# image_class **Repository Path**: chde222/image_class ## Basic Information - **Project Name**: image_class - **Description**: 基于keras集成多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 2 - **Forks**: 1 - **Created**: 2019-12-11 - **Last Updated**: 2024-01-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 图像分类集成以下模型:ResNet18、ResNet34、ResNet50、ResNet101、ResNet152、 VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、DenseNet,在config.py里面选择使用哪种模型,目前本人亲测,残差网络resnet的效果比较好。 ## the project apply the following models: * VGG16 * VGG19 * InceptionV3 * Xception * MobileNet * AlexNet * LeNet * ZF_Net * ResNet18 * ResNet34 * ResNet50 * ResNet101 * ResNet152 * DenseNet(dismissed this time) ## your train or test datasets folder should be: #### classes name contained in folder name __"train and test data set folder is:"__ /path/classes1/cat*.jpg, /path/classes2/dog*.jpg, /path/classes3/people*.jpg, /path/classes4/*.jpg, * Attentions ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! * classes name must be contained in folder name ## environment My environment is based on * __ubuntu16__ * __cuda8__ (__cuda9.0__) * __tensorflow_gpu1.4__ (__tensorflow_gpu1.10__ ) * __keras2.0.8__ * __numpy__ * __tqdm__ * __opencv-python__ * __scikit-learn__ ### Install packages * pip3 install tensorflow_gpu==1.4 * pip3 install keras==2.0.8 * pip3 install numpy * pip3 install tqdm * pip3 install opencv-python * pip3 install scikit-learn # step1: train or test dataset prepare * python3 mk_class_idx.py # step2: train your model * train model: python train.py # step3: predict with model * predict model: python predict.py model_name classes_name ### Any Questions??? Author email: mymailwith163@163.com