# elf **Repository Path**: cool_c0de/elf ## Basic Information - **Project Name**: elf - **Description**: from https://github.com/constantinpape/elf 20251115 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-11-15 - **Last Updated**: 2025-11-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Build Status](https://github.com/constantinpape/elf/workflows/build/badge.svg)](https://github.com/constantinpape/elf/actions) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/python-elf/badges/version.svg)](https://anaconda.org/conda-forge/python-elf) [![Documentation - Documentation](https://img.shields.io/badge/Documentation-Documentation-2ea44f)](https://constantinpape.github.io/elf/elf.html) # elf This repository implements common functionality for biomedical image analysis: - **evaluation**: evaluation of partitions via rand index and variation of information - **io**: common interface for different libraries / formats - **parallel**: parallel / larger than memory implementation of common numpy functions - **segmentation**: graph-partition based segmentation - **skeleton**: skeletonization - **transformation**: helper functions for affine transformations - **wrapper**: volume wrappers for on-the-fly transformations - **tracking**: graph based tracking algorithms and more. See [the documentation](https://constantinpape.github.io/elf/elf.html) for how to use elf. See `examples` for some usage examples. For processing large data on a cluster, check out [cluster_tools](https://github.com/constantinpape/cluster_tools), which uses a lot of `elf` functionality internally. It is used by several down-stream dependencies: - [cluster_tools](https://github.com/constantinpape/cluster_tools) - [paintera_tools](https://github.com/constantinpape/paintera_tools) - [pybdv](https://github.com/constantinpape/pybdv) - [ilastik](https://github.com/ilastik/ilastik) - [mobie-python](https://github.com/mobie/mobie-utils-python) - [plantseg](https://github.com/hci-unihd/plant-seg) ## Installation Install the package from source and in development mode via ``` pip install -e . ``` or via conda ``` conda install -c conda-forge python-elf ``` ## Functionality overview **Segmentation:** `elf` implements graph-based segmentation using the implementations of multict, lifted multicut and other graph partitioning approaches from [nifty](https://github.com/DerThorsten/nifty). Check out [the examples](https://github.com/constantinpape/elf/tree/master/example/segmentation) to see how to use this functionality for segmenting your data. **Tracking:** `elf` implements graph-based tracking using the implementations from [motile](https://github.com/funkelab/motile). Checkout [the examples](https://github.com/constantinpape/elf/tree/master/example/tracking) to see how to use this functionality to track your data. In order to use this functionality you will need to install `motile`. You can do this via ``` conda install -c conda-forge -c funkelab -c gurobi ilpy ``` and then ``` pip install motile ```