# MEB-Net **Repository Path**: lamoxue/MEB-Net ## Basic Information - **Project Name**: MEB-Net - **Description**: "Multiple Expert Brainstorming for Domain Adaptive Person Re-identification", ECCV 2020 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-31 - **Last Updated**: 2021-03-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Multiple Expert Brainstorming for Domain Adaptive Person Re-identification Yunpeng Zhai, Qixiang Ye, Shijian Lu, Mengxi Jia, Rongrong Ji, Yonghong Tian. "Multiple Expert Brainstorming for Domain Adaptive Person Re-identification", ECCV 2020 Paper [PDF](https://arxiv.org/abs/2007.01546) ![avatar](figs/fig2.png) ## Setup Datasets (Market-1501 and DukeMTMC-reID). ## Requirements - PyTorch 1.3.1 ## Running the experiments ### Step:1 Supervised learning in the source domain ``` bash pretrain.sh ``` For example, (duke->market): ``` bash pretrain.sh dukemtmc market1501 densenet bash pretrain.sh dukemtmc market1501 resnet50 bash pretrain.sh dukemtmc market1501 inceptionv3 ``` ### Step:2 Unsupervised adaptation in the target domain ``` bash train.sh ``` For example, (duke->market) ``` bash train.sh dukemtmc market1501 densenet resnet50 inceptionv3 ``` ### Step:3 Evaluate in the target domain ``` bash test.sh ``` For example, (market1501, densenet) ``` bash test.sh market1501 densenet logs/xxxx/xxxx-MEB-Net/checkpoint.pt.pth ``` ## Experiment results ![avatar](figs/tab1.png) ## Acknowledgement Our code is based on [open-reid](https://github.com/Cysu/open-reid) and [MMT](https://github.com/yxgeee/MMT). ## Citation If you use this method or this code in your research, please cite as: ``` @article{zhai2020multiple, title={Multiple Expert Brainstorming for Domain Adaptive Person Re-identification}, author={Zhai, Yunpeng and Ye, Qixiang and Lu, Shijian and Jia, Mengxi and Ji, Rongrong and Tian, Yonghong}, journal={arXiv preprint arXiv:2007.01546}, year={2020} } ```