# Structured3D **Repository Path**: cedar0817/Structured3D ## Basic Information - **Project Name**: Structured3D - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-02-09 - **Last Updated**: 2024-02-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Structured3D  Structured3D is a large-scale photo-realistic dataset containing 3.5K house designs **(a)** created by professional designers with a variety of ground truth 3D structure annotations **(b)** and generate photo-realistic 2D images **(c)**. ## Paper **Structured3D: A Large Photo-realistic Dataset for Structured 3D Modeling** [Jia Zheng](https://bertjiazheng.github.io/)\*, [Junfei Zhang](https://www.linkedin.com/in/骏飞-张-1bb82691/?locale=en_US)\*, [Jing Li](https://cn.linkedin.com/in/jing-li-253b26139), [Rui Tang](https://cn.linkedin.com/in/rui-tang-50973488), [Shenghua Gao](http://sist.shanghaitech.edu.cn/sist_en/2018/0820/c3846a31775/page.htm), [Zihan Zhou](https://faculty.ist.psu.edu/zzhou) European Conference on Computer Vision (ECCV), 2020 [[Preprint](https://arxiv.org/abs/1908.00222)] [[Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540494.pdf)] [[Supplementary Material](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540494-supp.pdf)] [[Benchmark](https://competitions.codalab.org/competitions/24183)] (\* Equal contribution) ## Data The dataset consists of rendering images and corresponding ground truth annotations (_e.g._, semantic, albedo, depth, surface normal, layout) under different lighting and furniture configurations. Please refer to [data organization](data_organization.md) for more details. To download the dataset, please fill the [agreement form](https://forms.gle/LXg4bcjC2aEjrL9o8) that indicates you agree to the [Structured3D Terms of Use](https://drive.google.com/open?id=13ZwWpU_557ZQccwOUJ8H5lvXD7MeZFMa). After we receive your agreement form, we will provide download access to the dataset. For fair comparison, we define standard training, validation, and testing splits as follows: _scene_00000_ to _scene_02999_ for training, _scene_03000_ to _scene_03249_ for validation, and _scene_03250_ to _scene_03499_ for testing. ## Errata - 2020-04-06: We provide a list of invalid cases [here](metadata/errata.txt). You can ignore these cases when using our data. - 2020-03-26: Fix issue [#10](https://github.com/bertjiazheng/Structured3D/issues/10) about the basis of the bounding box annotations. Please re-download the annotations if you use them. ## Tools We provide the basic code for viewing the structure annotations of our dataset. ### Installation Clone repository: ```bash git clone git@github.com:bertjiazheng/Structured3D.git ``` Please use Python 3, then follow [installation](https://pymesh.readthedocs.io/en/latest/installation.html) to install [PyMesh](https://github.com/PyMesh/PyMesh) (only for plane visualization) and the other dependencies: ```bash conda install -y open3d -c open3d-admin conda install -y opencv -c conda-forge conda install -y descartes matplotlib numpy shapely pip install panda3d ``` ### Visualize 3D Annotation We use [open3D](https://github.com/intel-isl/Open3D) for wireframe and plane visualization, please refer to interaction control [here](http://www.open3d.org/docs/tutorial/Basic/visualization.html#function-draw-geometries). ```bash python visualize_3d.py --path /path/to/dataset --scene scene_id --type wireframe/plane/floorplan ``` | Wireframe | Plane | Floorplan | | ------------------------------------- | ----------------------------- | ------------------------------------- | |  |  |  | ### Visualize 3D Textured Mesh ```bash python visualize_mesh.py --path /path/to/dataset --scene scene_id --room room_id ```