# ReMe **Repository Path**: chenfei6095/ReMe ## Basic Information - **Project Name**: ReMe - **Description**: ReMe: Memory Management Kit for Agents ReMe provides AI agents with a unified memory system—enabling the ability to extract, reuse, and share memories across users, tasks, and agents. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://reme.agentscope.io - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2026-01-05 - **Last Updated**: 2026-01-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: agentscope, ReMe, memory ## README

ReMe 标志

Python Version PyPI Version PyPI Downloads GitHub commit activity

License English 简体中文 GitHub Stars

面向智能体的记忆管理工具包, Remember Me, Refine Me.
如果 ReMe 对你有帮助,欢迎点一个 ⭐ Star,你的支持是我们持续改进的动力。

--- ReMe 是一个**模块化的记忆管理工具包**,为 AI 智能体提供统一的记忆能力——支持在用户、任务与智能体之间提取、复用与共享记忆。 智能体的记忆可以被视为: ```text Agent Memory = Long-Term Memory + Short-Term Memory = (Personal + Task + Tool) Memory + (Working Memory) ``` - **个人记忆(Personal Memory)**:理解用户偏好并适应上下文 - **任务记忆(Task Memory)**:从经验中学习并在类似任务中表现更好 - **工具记忆(Tool Memory)**:基于历史表现优化工具选择和参数使用 - **工作记忆(Working Memory)**:管理长运行智能体的短期上下文,避免上下文溢出 --- ## 📰 最新进展 - **[2025-12]** 📄 我们的程序性(任务)记忆论文已在 [arXiv](https://arxiv.org/abs/2512.10696) 发布 - **[2025-11]** 🧠 基于工作记忆的 react-agent demo([介绍](docs/work_memory/message_offload.md)、[Quick Start](docs/cookbook/working/quick_start.md)、[代码](cookbook/working_memory/work_memory_demo.py)) - **[2025-10]** 🚀 直接 Python 导入:支持 `from reme_ai import ReMeApp`,无需 HTTP/MCP 服务 - **[2025-10]** 🔧 工具记忆:支持基于数据驱动的工具选择与参数优化([指南](docs/tool_memory/tool_memory.md)) - **[2025-09]** 🎉 支持异步操作,并已集成至 agentscope-runtime - **[2025-09]** 🎉 集成任务记忆与个人记忆 - **[2025-09]** 🧪 在 appworld、bfcl(v3)、frozenlake 等环境中验证有效性([实验文档](docs/cookbook)) - **[2025-08]** 🚀 支持 MCP 协议([快速开始](docs/mcp_quick_start.md)) - **[2025-06]** 🚀 支持多种向量存储后端(Elasticsearch & ChromaDB)([向量库指南](docs/vector_store_api_guide.md)) - **[2024-09]** 🧠 支持个性化与时间敏感的记忆存储 --- ## ✨ 架构设计

