# PromptDA **Repository Path**: kangchi/PromptDA ## Basic Information - **Project Name**: PromptDA - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-15 - **Last Updated**: 2025-12-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation ### [Project Page](https://promptda.github.io/) | [Paper](https://promptda.github.io/assets/main_paper_with_supp.pdf) | [Hugging Face Demo](https://huggingface.co/spaces/depth-anything/PromptDA) | [Interactive Results](https://promptda.github.io/interactive.html) | [Data](https://promptda.github.io/) > Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation > [Haotong Lin](https://haotongl.github.io/), [Sida Peng](https://pengsida.net/), [Jingxiao Chen](https://scholar.google.com/citations?user=-zs1V28AAAAJ), [Songyou Peng](https://pengsongyou.github.io/), [Jiaming Sun](https://jiamingsun.me/), [Minghuan Liu](https://minghuanliu.com/), [Hujun Bao](http://www.cad.zju.edu.cn/home/bao/), [Jiashi Feng](https://scholar.google.com/citations?user=Q8iay0gAAAAJ), [Xiaowei Zhou](https://www.xzhou.me/), [Bingyi Kang](https://bingykang.github.io/) > CVPR 2025 ![teaser](assets/teaser.gif) ## 📰 News - Releasing [ScanNet++ ZipNeRF Reconstruction Depth Results](https://huggingface.co/datasets/haotongl/scannetpp_zipnerf/tree/main) ## 🛠️ Installation
Setting up the environment ```bash git clone https://github.com/DepthAnything/PromptDA.git cd PromptDA pip install -r requirements.txt pip install -e . sudo apt install ffmpeg # for video generation ```
Pre-trained Models | Model | Params | Checkpoint | |:-|-:|:-:| | Prompt-Depth-Anything-Large | 340M | [Download](https://huggingface.co/depth-anything/prompt-depth-anything-vitl/resolve/main/model.ckpt) | | Prompt-Depth-Anything-Small | 25.1M | [Download](https://huggingface.co/depth-anything/prompt-depth-anything-vits/resolve/main/model.ckpt) | | Prompt-Depth-Anything-Small-Transparent | 25.1M | [Download](https://huggingface.co/depth-anything/prompt-depth-anything-vits-transparent/resolve/main/model.ckpt) | Only Prompt-Depth-Anything-Large is used to benchmark in our paper. Prompt-Depth-Anything-Small-Transparent is further fine-tuned 10K steps with [hammer dataset](https://github.com/Junggy/HAMMER-dataset) with our iPhone lidar simulation method to improve the performance on transparent objects.
## 🚀 Usage
Example usage ```python from promptda.promptda import PromptDA from promptda.utils.io_wrapper import load_image, load_depth, save_depth DEVICE = 'cuda' image_path = "assets/example_images/image.jpg" prompt_depth_path = "assets/example_images/arkit_depth.png" image = load_image(image_path).to(DEVICE) prompt_depth = load_depth(prompt_depth_path).to(DEVICE) # 192x256, ARKit LiDAR depth in meters model = PromptDA.from_pretrained("depth-anything/prompt-depth-anything-vitl").to(DEVICE).eval() depth = model.predict(image, prompt_depth) # HxW, depth in meters save_depth(depth, prompt_depth=prompt_depth, image=image) ```
## 📸 Running on your own capture You can use [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662) to capture your own data, which requires iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models. We setup a [Hugging Face Space](https://huggingface.co/spaces/depth-anything/PromptDA) for you to quickly test our model. If you want to obtain video results, please follow the following steps.
Testing steps 1. Capture a scene with the Stray Scanner App. (The charging port is preferred to face downward or to the right.) 2. Use the iPhone Files App to compress it into a zip file and transfer it to your computer. Here is an [example screen recording](https://haotongl.github.io/promptda/assets/ScreenRecording_12-16-2024.mp4). 3. Run the following commands to infer our model and generate the video results. ```bash export PATH_TO_ZIP_FILE=data/8b98276b0a.zip # Replace with your own zip file path export PATH_TO_SAVE_FOLDER=data/8b98276b0a_results # Replace with your own save folder path python3 -m promptda.scripts.infer_stray_scan --input_path ${PATH_TO_ZIP_FILE} --output_path ${PATH_TO_SAVE_FOLDER} python3 -m promptda.scripts.generate_video process_stray_scan --input_path ${PATH_TO_ZIP_FILE} --result_path ${PATH_TO_SAVE_FOLDER} ffmpeg -framerate 60 -i ${PATH_TO_SAVE_FOLDER}/%06d_smooth.jpg -c:v libx264 -pix_fmt yuv420p ${PATH_TO_SAVE_FOLDER}.mp4 ```
## 👏 Acknowledgements We thank the generous support from Prof. [Weinan Zhang](https://wnzhang.net/) for robot experiments, including the space, objects and the Unitree H1 robot. We also thank [Zhengbang Zhu](https://scholar.google.com/citations?user=ozatRA0AAAAJ), Jiahang Cao, Xinyao Li, Wentao Dong for their help in setting up the robot platform and collecting robot data. ## 📚 Citation If you find this code useful for your research, please use the following BibTeX entry ``` @inproceedings{lin2024promptda, title={Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation}, author={Lin, Haotong and Peng, Sida and Chen, Jingxiao and Peng, Songyou and Sun, Jiaming and Liu, Minghuan and Bao, Hujun and Feng, Jiashi and Zhou, Xiaowei and Kang, Bingyi}, journal={arXiv}, year={2024} } ```