# LightZero
**Repository Path**: lsb829/LightZero
## Basic Information
- **Project Name**: LightZero
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-12-06
- **Last Updated**: 2025-12-06
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# LightZero
---
[](https://twitter.com/opendilab)
[](https://pypi.org/project/LightZero/)



[](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Code+Test%22)
[](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Badge+Creation%22)
[](https://github.com/opendilab/LightZero/actions?query=workflow%3A%22Package+Release%22)

[](https://github.com/opendilab/LightZero/stargazers)
[](https://github.com/opendilab/LightZero/network)

[](https://github.com/opendilab/LightZero/issues)
[](https://github.com/opendilab/LightZero/pulls)
[](https://github.com/opendilab/LightZero/graphs/contributors)
[](https://github.com/opendilab/LightZero/blob/master/LICENSE)
最近更新于 2025.11.19 LightZero-v0.2.0
> LightZero 是一个轻量、高效、易懂的 MCTS+RL 开源算法库。
> 有关 LightZero 的任何疑问,您都可以咨询基于 RAG 技术的问答助手:[ZeroPal](https://huggingface.co/spaces/OpenDILabCommunity/ZeroPal)。
[English](https://github.com/opendilab/LightZero/blob/main/README.md) | 简体中文 | [文档](https://opendilab.github.io/LightZero) | [LightZero 论文](https://arxiv.org/abs/2310.08348) | [UniZero 论文](https://openreview.net/forum?id=Gl6dF9soQo) | [ReZero 论文](https://openreview.net/forum?id=F9Y7j3AJTu) | [🔥ScaleZero 论文](https://arxiv.org/abs/2509.07945)
## 研究日志
- [2025.09] 🔥 ScaleZero 论文已发布在 arXiv: [One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning](https://arxiv.org/abs/2509.07945).
- [2025.08] [ReZero 论文](https://openreview.net/forum?id=F9Y7j3AJTu)已被 CoRL 2025 RemembeRL workshop 接收。
- [2025.06] [UniZero 论文](https://openreview.net/forum?id=Gl6dF9soQo)已被 Transactions on Machine Learning Research 接收。
- [2023.09] [LightZero 论文](https://proceedings.neurips.cc/paper_files/paper/2023/hash/765043fe026f7d704c96cec027f13843-Abstract-Datasets_and_Benchmarks.html)已被 NeurIPS 2023 Datasets and Benchmarks Track 接收为 Spotlight Presentation。
- [2023.04] LightZero v0.0.1 正式发布。
## 🔍 背景
以 AlphaZero, MuZero 为代表的结合蒙特卡洛树搜索 (Monte Carlo Tree Search, MCTS) 和深度强化学习 (Deep Reinforcemeent Learning, DRL) 的方法,在诸如围棋,Atari 等各种游戏上取得了超人的水平,也在诸如蛋白质结构预测,矩阵乘法算法寻找等科学领域取得了可喜的进展。下图为蒙特卡洛树搜索(MCTS)算法族的发展历史:

## 🎨 概览
**LightZero** 是一个结合了蒙特卡洛树搜索和强化学习的开源算法工具包。 它支持一系列基于 MCTS 的 RL 算法,具有以下优点:
- 轻量。
- 高效。
- 易懂。
详情请参考[特点](#features)、[框架结构](#framework-structure)和[集成算法](#integrated-algorithms)。
**LightZero** 的目标是**标准化 MCTS 算法族,以加速相关研究和应用。** [Benchmark](#benchmark) 中介绍了目前所有已实现算法的性能比较。
### 导航
- [LightZero](#lightzero)
- [研究日志](#研究日志)
- [🔍 背景](#-背景)
- [🎨 概览](#-概览)
- [导航](#导航)
- [💥 特点](#-特点)
- [🧩 框架结构](#-框架结构)
- [🎁 集成算法](#-集成算法)
- [⚙️ 安装方法](#️-安装方法)
- [使用 Docker 进行安装](#使用-docker-进行安装)
- [🚀 快速开始](#-快速开始)
- [📚 文档](#-文档)
- [📊 基线算法比较](#-基线算法比较)
- [📝 MCTS 相关笔记](#-mcts-相关笔记)
- [论文笔记](#论文笔记)
- [算法框架图](#算法框架图)
- [MCTS 相关论文](#mcts-相关论文)
- [经典与基础论文](#经典与基础论文)
- [LightZero Implemented series](#lightzero-implemented-series)
- [AlphaGo series](#alphago-series)
- [MuZero series](#muzero-series)
- [MCTS Analysis](#mcts-analysis)
- [MCTS Application](#mcts-application)
- [最新研究与新兴应用](#最新研究与新兴应用)
- [ICML](#icml)
- [ICLR](#iclr)
- [NeurIPS](#neurips)
- [Other Conference or Journal](#other-conference-or-journal)
- [💬 反馈意见和贡献](#-反馈意见和贡献)
- [🌏 引用](#-引用)
- [💓 致谢](#-致谢)
- [🏷️ 许可证](#️-许可证)
### 💥 特点
**轻量**:LightZero 中集成了多种 MCTS 族算法,能够在同一框架下轻量化地解决多种属性的决策问题。
**高效**:LightZero 针对 MCTS 族算法中耗时最长的环节,采用混合异构计算编程提高计算效率。
**易懂**:LightZero 为所有集成的算法提供了详细文档和算法框架图,帮助用户理解算法内核,在同一范式下比较算法之间的异同。同时,LightZero 也为算法的代码实现提供了函数调用图和网络结构图,便于用户定位关键代码。
### 🧩 框架结构
上图是 LightZero 的框架流程图。我们在下面简介其中的3个核心模块:
