# Paddle-Image-Models **Repository Path**: cftang/Paddle-Image-Models ## Basic Information - **Project Name**: Paddle-Image-Models - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-27 - **Last Updated**: 2021-03-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Paddle-Image-Models ![GitHub forks](https://img.shields.io/github/forks/AgentMaker/Paddle-Image-Models) ![GitHub Repo stars](https://img.shields.io/github/stars/AgentMaker/Paddle-Image-Models) ![GitHub release (latest by date including pre-releases)](https://img.shields.io/github/v/release/AgentMaker/Paddle-Image-Models?include_prereleases) ![GitHub](https://img.shields.io/github/license/AgentMaker/Paddle-Image-Models) A PaddlePaddle version image model zoo. ## Install Package * Install by pip: ```shell $ pip install ppim==1.0.0 -i https://pypi.python.org/pypi ``` * Install by wheel package:[【Releases Packages】](https://github.com/AgentMaker/Paddle-Image-Models/releases) ## Quick Start ```python import paddle import paddle.nn as nn import paddle.vision.transforms as T from paddle.vision import Cifar100 from ppim import rexnet_100 # Load the model model, val_transforms = rexnet_100(pretrained=True) # Use the PaddleHapi Model model = paddle.Model(model) # Set the optimizer opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()) # Set the loss function loss = nn.CrossEntropyLoss() # Set the evaluate metric metric = paddle.metric.Accuracy(topk=(1, 5)) # Prepare the model model.prepare(optimizer=opt, loss=loss, metrics=metric) # Set the data preprocess train_transforms = T.Compose([ T.Resize(256, interpolation='bicubic'), T.RandomCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load the Cifar100 dataset train_dataset = Cifar100(mode='train', transform=train_transforms, backend='pil') val_dataset = Cifar100(mode='test', transform=val_transforms, backend='pil') # Finetune the model model.fit( train_data=train_dataset, eval_data=val_dataset, batch_size=256, epochs=2, eval_freq=1, log_freq=1, save_dir='save_models', save_freq=1, verbose=1, drop_last=False, shuffle=True, num_workers=0 ) ``` ## Model Zoo * ReXNet * RepVGG * DeiT