# EfficientNet-Pytorch **Repository Path**: iynaur/EfficientNet-Pytorch ## Basic Information - **Project Name**: EfficientNet-Pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-03-31 - **Last Updated**: 2021-10-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EfficientNet-Pytorch A demo for train your own dataset on EfficientNet Thanks for the >[A PyTorch implementation of EfficientNet](https://github.com/lukemelas/EfficientNet-PyTorch), I just simply demonstrate how to train your own dataset based on the EfficientNet-Pytorch. ## Step 1:Prepare your own classification dataset --- Then the data directory should looks like: ``` -dataset\ -model\ -train\ -1\ -2\ ... -test\ -1\ -2\ ... ``` ## Step 2: train and test (1)You can choose to download the pre-trained model automatically or not by modify the ```line 169```. The pre-trained model is available on >[release](https://github.com/lukemelas/EfficientNet-PyTorch/releases). You can download them under the folder ```eff_weights```. (2)Change some settings to match your dataset. i.e. ```line13-22``` ``` run efficientnet_sample.py to start train and test ``` (3)You can get the final results and the best model on ```dataset/model/```.