# Cats_vs_Dogs **Repository Path**: eobard721/Cats_vs_Dogs ## Basic Information - **Project Name**: Cats_vs_Dogs - **Description**: 这是一个用python语言编写的猫狗识别小模型,采用Flash生成网页UI界面。该项目可以识别上传图片是否为猫或者狗,网络模型为GoogLeNet的改造,由于设备的原因,仅训练了50个epoch,正确率为72左右,如果想要高正确率可以自己再次训练即可 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 7 - **Forks**: 0 - **Created**: 2024-05-10 - **Last Updated**: 2025-02-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: AI, Python, 图像分类, 图像识别, 猫狗识别 ## README # 猫狗识别 > **developed by eobard thawne** ## 1. 依赖安装 在cmd中安装以下依赖环境 ```bash pip install numpy pip install pillow pip install flask pip install torch==1.10.0+cpu torchvision==0.11.0+cpu torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html pip install torchsummary ``` ## 2.运行app.py文件 ![image-20240510091236277](/README_imgs/image-20240510091236277.png) ![image-20240510091358214](/README_imgs/image-20240510091358214.png) ## 3.登录 or 注册 > **默认账号admin,密码为123456** ![image-20240510091333999](/README_imgs/image-20240510091333999.png) ![image-20240510091422123](/README_imgs/image-20240510091422123.png) ## 4.页面效果 * 首先加载已有模型 ![image-20240510091442366](/README_imgs/image-20240510091442366.png) * **上传`猫或狗`的图片** > **切记:只能上传猫和狗的图片,该项目以猫狗分类为例** ![image-20240510091455144](/README_imgs/image-20240510091455144.png) * 上传 ![image-20240510091504837](/README_imgs/image-20240510091504837.png) ![image-20240510091512423](/README_imgs/image-20240510091512423.png) ![image-20240510091518582](/README_imgs/image-20240510091518582.png) * 点击开始检测按钮 ![image-20240510091525107](/README_imgs/image-20240510091525107.png) ### 注意 > **该模型并未经过大量的训练,正确率约为 72~80%,可在历史检测结果中可以看到有错误的检测** ## 5.查看历史检测结果 ![image-20240510091530683](/README_imgs/image-20240510091530683.png)