# QuantMuse **Repository Path**: callmee/QuantMuse ## Basic Information - **Project Name**: QuantMuse - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-30 - **Last Updated**: 2025-08-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ๐ Quantitative Trading System [](https://www.python.org/downloads/) [](LICENSE) [](https://github.com/yourusername/tradingsystem) > **A comprehensive quantitative trading system with AI-powered analysis, real-time data processing, and advanced risk management** ## ๐ Table of Contents - [Overview](#overview) - [Features](#features) - [Architecture](#architecture) - [Quick Start](#quick-start) - [Installation](#installation) - [Usage Examples](#usage-examples) - [Documentation](#documentation) - [Contributing](#contributing) - [License](#license) ## ๐ฏ Overview This is a production-ready quantitative trading system that combines traditional financial analysis with cutting-edge AI/ML technologies. The system provides a complete pipeline from data collection to strategy execution, featuring real-time market data processing, advanced factor analysis, AI-powered sentiment analysis, and comprehensive risk management. ### ๐ Key Highlights - **๐ฌ Advanced Factor Analysis**: Multi-factor models with momentum, value, quality, and volatility factors - **๐ค AI/LLM Integration**: OpenAI GPT integration for market analysis and strategy recommendations - **๐ Real-time Data**: WebSocket-based real-time market data from multiple exchanges - **๐ฏ Strategy Framework**: Extensible strategy system with 8+ built-in quantitative strategies - **โก High Performance**: C++ core engine for low-latency order execution - **๐ Visualization**: Interactive dashboards with Plotly and Streamlit - **๐ก๏ธ Risk Management**: Comprehensive risk controls and portfolio management ## โจ Features ### ๐ Data Management - **Multi-source Data**: Binance, Yahoo Finance, Alpha Vantage - **Real-time Streaming**: WebSocket connections for live market data - **Data Processing**: Automated data cleaning and feature engineering - **Storage**: SQLite, PostgreSQL, and Redis caching support ### ๐ง AI & Machine Learning - **LLM Integration**: OpenAI GPT for market analysis and insights - **NLP Processing**: Sentiment analysis of news and social media - **ML Models**: XGBoost, Random Forest, Neural Networks - **Feature Engineering**: Technical indicators and statistical features ### ๐ Quantitative Analysis - **Factor Models**: Momentum, Value, Quality, Size, Volatility factors - **Stock Screening**: Multi-factor stock selection and filtering - **Portfolio Optimization**: Risk parity and mean-variance optimization - **Performance Analysis**: Comprehensive backtesting and metrics ### ๐ฎ Strategy Framework - **Extensible Design**: Easy to add custom strategies - **Built-in Strategies**: 8+ proven quantitative strategies - **Strategy Registry**: Centralized strategy management - **Parameter Optimization**: Automated strategy optimization ### ๐ก๏ธ Risk Management - **Position Sizing**: Dynamic position sizing algorithms - **Risk Limits**: VaR, CVaR, drawdown, and leverage limits - **Portfolio Management**: Real-time portfolio monitoring - **Alert System**: Price and risk alerts ### ๐ฅ๏ธ User Interfaces - **Web Dashboard**: FastAPI-based web interface - **Streamlit App**: Interactive data science dashboard - **Real-time Charts**: K-line charts with technical indicators - **Mobile Friendly**: Responsive design for all devices ## ๐๏ธ Architecture ``` โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Python Layer (data_service/) โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ โข Data Fetchers โข Strategy Framework โข AI/ML โ โ โข Factor Analysis โข Backtesting Engine โข Visualizationโ โ โข Storage Layer โข Real-time Data โข Web UI โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ C++ Core Engine (backend/) โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ โข Order Execution โข Risk Management โข Portfolio โ โ โข Data Loading โข Strategy Engine โข Performance โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ``` ## ๐ Quick Start ### 1. Clone the Repository ```bash git clone https://github.com/yourusername/tradingsystem.git cd tradingsystem ``` ### 2. Install Dependencies ```bash # Install all features pip install -e .[ai,visualization,realtime,web] # Or install specific features pip install -e .[ai] # AI/ML features pip install -e .