# ANPR **Repository Path**: johnrayn/ANPR ## Basic Information - **Project Name**: ANPR - **Description**: licence plate detection and recognition - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Automatic License Plate Detection & Recognition using deep learning [![Licence](https://img.shields.io/github/license/GuiltyNeuron/ANPR?style=plastic)](https://github.com/GuiltyNeuron/ANPR/blob/master/LICENSE) [![Documentation](https://img.shields.io/badge/documentation-TowardsDataScience-blue)](https://towardsdatascience.com/automatic-license-plate-detection-recognition-using-deep-learning-624def07eaaf) [![Dataset](https://img.shields.io/badge/Dataset-licence.plates-green)](https://www.kaggle.com/achrafkhazri/labeled-licence-plates-dataset) [![Dataset](https://img.shields.io/badge/Dataset-plate.digits-yellowgreean)](https://www.kaggle.com/achrafkhazri/licence-plate-digits-dataset) [![cfg](https://img.shields.io/badge/dependencies-yolo.weights-blueviolet)](https://www.kaggle.com/achrafkhazri/yolo-weights-for-licence-plate-detector) [![Stars](https://img.shields.io/github/stars/GuiltyNeuron/ANPR?style=social)](https://github.com/GuiltyNeuron/ANPR/stargazers) In this repos we study number plate detection and recognition using different deep learning models and computer vision approches. ### Licence plate detection using Yolo : In order to detect licence we will use Yolo ( You Only Look Once ) deep learning object detection architecture based on convolution neural networks. This architecture was introduced by Joseph Redmon , Ali Farhadi, Ross Girshick and Santosh Divvala first version in 2015 and later version 2 and 3. Yolo v1 : Paper [link](https://arxiv.org/pdf/1506.02640.pdf). Yolo v2 : Paper [link](https://arxiv.org/pdf/1612.08242.pdf). Yolo v3 : Paper [link](https://arxiv.org/pdf/1804.02767.pdf). Yolo is a single network trained end to end to perform a regression task predicting both object bounding box and object class. This network is extremely fast, it processes images in real-time at 45 frames per second. A smaller version of the network, tiny YOLO, processes an astounding 155 frames per second. You will find more information about how to train Yolo on your customized dataset in this [Link](https://towardsdatascience.com/automatic-license-plate-detection-recognition-using-deep-learning-624def07eaaf). There is also other Deep learning object detector that you can use such as Single Shot Detector (SSD) and Faster RCNN. #### How to use : We used python v3.5.5 install requirement ```` pip install -r requirement.txt ```` Download Yolo weights from this [Link](https://www.kaggle.com/achrafkhazri/yolo-weights-for-licence-plate-detector). Detect LP from an image ```` python detector.py --image test.jpg ```` To detect LP from a video ```` python detector.py --video test.mp4 ```` #### Examples : Detection from image : ![Licence_plate_detection_from_image](Licence_plate_detection/test_yolo_out_py.jpg) ### Licence plate recognition : We are stadying Tunisian plates and USA plates for the recognition, check the sub folders in plates recognition folder!