# Kimera **Repository Path**: gxdcode/Kimera ## Basic Information - **Project Name**: Kimera - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-06 - **Last Updated**: 2021-05-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
sparklab kimera mit
# Kimera Kimera is a C++ library for real-time metric-semantic simultaneous localization and mapping, which uses camera images and inertial data to build a semantically annotated 3D mesh of the environment. Kimera is modular, ROS-enabled, and runs on a CPU. Kimera comprises four **modules**: - A fast and accurate Visual Inertial Odometry (VIO) pipeline ([Kimera-VIO](https://github.com/MIT-SPARK/Kimera-VIO)) - A full SLAM implementation based on Robust Pose Graph Optimization ([Kimera-RPGO](https://github.com/MIT-SPARK/Kimera-RPGO)) - A per-frame and multi-frame 3D mesh generator ([Kimera-Mesher](https://github.com/MIT-SPARK/Kimera-VIO)) - And a generator of semantically annotated 3D meshes ([Kimera-Semantics](https://github.com/MIT-SPARK/Kimera-Semantics))

Kimera

Click on the following links to install Kimera's modules and get started! It is very easy to install! ### [Kimera-VIO & Kimera-Mesher](https://github.com/MIT-SPARK/Kimera-VIO)
Kimera-VIO
### [Kimera-RPGO](https://github.com/MIT-SPARK/Kimera-RPGO)
Kimera-RPGO
### [Kimera-Semantics](https://github.com/MIT-SPARK/Kimera-Semantics)
Kimera-Semantics
### Chart ![overall_chart](./docs/media/kimera_chart_23.jpeg) ## Citation If you found any of the above modules useful, we would really appreciate if you could cite our work: - [1] A. Rosinol, T. Sattler, M. Pollefeys, L. Carlone. [**Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities**](https://arxiv.org/abs/1903.01067). IEEE Int. Conf. on Robotics and Automation (ICRA), 2019. [arXiv:1903.01067](https://arxiv.org/abs/1903.01067) ```bibtex @InProceedings{Rosinol19icra-incremental, title = {Incremental visual-inertial 3d mesh generation with structural regularities}, author = {Rosinol, Antoni and Sattler, Torsten and Pollefeys, Marc and Carlone, Luca}, year = {2019}, booktitle = {2019 International Conference on Robotics and Automation (ICRA)}, pdf = {https://arxiv.org/pdf/1903.01067.pdf} } ``` - [2] A. Rosinol, M. Abate, Y. Chang, L. Carlone, [**Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping**](https://arxiv.org/abs/1910.02490). IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020. [arXiv:1910.02490](https://arxiv.org/abs/1910.02490). ```bibtex @InProceedings{Rosinol20icra-Kimera, title = {Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping}, author = {Rosinol, Antoni and Abate, Marcus and Chang, Yun and Carlone, Luca}, year = {2020}, booktitle = {IEEE Intl. Conf. on Robotics and Automation (ICRA)}, url = {https://github.com/MIT-SPARK/Kimera}, pdf = {https://arxiv.org/pdf/1910.02490.pdf} } ``` - [3] A. Rosinol, A. Gupta, M. Abate, J. Shi, L. Carlone. [**3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans**](https://arxiv.org/abs/2002.06289). Robotics: Science and Systems (RSS), 2020. [arXiv:2002.06289](https://arxiv.org/abs/2002.06289). ```bibtex @InProceedings{Rosinol20rss-dynamicSceneGraphs, title = {{3D} Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans}, author = {A. Rosinol and A. Gupta and M. Abate and J. Shi and L. Carlone}, year = {2020}, booktitle = {Robotics: Science and Systems (RSS)}, pdf = {https://arxiv.org/pdf/2002.06289.pdf} } ``` - [4] A. Rosinol, A. Gupta, M. Abate, J. Shi, L. Carlone. [**Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs**](https://arxiv.org/abs/2101.06894). [arXiv:2101.06894](https://arxiv.org/abs/2101.06894). ```bibtex @InProceedings{Rosinol21arxiv-Kimera, title = {{K}imera: from {SLAM} to Spatial Perception with {3D} Dynamic Scene Graphs}, author = {A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, L. Carlone}, year = {2021}, booktitle = {arxiv}, pdf = {https://arxiv.org/pdf/2101.06894.pdf} } ``` ## Open-Source Datasets In addition to the [real-life tests](http://ci-sparklab.mit.edu:8080/job/MIT-SPARK-Kimera/job/master/VIO_20Euroc_20Performance_20Report/) on the [Euroc](https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) dataset, we use a photo-realistic Unity-based simulator to test Kimera. The simulator provides: - RGB Stereo camera - Depth camera - Ground-truth 2D Semantic Segmentation - IMU data - Ground-Truth Odometry - 2D Lidar - TF (ground-truth odometry of robots, and agents) - Static TF (ground-truth poses of static objects) Using this simulator, we created several large visual-inertial datasets which feature scenes with and without dynamic agents (humans), as well as a large variety of environments (indoors and outdoors, small and large). These are ideal to test your Metric-Semantic SLAM and/or other Spatial-AI systems! - [uHumans](http://web.mit.edu/sparklab/datasets/uHumans/) (released with [3]) - [uHumans2](http://web.mit.edu/sparklab/datasets/uHumans2/) (released with [4]) ## Acknowledgments Kimera is partially funded by ARL [DCIST](https://www.dcist.org/), [ONR RAIDER](https://www.onr.navy.mil/), [MIT Lincoln Laboratory](https://www.ll.mit.edu/), and [“la Caixa” Foundation](https://becarioslacaixa.net/en/antoni-rosinol-vidal-B004789) (ID 100010434), LCF/BQ/AA18/11680088 (A. Rosinol). ## License [BSD License](LICENSE.BSD)