# HackSynth
**Repository Path**: frontcold/HackSynth
## Basic Information
- **Project Name**: HackSynth
- **Description**: 基于大模型的自动化渗透测试
- **Primary Language**: Unknown
- **License**: AGPL-3.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2024-12-19
- **Last Updated**: 2025-05-13
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# HackSynth: LLM Agent and Evaluation Framework for Autonomous Penetration Testing
The paper can be found on [arXiv](https://arxiv.org/abs/2412.01778).
## Introduction
We introduce HackSynth, a novel Large Language Model (LLM)-based agent capable of autonomous penetration testing.
HackSynth's dual-module architecture includes a Planner and a Summarizer, which enable it to generate commands and process feedback iteratively.
To benchmark HackSynth, we propose two new Capture The Flag (CTF)-based benchmark sets utilizing the popular platforms PicoCTF and OverTheWire.
These benchmarks include two hundred challenges across diverse domains and difficulties, providing a standardized framework for evaluating LLM-based penetration testing agents.
## Using the repository
- You will have to create a Hugging Face and a Neptune.ai account
- Copy your API keys to the `.env` file, and set the desired CUDA devices, based on the `.env_example`
- [Set up the PicoCTF benchmark](picoctf_bench/README.md)
- [Set up the OverTheWire benchmark](overthewire_bench/README.md)
- Start the HackSynth Agent
- Install the environment:
```
python -m venv cyber_venv
source cyber_venv/bin/activate
pip install -r requirements.txt
```
- Start the benchmark with the following:
```
python run_bench.py -b benchmark.json -c config.json
```
The `benchmark.json` should be one of the generated `benchmark_solved.json` files, or an equivalently structured file.
The configuration files used by us for the measurements in the paper are also available in the configs folder.
## How to Cite
If you use this code in your work or research, please cite the corresponding paper:
```bibtex
@misc{muzsai2024hacksynthllmagentevaluation,
title={HackSynth: LLM Agent and Evaluation Framework for Autonomous Penetration Testing},
author={Lajos Muzsai and David Imolai and András Lukács},
year={2024},
eprint={2412.01778},
archivePrefix={arXiv},
primaryClass={cs.CR},
url={https://arxiv.org/abs/2412.01778},
}
```
## Contributors
- Lajos Muzsai (muzsailajos@protonmail.com)
- David Imolai (david@imol.ai)
- András Lukács (andras.lukacs@ttk.elte.hu)
## License
The project uses the GNU AGPLv3 license.