**Model**:
``Model`` 用于定义网络结构,包含``__init__``函数用于初始化网络结构,和``forward``函数用于计算网络的前向传播。
**Policy**:
``Policy`` 定义了对网络的更新方式和与环境交互的方式,包括三个过程,分别是训练过程(learn)、采样过程(collect)和评估过程(evaluate)。
**MCTS**:
``MCTS`` 定义了蒙特卡洛搜索树的结构和与``Policy``的交互方式。``MCTS``的实现包括 python 和 cpp 两种,分别在``ptree``和``ctree``中实现。
关于 LightZero 的文件结构,请参考 [lightzero_file_structure](https://github.com/opendilab/LightZero/blob/main/assets/lightzero_file_structure.svg)。
### 🎁 集成算法
LightZero 是基于 [PyTorch](https://pytorch.org/) 实现的 MCTS 算法库,在 MCTS 的实现中也用到了 cython 和 cpp。同时,LightZero 的框架主要基于 [DI-engine](https://github.com/opendilab/DI-engine) 实现。目前 LightZero 中集成的算法包括:
- [AlphaZero](https://www.science.org/doi/10.1126/science.aar6404)
- [MuZero](https://arxiv.org/abs/1911.08265)
- [Sampled MuZero](https://arxiv.org/abs/2104.06303)
- [Stochastic MuZero](https://openreview.net/pdf?id=X6D9bAHhBQ1)
- [EfficientZero](https://arxiv.org/abs/2111.00210)
- [Gumbel MuZero](https://openreview.net/pdf?id=bERaNdoegnO&)
- [ReZero](https://arxiv.org/abs/2404.16364)
- [UniZero](https://arxiv.org/abs/2406.10667)
LightZero 目前支持的环境及算法如下表所示:
| Env./Algo. | AlphaZero | MuZero | Sampled MuZero | EfficientZero | Sampled EfficientZero | Gumbel MuZero | Stochastic MuZero | UniZero | Sampled UniZero | ReZero |
|------------------------| -------- | ---- |---------------| ---------- | ------------------ | ------------- | ---------------- | ------- | --- | ------ |
| TicTacToe | ✔ | ✔ | 🔒 | 🔒 | 🔒 | ✔ | 🔒 | ✔ | 🔒 | 🔒 |
| Gomoku | ✔ | ✔ | 🔒 | 🔒 | 🔒 | ✔ | 🔒 | ✔ | 🔒 | ✔ |
| Connect4 | ✔ | ✔ | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | ✔ | 🔒 | ✔ |
| 2048 | --- | ✔ | 🔒 | 🔒 | 🔒 | 🔒 | ✔ | ✔ | 🔒 | 🔒 |
| Chess | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 |
| Go | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 |
| CartPole | --- | ✔ | 🔒 | ✔ | ✔ | ✔ | ✔ | ✔ | 🔒 | ✔ |
| Pendulum | --- | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 🔒 | ✔ | 🔒 |
| LunarLander | --- | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 🔒 |
| BipedalWalker | --- | ✔ | ✔ | ✔ | ✔ | ✔ | 🔒 | 🔒 | ✔ | 🔒 |
| Atari | --- | ✔ | 🔒 | ✔ | ✔ | ✔ | ✔ | ✔ | 🔒 | ✔ |
| DeepMind Control | --- | --- | ✔ | --- | ✔ | 🔒 | 🔒 | 🔒 | ✔ | 🔒 |
| MuJoCo | --- | ✔ | 🔒 | ✔ | ✔ | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 |
| MiniGrid | --- | ✔ | 🔒 | ✔ | ✔ | 🔒 | 🔒 | ✔ | 🔒 | 🔒 |
| Bsuite | --- | ✔ | 🔒 | ✔ | ✔ | 🔒 | 🔒 | ✔ | 🔒 | 🔒 |
| Memory | --- | ✔ | 🔒 | ✔ | ✔ | 🔒 | 🔒 | ✔ | 🔒 | 🔒 |
| SumToThree (billiards) | --- | 🔒 | 🔒 | 🔒 | ✔ | 🔒 | 🔒 | 🔒 | 🔒 | 🔒 |
(1): "✔" 表示对应的项目已经完成并经过良好的测试。
(2): "🔒" 表示对应的项目在等待列表中(正在进行中)。
(3): "---" 表示该算法不支持此环境。
## ⚙️ 安装方法
可以用以下命令从 Github 的源码中安装最新版的 LightZero:
```bash
git clone https://github.com/opendilab/LightZero.git
cd LightZero
pip3 install -e .
```
请注意,LightZero 目前仅支持在 `Linux` 和 `macOS` 平台上进行编译。
我们正在积极将该支持扩展到 `Windows` 平台。
### 使用 Docker 进行安装
我们也提供了一个Dockerfile,用于设置包含运行 LightZero 库所需所有依赖项的环境。此 Docker 镜像基于 Ubuntu 20.04,并安装了Python 3.8以及其他必要的工具和库。
以下是如何使用我们的 Dockerfile 来构建 Docker 镜像,从该镜像运行一个容器,并在容器内执行 LightZero 代码的步骤。
1. **下载 Dockerfile**:Dockerfile 位于 LightZero 仓库的根目录中。将此[文件](https://github.com/opendilab/LightZero/blob/main/Dockerfile)下载到您的本地机器。
2. **准备构建上下文**:在您的本地机器上创建一个新的空目录,将 Dockerfile 移动到此目录,并导航到此目录。这一步有助于在构建过程中避免向 Docker 守护进程发送不必要的文件。
```bash
mkdir lightzero-docker
mv Dockerfile lightzero-docker/
cd lightzero-docker/
```
3. **构建 Docker 镜像**:使用以下命令构建 Docker 镜像。此命令应在包含 Dockerfile 的目录内运行。
```bash
docker build -t ubuntu-py38-lz:latest -f ./Dockerfile .
