From cf3b0475595fe40bbca6ce8cfdf85c95a5be47cf Mon Sep 17 00:00:00 2001 From: 17624019599 <1809468840@qq.com> Date: Sun, 13 Nov 2022 10:59:13 +0800 Subject: [PATCH] edit retinaface.ipynb, README_RETINAFACE_CN.md --- .../retinaface/README_FACEALIGNMENT_CN.md | 277 --- .../retinaface/README_RETINAFACE_CN.md | 60 +- .../retinaface/facealignment.ipynb | 1714 ----------------- .../facealignment/output/1.png_predict.jpg | Bin 0 -> 13364 bytes .../facealignment/output/1.png_predict.txt | 106 + .../facealignment/output/2.png_predict.jpg | Bin 0 -> 11964 bytes .../facealignment/output/2.png_predict.txt | 106 + .../facealignment/output/3.png_predict.jpg | Bin 0 -> 14378 bytes .../facealignment/output/3.png_predict.txt | 106 + .../facealignment/output/4.png_predict.jpg | Bin 0 -> 14200 bytes .../facealignment/output/4.png_predict.txt | 106 + .../facealignment/output/5.png_predict.jpg | Bin 0 -> 13226 bytes .../facealignment/output/5.png_predict.txt | 106 + .../facealignment/output/6.png_predict.jpg | Bin 0 -> 12982 bytes .../facealignment/output/6.png_predict.txt | 106 + .../images/facealignment/source/1.png | Bin 0 -> 21782 bytes .../images/facealignment/source/2.png | Bin 0 -> 19828 bytes .../images/facealignment/source/3.png | Bin 0 -> 30750 bytes .../images/facealignment/source/4.png | Bin 0 -> 27267 bytes .../images/facealignment/source/5.png | Bin 0 -> 26289 bytes .../images/facealignment/source/6.png | Bin 0 -> 20084 bytes .../retinaface/images/train_process.png | Bin 0 -> 55257 bytes .../retinaface/retinaface.ipynb | 298 ++- .../retinaface/src/datasets/__init__.py | 15 - .../retinaface/src/datasets/augmemtation.py | 297 --- .../retinaface/src/facealignment_eval.py | 161 -- .../retinaface/src/facealignment_infer.py | 97 +- .../retinaface/src/facealignment_train.py | 124 -- .../retinaface/src/model/facealignment.py | 7 +- .../retinaface/src/models/__init__.py | 15 - .../retinaface/src/models/detection.py | 288 --- .../retinaface/src/models/network.py | 627 ------ .../retinaface/src/process_datasets/helen.py | 269 --- .../retinaface/src/utils/__init__.py | 15 - .../retinaface/src/utils/draw_prediction.py | 2 +- .../src/utils/facealignment_utils.py | 297 --- .../retinaface/src/utils/loss.py | 122 -- .../retinaface/src/utils/utils.py | 252 --- 38 files changed, 1042 insertions(+), 4531 deletions(-) delete mode 100644 application_example/retinaface/README_FACEALIGNMENT_CN.md delete mode 100644 application_example/retinaface/facealignment.ipynb create mode 100644 application_example/retinaface/images/facealignment/output/1.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/1.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/output/2.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/2.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/output/3.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/3.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/output/4.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/4.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/output/5.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/5.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/output/6.png_predict.jpg create mode 100644 application_example/retinaface/images/facealignment/output/6.png_predict.txt create mode 100644 application_example/retinaface/images/facealignment/source/1.png create mode 100644 application_example/retinaface/images/facealignment/source/2.png create mode 100644 application_example/retinaface/images/facealignment/source/3.png create mode 100644 application_example/retinaface/images/facealignment/source/4.png create mode 100644 application_example/retinaface/images/facealignment/source/5.png create mode 100644 application_example/retinaface/images/facealignment/source/6.png create mode 100644 application_example/retinaface/images/train_process.png delete mode 100644 application_example/retinaface/src/datasets/__init__.py delete mode 100644 application_example/retinaface/src/datasets/augmemtation.py delete mode 100644 application_example/retinaface/src/facealignment_eval.py delete mode 100644 application_example/retinaface/src/facealignment_train.py delete mode 100644 application_example/retinaface/src/models/__init__.py delete mode 100644 application_example/retinaface/src/models/detection.py delete mode 100644 application_example/retinaface/src/models/network.py delete mode 100644 application_example/retinaface/src/process_datasets/helen.py delete mode 100644 application_example/retinaface/src/utils/__init__.py delete mode 100644 application_example/retinaface/src/utils/facealignment_utils.py delete mode 100644 application_example/retinaface/src/utils/loss.py delete mode 100644 application_example/retinaface/src/utils/utils.py diff --git a/application_example/retinaface/README_FACEALIGNMENT_CN.md b/application_example/retinaface/README_FACEALIGNMENT_CN.md deleted file mode 100644 index dc19df1..0000000 --- a/application_example/retinaface/README_FACEALIGNMENT_CN.md +++ /dev/null @@ -1,277 +0,0 @@ -## 目录 - - - -- [目录](##目录) -- [FaceAlignment描述](##FaceAlignment描述) -- [数据集](#数据集) -- [环境要求](#环境要求) -- [快速入门](#快速入门) -- [脚本说明](#脚本说明) - - [脚本及样例代码](#脚本及样例代码) - - [脚本参数](#脚本参数) - - [训练过程](#训练过程) - - [训练](#训练) - - [评估过程](#评估过程) - - [评估](#评估) -- [随机情况说明](#随机情况说明) -- [ModelZoo主页](#modelzoo主页) - - - -## FaceAlignment描述 - -FaceAlignment用于在包含人脸的图片上标记出关键点。 - -## 数据集 - -使用的数据集: -[Helen](http://www.ifp.illinois.edu/~vuongle2/helen/) -(3.Download-b.Training and testing selection used in our experiments-Training names & Train images part 1~4) -(3.Download-c.Annotation-All Faces) - -[BoundingBox标注](https://ibug.doc.ic.ac.uk/media/uploads/competitions/bounding_boxes.zip) -(bounding_boxes_helen_trainset.mat) - -数据集大小:531MB,共2330张彩色图像 -训练集:442MB,共2000张图像 -测试集:89MB,共330张图像 -数据格式:RGB -注: 数据将在src/process_datasets/helen.py中完成预处理,使用时需将文件排布成下面描述的结构。 -你可以从这个链接获取我已经按照上述结构整理好的数据集: https://pan.baidu.com/s/1rFjm2BEL1F9N-y3MMs2o3Q (访问密码 hele)。里面有Helen_192及其db文件,以及Helen.zip。Helen.zip解压得到下面的目录结构,而Helen_192是整理好的mindrecord文件(裁剪,无数据增强),如果使用这个mindrecord文件可以跳过数据集制作过程。 -对原始数据集进行处理前,请确保Helen文件夹与src/process_datasets/helen.py处于同级目录下。 - - ```bash -├── Helen/ - ├── annotation/ - ├── 1.txt - ├── 2.txt - ├── 3.txt - ├── ... - ├── train/ - ├── 232194_1.jpg - ├── 1629243_1.jpg - ├── 1681766_1.jpg - ├── ... - ├── bounding_boxes_helen_trainset.mat - ├── trainname.txt -├── helen.py - ``` - -## 环境要求 - -- 硬件(Ascend/GPU) - - 使用Ascend/GPU处理器来搭建硬件环境。 - - 不可使用CPU环境,模型中的PRelu算子不支持CPU环境。 -- 框架 - - [MindSpore](https://www.mindspore.cn/install/en) - - 要求Mindspore版本>=1.7,推荐1.7 -- 如需查看详情,请参见如下资源: - - [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html) - - [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html) - -## 快速入门 - -通过官方网站安装MindSpore后,您可以按照如下步骤进行训练和评估,如果出现引包"src"错误,删除引包目录中的"src."即可。 -更多过程可以遵循文末的“实验详细操作流程”章节。 - -- Ascend处理器环境运行 - -```shell - # 数据预处理 cd进入process_datasets目录 确保文件排布如数据集介绍中的描述 - cd src/process_datasets - python helen.py --dataset_target_path Helen_192pt - # 训练 - cd .. - python facealignment_train.py --dataset_path ./process_datasets/ --device_target Ascend --epoch_size 2000 --save_checkpoint_epochs 10 --dataset_name Helen_192pt --lr 0.00002 --device_id 0 - # 推理 推理前将obs://application/ckpts/retinaface/FaceAlignment_2D-2150_2000.ckpt下载到即将创建的ckpt文件夹里 - mkdir ./ckpt - python facealignment_infer.py --device_target Ascend --pre_trained ./ckpt/FaceAlignment_2D-2150_2000.ckpt --clipped_path ../images/facealignment/infer --predict_path ../images/facealignment/infer_out --mode standalone -``` - -## 脚本说明 - -### 脚本及样例代码 - -```text -├── retinaface - ├── src - │ ├── model - │ ├──facealignment.py // 关键点对齐模型结构定义 - │ ├── process_datasets - │ ├──helen.py // helen数据集预处理方法 - │ ├──dataset_helen.md // helen数据集来源 - │ ├── utils - │ ├──facealignment_utils.py // 对齐所用的工具和方法 - │ ├── facealignment_eval.py // 评估脚本 - │ ├── facealignment_infer.py // 推理脚本 - │ ├── facealignment_train.py // 训练脚本 - ├── facealignment.ipynb // facealignment模型预训练jupyter案例 -``` - -### 脚本参数 - -- facealignment训练和helen数据集配置。 - -```python - # 数据集生成配置项 - # 生成图片的大小 - parser.add_argument('--img_size', type=int, default=192, help='Pretrained checkpoint path') - # 生成mindrecord文件存放地址 - parser.add_argument('--dataset_target_path', type=str, default='Helen_192pt', help='Helen Dataset Root Path') - # 数据集侧数据增强 - parser.add_argument('--dataset_side_data_enhance', type=bool, default=False, - help='Run Data Enhance On Dataset Processing') - # 训练配置项,位于facealignment_train.py文件中 - # 数据集路径配置项 - parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, Generated MindRecord File') - # 载入以前保存的训练检查点,如果需要 - parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') - # 设备,Ascend/GPU - parser.add_argument('--device_target', type=str, default="GPU", help='run device_target, GPU or Ascend') - # 保存检查点相关 - parser.add_argument('--save_checkpoint', type=bool, default=True, help='Save Checkpoint or not') - parser.add_argument('--save_checkpoint_epochs', type=int, default=10, help='Save Checkpoint Per N Epochs') - parser.add_argument('--keep_checkpoint_max', type=int, default=500, help='Keep How Many New Checkpoints') - parser.add_argument('--save_checkpoint_path', type=str, default='./checkpoint', help='Save Checkpoint To Where') - # 训练参数相关 - parser.add_argument('--loss_scale', type=int, default=1024, help='Loss Scale') - parser.add_argument('--momentum', type=float, default=0.9, help='Initial Momentum Optimizer') - parser.add_argument('--lr', type=float, default=0.0001, help='Learning Rate') - parser.add_argument('--warmup_epochs', type=int, default=4, help='Num of Epochs for Warming Up') - parser.add_argument('--epoch_size', type=int, default=1000, help='Num of Epochs to Run Train') - parser.add_argument('--weight_decay', type=float, default=0.00004, help='Decay Speed Of weight') - # 输出通道数 - parser.add_argument('--num_classes', type=int, default=388, help='Num of Out Channels') - # 种子 - parser.add_argument('--seed', type=int, default=114514, help='Seed For Mindspore') - # batch_size - parser.add_argument('--batch_size', type=int, default=1, help='Batch Size') -``` - -### 训练过程 - -#### 训练 - -Ascend处理器环境运行: - 运行前请让dataset_path参数指向之前生成的mindrecord格式数据集,模型检查点保存在运行参数args['save_checkpoint_path']目录下。 - - ```shell - python facealignment_train.py --dataset_path ./process_datasets/ --device_target Ascend --epoch_size 2000 --save_checkpoint_epochs 10 --dataset_name Helen_192pt --lr 0.00002 --device_id 0 - ``` - -### 评估过程 - -#### 评估 - -在Ascend环境运行时评估helen数据集,在运行以下命令之前,请检查用于评估的检查点路径、预生成的数据集路径。 -评估前将obs://application/ckpts/retinaface/FaceAlignment_2D-2150_2000.ckpt下载到即将创建的ckpt文件夹里 - -```bash - # 运行评估示例 - mkdir ./ckpt - python facealignment_eval.py --dataset_path ./process_datasets/Helen_192pt --pre_trained ./ckpt/FaceAlignment_2D-2150_2000.ckpt -``` - -上述python命令将在前台运行,您可以通过cmd窗口文件结果查看精度,案例将会首先输出每张图的精度,最后输出所有案例的平均精度。 -对于每张图有精度描述如下: - ION:左右眼外侧眼角横向距离 - MNE:点位平均估计误差(单位:ION) - ERR:所有输出通道总误差和 -对于所有图片描述精度如下: - AUC 0.1 precision: 点位误差小于0.1倍ION的比例 - AUC 0.2 precision: 点位误差小于0.2倍ION的比例 - Mean Normalized Error:平均每通道误差 - -## 随机情况说明 - -每个任务的启动文件中都在配置项中规定了固定的随机数种子,如facealignment_train.py中,parse_args()函数中的seed配置项。 - -## ModelZoo主页 - -请浏览官网[主页](https://gitee.com/mindspore/models)。 - -## 实验详细操作流程 - -本流程大致分为两个部分,第一个部分是从华为git仓库克隆代码,第二部分是notebook训练、验证和测试 - -### 1.代码下载 - -通过命令行使用以下命令将代码下载在选定文件夹中。 -运行完毕后该文件夹下只会存在一个retinaface_course文件夹。 - -```shell -git clone http://8.130.182.184:9080/liuh/retinaface_course.git -``` - -进入./application_example/retinaface/src/process_datasets/ - -使用的数据集: -[Helen](http://www.ifp.illinois.edu/~vuongle2/helen/) -(3.Download-b.Training and testing selection used in our experiments-Training names & Train images part 1~4) -(3.Download-c.Annotation-All Faces) - -[BoundingBox标注](https://ibug.doc.ic.ac.uk/media/uploads/competitions/bounding_boxes.zip) -(bounding_boxes_helen_trainset.mat) - -数据集大小:531MB,共2330张彩色图像 -训练集:442MB,共2000张图像 -测试集:89MB,共330张图像 -数据格式:RGB -注: 数据将在src/process_datasets/helen.py中完成预处理,使用时需将文件排布成下面描述的结构。 -你可以从这个链接获取我已经按照上述结构整理好的数据集: https://pan.baidu.com/s/1rFjm2BEL1F9N-y3MMs2o3Q (访问密码 hele)。里面有Helen_192及其db文件,以及Helen.zip。Helen.zip解压得到下面的目录结构,而Helen_192是整理好的mindrecord文件(裁剪,无数据增强),如果使用这个mindrecord文件可以跳过数据集制作过程。 -对原始数据集进行处理前,请确保Helen文件夹与src/process_datasets/helen.py处于同级目录下。 - -```text -├── Helen/ - ├── annotation/ - ├── 1.txt - ├── 2.txt - ├── 3.txt - ├── ... - ├── train/ - ├── 232194_1.jpg - ├── 1629243_1.jpg - ├── 1681766_1.jpg - ├── ... - ├── bounding_boxes_helen_trainset.mat - ├── trainname.txt -├── helen.py -``` - -之后运行下面的命令即可完成转换,转换完毕后会在同级目录下新增文件“Helen_192pt”以及“Helen_192pt.db” - -```bash -python helen.py -``` - -### 2.模型训练 - -进入./application_example/retinaface/src目录,在控制台输入以下代码进行训练: - -```bash -python facealignment_train.py --dataset_path ./process_datasets/ --device_target Ascend --epoch_size 2000 --save_checkpoint_epochs 10 --dataset_name Helen_192pt --lr 0.00002 --device_id 0 -``` - -### 3.模型验证 - -进入./application_example/retinaface/src目录,在控制台输入以下代码进行验证: -权重文件的目录位于obs的application/ckpts/retinaface下,文件名为FaceAlignment_2D-2150_2000.ckpt -将其下载好后放入即将创建的ckpt文件夹中 - -```shell -mkdir ./ckpt -python facealignment_eval.py --dataset_path ./process_datasets/Helen_192pt --pre_trained ./ckpt/FaceAlignment_2D-2150_2000.ckpt -``` - -### 4.模型推理 - -进入./application_example/retinaface/src目录,在控制台输入以下代码进行推理,注意以下两点: -1.推理数据源位于./application_example/retinaface/images/facealignment/infer -推理完毕后你将于./application_example/retinaface/images/facealignment/infer_out得到推理结果 -2.权重文件的目录位于obs的application/ckpts/retinaface下,文件名为FaceAlignment_2D-2150_2000.ckpt -下载后请在下列命令的后面追加'--pre_trained'参数指向这个权重文件。 - -```shell -python facealignment_infer.py --pre_trained ./ckpt/FaceAlignment_2D-2150_2000.ckpt --device_target Ascend --clipped_path ../images/facealignment/infer --predict_path ../images/facealignment/infer_out --mode standalone -``` diff --git a/application_example/retinaface/README_RETINAFACE_CN.md b/application_example/retinaface/README_RETINAFACE_CN.md index 883fe8a..c0b0411 100644 --- a/application_example/retinaface/README_RETINAFACE_CN.md +++ b/application_example/retinaface/README_RETINAFACE_CN.md @@ -31,6 +31,8 @@ Retinaface人脸检测模型于2019年提出,应用于WIDER FACE数据集时效果最佳。RetinaFace论文:RetinaFace: Single-stage Dense Face Localisation in the Wild。与S3FD和MTCNN相比,RetinaFace显著提上了小脸召回率,但不适合多尺度人脸检测。为了解决这些问题,RetinaFace采用RetinaFace特征金字塔结构进行不同尺度间的特征融合,并增加了SSH模块。 +Retinaface附带一个facealignment2D模块,用于在包含人脸的图片上标记出关键点。该模块可以对含有一张人脸的图片进行独立推理,为了满足有一张图片有多张人脸的情况,这个模块可以读取retinaface识别人脸的输出进行图片的裁剪,即联合推理。该模块的模型所用的权重文件由官方的权重文件直接转换为mindspore的ckpt,所以没有train与eval的阶段。 + [论文](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F1905.00641v2): Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, Stefanos Zafeiriou. "RetinaFace: Single-stage Dense Face Localisation in the Wild". 2019. ## 模型架构 @@ -82,6 +84,7 @@ Retinaface人脸检测模型于2019年提出,应用于WIDER FACE数据集时 ├── pretrained_model ├──resnet_pretrain.ckpt // resnet骨干网预训练权重 ├──mobilenet_pretrain.ckpt // mobile骨干网预训练权重 + ├──FaceAlignment2D.ckpt // facealignment2D网络预训练权重(4.8MiB) ``` ## 特性 @@ -97,7 +100,8 @@ keypoint-based methods:这类 anchor-free 方法首先定位到预先定义或 ## 环境要求 - 硬件(Ascend/GPU/CPU) - - 使用Ascend/GPU/CPU处理器来搭建硬件环境。 + - Retinaface主网络使用Ascend/GPU/CPU处理器来搭建硬件环境。 + - 在使用FaceAlignment2D模块的时候只可在Ascend/GPU环境下工作,该模型中的PRelu算子不支持CPU环境。 - 框架 - [MindSpore](https://www.mindspore.cn/install/en) - 如需查看详情,请参见如下资源: @@ -119,6 +123,9 @@ keypoint-based methods:这类 anchor-free 方法首先定位到预先定义或 # 运行推理示例 python retinaface_infer.py + + # 人脸对齐模块推理示例 + python facealignment_infer.py --pre_trained ./pretrained_model/FaceAlignment2D.ckpt --clipped_path ../images/facealignment/source/ --output_path ../images/facealignment/output --device_target Ascend ``` ### 脚本及样例代码 @@ -152,43 +159,37 @@ keypoint-based methods:这类 anchor-free 方法首先定位到预先定义或 │ ├── pretrained_model │ ├──resnet_pretrain.ckpt // resnet骨干网预训练权重 │ ├──mobilenet_pretrain.ckpt // mobile骨干网预训练权重 + │ ├──FaceAlignment2D.ckpt // facealignment2D网络预训练权重(4.8MiB) │ ├── model - │ ├──facealignment.py // 人脸对齐模块 - │ ├──head.py // 人脸对齐模块 + │ ├──facealignment.py // 人脸对齐模块网络 + │ ├──head.py // RetinaFace BoxHead,用于预测人脸框高、宽以及中心位置 │ ├──loss_cell.py // 模型loss定义 │ ├──mobilenet025.py // mobilenet骨干网 │ ├──resnet50.py // resnet骨干网 │ ├──retinaface.py // 模型基础模块,包含ssh等 │ ├── process_datasets - │ ├──dataset_helen.md // 人脸对齐模块数据集md文件 - │ ├──helen.py // 人脸对齐模块数据集 │ ├──widerface.py // 数据集创建 │ ├──pre_process.py // 数据集预处理 │ ├── utils │ ├──config.py // 人脸对齐模块配置文件 │ ├──initialize.py // kaiming均匀初始化模块 │ ├──lr_schedule.py // 学习率调整模块 - │ ├──facealignment_utils.py // 人脸对齐工具方法模块 │ ├──detection.py // 人脸检测方法 │ ├──detection_engine.py // 人脸检测模块 │ ├──draw_prediction.py // 将检测结果绘画到图片上 │ ├──multiboxloss.py // multiboxloss定义 │ ├──timer.py // 计时模块 - │ ├── facealignment_eval.py // 人脸对齐评估脚本 - │ ├── facealignment_infer.py // 人脸对齐微调训练脚本 - │ ├── facealignment_train.py // 人脸对齐预训练脚本 + │ ├── facealignment_infer.py // 人脸对齐推理脚本 │ ├── retinaface_eval.py // 评估脚本 │ ├── retinaface_infer.py // 微调训练脚本 │ ├── retinaface_train.py // 预训练脚本 ├── retinaface.ipynb // retinaface模型jupyter案例 - ├── facealignment.ipynb // facealignment模型jupyter案例 - ├── README_FACEALIGNMENT_CN.md // facealignment模型相关说明 ├── README_RETINAFACE_CN.md // retinaface模型相关说明 ``` ### 脚本参数 -- retinaface和widerface数据集配置。 +retinaface和widerface数据集配置。 ```python # 训练配置项,位于retinaface_train.py文件中 @@ -311,6 +312,19 @@ keypoint-based methods:这类 anchor-free 方法首先定位到预先定义或 parser.add_argument("--optim", type=str, default="sgd", choices=['sgd', 'momentum']) ``` +FaceAlignment2D部分参数配置 + +```python + parser.add_argument('--mode', type=str, default='standalone', help='Infer Work Alone / work with Retinaface') + parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') + parser.add_argument('--device_target', type=str, default="GPU", help='run device_target, GPU or Ascend') + parser.add_argument('--raw_image_path', type=str, default=None, help='Raw Img Folder Path') + parser.add_argument('--json_path', type=str, default=None, help='json file generated bu retinaface') + parser.add_argument('--clipped_path', type=str, default=None, help='Clipped Picture Output Path') + parser.add_argument('--output_path', type=str, default=None, help='Predict Result Output Path') + parser.add_argument('--device_id', type=int, default=0, help='Device id') +``` + ### 训练过程 #### 训练 @@ -442,29 +456,24 @@ git clone http://8.130.182.184:9080/liuh/retinaface_course.git | │ ├──wider_medium_val.mat │ ├── model │ ├──facealignment.py // 人脸对齐模块 - │ ├──head.py // 人脸对齐模块 + │ ├──head.py // RetinaFace BoxHead,用于预测人脸框高、宽以及中心位置 │ ├──loss_cell.py // 模型loss定义 │ ├──mobilenet025.py // mobilenet骨干网 │ ├──resnet50.py // resnet骨干网 │ ├──retinaface.py // 模型基础模块,包含ssh等 │ ├── process_datasets - │ ├──dataset_helen.md // 人脸对齐模块数据集md文件 - │ ├──helen.py // 人脸对齐模块数据集 │ ├──widerface.py // 数据集创建 │ ├──pre_process.py // 数据集预处理 │ ├── utils │ ├──config.py // 人脸对齐模块配置文件 │ ├──initialize.py // kaiming均匀初始化模块 │ ├──lr_schedule.py // 学习率调整模块 - │ ├──facealignment_utils.py // 人脸对齐工具方法模块 │ ├──detection.py // 人脸检测方法 │ ├──detection_engine.py // 人脸检测模块 │ ├──draw_prediction.py // 将检测结果绘画到图片上 │ ├──multiboxloss.py // multiboxloss定义 │ ├──timer.py // 计时模块 - │ ├── facealignment_eval.py // 人脸对齐评估脚本 - │ ├── facealignment_infer.py // 人脸对齐微调训练脚本 - │ ├── facealignment_train.py // 人脸对齐预训练脚本 + │ ├── facealignment_infer.py // 人脸对齐推理脚本 │ ├── retinaface_eval.py // 评估脚本 │ ├── retinaface_infer.py // 微调训练脚本 │ ├── retinaface_train.py // 预训练脚本 @@ -718,3 +727,16 @@ def parse_args(): ```bash python retinaface_infer.py ``` + +对于FaceAlignment2D模块的推理示例,如下: + +```bash +cd ./application_example/retinaface/src +python facealignment_infer.py --pre_trained ./pretrained_model/FaceAlignment2D.ckpt --clipped_path ../images/facealignment/source/ --output_path ../images/facealignment/output --device_target Ascend +``` + +如果需要使用Retinaface输出的识别结果,如下操作: + +```bash +python facealignment_infer.py --mode retinaface --pre_trained ./pretrained_model/FaceAlignment2D.ckpt --raw_image_path 原始图片文件目录 --json_path Retinaface识别图片后生成的json --clipped_path 中间文件夹用于存放裁剪的图片 --output_path 输出识别结果的目录 +``` \ No newline at end of file diff --git a/application_example/retinaface/facealignment.ipynb b/application_example/retinaface/facealignment.ipynb deleted file mode 100644 index 85a1348..0000000 --- a/application_example/retinaface/facealignment.ipynb +++ /dev/null @@ -1,1714 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# FaceAlignment-2D人脸对齐案例" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "本案例将基于Helen数据集讲述如何在mindspore中进行2d人脸对齐" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 1 准备环节" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 1.1 导入模块" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "导入模块需要用到部分src中的文件,校验时请保持该notebook与src文件夹平级。" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "import os\n", - "import cv2\n", - "import csv\n", - "import time\n", - "import math\n", - "import json\n", - "import numpy as np\n", - "import scipy.io as scio\n", - "from typing import List\n", - "\n", - "import mindspore as ms\n", - "import mindspore.nn as nn\n", - "import mindspore.dataset as ds\n", - "from mindspore import load_checkpoint, load_param_into_net, Tensor\n", - "from mindspore.mindrecord import FileWriter\n", - "from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1.2 环境配置" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "使用GRAPH模式进行实验并使用GPU环境。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "ms.set_context(mode=ms.GRAPH_MODE, device_target='Ascend', save_graphs=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 1.3 数据集准备" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "#### 1.3.1 下载数据集" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "下载案例所用到的[人脸对齐数据集](http://www.ifp.illinois.edu/~vuongle2/helen/),该数据集包含2,330个图像,其中,2,000个图像位于训练集,330个位于验证集,每一张图像都有194个关键点的标注。网页中给出了一些下载链接,包括训练(Train images)和测试用图像(Test images)还有标注(Annotation),我们需要在网页中下载上述数据。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "#### 1.3.2 下载Bounding Box标注" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "下载案例所用到的[BoundingBox标注](https://ibug.doc.ic.ac.uk/media/uploads/competitions/bounding_boxes.zip)。该链接指向的文件包含bounding_boxes_helen_trainset.mat和bounding_boxes_helen_testset.mat,其中含有对每个人脸的BoundingBox标注,可以用于对原始照片的裁剪。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "#### 1.3.3 下载完成后需要将数据集目录构建成如下形式\n", - "\n", - "```text\n", - "├── Helen/\n", - " ├── annotation/\n", - " ├── 1.txt\n", - " ├── 2.txt\n", - " ├── 3.txt\n", - " ├── ...\n", - " ├── train/\n", - " ├── 232194_1.jpg\n", - " ├── 1629243_1.jpg\n", - " ├── 1681766_1.jpg\n", - " ├── ...\n", - " ├── bounding_boxes_helen_trainset.mat\n", - " ├── trainname.txt\n", - "```\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "#### 1.3.4 我不知道如何构建数据集" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "你可以从这个链接获取我已经按照上述结构整理好的数据集: https://pan.baidu.com/s/1rFjm2BEL1F9N-y3MMs2o3Q (访问密码 hele)\n", - "里面有Helen_192及其db文件,以及有Helen.zip。Helen.zip解压得到上述目录结构,而Helen_192是整理好的mindrecord文件(裁剪,无数据增强),如果使用这个mindrecord文件可以跳过数据集制作过程。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. 处理数据" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.1 在py文件中定义参数" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "数据集相关处理参数如下:\n", - " img_size:将图片统一处理到的边长。\n", - " dataset_side_data_enhance:数据集侧的数据增强,主要采用旋转方法对图片进行四向旋转,启用后会同时旋转标记而不是简单的仅处理图片。\n", - " dataset_target_path:输出文件名,任意修改,但是当文件夹下有同名文件的时候,新的数据集将不会创建且不会覆盖。\n", - " clip:是否裁剪。不裁剪的话不会使用boundingbox文件处理图片。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "dataset_config = {\n", - " 'img_size': 192,\n", - " 'dataset_side_data_enhance': 'False',\n", - " 'dataset_target_path': 'Helen_192_no_enhance_do_clip',\n", - " 'clip': True\n", - "}# Helen Dataset\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "完整的配置文件如下所示:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "config = {\n", - "\n", - " # Helen Dataset\n", - " 'img_size': 192,\n", - " 'dataset_side_data_enhance': 'False',\n", - " 'dataset_target_path': 'Helen_192_no_enhance_do_clip',\n", - " 'clip': True,\n", - "\n", - " # FaceAlignment Config\n", - " 'num_classes': 388,\n", - " 'batch_size': 1,\n", - " 'epoch_size': 10000,\n", - " 'warmup_epochs': 4,\n", - " 'lr': 0.001,\n", - " 'momentum': 0.9,\n", - " 'weight_decay': 0.00004,\n", - " 'loss_scale': 1024,\n", - " 'save_checkpoint': True,\n", - " 'save_checkpoint_epochs': 10,\n", - " 'keep_checkpoint_max': 500,\n", - " 'save_checkpoint_path': \"./checkpoint\",\n", - " 'export_format': \"MINDIR\",\n", - " 'export_file': \"FaceAlignment_2D\"\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 2.2 制作mindrecord数据集" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "这一步的主要原因是数据集处理时间较长,所以处理成mindrecord方便随时读取" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def to_mindrocord(img_size, output_path, clip, dataset_side_data_enhance=False):\n", - " \"\"\"\n", - " Write Helen Dataset to Mindrecord File\n", - "\n", - " Args:\n", - " clip: Clip Picture or Not\n", - " img_size: Compress each img to [img_size, img_size, 3]\n", - " output_path(string): Output MindRecord File Path\n", - " dataset_side_data_enhance(bool): Rotate image with annotations or not. Default: False\n", - "\n", - " Returns:\n", - " No Direct Return\n", - " But Generate mindrecord File With 2 Columns ['label', 'image'] at 'output_path'\n", - "\n", - " Examples:\n", - " >>> to_mindrocord(192, '/mnt/Helen_192', True, True)\n", - " \"\"\"\n", - " finalpictures, annotations = read_helen(img_size, dataset_side_data_enhance, clip)\n", - "\n", - " writer = FileWriter(file_name=output_path, shard_num=1)\n", - " cv_schema = {\"image\": {\"type\": \"float32\", \"shape\": [img_size, img_size, 3]},\n", - " \"label\": {\"type\": \"float32\", \"shape\": [1, 388]}}\n", - " writer.add_schema(cv_schema, \"Face Alignment Dataset\")\n", - "\n", - " data = []\n", - " limit = 8000 if dataset_side_data_enhance == 'True' else 2000\n", - " for i in range(limit):\n", - " sample = {}\n", - " sample['label'] = annotations[i]\n", - " sample['image'] = finalpictures[i]\n", - "\n", - " data.append(sample)\n", - " if i % 10 == 0:\n", - " writer.write_raw_data(data)\n", - " data = []\n", - " if data:\n", - " writer.write_raw_data(data)\n", - " writer.commit()\n", - "\n", - "def read_helen(img_size, dataset_side_data_enhance=False, clip=False):\n", - " \"\"\"\n", - " Read Helen Data In Files and Generate Dataset\n", - "\n", - " Args:\n", - " clip: Clip Picture or Not. Default: False.\n", - " img_size: Compress each img to [img_size, img_size, 3]\n", - " dataset_side_data_enhance: Rotate or not. Default: False\n", - "\n", - " Returns:\n", - " finalpictures: Array, Contain multiple Pictures in [-1, img_size, img_size, 3]\n", - " annotations: Array, Contain multiple annotations in [-1, img_size, img_size, 3]\n", - "\n", - " \"\"\"\n", - " filename = []\n", - " with open(\"src/process_datasets/Helen/trainname.txt\") as file:\n", - " for item in file:\n", - " filename.append(item.replace(\"\\n\", \"\"))\n", - " file.close()\n", - " root_dir = \"src/process_datasets/Helen/\"\n", - " bounding_box = scio.loadmat(root_dir + \"bounding_boxes_helen_trainset.mat\").get(\"bounding_boxes\")[0]\n", - "\n", - " groundtruthboxes = []\n", - " detectorboxes = []\n", - " finalpictures = []\n", - " annotations = []\n", - " for i in range(0, 2000):\n", - " assert str(filename[i] + \".jpg\") == bounding_box[i][0][0][0][0]\n", - "\n", - " img_path = root_dir + \"train/\" + filename[i] + \".jpg\"\n", - " img = cv2.imread(img_path, flags=1)\n", - " annotation_path = root_dir + \"annotation/\" + str(i + 1) + \".txt\"\n", - " annotation = read_csv(annotation_path)\n", - " ground_truth_box = bounding_box[i][0][0][2][0].astype(np.int32)\n", - " groundtruthboxes.append(ground_truth_box)\n", - " detecter_box = bounding_box[i][0][0][1][0].astype(np.int32)\n", - " detectorboxes.append(detecter_box)\n", - " if clip:\n", - " final_pic = picture_clip(img, ground_truth_box)\n", - " final_pic, new_annotation = picture_resize(final_pic, annotation, ground_truth_box[0],\n", - " ground_truth_box[1], img_size)\n", - " else:\n", - " final_pic = img\n", - " final_pic, new_annotation = picture_resize(final_pic, annotation, 0, 0,\n", - " img_size)\n", - " final_pic = final_pic.astype(np.float32)\n", - " new_annotation = new_annotation.astype(np.float32)\n", - " if dataset_side_data_enhance == 'True':\n", - " pic_1 = cv2.rotate(final_pic, cv2.ROTATE_90_CLOCKWISE)\n", - " anno_1 = new_annotation.copy()\n", - " anno_1[:, 0] = img_size - new_annotation[:, 1]\n", - " anno_1[:, 1] = new_annotation[:, 0].copy()\n", - " pic_2 = cv2.rotate(final_pic, cv2.ROTATE_180)\n", - " anno_2 = new_annotation.copy()\n", - " anno_2[:, 0] = img_size - new_annotation[:, 0]\n", - " anno_2[:, 1] = img_size - new_annotation[:, 1]\n", - " pic_3 = cv2.rotate(final_pic, cv2.ROTATE_90_COUNTERCLOCKWISE)\n", - " anno_3 = new_annotation.copy()\n", - " anno_3[:, 0] = new_annotation[:, 1].copy()\n", - " anno_3[:, 1] = img_size - new_annotation[:, 0]\n", - " finalpictures.append(pic_1)\n", - " annotations.append(anno_1.astype(np.float32))\n", - " finalpictures.append(pic_2)\n", - " annotations.append(anno_2.astype(np.float32))\n", - " finalpictures.append(pic_3)\n", - " annotations.append(anno_3.astype(np.float32))\n", - " finalpictures.append(final_pic)\n", - " annotations.append(new_annotation.astype(np.float32))\n", - " return finalpictures, annotations\n", - "\n", - "def read_csv(path):\n", - " \"\"\"\n", - " Read csv File\n", - " Args :\n", - " path(str): Helen Annotation TXT File Path\n", - "\n", - " Returns :\n", - " result(numpy.ndarray): Annotation Data in np.ndarray. For Helen Dataset, output shape is (194, 2).\n", - " \"\"\"\n", - " data = []\n", - " with open(path) as f:\n", - " reader = csv.reader(f, delimiter=',')\n", - " for row in reader:\n", - " data.append(row)\n", - " result = np.array(data[1:], dtype=float)\n", - " return result\n", - "\n", - "def picture_clip(pic, box):\n", - " \"\"\"\n", - " Clip Image Using Bounding Box\n", - "\n", - " Input :\n", - " pic(ndarray) : Picture at any size\n", - " box(ndarray) : Box in [xMin,yMin,xMax,yMax]\n", - "\n", - " Output : Clipped Picture\n", - " Example :\n", - " >>> picture_clip(pic, [1, 5, 65, 97])\n", - " \"\"\"\n", - " xmin, ymin, xmax, ymax = box[0], box[1], box[2], box[3]\n", - " img_crop = pic[int(ymin):int(ymax), int(xmin):int(xmax)].copy()\n", - " return img_crop\n", - "\n", - "\n", - "def picture_resize(picture, annotation, x0, y0, target_size):\n", - " \"\"\"\n", - " Resize Picture And Adjusy Annotation According to Start Point and Target Size\n", - " Pictures should be resized, annotations need sub and 'resize'\n", - "\n", - " Input :\n", - " Picture : CV2 Picture [ W, H, C ]\n", - " annotation : Marked Points , Absolute Position , [(x1,y1),(x2,y2)...]\n", - " x0 : Bounding Box's Left Upper Corner's Position on X axis\n", - " y0 : Bounding Box's Left Upper Corner's Position on Y axis\n", - " target_size : Will Resize Image To (target_size, target_size)\n", - "\n", - " Output :\n", - " Picture : Resized Picture\n", - " annotation : annotations , But Relative Position , Relate to Resized Picture\n", - "\n", - " Examples:\n", - " >>>picture_resize(img, annotation, 10, 20, 192)\n", - " \"\"\"\n", - " y_ratio, x_ratio = target_size / picture.shape[0], target_size / picture.shape[1]\n", - " img_resized = cv2.resize(picture, (target_size, target_size))\n", - " img_resized = img_resized / 255\n", - " annotation[:, 0] = annotation[:, 0] - x0\n", - " annotation[:, 1] = annotation[:, 1] - y0\n", - " annotation[:, 0] = annotation[:, 0] * x_ratio\n", - " annotation[:, 1] = annotation[:, 1] * y_ratio\n", - "\n", - " return img_resized, annotation" - ] - }, - { - "cell_type": "markdown", - "source": [ - "将下面的Cell解注释来运行数据预处理得到mindrecord文件,处理之前务必确保文件结构与1.3.3中的描述相同。\n", - "此外,如果需要对参数进行修改,可以在2.1下方对参数进行更改,参数含义同见2.1。" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%% md\n" - } - } - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# to_mindrocord(config['img_size'], config['dataset_target_path'], config['clip'], dataset_side_data_enhance=config['dataset_side_data_enhance'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "处理完毕后可以在同级目录下找到mindrecord及其db文件,加载数据集就可以简单的用MindDataset语句进行加载,要读取的列有两列,分别是image和label,num_parallel_workers和shuffle按照需求选择。读取后进行数据转换以及其他操作" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def data_load(mindrecord_path, do_train, batch_size=1, repeat_num=1, count_number=False, num_worker=4, shuffle=None):\n", - " dataset = ds.MindDataset(mindrecord_path, columns_list=[\"image\", \"label\"], num_parallel_workers=num_worker, shuffle=shuffle)\n", - " count = 0\n", - " if count_number:\n", - " print(\"Calculating Size\")\n", - " count = 0\n", - " for _ in dataset.create_dict_iterator(output_numpy=True):\n", - " # print(\"sample: {}\".format(item))\n", - " count += 1\n", - " print(\"Got {} samples in Total, Load Successful\".format(count))\n", - "\n", - " buffer_size = 1000\n", - " normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],\n", - " std=[0.229 * 255, 0.224 * 255, 0.225 * 255])\n", - " change_swap_op = ds.vision.c_transforms.HWC2CHW()\n", - " type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32)\n", - " if do_train:\n", - " trans = [normalize_op, change_swap_op, type_cast_op]\n", - " dataset = dataset.map(operations=trans, input_columns=\"image\", num_parallel_workers=num_worker)\n", - " dataset = dataset.map(operations=type_cast_op, input_columns=\"label\", num_parallel_workers=num_worker)\n", - " else:\n", - " trans = [normalize_op, change_swap_op, type_cast_op]\n", - " dataset = dataset.map(operations=trans, input_columns=\"image\", num_parallel_workers=num_worker)\n", - "\n", - " # apply shuffle operations\n", - " dataset = dataset.shuffle(buffer_size=buffer_size)\n", - "\n", - " # apply batch operations\n", - " dataset = dataset.batch(batch_size, drop_remainder=True)\n", - " dataset = dataset.repeat(repeat_num)\n", - "\n", - " return dataset, count" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dataset size is : \n", - " 2000\n" - ] - } - ], - "source": [ - "dataset, count = data_load('Helen_192_no_enhance_do_clip', True, batch_size=1, repeat_num=1, count_number=False, num_worker=4, shuffle=None)\n", - "print('dataset size is : \\n', dataset.get_dataset_size())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3 训练准备" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 3.1 网络定义" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "完成数据集创建与读取以后就开始着手网络定义。FaceAlignment所用的网络由样例onnx文件包含的网络描述直接得出。这里直接引入模型定义并实例化" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "network_config = [\n", - " # in_channels, out_channels, kernel_size, stride, padding, dilation, group\n", - " [3, 16, 3, 2, 1, 1, 1],\n", - " [16, 16, 3, 1, 1, 1, 16],\n", - " [16, 32, 1, 1, 0, 1, 1],\n", - " [32, 32, 3, 2, 1, 1, 32],\n", - " [32, 64, 1, 1, 0, 1, 1],\n", - " [64, 64, 3, 1, 1, 1, 64],\n", - " [64, 64, 1, 1, 0, 1, 1],\n", - " [64, 64, 3, 2, 1, 1, 64],\n", - " [64, 128, 1, 1, 0, 1, 1],\n", - " [128, 128, 3, 1, 1, 1, 128],\n", - " [128, 128, 1, 1, 0, 1, 1],\n", - " [128, 128, 3, 2, 1, 1, 128],\n", - " [128, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 1, 1, 1, 256],\n", - " [256, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 1, 1, 1, 256],\n", - " [256, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 1, 1, 1, 256],\n", - " [256, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 1, 1, 1, 256],\n", - " [256, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 1, 1, 1, 256],\n", - " [256, 256, 1, 1, 0, 1, 1],\n", - " [256, 256, 3, 2, 1, 1, 256],\n", - " [256, 512, 1, 1, 0, 1, 1],\n", - " [512, 512, 3, 1, 1, 1, 512],\n", - " [512, 512, 1, 1, 0, 1, 1],\n", - " [512, 64, 3, 2, 1, 1, 1]\n", - "]\n", - "\n", - "class Facealignment2d(nn.Cell):\n", - " \"\"\"\n", - " Model define for 2D face alignment work\n", - " Model structure and layer names are directly translated from the given ONNX file\n", - "\n", - " Args:\n", - " output_channel (int) - Should be number of alignment points * 2, this input is 388 for Helen dataset.\n", - "\n", - " Inputs:\n", - " X(Tensor(1, 3, 192, 192)): Input image in tensor\n", - "\n", - " Outputs:\n", - " x(Tensor(1, 1, output_channel)): Predict output. Each point takes 2 channels.\n", - "\n", - " Supported Platforms:\n", - " ``Ascend`` ``GPU``\n", - "\n", - " \"\"\"\n", - "\n", - " def __init__(self, output_channel):\n", - " super(Facealignment2d, self).__init__()\n", - " self.network_config = network_config\n", - " self.features = self._make_layer(network_config, output_channel)\n", - "\n", - " def construct(self, x):\n", - " \"\"\"\n", - " Define forward pass\n", - " \"\"\"\n", - " x = self.features(x)\n", - " return x\n", - "\n", - " def _make_layer(self, cfg: List[List[int]], output_channel: int) -> nn.SequentialCell:\n", - " '''\n", - " Make layer for model 'FaceAlignment2d'.\n", - "\n", - " Args:\n", - " cfg: Model layer config, like 'network_config' above\n", - " output_channel(int) : Should be number of alignment points * 2, this input is 388 for Helen dataset.\n", - "\n", - " Returns:\n", - " SequentialCell, Contains layers generated With 'cfg'\n", - "\n", - " Examples:\n", - " >>>_make_layer(network_config, 388)\n", - " '''\n", - " layers = []\n", - " for v in cfg:\n", - " layers += [nn.Conv2d(in_channels=v[0], out_channels=v[1],\n", - " kernel_size=v[2], stride=v[3],\n", - " pad_mode=\"pad\",\n", - " padding=(v[4], v[4], v[4], v[4]),\n", - " dilation=v[5], group=v[6]),\n", - " nn.BatchNorm2d(num_features=v[1]),\n", - " nn.PReLU()]\n", - " out_channels = cfg[-1][1] * cfg[-1][2] * cfg[-1][2]\n", - " layers += [nn.Flatten(), nn.Flatten(), nn.Dense(in_channels=out_channels, out_channels=output_channel)]\n", - " return nn.SequentialCell(layers)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "net = Facealignment2d(output_channel=config['num_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 3.2 损失函数" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "由于任务是完成194个点(388通道,每个点的横纵坐标各对应一个通道)的回归任务,损失函数用估计点与真实点的平均曼哈顿距离即可,如下。" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class MSELoss(nn.LossBase):\n", - " \"\"\"\n", - " MSELoss.\n", - "\n", - " Returns:\n", - " None.\n", - "\n", - " Examples:\n", - " >>> MSELoss()\n", - " \"\"\"\n", - "\n", - " def __init__(self):\n", - " super(MSELoss, self).__init__()\n", - " self.mse = nn.MSELoss()\n", - "\n", - " def construct(self, logit, label):\n", - " ''' Repackage MSE LOSS'''\n", - " x = self.mse(logit, label)\n", - " return x\n", - "\n", - "loss = MSELoss()\n", - "loss_scale = ms.FixedLossScaleManager(\n", - " config['loss_scale'], drop_overflow_update=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 3.3学习率和优化器" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "学习率变化和优化器定义如下" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):\n", - " \"\"\"\n", - " Summary.\n", - "\n", - " Generate learning rate array\n", - "\n", - " Args:\n", - " global_step(int): total steps of the training\n", - " lr_init(float): init learning rate\n", - " lr_end(float): end learning rate\n", - " lr_max(float): max learning rate\n", - " warmup_epochs(int): number of warmup epochs\n", - " total_epochs(int): total epoch of training\n", - " steps_per_epoch(int): steps of one epoch, value is dataset.get_dataset_size()\n", - "\n", - " Returns:\n", - " np.array, learning rate array\n", - "\n", - " Examples:\n", - " >>> get_lr(0, 0, 0, 0.0001, 4, 1000, 8000)\n", - "\n", - " \"\"\"\n", - " lr_each_step = []\n", - " total_steps = steps_per_epoch * total_epochs\n", - " warmup_steps = steps_per_epoch * warmup_epochs\n", - " for i in range(total_steps):\n", - " if i < warmup_steps:\n", - " lr = lr_init + (lr_max - lr_init) * i / warmup_steps\n", - " else:\n", - " lr = lr_end + \\\n", - " (lr_max - lr_end) * \\\n", - " (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.\n", - " if lr < 0.0:\n", - " lr = 0.0\n", - " lr_each_step.append(lr)\n", - "\n", - " current_step = global_step\n", - " lr_each_step = np.array(lr_each_step).astype(np.float32)\n", - " learning_rate = lr_each_step[current_step:]\n", - "\n", - " return learning_rate\n", - "\n", - "epoch_size = config['epoch_size']\n", - "step_size = dataset.get_dataset_size()\n", - "lr = ms.Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config['lr'], warmup_epochs=config['warmup_epochs'], total_epochs=epoch_size, steps_per_epoch=step_size))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "优化器选择使用动量优化器" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config['momentum'], config['weight_decay'], config['loss_scale'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 3.4 Monitor定义" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "class Monitor(Callback):\n", - " \"\"\"\n", - " Monitor loss and time.\n", - "\n", - " Args:\n", - " lr_init (numpy array): train lr\n", - "\n", - " Returns:\n", - " None\n", - "\n", - " Examples:\n", - " >>> Monitor(100,lr_init=ms.Tensor([0.05]*100).asnumpy())\n", - " \"\"\"\n", - "\n", - " def __init__(self, lr_init=None):\n", - " super(Monitor, self).__init__()\n", - " self.lr_init = lr_init\n", - " self.lr_init_len = len(lr_init)\n", - "\n", - " def epoch_begin(self, run_context):\n", - " \"\"\" Reset loss array and timer\"\"\"\n", - " self.losses = []\n", - " self.epoch_time = time.time()\n", - "\n", - " def epoch_end(self, run_context):\n", - " \"\"\" Calculate epoch time and epoch average loss\"\"\"\n", - " cb_params = run_context.original_args()\n", - " epoch_mseconds = (time.time() - self.epoch_time) * 1000\n", - " per_step_mseconds = epoch_mseconds / cb_params.batch_num\n", - " print(\"epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}\".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses)))\n", - "\n", - " def step_begin(self, run_context):\n", - " \"\"\" Record step time\"\"\"\n", - " self.step_time = time.time()\n", - "\n", - " def step_end(self, run_context):\n", - " \"\"\" Calculate step time and step average loss\"\"\"\n", - " cb_params = run_context.original_args()\n", - " step_mseconds = (time.time() - self.step_time) * 1000\n", - " step_loss = cb_params.net_outputs\n", - "\n", - " if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], ms.Tensor):\n", - " step_loss = step_loss[0]\n", - " if isinstance(step_loss, ms.Tensor):\n", - " step_loss = np.mean(step_loss.asnumpy())\n", - "\n", - " self.losses.append(step_loss)\n", - " cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num\n", - "\n", - " print(\"epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]\".format(\n", - " cb_params.cur_epoch_num -\n", - " 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,\n", - " np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 3.5模型包装" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "这一步包装好训练用的模型,定义好callback,确定ckpt保存位置" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "model = ms.Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)\n", - "cb = [Monitor(lr_init=lr.asnumpy())]\n", - "ckpt_save_dir = config['save_checkpoint_path'] + \"ckpt_\" + \"/\"\n", - "if config['save_checkpoint']:\n", - " config_ck = CheckpointConfig(save_checkpoint_steps=config['save_checkpoint_epochs'] * step_size, keep_checkpoint_max=config['keep_checkpoint_max'])\n", - " ckpt_cb = ModelCheckpoint(prefix=\"FaceAlignment_2D\", directory=ckpt_save_dir, config=config_ck)\n", - " cb += [ckpt_cb]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 4 开始训练" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "使用包装好的model进行训练,会以参数'save_checkpoint_epochs'为间隔保存ckpt文件于./checkpointckpt_目录下,第一次训练的命名规则为 'FaceAlignment_2D-{epoch}_{step}.ckpt'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 5 评估" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "这一部分主要对训练出来的模型效果进行评估,主要的参考标准有:\n", - "对于每一张图片,输出:\n", - " ION:非精度指标:双眼外侧眼角横向坐标差值,单位为像素\n", - " MNE:精度指标:所有预测关键点与真实关键点的距离误差,单位为ION。\n", - " ERR:精度指标:所有输出通道(388通道)误差之和,可以理解为所有输出点位与真实点位的曼哈顿距离总和,单位为像素。\n", - "在所有照片评估完后,输出:\n", - " AUC 0.1 precision:MNE低于0.1的比例\n", - " AUC 0.2 precision:MNE低于0.2的比例\n", - " Mean Normalized Error:所有图片的预测关键点与真实关键点的距离误差经过ION归一化后的的平均值。" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 5.1 数据读取与增强" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def dataload(mindrecord_path):\n", - " \"\"\"\n", - " Load mindrecord from File\n", - "\n", - " Args:\n", - " mindrecord_path(string): mindrecord path\n", - "\n", - " Returns:\n", - " Dataset Read From Path\n", - "\n", - " Examples:\n", - " >>> dataload('/mnt/Generated.mindrecord')\n", - " \"\"\"\n", - " dataset = ds.MindDataset(mindrecord_path, columns_list=[\"image\", \"label\"])\n", - " count = 0\n", - " for _ in dataset.create_dict_iterator(output_numpy=True):\n", - " count += 1\n", - " print(\"Got {} samples in Total, Load Successful\".format(count))\n", - " return dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def eval_data_preprocess(dataset):\n", - " \"\"\"\n", - " Data Preprocess Function For Evaluate\n", - "\n", - " Args:\n", - " dataset(mindrecord dataset): Loaded Dataset\n", - "\n", - " Returns:\n", - " data_set(mindrecord dataset): Preprocessed Dataset\n", - " \"\"\"\n", - " normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],\n", - " std=[0.229 * 255, 0.224 * 255, 0.225 * 255])\n", - " change_swap_op = ds.vision.c_transforms.HWC2CHW()\n", - " type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32)\n", - " trans = [normalize_op, change_swap_op, type_cast_op]\n", - " data_set = dataset.map(operations=trans, input_columns=\"image\", num_parallel_workers=1)\n", - " data_set = data_set.batch(batch_size=1, drop_remainder=True)\n", - " return data_set" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 5.2正式评估" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "正式评估需要用到权重文件,请在pre_trained_path中填入ckpt文件路径。obs路径/application/ckpts/retinaface/FaceAlignment_2D-2150_2000.ckpt指向的权重文件是可用的。\n", - "这部分代码会定义网络、读入数据集、加载权重文件、打包模型,对数据集中的每一张图片进行预处理以及预测并记录上述标准下的误差。\n", - "最后整合所有误差信息并输出到屏幕。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "pre_trained_path = './ckpts/FaceAlignment_2D-2150_2000.ckpt'" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "channel = 388\n", - "net = Facealignment2d(output_channel=channel)\n", - "dataset_raw = dataload('Helen_192_no_enhance_do_clip')\n", - "param_dict = load_checkpoint(pre_trained_path)\n", - "load_param_into_net(net, param_dict)\n", - "model = ms.Model(net)\n", - "i = 0\n", - "mnes = []\n", - "errs = []\n", - "for item in dataset_raw.create_dict_iterator(output_numpy=True):\n", - " img = []\n", - " img.append(item['image'].copy())\n", - " dataset_one = ds.GeneratorDataset(source=img, column_names=[\"image\"])\n", - " dataset_ready = eval_data_preprocess(dataset_one)\n", - " output_one = []\n", - " for item_one in dataset_ready.create_dict_iterator(output_numpy=True):\n", - " output_one = model.predict(Tensor(item_one['image']))\n", - " target_output = item['label'].copy().reshape((channel, 1))\n", - " output_np = output_one.asnumpy().reshape((channel, 1))\n", - " ion = np.abs(target_output[250] - target_output[290])\n", - " err = np.abs(target_output - output_np)\n", - " errs.append(np.true_divide(err, ion))\n", - " tmp = np.sum(err)\n", - " mne = np.true_divide(tmp, ion * channel)\n", - " mnes.append(mne)\n", - " print(\"Cur Img Index : \" + str(i))\n", - " print(\"ION : \" + str(ion))\n", - " print(\"MNE : \" + str(mne))\n", - " print(\"ERR : \" + str(tmp))\n", - " img[0] = img[0] * 256\n", - " for j in range(int(channel/2)):\n", - " cv2.circle(img[0], (int(output_np[j * 2]), int(output_np[j * 2 + 1])), 2, (0, 0, 255), 1)\n", - " cv2.imwrite('./predict/' + str(i) + '.jpg', img[0])\n", - " i += 1\n", - "total_count = i * channel\n", - "positive_1 = 0\n", - "positive_2 = 0\n", - "print(len(errs))\n", - "for k in range(i):\n", - " for l in range(channel):\n", - " if errs[k][l] < 0.1:\n", - " positive_1 += 1\n", - " if errs[k][l] < 0.2:\n", - " positive_2 += 1\n", - "meannormerror = np.array(mnes).sum() / i\n", - "print(\"AUC 0.1 precision : \" + str(positive_1 / total_count))\n", - "print(\"AUC 0.2 precision : \" + str(positive_2 / total_count))\n", - "print(\"Mean Normalized Error : \" + str(meannormerror))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "## 6 推理" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "推理基于Retinaface的输出结果进行,也可以独立进行。\n", - "若进行独立推理,则要求每张输入照片尽可能只包含一个人脸,指定参数的时候指定一个文件夹就好。\n", - "若基于retinaface的数据结果进行推理,则需要指定参数:retinaface预测产生的json文件路径以及原始图片所在文件夹" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 6.1 推理准备" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "定义文件夹读取函数、数据预处理函数如下:\n", - " 文件夹读取函数用于从文件夹中读取所有图片,指定的路径参数不要以'/'结尾。使用的时候请确保该文件夹下无非图片文件。\n", - " 数据预处理函数则用于对输入图片做基本的归一化。" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def read_dir(dir_path):\n", - " if dir_path[-1] == '/':\n", - " dir_path = dir_path[0:-2]\n", - " all_files = []\n", - " if os.path.isdir(dir_path):\n", - " file_list = os.listdir(dir_path)\n", - " for f in file_list:\n", - " f = dir_path + '/' + f\n", - " if os.path.isdir(f):\n", - " sub_files = read_dir(f)\n", - " # Load File Inside Child Folder\n", - " all_files = sub_files + all_files\n", - " else:\n", - " if os.path.splitext(f)[1] in ['.jpg', '.png', '.bmp', '.jpeg']:\n", - " all_files.append(f)\n", - " else:\n", - " raise \"Error,not a dir\"\n", - " return all_files\n", - "\n", - "def data_preprocess(data_set, batch_size=1):\n", - " normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],\n", - " std=[0.229 * 255, 0.224 * 255, 0.225 * 255])\n", - " change_swap_op = ds.vision.c_transforms.HWC2CHW()\n", - " type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32)\n", - " trans = [normalize_op, change_swap_op, type_cast_op]\n", - " data_set = data_set.map(operations=trans, input_columns=\"image\", num_parallel_workers=1)\n", - " data_set = data_set.batch(batch_size, drop_remainder=True)\n", - " return data_set" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 6.2 独立推理" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "独立推理只是将图片打包使用模型预测,不涉及准备阶段提到的json和裁剪问题。\n", - "这里指定好目标文件夹以及预训练模型的路径,执行后会将照片和标记输出到源文件夹下。" