# step-audio-editx **Repository Path**: lavine/step-audio-editx ## Basic Information - **Project Name**: step-audio-editx - **Description**:  Step-Audio-EditX 是一个功能强大的基于3B 参数LLM 的音频模型,它擅长表现力强且可迭代的音频编辑,涵盖情感、说话风格和副语言信息,并具备强大的零样本文本转语音 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/step-audio-editx - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2025-11-25 - **Last Updated**: 2025-11-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Step-Audio-EditX

## 🔥🔥🔥 News!! * Nov 19, 2025: ⚙️ We release a **new version** of our model, which **supports polyphonic pronunciation control** and improves the performance of emotion, speaking style, and paralinguistic editing. * Nov 12, 2025: 📦 We release the **optimized inference code** and **model weights** of **Step-Audio-EditX** ([HuggingFace](https://huggingface.co/stepfun-ai/Step-Audio-EditX); [ModelScope](https://modelscope.cn/models/stepfun-ai/Step-Audio-EditX)) and **Step-Audio-Tokenizer**([HuggingFace](https://huggingface.co/stepfun-ai/Step-Audio-Tokenizer); [ModelScope](https://modelscope.cn/models/stepfun-ai/Step-Audio-Tokenizer)) * Nov 07, 2025: ✨ [Demo Page](https://stepaudiollm.github.io/step-audio-editx/) ; 🎮 [HF Space Playground](https://huggingface.co/spaces/stepfun-ai/Step-Audio-EditX) * Nov 06, 2025: 👋 We release the technical report of [Step-Audio-EditX](https://arxiv.org/abs/2511.03601). ## Introduction We are open-sourcing Step-Audio-EditX, a powerful **3B-parameter** LLM-based **Reinforcement Learning** audio model specialized in expressive and iterative audio editing. It excels at editing emotion, speaking style, and paralinguistics, and also features robust zero-shot text-to-speech (TTS) capabilities. ## 📑 Open-source Plan - [x] Inference Code - [x] Online demo (Gradio) - [ ] Step-Audio-Edit-Benchmark - [x] Model Checkpoints - [x] Step-Audio-Tokenizer - [x] Step-Audio-EditX - [ ] Step-Audio-EditX-Int4 - [ ] Training Code - [ ] SFT training - [ ] PPO training - [ ] ⏳ Feature Support Plan - [ ] Editing - [x] Polyphone pronunciation control - [ ] More paralinguistic tags ([Cough, Crying, Stress, etc.]) - [ ] Filler word removal - [ ] Other Languages - [ ] Japanese, Korean, Arabic, French, Russian, Spanish, etc. ## Features - **Zero-Shot TTS** - Excellent zero-shot TTS cloning for Mandarin, English, Sichuanese, and Cantonese. - To use a dialect, just add a **[Sichuanese]** or **[Cantonese]** tag before your text. - 🔥 Polyphone pronunciation control, all you need to do is replace the polyphonic characters with pinyin. - **[我也想过过过儿过过的生活]** -> **[我也想guo4guo4guo1儿guo4guo4的生活]** - **Emotion and Speaking Style Editing** - Remarkably effective iterative control over emotions and styles, supporting **dozens** of options for editing. - Emotion Editing : [ *Angry*, *Happy*, *Sad*, *Excited*, *Fearful*, *Surprised*, *Disgusted*, etc. ] - Speaking Style Editing: [ *Act_coy*, *Older*, *Child*, *Whisper*, *Serious*, *Generous*, *Exaggerated*, etc.] - Editing with more emotion and more speaking styles is on the way. **Get Ready!** 🚀 - **Paralinguistic Editing** - Precise control over 10 types of paralinguistic features for more natural, human-like, and expressive synthetic audio. - Supporting Tags: - [ *Breathing*, *Laughter*, *Suprise-oh*, *Confirmation-en*, *Uhm*, *Suprise-ah*, *Suprise-wa*, *Sigh*, *Question-ei*, *Dissatisfaction-hnn* ] - **Available Tags**
emotion happy Expressing happiness angry Expressing anger
sad Expressing sadness fear Expressing fear
surprised Expressing surprise confusion Expressing confusion
empathy Expressing empathy and understanding embarrass Expressing embarrassment
excited Expressing excitement and enthusiasm depressed Expressing a depressed or discouraged mood
admiration Expressing admiration or respect coldness Expressing coldness and indifference
disgusted Expressing disgust or aversion humour Expressing humor or playfulness
