# Meta-MGNN **Repository Path**: frozenhere/Meta-MGNN ## Basic Information - **Project Name**: Meta-MGNN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-07-06 - **Last Updated**: 2021-09-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Few-shot Graph Learning for Molecular Property Prediction ## Introduction This is the source code and dataset for the following paper: **Few-shot Graph Learning for Molecular Property Prediction. In WWW 2021.** Contact Zhichun Guo (zguo5@nd.edu), if you have any questions. ## Datasets The datasets uploaded can be downloaded to train our model directly. The original datasets are downloaded from [Data](http://snap.stanford.edu/gnn-pretrain/data/chem_dataset.zip). We utilize Original_datasets/splitdata.py to split the datasets according to the molecular properties and save them in different files in the Original_datasets/[DatasetName]/new. Then run main.py, the datasets will be automatically preprocessed by loader.py and the preprocessed results will be saved in the Original_datasets/[DatasetName]/new/[PropertyNumber]/propcessed. ## Usage ### Installation We used the following Python packages for the development by python 3.6. ``` - torch = 1.4.0 - torch-geometric = 1.6.1 - torch-scatter = 2.0.4 - torch-sparse = 0.6.1 - scikit-learn = 0.23.2 - tqdm = 4.50.0 - rdkit ``` ### Run code Datasets and k (for k-shot) can be changed in the last line of main.py. ``` python main.py ``` ## Performance The performance of meta-learning is not stable for some properties. We report two times results and the number of the iteration where we obtain the best results here for your reference. | Dataset | k | Iteration | Property | Results || k | Iteration | Property | Results | | ---------- | :-----------: | :-----------: | :-----------: | :-----------: | ---------- | :-----------: | :-----------: | :-----------: | :-----------: | | Sider | 1 | 307/599 | Si-T1| 75.08/75.74 | | 5 | 561/585 | Si-T1 | 76.16/76.47 | | | | | Si-T2| 69.44/69.34 | | | | Si-T2 | 68.90/69.77 | | | | | Si-T3| 69.90/71.39 | | | | Si-T3 | 72.23/72.35 | | | | | Si-T4| 71.78/73.60 | | | | Si-T4 | 74.40/74.51 | | | | | Si-T5| 79.40/80.50 | | | | Si-T5 | 81.71/81.87 | | | | | Si-T6| 71.59/72.35 | | | | Si-T6 | 74.90/73.34 | | | | | Ave.| 72.87/73.82 | | | | Ave. | 74.74/74.70 | | Tox21 | 1 | 1271/1415 | SR-HS | 73.72/73.90 | | 5 | 1061/882 | SR-HS | 74.85/74.74 | | | | | SR-MMP | 78.56/79.62 | | | | SR-MMP | 80.25/80.27 | | | | | SR-p53| 77.50/77.91 | | | | SR-p53 | 78.86/79.14 | | | | | Ave.| 76.59/77.14 | | | | Ave. | 77.99/78.05 | ## Acknowledgements The code is implemented based on [Strategies for Pre-training Graph Neural Networks](https://github.com/snap-stanford/pretrain-gnns). ## Reference ``` @article{guo2021few, title={Few-Shot Graph Learning for Molecular Property Prediction}, author={Guo, Zhichun and Zhang, Chuxu and Yu, Wenhao and Herr, John and Wiest, Olaf and Jiang, Meng and Chawla, Nitesh V}, journal={arXiv preprint arXiv:2102.07916}, year={2021} } ```