ReMe 架构

ReMe 提供了一个**模块化的记忆管理工具包**,具有可插拔的组件,可以集成到任何智能体框架中。系统包括: #### 🧠 **任务记忆 / 经验记忆(Task Memory/Experience)** 可在不同智能体之间复用的程序性知识: - **成功模式识别**:识别有效策略并理解其背后的原理 - **失败分析学习**:从错误中学习,避免重复踩坑 - **对比式模式**:通过多条采样轨迹的对比获取更有价值的记忆 - **验证模式**:通过验证模块确认提炼出的经验是否有效 了解如何使用任务记忆可参考:[任务记忆文档](docs/task_memory/task_memory.md) #### 👤 **个人记忆(Personal Memory)** 面向特定用户的情境化长期记忆: - **个体偏好**:记录用户的习惯、偏好与交互风格 - **情境自适应**:基于时间与上下文动态管理记忆 - **渐进式学习**:在长期多轮交互中不断加深对用户的理解 - **时间敏感**:在记忆检索与整合中考虑时间因素 了解如何使用个人记忆可参考:[个人记忆文档](docs/personal_memory/personal_memory.md) #### 🔧 **工具记忆(Tool Memory)** 基于真实调用数据的工具选择与使用优化: - **历史表现追踪**:记录成功率、调用耗时与 Token 成本 - **LLM-as-Judge 评估**:提供工具成功 / 失败原因的定性洞察 - **参数优化**:从历史成功调用中学习最优参数配置 - **动态指南**:将静态工具描述演化为可持续更新的「活文档」 了解如何使用工具记忆可参考:[工具记忆文档](docs/tool_memory/tool_memory.md) #### 🧠 **工作记忆(Working Memory)** 面向长流程智能体的短期上下文记忆,通过**消息卸载与重载(message offload & reload)**实现: - **消息卸载(Message Offload)**:将体积巨大的工具输出压缩为外部文件或 LLM 摘要 - **消息重载(Message Reload)**:按需搜索(`grep_working_memory`)并读取(`read_working_memory`)已卸载的内容 📖 **概念与 API:** - 消息卸载概览:[Message Offload](docs/work_memory/message_offload.md) - 卸载 / 重载算子:[Message Offload Ops](docs/work_memory/message_offload_ops.md)、[Message Reload Ops](docs/work_memory/message_reload_ops.md) 💻 **端到端 Demo:** - 工作记忆快速上手:[Working Memory Quick Start](docs/cookbook/working/quick_start.md) - 带工作记忆的 ReAct 智能体:[react_agent_with_working_memory.py](cookbook/working_memory/react_agent_with_working_memory.py) - 可运行 Demo:[work_memory_demo.py](cookbook/working_memory/work_memory_demo.py) --- ## 🛠️ 安装 ### 通过 PyPI 安装(推荐) ```bash pip install reme-ai ``` ### 从源码安装 ```bash git clone https://github.com/agentscope-ai/ReMe.git cd ReMe pip install . ``` ### 环境变量配置 复制 `example.env` 为 `.env` 并按需修改: ```bash FLOW_LLM_API_KEY=sk-xxxx FLOW_LLM_BASE_URL=https://xxxx/v1 FLOW_EMBEDDING_API_KEY=sk-xxxx FLOW_EMBEDDING_BASE_URL=https://xxxx/v1 ``` --- ## 🚀 快速开始 ### 启动 HTTP 服务 ```bash reme \ backend=http \ http.port=8002 \ llm.default.model_name=qwen3-30b-a3b-thinking-2507 \ embedding_model.default.model_name=text-embedding-v4 \ vector_store.default.backend=local ``` ### 启动 MCP Server ```bash reme \ backend=mcp \ mcp.transport=stdio \ llm.default.model_name=qwen3-30b-a3b-thinking-2507 \ embedding_model.default.model_name=text-embedding-v4 \ vector_store.default.backend=local ``` ### 核心 API 用法 #### 任务记忆管理 ```python import requests # 经验总结:从执行轨迹中学习 response = requests.post("http://localhost:8002/summary_task_memory", json={ "workspace_id": "task_workspace", "trajectories": [ {"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0} ] }) # 记忆检索:获取相关经验 response = requests.post("http://localhost:8002/retrieve_task_memory", json={ "workspace_id": "task_workspace", "query": "How to efficiently manage project progress?", "top_k": 1 }) ```
Python 导入版本 ```python import asyncio from reme_ai import ReMeApp async def main(): async with ReMeApp( "llm.default.model_name=qwen3-30b-a3b-thinking-2507", "embedding_model.default.model_name=text-embedding-v4", "vector_store.default.backend=memory" ) as app: # 经验总结:从执行轨迹中学习 result = await app.async_execute( name="summary_task_memory", workspace_id="task_workspace", trajectories=[ { "messages": [ {"role": "user", "content": "Help me create a project plan"} ], "score": 1.0 } ] ) print(result) # 记忆检索:获取相关经验 result = await app.async_execute( name="retrieve_task_memory", workspace_id="task_workspace", query="How to efficiently manage project progress?", top_k=1 ) print(result) if __name__ == "__main__": asyncio.run(main()) ```
curl 版本 ```bash # 经验总结:从执行轨迹中学习 curl -X POST http://localhost:8002/summary_task_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "task_workspace", "trajectories": [ {"messages": [{"role": "user", "content": "Help me create a project plan"}], "score": 1.0} ] }' # 记忆检索:获取相关经验 curl -X POST http://localhost:8002/retrieve_task_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "task_workspace", "query": "How to efficiently manage project progress?", "top_k": 1 }' ```
