# Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression **Repository Path**: hewu2008/Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression ## Basic Information - **Project Name**: Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-09 - **Last Updated**: 2021-09-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression ❗ongoing repo Pytorch implementation of [paper](https://arxiv.org/abs/1904.07399). official implementation can be found at [official](https://github.com/protossw512/AdaptiveWingLoss). blog post about the paper(korean) can be found [here](https://medium.com/@ssy10011218/adaptivewingloss-%EB%B0%91%EB%B0%94%EB%8B%A5-%EB%B6%80%ED%84%B0-%EA%B5%AC%ED%98%84%ED%95%B4%EB%B3%B4%EA%B8%B0-d65f495862f).

result

📝 TODO - [x] prototype - [ ] albumentation data augmentation - [ ] evalutaion on 300W + data augmentation - [ ] performance tuning - [ ] dependency check - [ ] provide pretrained weight - [ ] apply different model (such as DLA, Unet) - [ ] apply similar loss (such as Focal-loss) - [ ] apply Integral regression moduel (AWing + Integral) ## Prerequisites + Python 3.6 + + Pytorch 1.1.0 + Scipy 0.19.1 + cv2 3.3.0 ## Usage First, download dataset(Currently 300W supported). **300W** [link](https://ibug.doc.ic.ac.uk/resources/300-W/) 1. download [part1] ~ [part2] 2. locate 300W images, pts files according to this structure data ``` |-- 300W | |-- 01_Indoor | |-- 02_Ourdoor ``` To train a model with downloaded dataset: $ python train.py To test single image result: $ python detect.py ## Model overview

model

**more detail about model**

model

**loss function design** AWing → (lossMatrix) → Loss_weighted ## evalutaion evalutaion on 300W testing dataset evaluation result will soon be updated | method | NME | FR(10) | | ------------- |:-------:| :-----:| | the paper | 3.07 | X | | this repo | x | 0.8 | ## Reference + [CoordConv](https://github.com/mkocabas/CoordConv-pytorch) + [Stacked Hourglass](https://github.com/princeton-vl/pytorch_stacked_hourglass) + [AdaptiveWingLoss](https://github.com/protossw512/AdaptiveWingLoss)