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "image_dir = './images/facealignment/infer'\n", - "pre_trained = './ckpts/FaceAlignment_2D-2150_2000.ckpt'\n", - "output_dir = './images/facealignment/infer_out'" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def infer(image_dir, pre_trained):\n", - " imgs = read_dir(image_dir)\n", - " net = Facealignment2d(output_channel=388)\n", - " param_dict = load_checkpoint(pre_trained)\n", - " load_param_into_net(net, param_dict)\n", - " model = ms.Model(net)\n", - " for file in imgs:\n", - " image = cv2.imread(file)\n", - " image = np.array(image)\n", - " image = cv2.resize(image, (192, 192))\n", - " raw_image = image.copy()\n", - " image = image/255\n", - " imgs = []\n", - " imgs.append(image.copy())\n", - " dataset_one = ms.dataset.GeneratorDataset(source=imgs, column_names=[\"image\"])\n", - " dataset = data_preprocess(dataset_one, batch_size=1)\n", - "\n", - "\n", - " for item_one in dataset.create_dict_iterator(output_numpy=True):\n", - " output_one = model.predict(ms.Tensor(item_one['image']))\n", - " result = np.array(output_one).astype(int).reshape((194, 2))\n", - " np.savetxt(output_dir+\"/\"+os.path.basename(file)+\"_predict\", result, delimiter=\",\")\n", - "\n", - " for i in range(194):\n", - " raw_image = cv2.circle(raw_image, (int(result[i, 0]), int(result[i, 1])), 2, (0, 0, 255), 1)\n", - " cv2.imwrite(output_dir+\"/\"+os.path.basename(file)+\"_predict.jpg\", raw_image)\n", - "\n", - "infer(image_dir, pre_trained)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "### 6.3 联合推理" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "这一步将会对图片(包含多张人脸的图片)使用retinaface识别输出的json文件进行裁剪。会先输出裁剪结果,再进行常规的推理。\n", - "需要定义的有:json文件解析函数、图片裁剪函数。\n", - " 1.json文件解析函数用于解析retinaface输出的json文件,包含对图片中各个人脸位置的表达。在解析后会输出裁剪后的人脸到文件夹\n", - " 2.图片裁剪函数用于从原图中裁剪出各个人脸。该函数会处理超过边界的人脸框。\n", - "在这一步处理的时候请确保目录结构如下\n", - "\n", - "```text\n", - "├── (输入的路径)/\n", - " ├── infer(原图路径)/\n", - " ├── 1.jpg\n", - " ├── 2.jpg\n", - " ├── 3.jpg\n", - " ├── ...\n", - " ├── infer.json\n", - " ├── single(如果没有,请新建这个文件夹)/\n", - "```\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "def resolve_json(json_path):\n", - " json_file = open(json_path + '/infer.json', 'r', encoding='utf-8')\n", - " description = json.load(json_file)\n", - " counter = 0\n", - " for x in range(len(description)):\n", - "\n", - " # For each Picture\n", - " temp_key = list(description.keys())[x]\n", - " img = description[temp_key]\n", - " img_path = img['img_path']\n", - " read_img = cv2.imread(json_path+\"/\"+img_path)\n", - " bboxes = img['bboxes']\n", - "\n", - " for i in range(len(bboxes)):\n", - " if bboxes[i][4] > 0.95:\n", - " # For Each Face\n", - " img_clipped = pic_clip(read_img, bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3])\n", - " img_resized = cv2.resize(img_clipped, (192, 192))\n", - " cv2.imwrite(json_path+'/single/' + str(counter) + \".jpg\", img_resized)\n", - " counter += 1\n", - "\n", - "def pic_clip(img, x, y, width, height):\n", - " if x < 0:\n", - " t0 = 0\n", - " else:\n", - " t0 = x\n", - " if y < 0:\n", - " t1 = 0\n", - " else:\n", - " t1 = y\n", - " if x + width < img.shape[1]:\n", - " t2 = x + width\n", - " else:\n", - " t2 = img.shape[1]\n", - " if y + height < img.shape[0]:\n", - " t3 = y + height\n", - " else:\n", - " t3 = img.shape[0]\n", - " img_clipped = img[int(t1):int(t3), int(t0):int(t2)]\n", - " return img_clipped" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# path = '/mnt/c/Users/27976/Documents/WeChat Files/wxid_kzy8nz8xw3ug22/FileStorage/MsgAttach/4a643c27dd06f319f9721630b8d045e7/File/2022-07/infer'\n", - "# resolve_json(path)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "之后的内容相当于正常的独立推理" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false, - "jupyter": { - "outputs_hidden": false - }, - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "# infer(path+'/single', pre_trained)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 7 推理效果" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "![0.jpeg_predict.jpg](./images/facealignment/infer_out/0.jpeg_predict.jpg)\n", - "![1.jpeg_predict.jpg](./images/facealignment/infer_out/1.jpeg_predict.jpg)\n", - "![2.jpeg_predict.jpg](./images/facealignment/infer_out/2.jpeg_predict.jpg)\n", - "![3.jpeg_predict.jpg](./images/facealignment/infer_out/3.jpeg_predict.jpg)\n", - "![4.jpeg_predict.jpg](./images/facealignment/infer_out/4.jpeg_predict.jpg)\n", - "![5.jpeg_predict.jpg](./images/facealignment/infer_out/5.jpeg_predict.jpg)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "MindSpore", - "language": "python", - "name": "mindspore" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.10" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/application_example/retinaface/images/facealignment/output/1.png_predict.jpg b/application_example/retinaface/images/facealignment/output/1.png_predict.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f5e423c30e7b665ab3662a91b4bd2c241be98d05 GIT binary patch literal 13364 zcmbVycQjnx`|s!yEr?zdM3?A9nMhtedMAt$go)lp??ewmLX-%i8@(H%_s-~L^gg2w z20!ojyVkw`+&}KU`>gYG|J!hJ{-t=hxH!1@c=-7LISC#S;uAa~z{e*fB7F4t-}Z1tO!S!e-_E}u`R}XP zcsMwCj|uPz{xjtNiQKmX$O!@MfOZ_L=KySSEF5yI`z`>>1D|;RVef(2|28aa99%qn zf(JH;9tPAtd0-z0=YeUw2aX>``#(Gf;F9A}JQI||r_{0_c<%C4C^#{PknL^dUn=c! zB)hPsYsjO=)HJko^c*iZxwv^mM8(78qqU9gCp&vL zcMnf5h__E@Sa?L_m#FBZ|;QSZX1N}eZB7eYz{qGtO{EG_< z+w0-PA;-mgCWucVr$u1lLit=MnDFV_#GJ~%kJyB@kyMth5vDgP+ zS=w6;kP2%yNEPP_7`PexM#WC8)BY8S)^U<3XIQWAg<@f_k$Nk!7`I}M7R|S2TyyP0 zu|cvu2YLag63kr~522lwqlG4;Yj8du!3Z8R!4^0hUpuV`hHrJ%H{% z_f;Am)k_DPQOiD>dViebPpqcjpY{0^K2a@z74`%S(rccR9rK-W{1rXe%t*hf(%sZF z+tc<_%7Bs5)G16api3PX(#TsFs#KH}S>}<&{DR1w0LAbA&h2r1rNRzyfpny?u-1xw zu(6@NL_KVoj`s3cPjoPG>$5bmfzB-QJ8H!K3P8+o1=m3iOLy~tQ(C){C}GWH5nRQz zq_w9;P~_YtBM<}0ZmzxulsT0NWdpBguBSe);j0A{y$r()JJJFCdV(WppZ3a{V||J} zpk*s6EghNV7h?dDCGUR7?rMv@qd|l6`rS%cgf#Pd>BZS60|flEYLNI@=JkmmTQeM@ zWtPaw{6^PJy);qQgLcM=0w;~$%AbSCSPeQ+EYv!KP=&1RIVAkCs)*Tg;GVI z_(WUH`Touw%{?Ft)alIC{BtvU`B_GYvoc#^EWA659qmw#Ry1)??J^(~FuMFqO1lNa zmsX4_@sj)$5PBOP+IdrHoF#EBRcxHygShwJg8mGuh5LwG-kxbW<3yBHye0{b_Hqp&3 z$uJjpy1mUGk7s@0F=IE8YtWx=xNdghhYqZOjKK!V-C(o9wIV-7#TVDodwhWVx2eJiLI_lkDei6U+i}KC2FGamH%t%I?!?8t6Vu&u(L%xTgAdb?|xfSOh1)pf7 zMgs7$Y&Uy4EDc~a_2mjTfa>fDM4=BgO)T)7G zap&^|0A!Gu-1v^%NGEoCvy5xc1;J}%uk7i<-K(i)2~MgRP~PKp((dxY4gM=VLtR7o zHQRnKy946Ys&Azr-psuL_d<>=5_x{}U}~dZ<6n}WV?WV5VfMGHJ#MNG z(bi_gibsC;fPIsFEtUKr?EL@8(#%s((NTa4gPXk~E!V8mLg^Ne1G(OPlgU?)-P!?3{=A5lh0yg*bX#{3a#XGrd!qXuFtMR?`QwSa-zBAuDu0JK zjg3E$*jn$@PdnQ9$sUMO^yQajo+gxfj_WX;>zINDp>TWQajnPLXMx%@3kqp1r^E#F zfJ2uyk{A=?Vac!3zOc7yP8#-2sp<3nQ~4>2XEQK0`WG>GMf$IZd^aAS?bJv~HDDSoO$+8*`Itc_Ow1;8%<>-)siftJvsWzgld$K0 zf^ntNf@`x@U%Zt1USt;rOx|%LTcW^-m&7$O87kw?7JkI4cXA9P|-*9K(hwX1P%UA%XSl})b19ISwIb%hf0a$PpecH-!_FtLsF z9g3{gby@mB?tEWc>KA`9$dTix=o)%!bbW1*{ji&$@d0G$L_f7Px{qP+SXbz6!Njp4 zSiLG|$B{r8{ZHkvx=Jw}JI>d!p7o;6#UYyCMjAGu7W8NWsyJAZ0DqqzleTe8$ zc)fo92a?;JB*ML(P2BU_NXIeX9>BUC*X~YB1vE-Ro2Egl^0j#$ee&k)35>vJh!Qmw zqA;xFd+I^8Nx|F69ihw9zK#zInQ76nEi}GOvcckD_*&2D;H}t|{kZPCb5lywmiPu0 z)inW;ZBiGoMAvp3W77F_r*mJ#U1HcqOl-gRok0t)(8WPR@pX%ULnyfpL>G@EVH1>V zVXTCS5suXpyiQ%0B=$+~n_jiUQ7QSi`_BA}6<8P8xaI8VDAFF5D$Ns~FnHJ)syPlmJN9v!~i%yHTWB;{p z>fdY4CK!h;zS;-|6|!V;c)DcQ*mnJZJ;kt2x0rw6t5`@RRhN_wG{$t+qfCz)WtQ8D zhCZeu6g)j8kHGstG_O-vV~Y$Du7Wge{cA8)&Sd>&NnzRo^vDP-uAgqdAksj(p9Mx` z$@ES`5^S;}k6_Fe7OL1AGX-NTB%(s|>{^R;)RvDk;L1+rYSbyx2Ycewa-rGHX4X0O zD^|#<7u=Pb3-|;wycG8UggbI~{e68a-`Y|($t-+Jc&m1F;!0q`1|C^UV$glZ|C(u> zpK^Fha#T-ebl0pBc@I!-Ksm*>Rp)MXY6S9dEd2#s8^mImra7CZ*xC}J=sVW8jx*@5 z2`alOYhwlN@z)z7VwcFz$Ke}AUCcAkqTR!N?Is;OOKsvbZ?}xSe z=NNU56bn6W-PokM>%(Fb$8S$L$dpPFQ$I)9Pbyo|9y?S(NXxF+7J1132J6Gp!c zB!+|l(({|h`Lu~CXUVe)q93M@hy;z%FujqJbM|(47eM+B02a(eZ(qhBsfLd`CxEZ zz0x4i>d-N0O_~-fO;1T5R~7{~UnujT#Dd0w`b zF?qnzNEM|Kp+JE>+~Y%kE98{QpH1|ZaZ+*107JEp@Y!plFY{x;{rg=bgd4yV^MdRI z`U7rk8;>i=Hl&r^(|nBPGWbH%m0e3(&93Mit|e|eRsrSxrt}*?fUgTI3k0G}ogCu6 zCj);&G)Q;Xo>{>?+MdXMUlWQ(uUPkrcDE!s-RQdBqQ4jAqeh@K7`71nA0;uLtwiH^ zM|q6$9N&C`JCABbUp?aeTYZ?Uoi3BR+C4x2VZl2-Cw)LG*4JP%uzIOW^$#|I&y~iS zE|}N&eF29<9zpuG_^L*S7V0V;!%fr&O-mVao;Ialm|MjMAlu0820+y7*&*NTJ*RihE7Vd zXoAm(+ZYQcJzmSdz$90J{HGH}!JE^?)3E|jv58ar!~C7(HZY6QJN^nyIhJra=)PFG zdK&-j^pNvk-1nzyyy1pp#Hp4L09KNkcR}!-1jMaJ3~{R3@)7i^ygx|iKv6p6m46fC zlQ+k|o9N@drqYn49DtV#e!NcM(awtdG&6LyyJlbTxN=5l?xX}k`vHZkl3L3I6v|g8CiE|%yk=%mY)3+ShVQAh z_YoO7jsox&@2RBNNpL#~lCq?2?+M^e8d8!Zu5`_Jk}H976TPuF^6eh z@QHd%GqY{7up)y}B`Y$J5Y4debx42`^s_2N2dEOg{iUM&U0_L-LYK4=0C)u$Q8!%6 zKrU9zYn5(&tFhy)UlN%~t&UBG73~&VKgcZVUU8_j@SjDhNeA}t3h6$}ds_DM68pLD z&otuhNE3A8q?L17zMES!X6~P#ACH2JQQ&>g$z$T;HZkuDX!!>EoqqvZVwdJo>ml6z z^Limu$<|6#0A=z&GaJ_7VHARZtlkXxpry^eoc`obJ^qgyOUI+UOT4EXu(Hqoe<;#( zw8oTAKCS2JYS*Sn%nvW53_4I6|ERWy5`P6HG`}R3B6ZO*Q%UfHI{tE`qoqo=gyVkL z)hXBX8yCEw0xSPmd=uMsl^9nr59_-{x%Gs`hy6*|Z(Rdts-hLIeEy`}W2|$f{w!muXaVCyUt&n!8%;+ zU*C6{g37Y@nY1M12?utaA5ZVS5l7~=20e>Dg! z8ji~@y5;U1+vt2NtFRp-`n1(|wjQ6n<8A1Cq6hbQXebtp#%ciuZ~iB7L{6IQ9-5S%)Eo3D3z1a^k6+9&6f{+-qPIC6>BrT&DLPvZ}er+5h<-qj=04FSvJv6?&2RspJBZBc9WO$DPnRnt7zWD zw`uw%~duw(G;YT8=Eg4n5OD}4ZQw|-drjwL8tU~DwaFSh@c1Jd;0(A2xFD-My zE6aY+w7LZ^+tG{k?+F34OK**s*unzNc$r-=ZM`xT1k-KUcOu{bK4e_WGEH?|bIa+v zvQ<;Y@31~%SKxDRo=47AROG;6a`bTzu!bdO=D0nJGG2zmR?fK@_qURfUQFo^K&-@k zCr`T|0fVZ~%g)e1WJ0fUz7m4h+wci2ZJT9#e+8$Bylc}tCY3W4rMl!a-uvw~UJ{xU%dMk4 z?gC3l;|FzeluWzU)Tx>*Z};4Aj=prvcQ9bjOhW%YQy)zeZ}u^sk#$4DF_g{icTCga zn{ny5r^}i@0snaRZ0Rv_OX)I_MiW?=U9Cbx&6tsnNvUGggkNX~EZ0S63`a_ZbX{e5 z5EY-4*Quu8VJSY%_;VbvG2N^G3tsi1?!cR+`xuu$BIQLv!9Rwq9P3*1uy^RW)dkh& zs27Go!QUFS+uSc@Gkxyp_Jl7lzp&P4O(+Tc#xrtu0|{U}kS2Cs^~Qc$FB2h+;Tg_k z+PsL5teKWn2O*Bu{!qe{8ZXn>oVi)>7XX&f#`yPVBvsojR zv%`C@YZ$jMEdR8ouf1JZw{*GTA)q^~HH_h^;jpUBz!S@9-?Fx-p1x(CDsO4^EF zpWSNgmL_sW#GJ_UE~&4s?0HrZhm`)B_Ll|KGSHq5s4NCh@wKa!n!O0HG^$iXey~JF znH(!h1pyfizAhymXh)}jnR5z^RKaUfMzKHMc~DE<1MC}HeLLyP+fdB95vvt;gqmcn zUX=^OMHrFbAr<4P9IU4}waSw17j(e48g52F(wF?%2oal0+OHvxj)&c5ei!NL#4WPd zI2hj^!bbKL$If2W>ix4O#oaxZF8~hYKT~s4n5b3_OdHwTMRBgFSBoM(bk$v44DvY( zSNJCR6o1X*#>wf#Y>Gci7xXkYVp zk!F|jQ;$t%(*O!?7%1e?g7|~yu6wkcdZ&@aQ^Yo&#l%&PKJed;;Uqx zB_IN{Hm?b47J$fJx}zD~2eBx!(G`Y5cpP^G5U!A$*l>(a5;Q#m@0t3fj&O4hK17Z&w7 z<>J5$&5K~-MJR?Io~ePfG6P0ko<<&Az7QM8h*#VRI1z)tE&sB=FDoj`*fw6y%&#X* z_iCBQx2)>zP;iA2;YWw^Qb}BV?bo3o9C=jT`f5O3p}>%fpsbAvfH|ZI95_GUX;h!i zk3A+*KMZptle)42$~9&pB^HmCOry5`+U}*2ul;oBU9E#VfU1r8`Jld^eI&E-XL>AC zg%~TtzQZ;SuCzVpcjsCi55dPd=d#J`{ABIS^fguSCO>07<*7ni@=jU!R+coW6io|% zku@{gB{SOASI!tF@MZXeH(my*q2MOyDCXK?hVb#9_!1}W=G&~HfA1*Ba49riA z%20Q~?AIUX|4BUnx_4(J9Bt#A-$ITP(pohB3>NGO6pDWiP&x#O>gOvX*z_G5)wsnr z@)qV=#SGNPee%KCzs2|nW?giePWwefNdT;?)+;S&;d=BpbX&^ffplVWo#hU}3=x9|QYV&BSg zB^!*wW{*g`+K8Y}?HNpcJ<0*qz3zrMA>canhb`5~Q8}{e?5<)dhHn*<|&SPvN{@C%ocAZD#@Z_MzZF9!Uy#3=PU~p-`1{s4IaA7 z>VHNR8FHd1qOXMUaC0OZaEJ-0bz3{5YfA!18X0DHrH?e&vQTcsGLxhRqV|@NBn_3Q z_ZMZ;Q{vm{CpHtm=l0f8Q2d^@CB?tcYLHR)3UBRSb|BAbGi7!zP8_;b%3hVzvOwLK z4%o8^Q6hdh+Xz*U=a4xitK=o4Z})(9)t9;CA--{Hf11$-2qvC6pSN%y|d9C9Oe^&mM z=rR$Ly8V&RcwR1e*RH==hGKJRd0&le3^cdDE|Yi70o(oi>$9)+}L_ zWCEXRtb)1*f3k-<^!E4qT-UFGx@uYsHzT$y78}b!U;{Ga-h2>e!H+eWJP+Al^rhO+ zqkP<3FhQ?pwj=U(t4r(2%qCuxC1H5kR-%yf=t6sL!*mF53KQ$gRf5d*tT#Px25CV zzG88xmRti5#vigV>6^oKMbN^yB$2q^N*BCby||=;SuvNofMO~=UEiKE2PuIG;q_s?{N zckThiExdSJMUK1J%8cxt4lN;&{@%#~eF=HugD=ZgsOpOyhhxZ`#P$7-T0dQoGzW`|oq!&1e|NvJA8MReL0mgQ*nYdw zPvSu}c%TBiqMLvbi*{Fo>alch+9gME2&Ao~B8Px-B_v_C)jRd0Qb^}fE~rjb6>hG%&x=rh4+nm|gEN(# zjeKqQ;uC#`fn!LISY0|-UFrOmalLKh>1a=b)#SOiicp@$3l7=?$UOjf`j2a^@o8}fOv8X2l%l+1WP+B)odP?51^odNi|x%?dk zZ>o6#0d}>!-fP=f8t%)WzZhQC?wR=S0_Tj$-BlM-^;&|Iq^p@b{~nI=1Q?k1t*v`0T&uQUW;y0_c`YU_G!O!ppvkEw zBvKcNC{W1u3yIobcC8)_ytHsn=fwh*noMzpEW8JVeSSm2 z)*~+a1eMz6OHvlHs8|rL!`^_$DlO5*wt)O9U%IZHm;Q<(*yeVUcIo{<%_Quks?4pZ;&IFp;A@0`$ zWX!d@O$rT@3)mkwE{6T;kDO~qnc&q1!Fdnew=C} zQZYAg(RbVJcO<^UvTwdq=JF_^^|V5>)1nJy0K|jIi^Pe@)EEcEO4N1cDMr0fe|)oH zxMtVpjT_4np{bmnB+0-ro%N8Vooc{WQ;2Qn@~bLpY%VR5L=uUs%(;!-rOpw*%st!}!s;y{*^8|hIQhhWdp z`2ai6Eiy5XQ0s9R?pIW_{&+o?MTxBMW_bjoh4>kN3ShV~-6tl0(up%0lJ`VzgS?N8 zE&c2s5Sb2)g^7driy*}~c6oEp%l>=^a3vCBm-Ie<16XAYQhXo1D=m5>W=F4gqRvNE zm%-{m@ac@vXX92G>VO1=mY$jDMvK0of@s$4)J+v}EB7kW1nB1HuLv~l4*HhgCN5>! zpvu=xk_59`>3H2F<=kA$9r$Xusx>^D>lHihSR4rC>n9wD%b03>b^F{_WEybB08dFD zs*sE?H7n~D*X!9Y%4S#VqJ>=BQe0P_)ZXw@Dr9Xe@`S(jwm;}vo6P5)%G~7iys7gu zqiagZrBxV@OEOIwXM4!o9wYD~qC|UAz_0U8U#4aQhgtWtq_AB^NR``rMG+VJ^-ik} z6ehJC^TR~7t}Hdj-TCM^)ZN9njra2k*$)M5V9AXXtxH9@5ao5rZJaS_S&r`=#y%=? za@b*ghakbMa)n&?DT-*j{sPC6pSfP1%KYw%JB+Uu@-}TUekQ9a@Pj^HxjXRk)-BYP zZXW*7V(DxNSow$$c&*BO3G7hGb6RYG!+YchE2F*0p7U zUB%j|l$ng_?88#j(vSCKS%PnKlLX^yLn*jDZCBHGWm*36ec$-K9et}I=-Hu!QDxt{ zn+ko1*v|!1WK7CEix}^hfJSURggyU2(taeab&WPgbMxsQKv@ItH^a*^JeT@Gw0h$5V3M>g;H;DM_8e2m zA(~@cC~4byWWH0K!o#hjTJ(f!esHh=m|F}^mp#M{7_@4q?&8)827?QBto^`^2?OMa`q5CnR4{{c;ZY1CzULau9tP{@@xo6fAa-(5f|ZdMFiNA&7U90}~Uemiy%jMhO<5JkHiLr&E6iki(hqV?d42K32ULf0zh+m}SkWtN)^-j+}0(o6np|56LdSemlbm|1$Z1X3e|SI|v+udNaP!{C%E-Ea5O^GIK< zf%i}AA!S{i7x0}dlb=sT!>7b@gY90alDQfX?QVL8%eSU?Ep8#aC!?z9d_)4ie8KWE z=pRd1&@gtdGi@OOV=$&i;oUQ-^+d{P49kt_UK3j<6=tHVo4jK%g~R9_ulWU!96AgKumK1v*J1l2Q!IDYeamBN}g3zEMf<@i{{B0<~Ug?2_<(kugjJeudQ4AjMkLt zmA1dVSZbA9nq)fd2r~MjXZf0IRIrHSvHQ>FO=Dn8J@os#-jbkpt+0IkQtepptdg}m zC&lq|AGW=fr+#*m?n(=X;(dVqQ~1D29p_<8!Ok*ODwDvDvUG4ZhhPF45oEwE9nvO6NE1&L@|fjE&CWmIX;Yt|{Ddz9I)l$=m8OqAd=bWz%Pqif-vh ztG(B8x1&+DVlURUVd^GOPO5YDG$*F)(1Xv5A;^EQMAri7k@~})J(5a~81NtM$>AEn zmUiL5xv#CQjm`#qPu!sd!m;}T#`fD28+W5*oIFj8EYWl(J+E*j*ad(*wTON0XASWZ zUz@A^yXn|(c`J~hgK3oQIzjxez{hC)JrfV28x%Q@6tld4Cerur(dO!dT{K9LAj>b& zkUA$WS`E-r+RjL@zlJ^jYiVcYU4WmY*n!#-CX4>-`&vicVD`%D!typGfE^R)IepGx zCsM|1qwW12EO=pn-RibRfT1Moy^wv;n9!Xb{jNZfm+*+q!`7p}ckry+ALMcK4kLj4 zla64_NHS{G@_k5I3APv|t!rVfqjaBa}_VM*V_Nd9PB zcAdqne*>iT`p{CxJf4-UWk`&#>CgZ$|7rDdPY6~Y*(77=0I4YIB&CgRnyKb=iv&pC zuC~v2QXTkAG246_xuq%d)eRF8kR`$P17B!7$o5X_)c#9oY!XC*!Ip z+X}c2>N|77Hj~*(!5jJj#p^%EZ)%HzJ&r^WbokyFB)Iu!X1-y};vJEtT^V%{N!Jmx z!VMy`zZ{LYK-n8>?`BvH&MVe>*Yezgo)*kyO?FK7SdVEX})iQ6wx7fO6*oHy6pC(ea2nj|&Vg{eH)Rd+^)Fu+;ux12!oU>q_My|#{thy2q zQoJ&SHvC(hg>xlpRb~;ybNUat;`eK~N_pvT>5D_{-DQ@CS`S()zTTtXvB_wC?H)a- zR^5U_{fa^Jxj#s&lOVF=FITrbds3B3|L0a3`LXSq6?~&NLJn_aJIW!xYuV8)I)y)h z#5*)J?+pP(liB0p*5$*wjeU|DHBflPFwBpF>%;^wDEZ_xP> z)qR-b_0@%fd-a4s1?BYAPaPeO(qBDDH38#ELUIX+VQJm|%b=kCllhVrBc9Ipo=&TxwWZpmUn*>!)P5+r zUUf6={p+tgpGT;8Jw$wMz-*aa)wpkNJIgd`jM-3pMd{wML{?Va^1cJeIH-YW?yP&uyo`HS<~zhUWD6cP)*Np^|?AjXEB6p(Xni; zORTHd<*c031iAIX<~^}N;R>I_XFUx^-fz=Vj^}ulIE~s!L&Bo*%eu?^{ z{)5rJQ$9y2hPX^gwL`$ltF76Vdv%hk(*7p^5Wg#wxxU z6lHb6;;`EarMpoJeS*)44MX^X^<$)$Co5bYMW)t@qUpRPFpajPXN;8G4$}$+Df7ht zA)T2$%?;0gM^U1)=YGe~T#Z`kyjgm@42XM5jC!|Qt1P<3Oo{pyKoWJffNt}A(FF@U zD{BiC@BalE!%bI=zTi}T+Q>>Fb`LP_KxeN-)vz#_am5UWn551Z)VlS%Sx~+6dulh{ z(;}U6buOhrYBmR{Z+|@#SD;WC4ib}Tm9-tQS5=CLL%Qy~56=Vtn6fH&mAAz_sgKc~ z5FLb&kvNv5tm6un#e89}L%)sUS~lLr4_y6d)5NAWm6tcZJwhJAI|qwBHB}$ZJgm9d znNG4H9#CZ4|6r52szHrr=n<#B<`|U8M=gFWcYeg4ey)1UsZQGzH>jRyAt&wcVk}GI l75zLlRoUCq@a~{+;O<3(K0}roi%#UwU72FaLE!z|{{Xobz&ro| literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/output/1.png_predict.txt b/application_example/retinaface/images/facealignment/output/1.png_predict.txt new file mode 100644 index 0000000..1558a0e --- /dev/null +++ b/application_example/retinaface/images/facealignment/output/1.png_predict.txt @@ -0,0 +1,106 @@ +1.330000000000000000e+02,1.540000000000000000e+02 +5.000000000000000000e+01,1.050000000000000000e+02 +8.500000000000000000e+01,1.540000000000000000e+02 +9.100000000000000000e+01,1.560000000000000000e+02 +9.800000000000000000e+01,1.580000000000000000e+02 +1.050000000000000000e+02,1.600000000000000000e+02 +1.120000000000000000e+02,1.600000000000000000e+02 +1.190000000000000000e+02,1.590000000000000000e+02 +1.260000000000000000e+02,1.580000000000000000e+02 +5.300000000000000000e+01,1.110000000000000000e+02 +5.600000000000000000e+01,1.170000000000000000e+02 +5.900000000000000000e+01,1.230000000000000000e+02 +6.200000000000000000e+01,1.290000000000000000e+02 +6.600000000000000000e+01,1.350000000000000000e+02 +7.000000000000000000e+01,1.400000000000000000e+02 +7.500000000000000000e+01,1.450000000000000000e+02 +8.000000000000000000e+01,1.500000000000000000e+02 +1.280000000000000000e+02,6.400000000000000000e+01 +1.490000000000000000e+02,1.150000000000000000e+02 +1.490000000000000000e+02,1.210000000000000000e+02 +1.480000000000000000e+02,1.280000000000000000e+02 +1.470000000000000000e+02,1.330000000000000000e+02 +1.450000000000000000e+02,1.390000000000000000e+02 +1.420000000000000000e+02,1.450000000000000000e+02 +1.380000000000000000e+02,1.500000000000000000e+02 +1.320000000000000000e+02,6.900000000000000000e+01 +1.350000000000000000e+02,7.500000000000000000e+01 +1.380000000000000000e+02,8.000000000000000000e+01 +1.400000000000000000e+02,8.600000000000000000e+01 +1.430000000000000000e+02,9.100000000000000000e+01 +1.450000000000000000e+02,9.700000000000000000e+01 +1.470000000000000000e+02,1.030000000000000000e+02 +1.480000000000000000e+02,1.090000000000000000e+02 +7.700000000000000000e+01,9.900000000000000000e+01 +7.700000000000000000e+01,9.700000000000000000e+01 +6.900000000000000000e+01,1.010000000000000000e+02 +7.300000000000000000e+01,1.000000000000000000e+02 +8.100000000000000000e+01,9.600000000000000000e+01 +7.700000000000000000e+01,9.700000000000000000e+01 +8.400000000000000000e+01,9.300000000000000000e+01 +7.500000000000000000e+01,9.500000000000000000e+01 +7.100000000000000000e+01,9.800000000000000000e+01 +8.000000000000000000e+01,9.300000000000000000e+01 +5.700000000000000000e+01,9.100000000000000000e+01 +6.200000000000000000e+01,8.700000000000000000e+01 +6.800000000000000000e+01,8.400000000000000000e+01 +8.200000000000000000e+01,8.200000000000000000e+01 +7.500000000000000000e+01,8.200000000000000000e+01 +6.000000000000000000e+01,8.400000000000000000e+01 +6.600000000000000000e+01,8.000000000000000000e+01 +8.100000000000000000e+01,7.800000000000000000e+01 +7.400000000000000000e+01,7.800000000000000000e+01 +1.010000000000000000e+02,1.340000000000000000e+02 +1.220000000000000000e+02,1.340000000000000000e+02 +1.100000000000000000e+02,1.320000000000000000e+02 +1.070000000000000000e+02,1.360000000000000000e+02 +1.140000000000000000e+02,1.370000000000000000e+02 +1.260000000000000000e+02,1.230000000000000000e+02 +1.300000000000000000e+02,1.230000000000000000e+02 +1.280000000000000000e+02,1.290000000000000000e+02 +1.190000000000000000e+02,1.280000000000000000e+02 +1.320000000000000000e+02,1.170000000000000000e+02 +1.160000000000000000e+02,1.240000000000000000e+02 +1.100000000000000000e+02,1.220000000000000000e+02 +1.050000000000000000e+02,1.280000000000000000e+02 +1.030000000000000000e+02,1.330000000000000000e+02 +1.080000000000000000e+02,1.290000000000000000e+02 +1.180000000000000000e+02,1.180000000000000000e+02 +1.250000000000000000e+02,1.160000000000000000e+02 +1.290000000000000000e+02,1.180000000000000000e+02 +1.240000000000000000e+02,1.200000000000000000e+02 +1.140000000000000000e+02,1.210000000000000000e+02 +9.400000000000000000e+01,8.400000000000000000e+01 +9.800000000000000000e+01,9.100000000000000000e+01 +1.020000000000000000e+02,9.700000000000000000e+01 +9.000000000000000000e+01,9.100000000000000000e+01 +9.500000000000000000e+01,1.060000000000000000e+02 +9.600000000000000000e+01,1.140000000000000000e+02 +1.010000000000000000e+02,1.140000000000000000e+02 +1.050000000000000000e+02,1.130000000000000000e+02 +1.100000000000000000e+02,1.120000000000000000e+02 +1.020000000000000000e+02,8.400000000000000000e+01 +1.120000000000000000e+02,9.700000000000000000e+01 +1.180000000000000000e+02,1.020000000000000000e+02 +1.160000000000000000e+02,1.060000000000000000e+02 +1.130000000000000000e+02,1.080000000000000000e+02 +1.060000000000000000e+02,1.040000000000000000e+02 +1.150000000000000000e+02,7.900000000000000000e+01 +1.140000000000000000e+02,7.700000000000000000e+01 +1.060000000000000000e+02,8.200000000000000000e+01 +1.110000000000000000e+02,8.100000000000000000e+01 +1.180000000000000000e+02,7.700000000000000000e+01 +1.140000000000000000e+02,7.700000000000000000e+01 +1.210000000000000000e+02,7.400000000000000000e+01 +1.130000000000000000e+02,7.600000000000000000e+01 +1.090000000000000000e+02,7.800000000000000000e+01 +1.170000000000000000e+02,7.400000000000000000e+01 +9.900000000000000000e+01,7.300000000000000000e+01 +1.030000000000000000e+02,6.900000000000000000e+01 +1.080000000000000000e+02,6.500000000000000000e+01 +1.140000000000000000e+02,6.200000000000000000e+01 +1.190000000000000000e+02,5.900000000000000000e+01 +9.600000000000000000e+01,7.100000000000000000e+01 +1.000000000000000000e+02,6.600000000000000000e+01 +1.060000000000000000e+02,6.100000000000000000e+01 +1.120000000000000000e+02,5.800000000000000000e+01 diff --git a/application_example/retinaface/images/facealignment/output/2.png_predict.jpg b/application_example/retinaface/images/facealignment/output/2.png_predict.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3040cd7fd1e117306521b43cce143c71b073f0b2 GIT binary patch literal 11964 zcmbWdWmFtb)c-jI4G;(fcY-Ah?hqu9-~oaS!GpWI2T#Z#gF7Ku&BOl*8y9Nhm2`Tyh|x&S12fG$86CdNy^6A}ze5{!pF0OO-h?EjJXDE5C1;|V4f zHV*Ei41&ji`sa`GF)<%SV?Qc>j1GD{55OY9CS~TA#d)D=hWpZuOdu4JkH;cc-A%4F zfnXIhcMp4tPeDmVO~b~{@#;0Fkg$lTn7G8d_wovgO3EtQI=UdePx=NHmR8m_ws!U& zo?hNQzJC7U5s^{RU%$m9CMBn&rln_O{wydgDlYj|T2@nASKrXs)ZEh3+t)t;8yp&* zoSL4Qots}+gl}waZU5WZ-P=c=o}FJ@UZJjU{^P;`VE!-GqyK;8B6;L`@?RU^{>O#! z#OJYKl3-yo^W%`pYT}x?y?7}Qibo~~$*=By$|9(RAUAiPz^7mpg0mt2L;D}H|94Ns zd)yGcA$Oq_fufK6V99KAIe2K!^VS1X_LYTrDyVd0?Fv+KVZGhQEF_ZU`wL_N6j2#5 z-1Rcsd80M!ndAT_-;vQ=H+qTRW&r8UyI@65oboTDq%G0a zH&Jdaqx5iEswe;0zVIzGqX_3^l7&}D2py<2l_TcOaN|!_XcX~#iGo`-ls5gy3 zQ_Xk^Pt||7^4Q*VGeJRz&+yMz`Ri`-+N|pA-|>LC|K6=3+Z4F1KY*>iQCC4PEovm9 z`vU;wIf%Lj?h1r=+* z_WOkLNgYe|g)ZMH4*bsWVv0C_E2FX#+c5xZ_mt*pA}&)}Kd;g@m@SxE#hVZ3ssLzT z^anG>wv`W?*qq}SG}|gjzo*&a%^6k?Ft1G&o!1|K*`kcaPHOYjx!>FgdqoM&V)P;$ za@-SG4IF4)BL8eC$aDbWKKh#rD0l6r;W2jSluDOq$@n=l2lG9UY|&f2!-y#=|J z&*F-2(P88fm!9fNL$T5aK&^#j?dD?oT-L`3$tmrR3A`s%HhTvB`ndJhWFOi*^vt{# zz_TCJL_czFw?$LgU&H}FrGa!(yMMdC6^BYTc*X14&VLcr3kVS5F4SBJn9IrXE1Aui zK6iFAo_7h&rpjTDJ9`VnzlJm@SH<)kO3)w0Y}F~#ywX+PbHy`Y|uz*%S{5A+Q?=uVZReE_^Ls>Mtt;NLkFMxG9~7b)E41*pnshJ80=tnREU zIT}So!%Rq85LMsHDSaMD}| z5L8;Igc6{a)}Bi;lEf=^K%QqO6DfqK9HU1o=?H)IANx(g{`zj~7hJAsBSrG~QW0wk zy6%6LqMx*#^mYL2kq>~_oms7Smr~+)zxaIJ6+EtE?*1Tr?#Q$^o-La$q-Fkr9X+d` zlEMj2xyb7tU$p2o;Ek#~P(4WR^Y~?Lo9Dql?q-@}QA4OkrLwb^0Sbw#91aQ)UR-|C zH$w?pRRPas83a!TKfE8#&A12&L3MLsq8pO8i-t7+EJj?bl!2MOth8C)yf36Wv9gY!sIYx&^<) zr1pEa2=nQ@D_Z?>N%P}8_VnHtKA%4@$(-ce5m4_F^ HmIB63l~~Od>0#2A*R;lq z93Q|&j9z>&n^C3g<~50~k?IfS>!y|XdxNLeOA=mO=iUa3ksH&o;OZrFx}{4_3pa}A|vb}LP@k5*Vc zR#)c8y|}oRR;6Tg(lokz07#G1u^igguCcsmFL3ZtX1joCNn~ek3-dAts&%#|_Nq-f zd7>~l*>m(Y=3+Ly@?y|ZQ|C&nv=rbmxw0c_)@*!ZjqV2k3DlFoSj9;by$}-SG@vjz z9^7JA^abC$fVovVJ7mD!(sz?9dQD-@?_mIxW?y4&xFM8s)OFAI;QI9-mG zgoFP6%Ln20i?LF**tcUJ z<`%<-6;~wNZ)NyYrI03ZdAA_8Qo##14LgDxT{DA$?&w zs-HZfQgsIV1FbE3&YgECf(Eqv$;ss@;-`6u0u3hvHK^jKlO^KQt?R63KQ}x59;=Yu z!7U2(aX{Xx{+-~h>m*$qO5oFUC34UYaillYI4!7E`mWS@@Vi2W6P4Y|Tu$!Ga!%JO zldq+woCo4599+^(iT@!CTpks{5r@5O3x_MlEvhOY6~9T!(@!lE7Lq9F*#zgsdVjo= zZ<;xN@2?QcLwr|f&ToQkPn6fnJ?<}TruXSWV#~dRX*$lXkP73d8u2&TWoLV6u%QuZ3?RGl`TnXqnw z=XR$`HL%*VCK!|9hPYBKfc;v ziWW1tSc_OgXmo<}$m;Rr`#cQhLvLYLEHXv@zz0CLgrxTR3dqnchyLCyun$y z%?t1mw#RHi!s|fAKD5}(o&85tK<`HlGKZ^GVVQCAey_42bYUtDo z?&Y&Ni!fzpp(tyM@gaR_&igNchO9hJ=RP`%t|B@W$Ca1XlkkR(@e%CFO$2-CeR%*L zse(I!yX=imWi$HCo*u|VZ8drHKwM738>Vt|wZU=sVt7rXQ=&8GrJXJ4kiv9E7iSqG)<-trkQWuWH-kD0F!iuR8=IZh9M z=0@N<;;&8{@%m}nmWH9t3h0?gFSgo!M!P6N&L*dl`SWrUW+eA)2c+-vmO^+D@@vmj zQBB_nVb4M7Ew>0=Oz8LHNME=e_%%*i%0(4)gYFY*{o)6LMj!AK-s zU^|9MI<}+;CEpFH@i~;?ffgwO%oc>s_HSy&+$d-mY7h||62K{=cA3+iqM zrWjc^(@Z&J@sl-1F?FQ@pewOF+<9MvAQm;`T12JpON`(NoXyZKdg5lNP1x#!<7Vb6 z8^OykzWQx{pPrR>@af7QcBL$PXF~~1>z4o8ZB*)0Y4IwHc1!z%1HP3Xu`k>(JV`F? z=J@-`f{N7*REhYWJuMJ?z(kaM8?wr?c|!x=wy8_1{$r;n(~8sJ#KYotJN)nbx~q?+ zw9=R02c{3xoOWV!Z-A}C7^1!~)c9wHTCs)MA zw5qb9CGzpM{d!FZG{m!?wMGsPy<3SX9+EsmkP{-`Fq@Cq$^_d5xl#N6;7H`_3wR=@ zq{Hw@o*D3U8QStYnR7)!6x}Fkklu2h`LEoeuKxIj!3Qa`P8ojp&V}p5GAo?{KjfnP ztn;$}KI)EHI^XNp%HCVWL|>}$J<}2sj?TFaBz9`%Zvz5?^es~f!`PZSxGI*el==*Z zEw1}DSYPr-&E4&-&fOa%Zk!>ST@wdYle1Q^|qE@2SrQum8(~Z@T((?TbVmaL~_+E9#TNWt?dC2>1PvO z_W-~*+82=baC{RX^F>jk_=5w)bCq!6%12B10c`BdJR1XZZFV@Rq<^BJo&Mn zx4}!V*Sj|5UUZ=5`l#Uh>MT!W57rl=yrO{e z1y;AJ{-Xm^9&`_*r8EPL!(J)KDFdrHR($uqe-<L4$t4$IJ3 z1&Oc(A$RC3iUQY=hTRhEjkoW2MGg8aMnu0VvxI*m?TC-kQIc5~-dH2^49HRKpKWQc z@Jk#!qWbLdr7LgSBu+z1H4~PVIiX!+v!~JX>HNFQQv-uN&7Xz**dN;?eJHNjeh&TX zu)fa;<{n~?#cn%2HV&rG#*OTP8|5fRSyC6Tb+p*!+_kt&B&g5MnShWyXmk z!?|;G@*AVlfdHYmIO6^3BiS z1QDPTCF|!NwvQt%WQiM8?JV6l!Fg6}|4Qhfm+e~exu?v&Q;Kw1Z#g4VR0+3m%vx>V z!&zcUtK*+Z*s1u0SaIuSwYd4941CmQ+oxs(+;7sMj?1t0gG#07Cu_Bg8vd#24_v8C z8VGqj0G41jpqKQ5%d6Nr9~uPqA^&&&(sF+;YID8rY& zai=1&E@x}-3KON)1j>_L!3uB9D=>EK27nj0=%+q#7aWu}y#Hvdv!o%fU?hMpbXIsHtE-m3#PX;Sft0q$8?nOzD$lCLQ>BLn*#=NF4Il#S>C+IO#qPEv?D$k*+ zRkpToPLr4(zg32-wqC8*I)TJ?Y(boq9;v6ZcBU^>bk@{BX--vXlf$Ep9ZL+!?iC_L zg$`0K$DIKwtQYO|YAdV_{_PqLh`H}=*wDQ_C%BWr;y(HJD{IP8-^QZ}I8gkt4~{2W zPM>oyc(%#t>r6g@dbd6XS)W&EUYC;dvX#E5s}+obIr~-#Ufv=-{W%WfH&zU_6AE~8 zo9LyTdW8=MYM@~%nzf2q9CXs$O)5xftouw!wxZpJyhQ^`L+svaD_H)^_E9oFeVBCp znZ_YEGF~2e6%_@Z;$7lqbsfnqV4a(CJ9>p3?2#p>QqX+Epsz*lTAdh>VvR?6d{HJ! zK|AEdnBt@cNagR^C}(}280s+GqF6~BF&?&jE}c9Zo;2zJD=9U34J{ElNx@)L`Ipx> z3W7nFMAM$@qII38TiwACtC#a)LlGhHF1q$@spCVI!qF#bf4l<4|wxra^JJG?ymY$CNF-E|pCed{?T z!c%1-=aHA}TeRwU9P?qsR$_#*p3jhLk(P;0B%%|Zjn}{e~gG7TkutDjar8>eWgwPII$pX zbA3;Zls$F1!Cusv-{_`%^&miScZ4wp(wH@}Z<`=PCwaY@90PvG>X4!l;i9t5qqrhKI-QVXAr5F?Brgl2 zk+WQ3^1{4kcjGs*->g(8lC5GTrLw5mh1;YOIAUn*rTPy+HC}2_65T&rA~CKcFB)(V z9Q@tSQfxf1r8~K(32rJZFcJ?_{$C^B((|4{jJXZ;?z)x(D;Il zHYyLgdM@$ZEpZjvOg3G@SY)i!fhaLb{oq)Yu8iaLLft^Sw_u;yZF2Nl6Nv4XTZR=YA z(ad><)Bz|(zu|akZglO;N19gxszIzE<|_|mtvglb?PfcrxKPF(rz+E48Th>+n*{P| zMfI`f-<4xj73Oq{ADHAydrnnvuD>3tva~|Qzm-V2F@F2w^O^eGT5o3XH-_d7V=j&R zM9D!V%_h3iZq`VGX3ZgY5(6Pf%(dB^GoEN*mo6i@8b#XA@lqqhx)Cfj-oyxJ*8(xx zuhg4#2~z#O=`NS{`#&d44d2+!m=?{ZNqx|*_O;UtSW>OB3XV^!%*lyM>zP!qsl< z$ItrvN;Kte9`Or(H3eY68f!(Sr*@R<=I^}(fAAMq1zmNWV57&;yyba3ZJ-lkIfR0} zA-S9OcPxKS832G*X!rMv!^ttVxJ;R;3ks-YEED707K4TQ<|Zmv(o9s1>+W7C4w(KP z?+#qzu<2IsRR1n6xlc6E|G0D8zb4b?24 zL&8Y=fAi2AO{NiTXmMQ(P3!&NTI7OjmlCpW^8(YyI zTzv9I^@JsM;-eIhAL@AJeD8~DV=l^ACw9!X>Ayc8cKRvFplHA8LSi!q{^I3-WQjkK z6t_0nwA8~gQxlGAe%azmqNxs({(M~sY4+#Vo1r8lFNIHr7-N?$N52*qW&Io2UDuPrkC0tDY z)`8L|oZP_>bXTr$9jf$JV!@vH1&gsEh8HVoo%!^8VY$eUve|Zph0)-p@AY zu=2d9vG*Q_nCKncjyu!A)_k52t}Jx}AXohPN=GwNR~JK(8X7#FM|{{eYU0Ggpdu7u z*k$|`lNDQ@3-%YFyo>Em8Fk*eg5Q1U#rxdI-d*ZX;?v_~99@fqwqP67J3*{Zn@?$! zOPBEm=mi|0BHeHfy_^mw7q24p#oXT!HrPL*-(_IKnEHx~#`kqWQtBFA?-ZkZQyXvS zTVYtps8~w?qxz2&v)y6+Pi83@N*wtT;3xs*?kbP|o06~Gl{0suX4riLaLmHfBMiYI zbi@Myk1ecOlXll&`MNY!xM!~?ai=)(yYujs!`$5p)Y@BdQ74Vfa99~QJj%Z2oFlB< zYD_%svXv@HI3?64z_btU*SFWOt{W)g9=dsivC58niB}*)rL~{p^Ws3HPgz4qt zPuC6h3fJOw$aZ(ZPN7POs8Hd7JQueLHM%Qi#f+C2VF4arp2D!hesQpJhSzyb*g^bg z0~2Ja27n_akqrX6=BX#}PTt|0rTTI2VyDB?8&6IT(cuoDN66CbJZa2{l4yJOJ1n~1U%bfXTThvb$H34YC)J$RqTrsW zT;<>pZjo4ES3?N?2IFRQ#I^aU$JCZET?lO(KZ8d47USi!z=+dB7049{3_dxlXeE)j za8(rlMx4BF2)WZ^cjlOYoEs6w4F0=HvKAfpG2{SJiXQ8`6hcq-upzVCzo)Ew7=R|K zw`RRF^SALG^kq#`0`%0Z915*efaw98U*k0FH+HNfrXkfZNj)?1Bs0v(CRLcn1`b2S zoHb6CtK+{v_6pBf>Jeucc;dT2%@W)3A!c2dwzosD>+yd<4!ILh6*=M#pxL}KRrkJl zS=qtIvNG9)s?o|T1O5HFUx-%)-H*jazba}(i zERtZ?4*(3)59om#=?wU&mVQy@tF4q(panBVI;0)qF|;AoM>Lc>b4C;yP|L}g z*tH35yxuwZ0<5h=K||oL%xBKesLB%OhRPf2i=BTYYY0rJ#^y~yhw_LZsPjmpC z+(GfT;trsx1?3G>QeTx`r8bcR+OdSf&m1Oz^%s#tm|P?ntS>kBWExy&kecd&L*B7J z7yV6+L^5YuO^z4yUZblley7{HPr5m^uKFaZ8J{kwydF@W(6b-Dar6p@AI)_9M89s= zQ@t%$n%u`b&Q!8sNu*>}B|IMl1pX;2Ru+{qw^fRloFOJd&*s&3MjbubmzIvwFMOQM z@(pYkI<8{_tZMv8dY|A8GR?*AKLF~3%Qu$J;CXm^c?(xj=9BwMSp`uqn!|~OUFE*` z@KbSu`{WZ@E~KI0{?S&Uf>+%QMYaujoHc5Pxv9>JS2j`AVn!_#NqX5fnyj0Czv@R> zmo!&ZL6fcZmx`VJ40ycb)#YEyklT%51luy6*s^xw=h#21eHcrod|AM-HfRrbN{lZg?uuU0Z) zW?J;Iq_d#9yxg0<5?(h);^#Q~4v$Gdy_CgG-=F-PJU+g43|Mf+-gucWW~{0lFvhL0 zSnp)g00OOf>}o{CIeRKeZVr7^t~#E@Q|tKaS4G(cQFgNY)(F5q;<99xw%%w#JX3sD zI+}GlLUU9dy}3qYfC_(~r`ie@OJt{FnWnj$Laj?uBjPuT^9$^6RKl#C@~1sUgYz7? zO0torQi1;WU}>7W5Tt|y12g1Dj)JHnv(ed+wm}7`hCM8>A#P`&fk7OhyHNqLeV!u4 zmr{}W0Qj=Vrw~fBQ}t1AipJ)SR1qFKjqenw>&1BAuB<)&_{sZ%$lkT6N1pGx4eS-k z%(fFs;is7Ay^E=`z<*ZC^6!-}BgXPrLxBRAQp%f9mzR9a7xR4+#b}|zpSP@$^ap!( z4}f*>0bN)Caf~w+-4_EFWW}fr8gFf5spo?XIr9)5Zj^$|4Y>~&)>Nya>XtAy?~nEs-|e`@^c zXaxF4ym-iV04D-m9t4l8A602BE~4hKZJ$|GE1Yzm^%wP++zL;&mp`30R2izvQdc$> zK4G&y+Vvw!+jtcyyh$5E5@Mt5CSb&yz)UiUM}}PfLMKRAv@Ty?IH{bN*Vj#^e#)cTsv>j6 zeM@;;7ES_P>8!o#9Rh3!4EXRb=f zEwQl*d@nG#?zTLWlDfLOJR-T@bRoPhQy+h%ksl~HX{t~=ZE@=~xbVW6l|3Naay{UQ zLjk2h6pdu#%-%dgV3~r2T07S;=m7v34W5;uEp#ZAdY!xznus0+t9o(sCRn5#na{cOL`zwx8d~lR*K0pf1y%|kG0YU^)@C(qvZ9J z=8+yo?T1lsx)uhA4fd**UMZhfX_zLkcI9`U7>S|kl6L*Y9m$U4-yxiTu-D5wcN*+J z-+BTZ4J0qEv;QKZ=5sj*F95MLIP3|4wJz-i=C3Q32wqLw(IiyIHu9H@dV;SHP_zD~ zh0zv6;YzTpCR`SV`lDMfUH5{KSR!4E(=a-rjL*cvj<_8*66E z-&@8@TU2Z@%BOdvX#5w9ZM2Gf+ST`H{1j@+SjQ3e^Go~K56Iy6GaToX>u>~YWBj`$ zrwO*ZWlE?3B(Y?g@sGd9J_bEwOb6Qm%~%N?{1`nj*lDXF`p+WH7uy||8Y8)Zh(@Z{ z<^w-I@fA6lws#%$c%{`o>7O#|)?wp>h!Y{3LGs${Yw>!D>jIa6)YqL}^~2lj)8^Sw z8*j)(^Z@Tt(uW#R1Kx-nDD=H$p)1{HLIIL%_=lIZm1bfWW8!g}OKG6XtoigsQ($?#FjBB?6zP{8|tY8Ot2=M_;iNqUWf48N67B*!^E00<UZy8X_WQ`wPkzVXY6nLE2j!^%O6@P zp7AyRYgH5M^DyeEq}>VvMooEcHGO^R0aH1U6fEKMdRqdR-o5~;*pm=Wrci4;8|FBH z^Bk6VCh-mo4ZMDPr0&FBWEC$`E$HF2a7(X|obsFcrI=ZXd#L6k(pzHi2k*XEV?t&j z>`kJaWa~urWF9!;QjaV4p18AWCIHvVg;GoQlP|tOo&SA`rru~`BncUGejCzmypopw z)%A^Du5a9SC!7_+-yN(b*npKM#8jo;f0OL~RJrw>JOuvK4SXp)caZz6X==-9sOy-Mz=>TF0AunhSQMNn zkxPt8xv?YZ$l@HpW#%a8R{L!scatz z;^5I`-}3g4oK_=3`1O0-M9A4ud;pX5D>8Im7Ho?Gu1eGW`pLzYCUZGE>tht9@TL13 zM*MX+0V^>FZ4xB(uChZFQY^B~ZC|Mda6ODE(h7|hTA=9yZ_L}dTJiT5y(JxcNsF`9 zbNh9-v*Y$V6t*LA|HAvPO+@Z9ZG?KYtrs^rePY-rTwRiky_5 Px^~SBY)l$5J}mqnRMxqS literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/output/2.png_predict.txt b/application_example/retinaface/images/facealignment/output/2.png_predict.txt new file mode 100644 index 0000000..e1fae9e --- /dev/null +++ b/application_example/retinaface/images/facealignment/output/2.png_predict.txt @@ -0,0 +1,106 @@ +9.500000000000000000e+01,1.710000000000000000e+02 +3.800000000000000000e+01,1.140000000000000000e+02 +6.500000000000000000e+01,1.530000000000000000e+02 +6.900000000000000000e+01,1.570000000000000000e+02 +7.300000000000000000e+01,1.600000000000000000e+02 +7.700000000000000000e+01,1.630000000000000000e+02 +8.000000000000000000e+01,1.660000000000000000e+02 +8.500000000000000000e+01,1.690000000000000000e+02 +8.900000000000000000e+01,1.710000000000000000e+02 +4.100000000000000000e+01,1.190000000000000000e+02 +4.300000000000000000e+01,1.230000000000000000e+02 +4.500000000000000000e+01,1.280000000000000000e+02 +4.800000000000000000e+01,1.320000000000000000e+02 +5.100000000000000000e+01,1.370000000000000000e+02 +5.400000000000000000e+01,1.410000000000000000e+02 +5.700000000000000000e+01,1.450000000000000000e+02 +6.100000000000000000e+01,1.490000000000000000e+02 +1.140000000000000000e+02,7.000000000000000000e+01 +1.260000000000000000e+02,1.300000000000000000e+02 +1.230000000000000000e+02,1.370000000000000000e+02 +1.200000000000000000e+02,1.440000000000000000e+02 +1.160000000000000000e+02,1.500000000000000000e+02 +1.120000000000000000e+02,1.570000000000000000e+02 +1.070000000000000000e+02,1.630000000000000000e+02 +1.020000000000000000e+02,1.670000000000000000e+02 +1.170000000000000000e+02,7.600000000000000000e+01 +1.200000000000000000e+02,8.300000000000000000e+01 +1.230000000000000000e+02,8.900000000000000000e+01 +1.250000000000000000e+02,9.600000000000000000e+01 +1.270000000000000000e+02,1.020000000000000000e+02 +1.280000000000000000e+02,1.090000000000000000e+02 +1.290000000000000000e+02,1.160000000000000000e+02 +1.280000000000000000e+02,1.230000000000000000e+02 +5.400000000000000000e+01,1.140000000000000000e+02 +5.400000000000000000e+01,1.130000000000000000e+02 +4.800000000000000000e+01,1.160000000000000000e+02 +5.100000000000000000e+01,1.160000000000000000e+02 +5.700000000000000000e+01,1.120000000000000000e+02 +5.400000000000000000e+01,1.130000000000000000e+02 +5.800000000000000000e+01,1.100000000000000000e+02 +5.200000000000000000e+01,1.110000000000000000e+02 +4.900000000000000000e+01,1.130000000000000000e+02 +5.500000000000000000e+01,1.100000000000000000e+02 +4.000000000000000000e+01,1.080000000000000000e+02 +4.200000000000000000e+01,1.070000000000000000e+02 +4.600000000000000000e+01,1.060000000000000000e+02 +5.400000000000000000e+01,1.040000000000000000e+02 +5.000000000000000000e+01,1.040000000000000000e+02 +4.100000000000000000e+01,1.040000000000000000e+02 +4.400000000000000000e+01,1.020000000000000000e+02 +5.300000000000000000e+01,1.020000000000000000e+02 +4.900000000000000000e+01,1.010000000000000000e+02 +7.100000000000000000e+01,1.520000000000000000e+02 +8.500000000000000000e+01,1.530000000000000000e+02 +7.600000000000000000e+01,1.510000000000000000e+02 +7.500000000000000000e+01,1.540000000000000000e+02 +7.900000000000000000e+01,1.550000000000000000e+02 +8.900000000000000000e+01,1.430000000000000000e+02 +9.400000000000000000e+01,1.430000000000000000e+02 +9.000000000000000000e+01,1.490000000000000000e+02 +8.200000000000000000e+01,1.480000000000000000e+02 +9.600000000000000000e+01,1.380000000000000000e+02 +8.100000000000000000e+01,1.470000000000000000e+02 +7.600000000000000000e+01,1.460000000000000000e+02 +7.300000000000000000e+01,1.490000000000000000e+02 +7.300000000000000000e+01,1.520000000000000000e+02 +7.600000000000000000e+01,1.500000000000000000e+02 +8.100000000000000000e+01,1.430000000000000000e+02 +8.900000000000000000e+01,1.400000000000000000e+02 +9.400000000000000000e+01,1.390000000000000000e+02 +8.800000000000000000e+01,1.430000000000000000e+02 +7.900000000000000000e+01,1.450000000000000000e+02 +6.200000000000000000e+01,1.040000000000000000e+02 +6.400000000000000000e+01,1.130000000000000000e+02 +6.500000000000000000e+01,1.220000000000000000e+02 +5.900000000000000000e+01,1.090000000000000000e+02 +6.000000000000000000e+01,1.270000000000000000e+02 +6.100000000000000000e+01,1.360000000000000000e+02 +6.500000000000000000e+01,1.380000000000000000e+02 +6.900000000000000000e+01,1.370000000000000000e+02 +7.500000000000000000e+01,1.360000000000000000e+02 +7.200000000000000000e+01,1.020000000000000000e+02 +8.000000000000000000e+01,1.180000000000000000e+02 +8.600000000000000000e+01,1.240000000000000000e+02 +8.300000000000000000e+01,1.290000000000000000e+02 +7.900000000000000000e+01,1.320000000000000000e+02 +6.700000000000000000e+01,1.310000000000000000e+02 +8.400000000000000000e+01,9.500000000000000000e+01 +8.200000000000000000e+01,9.300000000000000000e+01 +7.700000000000000000e+01,9.800000000000000000e+01 +8.000000000000000000e+01,9.700000000000000000e+01 +8.700000000000000000e+01,9.200000000000000000e+01 +8.200000000000000000e+01,9.300000000000000000e+01 +9.000000000000000000e+01,8.900000000000000000e+01 +8.000000000000000000e+01,9.100000000000000000e+01 +7.700000000000000000e+01,9.400000000000000000e+01 +8.500000000000000000e+01,8.900000000000000000e+01 +6.700000000000000000e+01,9.400000000000000000e+01 +7.200000000000000000e+01,8.800000000000000000e+01 +7.900000000000000000e+01,8.400000000000000000e+01 +8.500000000000000000e+01,8.000000000000000000e+01 +9.200000000000000000e+01,7.800000000000000000e+01 +6.500000000000000000e+01,9.100000000000000000e+01 +6.900000000000000000e+01,8.500000000000000000e+01 +7.600000000000000000e+01,7.900000000000000000e+01 +8.400000000000000000e+01,7.600000000000000000e+01 diff --git a/application_example/retinaface/images/facealignment/output/3.png_predict.jpg b/application_example/retinaface/images/facealignment/output/3.png_predict.jpg new file mode 100644 index 0000000000000000000000000000000000000000..26af5e0cac5d4c7d6b37ba0d1c078243aeb99fdf GIT binary patch literal 14378 zcmbWeWl$Vn&_22Zf&~w*Ay{CMU_kScuGkk*o4*t8z z|6cm!DJJGqd>m|?|LOAoNj-D}NO1w(fNo5Tmw+dv7?`9O5B&h9M?0VXk9m*A{;yy> z!Nhusjq_;6v&Rk)l1K9~F&~Y7`e^ZEZ@b zwT-QdtDC!rr_JAZfo?d>B^&(1F{uTa-F|KY*_VE!+xNB#eZi}VrKlmEs5 z=RaH+PdpwQCMniaW`1lkX$>3`r{^yPf^f-Y5)0~j@K^*tAt+3pr|~ISg*Mrc|3Uj7 zWdHAg1^@p-_J0BUzj46;1eh3)gNI2900GY7&e?Tpq}BY3aX)|YMY&==;hg{S8=QR= zoRP;fl^E4jN<^%lqjOgELD=>F`Hestdv;i5GfREb^nvon*Snn`lLzvsHQQ7zNhC$0 ztda3ybP*T7h{XL7+Kzv-+`GdrmCH49&ZScSg3cS^IvV(5xcl*y(#vCXA7Rm4}G z-ciqfMPkRy@benwIoAruNN?XR@>z(Y$4bd`I1a@>rCYY4A865O$TMK*nJa2kC1^1X zw9tueBBG`#iBB9a=d>g*exAt0b+oaeWpJdus1mWVHbOye9+joIqX!f4!ohCnFxb>t zJg2J=rTcm+(@S}7Dq54S5wm|f+Iq>K97}i2=!1NA**%SBXKg?%hV68rq?qKd?2}z2uvfGDbt12@sjxgg=+>TNHAGLCw8u`nbA)tjXbvOn0?kgR!4T zJmgjcWS3D_7E*X-b)j33xa;Sy%|pdD=8de)kEeA|B}5#v1OG`XjH zC4O8^&A-5E$#4qlZS7R=Z#(LY(P>Nl9rv~}BhWVoGfv(%wmFjLGsz;0*mm+lr!BR2 z%6#$j@d_Pc&9%;niCs8Ow0or;9IuxT5zLRS5Y$4-L)|?d0CuD8ViR&MSG4!dpSi?Y80uh<@`Gw~1jonK&!qR{!}l*xM|5Lg zQZ>O9(tCYH8YgL%xE_$iGr%zMbA$GQ67YmTI}cyj+eW z9po^}-Fm#kHDe)~^AZdx9m3VL^IY4`xne;BN6maPKNDs=Y3_Kok!vtS3$qdbYM9@( z{q3pY(UU?YrJ}@3sa!Zyn8#kUL3=BXGdpNgA0dnQt0)_tz2-xsj?$T9q<#PdfAYoX zh`u8>o`W+T8iF1G6b8-#Jujt5Cz;Y6w^sG}|6IofTzVrADQuC!Dca#R5kr+iu&mZo z$)+I0tw#P~?dpmn3rHxOBBXj5{dVS}MG)r*QbDzrS6pK8 zKLB8<@f86*)I7ZA0?WSUZ7WK*mtP(LhZp}UAwzmBQ6)~w8dof3XX=M{0hF0ra!7`z z;&03$sd^b3r@({E2Y}5pBh5`TC9SJ;aVowjW+{8iFX%=hh{RRF@emaA{?&$KBPIxS z;R6nWno=Mh03qoz^THXs9sKqpKoV-PgN0UpF~0ySHnq3e8)vl7liZA(B`_qGN^HP@ zcJrB)18=o(f^_j*_{;a9+1zjO9gmdCP&k+RGkoj)`DB%>bM{+O@;OP&so5)5!q+uO ztIOZW(wK`aM^MDt!o+!kS!k_>_vN7AOqa*AKG88bRUOSe{v4Iyz8MGZ%NkhnJ-(`m zMY-w*U%0!hsnlp>NjzKJH>V-xv;43wQIy>lgEE*LZIA_1q29Dgg0bN$VM?JFCyb@$ z&56%vBkG~!=%~PnYqyk>(D7=0O=xp z`B$2%tajc`V1;JnF40Vy#4OYh6awiFsHE&^w%+7p-jf>{^QIPg)*BFN=WaUg8z&ZtR}bRh`)bN5D?Qv z+!AI)Ln2)U`z=eY;#;(FxqYv--8MPE7r2nl1j{3vEzP=DFe8nf5V4BE7}95uvT~B? z6!jUiPe(r&ye#dCpPV{x2eu$jRVYqL0$4O`!3foO7*s8AnB%)%)akv^6etZi^8m1b zqFz}-HlZX#n-vwU>gmj6`i6@BPI)1cz!T7Sa3j-q|JT+?+b#wu(N4gO$r)(=jW_M} z;UrZ|_uG~=j@F<{YKYGtbXLb*4Akb1OUEESJpE71)_2R*8*R6%!#m`b3J=42ACJL{ z0K%A9bQ;vUW+!a(suqUtA$FHTDY^D{NaRT$YYaS}AC(_~XxNg# z{iGhQ-yz#7?g~Y#S{ZpN42ml|&UNsVaZ0M_Dcw`tdfymFvlglU)N7HHHQ=25%bA3t z+r0b{lYWmo!-j(bt3^CcYzRb(H!8iGqc6^3Utx12S)+MmyvVSIX#kUW4=i&(+C`SH zjxXx%iWx|sGW$V(VjEIS!t(yYo$2gW>`eoFQZ z&boo>`sd?7<7UcVPlu#3YZO=q%fIb7%0^3eH%pnjkxtY)<6e~rA76?doL4UU$;h&= z{sE)d&83&@>DMf)VSEU^bLp#b^Fce%gLds}eFDS+Hg%zmVi@x<~wthO|6m|N2 zRe8q*Zk^#9=*L?ycA2emZ)@&TwH(poS)1!*>*JsA&~oxKuEq7&2PkbkRiI@_Bo`NU9t zyU%_Vn~w1!jNHiMhAkB^$+cZcOYBiSZjxZkJ&38&&BP2A5!=J{?PmOvJ9l8(Q$C80xq&ovLBhKXI^xLNT*mPOf9UYDz` zL~5rP4=sWka-M)g+y2HEd&VeXH`6CpMJp@DhfL0U=#bWUs`UF~qTGdkA5!pD@)>Ql zI|uks!d>!BqL573zG_I0popyA(|7sSIMxmTj=vP`NX)IUimhj_W4-^qR!AYVu5}XI zhv!y~KLD@}#A~9^7Itt#T8}t8pH#u$`5tjai?h%MkD*~HLjS2tB%!`SZHM_;V8*pU zEeIb~v8mJl3`%S~T4L~ljIQ)<@3{3CIQ19lp6lpgo4CrEwZ40XN#6`cR&)CkQT%FA zwf3f#_*^!uynDPD<|}It&nI3!a8FO1NGA;^q@kwpCh?l2sR@H_q<|sXRa?<`_mrMl zPSH+n(>uP6x!BV;S-1J$J_;yZ4fr!>ZyFO*ak)?3Wpni_P=&-yQS14eJ^*651#6Q5 ze~X>y`pKOJw6n-UoV$o2UP_mepIbFdAUFilM>^+KmamH~zIwapHX$0IV|U&Q!8X5s zV{p(M842y0f7u)_jy>XGPv@jXuU1qex;v9eCbpBjq*5b`^vZ|3DPW$a3lxb;fW^6; zxs?Opq32SrbvX|MWvuOQEOQ+d8(Ws|^w0I$%<*TR04NHo_di;D+l>olyd}c6JI}!{ z2+1#zF*CHOl_UMWfN~WVZ9Q zPwlGLxL*ncKiBl*-mS1XNxv(mg=3#G9wdyh9%jp_w7(Yg$F@4A#~82HmZIu2#qvoT)Ys)okkk>@mb!1G&q z#Br?Y@1{#d{*@{>ZGF|q7{#=*d=q1NOyZcK&pRoHKAs(;e7()1av;Ie{4FZzR;cl+|1@CfDxKL0ebDU|uw*yjZTSOgHM`oM*5#aP{D<{E80yXg zGJPhAsh)*f$8{}7ijR;!wA-zL5npOUQC1~-wlJ%3go%=wCF!<6z5NiAreTWU$T_%k zw)LO(CYtCasNEVJjP&S@4UnDj!o8k$GJ9cXpUw2jrKll<%s^Wy^uYL3u6 zPF8Q?u9Y%3N6hfmCH*S41IVne(!`^eh1;=)|B34?@96$9qmrDQ6s)Y*6))$cp(Q*- z*hx8f9s{Q(sEQ0wd2pZ6_Dy?o()1(`35-4C0JGB0&ZSnfKpbxqnmd3(R5;?_%JI!i=7Wp5LmfcI5*3n0b$@s5o+hY#Mu&Z zkd-}|fUaWhksSATJx4_fm zeLM8pTZ{OPJmn0QbxgM-uspQbx2Oue~gdsm+y@~HTo>H8}qsdEU@&`dUY>3LV zdL?^NGtL+*#}RLM`|J7QpuQ3p1-!fB2v@lOOaHNTY=~n7=y~P2ooIBU3#VzJ=wGM@ z)T{;@8Z1Tg=bx0?Ed2}qA z(Bg8|FO>MD8N&eooc*DWGtq%R58lcY>5qX}k3LVE6;{DrRbOQ#0v1B&*&?aqsIGMc z%Wad5#I#(74!~lW>d(a0@ZVTXZ?Hv_YN!fsf|r4pn$tPzck#uTj58J8H50_Kj{zEG zYtggOWdq`bG%;YX_~Nl+zazdh++IqnO>S@v-o<@a*TGciY0!OjMYt2D`zL6WJ8h1~Z@yo8%x!IIgiR_~X~ni14Ojg+uL-Az2!$DG%noQ=N5jZ8cMJXaN& z@?XnNjCgYpjneYCCCy^xx79<9hTUJ8t*4HD9~rxC`6=i}dGUy}Vj*0NL&|O8d;Ii9 zz})$&!p`(v>6|P5+n9y8c3O)3w?e#|67@9NOPq0)E3 zuZF16TqU8U&jQj%hgz!snH!jQOUhZLZLA0zpB@C{0cN{cBreYUHR;n=jRxFRWi%CzjI@ zXj|B%gJg2ePd_RDm6@mR&;je4E2BURU2Ez?D7uzcC1>>+ji3As6OYksNLhqA`R_aX z_^POg9?s4o_!yUbrBQr{cqIfh(BWy83fHiY(ChF-jN2g`2lb!H%O?bzw!UI_WnFw| z$&ioD^DnwuW`3_;M$n}EM3{eZu5|Vw8?B32*?8~2I~73Q^?Vg|(#tJm9`9={Pzn+V znjjXHykX3{W@7aWTOZ0Ng6JN(#bf7css_(@{o(m(nP#O;qgr&T&gzFSpo`H+n#z1u z7Mqlu!!rJAm50r<OEAoWoT zoWK+NCe=UN1u2ijoAR9L;YwBEl?fs5_Ia{1B*hWwFw=TN?(j1KJNE2Iu~)3nz7OIe z&R(CaTeXrDs>$djJccU03`BrJ-CU=HV^s^16l3yiz^m27fPBr6*%x0NUeseB#hDy& zmg!%q-mq3L!AE&2@Uz;1#b*w~-c9bbowerX48*p5Ew%jHK{q;LKksLxo-DfAG4 zQ#OZDn0MXEq`GsY4rwgLm2%w%6LSxH$fL>%J%bHy_3Zt}89EB=j~TUIx(%&S?;Q-v zFBr>SCl0|)_imMxm6ti%mS8aOxJ}!>H?@PC=&VkAa(o}pmd|;!f>p!6r3tjg0(?rS zm5rC&p7k&E^#fqzCzSr;Y21N&ukUgt zO*)8|igO@_gM)EcC(pCEv_sJ95JzI;sdTcX&XWah6iocj^u2SzSK zyCgB93#_U3$r-hU z+QXS?8>*(Q+F+&Z9pl8>3*rnopR#P8JiYbk2wFUB9IP`Vi)g>x z5QSiB@9BbZ<9yB44__6q3w_MF=>R#G70w0%1t#NiAxyl2sKwP&j#eaZk!GFgN~Kd$ zSQW0E3~=zv^DE1f#T1xoHOg62fAZMMggpjD8?Y1!l&X-mSr*Rg}1hP&t09XukO z`W%$(5YZ~V8KF-r%o;6Db2^dx?y$eP)YB45Skh^G+o7h(p5Tl?m-uSpPp=hal=+6& z>7g49kMvtefX4=ONu*Dp4aBAai@fTGGT1xv_Zr=c(>rrSP=3<;NC=`Q3X7!A?P*{sm$9x3IG9Wb7O8f9JiX|9(Hc7P%a z!NQ@`!)O6}<2Sc&>_J}F!cCJd`+Ru)yh5VW;)x-KIsgoR}g{dl$de+g{zqV}x(8L$>G?&+RQI zv><059iktpzwoY?Opy}>y~6|$=p)n*&3<~)4U*bkpReTQk>K|try3`{6>1owl{%KZkjK!NmJ0tzHN~gdm@#>fzg;4C zxgE@KBQp8=nL;8RkgLm)VQZ|1I!&clen+;pQkguAS36nVpvv2(burneMM_Re|IIuWR?9ouP&b{t1DsKbAjMEJ~Nu70*s9#NOJBGB7|E_H_4#TO2`srjo@Lw22?On5UQ0sS!7+slEVdT=gR*I4tchDpw&5V zq!bhccuZJE0_>vmaebwmXZ@KDng!(?UvO91QC{*E?ojV8zAz(r_h~vzpmc2K`n!`} zr+89~PRB~_wWE7=w!<)Qn!eGoUzk;j=4gv^2eY=l^REGeyaiSEpGhg%UCj=c1}tX{ zed`TO{Y*3mg8Iugbs3wP@FZ&omNa$?`=X-6It9a!uuq@kq+k5)dH_7;#wKXG@QrN` zcafXdw{A1$D_?wb#r?Ia5bGO7K*YqeP7YO9+ylH&Y+O-^`_yxV-uN(WM%?L7?>|{4 zfx7z5wOfbCOkHRla$KXt>W@iAPGeqHaExnQh|^Gg4G_$^$qM(O>>~}DB{v)o)QFe; z*xzM6l00O4O=HyFP@gI#XL6;;poB$#SsA7kwoUfUx&Y#P{Ei0zu|I(-QCan&o6qV-AI6}-TmFNo$5?nW0?c^-)_-Z80zM;Q z1h*T#<}DS|6r_e5^(6=f0>?@a;6cZTSjIA|O&;x?-EWjTU);4>FIMBdZ`Chl?=oB; z0HH8?@w`q4Cc~~k;r^J`Q)wnwtAiVzxgoxS(9j>%lbJU=U(MIw45i#pH{E~(U(9sj zS&PT$8>J^xUB+(jaimrDcqrfNH>4W%=a!ELb#p}BKC&guUiJlhYl6+K$f$$*uBJ)$ z>a%d4bPIy9Lx%ZvC+1AX_uSM)Nt}9gWB#J|y?Fw6C1}4N2ELLcLlRrVbL^S5q|VqU z{(zbiA>yUNZl=1S?}xs?jlD#+mIR)&;!(xkcZC>B@#_|_T?~cE-k=y%hk`L5SE^9D zfXziG#K7KS6$WE#Jx8;AFC#d9Zhtzg2$cL*HIhqjITlSATgB>W!JjZd4i!hgMn!Jagf5nCs?;_)t&H6(rAdbV7G=RHU>MR8)5aee zkqSpSA(?vf*c&<_Gg%gIK5;vDBv2@@xuk;faR_6pV&myRE9RR0qYQji(tMUxY<32R zB}ev-RX0$UGvgP%8@aDkFhy+ZJM?|W?@Cfnij%dQ+d3u!;BN{`^^7OW!7G*g{h_(5 zf%t%7)=S0<;_!>#MfFSc1woQ7dJll-jefuZ%~2DlZ!%(&YcGO{WS^d-;?@-^21@?a=l`I#Npbs)+FGfTw&Z-#GSx>#- zc!6Q`H`Sl_Xu)$uATL8W5&81;nZ0nHL2M40yxquvkJ$9?)P+EKOQo=dyol5{)Sl}? zt#DOgU}&wAF(FeJJCd*8M@1!oP{HLDCr@Wz%@|-~D`x9O9Imm!H&c?KeGr|59zin^ zrR!(n*ke4*ybkkwExV19bg6W#wU^Mg*kb0S1?`XS1;=l#00hDQ{{RV3olWS!p}bS! zN0&Oi7im|jtGvc`N<8OnQj0XPmU;`Y&Y?S0zP<)@8%#htGi6U*T;>jMCg(f`Sfp zfrZn;Pgnp$f#RPoqu`g^XnN#ih6&&uIOy@0QtfwBML3 zq(4t;#$xvTz>@51uA-oi3#@bKJxV$6iChz6G2~?!7@qZ+yZ`p$N&3ft=qy9alf#qk zvTgYeQ)tn0u^N3sZ2S(YOu1BIx%HgqGLbUXzPKdR&N9nvsnSW#(ILdHJZ3v6Um04c zTbn$VDdlLW!*Kf={Q=Bi-7NKNq41fT13^OCzEg7iOefJR#ipbWCMgLDGquKh|E7P{ z6ioYyBa3&xOMtB^m&g7zr%--$N}YV!iFr9O@5&&%*;yKm7PLh|ijb@O&$$?4Dw#wl zrCS=lJ!xqCPS$JayBe^S*%+P7u=xrz2ef5eu{p^QAN2shyHF1k+>f}NS!$P$TiK<@ zNbosZUX=KPx~|4N_`IEx-%-`Be4yo;+_j**3@Mi!t6(?;_PV!+bPcylGGyDO`!xF{ zPp5o6UuA+r1J~$OdXHHM3JjnWdyni-Y3z{{+3!3GGws= z)4OP2ImTSLUCon&z(}5zA;z<1;o|@@2@$JbhQn4aUx;QH@$kA6Jiu-&FGA+XaC>Ob zyEvh}>d(0-lJ#o>viLO&hu@a*cyz_xxVMA83~nK7FlbYc*LdNWfoh>|;cZhL13tdhE{(nB^&eB85h*i4FL1cO#n-qEW=T^7( z_-EvFbLXs>J(5JkfNhIF0$3Z*&=BaUfiUD~eqb#`Xs2q|{o0iE%XJ3zbwd&WAMaWw z5U~ANKjP7M|FXVgelVG&rP*ZHQ2x)eJjJ1A7V61u>GRH%LV2x1?dP#?QVdhNMzb~a zMIl1fv-Y;Bvl3`-PR%lU9%Tw<@oDFzkkHN@HGv$6rW%&VW7U4cU&#i=Z}lv zIal|n){Smib6w6?C5{oDBIcM@SA zW5v9B`D>!@g!}F3QkEv)C)t$B>wFU$Z1hLQ_RT-DJm5LhX6fRMz2L;N2~5fw zQpeDn`)t=W=6Oi7;*U|XZz4|Tl??n4;s|4r5ZP(_os98UM!#EOMW=s$Pv8ijtqm5d z0P|(GLVDIJ3!2maK_t^R^8d4C+M;42yJ#Q)TTOGAG(YB)AZ+z45b-b*LW|fS2YTS?Z=C1d}@|d+e%gfhhU_K+$ zI!bbFTgv%T)wFz2|bS~nb*xfT^^m&klP4OKGje?Roj%?&)4gi@bG4Fw}ADAQ?fv{%MvmPN8U61ywKs(J?v z9L1{5x0}RGsEcg$_JJ?G3`B>#!}jUE^)#J*=2?^b3N(w#65-vTl=K?6p{)jLTK68v zTk8+ey|NDX_pCT@H#G`g* zq<+`#@`H)Q`nkwSHBYxy`1-GVtr^s_ArNjCFUs1$6Rgq1JDvY#9F?dhPV%mX8|ApQ z9t$P-Yfn6wR=;kuZEwAURfsu9ngxXiENyi^0LX~Z+>SxweV(9!cPE}^Z(n4#ZCPX1 zNFLny-s|pI61DySqZv>YOp%ScnaqOsm%{WE9QiYyBSvbYT5$}@JwwTUfJEgy%nfsY z%MM)sDSu{!{||qf`-MEhq#4Hxci1^+#$QQH2fAK z+W6MjLmbwqr?-7L15_}cs?~w8Ul`n8gogH|@sRxRyq6(b(+-(0m7Jf5AZ}>S10tD- zzTR`7B!%rs)96ls%;9tqH2~<0uhM44)$GNf)jRiKISxikNNvh?^YYoLRns05i3Fz& zGDHzsl3FbzUoWwo@zN}Vb(>_xPo7xplT%}%$imG@7;lHo#`fa5hnH252q65|fd4m7 zzw>3QtOrvKJW12WWf0dInml!h#S69mbMk5c_pI21#Us?2x1rTQ+Rwntg` zB(y~*RacY?zrL1L{55lGO6nJBtYAW4Dl+qnZ>WeZYap<6zL;%2YyWs&-_lq3uIQ*k%*|=zvFdB@3lmS;>Dm$YFv+(S z#vcU9|1dZL?aVZh9EaoZ11l;Xi6-K#yn_!;zQJxICO^Xh)`xX{5_kYlVec^-XJQQEO!}q%x^dUq@%r ze`IK7YEY)rW^P7cd*^$rw|%xN{Nu`d!J zz4G1Xu{Ij)u{PW`o(};QA^w9|;XQXWtc^`bxz2^M-C8T&LZ?A&?$*WH#Ml0G*R zg7X3xK{mi_K}W<;-%V`p<15dav~KWDe#2Rm8x!D^lRy(Tbxk@*w%C^+A=0Kg(A8YL zFCZu3Kx0IQBYdgnE{pFep8~Pdvv0H2m~LEXzkp1RHTd(TanR;|Zhd(k7q7*-2?|vf zn6*zmyihn|OG~#eduPl}*R=a$QFh}`(QFC-NKqNR&QL&|&QYEH7Uv6uLcB0x`Yztn zx!53%uk=?B0NPt{pCvFunoa$K&V<&8MfiYoXM5hxhk3Kwt{H*@q3P1K<>JnPHbvr( zTT!auO}^j`mFGOiS&2!nX_?1qwK_iX!e9GnU&QR2JM*(G8YSTK+01>Xh$HnOB=JzRhW#;zaHRPc_jmVw_9z&x_4^KZnBlOI>P}Cp z!kg*n9wtVr3|-USGt|u^?S;GjJapgmY@m@*7N$7#ed&6T!OB1GFnW&|P%7O^HdZqY zCL0rbp|h07g5pOU7{@ylZvK-^9YiHy8WNs#gK#|Qw8V>ZuU}fjgo1839daxF@^{e0 z{=EKi9ADdm^rvi7)~GwH{MN<~!+o(aCn7TYzMlZO)(LzpMr}ChkA3o2rLd@KjI7Rc zJ1`DIjNVGP&rXVI?yHDjyJ{9sDPfxcsMvSj7fK^j81rNDM`6as!5}hABI^D?2I{K* z9OcQ?ylVbPW0oDFpCaH0JXcf}Cozl7Ah6#b?|zAiNa|H@mg+(sWqx@``0NEcX8t?f z-SZl&DG2V`?$s3TFcXl)!r-6J;yFwQl*y*S&NsjmB87*_MBHrkb_q=v%oXTPF0E}! zd&Y@!sjJPOCV8sEhYk~~m;bB{@Rn|<+*T{Hjo0#Yn@nKi?Z%~EvaO;g0khMQ0)Cr$ z@5=Al5y#nZM`ER)`%RIOjfv!0cqDIhsJA2uU(U8k3|`M_H9{8A3>92@sw7|PnlXch zusdeq68yhUM}MW7e%^@~v|R`-8%Nl|4SX3EL>>TU`vU1R4s7@Id72!n@jFK0@luq_ zsAQ!i+`oN_`7BdbpQz%($Hea|$iJF3CyR>GYeNH}*3s)>Gply>ZwlC(oqko0`Y-Cq zYbNcS4V!vciSZig3i%sw-{i5O7=BsD4YP*kJdasS_dMuJr*s-6udAi$f!Eh4Efl_5 z5}MVoIEUQnC``q?;VmKS;9{SRHhBAW_BIz{Ab8HSS%W6`(4Xp%EHXqj?X%N{*5qPJ ziv}c%?lPsxzx(n}(R2I#IfLCj{u9f#@IH0xsWl_wm7>vLHN_VM=Cu~)e=zJHKVgT# z(3uG0XlR|VXPIri-!spxYRuuG>M#obzEebISc+0-r-g=)Ta z1barQDk!=LHE;>J55nB6(PLY0!=#OG!=y1WPjJA=U6Q`u^Fp1}&GK>y5ypLUhec)*ZY%EH=kvn z_9mSvUI>qhLB7_U1=%RePDb9vVIEOOOZKYz|cC^q<^e`{s+_pM`-wF%W#1yO}1h%FB>=uioV=FVa z)p`3}^!ooT+?5wQa#u~4rHHFU7iJ)v+`V)$-eXvOl*?985saZHn# z$wK|;{_N1lg}1bpD6t*gNh>@(rU-B&^iZ$RvkUpii>L}WR>{)+Y_D_vb#y^p!-9Yw zk>1MR52x4dfu0L3x8G6da=@%)`W!!mu?Sz526HUBMw=Ac+VcL4`I6~Xk@pH^v=L8Z zbECoV5(B?}-UPn6bbbOMQzJ)@oqA**bxT^WG2A(i`hEOnK{5o`F6CQbexR_{-BspcuJQq0KwV7F++wY|a@ zaq??(tC*K5a}qQ^8JIrT>FF~!iQ(-sUK~NGT!99DVwd{y{BuVD_lueoDQ1|>q?>T1 zbC~^l-@%^T2Pko@O1{&VGjSC8UFLjEzd0(YEoRX{?`L40(Go!C=?_Dm)sBL9%;qn& zYkISv8WQ?(O39sfhksj{H0@+u9Qiz%|}weI;cqychj#ONiuy+yrsVEm_$=H@d|h?7fVS4>9WBnL4>Rl>TTgOiZ;80AybRaRIlyiprd<=Wg~mi`e5--hK8;medY~X eVbobNE$;fHX)qh)4@aH=`gq(hUPBNSCxyBhoq2-Q5zy&@iNc12g2% zKR(~@TKE2Q|G4+Qd+qm}v(7&IJkQ#(_I}=dKYzatAlFb)R{>yQ0RUJJ32?szPy#%{ z`p^FJkN&gA*#CK)$B(fec-v1Q&|K#qw02KIuEjO@l|AF@a_J0lQ5%yyo zT)YPuL=Oe($sgcjV?Th#c|iP7I_Tj&;4uXbgvy?Va7fd;93)lhd>F3(V!!f4r~&*#ArG!T&$Bv;TL* zLjQj;`@e|&-@Fz9#MoF5jfYJEPyk%_%!}&9xtkkJ7pF2b%Z-0rsxp`H#29XUsv3~& z50UwBq#>bTS(PGIS)@C(uWZ?%BmS)E#6YxZTJ89sWO!a4F|%P=~> z`19UxZ)T^z24SI6W$D;>g%%-aVS83{%*)5+4nJI``l4u@+@Dl4(9mReQwvh}&waw# zG@ZCJ|E$LMk|fZ}_M?BTF{|8g%)X=z!|;~jH8`BzeNtn)UdxHgyIry_hSo8MV3J7y zG|}m}wm7MYp+h89R#nop4egHbht`mj5$k9ie+w-Z^XJLS$G z7(sY930rrkYc1+}Br^C4@aw z1}`TpduJqjshV~e+<_H#LReYCD@?;ue`$jP-4WgT+ULoaqXT>0#>G)I`~~bux!M5w zjrN)DPLvgNzO&!e)fQ^yB>k}lYlp7p(%@Dzfrm$1NAs~f+d;d>(*|VPKTuz=ut-p* zGG5%1Rs>|}NTD)hTK!=37tV!Qn7Nm*9y#FiP^WlELJEw#*cV-cwzcC z(zjJ!l?wVS)R`~W~ynDv&?g5@2Kh$b*90_?^}+-q0>8b7LjpV zPd3}k*LNfi%9Mzdy%`W)*RYM5o5vV9DpA)znB4DtpUd!qKYqsLwVd!mB~s@6H)aX( zSUiMYo>Xj^0_Af0=eRa-ovV^+Cpr(=@Vmk}ok@S0WYAUP6BU75p1XE3f##Myb2*yF zLtC0P9~O{l_E8|oLprAB?@;%=d!}7Ri(04+J+qchaIO^_Cp6%~?Kq~8G4~T}q15&{ z4ZWCKFuIqkB3>L}{VqXWz8<8DCWYiJWUVNU3}jbhOVS)5$`$!_WGK`d^YWT!b`-}y z`u&1ywEfQAKOLpZV6c&WtG!Ho4wXW~k(<{dH*$Ymy(?`78>X{xUIaQsuj1n+9I(;3Sl$1VL87Rp_t=FzJ zIp~;lihtI*UP;DEoap8{<0-6N$E=lh(>%iArV&g(_m19k?$>YBX=P~#q@p-k zjh#F03^}f~4hhTUMt8=LMSe;XSGnFz$_A9ebAx#2oXEp}B|g(=Nn4U3i_9fN>-2vn zjdp8jFdBKXe~t(p=!|{Ol3PD?qn+T4*Prs&=c-Ra9k2oN#WC4B=@#1yp}0{k!FZ~L ztzU%4(Jp?}g)Xto;y4y`tt6ANJ#XqoiSN&;i7Bi2xyZY5v?`C@ursmtbaelb=ke3rz|D8{%=ZfyuzQ)W@m=b1LN+`l zvYU^?{6(NicJG0oCjX>5>e_kk^g_?0k?7_CDac&EJrP+%#F#=oZv9vf`$Ahs3=NDd zoG5qjv7suJUxv>E$wyE!4W?qh5eKe^eIfITiQGb{f5<600 z_2S*dWR((W4nJdc@G^g&55SH&?xeqYiMIXcgxX8?w|pDZ4nlgw)RpSq9#o&0=HgMA z74Gq7Z$lDJ9YlwaxM?ltQX(9qq=a$rgT2@M%njSoX>qwPrnjS<)P>S%zcCf~4dBWh z44pwp_MaH`nhzD4B>0l1EkFF?aWFZm%RZ_OPI;-G@O{7^>QiW@k?d|C#w4aTn*M9{ zj6|@T)*kUTS744src&}=b@1Aa)fI@^7sxxYrJjGU+rlnrrY7mi@ESJVx+ue!;wSUmfUs{ysTQK=yJEz*htmt3TpiI2aRbouuv;b*wzF&*x4ynna zr5ZKGLx(FiTOQ7w%HyTLgr4Z4(*F6j%$9q)dVNn-%|R&?%frSoCkWN3I=PnfAFedW z^!)e?a_;NFU)dM;0K!%2`o=yjEtRYSRpw#mNhad4pLZ|XW4l`MY)2N9x1zh zZ=N}{@P9kFd`vbS1*>8DU6azhvxaj+;)&+fhP;K<1;&C}Ux$Gi73ZaQ<$KyWd*li0 zQNWmrGgcDJcSUwz!i;x9&pt8$KH5OdkT-&;wcf?AHhow8CwsL^c`ujE0KV_tNDqYu zx2@#R8@r~codQ|+JWM!yYh%X6wTbm>GCd)a+1stz&|x-YId5!qvUL;m zx)m2qlF}>xa|K)BJg-7I7Zrd7(b6`~WxajBn5bQYb*39<&a*IN*v=soDhlgLH=uE7 z?9ZI$xO9YI**U68pn(}i;U}s zKO?l{x5j!8qq;ac&HlZb<5=zl|)YOhd@Mv;<91@yMcPi8Q<4wUaLb zxDND{%9yVKP`TUM8(^uQ@wquVy}78GYVg;X4evs=)fv-kwPSXO*pEv^6z6$h>NKo-AHXi9M79KA8eSieZ}Z*C|eOue#Qu` zwdf;c=k!^Q;!fJgvB%M!*g1dt7yHkvIxb(~DG38Myw-H=b@FiRGh!B;KoiSabjW$a zJs{N0uV&Ps1;)qEPSN|!$WR-fx_ZSEWBAiY6$y3nIyrRcABm`zh>?Z@ZJOJE&Md!g?efIT%zTE~g!dIV2%CHu|L@PFzXE3`YB@j7ZkO^FmWTg2Ds z{@`A}$#YGV*jY~DVG7;+8Ly*K#Z)%i`>@b_mbBPS*H9n%=hH=rM$>tqpF(UrBvo>% zh5nef1L2>u*>!T+EXrx{@MHz@A{1vr2f;r72J@4JH`R^CmLnlTW*ua=d3EN<_o|zd zgafFQ=ujcXL@0L5EiL9Aa7}A^U`05~@p}gE2h*piGN{;PG&&Y>cF_x^oU|{Uryo&! zo$V%He=0@mC_6wZJOvTzYkn)7S)C^4R|`8`qupysn{tgb3x`!UbHq7kbR7aXGtrRv ztARq-QVZ=Qogehkk4Fqx0ygX2PHwc&tdWO5>e?;(R9|P4{h6bS4(9Od?0X#IutwnF zVVc1XpF^N%B$_XGL>Nhf4eI4s&kfKlrDOxnEX+)uS?4gmC>c*+^A+rP1uTim8MQTe z6$t@mb`o@2V+6g)5;HB%e;y{-I^v)1bb5HpeBtaRBa|Gz9k~aHm-g!!G!oLV!zN@@ zGhR1h%4M9)EZYW5FpkznoL}~N|0q<;GWv3UmzAQEcI^?W0OaJ%}>3PK)+MX`R8Q01@7+P^kKYt5(Q>$0}<=o(5 zmOho^(PRh2a*!5L36pc;d&*!2)hq_Q@u-Rv6$Js}#=Z}VbY{zBBMu;aBM}ZqmA`tsp zf!^({LX6t-X}he1r{^QB2gJ($pspbQrbG=6Nh*;~GrQ_sj)3c}*_(lM8zx#>H0hcKPkCDFAn zh=mnM2UPNRV5dCl^~LSfl^4b&Y>S$gV>3Dn<#Y^ma@+%4S{WPX3Y+buRtGr`EZc;l z4A9YD_Qo{p2ESS0KH%bwcnPgqoMFyDN~t}I;Z9|{@Mgkbvwg88&SVJzbwpfL<>xIm9T8fdpR_ma| z=)L(6AA`38yX?Ov$Gr6euHP2UR+oT!IEe8ipSoWeuLi(loymGwiTVT{eII#P6a=(= zGRV=WJeTGYqc6|KLo$mfm-Pp*KUeFrWvkw37hLa* zJKWZ%?ye5vNpK0!zk#_*h{vei?hxMpvJ$i$kNRXuK9iEL+wKn&B}dR+76cH481g31-`iEu8LLy zwO78oa-hW9d{Il|{!Y>&)OnJ#n_X&M(sJJ#J71Zafb`3wh|6I831rmWszEw0d8vkx z_C%P0nT<+5blAWlY zTI6Lc&N~sfI~(ijGXBu>*82K~A-v00A8d!QH$%&SGG@9i z+-z~R ztJ8=dmH=~pM!GPlvDL9@LsSns8rH9R+Y&}RAg#8S1lR`Fwgq% zJ_j`I{G1g<(cwrNC!5{DI*Cq?7%6Ctk6=;^2!D`O@Q#DfRE%@2sIyNpwueRYTng)XA3!0Si3)6 z+g@1-J8Q3N-YSksvsG90^lTE{YT@K9w>q5jnJPa3F{?