#### 个人记忆管理 ```python # 记忆整合:从用户交互中学习 response = requests.post("http://localhost:8002/summary_personal_memory", json={ "workspace_id": "task_workspace", "trajectories": [ {"messages": [ {"role": "user", "content": "I like to drink coffee while working in the morning"}, {"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"} ] } ] }) # 记忆检索:获取个人记忆片段 response = requests.post("http://localhost:8002/retrieve_personal_memory", json={ "workspace_id": "task_workspace", "query": "What are the user's work habits?", "top_k": 5 }) ```
Python 导入版本 ```python import asyncio from reme_ai import ReMeApp async def main(): async with ReMeApp( "llm.default.model_name=qwen3-30b-a3b-thinking-2507", "embedding_model.default.model_name=text-embedding-v4", "vector_store.default.backend=memory" ) as app: # 记忆整合:从用户交互中学习 result = await app.async_execute( name="summary_personal_memory", workspace_id="task_workspace", trajectories=[ { "messages": [ {"role": "user", "content": "I like to drink coffee while working in the morning"}, {"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"} ] } ] ) print(result) # 记忆检索:获取个人记忆片段 result = await app.async_execute( name="retrieve_personal_memory", workspace_id="task_workspace", query="What are the user's work habits?", top_k=5 ) print(result) if __name__ == "__main__": asyncio.run(main()) ```
curl 版本 ```bash # 记忆整合:从用户交互中学习 curl -X POST http://localhost:8002/summary_personal_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "task_workspace", "trajectories": [ {"messages": [ {"role": "user", "content": "I like to drink coffee while working in the morning"}, {"role": "assistant", "content": "I understand, you prefer to start your workday with coffee to stay energized"} ]} ] }' # 记忆检索:获取个人记忆片段 curl -X POST http://localhost:8002/retrieve_personal_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "task_workspace", "query": "What are the user'\''s work habits?", "top_k": 5 }' ```
#### 工具记忆管理 ```python import requests # 记录工具调用结果 response = requests.post("http://localhost:8002/add_tool_call_result", json={ "workspace_id": "tool_workspace", "tool_call_results": [ { "create_time": "2025-10-21 10:30:00", "tool_name": "web_search", "input": {"query": "Python asyncio tutorial", "max_results": 10}, "output": "Found 10 relevant results...", "token_cost": 150, "success": True, "time_cost": 2.3 } ] }) # 从历史生成使用指南 response = requests.post("http://localhost:8002/summary_tool_memory", json={ "workspace_id": "tool_workspace", "tool_names": "web_search" }) # 在使用前检索工具指南 response = requests.post("http://localhost:8002/retrieve_tool_memory", json={ "workspace_id": "tool_workspace", "tool_names": "web_search" }) ```
Python 导入版本 ```python import asyncio from reme_ai import ReMeApp async def main(): async with ReMeApp( "llm.default.model_name=qwen3-30b-a3b-thinking-2507", "embedding_model.default.model_name=text-embedding-v4", "vector_store.default.backend=memory" ) as app: # 记录工具调用结果 result = await app.async_execute( name="add_tool_call_result", workspace_id="tool_workspace", tool_call_results=[ { "create_time": "2025-10-21 10:30:00", "tool_name": "web_search", "input": {"query": "Python asyncio tutorial", "max_results": 10}, "output": "Found 10 relevant results...", "token_cost": 150, "success": True, "time_cost": 2.3 } ] ) print(result) # 从历史生成使用指南 result = await app.async_execute( name="summary_tool_memory", workspace_id="tool_workspace", tool_names="web_search" ) print(result) # 在使用前检索工具指南 result = await app.async_execute( name="retrieve_tool_memory", workspace_id="tool_workspace", tool_names="web_search" ) print(result) if __name__ == "__main__": asyncio.run(main()) ```