[visualization] # Charts and dashboards pip install -e .[realtime] # Real-time data pip install -e .[web] # Web interface ``` ### 3. Run Basic Example ```bash # Test data fetching (no API keys required) python examples/fetch_public_data.py ``` ### 4. Launch Dashboard ```bash # Start Streamlit dashboard python run_dashboard.py # Visit: http://localhost:8501 # Or start web interface python run_web_interface.py # Visit: http://localhost:8000 ``` ## ๐ฆ Installation ### Prerequisites - Python 3.8+ - C++17 compatible compiler (for backend) - CMake 3.12+ (for backend) ### Full Installation ```bash # 1. Clone repository git clone https://github.com/yourusername/tradingsystem.git cd tradingsystem # 2. Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # 3. Install Python dependencies pip install -e .[ai,visualization,realtime,web] # 4. Build C++ backend (optional) cd backend mkdir build && cd build cmake .. make -j4 cd ../.. # 5. Configure API keys (optional) cp config.example.json config.json # Edit config.json with your API keys ``` ### API Keys (Optional) For full functionality, you can add API keys to `config.json`: ```json { "binance": { "api_key": "your_binance_api_key", "secret_key": "your_binance_secret" }, "openai": { "api_key": "your_openai_api_key" }, "alpha_vantage": { "api_key": "your_alpha_vantage_key" } } ``` ## ๐ก Usage Examples ### Basic Data Fetching ```python from data_service.fetchers import BinanceFetcher # Get cryptocurrency data (no API key required) fetcher = BinanceFetcher() btc_price = fetcher.get_current_price("BTCUSD") print(f"BTC Price: ${btc_price:,.2f}") ``` ### Factor Analysis ```python from data_service.factors import FactorCalculator, FactorScreener # Calculate factors calculator = FactorCalculator() factors = calculator.calculate_all_factors(symbol, prices, volumes) # Screen stocks screener = FactorScreener() results = screener.create_momentum_screener().screen_stocks(factor_data) ``` ### Strategy Backtesting ```python from data_service.backtest import BacktestEngine from data_service.strategies import MomentumStrategy # Run backtest engine = BacktestEngine(initial_capital=100000) strategy = MomentumStrategy() results = engine.run_backtest(strategy, historical_data) ``` ### AI-Powered Analysis ```python from data_service.ai import LLMIntegration # Get AI insights llm = LLMIntegration(provider="openai") analysis = llm.analyze_market(factor_data, price_data) print(f"AI Recommendation: {analysis.content}") ``` ## ๐ Documentation ### Module Documentation - [๐ Factor Analysis](README_Factor_Analysis.md) - Multi-factor models and stock screening - [๐ค AI & LLM Integration](README_AI_Modules.md) - AI-powered market analysis - [๐ฏ Quantitative Strategies](README_Quantitative_Strategies.md) - Trading strategies guide - [๐ Web Interface](README_Web_Interface.md) - Web dashboard usage - [๐ LangChain Integration](README_LangChain_LLM.md) - Advanced LLM features ### Examples - `examples/fetch_public_data.py` - Basic data fetching - `examples/quantitative_strategies.py` - Strategy examples - `examples/factor_analysis_demo.py` - Factor analysis demo - `examples/llm_nlp_complete_demo.py` - AI features demo ## ๐งช Testing ```bash # Run all tests pytest tests/ -v # Run specific test modules pytest tests/test_data_processor.py -v pytest tests/test_llm_integration.py -v ``` ## ๐ค Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details. ### Development Setup ```bash # Install development dependencies pip install -e .[test,dev] # Run tests pytest tests/ -v # Run linting flake8 data_service/ black data_service/ ``` ### Code Style - Follow PEP 8 for Python code - Use type hints - Add docstrings for all functions - Write tests for new features ## ๐ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## โ ๏ธ Disclaimer This software is for educational and research purposes only. Trading involves substantial risk of loss and is not suitable for all investors. Past performance does not guarantee future results. Please consult with a financial advisor before making any investment decisions. ## ๐ Acknowledgments - [Binance API](https://binance-docs.github.io/apidocs/) for cryptocurrency data - [Yahoo Finance](https://finance.yahoo.com/) for stock market data - [OpenAI](https://openai.com/) for AI capabilities - [Streamlit](https://streamlit.io/) for dashboard framework - [FastAPI](https://fastapi.tiangolo.com/) for web framework