# onnxruntime-tvm **Repository Path**: luo_zhi_cheng/onnxruntime-tvm ## Basic Information - **Project Name**: onnxruntime-tvm - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-20 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Open Deep Learning Compiler Stack ============================================== [Documentation](https://docs.tvm.ai) | [Contributors](CONTRIBUTORS.md) | [Community](https://tvm.ai/community.html) | [Release Notes](NEWS.md) [![Build Status](http://ci.tvm.ai:8080/buildStatus/icon?job=tvm/master)](http://ci.tvm.ai:8080/job/tvm/job/master/) [![Azure Pipeline](https://dev.azure.com/tvmai/tvm/_apis/build/status/windows_mac_build?branchName=master)](https://dev.azure.com/tvmai/tvm/_build/latest?definitionId=2&branchName=master) TVM is a compiler stack for deep learning systems. It is designed to close the gap between the productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends. TVM works with deep learning frameworks to provide end to end compilation to different backends. Checkout the [tvm stack homepage](https://tvm.ai/) for more information. License ------- © Contributors Licensed under an [Apache-2.0](https://github.com/dmlc/tvm/blob/master/LICENSE) license. Contribute to TVM ----------------- TVM adopts apache committer model, we aim to create an open source project that is maintained and owned by the community. Checkout the [Contributor Guide](https://docs.tvm.ai/contribute/) Acknowledgement --------------- We learned a lot from the following projects when building TVM. - [Halide](https://github.com/halide/Halide): TVM uses [HalideIR](https://github.com/dmlc/HalideIR) as data structure for arithmetic simplification and low level lowering. We also learned and adapted some part of lowering pipeline from Halide. - [Loopy](https://github.com/inducer/loopy): use of integer set analysis and its loop transformation primitives. - [Theano](https://github.com/Theano/Theano): the design inspiration of symbolic scan operator for recurrence.