%)7e4e{Wg@(=p^lxcn(&e$!(YK(yh^*7qkUU%QEn@l^6@ zLLa&RV-|eb(3k$u?-M8&%2Y!nZHkYhr`b8Y>aL;X&sBC9`N06C(s`RMFO> z)Uc4gykRmNtc4QZpHU8ay(1pgpC-lXXJp?!IiJ7DIT&~yeaGnc+I%!n|A&jXc=zz; zQ&x?u#NIWsdYw44R4ba_bt{DTfWfWJaOFeK)A67Wzc8ML7)_M*S`RB;-Bv^BTI|x< zSG*()UbffJ*%44zKgOM2gNJVRGFuQAQ5(>99G`U3*sB28zXuS>k`!S$`)IXrZo^v! z-5IfaNy*I4EN%K5Mf?=r*4Z&Sqq`J<=qj1>2uzqgYE5mXO%VqAP6iC3BrG z#0eVSvJz*e)lt7aJO%Fl0_lTKtqc9>|1i7VDo-Ro#B2L~Sg)u~)e@~_B5{&DJ}@Cw z4gs|3k|g|Y@k%Biy97=&wHxb0`g$j(EnN(tH@}_NMzRoMa8a$`)qN0y^%B?UCpi&| z8+Gk8aIS--cmo@DAN7(^YxNZ!YUBbrCq(PwCX{&=Pb%W<(v$+-1Ipdt!M11rJx#Ke z{gn&)D@gL}Th#Wa&^DU`V8r{UclEp%3cn;Hv_+xLlM?2o#0w;A?aq5zGSa_Y(nh-j zxwC9~MgrDLX`nXc{_Mdgc+*YGws>W}Qg#R~hZ&hx(4fN`*MuA=!}s*$JUXFDO0-{Tf`5?&Zk1P`MMV0MS zNj_oW0D+g=GiyVR)-0Tvx-}Z+P0*Tqzz@lThVmJ6kzG$|1Aj_wqy{6m1X|TxvDC36 z5w4lP!%BBIPG|K3qC0cix*&QFXp~`X=w)Nelj~-lTv7NZQZjJPsnE|_JK5*VsGYia z5FAtx#ay`@U1&I9NL1@F(#w9*N_2wjXdBXS3IsT0hX0Dq!s#VbG~&cCBU(GNh79Td z;^_i?KTmp^N%{WX{+d6MU-9YE@YF>>qEkfsx{`U4PIw3tT=c2h#gI)`eNxqX{BS>Y zHn}#&y|L#kJ~8(m@KL?Z-oLOa9%s6j7UE^J?ZU=q^-}1wo5;i~g=Z6Ul7!aakR|3D zRS;VgvXF}$`HfrZ@$t`u9IRc2%__+&&F)V8LR4g|>vxH%k@`W|;^f6ZMV4 zCkYm9Q>_rb)KqG#=oJoLr|H<8RwGB&tSjc?Fy}>XvDoNz)11^-G24w;xnapcfa|`` z5=QJiX?TPq;9}DSrYPT&?h_Ct(JdHMXl+>~ z+tP6h3iJTMgDLt0#0yY012K7VEuA>dExwBbzrrI3UJzJVS z>op4nRTuvkn4E z?#ODJi}S8;uuej9QpX97(LoJrz-?w+omXr$O*G%GuL}ZBE)5jw@cIQwz~UJ1%7aDo zkii0hcyJ$%fH1(~SWRq7JENg=Y+|u#L{c&kzcO*W6T=hPcSNX)F6%{*W|zuUC6SxA zt%qmq=ud6~`S#a{koAvTyd2wVf8|UzMsphIh?S_PC(^}l$;3+KwTB>XRO@BR zfnB{xSB;I|?+0!LYd*11d~H;;l0bWMZh*Ss6W>2U;vIgL4mPYT1XH6DzQwW!n6>_- zw`bP!GFG4v?FX((KE0r^x(93kztokB1eG1Qn-5T@`K8kmj$`arjefq1kq1#DtO$ zE0$W;HhxbD9z^AD6qWj~&+p9UCB2o@{JgL9jOpdmQ#NMadX(w_8R_1W)Ru0TO_N@q zN)i`wK0R;pE4=LYxj(Z%`xK9Fd!xPWr72=OVlWSj#(HN##$Di{LF3sqpTQwyRQA$jI3G@2n4?=QUMCD(=)fiiW|?(r*&({Qc!PiH!oX7adISem5UNDF;!4ZRviIaj-6bxVi2%opZum~q!U zOfDIzU(Hm7ZObdPs@rI@2d+UHhX+A-H(LV1fn`TV$zF!L|L<|8&vB9ZKzWRvW@jSp zVq|oic1+n(jtB*fgZ_-vZX;AC!R>VwOCma>4@l^Jf(W6|*jes)mNu!I%bQ#zPhH-a zpOC1zWa(Vh;=CV(!}Me0cg#C&VPh=~_|)Q+3!h`?+!^X1y&0t!!=A=-5L^#sH;bOw2dh|FQIWsM=tEK#K{| zhtxVMO6ox_>S&-t==Y6jrN1=A$aPa6vD;%aDE#F7OX`Q)0-^Cc6L^s;-m;ks>JFC1 z!0o5Ozd&mtt3|7&}@c;=MrIz#cMa9F+yf}jcc9+sbs0# zo5h8}es}XBsCQJ?ntn0B2W^ftF$JMTtCGM*1!$PDo!#u)@B`h{wsgR70ppHG2W2^~awjXY zEO#iV9P)c_`RGx{onFB;Q64V@2=)@{_pO~u5qg#s3Az#G;TsIE zHB}~-yRcKfWU3*x=JH%h6t-JJ{=Tki1K1|&m<6Xf(+re5Z#T2>AyIZkOrRe*Z{G;Tup;sov2`a)SBUIPE zu%Fm%B7WnBR2k%T+z3*7XP16wpR6Kf@57#XctCChiLBdh3#xiaYHRi262NjGj87_j}KTHseww+0?_FEZK_CuVou%ncBl^)#pe5 zq|lMQEbOo|!LI?Gv3%aP_Q|LXGEKjxUXM!PUFkbX$moILLgGl%1IV;|i~-uZLcv#SJ=q^~Hy zx1{dGw!yaAMU8syPFe>?V&c=jTJ4rgGfFY^|9V+dj7EPiC)Cr8j&i9u>1rwuGKLsYz(bB|$)F?xtIe!}Drijys(+EHtdr?fT%e_8wOQzRj~aViW#za*)=EVeEV9 z7dfyPQTV*p2H8`l~LWi2=<+kOirm3OFkkQt=fKs6=Git0K27SfQiX+> zrezgUp=|K*q+)wWo5)_`x?nVf+UrNf4JX1}Q|slJoqAP%^!9N;fvyl6CV-aHv$mDe z0h6FcJ8WaU#f;xw!>{$hL7 zXW6RSVw}C=JlUhU0WS*uJxy!ktK)FPw)cxveju%E`+&* za%9*(FucHl%E5Wlm6bg>3)ftc@Y^Z>1fOuivX^CLxHPXnKYBC)f2j6to&X|6CwYBK6fXQeXi45hd zypeJErOMOi!DK_TA3~a6--;5;{#@{N>2q(`1P?(Q!_WO^GkRZacDKP_fP83)?4MVx zZG#cq@OVCNDG>XQup+1ElDGUl+cY|C%_U&vDszm}0PmP|b88&uh`&s@6UMlww7}BJ zLVMpCc@KcqvPj!kdM?Jd!{csV+dT;V(Lw3jn^Ta+eO>~|;riuskaP@T*7EJM+iy4e zxAp5J!ia5|j*%a`9aEWC5-KnobFUX2&u$~Zp0&MGd%~Spwc#u|ya$y;dd7_w!!yNV zD4NW?*i>WB!SUbZmCC;I&u$AkB!;0*`hFowEiVQH@bw?$-U(2ji`ezo_@A|5qsIHN z5UsU}yE`L}tWvrCqSC@F|8twtb@(6Md~FJKAGrhzRaokWS`nm||IuU?w}8lMIVMao zVp*i-cDrh+_ex6KWU~q+GB_7vU&9zFdtwz&(9}Ne&Y;4)UF9v7wBGUJtN8)$)0Yh8 zGop{p$?!v|v9|4+v~08_I-VQ)Y>w?&!eeX`-=LUg$^mSj6Q|o*9JTr_E}1gJ`4k$< zIew`|43JFrNzCR=Z?q>YZmDzBZTER{NpbZvnDE-*fw;TZ!^VR>oVP+e%a=qanqXzhycb! zzFZ^#CU}!g96l6s0yng(tV#>>9gDJEXR3-@`E2?>AT)7r=YB2UjmG*o@vEzAj9k>G zM^GfmdTy$_QfZs}6=m=eW`|!$0zRI}yslDTEPI(>hG{K#WF_mMTV7orikhTL_k=%Y zMOCFBE_xLHo!l17+A3Nc4r*M6osVLoWv}{oBkh_$;1oD#=N5QXxSei)-)ujuIx4!; zeB&iGGhEZ@?ns^7(IO~Oe!1^2I5_UA2p0|Xuj5ydnn}LaS&@Q@Vf>4KcyqQWPdvo2 zD;PoL_3hkDaZ}?$m!5+!+R3`D7@DSRa@7^$X$ChufyJt1#JHBD%sM0O?G_i3@kW&+ zL2M}D4K0PYv~Xj*5f|;l)t*93c-g97*uxgdjAnR#@_ImNx+w(PZ)6Al%G_FNDIT_X zBUoMEHoG&s1>wWhlt2K9tdhfxt|3#V;`V$hgt@e2hSrmPGE;?q4@$044XgZV*~rfxaC~2+_reRa^vR=7m?c>L80UFl zap!Qh2P-zK$lA;M2dtr4SvJVuG^AW z8Ki(%y8Nt?n*HTC^X5de*214(rq(1PSUGB29oi^Glj?5y;Zu~+W9 z0oE&K9Fy!G-Ar}B=}t%e9xux|8JRY{B>yQ}O@Cz*LswPc25F()A0k`l@o`{N=Le8* z`W9;j&DX2PEx-L&mI$TBC1o^?Y!m7=SSIihpF|U7fY(ZIOk6e-(#Vi_72?sT9W{#P z9E~q~-Ox9Gz_RJ6VK-`~+yc8c`}5Mdu}XVHi803#pU|YfRR`W$AA5spuYD>6wIgIhzddWr{S3o|Z$TOly zOz@aot?C*9jM&cVO*b=2`83YnYW!Y5JM%1X4a3<{i&j-Jgo~Zdj0$WSU`=igL5oLU ze$NiJF4NZ@EjtYM?Ym4@Pj~Anjw_`fuFP$mX|&V2mJI2(I&+p$n!e%K2&p46+@U?u z@$`IRp8bvDW{`)R3DNki^mny2E5)r8A_T+3#EMFRL^=mD!1O}cdnOdu;{GiLyK}m7 zm82>hju6Oe+}vPV?*WeoFqNp)IZM~xjNvl#rAPnDKlcZ{dYp;26x3;Y@;Ou`bJZ)T zDo*2D5bxA@Q^>sGZaH4d(wpfO=hl_s6-f3+u%Qk!fnM*p_%uo(bT;3 zs(xb)!!4e_!CfUPQWo{79Gc_wX0*xvFpXW@zZ(z4L^4v)f&oU!zr;W`nA_&A#_T}R zyGEMn-*#TgVBNHS$a4qLdQB@}h1q25>T3}28@mTX<&sDc`0CHtuD-^i_xUKd_# zUCOAk`34-eaU%SBe)ZEoJ{zh`B)|laIE`@F0m2yofyS0L>(^S+G+cf4;J$q=8CG{q zA_6lXk+X6FQ7E3aA8w~@zy$BF5=8ac zw+Gt?PX(k-`Nf!bDGk}OaUK9Qdrmj`j71ZFY%CN;8f@kbI;@dxw!%aYXx&&4jZMt2 z9zR*qGJf}`-W>T{Q&4xJC6lYNlhYuNXGl)$KBj*VRQDmUBfcbb4K5(^sEn+)>0E#`z`@ zgLjYa0om}p#i8ow1JnS}0cbi$Y9${&iuU_t$X+V!;5Ae*KyK6Yyts3Qe|`FV>Ah(D zNlfd{J+q?rlKw&mAAV2SNFpY`VTJfW`(EHY+a_ItKt7~z(S5qY9H-#>$IT^2vGAgu zig@%wx@Bl2zv+Hr_N*xXgKTAIb3@qtqQe){zOE3pc+`h+t!m>esVvF%*UMsfw0RJ7 zTa5W|jR&T{cyhF#m)o#Zdb1E|dVPrqQhn531q|;b0PB9BO)JF^y=`iY10;zuJZf)i z4wP;P(ixJRiRRj{!PlGPhNJ;&ID5bIi2{*Gr#^yNoX=_y-^7r@pyF%EyU7a$>dltf zT#R`XK1H?A z7~=vJ4P!b~`VvZ32_E;xlgU5)Emq!>9Iv+T{%{CGA{u$BMTy*EuPr?S=G+4)^5yx^ zV?Nc~LUotmE4z;6+cGh7QHH7Shg_gdB5dZ4yuga(moF%n6p=vv-aRf$Rz`^DhPxwk zV{eZ9+^XiV=zNq(CHSYRwn5lCuy&ofLL_0r_pyTY#KKQEj}?6p(MLdtv=66(zHacJ zL|58KN1G?kg3mTtHIRC)v~Yuy56*gcYzYX*xu~13CewL5@~^@)U3|u*AVb z)h76wpY3rN2nvm+?wvdJX zQTB&USmMqRyI;a-d4#^2t6jYfqtP?W!yom81rus9psQKel)El=I$ANF6<%{C^@39RPBCKnI`$3*!XaA z9-dy_K44$Ju<(e;sISp6$tkI6=^5XDWd6=CDEw3Ox45LLx~8_SzM-+HtGlPSuYX{0 zXmV3pa`vf+6^n@=1A>odm2x+DIx(_X$F3w%622AK2cGqdVWSy-LnVUx*{fp$ova*^t!VL8;~Cg5_o zsfP9QcE5a=U}F6e2eVfv!dIgXg=u;$z*np>lj;n;neFHR(*wNRGzh{?N-3@w_||F< zi53d^laf6Bnl$18fOpT-#p|g_IBzUqW@=cC-dElWqW!pt6X$|=rSbrvkA08Cetxwl z>aIM${j%2ho_v{*#_)wMIiH4-8E7~iNTFxcI&LfG_xkw}&|o`0;}%cXM(uw9n70wm>VLb=%{X~i{8yUQAxk5g+U)8;%2!jsEQh?9; zgQQ?=^bdfz)t7Ih`Hx7UW{#4%1S<>1b%o9+%#(V$n=cya?tllM1B9dgKy`FBD_i9B z@@s{y4s+vIkp{9099k{*o`EkGmG!azhAeW+GQwh5P~0?!6v78E`lues__=i}-~*rs zHtLrH3H+?^D^sOF%9T&Up{~g;@?g!Pc<OAA%>QOGga(c?PoWi9olDlj1sN|2Pm-Dclv0`SiFCB{Vyh+d+F3FC$KmA2?wHn= z(t-YA@sk)3wF=X3tb{MQswY&n)tOHdUD`DqYs~8s!-Abyo;b8|AP)-poqrSkHLmDX z?B{?Mm*GUemqTDBnWx!3EmNaLNYmYNkd9@WP})3+A+@lgKTMc-g9cIWcdxt9zY9^# z+@+^sWpKbLi5SV>>@NgUlyUHC7Hr1qRSwlL-gEJnw;tD)z9(5 z%u(5BE%smGi;c`{v#ST@4$|ZOt%BmFbFO2vmU7qWRZ^NR{AFtZyO+%@b8R!uvi3}Z z??0D40IGR|*1sF?CGdL6{&1fWvqB7=%c{PHC?p6IeqqWNGk2Vw`$VuP#+aq6rdU@S zZfYW?3wWy1LACt=UhGyfOhjfQdj`srLp!#a8>vQuCRUMp(D|sY z6AuQ1rF8A6!*Qz*e%kVui?crB zi+qDs(#2n|Y+K28kyVS+Yz=l`O0LOt)IB*3@_3F1;aYcuH|o(RJ{puEpDpovQW+(2 z1~GH4`}F!s^h)9ArDe}H+iY!mngxiqrEO+jS?XOr6qZ>!@tXP;5w22mx(Adwg)3bb z$Ybng?rUsQWgj>=E@YSL`y;Gspu=@lBYA~Hu-gl{H!Zwx4^lu#_17|Ss*hIWgUHMX#qD0tXl zp90l=!f3~x;8iK_9eGu#4_#Zti`b~^(yNx03C@VH5^4^;XQ%WvYYi58p1Y+j$CNJ^ zLw|6m(4;To%MG%IO+rj~2jkBKI+)@ugpZk$)LADU0Cp@3<~`;BVF#-TR+WfF&L1yb zGoZz|?Qb6dw#SKevJB@%(Z3>z7Oj~*-PBr`vq^($uYn~r2`l23;+9LWil9N3TGAL9 zJn%~Y2Yce#Pz6JH|ElJ`IY*Bnlax21?z7g7z{DqROipc0`JzYF7oLW`?ttM7c=5`w zI8kZG_Rt`9uq#|Y`~a=FzPORZ_xnkO7xpDY6w>f?e&0L}{`X_PR+n-9X6`jac(V{WX=Z^c=cd3nBGw#iT z1~Fmhd5oZsv?LQ~s zr{eyQz)=pi`ZDe2hK8Afv)l-?>HRw)t(^6vw!VFmJ4ins<*mP3gOxq{x6ou;P8OAP z&e!YAm@@qmZj(Klr*ALcy&>~NWI8A0`WL^iyR59_k@#B zyyO*<rf)`#I&o8fK~w+@+1zsz@^Iw2RW+gA z(b-Bu&7UM*YER!Yt(N*_aub+dy|#bz0oPB@yo)q4Q~fyNB2aIWvW4g?-JN?o!n`!N zp5s6PR1EgsHmaU#oA|t$qo=U$F-?fxo@m1cC$rF+qQ$DG>BnY{X<60!X&(Ul`b8Pr zPzsGnDaOU9!tkr#iOe(ibYm+5lQkb36Ledj7w9tn-iRr7&xD{xy|~s>1}amzUld<| z^t#u*py_@9%rodsqu>4|D(uVqOf25O=El1pGas^7AHV-8m(?s;z+hApb%;tP8=onL8V+(me6!BQ|Ep9 zDc9K>Cz31}teyBZ(H%|CO=84Ri`c4NGS~XG4vya!PUP`HYiW3Mbs%S-%aPiAv4(2o z;2k%@&|qGUh2Op%OZb@9K+PiGAuk6|FwkL_5(g`?e*jcv&t~9e1baDe`2yHa7CUKW zU!j$ue*+khYHyHR*;^__{SF>vEU&|uL3Y?dSeY{Xs1#MCb6J7NEH`qAV?OIr4123= z+Fj3|?pCbWr1DmX?+4QDFo5XqP?ZtrDc+RbSU~=j_pLht)NA@%kqK2lF`g014~D?0 zi-p7!?ro0+${Y~+aC}FNDQ%lu@0xMcosfo=3QIbK@yzb2FgHL48>;!@8Rbjr?Dm(K zz7Mss*zr!h)y{A#Z9F!-deR6Mc6F%-xyeZWgs_*Ks;+0H#3 zJ?R%`;)UAf2IX9rfR;GB_A)SD%mcuxW0llJc$}Wx4bJ4aiCxt$wuF# zo+b{p>UZC>R9B=381oNzAgE?{(g!ILUJ>k?>Cqd+^^^P6S1#&Mz2(av)Zj=12Va^Z z^`o{WzSdIgNnY`8K+dpoa&im(_@mC7dLa!KhJMCb{xRlE6Zzh^ za3dw6uS&5k<4^um|8Jw|xF{-qok)`mWw|#AQm~w0DoAuhXWvx?+qF~K-%Dg@{rhCU zCG>+8+$WOb3!NWz>7#SXc~0Ajt-rmErX)P=@6aYpURQfv@cq+LAE}1qHcOg%u&Z^z+ahqcS{$zDqu5Ovh#@ipqX6GQbWTk#h0%3pV z>Jvg15|nYTevVjWb)9v#g)f!I_k^X&``Wzq2LQvaU++)QjY*PA9R}Q?fkXODFE|DL zu9ezO6BhNI%~riPag3nrUcMS_fdHE0?`ZFe_|<$HW^YI)`1a&iNOt>Vll`=Z9ot_O zX?61j7I;E2bFAmyr~_Mut8h(!NJCO8x;+~#(tOgb{iuB|HMtb5M{(&P;~#^>SRy{5 z748aL%F#fX>~ckpMiOEVelc+-$Y8DO*C%k`Tw&&0Viy@NmX!;r5rKO?0o#w#o7rL! zhz;D{Zk5?hjN_O%^N#55yKtlMairdeK~>Ke@+?GI0Kxj-vgb(Q=~Jaf=fr^xFWT`7 zXnFf5{^;48?e5!bR{JyFO~4nwIA#z+tSO_W!{gF!4r%K0zB{8y`t%Z`=C4`nzO?h^ zt@20tK+p%Z%di87Vas-325i{IBr0((-@DvSlY{|VHx{UYWm%9sx&G(0%bKK!$?>8# zpZm*jubpgo!_j9SRmC(%w~%%;C=Vs-%s$>b%Js~oKC>lZDW-cyj+v=mtdFhp4)hB} z>OLDx?fHZBL?i!#>UM>%5P5no`@Q1xhn_w&yVV=KFwa|a4&7wwQ#MwdJ`J~HJ>ho3 zUbuxb)edcfJOZnslM0fL^Hc3>#s1^gkh>YD!i0RXT_B6GP*&#x$9O3O4)dd=G2>{D zQD8tcTPjM#!GhNr40xZDE0N(bMZ9mLoBG)&D#+s)&`bOPc(iG|_lybR0`zO%P+p6z zJ^Mt+{Y2ul6{bHe76Oa$MsGAV$nb-vpK@t_sPNEvq3_IBe3?Ukl-EJ&QNWD%zKo9T z*O2!{irGTRO!2qP3x})~+^DiZRSQ z>j8lLs4m)bbCl#!W>4=gRpD~>#%wh$C~+_8I>~u)HS=usYc7ry-3jJ`!9}1r?FfGA zE80(>D8a001n0SQT=}1;uRfR5%M!>ipz`&mYot|SA8KtH&PZ&qaLk!xxu++LPP=<| zaZXu)I^kber7&Ls4_z1R?g?rgko9`aCq>w^J+lBZCmV48t##}&Onq!i7K(p!P*)^S&dr3{jWU+#W z%jEGUG+1aTG7l8&=7ocxkgj+!q2w-f_oj4}R`~`Rs(p&$$`q$#56==I0rdOrN%^iP z9x!m6M3fc05?=S9Bs;QspWDfN!TyQoo>6Zq`%2$F{!7-Xa})<(66lY?zF(&vZ>_5du+i7=B$cQ=-MaxV(&LR9Svm1jFUKJ-|_fG*o6+Lc=i8-jcxMB&fh z<%;ebvtaQ=7N2;ihO1ROmCSQ6_3F>&IYWjHYai<2N?->D+rRN!9syI zL=<>>Pgt)V!y6s{1m)TbEe56&F@SoK(6zLBgJVGGloUbP(iiKvzZTz=q0tY3wVYsb zv=u@#mVh)`c>aj>jcR_ILQuLh-g*`DYiZNs+(Z-`dmx(9K(?(^R z@%>S+%LI~Gw5sn8A<@J!Rj$OV++;FHy%fg`>J`7QsNlI~gk4W=L@rrr5MF@ROy0ER z?7Jw18H;a;Vypn&qy(+5R7-L5EWl`3ypRjkhtcHxQJJnbMFz1*w zX6!m7wH67%(6201GK|I!6^r#fScN9k3BFJ1Sd(@82;vTSh)6HhxNHE?WL2``4}iJ{ zKnH2;O?tf>oc{?pRy(w7edOR%3b%^br}>SOIL38(XDn>zYa+OMd#@%5IC{> zQ$aZ|fhf4GBjienEnON9>-k6S2(7cmNJ)b5G_lEhRyVf^k>e)E(>N2O$=!O-b0wHf zqXxggWpdfkR82mxF1fBmWkE1G*{_zf(6-iY_bC5FvNJ~l8BzJKJWTU04;$(#yc_Zl zi0()oxLhF+*dB`wNK#~|m}z^tTc6pMnMo7v?7U{2?25?29OVJ;kZuW_X7`%A;ZLYt z@83$Jnh`k5siLO=lA-uS12k7V2RjkE)~4ledE!2YQ?!T5=;^t-PF|SD$nc%Uw}&h# zB*j8(I-Y%z!_HBX4vcp-rpmTy0M2&1%k$P0ffgJ^CiUE_+^V%|F9Mxuo!TR-O@eu) zjEc1#xf;yV&zGRb3c}P2$qqx86Aqv|SGQ7!jJ3k-p+@P>5>e_&@`mD0Cdfz|1(>v7 zubSs3q1d}*G?!0r*KEqlVsm$&5z<&0-{0!?2{bGimYP;-W}zBs`t|a&LzYWnp5fl- zVNjq8TZ}I7#jAlAZEx?Y+ptU>W}$FdlHJ>u@85^%6I+?x6$0yhTq*g~NFp18qcdeP z${e6n8y1mWS?8U5Kt^>jt*eC6rk1_o`C;22ZLm&v+jCSmVwrUPsIm~Bm*+@tMO+U? zNL2aUBtev{ETqr7`BSC0>oh+OT0)Zm{i+73_@jt>*wvAhlzvTwl62Sn6^I!J*&fmM z+7Kke-0T^;vZLZbI$XmvoRVdYRjWeR$r--!8*vzqWf0@c%~1C&@{8!MPHgf>KHbOE zTH{*lg~`DS731+Hz6jZaLhWp^UL$=~zC$jMFE7vH*6G2Oltl|3!oqsH%kOYBvd}@? z3R68IfP5}Uc&Cl(B;u%feSkD3-~NI@i9qJ4Fv@&e{~$otu6XZsAM#l@yD}7vSuJHR zTY1FiC0cDz#tR2UL-DT-5VZHY!(qCgE8SxMT{yxyx18lcW^w4TM+NUk-4DZ|ht3wr zdtj}a^vi$UZVB_wa}R)i$R=qBuLTlzS;WjR#b4j~+MjB0>~Jx-uPkUWm)7fv&Seg) z#r1Va{MhgJ@B2f4VcY=+WynxBfj)@Y2zLSshI2#4U@{)yAuEnKw~J}wc!};!oiDAD z=lG;Q!C)#5lP2>;ql1N1GH^ht%z9U(B%XLgqOV9c!i)N#0Q1+UN25#pj=qdv=hBg6 zcsdzmqud!CLc2|QD|RJf=y6fhOJ8-;U#s!$Yl{D8VA9@LFLlzk=vW3blQJw%cm!OT z&Y4cW41zQ>>qm4uZP0H>84*`0`dAUIwC9=ipY~YT`oqu^?*#+Q-ZSG1-(=VeU;+eA z6WUeL#gAg~FcXIMso8f9S}Gac=~b~bBuY=yp9>y2y8rW9N_{Pso7jXGaiK{d=LJ^- zE~em&XMpUSj#zUH^({+(>ehvVmr87$`)GS2J+N1^naS=lT0|cm=!O2Sd%>x5@fzRX zjUvgr-ae;+X_nt=y3~Ad2IQ-%;}dJqn@J|tcz1Fqf%S`0&x_x!u;2Gj)a7IGAWh=1P z$f>S+xn`@B&eX+=*i2jd#h}~jp1`t7#Emq4oXz4*B~495YwM@))QA!dg6&Au`Xo4)=YfAx z^sB35YL7wo0mEyu^HKL?i&v)dqc#rp3}G*ho^E<)g>_!5nA@;2^Z6`OQ6Z&97hq2EL5hsFy#b->;~5N6CM zf-?3>cFZ*t`-XLoWRwLs~5?roW6RAp`PE4MCn(oWJRzKK<-uvR8kSAQi)>*ZB) zZT*b2;hy(B-87$5*&k5I(~`(=u%-{$UyMA zCi1lO%Fksb+ntXiB?`-Hy`Y7aJXO@6@H9Qld~WFigxgNW`{G3|O^0z(;VPzh^0f4K zGGO3F8W)dFV5e+NZbT4q=vCJ}4-)O*RAT*0r|^}b zj1{q&8S(+(*uRO^OquA|S~XUkXp6g0qy5I_D6_|@g>o}WT6q^k1%?JrwA+n`=aSWc zFIY&-Yn#bWuLHuaGogR)dwi-y?pS-?oMfqlj0WTYBR#}*TXZMRY0bEY5SpvrQmXrU z)l)q8i(YPZISup*s-`buG=*e`eD1p4IK3$6s&Gg|SB`U}oLg?khZw zS7BJuZo28BScYkU_L;ko2}cZub2!P&F8v-5WvL`L;R}_V?Qs9P9Hn|^3T$SHGEdjD zt9X==)K^&sXMM3@tK7fPSt9nAv>o?5(80tx35z1MTZPlzE}$O{y!ffaUS?^vtl;(O z&+PMe<79{LD`F;!aa;2BVC5~=!mbfFdU?2EcOicl`a!rU&Gs608GZK`?SouZ$2nh& zHMEhZR#~@+*PM={=mndHpRX>kAaJXs^z9Ik>mP;kb?FB^+>Kqy&0jjDT%<@;o?$A% z&&J(c^79pAn)mjLYSeCv6#gDu|Q>@LM2P)pE{mk%AhpVu0@GWIwg15^hk_|Sa zIr4MW!xCKmbda9Uj0xc`oYDP`!W0Qtg3y<&UBz(OgN-;n0??BVTtFr z+#F9Ppp$X{BH7|1qFQjvsYM_*>6)4Q=>Hkf36#&rS=AaOktxM_#DHrthJ$SLTdX4p zcqIH_QCwZ3jXUncN|e_7)l!5iE|^;_n*B0@4Q<(Z)KI5@J{-En{Z*Fx(ruhb+8g}@ zDRtaj2d)ec3j$qj434QB;P#APZwnER~|-e9C_~uUG4YZ=6%DbM{K++L@CrIgOawy`Q>J)33>#r^N^*gpD@! zcZRLICf3on#($-EsiU90_z=uc^<~Mk1Gg>HvnRp)8H?(`Y>laS98HQM!$7vR;!y$p z)v1Y9m!%ckO)hJX0j*Wlya%sy9$t4Y7HWKLt0n~%tdqR2Za0!Xm8|M9mz8;A)zwsL zbo7Ji+?)$|#eLV25HxZIh|ixo@v0 zTlrM0;+lk@^_li_0Zab$-i_<71gN$-V{l6MWk!qy-I{jyj`FAi25&s1*Gyi7nDGwS zCJ?W@pt?nf^of-fe)(ey+1sNiRZWcf#P{KG8`J-|fNXB)dlfy}oloVT72I+Jm;j-O-TY?>&tWK!&{+JmI*;F@GHhOlG$GuY2 zBMjPq?aJ6p|IU!y=9}pIlJL)5BdjK5`PgUXcB&qKrhohD7VDH9shbLI951qTGE<@A zZ)J9xSR#WKU0tn8)Qawk^yB(O;-c@R{euzFaT9T?5&WfVL78ldq%cB`(x8=*x z-?mE}PeAhvb+zHw&(!Svc~UhxlA_Y5%rO2AM}zSP?lmC`(66Y+%}g$~xBmO2^OUL) zI~VB0uqIjG$GLt{$usZ@@8qRn6o{idxn#*@le2rdp5wKSi^k9(Tb=926j|+>;OHQX znSbhe;PSB`6a@x)4|p6c!PRieqE(N55|K)eUPQWfvn+t%m(kSCYqBKjYd=4x4*Gfo zI+3%6z7kydWLYAnw-jV`_JvjVWpJ?!-u;kKSwglQJdrU#Ln00?$QJViA;>@U_BzbH z;?r$vTqGM)o_u0h&xf9=u9B)um0mSlm{4mTc$uSUp|;sR@J=|?AX+;@WaAH_NnOF{ zf|pNkw%tZWCefJXO*zE*bDPt9e3vw0n7~>jR#LC+f?-)W5Zm2`>=U8C34sYmVL+kN z$7A0kKNh`kyCWyLK#xm%BPEmK{TTQKl=2!^g?T63yosP3+T+1s>?7|^=V3;AV%7U^ zSET+a-774&Q7|~m$ctVE!rjqVC=8?xrU_#0#D34#N+{@;1@7;p5jILFm7Y(d1dKx>X<;wW{!{94vveO z>tbMSr8himHoh|f6Sv%goApf#Tk*9u&_L4#wRip+(IA|hoG?H#Hz^wA=vd>pmchzPfUyew7fL>LPYUiAE&x)$Ewu9K z_re7g1`Uvrgl>HE_t~hLe9mj31*xYK<|rYJmN%;3>(Z}isi00Ji6H|_K&;2~+V=+l zK`DC7jqS0~2KiO-wb~0&8+4Y=e!(frdi_%eQOyj(Bs48#4XQS<{hzc%CQNqm@cZ*vSh0i47<-Pg3 z6$=vZhE=Ks&PJ8&Xt7-#%@xP~pGI05{l9|xuYja|OuQivfb@NIZ%`E~_+IYcNPel+ zwf=_E!FC{S#0mfV8NNRTaJ6tjNoK$j@ItgJmnMKbczvLpr*_Vo>**$Wr?gmE#o0&5 znXt3TiHUtJmWH zgPlEg$X(st{E3WMfGo;cxEB^HCF<-w{QT9@5;1oF3Lr<2asvbQ?6WadQE>4-h33n6 z__N_xVmQsP1hm4`Q#!tbTFGc?9+yyIlhBn1zz@V1Q2{(zAULVmsFrJe4@3vDUC=k> zA4%TQS3f#8%E_Tt!$^qaBPizgs!4H>&d#!4!Mk+)u{k^au*jV!i@6n7oUK}j@`&2qT7l*gI&FdVIB8vwAoy^PK6~?J8^V(-_ zbO4Ikw%4fIlSI>2SV2XMbi_nVDJ1RLhTSSQnbP}WJ-jU=$Vok7Dd*MgdveFg>s?NR z-wHzw(ke39zI!D9uw2-sw!60iU3GQb+$WXgi+vf`0069<4glUSs&0HW{50!@;)34@ z_M^Sy(dM?8p?&o$nUXAfOYw@V;>lSd?bxgA-!P!JNmFyPWNrTBb}(}BUE}N#x%Jy- zZ#CwNqZM+bpc1|BafdXZ+-m)0n1vOHGVg6OCmm+1hepio*b-e7+eyqRf`OORtW0kv z+Vhwc|J6id1}#7@Rl@1j7u#4_qvWp30Z!8k-kymz@A}C)t@s3f2jE=aY<{BmTnc96 zq4(nb9p!%?TLh`j>7Q@1#m;g+kEqMVp25&_BvJn!A+C=x8iAI(5f2`#V;6Q1?H5pNT zux@(wmd2!z^bh#>zYM_U~gXPN#B=AAAL^;HltlogS(k${Bs#_(N0&2 z-Ko)awH*xz|INTg$7k_1+qN+OPx`_K@~UpFN8q6dRrk$|w_J#Y5CgXapwP!ispOA= zAkc@18KK=nLz>x1)r7{4bKzXp_XkClTP&1lDo}~>1Hj&}Pv&2IR$0LANw?h0>*lY= zajb-L7~fv8F|Wn3q}($Y1|pE(bfT7`WOt$T&zg{s z8vl4poe%DlZ=F?gc+W$gg+2*barpLcL;yrSf_Qni5ArHpfx=yG?CWHzIp7kFwkAkt zu3moc8^eA3nvAZrw2SoHTq|(*&yP46C&2#%dO7JF z{Gl~+(lbl7^aqQ`#Ga%b)a2#@keGb`9JC_Yj>-sjEd|FMSwE$5KC9$W5$E7Y4s@K2 z$9jcbY3riGA)G_=Jb|vb_jdT_N^`TiF=*Z)usIVUmJ_eQ*+rCg+NKZUpz$xVUS6(0 zoIGT*3eZ0Z{whrObnqR9G3)1zd#@F=-M5f8DKl=;32GD~luLX6v~@qYrF# zOYno08iAV@;KClPjZ+L_m9hVJ!;%Jiw5$)-8DQ>~O zqV3CAUVh8$@U1@-4*w9y2JRKePwqB$yCr;V1xbCeYi z=k~;@)_DH7B}BEF%Uq5t2EZNMxuG{d~5I3WI(o z$7Uhu5HTmvP+6AqCoZh(&Q`YBKDH|+6~Uh8SaBD#xT<-OG5&iT#kC=<{ehn14rtQ{>3OW(3uJmDdjfmw=*^K(S=FL58lSJleE0c z_wf{Cp!CmSajCbAeM)!IDh)|^R+fGiS{^y}BAo!M{2@2UsKJ$91%#X(^}Gdlw6;s?Fj*bvPS!{DxQ{9fjGRcl)S-aav zliAw|8n@lj%w3jXzPF+QYPBb`**KTYj_EYj%H-_6`oj%Y{aEz~v*+;DaEZit-ncD2 z!;|EGRJ_V#SQvLNU54nils~)tz?MWL$BI>2dOw3Dv@ou4V790_4Y8dus}nm_d6kp+ z+tBRKJnJU-Qy@r>ALHe!MAtJ~5-=41?t8nv`rBSTHDeB*innu$&opOK9>LR~G(giC(=|@5R=x28|!FJGiJ%JUlJ{$-7lRLETinKDSegwxSGh(@Lc9lz0Z1{wac7Z(Q?9}ge@e;NT1AwB^S0X{w<2_X^jfA(-kNgsdJ4d%z`~)xy6*w7KH$XrA9xR7|JSgv zad7eQ2_9gOJam9Ret?gI^8gy}0r5lc;D`4BTnao&c3}m4Ds5|mr=CwlJ}3Sn^ZL(P+US%O8U)PMI~hwRW)5beFH-yV-s6Ddk04+ zXBTfDUq63PKw#LH@UIb(QPD}s-&0c4exzsQl+%In!CDtdi(kZ z28Sl6re|gmbMp)9$c@dd?Va7debnjM`M--x^wsr$ys!W`|4Zw^|3C7gc;JQo-y9J9 z#|sPF|DoYf;Nr0h<5MbV6IgpvJr(&(_~dosuj)=B4pE&GY8$T!Vj51dbuQF@)c%Lr z|2tx#|G$|1U&Q`zUJC$H9IS`Q!=V7k1Fj4_!leI{gMVmhS@5n#+!45zmhiW$@>B|2 z>g{zrqTFBC{xI!W;k&|!mc`zG9;3fEMtzFPY??W29a^ohzdBfDPs3*}>`c$HBpm^^br zJdME8e%Bh*#$;>mF9Zm7o3u+cCs&^4aQqPA)*XE&PX-d-=n0H$%DGmG%jHVtk4B)$ zZ&+RK*j2#FDCup7>_zX_`@|auy}^v@9pNjFPT)!N&dp$#GU2X!z`uiaVW~>qHrLMG z;BeAM1Z2u76?SevqJhsvv>C8sOJl2c_sw)iJ(SMKSC*(RWIJ#t@F%*Sd$O& zdq)haHtCoiGr*&@F59tDRKZfQb`zA!D)u&aTz~9qA{1l*{LSMm>q>=mh^SCFK{`we z*sn6#Wk;&TXYXr;%W=cg)FL#=&r*7W&QZb{ZDZ*j`_qge_AW}O_CCUd?7K$c^4kiZ09FY$gS3e9rz*L6O&_FQ4#J+# zh}{DyKoR}^E9~_dZ%CzLpKV$(Tvc*^F<{s;x?v&f9x@u$8-)$VzgCOqEvVmA#gt}P zl-b9=J^0G>0_b3x9mW{Kfa%VdY`PB9jjiAy?}jiq_@pCoa`@^ed=xI=Awo=n`fil- zPs-JbVL*iQEFa4}_CMINbN3Gn-RuN^XxUG#zGgn97vTz%HRt0|Gz!ovGk2Nzugz;s zZF`ppsLi|#N=VD{h1wiapGHyV`P;M&{T-qUb+));G>RFV*LpHsuAD{? z-GzWZMp4IG=R{(Lu~>iehJ4AbJr0wh__*={ zC76@E`sXGCX~)>+nX5K^a&F=mn9g9i7o9mPp`eu7$u{ZEUORnNLRU^g0e5s403OCbIZ zpQ$jv_y(mS-C@=MiRa&Z1RZN4I5QP%U7_zz0HcsBge;REkyyEJKVPptcyjzQAr8VE zAZF|?KwMkK^eNDAN9gFy26^<|lbNFCabT3qD^+d+8B)Y-T1Q=RWUGCCgyo~>$`Lb_W9lHjcZc@z|b~xvrXszO7q%!X)wGPpL-ItC@ zYWZ@D_{3SmGEy^9G>BeZXYILG5kP$65$VqpK2`l+WR$hsPf*mG$JG}~*@YnWo^~2@ zKBK98`=&4a-v(O!fL);O3!6!?ph5)ZiA+ZTXOC_PtDt9&D|CEv z^4P9^(t`kZAOPksIC3(V{RA$<@2+k6XbL_h1&fvrZwQm2Vvl~onF4-Tk}FSZ+n+e~ z-%)V6HY(jDw+&uW6ZEBeJOK@Lchx7f(;3^PE8CFyHv85%*E_osTid?E=i31#FzUc9 z9daUXNMo>=$ndn?$AGBZ2tgkxqJ47u8{J>+$&&6;t|hEXFG=fTiu)f|}TQ%1()Ar;_gI0}C5A-$shAj?q z=)y2LWGxK)o1Q?>7MKtgVy_huD4s)U&P`9p68|Z8%Ocb1bFy)a{c_bFoLgnfO&HDJNk8hyW_avup(%|d1 z+ql&F)zBUASfci-B6ib2sbzgpLv1NFR=8gceYnb77+JLZY(9UlCU&-sAxbZK`l{$y zX}XmjQlCcKrT#LO#8?UBUf{TA!opKG4TKTb&F1@5S6Y3P8aOa_?8zkzadMWBw&9+4 zJL9Si6ut)>7}BpL&~g_Ng|4{?SI6tgR(a<3b;$HKe=i&qJwEwo8x@DN1(Ec+Aa?(=j-U|bmdn| zSO&iHZoWZ8e<*B>5WjXf=z-k~@T!{a2;E8}Cj(VkWiTlm0pHH;&3UeY5FPyf@+07B zo3!cs_ec1RmY>>%s;AeJyK9v=QdzLCk!=bBdGlYH5Wdndiers^TZ?JRxH>8L=RB|A zAPTdHo(^(#uR(t%+Y{ zCBbPzv8aW&#oMU;DPp585~_lQQ{;TfkW|7s7#oC01HVJzEs3@!s%Xi$#Yz2AeRm6R1fCVx5YI36!V5C_ z|U8E zd`{gDlI~hmpAvikttAH23r? zmRqZ2U4l0nVUsUrp6JLieBAV-u8kh+aJ2C@9LC?cnt6$yv-7-~>{SyD7Re_Dzma;025jW%+gW z6{^K@0lOX%UHJNZRK#@|V=L7*vGZ9$O1C!vzoInG@~x|L^6k?}CC=P;D9ay?U3wNM=Rg_3iR9L6eXHa9hVS94w~JPa%1fk1&Jcdy=xCu zxx2}=Gp^-i{pgQ$?xgg}qv@=!5kvO?x({~dkYUqUD<+@g5q~*4blydvVjKJ%y?|Z9 zQ_siin@^TtO7S_Kmv~rr5jm5Jy3*d|QyQ8vQMAcxWFpV>c5|=ffF(NExkxB~U_22qZoqe0g=dGL#V-^nE3ke6mCCju|qkvv))a$v`ChVe^&e=V+ZCP3Ge~-dZz_VCC~_H77i6X zNMv3LNa>8Pdr<>Xb|7Y%qQ=_})C{*9b1(eFDs*0Q_XsWRK?810GVNP-QPCtXVpH&2s*$xg2!?r4spHOaBGjzk(> z4DhzN)wtLt?J;_iBptjbQB(Vj;<5B|8|+OhTXqmGrgy&mG~Dp@7Z(NjuOhPo7H69V zfly1+de|K1uAV_Mqh{L``Q5!ByUBWV(d6a1GmqP%Tm!rV7a-beLM!9w`w@bT3h$5h zQFqg?Fj-K|$6Iq4o!Tb?to>sQttVV6^UBkT3>x^5or*p|+K zt$*&OiKm)WJ_L=1$wRoZ?OE36FB!eKOgg-m#*66W^5jWUhUSr5}|% zUlmC{G>&eM?TpSW#N*JDYO9~_^o&KbQh=4kgo<4zM1C*kB|S3{sX2Pqs~;uYAXun6 zFsKtaoA&A4BT7P?Vx=K^`)t$4L9|60Z;XTa*0XPoIP^<|St&}8!8c#cQ_b+Z{hx(e zb2FVCb$zI5QFelwnUJ~FmIWYw0!D3i)?SyQG%cWd2iXcu#HgBH+k||cJ zE?D@{`qN^Mx!&ijYSsuGfw)nnflZ&%3b8Mg`5X&P0b)?o#W=bBsh+gd5W8G3iXGQX zP;T$eY|}b(>k&ti6r7Atw+-=g=KLN&Wft&wv03)3f+~>=)vXuNm7()1J4(mMKC5aU zj$^Num&a|(smuD!@RdHXDs(vuw||64tIncB%E~SCHP6CU%)r|diaJVVHIx=rfQey3 zWu3F;Sl!P#0?l;ThuS3lr3ONOoIMNK8-=|K@f`U{U&f$tscDdkLd=4&x;OM~vlK5Q1!sGRRO+osZA zMK;a_gDT%_Jeh50MHls{64I(15^VDMziVoo#JIB!fB0_Ccv2~Pkqky(sy7XC<+COK zMYc-=zpo+3D#OK5GRp*@<9Bs4tsK+~O%4&b6h{_r8?r7Mj2iVV0o6%T@@oHNd2vG4 zU55cJKU7`|ty}n`bUVAXPxybnp!}_cQ;+AUd1Rck&Ef)l)W4S2gA*)6TpOy2BLyqK z2#XFs@k$$21asWTALu$k*uVB`Cw`)|vO_Gcl6mBJR7Ljn|BWYtSqd3cCg4P^vpSA8 z$a55;-H=C|+jIq3!Er85EP|*9y2Yye1&L~2f%ky8;LjCcjtTdCZbo~yYvL_m^3Nt} zP<7@X0`Wg!ONnT*MbUPA$ehVhOm{Il`pk)rti3(;<1@;u`{uB)9tIo<5Hc%eVr2?xK@(pgjtB5_zI91Pv zEF4>eQm_rHTKI2xL|@luGMcWMi~s$SY{Y_%j`y{spYP}V@;7<5@r;ijckwVV;H}vi zv8TE5g+*=<-gNw4 zolih=R~OFjLnKjRD?Zi?I)Bt(h69q6WYK%Ej{GDI%X))e16CU*bREGiNnzU>&)^la z6%DmhDIHqT-HuYjJ!9m$csC9CURePq?k* z=o~h6LWZy`zV*j@%>T$pkUG5?@H(GBa>wJ9D&VF+T8;|+rmvk<>yb-_*z3u8J(Ett z)7i(+aAI0UrPVZ?xB}Q~MeyE+5Spj>D?EfE+hJai{gmW3&8~p1`_V^b4g!8cDFd#r zbla^&syw;ksEU>N9WL1SWVL5IRrcwvov@US z_9+oTHFXzA>yD^x%~}q)2)#lYFId*b6urfZk|b`#QgGny@bzyWmk@`9qis*LIy*?t z^{d9~oYvzA=mFIj&k-3-bESf`nRTw2dW3y2ZT9jp!j?%;1WwBnon>j4{P*xLro6&E zbKfLYEbi^6SQbs!Q1l>^Kg|Wd7)_HyV*ZWJvwMKDZe31b>=8lDI{C|bj>|iqj0H*K zbu(%f_)d-_!b85=Z||D|e~wp#@#X@yV>0Gz5VjEkFGYLEi>-ngTE`$*pczzeX0f@( zu>JaI`r_kIg_Cq*v)b5lg6KrCUHRYT^13NVL>9V}Z3=8_cT(DE5pZotcB5LBK(Qym zzeIO-4@ihUC#Msm1ZDiDXtFb4KM1`o6j1G$GG)3_W?2P7T!-?xC$43sfWP1;V?#~# zKdhKar7(Qt{nB9VU6W90Y!wGO>Iuw~DTm;vN@JK>sey~~djRcRT|%i*NZ@qJ^>*{~ zUX$(W(r44-sIe~=k8^u0o>IM`=aw2(VXlq75nZ=P%J6Odn3eR{k!PV@_BI=Mkj>M3 znMz9;ci=TgchrhN$Pvtj1TkgaoiIVD_tuJj8H;=EyZ~hhr0(>}J-IEB`-98yO(?zq zp(*dwLA+8)_+Dkxu@HnkbCBQqR6eyd3ALG6GsmMM_Ow*YbjloFN7O2LSku9b;a)M{cEnt z5(dM??)|0T)I3Cs_aP-{wuR+AX&-V=czQ%Cjuq8Z?jO>d4RoZu9!BiMBF1}-Pec54 z@DV#!O^3-9)%teP2mTKa%VT-NO5aX~yuYC+$nGSN6$YUNr7j#RHat5>5Rw5xe3P1W z^qRKvwhbO)^uP1y+2^a36)OuI=YKBfqJ3SZJ!ei^O5h=W3xj*y6;mouO9Ksp!?U%* zwj2BQ6ozUkemwWVbto(OLPcAhf*#8Z)U9%{z&_)nJi`_^z%vijsgF2zNx~1)o2(7Z#}#P^)LJn4A!y_B9rTi(|BR;8)JEH^r72spkrCC$sgge8`=y`Xkc2c8E z)%7FqMVJew3si~}m4y2{20tx0pIH!6wu4p1KqB^jyn{~;ZEsIDH?;BK`R8e>>-!xQ z!Q6{~Ma9DkoEUl>Jrjup(9yqd^EgEJO+ay?byyDp#$dJk!T{~O9w7bq^YuNT&A5X> zM>&;9Q>0uz8(g8{FKIqv0JV1KOWQ?)pq0>B zQvX&h&YM#UmS5*JrmvzyofoQUWQ%-hs!Sl9ga=s?g6*54g~O8|njs4=*AeSuF-aFI z;*{8P|6mDsFFj6RJ;D%&u3^D9IRAhLt5}eyz5b-UJjH<#gjy$_4e%O0TC&1Q@i_7R-e_#)IMuc_b-&S}1Rj6Ak0WgL6bYdm*PG((qsX zPG|j8QG}iSQe_r$D6WdiWd0_za7mW)5g#+>-NPr96AP^k{T6(Qzd(*Z)`ZtG4BpCW z@uFKQhf6IbDVV7C%#{z7o%)fRB5HG+wx_@@G}NTNrQObkT-Mtn;f7h&jl8$zy^-~t zEqF>H?9zfY3z9)W|9K`z53p8TFzNI09%+>BMhwo_ek!L` zd-Q5&JpPp<;GZ_fr&kWc7>OdS660R4v2Vj!vpn(b5?~Q@(6;k+Whq|Il5&+9p8mH@ zJcrK3p{#%M&(}7n_pF8Kb}Zz&{u-(et`@)wv$Llr5$$O*W_|>`ttlSi+~>=tM@k6r zAlxD4*wxkc4~FqZ8?1GrUpkJ_3K7e6{3x@{S+eArdfX@Vdq?Jx=%}kf$m4c7P`hen zJDcTVZxgtYzw(Katm=T&nk`P#LG&I*c_TM;Mf`0NJE@47cd`@J8p;{lh8N?(OoWi4DpBcTWm0{?;6}u!6YyGTo@bHLdq;x+Q0Ko=D zbl)ldZ9zg?piZGzo+?-L059)-r4WXT>;MCO{W&aci)S4TJl*E<-Or2nlDh@a^66S8oZ>)K6W$q$OWX9cB$&v>Lfcvu{kv$G2Qp{7tC zH;Qx8O7;&dd>p+QKWb~Z=uV|7$=6o<+q5>M<$lTt$re^lPMC>2jwNUF9%N%KIOkFY z;CzOoa10nAIU3!5$aX_fs5Djf%VNigWpIWpDLysgBe+7MBEuOoHN(Uc2izm2d{DMN zL&oLUBh*jymzR4!EAUO{y4~fHNB=WNpCb9b`+mTd#5vHr!`e0Q%Oz{2@E{w1h!b>>v2BYQvjE$)E4vPUi&!DD@h4?-9hSzZZ!7Cm1|R?CH`* z+4=7WtxU&mosomSi9sG7DbpLv`Mei1f%?3*f*7|S~{E;InKCW=k3%UpN zl7GF{zpWLkekPFfa1OfKsI32mxA_(Hg9%Xz>6Omv-=O{s@nj#${Z+Y$H0*RE2B!MF zVq}J<-e$MHyax~>`r`!L#)kQOUa+dI|3Qf3J737YOJ5W&-cOj6ae$4yLpAxnITMI{B-pi(|9B>Z!Jmdp|IV&qvk0f0+?F zH~4cb6yQsi;76@>ae7iQ3okZ3$Phby zBXx%bKltIfU$gVe57(>>J9Ey+kE;F1XdROla~GIHrXhUhpWN5mWQf@ADg}m~CO3pV z^bTulY4Kg5UA*FY;`i9ExK?4~(PzgCmlx*sC}2~|1bjG#FMvy%Q&^=_g@9d2Zr@I5 zIJ+S4qgs*N^V<}8r#Shw{+L5B<4;$UxXo>PuIaU;xzFwsp(C+=dWJlVX*T@f(*q}+ z*9vQ}XcN{xdBQHYV&%kjoUfxAK{K-)yp_ns3orPzqdk}FX_El+gM_tkh^iT|I^%Vz z*}AAko2~oP26;cL&uEF8ExXX%Nxd8Gz`{^Lmlk`GBQB=9=jTSDL<4N`L~QXO;wCA{ zSCUwY!8mzfA~csR5;$epB|&9kZbB zB6 zT=sS_o&b5@m*z$1=ZF1PdAnT{$)Vwg1Vy z(~uBg@@rNFa{j$#iGt4O_{j^WFia-Y`Pa$r4*O)f3knzqz@eH5Q@pR)`FjQ=wnffW zrf(S5bqGVTt_%~vAe6;T!r`$0I!F?D$Z!+Kp_aO>ghQ+{0v<%sYNu(>>~!Q-b zvyk(UoGi+p$!?V;vJtkJROUgB1k~NoBuU1G>(!E8^l9zo{$^D}zqwdP=gDYo1d$OB znU|z_{(ZG9#q7GcT;oE~ ze7O#fS_~k6*4-A^5$nN~G`SKGp&NE($XYsDQyM<7unZmV9Gh>+YFvQK7+oW@rUiW6 zb?N`|3IwU$m{&&;xNM4fJPwXOa7uFzKB%moWp8{{)9%H0Spw!c%bYvYVld(=&>)F7 zXmv!IpTGaD7s7kZh_v|RE?{yoZHIMcIFd`tmh$FM5(lURl%wi_a99vof7_XD%nhB* z+t_%N?I$1VZOS4$y%kp&t+Ym!mg9x?@8o!}m(^_b(WxafU&3wh(6eq9ycf|dQ z!Y2#%oYS%R=5VAshOxL5$C5JmGo|1b^;jd};3Qu1kHB z>gwHihu=X~DEQ9%pL~Axle_9r9rJ`gu$ap`F0?Dk(qI0UdrjTuRmcFOmPpuy}B(I)8OdI;Q90ug?Ewf%k?W+CpyR`Z$*)_itZ4*daY`% zl-=H$g-(X{qM_y#!m;m_hhmg_^{>+M;(ZmWC=oe`(OPe5IolLf`+-l#fd;slrb{PncJqgN);kh8EmDw{EfmMpso{XNbfzw|UBHFv3r zPUABhot#(@995OwxZTQcp1%CXpQrKdZDW6-gUcmNDz9VXHvrbLg$B=&RKY@jT9(zd z-Ge}>dt2%bCuEsYB>UXy9w66!jnIELw(!1{!`@kJCF&G9G_r8yX9!VFe#2Rbf{d2K zTXofrDjl7c`RX$F4_ilvH$3`G2`TD^rM&0Dk1aXD_UJ)xPfx+LpP!7Q48Dtdo*x;4 zEs+m}7&S@`j(RrlVvWwOJs;v`C8NFkbb@Qe<=l z84}kl7q82lTOKJ6}`ypoTc0obv8&6U#)fC6;JS?-eIl7hk67dQBO36+NZ9f&vPkO zDzlO3jW9gLtXB_zn^`YNtIy3;{xJ=EY~9kQ;9iJp9Q4Rj$HH;Kt}f#jcbJQ z9^~C~jP8^S55M@r6lL4%&p9hIUBf6uSA*9&?vJCJT5ZT=vav?xt3sSL(w#kvAZs^k z4nS22Ebq7VbG6J5C{OBYUW2HMB50Xx+nigEO+7{wx%sHXy@B<$Yx>ND(1yP%zGoj_ zcq58>H3Ck_-L&vC%MNkqgrQ0`PslHrUYq`4G7F|o^t6@=5E3g3&=;3URj5}?AbiBf^T=!(*CxjbG-+!`n0H&n~bAKC34hV|eE1TqI3Y>4IrPYMQdQO^1f|b&=|G z!4ix=5caPXk@n|S1_e%Vtl;`nP$@tQt0BH>=)2>Q?&!tWe(uQ>k#!S&{c@we!tLjm zq#Zy-k?3)KyGqg(4@#r2{6R{1sc;S(wP$s@N@(k>G?UTZ%gBv192WdTNc4Fuu+*_k zM%p@YjQjP>um-elHt zLn-t7{){D5&d=+jHuhLb2`h%NhH8pYnV!*?Htk=dw~7+iM^^mh5GN8{asEB+lo}qE zGrI56?>0p_9AP)Whz-_x|9*%-;`&Ju6z{xKbMEKo24RdwaNBywR~G7V0lZcd(D$6e zQROvqwb>BDJxzkNVooDgJ|*njO2yzUegkfODpS^U8)xeh-A&Wn@A9m7j2Q3RG%-mT zLlnpF<}cFT8xktmWw{WoLaz?85Es*sNRj>mklMM~vdUciyrx;Mrt80rJ{G_UqDPBp z87zyADpD+QZus`2Tb+(eM7UE*3f6PHh`6vo`D3W2F5+YQ+OfQ8(qwlQe0Dt24LQFR zu(TRBs5bTOj2Pw%2IU_Lh0E9W_p`YA9Uybu($#nw8KtS+Ry?=z}G5MIWud=`%9rFzkS=Ms8{-9EGhVfRuvxx z@Kq~HeiB`lNgYvquZcyp@i*xdfZJIaC0-7k-7E|0zI+~wGDAfF6ju5jYgl+7ZAEB@ zL%@U}FE^=J8X-9gv%u$h^o!#_WJwFC7tmheekpuq<$qvC(A$_d)hgt}WOc=panW+i zvYcnHclGHU_V_m6j;5WpslobkgU=$cC|_G%bZ+iwd6af1{tcO4#h2AOz7tYRjhdS z1CoOIj$2@h&^5%@c6^2PW75^K7+0>h#9v5{02eTL4|4e(Tt~UHwMizVE_jsZVh{~0 zws4(tHgWgs|MsG*-E;C^Ot$9nm?Hao7U%1ncx?Dg8`yg!|xBOc^zvge`M6o zV)7YPvbh>YXIw@-@5O|W%nZ)<8tUzdF9+~%dS8Wj)e~9qKw-P m=J_)E6D1^=wyaOz0_e&X!s{mbxV}Mv(?`toTk?_j^Zy57&c&$! literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/output/6.png_predict.txt b/application_example/retinaface/images/facealignment/output/6.png_predict.txt new file mode 100644 index 0000000..49ca761 --- /dev/null +++ b/application_example/retinaface/images/facealignment/output/6.png_predict.txt @@ -0,0 +1,106 @@ +9.500000000000000000e+01,1.600000000000000000e+02 +5.200000000000000000e+01,8.600000000000000000e+01 +6.300000000000000000e+01,1.350000000000000000e+02 +6.600000000000000000e+01,1.400000000000000000e+02 +7.000000000000000000e+01,1.440000000000000000e+02 +7.400000000000000000e+01,1.480000000000000000e+02 +7.800000000000000000e+01,1.520000000000000000e+02 +8.300000000000000000e+01,1.560000000000000000e+02 +8.800000000000000000e+01,1.590000000000000000e+02 +5.200000000000000000e+01,9.100000000000000000e+01 +5.300000000000000000e+01,9.700000000000000000e+01 +5.300000000000000000e+01,1.030000000000000000e+02 +5.400000000000000000e+01,1.080000000000000000e+02 +5.500000000000000000e+01,1.140000000000000000e+02 +5.600000000000000000e+01,1.190000000000000000e+02 +5.800000000000000000e+01,1.250000000000000000e+02 +6.000000000000000000e+01,1.300000000000000000e+02 +1.400000000000000000e+02,7.900000000000000000e+01 +1.330000000000000000e+02,1.350000000000000000e+02 +1.290000000000000000e+02,1.400000000000000000e+02 +1.240000000000000000e+02,1.450000000000000000e+02 +1.190000000000000000e+02,1.500000000000000000e+02 +1.140000000000000000e+02,1.540000000000000000e+02 +1.080000000000000000e+02,1.570000000000000000e+02 +1.020000000000000000e+02,1.590000000000000000e+02 +1.410000000000000000e+02,8.500000000000000000e+01 +1.420000000000000000e+02,9.200000000000000000e+01 +1.420000000000000000e+02,9.800000000000000000e+01 +1.420000000000000000e+02,1.040000000000000000e+02 +1.410000000000000000e+02,1.110000000000000000e+02 +1.400000000000000000e+02,1.170000000000000000e+02 +1.390000000000000000e+02,1.240000000000000000e+02 +1.360000000000000000e+02,1.300000000000000000e+02 +7.000000000000000000e+01,9.100000000000000000e+01 +7.000000000000000000e+01,9.000000000000000000e+01 +6.200000000000000000e+01,9.000000000000000000e+01 +6.600000000000000000e+01,9.100000000000000000e+01 +7.400000000000000000e+01,9.100000000000000000e+01 +7.000000000000000000e+01,9.000000000000000000e+01 +7.700000000000000000e+01,8.900000000000000000e+01 +7.000000000000000000e+01,8.900000000000000000e+01 +6.600000000000000000e+01,8.900000000000000000e+01 +7.400000000000000000e+01,8.900000000000000000e+01 +5.700000000000000000e+01,7.900000000000000000e+01 +6.200000000000000000e+01,7.900000000000000000e+01 +6.800000000000000000e+01,7.800000000000000000e+01 +7.900000000000000000e+01,8.000000000000000000e+01 +7.400000000000000000e+01,7.800000000000000000e+01 +6.100000000000000000e+01,7.500000000000000000e+01 +6.800000000000000000e+01,7.300000000000000000e+01 +8.000000000000000000e+01,7.700000000000000000e+01 +7.400000000000000000e+01,7.400000000000000000e+01 +7.300000000000000000e+01,1.280000000000000000e+02 +9.200000000000000000e+01,1.400000000000000000e+02 +8.200000000000000000e+01,1.320000000000000000e+02 +7.800000000000000000e+01,1.340000000000000000e+02 +8.400000000000000000e+01,1.380000000000000000e+02 +1.030000000000000000e+02,1.300000000000000000e+02 +1.080000000000000000e+02,1.320000000000000000e+02 +1.020000000000000000e+02,1.370000000000000000e+02 +9.200000000000000000e+01,1.330000000000000000e+02 +1.130000000000000000e+02,1.240000000000000000e+02 +9.100000000000000000e+01,1.280000000000000000e+02 +8.600000000000000000e+01,1.240000000000000000e+02 +7.900000000000000000e+01,1.250000000000000000e+02 +7.600000000000000000e+01,1.280000000000000000e+02 +8.200000000000000000e+01,1.280000000000000000e+02 +9.500000000000000000e+01,1.230000000000000000e+02 +1.040000000000000000e+02,1.230000000000000000e+02 +1.100000000000000000e+02,1.250000000000000000e+02 +1.020000000000000000e+02,1.260000000000000000e+02 +9.000000000000000000e+01,1.250000000000000000e+02 +8.700000000000000000e+01,8.600000000000000000e+01 +8.700000000000000000e+01,9.400000000000000000e+01 +8.700000000000000000e+01,1.020000000000000000e+02 +8.100000000000000000e+01,8.900000000000000000e+01 +7.800000000000000000e+01,1.050000000000000000e+02 +7.600000000000000000e+01,1.120000000000000000e+02 +7.900000000000000000e+01,1.150000000000000000e+02 +8.300000000000000000e+01,1.160000000000000000e+02 +8.800000000000000000e+01,1.170000000000000000e+02 +9.500000000000000000e+01,8.800000000000000000e+01 +9.900000000000000000e+01,1.040000000000000000e+02 +1.030000000000000000e+02,1.100000000000000000e+02 +9.800000000000000000e+01,1.140000000000000000e+02 +9.300000000000000000e+01,1.160000000000000000e+02 +8.600000000000000000e+01,1.100000000000000000e+02 +1.110000000000000000e+02,8.900000000000000000e+01 +1.110000000000000000e+02,8.700000000000000000e+01 +1.020000000000000000e+02,8.800000000000000000e+01 +1.060000000000000000e+02,8.900000000000000000e+01 +1.150000000000000000e+02,8.800000000000000000e+01 +1.110000000000000000e+02,8.700000000000000000e+01 +1.190000000000000000e+02,8.600000000000000000e+01 +1.100000000000000000e+02,8.600000000000000000e+01 +1.060000000000000000e+02,8.700000000000000000e+01 +1.150000000000000000e+02,8.600000000000000000e+01 +9.600000000000000000e+01,7.900000000000000000e+01 +1.030000000000000000e+02,7.600000000000000000e+01 +1.100000000000000000e+02,7.500000000000000000e+01 +1.170000000000000000e+02,7.400000000000000000e+01 +1.240000000000000000e+02,7.400000000000000000e+01 +9.500000000000000000e+01,7.500000000000000000e+01 +1.010000000000000000e+02,7.100000000000000000e+01 +1.090000000000000000e+02,6.900000000000000000e+01 +1.170000000000000000e+02,7.000000000000000000e+01 diff --git a/application_example/retinaface/images/facealignment/source/1.png b/application_example/retinaface/images/facealignment/source/1.png new file mode 100644 index 0000000000000000000000000000000000000000..9bc43da3c39feacea328906dc2420e64ce10c108 GIT binary patch literal 21782 zcmV({K+?a7P)>7i$&d1#x_Jm{b5MK3a0n@!7P(<7<7tTvLx zB}wLr#2$gzm%GjPxt|+|Op?j!9xKp5Ac4S*dygM?|NQgic)z{K$|BF@`yZuv@^(zaZjm)lF6%A-^$wJ~yug>ZmPi!E`gMuxEz(R@WiADt!S@4+qe#jumn>aLnP<42Oy4&s z3h{AYlCLDhy=>P4*^UFLh{dUF?EQQG_HqX+mqYy%42v#Y6`@pDMh{Z;ASK{l@A znQ-tOwzqCBPd|D4_@9r>sTZKu@!`9LrU?8J|0+W#9@83Mss}H0fvV*zJ@+boi$H(o6;8LDzzhC8 zzV`zBEVIS)u#i3%(|20|*VYB*?}|Vd&36K(5V>+iS?Xe|U@OfnzprIK^pVq26{dNc zA3tViJlw#aRY3MOwvTT1;KpsK8dQ2>!sNeAsDa*~kA?BotQFtCu>SPsH$~~KAD%z+ z%IasPosfm?V3QsepYIW<_Eh&_dT&D0`zf487BrWI3PfMY*L(K0{0Ra1zNgQk*YP~v zD0(yelFx_X?-AUTJ31qlwAQhXpDz^)ChOKZQl1c%{2L zzE83K-kt`+DV(qL%v5b|{mPWCeW6!vK>Mc;AEnwz?JJ7)>-d%T;FaZTnp9oy&#OV) zscYlyt>4r>u<)Mk9N#%^A5L;~btQv~3t3FBBwGw5DpTn+LaE0ggaMNmC;C|yG5(!M z2!|ZEdJ@Mq$^96cGQ?8)y77ZBmNJ0w;E;78%1i|mdbaRf@SbUm1(s5 zfBmysd;MFl`s!>&;WY9M&7wKwrmW1R$PZYUYMuW40^$E0gQK)V!tawL{ry*Cg0#O1;;HrqslX8E7&bu7k8Qkcrvi&bc)0}b?Vs*TRv*jiL*@y6$HXBW=Itry>YPwSMs zMfQEuvdUlOMRBt)D`|?i))s2edaJJG;<@{IeHH(#8uX^xR(E8!9U27l6<}ANJU^EI z@}K^reEY}WOFAD3z^JstQkq*0>19}WS>T};5<&<;111qdile2(0nA{UOOIoT8xn9*b6zFX%T!p}N%iP#4n#r6(QiNxSs?r`sS@a_?$+o!u zdVvjv73-~OsLtSwx*7@{-vk@h#Qv_bFt4xKPYTG}{JNp-n-I79st8A8556d%jlpis zAP9US2JtJC#v1~nX~5sSeD+lS?mz!0`TalszmhMeSn#=;vrfAytN9XfN-lLQZ#J92 zj*GN99cg#BBy2VC@J*=^?WMd{M^;#{)nYD^jwB!VWiGJ_v)S8|1ZFUU08`voNxy|_ z`b3Ogp~z8DUL__Cbntw+Z@$bk3lKOfpeBmXQ9%gBgsrdhZiJ9A z4syVN`ozBv%4%&(UBklv6G4KvX@=Jqx%nt>z?ie$W)7ktP%R0wl{7;vM!Jv%7CJ|; z7GaS}{QlSf&)>_Z|McJCZ)RAG%*+KomuV_f9~$Om(nx%1G}{ntCez6P8Z(#0yeZ8^ zSKu4lma1V5nnA=cIW`2tymUE{*=#6TSeLlBE4AJ>ZVbVsNAtSE4KKwDtIZa; zz}7%RP&yw}-b7=S$B-%<5EFoJlCqx>0BxYQwJ+N6JEoluDDd@o=CJTwIN`L;`xltF z(yN4Y153p*0fjikq)Sss1k=+XT*ZQ3zI-ajPrs2DPrjAW@LFnE$OJy*^UprTj-N|{ zJAq7$zrc;pAk2_A9fgR>W0?cdZMEvsq2}N%=c}cx1_Nn!3P~C*?8p?CnTRYG(6mVE zb(p%KkQksL%?inRNK+gA}je?*j^$faaeopv@0uNE}5|uIZUveGiO@ zM2iu2d|%F=eJ#(v{uB=VTIR!n%m4ziFp-ndO!CP@_Bu7)x!0qStX74p;R8W?%?!m z5_0jJw*f1B7eN2B1yluOKNOd#YBHzoy+w(D}M*O2`V{*D3)BbX!#0X`st z>1)8G!Pn6QrZAmn7w6Jyw&d_|Tm8}L$#>Fi_N3kJD$nL+g$AFCVk`$u*!>lN#d0dw zOY&xsEQ3OWTMI;Q*b0Jz>iIpVF`j3EGEFuGS{TM&YtrVLiMs~3fohS1=Eg?2z*#Ax z!Z9gE_xy_mq&M#0Ku=n4zg)uCAl6up<>JW~5=<{-H(X-tOr)KN>>u5OhAidT^B3|0 zpNlDk216f4fwbUf4tIB?T@U2+>kv&V9LT#8QX3>-D;_3t_fL=`U7B4V9rW5Y<+9mTYseOYg?$sXxJ{3a}m~sGGQ^+|ZcUgV{IMbtAA{`}%*0 z4_aSTZdhpj7koer0mZAa3|~E#?DC1ga>-;qkX~F$cV}C zvVtSuxw9u9Jh~%){JfOoR~M46Qpw>{l!dFuvcG>I2e%HT1{3FpfsApT8UaTfVS!c< z3_M5}s-Qw>*?hiIFmU(YeK|ir#m0Dw`{+q;Ya1prP^>h?_4gqBl5ieAQ*a&bXgtYl zNVRa${|&{nCJ9Unh{%f2u^{D!Mwo`Y9;CnJW0RdI|9{0no(ul$nt=~{iNN#f0e#~R(GTWI6mn2Wjq|o z{@xyqi#&b#jObZ*f#zCC4V%i7*&M#8?nzqsGQR?lz(c`WWtu}o^{<|NCrPc8Pk!+Z7G@!n@koY1bwxf002?FjxsrQ#kMQP^eE0Pe z$>u{@PVt%*;vg*X5`w<>@Ez$zJJP7t*RZyP-=mqyGg3nhe9dG6K{X(Ru~o#pQr1vE6T%;6QJ_D|EX8C#t8h%YXT+(eEQOJ<)H3Ft6bYA}iROYj>JbG}Xrl?rWI+ z&U~TBEQYz80m(6E^WZ*S1F6Qckl|IK2(ATFR>SWSA~|w%VQBbDNmnck1G`#8b%uYN z$qE{r=ZL|YP2JfqUOboH_O^WZ{?FvuH{Zwri{7YFmq!^sS$%|$S7Z6ZVPv9SzVT|R)@v*#o@dEaL z3nndsP<=^o{T{S{;DNU~pUvg!^h}N$O}T&nk=(t#i@4^NOq#gOd?|Z7JJJFgLnI{W zXaEGB0|+FNH0yxI<`|ZE@1)(7xRJ=<>PpSu>E*d>!93Cgo*loGy}f<;*~9nbn=ikX zXq$PVKvMY78a7cgf)>KujTg`cXzLgP=B~~H+YDJn6UhyCy1At*2VXj0^kb=r@{RAy z&F>Y}!Au4}f#Pnm%@%kmC#A6tqhH1y3k@*Mi(L_=XZbDaP)c&9ReL zEBWT}W9fCe(jtliM6M@5Ul7PUcaCIhyC<(sPGk=A)T}ophepj1GwoovZ*6y#(ax81 zXjlYf*O&gQQ}|qH2kRRGZ?h}Rx%Q%Jh%Z=-tjHfUEByIXEQFU_cuTayA2yEm3s-+n2V zk3W^IVlIuGv`z@yy#&&#$z%$1haG-?e$FTjj(JOW^fm;AKt^r>RyW%%IRmU-Vo}?O zU)r4}Vw<|3O$wBVd*JI7d;pN-WDi!*W5h96*8@3z{2f5VEqVWEA3%#D znE|SALt_bjGXRv6SI4pg4UDkRPrv}juSe3x!d&&Q5SK)%9YsddmMBq5qJ9Jjz68+NMQpQkuqTanTZ=Fj%M>sf zT2^b}lQ;`8Nowpb$=8SpIFg*$C{38qpxc$@2xxCI!aYE9@%?B2pXcXUTCu_*ns3+3*v0P9Q0;r6{FxyIiF zqp$4)b~jpWi4n)-UW`v@CBAxquFRo$WRc-3N@#2j;g)myo4Q0zps#B{>Jdx?HW2Cj zr(b-fUmv{x4op+2srCK+J@}}(j7Ad~1HMmzBy;S6`wt(=7oUC(U-_MEVKb#Lr6o|9 zpL#HPHCaJ(rlAKd#b;J1iy|9B+5B2*$!5Z@GH(^VW9f#{Ewc-L3*-KjTXatCM+Kyi zvD~2Wm|VlItz*|lfTdsj?w>?1k7XYSs{uh|h+87BX4Ohq=q8XG!2!)f5+SI}=6VeR zhy@mC2+i8s?a90M@55gKaUpoUUMwYm=7h~{S^5wP1S1~P*to7AyV{<@_M0Zf@Q_Ih zP#Av`_f+F(8guS;zW#bB=TDDiemRt%ef*&$TOAp}x76?K$Q*Ic)jdSC(BsuyQQRGvHbU;>=PzXn6V?R$ZFaY@J0sgW zr0$h;3`qQ~0SoU*oiURdUZ@E;Kd~^HL2(JV903jT=h=7)(>ImJpZ!rDeDuB~dmWgy zrqp5X<^VA>{Epn*)%h7ra$Anzw@y#bm3bIkoMUq_ak7wlCy||IBG<4E(HDC1@g62Xtw~6RF z62hEhSZYSrq54pN&3oO@C8eesN_DbYK=B5M&&|W%u`l@&rnsQWG>l zm{DSLFdigs@N@G|>T^gTgc}LFN(SBkC8yV?qA5$ zuO7?8ci#ar>`E6K;_mG`@&W;L25lb=M-oGr3T^;$lE@aBnpVR#CWBYfX+Xnq?FAk$ zBcf$&Grl|KAOpQUw);$9VO4)(f;lp?lY6&^)-CsKvvKuUV8;omSEFd!2G3)iA0S35K`2$ zv29QQ45C@dEuQgRHdP!^>buGzf~D%SDygafgT_o6l-|Tio^Pnrf#2kmn6t~PbLn4S2m!U0L4{;& zmsqe|FH8)dLLhV8G!Yy@LGBo4#vQd{qp@(wGVj z70z}ugeX-cYV4|bjee=1spD6_0W{T?B5WhzZA-1QBipy`$idM)>Fw-c!H4q2=YQ0W zg9I?W37>She<&dqcR8QyCm9X%MRmz=FJo8*`b{6t(*Wpc5v-)Cnl(Cm(m*+Dzx~(K z5o?s^HofoNq_wNhP2uU^xMzQhfV?&FM@&&*fuBBq0u7lWm|S9Kt&|X5V3*m&atI{V zHyDq`nv~-XyuKdD2#Z0pQKK+CQU7#380b6Dfm7Sme0jdS<~GZXhpV!bDzF<3@?ASh zWw%K&6LbimIiMYOH7icBF<`1f2!SQS@VY9))h7?^)^mNJKwoDSFcmEo zDhxNrt7RZkq%%1EQ+fI1D>*+umM#FvtxiMYvsjK_yp#h7<cpMt$<2uql@KU! zw~S!M7OYppuBPeR%+Ir&iZ@zq7t4>l8J&AKpM_(Ai^_9W5Zm%onpWlx^>ZZ}S%~ig zyv&CeGC6r7SI6JMxAf)FgL{e~OKiC7UQdpnJ&_krpGXs$yuH1PjdY=P4`bHSvCe?C zePN&`o6T8FFg6=?t)-X)B-P@&bn8TQxh!bzp{)@#QXRjt|JA4KxY)2z>u0ZO*%UR) zYk8-)`XCnXX(t@M9}O-M)Q!xksht%U_gKoApL`$+i9To!8{Y5t*Bu11F1j$&8B;)! zYyI#F#}F7>?p4L@mGLT_Ff@1##r9huYtFu+b(!7Gr{b-K;!n>dzdn}!^DpJ)y^4~oE3YyZFS~HSbJ(NzTsmwM_d#r`~qKK7dnrKuj ztAJ`{HIY_~>m;5eB#dRLnO_S?*QvQR`~9c1t89L}RfDv{ix&oR84s?oj03}{w{GanE2~;_xzQkBTL|g=%}tfA z9#7URrGkZmHg^ndp33s_Tu#4vEYH9BQVIms?>@RGt;95drCTfblM#I-?lptyodH#T z@zo#Y=b!v5X-Fd7RYzaT3L*LmYCEj}3sjg%W_t<&LNOmoEr?_b2#}_12!Spcx$0)x zaQvINVT0}dX9=hZsH&x5VLFTV*w=aT{HYd;ld>rRH&?l}ji}#oId}S%8T=K6!phE+ zm9O; zx%%>RdGh&ZT5Za5E*~$NPJzr~R(iuvMb^eb)JKwb3R65?!Mq*6lCA9>sX@crttP^O zx%pxutirS?jW^LMnHMjPrPb=FKz6oz$|6vUNFim) znB-~+D7a<|@f%=xSj@y<&eTe#O!}W0H z9!$YN`m6#)KuWo0+Vo_NP@BCl>=w_QPtx6^ARu3BCx6BVB#CN}G}<=`)s=z-&uOpcn0}Jp327||kO6Dxcd=>l z+@WjM%1xNB3CQjKieJ?4*Bj5`pG}nTg97q4UQCUfAeLd3PT)9JZ^NEe;2_n{R8^bt zknS``o_a8Q0URy=twAeIoKo#Krp+;bu0PmaT-y_k>7r)lRo;X*5wT7nG-{|cJ0Au_ zPk_G7t|Z;A%u7R=3E+GTFc8+8lHxTvUq^zo7HZu=YxkDaTE{Y+pGzCU?Dq%KYSyHl z)HEC1?R4b);#}8-keGr=A&BK-CG94z$ug}a`s4Z^+khu3lnllJWErwGDNMP?)2 zeD`l1NQ&$4w%Q0-5!8B1puMIHh64!#XI-*DCNOg$5MNZo9V{mj0zEcrfy`u%+q1o2 zGDoBZhK5+_*F9Hw<2ezs{z7XSSS%kHh@va;!t^aEZ_hG)^bhkn-V!LMU5YjQI#Q-| z89_5wg+pN$U{Qkg#%?dPW7sA2QkSQRcfIQpHDJ;Q@lT-Qf+sE?VcTbcYEs18} zLk{7q4(}Yv(cN3PuT<}I8-C~t+S7%wAaqbb001BWNkl0+j3Ohq=rCZ0ia097I2DK^Do zGJ$zrDd1pzcNeit9VW+vhLp7y76OY?ixea=uX!X74tC_u?v^xQ-V$a?nYV)ar;CB?|p}Ib;FZY2{#0E!>PJI zBFw{^WLQ|1<|-ZGE^f@UExbBtmNjLWvIcxJ?%EK}H(jQVXvGbtg_hICTFqkbrd}^9%fLzIIv_N z074M7wSz9e?=H{I<*RSM!?OfSE@ak7RU2J7%TAKT63&B zBG-f-$;-mUPRt*@dig?5PEWLas*Q(dVWTo~P{J5bmL!q3QZm{vSVVe zO_i^!u?&hqNf;|TUZyMxOC$hlqdzP9W7W7O7Ve$iExEJGm56BfdVt?8+1=ffU1(<% zhh~!NZJ4YfHYgBYdabSg9U#KX^9#)%v7UOqoU0|_GqHw0!S%JkaxqbkagKXm6839u zJ9HUg(XK(7^f&vvZaOD65|uwxn|)KEQmQ~!lckwB+D_6oxS=^5C$pEjfVFsS;!N`l zG80PEk1HL72hEFo4LA8c1$&No<@)*>CZ;P7Zr_EavR%qQTsdy9bS6_DOpKhhA3gKhjQoWJ+~tVT!Ti24ZJ>8gi0oyGZ@I8cM$(*i$7pE84<=rAuLH7Ymu!WxYbPRQ43lm`Wyrn zd1;Yc;FRD88t^t`aN|1O8mQ8NFXszgpa=^}lTl)~rtk>`8+BdwyAc34Q#Mm z(30BJQzpA~T@vg_tJiBX27K?p`98dNADYsXYLrbOMp}mmC^i40f=R{K4Z>!v2^M9n z?J9B#O@S7)@Hz_J_eo^NQUuIZt<0?AI#KB9Mv0rge#O!$mhx*@c+OOy)>9)2-aoU# z5PApiJ)6M9_oaiy+TGie;YA;&d#OwVD}y4g3Sl?XDb1R8vzIWhu(ob^HlBg{?do@!3OC(2s#!ZwhQi*Aj2&J(WQAV(kKwz07y0UbU5Wg~O ze3L}k_-geWF1e-LV;C@xQQZ8#dNF$`i=fchC8YV%CMCo*?8EWg&?fDWGc)45*hJZF zl9r_#^1v(Qo~k%aKU?n?Ijd6>JbVue73(|*nzGe&q47t3yDpt>M{3C&Cem!@8jWvN{j8GMch;ik|!Hh$Hx9*h+W znBflV{h-AQf2o;PYHmv4K-Qylb0x$$MjaeQYK=AN#C`-|fnT-%Z;+B37@dE}5-H`% z+`zkaR&Z?!Zwm9OSu|>69m|~+`5MV77l)gl&1QNtEojJWKG%d;e=sn*rPQz*@eX}U zqF{u;gAScTEG9s8j}gE8_V>S+CSsk#gMA>snWjS)lWU+ai$@p^u;iF@6SX%ht&d2n zQ7eB~Q7$fJQH@Pov(Fk=ArQs;w|2H5lUxPO9wb@{K99Z!?w9vCXP;A}uA8zRu};uq zSXND6Q1G)+kow~m&OvfgZQ=KWrW-<%i_J~~RmXLHJa>JV#hT{HT^?vNw@#?db`id& zs%$YI;ah3~f?`)TTjsNfHFNZ1nVK)gK#bChI&(6S7EGR&j#+`mtJ4m(pVV?sCMc~#^Q^mC%Ws9|mRw+_ ziyU_V+nY_f9$!g&n}sJ+gava&aeVd~fXR3^*NzMN8iI&GKN&kJe{K^+yw{D|4}Ivy z)>!ff1!RAIGbSvz6fG&0a%FjXuT-<9RV=DG!McQq9S(e0B}~P9RF$kN9W#-pnf9yl z>tZ^WWdJioKLg>-ps^8oEiCE^3t!BZ^4)KKFaP-K-^ewB#P=UPl#f3CMBcl1M`|p| zWtA#4a0+KWA6>#{aoPxgOu_5bjIhm(m=#yU;AT1+5)#KkNY(Ib8!+%KDXD%H|0Ok` zw7nfUpZ2xze+xpQVA5=+*AQC{gbQP-!EX{JvVpQjv>PyqpF80cE;IZ+v1|y4%UIA;S!@|;WPgsdM=u7{_OF6&n%d;1+0LLeYRd(f__dbvZk3P_tg*{4SIuam4qPhtH zLlcYBfaU=gi^qU9H13ZvNe*pg-8E^PN=6nwSejhx(QI4MyC_J?)vT3TYn=dIC*c;3r<{pdDWRvZFoEbh0iJ_ zK2(y#x>0<{g7tH;4%k>|Qd3dnVk#y4Rl=rbAi&wGSl3TzQKvI!oAVPY;Gi09;sq2W) ziTPhXc_L>34E5fYOc8Ifx%k1ohjRbkBRM!YG*?S{iCi2XFa zL4<76WYC#FOY7LxW1uf;wAJ$Iv@4oP_U`G7QeV-N`lLc!VWhJL!j8C1@7LT`p+f|j zA?5oLc5{O*>9g_7af448C?id?%2KVR)}|W`M)S4lbJlDQH?g_~&rv;ZzUVcLx~YOJ z)h_!siOJDJYjhTvmRM~4%D@RvrKc5Z$uNB93B`^y2xa!w=FdWt6PBB(5QN|BS{-OI1;IS%ZgzDlwO&)| z9^OBLWy(Q0oL%>{-i$R2T|imJ z95MS^5t+9-+tNV%lXQDhZ*L*~sAK0RS{kgo6!*hxCD6EZ6svPpyaeG-kB@bRTu^Uo z237BCHkM>Qfe-1+*QZyqfA^8xe*YtEvW9L7#c#PyttypK$SvUZT)JJE_y8t3(PDb7 zoX9gHbGa#3mKI^kg)|v~6x%c-?PtohPl`Zj!$vvlWg|FEugcec7ykH|5^o*9u&=aG zKwzc4r4x#dbu5iNsD56>6WW7`H;m)Jfe+`?0H-Ms5|E0Q%ECp_X0Doz8XgSh3g#l| zY)P%zh9AdnkLy^Z8W2^@ji6a*@xF$^I&8M4!7Y1Bp}sOXejz@bc}CwBC%VY=Pc*yV ze*T%9jph<3T{(ONbOtcNA%Ce?n&z{`vPj)DUaM^4HYZody0|tpo2{CBUn1QW(A;D) zl?*~=JXdvgN17goS;p5o?wKRj{4!eiw{D2YGU2`poW0Twv-pX+xSOspUw2A1roVD% zq<7R}7H%|GVZ*rf``jv4Dh8pN#YmIr>)?o7ZyN2MjJn<*$@fe zy6Fnnni9FX=CTO1E`h9c9l~5dIO%dG^Wn9m_^i85JAE&8Fuv^U@5$|--;(CRkrXh? z9M_b?k8*|&X{my#e8zlks-n2M0`hu!Zv97|ZWy(C(tt0bnWoj4aZH-dGqn~+2CFf& zu@Q4DKs7ehTkDX0=ho2`c2>VA-zp$iph45KwY4RSb1YiAG`6||4>p>8JwJh3LGVJY zGr>9Gg`R3#S-NT;R>E);Gj4h@UumH|t5F;5C{Q2~>5PO_tWM6?nWDLxi}m2ubxoNl ze-^;}>3GZud=Oh+@cZ+N3w`)jr=_$}*l1$+@5$Z!4z7$0W*$GkUAq) zX~=rgZ&e3UCF?vZ1O9OVc~(!r7gh1jCY2*{6YKe|D}lUS^`_c@r0lHg%jAuEh6Fjo zhUtk0;5D5tIjr$`taWB==2G5|b=J#LYjHUkRjOqL)5Q^}xn4`#JFtkoWXoDR{8VeX z$u1;~xh_P^dw^5LR@OF4pTlB(tI5{puA(w`)>q0{h$#aNmetI}fbPtc7SaI%Y`eme3pq(6!F&zPU!Iw;jGM!FjFdPH&x23VYB~h!cTn^1C(OQhn z5JU+RK?(@Et)^VYLnVXL)S9l94XfxQetPA)T%as&0G6#+u;yp03Lk3k_lri>A&{pw zl__P`1TaBWt_&DhuxM2(N&=RaZpfUCXOPF)oi+{Ex(`UD zExSiY(%8QvVP_YDgq8-8CLwEVTU=%`y}Xdo$xE5{&*kdkM9xPe)vkvhek4t{oA5t( zbd7bG+k84cW2z-m2wLHb(n+pk+7zKGPzW_mLl#_{lv$JR+4yD~PhF^+sH(0FPT884 zt_3ml{mIZ>2faDguM|vvwb}biNV}>ga^SjTJ5GptZC4oIItlPDqNaf#1pYIdGreo zrjsrR8;R`Qxg{BV41W|Sp;qNYt)>RteDH*Aj{qZsSFhyp?|&!X{^1X@91fH_V|Vzi z+edQemmkUfcOL;j)D-0vPHPHRty;~R3qWal1kQgxT*`~5$MWKv$8!4OxsHi$)?<19Fa83-a!YD$K>Qto z2w$(s6n0+Km>Yq>Vk*&8oMuT8W3h&g#3=`9q}EEKgWZ|?QU}a}M`~cI=T4|ETbEaD z90#y2J1GBzslTP6Gis0}wyI#$TW1D0o3g6PQtCg4_$@d#tQyV5Bpz$Gnd^y2EJ7G7 z5}9=w%uY2IU&jt7g8(chHJNEmTeH>H!!X2Om|3gWV8%G(RHsMaAp`Y0^e3$U_VPrz zwNjgmai2N)FkhNcQ%;_|lyAR#DHmsbS!#XUN*kMR!<_x%mmlkBn%R6TbGF!ct`37p zEU;5j)P59JWN2X?O}4MZCI{FC+81l+QbP?2Roh}#+8Gjs4I5{m^+Y!<`WyM4^;&w4 zS$KO@kK^C!2pXf1XY^RGNj6qvG1o$&2POHhPu5_e-*h%LD2&}gfojDl;AgAV(B|RE zWG;KR4rQ`rV-#YjxR3@kiVb2++{wi5qpi;0w}oQYLlJ4)e&EOM3?k3!Axd+&Y=fuf zMTPlKZ<)*E&p(y#zIrPC{wtX96=DPvsgvkU?OtV8s2>?q>YmpagnHUi*uL-Go z9)A49)L+kP!TexN@@+O$t%d0XQ*~o2{T@b|4zSjeOdm>JhG+e$EQRV{Udz$_N7^zx zhGua9QyagVk;lp^PRs(|re_5&tZimN3#(@oz_{u2R^=(H- z_hkEEPohpkG6b1leDRq)KYlLv@86eJuVby7zQuv;jIiU>TzaK2V8Uf)VdHeRlEL*@ z?mjrORD`Ct0|iZl;vow+-SGv4XkO{B+eNG6YP@y%fbY<>2{H7G8~ggb(gd0Zrf4~n zN9pxKX?LA-R@ihvUvA8rPBhK!C^3bS76IAhkjyuzp4-VMtzJW(oL$Qj3%A?cl9Q7& z8Fo`?VI#24Ic4=HcOPd>!Q6Sw^lhyx_H>kQ6wrrUSlK9R4#{tCjG zz^_Geu)m`n-kkiqwbha3VkQ@(OL=vDB~MR}<=(pwWbgKYWpd8u&S6;`HNx&r!KTQU;zTRM^~)IbywpUJ-Pb<|2& zM_d5ZbUmHR#p$^m?H$S=zW!3is}!HPZ2PWM%FiT=@s(qeHHQ=`stQSF`Zk(V?;y$? z!&R9f7T#xad~zbA!L{__y4>5pB|F`&n%fbym7{3J@R5CJSq9MY@Zkfwb^n1@?i8#n z3T+NH7s{Y#V22da$$K`@iW}#2cr625i_`E~_>y`y8h}AboYaBn+yq4y*#mqO04th< zc3t45GnZNi=a6tU?;)4BnmEr<-y2_DEL6DMxg(BLYa%siA|nWBzui@6%Ps{Hs971Q zpP~Az>A)uo-g&X((^L8I7e7~~csiL$T5rk%*J{P)T(u$<8-g@G58()+z(9&C>eD&Z z5PHd?d1@9P+%I*4Ff+8b9zBqQdPkZ7J9F%GBDVs9VdqAOn5TEREA9P#X#=c;?T*Gh zqJ(FxWzIavP~CNDy*<>70*g+PmuBtqsxJ$~a}8)68_YDNAKQVpdQ1VW0jD6d=Ap1U z2UkO6g(}*f;yM50>Bt==29zH92`;W0C|fwvvl>&Pr!bZ_Hn{3~W(NR^_KNjEvPNaF z-O=+JimjWu}G1~ zi1pB%=Vte5b!~Rohp%~^q}!2S{_0oa!9T3}Bbd3Vp{K$PX+jj-K&%vZu$j1_Ivpt+ z2xd8j9*C7@ndcBOUZJzL=~$_PfYs9abWct%QlCGoLS9t%mP5wyT(Oj05XC z7?-hYBy~da-SCbI99UpuWpA#T|A#*+m~AuTT>9H#e_F)U)xBA|+p>*>&LlxyMo(!W z9Z@Ehi%E5)OsMq%O5(DSV96Wr37C5#6sUhq#ij`9%@URM> zNGj4xYaenO-9k=r1oQm-_yndDev{qaFvBbuiJ1~nevrP~>M}}A`ngFXWLKm@yKW;} zC~xMdG$7`=d9iPY*)$)Sr;bmjITc2emu{Au_O!YKVe_&|+TF}_BT>jn@JpV78d@nX zZ-ewlfd^xU+AN>QNq>MKaZg@8d4@o7DHFs=NfAn2&vk=<_^EU9O6{W730j5q8?JrJF0`n<*W!}Au{@gw+@MkA7OZuu^w>8+wwSD36gN1bVA#t2*e)Pi$|C|PFAd!TP5 zBbhih(k%=RK(t&_M8Zz05#zp_;b6(Z++M3yI-FuMlYB9h`D7rM{k{xF6WQJB>cXp; z=aB~lH>?l$#f`~v8st(BzAK{+oYoYszC+tXOK}Q6f8BzpA;N)%fL2Qv#4V^>7eV8rsxab!htey*4=ZY zCs~NnhPP@`uC&6A%86Ge&8bD;)JRU1WW~_%5&`y^ynOjWHzlXy`)*o1;WXddK~@(B z7VAPqy<%Y+Wkj>hcF=sZGk03&!4wFtmFlF+D){`K_K4;q_%I18m`oJQ8+vcdsqWuY4I^PUZCKTDA_iWWJi{ zB$Jc#nFM=@guR+Jj`7Thh{cgyzQWf6mMrtNet?NWKT1`bn2wG$&HyN&reR~T1Xy=@ z;Mz+(i`fE~fUIgJ0#{4G>)D}AmG;2r0ZOMpf8&e3yn6aV&W~Sd3Y#4aEc-1Zb22qg z??N)3ZQ)fTpgcQck3l*&El2DydFk`4KC6M_hUIXB6?|KrCzcQeZ*Bj0WvP{@y6IEC z8{Oy@&Y1oXMvSz@u@hmY@(j2%~D2EqwY}jH6tF_R2ZwANO zR23NYSU5PV=i$lgSz?+Wox`JNLs(rpeI?I)<$%BGXed`_eR=ZusVt|~YQlS%Pv+9u z-dEoemR6Ri;~xTl-P)o_6Rj(R09Q8uo0>~4p#uDGfAhb}?Y#r}hrj=CI*;PR58sjZ zKlp&vwl-Md`vRgYGTpf)yQKq{y0!CbwOovjTAPjvo0#D{CV}l9S~00<3g0C<{q=QO zw8(Pb0qGPL>+QH9`>m!-5Qg>IM*sj6#Ysd#RMB6ZUBcmhpruu3mwlNPfsC%kN*m-G8KXAWR-fV0GW62GJCZ@^nP9 z+!{>Dvj&~43LC!gb-G%}-TU|CU;mqbqh}fs0JZ-8|0(q_kuI*ypgQzD=ZW7;8u2H7 zrb1#B1jmn+ItQ)P+znNMwZ=`=7zSmY=0CKdxUe#%swJ{0t5J5g7%Uj6<3aZ7EoF@_ zCn z5TrxEjeEZ?_;w zn5?8X%gmwrxiol089Yt|EekVtE#$gsv}|f2I?A$Ht7*X{!H1rvf`~psKuNR2^Y21! zpE2RwG@=;-)*4Xc)L|sAyElAi%4l?&*n^s zqQOF82UF!C*6irujy(L;-^eGw_@$=hSt`bIHG&a@;LxC&EGI*qVHf_xKm1qMk?qD? zmNq+w8o+9orZ>mlooMA`)k!eU8@m=knmG!{x&ca^ zwggkY^{@X%y4zdw#miHTrCB_I%?#*W!peE7JvEv+PE#XX%|wAm zpd_lLmHA!^2(?~YLMSsy;3G)6uvLUevzA2aJ1Tfv&E%$UV@N;&&nck65P|3ln=R9s z-YoXlpqp>NT0f?LI0&8RMR4r`EG&6SChlnZfD~z}2~vtEky^Vazk2t7k=BEcrG5Jm z5Fe1=GL??@n&N$?W0_4RayjTrwwzh}$=6@~aigN~wGtAwrAaoCJ=pa`56TE#uxksa z)hCMIt-Fppi)WY8Mi;J*&L;Zih7ItVMjY$=tPm?O0oU11q;VBUG7RPE^JDp^fBLoD zzI`b2htJpH+Z>R4!Up4dr~@mAwz$YzVoa{D$ekvbpVagS>%SR8EotJG+Eqc+#`~)! zc5Itk4A)^oqBG(`H$u$U6otk+TGu8D=A*#MiFj@ufr7;VRuj#_L5-Ys=xnO7 z{vuyUZ?7f0qn@0NRxl?s`S1VZ*YfZG!{5sOPEU@{1{$gB+(4bI6)LQ)^H@)@iG^G^ zCgGTz)83j@rjrU+S!oBZlYtLCosmkGfw`!<4rHoYAPupqfHNB@z_dHzQCx58>#NzS zZ+0UFS_WXl9m2RSQ_gK_Zb{PIli@0qsMC{A9z2kD-g{4W4-RDMwWXi6uu&o@`d9MZ zXP+xCna~A5V{XH8%w`iw8ZgByEyI0;8nt@WO;%vR5f6AsvInW2FcJf0_*!wpmcFHD zE$+Ea1r9VG5p!Kyn&jseQ&7-6t$xheYR*Ksa(;!R9c+L@Ah~BSUon1gHJr$+=jZbC zk3N={7yr$C7gpsOCT{8_QpSucrb;^IUSM?xV#AFTMXJwBl~U2E`L67EJ^Z{hVJq0N zN(y~s-yOw6h9hc*u7t}v_sB%>`B>k;XoYM!2Q_JPo6h6jk+N||_J8(E*?stq_^ln7 z=fEZ0=xVsL3riMq+-y z!NGQn&f=}2TViZI3_a5h0Fy_dMH?IdLDQmq+tR2V?rxg68CxB7m~^OGr-wjk%V147 zr(qw6?bdcrPA`Cn5EK334`0dO{O!M$!@X^}ycnqO=#K%#NqlyjS|rKHpK+CSMF90E zwIo*kSvu(NSa)OIgLRQcpl7?@O!KG;|Fv7aqFWebv+Ij(f3E9+C@pm5R~a=X$EK=p z%i((;%g_G$-%0z;pU==Q8)jyYPI96(CgiXI&3nb;y2!Po;ow{^- zO@NS*4uS9bb-BL0w29NHjx*6Reu)k^s_ z^*KD#0h&@R7K2$5oCy}}pwp2a9PPo*j+|d#$~92aE5sXr`OAMLfA?ShZ|&7#5Xlp> z(jt)p56F?qYz|h2g1$~aU0^Kk%+j)4r#5P#m z01*3Sa|D?*pi^3#&OK=(IDH5Acn_LW>+Ay%M4EZ=O(i zGdaXs&qdFs6OD%1dcmz1aZt+C0xvCW=h+B>>mhQr(li-FM0q_^v$vSC9b;t&{<$4% zWxKhKy}Y-(B~MPTWvAPa>%~NdQ1|CgpUKA`ekjK;k744bh)+!Dh1XLw78f>~Aa+Tz z>ZBHB%v~qOW?>6|tE{p(=U(-*mFBNPHEV$e-2u;2B@-Ztgxx*42lKV_&d;QE_ei?C z2e2mFGFZ$2bS%rv!`mA?1$Qu!>*EtSJ$o*ocza3OMF% zL{0N4b5zsd|6b6S-% zveGngO