speaking style serious Speaking in a serious or solemn manner arrogant Speaking in an arrogant manner
child Speaking in a childlike manner older Speaking in an elderly-sounding manner
girl Speaking in a light, youthful feminine manner pure Speaking in a pure, innocent manner
sister Speaking in a mature, confident feminine manner sweet Speaking in a sweet, lovely manner
exaggerated Speaking in an exaggerated, dramatic manner ethereal Speaking in a soft, airy, dreamy manner
whisper Speaking in a whispering, very soft manner generous Speaking in a hearty, outgoing, and straight-talking manner
recite Speaking in a clear, well-paced, poetry-reading manner act_coy Speaking in a sweet, playful, and endearing manner
warm Speaking in a warm, friendly manner shy Speaking in a shy, timid manner
comfort Speaking in a comforting, reassuring manner authority Speaking in an authoritative, commanding manner
chat Speaking in a casual, conversational manner radio Speaking in a radio-broadcast manner
soulful Speaking in a heartfelt, deeply emotional manner gentle Speaking in a gentle, soft manner
story Speaking in a narrative, audiobook-style manner vivid Speaking in a lively, expressive manner
program Speaking in a show-host/presenter manner news Speaking in a news broadcasting manner
advertising Speaking in a polished, high-end commercial voiceover manner roar Speaking in a loud, deep, roaring manner
murmur Speaking in a quiet, low manner shout Speaking in a loud, sharp, shouting manner
deeply Speaking in a deep and low-pitched tone loudly Speaking in a loud and high-pitched tone
paralinguistic Breathing Breathing sound Laughter Laughter or laughing sound
Uhm Hesitation sound: "Uhm" Sigh Sighing sound
Surprise-oh Expressing surprise: "Oh" Surprise-ah Expressing surprise: "Ah"
Surprise-wa Expressing surprise: "Wa" Confirmation-en Confirming: "En"
Question-ei Questioning: "Ei" Dissatisfaction-hnn Dissatisfied sound: "Hnn"
## Feature Requests & Wishlist 💡 We welcome all ideas for new features! If you'd like to see a feature added to the project, please start a discussion in our [Discussions](https://github.com/stepfun-ai/Step-Audio-EditX/discussions) section. We'll be collecting community feedback here and will incorporate popular suggestions into our future development plans. Thank you for your contribution! ## Demos
Task Text Source Edited
Emotion-Fear 我总觉得,有人在跟着我,我能听到奇怪的脚步声。 [fear_zh_female_prompt.webm](https://github.com/user-attachments/assets/a088c059-032c-423f-81d6-3816ba347ff5) [fear_zh_female_output.webm](https://github.com/user-attachments/assets/917494ac-5913-4949-8022-46cf55ca05dd)
Style-Whisper 比如在工作间隙,做一些简单的伸展运动,放松一下身体,这样,会让你更有精力。 [whisper_prompt.webm](https://github.com/user-attachments/assets/ed9e22f1-1bac-417b-913a-5f1db31f35c9) [whisper_output.webm](https://github.com/user-attachments/assets/e0501050-40db-4d45-b380-8bcc309f0b5f)
Style-Act_coy 我今天想喝奶茶,可是不知道喝什么口味,你帮我选一下嘛,你选的都好喝~ [act_coy_prompt.webm](https://github.com/user-attachments/assets/74d60625-5b3c-4f45-becb-0d3fe7cc4b3f) [act_coy_output.webm](https://github.com/user-attachments/assets/b2f74577-56c2-4997-afd6-6bf47d15ea51)
Paralinguistics 你这次又忘记带钥匙了 [Dissatisfaction-hnn],真是拿你没办法。 [paralingustic_prompt.webm](https://github.com/user-attachments/assets/21e831a3-8110-4c64-a157-60e0cf6735f0) [paralingustic_output.webm](https://github.com/user-attachments/assets/a82f5a40-c6a3-409b-bbe6-271180b20d7b)
Denoising Such legislation was clarified and extended from time to time thereafter. No, the man was not drunk, he wondered how we got tied up with this stranger. Suddenly, my reflexes had gone. It's healthier to cook without sugar. [denoising_prompt.webm](https://github.com/user-attachments/assets/70464bf4-ebde-44a3-b2a6-8c292333319b) [denoising_output.webm](https://github.com/user-attachments/assets/7cd0ae8d-1bf0-40fc-9bcd-f419bd4b2d21)