curl 版本 ```bash # 记录工具调用结果 curl -X POST http://localhost:8002/add_tool_call_result \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "tool_workspace", "tool_call_results": [ { "create_time": "2025-10-21 10:30:00", "tool_name": "web_search", "input": {"query": "Python asyncio tutorial", "max_results": 10}, "output": "Found 10 relevant results...", "token_cost": 150, "success": true, "time_cost": 2.3 } ] }' # 从历史生成使用指南 curl -X POST http://localhost:8002/summary_tool_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "tool_workspace", "tool_names": "web_search" }' # 在使用前检索工具指南 curl -X POST http://localhost:8002/retrieve_tool_memory \ -H "Content-Type: application/json" \ -d '{ "workspace_id": "tool_workspace", "tool_names": "web_search" }' ```
#### 工作记忆管理 ```python import requests # 对长对话 / 长流程的工作记忆进行压缩与总结 response = requests.post("http://localhost:8002/summary_working_memory", json={ "messages": [ { "role": "system", "content": "You are a helpful assistant. First use `Grep` to find the line numbers that match the keywords or regular expressions, and then use `ReadFile` to read the code around those locations. If no matches are found, never give up; try different parameters, such as searching with only part of the keywords. After `Grep`, use the `ReadFile` command to view content starting from a specified `offset` and `limit`, and do not exceed 100 lines. If the current content is insufficient, you can continue trying different `offset` and `limit` values with the `ReadFile` command." }, { "role": "user", "content": "搜索下reme项目的的README内容" }, { "role": "assistant", "content": "", "tool_calls": [ { "index": 0, "id": "call_6596dafa2a6a46f7a217da", "function": { "arguments": "{\"query\": \"readme\"}", "name": "web_search" }, "type": "function" } ] }, { "role": "tool", "content": "ultra large context , over 50000 tokens......" }, { "role": "user", "content": "根据readme回答task memory在appworld的效果是多少,需要具体的数值" } ], "working_summary_mode": "auto", "compact_ratio_threshold": 0.75, "max_total_tokens": 20000, "max_tool_message_tokens": 2000, "group_token_threshold": 4000, "keep_recent_count": 2, "store_dir": "test_working_memory", "chat_id": "demo_chat_id" }) ```
Python 导入版本 ```python import asyncio from reme_ai import ReMeApp async def main(): async with ReMeApp( "llm.default.model_name=qwen3-30b-a3b-thinking-2507", "embedding_model.default.model_name=text-embedding-v4", "vector_store.default.backend=memory" ) as app: # 对长对话 / 长流程的工作记忆进行压缩与总结 result = await app.async_execute( name="summary_working_memory", messages=[ { "role": "system", "content": "You are a helpful assistant. First use `Grep` to find the line numbers that match the keywords or regular expressions, and then use `ReadFile` to read the code around those locations. If no matches are found, never give up; try different parameters, such as searching with only part of the keywords. After `Grep`, use the `ReadFile` command to view content starting from a specified `offset` and `limit`, and do not exceed 100 lines. If the current content is insufficient, you can continue trying different `offset` and `limit` values with the `ReadFile` command." }, { "role": "user", "content": "搜索下reme项目的的README内容" }, { "role": "assistant", "content": "", "tool_calls": [ { "index": 0, "id": "call_6596dafa2a6a46f7a217da", "function": { "arguments": "{\"query\": \"readme\"}", "name": "web_search" }, "type": "function" } ] }, { "role": "tool", "content": "ultra large context , over 50000 tokens......" }, { "role": "user", "content": "根据readme回答task memory在appworld的效果是多少,需要具体的数值" } ], working_summary_mode="auto", compact_ratio_threshold=0.75, max_total_tokens=20000, max_tool_message_tokens=2000, group_token_threshold=4000, keep_recent_count=2, store_dir="test_working_memory", chat_id="demo_chat_id", ) print(result) if __name__ == "__main__": asyncio.run(main()) ```
