# Brain-Tissue-Segmentation-Using-Expectation-Maximization **Repository Path**: dalerxli/Brain-Tissue-Segmentation-Using-Expectation-Maximization ## Basic Information - **Project Name**: Brain-Tissue-Segmentation-Using-Expectation-Maximization - **Description**: Medical Image Segmentation and Applications (MISA) LAB task. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2023-03-14 - **Last Updated**: 2023-03-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Brain-Tissue-Segmentation-Using-Expectation-Maximization Medical Image Segmentation and Applications (MISA) LAB task. Functions Used in two codes:: 1. show_slice(img, slice_no): Inputs: Name of the Image Array, img=name.get_fdata() Slice number you want to knoe,Slice no = 24 output: Plot Image. 2. gmm(x, mean, cov): Inputs: x (numpy.ndarray): nxd dimentional array. where n= number of samples d= dimention mean (numpy.ndarray): d-dimentional mean value. cov (numpy.ndarray): dxd dimentional covariance matrix. output: (numpy.ndarray): Gaussian mixture for every point in feature space. 3. dice_similarity(Seg_img, GT_img,state): Inputs: Seg_img (numpy.ndarray): Segmented Image. GT_img (numpy.ndarray): Ground Truth Image. State: "nifti" if the images are nifti file "arr" if the images are an ndarray output: Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM. 4. Dice_and_Visualization_of_one_slice(Seg_img, GT_img,state,number_of_slice): """Example Use: Dice_and_Visualization_of_one_slice(Seg,Label_img,"arr",30)""" Inputs: Seg_img (numpy.ndarray): Segmented Image. GT_img (numpy.ndarray): Ground Truth Image. State: "nifti" if the images are nifti file "arr" if the images are an ndarray output: Dice Similarity Coefficient: dice_CSF, dice_GM, dice_WM. Ploting image