# fairseq **Repository Path**: cncmn/fairseq ## Basic Information - **Project Name**: fairseq - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-17 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
-------------------------------------------------------------------------------- Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers:- **Convolutional Neural Networks (CNN)** - [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md) - [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md) - [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel) - [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md) - [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md) - **LightConv and DynamicConv models** - [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md) - **Long Short-Term Memory (LSTM) networks** - Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015) - **Transformer (self-attention) networks** - Attention Is All You Need (Vaswani et al., 2017) - [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md) - [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md) - [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md) - [Lexically constrained decoding with dynamic beam allocation (Post & Vilar, 2018)](examples/constrained_decoding/README.md) - [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md) - [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md) - [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md) - [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md ) - [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md) - [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md) - [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md) - [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md) - [Generating Medical Reports from Patient-Doctor Conversations Using Sequence-to-Sequence Models (Enarvi et al., 2020)](examples/pointer_generator/README.md) - [Linformer: Self-Attention with Linear Complexity (Wang et al., 2020)](examples/linformer/README.md) - [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md) - [Deep Transformers with Latent Depth (Li et al., 2020)](examples/latent_depth/README.md) - **Non-autoregressive Transformers** - Non-Autoregressive Neural Machine Translation (Gu et al., 2017) - Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018) - Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019) - Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019) - [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md) - **Finetuning** - [Better Fine-Tuning by Reducing Representational Collapse (Aghajanyan et al. 2020)](examples/rxf/README.md)
- March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md) - February 2020: [mBART model and code released](examples/mbart/README.md) - February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german) - December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0) - November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example) - November 2019: [CamemBERT model and code released](examples/camembert/README.md) - November 2019: [BART model and code released](examples/bart/README.md) - November 2019: [XLM-R models and code released](examples/xlmr/README.md) - September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md) - August 2019: [WMT'19 models released](examples/wmt19/README.md) - July 2019: fairseq relicensed under MIT license - July 2019: [RoBERTa models and code released](examples/roberta/README.md) - June 2019: [wav2vec models and code released](examples/wav2vec/README.md)