```
4. **从镜像运行容器**:使用以下命令以交互模式启动一个 Bash shell 的容器。
```bash
docker run -dit --rm ubuntu-py38-lz:latest /bin/bash
```
5. **在容器内执行 LightZero 代码**:一旦你在容器内部,你可以使用以下命令运行示例 Python 脚本:
```bash
python ./LightZero/zoo/classic_control/cartpole/config/cartpole_muzero_config.py
```
## 🚀 快速开始
使用如下代码在 [CartPole](https://gymnasium.farama.org/environments/classic_control/cart_pole/) 环境上快速训练一个 MuZero 智能体:
```bash
cd LightZero
python3 -u zoo/classic_control/cartpole/config/cartpole_muzero_config.py
```
使用如下代码在 [Pong](https://gymnasium.farama.org/environments/atari/pong/) 环境上快速训练一个 MuZero 智能体:
```bash
cd LightZero
python3 -u zoo/atari/config/atari_muzero_segment_config.py
```
使用如下代码在 [TicTacToe](https://en.wikipedia.org/wiki/Tic-tac-toe) 环境上快速训练一个 MuZero 智能体:
```bash
cd LightZero
python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
```
使用如下代码在 [Pong](https://gymnasium.farama.org/environments/atari/pong/) 环境上快速训练一个 UniZero 智能体:
```bash
cd LightZero
python3 -u zoo/atari/config/atari_unizero_segment_config.py
```
## 📚 文档
LightZero的文档可以在[这里](https://opendilab.github.io/LightZero/)找到。文档中包含教程和API参考。
为希望定制环境和算法的用户,我们提供了相应的指南:
- [如何自定义环境?](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/envs/customize_envs_zh.md)
- [如何自定义算法?](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/algos/customize_algos_zh.md)
- [如何设置配置文件?](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/config/config_zh.md)
- [日志系统](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/logs/logs_zh.md)
如有任何疑问,欢迎随时联系我们。
## 📊 基线算法比较
点击查看
- [AlphaZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/alphazero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在3个棋类游戏([TicTacToe (井字棋)](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/tictactoe/envs/tictactoe_env.py),[Connect4](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/connect4/envs/connect4_env.py) 和 [Gomoku (五子棋)](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/gomoku/envs/gomoku_env.py))上的基线结果:
- [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py),[MuZero w/ SSL](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py),[EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/efficientzero.py) 和 [Sampled EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/sampled_efficientzero.py) 在3个代表性的 [Atari](https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py) 离散动作空间环境上的基线结果:
- [Sampled EfficientZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/sampled_efficientzero.py)(包括 ``Factored/Gaussian`` 2种策略表征方法)在5个连续动作空间环境([Pendulum-v1](https://github.com/opendilab/LightZero/blob/main/zoo/classic_control/pendulum/envs/pendulum_lightzero_env.py),[LunarLanderContinuous-v2](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/lunarlander/envs/lunarlander_env.py),[BipedalWalker-v3](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/bipedalwalker/envs/bipedalwalker_env.py),[Hopper-v3](https://github.com/opendilab/LightZero/blob/main/zoo/mujoco/envs/mujoco_lightzero_env.py) 和 [Walker2d-v3](https://github.com/opendilab/LightZero/blob/main/zoo/mujoco/envs/mujoco_lightzero_env.py))上的基线结果:
> 其中 ``Factored Policy`` 表示智能体学习一个输出离散分布的策略网络,上述5种环境手动离散化后的动作空间维度分别为11、49(7^2)、256(4^4)、64 (4^3) 和 4096 (4^6)。``Gaussian Policy``表示智能体学习一个策略网络,该网络直接输出高斯分布的参数 μ 和 σ。
- [Gumbel MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/gumbel_muzero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在不同模拟次数下,在四个环境([PongNoFrameskip-v4](https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py), [MsPacmanNoFrameskip-v4]((https://github.com/opendilab/LightZero/blob/main/zoo/atari/envs/atari_lightzero_env.py)), [Gomoku](https://github.com/opendilab/LightZero/blob/main/zoo/board_games/gomoku/envs/gomoku_env.py) 和 [LunarLanderContinuous-v2](https://github.com/opendilab/LightZero/blob/main/zoo/box2d/lunarlander/envs/lunarlander_env.py))上的基线结果:
- [Stochastic MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/stochastic_muzero.py) 和 [MuZero](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在具有不同随机性程度的[2048环境](https://github.com/opendilab/LightZero/blob/main/zoo/game_2048/envs/game_2048_env.py) (num_chances=2/5) 上的基线结果:
- 结合不同的探索机制的 [MuZero w/ SSL](https://github.com/opendilab/LightZero/blob/main/lzero/policy/muzero.py) 在 [MiniGrid 环境](https://github.com/opendilab/LightZero/blob/main/zoo/minigrid/envs/minigrid_lightzero_env.py)上的基线结果:
## 📝 MCTS 相关笔记
### 论文笔记
以下是 LightZero 中集成算法的中文详细文档:
点击折叠
[AlphaZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/AlphaZero.pdf)
[MuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/MuZero.pdf)
[EfficientZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/EfficientZero.pdf)
[SampledMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/SampledMuZero.pdf)
[GumbelMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/GumbelMuZero.pdf)
[StochasticMuZero](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/StochasticMuZero.pdf)
[算法概览图符号表](https://github.com/opendilab/LightZero/blob/main/assets/paper_notes/NotationTable.pdf)
也可参考相应的知乎专栏: [MCTS+RL 前沿理论和应用的深入解析](https://www.zhihu.com/column/c_1764308735227662336)。
### 算法框架图
以下是 LightZero 中集成算法的框架概览图:
(点击查看)
- [MCTS](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/mcts_overview.pdf)
- [AlphaZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/alphazero_overview.pdf)
- [MuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/muzero_overview.png)
- [EfficientZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/efficientzero_overview.png)
- [SampledMuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/sampled_muzero_overview.png)
- [GumbelMuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/gumbel_muzero_overview.png)
- [StochasticMuZero](https://github.com/opendilab/LightZero/blob/main/assets/algo_overview/stochastic_muzero_overview.png)
## MCTS 相关论文
以下是关于 **MCTS** 相关的论文集合,[这一部分](#MCTS-相关论文) 将会持续更新,追踪 MCTS 的前沿动态。
### 经典与基础论文
(点击查看)
