# hdl_localization **Repository Path**: leon1128/hdl_localization ## Basic Information - **Project Name**: hdl_localization - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-2-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # hdl_localization ***hdl_localization*** is a ROS package for real-time 3D localization using a 3D LIDAR, such as velodyne HDL32e and VLP16. This package performs Unscented Kalman Filter-based pose estimation. It first estimates the sensor pose from IMU data implemented on the LIDAR, and then performs multi-threaded NDT scan matching between a globalmap point cloud and input point clouds to correct the estimated pose. IMU-based pose prediction is optional. If you disable it, the system predicts the sensor pose with the constant velocity model without IMU information. Video:
[![hdl_localization](http://img.youtube.com/vi/1EyF9kxJOqA/0.jpg)](https://youtu.be/1EyF9kxJOqA) ## Requirements ***hdl_localization*** requires the following libraries: - OpenMP - PCL 1.7 The following ros packages are required: - pcl_ros - ndt_omp ## Parameters All parameters are listed in *launch/hdl_localization.launch* as ros params.
You can specify the initial sensor pose using "2D Pose Estimate" on rviz, or using ros params (see example launch file). ## Example Example bag files (recorded in an outdoor environment): RE - [hdl_400.bag.tar.gz](http://www.aisl.cs.tut.ac.jp/databases/hdl_graph_slam/hdl_400.bag.tar.gz) (933MB) ```bash rosparam set use_sim_time true roslaunch hdl_localization hdl_localization.launch ``` ```bash roscd hdl_localization/rviz rviz -d hdl_localization.rviz ``` ```bash rosbag play --clock hdl_400.bag ``` If it doesn't work well, change *ndt_neighbor_search_method* in *hdl_localization.launch* to "DIRECT1". It makes the scan matching significantly fast, but a little bit unstable. ## Related packages - [interactive_slam](https://github.com/koide3/interactive_slam) - hdl_graph_slam - hdl_localization - hdl_people_tracking Kenji Koide, Jun Miura, and Emanuele Menegatti, A Portable 3D LIDAR-based System for Long-term and Wide-area People Behavior Measurement, Advanced Robotic Systems, 2019 [[link]](https://www.researchgate.net/publication/331283709_A_Portable_3D_LIDAR-based_System_for_Long-term_and_Wide-area_People_Behavior_Measurement). ## Contact Kenji Koide, k.koide@aist.go.jp Active Intelligent Systems Laboratory, Toyohashi University of Technology, Japan [\[URL\]](http://www.aisl.cs.tut.ac.jp) Robot Innovation Research Center, National Institute of Advanced Industrial Science and Technology, Japan [\[URL\]](https://unit.aist.go.jp/rirc/en/team/smart_mobility.html)