# PSENet **Repository Path**: ideaoverflow/PSENet ## Basic Information - **Project Name**: PSENet - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Shape Robust Text Detection with Progressive Scale Expansion Network ## Requirements * Python 2.7 * PyTorch v0.4.1+ * pyclipper * Polygon2 * OpenCV 3.4 (for c++ version pse) * opencv-python 3.4 ## Introduction Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene. ## Training ``` CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py ``` ## Testing ``` CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model] ``` ## Eval script for ICDAR 2015 and SCUT-CTW1500 ``` cd eval sh eval_ic15.sh sh eval_ctw1500.sh ``` ## Performance (new version paper) ### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1) | Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS (1080Ti) | Model | | - | - | - | - | - | - | - | | PSENet-1s (ResNet50) | - | 81.49 | 79.68 | 80.57 | 1.6 | [baiduyun](https://pan.baidu.com/s/17FssfXd-hjsU5i2GGrKD-g)(extract code: rxti); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26Lrzkkx3E1OTZzcNlMz5T) | | PSENet-1s (ResNet50) | pretrain on IC17 MLT | 86.92 | 84.5 | 85.69 | 1.6 | [baiduyun](https://pan.baidu.com/s/1oKVxHKuT3hdzDUmksbcgAQ)(extract code: aieo); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26Lrzkkx44xvpay4rbV4nW) | | PSENet-4s (ResNet50) | pretrain on IC17 MLT | 86.1 | 83.77 | 84.92 | 3.8 | [baiduyun](https://pan.baidu.com/s/1oKVxHKuT3hdzDUmksbcgAQ)(extract code: aieo); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26Lrzkkx44xvpay4rbV4nW) | ### [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) | Method | Extra Data | Precision (%) | Recall (%) | F-measure (%) | FPS (1080Ti) | Model | | - | - | - | - | - | - | - | | PSENet-1s (ResNet50) | - | 80.57 | 75.55 | 78.0 | 3.9 | [baiduyun](https://pan.baidu.com/s/1BqJspFwBmHjoqlE0jOrJQg)(extract code: ksv7); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26LrzkkxtlTb-yqBPd1PCn) | | PSENet-1s (ResNet50) | pretrain on IC17 MLT | 84.84| 79.73 | 82.2 | 3.9 | [baiduyun](https://pan.baidu.com/s/1zonNEABLk4ifseeJtQeS4w)(extract code: z7ac); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26LrzkkxxJcfU1a__6nJTT) | | PSENet-4s (ResNet50) | pretrain on IC17 MLT | 82.09 | 77.84 | 79.9 | 8.4 | [baiduyun](https://pan.baidu.com/s/1zonNEABLk4ifseeJtQeS4w)(extract code: z7ac); [OneDrive](https://1drv.ms/u/s!Ai5Ldd26LrzkkxxJcfU1a__6nJTT) | ## Performance (old version paper) ### [ICDAR 2015](http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1) (training with ICDAR 2017 MLT) | Method | Precision (%) | Recall (%) | F-measure (%) | | - | - | - | - | | PSENet-4s (ResNet152) | 87.98 | 83.87 | 85.88 | | PSENet-2s (ResNet152) | 89.30 | 85.22 | 87.21 | | PSENet-1s (ResNet152) | 88.71 | 85.51 | 87.08 | ### [ICDAR 2017 MLT](http://rrc.cvc.uab.es/?ch=8&com=evaluation&task=1) | Method | Precision (%) | Recall (%) | F-measure (%) | | - | - | - | - | | PSENet-4s (ResNet152) | 75.98 | 67.56 | 71.52 | | PSENet-2s (ResNet152) | 76.97 | 68.35 | 72.40 | | PSENet-1s (ResNet152) | 77.01 | 68.40 | 72.45 | ### [SCUT-CTW1500](https://github.com/Yuliang-Liu/Curve-Text-Detector) | Method | Precision (%) | Recall (%) | F-measure (%) | | - | - | - | - | | PSENet-4s (ResNet152) | 80.49 | 78.13 | 79.29 | | PSENet-2s (ResNet152) | 81.95 | 79.30 | 80.60 | | PSENet-1s (ResNet152) | 82.50 | 79.89 | 81.17 | ### [ICPR MTWI 2018 Challenge 2](https://tianchi.aliyun.com/competition/rankingList.htm?spm=5176.100067.5678.4.65166a80jnPm5W&raceId=231651) | Method | Precision (%) | Recall (%) | F-measure (%) | | - | - | - | - | | PSENet-1s (ResNet152) | 78.5 | 72.1 | 75.2 | ## Results

Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500

## Paper Link [new version paper] [https://arxiv.org/abs/1903.12473](https://arxiv.org/abs/1903.12473) [old version paper] [https://arxiv.org/abs/1806.02559](https://arxiv.org/abs/1806.02559) ## Other Implements [tensorflow version (thanks @[liuheng92](https://github.com/liuheng92))] [https://github.com/liuheng92/tensorflow_PSENet](https://github.com/liuheng92/tensorflow_PSENet) ## Citation ``` @inproceedings{wang2019shape, title={Shape Robust Text Detection With Progressive Scale Expansion Network}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={9336--9345}, year={2019} } ```