#### LightZero Implemented series
- [2018 _Science_ AlphaZero: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play](https://www.science.org/doi/10.1126/science.aar6404)
- [2019 MuZero: Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://arxiv.org/abs/1911.08265)
- [2021 EfficientZero: Mastering Atari Games with Limited Data](https://arxiv.org/abs/2111.00210)
- [2021 Sampled MuZero: Learning and Planning in Complex Action Spaces](https://arxiv.org/abs/2104.06303)
- [2022 Stochastic MuZero: Plannig in Stochastic Environments with A Learned Model](https://openreview.net/pdf?id=X6D9bAHhBQ1)
- [2022 Gumbel MuZero: Policy Improvement by Planning with Gumbel](https://openreview.net/pdf?id=bERaNdoegnO&)
- [2024 UniZero: Generalized and Efficient Planning with Scalable Latent World Models](https://arxiv.org/abs/2406.10667)
#### AlphaGo series
- [2015 _Nature_ AlphaGo Mastering the game of Go with deep neural networks and tree search](https://www.nature.com/articles/nature16961)
- [2017 _Nature_ AlphaGo Zero Mastering the game of Go without human knowledge](https://www.nature.com/articles/nature24270)
- [2019 ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero](https://arxiv.org/abs/1902.04522)
- [Code](https://github.com/pytorch/ELF)
- [2023 Student of Games: A unified learning algorithm for both perfect and imperfect information games](https://www.science.org/doi/10.1126/sciadv.adg3256)
#### MuZero series
- [2022 Online and Offline Reinforcement Learning by Planning with a Learned Model](https://arxiv.org/abs/2104.06294)
- [2021 Vector Quantized Models for Planning](https://arxiv.org/abs/2106.04615)
- [2021 Muesli: Combining Improvements in Policy Optimization. ](https://arxiv.org/abs/2104.06159)
#### MCTS Analysis
- [2020 Monte-Carlo Tree Search as Regularized Policy Optimization](https://arxiv.org/abs/2007.12509)
- [2021 Self-Consistent Models and Values](https://arxiv.org/abs/2110.12840)
- [2022 Adversarial Policies Beat Professional-Level Go AIs](https://arxiv.org/abs/2211.00241)
- [2022 _PNAS_ Acquisition of Chess Knowledge in AlphaZero.](https://arxiv.org/abs/2111.09259)
#### MCTS Application
- [2023 Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search](https://openreview.net/pdf?id=ZTK3SefE8_Z)
- [2022 _Nature_ Discovering faster matrix multiplication algorithms with reinforcement learning](https://www.nature.com/articles/s41586-022-05172-4)
- [Code](https://github.com/deepmind/alphatensor)
- [2022 MuZero with Self-competition for Rate Control in VP9 Video Compression](https://arxiv.org/abs/2202.06626)
- [2021 DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning](https://arxiv.org/abs/2106.06135)
- [2019 Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for Autonomous Driving](https://arxiv.org/pdf/1905.02680.pdf)
### 最新研究与新兴应用
(点击查看)
#### ICML
- [STAIR: Improving Safety Alignment with Introspective Reasoning](https://openreview.net/forum?id=aHzPGyUhZa) 2025
- Yichi Zhang, Siyuan Zhang, Yao Huang, Zeyu Xia, Zhengwei Fang, Xiao Yang, Ranjie Duan, Dong Yan, Yinpeng Dong, Jun Zhu
- Key: LLM, Safety Alignment, Reasoning
- ExpEnv: StrongReject, XsTest, WildChat, Do-Not-Answer, GSM8k, AlpacaEval 2.0, BIG-bench HHH, SimpleQA, InfoFlow, AdvGLUE
- [rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking](https://openreview.net/forum?id=5zwF1GizFa) 2025
- Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, Mao Yang
- Key: LLM, Reasoning, Self-evolution
- ExpEnv: GSM8K, MATH, AIME 2024, AMC 2023, Olympiad Bench, College Math, Gaokao (Chinese College Entrance Exam 2023)
- [Monte-Carlo Tree Search with Uncertainty Propagation via Optimal Transport](https://openreview.net/forum?id=DUGFTH9W8B) 2025
- Tuan Quang Dam, Pascal Stenger, Lukas Schneider, Joni Pajarinen, Carlo D'Eramo, Odalric-Ambrym Maillard
- Key: Monte-Carlo Tree Search, Planning under Uncertainty
- ExpEnv: FrozenLake, NChain, RiverSwim, SixArms, Taxi, Rocksample, Pocman, Tag, LaserTag
- [Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger](https://openreview.net/forum?id=DJcEoC9JpQ) 2025
- Qi Yang, Chenghao Zhang, Lubin Fan, Kun Ding, Jieping Ye, Shiming Xiang
- Key: Large Vision Language Model, Multimodal Retrieval-Augmented Generation, In-context Learning, Monte Carlo Tree Search
- ExpEnv: ScienceQA, MMMU, MathV, VizWiz, VSR-MC
- [Mastering Board Games by External and Internal Planning with Language Models](https://openreview.net/forum?id=KKwBo3u3IW) 2025
- John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel Hennes, Jeremy Shar, Cannada A. Lewis, Anian Ruoss, Tom Zahavy, Petar Veličković, Laurel Prince, Satinder Singh, Eric Malmi, Nenad Tomasev
- Key: search, planning, language models, games, chess
- ExpEnv: Chess, Chess960, Connect Four, Hex
- [Language Models as Implicit Tree Search](https://openreview.net/forum?id=bEqMmGu6qg) 2025
- Ziliang Chen, Zhao-Rong Lai, Yufeng Yang, Liangda Fang, ZHANFU YANG, Liang Lin
- Key: RL-free preference optimization; LLM based MCTS; LLM alignment;LLM reasoning
- ExpEnv: Anthropic HH, GSM8K, MATH, Game24
- [Free Process Rewards without Process Labels](https://openreview.net/forum?id=8ThnPFhGm8) 2025
- Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu, Hao Peng
- Key: Process Reward Model
- ExpEnv: MATH
- [Monte Carlo Tree Search for Comprehensive Exploration in LLM-Based Automatic Heuristic Design](https://openreview.net/forum?id=Do1OdZzYHr) 2025
- Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, Bryan Hooi
- Key: Automatic Heuristic Design, Combinatorial Optimization, Large Language Model, Neural Combinatorial Optimization, Monte Carlo Tree Search
- ExpEnv: TSP, Knapsack, CVRP, Multiple Knapsack, Bin Packing, Admissible Set Problem, Bayesian Optimization
- [Boosting Virtual Agent Learning and Reasoning: A Step-Wise, Multi-Dimensional, and Generalist Reward Model with Benchmark](https://openreview.net/forum?id=OKWlVPHeW1) 2025
