# torchrl **Repository Path**: majingself/torchrl ## Basic Information - **Project Name**: torchrl - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-30 - **Last Updated**: 2023-11-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TorchRL Pytorch Implementation for RL Methods Environments with continuous & discrete action space are supported. Environments with 1d & 3d observation space are supported. Multi-Process Env is supported ## Requirements 1. General Requirements * Pytorch 1.7 * Gym(0.10.9) * Mujoco(1.50.1) * tabulate (for log) * tensorboardX (log file output) 2. Tensorboard Requirements * Tensorflow: to start tensorboard or read log in tf records ## Installation 1. use use **environment.yml** to create virtual envrionment ``` conda create -f environment.yml source activate py_off ``` 2. Mannually install all requirements ## Usage specify parameters for algorithms in config file & specify log directory / seed / device in argument ``` python examples/ppo_continuous_vec.py --config config/ppo_halfcheetah.json --seed 0 --device 0 --id ppo_halfcheetah ``` Checkout examples folder for detailed informations ## Currently contains: * On-Policy Methods: * Reinforce * A2C(Actor Critic) * PPO(Proximal Policy Optimization) * TRPO * Off-Policy Methods: * Soft Actor Critic: SAC(TwinSAC) * Deep Deterministic Policy Gradient :DDPG * TD3 * DQN: * Basic Double DQN * Bootstrapped DQN * QRDQN