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ms.set_context(mode=ms.GRAPH_MODE, device_target='GPU', save_graphs=False)\n", + "fa_net = Facealignment2d(output_channel=212)\n", + "param_dict = load_checkpoint('./pretrained_model/FaceAlignment2D.ckpt')\n", + "load_param_into_net(fa_net, param_dict)\n", + "fa_infer_results = []\n", + "for file in bbox_list:\n", + " raw_img_path = file[0]\n", + " raw_image = cv2.imread(raw_img_path)\n", + " bboxes = file[1]\n", + " for bbox in bboxes:\n", + " raw_single_face = pic_clip(raw_image, bbox[0], bbox[1], bbox[2], bbox[3])\n", + " raw_single_face = cv2.resize(raw_single_face, (192, 192))\n", + " fa_draw_image = raw_single_face.copy()\n", + " fa_bak_image = raw_single_face.copy()\n", + " fa_image = fa_draw_image - 127.5\n", + " fa_image = fa_image * 0.0078125\n", + " fa_image = np.swapaxes(fa_image, 0, 2)\n", + " fa_image = np.swapaxes(fa_image, 1, 2)\n", + " fa_img_tensor = ms.Tensor(fa_image, ms.float32)\n", + " expand_dims = ops.ExpandDims()\n", + " fa_img_tensor = expand_dims(fa_img_tensor, 0)\n", + " result = (np.array(fa_net(fa_img_tensor)) * 96 + 96).astype(int).reshape((106, 2))\n", + " for idx in range(106):\n", + " fa_bak_image = cv2.circle(fa_bak_image, (int(result[idx, 0]), int(result[idx, 1])), 1, (200, 160, 75), 1)\n", + " fa_infer_results.append(fa_bak_image)\n", + "plt.figure(figsize=(64, 192))\n", + "for i in range(1, 23):\n", + " plt.subplot(1, 23, i)\n", + " plt.imshow(fa_infer_results[i-1][:, :, [2, 1, 0]])\n", + " plt.axis(False)\n", + "plt.show()" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, { "cell_type": "markdown", "id": "5910c62f-5065-47e7-b522-1f01a59c865d", @@ -11622,7 +11908,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -11636,7 +11922,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.10" }, "vscode": { "interpreter": { @@ -11646,4 +11932,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/application_example/retinaface/src/datasets/__init__.py b/application_example/retinaface/src/datasets/__init__.py deleted file mode 100644 index f7fe828..0000000 --- a/application_example/retinaface/src/datasets/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" Init. """ \ No newline at end of file diff --git a/application_example/retinaface/src/datasets/augmemtation.py b/application_example/retinaface/src/datasets/augmemtation.py deleted file mode 100644 index 7c97a35..0000000 --- a/application_example/retinaface/src/datasets/augmemtation.py +++ /dev/null @@ -1,297 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""Augmentation.""" -import random -import copy -import cv2 -import numpy as np - - -def _rand(a=0., b=1.): - "Get random number between a and b" - return np.random.rand() * (b - a) + a - - -def bbox_iof(bbox_a, bbox_b, offset=0): - "Compute iou value of box a and b" - if bbox_a.shape[1] < 4 or bbox_b.shape[1] < 4: - raise IndexError("Bounding boxes axis 1 must have at least length 4") - - tl = np.maximum(bbox_a[:, None, 0:2], bbox_b[:, 0:2]) - br = np.minimum(bbox_a[:, None, 2:4], bbox_b[:, 2:4]) - - area_i = np.prod(br - tl + offset, axis=2) * (tl < br).all(axis=2) - area_a = np.prod(bbox_a[:, 2:4] - bbox_a[:, :2] + offset, axis=1) - return area_i / np.maximum(area_a[:, None], 1) - - -def _is_iof_satisfied_constraint(box, crop_box): - "Choose the area cover the box" - iof = bbox_iof(box, crop_box) - satisfied = np.any((iof >= 1.0)) - return satisfied - - -def _choose_candidate(max_trial, image_w, image_h, boxes): - " Randomly crop image from the origin image, take them as condidates to train the model" - # add default candidate - candidates = [(0, 0, image_w, image_h)] - - for _ in range(max_trial): - # box_data should have at least one box - if _rand() > 0.2: - scale = _rand(0.3, 1.0) - else: - scale = 1.0 - - nh = int(scale * min(image_w, image_h)) - nw = nh - - dx = int(_rand(0, image_w - nw)) - dy = int(_rand(0, image_h - nh)) - - if boxes.shape[0] > 0: - crop_box = np.array((dx, dy, dx + nw, dy + nh)) - if not _is_iof_satisfied_constraint(boxes, crop_box[np.newaxis]): - continue - else: - candidates.append((dx, dy, nw, nh)) - else: - raise Exception("!!! annotation box is less than 1") - - if len(candidates) >= 3: - break - - return candidates - - -def _correct_bbox_by_candidates(candidates, input_w, input_h, flip, boxes, labels, landms, allow_outside_center): - """ - Calculate correct boxes according to the resized image. - """ - while candidates: - if len(candidates) > 1: - # ignore default candidate which do not crop - candidate = candidates.pop(np.random.randint(1, len(candidates))) - else: - candidate = candidates.pop(np.random.randint(0, len(candidates))) - dx, dy, nw, nh = candidate - - boxes_t = copy.deepcopy(boxes) - landms_t = copy.deepcopy(landms) - labels_t = copy.deepcopy(labels) - landms_t = landms_t.reshape([-1, 5, 2]) - - if nw == nh: - scale = float(input_w) / float(nw) - else: - scale = float(input_w) / float(max(nh, nw)) - boxes_t[:, [0, 2]] = (boxes_t[:, [0, 2]] - dx) * scale - boxes_t[:, [1, 3]] = (boxes_t[:, [1, 3]] - dy) * scale - landms_t[:, :, 0] = (landms_t[:, :, 0] - dx) * scale - landms_t[:, :, 1] = (landms_t[:, :, 1] - dy) * scale - - if flip: - boxes_t[:, [0, 2]] = input_w - boxes_t[:, [2, 0]] - landms_t[:, :, 0] = input_w - landms_t[:, :, 0] - # flip landms - landms_t_1 = landms_t[:, 1, :].copy() - landms_t[:, 1, :] = landms_t[:, 0, :] - landms_t[:, 0, :] = landms_t_1 - landms_t_4 = landms_t[:, 4, :].copy() - landms_t[:, 4, :] = landms_t[:, 3, :] - landms_t[:, 3, :] = landms_t_4 - - if allow_outside_center: - pass - else: - mask1 = np.logical_and((boxes_t[:, 0] + boxes_t[:, 2]) / 2. >= 0., - (boxes_t[:, 1] + boxes_t[:, 3]) / 2. >= 0.) - boxes_t = boxes_t[mask1] - landms_t = landms_t[mask1] - labels_t = labels_t[mask1] - - mask2 = np.logical_and((boxes_t[:, 0] + boxes_t[:, 2]) / 2. <= input_w, - (boxes_t[:, 1] + boxes_t[:, 3]) / 2. <= input_h) - boxes_t = boxes_t[mask2] - landms_t = landms_t[mask2] - labels_t = labels_t[mask2] - - # recorrect x, y for case x,y < 0 reset to zero, after dx and dy, some box can smaller than zero - boxes_t[:, 0:2][boxes_t[:, 0:2] < 0] = 0 - # recorrect w,h not higher than input size - boxes_t[:, 2][boxes_t[:, 2] > input_w] = input_w - boxes_t[:, 3][boxes_t[:, 3] > input_h] = input_h - box_w = boxes_t[:, 2] - boxes_t[:, 0] - box_h = boxes_t[:, 3] - boxes_t[:, 1] - # discard invalid box: w or h smaller than 1 pixel - mask3 = np.logical_and(box_w > 1, box_h > 1) - boxes_t = boxes_t[mask3] - landms_t = landms_t[mask3] - labels_t = labels_t[mask3] - - # normal - boxes_t[:, [0, 2]] /= input_w - boxes_t[:, [1, 3]] /= input_h - landms_t[:, :, 0] /= input_w - landms_t[:, :, 1] /= input_h - - landms_t = landms_t.reshape([-1, 10]) - labels_t = np.expand_dims(labels_t, 1) - - targets_t = np.hstack((boxes_t, landms_t, labels_t)) - - if boxes_t.shape[0] > 0: - return targets_t, candidate - - raise Exception('all candidates can not satisfied re-correct bbox') - - -def get_interp_method(interp, sizes=()): - """Get the interpolation method for resize functions. - The major purpose of this function is to wrap a random interp method selection - and a auto-estimation method. - """ - if interp == 9: - if sizes: - assert len(sizes) == 4 - oh, ow, nh, nw = sizes - if nh > oh and nw > ow: - return 2 - if nh < oh and nw < ow: - return 0 - return 1 - return 2 - if interp == 10: - return random.randint(0, 4) - if interp not in (0, 1, 2, 3, 4): - raise ValueError('Unknown interp method %d' % interp) - return interp - - -def cv_image_reshape(interp): - """Reshape pil image.""" - reshape_type = { - 0: cv2.INTER_LINEAR, - 1: cv2.INTER_CUBIC, - 2: cv2.INTER_AREA, - 3: cv2.INTER_NEAREST, - 4: cv2.INTER_LANCZOS4, - } - return reshape_type[interp] - - -def color_convert(image, a=1, b=0): - "Color convert" - c_image = image.astype(float) * a + b - c_image[c_image < 0] = 0 - c_image[c_image > 255] = 255 - - image[:] = c_image - - -def color_distortion(image): - "Color distortion" - image = copy.deepcopy(image) - - if _rand() > 0.5: - if _rand() > 0.5: - color_convert(image, b=_rand(-32, 32)) - if _rand() > 0.5: - color_convert(image, a=_rand(0.5, 1.5)) - image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) - if _rand() > 0.5: - color_convert(image[:, :, 1], a=_rand(0.5, 1.5)) - if _rand() > 0.5: - h_img = image[:, :, 0].astype(int) + random.randint(-18, 18) - h_img %= 180 - image[:, :, 0] = h_img - image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) - else: - if _rand() > 0.5: - color_convert(image, b=random.uniform(-32, 32)) - image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) - if _rand() > 0.5: - color_convert(image[:, :, 1], a=random.uniform(0.5, 1.5)) - if _rand() > 0.5: - tmp = image[:, :, 0].astype(int) + random.randint(-18, 18) - tmp %= 180 - image[:, :, 0] = tmp - image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) - if _rand() > 0.5: - color_convert(image, a=random.uniform(0.5, 1.5)) - - return image - - -class preproc(): - "Data argumentation" - def __init__(self, image_dim): - self.image_input_size = image_dim - - def __call__(self, image, target): - assert target.shape[0] > 0, "target without ground truth." - _target = copy.deepcopy(target) - boxes = _target[:, :4] - landms = _target[:, 4:-1] - labels = _target[:, -1] - - aug_image, aug_target = self._data_aug(image, boxes, labels, landms, self.image_input_size) - - return aug_image, aug_target - - def _data_aug(self, image, boxes, labels, landms, image_input_size, max_trial=250): - - image_h, image_w, _ = image.shape - input_h, input_w = image_input_size, image_input_size - - flip = _rand() < .5 - - candidates = _choose_candidate(max_trial=max_trial, - image_w=image_w, - image_h=image_h, - boxes=boxes) - targets, candidate = _correct_bbox_by_candidates(candidates=candidates, - input_w=input_w, - input_h=input_h, - flip=flip, - boxes=boxes, - labels=labels, - landms=landms, - allow_outside_center=False) - # crop image - dx, dy, nw, nh = candidate - image = image[dy:(dy + nh), dx:(dx + nw)] - - if nw != nh: - assert nw == image_w and nh == image_h - # pad ori image to square - l = max(nw, nh) - t_image = np.empty((l, l, 3), dtype=image.dtype) - t_image[:, :] = (104, 117, 123) - t_image[:nh, :nw] = image - image = t_image - - interp = get_interp_method(interp=10) - image = cv2.resize(image, (input_w, input_h), interpolation=cv_image_reshape(interp)) - - if flip: - image = image[:, ::-1] - - image = image.astype(np.float32) - image -= (104, 117, 123) - image = image.transpose(2, 0, 1) - - return image, targets diff --git a/application_example/retinaface/src/facealignment_eval.py b/application_example/retinaface/src/facealignment_eval.py deleted file mode 100644 index 5ec6598..0000000 --- a/application_example/retinaface/src/facealignment_eval.py +++ /dev/null @@ -1,161 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""Evaluate performance on helen dataset""" - -import argparse - -import cv2 -import numpy as np -import mindspore as ms -from mindspore import load_checkpoint, load_param_into_net, Tensor -from mindspore import dataset as ds - -from model.facealignment import Facealignment2d - - -def dataload(mindrecord_path): - """ - Load mindrecord from File - - Args: - mindrecord_path(string): Mindrecord path - - Returns: - dataset(dataset), dataset read from mindrecord - - Examples: - >>> dataload('/mnt/Generated.mindrecord') - """ - dataset = ds.MindDataset(mindrecord_path, columns_list=["image", "label"]) - count = 0 - for _ in dataset.create_dict_iterator(output_numpy=True): - count += 1 - print("Got {} samples in Total, Load Successful".format(count)) - return dataset - - -def eval_data_preprocess(dataset): - """ - Data preprocess function for evaluate - - Args: - dataset(mindrecord dataset): Loaded dataset - - Returns: - data_set(mindrecord dataset), preprocessed dataset - """ - normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - change_swap_op = ds.vision.c_transforms.HWC2CHW() - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32) - trans = [normalize_op, change_swap_op, type_cast_op] - data_set = dataset.map(operations=trans, input_columns="image", num_parallel_workers=1) - data_set = data_set.batch(batch_size=1, drop_remainder=True) - return data_set - - -def parse_args(): - """ - Parse configuration arguments for evaluate. - - Returns: - Parsed multiple arguments read from CLI. - - """ - parser = argparse.ArgumentParser(description='Face Alignment Train') - parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, Generated MindRecord File') - parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') - parser.add_argument('--device_target', type=str, default="GPU", help='run device_target, GPU or Ascend') - parser.add_argument('--num_classes', type=int, default=388, help='Number of Channels') - parser.add_argument('--device_id', type=int, default=0, help='Device id') - args = parser.parse_args() - return args - - -def eval_func(args): - """ - Evaluate face alignment net performance on Helen dataset. - - Args: - args(dict): Multiple arguments for eval. - - Raises: - ValueError: Unsupported device_target, this happens when 'device_target' not in ['GPU', 'Ascend'] - """ - if args.device_target == "GPU": - ms.set_context(mode=ms.GRAPH_MODE, - device_target="GPU", - save_graphs=False) - elif args.device_target == "Ascend": - ms.set_context(mode=ms.GRAPH_MODE, - device_target="Ascend", - device_id=args.device_id, - save_graphs=False) - print("Using Ascend") - else: - raise ValueError("Unsupported device_target.") - channel = args.num_classes - net = Facealignment2d(output_channel=channel) - dataset_raw = dataload(args.dataset_path) - param_dict = load_checkpoint(args.pre_trained) - load_param_into_net(net, param_dict) - model = ms.Model(net) - i = 0 - mnes = [] - errs = [] - for item in dataset_raw.create_dict_iterator(output_numpy=True): - img = [] - img.append(item['image'].copy()) - dataset_one = ds.GeneratorDataset(source=img, column_names=["image"]) - dataset_ready = eval_data_preprocess(dataset_one) - output_one = [] - for item_one in dataset_ready.create_dict_iterator(output_numpy=True): - output_one = model.predict(Tensor(item_one['image'])) - target_output = item['label'].copy().reshape((channel, 1)) - output_np = output_one.asnumpy().reshape((channel, 1)) - ion = np.abs(target_output[250] - target_output[290]) - err = np.abs(target_output - output_np) - errs.append(np.true_divide(err, ion)) - tmp = np.sum(err) - mne = np.true_divide(tmp, ion * channel) - mnes.append(mne) - print("Cur Img Index : " + str(i)) - print("ION : " + str(ion)) - print("MNE : " + str(mne)) - print("ERR : " + str(tmp)) - img[0] = img[0] * 256 - for j in range(int(channel/2)): - cv2.circle(img[0], (int(output_np[j * 2]), int(output_np[j * 2 + 1])), 2, (0, 0, 255), 1) - cv2.imwrite('./predict/' + str(i) + '.jpg', img[0]) - i += 1 - total_count = i * channel - positive_1 = 0 - positive_2 = 0 - print(len(errs)) - for k in range(i): - for l in range(channel): - if errs[k][l] < 0.1: - positive_1 += 1 - if errs[k][l] < 0.2: - positive_2 += 1 - meannormerror = np.array(mnes).sum() / i - print("AUC 0.1 precision : " + str(positive_1 / total_count)) - print("AUC 0.2 precision : " + str(positive_2 / total_count)) - print("Mean Normalized Error : " + str(meannormerror)) - - -if __name__ == '__main__': - args_opt = parse_args() - eval_func(args_opt) diff --git a/application_example/retinaface/src/facealignment_infer.py b/application_example/retinaface/src/facealignment_infer.py index 51e68d3..7c3599d 100644 --- a/application_example/retinaface/src/facealignment_infer.py +++ b/application_example/retinaface/src/facealignment_infer.py @@ -21,13 +21,13 @@ import os import cv2 import numpy as np import mindspore as ms +import mindspore.ops as ops from mindspore import load_checkpoint, load_param_into_net from model.facealignment import Facealignment2d -from utils.facealignment_utils import data_preprocess, read_dir -def resolve_json(path, output_path): +def resolve_json(path, json_path, output_path): """ Will use boxes to clip images and output clipped images when work with retinaface. @@ -45,8 +45,11 @@ def resolve_json(path, output_path): No direct returns. Will generate clipped files to '{path}/infer/single'. """ - json_file = open(path + '/infer.json', 'r', encoding='utf-8') + if output_path[-1] not in ['/', '\\']: + output_path = output_path + '/' + json_file = open(json_path, 'r', encoding='utf-8') description = json.load(json_file) + counter = 0 for x in range(len(description)): @@ -54,6 +57,7 @@ def resolve_json(path, output_path): temp_key = list(description.keys())[x] img = description[temp_key] img_path = img['img_path'] + img_path = img_path.split('/')[-1] read_img = cv2.imread(path+"/"+img_path) bboxes = img['bboxes'] @@ -109,22 +113,55 @@ def parse_args(): Parse configuration arguments for infer. .. warning:: - when 'mode' is 'standalone', args should include 'clipped_path' and 'predict_path' - when 'mode' is 'retinaface', args should include 'raw_image_path', 'clipped_path' and 'predict_path' + when 'mode' is 'standalone', args should include 'clipped_path' and 'output_path' + when 'mode' is 'retinaface', args should include 'raw_image_path', 'clipped_path' and 'output_path' """ parser = argparse.ArgumentParser(description='Face Alignment') parser.add_argument('--mode', type=str, default='standalone', help='Infer Work Alone / work with Retinaface') - parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') - parser.add_argument('--device_target', type=str, default="GPU", help='run device_target, GPU or Ascend') - parser.add_argument('--num_classes', type=int, default=388, help='Num of Out Channels') + parser.add_argument('--pre_trained', type=str, default='./data/FaceAlignment2D.ckpt', help='ckpt path') + parser.add_argument('--device_target', type=str, default="Ascend", help='run device_target, GPU or Ascend') parser.add_argument('--raw_image_path', type=str, default=None, help='Raw Img Folder Path') + parser.add_argument('--json_path', type=str, default=None, help='json file generated bu retinaface') parser.add_argument('--clipped_path', type=str, default=None, help='Clipped Picture Output Path') - parser.add_argument('--predict_path', type=str, default=None, help='Predict Result Output Path') + parser.add_argument('--output_path', type=str, default=None, help='Predict Result Output Path') parser.add_argument('--device_id', type=int, default=0, help='Device id') args = parser.parse_args() return args +def read_dir(dir_path): + """ + Read images in directory + + Args: + dir_path(string): Target directory contain pictures. + + Returns: + all_files(file array), contains image file paths. + + Examples: + >>> files = read_dir('/mnt/example') + + """ + if dir_path[-1] == '/': + dir_path = dir_path[0:-1] + print(dir_path) + all_files = [] + if os.path.isdir(dir_path): + file_list = os.listdir(dir_path) + for f in file_list: + f = dir_path + '/' + f + if os.path.isdir(f): + sub_files = read_dir(f) + all_files = sub_files + all_files + else: + if os.path.splitext(f)[1] in ['.jpg', '.png', '.bmp', '.jpeg']: + all_files.append(f) + else: + raise "Error,not a dir" + return all_files + + def infer(args): """ Infer with face alignment net @@ -137,43 +174,45 @@ def infer(args): Raises: ValueError: Unsupported device_target, this happens when 'device_target' not in ['GPU', 'Ascend']. """ - if args_opt.device_target == "GPU": + if args.device_target == "GPU": ms.set_context(mode=ms.GRAPH_MODE, device_target="GPU", save_graphs=False) - elif args_opt.device_target == "Ascend": + elif args.device_target == "Ascend": ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend", - device_id=args_opt.device_id, + device_id=args.device_id, save_graphs=False) print("Using Ascend") else: raise ValueError("Unsupported device_target.") print("train args: ", args) - images = read_dir(args.clipped_path) - print(str(len(images))+" images detected") - net = Facealignment2d(output_channel=args.num_classes) - model = ms.Model(net) + + net = Facealignment2d(output_channel=212) if args.pre_trained is not None: param_dict = load_checkpoint(args.pre_trained) load_param_into_net(net, param_dict) + + images = read_dir(args.clipped_path) + print(str(len(images)) + " images detected") + for file in images: image = cv2.imread(file) image = np.array(image) image = cv2.resize(image, (192, 192)) raw_image = image.copy() - image = image / 255 - temp_imgs = [] - temp_imgs.append(image) - dataset_one = ms.dataset.GeneratorDataset(source=temp_imgs, column_names=["image"]) - dataset = data_preprocess(dataset_one, False, batch_size=1) - for item_one in dataset.create_dict_iterator(output_numpy=True): - output_one = model.predict(ms.Tensor(item_one['image'])) - result = np.array(output_one).astype(int).reshape((int(args.num_classes / 2), 2)) - np.savetxt(args.predict_path+"/"+os.path.basename(file) + "_predict.txt", result, delimiter=",") - for idx in range(194): - raw_image = cv2.circle(raw_image, (int(result[idx, 0]), int(result[idx, 1])), 2, (0, 0, 255), 1) - cv2.imwrite(args.predict_path+"/"+os.path.basename(file) + "_predict.jpg", raw_image) + image = image - 127.5 + image = image * 0.0078125 + image = np.swapaxes(image, 0, 2) + image = np.swapaxes(image, 1, 2) + img_tensor = ms.Tensor(image, ms.float32) + expand_dims = ops.ExpandDims() + img_tensor = expand_dims(img_tensor, 0) + result = (np.array(net(img_tensor)) * 96 + 96).astype(int).reshape((106, 2)) + np.savetxt(args.output_path + "/" + os.path.basename(file) + "_predict.txt", result, delimiter=",") + for idx in range(106): + raw_image = cv2.circle(raw_image, (int(result[idx, 0]), int(result[idx, 1])), 1, (200, 160, 75), 1) + cv2.imwrite(args.output_path + "/" + os.path.basename(file) + "_predict.jpg", raw_image) if __name__ == '__main__': @@ -181,7 +220,7 @@ if __name__ == '__main__': if args_opt.mode == 'standalone': infer(args_opt) elif args_opt.mode == 'retinaface': - resolve_json(args_opt.raw_image_path, args_opt.clipped_path) + resolve_json(args_opt.raw_image_path, args_opt.json_path, args_opt.clipped_path) infer(args_opt) else: raise "mode not implemented" diff --git a/application_example/retinaface/src/facealignment_train.py b/application_example/retinaface/src/facealignment_train.py deleted file mode 100644 index 6d326e3..0000000 --- a/application_example/retinaface/src/facealignment_train.py +++ /dev/null @@ -1,124 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" -Training on Helen dataset - -Example: -python train.py --dataset_path (mindrecord path) --device_target GPU/Ascend -python train.py --dataset_path (mindrecord path) --device_target GPU/Ascend --pre_trained (ckpt path) -""" - -import argparse - -import mindspore as ms -import mindspore.nn as nn -from mindspore import load_checkpoint, load_param_into_net -from mindspore.train.callback import ModelCheckpoint, CheckpointConfig - -from model.facealignment import Facealignment2d -from utils.facealignment_utils import Monitor, data_load, get_lr - - -def train(args_parsed): - """ - Train face alignment net - - Args: - args_parsed(dict): Contain multiple training configs. - - Raises: - ValueError: Unsupported device_target, this happens when 'device_target' not in ['GPU', 'Ascend'] - - """ - ms.set_seed(args_opt.seed) - # Check Supported Platform - if args_opt.device_target == "GPU": - ms.set_context(mode=ms.GRAPH_MODE, - device_target="GPU", - save_graphs=False) - elif args_opt.device_target == "Ascend": - ms.set_context(mode=ms.GRAPH_MODE, - device_target="Ascend", - device_id=args_parsed.device_id) - print("Using Ascend") - else: - raise ValueError("Unsupported device_target.") - print("train args: ", args_parsed) - net = Facealignment2d(output_channel=args_parsed.num_classes) - if args_parsed.pre_trained is not None: - param_dict = load_checkpoint(args_parsed.pre_trained) - load_param_into_net(net, param_dict) - loss = nn.MSELoss() - epoch_size = args_parsed.epoch_size - dataset, count = data_load(args_parsed.dataset_path, args_parsed.dataset_name, batch_size=args_parsed.batch_size, - do_train=True, count_number=True, distribute=False) - print("Get " + str(count) + " Data Samples") - step_size = dataset.get_dataset_size() - loss_scale = ms.FixedLossScaleManager( - args_parsed.loss_scale, drop_overflow_update=False) - lr = ms.Tensor(get_lr(global_step=0, - lr_init=0, - lr_end=0, - lr_max=args_parsed.lr, - warmup_epochs=args_parsed.warmup_epochs, - total_epochs=epoch_size, - steps_per_epoch=step_size)) - opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, args_parsed.momentum, - args_parsed.weight_decay, args_parsed.loss_scale) - model = ms.Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) - cb = [Monitor(lr_init=lr.asnumpy())] - ckpt_save_dir = args_parsed.save_checkpoint_path + "ckpt_" + "/" - if args_parsed.save_checkpoint: - config_ck = CheckpointConfig(save_checkpoint_steps=args_parsed.save_checkpoint_epochs * step_size, - keep_checkpoint_max=args_parsed.keep_checkpoint_max) - ckpt_cb = ModelCheckpoint(prefix="FaceAlignment_2D", directory=ckpt_save_dir, config=config_ck) - cb += [ckpt_cb] - model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=True) - - -def parse_args(): - """ - Parse configuration arguments for training. - - Returns: - args(dict): Contain multiple training configs. - - """ - parser = argparse.ArgumentParser(description='Face Alignment Train') - parser.add_argument('--dataset_path', type=str, default=None, help='Dataset Parent Folder, Generated MindRecord') - parser.add_argument('--dataset_name', type=str, default=None, help='Dataset Name') - parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') - parser.add_argument('--device_target', type=str, default="GPU", help='run device_target, GPU or Ascend') - parser.add_argument('--save_checkpoint', type=bool, default=True, help='Save Checkpoint or not') - parser.add_argument('--save_checkpoint_epochs', type=int, default=10, help='Save Checkpoint Per N Epochs') - parser.add_argument('--keep_checkpoint_max', type=int, default=500, help='Keep How Many New Checkpoints') - parser.add_argument('--save_checkpoint_path', type=str, default='./checkpoint', help='Save Checkpoint Path') - parser.add_argument('--loss_scale', type=int, default=512, help='Loss Scale') - parser.add_argument('--momentum', type=float, default=0.9, help='Initial Momentum Optimizer') - parser.add_argument('--lr', type=float, default=0.0001, help='Learning Rate') - parser.add_argument('--warmup_epochs', type=int, default=4, help='Num of Epochs for Warming Up') - parser.add_argument('--epoch_size', type=int, default=1000, help='Num of Epochs to Run Train') - parser.add_argument('--num_classes', type=int, default=388, help='Num of Out Channels') - parser.add_argument('--weight_decay', type=float, default=0.00004, help='Decay Speed Of weight') - parser.add_argument('--seed', type=int, default=114514, help='Seed For Mindspore') - parser.add_argument('--batch_size', type=int, default=1, help='Batch Size') - parser.add_argument('--device_id', type=int, default=0, help='Device id') - args = parser.parse_args() - return args - - -if __name__ == '__main__': - args_opt = parse_args() - train(args_opt) diff --git a/application_example/retinaface/src/model/facealignment.py b/application_example/retinaface/src/model/facealignment.py index 4653f13..f1a7d67 100644 --- a/application_example/retinaface/src/model/facealignment.py +++ b/application_example/retinaface/src/model/facealignment.py @@ -101,9 +101,10 @@ class Facealignment2d(nn.Cell): kernel_size=v[2], stride=v[3], pad_mode="pad", padding=(v[4], v[4], v[4], v[4]), - dilation=v[5], group=v[6]), - nn.BatchNorm2d(num_features=v[1]), - nn.PReLU()] + dilation=v[5], group=v[6], + has_bias=False), + nn.BatchNorm2d(num_features=v[1], eps=1e-3), + nn.PReLU(channel=v[1], w=0.25)] out_channels = cfg[-1][1] * cfg[-1][2] * cfg[-1][2] layers += [nn.Flatten(), nn.Flatten(), nn.Dense(in_channels=out_channels, out_channels=output_channel)] return nn.SequentialCell(layers) diff --git a/application_example/retinaface/src/models/__init__.py b/application_example/retinaface/src/models/__init__.py deleted file mode 100644 index f7fe828..0000000 --- a/application_example/retinaface/src/models/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" Init. """ \ No newline at end of file diff --git a/application_example/retinaface/src/models/detection.py b/application_example/retinaface/src/models/detection.py deleted file mode 100644 index acc37c0..0000000 --- a/application_example/retinaface/src/models/detection.py +++ /dev/null @@ -1,288 +0,0 @@ -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ - -from __future__ import print_function -import os -import datetime -import numpy as np - -from src.utils import decode_bbox, decode_landm - - -class DetectionEngine: - ''' - Method to decode the output of network. - Including nms, write the result into file,compute iou value. - ''' - def __init__(self): - self.results = {} - self.nms_thresh = 0.4 - self.conf_thresh = 0.2 - self.iou_thresh = 0.6 - self.var = [0.1, 0.2] - self.save_prefix = './widerface_result' - self.gt_dir = './dataset/ground_truth/' - - def _iou(self, a, b): - A = a.shape[0] - B = b.shape[0] - max_xy = np.minimum( - np.broadcast_to(np.expand_dims(a[:, 2:4], 1), [A, B, 2]), - np.broadcast_to(np.expand_dims(b[:, 2:4], 0), [A, B, 2])) - min_xy = np.maximum( - np.broadcast_to(np.expand_dims(a[:, 0:2], 1), [A, B, 2]), - np.broadcast_to(np.expand_dims(b[:, 0:2], 0), [A, B, 2])) - inter = np.maximum((max_xy - min_xy + 1), np.zeros_like(max_xy - min_xy)) - inter = inter[:, :, 0] * inter[:, :, 1] - - area_a = np.broadcast_to( - np.expand_dims( - (a[:, 2] - a[:, 0] + 1) * (a[:, 3] - a[:, 1] + 1), 1), - np.shape(inter)) - area_b = np.broadcast_to( - np.expand_dims( - (b[:, 2] - b[:, 0] + 1) * (b[:, 3] - b[:, 1] + 1), 0), - np.shape(inter)) - union = area_a + area_b - inter - return inter / union - - def _nms(self, boxes, threshold=0.5): - x1 = boxes[:, 0] - y1 = boxes[:, 1] - x2 = boxes[:, 2] - y2 = boxes[:, 3] - scores = boxes[:, 4] - - areas = (x2 - x1 + 1) * (y2 - y1 + 1) - order = scores.argsort()[::-1] - - reserved_boxes = [] - while order.size > 0: - i = order[0] - reserved_boxes.append(i) - max_x1 = np.maximum(x1[i], x1[order[1:]]) - max_y1 = np.maximum(y1[i], y1[order[1:]]) - min_x2 = np.minimum(x2[i], x2[order[1:]]) - min_y2 = np.minimum(y2[i], y2[order[1:]]) - - intersect_w = np.maximum(0.0, min_x2 - max_x1 + 1) - intersect_h = np.maximum(0.0, min_y2 - max_y1 + 1) - intersect_area = intersect_w * intersect_h - ovr = intersect_area / (areas[i] + areas[order[1:]] - intersect_area) - - indices = np.where(ovr <= threshold)[0] - order = order[indices + 1] - - return reserved_boxes - - def write_result(self): - # save result to file. - import json - t = datetime.datetime.now().strftime('_%Y_%m_%d_%H_%M_%S') - try: - if not os.path.isdir(self.save_prefix): - os.makedirs(self.save_prefix) - - self.file_path = self.save_prefix + '/predict' + t + '.json' - f = open(self.file_path, 'w') - json.dump(self.results, f) - except IOError as e: - raise RuntimeError("Unable to open json file to dump. What(): {}".format(str(e))) - else: - f.close() - return self.file_path - - def detect(self, boxes, ldm, confs, resize, scale, ldm_scale, image_path, priors): - if boxes.shape[0] == 0: - # add to result - event_name, img_name = image_path.split('/') - self.results[event_name][img_name[:-4]] = {'img_path': image_path, - 'bboxes': [], 'landmarks': []} - return - - boxes = decode_bbox(np.squeeze(boxes.asnumpy(), 0), priors, self.var) - boxes = boxes * scale / resize - - ldm = decode_landm(np.squeeze(ldm.asnumpy(), 0), priors, self.var) - ldm = ldm * ldm_scale / resize - - scores = np.squeeze(confs.asnumpy(), 0)[:, 1] - # ignore low scores - inds = np.where(scores > self.conf_thresh)[0] - boxes = boxes[inds] - ldm = ldm[inds] - scores = scores[inds] - - # keep top-K before NMS - order = scores.argsort()[::-1] - boxes = boxes[order] - ldm = ldm[order] - scores = scores[order] - - # do NMS - dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) - keep = self._nms(dets, self.nms_thresh) - dets = dets[keep, :] - ldm = ldm[keep, :] - - dets[:, 2:4] = (dets[:, 2:4].astype(np.int) - dets[:, 0:2].astype(np.int)).astype(np.float) # int - dets[:, 0:4] = dets[:, 0:4].astype(np.int).astype(np.float) # int - ldm[:, 0:10] = ldm[:, 0:10].astype(np.int).astype(np.float) # int - - # add to result - image_info = image_path.split('/') - if image_info[-2] not in self.results.keys(): - self.results[image_info[-2]] = {} - self.results[image_info[-2]][image_info[-1][:-4]] = {'img_path': image_path, - 'bboxes': dets[:, :5].astype(np.float).tolist(), - 'landmarks': ldm[:, :10].astype(np.float).tolist()} - - def _get_gt_boxes(self): - from scipy.io import loadmat - gt = loadmat(os.path.join(self.gt_dir, 'wider_face_val.mat')) - hard = loadmat(os.path.join(self.gt_dir, 'wider_hard_val.mat')) - medium = loadmat(os.path.join(self.gt_dir, 'wider_medium_val.mat')) - easy = loadmat(os.path.join(self.gt_dir, 'wider_easy_val.mat')) - - faceboxes = gt['face_bbx_list'] - events = gt['event_list'] - files = gt['file_list'] - - hard_gt_list = hard['gt_list'] - medium_gt_list = medium['gt_list'] - easy_gt_list = easy['gt_list'] - - return faceboxes, events, files, hard_gt_list, medium_gt_list, easy_gt_list - - def _norm_pre_score(self): - max_score = 0 - min_score = 1 - - for event in self.results: - for name in self.results[event].keys(): - bbox = np.array(self.results[event][name]['bboxes']).astype(np.float) - if bbox.shape[0] <= 0: - continue - max_score = max(max_score, np.max(bbox[:, -1])) - min_score = min(min_score, np.min(bbox[:, -1])) - - length = max_score - min_score - for event in self.results: - for name in self.results[event].keys(): - bbox = np.array(self.results[event][name]['bboxes']).astype(np.float) - if bbox.shape[0] <= 0: - continue - bbox[:, -1] -= min_score - bbox[:, -1] /= length - self.results[event][name]['bboxes'] = bbox.tolist() - - def _image_eval(self, predict, gt, keep, iou_thresh, section_num): - - _predict = predict.copy() - _gt = gt.copy() - - image_p_right = np.zeros(_predict.shape[0]) - image_gt_right = np.zeros(_gt.shape[0]) - proposal = np.ones(_predict.shape[0]) - - # x1y1wh -> x1y1x2y2 - _predict[:, 2:4] = _predict[:, 0:2] + _predict[:, 2:4] - _gt[:, 2:4] = _gt[:, 0:2] + _gt[:, 2:4] - - ious = self._iou(_predict[:, 0:4], _gt[:, 0:4]) - for i in range(_predict.shape[0]): - gt_ious = ious[i, :] - max_iou, max_index = gt_ious.max(), gt_ious.argmax() - if max_iou >= iou_thresh: - if keep[max_index] == 0: - image_gt_right[max_index] = -1 - proposal[i] = -1 - elif image_gt_right[max_index] == 0: - image_gt_right[max_index] = 1 - - right_index = np.where(image_gt_right == 1)[0] - image_p_right[i] = len(right_index) - - image_pr = np.zeros((section_num, 2), dtype=np.float) - for section in range(section_num): - _thresh = 1 - (section + 1) / section_num - over_score_index = np.where(predict[:, 4] >= _thresh)[0] - if over_score_index.shape[0] <= 0: - image_pr[section, 0] = 0 - image_pr[section, 1] = 0 - else: - index = over_score_index[-1] - p_num = len(np.where(proposal[0:(index + 1)] == 1)[0]) - image_pr[section, 0] = p_num - image_pr[section, 1] = image_p_right[index] - - return image_pr - - def get_eval_result(self): - self._norm_pre_score() - facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = self._get_gt_boxes() - section_num = 1000 - sets = ['easy', 'medium', 'hard'] - set_gts = [easy_gt_list, medium_gt_list, hard_gt_list] - ap_key_dict = {0: "Easy Val AP : ", 1: "Medium Val AP : ", 2: "Hard Val AP : ", } - ap_dict = {} - for _set in range(len(sets)): - gt_list = set_gts[_set] - count_gt = 0 - pr_curve = np.zeros((section_num, 2), dtype=np.float) - for i, _ in enumerate(event_list): - event = str(event_list[i][0][0]) - image_list = file_list[i][0] - event_predict_dict = self.results[event] - event_gt_index_list = gt_list[i][0] - event_gt_box_list = facebox_list[i][0] - - for j, _ in enumerate(image_list): - imgj = image_list[j] - imgj0 = imgj[0] - imgj00 = imgj0[0] - strimgj00 = str(imgj00) - try: - epds = event_predict_dict[strimgj00] - except KeyError: - continue - epdsb = epds['bboxes'] - # predict = np.array(event_predict_dict[str(image_list[j][0][0])]['bboxes']).astype(np.float) - predict = np.array(epdsb).astype(np.float) - gt_boxes = event_gt_box_list[j][0].astype('float') - keep_index = event_gt_index_list[j][0] - count_gt += len(keep_index) - - if gt_boxes.shape[0] <= 0 or predict.shape[0] <= 0: - continue - keep = np.zeros(gt_boxes.shape[0]) - if keep_index.shape[0] > 0: - keep[keep_index - 1] = 1 - - image_pr = self._image_eval(predict, gt_boxes, keep, - iou_thresh=self.iou_thresh, - section_num=section_num) - pr_curve += image_pr - - precision = pr_curve[:, 1] / pr_curve[:, 0] - recall = pr_curve[:, 1] / count_gt - - precision = np.concatenate((np.array([0.]), precision, np.array([0.]))) - recall = np.concatenate((np.array([0.]), recall, np.array([1.]))) - for i in range(precision.shape[0] - 1, 0, -1): - precision[i - 1] = np.maximum(precision[i - 1], precision[i]) - index = np.where(recall[1:] != recall[:-1])[0] - ap = np.sum((recall[index + 1] - recall[index]) * precision[index + 1]) - - print(ap_key_dict[_set] + '{:.4f}'.format(ap)) - - return ap_dict diff --git a/application_example/retinaface/src/models/network.py b/application_example/retinaface/src/models/network.py deleted file mode 100644 index e0c03e7..0000000 --- a/application_example/retinaface/src/models/network.py +++ /dev/null @@ -1,627 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""Network.""" -import math -from functools import reduce -import numpy as np - -import mindspore as ms -import mindspore.nn as nn -import mindspore.ops as ops -from mindspore import Tensor -from mindspore.parallel._auto_parallel_context import auto_parallel_context -from mindspore.communication.management import get_group_size - - -# ResNet -def _weight_variable(shape, factor=0.01): - init_value = np.random.randn(*shape).astype(np.float32) * factor - return Tensor(init_value) - - -def _conv3x3(in_channel, out_channel, stride=1): - weight_shape = (out_channel, in_channel, 3, 3) - weight = _weight_variable(weight_shape) - - return nn.Conv2d(in_channel, out_channel, - kernel_size=3, stride=stride, padding=1, pad_mode='pad', weight_init=weight) - - -def _conv1x1(in_channel, out_channel, stride=1): - weight_shape = (out_channel, in_channel, 1, 1) - weight = _weight_variable(weight_shape) - - return nn.Conv2d(in_channel, out_channel, - kernel_size=1, stride=stride, padding=0, pad_mode='pad', weight_init=weight) - - -def _conv7x7(in_channel, out_channel, stride=1): - weight_shape = (out_channel, in_channel, 7, 7) - weight = _weight_variable(weight_shape) - - return nn.Conv2d(in_channel, out_channel, - kernel_size=7, stride=stride, padding=3, pad_mode='pad', weight_init=weight) - - -def _bn(channel): - return nn.BatchNorm2d(channel) - - -def _bn_last(channel): - return nn.BatchNorm2d(channel) - - -def _fc(in_channel, out_channel): - weight_shape = (out_channel, in_channel) - weight = _weight_variable(weight_shape) - return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0) - - -class ResidualBlock(nn.Cell): - "Residual Block" - expansion = 4 - - def __init__(self, - in_channel, - out_channel, - stride=1): - super(ResidualBlock, self).__init__() - - channel = out_channel // self.expansion - self.conv1 = _conv1x1(in_channel, channel, stride=1) - self.bn1 = _bn(channel) - - self.conv2 = _conv3x3(channel, channel, stride=stride) - self.bn2 = _bn(channel) - - self.conv3 = _conv1x1(channel, out_channel, stride=1) - self.bn3 = _bn_last(out_channel) - - self.relu = nn.ReLU() - - self.down_sample = False - - if stride != 1 or in_channel != out_channel: - self.down_sample = True - self.down_sample_layer = None - - if self.down_sample: - self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride), - _bn(out_channel)]) - self.add = ops.Add() - - def construct(self, x): - identity = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = self.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.down_sample: - identity = self.down_sample_layer(identity) - - out = self.add(out, identity) - out = self.relu(out) - - return out - - -class ResNet(nn.Cell): - "Resnet structure" - def __init__(self, - block, - layer_nums, - in_channels, - out_channels, - strides, - num_classes): - super(ResNet, self).__init__() - - if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: - raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!") - - self.conv1 = _conv7x7(3, 64, stride=2) - self.bn1 = _bn(64) - self.relu = ops.ReLU() - - self.pad = ops.Pad(((0, 0), (0, 0), (1, 0), (1, 0))) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid") - - self.layer1 = self._make_layer(block, - layer_nums[0], - in_channel=in_channels[0], - out_channel=out_channels[0], - stride=strides[0]) - self.layer2 = self._make_layer(block, - layer_nums[1], - in_channel=in_channels[1], - out_channel=out_channels[1], - stride=strides[1]) - self.layer3 = self._make_layer(block, - layer_nums[2], - in_channel=in_channels[2], - out_channel=out_channels[2], - stride=strides[2]) - self.layer4 = self._make_layer(block, - layer_nums[3], - in_channel=in_channels[3], - out_channel=out_channels[3], - stride=strides[3]) - - self.mean = ops.ReduceMean(keep_dims=True) - self.flatten = nn.Flatten() - self.end_point = _fc(out_channels[3], num_classes) - - def _make_layer(self, block, layer_num, in_channel, out_channel, stride): - layers = [] - - resnet_block = block(in_channel, out_channel, stride=stride) - layers.append(resnet_block) - - for _ in range(1, layer_num): - resnet_block = block(out_channel, out_channel, stride=1) - layers.append(resnet_block) - - return nn.SequentialCell(layers) - - def construct(self, x): - - x = self.conv1(x) - x = self.bn1(x) - x = self.relu(x) - x = self.pad(x) - - c1 = self.maxpool(x) - - c2 = self.layer1(c1) - c3 = self.layer2(c2) - c4 = self.layer3(c3) - c5 = self.layer4(c4) - - out = self.mean(c5, (2, 3)) - out = self.flatten(out) - out = self.end_point(out) - - return c3, c4, c5 - - -def resnet50(class_num=10): - return ResNet(ResidualBlock, - [3, 4, 6, 3], - [64, 256, 512, 1024], - [256, 512, 1024, 2048], - [1, 2, 2, 2], - class_num) - - -# RetinaFace -def Init_KaimingUniform(arr_shape, a=0, nonlinearity='leaky_relu', has_bias=False): - "Kaiming initialization method" - def _calculate_in_and_out(arr_shape): - dim = len(arr_shape) - if dim < 2: - raise ValueError("If initialize data with xavier uniform, the dimension of data must greater than 1.") - - n_in = arr_shape[1] - n_out = arr_shape[0] - - if dim > 2: - counter = reduce(lambda x, y: x * y, arr_shape[2:]) - n_in *= counter - n_out *= counter - return n_in, n_out - - def calculate_gain(nonlinearity, a=None): - linear_fans = ['linear', 'conv1d', 'conv2d', 'conv3d', - 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] - if nonlinearity in linear_fans or nonlinearity == 'sigmoid': - return 1 - if nonlinearity == 'tanh': - return 5.0 / 3 - if nonlinearity == 'relu': - return math.sqrt(2.0) - if nonlinearity == 'leaky_relu': - if a is None: - negative_slope = 0.01 - elif not isinstance(a, bool) and isinstance(a, int) or isinstance(a, float): - negative_slope = a - else: - raise ValueError("negative_slope {} not a valid number".format(a)) - return math.sqrt(2.0 / (1 + negative_slope ** 2)) - - raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) - - fan_in, _ = _calculate_in_and_out(arr_shape) - gain = calculate_gain(nonlinearity, a) - std = gain / math.sqrt(fan_in) - bound = math.sqrt(3.0) * std - weight = np.random.uniform(-bound, bound, arr_shape).astype(np.float32) - - bias = None - if has_bias: - bound_bias = 1 / math.sqrt(fan_in) - bias = np.random.uniform(-bound_bias, bound_bias, arr_shape[0:1]).astype(np.float32) - bias = Tensor(bias) - - return Tensor(weight), bias - - -class ConvBNReLU(nn.SequentialCell): - def __init__(self, in_planes, out_planes, kernel_size, stride, padding, groups, norm_layer, leaky=0): - weight_shape = (out_planes, in_planes, kernel_size, kernel_size) - kaiming_weight, _ = Init_KaimingUniform(weight_shape, a=math.sqrt(5)) - - super(ConvBNReLU, self).__init__( - nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding, group=groups, - has_bias=False, weight_init=kaiming_weight), - norm_layer(out_planes), - nn.LeakyReLU(alpha=leaky) - ) - - -class ConvBN(nn.SequentialCell): - def __init__(self, in_planes, out_planes, kernel_size, stride, padding, groups, norm_layer): - weight_shape = (out_planes, in_planes, kernel_size, kernel_size) - kaiming_weight, _ = Init_KaimingUniform(weight_shape, a=math.sqrt(5)) - - super(ConvBN, self).__init__( - nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding, group=groups, - has_bias=False, weight_init=kaiming_weight), - norm_layer(out_planes), - ) - - -class SSH(nn.Cell): - "SSH structure" - def __init__(self, in_channel, out_channel): - super(SSH, self).__init__() - assert out_channel % 4 == 0 - leaky = 0 - if out_channel <= 64: - leaky = 0.1 - - norm_layer = nn.BatchNorm2d - self.conv3X3 = ConvBN(in_channel, out_channel // 2, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer) - - self.conv5X5_1 = ConvBNReLU(in_channel, out_channel // 4, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer, leaky=leaky) - self.conv5X5_2 = ConvBN(out_channel // 4, out_channel // 4, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer) - - self.conv7X7_2 = ConvBNReLU(out_channel // 4, out_channel // 4, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer, leaky=leaky) - self.conv7X7_3 = ConvBN(out_channel // 4, out_channel // 4, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer) - - self.cat = ops.Concat(axis=1) - self.relu = nn.ReLU() - - def construct(self, x): - conv3X3 = self.conv3X3(x) - - conv5X5_1 = self.conv5X5_1(x) - conv5X5 = self.conv5X5_2(conv5X5_1) - - conv7X7_2 = self.conv7X7_2(conv5X5_1) - conv7X7 = self.conv7X7_3(conv7X7_2) - - out = self.cat((conv3X3, conv5X5, conv7X7)) - out = self.relu(out) - - return out - - -class FPN(nn.Cell): - "FPN structure" - def __init__(self, - in_channel=32, - out_channel=64): - super(FPN, self).__init__() - leaky = 0 - if out_channel <= 64: - leaky = 0.1 - norm_layer = nn.BatchNorm2d - self.output1 = ConvBNReLU(in_channel * 2, out_channel, kernel_size=1, stride=1, padding=0, groups=1, - norm_layer=norm_layer, leaky=leaky) - self.output2 = ConvBNReLU(in_channel * 4, out_channel, kernel_size=1, stride=1, padding=0, groups=1, - norm_layer=norm_layer, leaky=leaky) - self.output3 = ConvBNReLU(in_channel * 8, out_channel, kernel_size=1, stride=1, padding=0, groups=1, - norm_layer=norm_layer, leaky=leaky) - - self.merge1 = ConvBNReLU(out_channel, out_channel, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer, leaky=leaky) - self.merge2 = ConvBNReLU(out_channel, out_channel, kernel_size=3, stride=1, padding=1, groups=1, - norm_layer=norm_layer, leaky=leaky) - - def construct(self, input1, input2, input3): - output1 = self.output1(input1) - output2 = self.output2(input2) - output3 = self.output3(input3) - - up3 = ops.ResizeNearestNeighbor([ops.Shape()(output2)[2], ops.Shape()(output2)[3]])(output3) - output2 = up3 + output2 - output2 = self.merge2(output2) - - up2 = ops.ResizeNearestNeighbor([ops.Shape()(output1)[2], ops.Shape()(output1)[3]])(output2) - output1 = up2 + output1 - output1 = self.merge1(output1) - - return output1, output2, output3 - - -class ClassHead(nn.Cell): - "Head for classification" - def __init__(self, inchannels=512, num_anchors=3): - super(ClassHead, self).__init__() - self.num_anchors = num_anchors - - weight_shape = (self.num_anchors * 2, inchannels, 1, 1) - kaiming_weight, kaiming_bias = Init_KaimingUniform(weight_shape, a=math.sqrt(5), has_bias=True) - self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0, - has_bias=True, weight_init=kaiming_weight, bias_init=kaiming_bias) - - self.permute = ops.Transpose() - self.reshape = ops.Reshape() - - def construct(self, x): - out = self.conv1x1(x) - out = self.permute(out, (0, 2, 3, 1)) - return self.reshape(out, (ops.Shape()(out)[0], -1, 2)) - - -class BboxHead(nn.Cell): - "Head for box detection" - def __init__(self, inchannels=512, num_anchors=3): - super(BboxHead, self).__init__() - - weight_shape = (num_anchors * 4, inchannels, 1, 1) - kaiming_weight, kaiming_bias = Init_KaimingUniform(weight_shape, a=math.sqrt(5), has_bias=True) - self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0, has_bias=True, - weight_init=kaiming_weight, bias_init=kaiming_bias) - - self.permute = ops.Transpose() - self.reshape = ops.Reshape() - - def construct(self, x): - out = self.conv1x1(x) - out = self.permute(out, (0, 2, 3, 1)) - return self.reshape(out, (ops.Shape()(out)[0], -1, 4)) - - -class LandmarkHead(nn.Cell): - "Head for landmark detection" - def __init__(self, inchannels=512, num_anchors=3): - super(LandmarkHead, self).__init__() - - weight_shape = (num_anchors * 10, inchannels, 1, 1) - kaiming_weight, kaiming_bias = Init_KaimingUniform(weight_shape, a=math.sqrt(5), has_bias=True) - self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0, has_bias=True, - weight_init=kaiming_weight, bias_init=kaiming_bias) - - self.permute = ops.Transpose() - self.reshape = ops.Reshape() - - def construct(self, x): - out = self.conv1x1(x) - out = self.permute(out, (0, 2, 3, 1)) - return self.reshape(out, (ops.Shape()(out)[0], -1, 10)) - - -class RetinaFace(nn.Cell): - "RetinaFace network" - def __init__(self, phase='train', backbone=None): - - super(RetinaFace, self).__init__() - self.phase = phase - self.backbone = backbone - if self.backbone == 'resnet50': - - self.base = resnet50(1001) - self.fpn = FPN(256, 256) - - self.ssh1 = SSH(256, 256) - self.ssh2 = SSH(256, 256) - self.ssh3 = SSH(256, 256) - - self.ClassHead = self._make_class_head(fpn_num=3, inchannels=[256, 256, 256], anchor_num=[2, 2, 2]) - self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=[256, 256, 256], anchor_num=[2, 2, 2]) - self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=[256, 256, 256], anchor_num=[2, 2, 2]) - elif self.backbone == 'mobilenet25': - - self.base = MobileNetV1() - self.fpn = FPN(32, 64) - - self.ssh1 = SSH(64, 64) - self.ssh2 = SSH(64, 64) - self.ssh3 = SSH(64, 64) - - self.ClassHead = self._make_class_head(fpn_num=3, inchannels=[64, 64, 64], anchor_num=[2, 2, 2]) - self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=[64, 64, 64], anchor_num=[2, 2, 2]) - self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=[64, 64, 64], anchor_num=[2, 2, 2]) - else: - raise Exception('Backbone only can be resnet50 or mobilenet25') - - self.cat = ops.Concat(axis=1) - - def _make_class_head(self, fpn_num, inchannels, anchor_num): - classhead = nn.CellList() - for i in range(fpn_num): - classhead.append(ClassHead(inchannels[i], anchor_num[i])) - return classhead - - def _make_bbox_head(self, fpn_num, inchannels, anchor_num): - bboxhead = nn.CellList() - for i in range(fpn_num): - bboxhead.append(BboxHead(inchannels[i], anchor_num[i])) - return bboxhead - - def _make_landmark_head(self, fpn_num, inchannels, anchor_num): - landmarkhead = nn.CellList() - for i in range(fpn_num): - landmarkhead.append(LandmarkHead(inchannels[i], anchor_num[i])) - return landmarkhead - - def construct(self, inputs): - - f1, f2, f3 = self.base(inputs) - f1, f2, f3 = self.fpn(f1, f2, f3) - - # SSH - f1 = self.ssh1(f1) - f2 = self.ssh2(f2) - f3 = self.ssh3(f3) - features = [f1, f2, f3] - - bbox = () - for i, feature in enumerate(features): - bbox = bbox + (self.BboxHead[i](feature),) - bbox_regressions = self.cat(bbox) - - cls = () - for i, feature in enumerate(features): - cls = cls + (self.ClassHead[i](feature),) - classifications = self.cat(cls) - - landm = () - for i, feature in enumerate(features): - landm = landm + (self.LandmarkHead[i](feature),) - ldm_regressions = self.cat(landm) - - if self.phase == 'train': - output = (bbox_regressions, classifications, ldm_regressions) - else: - output = (bbox_regressions, ops.Softmax(-1)(classifications), ldm_regressions) - - return output - - -class RetinaFaceWithLossCell(nn.Cell): - "Combine the retinaface network and loss function" - def __init__(self, network, multibox_loss): - super(RetinaFaceWithLossCell, self).__init__() - self.network = network - self.loc_weight = 2.0 - self.class_weight = 1.0 - self.landm_weight = 1.0 - self.multibox_loss = multibox_loss - - def construct(self, img, loc_t, conf_t, landm_t): - pred_loc, pre_conf, pre_landm = self.network(img) - loss_loc, loss_conf, loss_landm = self.multibox_loss(pred_loc, loc_t, pre_conf, conf_t, pre_landm, landm_t) - - return loss_loc * self.loc_weight + loss_conf * self.class_weight + loss_landm * self.landm_weight - - -class TrainingWrapper(nn.Cell): - "Wrap the optimization and network togather" - def __init__(self, network, optimizer, sens=1.0): - super(TrainingWrapper, self).