- Bingchen Miao, Yang Wu, Minghe Gao, Qifan Yu, Wendong Bu, Wenqiao Zhang, Yunfei Li, Siliang Tang, Tat-Seng Chua, Juncheng Li
- Key: Virtual Agent; Digital Agent; Reward Model
- ExpEnv: WebArena, VisualWebArena, Android World, OSWorld
- [Online Robust Reinforcement Learning Through Monte-Carlo Planning](https://openreview.net/forum?id=m25ma7O7Ec) 2025
- Tuan Quang Dam, Kishan Panaganti, Brahim Driss, Adam Wierman
- Key: Monte-carlo tree search, distributionally robust reinforcement learning, online reinforcement learning
- ExpEnv: Gambler’s Problem, Frozen Lake, American Option Pricing
- [Trust-Region Twisted Policy Improvement](https://openreview.net/group?id=ICML.cc/2025/Conference#tab-accept-oral) 2025
- Joery A. de Vries, Jinke He, Yaniv Oren, Matthijs T. J. Spaan
- Key: Reinforcement Learning; Sequential Monte-Carlo; Monte-Carlo Tree Search; planning; model-based; policy improvement
- ExpEnv: Brax, Jumanji
- [KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search](https://openreview.net/forum?id=QuecSemZIy) 2025
- Haoran Luo, Haihong E, Yikai Guo, Qika Lin, Xiaobao Wu, Xinyu Mu, Wenhao Liu, Meina Song, Yifan Zhu, Anh Tuan Luu
- Key: Knowledge Base Question Answering, Large Language Model, LLM Agents, Monte Carlo Tree Search
- ExpEnv: GrailQA, WebQSP, GraphQ
- [Monte Carlo Tree Diffusion for System 2 Planning](https://proceedings.mlr.press/v267/yoon25a.html) 2025
- Jaesik Yoon, Hyeonseo Cho, Doojin Baek, Yoshua Bengio, Sungjin Ahn
- Key: Diffusion Models, MCTS, System 2 Planning, Trajectory Optimization
- ExpEnv: Maze2D, Kitchen, Block stacking
- [Code](https://github.com/ahn-ml/mctd)
- [Monte-Carlo Tree Search with Uncertainty Propagation via Optimal Transport](https://openreview.net/forum?id=DUGFTH9W8B) 2025
- Tuan Quang Dam, Pascal Stenger, Lukas Schneider, Joni Pajarinen, Carlo D’Eramo, Odalric-Ambrym Maillard
- Key: Optimal Transport, Wasserstein Distance, Uncertainty Propagation, MCTS
- ExpEnv: FrozenLake, NChain, RiverSwim, SixArms, Taxi, Rocksample
- [Online Robust Reinforcement Learning Through Monte-Carlo Planning](https://openreview.net/forum?id=m25ma7O7Ec) 2025
- Tuan Quang Dam, Kishan Panaganti, Brahim Driss, Adam Wierman
- Key: Robust RL, MCTS, Distributionally Robust Optimization, Sim-to-Real
- ExpEnv: Gambler’s Problem, Frozen Lake, American Option Pricing
- [Code](https://github.com/brahimdriss/RobustMCTS)
- [Power Mean Estimation in Stochastic Continuous Monte-Carlo Tree Search](https://icml.cc/virtual/2025/poster/45596) 2025
- Tuan Quang Dam
- Key: Continuous MCTS, Polynomial Exploration, Stochastic Environments, Power Mean
- ExpEnv: Continuous Cartpole, Inverted Pendulum
- [Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language Models](https://icml.cc/virtual/2024/poster/33107) 2024
- Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, Yu-Xiong Wang
- Key: language models, decision-making, Monte Carlo Tree Search, reasoning, acting, planning
- ExpEnv: HumanEval, WebShop, interactive QA, programming, math
- [Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning](https://proceedings.mlr.press/v235/huang24p.html) 2024
- Yizhe Huang, Anji Liu, Fanqi Kong, Yaodong Yang, Song-Chun Zhu, Xue Feng
- Key: multi-agent reinforcement learning, hierarchical opponent modeling, Monte Carlo Tree Search, few-shot adaptation, mixed-motive environments
- ExpEnv: multi-agent decision-making scenarios, self-play, mixed-motive interactions
- [Accelerating Look-ahead in Bayesian Optimization: Multilevel Monte Carlo is All you Need](https://openreview.net/forum?id=46vXhZn7lN) 2024
- Shangda Yang, Vitaly Zankin, Maximilian Balandat, Stefan Scherer, Kevin Thomas Carlberg, Neil Walton, Kody J. H. Law
- Key: Bayesian optimization, multilevel Monte Carlo, nested expectations, acquisition functions
- ExpEnv: Benchmark examples
- [Accelerated Speculative Sampling Based on Tree Monte Carlo](https://openreview.net/forum?id=stMhi1Sn2G) 2024
- Zhengmian Hu, Heng Huang
- Key: speculative sampling, large language models, tree Monte Carlo, inference acceleration
- ExpEnv: Not specified
- [Provably Efficient Long-Horizon Exploration in Monte Carlo Tree Search through State Occupancy Regularization](https://arxiv.org/abs/2407.05511) 2024
- Liam Schramm, Abdeslam Boularias
- Key: Exploration, State Occupancy, Long-horizon planning, Volume-MCTS
- ExpEnv: Robot Navigation, 2D Maze
- [Code](https://github.com/schrammlb2/Volume-MCTS-ICML)
- [Scalable Safe Policy Improvement via Monte Carlo Tree Search](https://openreview.net/pdf?id=tevbBSzSfK) 2023
- Alberto Castellini, Federico Bianchi, Edoardo Zorzi, Thiago D. Simão, Alessandro Farinelli, Matthijs T. J. Spaan
- Key: safe policy improvement online using a MCTS based strategy, Safe Policy Improvement with Baseline Bootstrapping
- ExpEnv: Gridworld and SysAdmin
- [Efficient Learning for AlphaZero via Path Consistency](https://proceedings.mlr.press/v162/zhao22h/zhao22h.pdf) 2022
- Dengwei Zhao, Shikui Tu, Lei Xu
- Key: limited amount of self-plays, path consistency (PC) optimality
- ExpEnv: Go, Othello, Gomoku
- [Visualizing MuZero Models](https://arxiv.org/abs/2102.12924) 2021
- Joery A. de Vries, Ken S. Voskuil, Thomas M. Moerland, Aske Plaat
- Key: visualizing the value equivalent dynamics model, action trajectories diverge, two regularization techniques
- ExpEnv: CartPole and MountainCar.
- [Convex Regularization in Monte-Carlo Tree Search](https://arxiv.org/pdf/2007.00391.pdf) 2021
- Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
- Key: entropy-regularization backup operators, regret analysis, Tsallis entropy
- ExpEnv: synthetic tree, Atari
- [Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains](http://proceedings.mlr.press/v119/fischer20a/fischer20a.pdf) 2020
- Johannes Fischer, Ömer Sahin Tas
- Key: Continuous POMDP, Particle Filter Tree, information-based reward shaping, Information Gathering.
