# HackSynth **Repository Path**: frontcold/HackSynth ## Basic Information - **Project Name**: HackSynth - **Description**: 基于大模型的自动化渗透测试 - **Primary Language**: Unknown - **License**: AGPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-12-19 - **Last Updated**: 2025-05-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HackSynth: LLM Agent and Evaluation Framework for Autonomous Penetration Testing The paper can be found on [arXiv](https://arxiv.org/abs/2412.01778). ## Introduction HackSynth Logo We introduce HackSynth, a novel Large Language Model (LLM)-based agent capable of autonomous penetration testing. HackSynth's dual-module architecture includes a Planner and a Summarizer, which enable it to generate commands and process feedback iteratively. To benchmark HackSynth, we propose two new Capture The Flag (CTF)-based benchmark sets utilizing the popular platforms PicoCTF and OverTheWire. These benchmarks include two hundred challenges across diverse domains and difficulties, providing a standardized framework for evaluating LLM-based penetration testing agents.
## Using the repository - You will have to create a Hugging Face and a Neptune.ai account - Copy your API keys to the `.env` file, and set the desired CUDA devices, based on the `.env_example` - [Set up the PicoCTF benchmark](picoctf_bench/README.md) - [Set up the OverTheWire benchmark](overthewire_bench/README.md) - Start the HackSynth Agent - Install the environment: ``` python -m venv cyber_venv source cyber_venv/bin/activate pip install -r requirements.txt ``` - Start the benchmark with the following: ``` python run_bench.py -b benchmark.json -c config.json ``` The `benchmark.json` should be one of the generated `benchmark_solved.json` files, or an equivalently structured file. The configuration files used by us for the measurements in the paper are also available in the configs folder. ## How to Cite If you use this code in your work or research, please cite the corresponding paper: ```bibtex @misc{muzsai2024hacksynthllmagentevaluation, title={HackSynth: LLM Agent and Evaluation Framework for Autonomous Penetration Testing}, author={Lajos Muzsai and David Imolai and András Lukács}, year={2024}, eprint={2412.01778}, archivePrefix={arXiv}, primaryClass={cs.CR}, url={https://arxiv.org/abs/2412.01778}, } ``` ## Contributors - Lajos Muzsai (muzsailajos@protonmail.com) - David Imolai (david@imol.ai) - András Lukács (andras.lukacs@ttk.elte.hu) ## License The project uses the GNU AGPLv3 license.