__init__(auto_prefix=False) - self.network = network - self.weights = ms.ParameterTuple(network.trainable_params()) - self.optimizer = optimizer - self.grad = ops.GradOperation(get_by_list=True, sens_param=True) - self.sens = sens - self.reducer_flag = False - self.grad_reducer = None - self.parallel_mode = ms.get_auto_parallel_context("parallel_mode") - class_list = [ms.ParallelMode.DATA_PARALLEL, ms.ParallelMode.HYBRID_PARALLEL] - if self.parallel_mode in class_list: - self.reducer_flag = True - if self.reducer_flag: - mean = ms.get_auto_parallel_context("gradients_mean") - if auto_parallel_context().get_device_num_is_set(): - degree = ms.get_auto_parallel_context("device_num") - else: - degree = get_group_size() - self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) - - def construct(self, *args): - weights = self.weights - loss = self.network(*args) - sens = ops.Fill()(ops.DType()(loss), ops.Shape()(loss), self.sens) - grads = self.grad(self.network, weights)(*args, sens) - if self.reducer_flag: - # apply grad reducer on grads - grads = self.grad_reducer(grads) - self.optimizer(grads) - return loss - - -def conv_dw(inp, oup, stride, leaky=0.1): - return nn.SequentialCell([ - nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=3, stride=stride, - pad_mode='pad', padding=1, group=inp, has_bias=False), - nn.BatchNorm2d(num_features=inp, momentum=0.9), - nn.LeakyReLU(alpha=leaky), # ms official: nn.get_activation('relu6') - - nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, stride=1, - pad_mode='pad', padding=0, has_bias=False), - nn.BatchNorm2d(num_features=oup, momentum=0.9), - nn.LeakyReLU(alpha=leaky), # ms official: nn.get_activation('relu6') - ]) - - -def conv_bn(inp, oup, stride=1, leaky=0): - return nn.SequentialCell([ - nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=3, stride=stride, - pad_mode='pad', padding=1, has_bias=False), - nn.BatchNorm2d(num_features=oup, momentum=0.9), - nn.LeakyReLU(alpha=leaky) # ms official: nn.get_activation('relu6') - ]) - - -class MobileNetV1(nn.Cell): - """MobileNetV1""" - - def __init__(self): - super(MobileNetV1, self).__init__() - self.stage1 = nn.SequentialCell([ - conv_bn(3, 8, 2, leaky=0.1), # 3 - conv_dw(8, 16, 1), # 7 - conv_dw(16, 32, 2), # 11 - conv_dw(32, 32, 1), # 19 - conv_dw(32, 64, 2), # 27 - conv_dw(64, 64, 1), # 43 - ]) - self.stage2 = nn.SequentialCell([ - conv_dw(64, 128, 2), # 43 + 16 = 59 - conv_dw(128, 128, 1), # 59 + 32 = 91 - conv_dw(128, 128, 1), # 91 + 32 = 123 - conv_dw(128, 128, 1), # 123 + 32 = 155 - conv_dw(128, 128, 1), # 155 + 32 = 187 - conv_dw(128, 128, 1), # 187 + 32 = 219 - ]) - self.stage3 = nn.SequentialCell([ - conv_dw(128, 256, 2), # 219 +3 2 = 241 - conv_dw(256, 256, 1), # 241 + 64 = 301 - ]) - self.avg = ops.ReduceMean() - self.fc = nn.Dense(in_channels=256, out_channels=1000) - - def construct(self, x): - x1 = self.stage1(x) - x2 = self.stage2(x1) - x3 = self.stage3(x2) - out = self.avg(x3, (2, 3)) - out = self.fc(out) - return x1, x2, x3 diff --git a/application_example/retinaface/src/process_datasets/helen.py b/application_example/retinaface/src/process_datasets/helen.py deleted file mode 100644 index 1678972..0000000 --- a/application_example/retinaface/src/process_datasets/helen.py +++ /dev/null @@ -1,269 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""Prepare Helen Dataset""" - -import argparse -import csv - -import cv2 - -import numpy as np -import scipy.io as scio -from mindspore.mindrecord import FileWriter - - -def to_mindrocord(img_size, output_path, clip, dataset_side_data_enhance=False): - """ - Write Helen Dataset to Mindrecord File - - Args: - clip: Clip Picture or Not - img_size: Compress each img to [img_size, img_size, 3] - output_path(string): Output MindRecord File Path - dataset_side_data_enhance(bool): Rotate image with annotations or not. Default: False - - Returns: - No Direct Return - But Generate mindrecord File With 2 Columns ['label', 'image'] at 'output_path' - - Examples: - >>> to_mindrocord(192, '/mnt/Helen_192', True, True) - """ - finalpictures, annotations = read_helen(img_size, dataset_side_data_enhance, clip) - - writer = FileWriter(file_name=output_path, shard_num=1) - cv_schema = {"image": {"type": "float32", "shape": [img_size, img_size, 3]}, - "label": {"type": "float32", "shape": [1, 388]}} - writer.add_schema(cv_schema, "Face Alignment Dataset") - - data = [] - limit = 8000 if dataset_side_data_enhance == 'True' else 2000 - for i in range(limit): - sample = {} - sample['label'] = annotations[i] - sample['image'] = finalpictures[i] - - data.append(sample) - if i % 10 == 0: - writer.write_raw_data(data) - data = [] - if data: - writer.write_raw_data(data) - writer.commit() - - -def to_file(img_size, output_path, clip, dataset_side_data_enhance=False): - """ - Output Clipped Image File Using Helen Dataset - - Create This Function To Directly Output Clipped Image and annotations Into Files to see If It clipped correctly. - This function is not directly called in this project. - Manually call this function when you need to output clipped imgs. - - Args: - clip: Clip Picture or Not. - img_size(int): image clipped & resized to reach this size - output_path(string): output folder - dataset_side_data_enhance(bool): Rotate image with annotations or not. Default: False - - Returns: - No Direct Return - But Generate Clipped & Resized Images and annotations - - Examples: - >>> to_file(192, '/mnt/img', True, True) - """ - finalpictures, annotations = read_helen(img_size, dataset_side_data_enhance, clip) - pic_dir = output_path + "/clipped_pics/" - anno_dir = output_path + "/clipped_annotation/" - limit = 8000 if dataset_side_data_enhance else 2000 - for i in range(limit): - cv2.imwrite(pic_dir + extend_file_name(i, 5) + ".jpeg", finalpictures[i]) - f = open(anno_dir + extend_file_name(i, 5) + ".txt", "a") - for j in range(annotations[i].shape[0]): - f.write(str(annotations[i][j][0]) + "," + str(annotations[i][j][1]) + "\n") - f.close() - - -def extend_file_name(index, length): - """ - Prepare File Name, Extend To The Same Length - - Args: - index(int): Number - length(int): Fill '0' before Number to Ensure File Name the Same Length - - Returns: - String: 0-Prefixed Number String - - Example: - >>> extend_file_name(24, 5) - - """ - index_len = len(str(index)) - return str(0) * (length - index_len) + str(index) - - -def read_helen(img_size, dataset_side_data_enhance=False, clip=False): - """ - Read Helen Data In Files and Generate Dataset - - Args: - clip: Clip Picture or Not. Default: False. - img_size: Compress each img to [img_size, img_size, 3] - dataset_side_data_enhance: Rotate or not. Default: False - - Returns: - finalpictures: Array, Contain multiple Pictures in [-1, img_size, img_size, 3] - annotations: Array, Contain multiple annotations in [-1, img_size, img_size, 3] - - """ - filename = [] - with open("Helen/trainname.txt") as file: - for item in file: - filename.append(item.replace("\n", "")) - file.close() - root_dir = "Helen/" - bounding_box = scio.loadmat(root_dir + "bounding_boxes_helen_trainset.mat").get("bounding_boxes")[0] - - groundtruthboxes = [] - detectorboxes = [] - finalpictures = [] - annotations = [] - for i in range(0, 2000): - assert str(filename[i] + ".jpg") == bounding_box[i][0][0][0][0] - - img_path = root_dir + "train/" + filename[i] + ".jpg" - img = cv2.imread(img_path, flags=1) - annotation_path = root_dir + "annotation/" + str(i + 1) + ".txt" - annotation = read_csv(annotation_path) - ground_truth_box = bounding_box[i][0][0][2][0].astype(np.int32) - groundtruthboxes.append(ground_truth_box) - detecter_box = bounding_box[i][0][0][1][0].astype(np.int32) - detectorboxes.append(detecter_box) - if clip: - final_pic = picture_clip(img, ground_truth_box) - final_pic, new_annotation = picture_resize(final_pic, annotation, ground_truth_box[0], - ground_truth_box[1], img_size) - else: - final_pic = img - final_pic, new_annotation = picture_resize(final_pic, annotation, 0, 0, - img_size) - final_pic = final_pic.astype(np.float32) - new_annotation = new_annotation.astype(np.float32) - if dataset_side_data_enhance == 'True': - pic_1 = cv2.rotate(final_pic, cv2.ROTATE_90_CLOCKWISE) - anno_1 = new_annotation.copy() - anno_1[:, 0] = img_size - new_annotation[:, 1] - anno_1[:, 1] = new_annotation[:, 0].copy() - pic_2 = cv2.rotate(final_pic, cv2.ROTATE_180) - anno_2 = new_annotation.copy() - anno_2[:, 0] = img_size - new_annotation[:, 0] - anno_2[:, 1] = img_size - new_annotation[:, 1] - pic_3 = cv2.rotate(final_pic, cv2.ROTATE_90_COUNTERCLOCKWISE) - anno_3 = new_annotation.copy() - anno_3[:, 0] = new_annotation[:, 1].copy() - anno_3[:, 1] = img_size - new_annotation[:, 0] - finalpictures.append(pic_1) - annotations.append(anno_1.astype(np.float32)) - finalpictures.append(pic_2) - annotations.append(anno_2.astype(np.float32)) - finalpictures.append(pic_3) - annotations.append(anno_3.astype(np.float32)) - finalpictures.append(final_pic) - annotations.append(new_annotation.astype(np.float32)) - return finalpictures, annotations - - -def read_csv(path): - """ - Read csv File - Args : - path(str): Helen Annotation TXT File Path - - Returns : - result(numpy.ndarray): Annotation Data in np.ndarray. For Helen Dataset, output shape is (194, 2). - """ - data = [] - with open(path) as f: - reader = csv.reader(f, delimiter=',') - for row in reader: - data.append(row) - result = np.array(data[1:], dtype=float) - return result - - -def picture_clip(pic, box): - """ - Clip Image Using Bounding Box - - Input : - pic(ndarray) : Picture at any size - box(ndarray) : Box in [xMin,yMin,xMax,yMax] - - Output : Clipped Picture - Example : - >>> picture_clip(pic, [1, 5, 65, 97]) - """ - xmin, ymin, xmax, ymax = box[0], box[1], box[2], box[3] - img_crop = pic[int(ymin):int(ymax), int(xmin):int(xmax)].copy() - return img_crop - - -def picture_resize(picture, annotation, x0, y0, target_size): - """ - Resize Picture And Adjusy Annotation According to Start Point and Target Size - Pictures should be resized, annotations need sub and 'resize' - - Input : - Picture : CV2 Picture [ W, H, C ] - annotation : Marked Points , Absolute Position , [(x1,y1),(x2,y2)...] - x0 : Bounding Box's Left Upper Corner's Position on X axis - y0 : Bounding Box's Left Upper Corner's Position on Y axis - target_size : Will Resize Image To (target_size, target_size) - - Output : - Picture : Resized Picture - annotation : annotations , But Relative Position , Relate to Resized Picture - - Examples: - >>>picture_resize(img, annotation, 10, 20, 192) - """ - y_ratio, x_ratio = target_size / picture.shape[0], target_size / picture.shape[1] - img_resized = cv2.resize(picture, (target_size, target_size)) - img_resized = img_resized / 255 - annotation[:, 0] = annotation[:, 0] - x0 - annotation[:, 1] = annotation[:, 1] - y0 - annotation[:, 0] = annotation[:, 0] * x_ratio - annotation[:, 1] = annotation[:, 1] * y_ratio - - return img_resized, annotation - - -def parse_args(): - """Parse configuration arguments for infer.""" - parser = argparse.ArgumentParser(description='Helen Dataset Generation') - parser.add_argument('--img_size', type=int, default=192, help='Pretrained checkpoint path') - parser.add_argument('--dataset_target_path', type=str, default='Helen_192pt', help='Helen Dataset Root Path') - parser.add_argument('--dataset_side_data_enhance', type=bool, default=False, - help='Run Data Enhance On Dataset Processing') - args = parser.parse_args() - return args - - -if __name__ == '__main__': - args_opt = parse_args() - to_mindrocord(args_opt.img_size, args_opt.dataset_target_path, False, - dataset_side_data_enhance=args_opt.dataset_side_data_enhance) diff --git a/application_example/retinaface/src/utils/__init__.py b/application_example/retinaface/src/utils/__init__.py deleted file mode 100644 index f7fe828..0000000 --- a/application_example/retinaface/src/utils/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" Init. """ \ No newline at end of file diff --git a/application_example/retinaface/src/utils/draw_prediction.py b/application_example/retinaface/src/utils/draw_prediction.py index 902fd40..03d51a4 100644 --- a/application_example/retinaface/src/utils/draw_prediction.py +++ b/application_example/retinaface/src/utils/draw_prediction.py @@ -51,7 +51,7 @@ def draw_preds(frame, bbox_list, draw_conf=False, landmark_list=None): thickness = int( max((image.size[0] + image.size[1]) // np.mean(np.array(image.size[:2])), 1)) for i, j in enumerate(bbox_list): - x, y, width, height = j + x, y, width, height, _ = j left, top, right, bottom = x, y, x + width, y + height top = max(0, int(top)) left = max(0, int(left)) diff --git a/application_example/retinaface/src/utils/facealignment_utils.py b/application_example/retinaface/src/utils/facealignment_utils.py deleted file mode 100644 index 1a487ae..0000000 --- a/application_example/retinaface/src/utils/facealignment_utils.py +++ /dev/null @@ -1,297 +0,0 @@ -# Copyright 2022 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" -Utils For Face Alignment Related Function: -Learning rate generator -training monitor -oss Function -Data Preprocess -read_dir -""" - -import math -import time -import os - -import numpy as np -import mindspore as ms -import mindspore.dataset as ds -from mindspore.train.callback import Callback -from mindspore.communication.management import get_rank, get_group_size - - -def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch): - """ - Summary. - - Generate learning rate array - - Args: - global_step(int): total steps of the training. - lr_init(float): init learning rate. - lr_end(float): end learning rate. - lr_max(float): max learning rate. - warmup_epochs(int): number of warmup epochs. - total_epochs(int): total epoch of training. - steps_per_epoch(int): steps of one epoch, value is dataset.get_dataset_size(). - global_step(int): Total steps of the training - lr_init(float): Init learning rate - lr_end(float): End learning rate - lr_max(float): Max learning rate - warmup_epochs(int): Number of warmup epochs - total_epochs(int): Total epoch of training - steps_per_epoch(int): Steps of one epoch, value is dataset.get_dataset_size() - - Returns: - np.ndarray, learning rate array. - - Examples: - >>> get_lr(0, 0, 0, 0.0001, 4, 1000, 8000) - - """ - lr_each_step = [] - total_steps = steps_per_epoch * total_epochs - warmup_steps = steps_per_epoch * warmup_epochs - for i in range(total_steps): - if i < warmup_steps: - lr = lr_init + (lr_max - lr_init) * i / warmup_steps - else: - lr = lr_end + \ - (lr_max - lr_end) * \ - (1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2. - if lr < 0.0: - lr = 0.0 - lr_each_step.append(lr) - - current_step = global_step - lr_each_step = np.array(lr_each_step).astype(np.float32) - learning_rate = lr_each_step[current_step:] - - return learning_rate - - -class Monitor(Callback): - """ - Monitor loss and time. - - Args: - lr_init (numpy.ndarray): Train learning rate. - - Examples: - >>> Monitor(100,lr_init=ms.Tensor([0.05]*100).asnumpy()) - """ - - def __init__(self, lr_init=None): - super(Monitor, self).__init__() - self.lr_init = lr_init - self.lr_init_len = len(lr_init) - - def epoch_begin(self, run_context): - """ Reset loss array and timer""" - self.losses = [] - self.epoch_time = time.time() - cb_params = run_context.original_args() - print("cur epoch : " + str(cb_params.cur_epoch_num)) - - def epoch_end(self, run_context): - """ Calculate epoch time and epoch average loss""" - cb_params = run_context.original_args() - - epoch_mseconds = (time.time() - self.epoch_time) * 1000 - per_step_mseconds = epoch_mseconds / cb_params.batch_num - print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, - per_step_mseconds, - np.mean(self.losses))) - - def step_begin(self, run_context): - """ Record step time""" - self.step_time = time.time() - cb_params = run_context.original_args() - print("cur step : " + str(cb_params.cur_step_num)) - - def step_end(self, run_context): - """ Calculate step time and step average loss""" - cb_params = run_context.original_args() - step_mseconds = (time.time() - self.step_time) * 1000 - step_loss = cb_params.net_outputs - - if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], ms.Tensor): - step_loss = step_loss[0] - if isinstance(step_loss, ms.Tensor): - step_loss = np.mean(step_loss.asnumpy()) - - self.losses.append(step_loss) - cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num - - print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( - cb_params.cur_epoch_num - - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, - np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) - - -def data_load(mindrecord_path, mindrecord_name, do_train, batch_size=1, repeat_num=1, count_number=False, - distribute=False, num_worker=4, shuffle=None): - """ - Load dataset from mindrecord file. - - Args: - mindrecord_path(string): Folder path of the mindrecord. - mindrecord_name(string): File name of mindrecord. - do_train(bool): Call this function for train or not. - batch_size(int): Dataset batch size. Default: 1. - repeat_num(int): How many times does dataset duplicate. Default: 1. - count_number(bool): Calculate number of items in dataset, used when get_dataset_size() is down. Default: False. - distribute(bool): Run distributed or not. Default: False. - num_worker(int): Number of dataset preparer. Default: 4. - shuffle(bool): Shuffle or not. Default: None. - - Return: - Dataset read from mindrecord file - - Examples: - >>> ds=data_load('/mnt/dataset.mindrecord',True) - """ - - if distribute: - - rank_id = get_rank() - device_num = get_group_size() - else: - rank_id = 0 - device_num = 1 - print("Rank_id : " + str(rank_id)) - print("Device_num : " + str(device_num)) - - path = mindrecord_path + mindrecord_name - if device_num == 1: - dataset = ds.MindDataset(path, - columns_list=["image", "label"], - num_parallel_workers=num_worker, - shuffle=shuffle) - else: - print("Running Distributed Dataset") - dataset = ds.MindDataset(path, - columns_list=["image", "label"], - num_parallel_workers=num_worker, - shuffle=shuffle, - num_shards=device_num, - shard_id=rank_id) - - count = 0 - if count_number: - print("Calculating Size") - count = 0 - for _ in dataset.create_dict_iterator(output_numpy=True): - count += 1 - print("Got {} samples in Total, Load Successful".format(count)) - - buffer_size = 1000 - normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - change_swap_op = ds.vision.c_transforms.HWC2CHW() - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32) - if do_train: - trans = [normalize_op, change_swap_op, type_cast_op] - dataset = dataset.map(operations=trans, input_columns="image", num_parallel_workers=num_worker) - dataset = dataset.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_worker) - else: - trans = [normalize_op, change_swap_op, type_cast_op] - dataset = dataset.map(operations=trans, input_columns="image", num_parallel_workers=num_worker) - - # apply shuffle operations - dataset = dataset.shuffle(buffer_size=buffer_size) - - # apply batch operations - dataset = dataset.batch(batch_size, drop_remainder=True) - dataset = dataset.repeat(repeat_num) - - return dataset, count - - -def data_preprocess(data_set, do_train, batch_size=1, repeat_num=1): - """ - Define How images in mindrecord is processes. - - .. warning:: - Deprecated, this part has been merged to data_load() function above. - - Args: - data_set(mindrecord dataset): dataset object. - do_train(bool): is training or not. - batch_size: batch_size. Default: 1. - repeat_num: How many times does dataset duplicate. Default: 1. - - Return: - preprocessed dataset, can be used to train - - Examples: - >>> data_preprocess(ds, True, batch_size=8, repeat_num=2) - """ - - buffer_size = 1000 - normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - change_swap_op = ds.vision.c_transforms.HWC2CHW() - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.float32) - if do_train: - trans = [normalize_op, change_swap_op, type_cast_op] - data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) - data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) - else: - trans = [normalize_op, change_swap_op, type_cast_op] - data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) - - # apply shuffle operations - data_set = data_set.shuffle(buffer_size=buffer_size) - - # apply batch operations - data_set = data_set.batch(batch_size, drop_remainder=True) - data_set = data_set.repeat(repeat_num) - - return data_set - - -def read_dir(dir_path): - """ - Read images in directory - - Args: - dir_path(string): Target directory contain pictures. - - Returns: - all_files(file array), contains image file paths. - - Examples: - >>> files = read_dir('/mnt/example') - - """ - if dir_path[-1] == '/': - dir_path = dir_path[0:-1] - print(dir_path) - all_files = [] - if os.path.isdir(dir_path): - file_list = os.listdir(dir_path) - for f in file_list: - f = dir_path + '/' + f - if os.path.isdir(f): - sub_files = read_dir(f) - # Load File Inside Child Folder - all_files = sub_files + all_files - else: - if os.path.splitext(f)[1] in ['.jpg', '.png', '.bmp', '.jpeg']: - all_files.append(f) - else: - raise "Error,not a dir" - return all_files diff --git a/application_example/retinaface/src/utils/loss.py b/application_example/retinaface/src/utils/loss.py deleted file mode 100644 index e4fa1ee..0000000 --- a/application_example/retinaface/src/utils/loss.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -"""Loss.""" -import numpy as np -import mindspore as ms -import mindspore.nn as nn -import mindspore.ops as ops -from mindspore import Tensor - - -class SoftmaxCrossEntropyWithLogits(nn.Cell): - "Softmax" - def __init__(self): - super(SoftmaxCrossEntropyWithLogits, self).__init__() - self.log_softmax = ops.LogSoftmax() - self.neg = ops.Neg() - self.one_hot = ops.OneHot() - self.on_value = Tensor(1.0, ms.float32) - self.off_value = Tensor(0.0, ms.float32) - self.reduce_sum = ops.ReduceSum() - - def construct(self, logits, labels): - prob = self.log_softmax(logits) - labels = self.one_hot(labels, ops.shape(logits)[-1], self.on_value, self.off_value) - - return self.neg(self.reduce_sum(prob * labels, 1)) - - -class MultiBoxLoss(nn.Cell): - ''' - MultiBoxLoss used for RetinaFace. - Combine three loss togather. - ''' - - def __init__(self, num_classes, num_boxes, neg_pre_positive, batch_size): - super(MultiBoxLoss, self).__init__() - self.num_classes = num_classes - self.num_boxes = num_boxes - self.neg_pre_positive = neg_pre_positive - self.notequal = ops.NotEqual() - self.less = ops.Less() - self.tile = ops.Tile() - self.reduce_sum = ops.ReduceSum() - self.reduce_mean = ops.ReduceMean() - self.expand_dims = ops.ExpandDims() - self.smooth_l1_loss = ops.SmoothL1Loss() - self.cross_entropy = SoftmaxCrossEntropyWithLogits() - self.maximum = ops.Maximum() - self.minimum = ops.Minimum() - self.sort_descend = ops.TopK(True) - self.sort = ops.TopK(True) - self.gather = ops.GatherNd() - self.max = ops.ReduceMax() - self.log = ops.Log() - self.exp = ops.Exp() - self.concat = ops.Concat(axis=1) - self.reduce_sum2 = ops.ReduceSum(keep_dims=True) - self.idx = Tensor(np.reshape(np.arange(batch_size * num_boxes), (-1, 1)), ms.int32) - - def construct(self, loc_data, loc_t, conf_data, conf_t, landm_data, landm_t): - # landm loss - mask_pos1 = ops.cast(self.less(0.0, ops.cast(conf_t, ms.float32)), ms.float32) - - N1 = self.maximum(self.reduce_sum(mask_pos1), 1) - mask_pos_idx1 = self.tile(self.expand_dims(mask_pos1, -1), (1, 1, 10)) - loss_landm = self.reduce_sum(self.smooth_l1_loss(landm_data, landm_t) * mask_pos_idx1) - loss_landm = loss_landm / N1 - - # Localization Loss - mask_pos = ops.cast(self.notequal(0, conf_t), ms.float32) - conf_t = ops.cast(mask_pos, ms.int32) - - N = self.maximum(self.reduce_sum(mask_pos), 1) - mask_pos_idx = self.tile(self.expand_dims(mask_pos, -1), (1, 1, 4)) - loss_l = self.reduce_sum(self.smooth_l1_loss(loc_data, loc_t) * mask_pos_idx) - loss_l = loss_l / N - - # Conf Loss - conf_t_shape = ops.shape(conf_t) - conf_t = ops.reshape(conf_t, (-1,)) - indices = self.concat((self.idx, ops.reshape(conf_t, (-1, 1)))) - - batch_conf = ops.reshape(conf_data, (-1, self.num_classes)) - x_max = self.max(batch_conf) - loss_c = self.log(self.reduce_sum2(self.exp(batch_conf - x_max), 1)) + x_max - loss_c = loss_c - ops.reshape(self.gather(batch_conf, indices), (-1, 1)) - loss_c = ops.reshape(loss_c, conf_t_shape) - - # hard example mining - num_matched_boxes = ops.reshape(self.reduce_sum(mask_pos, 1), (-1,)) - neg_masked_cross_entropy = ops.cast(loss_c * (1 - mask_pos), ms.float32) - - _, loss_idx = self.sort_descend(neg_masked_cross_entropy, self.num_boxes) - _, relative_position = self.sort(ops.cast(loss_idx, ms.float32), self.num_boxes) - relative_position = ops.cast(relative_position, ms.float32) - relative_position = relative_position[:, ::-1] - relative_position = ops.cast(relative_position, ms.int32) - - num_neg_boxes = self.minimum(num_matched_boxes * self.neg_pre_positive, self.num_boxes - 1) - tile_num_neg_boxes = self.tile(self.expand_dims(num_neg_boxes, -1), (1, self.num_boxes)) - top_k_neg_mask = ops.cast(self.less(relative_position, tile_num_neg_boxes), ms.float32) - - cross_entropy = self.cross_entropy(batch_conf, conf_t) - cross_entropy = ops.reshape(cross_entropy, conf_t_shape) - - loss_c = self.reduce_sum(cross_entropy * self.minimum(mask_pos + top_k_neg_mask, 1)) - - loss_c = loss_c / N - - return loss_l, loss_c, loss_landm diff --git a/application_example/retinaface/src/utils/utils.py b/application_example/retinaface/src/utils/utils.py deleted file mode 100644 index ac08640..0000000 --- a/application_example/retinaface/src/utils/utils.py +++ /dev/null @@ -1,252 +0,0 @@ -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -""" Utils. TODO: 函数过多,对函数进行归类放在不同的文件里面,TODO: 注释不规范 """ -from itertools import product -import math -import numpy as np -import time -import cv2 - - -def prior_box(image_sizes, min_sizes, steps, clip=False): - """Getnerate anchor""" - feature_maps = [ - [math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)] - for step in steps] - - anchors = [] - for k, f in enumerate(feature_maps): - for i, j in product(range(f[0]), range(f[1])): - for min_size in min_sizes[k]: - s_kx = min_size / image_sizes[1] - s_ky = min_size / image_sizes[0] - cx = (j + 0.5) * steps[k] / image_sizes[1] - cy = (i + 0.5) * steps[k] / image_sizes[0] - anchors += [cx, cy, s_kx, s_ky] - - output = np.asarray(anchors).reshape([-1, 4]).astype(np.float32) - - if clip: - output = np.clip(output, 0, 1) - - return output - - -def center_point_2_box(boxes): - "Get box coordinate by center point." - return np.concatenate((boxes[:, 0:2] - boxes[:, 2:4] / 2, - boxes[:, 0:2] + boxes[:, 2:4] / 2), axis=1) - - -def compute_intersect(a, b): - "Compute the intersection area." - A = a.shape[0] - B = b.shape[0] - - max_xy = np.minimum( - np.broadcast_to(np.expand_dims(a[:, 2:4], 1), [A, B, 2]), - np.broadcast_to(np.expand_dims(b[:, 2:4], 0), [A, B, 2])) - - min_xy = np.maximum( - np.broadcast_to(np.expand_dims(a[:, 0:2], 1), [A, B, 2]), - np.broadcast_to(np.expand_dims(b[:, 0:2], 0), [A, B, 2])) - - inter = np.maximum((max_xy - min_xy), np.zeros_like(max_xy - min_xy)) - return inter[:, :, 0] * inter[:, :, 1] - - -def compute_overlaps(a, b): - "Compute the IOU value." - inter = compute_intersect(a, b) - area_a = np.broadcast_to( - np.expand_dims( - (a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), 1), - np.shape(inter)) - area_b = np.broadcast_to( - np.expand_dims( - (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]), 0), - np.shape(inter)) - union = area_a + area_b - inter - return inter / union - - -def match(threshold, boxes, priors, var, labels, landms): - ''' - Match the origin label to the resize image. Get the resized label. - Use it to train the network.TODO: 注释不规范 - ''' - overlaps = compute_overlaps(boxes, center_point_2_box(priors)) - - best_prior_overlap = overlaps.max(1, keepdims=True) - best_prior_idx = np.argsort(-overlaps, axis=1)[:, 0:1] - - valid_gt_idx = best_prior_overlap[:, 0] >= 0.2 - best_prior_idx_filter = best_prior_idx[valid_gt_idx, :] - - if best_prior_idx_filter.shape[0] <= 0: - loc = np.zeros((priors.shape[0], 4), dtype=np.float32) - conf = np.zeros((priors.shape[0],), dtype=np.int32) - landm = np.zeros((priors.shape[0], 10), dtype=np.float32) - return loc, conf, landm - - best_truth_overlap = overlaps.max(0, keepdims=True) - best_truth_idx = np.argsort(-overlaps, axis=0)[:1, :] - - best_truth_idx = best_truth_idx.squeeze(0) - best_truth_overlap = best_truth_overlap.squeeze(0) - best_prior_idx = best_prior_idx.squeeze(1) - best_prior_idx_filter = best_prior_idx_filter.squeeze(1) - best_truth_overlap[best_prior_idx_filter] = 2 - - for j in range(best_prior_idx.shape[0]): - best_truth_idx[best_prior_idx[j]] = j - - matches = boxes[best_truth_idx] - - # encode boxes - offset_cxcy = (matches[:, 0:2] + matches[:, 2:4]) / 2 - priors[:, 0:2] - offset_cxcy /= (var[0] * priors[:, 2:4]) - wh = (matches[:, 2:4] - matches[:, 0:2]) / priors[:, 2:4] - wh[wh == 0] = 1e-12 - wh = np.log(wh) / var[1] - loc = np.concatenate([offset_cxcy, wh], axis=1) - - conf = labels[best_truth_idx] - conf[best_truth_overlap < threshold] = 0 - - matches_landm = landms[best_truth_idx] - - # encode landms - matched = np.reshape(matches_landm, [-1, 5, 2]) - priors = np.broadcast_to(np.expand_dims(priors, 1), [priors.shape[0], 5, 4]) - offset_cxcy = matched[:, :, 0:2] - priors[:, :, 0:2] - offset_cxcy /= (priors[:, :, 2:4] * var[0]) - landm = np.reshape(offset_cxcy, [-1, 10]) - - return loc, np.array(conf, dtype=np.int32), landm - - -class bbox_encode(): - "Use this function to adjust the label.TODO: 注释不规范" - - def __init__(self, - match_thresh=0.35, - variances=[0.1, 0.2], - image_size=640, - clip=False): - self.match_thresh = match_thresh - self.variances = variances - self.priors = prior_box((image_size, image_size), - [[16, 32], [64, 128], [256, 512]], - [8, 16, 32], - clip) - - def __call__(self, image, targets): - boxes = targets[:, :4] - labels = targets[:, -1] - landms = targets[:, 4:14] - priors = self.priors - - loc_t, conf_t, landm_t = match(self.match_thresh, boxes, priors, self.variances, labels, landms) - - return image, loc_t, conf_t, landm_t - - -def decode_bbox(bbox, priors, var): - "According to the encode method, use this function to get the box coordinate from anchor result." - boxes = np.concatenate(( - priors[:, 0:2] + bbox[:, 0:2] * var[0] * priors[:, 2:4], - priors[:, 2:4] * np.exp(bbox[:, 2:4] * var[1])), axis=1) # (xc, yc, w, h) - boxes[:, :2] -= boxes[:, 2:] / 2 # (x0, y0, w, h) - boxes[:, 2:] += boxes[:, :2] # (x0, y0, x1, y1) - return boxes - - -def decode_landm(landm, priors, var): - "According to the encode method, use this function to get the landmark coordinate from anchor result." - return np.concatenate((priors[:, 0:2] + landm[:, 0:2] * var[0] * priors[:, 2:4], - priors[:, 0:2] + landm[:, 2:4] * var[0] * priors[:, 2:4], - priors[:, 0:2] + landm[:, 4:6] * var[0] * priors[:, 2:4], - priors[:, 0:2] + landm[:, 6:8] * var[0] * priors[:, 2:4], - priors[:, 0:2] + landm[:, 8:10] * var[0] * priors[:, 2:4], - ), axis=1) - - -class Timer(): - "Use to compute the time cost.TODO: 注释不规范" - - def __init__(self): - self.start_time = 0. - self.diff = 0. - - def start(self): - self.start_time = time.time() - - def end(self): - self.diff = time.time() - self.start_time - - -def drawPreds(frame, bbox_list, draw_conf=False, box_thickness=5, landmark_list=None, landmark_thickness=10): - "Use to draw the box on the image. TODO: 注释不规范" - frame_tmp = frame - if landmark_list is None: - for i in bbox_list: - x, y, width, height, conf = i - left = x - right = x + width - top = y - bottom = y + height - cv2.rectangle(frame_tmp, (left, top), (right, bottom), (255, 178, 50), box_thickness) - if draw_conf: - label = '%.4f' % conf - label = '%s' % (label) - labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) - top = max(top, labelSize[1]) - frame_tmp = cv2.rectangle(frame_tmp, (left, int(top - round(1.5 * labelSize[1]))), - (left + int(round(1.5 * labelSize[0])), top + baseLine), (255, 255, 255), - cv2.FILLED) - frame_tmp = cv2.putText(frame_tmp, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1) - else: - for i, j in enumerate(bbox_list): - x, y, width, height, conf = j - for k in range(5): - cv2.circle(frame_tmp, (landmark_list[i][k * 2], landmark_list[i][k * 2 + 1]), 1, (250, 99, 40), - landmark_thickness) - left = x - right = x + width - top = y - bottom = y + height - cv2.rectangle(frame_tmp, (left, top), (right, bottom), (255, 178, 50), box_thickness) - if draw_conf: - label = '%.4f' % conf - label = '%s' % (label) - labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) - top = max(top, labelSize[1]) - frame_tmp = cv2.rectangle(frame_tmp, (left, int(top - round(1.5 * labelSize[1]))), - (left + int(round(1.5 * labelSize[0])), top + baseLine), (255, 255, 255), - cv2.FILLED) - frame_tmp = cv2.putText(frame_tmp, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1) - return frame_tmp - - -def preprocess(list): - "Uset to process the landmark. TODO: 注释不规范" - processed_list = [] - for i in list: - cur_list = [] - for j in i: - cur_list.append(int(j)) - processed_list.append(cur_list) - return processed_list -- Gitee

t1{-S;%~K1RuSuwVubSVYT6;VosO5OP8(n@ws%dFhV4()Z55S@wCVh%!hXn)*2 zkiYzQ|3P*ieIj#2_l);Ph@R8osnok|?RRak?+0*scycAzPmX1FeJ$;S4*bjr8?_^C zyw2BtC{7qgTvqdR0;L`w$4SF@-XaZ^^CQ$gMjZ6XgZuD7(NCPfgcge^EA4Xlo~vy2U*ms^_3&^z`_xF=H7@cj zf24H|EOg<$MLk)BP3heEKspaUk}=+Pc-@!f2qu_Ej{>Yb>^;)=xp?_X`mbIA2#lnK zb=v9@nisNIjM%!Qb=y;zwRG5*E@IfE*U;kyxE?h>(rGIpwknyJ^Q%i4@Emd?20CL>EV&!itjn>UXkWUvMbX4ss-u<*ozGT> zo!V;EBuOCx-3ixfJC)%UESib7!* z_zKUqK;+-tyCVm8Kakt+{gvz-Jw(8nX&QqxPmP3ZT*`Jk)@$i836ZB$x8lh{+AxVb z@Hs4mEM}?HS8d6bg>>p&xs)>nF`BBubJe0cED3xO%zHhuyiz`c)~$TGefKtiM5Zi1 zyRt+ZG{wr8v?|iK7Wu5Kx))qkEx*;YwsnLlTz33j>0qtzRc6GHOEn6!#d8qGh4NbS z&=O)C@{nruj%XU!<>=!+9=hA8O9Kl(CR>0F^z_LKIf5^`bFe4nT+FGvT)zgXrPYx8 z)y!#E{;ROZH8XSLSnG`Wn3WQV*nYJ-q7`hQ_KqCA^Re82{}-~gdk6lat%u?Au)$8Z zCmu(T@x)6kDC^5_-MNF{a{(=A0Cn}Ge|)6_aCu^Kj2NlbYe~lO)Br=BX2%8cp4Mzf zgz%ouuT<89R)h#IsWlM;4dvPMmpV$C$83k}{j{be-wcFSlUi$h>MD8s(n_Cfx|Pk` z3EYVw^fk1lp7T4pP;Lw)yXvZQg-B8gN1@E;N=Rz&3!{EgLPf55m=*-I1zWs@xTqE- z$`&v!O^`8#|Hnbg|%uWOrwzJ}M#_sVL zL2qMMcA+u%-u+14eeXkM9XO|Z^y*B`2iI}|^cdVhaCvlFr<@d=j>6_=HhSd?*=x1+ z%<)OBp+xR{2tNs5)aY$%vX7JNd-$G7ISx8x<5*RzL9oNHWwux{pZZNrT<*jTrv<`znRhW7C6uX5*1BWdY#9b`NHuA>%oA+0v>5nAhPko4dE05NxioR5dcqif3+4 z51~CMG?VKFI+a$XlUn(`&_MAIfSxmu`1QuA-N64WH9ZVvV(?1QfW#rAwRldOaCWM%q$ZU<0#A zllR2~78fk60U*e+5w~w0YFFW8d@c1>2d>4BRcop)FB?W@T?nz4T2;PI%Scs_)tC~} z?5o*W2ma|yIfdgEQ|MGI9Yw|?(IRCOcpNmdno5?k+NBgXr^Zf-jB1hQPRLf=KE$rx z>d33}6CK!BC{*|Kfc09`k~XV2T?U?v1Ua+VaJCp3=oxvc_0feEnh>57g)-yP-P)4B z{iieE$iCW_7!GWm(pr9rO|9*;h0u{sT+-e z_FCHaTE{gxpMhX$2DHY(F9CkWV+C^8?ZFlvW&~{fYoLinHMd&$iEFY>ftG_a@35fV zy!}fA2WSF`L{8~U^bvIsX02S>I zPIc;h1F-Mb&K53)0Bt%n6GLFX2h|snzahmz$G1$muG9P zjPnQ*%~Y~w(bJfwj*W4+52ra<>g20@UTQ?{X%R?ZfvHOY_@0|W?8r~mBR6@NLei0A zWC==ZUmPOtn3dRE8B7+QPi8Acsno;>4xOC~v+M%D8_OOd`W$|U_0`k>`chVq_F6!7 z(2yMFkM|dKyOK9*nkeL;v`E|PT}d+Tr@?WW2wZbZQG9*;wj@%2!a(-XPsAIsU}Z)F>}{z3QW(2yAxY9c|irZXJl5&=Hr6b(_GqbUn)Obq88==j)li6vrMLRLQd=I+c(D5EmFyhe(_wr4%S+k9 z*Di-PVIy*CRxO>$omN-+{V@bJ)O%yxMIe)>p0+Wvi*P*Sk)zneclM;wh0lP6nfCiy z+RTZ@dO!&)WaC6<22m)q!Ye#bx6{;(s;ml2m$_!x1R#uz`RPC)U2Rf zM0X(l2OF;#t*4Arv^FcyDNx$Is7bV3<(cuf|X`CW|`h;abX zbHMoo|7K^p>jL4p03PYXd8X6RRADxS$GS&Wt+t_^+qaM8{{u2H<4EuZ2lM~{002ov JPDHLkV1ivMU>E=Z literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/source/2.png b/application_example/retinaface/images/facealignment/source/2.png new file mode 100644 index 0000000000000000000000000000000000000000..43d4ce61951259370df5e34fd502061907a9e9da GIT binary patch literal 19828 zcmV)0K+eC3P)+;IU*-yB7v$xksz%|mWtgpwgxlF#5PH0GV6aJt+dcWriK25R=tpE zp?{#A7V7>18b}tqyNX3r5tRTk6UZ@UpT{@o`_8%d`HRR*RJ9!Dhzt++=l9(+eP_Jx zfBzr z;&VwXX_`ocKRP@kydFi7lzN#Gui1A<)RJY?6SsFyt|XP8KmAU=y&TCZYD$i$lo7tQ z)c+#MrHyARU&~RWl%G6)Ab;|MkEIpiqD3Yp)_r<;El*yb%QshZIbVs)3MU!9#^F0- zTr1hE<>6jS{@Le`cp6A;?mVAF~-&wnQcqDpFZYEY2hktWx_$5VYzvEfD z(r=eNxP1{x2FfO}EiC7a=;HW(yd&Z>)}P#f%w>3AAxT+?+u*Ye+&ccg%1T*clL|b! z5qhP_>38XdapAZ`j2F^424P|;R$!1c#&=^CSX%?Hr&wo$Yr^#-Fq7yCBV`s|Bn9&% zTuQdqzv%T{Y}?`rsXz1{{AT4~f=K^v`(&F?hW*8@+4aL-a_`)YYlWZwU-dsKg(LkL z_P$Oc+@EbEzt_cEN*cF(_z}KLrGx|!R}quX*k7w6xMu=mF_Hnlrwu9NROYj}ES78R zR-&&LW&IuszaCsOX-I+{p3Rpsn$D!TGmxyzCBueK<}+EY7s92)lvGH7Q8rcyqZFiR zq<@#Z#$+nprLM`Z&h`M;h{zRWOm4aoC(^$a5s&=@bK%n325!9G2irgG4VR+MZ0)_YLYml}S++9LxmF=!9K%n7tjtyQx z5>hNA)&-YFR{Llv{+f2P!|_;7BakxB@ESKPm+SFR=JP4m0wP9GOF4;>s05K%kU2}5CZO7ipk_#-vWQiJpy_0`-oUn%QY75$ zNY$fV*((~}5dKag45w6>Jp<8ABo?e6A?Wp2Q$x zzte(>wBM9iY?HXG6(^klHRkh9@blF>|7n-L@o*N2gZ zwU;Ch6&Q7wBIWNZSBOC0CjN-1mYr!aw}P7{D*1K_bzuo|+*u6z9Ls8(7+tI4Y$^ z?CQ(vL=Q_LX3DvcoZFuh4=6DT<VJBK>A8ef)c`8OfdFec9jZ z>&8Zu2-u?(1m5j-q}A=qGK=MMw1I6K>HQ^&Qk|+cBT%6PD9gOs$_=D>v)O>)t?kB@ zW;1RxzT3jKEkySJR!NXs+Q&uJzi&%XAYff6Y6PknqN4n5`(e98cxuwYn{psdfSe`N zRKI@taib<>-{~6FW-k#h$%fY&TQ7Epf`4+NrcpX-~aPmEOWse9(;Hz1|*`HOL-}Mp5HCZg-2f;>gV~GU{ zLV%4)CkX^_kmB_&oZsDETTb?O<@j({IxzSoa-KU?n@ae|-!wl*u%b33*EJ0wRc)w3 zLh@|0(oI)&TypbLS#L_Yx*CG$O_Th>q^9ss7r2;zbL9;+Rha?5H?&Qr3ydulC32Dc zS$N`<_8lHMNM)dI{0@G5hY}xn1XXBo+?iPN3*x8-wIeTKrr;y*Pmo|lQCwuEeub%+ zf`}}e<0m$)Nc6q2-La$~Oaq^5;@O~WB7s4WC~m04tRMs>)De9=N)nyq^*W;y1i%r& zmMkS-uM}ESy$w1ITnB1wIakmSQ{oEaa{7O7-n^DB)FTOBdOJn<8!JGd01+FoIpfGQb6GG|so*h;pM5QM{xp;jk&!0V)5hSO`2&uha zz-s{?Cm`$s5|z-8S{HKt;#8K)=NiB3cKT2SiTXvVYWbP8DMbwM0Z`Fyr1Bf=->Xg{ z?Pvp=wvqu*;cllZ!9d33S)glTCx9c1psSQ>;>^(xW^`^F51pvy* z$=_bU)pxXF=sIEQNG_?2le2(m{ZSXSumBa=no+#{tiF`CDFh91!!*mo&05CG99#{e z7EPHhGB}zYd3$;#-~IN9Oh;o4-w=m&u&IG}Y3!TWXxfG`C_Tk>h{V><~%OX;5 zBKA&v%t&`_YfOVjTW3A;Xf0?Dui{L56h7h-_B3FD?Vi0ia^s(ggfPx60eT0?m9=+O znB7tdD&|gV1j3>$g0HHDQZ@s34%hHY7`4V9Mx(jRv5DWDUC7rj-pGEhCr40OsYVM5 zbrzGvLPM0q$#kR}lVL-1{Eq)ggUAdU8bMNu3`h*G&!#JxFJ>STq+3Hn-hC)3&2Vx7 zNII#LeK@&Ixt1n~O4auK)frwFIRJc*2OR}74rr3Q&;iktU`M>CANiP}c&ryTRAaH; z{umfAp}B2qz7HgX2!uM=z`x!x^f9PFm>VH;!f0EJ`Aa^pgM~Z5W1^-F&{K(PrG&U@ zWXXlGtnn{KNv6>I7f>ayASGiM{>dx@w1r9mw|@5EvGn`98vEKnI+if@OL+BEUkm(u zzL-N=@H&tg8Kco?NUPNWdTXduEmxV$=M#M|i5JilH;P8T49*^2r|Mi`?ThIK2oLZb z(0hNL$^Jnb_U}wyon6U(zaeV9;Lt5`-F?`(hxhJFtI<$I*-2YwgT?F%RkQ{?3lGYD z@U;XOQ9x8=-luh9vDpCLEhZQ-F3BA$-Btkx2~xG@#AEmOIH>w=S2NLCA~DNR%V_a)GqJ*m>-*nmuk7*oAvVrnV&o0j93IoAPr-o$r* z^BwIO2%9aTS}7s}xqrN?>M#b*9nYt71<Og1L9SAp0WH3( z_CDySmQrqwk|#(}3r{e>SVXyfX+*VV9HN;QZ2a0aq<1JyY_w}I zypzlPY9d!>&twi?MVTpSfDnBp201Q;ZCS0>`aQ-tg%X6)M9Co`D+yz|BC8qcvfQTG zl~+TU#!@1TVu13-P}sZ`q-X`)zk+@04S)!-fnPj%4mH}A%gZV52*#<|1<*<4^m+n` zhh1tnVJD$tq2D00wvhqBRVs`Nh+spV*Em7N`G|urH7I?0;kHF8w-RIlK38)#Et?p8 z9Y$H5hE{Gwu2ppuYV>1%71PIQ2gcvY)3+D$YxoybZAot+&GrDC)Kn*K1XZ_yw2%P1 z;L<^FM|!kDl$sh57*WpgU7b!xolV|gAkGRlio`M5Wi(==5|L5rRH72SK@IAH_-ld{ zrZylE+@vImRSHu0N|X+6(F9V-&wO;eCourblNaaucc$6jj8-z7W?I|O1W}vw6{I=E zx;xT>Shkr1qwS?@;iLW*SqV`byq0@dUV)1cpz|@!n)C$cKk*)AMX@>tH%Iz?;f1YZ z7T!y5J}+^(B9VW5_CkLC#S!sWNY+4Xo4tM2zd5}7>)}wZ zL)FEnG6}w8cXwCz;Dqk%3>4V~DI$@sudn6x>(?>?p(2I#7G>v}2qgCQ_VhaA@dWA; zHw%te2NO?4c_jl2&~cdF9vlZQf ze?CNd%Ql6gh|=dUikNnX#UD=Iyg8M>{&&BYQ>eGWojcM1_cNrEFoKK^Eyj=laQ_0E zObM9dXA>JUolIpinJDMCS}g?ug8_{7{rf<8eQbE5QbXdAKv$Pna&~@(%^&Of+VH1% zFWqieiA1R*G2gy@D>F)(i!0)(iXn%_Aw(srlIUy2_}ngSqjC2^2xcGUrnGuzeI4K8Iea-YiQinPRq+Fg&4yNdJO4dT>m} zFZOwzFP?rUPhOvi>+DF}*@fDI|B@|mvoqb89&8aej5kDX`sCwBut5jd^sy(-iEeTm zT*?RoIsW3}TqSNbn}etmsH9xg8S4<}m=;-~;iMHDRQgVNZjlaxj1+{4z!c0;Id4;` zQWi@?fNDQUxKi^KRV|-ZC8ZW*S!|Z->y25|0!HXIcBH$rC+#kzWjO^}buyf-CBdeT z#vsb%8q88kzt@(JAO2A8A0EONgc|@yd$VT7c7f|`G%(!lw6xF$sLCQao;daFZ4%0& zs+TGU^=1TBEmbX?#2e0-!j7%>?6=RqlV5-Rjn)|K?GI!Q8!?@c5V@kA4!r&jAU2&& z`YeZsM{@VxU3vZHtvr1A5gf+0a`@rFfl3iK@cjH7ei7g|B!&illhG+%Xk=jxRY5y* zd~ysG1lzJ9^j@l6p)W)yHNorrH<^N5OW;FdPy#7oYuF8ib&4tm~B~tBn z+OSoLB^kfxaSLV#X!t&CP%4*ck&FgS7zi=xxrVRvtKUA6%jpabXkT&vn(;D7Sr^VI z4gCJ$iAJBFK79sh*^`eyeyp2LBt#LhSH!VSrxT3KH(x;j@oGXxYT z0HJhj)(cHX#Azg*xUJI5>s_5+seRd_Lx~&CG?EZQh0PRdudohACKx)}tTS%|tp1PE zNBhR#Gqq1!02FdtTB3{JSBo5A;}k%lsg7yV0uX^VSV2ofV8AZyQHk$Jut(j&p4@$S z7f7`$$9O#(UCCtlRHq0V2brM@5{7Ek!N)9uK?&Mr0s#2gJ}4+J@emkvuR5%hb5 z@UsOJhzri=@Q(nASK!h%vkbWT3{ulcMAHrGSLBM!Wd&UxKnHV5yoZ=@8Qe|vN8Y-+ z8mTmCl@1BL*+?j}(lkk7YEQYCs7i_&(krTvOOZ1sx742vN<0Xw{#m!DXmN$V@fv-o zOQzGm{_0EI>p%uS`b1UXW-(Nz+v)ezw=22lHB?Y9&@t^*&j;B{@2I)b*BKZF4@C@- zw?)`gER^Yj7pGS;!q2RXH77$grfP!q(ztonQKw8%Ea!62@8Tw*gBy|L)1eGfe#cs) zBMFI~!&lFj@H1lNa3aJ7{yu=dW--VHoW5MFHEOVg{h;rZ6`mVoiyUlV4;Yi%6toSZ z@cZQC1c+(@a54r+$ko1Bu1b{ILTr)53Z+j~mRLMe6?1|a*y}_sZ5W8~9c}DQr{&b( z??Gd<8%|!GK9x5wujJltQ+Ds&mxIH7xi~vh2B9zZyXEE`6=y_pK3rpYC@V4)tsih2 z`xCGAw3HAxv&7Aw4WZ)~8zoqpHZ`ZOc^Yh3ztNGy!7hjcX==wB4Iuk3uFrvFz>$f? z#=77_Nn7IZo@rEz><8;a%wld42vu2L zomrJ@A3}Gw;wmkuD0f>xG6}bPg_e-<>teC z`Tx~wqXqBtCAp%l#e=jrbPWhliBk3ft8<{X<$M8@(^C7jT1=EE9XNU{M(p8pJDpTh z;Q*bgj)?lm&1>Dz4ZcetHQ4L|J`^BquL)ap|44QYPNWIFPA~rIatug*tq{JTS6^EA zY6lX%hTWTC9lF(#RTD|Q-pu=V{FRc+pPHty=&MEfOY?bHayFZcq@0#=43)JH`})b9 zU3ql0FL(C#un)NVMjxtvCBw5fGQ7TodM-5zUsUyY-oKO(^0`f*ngm&dRkWZ(dvTmK zmW0n4X}p7%m!9gDkh{9PRzD<(o9ZvcKy)Rzq_455NOmC+OZYE6{Okb$wU73!@QsDiOrpy^@YvM*)N+fumoE1=pShKG*u>XpX!d_bwfaY-`?YOWc3X3i2)Mgs` zIq0_J(ea*q_TYg$Is}tpZP0Ka!bia5KZs*X$4UsEf0uC?cbo#J4Ky-Y42a6iO#xR!E1u=G711*>8ciS@P z-<9Lz19|-M18{a%UcGz`k9(sx!~{19l{Ok0As{$V#sMdjx^=M+$5f0^ z8XP8CN`U4X8-k62w7OGpiBD9= z*DUZl2ee=KWLelIORAAaB7eVWRH~D?+1MJn%?&!8jtr55@VPQz;@OwJ4pZZ0Vc*}u zJrh0ZU-QDCfs+qdp!X0c7^Q&!-|3KZW}~Qj)*H*oESD=)L*&v1IHTK41zrn$mPkGV zto`)CiG1?#zGg9-uq(M$TbR0KiB!^t25G_B1;KFLRg~W#PUO?pAq(juE5&NJ`_kw` ztxhM>?T_H9<>KJR_r_g~iA|v5uI8DXU615yI92ty=5;`z4h%Z|7=_wEgX0bB9x|=l z)*|`5uy#%{X=9-Y9WSgFghJpQmW=35Uy%kfJreplt+WM>;aASA=dj)0X?X( zcB`#oy#bI=e?y( B=p?L?yXqQLK&I*4_V_1W9VN`(oP=_|!;wuXSH>M+vpnSuZ_ z5H6Ot%yv!zr?JjOr>WtlYuKk5d?3~m&{5=uk4M*&n5Z`>$HVxrZ3?cI;*50UF1w=>Gos> zd-sc9|4ROkfBmoJ$v59x*B+$w5|IAa>j{wDuJj%rOD>jimdIE0m1R|m78eHLwccBN z^sKbfEK@A8eCSczm920rcU>jhw}oM_LuM)_dv#VK$+f?;q{T|M1`aH}W6<^e3_dMw(n) z%4ijRVV5e$IBbxEH(Rg^!L2m%&6HD=*Osey<-<#=9-QWRC^?z7>#vpOn+^OS z0D?J|zo6Qg3^kpC*v;ZW!mnQPh|HFSK zfAvp)CY!6b@^}CCZ{_;+TS#Xvt^Kb2!B788{-^)`zm@;_U;ZyLf@(`#CU=2K2LL9i zGp1oZf)+>yFjbmK2yG|U1{z{96c0mpk3+SK001BWNkl;Axs@`H--xi8d3>;X8 z_4mQ;aPd-G=Vz0#W&{V|z=!wm%YFC+OjE~RAD7N=Fuq)U3m+-AmX1stiM7Km6r~s~ zDygYID)sKH62}$RGN}_0(zYBP-BDYYUSCT(Vf35o6!14)Ns9@^T(oe6b>Hh%ra7WE zY$$`ZJxJasclP8z`^%q7yqU?r`MdvDrkCgN*B-$|*pbm{CeNRLD~~_>T>gvy{IBHy z{8#@9w&_aF-n@~64hYlheqgV}=gwS})~;-Qr~&p_)(<_BP=`<`!YC_X@V+ms+*lTR zK)1KyurZ|1sKDoc@EHhnSG(HSd|P;!VxYW=MTmw=im>urOL$>xSPq_$x`PlOcyg*HxmuM^6JeNqwA0&03K#;C&Mebd+(ui?|g)7 zc4Pxk5@!oJbS->-qS@7>y?t3+o~imtZq(y`fI#A^SWUH)uG8i#<)ZYi1Jb;t>jVxZj6rgTd%}bf&fZ4@D4SK=B z7p%r%Yd^l>2-4TyIgkZ=#t2#APGpcwX?ARMOl(hzX5e;!_M@;nyk33tiw33E3a#q<|XtjPBXyU6@v}e^{ zPfNdN9q51YlqqC5&fD6Z7m@_`YBPVjDN!v|b(Bo9(I# zFBPR%cc!{5gc-@U5z2Q5I4_AlCT2x`R$N*5uD+u1?T22sS5vy2sY6PzhE&J_4X5SB zkBf&;Pb-Z&Gln*YQ_C>S4p8T(_mAYT-;j2k$%}7(BX9ohZ{*0`Dpm9;Y%SHYz34dc_^OQZqG?jGh`CO^l=jVmU=0D z^?qjE3!!e?b2^JdnC4}j*$l9@)t*QSwbx^@NXcP2EUn$Bze6ArYYz;wn~4%7Crnm* z6KMdEaWFqt4nK#Ve&Y-$1(x#3qp#62$wQx1TIXOc=lG z%E91R}X?%St*=j9!PVUGN)b#P=`%*L_N!bk!=X5f@fSQ9fb+Bg-KgAlI zc9rMQ7*jy>tHnZVG+I~>WlLv6XkpcM(=DtTOBNM3vv3uWd|;1Vjj6=4 z2<`Hg^S2j8{OAo$rm?_qFjG$x#r8*gds;wZYPhKEk(C9QbFINsDc&&~*0$ptmTPpW0|i#Q>o~6v>#N>G z!qgK>AuSOZ>f$x~fV7+CMq^wXprj?st{8WM1E?H@jbWUvfHTO1nFd@XR8Wd_11NJ? zq_>Hin4X@?%dftc2;BSN-d)&=76>=O^`;VKsg{0GQj$iCWj~O5X8~7dNjlAhTHwnd zMPyZ?%|4J?a~Ci<1qy4*?Lt7|GwOO4!3 z93I}F!37_Ja9*OM*v6OGmZ3pW)*3UjO74zQRb8d_-=sEtg8ai?B3Js>}?3*P`YgMF@RsAl*-t;Sm7RtJ#%P$Ss% z6Io1o28}V>2GLvHFJ zF*cSt9cOv@_EdiR%U?)28Ohy~BN@N>R=yohbyQi}Z38XE8n)+s)5VOTip-EdfREDB z^oJ%6{j`%J%!DgLcGYQgfwg-v)MczhD7ALm;khXdDQftL$u{j4FSVMLOwnw`V5o+? zxw@8XIKA_Y!@p|}H)r>AEcB`1@FLKbzbYY50X zyK{r&WCju^$~A@;Cyaow4KmkUl%_(8yz0=_nmjfN$CegJ<5Xu2HQ@`re0?sbmm^s+ zFSN|$$@91JqmS>(4;~zvN@d_w%ulbfa()O!Ake=@b%7Pn2g#{oVKoY>=td#IR7G$s zH&bkzk4v3>kXe_t1SlLrI$|?%Ja8$s6(7h8T>s|HnLPi;ClUk2o$T$%?BWde;aUz3 zPvp_(Kb6BzK9i)oqeyRZbtYG%rM!6YR&z{u6R4@(JFrs?s5xueEy@r&F)!YRB3Tq( zt6~f0lVY7L(rA|6fHPXY_Ve(p-?fNsRzl>0&5U(Y$-n(~zXJ2j@%?R;lnFfAfB5o= z>~>>m>~buCck6;{;WuteoZF=ZPHrQ-8w9HU9C2hy6&-b1n89Q!yj-qj`1Xx-6AnA-!K+{Dz$F%+JbL^C**iLs*JqdV zcKkw4&oAWV)8E3gUZ{P#d;cTp?H~AwB8jT0P{~u31TrV23(hrCq2Q*l4!78MKKSiZ zn6J(SLshx&AdD^J+lp+~=~pkmm0x}F52~tzBh2@3h*PGW7fZMqscDE>y?Yf?^n|&M z=G?7hXkUszXz`Q(pQ0&I@~C;@AiI?0R~&Mb~hBBNlWXn=)#6}+Vnu+C{I?fH4C{udjmxI zS{iPn?I>ghUW1{nF_`Uoxz_j}YxWWsdoX2@gm>q-{Qi$5B^M~JPWw5@8qb6x0 zHJBLmeralgA^kkE$?mJw40ZsFkiZ|ojWF^Yfk2HujC7|j7L2vJ0ZNh% z1!VMuWmHh3of1;Hnd`Xe>&w^j-IxC$1NZ_*gC^8%rlrapgqwq@UXP~o?d4E*cDm97 zGd48CTKX_nWb1JMKM7PPfX6>IyA@vZ(bx(dRv~H$9|?w(ZzB9=-5fn`j_2Rx#&ygU z#qe7?@X8NQTG9ZK(tcM5?WOCkWbFlLJS}KDyQ^-pY=wyE&yG>3gNo?kvk2BsJrc`rf>!nt= z(hn7ZszIiOIgzTiBL89USO#dVS|m(g_rnEc5R=+r(v5R`*e!fM7#|f!W1(* z;JSld_%&@gelUPf($Q3VBW1fjAO<}5yU8wKdm{7Em1b@!wH#K_+1UZX6X{dpSZYik zrnK2W=C@fMhVePau5v~xG^lDxM)8QP@(?3Gqq{VFyIM>&I?t|z7r*|6?6tcxA5XQW z?eO?S+Pee!{P83C=G)h@e0!fbog{ar*;YH zf@Cz$VDwuuIJ^Vnx&tDnIu48lKyjmxw7r&lF`UoYP_p?L#F@(q1Wr3J+&g@8WV!OMzWj}xO`ghw<2!PE z@{#Nw97qe_{Rf}?K)!4OqWjZ$Ncshy6Z(@i%a$m{zQ zO6OB21&yFMHV%_OQ4xT574}iWP=a)9C%fp@)@4zaI=l4Iqers1x|SoXkE1sea1SeJ z??ICO^z%QKuV0+W94>&f{Dv0Svr~g}Qf<=jHpv~v8&vZpelOD02vmx9tR(bJdK*&& zU&xnx6qXPxd=S;*PrkQ{AreLgU>8n+w9d}XWwu;tS6pXjS30WJ8rtPOp3dd!{7l}Q zoyzgYKM8-47D#3~7BcgiZO z4dRMo>z9?J~GY0}=Y1D&Iqf!x|q#eevRKbFT|ehK)0 zCeBM`0+nnG8ew4-adS}j>q zRBCxDy;f``#{J_X;0utE!H^8N zIt|2@nbqDYs`N?B8=c+378c%8g?MP4KwEX?DsJ=%m8~(o5vJHaLtR(MZt5m@Uu0*0 zPd;Mf?u*xQ4rBk-cduo>DYOymXwZ`V79$BO4e{_ANo5zDw<(1;px$>0_YnxB>NXf% ze}koL&wL23Kxk9&7tv)q!*XG4xvJ+Pq*t8QH*jb4V_=d7HojyfD({l48K14&bg|i~i*3oo9 zVN@dLTo8|-`nJRgt%PM+3tc#~Wz@fH;_dGCE+G-B4af2tk<#Y&H>2zA0*1|U1O|Ky)&p2gmJ>gs)@secUQ%IOlV2ogq z233VbE3Eotn?6)l#-5_Yt4L1Pr>0n}D3FL;rS z#V5-!Iy0_Jgyu8jZTL)AR2z_bgFr!1R8H^>U0KVwI^()fRA2c|K|wkzf?Pu_ErIHq zO~BMKtv1ll=QSTvB&Y`KoefOpZ)oeNZWTqP+JY|J z4%K?s$ucleRs;?9OFOLbo<4LjTLmN6l#7e87Pqrqoo$k3Y*~Egd@oI5K~?8DT#G?; zKyBvho9(-tpK@49t=k^xVZ_;nazeLvP(7ueCucb z7F%W1KKlM9l?p!z_|r!pOSW0a^QT|QBt5))=%-@PSmaq^v5I zvfP+e_t3&TB9;xS5x|RF2p-%qmx&I0;z za&^TDT)mK-Q>rFIE$5YRhJ%J}n4(B5Y!e&D>-;yoZx0Cd;|C9AF&@i$GS&GFX5EK}5igj&=;>c_*qaONN6iaBN<1^Q&zx|$=gcTNft=)88nzl&k28BFito09xcxSQD zVhP@o&P0Q6zz*y?yFhnYEQjzj=&^HN;);E)rEOYVMFYGs<+#aU*TgcrW?SBM@~Vz$ zF=@716=wr3B13Ifq;C|pkqw3Q20?NnFv@x{k=1mlsd$(7R5EP>z1cvjIHI`R`3MC$ z98$)*hC4?mvYyQpZL)!YDzeakYNY2Lxe#9R>|fbZ|63U}Na@2*I*X5cSo(@j-(+M# zZJVvB2HIQO*jXK$pBiA*I!fYDHCW)6f00gp;#!g$)n>_R^ zTS;iWT(hK!(+xSPi?d1Bo5~sG9PJ_s#rPGZuolY-r8%E=cA=zBTvc&nbMdsWlB=fF z@_YvnDZ>UYuBX!L_E3BZ+? zf>=l7a2ySLb*=S&>jK3AxcJGBjIJ;A2pyH6*sBR^a@9%`uMi@Sx}EpZbpvXRO8lPW z7B`0h!mGjfL^6cr?D%tn% zeI&eYM2zNiqzniMddJt>QpPl4ANCtF3&TLzDx<{M<|tG0(Ruh)P5`^ z>g*V5Ec|se;$S{kh!~NPm@(#m>^<7s9oPu9>!Fk!?}@drb}&t>RKR8eB}yR89F+bT zQ^hAMO&;=~5YDDMzrL2~a;59NISR(_ZB*&&tzuJOp$wT+dp}V}?&C~88)14>WNVZB zWwceF@8>8MPDYH_))7k^A8M>Qx@@Y=S=Vsk#(gPwgKaXhUR6NQ>>=f5u)Wj`om3xo;-AM8;Qvvrg4M8>0$opalhU2n|$Xhpw-BWjK7boM}%pYdb7IgkSCDsfBA z-Lo@oadrtJfyY97ZeAIo zunbFG2ecbXaJArqU*<#)p~!XMP^m?JdJWYRq4KlPk(L~Sk!ZI#bnW~~b14}oHY-upkV)bX;8+*z<{s+YhP2g^?qCOhvw&*k zwqpkLF4W!{F`1lWkd!u$BR4ssh2zC6+HK-r1UT%rZ6!g|RJhfvRyH*M(?9>I{L$>k zT7FzAQ1FL!cr8L&uzo>@KT&f~`m;h`D|CM{nPWXVx0UTNa_g}T;oNvts@5%Mkpfly z&UCZIDE)C`YL)d+2=5?9+j1>EJ|Ndb9>+9u+9KaI9$w4!a;kkhGdO&(rqYAG>Fw@F zha)8WhtfXS)23zZ$iZE%U@NBh-0w<{%#;Ro7Mjeq#FpT{`TtYZb24Mnya!u?>onTp8URE| zSNy4pcAPekB=w++pC!s8LgnD7!lN3kkg7}2`yQd6-zsG6XiZIU`Ezqj&OD~4^hf{{ zCSjq%h7UV4I}9{}_~PB{c59WXo{x~|8Jc-@*eoZM{P?p!)M>su&6bqQiCn+Bl(RQ) z*piY5 z^hMU@93CB;nI;yUh;EeucpwsNQW#bdVuV^GnR5()g^V}}Su1jNMu%?{2!zo?7JWX- zag4JTDA^u)8_BKvAc3lUPuTPj_p(1$BJWME*%-f2J2TZt7+||C(5drQXsoW#$xm6C zSd}Wt%z2(^qV|FVChi>F(frc$Ctu0aZ=TB8>$liU*r-jZWBVVR9LwDY_oRRCM2>&_ zsl?5uLR{z1KrKQO810qzr<&_PCpZU6%6S6V`MC~Z8nDJ1l3RtfVv8JX6Kh+oqV;~k z1bFpeAs}xDH64!oYUE}m3eTvq?L%I8z!HV%lesZ*h#BU-qt|>%=erGko}?P8-~&8C zS_GFvfqnA$;2>`0i7 zhd^~#^0)u@-@qoFDOx++*^&E??#iPd{z$TBM;7?({=NIqCIguhA#!pErBoTJP-oYe z!*Vq24@!!aY@kx7P>;jc=Ta;;k`Al{m}f{Z+w1hWPm>Bp5elE;uuzXp&a%yqtlpxq z;+OzqwK$V#wG7b^(P({m8bUOXqJ@-d8?D$elwpgaIFBw&T?L#S)iARETd+%!!SL-o z8nIM^W;UxUNEBSl5YUT#YFfnSu>h61!JCOAqlbwS@*f9=i>PiIPg~k7R z(1&-@Z{5y2k5WQ5+Jo=l6c#?v8?VLr8oAJA7}UPSM?B2%!QzmoG6Drvb2G1E|AK;m9YQVv@JirX-K&sw=$YFqz(57QYT(vXLQqYj~k1SKnr9FT!ZKm1i<35VP} z*`_0mzBK|>xpKdKc6jZ3Hn#M2*j|)FrnB_j*;~9;R&D%IsJ3zTrIiGV5r`7BE-e7s zf@i#ow^xmL+&fI-qi)HfJSMqr?g>>LhMrA2JNj0_1e1DU6hZ|)KwuyslpRUaTu zyjcPm%;fa>0YeSE@-un<Qe84RR}r|UMg@hne$e-q1y zHJ%su-TLgQk56mece~qzH{I6OM8>e_ zkS<3s<~(NzcH!{&SayzfWpL+Ma-Pcoo8gkCrk0i4J?f%iP8kU=IbMu2V5TB~>1Xhl zzWeQO0NLk|oMY(^dayf9ZM6qn)V`n!`8n$^)nQMS?AMsJZjXGb-Z?915#KOi_2IeA z$!3LZ#B@p~A+l{-6FR=6Y8lP_X~udlu?`EjET;1{W;`Fee$1wGA+QmSc+M+`t>F)! zpxa83+$_(MTCIS$TOnrWF{*^{H2seT$H}k>jL9{YYf;VN+2$O&JBQLeI+o_%ku*93 zDbkJ=%@?7P^o1lwYIrxB8{3_ zRkL$^AdAUNz5F@;$}>|NKwJqYz7O`awtE9o=t0rWAbg~bAx}YBO0k*(r440r@kX9~ z{cE{Ad#Qv@K?u%xV5d0SBI#Phk;Uw`|3%fm@|w|p|HD-PDA3Upr5M1zlBhsM64QV-4(U+1hGpZmC!VSUYTDw4E$p1e7Q z$dtoe4`}r%fKsO|sxc(P_#*P?h7;)gRK=RE=X4`vZ<9sfAxanTAC2J0p z(A01yDdTdbIie+}2m?rPs9(MYgugtO=U;!RxftF)W_&FsE}*jf&DGia99frk3e9UC-VK9F*~TZcf1_y9LU%#z*OHc zx4B7iL#*?->4(bRkXIAco8?SFlB6oq4+~*FhM7O@0}95UjF~SMuuBw;FpJ zz|M49b~X{wqn<0|^FE~yO<8SRR6+G^A!ktY2C9RaFMT0O;H?msvwJDDyP{almGMjM zQ(7yy;gex0+CJwUeGMZ8{lZ^Bbf63Ps3T7!6RbZiY zjg0&^y(zGv>^jd?EQ9+y2~<|mo|^;XQvLEsis&WRzj z(tH1rHkAeYYTOWrWRZ`eszrI<`gI71N3S8lSAUq3&NIbliV|bjHG8L{J-0zo3%SLL zNQIO0#pXVE6&F;@O}t-?8m-jbdp6grqe@Skb5wDlZm{nQ)#0h`U6>j=_io%+?Xy%j zJk^9jP24FE>k6sC7{^&DRf^8)zm>b#pKU@E(j`_Dz6v934@_v9b{)iXr{dnhH-}eX` zL4SzF_Lo;Y0$_wqcQVJOpDmX%B2#2*ZQ@;ScoNH%3_&C&@<t;_Po_g(La()-J|ame@GCeItv)IuEQ6L~)? z@{*#ko)}{d%zifPG+_=!VtSY<3Jx!)6-b)^1D(F~Iz4HpO*>Vk#Tg0C zreHDY$dWJEGbNhy8{M?AF3jMD!+vugqIswA(6^3i-l!;RjC+%yWEfSbR9!l+p;3D# zUQOA!Y9o@x6RA~d5)?9nfg}}aDiYdknW!RAuPNf4ssoUzRG__g{Yh-3t*O`yT zLP?$hRIFECMO&?(wz!Br70h}6E{bldUR7gJBw?1Se1Je|rJRk&(MD+!MIGaYWe%LF zaq&?MlQ4Tdkx*eD@)*u?DMg3|$KHAMJ)l9w+4SCRguui*WK~P$c9k$OFWZ8JB2`#C zsKLtq6xDTDR?CR?^y*3{Uv*+1Qu2ODqNj*h6EK}Xp0&-uYSY=Q9@-wQFK9r0r66R= z`F4eVj?Y1XCh%-^;Z%GzYe>P`+nm)_AcWC)Fh0O^Ez1 z``1v8j|i}0l#6Smme_Otz$jPE$lMYspdgV@mIRwJo@l3Z7pf_okzgrwBcP7p^k|U= zo`Kd<=iQ~6JE9R!BIhSMdNiimC^m!d%zL+r)LhHKc#vM<)A}^xJoZ|A(TMNywCTtp z+vS-}<83~+=)7Ux*6I0YWYLs*-FVoC(l=iher%gTMqS)C+#Py;wuoyRmihf2 zdVs96Se*p*VG)mtI4=AwMK`=E`SqE|Uc(14ea&_eis#MLYFJ0p2~@itKF9u)lW^LV zCB=NvA^nQb8SVp|!RN_+dVqn=!Z9_mv0fmiXXz)!e&#{Q{QCK-k&h?