# vae_conv **Repository Path**: haohan1997/vae_conv ## Basic Information - **Project Name**: vae_conv - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-24 - **Last Updated**: 2021-11-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # vae_conv Convolutional variational autoencoder in PyTorch # Basic VAE Example This is an improved implementation of the paper [Stochastic Gradient VB and the Variational Auto-Encoder](http://arxiv.org/abs/1312.6114) by Kingma and Welling. It uses ReLUs and the adam optimizer, instead of sigmoids and adagrad. These changes make the network converge much faster. ```bash pip install -r requirements.txt python main.py ```