curl 版本 ```bash curl -X POST http://localhost:8002/summary_working_memory \ -H "Content-Type: application/json" \ -d '{ "messages": [ { "role": "system", "content": "You are a helpful assistant. First use `Grep` to find the line numbers that match the keywords or regular expressions, and then use `ReadFile` to read the code around those locations. If no matches are found, never give up; try different parameters, such as searching with only part of the keywords. After `Grep`, use the `ReadFile` command to view content starting from a specified `offset` and `limit`, and do not exceed 100 lines. If the current content is insufficient, you can continue trying different `offset` and `limit` values with the `ReadFile` command." }, { "role": "user", "content": "搜索下reme项目的的README内容" }, { "role": "assistant", "content": "", "tool_calls": [ { "index": 0, "id": "call_6596dafa2a6a46f7a217da", "function": { "arguments": "{\"query\": \"readme\"}", "name": "web_search" }, "type": "function" } ] }, { "role": "tool", "content": "ultra large context , over 50000 tokens......" }, { "role": "user", "content": "根据readme回答task memory在appworld的效果是多少,需要具体的数值" } ], "working_summary_mode": "auto", "compact_ratio_threshold": 0.75, "max_total_tokens": 20000, "max_tool_message_tokens": 2000, "group_token_threshold": 4000, "keep_recent_count": 2, "store_dir": "test_working_memory", "chat_id": "demo_chat_id" }' ```
--- ## 📦 开箱即用的记忆库 ReMe 提供一个**记忆库**,包含预先提取的、生产就绪的记忆,智能体可以立即加载和使用: ### 可用记忆包 | 记忆包 | 领域 | 规模 | 描述 | |----------------------|------------|----------------|--------------------------------------------------------| | **`appworld.jsonl`** | 任务执行 | ~100 条记忆 | 复杂任务规划模式、多步骤工作流和错误恢复策略 | | **`bfcl_v3.jsonl`** | 工具使用 | ~150 条记忆 | 函数调用模式、参数优化和工具选择策略 | ### 加载预构建记忆 ```python # 加载内置记忆 response = requests.post("http://localhost:8002/vector_store", json={ "workspace_id": "appworld", "action": "load", "path": "./docs/library/" }) # 查询相关记忆 response = requests.post("http://localhost:8002/retrieve_task_memory", json={ "workspace_id": "appworld", "query": "How to navigate to settings and update user profile?", "top_k": 1 }) ```
Python 导入版本 ```python import asyncio from reme_ai import ReMeApp async def main(): async with ReMeApp( "llm.default.model_name=qwen3-30b-a3b-thinking-2507", "embedding_model.default.model_name=text-embedding-v4", "vector_store.default.backend=memory" ) as app: # 加载内置记忆 result = await app.async_execute( name="vector_store", workspace_id="appworld", action="load", path="./docs/library/" ) print(result) # 查询相关记忆 result = await app.async_execute( name="retrieve_task_memory", workspace_id="appworld", query="How to navigate to settings and update user profile?", top_k=1 ) print(result) if __name__ == "__main__": asyncio.run(main()) ```
--- ## 🧪 实验结果 ### 🌍 [Appworld 实验](docs/cookbook/appworld/quickstart.md) 我们在 Appworld 环境上使用 Qwen3-8B(非思考模式)进行评测: | 方法 | Avg@4 | Pass@4 | |-----------|-------------------|-------------------| | 无 ReMe | 0.1497 | 0.3285 | | 使用 ReMe | 0.1706 **(+2.09%)** | 0.3631 **(+3.46%)** | Pass@K 衡量在生成 K 个候选中,至少一个成功完成任务(score=1)的概率。 当前实验使用的是内部 AppWorld 环境,可能与对外版本存在轻微差异。 关于如何复现实验的更多细节,见 [quickstart.md](docs/cookbook/appworld/quickstart.md)。 ### 🔧 [BFCL-V3 实验](docs/cookbook/bfcl/quickstart.md) 我们在 BFCL-V3 multi-turn-base 任务(随机划分 50 train / 150 val)上,使用 Qwen3-8B(思考模式)进行评测: | 方法 | Avg@4 | Pass@4 | |------------|-----------------|---------------------| | 无 ReMe | 0.4033 | 0.5955 | | 使用 ReMe | 0.4450 **(+4.17%)** | 0.6577 **(+6.22%)** | ### 🧊 [Frozenlake 实验](docs/cookbook/frozenlake/quickstart.md) | 无 ReMe | 使用 ReMe | |:------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------:| |

