# fastAPI-ML-quickstart **Repository Path**: lamoxue/fastAPI-ML-quickstart ## Basic Information - **Project Name**: fastAPI-ML-quickstart - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-21 - **Last Updated**: 2021-01-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # fastAPI ML quickstart ## Project setup 1. Create the virtual environment. ``` virtualenv /path/to/venv --python=/path/to/python3 ``` You can find out the path to your `python3` interpreter with the command `which python3`. 2. Activate the environment and install dependencies. ``` source /path/to/venv/bin/activate pip install -r requirements.txt ``` 3. Launch the service ``` uvicorn api.main:app ``` ## Posting requests locally When the service is running, try ``` 127.0.0.1/docs ``` or ``` curl ``` ## Deployment with Docker 1. Build the Docker image ``` docker build --file Dockerfile --tag fastapi-ml-quickstart . ``` 2. Running the Docker image ``` docker run -p 8000:8000 fastapi-ml-quickstart ``` 3. Entering into the Docker image ``` docker run -it --entrypoint /bin/bash fastapi-ml-quickstart ``` ## docker-compose 1. Launching the service ``` docker-compose up ``` This command looks for the `docker-compose.yaml` configuration file. If you want to use another configuration file, it can be specified with the `-f` switch. For example 2. Testing ``` docker-compose -f docker-compose.test.yaml up --abort-on-container-exit --exit-code-from fastapi-ml-quickstart ```