- ExpEnv: POMDPs.jl framework
- [Code](https://github.com/johannes-fischer/icml2020_ipft)
- [Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search](http://proceedings.mlr.press/v119/chen20k/chen20k.pdf) 2020
- Binghong Chen, Chengtao Li, Hanjun Dai, Le Song
- Key: chemical retrosynthetic planning, neural-based A*-like algorithm, ANDOR tree
- ExpEnv: USPTO datasets
- [Code](https://github.com/binghong-ml/retro_star)
#### ICLR
- [OptionZero: Planning with Learned Options](https://openreview.net/forum?id=3IFRygQKGL) 2025
- Po-Wei Huang, Pei-Chiun Peng, Hung Guei, Ti-Rong Wu
- Key: Option, Semi-MDP, MuZero, MCTS, Planning, Reinforcement Learning
- ExpEnv: 26 Atari games
- [Monte Carlo Planning with Large Language Model for Text-Based Games](https://openreview.net/forum?id=r1KcapkzCt) 2025
- Zijing Shi, Meng Fang, Ling Chen
- Key: Large language model, Monte Carlo tree search, Text-based games
- ExpEnv: Jericho benchmark
- [Epistemic Monte Carlo Tree Search](https://openreview.net/forum?id=Tb8RiXOc3N) 2025
- Yaniv Oren, Viliam Vadocz, Matthijs T. J. Spaan, Wendelin Boehmer
- Key: model based, epistemic uncertainty, exploration, planning, alphazero, muzero
- ExpEnv: SUBLEQ (Assembly language), Deep Sea
- [Enhancing Software Agents with Monte Carlo Tree Search and Hindsight Feedback](https://openreview.net/forum?id=G7sIFXugTX) 2025
- Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, William Yang Wang
- Key: agents, LLM, SWE-agents, SWE-bench, search, planning, reasoning, self-improvement, open-ended
- ExpEnv: SWE-bench
- [Epistemic Monte Carlo Tree Search](https://openreview.net/forum?id=Tb8RiXOc3N) 2025
- Wendelin Boehmer, Zheng Shen, Haoran Duan, Chengzhi Mao, Rosario Scalise
- Key: MCTS, Epistemic Uncertainty, Exploration, Sparse Reward, Model-based RL
- ExpEnv: Deep Sea, SUBLEQ (Assembly language)
- [DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search](https://openreview.net/forum?id=I4YAIwrsXa) 2025
- DeepSeek Prover Team
- Key: Automated Theorem Proving, LLM, MCTS, RL from Proof Assistant Feedback (RLPAF), RMaxTS
- ExpEnv: Lean 4, miniF2F, ProofNet
- [Code](https://github.com/deepseek-ai/DeepSeek-Prover-V1.5)
- [Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning](https://openreview.net/forum?id=RGjqr1jBJy) 2025
- Lucas Niu Janson, et al.
- Key: Offline RL, Model-based RL, Bayes-Adaptive MDP, Uncertainty Propagation
- ExpEnv: D4RL
- [The Update Equivalence Framework for Decision-Time Planning](https://openreview.net/forum?id=JXGph215fL) 2024
- Samuel Sokota, Gabriele Farina, David J Wu, Hengyuan Hu, Kevin A. Wang, J Zico Kolter, Noam Brown
- Key: imperfect-information games, search, decision-time planning, update equivalence
- ExpEnv: Hanabi, 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe
- [Efficient Multi-agent Reinforcement Learning by Planning](https://openreview.net/forum?id=CpnKq3UJwp) 2024
- Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, Chongjie Zhang
- Key: multi-agent reinforcement learning, planning, multi-agent MCTS
- ExpEnv: SMAC, LunarLander, MuJoCo, and Google Research Football
- [PromptAgent: Strategic Planning with Large Language Models Enables Expert-Level Prompt Optimization](https://openreview.net/forum?id=22pyNMuIoa) 2024
- Zhutian Yang, et al.
- Key: Prompt Optimization, Strategic Planning, MCTS, LLM Agent
- ExpEnv: BIG-Bench Hard (BBH), MMLU, HellaSwag
- [Code](https://github.com/zhutianyang/PromptAgent)
- [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
- Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
- Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
- ExpEnv: Atari
- [Policy-Based Self-Competition for Planning Problems](https://arxiv.org/abs/2306.04403) 2023
- Jonathan Pirnay, Quirin Göttl, Jakob Burger, Dominik Gerhard Grimm
- Key: self-competition, find strong trajectories by planning against possible strategies of its past self.
- ExpEnv: Traveling Salesman Problem and the Job-Shop Scheduling Problem.
- [Explaining Temporal Graph Models through an Explorer-Navigator Framework](https://openreview.net/pdf?id=BR_ZhvcYbGJ) 2023
- Wenwen Xia, Mincai Lai, Caihua Shan, Yao Zhang, Xinnan Dai, Xiang Li, Dongsheng Li
- Key: Temporal GNN Explainer, an explorer to find the event subsets with MCTS, a navigator that learns the correlations between events and helps reduce the search space.
- ExpEnv: Wikipedia and Reddit, Synthetic datasets
- [SpeedyZero: Mastering Atari with Limited Data and Time](https://openreview.net/pdf?id=Mg5CLXZgvLJ) 2023
- Yixuan Mei, Jiaxuan Gao, Weirui Ye, Shaohuai Liu, Yang Gao, Yi Wu
- Key: distributed RL system, Priority Refresh, Clipped LARS
- ExpEnv: Atari
- [Efficient Offline Policy Optimization with a Learned Model](https://openreview.net/pdf?id=Yt-yM-JbYFO) 2023
- Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng YAN, Zhongwen Xu
- Key: Regularized One-Step Model-based algorithm for Offline-RL
- ExpEnv: Atari,BSuite
- [Code](https://github.com/sail-sg/rosmo/tree/main)
- [Enabling Arbitrary Translation Objectives with Adaptive Tree Search](https://arxiv.org/pdf/2202.11444.pdf) 2022
- Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu, Laurent Sartran, Austin Matthews
- Key: adaptive tree search, translation models, autoregressive models
- ExpEnv: Chinese–English and Pashto–English tasks from WMT2020, German–English from WMT2014
- [What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization](https://arxiv.org/abs/2201.10494) 2022
- Maximili1an Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich
- Key: combinatorial optimization, open-source benchmark suite for the NP-hard maximum independent set problem, an in-depth analysis of the popular guided tree search algorithm, compare the tree search implementations to other solvers
- ExpEnv: NP-hard MAXIMUM INDEPENDENT SET.