Speed-Faster 上次你说鞋子有点磨脚,我给你买了一双软软的鞋垫。 [speed_faster_prompt.webm](https://github.com/user-attachments/assets/db46609e-1b98-48d8-99c8-e166cfdfc6e3) [speed_faster_output.webm](https://github.com/user-attachments/assets/0fbc14ca-dd4a-4362-aadc-afe0629f4c9f)
For more examples, see [demo page](https://stepaudiollm.github.io/step-audio-editx/). ## Model Download | Models | 🤗 Hugging Face | ModelScope | |-------|-------|-------| | Step-Audio-EditX | [stepfun-ai/Step-Audio-EditX](https://huggingface.co/stepfun-ai/Step-Audio-EditX) | [stepfun-ai/Step-Audio-EditX](https://modelscope.cn/models/stepfun-ai/Step-Audio-EditX) | | Step-Audio-Tokenizer | [stepfun-ai/Step-Audio-Tokenizer](https://huggingface.co/stepfun-ai/Step-Audio-Tokenizer) | [stepfun-ai/Step-Audio-Tokenizer](https://modelscope.cn/models/stepfun-ai/Step-Audio-Tokenizer) | ## Model Usage ### 📜 Requirements The following table shows the requirements for running Step-Audio-EditX model (batch size = 1): | Model | Parameters | Setting
(sample frequency) | GPU Optimal Memory | |------------|------------|--------------------------------|----------------| | Step-Audio-EditX | 3B| 41.6Hz | 12 GB | * An NVIDIA GPU with CUDA support is required. * The model is tested on a single L40S GPU. * 12GB is just a critical value, and 16GB GPU memory shoule be safer. * Tested operating system: Linux ### 🔧 Dependencies and Installation - Python >= 3.10.0 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 2.4.1-cu121](https://pytorch.org/) - [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) ```bash git clone https://github.com/stepfun-ai/Step-Audio-EditX.git conda create -n stepaudioedit python=3.10 conda activate stepaudioedit cd Step-Audio-EditX pip install -r requirements.txt git lfs install git clone https://huggingface.co/stepfun-ai/Step-Audio-Tokenizer git clone https://huggingface.co/stepfun-ai/Step-Audio-EditX ``` After downloading the models, where_you_download_dir should have the following structure: ``` where_you_download_dir ├── Step-Audio-Tokenizer ├── Step-Audio-EditX ``` #### Run with Docker You can set up the environment required for running Step-Audio-EditX using the provided Dockerfile. ```bash # build docker docker build . -t step-audio-editx # run docker docker run --rm --gpus all \ -v /your/code/path:/app \ -v /your/model/path:/model \ -p 7860:7860 \ step-audio-editx ``` #### Local Inference Demo > [!TIP] > For optimal performance, keep audio under 30 seconds per inference. ```bash # zero-shot cloning # The path of the generated audio file is output/fear_zh_female_prompt_cloned.wav python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "我总觉得,有人在跟着我,我能听到奇怪的脚步声。"\ --prompt-audio "examples/fear_zh_female_prompt.wav"\ --generated-text "可惜没有如果,已经发生的事情终究是发生了。" \ --edit-type "clone" \ --output-dir ./output python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "His political stance was conservative, and he was particularly close to margaret thatcher."\ --prompt-audio "examples/zero_shot_en_prompt.wav"\ --generated-text "Underneath the courtyard is a large underground exhibition room which connects the two buildings. " \ --edit-type "clone" \ --output-dir ./output # edit # There will be one or multiple wave files corresponding to each edit iteration, for example: output/fear_zh_female_prompt_edited_iter1.wav, output/fear_zh_female_prompt_edited_iter2.wav, ... # emotion; fear python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "我总觉得,有人在跟着我,我能听到奇怪的脚步声。" \ --prompt-audio "examples/fear_zh_female_prompt.wav"\ --edit-type "emotion" \ --edit-info "fear" \ --n-edit-iter 2 \ --output-dir ./output # emotion; happy python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "You know, I just finished that big project and feel so relieved. Everything seems easier and more colorful, what a wonderful