# YOPO-Rally **Repository Path**: gchasing/YOPO-Rally ## Basic Information - **Project Name**: YOPO-Rally - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-15 - **Last Updated**: 2025-07-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # YOPO-Rally A Sim-to-Real Single-Stage Planner for Off-Road Terrain > \[!NOTE] > > The code will be released soon. Video: [YouTube](https://youtu.be/dyoufaKgVa0), [Bilibili](https://www.bilibili.com/video/BV1D1V7zQEWr) ## News - **2025-7-1**: [YOPO-Sim](https://github.com/TJU-Aerial-Robotics/YOPO-Sim.git), the off-road vehicle simulator, is released. ## System Overview ![System Overview](.media/system-overview.svg) ## Simulator Please refer to the [YOPO-Sim](https://github.com/TJU-Aerial-Robotics/YOPO-Sim). ![YOPO-Sim](.media/yopo-sim.jpg) ## Imitation Learning ### Cost Map Generation The terrain is exported as the point cloud map, and is then processed by TTA (Terrain Type Analysis) to generate the cost map. https://github.com/user-attachments/assets/9114d64a-cec4-42c8-93c3-7d9c15ee0e10 ### Data Acquisition The depth image, position, and orientation of the vehicle are recorded in the simulator. ![Data Acquisition](.media/data-acquisition.jpg) ### Trajectory Optimization Cone constraints are applied to each primitive anchor to confine the trajectory within the neural network’s output range. https://github.com/user-attachments/assets/d9902d38-5c5b-4b8a-aec8-42a6decb11fb ## Inference The planner inputs depth image, velocity, goal vector, and outputs the candidate trajectories with the corresponding cost. https://github.com/user-attachments/assets/a4583249-a9d8-4ef8-8d7d-87dd9a78e298 ## Experiments Please refer to the video for the experiment results.