- [Code](https://github.com/maxiboether/mis-benchmark-framework)
- [Monte-Carlo Planning and Learning with Language Action Value Estimates](https://openreview.net/pdf?id=7_G8JySGecm) 2021
- Youngsoo Jang, Seokin Seo, Jongmin Lee, Kee-Eung Kim
- Key: Monte-Carlo tree search with language-driven exploration, locally optimistic language value estimates.
- ExpEnv: Interactive Fiction (IF) games
- [Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design](https://arxiv.org/abs/2006.10504) 2021
- Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe
- Key: massively parallel Monte-Carlo Tree Search, molecular design, Hash-driven parallel search
- ExpEnv: octanol-water partition coefficient (logP) penalized by the synthetic accessibility (SA) and large Ring Penalty score.
- [Watch the Unobserved: A Simple Approach to Parallelizing Monte Carlo Tree Search](https://arxiv.org/pdf/1810.11755.pdf) 2020
- Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu
- Key: parallel Monte-Carlo Tree Search, partition the tree into sub-trees efficiently, compare the observation ratio of each processor.
- ExpEnv: speedup and performance comparison on JOY-CITY game, average episode return on atari game
- [Code](https://github.com/liuanji/WU-UCT)
- [Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees](https://openreview.net/pdf?id=rJgJDAVKvB) 2020
- Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song
- Key: meta path planning algorithm, exploits a novel neural architecture which can learn promising search directions from problem structures.
- ExpEnv: a 2d workspace with a 2 DoF (degrees of freedom) point robot, a 3 DoF stick robot and a 5 DoF snake robot
#### NeurIPS
- [Feedback-Aware MCTS for Goal-Oriented Information Seeking](https://openreview.net/pdf?id=ustF8MMZDJ) 2025
- Harmanpreet Chopra, Chirag Shah
- Key: Conversational AI, Goal-Oriented Information Seeking, MCTS, LLM
- ExpEnv: 20 Questions, GuessWhat?, MutualFriends
- [MCTS-Transfer: Monte Carlo Tree Search based Space Transfer for Black-box Optimization](https://openreview.net/forum?id=T5UfIfmDbq) 2024
- Shukuan Wang, Ke Xue, Lei Song, Xiaobin Huang, Chao Qian
- Key: Black-box Optimization, Transfer Learning, MCTS, Search Space Transfer
- ExpEnv: Synthetic functions (Ackley, etc.), Design-Bench, Hyper-parameter optimization
- [Code](https://github.com/lamda-bbo/mcts-transfer)
- [Speculative Monte-Carlo Tree Search](https://proceedings.neurips.cc/paper_files/paper/2024/file/a19940b01b77b6acd41ff8b32b334e7c-Paper-Conference.pdf) 2024
- Jungwoo Park, David Wu, Kellin Pelrine, Jimmy Wei, Thomas Anthony, Julian Schrittwieser, Junwhan Ahn
- Key: Efficiency, Speculative Execution, Parallelism, AlphaZero
- ExpEnv: Go (9x9, 19x19)
- [Generating Code World Models with Large Language Models Guided by Monte Carlo Tree Search](https://proceedings.neurips.cc/paper_files/paper/2024/file/6f479ea488e0908ac8b1b37b27fd134c-Paper-Conference.pdf) 2024
- Nicola Dainese, Matteo Merler, Minttu Alakuijala, Pekka Marttinen
- Key: Code Generation, World Models, MCTS, Model-based Planning
- ExpEnv: CWMB (Code World Models Benchmark), Crafter
- [ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search](https://openreview.net/forum?id=8rcFOqEud5) 2024
- Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, Jie Tang
- Key: LLM Self-training, Process Reward, Reasoning, CoT
- ExpEnv: GSM8K, MATH
- [Code](https://github.com/THUDM/ReST-MCTS)
- [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://openreview.net/pdf?id=oIUXpBnyjv) 2023
- Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li, Yu Liu
- Key: the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios.
- ExpEnv: ClassicControl, Box2D, Atari, MuJoCo, GoBigger, MiniGrid, TicTacToe, ConnectFour, Gomoku, 2048, etc.
- [Large Language Models as Commonsense Knowledge for Large-Scale Task Planning](https://openreview.net/pdf?id=Wjp1AYB8lH) 2023
- Zirui Zhao, Wee Sun Lee, David Hsu
- Key: world model (LLM) and the LLM-induced policy can be combined in MCTS, to scale up task planning.
- ExpEnv: multiplication, travel planning, object rearrangement
- [Monte Carlo Tree Search with Boltzmann Exploration](https://openreview.net/pdf?id=NG4DaApavi) 2023
- Michael Painter, Mohamed Baioumy, Nick Hawes, Bruno Lacerda
- Key: Boltzmann exploration with MCTS, optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective, two improved algorithms.
- ExpEnv: the Frozen Lake environment, the Sailing Problem, Go
- [Generalized Weighted Path Consistency for Mastering Atari Games](https://openreview.net/pdf?id=vHRLS8HhK1) 2023
- Dengwei Zhao, Shikui Tu, Lei Xu
- Key: Generalized Weighted Path Consistency, A weighting mechanism.
- ExpEnv: Atari
- [Accelerating Monte Carlo Tree Search with Probability Tree State Abstraction](https://openreview.net/pdf?id=0zeLTZAqaJ) 2023
- Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
- Key: probability tree state abstraction, transitivity and aggregation error bound
- ExpEnv: Atari, CartPole, LunarLander, Gomoku
- [Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions](https://openreview.net/pdf?id=B_LdLljS842) 2022
- Weirui Ye, Pieter Abbeel, Yang Gao
- Key: trade off computation versus performancem, virtual expansions, spend thinking time adaptively.
- ExpEnv: Atari, 9x9 Go
- [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
- Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
- Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL.
- ExpEnv: DeepMind Control Suite
- [Code](https://github.com/zhaohengyin/EfficientImitate)
- [Evaluation Beyond Task Performance: Analyzing Concepts in AlphaZero in Hex](https://openreview.net/pdf?id=dwKwB2Cd-Km) 2022
- Charles Lovering, Jessica Zosa Forde, George Konidaris, Ellie Pavlick, Michael L. Littman
- Key: AlphaZero’s internal representations, model probing and behavioral tests, how these concepts are captured in the network.