feeling!" \ --prompt-audio "examples/en_happy_prompt.wav"\ --edit-type "emotion" \ --edit-info "happy" \ --n-edit-iter 2 \ --output-dir ./output # style; whisper # for style whisper, the edit iteration num should be set bigger than 1 to get better results. python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "比如在工作间隙,做一些简单的伸展运动,放松一下身体,这样,会让你更有精力." \ --prompt-audio "examples/whisper_prompt.wav" \ --edit-type "style" \ --edit-info "whisper" \ --n-edit-iter 2 \ --output-dir ./output # paraliguistic # supported tags, Breathing, Laughter, Suprise-oh, Confirmation-en, Uhm, Suprise-ah, Suprise-wa, Sigh, Question-ei, Dissatisfaction-hnn python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "我觉得这个计划大概是可行的,不过还需要再仔细考虑一下。" \ --prompt-audio "examples/paralingustic_prompt.wav" \ --generated-text "我觉得这个计划大概是可行的,[Uhm]不过还需要再仔细考虑一下。" \ --edit-type "paralinguistic" \ --output-dir ./output # denoise # Prompt text is not needed. python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-audio "examples/denoise_prompt.wav"\ --edit-type "denoise" \ --output-dir ./output # vad # Prompt text is not needed. python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-audio "examples/vad_prompt.wav" \ --edit-type "vad" \ --output-dir ./output # speed # supported edit-info: faster, slower, more faster, more slower python3 tts_infer.py \ --model-path where_you_download_dir \ --prompt-text "上次你说鞋子有点磨脚,我给你买了一双软软的鞋垫。" \ --prompt-audio "examples/speed_prompt.wav" \ --edit-type "speed" \ --edit-info "faster" \ --output-dir ./output ``` #### Launch Web Demo Start a local server for online inference. Assume you have one GPU with at least 12GB memory available and have already downloaded all the models. ```bash # Step-Audio-EditX demo python app.py --model-path where_you_download_dir --model-source local # Memory-efficient options with runtime quantization # For systems with limited GPU memory, you can use quantization to reduce memory usage: # INT8 quantization python app.py --model-path where_you_download_dir --model-source local --quantization int8 # INT4 quantization python app.py --model-path where_you_download_dir --model-source local --quantization int4 # Using pre-quantized AWQ models python app.py --model-path path/to/quantized/model --model-source local --quantization awq-4bit # Example with custom settings: python app.py --model-path where_you_download_dir --model-source local --torch-dtype float16 --enable-auto-transcribe ``` ### 🔄 Model Quantization (Optional) For users with limited GPU memory, you can create quantized versions of the model to reduce memory requirements: ```bash # Create an AWQ 4-bit quantized model python quantization/awq_quantize.py --model_path path/to/Step-Audio-EditX # Advanced quantization options python quantization/awq_quantize.py ``` For detailed quantization options and parameters, see [quantization/README.md](quantization/README.md). ## Technical Details Step-Audio-EditX comprises three primary components: - A dual-codebook audio tokenizer, which converts reference or input audio into discrete tokens. - An audio LLM that generates dual-codebook token sequences. - An audio decoder, which converts the dual-codebook token sequences predicted by the audio LLM back into audio waveforms using a flow matching approach. Audio-Edit enables iterative control over emotion and speaking style across all voices, leveraging large-margin data during SFT and PPO training. ## Evaluation ### Comparison between Step-Audio-EditX and Closed-Source models. - Step-Audio-EditX demonstrates superior performance over Minimax and Doubao in both zero-shot cloning and emotion control. - Emotion editing of Step-Audio-EditX significantly improves the emotion-controlled audio outputs of all three models after just one iteration. With further iterations, their overall performance continues to improve.