@r`B%DOOUhL z1G6(eTYbwP45I+TQAHFA7T4$?8u(7{_(7rSUe#J02v`1l5l5F8S!Y`yhE@WJR0*o; zSz6gi8bT+kehTR~Qa=sY(&OQ%8Y?IAMTr(nRF$G(CKAcGL(gW7e29q>Vzt$gNt=Iv z>CvSN$W+X>P=X1KV?|%3Rt7~yh%WfwBj0JQN+6R^-Ri;+Lovy)y1c{>zA*a|x@xOE zSJdc4!Z8VqMZ$~afWss>S0P^$`9+5|dy6mmD6J2qM$xv}>iv(}04Dv_OORho$RH9! zs5dX7X@OWjW7RaGC9|bY(c%%FN+69?`17~@X2rgPE;D8{qDQ{|nsou(?ATQj6}s*y zW%?P9LN#=y{#>EPne$C^Pe_#*mhDnHqcAMr);QDe6w8a{hz48bnnDf$u3h9 zEwt5AZM8uN9w>S&Aee6+#OOo)Dmw1q2g$rI3=lR>X9 z9aeK{a&W2NsacqiQRI!VG?qS9qow{34>!zpT4G+QxKOMS&c6#&-j$&Ed>-o9eB@a? zfmF(zf#%SQYZ7RsWqA?0;xxviwFbq;7vuZSa;18ja=bnB!m3iufu$i&IHZH^{ITVH zN{2>kQm}=lP!iZ3 f+Mj|?*unn~W#Wf5SWJzW00000NkvXXu0mjf>X?rn literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/source/3.png b/application_example/retinaface/images/facealignment/source/3.png new file mode 100644 index 0000000000000000000000000000000000000000..111b912e76745dfbf6b92d76e9d642b7a230d1f9 GIT binary patch literal 30750 zcmV(-K-|BHP)ScYVp9{ZId@%Bsq& zO0BXK-YZ;QA?^E4~uEx0dJD>2|H&!1LRZAIIl2t&6V|d!iTCs@3xPcolqpym*}qFXQ#N zgaVtw4NfZlBH=w(U;N65Im86A`QALTWYZHhb3JJ+J~BTEluXJV=EH zDDj>&yw|@2Te`$hLWHgiQf6EU}GcflUG7GHg__)H~<%nV2ILb8!=K&BU3~|L4T< zJ*l)ONr}%^zR@|Jnfp`W8YO>+w=DS_R;~7ugtG86AGaz~vyCl{@2l7Acx&dhx{meD;{#76X>A;7>_Z<67rqo(-lbrIH>qAb=BoH-n%A3+$I;}UP`VFQ?DltqF zxTbQR!_9cpn(ZAN+H5$ma&RR{)!Qfmt4$-VtH4zHCx}IYHLzKk%^;>DNbl>jGdnxK zuq*s~JfTG5DZmIhHZaTU{E(5~6I~)%Rf|Gv$39w`rD8I^pFi_C8@O*_ zh4v-ON%Ra_B6sZ)_QnZXN}4LZH*7eWN8A*iL&Ol9E#H)nAl-U7J6cpBS}K1_p;^qV zpo&VC`hDf9G`uyDW=NbBSJxxcIa8%8#^if)ZZ|i+%>*MCv9e z8!arQRNy+3@kHFV#7pW1o0??l>gl3ph?*uzay`&&VKy3%>=f$yaxk)st1GDPYY{F7 z=hy3PF_TnQ<*ZZUfk^1QqH3c`PPCSy^1r23c;3plIdLv_jS|$W2$VRP#K1CVetoOf z3>nw&MD-_sV@Eaw$+g$!--5YV{kQ(RYn324m79dB%KYDDl)2Pg!px$fNWzukXXBc9 zA3jgcPfIexjnZVzB~jY{y}ts1SNw#{PKrtfw3yAorAsHaFG;&mh25xt8`6rBm`m-J z_}l_gax|9j zi6l#9{wRaO1e=86zh$RQf)vTlFXE1*^y`raa!OK?(5@AcVlLUdQ84tbX)9YXa8xUa zUu1P(?rmE5W>Ql5cdAPKtpN~|$d-ZVxF5|Gm&UhiTeazhu3Hv`?B^5&p3aswnJjEN z2Lpg`DO5I}sfemel3Iv1lGMQc+(3aB*yMR&v@~nV_Elj!$|^8-;){=_q>4-t)ONX2 z$s5luyX(J?dyoVMjyB!t5G0UTg%7@B1eUmCSrQ(sTmzH%WM$-jzrrTSBZrchlsaHTNsMF} zm*{nRwzbvA=N2{`L9HkH05*XtwiIK;d+_~4mbFI1vSkKP_SCLMGplO3(03v&l8G@3 z+QqEoPFSr>#b`xIL|uwd3ouUsNq3M~t~83)TW$WFxD@f4U?4IG7NO5^S7et{-%J6b zAn9%rQmwfZ!>&OY!4iKPO#`K{4CpyB$V%D+KwW{lWUU#>h?`bx-Jn6hJZTm9rF65C zQfsG9a0(tpmp|sEY#Z%uu8YzFCqkCtfr6clAP8^P12|}bwk|g9P9<1U1+YYIUI9#X zx3;XYduRuT2i9n0)-2{$!{!i-thB@WD$-8e%4V}}5N;4`VK)GKd8=zP+^;P7o`zqa z+9U@9fJvt$)N%%QXo>qYoM_^DY$gT73RB!W?; zmQF~gLm5C+kh2vbgXJ#$33=^hQ3O>@hRD~#qWiBwoP#abMr$*&3G&wa7V$~Al0M^W zcOV^ZVC`lDHaw-Y!Osm~3(iciXJxo}<^)e1Rg=-B4&x2e4Z9=5>3ET9hi*(~t7G@~ zj;*%6XFI#Q)@jvk8>rWAE^K~2S?x;%8d7~pupN+)PN!w>zWa_9*%JV_8~DjHNNsBM zCYRoJ7mP#z>gL1E7nOC|J)17+nB~C=VLiYRe3UAE!^se_E6-zo-e?4 z@_{!%orsc1Rc5v(a24#kq%4iL_)Xg!q{GUnxT~OB-zMr?F%D-M*IdzSjm)xA|Mr&V z2%5UxY}?7vq2*J+;9^m&085&b!Tky-w%E{tfm3+n;%&8*`prmxJ}B*f3GL9RH9_b- zOWS>`fdQKBu61^oHeOC_iT6~++FVHSB+1Hl763UJ)cD;nVaig!hx^o z#HWcQhe4QVnrKe5#Df`m<;=Z+W~gPs-7D9^;=Zq~02IwaQF?Gjv4;S#qDgTy9vC3* ze_Uspth5hJ?h0o}=vE+NB`|Jk{Q3+G9Utu5;r^cG&tJSUDRQD?JjfDAm&RaqqX=w* zy(`0_xKaF>Dk{1V<=}H?6gkfY^9M`o6HYb*QpAqeFO4weW>H!vr@Y zd{KgGd8$o4JleCpTYL5%B<*4}w=bT)w&!QpHigcgjHWgnjRDRUaMOBVj0-!5kItaU zf*VYgC&Dhp^0LR~IDxJrH?rA+dzZq5OlR=zCt@_ISn_zZtpQ~-K;vEr_CogDqy-e2 z3rLE4lFH{Vw0<#g<MYh%e@pIAj(tRD=MO;l{ld1R& zTibox-`)mOg7}l!++86`HWwIg9xlsG5i}|Np{diO+LG-MTB$;yAd!t-z&0<-xi+o2 zwQKtzbOWlsMubT~1skge-bBO}n0?dT2r4YAWn!!vm}gn$c6ogX#!Rihw`Y@AXV&a> z>;USjQE!QHx%mo(;4{Z2|sgO6tmg+a4g1MgjeLHLZk1{fvJJn$pi z3wMt;xAM<%A83QKdSavTScFe159TN=N|OexvRHUHl)qaR^8kdi0O;IQrZEy$I#5&O z%sf`GQmoi7uE7Ccs#m(9cq65&_11|d)NXs*JJxN3p|QUF@c0-vgbhzUij56*U?ephD>A$=6 zXiPF&Cu>4{I0;NeFbNxdHCou?Z@#r(eEO|Dd39|!^O@Da0Cl`}psG5ZzJS~pUp=vB z&!5}Z-+V1Cu)DWwgPQ@CIZ%|LRd0j%J!@kV+R#3&M$3**PJm&Sb~Ct!q%J^w`utOP z1tWpCZm$P7a-{22FbTsE7z6KbfRL?56Ckv0d;J}ogK3KS#HO<`Hg+NAm|>l~MoJAz z38hIRIhpK%P}H#oGBlGq)RHti+;1`og^B98ECUdv$;@1PWKxYwxr2@mOS!px1><8W z1h9_xb-P>ec2b*9hl=&*PhPx`imO9yGBYFRo(T`ezwuJ?pz`dLV$;i+R9Od-l3-z{ zmzOq#-J{wkzMC!zxi_sAkv}8^3{@;)U&j*>oCb9{ysB(@P)0R);tSSo$z=g1uMIqz4=4ISe1)9J)U!$CmsAU;e2egD}4 zSOj~C$Ft>}rm^&Jsyj_=C=CKh-@2C$Yxx_Oc5 zY>M||VR+vSfK*mXAze^&iU`d;2H6KXD{qEGzSqiQ=Iqi-nGB~JAcm(;rkEALpwh|H$KY!d-rVtX>35c zzWwS;`|9)0#Uv+3$9DVPLRxDJ>i_!s+6GY7olYB`MN4?3-`utXm<^h|%L|w#n53^C zKeiq;%>>f?;K40BIR?1g>EQZQRP&%(EhLnxu%9qR_$<8;es=)Glq{1ZZdMqUUNR(& zmuK{r5T>b(AviQM#3vJIO=bznBy%tTBZ|wphp>rTc-`%86K1Rh=Am{dEpOB_*_{P8 ziXXzZdJI`Q+#Oe{nPm}TyCLn?Xx&Ka3jr&p84Gb#kyUb62--&D#3l`>b!d>Ceh=!U zZ{2@aQ4d*oNdk7Er2#0tA5j`v*3Hv=VW@K0UWx5O5D>VFyI6 zf#LZqms0Q05{=w;;LgzAPeIT&gkl?b;r7A-+>DxyAPmnq1UUTV7hl@h<(b_%*|n2{ zE!*xuHJ39>v9Anfaev%p!p7$yEK{&43?QyWGtjH0vhj)x;@Oq=4v8N*KUqwQq#-u% z*oUT~B=bP9NC%RLpmRQ_rtK=9UL@{H=l|lL|1(#q0&X>%mL4IKZ%S2y3-H4ea1PZI zch?j9rTkC2Fk}RByVO!Sb9Brb;z7qyxeVtuTRm&Q7jMH9v}&oVI(%-7YY=@hggF}* z_SMrfd;Ijdy*N7uSW9d;E9~Ipj@7XE22~i=cmdEi8cnq+b4vR8rOXeB!7%ae?yg;4 z4d9M!LnSxlt{fa5+LxbyWuO203w(BHy>1%>ZP>$y@7VFtk-d8L%AUP?3H#pB-zi1B zPNxr*y|-hZefpWyc?~MQ2@G)m;X|1~KIdn`YdttaNGYNWpV_Z7@2 zu@s9&AbQZeFxSnN>^t{6|G`J^!4@~o=+XexlzAuE(nQjmsM^GXBD@b#JRfqoTzF5CaOcIH9baY}r z|M}kl!M`ilhxT{`f1R=T@nmMVZr_oF(;TIBe@;p_kv@I(8J>}QaR1&tyA2cZ^4W7c z1tXFXxEE6}Ep0npzti(m+2YA`Zo6P6KJ#?=i9Ni#Zx8PuN!2D;uYj6-^bm&+0TQoP zS)+1Q9$6CN^&Z*F+z)n)MZ_O-EtSX1$=JFgm_-RF5+47~syYO6u6ROT0Ff%-kvGIy z3`Xf^a!w?)Kvf!4Ju5@Zu;0N`EIpzVlPPlc3rF@b79Ao`ME@l=k!ZIApaVr?P1yDG z(+m6jSHHHu`Q_L46zV($^UbiH*RZ?u2K;$|uNhP<0TqcNUm5F~Ey_@`lxeLDno#3C z2k5$U`0xz4zV+_Vn=+A@hZzX8?at)3nFb4rj32Pai*5!iDB$1SEY8 zhCGKx`Gcz#tu7K?A?rmtXIkeGN z#st;=EQb((p%r`tR&t|8M`N{q$!a+j9^e;8Y2dvzsYYI;1S* z#VJK31nu&&^gzgTHj`Rw!=I*Vn*sffA!W6i5R(Ys=>kACn|Ay5ZD^jk)_(Wi9sO>C zYrcB*8m?E@_5to*pPt$oRP(#UuZyDxm7`-M$M?;E8?m%TE++VI7_0 zo(fEK3$D)sC>+{tRw%*K>GpKZ*I=k_pV`88K-Eb|MkVWfJ#DdYwrAC<5Mo{jrbzir zUQDD-Ri)9mOL_}M@iO5d-Gvdw5cEm1M4{*GfBf(N>5nV^0TPu#wI^v^DxCnSR6SYd zH%!W)R4p@Vl9{f#vQ08`MxfE^(H)lHi&-u`b~=;A{Gy?#geL^4?@|N`~SHxV<~hd(NEHaBvWcZ1YdtJl^b0;SEey# zSFCRA`Q}WYDX0-be4L!9d~B8m6| zCsN_ca(STzb<7PU&N66#B~(7_B}2wZ$W#r%JdYngwR70t?X4Ya<2zCNt5>H2XWxGF zSV;H5{dW|^p@#Uk|MuT1V07osJ^SLzFC|%zVZ(bcMLDzswazwd`50>(oxaxndW{~` zd`()RT+Zz&G|atwcVVKs_VQw6rvv!mQ#=#=`ChuTdgkH9l7&Z=qof$%675!5wis;> zet4`D3cvHxv~=UW0UVkqu_|arx|OEDTFkJQ9*nSTu1z#2QQ)>DD4`hm453wfvkoh! z2Q8*JlX&y+|GEuBmawVT0;jj+GfuIw3;5a0YtyzCu=9%H^CJWwF_9>Duax~-^3I7T zb(RYUkm(q{EPTx+h)8u$%s?r>xV*G0_|ycOH*m3@f^gg0ePiP2_MKaB?K;pXL%Y28 zFzX4_GsDf_eEVzs``C_-Z^1X;gM@FxMqk3;egseAv3&zP(1qF_-b@@_7rFL_nqkJQ z8Y40MUSoK9XwROV+qb)~?cI}YXpyE0CM*(hRizSk(gX0e`L!wz-AJlP$pzCI^B|jn zbuU#*R9aMdOV_3QfW^pqcvXOe;kX8sqW0&eAh=%mMlzDcw-% z6(edY6(WW#q>d%5<;n*LDrapoTpNV?uT}CR-gvbV|4iblou60$)n1)nNFviva6m%m z3Q)w#lge}JDiuoQ`uV*)@{r|Oa78Kw9%AV*?@iTTEEu6%sE(Zt0`%VrdRXR6U%kIQ zfW5yEp)a4ml-owTKZVbq0@uv3QBU#v9!voroRPK?8sz{kA2;w6pp1XJyd2m7+M^GN zCq~%W+QMfGXo6?DHVHo%&h6{Rr?!p1H}ToSZp|8rXW1fwBaPR!>!HM~EH_fs)k=`` zKf(D}*tk(N88ACF8|h4&oU0g)H|1uL_)xLNZjh9I;Bu8Yb0T|DfG@RZ`D}N9o5XQ_^q@ZY# zc{D4{r2hDwQL-fUAjJSu#t?E2A9=JKL+#J)9E5MeCUafSU!KC{x>4;N!^H%g)C`O% zeEZ~?HR^Tw*<1@5l!2#f06Jyd811UO)Tj;6m)8N{0NhUDwry?oR0}WzKsklm_VZ7E zZEa}#-5-wv0QGSg*Y8Ulgr8@ zs!Q5UFBtIRx+vl979=Yh@22{DG}7jBSKLZKbqS#M#b>{^FF*U-&H$Wh_&qn1D!bmS zOPa?M2P5rHTk&|={>&>#iZXZ%nP;1n9V&A#Fn~s?<+V^yXp-m_2$}<=(N8B&Fa(=} zu_$@hgQ0D0j|H@@Kpd7rFROu89Lt2M4e46#0PXYrC%10NoRFCY@W=U`Uv)AiG{Z}{ zdb>N@a04d_!P1nF0Tuvw6r)#QvQIz%%I+QY?YLjFKGwooymX_+?K=cpnfT}ptxKR( zXBW($ch^)B(%34+e>0ND!V}#=CBhVWCh>Fk_PrOQQpJXB3^!0*;$0Y3>S@1K*8T62 za9fw{(8lqeBlx$>Ll*#XY|R}{>tUotfb-8F$ zYo4l2@?3dr*0?c=62qBPYkc2a5y7d|N^e;r^ITnDs~n2isXVXCHA_RSyB8bQ^f$U+ zwAC5bTZZZt5|{$8m@h*8n1Lw<3cBn8#nU4h0S9>fzbU!Hg3K?z8QFHLus{6$A6jRt zuG)dOJNn+}{#kABMo^|&6F!>MNMP?x3qqNA^$oRh?)B!CRJtuD@|o3o!%`q(Vf9qe z=TF_OT7*OZYs*Sj(qtiYn`RA*Yh&SK*=q+6pj1IY>;_?WsiA(e%q9z8?>_7&OP9X> z_M1>_$ZDC)+LUrg9m7M+f!DD1#k{oZt1$=xDG692PXlgYzJKXvjlU!EpW`{s;J?#T zpjPrQv)9pE5%SR~d*2*4bYVg$*^|l0>a7%}1Rexy2(PF1<&!h}Pks;2RzSaJvEM18JYtVh-=B?+9fGHtDg_6PuNF#}KC*ry=)r(gWqW~{(u=8G`^*h$JY z`KR4zSsMhOLZbML{btQtJ6j+qHk?>P<)@W$%nUgQjKti7_(AO{L4fHC)nsxka331C{4nHeuy z@RF#^OMOK8QeCMP>$+w`B@D>9M8OPahW*i|a?_V#@ujLWm$nVteYDlJ0#cRH$8I-m z0ncH)oH`m8aY}*DTILVc22*aq&UPA*^hVuY^!2rvN`xlEM5G^ZZ0`giT6lA!xutuy9u=Vhzg`kqVkzfX9#)4FG2N{B8H4NR? z8SYWmQ)Tu>0E|oQ?x^&T6gpHU30nF(6~_v{k>oD&ueJ%=@QWh^{`8tEetfTf)*+%BVmo@<&8iBz+d-4)4 z<6YZtX2G?pRuQx^(j{n{&9B&Q%=D}`;rXZ%001BWNklfgm|d z3|o^^Wvx6S$z1xPaOXy$>C$82Ld2CRqnFXs35EI%>}MU4-2hXP;iq6aOB>ecHSLQh zFYNxwfpu6zk7uj}S5t9`%-zd%1}#|)3vgz$H-GOxyb+XfP2h+XPy#g7qNT%h{F9N2gW*tN`AC3oAQ4zmcCy-**HxM>l2)z~;SR zNoa~+3UIM1W~-jq$#z>MI>a$8BKF$esy&!Y!w_h_(NGQEEL~tp2~d55YldfHN>{bW96dcchjUD@i@zyeQVfL>KT7MBUxnwU=UC_U0(@Dm9_2Bqg$3YyYNHL?TfF!u{jVk-K1C#mt&KeoK2x+ z`kk8HJKneBy}n9|DYZ4A^%l^49THb5X5?Ci1m+-sdBOs%xumVp-2wW(vPQFQou+5U zn%Kk>xJn=Y^#8RMo^=~&egt5+1vl{C(Sc>f3`9B9ca}Kz_YUk=@R#=?g*)9A81}+$ zV0#&(uflW)seSW61f!BwEVj4Mcu>0CuXh^O?zippufC95cJIy!+|QO>KYwN|xQQ>G zy|Cks+2O&S7`X)YNu#S)I&w>6Gvh|rkD_Sy-7xI;sdEYR+XPo3twwC*K3;=FrgV$o zp`|s6Qx&qH0pjne?tsK$w-?hJ7`v(9TMa6-QDc0$XYarNfjxZm$bRvwPvzz?!d1o$ z5FUh89ldtT?%z7H4<0?VTL4_WE+h;@TQ;C|8mwIDU|CJZT2P_)PmW;PFJSL8djLke2Ee=j;EoO9 zqfeOKV)&H%1I)pym3e^Av9%|HrZ^I$3M!UbfnBgIsPb6^ZM@!CH5^fTqZ=L`4QwP^NtkA zDxDGpckeh0(X~qIoKqnZY}CO?L-pg+n=7jWq;-J{GT7q=+%v|~r_+T}p>&yu%wL1J zmoJ|{6BN=MDg4qNTtfmyR-CHIvh?sRBMxbvYP^Wjx}h3KbqipG8P+gkOoNp=*rP_H zX3t-~u-WyE?GiJ=fPDDThj0^FVo3X(_#dF`6p=`57T zyan?^2CIyfHEE?_fr2WJ#ZLn5nTZz*?+&4!G` zwV~ej4|Z$|$h_HYThbt*Q&pIFF_ruKR7pzVhR~rG|GJ4OBm2wtHB=Z;P=$g1tZdl= zqTkxzwG`%u%>fN;I#Z$qQ&UdBB1ilijRhfL|C13g)jiAkTnc^CY*tf92Y^~R z8(6iN(wW!ryBg3mRW1t&^Z>X{187?P+Lh<2bM@H)*gzfju<3ifh8-RBt=(;?51Msx z#1f3<(~C@1nBmP44CAWCJLQ};kKqganb*~2N)?upd?Mz8xTEf6e#ty@2B0Y_J<3*R z0|0(*;oc`8coWjy1LLuv;`DN0#r4A5ei()YvvAS~0Ux~##?6(c^c$7%@eR6t9XVgP+TIKW(&EbEYaJP)~I1t_o@0 z%3_&RrROBV=Y2)^;6!^VFlz$ls&_lSdmre&sRHhcX^h=8=k66RO8QNj+i*a$>nUVsuwL3oNTJvAl<6~OpL3? zzi(8#Z0LbpdEXddNds}hILElro_{V>v6^whAk`5!l*R2Jo=wJh4fO)AgIEsKJOPoa zr;93%{`H8NCNM<{>YIs>8YI63M%V@d-)+}mUu(AAW>m`LTCuIjmz#uY%+O#Tw@;hv zMUC<<rvHmbm^rTf(F?Oi={uh+2wTr*|E_<0s^ z6z~k@g~p1GOW)K&&y&hsV_kj`t5O6zydKc2SKN)#oVwH}P%tz~m99SaKrBzEmZ2Ox zFiu40X($g5E}?~R>?Y=lAzF)R)9}jU>{6feMFiTGeNo9#AQ)f#nJ$JF$;B|?02jq( zPUr+~STUOfcRiFNSFT>X6e8!UF58e zY19<7VeH*FUk1K&3b%@}{qA^aXJe>#Y5-hm2oRUDq>3@*Ww{E8ssJ=gRF1`)YOZVP z1CyA*VQ6_78URJWGH9?Qlxj&$uL+rK6fw%13Y9N!2)M;4pKB4vYBY*Oglt@6yu8r? zxY?CI>9bx6#kZ5(12GGIi0B0m2+7W2w`spizBG|33+=`=*>KgPiy=#OQj#c#$J_Q> zA3n0H%hy1t6ZqwYwIRf}b~^UpXdeu*rAQhZ3A4PRRH8C-=1q@bn2U#V`Mc6>osXqV zLclZe0fU~73&GD!uB6zd4E)48a0-9J5d@34!OpN|5hBJ@>1?J39TndbmxM)&wMaVtZ~cLCBj~Cju(-K-g~1CUx4q zB_zE8so%D{@VyC=7#nAt-ED9P{HI=n7B{_8scwP0AeHnTd)~R zk5it~#OJuBm6sk#*i(1g)WI9(tCg`Dn9mcYlO*omtdRON}YRP zkcAv7TwpfLJ5LJDaB;Q0tXvgJfWq*a92_iy&&F0jl^3&-N10M@A7^I9-lPUqgN|P{_D)wUmKmuYY7tdr4hXi(e3MjGIvj!s98IXZu z8$+$vlch3Z{eIu(*~Au;h3fODkZR^gX_+$5zzk$5;y2jqh37hgDP!%P6L3xN7s)9f4W(137Bl~b*9sJ_`TPJq*;tBp;*@Ke<`{>aF zsJ2YuQ#Rl);_w%<;G%fm+4Jt6yy4o@&>a({xe5>dohsT8>vwqO1TTx3z9&_v%V%7g z(p@g}of5AGhcf6W5WdNo@66rfzO`(r@MkM0`Yoh}nd#%~m}Rz9cd4?Y0WB=WNM0jH zLN_^99REH#*wfHFrg6(MYNjeQDg^f~aW!rm>Csri9JQ#JB~Efm){MM)o&hC zpUxp(xJX+Bx2dAPS<2=u$74ySEtvis%f4~zY5+HEx2=faNpL*GG9Z7qnXZ1Ql;$@B z_`6HHy}N5&cA^3Ry?_6KZFO2wb5*_W(;ri}KPg*e0#Gc&NKd6|m95Ja5nT1QRU1TJ zC5kuqB#a+Z8Ph_5kwoRsNtF2TH~Hsgt9o#mDUQ|dcGO1PkhxvhWH}QcV%Zam9NFSr z)EYjeX%QwnS|SrbFgCd!sa;wl$!Oa-i-mibBr9S^$zHj0RVXD7G4;)n*#20R#Sv@l zyU!9I;l1gyN#H2qW#&_flMvP+xDvoBp?b@)3K@)JDQ4jMA>1#H_?U1?(^P^+^_>Fn zRd}(7n0aKchH-Si@)nq6z)kC^Z$u8YwujBD^_q73_(Y|{9GA&?s%3mAmM$yu6r&u%n9xhLEj)%YgXyXe_d^ytr^0H&n96EN2qVNAlb`hh>tJB1_wVj^vLCnx?&7T zqoF#td69_k7SNE_W5BQJ)MoQS%?tCy!>D-@N}#azqn$k)lo{0h%zcPC`^9M%IEu7d zrHS9nZ95W=MVovF5xt5RlVm;oKD<9p)ea$>7g270Sq(!k2~joav#{=x#-|9%|$x!K)DePm;C&y+Lpfe`a2) z6@p4>Bsu4>RbdK46{ap)w1H`epHwSw%AZ*2dOjH2^$g%k6CuZ9GRDdmsY{e9fGcls ztXa!$A0BF`!s+Yh!asKpkEAU|m)BPBH`as>rYr`|#Hhu(@!*ZIoDr30j%lRY3ukCW z!DDnuC_RgTjZz&Db4J1-)m1_1W}(+eft3UVF91ZA3tvPA>C4%HQHQ;*1t||D%hhUd zTqZ_Z1qVt`@$~?HM!mj((1#y=Bz4KLS*K?&ZHjfYwsx$ue`1~8L#wsB*6P$ff);`* zO3|k4ctaJ`SsJ~GBsMw5O-U?{^tO%iag8uz&5Kr2-(;cWa@AM24p&x^@F7(A z^=KkBK3RI59~oi>iJeo+5Yw2c&V7cxWdxCiVhc?F@ZPaqpU#0_j_los4{#43!Xw+f zfyUE-zSDp{iXz4|)^+HLE0jJ#nH4_Xb`>HG{C#HOeRL0NEw>ANAcB~L?ieNd+ES?P zbPj@pV>MnIH(!urDambcG{8y8csYp9=#`dQX7a<8FyS*ZlouLJ z_HUoqtBVW!<>f-YblF$Q(hSuh+ruTsD3#w6armLCw4O$*!A$* zZpJruIbhoo2l(Zh&8D6X;vbbZc}HUc?Z&B4``aBG+&r-c*8T9LVej05mfMAouW@Lb ztq7F@Mfxwem2?wXhwsgmq0!%x)hrm+$6MtSF<5_~21^wOa3q_X3YYLu=BoCcAQ93Y zObBR@PZ0zIAE2wj8nPyVT0~(B{3^Ne5e9x-!#Ts*#DP3M&+QkJ3emSwhZ~~K*Xo`{s z6a-15D(6`&Id+^ylH0g%UAd#Bz5nQad*|M5&k0zywnXMZBUJ+>o^)Z0HD}*(5(YI0 ziL0CjwcBc9gac!Z11ZxG()9yyqT0{hE~cxf4HNtI)FVv`=}pC=l<^W;hBRj+Hq^P| z+*z)_RUv_~wweB=uFo)#mjve+E4p=)>A)U5yl=^Z4G5Lp0czi8J{lh#6O=$rUOahj zr;lIS>)saZ{JtHW+_L?X6WiX~w^n}(>b@hpMMSz(iImSi(Ga2}7Vdjy&co4h&~^0F zJuFg%a^F?Zq6#)M5W7q~1w&v*Kb$>dtTksVle$rK;zH%4NUG3562@&5ny-?o6k9FM z_~q6%p0%6U9XyLx$;@N64wJs!H|9%zOt7_`ig#IenR&0%O%`8RU zg(_nrrN=3DTU$1uOON|9hF##{MhkXZUfJc@xh<}Sc71kcub)4$9T1%T+Wq}K>+I}W zbGt8Bj`LwSqg_Ftw6-E(%&^HesycQJ=92Ya!nDbalw@F!I2OBD%x%iyLX)u)JIrgd z9Eso6MVo{$W_b1_xJMDRs+kf@(yq6ynSof$!-L7I(&xq}i64EnS)>?UE)sXl`xfOJ z^Ve6wm7ul6T=BVMqOJ5fvC`10(#R5Vrh*I_5}QbBIa0dFl5mKdxiqV&p{7O!O;QfS zdni4bn)bu|@v;cQ<&B6!x2zv;x9!E?3hrE{!`C?Sn(B{J6XwmCrYerFIZL%ILhS5p ziL*zrlc%qq+sju^l(yW3i?e@pWcS~FWJeF~S;klZ!?_$m#*7vZL7>5|;(0Cvr8V!; zAfBkIpb|aWB^Xq>8>HM8AE^jM$jogsN6pV+y=m#uGU^Me)+yX8TD~Gox{5xpB9qiW z3L6&I%o)>MDB;xZG;Mr!Zsm4EMUk7iZcjW_76&0X2rJ$=J|q5qeW1Wvng#xX-IrgU z`}j4lk0T*S%gXz~V-jB+!p4KV?o;@+6S+fwb&uwuI>ucjf;ElcNaA>o5S>y2W~pEf zyE=QVhW^&y-trJ?Jrl4fnqap2$j)BB0HOs*OC7CmZ|~R^B>D98+_I}oAb^%wll(tF#|5XnjcGpe>+Xut6Me#o{(=~SR6PM{>( zWi3GA{p~7bV12yIVHjR-)hf~z2~$(HqfidLTd$zX+xFh=L;KzL?pVL()dybAwAuf? zA-TV?tSS2FA^MiYw2`^T5fUovvT6Uy*)giXdT8@m3Me@6F_r81Rz-sAFgVR^%K}IW z<2i%rCddfW+Z^oBzfDV3aqytIrg>BS@$L=?yOh6OhnrT-!R3P+OWJjf#(etpTf6-9 z6Kij6+y4HMwSXI{I$IiYX@nZkZ@qx~b8%)@;NYEhP04+l1ZtW@RWOxHxPm_JB_v@^ zyC)@L;>GP~8Ej%a^)Ii2%chy9zCX$v(CnpdPlf2iu~KCKUQWC+xL011*aBm3H@*Go z_da^Z-Z|X1j4=)xxj2TrSgZ0kd&4Vx`zuKz(KlW}y5oe1EQ#aRJXoU%5X;4EwLm}R zz{#Z>$!o8LnE(ONs!TZ!1qgt^Y-JP6X!ByEOAUpkU0-@rLVIUhz1a6|AINNI2mn-c z>#*x>!kygO=jYZPjcxShm-gh@6MKDr0e}66*1@K6q9KWsaGF7p!o8`0?yqcmeg=QN zXKAZ%S)*y*&{(N;iXf5A5hb*N(01i@bv^*!vrvVAU8VkWKZjLN)#K=;hllk%p|L;& z4>r@)uV>v-w*V`u_z_!`Ms@uN#QrD0|J!!5)yCTVu1ljIU2nQq}G^Y)5lENE@YqS{}vSq4aR^ARU2PhF}Se7 z=~J~4&%k9Pj%|ip*#Y2dc3R#8hUf1zyI4B3j({H&;A~`#+!HJu?ZpI1jn5A)(*ncp z_Ip-49eU43C}3d3Pi?{FT>b8i8lDHw{`()?vs*iDVmc=jW|8!k7;pNQXwaQ+FFrP*L z(N&3m^H5bhY_$P^*6(*jj9pDeh~UGA$Z7^*N|3gvqCpPGxqW!e;^JDhXgL^e z?_f{CAc{l>TB6hHS-;cM=3ZT%S-Y88zt>X4k**a_NalT+(%jxQJlmO-(}{{ibY>gw zU8~$3tph*ob!zrIAG~Y#PL345olQ6*vUHE^5Y?_a!lY-dluR;v-=JAGJnbATDI&LH_PH)ImF19dxHc?|5B z@1%4`x8j;(|`|;#MR-cm4c(^8h-v@BK4UP8E@qz6_ z8x)LY7T)}?BQ=t^eGU%4&t9+V6CJ@vKp2U>Y3t+OTe&Vg4Vf`vitmx|=+Om=N5q~) z44AB>xe9)EnXD^ISLi%4jgHgEAqicppk6t|u93&GoA4y5BVEpCNg#2JewgpgYS4vG z9;!8bFwT5gS4HgZ{;us;cQxX2%$chIff+|*s>sqSSQ#oV;PYRdKDXiJsnVC6_INg$ zSkY+dXsm<1ZAmQMEl#19x~9)NJcqgPIjghz)XuPmOA!6T2Y0P=aHuMi7Kq=P6u!Px z*=#TN1VOj)i#`b22a^23;jVR;Gd%y;J8aSr^R{w@pcNVoW5<#xZ5tB$9V#X3%9qX7 z;MG_9_6JPvV*d8U-u`(F8Ul%9xG@GL$VqX=$SO9N2H;~p<{7^~JlwPC;L?Vi%Ql<) z!7r63_XR1^(DcwqtjQ(;06E62r^B&;S{_`)Hq1h;*|Zryk5><_SR*twEbCpU+NMXi zSfnxKjMRabYe9mCu*a8h>0S*-c7FOA9>9)$_`&-Cdys5MZ3Eme9}VTEHM>o9r}9Jr z4&T25Fub|C#%tS_jPd~(*4g(>euV~W5S%T?)`F@hxV!^xutl(zF6@|%{?JC_tEOhJ zPc=FuWPg$n@X_ABO{Go3`d)7mIug6wu<7wL*(wX_S|EbJ-zeeVWq`!K!)R6fdq4`d z&fs{qEQB=~^X9y8qSDf9!ZsgGs6G@uEK_wjVnd;(+a0{T{Wn+MK2wgI-IzRtp5as- zt6lgcrLx|U9aW$wnW~_0KAUQ7+t2`W+?XAkZEVJQacviaEBpADpTIZn+mGIT-*)jm zFBdx7WHI+snR?Jpo$Vdl#adUPu76iZ{^LrY-8IV`_kZ`ou(Y0d2V z^xU34eQf9Fuk7l42q`R8Lr-v53qE}xIHHxYGp419Q1Y`Ou}w-ZOu`TE?Ab1s+Nfqa z-eRuftTNT;b+@-PrPzKP=-{k_q{S(0WUvNdXrB!BWNpBr>}^%oY;P1 zWD?F!$=~h}Ev#J0s3L_?9R$Mr@O3|AUa3eWO*r_c;ovLrk(J-TSN_YN{R{$w930KX0>k8DVAHD`cn;U<0%a=^yJ+q}6R?tWJZviE-hr#u z0+HFq%(GPLY=@aFlw9JWwl`SA1w4paqk;-=KnoPM-K=a2zC5uv?7y!bS_z?GkjRK+8$%>i{B_!HB*s=o-f+|N1nR~`-h z>gFphs#d<^0L`zktK1xIODzU(ZVZ>z2uU8Q~s+dTspN){q zkWu2&IIEb69u{hH$f+A>D;|+WY{JfzG4R6eg9Gb#cWeX~koP{IyU0=5VQks=spGXhuD+wP z-+cdDrgp_7YnyFBTPXRH#OfD6aY})g>Nk#h@&&De0Ku+%eAwrilmbx={Hbm)F3;@a zkAG!<^v8c>pM3hcP3EONdhcD^+3MQ$*$aF9?9^^|0ko=`x;R-O!vR8Wi*rwBveGh5 z;$1>gAk2B?|FSB?hQq9Ottm7;CO-1JTyQR2IHQxz9BkW7y+NV@g7a#PJ|k&$O@10( zp4(y!PXP9r<2s4584IBM#Darvr={m50A%#Bge_#?gaytwa5Fg$qyzt-P5vzB=6=-S zNi>FCTnpNzRo5AAi^R*0-}a-||h5O!euf@^JJl(8$e)b2TVAI`*w3})o>zpU9brO&&lYZ-fOA_Q>6*} z#>Q-s!WG98x_v|2-rBZXa69wqSfDZmBlQpW{bY#LbJ20m>?Wb#mhR23m`jiEDa$n~ z-*na1g1!EHJRX~0IuJLFI6&vh&L;^+?m^y!-xp_Tb%j?VHC>?KQ_|%}Q%=ax1}9TJz3QPG2bI>e2Rwz%cwT z^n8(6j4{{Zh-e*bV?OCHPaQk3{$0ronu40nK#xU$Jov2=St(6iRqzmM&BZ+IK*2f>`+Ylx>o&Otz=IIf zTWu@hl`QC=)4K=_4Kha2XHJqg2)OBH#mv`t11{A{^7-WheJq?#5z4zlD@vT)m?Up9 zLvEqLZX@y<&KFsWHW722$z9?BPS3CGCx8A^NcCUZ+2ys07UoM&5%%DN{@@26*=Rb~ z80jg#3sC8TS!j?iJg?2jQh|+MhMq9iC7Abkv#74p=?1RO`SYBaE=Js7Z|m(88yY4^ z5d%=lOSkh($1>@kTNt`SMj)ZmxwkBZfUpMcwB2{-5uB_zVGTZA$D9KKRdPD_Lti<{ zYqs!V02ZcVESJ`S`tP%T9-56Mad%GcShLmCX$fhbxO!c9%2_Q_8xp)J?JI$cgt9j? zWve{JTbkhS`dSa>3)!-2qYu^Ht;Em1tejg2>Nq4`$PZjiY5v#$>%Xz*FD{_Y3cDWo zaS{wl^!hD(_|APDNcZFypVPkcO3-(Zh*^VDQw6xdv(U;AdHdRQTW`Q$esg5~iE#ZN*g}3+6`(%i=^8CI` zNN76Df@eyJuR7jD$)b>qCjga8XE@~qyb_3v$EY7?)G!3Q)9q=t9ESrR?HyXT)wQ$J zGaa$%LRXrF2-zxI@;yY4!sh=UlT#7NR~uU4KaAMki(V;}%UDOgLcSqUE)bu1RS09u zQem)m%B`;T;9_>iXrjGW*M)+i@K z(8Xy+*i_DiVPb{neq}YN-^_=}lQ1PDX)?I6n~N(Q5_>(k7RtW!&O_Vpb!=QM;5uE) z_fG2_@4Kpe_>D?})elyvVPdI?%ne2E^sK}sse>5y(l+uHE4ce;H$+TXYBon5T=)Lxyvvi{z7h@OUAc^V5mH%aUMwI9i~ zks(XsR2P?OC-#PKZg0jz*IBgn@2jBJ|GNs++{3%3db= z-7<{uXc=n&#j}-d;O@0HD8m6m zWt_ga3F2bwbG0ToKbxiDJQamt9H7ULESk6lv3%Oc1(sZix3Jeyl-3^>N_ehcjx|H z+uPfb7HYu#s<*ruauG_!vQ_Osxt83O3zn`3AAz#8Z0v}6TRn%=O*lzg3WyV_*?tg&p)wGzj|sfucme}gk4QtEvgf(@Y!s= zt-k%eAN`iyzxR$dp{C=ZE4zE^#J>5g1GPMabj|Fa{KMa~fBDb<(30~PK(ptr=F@65 zoX_XG&UB#6bU1?jp6NuvHm=|5^^}6-p)%~?s1_16;|U%`7%^6^>h2N`=FkU*jjtQ0 z9>ZTAU&3@SX2-d49Tj&JmW457wN=@c)VoTL!jYSm&zfQ9O#z(Z19;{>foZF!p+A?G z=Q?iM?Ss$6QQ*0%LS0!X)3)+0G`@gVK(c8Xc%0)FPZ?&)HTPnJw2Uf_Gt8GEnpLezqIp^nGiuAx z$jb2zh+C*tNori(u0i_b8KkSaZu$25U7^1AK>JRFbbnr69|Gu6$9_p7}* zxL=a&aE!DHLsx_?ZIwwjSI2yYG`2RDv2Y?8&b|NUFh4e)*~W_0Rv-e);uNfR0NW!j^Kz3Y+`cwIQ?% z&+NSS@Eu6^mg>`a9tz*}`sow9{Q7GIX2h8)# zQh_ej04{|Cs3jc)J0R1HoQ(|DdYq>Dnc;EFsp1W>k)u#dA&t56m^3OK@vorzW{Ndv zhS({pS#Lz;`Nn-I{a?L2wNF0#!v5lKer~_|{7ajHQ>SvBn5Uf@4-n|}YSw^6{_uBx zWVh~|s3w~?Vcl1g!4LL1bE<(VKI@Vy22xm4{?3DA*) zkU*Xe*lD%x@Z?yv=nY8slAtaPCj(#&Uw`$Ln(}U)+_t^_sY;>hU5>l1%l77r5zGW$ zu-zFaBtiWSFK#qliCTL(o+}^A;z9PRGdEpJR=t_h8XR^|0en#_aQgCc>H~=ib(>5y zC#TCvk#&|!ks%5Nq=Z7F;Z2?3s~H7}t?a*oTV?eIx>m{a;*GggZ+s~j74|(iB^HkX z6+1)#7nYEONm^<;Onk5+|C0aD|I7bwk6)hI`DkjRq@}}9sQ@^|L4^zE6&3&J5B`Du z-tYbn(D_XLRLnf7Fm>q-2Ac3JKiliy=*#mU))%i{+ul}PRV*{8#~P$!2=!k}n%1i2 zN|n;iOgIv&@F5rHAgICp+SB;WhQ?{qJ>q9Oc)fo1#A@{G$0IAiNWGnX%{OOWoDsVD z9G=8vU`yEIA()5~z2Do`II_u{$54+Hh@mvLx-%75M02W4+iYkHmNvmPTta>O*(x3$ zorMNVR?HH-@)=pY(P%e4$+Hoq4&BXx$R4VWlg3vzy7Hbohaa9lcw>%Bc%{L`S`)mI zcjXKdrZ^?*Aj=zr0@ixp@}K_dYq%;vydd@fNOm5^MapeXyes0tJNNAtKp0W#SI`2i zDcfT6KQa22|KpC{5hUpR1;bZSW z8!Vu9ud&f*7w5Kf>sUTDJ%y%ygIil zCPfxg&0RjgwTrGP+r@DujGL!ZFdIvs*cTQ?h%4XEo*}65;s%n97u`B`g!2B^_<4JG zUn$q~5f~!(ST&EcqUW%**bNeL_R(ujye>QqAS`x-sDXiKo&$J`jR6E{XmL)GwN19* zGe$LUu@g2BSs%$(*kGv+856z`UBXe7`MAh6q9U*JP`D1j$=E9%X@h&-@XD^v&jh^aMuLOHzzWJzI{;tUn4_8IiuQQ|1lSX5o*lFA!~L9r zQO30E>SQSt!Arxm#5DR-iKFn~VTBP1Ymu!&GAi{YL5_It z;dOCwp%GQ8g-+5{8ZQY3YE_M)&}E|YOnDk%hfN3I_Vd#-d->v}H6Yovqb-0!9_U8k z!r?c)PFLWK9V$Geo%P=g&vG0IedC%Y6BH_jWU)PuielyJ2%3b)Hgn{L01Hn#!hQR= z1`nE5gF?t6@#x9x>nrtddmr~g(~QU0H@L<~?jdsr3*2f90uNzA9{%75b{k-F2x4>o zx#yfq^ZxEaQx(~&5;}JsBql042t#&UBCDAB3K6ujSZC5UlPa-!FrIke?agbXUzPEc z=cq}l)fDC=`2I_ca4A<^yxI2d&W}~hjyE(LHMmlT_QAW4fWF_edw1@DD7j~g$n98I zn^TNtGhMJQHNHXcG~}@(XIjYTl7r{oP14Lw$3T4b#aD3S7dlmt%+zZ5ag0R&?6_<~ znivas{`|SrX1~)FW025nCQM83SL4ypY%b6#K#VDHcB>dT6K*(w1oNa{5?rd6nLaQL z3Cyt=JPeP|r9AbVb?kF70h2xxTz_0H>|z2{esp9HfA~WU9ioO>;P*q0EhBnJeQKhG z?v)r0NCTm>IJ-7+BF7%^H%|_JGf4h+(j&2Tv!MIl0j;kBD?U;x0b?Xf5^gcPI7 zseI-LPao*2TeP&#fBmH-iHEf}@p~fpE(-~2K6_2wnfU(X@e}*}(_h;Z64`Hez#ujC zd+D6;g(q70quO#gDFH<0;j)~2)`e!+2f@2ALtGzSDr$jiNb!^h&uXyk!X{&HsH}8& zA_$EaPhFyIpHhNw&G&!nhgJh_nU`KY!UK1FlH%M`pV4tPTla`pLCV<<6zuF;ve%%@ zsy7d=dHX9?yLb&;5u`rOdWkV~*UV`e%bh$jr@db;SK1`|2fzP2KYkAqeE>H|ZU=}w z;_Q-}fzAXS0SU7aofV)20^NR39U98T`ej{>L?BT(lGO4R<;F0IQa9Sj;d;ifxJB05a z8JHcmOib{66vis1GxwY0fk1JiP8!ej0ez- zz`QLm5}$z*&o62P{fy@y^DtNv6pVNSm+$E0*zVoECp)ZMc;+WH^7--{Zeovv2)Z`F zwRO&m#$&oquOWwNaLF_a&WjdeP$bR&|BjD-I}cjO)RkX=GZn^FggQ`mQk@jwmP3PgNr)Q_Ox4S1dZIpymUFrj4RoI|2 z$4jYjewMfANqd}On%66A=3KK$>E1M3J)!IYB=&M}2@l}VnjFlhIEN=e=shs1b#!t9 z+dr|VkDtNhbnMQ(yHL#o9Y@`Ts?A}GEexz14yVr9jMuYy5FP=En?r)Pfy{dVael;9 zxjNmDe)ZV^3<2MoYMV6x99r<`-S@l+g5$7@Wtha~7I8sxr7?u@-L4G-)`8CBFmL zN0WirYRfY@=v$^f@<}J^7Jfi1vqAIeOj##3;2rKAK$W)b22w7>FP(vnV4)zV3sPnk zq=8Ljte&Geu|atQ!0d8pyPU<=gBv)$fC(9kNb_l>6lbT=Q~H$$vGY9ddK;jt2_oO$ z2TFd|zWDMB`|8{C2k%=On58JazFSPlQws}^H!OL`I}gaCR5v=-0|VE9 zZzce9;}Io(s2Mr zredoZud{6h>%bx5#}Dq>KGZDN^8D#j*!OGu@~f`}yjZM3yMD00FFe9E)HAo`4B58( z#0f2|$=hp*qByDQ^!(h;E(gYzacVVoum1Mm|NFKFTob`4C7uP1@&*zg(V^qEtA&?G zQ;FC8JhD~_;LEY%oIFhr2O6e;^p{|e<#Z_5G^KB?f%{xs0uaK-R(7iL{4p7u z!v~m{@Y4{NDwcS4c4aTmui(cogd^Cc`sjlX?cnH^`6&uMoR8RG$+9XkZBmA#JqpFB zHQt(s#B+c^DAG*2Ed{Qmig~C#a8WV5usHzne0*io!3E1YCFQYffirG3sNcf5GNp%6 zLTzpcw0OTw?9_?nP;YXDt>O)F3Z}OIShegbF2I{lZGaC}8aKX@OC-)uzmA?n##v#7Jmn9MNM(C8~ShLK-xf(m_^JSNr z4=v>AFwUKy^C;V_sXBtR(FJzcwhoxI*@cPf?{a>rEtr&HJ$)<%TLoY&_|`tOL*s;% zV)fo13x2-GRAbQVO*{}gOBoT2=so*a|MI{2F{PPA{Njr*?8%cS;f#;IP660#N!7Ul zr5}qyf^l)XK=~vviC)M1g+hxpQ*4?Eety9T2=k@vDx`$19tn)i@M6?#f}e*_?;HrkzY)w0@qWISy5u!iL!MiQoo9)3o z7v&lRJiofM%Nr0Lz-%-bDMmoTaunuh=pgR~1V4q;-i&T^KuxFL)eM(}jfR>>2Y?0) z@(ODF8b*7T)C|xNFPMvYWv}2hTmwr?3y#a~_~{O2;XoQcgHw$&fOpLA5^1;sa#3o03an9=ipyzrF_lM_w!%h=FTtQM#fho?<&ehY!=?eXA zmPTPSVH$Wyds6e#;vtyq9858s^NbP$kc8Q&wQK+nYOqXg0HU7{X7=g=8e+20xNkNR zmZ8sGlN&U=Kb-!MaR5O>M6@udFrM1rRWo7UX~ff%?YwIdLpfbJ_G;FqsnDkQlDNv03Z2$)7d7KIw_8Li^Xb4ISHKBzHR z4MIsLE+FA&i+QlQrSj6u{IKR*gB(JY>;jAK!KTws-h!(|^~nrX&OA8hwH+VY-qAi> zr5;p%BLsXr?!-zP{>*~PF4oxv9_ViOI@@O3=S@a<7+q;K&mVG?SzBE9_6Q8&e zm18G%>-Jr_b|d)zS-P%;i<$6s-JFBEe9VHu2~;ZM$+!qBO1DA02lpS?o!fWp%6Y_Eu4kJeWzrLS}Ku|<2JC;C}>{(ZLDzWerDIXO9@na0JUpS-SzqsIDm!qHo_HPNj?WRFyh9ja)Cz9_sv zK1=k@%@QCDLf@|)#QDlKx$7?b+fY8+ZGB30q9sN1P2B8Il zdhzZLTBdLlHGMDh7{W(P0D4Z3fEf^#VSTfiuCg%hQ>0=wVBnF+s3s1211@UssR_Tn z?rX5t)1XhI`y!Qzn&BVcUC4{GOBq2U5txdPE629UEHFv}3WYSTrvW1l5)OJCh>TL7 zYfBQRHWTMm@d8SKz*K3n&*)L39ko)L?@gTEI{-_#zdspD(j(|#H;Q= zef@%_lY4C8F0O6LTyv322N8Gz$yCPkoX-cTLh_$~_~H-(g;pRMhi2BiZwzf8lNa2g z>Ak%@dHC=l{~tm>QxlJ`AzTO@Q9S%L(!BQ@`2k(dj zPGO6FmRXAr41|7jLqWn0>Xb+w#0q`Y$gT>xbJdf!K2Fayu)FTkZ)-FsZ?6aP-J5e6 zphBotq|gI4M^?jxgh4jKTsli+$|@Lg`Wv-iw{~x_ki-3(lte`g*(=Vm!*JIx~6i>&=xsS|>SU?KF4jSXr$G#$cAxtCN;-ugNb zDj`LJ6_^rrVFE>C0)GcL25y38zVMB^5NKjsjgYEw@w{qQ8rdWXqWsA?H~uzGg;+NN z!6Ptq5J*q|W~Y5EZ7!xCQUi_w((GvZhMP6NBwaoE&t9L(<+z|}Pc;aIX~xJB2PvEe zoVVIF8S5zV9{^n7Ky7bsGJ1!QNpI;eqtLtzG+OqE9EKEy=Cub_an%nO2}|>G*1uz~ zwOh|SOs(X$0tD+dV$?JAdV6h^iN;Kt-As`Aa1E;le;Rm3sb)FzEBdnySz6!LL$EC= z{B=M%qEz~~NJl%7>}h+I4Z?*LxO?|5pZn#PUsBtV4?leLNFJ`6xto<*XD}V~k&X4q zehvt7;XL3d*1!Uc5y>J5%WcvF>#DmqZP{I4=D=QEgF!Gi)EtgwOM-JA#(}150Bj7q z;CCDA*HewkyQ&R6Ff1FkN!s>Iek7<*c66?KdO-a!OgAard8{R|-s}@-4 zDhlG)%DGv!210^ggSJ0?`c$4hd&UP&F9Ill4`C?+sXK&>g973l;J&MQ=qi}8^KF$l z+g8Ap62O%KWjc)6t?OJ}%TlAsdH{rO5HBko;!py30fEDukA`Cc6Z+VQ;(=-=ZP^d&pFbRh35b|G-_~!AVUrv#F|xP@|SPFms^_}v@W%bpS+B# zHmL1H^*X)_EkF>&nXkm#9B}|FiVY%&$1`OJ=KLeT7*HLa!)O(D{pj^A=^?I-av9#d zld_Ine$gs-2=t;*^f8z>yMy2%$4zH-?E2bFJ9ceiHY+jQcqkDPl;}%jaX657!}Ndt z`R8oDeEs#;^76$?{@)S{DD$j^+k%+9x(I4}=2bW{66N-pk#+p&me5cp<8guQMiY2Pu*oHKxX%Kuj z$a~8QE@1LtrL43r6lTK_e7_#v9jma%jTYn0n{##6lyk;Yt8HRE860^UG>4_hoyQ5==xtQnbc z!IS&n*B|i)=N=&kHe~!RUgOD=CloL={RcfP`)b}< zk`*ECbV3wq!ksE81Hun-XEuFzVUw05rH3}E#-;_jB{J%xHZax`+R_tTW8)=N_mTDr zKfMl|Gzg!;hYWT`$a9t$L*wyPSN{A{M}}p?NdF5f_`p1ZN+hbK1P{Q(qw>XF>5(7u z*ol7&vqV5?V>$e**YD)6TC*C;sCwtpyv|Z=#o$1$`v{b)vR;#v1jW*9cV4Yn^$+{~2b?85WWRw+3{-<9EYTMx)c zgVa-b^YVyru(hpCQj(4t6IsMC=aZwb4k-d9lqrGr;@6;#Hr4m0heK>V@M4jM19ce- z5HwtRaR3G4Kz#i7A2T0+{`@)P0+@P4`%J^sEVdl&3ZJtE4K zHALZ=T=d2)pRTCi%BMqu_fzL}p`#&AEMZwQM_{Pt{A`%Xx3AtxNBvxVVcGlhDWOjs z=S?DCZfnoCX=CdLpri^hO^8(!(tr>W4`vV`RP_57Cns_T``7e$YZ@%oz`yGKZJOqI zwkjl!LVj-Mo;zfG#;g!O^uB#T0@_!?rsv2ItFRm;reOv$0&y^+c6FOunwm{J7c$iV zx6rh63X-FwX)y|x`N4wed(>g>bBqZRp6FB$3Jw8&51$c$F|G4mDq-gs(VXOlHQ*o?x#H9U zHH%^lxmY68bUyTg09n#6Sl7N(VSn@LL|(W15^H*bIy5mN$RNb#xI;}I7X;`suANY> z%phNgabhPTnwuK&K7^g620I2fdaQxr&hjcZBBZemCJM)?J}WC;=A9?R91|7}gwuqlfom z-VPcMlcmjSktT=l&d#WD$j4XJ2cQ7~a|=xl5qs%)D|{HhAgyre;RD~(J-Bs1x`wZj zvlCe7&xcDu$ra`~O|7wzuu4|ry~)G+D95v-tT@HRm$t_fuR%)8n0vUG*F&?h|1<}Q zzMkkS754E}UyeJf37VJ2dg>$p`(@=uV)ou`&O7y7e!$uR=&~`Vj-d&rfk{|4{` z$O+tSU=0Q+x|*;E1V(1$vB5*Qn9pc33$QwY3Jmwr7Yd=UL^3~o4QpB!9ybL@vO%s; z&8s(><}L`#L`v2nsUYZ35HM!rA%_y%>S`CZb|hU~W;c&}*1es|3AK-ZzJCa~(ob*R z$lK#%gYoK%gmNhakCV;`QPh>y0zhCmaiKc&KH4()duTNZFX*dd01)4Y+}!I)Hjz<{ zCY3&=5joPMn5|D?9Ux0jD}GywoDs4N8wgRW3>?2 zlQJhP8evcng`$jnGee{LrdDUvY-l_`PaW=*`I1;>2QeE*sPq9WNq4|X;#kIgkS6ui zMb@N$-RF{?sa{84uYdc&BQ5~Q0x-i`Xbe1)|NfuC9S@|>QC7IXqV_;18ScCVYeiKH$JV2w%FS(t zdzNSW%4G;2EKAsfLQ_ie2iZ4Xl&)t)U%H&m9tt0J92Tv zR0i*_ec2}MSZE|6PQXxO12f=Ka#}Re2S^Y|T93>_HGkCW$Uq~dtv@CVoIEW%<=9XDV4R0>cf%u1`!Ty%gikpWOYG#pxai3#0<5+dI1?+5O?@h&B4%ot=vN+k_{K2b%ET(CEbAz??m= zmjwSKmX#NGAdDF8#0r{g$;T7cu%s6S2DV} zkmHkcmB*Du{A7Dfs(>|e03uu(D~D=)Y##bFz?Fhb}8@ zNjy0fy_ga(da1t00L{XC1T1>i#S;c>2vS*y@(xMp2T*I`keS!`zFQhB9Xxm{S-&lp z*IhYR_i}l0E?4T>vfLU-7=pC=g(Ya{4R=_z$fvyeJb{%8K_; z(}VHg;IZu9-eX^U05E1=c&o(|KU5nll0T~iB%glz^e_}jLQ8XLX<2UHzAc-ZTQpe^ zIt~RoWB82R+SVFp49p-D)Uhc%Zvlo@AL{VP%W+6vzk0>om4p8t7EBdbWW;i!}g_ z=%j>UquUlHIdF)v2zKf%;1zv6E0h_oFAPyyvnXK{UMt6P@0O;xajx&7E~^_WdM`KS z&WAg4_wJs2aC=9s-iEqK(03z4!M5d|bZ)NXN;87RjV<~0Z+|E0!is9P2^>({sI>WT zrlF}>1+3H_>0v+@aO%C-vRaK5J6%{g8%#m@6+*;Khd^M~5v+s&ZEx?6?CfmoV@IAp z|3M?}Q$m>`bhJqK_YWvM`25XHOT8u&TX9j%jiaAkv(;0deDXy8@0)L!{vj};PnFrk zB-UM#_R7g{;@nIiNbaD)<0v;OOqKbhrUIVYiAL(yA5AUIf_q5~wSp3@{mWRJFK6IQ z{>=tfQe@LvH8HnpI*%%F?|OHEpt+@K8zxqwin1~CSiswzi9v^P@W4+qLOU3H(#2MM zVblmCR*|}zbXk3}=z-tc4Y%6ukL0pHk%M3Sil%%3vSRYSCB~yy#T^i8%^}U; zkT-BOSgpwRAyd{284T63e#>_lqpSE z%r(wjTJ0_d{tNTrtyY7DlrE7u^RzbdH;^M?^luHKgqa0Kqw%xccZ|=snzVTHjfS^l z-5R-tN_=>a?hUV%_vOB7_`HKy*$OWSEH-R9f-V3xd_D}=K4|;G(t>6j%d+*s9jPy@ z$pq{)WO$Ck@Uici@qf5xyw5l+yl1{+Zo*?D^1TIt6H_pe@(8=;9Zv~#f2VM^|X_kja3v@qPX!5tt^q-;%v$+xDqU0+pKP-*R!4d%jKNT94gKwmlqX6{tXbS84Frp>A(eNjWLNli&aTUk-zb zgZT_&v;o8rd~NW{5E3*VnhlMGOF&S^UOI;URTwbMp~zzOcdL%U0))m2EJflYKtV$S zrak1vIU{LbWaBq=g!~g2cGrF|HW2-ie{pfupCLFZfl3LUL*a`c>R3Be&=Dl2o zNaw~9!_48qlUy@$A7gQ{9<~KyQT3T+O%>e1&weJKefF8$yLV46G=l%rSAUWd2R06e z#-U!60nrgtD?xv?sAlW!$*HWWr9k?JVh@WhVmC3kmf6F)PCR@lYpOYHs;S1I?sVE* zD95o}LZ?y*D>HGbQ>V`ifJeV_)9|p7SHc*Nli7Q)X-{`OsqS1bMZqNmE99<6tUiC! z9eCs(vo#u#w>7Dh=lyL%kwM8>T5aHEaG-lPMAjIz$vIjj2(+mF7RMb*6F66ImNRo6 h$;_gdrk4b2{1s^U1^W;E?vnrj002ovPDHLkV1fy)BJ%(M literal 0 HcmV?d00001 diff --git a/application_example/retinaface/images/facealignment/source/4.png b/application_example/retinaface/images/facealignment/source/4.png new file mode 100644 index 0000000000000000000000000000000000000000..24d9fea9b91d08ba739d8d0dc153d5ef884cc52d GIT binary patch literal 27267 zcmV)6K*+y|P)WzALHRbAa^0L0KBCDN89@ss`RC;3hK5qj~f{*7PtStjjIr1%*E zV1NJtG|;G?yXLB_oHOq{oWX0Y*yrA?255_xm5oGZW!^mZoEdD_(%$^=JC91RPSQu*+||wY6p6``-7oHb;jC*6VilEv@O_d@VnUqOdH>@P5nioLsKR#^aHloE%%4Cbqk~ZK*GOq=zW+M-i4R zDsxL}iLaFwqmUpH2?Gy+hc2-45f+u#HVGvPi)8w_zU8&`b6;#;&tLcTrS+fkKH?|} zub@z4%W$0>@0X^r_Ch5XeJ$5l(C2FPzAn5sKYWcM-;k?Me}Dd$a8q()MB&Q#Wu6zS z_btPpU*0VG#G3F`iLL*R*Q7AGUP+SZ`R4PPwOdW=_WR)iJNDxF3w!wRBfEa>x?S1b zvtF-f4QvSh4X+bpO)uXE-=Wj#XfqB50~=zarGNNwxogWemqlvH9~9w1)=#6|a#^7I z+aMHefauNT{n}bbUlXwY#DZqxKkiEInmBRIwm+~T{);}shK|ZVyxIQYAL~t0X;<|T z!*bQ2C`U(!wzauo-A>!;_;(6n9lSoUM~@!i>!IDhf8X}@_N>`#Vk4*co0`7PW^-FE zmccTX`h9|Hj>ltelqkGmbm>-tHeyHVD?crFf$ApTG-JLVQMK7u53#;Buj$t+%J5a! zu3q=|tw||sQEA~y@&137rQg4;g!*6h;o8Id{=MJGO~uyh_n=J|5Zb=g>Z#0Ruiv#h zcW&9;yLW6dnb?ni{A2s+|MgRQ`RXM!d9DpjEp4~k`mEJ!x@WFq0=L&{wJI|khlRRq zJBrF^y3Z;j?F5%r6kfVEYrz7q7Cs6ZsjtRajOyyd^SK3p37AyDi|K&sX^u|WLY{8%scphrg*7lY? ze)_~VHu^BRZMl>>d}Xaxho&~{HMI2f^wfU*qaWMVt5@yaci**}H*di7HsuDAES9D& zmkV1g=2oxQEiEae(rvj#4lpY3S4M>vg?lV6-9(h~2(c`#YfkR3j!SKdSgTY9-xk^B zvCP+?t0;Xv;#kjKZH6caKMotY45m)c z&Fk?iHE8#z^8N^58jZG1CprA$uAKtBeD>Mr_WkdESN<_uETm-}XxZ-WmK`4- z+w+4!nftSk3M+Fz7bbwVjR?f3I1lyAUDc}sd@vBE)(hJzVd+%7g zyCGD(z+z=UrWY5dc)+Qho}Jk%n5n^FD3o~P#tplH-QDT8q3JbTE0*h^w$P7di>1t2 z>?Q{9SDDN8eMgyk_t+5uq4T0Ug`<8w9t6$si9zL`meE$P&I(_iDp*YvB zU$g#3Pxt-eL`1>h*OkL3bo8NrjCI~aG?(Nz=?DRUc zy^F=*g7AAukBpM3HOp8q%c`OTX*_4)S-^G&S^!ny=%n6(>h5L=Cy!;5LZEiXr8!sOT4CpW*i?K*>8XIYa35y z_S2vJ%zpjr-$2kYOwvp2k5o40^y0!=@J$SpXzH5SoGw`^9jQ)|ZZf5Xwh z#_$cJ>C7(h{S*2U?C2vbz~krp)`saxk~*|$CUeV=IfS2v0DKJX&KZ2eROk3PZS-g~ z)z6+_6a41k$M)C%=MQBSb|Az*{@%B&TaWFZ{K>m%HKVC^w@s#lb=9Czh$>>-^NC&NlWXEx_mvam%&=q zaSvT=1e#x7hZ}=JO)a`Cm?-=&AlLuOAC=FfN$11zUqonUXQvSCM5bqZbK7c-6ardU zr`NF`{rqS4!~gVSJ2*JRL(FWpfH_SW&#*y%_3K~3*T1q4KKKEI){+0@{d2=i z#xwlAZxCLCz=_u6+O=zlRRe;pG}HnbeIpn3U-84^q*9t$!zV)^Y(gNtnH>V2)1)@r zT|0)be*L@O*^mGBXZGynfy^p5`BDJJH{a-NV7-k9I~PGT{A7%WPk{~>^u4u6Xm-BH z1?QPriXr3yG?}2lA)jyI1o!azbc8^BVsF9RK7K?CaBlz8zxVP=bp>x|5(S zjzSuf+W2*0TF3$gZLG3bG?gEI_@RC0kN!vkZ8uv2Mz3DJwEb86h&6v??|tJv`N|?G zq@hHxOZszcLTV+!l)^DQYw~aY)j$8YRk|&z@~11GP_AMw|2@MAy4iT05{uShhw`@3 zItObZhOMsW4P*Qn?Jwmq5CVPw&F%+-Sy7r@UJi`o&E8XTg5X2~_?WxiP z8|OOAVzXJd82}gsLBUa&)XKNsdP|x{E!*1M5;{Fb=tAw~MxY>@^zn*C`RQi2+8o3c zsTMr;hwubX;d?0vt1`h{j0iWkiW&V+t%5PUIpzst_*A9f%;QLH3g*RyfE@)E44$J> zucs!)v2UOZ3$)A_1ZOaBU)bN_LBD$P3=0kbVpu@LRLf<*_pWfBs;U&5y* z)O1|836q>OnFNOqEdZP*9)5feG2PYcw`@3^SgYN#klmLyDlF0lp%KNCs@TruFC`WNz~4D zTkzSXnU~XftF&B|8Fep^B$ZYsD@|R8RUzwRwldYFc4b`InRO;4T;IbU3!tEs7I3%q z`hA$fxjlRS!oCC`cnWZGbbJQjv&5Rm@)ubVttu?JXUGK<2yT>4gK$R(Pna2D+_{*~ z1#Eus{qIQwehm%(yI=gBf^u%AR8=7J_|CtqpT|NflIapW(;0xq@zJpz93EL8_ZnkO zQuwnu{%DBzS#ne0dep>q5u+4e0p zKHG3XHEh12?eB9fj)Wyzt)~1XUzc(N0Cgw-=3oD_f4f@Xb$;#tMVMdDVV26utkQZa zQN^A`u`2Tu073}S%6N@trJ1q&oC^f_$3UphU%aqG2yucPcXlzf3BneBN_be*TC*XG zLi5bsFDQ?PCX~;Cervd23YBpp7x07ce_t7t-~H|*?DognIQ%_#I8A1!-BKlkzKFi9 zhU@j9jh#+YnJNB^C8q`a?h+d+hPiw8>>0wH*VceZXX$GSe_YVg;Jx|&o)z*e6aRhf z>Q(Clg^mEQXujJpsTb#GGMjWUUw;0D{4_V7g(Nz|CVp+e%+|0$E-nUk2=~L!xi)F4 zpYvDh~y5bC}(vZSAcUtrjhL*r9CAQ4{9R35RHd-Cwg%bBe7Z6pNU9LYBwlH}}vm8Q}P54J{6lSPc2K(~MFYM^x zm2K~AD-rPE!Mm^kT?v@T_R8Ka!nBEM2F)nNwOhctr zLCkqBbK^?qIY{1Z1zwbji{g+>&O(JCQMSmnyikUx$nhR@cJjX^LW~1@`0;1$={#PQdefBJ~kK7{eqc5SX-B+%r6(+r`S!>M<#ZdE9Ub!-rRrtam zgxoE^MnwQd;qO&G%iKsahf9#449{E|_X@%qVfWYSEqnCjx&7!TKeuCq727*ktpPzq zwKi^af<+;Oa6}lVvE919rx51(tCs>8^c%Z)u(OjB`Jppte!thZ8!%@t_FviUyKmY1 zfcAXt(>gV%`VqBU*Ry0NfX#KKK zHfp|%5$8ts@Uu^Vb`PP|2{h-L^>_A^KoPLw#toWEg~(xDicnx?sq52EKh?@LSoOfY zwOS3_Mtb_NjsN|c zRVC1J<@Bpuy(9Een$m-*_~l>xr9J%oscrA>L0BoY3_{Cc9?wR$JQ^U7pIHmeA5v91 zk8qt@eFYCS8q(La5j`aKE&}ee;}gpPME0N=q;)X(Jb`d&Mj4Zx;`{T{Q~0KHo6pA5 zai)q?Y>K)Na;@3XqN{jNh3wSKe7$CT4{BJIFd!nWQLBOG2iPzQXTmd(nLvw^genYw zUJ9kfilvFYX%*AxjZFW#auQW_%<9LMX!k~!z)xj9zV1`~=eYoit^l7mhhO2YJY+!@ zH^2%z(287r5!S@7;%a9P5+2j}`h`cWwd*oaunyg> zTL(T_2OE%DnKQizEyg#tyRix150`NC3IePN+#KWHKK=A#`^LALurfR5*{$4j%5)X* zwfy9xGI7xYh`V#^rtYb#&^V58*TqZ`alsOTX5~k@E33>4#o-N0TZ1O|wX73zH%%u4Ec%7&j*K18VM-r;_L*G)AQ@rt zm}5PMF!HEjB?LDf58xjNR%$@76BTK(-yn>McIM&Xf&57mChQn!@B-+v0keDi=3NM- zYqQC@6^p6$I?!nN)<%trnjsde>6vP2Q#(7YCpH{2&YTL=%wY*exR%T?e)kM!{6>6B zpkx9;Pw~mk!%%=B1%*~*oA!-wylcAvM0NP^5uWA!Z+r`YzT?LdK=un24WE=GeF++r=i4>5gob`*k@LEKXl` z%&}ls6ynU%ieNb7RlTxQBDq)rqckR*a-j&LLKB9|+-=egWS?>!x#*)g{yXp3!hYES>^;BqkIvv}!>o=syy!K_vq^~~QLc0&J(^I%rrQ>M6BWQ10 zW^X75^9yN><*+(7IyUHdhJQC#o5TY9BaK9|sy4zJkwz6qhbC2^$5E>DHj7|(Z6(aA zq!aE!c~S0SW_P*(41@E5=nl7U-&N`A7^rr-C}C2!ZNU^8P~j5VIfd3KrRG>#^iCma zC8`Uhty;~RHW)R5=JgZ{`PElnDr{mv9>er@U?RCK6WJ}NdMIS#_3+;aTK5Vjk=vV9 z6$e>M+~>J!mo>(xdspm)!TDrr-}%lT*?<4%f3DQqox8W}^z=mU$pZC*2k&4bj9_`5 zYtvtaAn9)jZs_xrbFSEWM9qzsN?#1Uxb{wQaXN6Rn7Xmbj`3?9sNdJP05Gg$EnpoG zmeA6y1j^@7s#wuRydqkWo*`BXA#m)}kiuM$6#+6Y3cDPxyg@WpzSl|0^q;#|_F(Q< zt{U4eAU2D{g!rR59Q_zqPCM2}no2axmoux=7bm4x8F&r46SC9vu(`k!K?VKc6z2Nm zU>_Rhq~e#*q>Y^`)`UQhXUEdkYe2gF{+58ma=z5hWJaMio;j*p8`^yp_sPFIzW|~p z3dQU0-nu1WeD=x5_7*~&?|7w18q?ynLxl70Yv};?mA4 z*7T}LDNFIi7hgcAby%1^Xnl)shBfe5za)xRL3$-8PdRdFY0(04F2-6lAb46lVF9O7 zx(SsP4as5mn<9Cy(5$E6Jds|8vQcdIrXW|=J^-nZ-ns{KyMsmg@YlbA&so~`){Zq` zGUi2U3-|=mM3_rlIoZm*?Y{!*L>zhh)@_(kF5Xgk(M*8mScTyi&!1b58jXcyc8FmNB%uJE z8o-hj!B2OiCuDr@-rLeJW??4K-aahQ=4fKar^f<*^mF9DQlR{MR{&fafNV4#!WYl% zaQ~To^SyWMI-a4KItx;jh_ZYmawr0uorMgN++?ZXdZLW@B9$D{H6yMHBZ?L6QY`mX z)ZzjwqAI-*;>viPe|_^~9p=zgFt>pbn3-;pKGx;eoq0k8*Oa5O)(P+2zMKTCW~PJzt5};Ur&I;ggX~{ zK2L22XmbcbF6QiQIl=+E+AFbFt zRgJR}f*Qfk9Yp6?X5`Y;p-CjL^Y0sWKQ%Z0K6x+taY_v86`*VaqozzWBEp95a!<_5! z;zThXLz-n^+!IlDu(@sm$ef>#;3EgHDqiIuBc9xU_S8lfeZ-e7nB`4@92Ufn5jwG9 zC;`%pl7Le2%!kK#CLr(!@4Od^MxGrjU@dT4cK_-%yHeY>2iG>N8RY_cWCxbHGvP2}886}}i72?Sf5!=uDv`yvwAeJwgmE_{$P(CbDEwEwN;T!q$0y}##D{W^BF)d7K3a#nEq=^tV z%@8_mLIa031CpFAfRN*wosH)<&1N>leX6|H>)B!gUpP3m5(`Z~MH9~CMS|;-B}k-A z6FQlCoanX8NLexx%a{cdAGvg4vNlWEEg_g$Hn-UfZYX79!3p3=pmow66x6(=AuGou z3t96?2(yYf4@GvNL|bKkycSuCa9jzZ3>kAK+&x4|!_TUud-1h;r!xT@6vYZ}_z)~r zF`v5s>X~h}BYW?y>vsFvru9fxG7^w$V%o(F6|mS%?6wKQms{JLwhuE!a`Rw3vI)#j z0}qhQhtk*>Unghhwm3VqY&=yBvcQ7$u3oj9ySoTwy6Up(<177Qu^1peZHd)>4*xnD zPHeBaDWcRFLZ*wNCO>-yggT%P#6k_muo3_sr>93s@~7A=Eody=3fTu_^W{psq-2DN zHp&DG>ptoqfp43OG4J(GcVvZSOxPsuONp-A4Xl5fyD&qoSC$f+omv?e03P0$tm>VU(hiwe3qVRW2 z$snGozkueqFTD?(D; z^T;sKQ+P)1tUbiAl6HZ5E5PTAX-omvNcg-OF*>j*x1kGe@b7A=2akC*)ljC#AG>@o`HT6zJ zSe$k{wwnMM8?!l(tpSvb?8=n`Z?wT%d#_?F@)P4sW< z>;k@)1T)6Q6e`n=R0U>ilB%+SdnOt$Dlk~FH)2n+6JKQ92s2oMcB+v9EXF71e=7?Y zy3tqMtSZl&+R8$v)l`98>;QA^4DqAd_2RVw4#>!}`&4&AV@e|+VYLTZ=$lM(^Q{w` zlLaD`#D;@o+uiEf^(#AGB7z1l`8p=k@$^Ni3<0zP3&g|%1Vf%|g!rn_a)R^r^~AQX z-VEiXQV^b@!36$vx@20cPRyq6uzIKGECKx8G%KvXxntk?;0HE5KYLkgfkq zn7Ag)CO1;6m)XI1W(SCM#}w)Wzvuh0H9;Cz5P3f%Z=eX88plOIw)LRZxp+Kjl-VAUDEu1DTdvop zfzcP@QKkcc+@iFJpS2*&x)zB$mZJt(ysmFKl4Y@%$qd#^GX&>j_|rNo3ec<>?}^Mk z<}PukWVRFev0Hij>J^wZ_C$_lDcbn^Vo_*gFa%4wk-Y^$4&m39`==26g$;qWi(nt+ z_t-D5IZcUZlJuKlW0W5B$_I-O#vjkLb_7H{M1Vif z&TTj*@G|*7>X-&-5J~d+k`Oyq#9JA(NLeFpAmNfKrY~u(QeVl4(_P@RmoYw>yoiecMR%Usdglxjdl6o^QX`^hNOI;&5W#6l`hHl~cL z3_&m@7HmBhm$@5&fEuo~Ew)+1ojU=Skdp_<<;qq2Oob|#wj^9y7ft9W5tAYAVp)qs zDViXd=~k_!rXiW%I0R5pDW65n;VMNzvzR6;bLZgaE23H{AjVGZIL(9&nh*q;e=MHQ z=leE??-ntPp0;$PTd2I|m8Qxzs;*1cAYxPt>+BjEDNZl*MDMjkD3rkhvGjE?nAj%V zNz!dugWJ0(Lnz~=NNx^ghRQO`IjF4!ol-Lx)V`S~uZB>BWL!uPha4ZpM2{sLIx3c+>I)a zrHvvWKfGd@Aa0wutB3+p*Q_J&CMn`K6vz4MNfcNV^!IG`%|)&vwSz{wgo&-e7x!Q? zm(ZSq&t4R(O~)9LcS?puxk`x^Vx@0v_5<6#Q1XPnp4!E@mO!b15c3oi&tXl^5~K#}jGoOx(QqRCa&goRmU7`|TgsH!Iwd#?;2hvuya;Rj7% zNC?OguQEyHIs-(5g&QFeiCWnwJG(|cDdM$S8o0L3G4f(`Xf6u1dI1X%N__q~`{iy_Y)xf>$)ej%_1YlZ*D)LJTiR*DEl zY9+6lTOiB@N2kXRTFT8BSG<(?lE17>Y?UaAE`49wC%ruPsUNG?mu}0&O9-=q9JBbF zk!;)tYV3qjDb*wn*T6WK*NW_MiDUG&T5094UA1!YUE^TVi!g&A#lo<}rnFcPkbj0G zr0|-@YZ7z?Tp*-`%z38cAb=9#LaJ+)p6A8=&N;4SxzPPNK`ZyLuJAA^l#|6iU>1tZ zf{GyLNt8@JJ`dO9pRyRw4zd~kJ($eI^P%Pw{l-;z5+opINa-Lm2>_DMlvcrKSqZ3I zdCCyohS_+LU1HzaD)L?B;xCUhSRvCy=B@~Sl}$P_*?w`psX(WQ+Q zfL7_kVY6Hu{IWFI9EnHOAS&I0!+Dpxqc~|E#TmxM`NG6jmC=<;h3aMVOz|vd>Sb($ zC<0xQIbV*gDN~<@!b(N#Nq(8V5Dm!MuvMX6vz^VJ!VoS{R+3ebifzZ_`T{i4Z53ByxB{co@k|VL6ED-M-?#f-xo!N zDlgkU-`-I$i?OQZai9-6T4rUR1T30{yv)=N7hmc$*3AYj%_6U(dUf8z8(WbCO9x>A z-MQ5bWjiGeU1MC~7S{h!5vwDbxSv;P52U%5oNc8Czh+#n{C5way zG*d8kE8$BQF%-ncWe3@EWo4E*ffaAL>|FPEFkPGYS}Pi>jUm(0@F;k zBGEdKW0RUFOBh^Iyb@{k#ID}Bt_n*L3J-ZU z^A?Gvw+#}QX_T7CM2w z;u{o@pt-BTenH!`+gCNs*fS&HPc$vWk`)>)gRy7&i~+r-fF#MvBl`%_P*7u7AdL(= zDP9Xv20H}oYesjq>7q;T=Vn=mSH8GhBlIA{G9*hi>_G@T^lmWzjJy+ztrYAUYj7qH z?x)V(Q3})Rd6uQWul!8n40NTJ@w+aqkdU_H3igdsm`nI!3Q@dZynf0=1p7W=;(413 zNNt4AA%5S27Peu6lQItZlET&s==TtZOjlY_;>+mrthd$EhQ`=1&o!hP{1t&iYoVPz zl)%ceQt8TkyPz3RGXdV)+!XbL0?i_?*HsHxnR7?fwlYs|4ph8!**_@6GF0({=;HuL zau>cR8Aa72^X9cZo{JQSr)lm}O7Pjl{nhc34ot@gYm$008$NYmtr`Fh{eP+Iq}GS8 zB^@&6&)CqLM4@x5RQDNsTi92cA*6^PKqlwaXR3`1fQ5A);vXYygf6}|a?(w);Zj$K zGRVef`O#)i3D` zieRZ&TdjnNjn~0vw_e8r&v4(lZESSxa4hE0I5qX{ARNJ~lG=PCIC zN6Tqp%qeT863sZno7_p#Y{OXMIt%vKz{HNQW;11a=z4SQkZLG1SE&equLueIH_)sF zP(k2Q2|`O407oUqGWfPCIUg0#nsOQ7vxRYOj)Xl_5ezRqRA@At%1LGje6uKdBb~?h zjRUy(LnA}oCB$!N<;v_-zc2m4*WpzWJiJ?pxWagqFvC4Z0Z{pRgn^H0i;t|wQr*^u z(s}iIVXeKcU5po+B{U7Rm#FlnpaxvbM&hB6W--tgB5w3SQVSKMlhFOfQk}ZMv=d_i zq!I4r0`l9%MpyD6%L7smAse-w37;^mksoO_!>$bZzc^$U%FuRTAxB%eNV7|3E)-8o zl(4&tCSA)|dKt{|0DLAXEZ8(tYzuC7 zb*?KcsRm!Te_tu0Mb+%Q;8$d{!wwGRDGxIONGUI&*sv&ZC|xoBDlfJ6DJdUS8l5XF zI6XYE^Mhmfpqd>mk1ge#yxx}WT)7TS?W#VgcTZxWL)~cj^wFf3+ViX1tu!#ITKT<9 z=K0ZBKupARZ7ZP0)JJwREQ+k@u_#$^!HuM~SRn}it_6)~)o0dfOz>nE*mU@dcFp>o zO~sgVpdZpV=Zgt6sIY(fkN=VV4}bnot=UTL_4&Yl_xPnfJs&Gomxm#?*{N@x&&O!4w;+XeJUcQ+zR$CJwU^n8eF;tyJ2dDyLb6AjMiEs=06~ ze5xa?%AH)+Oj}Jou1thLp0v9nNEhPLP!KPkKC@4L`H}5xY^j(`^6t*=HOt@fMEQCMlYm-WMZ&JR#X64k!NcLfb1%Dj393}W-a9l@ z|ALT81?vP9twu{-YW?mU+Inac%^PZJatQr9Q+Z8%y8)Q{!TaB||M8#wnWg!}_CJ4N zQ)u9oM#Dz+nw>y^i&$AhtXCQorwkFDhbVdJV{i%!^f}xYl-tHrAYf=bXFKFe_;GS= z<1+Zl+?H`3swpuuRqL8W74Tcw-5w`+$}5UjF-QP7-s>P=Xr2vmcppGh2m`9vF2Rmx zqbRR+esZiT#1a}hB^&PK#O^(K&#v9LWxf8UVl$efDCO`bEV78$u>gW68iMJKs=Lm` ze6TPJ*OYl8m|2EQk+yLI2X@M~j+S{(X>4OlBYv`I5B+vRa4 zaN~t+#~>LC`7wt?}+k>JNNI|>&H)3A8eD-flHhZNA~E`kL~5-M|ShZ zZM%N^hSkVKz^=BuVNtE2O1?9oq7_n(0uW=hKUaFK%3dX+v+#ac6j$993zTwG=In!9 zsu8CMEQKf_NvwtonBT_>&l8c-LBGg2lc*d1oixfwOudn9w_5hc-~NW}z}~)o@ue-s z=hnyTW<@dUz2l+B4X@-0#5LXBj6se4#va#EUDjZHEy=eES7%<;Mzuffnt zDaqeQ@zq4qGzvj)mF@T0Fs1WYqR=HB>Kbb83;EJ=CH!hD1mT4q&T@qwL;i%3*}sy=&mJ6h_kC8Jj|>2vX0p1 zta@mAYmqBVA^Uwc8rhX@*S>TAZQE_v?datb+rS3wUB8O3;v6AGYH7P;7sIK2_3=YH z$Ma^KcL&!(=0p>}>u+vZv)d7)fMF14^pW{TbQS0Bsz~posm(eKX>c46cM>~}xLhJk zs|-j{^;vtc#V>dT?HanE4oFp4&Ey+ zb!DFQCWSk2pMYsrokm3HVX8DN^{*~&{$!rpDTH$P>V=qX8_>`lfQ?&wSGD+q;n>bj z&#c9PgE_MJvt>11vREW+87SJ1#sLs+U-z%lMq6%h8eTwK`nVkpLaHW*t2Yr+!}(gtTcz`rKY z-UMGqZtarGxFuLcfw{y1PP!&Gm#fnQDmWyonR~0BI5x`G2Z61-`PLsr07Fq>6*HrZ zDqc^h9pc|x+uPWsxVe7U>bu)^F&f$!3;q%sd2x1bR}ijnq6VjH4DpZ~ExfMg{+DU5 z1+;Ssp_0wnWt`ebLJ%FRd51fllSBAH|G zV^i^Ty)m-^O+Id3$$SW{z%|ZZA7FEiY>5rJxdkkd0K63w#N!v(EV!S3Q}@DauozBk zQm7yiuM|v)_Bg1kSKGaonFl(DXcQr~6W=5b)QeD0EJ8i82uXOiU=_*BEBhKJN+VGe zqKvS8K=gX%Ji8kjB*M%nrVI=XZx^Yd0LI? z#^%|A`MwJ6CtZcz)tm6oWZu!YCmdY^G+G8yvCy~))M`U|<8di}xVN=wZD_@yJ+L0) zVYWOhIOrHLGsnKMjKyYRw&knN3E%mP4}WW~PEN(~8NrgY33j+12)mlNR=d}Pi7o61 z)@Xpg9RnQ~1+QHoVHqN=P| zm9kS6ICL&mj#O&uHOstoVn`hTq~3PAMIP5>KI^4lm+>4!25zJ_P~sjmw7qqOP}Lht zLs>0>wrvpHY;Jpt9!H;QQl@EkU8?!7riuq=`3%m^6ztEY6M>HjF2eIb+H6ap@8RfE z(l=;ogWHG;2Xsubdk0pjfV~Z&asUPqI0O0;VN1pWG&XLl!`PVpDi`*5zk6tpU%XHw zRHkA|uDFqG{A>l*@N-DJjqf*MY36uAUE=@}Z6-lS+}m(4U(XPVyFxe3HdldYsPt*puQ>-BpOH6;DrDps&qLM*hQjLS)Hv0p{+Xt zTFYww;4w^S8lXCTmdaze0^v)2$^J!F*lR+fs=B~cB=Ac~;soec)ly+jE+f&3gB5F> zU{$YsXoBxINsNlZydwS_)*kCY*K=#bkb*`q*1P9X%a>`&|Np#j{<>mI&*(} z3$gIFr7+)ISdK0|1xPx_2736}XX;q1Sa+N|PfNg-#02-qai~6Bq)^pl2O(0)6ZdKa zb5vbOBE!HW&BW>UhdRtrayB7d#j~+kOa~{J_p2EDV!6)~{ z*Cfg^QgVZoWfth0Sc|$?{gI~8Uy^lKpqN^iBNP9wH zQ^ZtRc8*;g=`^~i-cny?uHL24Asl&<+cZAL-=BpYb_)BT3_pBLeVjE>g@!|rlbL<|@Kf7`OW5jd*bl$>5qzMNs;wec^Kn>|pkcuCcj~eA;@lefQYhbF z;EGTLx=W#FO@NMTqHKDPpilp_&nb^y>S6iiJM5Vmekw6bC>gGXc0 ziMha()erN5WLir0)8a>s{6w}tU- zGM|A-&mYs|m3f%>QTS#_;$%Ia0KaGBYyr*fLAZxUNA~F1OS^vUhCR4@-~Qs?{d;@% z^r_4?hY43_8VWF~+b9=$Z{Tm6c+PqVkGyRn4+Vutq^>NKy;#EFI%#}Q60a&-?klSb z7hbn>_dD2;3ywy%#cTxgGKQ%E2q|b1mkPFLv#C;CWwAcQvjk*UVNuTh)fkDXG<|DWl3*e0ONlmLz|S)y?*bAb+O-a_EdH;F7! zu~aQowFNF7)}sltckud%L4@^NeY<`0w*BO%KeeCz^5?3{Hfx9zqg1RuZrueoNDtPA zgE*Ksj*6yo&2?<{nzE{19LU3wjpVs&Afk@xASbD%;T+4vi~Y4Y(7MYoLYAF=B<99K zfMKSf2u!KYk z<1E8w!A3}HxzAu-PSpFaL)=&`7!NeprUgHnd%+I^Ds4rH4>V$zWrtfVmPm|{cy?(;A0fBAQRX(xxrcJ0cxUgIDM_c+UR z9r8A^5EHJB23dU{gc*fWM&JZXVrinvPEv86ED*NUF`chA25&db5UkSAn5I0{LL5Vi zL$c~-imK)m?Jfe8dZ1l+qChmmIKb$_xi>}V;ov~~{b$eYr+@W-SaES=AAIAU&6)6K zO^}++2Zit#q)#9YWXVH9XdnS>%DJA;H0i>Ou?he%JONeP)ZnF|6rz z>um2JHU)x4s9?FbBYy!*Dznw76#xJr07*naRO^SJSsT{lj-|873qP_-jH}R&q1|3O zbHV!}{Z#r13Cnod>-~K@VBR=s*%wC__BTKIg?;+vphu zoLQuo_(#>Zb~(jeuKryewa8Sb52(;0cqpcW@Hjg!7pC9_NIC7w^15cvlxZP9qw zU{w*AW!4f;3g|Rg(k{wN4Y*OHpg#(W%%nF*p*{S~Z|!IQ@vm&~>X~h0uZ;F~EMqQ~ zZ;to1z+q*G(Sl7*bXLjIOKIVx1BdFkKegUvVS-3YX|@tRwg$6%ZD$Mqeqe`B9@`dA zj@{X{4#OZKXNyA%zjIyLkf*`{uf;)9oPNpb(ZUD#YC5wU0*7#KTTs?ZbS-6>Lqd#*9$2?iHMn^k*1S zE@$$S#t>vWwQ>r-&CV;jfB?eSK+B0;v>J35oHW8V_$AEsgaox&Zl_C_U)(q8A6_Yh zHkM8pCq+bT0}-U-RY+86;p%I2S(whY3Y0x*qtdGunz>e22?&_N3gD5)_2Wspa`VpG*aD>M-={t|MlP77oUEnq;(=+gqy_T4bI>@ zw?>+qXQ3Ui+38xn-O$t#=4wX(HJozEv18h3N!^DY(!`S1h^Or}BRf7iu&=)OOuKbc z+b*QGp7(b z6Zt%hl>;-zJj)U&lf&3%9)wHVnMiLG-cYo}!Z4FXTgQBH98#JUvoX5tKh0yt>fmx8 zHd(6UES7S453O(Ta%FB;oo{&0bUD0mnODOV=rcLOObzRS^bvVbO23(rO-7T)w()vX z=!nnGH)A{8ryqZ8Km6;zw!y)XPb_BGKmza-_PrjN4Bxuv-Up-gBnZRs8VKG!oy%nAuof!{`gZ5H8=>`_; zNLuLcGQ5i!*Tvr!^$tff9INmNUw#psYrPd8}@1menRQMdC+ zu2Y0Q`Q&4J1Wm~%(7aOa89R%qGCW+=z%ErD&<4<$y=yxNg<6`;J|3Le+5Rb@{-*V| z_iVz`XU_-Lx|LgN2fLl%Xp!5L^o!BRM(1bt3Vw^Ft~+<{0wH&l1!8!UW9Kxt+tx2P zZSZVhW`mJjwmw)hpY+cGa5Qu1;Jyhacw22|S{LQ>A&d{a&|Y+bxb!#O_>7 z@D)3{nObvq%L;@&yvA%Wurp|T)PtYK>*<#{BY^QO$zcRM*}~_yN8#ATiXA~S%dw-G z=JHkt#+Eu(N?D%R4@NDp;Lvf6ge!UtX%v$I8^8tAIX3oe6w-Eu^2Kynj9cp!i7YR| zEF~vZ`OG5@NW^+Emd1Nz%UJFpCtKc!Nl4QbsxdV=J3S35?5Zze5+%wO#H(Vpd}OVz zPyXrA(TRQa^0j^T?7)s80G{o|KjFO8EQtf!S~n9hDaC8&B@d^W+KYojyYtpt)`M2j z*Kj=d7~tadvnRGsB#7{YS)G%M6V1^ftANRF=3TdW&T>125ZUquz%n`m5_PTNNbfm^ z6+$CwjB)YyELcybFwq>=ln|-cwNRu?GQH@B#Q5-JH65}2j^PqHN6)@V}=qe11~%iVZ6z<;>t&G%JYnfEYXG3M?3|L^dxn?`Nqc0ce&| z9C2qML{evXkD6*}Q7DLb{OqU2JDDy$JltQObE(EsUvyD31ZNW^xwFFS@N~3GT=@0r zxqSs~JOyf8rVSNg{fHzFTN>i1tdFrEQ(QeIQK=d0PhTI|+oxwbLy~7I3Q=| z^G8qZHSX)J`)^^pjUCQ|Eo?Q=S8*jzW}qM^&c;hb^7hmVF#;3^9$QToJ$i+yVJo!wn>?RmFpt*O(R!*4Nv47F1;0=huSF7UgV+Km=nm!?wbOr zahL{#$X?CDk$nNnqF9x9r=aVoN2{?h2?r6vwsS}?`|We(Vq+b;##3}imp=mm*hJ$?Kj4Cp1(Y_y~oe&%GGN?ridBw8b3bE z3)!DM`pVvU_ko?9pV(kxjCZW4Hs5c#Ui<1!XoV6jhTh5h_@U)uc#@7n#F*I$14`g=PKP;r7S@P34uOoFmm7H)#JsMXiBwZZ zIN^(yb3R#0fF(<74Ih3e7DVAOKQ$+f3!m9q%_>k(P1anihl?Q4ZzeW9ePP)MT5-Mr zO68GF+g9(j5lTQPi?RF;{gI|@l&h&bA?fWifEpY}$^l96J0rw_W0>L>Fo(bV_;cGr zC~<}0gd`G#A}yGxyEkv!Z+`WWeeh5I)UMus8vqWm=mYJU+ z#u8u3ST`K(S|Ao}LrW(-e1OdSRW3Kt!Rb7@W6t6_1h$j^8yl;PdyC|C$nI-=Fg09N>T zh+D=XX1M8xUp}?_078W4JBSg5prKvYcCN^0{pg4P$?ksR8+PxT-?By*@nX{UAxbG0 z1TpCmP<4KEu46BrK7K5K@b>)&_Tb(7;`tDDJD;ZTkujul$Rtk`?^>Amsu-FS4m>{z zVgx=}D0%U?2_9|Cr&tOwxduUBF7b>j?o%X&2CqfG$9g5Tml9j3_zWP)`M5yn+%!C? zaEx{2*l}*u1;Z;g4DsBO(4SMPkr!doXky(SEJUNqFBf5wrc*-FLbkh@9|gx}n=MM%Um z@aFF+?4)Hc&nEWe{+aE;WWpuj9@ro=1#%tQP6t|uYwmyYsl9&m#Om#y?OeGE6W>(b z(s)Q4{N@y9i=oQ5Kll^7i@37~Ezej^;~87szId;E|0Ti95^iEV*O1^sTIGO48cDo> zO-i>x^SV@m0WN~)Nypx)%*AKvjpsSe3%myRun2R7ST?8^9QzFo#%5d83T+6r;c>3K zl^U$il3N2YI$Iy23>IrP)#0i%w^S$sM6&z(?XJ#OSxiado@$uXgw_pO(_%%237MFM z1a_Yn-fXKXIMFd~{@L$uy+viS) z1EuU}(pW0#wVSX8p4enYa6TQVpv5)_g-Z-ks*~S?h7ve(trn^#xi5_)Pj%Kb4>i#o zgS7M$>{}|Sd2E_#9QjD+gx$DtP2*&AfGepg*o?Dz!|GY;=e0$y6zn+-lOrPUu3AQR z`24jUJ>Q3Y9>aFG06OZ@fO*a&^K?}?5RH*L$=Gg|`7qybyi*>=zLX*HPQo*}p`q9k zN=i<+X2F{$?j4*Q+oR{t?d_}E+Htjh*T@bk(o~B@@OA})~*ZRZ|E= ztx*T+atf{TxQ@|cq9S;pW0Jd6nzA*sJb*ZCu!eZZY?X-QBIZ~)ofQT^#IwY@Fu5E} zem)x7bAUW{XJ6mD=B*X^+&5k6BT1S5OhCgp&HExFKj@lMkt09mDKET3j7*(2uG8Yqz1)}*`H2Rc zv7U=-li2Gcgdp@0yBpR7up%tie&@+LOCQC_lZ6PR_?{`^wMAeBMC$CyR!2uxgSUJR zpEnQ{VQA6}TFp#PMS|kO4DY!aZ?n>eK(M^V5*FP^hlk#zsUHnROOtxzR9v-P zgg%`psK3bKxHeh#BWPR?>)D8XYA3HgKv;DOUtZ#RJeFC$a>@MfM4Rk-kB0$tgxZz! zE}YdjfgGk&V2T#Bo?t1`0jSb+W$$<@>psGcqkRP5tcr(Lg;`ek)PK&C{cm$uf6ZmY$$CPg-au9uE<{7}<2>=(`kY3NbI9 z@r+4%j#!fw2%{vR?QQrpa(HUu7sUt_cupBKtiO%8woqEIEWLnCG1XulnDr@{sE0t= zLo>sBjU$9|?S@`E$A&qd`ulA{U`=QyT@5F( zj0{anq(e1S3M&Hqr(j6JY7hmBv4962jDYH9Y9=ZW2GsgBm}i*!mLGz~1IT%A+z^EF zBog!d52pMy^OYO4mI%mI0++Th+?dZb_2c~HRLT0P6=Q)#XDm5o7(%V%0XdmZ9ASJ% zf5uO3A>7l^fZ!<7fuu`l#xjBLj(y;S0+ZNHX_A=)ON+%d%CR99k+Y4c`Si_Eg9ENM ze5^U1i7tYgx4XTmu53rEwn}7Flvgj8g=9tH^8w2&QWhwE`EuU|%>8M+btM0j`49rD zh$4|PCU^*PI9c9dN{Ml=m{WetLl*mMJmFP_^0lATz_2HA){zhO!@@Bn;-J7Tc4x-4 z+WtAYotRGd!A${8WY5{ga#p{YUUgwW>LmS_+}_#Q5>) znFPvv;dAmFuQ9Y_5>DnL(@#ZZ^F<>D;HT&sSc@^N#{q=-^a$F0x>T&a1RBqxxdv)b z`zg!@%y9!af}vUxIIeRp`eLfnlxWULh}i@#XmU^pKtwLr zU0_NNma)=iX-M(W2NOgo2E!|P{w2?hBx|FXNA}{`3!6bxn!Tn>Dw~BkqLcG>3cNNE z&`3hzHd6PNj?M@t2_&h{$k8-3#)%LRzdd-nhr!Z}wabDK_vGizHr zj3g@q@z50Xr*ec2Lzy&Y9Lfs1_)%f#p-8z*Wie-Jo@^Jj-k5Ahj21WXo{2PmhBqH$ z*Dgg}!-BQzIvOKG+{&pP!}D`!=eccd>`L@J0+DDsr=Yqmor6UJaW&mCPQ7Z8l|E3T z2+3&%*{p4nO)x>IHHRzFxKH+LGFF>22F=A*j|0hAeKx5dJJE(|?X`QalkL%Vg@$9sQ zu;RxH_|TZ;uu>=8H#AwS2-D3==LJWuKuJ`WRUsGQ>;MLA^e&a+)tHba6QFC@hdfnA%sS4$Bu|k&(7=# zp!wVHybE80hmV}4uKvlybH1F~;cQbsd4X@9WS&=c5>_rA&jOl9e$SYP!2vlkea5(u zloa)E;y#wS&%295i@OFNVw1Jm{?3zln=PB3T-eF^gnVvpF^F+e#}%Eg(jsk zOo)uv%}ybwOw&fcn89Q%U|OdvN*^8D1y6WazH{dAKldyZHBlQWb&jteB;G(sk~kwF z_H#8UNX{6bkDfD`5c!!a>SDz2DfDd;$7Vbcsjj3#5ja82+Jqs6A!%+R%hkfr4+@0m zS5r6GGumvnLL;qre+hZSVb}*1MJHA)SG-#aTbv~xYEXn7kVX}F38(Nyc_0}%h@k+J z3Qb*_liD)y212YT9bLxwap6!bNH^`e)5Ig`P;v< z4<6jJPM@>s{7|HXX+nI)FmdXxio!l(39AAO9QTP>bcXnj9cQefP?#iE^AK|SN|yN4 zWFu-~A~qr0^E8~1-OQb)fF3vSY>|uCOKZZf6U2Sf*-~^=trs^{;V1C+8V%JKYXopM z3y9f6nmqE&nrYs8sr)SKr38*=*mz@Xi2nA5)!QA5*k%~AWdxtflEn`CoWWO7HNCAP z3Opc+AmvR)@%q$&nEi-x7*`#K1b|gzaeRWMc0=Tiqh+A|g7m^vc)L2Ak;o4kUJPsqbA9~!K$E~YsMpWS@?FF9BR6SX^v+oA?8>G@Zgsk_0=3vv zjyxig6Dye@kMZ-_h=+JLeUp|x>wx5DW{9TaOf7!o3ojR*<)Y6g;Pd%{&SY3>Xp<*c z#!&53wjdIBw7WKDISU|(T1;WFAh4KC@ciU16$;ImdTiFi%tG^7@MRdJl@?(vb*uqZ zkvHRLI72m*zEmrlk2Y|MUl9tpGH`0ojAWIQ!e7JCv|XzQGwXd8Yz?2{ZzoJ%Luebg z`3`(XL)~Wht47<#*zu?3+@8ETw*NT)&`u!G+gG=3tKYI#JylYmNx%W%RHo6&6mj@2 z<4~5gjt&oP1hdM8$Pk}ap^}Bch#Jw&_IGR!vggSVWDHCYL)=jFo(=hR)KJnSY;6#BB3qft@*WfQwb@N6_6eIxxP_qCh@O37anbAz2$7j)ppVSSJw0eqgAQ zSFzKFsg-0b@X#0jG1HRu*cpc!+l~8ZRA-r~o6JjMOk+;ey53U7g!$SY(C%P9lGWJV z>e}<+nVrBYFegl!C3DgQe>#dW^56UHt;MlCa3ezL%Gz>b#}Zswn-84rHRsU%*@a?vT3yp99IfY+Q`wP zJW3dUThqyR&VTYIUnL~*^A-S_CnLJejyOpZ+;$(Eqoq7)Va*m#0-UR;&0;~?bkxAq zT;dr32U@s)U?phd!j1_B6PQk#cL-*w;fAJxki0*dS=KVss^-cNCyTw&DV(C9;T;jj zyJ2-(MG9D*ijAEMAe26DrmPrii3CZ(`#5S&T+9>*&%^1m5~TUzoeViT5KN1Hm`pY- zGRr|TQ3HKUc3lkVg;)PY!B62wYt~pSIX295y&5Kw!Q5dZKqH0#3h6n=&|g>+rk1f_ zyOCqmqVJINTGfFc1)1$(d)3!xYXW^7^9+=W(ina>28o)#6*~ct(<& zd3*&YR@(kg%V}QPeJ$8W7kg`h>uim04-{IMGCLT;#D`!}-7R zow>Kt3*^b?RQcQx3b3yP3r6ZFPl9K@)YriKK4{{}0+_(8)^oN=v@OC0q%!PwH?<}s zG5QLj)lxJ0VzKHJMn#@bQ9A=q`&%yb{@d7ySMj-r&CI97J0+X!q0u=almOk9Bf97XIF5-UK0pl6X>$tw`9rQ&I!QBR3)Hh>cc6>m`I3F z8252wiC~zju3AhN@^x|Dvsaq_91{F$4@kUkBMCXqidI^kI^-3JQp`N^VrNXyFWrAp z=s8T{7$Fa>Oo~O^>UOM)4aoX$r-b%HgUM)T6vbyx$|>WFLlutsCn%twu@5R$uMRfC(Qc|JkyPfHkdg5e#s_Pw!%$3SSMeJjQ55zIPg2Ho7Ov) z@9bIg`Zas|`c=Ex*|Cdd%?^(b?C|iFy?*i7Mu#sT*tyl!&IW-20W!8G>f~v#Y`UeX zB!whpbw2SUja73kJ-DLa8XW;tF9Rb zRER{O2xYPi$#$7rf|@e!p`!)TQ@Dnv#KOtip<)xPB}=Oitrkt~>=*c7Xg z)ZZuE1dA1GdmU*&6>36%N34b7Y9`PbdH-MxLob~-I0;*QHVRdikfEV1=k!J%?9D~%ag>@)flq9b!i?N{VEKdh?XcCgX{~Kp81knX zH#FA>18PajzW?9;3oF>Z@X1F2Ml(Fj$RdE6e!u^JH+7{wZdEbVZ_A!clF94~1p!jo zD*gcy|NjF5gankf(9&f{Gm|}e%f;u|FRiN4WIB`Oz3c01A0HoUj%QN}8cE<3TA)0e zy|Lqw&Xf-Iaa_7#^fdx`cx+XQV6g+`A>0_r*fSMOO55mfM{0xvv=!=w9_we=qi==q zBD{vlyu}WuaNIyJScMfISIPu~V-3c^{fs$%13)>{pj{>oiYZxXzyzNk1(MSnh-BTx zvb`cR;jJVqO`;SFwlC~#AT`Jd&4sITWl8c;-WE|+3t4ckK?{d-msVFxlK9Z80p>Np z0a)i^y>YEL&-viCfdF0Jhbml#jQbtJc1Zd2X3WrixxAMrKm5oG zT0H$p1|U>H^<&hRrltY=O(1L+hXy6xjMh@gO5Yo!DmpH!4IKi^nvOmolJ=O0q@9_T zni+$k@DUVcVRA-_0*y)n})~nyrFWr>&#WH z5`Iv&Z8Jghx*E_MpR|sInh1~s$rOJ8`%@o3=XdDHFCQi9of9CG@)qyo5e}10>fr<*!6{h}d)BtvC zp4H97`dU`%hEp#ZqX2;KMQUP?6qJknhC8}KeiC*L#yFJ*HF9CGbM$(c>*9RYoEbxF zD)k7+COM1ChIQFE<#ET7PeRRkA98_))jOZR~FsML5m6|osK(8v&3lkstR2y!H>*1s}ge{3}1QaAS zLy{g+8nW*|g#hafJ6LaYzA3D%)JAVgA}u}mH=Ukrq0}WUX=-56S6A`<*O!bGbIr)x zN2l_~yP5p_>ZQ!Vbm;bEe0nb3(HUFn^W|3Vr!yH}o=T>_>!|x%Apg_<->>&R5g`!& zB>IE$7S8J(PS%WV6Zk@%a9f!m29PMW9j;gM0M+RtumFH{Zs|=yUJE`c$XHf*w*oxQ z*o6O>4GP7kAY=tfXQSb5dSaRo5)7*bN`%~1-(vucTD>pmt3mD#jJMSLfd-2ZdDlT? z94awr^=bmGme-!WlX#08 zW`g>?L0_gXjovtYKa-2`Kn5oxbzdf}wowB^E(peWDmL;E0)+E8Ve}25jX0Q84)f#K zP^Y3auIrXK?2d|=z8XVit$AhEH;4zDm=`3z0~LIq*hw5AyaWVncR;oc1gViw4^7F;K1zxn!}*)xBvYo zqhXI=0f38akn(8Q6mCE60X{nR(yw)9R|g^hyhBT42)qYq zm)kn!2p)KnZdveW;Ij;-m^0UZ7i_ZpRL`>{8*)q_7mm45a-g`zp%#U5eREhzY8taJ z9`y9*`kXx|6?!3K%@ZeA7c%MRJcOL9Hx|5{c?brG_!ph;TL=$|DW)5gC?L z7z5G3`dz5h1>GDLnwPr!@p>JhdW4s#5R~kFWLDiVO@yT~dGIW0x`1#=%0}8r#b(%7 z#C&r^?TIUsu|SVN%VwaMK^Rbh4U#)@6Z!Fl2B?(!4yCE30r5dF1V9VOj{XkfQNfLl zjUJITPsTnv3;r^Ftru6R>l=fNi$lD$Vzf2mTEk0y=)!Wr$fKqoqpOlP0K$ips~fra z^fNiRx|RkyoipT-sVp(gbqBP@^btViZ|QrTHOA68)vx~F^4GJM8XZoh)QGh)?nyEj zO05Qo6ov*QM#X@}ALK)~dJYz?wza_N?s)b3wOpT_kR^aBKE@!nklxheBhkkZTUiRp zzrKX?e+>z$H391#aTr8U+Rp^y_3t4tYO(hl2|!1C2alr zt(=dCa&tT(suB2NUKJM`HzS-@j=p`&pVB9{I@0QQWilMe`6r*q@#VSn#$#PNXNY^qu!4+HfAqPWR!t~W^Jo9m(64jS_8>A&*k+3$3XOC-ku;CEYQi!~7+oG%c} zpS^f0Z(jXFfv27B@TLYNy8bD;z@-TbCk}Ajo6t5J}yXS zHQ%OAPjV*ih6>d#7CR)kA}7HI_Ls0-m)Sr>SC{kLjhqnx(fn1i;?8E}$=@e;VtMKK za10{2TEtq<_zkK*k<%*0`BlLKOZODuF%{*IuwV^O;=;`0%N6{&yc zqQZKI@7~_Y&G=Y%du((^sg!u%1zFI^G}W_+l^Ev5dLCMbjI}>TUYL-NxU)E3 iKo+k%0~n-=8O8th_bRD^rem1^0000A`RS3K%1)2M{KcjBk37nOJ z$t06WlpZL_NQ!_cVqXXhfEjf6^j3RSE|qKS%U$$+?&sWy%<37;i=r($vobRx?md3o z{qxV4NIi@--3viOa^1$YqumvcTU@=BZ4lb4l?` z@EW_`LSkG8-#fzBMx!njTwAl*6yATM(Zn6$eI`?JE|xT1;58}!*5UuT{>NL0ahVA| zFV1Fi@#IT6eELY@#Z)SSwZpwQeiDA4E%2&rp`XcnEwg-y|9vEX>Gs>>yt&&B09YT8P+ac6nf7t ziLZ;$xupQT0)LKv)l|M$yVb@uWHK3#RqLzRgb9U=o8Q^olw13I(!wU_i)t|z1G}%qg~iV+Sm-U7(Y>uT*};u& zuC=Axs+%U`#-Ju@QY$oTE>}}iq$Z$D&8P{F!YyzUG#`bUUkVu)6UWl-u1Q?2W3j8I zk$6Tq7BhA70kbheD?Jdxx~U>jwUjia&Zg2NowC{;$UiHGiCa=FufBzv#FZT z88#<3QWVed_qIB(upu75I+0sDTXJ%GCfRJFnzn{}qno&U_qN=B@Ibn~b-8orwth~r z7^{VWbiLN)erdfca^9j9g>ED%mOtm$1X}4_MK^LGk(X8B1-2Am;f1y;aBc>^pL5@0 zlY>C@EqM_UKQvW8whptiwXr4bW?dREbuDOMw^3E|QjIe87jZhm8$)yH8@MB&8j<=* z__E0ayBdBE@4F~6z0kMJ}9 zeOj&?#C)e&AVU^jEKyOamkPfSGtE&&1*(Ge+Gv_wl!A>`6_(q?uUDSu-scuxne8>a zrzFo8s<0WHd@gfYTU(R6x3}bArzees0(81)5qDuafoX*g!QIl=WiYWRUZ1A8IXv|% zE|7kcz=Inwh7hX&9u)|Tpr%lS0KWs@6*&{Yf}7pZM>f@OfBw~%^1J{3_vOX&Bk9AW zjwW*~VMTy50DfjN1z?kCj16HMNIw%oqN(K#&t@>aDa;}kjYcT)E29gc0&w0&ITgTU z&O6W5KXP+rKr7I7>B9=_9qh{Ct7G}+|KtBE|KTtGQhxg%{)T+_{rh@f1UI>E*jxn{ zm8z3_4a%3|a7FpOH-^w76A~>)Fu%o$c3xA$BA8cKn%va~?}X0OI<6zq1bXienLfBaLKPlour-;($4?s`FFCGw9H^1G!RS46a2`Q;aG0Q%FkG|SOaTPdIw z4b5F%`pF=?ZxyIPXi-S4p#okw2MiyNpk*l_JYaS#1_byd!qp8mS}@bl>`eU=HWoLP7a}!Mzw&x4$Mn{)!j!ik8nx9+nnTr=hSlvh$kU)xm zKbsM>r7*oBfBUm9q}$n0_YmVcKmYQH{Of=Bhm!y3htetRe&|MmfHcDMiyMi&vFIk1 z;@ZDev1zu8rLVmvegEG2%AzPi(5gsPpo+jLecnh;vnw)yd3$zvB4;PLv@3|$a3eMB zyjG3o7oi0HU9B2usQ|HG~D$nzfyAx@_g-85B%38&|mvc9tqjcj6@)Zp(5 z`O823iTvw-^Skou^*O-U8eWUnAeLMJeMd=MW5r%?O=HDswW7Y5X7&>3_U!Bw;m!;< zL&3qnV>4--iff^{=2a{pY?@)N01*IT}QK{+ciEthTuzT?2$m<(Oq{&Ezb)_Fzaw2B z+d9!NV^9X`_!=d_M@1z9Q-7lWMT#_YTy%u@8NqZi_^0Lj+t0p+ayDSbrt-6|p2!zp zeWPSR9a=fZjm&^za{!-uvjxC{0RG}aF3!(Ykl_YuFsIZ=^`Ghs3tjX&7CnP69SsKN zNAViHHVHmd^nG{_wERS!8JswgH#a3s2Y(jPC1knZpiW=gAM_Qyb3=dq=$UM|srbKzI0C1$^-&v zG#dKvfEK6IX=#2V2KOsBuGdYotZ{a(D799r>iba3#)wr(n6zLC=*K9yTCJ|H;ro(g zp+Dz!jOTMXx*W>|!lec_VwwZlBT9&hDTJDO%vCy^(oGfKUFbczpD)o6%G?z4FZx~u z>RiBOg@TX*n!$}4;VZFUrP|a`f>yZ(jWmkR10dZMQF)QU$(J97`)R@N&E}W#$&lQ+WA^aMoJVEG_Loh2yV7VZf@@HLNA{jHy99ZBuO@`K4x~@NTS@FQa{u0ZFAY=(K45CkN2&bfXOHBl z)0DS&*5qIVVP0g6Smaij9%pOg41oPIkHW|7-zK#1o`#-R|E&Ubh7kRtaaRQ-S-{s2 zfl@CtyVH|uV=SHZZF%+h6@q?8o2R~; z07rK&-jAB1R}?uPNINx?ykssqwUVZFp-4Nu7P|#a4FXs-T@)x^OLIM)Ve`z!3XW)U zyAWchbSN*VO$u{itRs17pNKEh@2zM28}Ia#3Wh9Mq-Q$cc^Xzto{s(Lt=sEmW!e$ z5xeaIab=oA0Pb8aFGq6OAIXcuBRRXe5{FPHDH6@L@HI*WuK10BIP++Evq9+ne&3s< z+@scLxfm%x z2@AtE;Yi#9WA~Pl`gO#Q|a`23PhA}=g!6rjG+NngRwk9kp72%{#Wu8 zU?