- ExpEnv: Hex
- [Are AlphaZero-like Agents Robust to Adversarial Perturbations?](https://openreview.net/pdf?id=yZ_JlZaOCzv) 2022
- Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, 4 Cho-Jui Hsieh
- Key: adversarial states, first adversarial attack on Go AIs.
- ExpEnv: Go
- [Monte Carlo Tree Descent for Black-Box Optimization](https://openreview.net/pdf?id=FzdmrTUyZ4g) 2022
- Yaoguang Zhai, Sicun Gao
- Key: Black-Box Optimization, how to further integrate samplebased descent for faster optimization.
- ExpEnv: synthetic functions for nonlinear optimization, reinforcement learning problems in MuJoCo locomotion environments, and optimization problems in Neural Architecture Search (NAS).
- [Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization](https://openreview.net/pdf?id=SUzPos_pUC) 2022
- Lei Song∗ , Ke Xue∗ , Xiaobin Huang, Chao Qian
- Key: a low-dimensional subspace via MCTS, optimizes in the subspace with any Bayesian optimization algorithm.
- ExpEnv: NAS-bench problems and MuJoCo locomotion
- [Monte Carlo Tree Search With Iteratively Refining State Abstractions](https://proceedings.neurips.cc/paper/2021/file/9b0ead00a217ea2c12e06a72eec4923f-Paper.pdf) 2021
- Samuel Sokota, Caleb Ho, Zaheen Ahmad, J. Zico Kolter
- Key: stochastic environments, Progressive widening, abstraction refining
- ExpEnv: Blackjack, Trap, five by five Go.
- [Deep Synoptic Monte Carlo Planning in Reconnaissance Blind Chess](https://proceedings.neurips.cc/paper/2021/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf) 2021
- Gregory Clark
- Key: imperfect information, belief state with an unweighted particle filter, a novel stochastic abstraction of information states.
- ExpEnv: reconnaissance blind chess
- [POLY-HOOT: Monte-Carlo Planning in Continuous Space MDPs with Non-Asymptotic Analysis](https://proceedings.neurips.cc/paper/2020/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf) 2020
- Weichao Mao, Kaiqing Zhang, Qiaomin Xie, Tamer Ba¸sar
- Key: continuous state-action spaces, Hierarchical Optimistic Optimization.
- ExpEnv: CartPole, Inverted Pendulum, Swing-up, and LunarLander.
- [Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search](https://proceedings.neurips.cc/paper/2020/file/e2ce14e81dba66dbff9cbc35ecfdb704-Paper.pdf) 2020
- Linnan Wang, Rodrigo Fonseca, Yuandong Tian
- Key: learns the partition of the search space using a few samples, a nonlinear decision boundary and learns a local model to pick good candidates.
- ExpEnv: MuJoCo locomotion tasks, Small-scale Benchmarks
- [Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions](https://arxiv.org/abs/1907.10154) 2020
- Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine Caramanis, Sanjay Shakkottai
- Key: covariate shift problem, Mix&Match combines stochastic gradient descent (SGD) with optimistic tree search and model re-use (evolving partially trained models with samples from different mixture distributions)
- [Code](https://github.com/matthewfaw/mixnmatch)
#### Other Conference or Journal
- [Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search](https://arxiv.org/pdf/2012.07910.pdf) AAAI 2021.
- [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
- [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
## 💬 反馈意见和贡献
- 有任何疑问或意见都可以在 github 上直接 [提出 issue](https://github.com/opendilab/LightZero/issues/new/choose)
- 开启或参加 [GitHub 论坛](https://github.com/opendilab/LightZero/discussions)
- 在 LightZero [discord server](https://discord.gg/qZTQTycu) 上进行讨论
- 或者联系我们的邮箱 (opendilab@pjlab.org.cn)
- 感谢所有的反馈意见,包括对算法和系统设计。这些反馈意见和建议都会让 LightZero 变得更好。
## 🌏 引用
```latex
@article{niu2024lightzero,
title={LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios},
author={Niu, Yazhe and Pu, Yuan and Yang, Zhenjie and Li, Xueyan and Zhou, Tong and Ren, Jiyuan and Hu, Shuai and Li, Hongsheng and Liu, Yu},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}
@article{puunizero,
title={UniZero: Generalized and Efficient Planning with Scalable Latent World Models},
author={Pu, Yuan and Niu, Yazhe and Yang, Zhenjie and Ren, Jiyuan and Li, Hongsheng and Liu, Yu},
journal={Transactions on Machine Learning Research}
}
@article{xuan2024rezero,
title={ReZero: Boosting MCTS-based Algorithms by Backward-view and Entire-buffer Reanalyze},
author={Xuan, Chunyu and Niu, Yazhe and Pu, Yuan and Hu, Shuai and Liu, Yu and Yang, Jing},
journal={arXiv preprint arXiv:2404.16364},
year={2024}
}
@article{pu2025one,
title={One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning},
author={Pu, Yuan and Niu, Yazhe and Tang, Jia and Xiong, Junyu and Hu, Shuai and Li, Hongsheng},
journal={arXiv preprint arXiv:2509.07945},
year={2025}
}
```
## 💓 致谢
此算法库的实现部分基于以下 GitHub 仓库,非常感谢这些开创性工作:
- https://github.com/opendilab/DI-engine
- https://github.com/deepmind/mctx
- https://github.com/YeWR/EfficientZero
- https://github.com/werner-duvaud/muzero-general
特别感谢以下贡献者 [@PaParaZz1](https://github.com/PaParaZz1), [@karroyan](https://github.com/karroyan), [@nighood](https://github.com/nighood),
[@jayyoung0802](https://github.com/jayyoung0802), [@timothijoe](https://github.com/timothijoe), [@TuTuHuss](https://github.com/TuTuHuss), [@HarryXuancy](https://github.com/HarryXuancy), [@puyuan1996](https://github.com/puyuan1996), [@HansBug](https://github.com/HansBug) 对本项目的贡献和支持。
感谢所有为此项目做出贡献的人:
## 🏷️ 许可证
本仓库中的所有代码都符合 [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)。
(回到顶部)