZY0g) ### References 1. [pytorch-cifar100](https://github.com/weiaicunzai/pytorch-cifar100) ### Author Ecohnoch (Chuyuan Xiong) If this project is very helpful for you, please star it!