_7n0Fep=mgwf0K^yp%BnTMXPY~vC@u~TYZPjo4yEF#KsejRZpBD=K?fN6zc)4Y3 zJRI~|;u)6A%rZABwNy7>U|(P@2#BcZIZPj|0L>s{-^C(b3be4>C*P~=6t3}PIFR~I zS6*F=ARgQ&5deIX`0=NMi)jU ziWnuwg?EJ~U@VQ5M2UtC+_);V!ay7amf~6~%HhUpPWfK3x)o8Dsqk(jXbC@wh;o!K zWTx@9$TNgi!#afavqEld?8!UZ9mO3EYm|_k$^+ZueQ8wO(8?8Sw4#yrHGe}pLrlsq zWViU{iK0{Q8SN$rWS9|g%4cdc$sDLDq=q6E`(+yUF`g?jn9`TW5>-f;cV#@8%jZA) zLcVaM3oSE^OrBvXJPYBn#J;Dw*U?Lw_2SXi-8 zrI3R_3o|tKPYPC%M=DEp)DUj)vuY8VO$|-vh;?&p=sLfL*3#5BTMf-5WqDS{yCLjx z9>GSgq8laimob6h2eVwB9-qm-{k=by)<5`lXzGSk>-d{VDkT6dR_|mb!;*(hTYRgA z27!KC$P>bx#8{HZNFAaiWhH3bBjjR(kl93cX#+I;|gCE1+GowQnjr*-P@b?RZT)5w;9?6%_Ph@NRP(Hl3 z3rn+*UK2o&8c_sb=5CnP;5%<sJ37R1-;JhOnceF)oanH+q^Jj9Xt4S^W}u@v+Y2!)VsRU?BU z1|ORQW+yE07&l%aT1<1L2^FCM>A)5^bj_WDvrQwSjf zka3Jz2?VT2f~J-EPRsW>4S6WV*<|L0CfCrYUVOp5lxW_y7D1?ZzXk&Q2DF9?nn5Wd zgc#jk%cwzEfewT>7}LZzlouw|xUs$_JKLM`;>8PSW32Dj?;C>N-`kP-1RG&IPzKD2 zfhC${ns%mhxnWqk!nLVk18BAgzhemt-2xMdv;fsH36DtjuzA|J&OXAj&f2DI?rzCq z_*$MFpUS)YJBReCGur_Xlo~3|bK>$#J<84C0c#>|N$%1FE`Tl<=|b&2LDGxE z6L|_BQ%Q`pW~tQ4*+9O2@(L(6RVs{GkrBQZ(q55e9E@BLjW2T+digL#O*qYE>Ql7Q zoBn_cSEZ><=F+TE(;CuiceDxuHbVCH4>WGv+*+4vv#wc{A%yw$lV`HAxh03M&u|Yg zsmzJiYgzzTt98^jE*4gTvbNTd=g*((MoA)Lp~mB(#?^JaXA_^lxxFjL&|vlJq&@Ro z3&;rAsI~M!tm;UlBe!ndk`_$-dV5b!G*?@d^_?xLY<7U~pGvKm$a@EySXac(v$1BQ zB3TNwj5&WvVJ?Z2r9d^?qK2d}gjj+0)ap%{4@W?pL#?#Sv77t-a~X{WR!&KS5!Ip1 zmLgifjLp(a`Cc+VYQnvbU^*Z^7+@#Wq-3LYnnT*X!WE5pi)a$%TMxPwB8Wl zY8)CifVxUL$AY+r3m=Kqc|sseW)p}&dUA1giUqbZ6HW3c@E#e zdfwP7^t5~m8crUU03sraQ<^Wf)qxT(?tBljyhGZpt3C?BeoLzt=FQ;xj0?X2#AVZ2sQ* zy8dVvUn%gdolQxPQ-o}1(t?GEnj6wTKa*EyBdPDSr3vlTiXH$&MXx1;v{Gy)E5yS} z+_@UMh~Em4T2oQq9DnEgAO2ICATmK(80>R|HKxm`X>fppeqZyMtaVj%2|t-?$}Q5O z>@+RZ-_#m3X;`#$;hB#}eWsS2c-U{$rjSU84{A^Fnu9nJ@u<)T*s7?Ad0zpdA$s0d+ zt3oBKWktxjzM=U~Lvf5hyK7z9LMYOLd3te#xY8rO2q2^alN3iyDJBdF#%4x}KsrPv zjiuig7F*G}M48p=u==4&K&F}q;jw5LK&TBAc(8%b?KFi@1=5la-hWqyF#8Ta+eW~j zjfS${ZA+t=OEH?s$1uSJL`6D-#*C%;@SgnSXJ6s(Mq1&}g{fl&;B+>Td-oo|_*i-6 z)p)-s!YqN{0|=N7sg2@cR0OoWhb( znDntE@lQ@p6a%!O)dO5Z0;Excvanikf(>7*I^%d(ePC%;-5Wfv{my>2npv@*gmj6q zXACZt;v)FWSGwd~w=$pQgewEix#_0UwO#S`F#yW)4R-qmo?3eji68Rek8ww&R z6oxoN&@{W$QVR6-$uWcn?HgZ7(Qx);wKoa*ysSm??%J2o-1Mb^m?*6w%Y(lA z{g3}?1ptCf5Y0JngakVale_RUZyoH(2k$Vku3zX$w*_i3RxK53_uh^ zfEs?b4s+Oo#Kwb5sYK?i8+hL)c6bZmri;7jH5|04E+0L(E8lzX9=@;X?;3akD+UNS zu7>d4(-C}M3o+fcJp7dpWNUw4st94K^o58y=Y>@qYMn3RBxeYw+}`cUC-1#24{z^CBT4}n`q~#mwuQOU z342}entKoL%Y%2{kqED2%~Jub$pOF$fQ}h_IN2&D+bK*2{7h#JpcM@6+5E&5-s{VA zIk`BOz1z2;>HD(4&q*fCusN9+pulJ*cOg6q^5v@+a_7!n%ffhCk_$-W%j7tP^YYaz z4e^+pefspN{vE&PgXZ=eKy5VW!%9`v4bXJ=T6I{VNE^D^74>&36*kKh*fJfq6kb_c zb3@3H=inpnXVr%~Up3C}X>wDxHN+NYRo#EMZIHe72C|;fcny={!}zS8Gi0YUcQBRkMUEC#-hu=^4CYWzq#F=w2M-?P{m5?BAN>0I8tW9BB;ED^7r;EW(_ z3~gm_-^3n%AwJyFiqDj03^v0|asZfQcFMdTOI>fw-K&qU4g#>NKx zYTfu>yw~{|&FVxooMooOIHU@x(HAhgBV0$TmZ%%i{5q^f57EIk;^*}i+=M4poVUA0 znd(zhZOJ_dat~VDgb%B-`3YJd(Tvj5 zCNQ4>8W{rbOzV|AJ;+p*3NG>#Vx+NTk^3D=lk2M~61BXelf`e+JGuR^fcP`p9> z?hHQlIZPx8`YB?{PSVwT?II*$p&B)*5C2DBNYr}>;jwKp!e$&mNMqb*9Ts2)?cav> ze)G*Ets7=+N>k6?Ao^4S8#WKKhqT7Hc5J9A001BWNkl%TS7qdl^oln)&6YM4_Bx9|yWEwJ)gZ}E0I2vpNTo^jO5Y<>tCoqA1%*qKis zeJSu{^6rB>>a(6adL&%{i4=fjKACD`Y;%FQt=EBn+LBu&0=74_Xq#j7mZ?P1^-yNDRw_I~DXQ~Xnnb+4 zwy)NR#KL3EA*Qw~3Jp2F`}zT87h)?vHAWnU_5 zbz!4K8~;5{W-@{ib}gT*$;q{$DX}(!sG?xP1vBF;iOl<;U(GyW z5hb~l9n!{N;*RDDTDU6ojS>7i{WqDdO0%V@EoNDm>m+U%!*3Eyv6FoPfn4@4<@TLB zTIAh^-)?Fpex~Nx0fisEI>aWJz&$i%eREeenU;z1C$;Gnz>(F zF@$Qx<%JR|QiRHjU~UcINVI}^uMrQ0uPHX=^WCTt`eYK-N}^Q4_l1vfoU?`^c6KjP ztHV*wIEM*(Azyv@B`(^@-Ge)F_s(ri?0)m8f`7j!699n>K&A=7H1OVS@}xk!b%Zh< zf(3*lDQkMfdL;8A);wv>_B>Wgc$1$vUl?OHRmw^>&!$*WN$@%rN9S63k?3O6lqZ8o zwT>x4nqGe9HbBn=;R=7ABF1J~P|YA&C0HKjTF($$^8NdZLbF2~h;f-uWn8=k7xKmF zmoUB7F;0$}T1laY_6)8ei{0X+sRV`g%0#iYniQE(_vP-BeLPwptDpin1fQ zQMj-ybuG2CEV@x)Qih54sA&9VFsTTY5uSda{K<%L2Tn!<l-PEXrcA1>FM7Uy@n; z$~dxGfrV)`Ak>LAV_l6dmCvQc8bV{)CrYiY!7Z@7W(d&4b)gS+&IWQ&Q^+H;(M2t) zTKP=*@A=%~_4A9qru$mWLYcFQFJkjbR%&DDI1B#{LJhUZn(}m3J`|dc)i%Y6wX%y_ z4Q(wcZ6%M12I>>+Qj!PEcx-O%s@5=cnB$MDFlP?Ck_=N5W`?bHB%mW;_6js6hA$%M z5iLxPe2-|N0<-ZC6>DwgWfa!(t}Td5h+rcq0$ZYj4Fy*wVKvph0)r@>04Mf|d(o7g zC|Fu3c(TL-St5onT;FrXGG zYm`Zb_o~$so#{Y8#5oo-tT}( zWt)Qi$QG9lPQehX2B2y584c2C5N5rCIBk7H+thhOE-~0ox{o`pPNBja$I$Ae+E8I8 z(BimS(Z5aAdd60HFHu>0tP=rzy_$}@5vxYjABtIy+)3H>tv*ykm(c2N^BqD9d>z-9 zXV4U_8$=ukji707u!Uj*lY4mu>j5AGK*K7RjqM$|0+^|=)RS3|=|c0UIvit|A@r)r z4EN9<58)o>FrP!ICk;(E&fvGLmfC5TIol!m(Tga3q@40*~|x4a|Ni@z?9`aB6ct>RdZzVj;|sO4c&`%nJj$MP@!kAEf4PR?w;)07O?3?WVziqerd8z`#I zJs`@(zG?^}D>k%n9>p)o_aIOyt~V={Wt?2N&|ap@kDILZjc~JfceooJ4)A%c*1l zE^#5}0D4*mO5}_8>CXoEJ>t)EZRwUZXxaCE_=)`R~kUfHv4Eo z;|qLAN})bbd{|=B$<%n})>a|n6XX2P#U8X37N+#R$cRq~vy!Z}9HIt8Z8CdF;(bvrVEK!*J@O{-OA zLpfM)%Wr(|6ZzFoJ`n_#^7JQvBmMIWnamMmV(-T%Z8>=GzWnF^-7d9 z+J*>WxAw8vaJ3LtE9;aw+sU;~Q+ma=3;;@YfFzS{PsZ6oe)jca$;W-fl|3z`8BJJ! zl*(KCdvbVo26K&20x>l|pFJ*3Y>LZ4Uz?2_{Ifv&KD={F{_(H(@Wv5Je&tUA-nRXG;K2^%NS8Yr~XI(Pip^IJh1N#35qtOU-VxVZlNp|@7b1ZlL$GX@WEJI|dvDABojdaEVhSTw zQIkF;Q-v@p+N{~|DNnA4=3rw?mKq$^cWXu9$0N zc#lX)GvQHj->qRo1{E$@8rzP|tCuOG<{g!>X2 z%qe2K8*6fc*pz5}ePdHz9v*3Zl!I^m@coDK@Xj7WnT~XuHPz&Jn#u0wwzRjlWxn2% z0Y~CdE?T0At&~R^&NW+YHOU)mZJBU@7vj0$G?iCZeR=rSrX-oss&p6ZjbYVk5F2yhEhnW3PvOc%bq9&B^7Ln%%z4CaSvB_+Sj;0we zGA%f!Aedb!sXagbhTYqqTF|-F`UUm zYloD5mYNV}(Hi{v!w){R_g%2saYLRSAIk=OKk2*$+X>0LlK#Wu?gLbP@4Fw!gL`|3 zBNIv4Cv$wJf@mPFoX;i*lg3JS>a?`nisiH~2!5NP5lcbq><&jb#NN{duI=dJ5_k%r zjH7|L*olopFq>p5v&!4LXz5RNU9J~3l)p7Nm?`I~^L--gJJnHh-fzabIc+RJ z<~z(3NGbOj2b^GC-C4R6vZiLFB&KtXvuqq)4IAy=yYI@y%OmYsJ-WP9T8@*-j?b~s z{VN^n+y)M~ySt;abk{d}I=W`2?GnTYg*-WVE{9)yDn+v^cR&2DtnVGb(nUHWkVw5z zUsodj3h&Rs$8}gO5*w7xXgWu@G}aNWI>60`C%P$^N?YkE3?(S5skEDq*w159LmfrF z-?CV?s99AR+x`%XF~;;+5Npefye1HF!o)c4&L&JoTcUbTTI>4&2eA&CG9o$heiI-B zn#Pv=EQ0@tfk2Zs)|6aoQ>yG(Q$I!mqmUY#m7K5PWkm$d5uP>9?_~%_|;ue%l-CI!0i3dq>8IEothAz0Xe$^|Lnt@a_Ns zYwruMUo%41z7f@8*|@tS`?q&wF}RZRM~|eqIG4(Tz{+VyJU8Rf;VT7Pkep$RyS4BT1jVknwn~W939kIudPKQl#f|o7_z-5v|eO z%tyxb(EQ+YSaF`^Y*Xkd4QYLuVw)})`8e@o;;d6!i@;ssbKcgB>-V_fc%NwGn#{3) z)pkpZ$T$jMe`iOYzkI3m9tTCzBJ6J+$cOK}t5xtrYF&(XsWu?YCP2*uJ~Ecw+pLAE z%h~I`^pB5Zqq48qk8Su&Xuo>-TtQH8V^=zeX$cy?`08tRn#f?9>QoqhrZsl?wHKRq z77%TiuT;uNNeN@m0>KajpU_`01mO*k2uO9_yKg|HS4x5>CtmZ*kO%k56`Z) zrR!)H+$eWm?5t6V{`C0h7(NFv;r1Rb2*|HuU1?c5FDb3jWFS+;@lyon$8vRcgl|XC zib9Fxd_Hsx>PFv6~jmwRW38#Orbn&70x9YuJ#t-@Y$v z8)JEWb}kG0)OoHcvk}6c=TDz_lE%j4RdgDe=v=~!!9=^{>fRj|zGGc$nzXFOGq$Co zd5xtIOX~GHTa=h8+q}Lw^3?$4A4J;Rdvey7D=b-}#C%QmZrzh=XA|bN?Tu8dGZYjZ z!_=Idp3BASQ_03>^7=THz0p(-?z}C{cA|^p@|hfCK~7JOwIOQE^2c;4lm5BVWSr5< zqHYHHt#%i&?Yh(;SZ*L4e8CBv03zuylHu@FatM?rG(v3Yqzg?lix5@(1Zbkp!pxd4 zy|T)>IF)K6R$jG<>w5R?2Xc6JA`Z{V)O;nu7ZH1`n?CZ{js>o10f8LjouJW;iZpJFcmz(&>ab?%_3@Dki|NM%e)IeiVGZk`;a)g)-7;3O0XxMYu}wAAP$nx&Ov*Wh zp`SOfNGrlrfi4Yjpjwv#B`i5U14v+pGE5)~gZB|YukF4q>lOOUy3mtxIC1W(KBE%J z<0nt$r+@P|*oIfKfbj0%Ch8D|*47Z^0a(0z@`e7*P=$$L99qii;4ZX|WtcT+Lz~mI z>oE|b(@7~!`qsoq>e<4{d~~I!SqySq0b2k!wx!ZdrP4{DT^&7iKu@ATSf)?2FP^-x zxR{-CoZguMps>d!s&Z0aD#LMK-2vP4>E|-G?>j5jN;zpwIOv15Pl@{ExSB|7b3+;| za6^pA4zs7PUTL$GZUJ8;z>%@61)ktN`h$_0_sBCx5=XMyfbC={tX0#xYGU6IsG1{} z`C!#r=9yY_V8W@5B5*-U3LqoZ<7qg+9!(Y9=m`S%&!%pWQ<5TIj*R+Hs zR_-}hMx^Px%B!pv?7-yXy!@Ds?#7`;9%s zqLH-mL2ahiV1BDjGx0`_M7YO7=D4nQYeOkaqW2m5TcPO}uug2}Ai41R=}T<7iDHIR z#GU;#*Wx<%{m{HJCrUJ|6(ebtxgnqFvMNmRC|*OEmE?&lql~CD$p&Is{}Gs%679N@ z+Kc==KXuev)SPJLT;}UtawB5Jg*WC94D9$1Kly?D`qST%|L}XigMB<#fAr(O`Wx-u z;;|r%PjBD3Pdg-6$IlQC(gF-MTzGYOhPZ96(?m{AkF*f%;e&@##RizcC$aFUT8*`5 zC1)y%-O}y4RC`?!m}hA=0n$i7BtCBT^kL-dqDoe(2xS@GzZR3vev2zZ7QhKjU(egsQ3Rj{Yk52WfA zV`FmCike!IC#)B$V58mvxFX2;=IgKJ?Bca{f~PRwQ<4}=E&2+=Y8Ycv_|ZGDmD7qR zSk#b2kuM-CIiVoilGhG|kk26cX`D9%8mKod<%}{TOTFOB`fe-g@tkU;rh*#HlaaV< zyL)%!*Z$FO%NL)0DJL%uB|<22cE&b>T>UP~Q<_}{Knv~8o?o3{=MMDu-SI+d=Y83Q z`Kv*z*)PKatnPYO%UKvkM0zMeL#aS^0WobxAIDM;jZk^*fp028+nw!xm)Qt%6DBl; z(_NrBgR2XzA7ZU8?{#Cdqw|X-o9GN&<+M117XqyyRLf==LbH*Q0j$;Su)~{H3UMhb z^W(^}Ry6fmWS#nPdOG#fGh>>v^K-I1V6&8&_}Z$#4Y(CEE2gP|-Q#D{N2kS7pn(g# zHl5lJDb!L=&s+rf9FSHKh}H1H(mA@A(Vf(X`NBg?5tb<^ zEV3C2O<#GR%1f>wgkYsZeR~srb4~vG&wgL(oTS1jVYtC5Sq(80 z`wN-Gc7zu<>RP7-lfJ1XwCQA_h3mGmp^7mO3C_Tg%fwj1SS{lOT6r~`$mzu;o}9Q6 z$vh&i$X811SKMzXBMia|anUNpPqIFZ3}q>tE_@kDD6hcZFy@*~M_T39ytSu<{G3ct zwJr-facz6xMyP3~Vvfb98L74sMW*SrkA<5GE7a`%m?4=m$V6uYNkStc>^S$gYSPaMV z;>$1OZaGYJi!w>MRh-G6mRACXh zW?~FH=|MMsOq-)7)1c-Rt6fTC^}!KrT!E0|2iz!LVMt?;ACQtzCn$%?W8b+w8i3`kBOO(K``!a-*En}(WP+nshPkB9n-#GN!DZD%qN8bC0BHG2tGX{)vA!ES zP%c(M+JQn&!OvXHECNfd2co&P`j1ROUhd527iIEQtRliE0K&0lG}#LXjwd%VvokzB zm%n=QLUz~ovA}bgar6zI8J?9o&$Mw$ktQ&?TX?~sicJdhxZVV&hh^EnwJrDGzAxRi zhK{>odwzj+8DE{s6tQ;BW6L-)or5Jkp}{8;6c?8e=J5r#0p1HHmdA@wX;^NmvmxZh zgIpv{jG^Ah`^M!X)ici0vZ_0~`3B{~msu+Nl;|9zt*u=-J$hzGTY85dOlBzfDvLY| zTij5q#M)f9auAKh->Lt;@CkCuty{y79%6voOZ73j15&L`)MC5wD+weV#w zego&;T>HE*7mNqpUcNk(!_&S$3BzegC=(Es8Y?86#>Q;j?nG_b=XQlzeAVg5Iri5a z8hbvz5(ocV<&-qU+MW8AY#!VPik`{>8-rtp<_M+6zJZtxQBR&emDh;ZC-~dhJkzAc z#CP5kUsO5mb5#UklCrsrFuv_Ny1mu`^$T)ywlH4R$uKSE7PtE2w5)hIk;0EzUiHmZ z)n`+ui`C(=D~P=Cb;IIoc=aS1CE>lv)#psZlkij@S{{Vs48%zQeAg$B=(Y*RhZQ!# zMVmJ`x~^7}4GyWgviZKLt`!^zwXK;bwpc_99jaUd9^g2*6lV0^MprVJ#pA;#(%aur znskf}v)*09-`AvxCp*pK+LnSO5*y9P;(J=B{SPNVwPPi0*l^6ou}^>U*Yfhk6U6IP z+1>8ZuP0?D++tAYwJ-8!ZP_BOxk~x@J^yctln)s7G5Z3CoYnRO|fxJ@G9A2-qrJoQQg+Y?O zmMLtYd@)yHvYRgF$x8T}F2a??Y^>FRI=zc=2ZUFtAx5so##8~BlDA$*IK&3!d9f>b z13>BVQyE;Hi)(ffKlWvJcMssQCOv0yDMzCUvBRwHizHATCj(-&|2P1 z=MZH@*QTTpWJj6`)YT@a001BWNklS-u+lMx2oDP=X7Yuk{7U!Ix&pHa4)w(UbRk7zW*Qn z19|T|-<7M2lOq<>MK+*CDj=*Rk#q$9HmDqa?I#YPkmQ0d9M?nYrU zA9~=M_~LBucl}rWyG5pRf3=$~XteVMZeqDj3R&xSTvSf?(r70$t+&Ddg?54SOmVV7 zq9;?}%6ZDMFQibf%uxZpibGGP@@^qZjC$m}-|f63@87;9zxUZ=nO^nfo%{EprB^_x z=kn!OpUFdcPsi)jTW!DL{JoSL&YT3v8@jG3q@1W=w`8xg>6s$&MMf(VlijuNR!wYi z?OD7*9=mIQT3!apdu>y%Xl%-fD+)%U;Lq$bi96=b1&G{ z&+~+W`DrVha{llGYcyVJXo&SnHY{w0!pcfHZ=c~A2VhW`iBHREhqYg`#4STN=TDB{ zCeva|XEj0$VOa6OLw0W={@h>d%GK)=dGDQflr6fI<$5^$>FXmMHL=UXcxw$`x4SZD zL2uHu-X?*^HfSp?bQ2|Z60fx+*!NM%>l(ncc|~^qml;9QW^qD>W$v}CD$aLLTi2Rt zroK|i27(Eovgtqv8WVw9WvQjD=$|U=Kh?>e6GRy!jVmL7nu<(zjGz-Mkd}rl}4x#h8V6}zsoe5}{gh8ZQZU@q-NuAErbQcRd0YdYX zE+nI^+b&eRt7S<<>z8z5X==5`Y+WS0@6tzhBKgk!J^8%{kV*`qo=Sxrm!* zsf;fNQrm8rxp(fGN=a}LXvmU=evqu%3c zo5Iy7rsn3x>p5<9cWYfvo%PK$TV4DuELU8E?_EelE5*WXtV^v?FHeqIb&YOijWv$< zWw=T#XrF#Scw+0c>~;@ag&8N33Pw#8>X>C|rQdi2M9RIxQV&)mh#o$((DS_K{ee_9 zx|qtdr%&YRH(zTCtKDwM?*6_cTidet;60t7nYv_YaLcxda_imrx&m-kt|fE?gp7ag zdvYvVwx(en1DDxm%NI)$!V3I-O_JgcV{T&3QmEJ@Z_OIV#(r6H-8=NcD)h8>$G2;6 zpzvkA^SH9zb}uB zx;dxg`a?q?P4UFq70IE970&mGU{wgs=JLi5%x0&8BbI8Tf$~uPYutp_@YRunqE$aBX-EFJ&;>5Pt|1}+G)mhad z-3;rHI9=uM04e?)p_;LzTR@FvZ);9L! z`03wD%MGQSWODxUmGqxHl^l!Jt0r>y-W?r(Gsn$$c6Oz6?`nhYQU^YDNLBy>0F8UY&O%WC|cgi_fGt%^~evq z^5#~e<$~*+!#pIX!`{kN>kZu%AS`<8rMSq)@NN|AjAB z@S7)SsQ80rf<^^SOkqTk8?adgu0^ptL-P%1ef^R9T3A+z7l89yciz>xJj3HhaxprS zv(qtdD$!#=IKZO0zA0^JWqos7svFxftF<+gpeRH8VhRNo&U4OX_S!Q>R@a(aIHG52 z`#v=_nXbHM!vdOS_w1NAvphzNW^R@$1;^3kEL@{tT@lh+<|CDa;c3T7>^EBE!DH?Z z1PYoX<(xlFqU#2TbtYf6$TSnhstG3k(*U%cwSR@C>cGyGC7de^-c3_%dDYyPJh zao1*^(pr6JCz>zUw-X?Kfke50dOTHCCd?jS_if+%uI%r>CCPjwlY@uyJOA7NAj8Xv zEY@4H)9Oie=axiUyE3Z6^cIFV?NGbO7p{fHu^H{GnkUz~6t0CTJn+W(wtY)-hh6Qn zKpYwFnJH10DO2*mad+{EtQpHqCu(jjJzM!A3?Mn(z~ud23jY)}*M`rF+1}+&w8ci3>h*p44PfX-QG( z$ef7Jmusl3vfM*>-vC@#4lj`7VdkH^CRnefxrJM5Y738W@qQ!=xEZ)PV!l5u56o-9 zaj=t#5(#{Anh8N2=lF(>b5e17#<$kHE(eGdK5X;UMH$=D$5woWKQEE3`8L?6&<#bv zrYC6luJzEezuM2TI+;^km@(n+)8BP6!nr(cXrowpBtgx5Z zk75g2-~#}cNDzMzxOKRhrm%{K!i%MH|+S| z^;q?^Mxt0D)L=B1we>Bzf43*^?X`6XB$Mi_i)}%JSw)~{ffhE*gJ)&yFe&CYc?xk9 zYHtghJ?ktls@fP3a29}4XmZL`aI7EJQ;7>p7t;SO&FjLnl1GM6Q(5m?t=OcO*m{5z z;X1c+NNh-GEN`^<78@1>q+t{_8K2Jy+m&V7LEk%!CkO)6Bc*kolGO%>At3}#d@g%i ze5;@Bbbl(mHv?|v0)l|UjPupz)1UwFz@_X0TM;oXibEDVYwOaePLw`-_Vr^q8;rGH zh7GiwPS)x`gF9WFCapn!%31PLdvZ}KRh@cG-;;+vWKU+Rwr19>tfO*@+*hFIx~o}j zAie}Ag;o;L63ue#8@tPxgX9@7^xsvcwtQx4HOwnnwXn&HaOZ{mqQ!}P{7J8UyL(^b`sXi?SBlZ~;6{v<&#u%-}i9c`czU|@bs(p9aO8<=*x?RO7 zQ4~7pRt36biUMHe_else!`r!)H+SBQhPX6{r|?rZ<%X8(x32IsU17nmFGbX>jt=h? z4LhDbeInm{^%KdiUTd`;Ior72l?T19A>QMyrT2sedCieYnb_stX<&Y z3}{)&?iAPK@siIfbDC1-ca;fQ+F2$j? zcDW>xwnZco%2RC2K~qQJK4dU%#957&^}CgXK4*i&1CjZkQ9QtbDK<$NuW;f9R8N{2L=`cb7fJr^LB z*GlA#YjNJ`T8n<3ubLA3!?NGs`7}~E={3vsKe$@qpNIF(Hb zli7~hR5?zjttNvr84gYn&==C=!K@H`y~9I$8r}~1>0w$Qq!FG8)2GC&>nzuk847ky zLzu(MJ^;{2kH}(6pq^grX;2N^In5iwtLmvs6{+aa&sF7cL#d7qukv6?Wa;;O`JjYq z<5Fu^BR(JQ=%$a~Y`0&11V6b7zQTX9f?xRN$<3IuD1GCbs4e`ioY3jbmpK>DONvKt z)JmNjKL@xO$nnujXu}2mhKJDLPil!kLF_?0k`$Qu3|e$`3T?WS zMm3jChpl}*o#hTE>rK_tkLfI-Fql_2rj>*eNjlDf*TKkBnZmp>#=L|u`&WGp*?7I2 z)Xj&M+u#Qr)5<4VA_`S~RucQR1W(8W7Bz%qD{EI)cgPYf8t?3dT>{RPEXwr-FMV%# zvSXc_KcH>?d-ajTakMO`UO}+TVrcLz%OSlXPnzc;mE==yMIg-WP2IGgGGe?=iuU72PoN7(y1;re9 z!=@lju~lqg#5&lVZ;jAWYG!13w#slMgNsWUTwcj&IMjIuBi0KQxsJ#wlqpN}GdS@& z(0$7!cDZH!&yrGuN@0|XpOwHeFlvEBx3kS`kaU`*pUah*U3|LTWgzA>uyT5yDc%E6smy_ z(-`gTP|%X;9Nfs~Hy1;E{)n16(o-PLFE3<(??>aA-k3HF>+T1tMVLY#S@-91Yd@B5J|^X9XY4R zd@xnUGta7X8P66)GG;ws%mpO#Wvscb8&gEjz*9j!7bcj7M5Go=PEtak;-DuirJ~8&DHV!M^X32evW8n-`O*my`VKl3YmI8Ht%U=UrD*|0L#pNdy+BFzDx(c7Nv11$^Ojukg z^t_Rhi;WDOg~Tc|5>@&$-w;budpy3-76xWNVh-tZ)|^{aKpN?x<2=mGF_G2~gX%Du zd~#~pVrHQbhbIdJnPg7354L1`t0U{%ThiRzkp+Y~t+X_}io7$>vP%M@%npLjXDKWN zeeh7OE(fZeS62f$gFhcmr>c<^KXIE2S7VVh>v^iCp*)r(^NSUGf2o4^Wh_=L8M4<) zMOcYCWmR3Rs4y>0GV7A3^V|-Sos3JG(lX+CU;^F{CLhL5i4=akfJPc(ATSBFwq>EF z->o{r&4tpXLc%HR_C|$5eGZCfu?P&icY;`shs5!76ILVVb`m^|D-T~yTwCgurnKt- zBlKek7v^IK79j!`vXRs!W1Vlz<3m!N7E*O{F45&q0MVy5spN;{*1@4{=~v0iF5oalm6i#WNA zqtH)tvXE}(nJzXui|<{% z`B-x5PQe^I5^Q3N=%*wKbX?)9*_LrlfX1Q6J+Lr@^8=W!&p-c}Y;T|Gj^5hZ(u@ro za{^HvZY`wT3SZsD(;{LYGY+r;SbG|`Vra0PcfD9xo>EO4hfOqEdZs6fsyH)<;R89` znrcTyuQ%c#WsPOo;53nJfly}xvwC(ZBWUO)!jlVV=U_5Z;3b@27}0eY`po@2drlIG z=L<=&$r7pfK;NI}R9G#Qp?pskXu8faJU6wdM6rbladnmj%Txl{uELH(QNU^%E-IhEU@*jwlhpr0Hw0X&=QVXzM$KGc*O6T>(ChIk-# z^H6Z+^RhLoMi}%jwUBw06U}|iEf4#d%*?FurNjP(5(=!QuOJRh)5MCseUmP`#1=4N zEC; zW}*x4c3h|dilQ60??XJV)mm$mWj;}FW8XQ8LX-vaVUR4ReLMFiNGjjCxZWwa`bY}x zF|nE#?naIzr}o5RJ!2djrymq~)6Ds_JaxX^mJdGoKo1$`1?yq#EA79|Z=C?$Lx)>n znRwo29QCwVi)o({VXsV`B>Tg&xDQV+q|s|gF`3F$|FN_-uB5xO4Q*|BTGC26wep^S z!$A_S&)@=b=})i$vDXIkLWb~F%%?K565+nqn@wr5qy%_V<)vGk{@Zi-V_f+?vz_@^dMtl-Iob1QP@K|6B*DYnux!91HT zq*2S&N2Wd$src(EEtxX`>PZwU=5MJ*)-}hxDW6KCGCJ^xR^!avysMt!mM@WONR3f* zZ;l&Ue$Faq;3s(!rGN6_hw|#^NEc&Dv&r#p@Kf|%0|euf%EC}BOEppx#Jzj>6-m;v68mq^Pu=omK=@OdtW^2v*2O%xAB=P2~k5kjJ& z4MwK9nj)OK8V$5tjJte>5a4P&lS^pV02Zf@_h5A)dB%c_4-jlV8=D^!18>#D`yp1& z!L0HGLmkB~^zAUsJR_V(g)!Swty)?w0H8PwDvru7_nQLcJ<{BU9IAypCQx24N5t~p ztkpq$)q?X{Yn0;86K0WnE?8~|^v{0(52V{&(~5xm2e-8>al%qYTtEW|_VD6D5$X&A zY_&QN=DRwCe=(igX$@spQ{;D(eV+&7ID9Fra)1y$%#J0?q{lHU$86%NS57P)E;6F&447F%stk# z(U{7M6qP$YQj*2oJVYlwzmNs+fmRFhGg#wOVaCU%iYeCM*W6BSELJ+vR_m>(4CXsc zmB=&qS=P?zoswK3v9NL#0K#>&>OF8AVq!|p^*p^5&C&8gv3cLzCxG4GE|MUNn zYMs?}9ogN#C2O0T((SEFn^YSXcC*sZ{*pO1``+z4(gI*m)2mI8S*d|`CR*TqebcMY zc7%yow&|9d%n6oUDAfS5Q-71#1j?Zhj@9ptnsUDs-rV~o)nXpXTFel;P2|})m&;k9 zRf2WSgb&qudbEi78jCB0tay*p5`I!we=3v2AOSX4*@pVlS9w5HA zCpBk-DYDFx;2QFLJMXom6TQg@peU&%ehf^a{)OkG(0s&+#jpIm0ws>m;UTh8_+sL8 zNjo~52bObB;bjT^FoeJ(JBlQ>`9rw5EOg&%$Fa2`RLMTY6+Qiz6Gk`-p#p(&2s4K) z#@gTujm2i0u&+g1KTq*0h25)lzAlt6$SNas-IeM3^_XQ4Q8YJK@;uUuUm%D-gpe!MrbO@`M~5%u zmyv5jkyl7OW;s)!OK{b84U`$*=&>=>^uQYI*vX?tLmK91UWm} z*J^?I!5l`F#d?5&PPk^mnJ4~n(PK+2b82+ze0<0SXXy)jQXqVuqrISS9begJ)1Ly- zS7W0$t0WYfVkb2b3_=6uvhXM!Z%3c3QY%X4><4@EfujDn_PiVJ)p(X5GG?+CayQvH)ZzX5jOEyCzxc; zDiZ1hJESvtXPGbg@I(g*4>fHI(MDe#CF`O$7By(&wV$tiuN%X!Z-(nVKR=bvKl@r| z=Imo_J}_yLZIZth6Oql>+p zUbL?lu!MY?`XOCOdF|I~cfJ1$=dBu@BxSoH!60M(sVg)S^?(1{e zQ?}MN2>gv8zfnE0>PHk*Gq~2Cj3xgVv^AJof+9XbjgFOh`h)VQkz}EG5(Fy_7KN4# zRjWMFp`s|aq9F)R7>@niK5xc-=UJ>)x~g;G7XTxleflXj<(V99cH{@&eP5c8?%&tM_hCtFsE)Y5c4&rqlCOW2G^9@&tcX zZ{Q-}yFdTzQ~C67eyeCax*$BY*BRWtD@+S@BM#mU4Kto zR}6J>Uw%PIXu^OpO)IoauuZC_Z5`XBY0|z}Ki>K$rQKjE2v#U82~877+60m}pJU%7 zbZZrrwpdnY_W%F}R7pfZR4>VU_xjq$_OZS6)I!@1Gyqog=bqXy1QxD`eFaG=qbGBv ziah@2JK5g;T5W5|dI|hbI(I@e^E!|_>NYcthLETBQMnvjtm=0U>DJr`CsYBBJMtq# zKBl3@_8x3BhM#kch|H>eq{P%lspDQQ89LwJKj6Yb>fy(pzByC%yC|P7FSGmuL+Xm^ zM&!BRvCP4mO(vcbh2}u~8q9%@dAU=Dyq(I?q-}vUn}lGJo22fU+5idVs^k}!4yBXiZNcbtuCNTT(3g0rjfxHfZ}#DU{8;O6YlzxZOO7c5b7RIvUm0Uu#(*g~5W3PC_0RO4F2X!AJo@i% z&d!JfDA8kcrM9=fq;0xX|8wKP2H6&90hf2+X0zC=iDjN`-x9JI;I;(x<1=pS1cn-` zLncWE@#oA019o^HHxyu0U9zyCUW97AMz_a_jz~zLH5@v5Bgu}rF9#}wySuw`a(pb! zR)cGU|Bt{a9t1pk(&}2d+=%+Xm~&7kRW;C`sMOwHTa)$m4cX8Qtt{5)_aL;KdX^zO zvzg)>DXx-YbunxlE4cy#=N50&(tg}Ru!7_cRvZUhTblMJ0W z_@PS35R3saV{!0Lt;-e@@Q{8i5>zLA%y;dcTp41ORO zf?{1XW;SL+@Y@{Py{EPoA|Nw;r`(Rlg|syrb2Oxmg`BDf?TWLlNEIb zJDBsr5nKg+1JaG<`2`+|i;HtPJ$)_Dp8YQOSJoI$-`w1kTCHZjJZ$rg+Lq#ckvYc# zvJd*&c=V8Iu`1}2iVQp54xRN_r-`9)SlG<0b0kw$8mpvmA`uIXHqrpk-B4EWV14Sg zAY@~ORj`3OIV+vRuUMkM8jfI%AMx3^NA{-2bra@Y$_>lw!Za=})bH$(^hFA0#y$%S z{q9v)78k3WueP^;C>d3I-*4%rez;P@dL;`$)JS9__sUA^gfBe0mFWk+=Rl{Q!2?iJ zIY52nk)>ewTj>FNpWy3*Mq)P3s#Psb!|d-0Zai#Z#;ryYQ?k+{)&?rg**6o5AR`=l2Q#3NWh?KX;}AcG{Y;C95dN4Rx$bw!R2UlD&qjTZ@d;_GaJEu1M+DC8|3o$<~t zHy$kn$Ox%{mPYfE>9dkb?&s?dSwQsS`Ez;k$Di`W<|9h;%F43bgH4?o-5fWBc2a*s z1%NvQwjK1m>E$UP8vAty-Syfb3tGY`_EofM@)F5`vf(1KvEtafU^p9WxLPBgo z?2%ghfC41Cn<_FpDl#%6G6whScRc5w`I~s2$KLPUtR-wJ1h4q zD|Sm;T)ng9)fIkMT3O**lgRRJ#|ER3^#=pnZMU}CtZlKp*WU-jvF@Y9eO=$)+IqF} zYsVu=bG>dlJJV~oyPbXY<(IbIZ1kG*^D|4+3~N%^eqY%2^|e*|oelA~;b>x6r)$@D z*S5p;z5e7SuD-Bpy|F&-r&FwLP;IP>ugM;dvalp-^c=2DgPZ65H;u0YR>aaQPb{rt z388LktxlZ8xM2J~O|ei|-2GlR?~7?+q0Rq=uYB`|f4o_IaQmycmY`i|t#BH>#s$ci zG!jOG>)_vNd_I5XQ=_IbE3k+V#{TZoHrH>gSlsA+(j>KBKClcMD96p$%e|%e{UE_> z@(2rDTi)y~Yf8h;v$QHL!Q$5X%-E`84A4!asRnCF&dnKXbqq^cnOy1@5|)mVVoFXcfDK}tg{&SzW}CJKh89hV5(Ru7q%~HdwbbZ6tu@YHiVOjdkFAHd^?0KU3Jg2P55ZI)b{k ziy6D!IPByOOjD91HXIJ|)wQTKX^nRDu~r=GhYRJPKGq7VeZH%z3+L$fP0*Z(zpu4P zD(v2BeQ&F)w|0N=on_F1)UeB{z4c&Hvj{tXzr-?^FgZi(_Hs9lv6~|pV_U4Yb~C@X z-SW-~n6e1(%Z0BS-zXKd#)X2#u7aqzIirX5h=S#y)!0LLWy8&xLc_3Ga1SSwkwqmn zxt0k^qSSH(+Byl>51)P5lH49Yj^io*tJ-MtZ&2q2qvw7*~`uL5NrsUvTmxPU>B!7Ax+c7ToM~NxQMRHe zZI7R`EQglPVERf}=g9gwo?GuN#@iP6JA3!d5B74_hf~2VW)OA~9ejwtQzRonv82O( zuidoT0n~`r5qEk$>p>VD2!lfD;cE(0#sBizWLmu{l+H!j-8&K*sB*WY%(5OhvpVOkRs1I9bHkm zgZ5xuX;K=PrYxZ=a7TJJ$Zh!i%zk)xWnX>!l@)^%2yTE~j1PzZD06O1`psHe1e=7f zwfqCGwT5u0IZYLQhnw8O(NAWl)`iJj%oo}agAU9*G?yAUzgyVmZe=BYpABG=#+_jP zYF#f4V$uqyp-&6~;1Xq7DvhA3a-n)X7X$^8!+g=7JeZz?llVLRd*A7|dPC>kNHZGP z<%G@~cD55!eZ0P0%Yk>|0+?ZLX+8lW>tP3%($X3mql8J~ z<|3NnRdewy_)}Nv#zw;dHfk)BM<<`;J)x-}@<`_ai$wJFy<1X^iXKahICgVWJk=Wuq^kQ{Qdyb0Oq49Kw(6 zE1R#kw!FEvtE+2UVNuHU3IL$Cr+CkoA3p~w%4`p0w*{mn3L~;BaUHw0`-vQjm_r&F zoiNZ<1OKsyaHo^04Pa&N7b~n$Bp*{Yk;4_3uoUYw8V_vL!xe2{;_%r~l>0IUpRLVF zl#BI9x$}j|u?;8;qLvnpwkRu2GTBMmQ3~pS#Eu>xE_f8h?Xn-<@4de#k@=FE&`Zi4 ziG?g7fD#b#n_vGMi-BVP!Jq!Ief-G_8&Aiu``FtxjZbVvi_#F!#Pm-!Zx%>txwPF1 z&U<}pE1;VaD65lo1aY^B54P*IT_TQIAkL`ZfakX}Ti#7=G&{$_!G!e&wub+>!E@HQ zmL0CM>2={Ba?4>Uvbd36_qKRdNS1bCf7 zkaK8bQRy`dEuw(r>aad3B}&Q4Y2o`6AL5G``HQGM;o$;_-xI)x3;iIF50TZ6JtqW& zc+MVXhUTO~yz%bsch>2q_V4_=|Ii-8RE1TbzPZmEC$rHbZ?2A zhS_Gbv#ZM+ySR8~bL?K?{SFqJe_Uaw77zvl#H)92?4uVS+3Cq^OZ#2H*Wq|#fB(<^ z7`uLHKfJxb^RcU8qOzz%U<*NT!AqN-O#v>(wz^+vhxf3#70V$0h#`pi?K>Mm8M@F8 z+Sg7Wjvd0d1==g&^bsIIBeE8QYWt=RyAs!gGz;*TPl4-JV3>rT--pKSLN`tGw=VkM z^sj}*wDpVuN;vHX5$y`WQxDMfCog}`&Q7L?FQBoow~PCgZLo-yHbrXgc1 zHikw=IZO<$bGa?-4hZXZNo2KwYiVrrZcY~pp;6-#8%<83sj2<&!*@0UT6^{BPXVQS zwgXrm!qKLp~a zq5^i`ZkF0nj1fAW#7-VP#m!-ZAkLsx5Ya4`5E$U8dG zWHdXo6GYbco60t2V(YtmyWc|i@H2fnbedXdN~hP@>DejnKgLd<%NSLNUm~nW1&yUZ z=&0`&_jUonFl|!cnnt6Eot>WA3cje*?Z_K_FS?{(%yf5aRT~SD2dvlW;OQAvw{wRWgUJbqMgxTAyNiJ)cku zLDhncQHbpIf0#r@&qP%n=7}Jb4$#fXY-C;Rn8~n@_eJagzd~r);5tsBF?rU5HWhBG zh2I&#VfSyhc-~4eMIZ6gUGandK7-R`W?_RkBZ0ts-P|U4pQlfsS`Ul!o4@{R_=`Jx z{qnW-fikPj0zL}PyFc(vifbG}SUs4{KJMp-;*DLx$-g*1Q|g4^BF?+oynU=wj-L}; z%MX_qHUpqwpqk>^iKGxCT9MU8tU5~jxL*$%i851M*A}KOW$Y0J4UjE95(rJ1Km0ju zz~3lR_wQ>3G<)19lt&ukk(`_=_20n;e^=gumD>5YG^$4MvJr8F^2;2s&|%y`O!I z-(!a_ZY=AK+_b|-Bv_0bYqPq((k7cCaLod0es!b%q%t7e8y=zdE^LI%q zQ`IK8Vxfdq2oJvFJyR2w{@8K?-xMoX>53ePfR&L+z>>KCIsF5tsBWrx=-of}LOCInSOw#jWgg z?L7d8;b|Awzk_-0V}Wr!(DIZflTkcw`TFWgnerjbEAP98nT*p|K_z`w1B*n{$pk@$ z;C6q%gdZ)X45<lXTa2J9 z0q#fq(aR!bWn*Z}YJP*C69msNleoeLrU>p3(RyRoZ!YZm^3s;joaGH{ejVE-cKA2H zG3@$B_$>GdEGC82!{hN2_y@q%C}rj$ht}QO0%jrwl+7mt33vbv8}<-E!vxj)QYLl8 zbO?OJH+bXA@3(gT=nUqt!F3?myS;|{8dx5m3Y2u>u1sl)8{GjdR`~oGg2g;z6jEs= zh*~KS>>4E}xhM(5n8Jspxc&yfh8mV0Bd92P*!Awbqk{l`$8jHNM=OZqc%xxdELRbS z^hh0Yy|tWW(Ey`Iu+}g$IjnXE@kD~fSVI^w(l$3V#qHcSh%cz3 z%(cZ?-@1&MGS+VTg7Ey~08W4n2k>QiZ?7mn#yzHoOlBM(%+!NcL?8Uz$|91JIyPs&6N$@Y#d6G1 zNOjY(bN80T2L5Bg^c)b!PIZG6PhZ~ND7}&6THal}1!TR4IjC(gnL)6r&F4Tgospdm zPc7^AZFmB|GGubG131}N@{?vqivW|sY_Iz))8{t$obIr~^AR`#Uhj8Hysif)AKUHi zoz?i=U^o+6S|WBC09fQeeN&jVt9Nhh^mGcSTG$ZrL|rnazqS413fEo%EDV&$yubVw zz9yAGx!LR1ryfj%BSIDRAg}}|EQ3H&M(`y~pV0^%Z`|sb{lP8a$*@V44TdZ~pW|!A*tOnHn;`1-$ zCtv^U_dR?d;td5kVnXEzBTsfVRij)SgKtIY49Kw=(^fm^$deF}KP>LwEDXgUKmM1n z5j@VIih6Cql#r{dy?h3?nx!yT^b-mEMzOlL3GDh74vr?|)yJ=)%Uyf7AkH7y0D>4l z9^(5k9At-jZV3cc;A;sySv7F0N~5@GESZYo9W!bcf?@TK*;)uD=_ollgdq0!iB)U* ztklNiseS+L8*B!^V<0nTjB|tq+;@ySzWL@BKB7`!=taNUb7**6e*X^UXKNE8t1MFC zi%;TuDlBLmr3ziqn>UqeBSfniw7F(*j4hNVF|)g=UhJ`26@1A99R9JuFNz+jUiLfn zl*SYCLHf-9N4U8dXeut|*u_iRS2w`ndmAGFEbgu>Lu`=(!hZke%AUUd8L;oj?%`9; zKlzDuXOE#B6R7qSJG^Tp7Qccc#VSL}3(9n2t{ zbk&i@(*&ws&+B4I@I=SnUIP|2Yx4k;N#vHerjeBzHT71)5lM357a|p zu%=Q1fzeD&Cli}tv%I^y!QU%r1{N`72AZ;#|0qcaQQQGz7CSe9nQbM(_%(@C4ONym z3O=6Jh1`XVKp>9)Usg7LTp%C*tJ~T;w?oOg_f~?S-{=Bajp*DFi5nmL%HF^fED^ws z&L3NMdM>Tl!7Nqj078LTiwKSpdq*%)v6lkcWv`pIPIDCSsHp2z$OpmH9+>hq*ts<{ z1TYQSL6Cr$q%*X24POMGH9I}Ci;D~C9a$;Vu-$HFFJ8UIg66hbZIw~p;QG0OT?C%2 zR^DD-+3NmYuT#LS1#eiXmg#0hPKPRi;7`<7CQK=ilp3P@h~xJPP+Z8W3V=;il}e9e z4fwDg@{pnr6qne)vY5jxX}w1vxLLq~FIC^ph60{PEbBrQK@F2; z(T^~J2m!=|yby*l2?%Ie;OCUi6c_#c`f(WZGK*nKZsGa1OFA{{LW6?DXmVJwgc$%mNDPHg~Rw_0w*#v%D5 ziM+N?7%bFwbuCkzkX8i$Vx^mIFaL(mZqrW$Rf%uFI68{Z-@m=E*w&h-zg-(7yg+no z1*sji-%H&gmB8dE-Gq>YP?N;AhZ&0O(X(eTQI1Tirgh1VN<=O7y)0oI)AJ4*@t)E= z_>3Q~)zpet;-EER$TZHHWU{q~NPGp~(C-hR0mB2`iEmjJgr*%kfAq*M;V;DFiepDn zZH5~czg{eDgP4jKkTv>PnQb_H2uo3Z@Q8L(-F;fk(<9bgl`tD+0 z>cfXy@#6=DQikU{RvZs++>9#LYmkLvBq*c$3m7$Au>mm0faQT)&hQIadU&W zEn%XWvtt6WP(BXG1dp(1QaXF*YB~E+w%MU$6g3CUc-U$0Ys6t^{z%Z+eos!-29S|( zvDt4dC$$Gxz#T$W+ikWI5dV?1aCUa)$+pNIay~~opj=oWZ#N-37DsJu<$)pjpe>Fk z8~ae}BWtN?{(HW*(zP{ph*4_uGza;;Sa{Y$HduUTY?jhG=EZUZwByOh=JPx2KR)$n z91Gg%QkaFz-2LsXXs(33m7-BohM-Y!Na-I}(|xt$1GDES)&659>KI9RdL{61n-Fu5 zf>V3kv4&a?ByZ)z2Zu zXl;aj@Q6Y%7}dWc+)%GkvRcG)s0r$2 zK_G`3NT`$JgGxS_*@ZyrtZ|3jcrJ_dnLVKJj?6;VErt^}lML1ZEj1+nJ<@3EP;ETo z6GyFPL?1d3JCrLAF-X_}2Z22ZO1UrEra&8YUuY^Mt+0sOT_;pSYenWRxI&w<)6G5e z9Y}7C$a9T&T5A=ZNK0DiGc0x%k1+u3^ZSsA=0;yeQw9^5E0Us{L;;>Yk2@@Cf_6CjoVlo` zjXsqAKPGd(|4#|-ICPsFo)#a3>RDJ9!htecda|#kf254%S2MfD4nG-m;2RQ~W2bY| z%%Cx>?sb632#HL!zp%*@oaf|P5SK(pj}H{&2qC&@YD>r=a+dpXVeoSzdF?tR{bb24$#NCI zcDMId_i_)M>qdx?6~T}*l%_0~E0UxIYh&iJ@ceq-ghr+Y!6P6(fdGkzgxK7$>>bHt znQfZtCiwA`4u~ISZB_43N4NKG_QNzu9U{+%--lW`Y5fomHHFPExk5Z;PPI_l1>gQfX&DZ0oH=d zM*0qNfa5GuY*ylTWbRYz6gtqSF@eTdLH6+wNF9f~A&F-X*0>42>=ht;j~4k)Opj$)lAIK<;eSk%Vb2#8s= z`$UCSpO}b@s)t47C8YD)Yb)@kB75a6e>WCe&?DurtD<&; zhGKo~h$YBNwwf17%BIZn4$mnXsc1&tFn1HzGL8_ePD0aAXGz#g(gHbGi}}h5FvwtyDxar5Vo zpU4+&cT1=<7I0T6V@iLQWH1MClzeVcL15CNu6j2}A*ECH>}??$Y7Be4zPq*g#f7cd zB(q~lG_u}wY6HXzd4FhW$B7Tj#I7ob!So@7ThX<4$4Z}Jt>DVq&@KrAb|S}U%7T(^NaH2nVl zUJ@p;iw!z^eBXm$`uNbn(6xrPvR(MYzsL^FoQH=64GE4+?O-tl65@-1j+n?}KB$Bi zeE045wped$x!Q`nma0z==xa2z+38fY&(YZ_ECG;BTB=>Gj=QcYb)leBB<<_BcJs|w zw!6Dld38XPG@4m|1bEs{EFWS~$Uetn?XgOGni6fCO7@+(HrjuZ4Ma>(JwCMo1e$SO zAP5pL?&fgtY&~dT&Y-3A$z)V=VJXN0@fGh?<=MnZ4UFFVxE}_ZMeQI#Ik1Djdaync z2wy-AS;N`TA=7;E0#tz%N2&WB`5_5~dm<@ET(v%g;DBG{eDOE#xLU$twaj#Zm3Dm1 z#uVIdV#ChB#w^+5!*1VQ+T!vGJN?eqw>P$#Um?;R+DFZ6>zzK5Icp#cwI-{#qSk`4 z$p^U728gvL(}ANI!0Fy}sM0KVAJaH{I%59JoE_V~x#lFl0p;*kSZ4P2@YKt|bn4I& zQdx)dk7X&GBu5!@2M5*&cRm-Di`z~@nB!vDBR65|791Me+~}~>v>3%9Bm90IEO>io zd^Byw*nHRVGnjl+&AkvEze?4A3b}NxLjnVoll61rdbXvhOp3sYJDF9(M)eW`4cuJ1 z2k?Tw8_ZODsBPgs0Rk`5J{#L$CQ^@engF4zN||BSJ=DS{_GTrN#>Av}JLPO|p?NV^!5MIe2APiL{_y z6i~wVVTzjr9M}MZ&stZJ%Cv0^#n8kZ-M8mR%UZtCyPte&Sy`b;XZo0Hu*-HpAajxL{K)_ z*ny)=qzTi$kClHTt6lw)rBAO&1X|29*UVXU$Rl%>Vuj~b{55>1LJcNXvAHTiZa0%D zYZ0y8Z{e?m5^QN1u=4$4Awu$cb#I*hK*!Gs58ClNk3tDsm5!!KDz}!C)t$2UJPCwj z_cwfRM!UPs(n*~%-`1Bn6+-jBA}@~u63I|T_)J0s7(h@|qP!O%^6##_H64tx}NIaR&u%Mp4 z@uXy-bdOgTO%|c;67V!hqsO64#)K(+Q-@jHkaqIHJP@*i#ZZeOZ8ytAmf$)nl+e>% zhtt_?c3_oov0BH>S2NAP2)PWkjup(#;0Q*FR9WHm@K z=Ku!&u3!bVt`6qS)B1%bM~G}ag>TRTRxLiR4ycGGt0;D!*ngI-?>{w5|fil)l~D{cUSgTpa0f&&0pB2Xr%5r-tQSq z&)H|6Kx58rbn*m_9|#JIUvXf7In{@BP%;o}80dm#jHcjpXrGKv>@iHy>9bejPBG$M zLhBMXUBcP3Z*YQp$-4fC^N#xh1%}MO(a)3;h?1fdNHCEtEi~m2g%FFiMZ4qHj5gxu zCR`(whA@~bBUbIN_8p3!ylEx6O zu_~w(N!G zz1ItkG_|8O_!n}$nrg2dDl!IR3u*~893iA~UuiHyOgNGUFo3z{Kc(eET1ZGWXa}`~ z+LpAYF7bGdvDcmvdgD<#wJPo;%8V0~q%Gv7F!*BmkH%{V8Pg15?ufHboVDTu&%C5d z0W4u&7!+=Cq0IJDNLjR3%DLV%RT0Y{G4)mAGFA$uq)CiDz>5RAQiZO~_{w@E0t_{|T)ejNIRrcf6!w}21-_&6inNNZSXlsCrOWfyvms$6`G0L2Sa` zlya9zDV1PkC9T7Lkl2X{+|^?^(COos-cm3rt$(&rb3e^c7dJ8-4J<|29d%PtJ{uvH zNDId%=$1;vCVnkuh>1eA9)1R|$pJXBI_x^v_=c3!B*YzwKd&eQ{f9ziH*Dj=;b&B8 zE&@2g_xJFdIpBT|R)UMHO{x4`edq-6fp6YR*rt*cK&P%HsW@M;g6=YqzLm7)_f!N5 z=iR$^?`3-1yjA2$%0qqNq4w?p3>S!)n&@iFU=o_LDLg^xgtD!ryA?Fz#Oa!>w$Y^F zZSwxaG9VwrqV)!}g^f)aVwH|;I?#%y(`d&Pw6AUTvhli#Lz}jqUs*d~Os1>y&aEbO z$|>Qo(itj#Wt#jzA5=!}kPERWck1n^YEEq6IH$eWRT|I9@!$Od=o0rlhW55ZIteDE zOq9QB+r>lMg9=zl9DGXS`9iF9QLY4&%aB6pvcH|#Y!U|<^wBx{oD-k;qp3fESkMN1 zv~{g^s1QZewOK)x3&Gwsv&9lhq1Tr1A6bLHVJ8+M87B(bIc*{C^u2F_CNb_<)bEOG ztBF8SAS`htnKaY8k6HqSNB+>9CKhk&VRBs)sG8on#gvOE63QwhT0{mLQGl*K=a9_d z4Hj~Zcf|7}#9Ab>vX8}f<_zFk`8^Jo>EJq3B@GkRP)L%l+R~7DSzC-0CPJ0vu2nl> zn>CRo6ROmb1_D{$t!%8~7Bfewz)oGlLQxo$U~974$eWqZGhIXg%`&8N zSsWC$_T=Qo2ZnL{U2oFWb4w-da%mL{{dBBq32nRwi8rTcR+T+Z*s;2xdO@3ZQ8LjH zl{i|x*Q z-d1qt14mhE|MT>b3SOZlQ2pwWn=JpEYX@eJNB|au<;lY)#2k#$iKMtKn~=B+Bzrdt6g(Hg$yTm9>OIQ@&3!nTn;T}c zs}h^1c9YfY{Sg%p-#1KzGT_yH?L?eo^i5ORnsy7mL;0!LQ~Gh09VS@F$Cz^v+SWcI zu01xu3LBUxmd!e>BwAj&K#m8>9Fko}jFMJEj%y#xsFQoeG|6taJ;X9{cH9B1qHP^@ zP_SNceBcbKzpk!=Q)6nO3~4&AjZ-upp!#chGl_YRUPZl0O0|vg`^3q)vdaalc}&?@ zOHJ}uF@9k>z0DgDp>h0^!PiBl52<94tJ!%UOT?TNO9{9SHsd&Js1CKAhq%K>>PCTi zQ>wJkr*On(YMg4M9UN#)=9`87l)SI52E%pLA0HJ#Lk>tOXh+*)QPjn#M_RJur6&9;-6(Rx<(?PTp$via8>@ zUqYD6hcty;WH()^lZTYNl7_WCR7$C(#~WJYj7XcO5!s?q>ZPeXo6MH#%k)P1JY`09 z_`1Q@n8L{(n2YaeM`*e^?mbKczV;~(Bq_79MRtmAvlcV5*7zr8k8kI9FoB7!q7A}=j7M12P7mT@LpgNIY2B&%#xk3 zL=dY%CNI`@dwXeLzWrW=XVPvSKYk{ys}XCAUcS~f5h1CR+-fhqROQjNPn#&@(Cfm@ zRTQ*?T0(6mTm8^iF1HjPy2})evyd0E8(hOw2(DI9stpvJvlc1-px@W{pG*>S2i1s?e*)At=k(a(RY7&ZU4vr z{ulQByEm40J2pBwwcE3|c5?RAKKk_M-b%)el_rNGnRhaUSVp*^_DHtXGi@LS_fk|TCt}F6d;^eDZ@rV~UPyWy%4tgHVtnQ4|y?grfx!5WS2F(jas_tE3HPCGVy1``wPSfPS-{- zUANa81jr+e9PF+4%5JBuZ68|Cj+lWoM{?Tc>Ek%~4o#a5=8X_nwRAj~%W7XQ^A@G= znY${?yd^kb`u^hEH#YbQ#~f`nyg14#Z!!y1Per{%RuKB9&tKXF`Bp$Ci>q7Pafa}) zuWI^$hXb6PK`1lp%$`^_U@LX1x_eu*Fae7=)Gk6iPz5s(_+#EjUuZ0o+Rj>38O5si zFP3W!Jfo>80s*8=y|-qm&2IR_?3R!iz7K9ewGnJmPFTHo_m$nRmewG=>FlsMcacw& zqfk7bUmhM&?aaZ}^t5)eg?Id!_F1qmX$NT5KKoF1Iy&^L*L8HbxE6t3eEWkvnw&s8 zVil!4cV>>}Vo%ZYxfy<*jwcpBd8T2LYu048JDHTY+qEv$4+4t2%zurPAFCTTtVa5276Q_CUTv^%t-@vJao61I@#ahs|S@l>1tszXCis@X4FexW2jJ54?jT6fs4jOm>GA+uA17#`-uvZ!%w3V-!;QHr?Mc_T` zo^}3x>Kbx@x&bLj10?sv>*@Sp3q*)e<~{CNmynotZ<@gMrL%7d%SfsAxTq6F%`qIaSRG`bq~1vHBL}^Yf;T?la7)f-#6oi<2orT2P{YYUQD{NFMo+@_4% ze{BbmF@+F*j@uko2prp}T!JWzP(v>S3pJKIreyM#NI5{nn9d0xmB>9 z8#~2?8e_rYS4RP(=WOElQY@{Oc!N&ipvC;b*@p#o7*oz{bm7pixNyce7j|||fxNS? ze)!fN|Kz##&rhtEMXo&Pkl;G&X zbA$kEwump6gddeMj%{k4X^>isyGG_n%)2B1k_A@9vA>}}n&v@!XzvSUgBxeMlRVvX znrgG%*ywy>j~<`G2c-7q>dL-F@JB**hcgmM3B?Y7_Ua=!Ws(451Spy=H#@giKmC21 zK6_^IWNLSd4b0b5ge>qci#Z_j%6<+(^O%b*ZmwYS%xq$vvxzvg3!V-Xx7lCT`q#E! zZ>%CSlDVc3Yt==g%k?_QjMVX87geJ@rTDENu3P<_vgjHgXA`K7MRp{N@`=xy#%pIu~^>=gft5n&q)pP#6>fpUcHP46HfI0!w8z z5g{<$X-Cxp5r<@DZT)`FrjwaXpsH`*-P+e*|JF_sON@Jc>rcmO`)csnJcw)x^R&5L zz<&&Ea{fd$4{n0>2EYOieJjUh(6Fg(?hD&MEAJ~f_hfH9*5pT-N(IbJdtKf+!CV~n z3vxKWjyDS3#H2j!cN<&c_Y3^)dI90`)Eo+e8q9?bc`FArjyM&W2UNv>H0Lcx!Bg=M z2}$3yt~H*$#)g_e^G_y#zMGAj8#&D;j@lXIk^0JV`@pXRG26kYyS@1Vwwk#iScM+^%>dV$6Dc(+*=h}x&aai#EjZx^aI>8> z*XE#Dnl55G^QBz?RIvV6aK0DEoHuP6-RIW3?{pKMwSD}7VoRa$(IR5SD~;#G+Crz+ zuy(@48DMbQ9^g`kpoVXhD_PZ!VT#{d{6j@C>=OP?%_ytYp(Q~v3p-Dh$ElU@BMqny zy%GHI0l)-@-CtbK?ajr)zWVxmdvtPQLqOgPCg5arqO2_6y9>uRf#$rsd~3H5M&27* z)|+TJ<$QT>JF*dh;-;rV#3cw4*}M-FRIyyj(-JsI!B<4=7v{1ejiOy?%1_>S$Ct=$ zBx>M(mq2cB?-mHyYFl$0Naa%)6zm0$t(;b4hYSVtb>slcl<&4eaP9gym#qppJJ*&Z zY*4k_aXKAMA;}GXbekR09wK;=jUM1!ra_SJJNEW#8|m|X_@ON0a&!i7%1L&9@y;f% zoydUKbr@h{vH05Fu(a=Bx=z3TPJQgGf%KBD%pNJAB)Db$j&=4<;U~{Hy1cNtnFO5x zGz@1Wn|5Qpeh-b@ah^R)E6tQ@7<89`)y@QC!LvaCkE3uj60@|<+=MyYR=A!8{M!ne z1+!TBfdD%)BR8vXw4a6Y@I!g~0CePAt1tqlIsBavxIGL^36KzNXqK0GFJ^kY`(1J# z*>d7Q8DMU7gssaXPF7os_x_4pX3L9PvEssdxeflPZKF2jy=Xvr)ZD1oamcr>Z3TgR z4m_T->7E}CsCxzt$}%#-yT%5D0YlYpAx9X67>667Ga6U|zZBuUw$O$>;b>v@IyJgZG#r2RMj=-!A0h0P_-vbwxgKh5bn3OUq1s`6*N~tfNe~2 zJV~xKWvVwTLQjI@akbV-G^|ap*BVha=w@nN>)hiepb2xt4Zr%$Z6q^7hI17|6ElUq zX)a11Sf8cPj+_h7C_T?JogTs5e8toO7W?83Xz14$*btd^cm+W`#qN&>5L|zZAh9Qc zbrBA6Ni`m?qk)zUzIGBnv4$E{&>T6x#YYpc#ct2@r|y*|iNidW0%q`jzOt*Ejor2~PnV|Oa@F8JY2mV;%KhtR`G0(AoJZw^|nOwv_@29V2 zLR~|=W}~B@+;4=P+{6bP*E;Y+Y4T_iP&*n!i_aaW2|B@KMiv_8o&2o#()_9uVr1_E%y7vth_Yn5ui4;sBxWmv%9`%lK~N5&Dr%2rBveeHCc<_#21mCwX5^do%zTSe6=G5Hoeb zi^e6qxm()5{`}Vn2)m+|KI;!PSl@^9dCegS20RX0S!ukI?@$gmR$YxzG?^$IDY)W6 zm6x_d5XtJ`28iwY-CJdy>n7J6U&4Kz-%vBPRoaFpy6FT3_$tokg~R9OXhd-E+PgBo zbzn(qXZj|0pHXRg16!<>uE#a4d8oj0qijZ1rYZ!wb~P>#Rso%vogN7!k!d-OJC3`o zK71V4OZZ^ojV)uMm70TrDx?|Mki$^52OB*Z5AAw+qw|}x47-Oy<%tM@vR{6GYv*U* z+p{N+;2uUc;n4<+++#PFegJYM_^B#Jr+}68bel2Led7;kpZ#e)+-xljqKp+auMlc>hl=N$gadz2)QI&v)( znU30)MbZvx#+(EC>z$aGOw*TzKkC5Usw?lQWTOx7ox}!?=wOz5ufiUal(l*vNu@RN zX<}z}#x3ksgvvB=69tA};7fgjRdTf z|7t?z&_Z9Pc+dguDX&*JWcHI9Vz~mHt;i5O3ZtpC@ii|i&@zceqSo!&;o!rT{=@uL z+wOLlJ`g?llVj$h;2eXUH1yWRj?#RYBPH}|USt}}4Tm*VJWvKzX9|7-7&~Fl2$?G1 zd}9|7;76Z*q9)8bFz}-w2+cGJphDNh4MMK*&8=;2Z&mXs7<-UeQuFkluADU+XLg|} zwPl{t)~l?*u}ea7v5k3Rj;5kHOMQp;ii;+U!7Y7?Y(P5XI>%MyCam$inL3kWhc>M5 z@L?fytg0eo9Xkv#YwO+KYM{xsp)i$%0FXyzbGLZ^hnqE~0TdwGL!@6B$bu$#vWnFKnfv|gC<|WpoIfD>xY=6t+i9blpLP(poWU;`C+(HsrztZ6* zO&B>yt9o~HV>4*Vi`m4UOow(d>A+khHb4ZKlO9T&+k|ecKGi zcr;loH}ia}mi?{@r1}kg7HS=ui#%oJc2)(#W0cg^gcYJ_EZsxGv3+o4DsxtAj;yn` zoEwB$Jve&aKc7bqRvf>SV(`P2_u`l(6|nZ2(8Cki20WXb`-YiaMCFf$xt$>fnN0^a z9d+PTGezYV$k|DVo8nN)rA=>nQgMqC+e8}guP6g^rj*HyxyX#1ndQ~gI9yN7PA~|B ziA33a9%0_GZZFn3RF%dd#u|8BS5D{Q;tTeM+7AcfDBrhl{2;U7U+bm`!5M3$vDh=Zi~1iZn#@o^Zl(k|<`$AQ0~`Z61ct?7UB%10PdH-I|=>-C0Q(9>A7> zEN6x`^}&yTrUQJ>&NkB9KN_7VU_766?QGmb;MlR84@AlwFv-yx2@jl0vO^_~d#u~< zcy_sVAQ83jJB)CRNhd0UP(-HQ8vQD>3H;AOs%58`CYC8ugAuNc6X1Fb3P}Qw-Pcws z*;Z=17Mrv2Ap{n3XKa4u?=zt*cbSFy{Y||lg6>IlIM((kert|h2 z79+|kS~4{!}D4o1dWsZXEND%6M*>w62W8`K8P ztcO5KI&;mFF~uU*o)sAem%S$tYdt{Q_Yqi$?498EO0Dn_=t4qEbuEE#v<4gD+W`V) zQ5}4QW@teu?Nqw9Qs_kAz;2|8X?!Z&WRS5d!NxF6!#)Ro<<=c`E$&l8hDsb7BmZ`S zYUC;I=8y=g4v^hVa$t+s?VzxLzyh7~Fp4eAZ6rdYKuY|~Q>n>yPQuaV%#x+ChmC2L zhNPnRDOxa{-kTF>KCzptEW}h|EGo}sYLN9Q4qlmc7wu~=zQTcdc+^Qn49>ofHoq?u z7W&u^$weO63x9HUcIuTv?x@1KR~iyfdyq64PYxVgLg+4h2K(Q4AzBw>yeW0IEMayZ z5O*+4b)I_O%`|2y>Gdt4lTLyVEWllJ%22?YfteqmcHGwb?E!p*!ztTFB#ZsDO==LS zfjnq<3p2AO;hLK+OB93jpq>40=JT=4-?Iqt-U3s{g;5{Yhs<`q*2#mR=~P1&S^yO? zBEg5W0e9Mxx7vvWMOx^5*EaI@>1SJMMB6s)PT#bHI792nlP8C`gwT|2&D-0JJ(@kX z&p!L~K*VOvIn}x2h-rXO9MyOW+i=tqij>B&r4J-?0C_h zlYNSn2Yrb*$g^{_+v^@C7F4AVW9eeIK00HtwufJa5Qn(%?$-Y3^)ov=8Qb;kwVflb zP_rX0h{FMrT`lv+O}&e1?Ldyj=;l3fuQ;_chc?BW0!k#6`V?pdY$BS4q4!Cx*r#O< zde3@@;u|L%(4RReJPL6Gp2ud((kq2&sQfXG*h5;>kVu1fN*hlQ3q2m&fb+aKj;Z$D zct2k#Kx7$!8;+?QZ&L_6zwx<^3<0Wezzs)|bA*-ml{AMz1IJCZDbYq6Wr2O+yS~Gk zGp=w;Q=~bCnJsuI3vOt=;l$@Y7PaH{QqiMV-k!pI^?_P=Q2gV^uk8&>&dhrML==9vDkCJD$+pGP% z4n9Nm^T_>+U~uiJ|5UMtg=wvg9*MemGYLG)(gU}x{g+zWG^^I*7 zrUho=t=V~Df4_GcjYg@m6iZ*x<%l`#(2Roxu$vfvWbHvSv8DjUO^dM1On@ZE4<|Y>NMwFZdA!KZPfqL~{JlT17tfwq zIlr{!&7ECeT-)OI9`VOsCP=1-aTRtwTg3S}8jg_0VQiJ>!eX5oVKQOu=4jf1p-2DH zKm6&Zc0L~3-PHx0_ewWHweAj1>`y=WBlTZ&U|zob`fK~I{_Fq7{`Ft|mB<6L>CAre zlUMfVfA(iO2K&{sr#6F-IJbkDTtNg8Dm;j468sK}y+uTQzgXJt_680-S1N|PiC@{? z1$DIwrm9jdI?<$2j&;>pf7D7#teqX=Yz@;>vL5pY!xf+pl*vzq*6(z_o7*-4_QU&=2q|br#$h zIEqZIc7-Hl(Zfk><_A&MhZY6@*HTT}so?1hD5hAiVDrxrJwMSw@SIP$hKAg4mR4LL zMmRaMpS*fy|M@@rXZGLzcmKWp#sB)h+1>4(eTNSp{-b}-{^U>p)TTfpItXjE)JTq| z4w++;6}VJtTO-A@BLKmZ**L&#%hPM{KI2DEfvkGgbO%&1%<&-}4>g zP*LLNq;@EN`84e^#3RCw3eKXS5z2d&9*c=l%*zIzIP1vzteENyl zn`(-M-?+KH#r^HHus-bqaF|-nOt3k^6OAhJw7ZTuYP_tWT1c3cZ_Pu;bDNs-iK!6K zfAOFGNB{iAi;t{FC);!LPzhpkOww3y%JVU}i_afDwogC#%)a^Nw{~-LBU0QKU;MRw z{`s$DhabW0k@nBbZ=iZud!UcVXjp(QDLyp(SUAq0QYN6&x3j0uEFVv;24JXk{81Lp z_DeM1gySdJtuBgbdt=e@5lu}PWb6zYB^0Z=ZTI)_;bErLLxHVQLnjC3kkY!^aCTMC zW|N7I>HdS?|EYCSpY?n3?QiY+?K^17-r*PrF^8d@Uh8q;`-lzmQM6&$0)?^T_(L-7 z32K^$GWfCoP#O5Y{LlXBKj)L!aLTOyjw)Nj=+|FI!Cfu#r{O#l$)rRF?Hk`s|Q9GL?_ zH$10t>q3I*Q)}G5Qhy0yw@>EQ)(HW5beN5jZq4B&F@7D+RQFNhiT5#7&Q4?`%@Gh$ zwY0zg$A8bh{rCT|{SW`s|7a`bZ=mWoxTt^eFa8(X-*4YS@uNTd@Y*(4yND5NU_@qqa?O9F4q6qoRx~y9Kx4+TD0#L4v!xOK^wAJ-E9DcXzkoE&+lChmYia&$;<8 z{xQx)U#!|as(1CM+WVmg+AWYAqYEzh1pQWxZaBveYmCB>Ua@viSDZ*W1_J6IY)D*O$|cms4(# zg86;S>s^fSL!Pil6H$?uZI0BYJJy}=_r->~@6#GjcRZv6RE(6?+q$nex}RU2#84C> zHb9VxmA!{q;pbVE(K6t-c&dVaJ3&HJ?9QjXPp`iwU#vJUX86KRal7P>xR>OC=I;{>FIyok#k7xbgbDVY>%Ys)iE5y!3Kh^>Peq zopCRSW9)z3#CX|Mc-d9Rm*{tG9x6(qh~=Z8e4W;dWy}=CSgBOG6xfCuqV$E^wBPtU z!$*&LA|k{>@+h)2nfWV=AVv4`B(I~b#Z*wJGD>{@b`zeAI6EZC>X@k}jRg-U2u^iG zChAbtW{BD+f~XC@BsRxU4autqZ@|RuskQU*^M2?0*&Jym)z6@L5>mht0E zX+`fdb;Ys0Ep^H3qwnkadB-D*1m=8W~Zp}&7+ ztKaJd=_?zU)BPQPjtB9gh{<6eir?C|SeYIxDyBoXo6>3~s!WXZ+`dNl8;hE9He}xT z8T?w!VSJyHHkyma&ez8k$IfC2AzTbqVojlK8spfywp0ZTH?B6rX$b~itBm~EDV4q$ zrXVn-3P<4{06!067On=*!MuPv(dnKGm15lhshuO584zEDFJQFNpsdC_w$|lYssxmI z2pkgFO>ZSlq}@qaPj_XTN&gDGP!(Z;seJM8~B zDo&E*%%p`9rdp&PVcZTB0&6nwdq^`%14bm6L2;rUAQSe4`n%4iyFW{$OCw<1%<4!M zyr8z8{q6UqPoGlT@U_e^4IoB~(bPbX!1U)xTX>ZI?@qMsH0U;kkR&rCbX20}pRx(H38HFKs2R--$iZP=4gTfx{qa zV)}l9&%etnD5oSmxdyd=O#0<0>t)yw-4TDBKCTZk;dT}VMYU9aKpDiur=G|EDgzoB z)DWg%f)u^ee~d@IpzI0IH2Lt|e47LQ0+rL0r$j$(Vq4(@h(@_|^_UIUpcid&2L%}c z!0YR^J&7CniW|t6PiLF@S^3j0t1%-1dsW|csT9b*(tSQ~qCW@!%YxVA>5qlxZWr;| zyH@OGfA^|v7lCMi_1hJ5-xNdcuxC4;sJq3TEyb8k6DB{6kH1qRuv@Bdb4qvdBgvmj zk`8v=!!#@>n37V=QHy}(G%GweBX!Dqsf|~e2?LXVbeH6_7CA*z$BK<7^p>&AA7U*Q+{iED z-PS*oj@ZyTC9>klr<8h!arZ5baqsIh{Md>KpZ^lVPc&p(^_wp!xf49n+8l?Lfe#Dg zLlVwduvk7Ud^ZpLNw**|osD}>@ibN1=wW+ zo~P-Ykd?2Gs@@?G*q?+O>xX935=K?l@H1Dv96=)6=6sly@MtZGbrQF78I}T4Y3;i{ zP{54hA?yfyM)1LoH=9mq3m_UPQbdIofZ>9E#i!)c4>%CF`e!eP;N^Rc<#P`EkI43M zFmWj0(8G&gWVoZ13WU^ZCXs2Z8z>QJv%7jx^Ek(hq5bNQk}xcgyHBfPn}$`Ggyx}u zr&g^Gr?D5O3MnWBP&dA*jw zfIhYXOHq2Q)nZ}C8T?ths+0&ZXu1YvE7g7rkd5}-4pwL=TVE`=-KZJ#8lNv0h09ZG zJWbHf6^hz7)UVkU`e+T0Tq?i-;{pn*?&GzMZ&GMwkG={M=Bf3O$^S3 zv^{HT&E@Dj66?7kOJTu);AvyU-ywN8k1n?f5BF;I65{%v>;UM}E&BU4OfnnO~gX`CHlvzn!Ovbiuj=%M6at zFIg%ZF*3Qb!=>Y2`A9wmJMdg>BlGW6ZJaQIdTmZO4OjolRSdsD41x@vuB>QBvTo~l zQDSqKJo7(Pf36VvO$I_)2Oe-F7LQ)$APM+%H5Ix=BJzKFAfzT`i16eb+RkU+NISk2 zK7tKmFNw^XppB(?`21NJBQDN5tx@bc1~nHSL;t5tlt)JoG0dioa_WICWm)rADQ7=M zpdp+*WhrM%Ny40orJOjNi@l-6p`&TXpKmoKMCkRKcXfy_IkjosBjO)@gF`&Vq`oe`nH- z_=mQDH^$?+9(EuPs^M!I^x&V50+@?nr}48)XJKf2CWdYc>(!sKIBAVIvE{5dMBv)k zeWT^^<{}Ht9aS685`$b_BIx}~Z6~(VpbyMWTEU8!p<-jR6`%j`+7irMvy`B0e5ZIIKHmRvP8)BZi2(b3r>r&b;EvIRUk-h! zE_*pc*^82NQqsA{UcAS@Uyw7Rldis>O_alJsK%T4<=290+X^HuKJK!G?;*XgpO{$^ zpqs$(rsX-faH0Tu zM&XDaqb~(fi65MNBQmxYyV69FYZ7JKqt9X~gZi!Sc=AgeR7LqyNy5XkF&%@>3JQaV z5+cJ(@Bn-JJSCgW7~D@>_|c?hI-nG=!o5>n->ic8wysL+28ZHd*c znEQieEI=Ox?Ir1~y0YLfw)UT zxaSAzvMVLp=?_s*^~Kj3YO39F5rRVN4oUm71WY@6^hjb)gn|udDpp+&p&`hHg$O_c zp&q9J9B4rGk%1(=Q8J~pvn6HsS(Hw5G8Q$k#d<~A5c>!<9)0AH9-*KsDnmxhfN}Ow za?uUmX&tX0jpmn#I&NIAz}z~GDo$ma8y-V6kk-L9cT&D;7Ye{%CW`8Q;y{V$c9-J^~fPu3s#iR&X8aZTseL6totkN+G+|6ctto_!9?SUv;L# zTfeJ*brKX-z%#LE*%dftWaE@aJlkYmQ z3XUrC%l~M@jAQ3Vv6-wk`m^(6I3goru_j#O3yA@&RYWC- z6!^)~?rSEwtM34?`g)1gqtF|cC|a1xkVtn#^Il4gHJ%K_3=ynQ2?TuF>F!WbukaAA zO4#$Oyb4?mXL3-KJ+EXjz5H}O(}Ig9j0=t>gse>nrD#=Z=0!x?Kp(k8z*$^zmBU!t z#~M?P&t~L7vmLgeTtxv5JEIcs@ix0*Wmbl1j?dUm){6J4SsigL2pI_lWh3e{i*o=3 z+ET>{l)S^v`LY)Ud5gT+oOm$e?vrEG#CBOsYt`l5KWQ@X>IL z#vA}!hcnbqc19Vagr4x56#}td}jJ#$NvRQ{){%dQE`H(J8A0W`oYH@F&)26;&3 zVEpG$eaT1^jHDXkT07-c?j#Ff0jb7`HNWmYA4BbNJ+N27A92mCDluk9*l~x%xC7aR zRK0ZJDUmE&XH%~%?}9_7{j_jl&F)Ofm8baU6oTJ<(wtN_Fsdt_tcx=hueV9{hU%<= zD5~o~T(6n>=01Fd`au@StSVc*C96cfm1#1jE0wwA;FGH7(i;=}-T58iJYne;_a!CW1kbRj1Rc@}I4r*pGzO2Hl*|>Wvws zHXSM6FyWwlkwx_%aPUaKK}5Rv3d$RfWMkcB`~`q1EQhE0vjez0ONPV=(QV9k*fGpJ zTi2*I0{DTA>qx7_e_4X(QygyTX!hdfup=W!R(xpXk4ors4?%ScJ5xD#nPxZdfUVI< zCp~=eT&IZ-=#e{LXkQ*4GVW$U)Q!qeMc<25N@5+U%8gW`rBp|ca{QI=`w@-hfip}q zW|GXI6u5DhMJTgTY-8YRMR!U4;Xa#f$X=ohV@WxA^g0%&NEB zD)m|%?=e+~C%!j4rTNBbWfkB9yV?8nhSclIF3myO^1fb#598{=0q zaj2nqD3Y3{zw?MZ>&2s;&R7g(z+OdRzm&m3K~^2v`eA3_FWnfYl8Y`HphoCc!xaVO z)Y9JyNmz)uj7n(33kZk2xIU1QAe5Rp7;jo-)?i_F!Cu1f-3s?@J(wiyUXjIg13xN^fz(X2ev_` zmH2Ha7NzOEV{HmQ_^cRJX)kAY)ciLcM4n%@PVIjuUql$jy_D_CB8(0#-IM_es0YWcUpGOn?yFhQ7BXv#(JWxyAz%VT3_ja5Eh zZ5fM_Vo6JlnV0SNor)a^MYDlOsX@XYKxv0LT29|+<`=E#mDP3i_}vT5?-d19?DPAm z*el3K)9(|4)O$bU%jNg2@)semKpE!W#TLkbWt69#qM-c=f)Z|zdQjC&QW!dcCeRS| zGUj}yn_#00wyl;lT+YJDd?>}vj5benoK$M;h>wwy{Pv7PAYvj9d zRZDgK%5_s2Juv$!GgLlaSSm;zNdK7L+%6mH|3FMskU&ps%=3JHEef~Kh$_e5c4k;? zx>odgmTR9ib6O;mYCl+3&%2Z5O}ltX5L3%5(|{dSFrPpUb->j36ZndxfY9}WX*>n8 z-HoVgP2*#7%@j}GZfTO)ue&_%Rru6AZ%Ee%`~CYM9yTgueUC($b|myoxbXZZT-d4G zbSsWtsYV%TRLWX*_L$-DFZ^##;FTp! zi_D0t#(OEC4QK89Opf;hTXUrXHNlA-*6J3)#5>2+y5l1$^Msyxp$ofGwu4Ow2s{htC{rJk z3Xn0;e`Ch8wkCh!nr~Ms*;aSVW=D#uRUs8jDKeuJKOmOSbM>3KZoN=BU;3CLw-&E^ z4$)JX)tzTe9vAWPNXlX9t@7Lmm1ko`nEFVHEYwmIFj6H7gdfwNbYwAR7ilpg%Uh82 z7xJ%7k&sUEPQ4PQ+p4-g+|X+!&$Np?R*W)(5(&_`EnWYtX=SlX3|wQ>&0n3gXp$sK zEDm?Xs{hVy^IrNL+)c&kNX4<+w%e$|!}g2!tO`aN0<;v&xkY(?z5KXYNWA*MS^&ql z#QiE3-y5_5>u!5f#YgRC;o@=7xqukM&xjRH2~2Cn!OYrR(W>Fbl|tF?aRZRk?U;8I zs_Vn!{ho8^^)!FK9BbE$I{zp==my9gSf~FwTX%h<|ZUSgprNU*VR+6D+4ZZ|E*tQHvKNNAqh6&8N7T|+vjagSX^Ju-DMq<_6y&aC>UVQkg77Sw@LhlSS9}?qQp!WZ#b?E{nN8YP2Z3bgPvU1*mK)9=#usicIZxyybaZDSu!8rHMPT&^hBa zXWdTwFt2@5;bO0ye1tZ%UT?rzIlTjY@(YTBqAa2b+hNz0W!qlW6ED@xW)#*UK}(&L z!Do28;~1z#TYW%~hK7bRlE>6|lWdketbrymx`Y>MpK|J@xhsPuKX5NCXZ+(7+!?!qWfJ~LoH zeww%E*8|7U?rS2tF8xG_H4A_~FWNBvg`Vk>6fJlUWI7dJH1xIPbnDGOd1D59`U?pG zXmaZyL*vx?A7Y0s9qf@x6NVb9ES(dnG=2Mj{Ci3O`n{^W5n_Chdr6cy!3{{H?AwCK zrpJQyvv2+FjqP*0^d?RvYsyY}^w>{rRbO{AZv%7|$=^5Fs}`F-xxV@Tgz>r{m3|e6 z31mXKg-Ip9`pgW+OF1(r@$$=5m~xim0!@Oc(Q6vU)&Af{qHJWvjFD=*sX*7+BON z3VoGyU@CbZYROgO5e!+?f-XSg7;Sjlu*X^S2!+cMu2HOg@}#sjTC1qC{d`ak)bZ&Z znp56W>3Yy^|42|&ag!S&mIa;)ih8M(I_8SCgI#$fej$I37TI%J7!}*LM0B<;b z%Lw-<<0o15N}NH?K|_U_uTDWN;F`Y%;t+HwS+KyX*%haeB%qm;t9ZXNqU7;Q7K>Du zE&pJA{F5*@Nb@fvc=!pFIz+=~?gS>>%_GlI?5WRiOK7<1rKU0KgyZ)K2Zz8#8A{`-b+yz{iOsa@s`6#1F~f`u0(-Hr`#V0vJBs$Z1<5M zU=7yd_2EUsP;lejW_Y~3Ukr&v0)8iM3ksN=u$CfOs2EgNm%i2cPD~| zxHZVkhoz@dI6@VCB2^#!1%dZKN%u}0%oN@1{LRsCL*Y3zwJ37n?0j4+6khs_0n6B# zlYyNGs;A*EN~l24eG^sH5RDB(#7Gf)}lJ%_4Pcf?ncFhHFE zu4+c^HbRx*LvFKRKqL)D5Z7iNUz;2!*iIbOXik_ZX}!&gw`>Yp4Lwbj!`p<>O-;Qj zDD^33ilFnmg4A-+XN_HpCeoR(@wONZja_!qWtbGwri`{+ov1X!6>uaD2^zUmnelK_ znL_~6!3hok-b{gfW4c(L-e9Be^0HV<)ntXeTVve%eP5uV|FJ>%H)hx&3-5j@pWJ$Vtysmg$6n{ux{Nu( ztV{!Tw9pQ_>SF1iYxp-iI(0S$10jF81|?ih2qYyvs?x5x509L@9|XH zQ1iK(u)c1{yPB zmnbz>;yGv*$4V_qvtq*klLas%Sgf0=b1+c>pa-|%_LGi+@ZN!e#-fEDg{is=UBcy| z`gHyENCLB$J>P^ESn-m}BlI%M;DW=&lG)a#KwhPAZ&pSyPPGiCAc8husq%Z%9fb8u zS;5seH^USn%awlxpRrq1ZAexU$>MNn%fPs-I2zCAAL}tJJ5z!g3kOm66zV}YWmDp0 zLpQa%Q0tW!TUrnI2(iT5EhPeLh8 zB_dS%h6-U&&K$w8KJ&1d3XD1&Le)&2K#{PBD_SJTlb)74RxrWzNhKbo`tSz>HPx3X zMu9!mg&Qrn*{HX*L%Y^!w1B9=MnG#@D#qKhbRn-Tu{jpy zSq8sp^gN@%0e2S@#&jBEWig(Ao?IlCxbr#w_Nx4^(a=SSx#WHA6DVwb6^5x7l4fn@ zo8?6@xsv!74dC8bKmg{Z=*O_S_d=|f0I9I1Q2Y6*-Wx`E;lh|U<_nD^FZ}!ubNuc@ zx<=UvV=Ve=`A=&|#e4&nREs=s^M7U7Uw-*NkN%?$(=AR8;vMP%loKWA+t}uA8bc0WYSsP4zxc@n1VZ&pMggjS&PbCg4 z>R}g$ru8=Ce(b%`z@Vkix=O_b~-(bG$?w)(8#(Ma@!7(~?7N^UQj+L%Ir zepW$hA|c(wyXbAG6@qNoloR@YC>$T0V~a%z1G7Ae1}y#dt6PJE*Uy5E!L6d0?gLwJ zUU2Pttw8T=CAyyBdrC#LIp|pd7?M5gZigZxQK}35T_C3zePDZmkA!O^WSWa!((Gj7Zjt*k!mIeE9CgAoc%Fe5}gXn z#)R$f`0+DpmqwanbDZ%`@6x*Y`gtyuSW0ouw18i#n?g)3-Ul`E(wHHfIZ87qZnk;4 zbJ#7%((?X>yzHmj$~yalXEmQ%6gD~he0B@7+ewPGbK(sNqLO6SY8;hZM(o<8`uJ2G zSmXKO!BdLN$qW;lRMwgQaX(T_)2hkgtYuPFNE>W}KK%Y)_k)`&Ep=PF0jsRmHf~Qf zhb01RpkVV;D)hAmc__+TJR4j%P8-pwz#(=wA)SWJmCFuO&c#^0W@p4{`#v-68ydBM zNHQ|VJMeSQuct*oIg8@Ia$r~Xz zy|%4Ej$T2t57G?y?(DkX;{(XdGirjtm~i9;dtM;Bfxudoc2vjEpf}xo8g<$)UydVUBP9`oQ+4SEQ2%F`cQ!+cctcbvaZ~frM>k{r^mdd7age2vYnw4H683X|RtYHnvsW+vy{z~QqPOb2 zjJHhYX{{*>*LAY67g^)l0!;TS$Mc^K6H87;7D}c1vXp+z*a?s>eGOQ;Q6qwQ96(zG z;~aERazA!b;>$c~V;sHZAD|1dKOne-tgwL@#5oC5N8l!Il8D<{Ks4ufG z*d>m4J$9Ca><@l@H0EMRXrXy9WtGq9!6tffYs6pXUq05n(o^??cDy(^FR;SkTR=-WS(C;-Rw=z zv3SBshrxkp{q{>#W(ER2ANjIaO*^P1KNm3{#qY11quu%IoJOfJV_Eoj0PSS-Qw2}C zNONXPK)xOl79+iCuwQfb&y^7X$908sJE>#Zhj7oBnF4L4j?gZ_aF(!Lzuy1$3*MCz zu9K5~SKOD27AwLx`W}0k15EcFY`0AyZnqMM?J%QSUhvGzP<&jY+E?WcUqIm_7iDCZ zi@(?0Mi*S^^$}6UgJM%v-FWYSFtcAhOx=ny!T9gRNRwf<2i7MoQZjYPOH0@>*xa1F zKEfsXh(wqGJ`m95FU-M7HPAX#l6uM$w1bVBd$Oyr&bT4U)t_ePI$u3wYqiLq7hb(I z>@M<=P>#&9!zDx@dDlm}xwPZMI1jN_PqiuX^5Z2K&$Wyfy&ZjtB;YR;3XO1!SV8bE zwhBOu4y>$y(i-4_|66 z5&xiyjz>9I{Qa;3J5U(RdlE$%Tq(R^XK0`R=2-gO)n)IHQIagciOur9+fnd|t?tov z1y!1yK5KTC7q8cT@*W@zc#6woUu}W&2U1mYwRcc>cdk%KmV+t2a`0K+v(L*_){Y&E5Yv2^ln4?g2l0hq=Damw58pNSDHh@?-JBPv zV9!*r(?pbd@(LP3Gu2qqq(q$hfKJ7Z06aeaM949HHJ}X?sJn#ynV&hBy#DRFNS>XSiq13dnDC-okM(az40A^Q6~ znhXR}I?TEPJHueyY`6CZkkuy2xEsf-+H=GE_A9z=y~4HSFO3fruWnJHj(NuvVQm#bOeNtJ(E>0Ci1*4LN|1j&4t4^J_-(k1*MWZ7 zsti&njQCtUj$`^$*$ohaL@}9c?m)LHZd6g^0eU{{N<$~=&#d#p?$DWa#v_QTN2h+M8^|oB* zrZW`t2an2WIn}SJ$RG?>$-`0PE)wZ2chHvf~P0M@Y$|J(9GLFq=f1Wn3cc4O4txPc2kD*)sZDcod&bvYnh;>kb1>jd#-{TdRNdL&* zp$w5+pFgy^&BLigUwv%i7Nh@rqZXTW4ww6rlc#^tT!zG*0@9?=(*K4kNU(f)C(ndX zCrep8Qa8-sT^;|l()SEr%<%Ea5Js_~pppAsYVXg&6r!5+PA9iJi>gfyEtLgCW-Vlu zpFQK{Hl&#sk~=+uY`w2`^0|?4z}*Qy zBd&CEWDLi=MSx#axL$-rXTBNgb7t#2O!fo(xLuL@e7XkmR+e{`8tM!G*E@P#1s1Y; z#zSI4R0=+|Ed-xJWP;sJ%dE{D?e8h?^JsOZ)$%J#Vo~Mia@$bD`xm&Xc8ci(FUaS= zTROc(j(z&M#YEN6auSp-3YR#-bW$K{tNf1fOQ^_1Gg4ckGdDY{qT)P8T9vE>w}Guu zd$^I&kdSJ;!@9dhV)~IUXiB96b@`X+%;;1>a{i?(s$kw?6&>LgXJXv{5*mVU zI*E3SzUAL!rqpJc$eX`Xm7CTI`Io`aj(Kxm77dpO|3S$e1Lm8UkwdwASGHCKbFT0e z@KI=h9G{9rOR?wZ!>St-l65;)6CX?rDXWbR6}?KbXjQlJL`9pmZ7%eA0LWgu;aa$GW*;BrIr$vuj-Lxvc`fm_Z+nP;wB!^LTz6f&xq}gzTW88SJ38rf%Gc_HAnVNb} z9u!+xJ><*zWfz1o9ni>_C{WY{C9q9YeMP)AMkLO26Ux9Vow>I%2ktM`_KBdCWH=p} zq7&<=2dYkItNTQd%cLgkB__ardItc0l&rNxI}*8gdUq(?B~-zr!355m%&ZgpXP>Cq z(Oq1Zn-o%Ih)znl3AuGxv6!Ym+I)VCTjWAXl1NT8Kxh2?CBxO%TQV_QH=>IliQ%Np zqa}M#aZqj%cXmRob`$EbKRt`H(|n3jYRgFPYFq5!Ez*+7lw9HPfy3V5n8A;P6t$f7 zv%`Gm*~Hb+8C?2#^>jZ2ixAZ+lnx1Y2L)kkLc2D_a1dj;v9ng>$9+13EGZ^BhaA|S zDkIyOO`%;jT|?CR+Y>W!>YtvuWqP#hx5JYlnyDVKEbqfS_hj53l)$G0NBV2QTEfux@ucdNVif%)w`QEq)bx!kav*H*_gJ1FNjxbTtbuPPVflPFR z0V8NPb_CB?ZN%(Qjju%jw1U*%CIOHGifWCqkv^QYo@bN*d~CIZXpQqS@BF(gWWp0O zlLIve-4jPfVx`{=i;XmV2k6-5V$!pZ8c3hW0Y*YLToNe-sq5&57e7VJ{5Xh6ww*M? zeXtLrla7kWY6OhF#tmC)VC8iy>ZPfBK~&-rV9gEf>m{QVK@CPUDFl1KDk=&)i8Koz zTNA>>a?}qZ_hhZCR)3=x*T>9oK8DI>s><(GhxIeInunMW=CdX4ob{CjPI~TpP_RM} zsbI~5fI;0Pghs|K1Jq`v+12Wo3o2UVeh4a2F<-HVZDhFD82cs21=!`pr1oNbwxnsT z)F}3j!r-^qwCrn_f;=Qj>5dlP+DN(-(MrJ75Ioqk(m64(cM+~tsR_M`9WF+Ag3i0i zRvr8KSiemI9;2T43s)s!6m|P%2VQRoQ6qq&;X^@$O*w(eKXb(%^k%MbO?RQ`^rs#r zCI;NIr;Smrn4{a`MB%PN-on&Urb_9&vXU$&-)FxO;Zpq!LX9PW-L zK1$RDBvI>TI7}8Kao2@e@JKux?8xDD)>`6#AXzSQU-x>+Y)=vR#GtT9mJ^BE3~-;h z$q~|DD1Prl5srzcNeiT^Mf<3JNzNSG9diOXzlHW&ndy^$=&YUp;B`#SV_I5T9qWkBY{TT5f^=kHdmn+sFN_<;1=}m9D~#`=0KWD{I9#DPHrXE=;x% zS|1Tsm1*+c`#jfYr}w+cpEUhH=)G^P73Q`!Ab4m+hk^_wWKK*?Y3{RG=+n|c-5ZE@DGQ{3KC|Zk1O*U0jN0HSMU~F~ z5b=Oo9VLN<^I^S_F~HWi!KNyX?!1fW1gM@-Gf|XsSJ4rsJ?9uWr4YL*Mqsc!VwIGX zPB0<;Vo^-<;bFP-_}B_thlL}*LEG(8)LE)u)AwLbiljR{qj?y8OU@|oy8S*%Cm;^x z&?K0dpG!l925koYTO=XLKeGk9UDf5w#A|k7=S-gO-!7&ewg(C4h-2k9vt_4rr124} zyT%`4fa}Ty93C=3aIUgC^W@&&N*Y5Y2^ZI;51JFgOCzb=r+z^Ao*{n{;eQ&}NyUosd5SzXEVw2<3t142^wW%)ShZ@kwv*9HkEp-y9#qNIdn>89=I^U`c=RM{Z?_M`8 znwM^;pdN~8%l6udpxyagwL+bPT+HL*YO^WJT42oke4u6ln^Ef>$A~#7&0-U5&-IRbjROmJ>98~i=pL?bt$(a8m%aaE)So!-z1_kSDFu7W362tWl!Z|T@ z_h8?TMZAi8~fp}b_|eSAGgCZE7xV`Nr*hTB_$=qZoZA{?CFowgTb0fu&Q z67h#`PxKr~c7De1b}}r0OaArUy>LaAIjnDWqR9;2eH6c>?{Cvp3SIDS*ivoU5b5Y= z3rgB)ncK1Q6{eL0`jenQvistOU|E1fXS#7D*vyX z41X*C&!b&Ch^XlAb~>LkfBP!Ng9qiqk4@tLRQo#ZmfJfq$%I*K-RBK8Bqbr(BT(J ztW@;&lfkGap3!`*+Bl+MsNJu0&G=s?T3Qk8xLt=L^C)c!655=Jx#D#H{he%lu044x^-XauXH1K)#B0Igr)eOjab{hRxl0$TAeB6 zB@}lz@F2xoW=5=`>r!KCjH4MZvrj5X;TZd~+*+KQ%o%@;l{#eb|2CCi7mYn$`(|pK zQ{FjGwM936dQ&?D+5tk)Szd61d8giS9rAi_$f0gp`W3@oQOWC4yz`%e6goT4Rz#3PT5;mp+%Ry zQYr?E;~^2@P(agIe#Ob`vCX$pAtCLvcb~{6oRf; z1AT9%N~#jiNCyw%o2h~>pRn2Zy zie`ufN%*|A*J@x9NQMQtS-6fFL1jP87;Nc-L?KhN`tNW|7QTcY7*!7R=UP03n^&yn znCJ={3&o~(hy4&x16OmU;2r?N;2N|bgG48~ZwL__5M@(vx_^IbPT3?^%%O=S^(Pxi zQs^tBsZe4zNfkF~KQA@VLVJ3M(~KB4JZ`*fB-by5ptV+lNSsvSO`#mj6L{+)k(TLY zoGbEp4rMWC+I+$H+?+W;LFTWhNxJAo`GEID_KpkZI>6Y9<#XL|8%UR!88gB2SQcpd zb#|ck^{Ym6%K26}w~MjXN9%&#YZ_@Of2CoDkjfCmQj-!ytyxj-IUB;Yk%E(}zvfR} zA8U@!UZ2-|t(2^l=IFH*DE-27u5RRlOcZD5;w1dFv75v$c zLfSO(QX{1eGXCSFbT5gpGM1=sgk#0U>Nz93nwt78Ux<-IA;0~ufN_@`&K*$f2+bl= zr#UlL=LRpbv^PXg@%bDMLGtTSmEm@iW|xITd$m|a0+deG+wkSYjST^iry;DnG1E1-W+KRV7UUK zhDZet&xVYAW59;Cf1Uyzr0?${KZkx+vl=$wr$-#A^7!&!)#G;@UbnLZxeco-4@f65 zFQkX&n+CLR%*D<#V=oINF^yrtElGpDHDge$%l{7Og6uwqUQ`OB^2_o z$a>wYomg8H`I0{^wfsNk-YO~%c3aoP1BJW0yE_DTcXzko!3h%Fi^ARAod5xX2X_eW zk`UZNl2gUM)>(UZ_t_Uc`l2sCpcqxi_-4KG%$^dxH=fP+n9!BC7`6KLL<(Pg>*s#_ zSJ8us?7xa0k;$uDr8X|v=$t45gHf8D<+`-pnXWo}JJ zV&zYP)w2`)%(D4VGVMRw&YLIs)k1xSc3{23jFrUX5??aJfr~lPz2+<;cD9}mrXix= zL+Pw7c5W-!1<{_kNUz(>sMp7jJPzWWjQVdZzs5Z6;mE?oT@^&(?)ldL33@^rq~}Wp z0UNJJDM)&Qvaw_Cb?`7n2kRZC4b$uUuSf7h(FxE)dlO#Ok4t|@QPtmjnT#JIhFoI6 z{cq=l^3b(}UpnM-!VWsnPkuxF2a?Xm1@2Dw!5cgWxO_rLm4y6bVt0JUMGcwM`)^y) zuv>4^_BsuHmT|IRxiypZcKd%qY9xZ-s0xX)=O6S6ugg)dH&149sDZN1dNT5pDcQ{l zjrdhu7j)jWayssurOLmlOe=e`ElO2!nbui(yNgEPrJ4={;Y~Y@SR^cF_|=>Tc^;a?WRI`?Hi!owha}>2-u} z=SNqTr!@Z7<|Y<2=9T4{&OflN^52c2kQ&J)njOs6f!ia~iQ~|u;^)d(#1VeKk#hT{ zH}?#w4(eEw`F?10&^(ct?ag+8ueH*on8l|{kI8lr1`@XaAzepp$y>YHe(&GlS!8V3 zWEn3`!nD_%CC=bDqm91r$gsH<&%3-MJ<9=^u{iW)@H3-e#?&0E5Fj;`ES269t^6>2 zV_%P~T7X9clv&D0-S*!?qI~u98Jx1Q6VL$0SY#z5AOgI2|-!W}W%b*F3eyiC+{#8y^CG1nn{CE6~LOI&S9{hFd7C#^& zWDqw(I{2L!Pzob`4rU?eUY}%{my*`=@5Fa{V&P>*y1NLR&!u`R{oj}Pzy z<3?8D2M)DHAk{{B$u~MAFoH=K71$rVn!{G z)R=|t*wDf{ADE_q_d$DJT0ZDRZr1unKw4=!}LWvrRsA`l7<C*sxA}NE_G*;BrD|NZu zhy}44!{$hxK+y#kO=xfSm?X>Y7jLg^h`Oq$O$Y(K!^z1Cm}P`njA301=e}; zFCw>3Vdug68^VB2jp&<3hxJgF-&~>e5g+|klVX7?0h63S%VIHMjLVgg3=`JuE0V)} zos*L2%qwgcxr;0|pAc1jN> zhhcLI)L79WKs=t&Z`7MXY+P)KcpmX17y4Y&RAqb_#n^h3;AH5PO^FvcNrgul5WSAG z5M0JjOW9<=h?Ujj?~3EnlW621BeezP@EJB)|;*Ii(W~*`!M3gF(jQQEskJyf-&Bk~%+&5)IWZ88z zu}U%uj29$>zO@?>4I;GOM= zOT;l&ZNjSBf-*g-!?b0dhwU@D+muvT7ukAlDq!3ierlb>h)d3p*%Hs%z*InmsxGG5 z%hXHUIcFO}x~Q#9kd$91G@n4QuYX98mtbs4>!g&7*<{d+`4QRbZe=*kHQL-S5rJB^(ReEXu@p36AKF?y8U{4i`@~%89M4dCH{dM(-6BOX0^r;M&-4`x z$*5bmT4y@6X$zfZ@0~>djncp+*HZj6W_cAV8Cnz=S#$!D|7#lFpGEvonN%O+Bu-y$ zuOkDsmJ+Dy?t*;C-%M{gh5zNM8jozP#`{x6sRh zL!bzDf|nKhBv@`nr5e$Of6AZR9gU2rFS9TT6D|YGvAhl5;y^}^6`Z82o!;X}Q>%-Q z|H_I^n2j5>cx)M7J&4hz6!y^Bymk0pl~=ic!pvmlnUdX?__lDlnP|s`L9~M@ZJYW-#Jk^?n0|2=mIS}uNy;C4h|bFy5DbIMvifd z)7@oSg4dx)JG#9yW%hu=Nb{c;Py)RNMuuXCx{6xu@)*jN%XnT6JO{$z4pG{5{e?bb zG9Yq%+nIucXqsCVr?>B=HB&JzJ z(FZAJ+F%aGDZRES?I64J-U@rir%X^gkbc3k9Np%>$r+8w6iCQ;59SyjH0r(GjcHA)X=bG>L2gM&0Xczyw@m;>At6AJp?cRVIH2<%+3+&rA_^HNRswu`0- z!IQ{&SM8yw&g;q;<|d-PiT5ikRpY`m^OkBKeVJtTr-9Fr(M58vUys&V z<3HWSl>$zEtn6^19{O92rh*;l+{-T^| zwt9wdd;D4U6^G%e$@a8sh()&PqA71|9#(j9h%v5Lc+!o#-M9Bi*h>olNQ3>bRbtuh z0Hb`sAAUf%D`4EfvbAJ1$NK7=PNc6i{$KC=DK_9#~ABrm=jSq^5PK2eB#q z;#r^X9n59R;xXiRP_E28u!{CtM$9^(fhl?X0S2I21@@SCVYLkRE~4?9!a=)e=B$w11e=LFy|SM3FMx7$rq0s%9r7W#GYv6tngm zqi}m7c9YnehN9frSo{WkO&vyu6DlP`YZ2Z^ld*D~;->i&MociNLMZ}IVoF($duXu7 z&txfDn(K^D5e*o!$s29*vjV#I;Z{A3#sMKv<|`NxrvC9p|XV5ds7l z72oE&NM9+-%;GV?+*~=w(*xQZyq43yBHQIV8N98FjgvY&6?Y^h#a!AdO=_iND=Nq_GV~R1A!OIIAh*^hg)bIM^{le~e zD{ZcSuMhd9U-W`i2lXK`(M}~fHIKj$8t|O`k{{SKhpDs}{ki7rMH=hZ=?1KonKRvN zF}4r?s15CTS{!Fda;4vem^`q>fF?lGuAuXmjh2bjakpdL0S3i=%L?eXSnumC3S3@~ zzF?<^vmAqJ1ct{HyGg5Ii@$tKZ4Z)WoxB%0zJ?daKZ~AbRMW*n*?~YTCjC$|G=x@8 z%FzTo*JT0igEY`hzI5-lWXn}_-r+EK{LWh?b2TtX=2TfIG_fX)seqGhuhke&A&Dx; zY|!%^IzjcD-sqIeYWef-LY8B>+-r1VG#GZm}g--a3kX#Jb?!r1g{T~7ISRjo}CH|qj z%WZ{f6Qfg4hilOAf9 z8pWi>AF-!#wS(x1G9L8<#zW&eiIlDrDw8Ag<12z2>k}SCH+~f6if}!y?-q6d5mAd^ z_O>ecrNU`4wRW?YJ^Y?$qT(wtaUMQ z>E&!+Opw45Ls0jBBnH2>LCFbCS9v^g?0RHHy~j%w< zwT3V!!*FZOu0HQ@IMS0GUz^0|u@R>}RM`?xiJ3L*2`J3Ud9d~rAOki@yC(g6nYkC;h%D?>IBVqFVNf3w`YZ+*Q zF`j?Er(u*}azxTjReUQ{hnlaMjH-~!7Ht}#EOh#;GF3_HqJnGaNX-Ql|K>X(Y2LHYoS=5BXBndyAuG<6iL~B=7%Vf@^CeklgHyAx16w+(_(tlWD zCVBItsE_Ao`i`O^B_-xdQMZE@R?%DvMht=ZxD!^K-W~?<`YTY0>SbR3E0>QHaIWde z*xBpX;c%sTF5S}W;YaF4X>UgX3aKM%n z_NCFamszUfW_0tz&({~B>I(yN#;?OjOH&TmE!q-oRr4DGLk}(Qwd3{F@YxjCl3%W( zl_LC8qqzJzM*Q{^uL_&B(jBU<-l(E;^GRDOX7d%qB_vwJ43>LTQ~*?h^un&sG|q#E z16sCqwuHHVzD6GMpZVXvvDJDwSP`aK?Obe@Z6C39V-t#zWR%VY7fk6T9}eF6n_W7o zYeIW++z%;c)v`L1S}%T-pOsU`OC|93*m3{!hV~_m>^B7QiJhoHT8;Uv5)?Rpu9&vW zAA^v2ys0Y%PQME0*dm3V+{UTrd zSjn1N7nh(~vU2<7m$t>T8yl)3O7eE#&6MC(dNws!HYn;{InCF5N9t&{`YSDYf~?p_ zRRhsmTc78IcTM%XjOEz-EBXgc%0nk2p-frIq^!gIDM9jlNVWmmDKl2-{i4GmZD>*P ztnlz@WP3|ot*QGs)r27QC%8E+4BfnL0b>5kbi1?NNUub(aO-M|$=qjgNU9-xq0MX} z=Ml8NEnmj1f8dVhV5DZGwc2DaLC+POTP00-m0g}n2&~Br!{IX>R}MaB&y9G~#EuyRmCcnh;YoH5l;)|RA>ZXgqKKL{18}nI@8|F5mTsXm5!y% zT*{r7njaq5uyYLma7(jf8*l4}$x{V&-u$f8!(orR zgPS(x<3Ax#Txpuj+L0(J*+XMZm5a^{hSW7H^ed8~? zvxISiJ5sZx|Le6z+8++_9VGfY*8cGwP$9lU-N^d(Kfc39i0=T?H}#M2;0W;@9C?@j z{Bxv$v^_8`UD{v2vmT@kickT(GW#=14P%Bne*e(%i2S}9Sdp6+^uhiWRPhJiH7=q5 zpAtuSYz5nX-LL0_xW57yl36cj(Lb3Jyk&QI?N3Y1v7J`e!2P zi;bR~zM0ubl>Jx;X5>!~s|XieMJ5n9T#2ecG^Ad=s=1)Cq5aZCy!KxA35({DwJfsm zCBAG?w-mrw2KZj4PM{K5O4pd>DkkiX3zPHZjT(uHx1{uO$>x1&9Z*n7&ydW&$2;MJTxZZ!2QDaP)Y{r0R@tsDW`BV5GX>8DvA)f@dyI zz)$0VA(q|3SVqZnxtbfezappzdLJ5Xg3EYkq`R&>SpUU=+QuErlK6M%MjrtVo~U;Q;0YhrkfGjHip0=~72+g# zTU~R}`Iqg7n_L(n*XITBJu#fl$YEEnoRn`JbL7O=`5?^ByPkZRx+aR7_rR4>h4cya zl!>MR>EN3$DdKL59wlYOQJlJ)0zR`6xv;GCVIB|uu!Z`@*>l2RgAq@Uv3l2tloQSm zgwSFQ3^Q&WulsXBxc9KKY!@VUnHDDFH4ow*bAY9%#wy1j2K7{5VY0;MJai^lCBp`im3gcmohtAmibfy1L8Ax4DbGNN;Y|F;#~_S?@W2pw%Q7>UB6##7Qs4pPPjiiVVw z$w`Z!MnY=YnKx)Umt*9=am3RYOIrJX0oFg>*&itN%hJ+D8GwFPFqH<2{>y)`X&bvv zmQ$LRB*Jer%>rjBAHNF8Lpa<~V))b66Vl@>ir2VO{(Zhr_wllI@4MktT@*`fhZ+CM zr8FmkjfX;(p1snv95A1PIIe`%1B|Dj<^B(zLi;9wd!f?WW(;Zq0^!!0M?Edpiw(6l zTGGCbckqj&_cxAB;r7&BC5k1#{p~|gD&X)^p{ZDIiaZ`tp&?*WF@aCqoD7;S?lP7{ z!u&RyP5}5d=~Be`aI>|UROytxi$K&&pC^u2a`QULLO0VF$$!t0 z`+0xf9-TBn1J88_<7rjzSl@Qx_$TSV8+7!f;}@Eh?ivY*;m3QthK7-}+BnfiYSu7^ zTH`YOH^B<@>yKMdX-XkQ3;IOY;P4F&)4idzN1Y_Z3qMvz^PEZX>|W}*IN>?!G|M#Jir;=*p3r( z#hnM;g+PnT@y6<>F>@-Ojnvj(+5v_`upfUmp_Jo|!RbXWA`umW45ogfva5>HdTg)6to`6b-oMg;46p(HGm7s{T_Vv1%q zwL$fqxYLX~^th(eCb9XfieIz8SyMia@B1Z9NS5jY1N$z|Zw8=qUNAXKjVl4mp>B;} zdO*!E3k^F{oBiE0DHwXit6_k4&bwA>cc|Y> z@H{Lhf3WKR`qGp_&nve*NnTcNn!fQ*qUvLx=nussvHmT79K(l}eKcE_hR$*FJ;9oSL~wj9AG`eE zWU)#lAXa&B{X^swGrgcv?0tv{IaFJU;wP(Y*#1!?j3GYSsvf%Cd{Oc=pXpSJ9r*x| z*jb*S7DWS1KVg{N62`$<>yt6dup;11bD8|iYSb)Q(8RNhQ2}tb4IDo;rrmIsYUmX# z*3jDq)kxdZWbNm$Dk^m0tm6~RA`q~iR1JsApoQ!ag;NbWDJCp3dwRKtjS^fS4%RSx zw?7`shK!@G*!pgzM)a;?fDsG4$_vM(r2tn2XT#gYJ^HU3s01k2rqPEw++dKzqPX@d z7S6F0?oj!)V??$=<`63bT^TDk=ws&1J%Puhl@6FAaW_tb?bV4zV==HthJwWcaB)|j zMd2I0hlZa{8mKt`@{#!SZ5QM{MrAItqe%J*4B^A#yz!CKe6nWA^tYqR?