# SSL4MIS **Repository Path**: he-junyang/SSL4MIS ## Basic Information - **Project Name**: SSL4MIS - **Description**: SSL4MIS仓库,写注释用于自我学习 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-17 - **Last Updated**: 2025-07-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README SSL4MIS项目地址:https://gitcode.com/gh_mirrors/ss/SSL4MIS (1)Mean Teacher:Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results 2017 (2)Entropy Minimization:ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation 2018 (3)Deep Adversarial Networks:Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images 2017 (4)Uncertainty Aware Mean Teacher:Uncertainty-aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation 2019 (5)Interpolation Consistency Training:Interpolation consistency training for semi-supervised learning 2022 (6)Uncertainty Rectified Pyramid Consistency:Efficient Semi-Supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency 2020 (7)Cross Pseudo Supervision:Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision 2021 (8)Cross Consistency Training:Semi-Supervised Semantic Segmentation with Cross-Consistency Training 2020 (9)Deep Co-Training:Deep Co-Training for Semi-Supervised Image Recognition 2018 (10)Cross Teaching between CNN and Transformer:Semi-Supervised Medical Image Segmentation via Cross Teaching between CNN and Transformer 2021 (11)FixMatch:FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence 2020 (12)Regularized Dropout:R-Drop: Regularized Dropout for Neural Networks 2021 半监督算法的成立离不开四类假设:平滑性假设、聚类假设、流形假设、低密度分离假设 因为平滑性说明两个样本在特征空间映射的点是接近的,那么它们对应的属性值也是接近的;聚类假设假设数据存在簇(聚类)结构,那么在同一个簇内的样本应该属于同一类。平滑性假设和聚类假设其实是定量和定性的关系。直观来说,一个物体和背景,它们的类别索引在边界上离得比较远,在物体和背景内部的类别索引变化为0,对应着分类边界平滑性大、目标内部的平滑性小。