# Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression
**Repository Path**: hewu2008/Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression
## Basic Information
- **Project Name**: Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-09-09
- **Last Updated**: 2021-09-09
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Adaptive-Wing-Loss-for-Robust-Face-Alignment-via-Heatmap-Regression
❗ongoing repo
Pytorch implementation of [paper](https://arxiv.org/abs/1904.07399). official implementation can be found at [official](https://github.com/protossw512/AdaptiveWingLoss).
blog post about the paper(korean) can be found [here](https://medium.com/@ssy10011218/adaptivewingloss-%EB%B0%91%EB%B0%94%EB%8B%A5-%EB%B6%80%ED%84%B0-%EA%B5%AC%ED%98%84%ED%95%B4%EB%B3%B4%EA%B8%B0-d65f495862f).

📝 TODO
- [x] prototype
- [ ] albumentation data augmentation
- [ ] evalutaion on 300W + data augmentation
- [ ] performance tuning
- [ ] dependency check
- [ ] provide pretrained weight
- [ ] apply different model (such as DLA, Unet)
- [ ] apply similar loss (such as Focal-loss)
- [ ] apply Integral regression moduel (AWing + Integral)
## Prerequisites
+ Python 3.6 +
+ Pytorch 1.1.0
+ Scipy 0.19.1
+ cv2 3.3.0
## Usage
First, download dataset(Currently 300W supported).
**300W** [link](https://ibug.doc.ic.ac.uk/resources/300-W/)
1. download [part1] ~ [part2]
2. locate 300W images, pts files according to this structure
data
```
|-- 300W
| |-- 01_Indoor
| |-- 02_Ourdoor
```
To train a model with downloaded dataset:
$ python train.py
To test single image result:
$ python detect.py
## Model overview

**more detail about model**

**loss function design**
AWing → (lossMatrix) → Loss_weighted
## evalutaion
evalutaion on 300W testing dataset
evaluation result will soon be updated
| method | NME | FR(10) |
| ------------- |:-------:| :-----:|
| the paper | 3.07 | X |
| this repo | x | 0.8 |
## Reference
+ [CoordConv](https://github.com/mkocabas/CoordConv-pytorch)
+ [Stacked Hourglass](https://github.com/princeton-vl/pytorch_stacked_hourglass)
+ [AdaptiveWingLoss](https://github.com/protossw512/AdaptiveWingLoss)