### Generalization on Closed-Source Models. - For emotion and speaking style editing, the built-in voices of leading closed-source systems possess considerable in-context capabilities, allowing them to partially convey the emotions in the text. After a single editing round with Step-Audio-EditX, the emotion and style accuracy across all voice models exhibited significant improvement. Further enhancement was observed over the next two iterations, robustly demonstrating our model's strong generalization. - For paralinguistic editing, after editing with Step-Audio-EditX, the performance of paralinguistic reproduction is comparable to that achieved by the built-in voices of closed-source models when synthesizing native paralinguistic content directly. (**sub** means replacement of paralinguistic tags with native words)
Table: Generalization of Emotion, Speaking Style, and Paralinguistic Editing on Closed-Source Models.
Language Model Emotion ↑ Speaking Style ↑ Paralinguistic ↑
Iter0 Iter1 Iter2 Iter3 Iter0 Iter1 Iter2 Iter3 Iter0 sub Iter1
Chinese MiniMax-2.6-hd 71.6 78.6 81.2 83.4 36.7 58.8 63.1 67.3 1.73 2.80 2.90
Doubao-Seed-TTS-2.0 67.4 77.8 80.6 82.8 38.2 60.2 65.0 64.9 1.67 2.81 2.90
GPT-4o-mini-TTS 62.6 76.0 77.0 81.8 45.9 64.0 65.7 69.7 1.71 2.88 2.93
ElevenLabs-v2 60.4 74.6 77.4 79.2 43.8 63.3 69.7 70.8 1.70 2.71 2.92
English MiniMax-2.6-hd 55.0 64.0 64.2 66.4 51.9 60.3 62.3 64.3 1.72 2.87 2.88
Doubao-Seed-TTS-2.0 53.8 65.8 65.8 66.2 47.0 62.0 62.7 62.3 1.72 2.75 2.92
GPT-4o-mini-TTS 56.8 61.4 64.8 65.2 52.3 62.3 62.4 63.4 1.90 2.90 2.88
ElevenLabs-v2 51.0 61.2 64.0 65.2 51.0 62.1 62.6 64.0 1.93 2.87 2.88
Average MiniMax-2.6-hd 63.3 71.3 72.7 74.9 44.2 59.6 62.7 65.8 1.73 2.84 2.89
Doubao-Seed-TTS-2.0 60.6 71.8 73.2 74.5 42.6 61.1 63.9 63.6 1.70 2.78 2.91
GPT-4o-mini-TTS 59.7 68.7 70.9 73.5 49.1 63.2 64.1 66.6 1.81 2.89 2.90
ElevenLabs-v2 55.7 67.9 70.7 72.2 47.4 62.7 66.1 67.4 1.82 2.79 2.90
## Acknowledgements Part of the code and data for this project comes from: * [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) * [transformers](https://github.com/huggingface/transformers) * [FunASR](https://github.com/modelscope/FunASR) * [NVSpeech](https://huggingface.co/datasets/amphion/Emilia-NV) Thank you to all the open-source projects for their contributions to this project! ## License Agreement + The code in this open-source repository is licensed under the [Apache 2.0](LICENSE) License. ## Citation ``` @misc{yan2025stepaudioeditxtechnicalreport, title={Step-Audio-EditX Technical Report}, author={Chao Yan and Boyong Wu and Peng Yang and Pengfei Tan and Guoqiang Hu and Yuxin Zhang and Xiangyu and Zhang and Fei Tian and Xuerui Yang and Xiangyu Zhang and Daxin Jiang and Gang Yu}, year={2025}, eprint={2511.03601}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2511.03601}, } ``` ## ⚠️ Usage Disclaimer - Do not use this model for any unauthorized activities, including but not limited to: - Voice cloning without permission - Identity impersonation - Fraud - Deepfakes or any other illegal purposes - Ensure compliance with local laws and regulations, and adhere to ethical guidelines when using this model. - The model developers are not responsible for any misuse or abuse of this technology. We advocate for responsible generative AI research and urge the community to uphold safety and ethical standards in AI development and application. If you have any concerns regarding the use of this model, please feel free to contact us. ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=stepfun-ai/Step-Audio-EditX&type=Date)](https://star-history.com/#stepfun-ai/Step-Audio-EditX&Date)