失败示例

|

成功示例

| 我们在 100 张随机 frozenlake 地图上,使用 qwen3-8b 进行测试: | 方法 | 通过率 | |------------|-----------------| | 无 ReMe | 0.66 | | 使用 ReMe | 0.72 **(+6.0%)** | 更多复现实验细节见 [quickstart.md](docs/cookbook/frozenlake/quickstart.md)。 ### 🛠️ [工具记忆基准](docs/tool_memory/tool_bench.md) 我们在一个受控基准上,使用三个模拟搜索工具与 Qwen3-30B-Instruct 评估工具记忆的效果: | 场景 | 平均分 | 提升 | |-----------------------|--------|------------| | 训练集(无记忆) | 0.650 | - | | 测试集(无记忆) | 0.672 | 基线 | | **测试集(使用记忆)** | **0.772** | **+14.88%** | **关键结论:** - 工具记忆可以基于历史表现进行数据驱动的工具选择 - 通过学习参数配置,成功率约提升 15% 更多细节见 [tool_bench.md](docs/tool_memory/tool_bench.md) 与实现代码 [run_reme_tool_bench.py](cookbook/tool_memory/run_reme_tool_bench.py)。 --- ## 📚 资源 ### 快速入门 - **[Quick Start](./cookbook/simple_demo)**:实用示例,可立即使用 - [工具记忆 Demo](cookbook/simple_demo/use_tool_memory_demo.py):工具记忆的完整生命周期演示 - [工具记忆基准](cookbook/tool_memory/run_reme_tool_bench.py):评估工具记忆效果 ### 集成指南 - **[直接 Python 导入](docs/cookbook/working/quick_start.md)**:将 ReMe 直接嵌入到你的智能体代码中 - **[HTTP 服务 API](docs/vector_store_api_guide.md)**:用于多智能体系统的 RESTful API - **[MCP 协议](docs/mcp_quick_start.md)**:与 Claude Desktop 和 MCP 兼容客户端集成 ### 记忆系统配置 - **[个人记忆](docs/personal_memory)**:用户偏好学习和上下文自适应 - **[任务记忆](docs/task_memory)**:程序性知识提取和复用 - **[工具记忆](docs/tool_memory)**:数据驱动的工具选择和优化 - **[工作记忆](docs/work_memory/message_offload.md)**:长流程智能体的短期上下文管理 ### 高级主题 - **[算子管道](reme_ai/config/default.yaml)**:通过修改算子链来自定义记忆处理工作流 - **[向量存储后端](docs/vector_store_api_guide.md)**:配置本地、Elasticsearch、Qdrant 或 ChromaDB 存储 - **[案例集](./cookbook)**:真实场景的用例和最佳实践 --- ## ⭐ 社区与支持 - **Star & Watch**:Star 可以让更多智能体开发者发现 ReMe;Watch 能帮助你第一时间获知新版本与特性。 - **分享你的成果**:在 Issue 或 Discussion 中分享 ReMe 为你的智能体解锁了什么——我们非常乐意展示社区的优秀案例。 - **需要新功能?** 提交 Feature Request,我们将一起完善它。 --- ## 🤝 参与贡献 我们相信,最好的记忆系统来自社区的集体智慧。欢迎贡献 👉[贡献指南](docs/contribution.md): ### 代码贡献 - **新算子**:开发自定义记忆处理算子(检索、总结等) - **后端实现**:添加对新向量存储或 LLM 提供商的支持 - **记忆服务**:扩展新的记忆类型或能力 - **API 增强**:改进现有端点或添加新端点 ### 文档改进 - **集成示例**:展示如何将 ReMe 与不同智能体框架集成 - **算子教程**:记录自定义算子开发 - **最佳实践指南**:分享有效的记忆管理模式 - **用例研究**:展示 ReMe 在实际应用中的使用 --- ## 📄 引用 ```bibtex @software{AgentscopeReMe2025, title = {AgentscopeReMe: Memory Management Kit for Agents}, author = {Li Yu and Jiaji Deng and Zouying Cao and Weikang Zhou and Tiancheng Qin and Qingxu Fu and Sen Huang and Xianzhe Xu and Zhaoyang Liu and Boyin Liu}, url = {https://reme.agentscope.io}, year = {2025} } @misc{AgentscopeReMe2025Paper, title={Remember Me, Refine Me: A Dynamic Procedural Memory Framework for Experience-Driven Agent Evolution}, author={Zouying Cao and Jiaji Deng and Li Yu and Weikang Zhou and Zhaoyang Liu and Bolin Ding and Hai Zhao}, year={2025}, eprint={2512.10696}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2512.10696}, } ``` --- ## ⚖️ 许可证 本项目基于 Apache License 2.0 开源,详情参见 [LICENSE](./LICENSE) 文件。 --- ## Star 历史 [![Star History Chart](https://api.star-history.com/svg?repos=agentscope-ai/ReMe&type=Date)](https://www.star-history.com/#agentscope-ai/ReMe&Date)