# network-deconfounder-wsdm20 **Repository Path**: email4reg/network-deconfounder-wsdm20 ## Basic Information - **Project Name**: network-deconfounder-wsdm20 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-02 - **Last Updated**: 2021-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # network-deconfounder-wsdm20 Code for the WSDM '20 paper, [Learning Individual Causal Effects from Networked Observational Data](https://arxiv.org/abs/1906.03485). **First Work on Causal Effect Estimation Based on Graph Convolutional Neural Networks** For now, please cite the WSDM version if you find this paper/repository is helpful. ``` @inproceedings{guo2020learning, title={Learning Individual Causal Effects from Networked Observational Data}, author={Guo, Ruocheng and Li, Jundong and Liu, Huan}, booktitle={Proceedings of the 13th International Conference on Web Search and Data Mining}, pages={232--240}, year={2020} } ``` ### Overview of the Network Deconfounder ![overview of the Network Deconfounder](WSDM2020_Intro.png) ### Dependencies Tested on Ubuntu 18.04 ``` Python 3.6 Pytorch 1.2.0 Scipy 1.3.1 Numpy 1.17.2 Pandas 0.25.1 ``` ### Datasets Datasets used in this paper can be found in ```./datasets``` ### Running the experiment On a linux system, you can run the bash script, for example ``` bash run_for_share.sh --dataset BlogCatalog ``` Then results would be added to the end of the corresponding csv files in ./new_results/Blogcatalog or ./new_results/Flickr To calculate the mean of the results from 10 simulations, you can use the python script ``` python res_mean.py ```