# deeplearn **Repository Path**: linzhchen/deeplearn ## Basic Information - **Project Name**: deeplearn - **Description**: 学习记录 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-18 - **Last Updated**: 2021-08-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # deep Learning Classification algorithm based on TensorFlow 2.X. # characteristic - The model is saved in savedmodel format for easy deployment - Use tensorflow_serving+docker to deploy CPU/GPU version (multi-model) - Including docker start command - Use the restful/grpc method to send prediction requests, one of which is one at a time in the restful method. grpc is sent in batches, and batch size adaptation does not need to be set. - Has preheated files - The preheat file is generated to reduce the delay of starting the model. # Usage - tf_sevring_grpc.py(grpc) - tf_sevring_restful.py----------------------(restful) - tf_sevring_warmup.py-----------------------(preheated files) - train.py-----------------------------------(training) - test.py------------------------------------(local test) - data.py,dadaset.py-------------------------(utils) - write_tfrecord.py,read_tfrecord.py---------(tfrecord) - json_data.py-------------------------------(label) - config.py----------------------------------(set config) - evaluate.py--------------------------------(eva) - test_eva.py--------------------------------(...) # folder - nets---------------------------------------(vgg,resnet,...) - dataset------------------------------------(dataset) - raw----------------------------------------(Store the original data set) - test---------------------------------------(Store the picture to be recognized) - saved_model--------------------------------(save model) - class.json---------------------------------(label) - tf_docker.txt------------------------------(docker command) # Updating - [ ] Target Detection # 中文说明 基于tf2.x实现的多种分类算法,可进行多模型协同工作,进行预测,同时包括模型部署需要的文件,实现一个人完成单个分类项目。 # 文件说明 | header | | ------ | 模型保存为savedmodel格式方便部署 采用tensorflow_serving+docker方式部署CPU/GPU版(多模型) 包括docker启动命令 采用restful/grpc方式发送预测请求,其中restful方式一次一张。grpc按batch发送,batch大小自适应不需要设置。 有预热文件 生成预热文件用于减少启动模型的延时。 存在的问题:restful方式耗时长,grpc方式图片转数组耗时较长。 json文件生成不稳定 文件功能说明: tf_sevring_grpc.py-------------------------grpc方式 tf_sevring_restful.py----------------------restful方式 tf_sevring_warmup.py-----------------------预热文件生成 train.py-----------------------------------模型训练 test.py------------------------------------本地循环加载模型预测 data.py,dadaset.py-------------------------一些函数 write_tfrecord.py,read_tfrecord.py---------数据集操作 json_data.py-------------------------------标签文件生成 config.py----------------------------------参数设置 evaluate.py--------------------------------测试集测试 test_eva.py--------------------------------单一模型针对可能性最高,出现次数最多两种方式的预测 blender------------------------------------存放blender脚本相关数据 nets---------------------------------------存放模型网络 dataset------------------------------------存放分割后的数据集和tfrecord文件 raw----------------------------------------存放原始数据集 test---------------------------------------存放待识别图片 saved_model--------------------------------存放训练后的模型 class.json---------------------------------标签信息 tf_docker.txt------------------------------启动docker命令及一些参数信息