<4QaM3@J4 ztg31;-Ro~j#w%2z!LYDu0-#etD=rYPqU!yO$ihcdN_(RTYa50CA@1lcV=cK@n?i*c z{+RSg=Q8wn6;67cACAdpJ&@+pvnaid%i_B2mwsn`XlSy_nU93p?9UNvPYo&hCWS+O zw{Ig&qc(r-1e0boSe+mvVHOmz1J!C)pda=r@7`jYy=eopBk+^nMSUYsFFz>#wAgfV+`r53cmsBH>^^~U$WjWXex`;Du~yD5zPSXhbAT4P)SaTqq$`|J8fE9aLO@Mx(^0cB0u4Xrml3BLh89Jld+6PT!Qpw zl*IiSjE%rJ?h}%AnMvmc*YA?d-<{_~WwCMULQw8y~iP0x)JkzJGzb&DOcQ8{ROJl{stziXd>FF_~wGO1?7yBdj}vsH%pPu}-% zSK5d1TS3}&(A#xmMxIB}8ze`BQ7?jJ`C$5OCZDsfOjA~;B1c7{(Fcl=Ak~E zT_S&XT6@m%Cn2|=`|F7B8i)q_o@yroj1^I}Sii1g(AVjnPI@9u9pg9%q6=62_@nvh zFYTehl1#_7u!}|hy>Y~`f~n{8lRKLOcyU81k}0q1Y{X&XgrX%cIcLSAfssBX72-25 zcKXC*km0uch85jSWa*kcSAo(e9|WqA_$BcGRX+s!@a?oOMpvPKWK2+gE#B6>1{s}Q zh)k{yA{)Twfq*g05~{^^pf0T_TUn9lHwq!wUsp2$P!JThiQr%DCol@T7uLl=sDpLO z>13G?w4P%ZCO)IALYjrM6{skgV{lh7JQLUO8e-J8oIp_sS_b)xq_WK{xM6|YnpkJX zA$cdQd{DXf$S?*W;jBcN6iSXaHtc22VUkz1fO{y8pJN~2T}b($-LVHAElm=J&j8HVyy6*;jf@+qhQ9g3J&u1R8jK!*ccc?>CwbM@f?pGl9Z9H} zWZiT66J^m*n$ZUHGkPDM5w(9d0vFeSf@^?u-Fxk!tV1TK!Q?UWIb+}Ed&)VCd8x1j z!3K%<+>CAP5nQN>JN$hNi2~p=L zF=h;c@I+GFh*Q2_`HNVbQ%k>^2XgvigI&vOh~F{QKL<80&9QTAmcwqI2dX;qcOTbg zG)&ci3D_%ztD1d&YS?>7! zf-J>=-1T-40QPi9N7p~104_unXggZ}`FgyF2a5te2t8A;IPA-6h$v9ayAu2wMua@H zzmt2%rT!mL07AahtLwV|^m-Jg2ICu~=wYtp^gCDu0Z;q-e>(oSEVZ}G?r>9ru~JXU zv}etM4F6Of$o3`3INv8!qXUOUi4Gdv(*J0eBMFNczawBQEZGnFG-+Z3HT z)6ieIDwA@HkK|p0vGhq~gyay_eXK}>Fa&0{WpzD2p{z3+FC4W*X;4|6C@SK$*rX&m zym>EoSMgiP6%AR~cWCzQpsJPwLN42A0aXLfzc3Fd(li-ytDbi~elM6o{KpnJj680V zvdv|xpq_IcalZ@fD|@lr&m#&S{QeLH?}ejFfdoHIG0S2uV)mRWR}=t3Yn!74%2Prf zCxyK)4=klJ`3izCt(|lZ9KK3^yczXUu3jJ3BU=J@9acw2t*UZUC%bZT$gmM2Q$73z zr|3LK!ht8BPA8J^6CyhZmCF6SzD6{_5vU#OE?h^%Yta(?1{Vd(OQ)UTK0@WO%LUd5 zvt=4PBQ6|ifex74ee>3_zO~wL(q3<-C})nu7-l~b&3}Rp?;CMy+5l0c>NPByE0yLp z2-*TGxtSO3U77Mg3JzaUXen*0Qx&@5r}lIAh@Tknmyqbt{&mssu|qC;jBG(#b`ezG7d9mknEJFQrCQvu)WHc6in@-|qflZNvi>_)V{CN2L zq?Kp^y|?7x>pm0*Mdxc-EM?by#Ah$ag^!lmtMRXBfaWjVOy~m5EOhRMlN221fOGZX zE=Ouzo9)tMy@+lW#Td~p7h=jkqjVJf_o(0$2VVgyU5?RkGR%y_SE}hM7F_atYS}AP zRkFgbAA_(I!|ewTE(>LBzrh z)#^rF0pI~KN_5F+Zp}xHY_8hMsts>?RDpi#C}ao6!K|1H?mPlfOvTK8LY6QwBr@q( z6E0*N4r(gfe?@V#Bt&a}H8Wze5s)`VnaP6{c9ERI&} z87L!4f{FcOhQJ%U2#X&`GEKNf7kQ(IeiQie^2%fFb5J+h4T0T-1Yb@4`jqid&?a&3 z8CNsSCf|=L&X`=@?VGRwaK%B;gu&h;%5~kr226FRUEVouN!dMzfAOE4%RodgG>i|2k}NBT*VK3xUky7MV7S|?oLg)Z@ES(`={~4yW~MRp+7Ykud{ntv z!%vrgA2@hgxz);|3)MGQvQLU$%$e&8$J?&RC1TL0Bi%-nm#>q=`gu>*C zDC*JF690kc6?o8yI8EZ}HT*o7B0(yxlxyK0U+%--~ z!IHJ7vz$`tO_J@Xjcw8=4Ac+HM0F9o10ZLjWvE#3#|Oj0A2s(V*Y(ryYNef5o_gOAk$O)uo7t9C*C(y*oo`3_Bf*)fQP6 zQ!Hv6{5dJuDMorYITYMahiwcba|?^;$-CO$*oa2-GErsz*`fi59A8o$q`Lezw=jh) zjDy?ei%l&A^qI#HEtGVV9n!3? z3hLt1uECnQ^4~b=p+5z~DnU;a8xJfB-<|>gOcD^vLpf}aOd*&SWmy;Wwg5tlYREMy zo{4%zJnZW(9Wy&*RATyK!KE8%s_mJ5nnP5^oMkg^@T%DHvZcP1K+IhOK2zu!y1YgQ zAzZ0hFeuwt_=nN!2h<>jf|@qr55?Ex3}lq}|LU`lIwdLPsM(LVm|(&IBb?VGL6m;7 zK-rG17`|7o6tV6;i~-6E?x52O`mxF^``mKa;e(0;g!6j0qSIwe%1E zqPivy0oLmor?tjmDAZtlhk9!<2i{eIpVEY3{|VxLYjfo`wFS$XL&=0-sK5!M7J6@}oD0D31Sn#t!Ink5 zWi~GBC58pKn%19gBcC6R0r;z3+gcez(Sm9Pi|gw_fFa>2XXh5bKDz2XuFap`sKyY~5L#Iq!PyyV0$FAD@_Zf9j<1tuu43=#n<+k#-~ zjqySC>MgS7%!^3@W#KoA);b3Gb!J)yg^Ek(#VwYI$%I(VEvg7@CAI8Y-l!n6ykypn zT9p885Yrz{2`!=Kf~s#iONEcaei?Dl-*H`OxxCnu^<5MWyBlgb4PdVuC#}b|%i2 z%_q&R#N$@Bk#ldwH%8&jA_V{5&KLH9mDko?X08#^tW1;^alewiM=#Yf&=RWGa+jd~ zOk4XXXTtg=FA-i!!qk^m-aWMpM;|$4W!bIiP}?XSJo^Wrq2d!FmPGQEC?1F462}5aps5!Qn4ya6U2Er zvt=qXJl$3{(pC(uwY2Y6*y*&mMb3(*d`*R;7qynqO^V%8Ou=bvX+Se9+`k~Fa1|2S z9rguiDVu`B3MwBB8&vKZZQhTVS}_ymy3}&Ut+$RB&|$vXuBF0tE|!#$mt^?J<8>k2 z2*v~edk%%qv2ZP9RPOhcD^r+#elAk8CDu-KGAR(`vH?bT z^kY2#;k_-j?gG|R=}Fk~)RQ=hv8{ko(hW*daJHnd(bW{OIBdCPZgu)(NtR_8F*=aQ~IHb#VW=$HGE#g&E z@F|)F>#&UY%6ti^uAO{*`Rh>9jrYsOaOCkL$^42jqg7rM%YexG6M#`V7hMDe|1%l_=@MJ z;CIVh@WC@DxchfC!K&^SdA_^(jMoN9fo*I<*m9VDVB9zIkrR2sMfjDyXYN9*wVSqd zem~09#ryYSJZ2KUQ)-CI{&3(`90dG|)a}U2p_Pw@)ZsX&!bif~ahdHazh$18R@N6* zqKd%_iRf~!ao~0jqso3ql(Ex3L8B+dso{7CISPh9BV4S|JR@7mHq(iGD)+ zaG#vPx>{9Z@QoW`J>{ATS;6i=g+G7zEGczGK}&JjNJ-kPMs**vdTdzVan zqp%qvLQGt8EfxD4^9-u@fE^|+J3CB-xohQ?E_2e<8AYzPLTPxje(*M=xGL6Apbrjy z1g$lSw!Z>Vl9tZ`6Y9G%fqBpg3S-yF-~`UX>IRo^WGJQ`)4oPejaDO_wD?~w!3?v&RYQgj~B z-Upr*md&Clg$-od8XNM30{=ZA#So2x)S&5ON-VA1YLjkrVcxsJ0h$hJAOiB&Gsu7T z7;c@j@#W|3MAn%k_K3Igsek3h6a$-veSkfV0S9|#t+_PoXeD69fGh$0$2U?E)bTr& zy5CkPXRwPh_&P+m2dqQ*GC;fvoGl;T>3_TmGq6{&(&N1W(Jyd9sf{${g4#^~HH8pU z&oamJv-P0$zRD1GkR2P`bMMT+UptG~!wLRQJ?^{SC$C2lY_QsqAM^f~<11S#0g|mq zKyHw7eLZGD)DGp=Z~x#RT;u!C-=HKCfEf<#iHIVRYzUmfTPj|YhEBXN|DbT|2gIg5%UHdTyOc zCRT=`PQs3W=of8r78Bkx?yMrAC|c@GM@n6n$?_SD9v`;jrt0ndj(`-dkE6@L`suUP z&{jadJ`U^~!&)^Qvy-ieGTTOuh>+n$zU5byTmZCAJbt8f#LHoZSs=w{>LLUW zh0q!vx$IObw!7HKlI-@sna@1Y%iDkM`I88!!WX$qR?a@2T&usD7L^5cum}#n{1pt<%&&Yw_NL zcvNP2ac-2p9sxy#yX{M%suP&5&4s=xPm3?2~XqxTk|taUlPPSvoS6}y=k{ktNs z6nTdY5qkkE<$%?oL^*V`tsBQ(SJhrPEWPwR@=MDksF51yhf<7}AE*x%=x!umr!1GL z_gx;Dv&I<{xZz06cerXDrH3z#wYSxgp#HZb8>%DNFGUek{O|9dALtQ6e@^EiTBMA! zVzkd2sJR8DcE)whg|*pa*)x)oU8)UUGvWWXRcYz3im5{e2>`Z77tRF&$g>;vPra7| zEsFNIZ-=i_Zo4T%hCFaSC4L_*pHJ!7rV{Lod-do`0|C!5-z4RY_WlJw37-a1kFgbDcKN6xGzy_?Fbsjflpp~h6~q#zK%f`UWu9%hfBO+qZ8+MQdWvf-iK{pt5-h1mW;(ztbp zDPk4x-U724R!dg#lGew;Wk8X0PFzv@g(xAOu!3nwTMKOm8tL<80K^LfRY4p|F<775@%-T+FO@mOJ>F)EMYt zzK4UBwh3m^QryTE!SgYqrE046mbvO@-syz9I#=Na?*W_3VDT#o2Kc$0|8O@sn~_Pg z0{a_lurP(Clj(-flYGU)sPGcJ)X0;gEu506gG>?|qJGxHY6azfzi(^C$*6zX7(bb8 z*Pa_5gZQcbbVsKJ(|0ZA2dW7DoMjU=y#M2e?OI*%Q8&oni^EX*XVuA~;2EAMom5_1UtuaQ4C4&4q+bc5$$%rQvgBrxpb> zJ>hPX<&!J?GzHYffI96V-oe$#eFtKVyt!S;x90Z`x5urRgGViJB@yPO4HcSmU!^M1 zq02M}jK$+vDgdeNJt%=i-e&37l6502-tjBH)<3kiErm3FPCq`b!g6=;jR>e-0W+|z z5O{5L6F4*U_|fSlXG^LKxjn=y@L>DBP-dlBMvvYk;C&p;pbu`T+j4KkKzny^kSF_g zdWGiwcYbEDuaTc({+U`x_|9iX?M+7u?++a6c$t!KWhv&9rcm1i z69yk4v@UA>ZGMe2LA9| zLca#hP=V!>`9VUyb$+C13&#s+)Td>qQZ?lwcKNJfExc4Ot8&6GfTI zYp%=iY~*0nWeoHMNfF))NwgZ1%+eBk+mOOB0~;QpFkC=kVzEIq_V5ZSo5LPXkHr=e zKltAGKl8Kd(M%18Z3qqzk+DXt581%AzuO2{zf%)tpX_ELGx2Zh z`*>b$)QY!tBUBf$DrKqc?|5q zn^cJoE(Ygb7?1t92n(o*_N;F-6R9gyQznkDJ z$bFjVb;uG)=LawAs+~Q?JuAG<9sDWb;I3e1;gYsL7{}DukT_Pd_!Zu7yDzAO zYYf!PA=>I*G+dgG-Gv{e>=e}4xzxndou`s!FEO&BH};hZ<@hRO8RpD36#RZ|OvjB6 zD?Om6d3m9`fyFQnO;5(D&~MX_N%QBFqS=XNjd@yGnM)!ZguZa(FkgbgSRJv}Uv8> z8-O#9E{%;`E6C|fa)UM!7XW@GxTe9NS>^{J=e%TneWSxp#Q5eCxS(ZzxW4iiH%`Ms9iq+YawbqNV}1XcXX+4Vox`%wl^R?-cztJ+F?hWb zzn{KRvm|4!F>EX?Cruk1T~qD%R@yL$GU}uhP)Z&!6DDFLCBK2=^Ixz|fQ`H&<8zMt z#A-1t#^hM{!;6Iga6QN@5u3wO)^F(BIz^Mqo)eK{z6YW&0mk-YGNY1}FI2^kr9f+= zT*viORUj`9UuwV6bgn7Yv{j+^cT(tNl5U1-m+>9I(zUk{Ea%l1kyT5_B{)UM@;Y1r zdSt_l#S5;NL{vGH*|)DV-J>LxpjEVqhs&}ue7`<~2lF8d zjeu!~MI^1JR$X@?(P!YHCP~o-A%r^)?8=T+-IMv^Ybn0?V|tmbKlRn#u(2kGn~Px7vw&w zjrE|Kz|pW5e8#7qsVve}OCdSq1n+p6)KEVcV`kX2F(P=%#-=o+cQn{qPxaRLOsi&; zj7V~jAL;3VG>t+?zdfwpNZfhKVm$u2Kh46QXV$2zPKSfWMP|wrcSAV+6!||V@sj)U zEU{#tcP%pXWfiPY6HdR0K-VVB$>Oz~56Bg7E-ypwF=-y+EA&QD)PsL@h| z!aMf4)p-@px-HV0+yt@NkZrD{eE92ZeOM2NR{AC6^U~ zrw`7j9Fg5C3pYrqj9*9ve;B1d%1NDi2FAcjx}rsx0@9c6Ys|)71?qs7D_w9)xAWEe zDq1|5mJ~FG{BwZ#7@J?zKG*qFrc&E&IWhme8j!r=3=9*mHl)B~MwTusrn7YWpY35w`C59Iu$vi-8!4C{>dU+GJ zS}gL5(j*0q5Cku#=xFqI3oN0NwP@ATWLr7*gtM^R(Ijf^GKh!%K!wcLuhwT5nsB6{+LX;~1>C zd)IK4>?zC1MH=RO7&17_`1|+)b`|mZ=k-&6c!wtC*&V!Z%+M{%V+a*O#CovcFf`ba zw0agC)*(&_qa6B6obsRvm4_&ynhv?ehc=aGX4=~4dDY$Gx*I#L`%;Q;XKg1Y)2D$N zyu8z3`u29qaXUs9LNXJ4CZ0GzyXXW3ry%`DYlcsMxT>H97Daqrxsa|?)fw|l8t2?! zddpXY8w|Ry>3^?2>&=qj#z~B+)V&QDv_K9)#U5WE7X3EG9k?v-plU1*Q8RbdYpCU} z9K86weLa81WbV_^fbL(tklSxedvb@*G>!KSZ|tiEr26+14#Nh%NjmzkA(r-A0Z(zE zxa^I_0|!)hwXSC#H(BqQlU}ad+oW~PFSw`pM^JzG+~MMCK7q+y7tw51M=9vl)X*T6 zLpP~cP&K8K;D%Z-g?~!>SpIm&LZrjS*LHx8sEd1ky!1|2p;}Krfc07zp8f7PHvKvL z&i(Qzw4s6xY&6x6y=^d*)YUK!=6G%J>6O|~{U3>okCHg*&ye58#v3*&QAI&}D(v51 zV6f+Z2V#hoqU8E(2n_@2q;}tV6z{KJ3or6|ecqR*ziu*;I#)r~0$I))u%9Q#O;p@2YmIuJVIiBRw z>qeKY0Y}n7dGuiPUVxOCf?r%ya5aI9H;_o&Fp?U5?36+*Qi4I^f#_3!sg1=zt+5of zgjDfXLEtY{9w$jj?I(j<{?fer`;w1njh*pxSDl+%qEmGkg&Rf8lJT)qZ9A7g?FB91 zGJ10`bXNG;Q^~@N;pq=5ZYMX>4sX`J$`7P+AeWQYah9hn$^%TKKPIo7t9Zy~xtWq1 z49~wEKVf4`EJ<;G)RH&N{}X=lO<&K{a*b9Q1lx=t$7}ERY%b6of-L8xV4{*V!YOpYcB1= zM}bKU9-g}wLv`U(FQZs^4(cF5=``}l!ZY%~KwPKY-n z0B_?uGj8jpracSec`AB z5>SshH^TF+^QSBm15U#{i}ix5>RlA^P5&pzTCtFAdl)p;Ahk5y(;HOO zJ5ldjM!d3ww;+zpzZQMhU-CKc115alKna1yGY^e6UcRsnbL{!$XkP1XQVl9NghjEv zI2-kEVm}g5Nfw}$RPM*cPn)^e4{BIpgd}>__rDHcAS1xplz4QR8m7Ci{>j!Q$+yA$NR%syi)mQQiU6QhmRYi z?++l|{<6$cTkCInmQr^fLh3d7OuSoeb!1jJ3Y+;W#hR*l{6)_VI~n>6Dgd7=cIKRE z;UdKwvApJXP_GcThF05`N%%Q6Y9cd9NP|=dd$Mu^qvo74%buyp2(e2=3D&0~F#==N zQow;x9%*di3!kOL*a`OYnsZ{B%iPv{Z!?k-$@#s-!IlR;YZj9{* z7DkdFmV+@b4pnm+rroM1@s~?`N=5)amV)~LZD$Pi?*p~j{swf|41A6a4XljSDZfS> zFGh>kfeL!EB|gFf5^a+O1XMH;%(4>i@C)Bfa3c3_;;OCYhp=jZ$gNl7nV~qry?DQeYL)nO@7Vf~GPj|4B7N`3OwCQx|miG%tGxIW|DNEnVv|Y@ zYKz948MYwfD=0^R9QT2l!PxW>j3W;1b^84$My{tzojE{SVv|uU^7Rz{=NcY8yuTZM zRN#MY_yBrASj8SF0s=-@(1c@fgbEz!F?&F-bNj$c_**dg(* zpX!~m$P&>3)g1c{1E!@hCK92KxYaP&q{zjQEcN8*2b~8<04Yf))YnIb!$@}jH#24B z!y7TgKkTHeDlQ-#kV(feub*gj-gdqZp{1`dJ@^af4V)l<5y|98QA%%2+a8kd6hp`c zBsCPCt;>$oU&3;riC{oQz?B-O;dVPJfr(Mbo`#-T|BQE1isv_DexaO6>dge{#2cc* zhX1tT<50M!R4GZ1(6WgPMMaJ>a^dL@aPG4k=TmtjrI|M|MKJltw#DLaxw5+)QnFrA z!q-HHutsP|E)gMKKn5Hqf(2*NV#^!;{5ENvB`tLd#)1MLl`U5XX`+V)g3yRWW7mGN zK)lwegIE;olEK!IESgd--WR8H)l=wCCdT*tfx&3cL8-VGRH38H<>-x$Boc#hws-LmD}GF z)f7{nEx3XX+nVG!9@ONl41c$Koj6V_1461sc?n9s+&ZiFH)cECkt+zU6qxT-_^Y&< z5DuZD7^3S}J#tT`@|&qZ$QeMF1yRovcfi)kO3L)iP$HFGRL{wKa--S4lJhePKmi(p zK#S%6=L+TBawA~@-o%kBiCAHw+-o$j4~}9cpU#|#WYeqHrBH{Sf)X+`4I#V{=cjL& zvjc^h?N(0|>%msX=Komy_mo@}a@Y%qpqsx`SDzRL2>F1CyqS0i+BacYxVs$^+pPDp zp4w!af)CU>wdgZj&rB@t@E+Wc%a(IkGe%&Rag7fIp!ruVPT`cn{_J4Z1b%h}UyTJQV*QdJzby&8ds$K2ho~w^6(7EJyi}4!I z-;ZK|`6JNF0DmtXc159A|H!l`u=GUW*-t=M{#Hu6UOt^GxlS@|(G+2q3lQ}fT2I9X zBM45?Xb4qc8o^A+BNpq;=To9HoBB`LNY1lHi65J#E$1DMtM@d7-nTPD@nl1o$+pOeUDrs-r<2TD^DMDZB~1Il;u zSSB%usw7ir99kE%8|9+A(I2Ew}!-&bY_H0a-s%`dKj@U zBKvK@tPefuuR&olXais@By>rJs5M3Q>=Aw&BnTi$hw9857U)dkQ^U*8^4cLAxjc6CYtCVC23m2K;E?C0o?v!`h>)!KkLK zh@@(iLlkImqD@8Px>mIt_gyh>`c02Hvn%1SnoHC3E_FvbUFG!_4o&cNoO5UlwoRG_ z3H7JSiNaO6@K5rqjSjVLqnZWE|MqqB7j)oNG%F z70{+49MqU8r|g*W{c+V3DFY26;T}?*+gc<{c1_AZp*j1S*z=3ggSo~aVAbgMgh53` z&6}C5UPkd&3;5z0gR(C*qdgfoY?^A}Rm#w2_)PnpUB=1ogrclM<|MNVu%s`K!MUB&1TOk#Bd&ON{$O#rs5E-BYtK;AxQL!f`AZJeb z=-|P%3yMDvBTSJh!OO}GX=l0 zw5WbHhx*%?SFZrKTF5=_w#E0YbS*_K9rX+uVan`K7N=UF6S7#@VX#IKUDlM#WOh`v z(DUzBk|fr70)?^P5E3U}#KZxvrv|Bbgpk_#C*zE_RkS37r3qTXYm{C*4w@G|OD*z# zHN`n$qu;EzFb(h?G2pVFp9JSfuLJ_AF+y1TCF(HHA~i}16C+1`)n;E&OR7+Kp3{2J zT~q`+w|5OHRa9K4RtQP&(^wHJ^3!0$NUb6y`fBp=hi!-TcIyR zD*YkuD_Wu}{-ivpK$VC0YEyW!Cl0YQ2Fz%!ro5aEeIm1Ss{s>IAY#&ho5O`S$WQfD zR-)m2&-$a?r9&@8%qi-6x*AUDr{0^P<8)LGb1?@Yi|BIKh}O-E&0jb%d9+-u)GM)6 zXji=OgGb2N5>kwtH%HMw?jRA6NvD~om({({DVg}(UqxpAi?34+d+80IXe?)w96h3| zxWGM^OMQi2<`;Z{294$;Wku5h{yPQ1twoxc&J9N0n|HjFDc5gBB&eJA_<;D}6^vE@ zIdw&@xDW<2VWU~a{HZ#Y#&ZI9(4C@d`=9gO2JD7PzKYN$+V&6LKYrT2&?_6aczMD? zj{5C|$8SH@=aUKw`Oe{l9B`I`OdrrzeWKZ+$Si- z;4fkHxXzN7>R(C-bFr6@4h0At-?JA)8Je14^YMeRwloB&4-BFFA$P6dcM?VCY`w_!TJ8BZRS@8dfF}muEHs(vLO*vl z$k8fV%~-dS|9E#eLYv@F8P(G4C53|3-N%h5;zI_jp8In)WOo_}meWHoEjn{@%t>5Z zdCH<_xOl7Xk~+vEjHS3z!-qNAQ6usHU80b_!W3paFT{opCx|aPm_?6byKtsQM=3G0 zwiCq~{x^WJwgVRnOO8(xzgrI&tO1{MCsE8nYE)T{GvFf7+#NbX`3+MMPghxVsJ~n{ zh7S8p@hzvN-+P*E#<#{j=36^ll>&Nyo(rQF1;z%Gp$qJPrT%?euOSa(7#*U$iVf-2 zTk~XRsE24RLm*Q2Dt_YPq8;Vt&yx+Qi}D;$tb2x8w5ri73{xQnf@3E6el3UfbS4DK z+Bj$f>mU=0f6gh6EW6q(|f~VQqql-fycyHV1|;PBSn$Rtjh4 zU{4%IS2?5NpL4WdXuvsw`qdSO^}4Gi!OnO2I#<KDqV6xpNAS{9j z4IA1a#;xB#I{6kVSLo%t{WiHBCRl_agefS{Nn%tPKpX7$R7O?RbgS?+%Z@J=MmVA) zh}Y$$;b`!g!vu;9Y;Jsn)-G;!S4WN~P%#AneOFGC1A1!$^KI@5K_!Y$apK~CbD7Oy zLrIP3l=qWM(~cQBcKjb+g-s!SG0^BH50M|OKRU@xoXMD6Sn{p&v0YdY&8YZK@ji*) z3nA)!)LV{r?R`c%c2bv;bKo+GJcMm8faWPddaCJv3QhaoZIQ>ce40r zti$6J-cV79#H{jzqI;$rJ|wBL3m1Xc4cf_&IfU}%lU_W_gvht*{NWATifVB2t2N#- zLVd=Q-$T|z!gj;8DEtOH1s3UU?J;qLR(C3>1sS>oI5P=+O+)6#-7%b4NmLf@RlKR( z`Kg*-zJo*E#z~|`738IpRgr5JR3T#Tt}f1lUi0a-v}^&?XBfE<3mR;Y4Lh1_$@7IE z>sbhkLAv|h=4fswv=xJ%K6P6|;T)Lvj`SMK#T3dIv!1%ZU&<66B7RFCW;ug|mx@as zwcOdFbxHOWi3SpLV^k2Z6evW#mK};67(MV`LMel74WFUOQ1$ZD!Lt*`ZvMA;87*HV z6J8lLETGjxkaz5b?u~)T=P`id$4&u&h7fWNCZu`|ynMpR;G<0d0NX=sh zU+0Q20CR19LF>wlQ`kFre3L>}2OO_x8fV0;1}i1w)m5EbW3j~@*0_Wobl<`I=PaJg zcKhq;EGqGilS#ARJLgM7*)VyD*cUIyY4lwMi`Gia0o-XJXTZ!QHdj@PPgK{)zxPs!C=q4DHNX}W9e;*L^{!lgv3AqCd z9bjD`2!>}=i*!59NR=Aaz;Hx`gr%c?B`eg74@hfG|1MNeNnjK=FqivLlt#DVC~6Pu^vLw{Owi1d?+ z0eaRW<)nwz36j)3p-`$JsUhECTMNS6jXrgVIqDQ)#B~K0G=dq^fh8{=%^25MQ;WXo zTa(@Ct&~I+a#Sa4Ds4ntakN%se2VnJXZdmqTeKio@jHgRgiq%Acnt~PTpR)jR(lL6 zUNU}X6#H#~higA59`znvFofM6tC#3E*npG&wi{{4J8_-?8_lS+dQcw$QOl<+MZ<9L z|=D#bfFei{j_$zwuzBR;ZfNV$zr@ z00hm`>X8{$mFpI0^$ZRUIFpkVR}-2Mb-Cs<^=?Q=P8_f-`|z)ZM$_~#NUbgG1xNL@ ze#j5w_C!`3?Ds90Box{^@n@xU)Q~dK5%~T7@e(A z#;k@a7I>4#`%oA${L>v_`LsJx|0vIW&jdpIA(xUC-)J%FOB@aWRJt(UQtkQ)r2m4l zh_iX!Q^BDNi&-Ep1%m~~CL>r>S_c0ML#(bY)8gn+dsa=&=Ssuu-sSl)Z_O$X-XmhKOi~99yLxXooe5t-l{g6CL-;l3;AR zXPrDh*bvQPP1PetHJp>T*cSVAUMv>>EK{=R*}$@50LX~jUoI~+by~Q{@mHFRHK-hD zWVa~R%{#kCvMXUVf+RlhGso(0C$`}TJ%N8WmD)AwxbDMPL|CdyCwbuaI6$r^lt8@7 zwr0SY!3+S}Ae*b<9EcSv@jC}a4lAt~OW7R{I9O1m>lgDu1jE?EKY|7k5RyV^Et>)> zv0rgalPp$abwW#JBn@8xt1%!zUC~%pvCA421S9HC@HJ;X6;xx5{2IpFj(LE**%Bsk z>Q2@tL4%`T>{cUNQ=HwJ3Q1Ex+DpcIwKYs8x#;`+K{JLFpJirp4LkZ}Dch?>^r;X1g_0-uHV! z-I1>oXGW(3C^|S2@t*x`dpV?Tnvcy5L`c?D$`5OJW{D^u;D*#X3GG`(h1v?Bo`kW` za*wA28G7_1dap+FN(wp>{5{P{VUvK45UK9dX-+E$J@+{3nLht} zn&ZGu^Z)$n(`o+fOughc_N)gs^fdpqc6Ys2Y7nj> zI8vt&_=iJ)p687xi4xsaK%=`XpJQ8)IV&l)WEG(8Lt?Gd=IT_L`(l%#r97NzTbtBe z%&)srHa;A346S`m2g#_DSXCQ3X(|k$jD7xm8b-Sc-EY8Y@Pc}DE@x#)7Aq6z==WB+ zmvGd36u-Ci*jVKJX-ethM%3Atlrl8S7J}KNxv^Y6cMyLh%b{D-{Pr94&0#7YQ)`El z9T&4kLou%y;NZaUj?kXQk(Nekk{m046-fA&m1kcmca1r9i zGX>g3r0_BPH-A9bU`X01Ab57z=Jv%cRAzs5aH2%XOzxm91WtoZB(D2h)mXc1ga8^7 zb%Ck!p^DfC(jp*ma4#(q-LtP+9!p=*tQJo>I*4XHG#;&Dy*`K6%dY$nhkyljBB0w5 zO8(1I#;s7PJ zQ~(NQOhr@0Ou2*pEHRcQ^scl=1KGk=^)s=fYSU*fbVl`X14&Fi0ulS=?C}#6re94K zwc&hA@n8Og4@ruKWB#QO*zcLX7JI1Y^Qg5_FGdV*_f$|5eA-tdS zuHPyWm`F`(E_3KGP{W^P1g3UL4N;}KgfFw%r{TW?=Y-}l zF(r3z;$rK%{MLk??y>6Zj6lyAf9HJRoN}nfMGa(u7A!y^X?*cT9@_U$Fv9Y+YE$U( zFu1a>g%a?X+ z&*4?6I@)41n6~s?i!i?Em@CQ*UzQpe>|O|6#8UaWVC2ckzhmLPW7ibs;LM1XSvz9*27q*k zo(u*XKVYYOsT&=Y1yT6|RtYCf9T<{~hdjU@Vu-)&!|AjxQjanBuDT`U5b7{c>q~ZX z6Z{1~SQ=VcY^HYIMO}1=Jx9C@_<+|*Ai3@4D52s^Qdm~*!Im|yeGw{*F%xBRb6DPv zZtXcmPWtWvOf*-pDV0(}KN4xE-!f%(EPc_CVKhb0oRZ~5_*R0%H~mY>8-sMH0-*5F zTla2eF+CwJ#>}-u6IpxCqN(&bF)CJXe0%~sNna#~C$nFW7dcu` zW&2~z9=o}}Xt|~6=AxkMEQN@YX1B#HGOr*phLxKml`zPXHZvU6ZtvQuKkNMiPFu^6 zT88?ZP6~BiPtb%B=Hx{e5E(L;+dPx=)1zK(x{d$FLFzSQA1^06Ra4WF!8R1ihg4-q z<3R$H*eaHUaKalsCeM~-y?+CbEe*L3CnRKL3`JN}wGZ#QG&`7{&o?2MUr72KylykG z*Q<9Dcag%iVV3`zSZXBSn_WbG#t9*x89(!sxQt%L0E z4cr~&Wq51;_C%iLu1%1huxpse?uW{i*&Fe+Ee3=E(yBsxg?<$kb~)-&bRCQHqD z4JLnCexNmpO8VT|@NO*(@nXIcn|j6Zq>Rqt$fcN7TOfu$ZJ67H-s5ZdtM#*j4GpRv z1_4}RO~(?Ji)XVrr-79GmZ80QP)aeL#Q}}}V zllZm~!WJ%XBKv10(Zb2H4hRRlWwG(ZzW!G$&>oZ_b;qmZ#BUkwkMVz}P7vzWwF1A5 z8!EJc&3OM}ul&z$U$0z|UZl;7vKqR$r2sV`jpE>vNVxxd_)NMh-D7@23C zqsJ(N6InP?8Q3S3$Y4Vw_cRq`U`S2n{@P=cHkzmkuC;RX=WLpf**KtGCtm6&i@1s7 zf%1v2Z5W?#MkF=w(XbU*DynBDZWDtiz1yf1R`ymar$4alK%!%Lr_ zhgUEyAqYKN_~{DZ$1n_e*qPj)|9c;R4MQFZSb1T$1!jn&urP)H`&XfYf}aT=E7ke(71#LuXA#eX=8UM-LGkyi9rTzS}O!z z$SuTS%Vj5{N$&PtN<>?#iQCS+tkQb+O{QSY@f7sGfeAu8#~K|5mm)_4LI&Y#MYw8& zTKL-uB^(+SPHOu|(pPFclsWH_LpUAl-SK=0Xm9%yk_k+js$$xabTrL2 z$PqNvYd#$Nbd)j@*rEy4Q}3vTREbG7`kVt;CP(h^ZRZT?a_7>j)gd1Vh3^x+tV#IyF_^lrhT&aomy2|58Qh-$I~%!Gssi}@Y>6x(oGTyo2>jw2)#(HLV-;mhizJJ7W7a(0p!U`T3K~HjAR00 zP?Bwpl+oStWPLS(SbNc6gA<)bnj>%bA5sUrCUvorcH| zGnQe_)_CytT_ZSxC3debn;x6K zmpYI<+f4b4&rGvd%t`KkgVxj3L-d??J3+0nLoQ4RyKIR{RAvU4jnv8Nb=;yGNO28C z!kmA|4hbMk?4Jri|YTd-u0vW~0fFCg!=e!JDw2p3&E-D$&2442DQta^q(k zNh(rgA=M2yG+`2<44^VqPy%SA%_uSBz7cU&1g+{Q_KW*+;Pw*24m_;ew?^5Axt$; z7NxVv5+rDmV&8x8%!fKBm@>Y5=H>8Zt#p0vl(JMNO75}RU{!5Qpu6S}iwYDry=#_AWRvG6SeJP4Fyc>e$37)BD8_ac=y zj8ODaSpxdLu|&fnnJY9XG!lpfbe+LQmq~Q8NV7pOo}tN8PVnHwY<7p52&<01A`i%J z%UgcDHVUj~HXL6<#jwIJc}C$4N7ty(%V0n8#?G6pzE~$#2HsruX5k9dRZ{BEO*DhY zaVZfZPn8pc!SHf_e2^SZ6{J}~LbjBtroKT2q?Y~(5AZTJrElkLXtk{sR{^YzMf-1C z6@4W?mv3ZDR=4^TRR}dPD78^l60zRe9Qk;ky{n&im?zZ`TZz$47pTZjd`3`fIz;a= z`{xW33D0>qK`^WyAX1l$Gx>)#n6i8@gP4}SMm~t1?Ok9iC#GQbg$uH*ZBOxC(!|h; z@^2^nAy^o5CodL`b`hq<7I!4bYp~zB*Gml$SzC1!4e=V9xS*WQw?yu6_9@|)ikDb~TikKOEDaD~$%RYaAwCP&x`pCCCnpm$HQVe;3D?q2+_y)lOo@gGDi?$zOLj&* z;EbuLhcj{2zLo7Jj{wmm%ZZyL=^_U90rCzeS6(lnHh+G07N@^uu9n)1Il>=*+bj{m#1*eDmh=Jxp!GZ4 zwXvWU@0&%4Af4Bl6ze2X*sudz!xb1)s)Tz)q`A8D&52LPZ{lw<#ZrnYU$l^)go5rU ztzro=pg2MqM}K4%LwJG?luPvAj;R%u&gHJM7jMYbnVceOGNiW1Wk2Ndjryw=j5a?= zRc4r;#M`A8CSh`bDMvy4R z<~LNzs4-S4Oq!vA6@xfO9w%0ROJB`>oc@cd!l*b=t064*GSsFpFB?0wMUevjTQ}LCDZ&i2sx$p{+a6QQIvkb0+#b}hwk|)ue@j8g?<6^G(aZh<;ft)xQ@?}wTu;E=oXD&W3~z9Hq9nCzjvJo_ z2C*N;Fk6H1c>Ukz=v55pwZdv~3-997jGzOvEVB5vkv@erp6S3m4?5d36MqXG*kQH? z!pq}^r;oaU2?{q1<>7z(9pWiqwuZO;P+J49>#;Fw&88c9hi-*(EI;qZ6S6li7c*dv zM&F5gFqNGeOex?;C3GUxU71VAe>Be0;AQ^_A>jD2VzAEKbW$>)&LgA#)j$7Q({V$*Mtcm+hD1I%*~tO~eWY>DBT!r!TPl zb0euE*MUj$`e9D=NYTmI8V)2wO=e@^sXPPanHUdlGlb{$`&)a|@Fi4}i6n}Pp#H+p}~%Z7b7DWQ4$>}PnWd3rQ-4Pv4{zI}i?Eh-$q%lFYgSS|BJ+#7QAZmPVT5?-Ec;ZRfG$oSE} zQM29NK;cnEyJJQd7m^j|5%;zq$B55JNJeB@GtK2zl<_V$n-N&kt2B#N~W-fYH6{z zz*S83g}e^bn}p1G;oX$!2>v>{yt;nQZ49tUVlzayd*t6IiMWLF%^ViP&{+PaOTmNa zY4Vl0A5aF8+23x}t@_#lqaLomxD-!q=SyeRokT-IzxKLG5V;!EU(q$v`WrG&nHtqg zx+i4Sxp>ft6d&TEuOEWcKg_TUG92_cfeiAdMi!WmEdh=dBa8mLLY5u4Pi)(_JT7h= z6VtPV%A=`s9>!q-TH_-_;iIw)xT8^9E2&Lu}IQLPzbj$$C$M^ii-J(hRnP( z)z!Qbqo8Q%LjtWvFQYf87z=yzu}WJ0lZwPJ1SKIu|BZyqekfMj;!y1``AZ$VA%b{o zR47?V8CECAlH@T=b=SmPs>}x!X|G9dFgoXU)8thtG-^yBwvCU>B3fFBvu`-4kc9w( z5xqExSrE0-qUnZcCdz|z$gRp8O4W_K7nn?P zgRl2XYb{Nt6HOZTTg(B@)HGuo)4@}gVI!?nooOZb`{3&xu>cZm+QT)cHWD0S1PSyo z`|R%q{(3>y&}IjQWp~+Fb`RPx`wuE~LyOG{k#OPLkH69%DJH!3Fi@752-=O4jZLj^ zh@Br>&D%OYcQy?+`w0rDyB0%73ARO%Zw?3^s4#HR7JOt9w`|=P>eb^QX;^1<-oMlDyKy+mb`D3}_54vDR>@nhl zPDD(_r?h+Wu952L2$^$0jDsMktJ*c!a%qil9iw1s0;)E!7*@*p<^|^tbUmV(DWcXMe~&#n8bkoTZBTU2z6(9IoYs#k z5`8W$T7ET%LjX|^H~tk`t7Z7bLxpK?MhkUe0sRe)>?SJT7n-!fG7`{m6FwT|g+__d z)PBFr&k(rt`7Rahrh7wTeP?)M0&qKD7d7etgVaa3X530;I2HvKm>Cjt_|nHXk(znX zlt!`#>3yxF37hJ8byT$TWZXlDe+YZuMqiJ05EO?RiDt=PxFB0eQ742Sk@PoY7ppcyWI#w2k+@M zV~2#s0-K`v|83XRW&MYEjE#*XVI{%QD;g6sjVenIWpZZhd{+e4I`K z&lS5M#rznuzQyM30{a^`>~JTkv$aZmA`M(TkJA_1?9=!zp@Tt#Uq=+MP?{@w?H_NX zH*AP_hEZER{Ukq7!O9%43+hImhKLVX(3#>xg#w@SlXAh20DUC$wpjYx1Mv(dRs0`b zg{lrDfZngabV;yXFr6?B)SRnHs>h+;$UZ8VH}cl%GxDkbUvFfWOUF50y@pE-^ZEpN zy$`N4Ka2LhuC*(B>_PcKuq@hPy%BosFsTQgek)kV&%;;`qTgSSO?$0iEhC0Nkp689 zS`$6HEO({FS=7-}Y`LiVNmf;F&J;haRFE5+($Gt_OJX41&l83lNHj(M@c&v+Vp0)^ z1)tigXjBlJ@_w{(^~>M@$>pdP=8x*^+z@mW8|k!=|&I3@z#5_u{G- zzKWcUeZ8ZzMWq$m>qST}kqhZ+Mr4iFm(h0I7{a#GZ)Lz?K)cDk7w`-alpg`|m06|e zpESPkE9RImHjURf;3(Zg%U;!RS_HxAL0S9nge^2{Gz z%-hC|iFxsUR|QNhj+#ZuQioS>0ph*F<&fbly! zVuZM7qcd*_d*b$$^yd9b143r}oP@YGr8nkiQ^f3&^;t+MN(NM$&rQ2@^pIVZ>eL5G z-DNkb(gzyKfe=L?BAv1xil6xtr9f(?ifn#OeoSW`_uR-*MsmCY*)o(&Doa{_-hr0dl8J$z=C z!uiKgsrc`PO0(5}WhnhT{Hfx; zQcw=6>vW~z08nV59g^IOlwBdofrwvq!`;7= z--jYq8!60XI5v@gr>AjP6B-5$_!*Vr&?OW~|5nT>vNg6;@?G=0i=J=XVr1_oaiT+o zjaVOV`#$z()1JzhqEhWfSIl=`f^Q+HiOxCY2Enqlwkusi8VHMBg9#y&c)k6x_d@C-U^xyo#y!I2n@FI=aV<4JE7d?x# z{XKl_-6zFujqGN#YcDvu!lbzW3Q*Ff#F$>P3LV5{$4xmL^G*T8RsK@YTm}gEHogC* z7`iuewRSaPaDel0rvuA^CKKo@roBrN?VY#dsJ}E@xW7Lv@Rt`Y_^1jQxc4>4hHRRZ zh<%QK9}n26sBv@x*4W|n7i|8lKzRoZ8skUEJ@I*yR(YEJ+PR)m`*X^9&kc^NV%EoW zrXv=O1cyv5;_I#w5Y%&-ue~%7Xe`p8X1S`+u*paxD!v1#sgCaqS4B1Xnoa!7MIkuE z_l#^#3^i@c5Uv1y%m#X|*>MJH2wH&U3qMX(#0os?R`ChT`*vrxQ5(i;F(kZMU_Xo6ua^6pH5e z3fq>g>w{Nj*S{qq7@0USoC8f(-yE(_7;XTqz5Z%;G@ zKs;evYSeRi&-}+T%=R>$>+(_!5Ub4`=e{-R{^7Cqb1C2l+5X~6d-ZcS0^r9{m-o<+ zo70P_M8FE|pk~j{-G#;z1=vfZ?+E@hhBi=-Z6}i7PG+0Ci6EbTpvfFD;!F~2cpFuU ze8&gn8eabITmu|_#sV(KGqmz)hGGE)-W*{jF^rn&q3RfN--ErOl60AKD`PGH0s;~| zWHf=Y)Ph^>yJ3_8^%rj;{9<~g|K-)pD}M57Dk|TXbw@IXb2inm=B`zSMPf4$gkbIl ze)|C*?Vwu@-19G-44qQbeKj>OTObriR{TI$_t9U`uKi4s8mequDs-)Q@BH;`+6=Kj zVGjGBpwh-FVwsuQDy5=Fm7wb|`G}Oz%4@tR@%?vV5+;P+Mo`j$O@d%} zFDx2DO1K-V29ojBjqRVt4RSQ%sfp)dISU`cNR-lb?0i>-EJXmzSi-@K<`aM87iJCZ z>Z^8$PEGB%)lbNczb(T}4#?3VsoAcSGlgfMzl^V99WD@I!$l4`AMxMe zf(SNT{O4Dp>O|)`+;2R_uYOKzB?eg4zil7xldLVnI%uB?C2~ldbjX6A#)+yvmx{;0 zN=*{dSsH$#Ew#uEhc?m5^2_qN-@6LI2}+mA44O<~Nrg!7o1~SqLMVN|L=hTFz}ugG zK$F0?l~rz&PaaHZ53?FMu2REqaB(VK)g7qb%xT$9mge%DjkOmKO=k4dJoU$R>#Y-Ph@ z0ZQWm?c`IcJwv8yj5h>PQ(p|uGnR>a!tXjZ9AskBm2(9qOi?)I)i>-j8b?E@f4(^I zwgz`V35h4xaSjfZ5pq_+^vhtJOx&kvr>FBNlTo_{&NAeE{+9AwH5!Q2pi?PXa-ClG zlR?mrAY#O}<;i8W{HB`Lo()5l1!zhG3Ghfh^S@IXlKo*Zjf|njd48msX1Y>2>0m6ENt-U4Q`)ShrW;1ft)+F!mTJpf zBISM`y6ojrY?{lc=9Vb6a(c0mq9o;TzSH?1&hz{8`{(t%-p~8JvAqIKA*A5y8cIt$ z^0+&AzaD{AKwAoOc_K3i*c4kZX%kfKnVwC^6?#;iBn#Lwj-EVWwZNJLAQGdzstXo< zLSz_#NG!}GF3dD8{AwKDIm|RWUpsebb?%tewB$o_B;+V=%R5o!SZ`}^FT>LrUBHg3 zB_?p6!N=D0O}2%Sb-fH(Rw(f+k9OVUDt!Nex?>;KL9yE6DQn7&exd1t0bV($f+H+k zacS9hf-GaLC58$sOJ)${*v%XgY_I0B&gyaw_^^p1C|ORl`VjE=di3}FHg*|kLib>@ zjSI}L+R}ADw}kF_)@1v&G<~1NVNqzGwYxGKXPap{9OYhI!`cN}u?a9U>b{16Bp~>E z|Hj?d3-hN^m5G}VcS9#(d^mx`y2^G4y5*6wB_v`bYGtrH>5oeuANs@cXBcN81lzc5 z;a1Zdk)f;sn@Im5yHdmrVt%1^JLL^c{vD&Sic$yOqusF$>6BFyn|I)lx1ju2_nifg zu$NnYy=YL}Vd|VyIcFkbNEY_CYlqg?VY}4k z2Kvw#FK|uVhHB@xZ*CjwUm3h_VzwrQcGST?w?AI~c9rN$iEhhoRZpI0cf`59NAHj1 zUPLBvE%%z2M8Cm?$h{+El9GdYC5WYDUmW-+Z=12mdk0Z&n}N8~H9rrb+{FZK9O(Zn zsuFa{^q%W6W>0;N)09AUm_do}0U;yJd)f(`@G6BwrBd8y9s=$H&~pm>U| zW5S!N>2yv~F`FJea9KS@%I@+YB=7WUL>Dv^`x07_Sh|$|9~qHTUoYPs16-Q|cvJsxm+C$3&$HQ?h(lZajqRd+2m4H2xV$Vpo zVFYvvp>|b;EY=1ZD(o^x{EA`(NFAszlR$YE*F$=g$Ca}J$d7J;X}3cQt{tJ2tNT+T zhf&O^n_BCDjI9fs%hfo!p{&bmmJQe$sh7sX+new?4{fR(hhni&Y}a1WI$ef+Q);|@ z)XRu^qqZKyQ&h0ivlqc^wADrbNovc(&7%;g0WUa-&kcMMQad~8Da1NAHux#NhXii& zJ_Wy7o|P{BA$6}l_ijOTx?(?A@>Bu25_-+v&R-c54x?V0|BILsiShiR;ZrN@U-eBA zbi6M(_^vq_lO8I5ELd9jbO_7&Rx{El%AYeEeYV)7in-;qRO|e@>Kej@c~xRU_;|j) zwz5OvyQpdO9l1RLxvJtf3tA1j%dLB7@nGhJv1LX9UUo|{$UiEPCz|qe1?IVM!=Le8 z&``|R`Xgc+Y+KKIVgimEXu5MSIOV4V?Z-ShyXn;Aw%j6w!EYqukXEGq9xs{9C+q6m zKC<5qzZ{5#OxHc#tnw!6LMwF0xk2rG(C34wCnC#DL+|;Uh>VMH`^b=uH9Jr@ig5!q zWyJ*jdwLm&7oD`Pvnq`zqSa@bFP?X@ktwbbqo?@~IpnlI8|J2gM~c6lIzE47j%p;3 zK)nv1!x`U}b>jQL4dxVpkf>~PLn;750!w@7I8D~wila%Js9&0=`UZ}J0yt`6<8jzT z6I9bkj`k2n)gw_$USJe$f?mgA`fpb=Y6$>Fit+>SM&{m&oa8aJnCX66VC!O)vdKq1 zEv%Pzk$-orqSc&atR5q7aZ3QiCGcV5f4I7!Gl1mof@|5X)c}r>> files = read_dir('/mnt/example')\n", + "\n", + " \"\"\"\n", + " if dir_path[-1] == '/':\n", + " dir_path = dir_path[0:-1]\n", + " print(dir_path)\n", + " all_files = []\n", + " if os.path.isdir(dir_path):\n", + " file_list = os.listdir(dir_path)\n", + " for f in file_list:\n", + " f = dir_path + '/' + f\n", + " if os.path.isdir(f):\n", + " sub_files = read_dir(f)\n", + " # Load File Inside Child Folder\n", + " all_files = sub_files + all_files\n", + " else:\n", + " if os.path.splitext(f)[1] in ['.jpg', '.png', '.bmp', '.jpeg']:\n", + " all_files.append(f)\n", + " else:\n", + " raise \"Error,not a dir\"\n", + " return all_files\n", + "\n", + "network_config = [\n", + " # in_channels, out_channels, kernel_size, stride, padding, dilation, group\n", + " [3, 16, 3, 2, 1, 1, 1],\n", + " [16, 16, 3, 1, 1, 1, 16],\n", + " [16, 32, 1, 1, 0, 1, 1],\n", + " [32, 32, 3, 2, 1, 1, 32],\n", + " [32, 64, 1, 1, 0, 1, 1],\n", + " [64, 64, 3, 1, 1, 1, 64],\n", + " [64, 64, 1, 1, 0, 1, 1],\n", + " [64, 64, 3, 2, 1, 1, 64],\n", + " [64, 128, 1, 1, 0, 1, 1],\n", + " [128, 128, 3, 1, 1, 1, 128],\n", + " [128, 128, 1, 1, 0, 1, 1],\n", + " [128, 128, 3, 2, 1, 1, 128],\n", + " [128, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 1, 1, 1, 256],\n", + " [256, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 1, 1, 1, 256],\n", + " [256, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 1, 1, 1, 256],\n", + " [256, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 1, 1, 1, 256],\n", + " [256, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 1, 1, 1, 256],\n", + " [256, 256, 1, 1, 0, 1, 1],\n", + " [256, 256, 3, 2, 1, 1, 256],\n", + " [256, 512, 1, 1, 0, 1, 1],\n", + " [512, 512, 3, 1, 1, 1, 512],\n", + " [512, 512, 1, 1, 0, 1, 1],\n", + " [512, 64, 3, 2, 1, 1, 1]\n", + "]\n", + "\n", + "class Facealignment2d(nn.Cell):\n", + " \"\"\"\n", + " Model define for 2D face alignment work\n", + " Model structure and layer names are directly translated from the given ONNX file\n", + "\n", + " Args:\n", + " output_channel (int) - Should be number of alignment points * 2, this input is 388 for Helen dataset.\n", + "\n", + " Inputs:\n", + " X(Tensor(1, 3, 192, 192)): Input image in tensor\n", + "\n", + " Outputs:\n", + " x(Tensor(1, 1, output_channel)): Predict output. Each point takes 2 channels.\n", + "\n", + " Supported Platforms:\n", + " ``Ascend`` ``GPU``\n", + "\n", + " \"\"\"\n", + "\n", + " def __init__(self, output_channel):\n", + " super(Facealignment2d, self).__init__()\n", + " self.network_config = network_config\n", + " self.features = self._make_layer(network_config, output_channel)\n", + "\n", + " def construct(self, x):\n", + " \"\"\"\n", + " Define forward pass\n", + " \"\"\"\n", + " x = self.features(x)\n", + " return x\n", + "\n", + " def _make_layer(self, cfg: List[List[int]], output_channel: int) -> nn.SequentialCell:\n", + " '''\n", + " Make layer for model 'FaceAlignment2d'.\n", + "\n", + " Args:\n", + " cfg: Model layer config, like 'network_config' above\n", + " output_channel(int) : Should be number of alignment points * 2, this input is 388 for Helen dataset.\n", + "\n", + " Returns:\n", + " SequentialCell, Contains layers generated With 'cfg'\n", + "\n", + " Examples:\n", + " >>>_make_layer(network_config, 388)\n", + " '''\n", + " layers = []\n", + " for v in cfg:\n", + " layers += [nn.Conv2d(in_channels=v[0], out_channels=v[1],\n", + " kernel_size=v[2], stride=v[3],\n", + " pad_mode=\"pad\",\n", + " padding=(v[4], v[4], v[4], v[4]),\n", + " dilation=v[5], group=v[6],\n", + " has_bias=False),\n", + " nn.BatchNorm2d(num_features=v[1], eps=1e-3),\n", + " nn.PReLU(channel=v[1], w=0.25)]\n", + " out_channels = cfg[-1][1] * cfg[-1][2] * cfg[-1][2]\n", + " layers += [nn.Flatten(), nn.Flatten(), nn.Dense(in_channels=out_channels, out_channels=output_channel)]\n", + " return nn.SequentialCell(layers)" + ] + }, + { + "cell_type": "markdown", + "id": "362008f6", + "metadata": {}, + "source": [ + "补充一些处理用的工具类,pic_clip为裁剪图片用。" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85f44788", + "metadata": {}, + "outputs": [], + "source": [ + "def pic_clip(img, x, y, width, height):\n", + " \"\"\"\n", + " Clip image.\n", + "\n", + " Args:\n", + " img(ndarray): Input Image.\n", + " x(int) : Position of bounding box's left upper corner on X axis.\n", + " y(int): Position of bounding box's left upper corner on Y axis.\n", + " width(int): Image width.\n", + " height(int): Image height.\n", + "\n", + " Returns:\n", + " img_clipped(ndarray), clipped images\n", + " img_clipped(ndarray): Clipped image\n", + "\n", + " Examples:\n", + " >>> pic_clip(image, 29, 63, 372, 128)\n", + " \"\"\"\n", + " if x < 0:\n", + " t0 = 0\n", + " else:\n", + " t0 = x\n", + " if y < 0:\n", + " t1 = 0\n", + " else:\n", + " t1 = y\n", + " if x + width < img.shape[1]:\n", + " t2 = x + width\n", + " else:\n", + " t2 = img.shape[1]\n", + " if y + height < img.shape[0]:\n", + " t3 = y + height\n", + " else:\n", + " t3 = img.shape[0]\n", + " img_clipped = img[int(t1):int(t3), int(t0):int(t2)]\n", + " return img_clipped" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEpoAAADJCAYAAAAtf1ZEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S6x0y5Iehn0RmblW1d7/6zzuq9/dbInNp0nRsC2TEkWblEeGAQu2PDE8o6GRAU88lTUSPPLAY9uAH7ANT2jD0EAmBFAmLZGgRKLJbrLJFkWy2bfvveec/9//flTVWpkZHkREZtY+53bfJu+9/buRcVBn77921apVa+Uj4osvviAREUybNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk37fWf8e30C06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp06ZNmzZt2rRp0340NoWmpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTfp/aFJqaNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk37fWpTaGratGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNu33qU2hqWnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atN+nNoWmpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTfp/aFJqaNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk37fWpTaGratGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNu33qU2hqWnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atGnTpk2bNm3atN+nFn/QF/47//0/jzVFHNYFITAAQc4Ze95BRAgcISIQEQAAMyOlhBgjUkoIIYJIda3O5zMeHx+x54x927HnjJILahUQAcwEgEBEEBCKVJRaUWpBKRVFKmqt7dxEBFUEtdarz2dmEBPIfmdmMDE4+O/6GbDzDkwITIghtNeHEBCDfoclJaSUQPY+ZkYKsb2eiNo5tc9jAjMAEjADYTg2EYM56GfE2B6BA5gjQgj2SO19IYT2OfpVCVIFELTvF0O08yMQMYj0xWTXyt4Igf3u/7brICKotaCUjCoFpRTs+45SMnLese07tn3Dtm24bPZz37Ft+vc9Z+w5o9aKKgAEKOj3p4qgQuzm6efmklHtXERE73OtKKVePQ8AIAJzsM/ZUYuOhRADlnVFjAuI9bqUkvXeErCuCYd1RUoLYggIzPh3/zf/xx94svyo7fEf/n9wOT/h9HgPKjsSE44pYgmMvG14vLvD48M99ssF2e7Jtl2Q8w7UipQiYkqIMeFwPOLm9hYxrdj2jKfTEzgk7KXg8fEJl23HvmcwC443K169vMW6rtguG95+8RZ3d3cgIYTAYAp4enzEw/09Hh8fUWvFuq64vb1FiBEEIKSI2xe3ePnyFW5ubnTuhwCI4IvvfQcPd3d4enzCvmUAQAwJRIxaBblUQAgcEmJcEWICpwUhrYj+c1lAIYFiAIUAYgY4AMSglMDRfieycW7jGQDg85JsDbL1xZ7TaUT2jP7b3yEAKgmExN/W3gk/yviciE+n9ncCQciP3v+iD7F5qs9V+0z50uuGTyU9S5EKqfoOP3MSQZWCmjNKzqhlB8oOkQwUe37fkbcdebtgv1xwOZ1xOZ+wXS7Y9x2XyxmXfcNedpzOFzyenvBwesKl7JDIePnqFV5/8hFef/QRXty+AAF4enjC23fvUEpFjBHruuKjNx/j5atX+B/8z/6Xv/vJ8COyv/jf+9cRSZBYcAzAMQKHKEgMJAYOkbCmgADBuqx49fo1Pv7kE9y+eInlcESICWk9YF2PiCkhpIQQFwgxBAQhRgWjUEDlgApGRUAlRiUChgcRgYnALGARCCpQC1AriAQMgeSCmjfs+4btcsbldMJ2OSFfNhS7x1JLWxuJGQIg14oi0M9khlAAQkBYFqzHGxxvX2JdXyClG4ACRBgVBOYIDtG+26I/Q7T9R0dgrdU+e4fkHSJFx6FU0LhW2/4GZp2bTAhR/YJlSeDAyCXjfD7h9PiInHcQgJQilhgQAJS8YzufcTmfsV82oFYwgEgMqRVSCnRq6vUkJjAxQIDUipx1/yo1I3BQf6Lodcu5IOcdOWd7jc6nKoIiotew1vZ9d9vzcs4QqSACku3ZxMB2PqEU3Y9qzvo5VY8tYvOUdK7XmrHtZ3Ag85FWrOsRy3rEcrjBzc1LvHz1Bq8/+hgvX7/Bze1LpHUFcbAxuCCkBHWpBMtP/qnfk/n0/ew3/1f/XYTlBuvxDQ5vvoH04mNIBU7v7/HFb30bX3z2PXzviy/wnS/e4YuHE96fNtxvOx63HQ/bjvOecc4ZQgAYSDEgEsAQpEBYI2NdEpYYkUJAJPWVUlywxISUAlJkpAgw6TUOMSGGiBAiYlwQo/qnISyIIakvFiMCM8j8OaYADuZHur9ItiIT2t7BMYJ8P5K+l6iWq/3b9h7fSgS+T+n4UN+rQsznyiUjZ12T876pP5YzasnI+66+1nbBvm8oRf0zKVl9t1ptTBfkUpFtPG+lYCvAXoBNgK0ItiK45ILLrmuGEIMRASGgEmKIWGLC4XDAzfEGN8cjbo5HLMuCGKN+hyLNT9y2zeY/sO8Zl23Deb/ovIFfOMGWd5zPZ1z2HSKMvVSctwvEfNVkxyeQfo+cQUyIKWFZFl3nckZgRowRHIL5nH0tTMnXrgCBQIQgFZCqfmgp1ea/xSCl6L5p815sP3df4q//5m/8uKfS97Wnx03vcSmoUiHNDwCkZjCAJQQ83t/j2//sn+LXfuVX8Ct/55fxxXe/g6f79ziuC17cHvHRq1f4+icf46d/4ifwza99DR999BFevnqB9bgiLAHEOtDLnrFfzricnnB5OmHbdF+qtWg8ZmMY5pfovlQtvrB7Yr6SiEAspqul2OvF/Bldu6v9u0qPG/Rm+LzT6yAidi66Llcf+/bIOfdHyRpTFD9n/Qz3+qQ7aDY/pX12qaLnZPuD+pKMWiuyzbnu+9l8t7Ge/XyqIBfBXgS7+b6l6vkU8VgHdi6+0HSfsFSdx2IxlMbCFk+1i9IXKF+vQohY0wIOAUxsc0HaOPeY0uPFIoJSpK0lY2wPwOI6nRPt92GuALXfq3b/ZTiO9OsEtLWViPBX/84/+BecGT88+4Wf+1mIAKUWbPuOk8VeLf6PESlEpBht30mIzAjMYOheT/6dRXSMy/Wjimgs7tfE/Bj3E5kIgQiBWK+n3bNaOi5SpbYxtpeCveh4H7ESuwNQuMA+G31tEx9Dfmva6SiGQuj3uM1nUNsbR/PXyNX99+OxxpXsuAlazO/7oB7bPkfG9zo2NHwYCdied8zFx1Ippc3Z8XpD0GIuGqaM/5sI4KAYil6zojgL+lhtOI6faZV2XwCdc4FZr0FV3EqKrme1Aha6NcyL3e9gRikFW+n7pccKNP5ueFDDj0IEB1ZsIypOVLKuf4rfFPNFBW+/uP+B58CP2v7pb3y3jZMKIIugQLGytCz9PprfDqmIgZGCjklChZQej7AICIJaNuTtgqf793j/9gu8/fwzfP697+Du7Rd4eH+H0+ODxlLbhlp21JJ1X7CfUgqkFpR9g5SCQIoNxhgRG4anvp1jbcFwpT623fej5ocAOqSrrfe16tytteq6W6WtrXq/GcwaRrH5wC3Osr3X1+labD8Q9QaY9DzU/9Ux4j6w+rrR5jbgvqkIbN5U7Hu2x65+qI2lXApyLdhrxV7VvwQRyLHVhnP2tUF9Xv1/30t0bSAihKhjeUkLUkoaWwWGiDSs6+Sx4L4jX/a2jvnxmQgE0fUyBKQQkFJAjAEcHfvV+xUCI9pnhkjg6Fgx2jVjZvUppLS9spbaMFc3X1vUz9hRq+Df/3/8yo9+8vwu7OUnPwvA11AZ1kX7XlLNtxq+2PO1VkbsWf8++gXD22xe8NXezmy9LewcdP2jL78fw8vaOQwxGAa82v5z37/tZr4HtROWvp2I9L9h3NOk+ajUorT2VhtvRc/b4pSr9dnWASaCoCDvG/a8teMw2VwMETHp/uDXMFsM0jB5IgTWsbukFWtasKwrjocDjjdH3N7c4sWLF3j56hVevXqFjz/6CJ98/DE++fRTfPrJJ3jz5g1ev36Dly9fYFlWLOtyhT2R3Qv3kX18A/hSPsPvZ0yx7TUhBhCg/nQtDWup0nEUCLDnHZfzBU+nE+7evcPd3R3u7u5wf/8e7774Ap9/8Tnu3r1t7/f1IKWEdV1xOBywriuWZWn5D/fxAeDf+/f+3e87fn7c9t3feuz/cF+pjTXd8MWxvsEXpuE9DRNmNqfERrit83nXuOt8fsLT0yMenx4Um394wNPjAx4f7hUrvFwU090u2LYN59OpPU6nEy7ni2IKpbZ5SOi+BUOxND8XXSejrpm2n/g6HZhBwfa22mMw3deK+T32PeyzmKj7vz7mgTana9vPLPdX7Tzh4Y3vr4q5ePzYIgvq649PZc1rFYs79Xr6GlBL0byV+Ui+t7SHx0H2egJafjGMOUa7b74SwWJLQs8L6v7LCBwa1kRAxxttXy+lWt4tt3VOD+lrYLWx4fGcxoRia7nHXxWKCe/Z7smVX24e7FWCwu6BveYf/bP3/0Lz4odp/9Zf+NMgYlwuGx4eHxVDulxQ9tr8W/dBwNTiVwCocAyWscR45RO7ybNx6HE1IULAfS8hfV0pu/nw6LEEEWIKCCGqD0YBgTVWjKw++pIYIRBiZKwp4PXxiCXFhrMdb25wvDnicHODm5sb3N6+wO2LWyzLqpgXNL+mOJWt20SaU8s79q37a5fLBUXcp9sbjn2+XLDvhn8Vza/norj4+ems4yUrNrHtGU/nM7Y9a76DGKVUgBhxXfVao17tJSKCEDQGqsO64OfbcSFu83nfC2oRWyPUZyMixDDOMbTvvmf1DX3eSFU8KSGCEWyNMRypCkqt4KDrmZ9B5ACw468d7xACilTA5ujIOxjHin4HuvoJoOe8hzE4rilka6CI4O//k+/9C86MH579j//Cfx3bdrJ8foHuyqyYovn14ADHzAITmIBAFZGAECoSMQ5IQFF/e1kijocV65KQYsLNzQE3x0PjVazLghRXXR+NF/Hcf3TrPI/OOxn9F6DnZgG7J5wMjzNszWIkdVM09+q4uRSN0X1CVwCFAGEGYgRHzTlXAXIpQN5RN83Rld3jSDtW7Xs9s/IzAGgsIqR7kOjcTSEgcrA4xvbIwKgcwdGw7MAIMQI84JWelyACC8ETyTKs6b73wv6cawFyBTad//uese0b9lJQIIq5Q8AhICaNEyt0/pDFuH7kUiwnWIrGtFJQ9gpCBpH7lL4f6z0dsYtlWbCuK47xaL5lbPffjZmbX3m+nPH+4T3evn+Hh8d7xJTw8aef4tOvfR1vPvoIh9tbrIcjwpJsvOgx/sR/87/9Lzo1fmj2V//6X9PxAR+fDLL8qwhh23SdBoCb4y1evHiJZVmRc8bj4wPe37/D/f09np4eIQK8eHGDN2/e4PbFSwCEnCtqEcBi2WVdEC2n4vdRRBS7Lj0/maVi3zaUpyfI4wlSKiREhHWBxIRdquIzS0JKCwIR6mVDPp1xfniP090dzg8PkH3Hwox1PWA9HpGWBRwjKgh7Ldiz4qlPT4/YzmfUrPkr7BllO6NezsiXM+q2oeaMjApaAyqh53Aalq++Sq4VGUBcF6TbW6TbI/iwglMCLQm8JFA64Hj7Cst6q7HF4YBlWZA8B8i2X9verXysvh6pX8W2JhCKUMfiRedNMV/M/XZA3QUWAotxNSrA5lv0fIjlAnzfcP+kDPuHvcb3baliPIII5qQ8GsOaiKjvfRZ36DpQ2++akBzXWAYhAEKo2dewglJ25Lxh3zbkfcO2XUBU1RcJGqMzCP+Lv/hv/Zhn0m9vr25/EkRRrzlJwzNIpK1JynPS799yQ1CuQWDW9wkMawaC5fED6+9s/h8zY2HGITKWoHFBYkYKAWsIWFLAIUTLWzMSEVArpOj+FaBxr3ImufkHBICjxg0xeDxDEGGIRBAiYliwxBsETiAx30wEzIJAAqICoGJZ9LVqxX5aHOopK1gOzzaSWhW7brj3cL30+kH3Fd/zUDR+RLDYBA2PDHFBjAuYF4CUk1GL3RSOiHwAaAFVAiggcMLh8AKH9QYhJBDpMbPhwZrHDahi458ZTBEAQ4RAol8qRjJftGIvGy6Xs8bBlzNyOYO5osqOx8c7PDzeocpu80ExVY8bOQCVKvaalStVNhQIJChX7JwveDg/4bJv2PYNp/2Mz+8f8e7pAZcto4jgUtWnAiufLYSk+zsFjVNFkLPmCUt95i9b3PH+6Z/9CGfN787+xn/wH0OjqwyRgioZUjOq6GPM6wAjP9ZxdFtfKVzF7dec1Gp5+2tfulhO1/kHl8sF5/MZ58ulY8U5t8+uIGyXHY+nM86XDZfLhtP50n7PpSIXwx4Mn/DH+LkEwwAb/ufp3iGXXQoCBDdpwc264pAiDmnBuiwIIFCtKHlDvmiuIu8basmQojggoccQHq1X6D637zsu246L4fHV4vxSivrs9m8M59+wd/cJHYcF0IN//Xdo34sR2fMahMCMQM6h1nwEE9k6ObIjOyYfWo5BsYrApDiS3f9kGIqOgetcF9E1NuXvCUG5P8HW2XYPjAPG/m/HtIB2fp7jI1D/nkOs4bn3/9H/7v/ww5gePxT71i/9BQBAiBHscbIov25JEYclAcZDe3p8xLadlJshBZGAUjfUAhwOR9zevsJhPaBWwdPTGduWFVtNAWFhRGYdk5cdMQY9DgEUGJWAyATJBXmvIDAirQhQrLrkHYAgJUJKEV988T28v/sefuKnv44/82f+FP7EH/sF/NE/+FP4uZ/8BAlnPLz9DN/59m+gloyf/ZmfwcuXr3G6bPjOb30XFYRvfPNb+PjjT/Di40/w+Xc/w1/6v/zf8Ff+8n+EX/zFX8Af/qU/iO38hN/4x7+Ou3ef4/H+DsfjgpIzbo8vcXt8iXU5IrDueTEmRCbdh5eEwyGBSJAW5RTVWjVvZLULmv8RcGBU0ViI7Llq0yiE0LDpWnWGxiFucRvzFp5fq2PcNGAF+56xGW67bRv2y44UEkqt2HLF/eMJn799h9/8re/h7fv3OF92vL27x93jBS/fvMAf+mN/CH/8X/lT+Kmf/Xl8+o1P8fWvf4L7+y/AuOBrn77GR1/7GDUmfOezR/z6f/E5/vrf/If4D/7D/wS/+Z17EN8g8IKSKziuEF4gwojxgGq+blwSQgzIdcO2X1BRcVxusS4HxJA0f32+oOYdQEHeT9guZ+zbE4gLLpeTxhhlx+PbX/2xzaHfyf6j//X//Grv0X2/44r+7+c4EBO1nKfHtV+V+3rO/WhGvSbkS/ktcbICWZ40gmOA149o3UhSTMBW2WqxxF4Uv9Nctvq+gTxfrfuXogGWOyULB3ynsZxDNS5QrRoDlGK831I1X16zYc6dwa7fO/QanBDAIRqPP17lyKW9Bwikr4usMRhY8X1AeThlz8i1oFarT6nFEBrLYVaNb1ALai5feb29JoiGehz3a0Mwzpvh4hXXO6Ny7ew47YC271kNjvh9B9teo8l7Yr1vHm8pUyEAlJSjzY6NpDaeiNg+F80HEXSwWVOX1HwEP7vEEYGUn/JLf/7f/uebED8i+9a3vtV41zL4UG6jnzXaiKU+37N9zo5rqeNMYz1XMv7oGpP6EvZ3x/62bcNm/Fp/rtZqa/+Xz9Ex0NHHGM8Lw3O9pqvnMceHv9Yf4/7wPE8xXo/uR1/nx8fjPX/N878/f/661qx/bufFXuOuI+/yS+vjMMf8uCMG7nutW+DQMNM2d23811qurteIrfv3Ga9P83eHeyF2HI+riJzrZXWIwDXnG5aftHxugCCJQPIGSEEKwLpE/MpvnfGh2EcffaSn6/VLGMaO4U5XZjlLfxmB2roLQNc2x9Tl2QrYDj+OT2fB92OYW617V3tVffa+8Ry/j/W0nOWotSb1ed5WXydfOtZVrkaDFPtd11UxLO8r92pczwceYhfHrT1eaflfw911JLVISHHLtseWdpHI/YGgewaCrW0tP+z8Ws8HS7stYjzDzgfTfRpESCEZ52T4Ds+O4zljox40jksbMmS3m9A5yvDrqb/7T+eN+HXWLcvWHfjfLJ/kpzByI9r9RJurn31299sMjB+v/U/+9C+2369HiHkkYqmYFhe7r9PXprZ+DWPaZ8zICfQapW0v2PaMy55tjBKKAKXaQ5QnXqri00RalwKOIE4gq4MS8xmUI1zUn0MBpIBIcUPFNS2W9p9ECKyVLQEwngghECy3zYY/6+sSByzGj16C8kdijEgxYDHudIrOqwxtPmkMb2uzrc9sc5R6AA/3gXyc6DWxWnHLZ5fqNTWlzZ9ej9yXdp8HbXxLP25nlnXry6OO33K1H5bGjfKctHNj1POzeSGdJ1Kr1xk4t1vnfLbfq2OpvhXBfdL+Pud4lNq5zhjWNv9+mgOSYT/vy8C7h4d/zhnxw7d/44/+SyCpiKg4LITjEvDiGPHy9oDXL2/w6sUNbo4rlhQQWVFnqUDOFact4+Gy4f7phLunM+4ez3h/2vBw2fG0aS3UVoFCWqcJWP1mK1/QVYoNB0NVDL3xemHzuFhcshv/s2Tk/QIpRcf5wqovQFXzB0FrISOTzjWC1lMZnsWeGw0BSwxYUsISF6QYkDjoKuJc1FIsBxNxWKLVXkf1Z9r6M+zrNpdiCFq3sCxWEz/wYS0OSiFqHoK5x4cWkzAYwbB4sRxGw6pr51AN25/tGdLOSaAcC59TVYBKwOmy4+FywdNlw9PpbI8TTucznp7OOJ0M390yctE5XGxWwbgpjtnvWfdVZmBhwZubiDc3Ea9vF3z8+iU+ef0Cn7x+iY9eHvHqZsUhELjukLLBK3gJFVWyriOw2tq2ksPmVTQdjP7ZZYyNIQBpXo6J8D/89//DH8f0+YHt3/7TfxSlFJwuGy57Qfa9RGwvs+sK0jpnAMaZcL/EamYLoVSyNalz3HUZ6txTPYRG2ALRMVMLIJp3U1wZiAzEQIjMSExIQfHJxfJpx2XB7VG5JMfDipvjAbc3ByyLcRMjG2fVuBPGI4qsnKIQyPQgBhwYltNzX6ztf+brsY79rrHhsX5nDvuCKsNi3X0Zaeu2c689x6a5bJjPJYPfN3K2+y40+piN5+a1BaNv3XxvfzzDpxpebp897JHd3/c5/dXOeff3pTsx7kj6aTYfFYqX1u4LEbo+Q4VyGPaccckF5z3jtGmu5vFyweP5jIfTCQ+nEx5PJ83nWOxeRIyzJPh7/+Tzf74J8SOwv/hv/qsQ+25VCLkCWWA1WwX7rhzUrXjNotYW5uYD1KaBUzD4Lj00VVy6xTe6Vuvv3Xl3T6ZKsdoG8/9E2j1suRIxl12qchhIa9Gi57dtPqbAVpcTkJgRo/4eo/IDtHZG67Jj1L3a52Bkbu5cG2lXfln/ft1D8++oejm15YQds+mxg3MbtY7FaliyXVcp2Iv+HPciD1j6mmVznXn4u/oIbR4DjVurvnWfs+2n12yK6uMIoWni+J7S/bEvBa5DHouv5vA1/63jxc/tt8PWfJx8FV7k9lVYz93dbx+T/cBCUyEoCFoBBayhNzhGXdSKFLsvnYggbI73vkO2DYoBV5zPF5xOpy4CURzoVuCcgm4zvkgXI4CXoeDYb1gbFdSLWMaL48V7Tihh6v/2iSQEJf3QkMTkwdlKEUtKWK0Ayguz3BGMA7DQzoW8cMqJ+qLHHBw5HyRjsqALTYV2rvr6OACUPExIAqQHsRqchRZTEHqC11f5RpaXtvv1wQZpBZOl9kUoJXWYai2NiLxZ8ZkLTl0um4lQ6XMqFqVCB03IYwBw2sCFgHd0MlRVZ5xU9QBUqhLEbRKS3SfEqISTqmQrKYK8VUjNJoYGuzbSnJ5cM6gYcYgCPiTbzw8o2xkoF0QiJCawFGynMy6Pj3i6f4/z+cmIOxVSdmzbGfu+IcWIdb3By1evLHBQQa1cMvJ2xunpERAll+a9gKGiOnFJuD0cwWBcTmc8PDzicr6ABJY4rbhcTni4f8DT4wl5Lzb+lBziI5FBWELAmgJSIEjZcNkK9suGx/fvcHp8RNn2hqRogYcV3ArAISIsC8KiYiqajDLBqfWAkFZLUoWWrBEyAScK5qDwGPkD5JDemPT1RdMTPc/NF+Fh0zMinm9uXixJDS7wgBQNiLv2sr682D//RBl+7+/Dl55t/2xAnjsO7rADIgwhFb9hWBqxEqRqQkRYgFCBYCSnaI8aUCUjSdQFcS/YA6mTEBlZtGhju5xxenjEmhQ4ujne4LCuWFPCpe7mYxIulwvw7sMBBdX6Pdf9oqLkCqICDgSJycaXGPF3TJJa4g8A3HEo0hwUrTSpENZkvFRBtdtPMMkZO1538KUndsVJVJoYLrUgbxv27Yy8XXC5nLFdLsiXi4mIlb4W+LezgK6Uiix9foSYENcV6XA00u8BIS2a3CSGuCCO7zdGdozxmvCo4kkFdd+1sNuCQ5JqBd4A0AWViDVIJYIWTC4qmihVcN7OuGxnJefnfEVIyjmrU71vViRfW4REBiao8FXoU8GdYwe1WRS4rBWhKuG8VruvIYJiAeeE4OIjtROWi1SE7OBkBdNu+/Rie1cFCJbIBQQVDCOpihfFu4jmIDZFHRaFAWK1AIUqchDEKGjaLHopIVKx7RtyFVAIiIsGGQloIkhOG/1QLNSMNQbcvnqBsKyopeD+87f4/Le+g+9++zfx7t1bvHt4xPvHE57OG05bwdNlx+OWcdp2bFVQocVaHFmLV8gSfJGwxIA1BixJgepoRVwprUgxIaWINTmQ4EmghBhSJ2aEaCKe+ruLe7IX/zEb0ZwApuYzgnoxsidbOEQQmzgTPEE3rv2+AkD/ZvdV57smthoRXOyzgxZUBWbsgVFzQYk7yr7Di+UJSvLLhVALQ0qwosyMkhm5MIgrglRwFRBHEFfVaKzQ4iquKCAUFFDpQiQEAgfGuiw4HI44rkes64oYNWyoRcmy1Qj/XtS273tLIKuAbG37vgdJICuiTglFgFwEVEXXhhFEEVHiIKtAnccYY1K+1Iq676CcG4gF1lm554xcKwIXE4GwAh3o54mRw0UCKluUzloYp0FkdWjl+2Erv2dGpPdHfWZ9oOUTQisYXg4r3rx5g48/+RgfffQGp4d7XJ4eTWghatH6ixe4ffkCNy9usR4OiEmJLpqkgu7p5OK4PlfMn6/cinABUaIsigbdlSAN7BrvqyeE+u9jwgVE4EBAYAR8OThuP4FWGKDBOV8RLwJ38leMsRVxNGGF2slRV8lnPzZEfdQh+VMtOeX+oxPRmmiU/lF9MguvmAk1BtQK5CqIRRCKJg33nLHX2gTofIx7obntNjYOBUFISZ8AIBrLcAO9uYEiV0VdHJBiGopP1Nd4TiTRdagDoCOY0OJG96E61nM9JkmFJb1QBuIFHdfElTHJ+v3Aj99r2y97A4zynlFzARF0r1nUR0ohNiA7cWjJUhWDGYhERl73eeKJGCLbXxzMcvKd+zFwoK8DxrCEjSZtqokSqsBzLjs2E48odYi17V55iNRKF37HS+4jUF98hR9DhnHb7y0NP8d53wt7vLCAjeAD1LaejPhA7eDngOn454xkJT3+WLxgibaa21grtr817J1c3NzHrn8Pukq8XhFuxIE+uorFFJAdcCCx5cXWOVQjFkqPGBuGA09oWEFzIyb0a31FYGv3zohXxd5DvXRovEbjtXtOAvu9t76WNwIhYIAuDePTyTvuP9m9I4aw4gG65xTUvGM7PeFyesT9+3e4e/cWd3dv8f7uDvfv3+Px/h6npwfk7YIyFHeoyNQgNFWKAexFi4wtGSSNBNqJTsHmPJk4pp4yN1+qFEGlYslfW//Q8cxGumM2d6nvR+oyOWHMQiHdWDQCkjAksByVUJKS4oih74XsxEsTUSXDTYa9mKF7T5Tgi0/fl4jAJYNrAJUKqhUkVXFUF9oJ7it8mUAq6ITBvvYLgkREEcN1/JSCQhxa8YeQIlLtgjkaW1lCrBZIVdcvgBCtGFWRQ40hdBT5alZbTMuFQJlNXI6tIE2MAIlW+E4215vPJdJJLFlFW7Jhph+e+frcn+nfAxZ39rXXb5sQ2nj+irzFl5MZ1AuFnicr2muJ2olQ2+To+uSeHf+KDGtfpPkRPuZr99f1bU40Hb6XPouOiftksnXZsYRxBXYFNlF8DdKbKBD0+E7EdC17snnHHGzNNXHQIgBVxbeBluAOHIFIDX+Hec6Kn2vRSbpccL5c8HQ+4/HxCe/v73G8u8OL2xe4e3eH93fv8fh0wraZQIThGeu64bAfms/iDQJ0bmkSsJKSPHTdsL1tWJs9EaiXtSrnRkxczYr8siXwStHnaim4bBtOpxMe7u/xxdu3ePtWGxncvXuHt2+/wOeffYa7uy405evgKDR1OCie7STO70e8/jDsGYrb3ATfy+QrXwugrS/6JxemgmHlej1zEz2/4HK54HK+qBi7iUhdLmdcLmfsm4qc7c+FdvPeHu6ParF0J8EH9oI/K4pwv83yVxycONX9Vh/H8EKsEBCdRGtFoj5Xfd70OFCurofvZR7bFRPiRR2uLVmyFSquMZKLGx7Y9h+9prUyqgtSt8SsxyIFgRiZc3uu+6Ma5/Y9y9aQRup1/2tYnzzPMIhRifT7K0IaRxYvZelieU0s0n1HRw1luEq+9omRzsRiUcvTad2PkRVFce6tFF1/uK/NoeHc6me0PJz0WOXDMsJl2/D49ITHx0dcLhfkXGyJ7vEFRxMZati1jqEQIg5rtNhYxQdESju2+yytiMLBoDaG+p7C7DGrzm0d/tz8MxIgEKw5AqkPUrOJNhBoCUjxgGNg3KwBN2vEelywrhGHNeC4RBzXFTeHA47rgsTBM10NR77KYpkP5jl4MqCAgxVrBYGLswYmECqOa2rrSi1Kvqh5RV7XRlrNOeN02RAZeDrvSkADkIlUxH7fgMCtoVAXmhqEg21uhBBQLN/e8/C+aQIAo7I3Gaoou96bwtQKhbQhBjWsVothPQ7WJhxcSfFMe76tIUxIxE0sD6x+x76dcT6d2rzy4gOxPBpbEXSV8Xp3n2XEMK6IGYa1qMiQ+um+HjsZ9KsIIb+XFkjHDmn9HnwdC2SMAltzYKQ8iDRxpFqLkjOjEovUB0IT5T4sa9vXlzU18d7A0fgL/ANcj/73K//QCsG6v9r9zUE3ChA0Ee5SdSzXIkburlagaFgD6z3PAkhgMGmhPGcr+M8Zdd8gm4uw7CjmA9VSFfk3LIKN7B5jbAX6ikOiFyOQErlEFKOGBFAiq3gULfaVipBs7A7XQ5dri+VUZUCxSAVk2r5UPP4qFdREDdU/yCVboxoTx94J+96vQxe9MEaG79VeACYw3EtAVA2P9v1GwAEtPiAQChVrGBGwI2Nca3Wdtb2c6MpX8GO6uLP7sx/aXPp+Vpv/KnABQ6kVxNe+0BiHdCE8FwzqsZqI+4gZRNHWMU0mVgFKZYQaFavv4FPDFn1sKIE8AiGh8o5ctJkEVSUApxgVc6DQaKEhBtCSIOsB9bCh7hlZFIvZcwZvmj9lE+kGqSBi5IJlWTV3mjOk7Ci8g6VgLzsoa1ySbSyiukicnbvjgbYfB8AaR0D9srPykCpvkMjaqCwm5POG5XDCvh6xHzWvpQT9hMAq+hJjUoEC2ydqTU0gn0hMjFXFbFTQxgFDu7gtbjZemuMn5hdoasViThHUSuACw4Sh2BPbvGef0yYmAgtbWYnSLpAVwoJgjQbJrnGViopsfp3Hx9ViCht/hObHM2khA4Sw+xpGJnARVKwnJ23iogVJXkwNK1z/sExFk1Ts2WOCxnGHi6VoAb77dBU2pKB5ZxeV9rvJikwpzuSxEOvPxIRjIBWYihELB6QYsMaINangVApBibkEQBhU/bPUl+EQ/ZbD1/AusNKJ7SJWoF4CQliReEHkBYRFixOrbgQEQdBeY01sHaT8Ex2nOij1ktiYaOu5Fp8JeQ4AChSwi7sMAglcIJJNXI2Ns0WWh4DxOxPASTlKFGzKkMUkEcwrhBbLgUSEuCIuN4jrrWIkQONTVPaYWtethmtSAIQNa/dzAxDUXwkUEcuCZamG1VXNi4OwrAccyq5iCnYdis064ooQFY+kovmVvVosEBkSFAcq1Qs1tcnMcTkofwNnbCWjZp3fxXAUER1LToxWUWYja3OE57yzNZQqZf+RzpnfrRE57oz+k4bGR8OyMDYCuXrYHu/+X4/bB6HgxhHVf+dixV3m3zv/YN/31jBqxAQMmDNczUj92ZopZGvKZT+vsOoBaxx9HstEAeCrfckxcy0pwDNBJkKE55oM66sFUrORgYxPRYrLkdG0PR8opHH+FhNSuGCJQc/bvuuWMxhbi5/chW9ZeN/r0XOA5m215xloRaXMZPwbzSN3oamBv9YwXzbqRS8sGgVMOq7gInneNEM/t8VQ3wcLVhdY91mWiiLKtWHD1SoArir45g4hU/9e17lEgEmZWzx8tt/RD9WUV2hrjvkUyTic+3bG6fyEfb9AbN1PrDyilG4bz6kWwf39ozX30cZyMSTEQJC8o9QNEJ2r+7Zj23bUwIgpWjNNAoSxxEWHetkhVYXtAymbCEUQ4wE/+7Mv8Af/0J/Ef+vP/Wn8yT/xS3jzMuHb/+TX8HD3XXx0uwLlhD/0L/8ibr/5E3jx8g22yxkfAXjzjW8BIrg53uCLzz7Df/r/+n/iV3/5l/F3/8Z/hsfvfhv/5eUB3/61X8HNiyOSCXd//PoNXtwewcR4/foNbm5e4rgeQRRRi+Zx1mXBkhgpaVy6JJ1fxIQluTCtYF1XjZ2MT1KkolJtAtWOFTm3xN8HEEITgrk2d7vHomNvBuQivQRg2zYsS2o4lLbdJJwuF5RS8Gkp+PrXP8E3v/4JfvPb38Znn3+BV8eAzz67w75v+Kd/9+/jH//qr0NixHJcsb444F/7s/8q/syf/W/gn337e5AY8Orjj/BTP/V1fPqtb+Enf+6n8DN/4Cfwl/7SX8Yv/+1/gMsj48XtGxSpuOwXbUy4PSLEBcQL8l5wuRRw1PqIXDLOF20+t6QFS1qxrAk1BuS8AbVgOQakw4rz44MW4SLhcDz8aCfL79K+lKcyb7nzB4rNGcef+3taMSI/b9LR9zd8eUjoS7x4l/j7vIbacXwNd+6C8+lkaD5Qq+1jOV/xKdgavrYmQALA9qgGlcD8QXGhUVg4o+t9KUVj1EoA6e8EuSKUiC4eyqV2n4yD8g9DNI5/aDl+GN6tn61YZfVCKm2tBMCwD0MwxTAStPXdzpw0Gwgi/QzpuQeB+oFeMNZwUstbKBHEm1YPODsG90HYtTLQ4Xy/P34M/aPnnq8wToT2u15zc8zJZBvsOzcchGzTt30V6ONzaFHSrj1Ju2H61AcIhzhGOvI9v4oDNvLFRiG+8Thuo/CQN6Hpa3X/e8OhqQtUakw4cGMGjOmrBJeu8o6EFv84rhVsPoMGfkjLm3U+vWM+o5i0EKxJYW+o43jx83MaeXTj9fJzfI6VOY925BKN61U7r8FaTkuuuVbjuQC9YREzX+VmR+7R89+B63q95/f+2ifrOann3+t5I4fn46PxKYfn2Nee8boJQFT6nPb5B3dgoUJ20OWvsoq5l1K0vulDslYX2HGmAVG4cnJHPLA9B48I/NpUXRdleMVzH/1qWjSQ7kundv3Mb+9t01e9pmFrll9jW2vFc7Nt5x6+7PiF+/vFq4sNg1Cfz8baVxT2X18V9YMBVtxkwNxNSaEDSb4Qt7Gle2x7DNfNhR5JgsaNIE/D9NvRvl+Pn1oDwnacXkxC/R3DV5G2Duk/+/XqX9ljsWFtoR5L+r/JL7NNFbLvTHS9S13/Lra7+/4mV3fqSuwHwx8+EBvPSb78F7tdhg37hUG/zp3D2o/Vc/6jaJTyhrI1KN6rIJuYlC1JJjQl7XfnJ0mrV4HF64pDtNqVSqjsDRV15HWBJ59fKhrlU0Qb3xIC0LFPoiY04MIdgbV5yhqT1gsma7IXFBNdovOnTdRmyOc0Dhn1PcIxBpDGa2P220e3cyKUsz80nDbRKW9e1rgWfs2v7qV0nrTvsbBpIF/2qfy9rcmKC0KUDCnB+C8u6DXOSV0HxM6h8+5ry0WWqveoi40Yr7jNQVjjaxPXYMPHyHI/GE4cA/NNoHy5xu3/AB1FAIe0gFGxhIpDijgujMOq44cBeBGd1oIr5luy4LIVPD5d8P7phLvTGe+fzni4bHjaCi5Z6yMzETIst2uYXUVFoT6uyLmB1qzB19iWi7T6J/XBVNRbDBcQIiRrOhGboA2rsFoKTWiKWIUqo4mku0ZAitogfF0XHNYFi4tIkWg9WC6QkpvPucSk+QM23qwM/CqyPFET/IhIKVq93KI5bR4asY651eYfegypGLs2eqLGvw0loDeZB659hL77aN2CDPPMeGHQ/F4g/e63ywGX9YDTcVORqdMZj8cTHh4f8fD4hMfTCZdLtnXRue+ix2er0ZZ+7sTAXivOe0HaCtZzxmEtOB4Kbg6idXTGVyARlLKpqKOLAdmxxeM5W0NBBEIASLnfWpcnEArKTfXrhzG2+7DM1xYRanEyrGlV9yAsxnZXGH3/Kr6W2vHa3tZi7246h3zPRx8mw9xSP0oaxhuCABRAMNGpqMJqx3VRjtS64riuOK6LzpmUrCkmN62OEFgbtnj8F6k1/tMG3c4/cR+GGxbuuQnXEWm/W86058HQxdc85+p51uqIin5PRp9Tynu3eJg0VwaiLkxTXKxmqMWyn7X5gZY/guts9GYxdgs7zkPGnuQet/ZYDFe+4XVsJe2nD4Qr32yEuRoO389Nrw2hkH0n1K5PbrLeAuV0MqoKWJKKjS2BUZbYmjrJcHjnchKU54ghJvxwzHEiUhwJAFXNoYcqKGzNfNrru28wPpxT5pTY7iN7jZGvOToGrvALey3cVxEVmWoxCFl9rH58u2+wGkUdp7pes1T14EWjFKHYeHM6b3pjpmi58Tjmv5lVtJSurlD/xb9b83XoauzDfGuSajl5aCgG1R+CX4OiQuI7M3ZmbEzYOaNIwV4IHCqCcNuPmsZJ0EdvJDtglnatVGxPfUtfC5vP6L6788rqUH/qzwGWHx8L//Fszvkcq2i1CaTXt0XIAw6kpzYIYg3H+X7Hf47RfJU9H4c/6Pz6gYWmWvfrKghBnX0lmkfs+YItbyau1BWdpQq2vFkSRZVWq3VY2LbdLrYOfBeyUrBVN7Ji5DctFi8eKSk5r+oFd9InAV/ZReI5oObF1z25Le2YMdCVwFQnsXVBqTh0q4gmABUHINLPhceNywjcwURdtKO5A81OloutkCIEFZvqQlQOUnqXvWeDwauyfAAagO3P2IvaoweyfZCQgR8t4KkqTKDdqDTxLdAFqXUwL8W6yWrXlcvFOmdfNpzPF+wlW7LDil7KmPjvAU+FLhKlGrm7MJiyTjquyLWfq0+raPcSiy4qLmRVs4mveLAaqIkOaLFRhXbCAOoHhsBvp3ugZixUsYQArtoJ/nJ6wvZ0wr5dtOBRxDoabqh5RyDgeFjx8uULfPTm9SAQdcbj0xNO5xPqdlZCbFWwMNo8XVLAzWHF+XLB+7t7nM6qyH88HLUw4bLj/v0Dnh7OuFyy3buMMy6IHBFfHHE8aiHQISaEWiHbGXvecT494enxEU/39yjbrkk06CK8501BDWJwXMBLAq8JlJIloxZwWsCLiUylBRwSvPtZg+PYxn41D8rWCIIncQAf1906oPilEeAbawt8gC5UNaB8VwD0NXR2PTftWd80v3TXCX2ruF5Dvnxi1+/Tz2Ab174Jw66LXqNW6FZ2dQYE6gCzEi65FoQakGqE0a2VDMwVuWyIAVhSwC1WxEg47xvKtuF0f4/EjIUTjnHBIS549eI17uUeORcEEPbLBdk6sn4oZjGh7lUhgqBFobkKorEPyTr1EvdCwWAFu4KecBYOQFFCurCRTUPQDoqs6r9kpFolzVH7fH24QITSgMjUk71QuuQLLqcTLqcn5P2C/bJh3zqB6mpQiw9dUeGWKiiKxiGGiLQesd7cYDkekVYVmQIHdQ7hSW5qXRl8fQhhcGJKsY57SnareVdSrzl5hA5QurPqc4mgoKPvnfu+4Xw64Xw5QUoBkxYWBiaIEcbK7sVwpkjtxcstoLEk8bOp0Qn76ohRAIIAuewgqmAJRngXxFRboXITQzQHMEQjwOeCEgJclbp3nTIgr2pxVwgJrgxbsnbE4ZxV6bztfQpGiVQNJAVQcRQ2ANGAESFINQd2LxDaQVy0I7CBG8KMIAFdYfXDseOiIFaIETVvOD9c8Pl3v4vf+q1v47PvfRcPj494Om84bzu2Petj27FdsnYTArWuVykEBBJEEgQGlqgd/JZFxT+XaGBZTEjpoOCZEY+SdU1sQlPRgLoQTWhKxaa0s1U08GwgSFBQUSYenfDumPsexBzhRAFzNToILkDbO9rfYAQ5B8KMNGEEcFSGVCWRlxgQckDNJh7FZF0cg81ZRsxshS2mup4DMu1KrHUSRxVQMaGErCKPhZSsl4IpIaNa8kILn5e04rgecVgPWGICM2lAZUFbDO6vW3e+oor+jRjqJBdHBODrg87nIBHR5g+gRLBe6HidQOcQWiIh59yIIl5EKKJCVQEaZHmwR0QQ89G1SEgTg+Sgu5EdmLXATYkkYvel+88fGmjRhHfh6sjFhD81holWGLYuC16/eYNPPv0UX/v61/H0+IB9O+GQEm5vb/DixQu8eHmLw/GAYGJeDuLACOIQBc4csyLvNgf/m3lMUq07xK6AQymolRxFbK8nqvBCz4YAs6MmOt80ljY/p73VARYDI61wgmzfGWM+ZkYNogKanuix7+HjyEUdgWruXCc869c34cGiyYTihcf2baqgdXH2zvDFO+E6IUEAIDSgpAqwF0HYC0Io4AspyKOVOYB9H3S4ByOo10cltf1WfF9yYZFwLbjTfEUASlBVYNznoguV+dwru8Zsu3fLbUXZfV0bySlN4IcY4NAATIIAjFbAHq0TowhaErCRLD9AYHDbNi0yNN+AAMRge8+ioobaDZ0RwE2TBQ046r5FNSGFZnZrPbHjHfOIvZiqg4rF1u0G7IoJnDgRyQoEd7+Wruju83cIW9xX9BCF8Sy6GEMc6Bxkm4MeMo+HbGYiZWOivL1wOFZ7n+i012ln67swKvc9QztdD2PZk15VOz3VsYOeyPUaQF2Q2q+7CjQ/S3qYs0geyzkQW3sCVxN51IiaY3FEwzLIRbBGAlixz9D7GqD+hZjIYQP59OQsOWEEqyGudN++HWt4+OfV2gFlt6uOieKCPB/WHHMnadghdH2yWBXw/UN/5bYZoMUV1WKOCiDvOy7nEx7f3+Hh/g73b9/i7t0XuPvic7z94gvc373D6fEBl/MTyr5BBmGpWrORA2xfKEXBclghWmAIB9QQtBO2rXkhsAo3Q1pRsQjakiuACcg4aaGTftpa2vA+cuWzBih3/M6AZosdPZa9Jg0+e1gcyANe4XNOu6USrrqK1GGMBQYjIKRhjfBArxTbs/Uhtn/CxvrVOIUnL6QLGlUTs/dr4nF1W/cqaoytAx+ZMClA5q8H7LxD9g11713fWIAM0r04BnVZ7JyJufnd1dYPlAoqtmYEfUQTqRARxBQVG25C/0NMbOe873ubfz2d/qGZLf6OpXqyYPx9SB5II4n5GOzHoWFK+r+BPm6uugR/KXlx7VM/T2x0H6DH8foZ3Pcs6vuMiI6rRkAfhLd1+/E7MpZVmSPb4pL+jqt9img4EqD4GExkqbRDYDg6SJowIYHMTzbxMVG8G4VA5HuSxh66DihhMdg+1LCUKtizkjeEunDKtu84Xy44n8+4mPDQZh1bnp6e8PDwgHfv3uF4POJwOODm5ojDzdFEHlYsKeF5zkREWvGLP5x4GZMWYOs5qb+m3WFyw/+90M/fe7loY5GHx0fcvXuHd+/e4f3793h/f4+7d2/x9ovPcXd3d+UHEmmX22VZtPvwqt3o/Vw/VKGpfj7Sx670mTegAl9aJb7kT/m0o9rIO6XsKHnD7t3uLyYyddEir227qMDUroIXeR9FpUxE0XwAgm4zEFIsP7oId2wioOPc74R8I8L79xUr4MboH/nfcOV3NNKEkzCqtFjs6jrascVI68wErtX8aml7iibs6VosweYNeQzSFxHD10bxKF0PdT5lBCLse8cuPdb0JHGt1iRjiJVafKwzu52/EoO5dc1GMFyiimFI176YeN7hai22c2dusaHH5n4Nu4/noofeAVuL2Fqiu1TsRUVzezzmuUJuMS9wfZ+eRQe/53b3/h7bZVPMMOt3qhWd00IBIaiosoq4KLak2CsbgWcU/dJHtXuhDQxsFyACkfrkjs22PdLGtueafH64D8eAirvDYwjzz4vi/AzGISS8PBzw5vVL3B4DbtYVh+MBMS6IkbGmgCUSlqCd/Fy0yv2psfDC759o2zEVGsgABUZEAkkFpKg/RxGFCQyLSwU6PpmRhCCRIIG1gdAG7CKgZbG9SjsebrVCkE3QOENacaXNKRTbH7a2x/l90Dkw+gneQEmJKMJBc1C2h5RSkKVabrOgVidUKg8hhgQBEGvAvhN2IshWjPSbW4OMIoIYIqoU7HVHLopplZyxXzYtgPQ1xn2XwD3+ol78QiZGWuqXi2rautke7jPqGFbiW0SIvUjnQ7IoAWwEPxXBsBNnXHVH9bXWG0gpob62OIhJi5NT0P08Lcn2c21M4x22Xcj1q/gb34/08lXW8ELHpoD2+8gVqVRRSFAg2E1cTXGULpQmgjYuKwRZKmohcC3gXCBQAZy8Z228Yntuw3rMbwpkhWF+jpVM8C40/NobnVUT7K0SDIOwUsWipP5q85wNT3XMCG3tVryRFVwwwQpb1WmIIj3WqhUoSljOtYs65lJQIPac+8g6d4k7iUoxLhOAqH0tEoiJG7tYlwlCkubiXKyAAM1LVIHkioxd51/SYzwvhmv5AF+boccCUcdcPzCf8PuZFONTEGvqSKCbmMoltKVDX2zYkO3JdcQD3Vep1tQmZ8SoYrgwEmfNgsKEErQLK57PKTFwz3yBGAI4JuQUlS9jsTXVDAra/RhM2tjIhkcIjLgkLIcDJGfsAMquojP7nsG8aaOc1L8ZE2GJCyIxathRS0AmRoYKb9SSkUvSQoLi0RzsPKnvubACGg6IjtNUQTlvyJcLMgAEAsWAkBbQVlGWM/a04JJWFeBdFizLAdEatcV11SY2y4pgTZc4aE4zxQhCsoR3sD1efQdRhiPYxmKhYcwKYUwr+dQS8cyfk0hNlFh0jeqkZeOlsDYyFAktb6HF1RUqmqlici6CXayrcos5WnH2EIWQX18CkCHWgZGCiQRGFZbKOWHfInLaW4dTf/8PvlL/+Iyo2P5tmEZ1X9Bi6cJA1MJ3xdy72HEAqZg6jEsAFQwNYCQCknVtDY0wS1iYcGDCGrTL62INkdYYcUhaTBKJtFMzqzCLd0keBfjaHuakdjK+YROiCqiIKCWAJIJ4xRJvkeIRASsgbCJG2kGdg+I5ggrdcIbiZNu33YVzEZlalb9Xcu7rlTzPtznZPoK5gCgb1mF5dFJupeI3JjZAxvc0UQGy/EeICxgJFVHnCgIoHoBwAHgFpwRAUGkDaobUrOsP+3lop2kl2Wo+wZjDCiMTAaKMQ7DGCSmtRgDeARACJ6zLDXLZdO5gh/o0EYKqnJhAYNqx7wWBC5rgGgMSCDkqf5FEm4ldiha41ApwyQB2VNkBaCGFiIoHVVt/BXYPgnfNtu/I0aDhD2uPawUIqJYH8kSxtMINwMfVcyGpcdUw/NjGvBaaMrwrvPKIswl5egFhbnmghleJ4m7ryohRiwtbHrNYg8sClCLY94JtyxZT7taMxNfJ7lcBaIIEGM7cPHvDAAQu7KbzKFgXdu3gHACgFpSyaWxqTVtr2S020/FFCFpsFWLfK+wKC1z0SfktmvfT75drQdx3ROYmAK8ColX91yZQiZYHaPiOxSxegOJ5BffVlEdjPLER56Ue/3KDi0K/Ri3fAABsAsewgn0t3irDKFABx459gjq+PAw447RoUSDgMbf5FZDhennxrMamhI4VQLRoQvl7rYwKH+JORlAcyQtR9UnlLTARpBY8PT3g9PgAKQUuog0yISnWhwiwXS6oRdR3EZ2nqALJBSQ7GKK8M1EejBABlZD3CjBjWRKWoPzHy/keVDe8OEQQTmDs+PSTF/i5n/4WfuInPsUf+eN/AH/iT/4xfOMnvomXr1+g5gvk66+RQPj0049Rv/FNpMDYQsKWK9bDLSRnvHpzwP0XX+Bv/pX/GP/p//ev4R/+vb+Pp/v3eL0s+ORnvoXb2xsTeCLcvnyB9bCg5IwXr17geDzgeLxFSgdEVmFqFQ1dkJIKhVodF1LgNn5hWA6zcqQ1zrH4TSqExYpi1FdKMVpOCi1mJGJI/fL48fHs+SwA7pTY2tU58nHRY7qIBlXFq9K62tsqXr/c8cmbV/jkzQt89tn38Pbzt/ju7Vs8PFywV+D96Yy3d4/4zne+wKVW3K4Jf/K/8sfxrZ/6Jr777c9w//iAb3zrW0g3L/CNr6/4s3/mj+Dnfupr+Mv/7/8Ef/Nv/Cq+91vvsVdBzdpgq9aAfdeGswgLYlrBlaD9gwmBFxQU7OSYl+U+mBHSgpQiaqnYt4rDDVDyhlo/LHGOhu2NC470XJ9YUbFYcZg/IvcGDVqcSPBCH4fjfN3xtaVxKWy/G+tSeg7Ox6WOK7Rx6rldlzt13G3M+RufFR2b0qJYi8e9hgIupCoNy9SgfhSa0t+oCoiyrivcz0/3ai+iNy4zm9Aoq6/lAlPMsfGUVPCArc7E4g+ygkvnU5qIo5jfVv01HkhZPYByuEzYydY0dW0ds7AbYNeAPR/sewyzXZswNKjAmOi064h2rf03zzXoscPgU0N9XV2ktVmV3wP4TxeT9MwKt9/bv4larFXxzOTZw3AjcG3//NBsxGiux/tXn2ybf78DtuN/d6zZ7+EoQuWPSGziwia6UftnKMYw8iSoYb1l4KT62GminDamuWXIHK+HxgNNiMa+u+7qiCSKR4reu1Jryy+paFxu36Fhhl+Bk/rjq5rJjZxax+P9+jz//fvdK7cfBJN9zg98fh4jrjd+jl+3558juM4ZCHCNOT7PIY7/FgwF7/3zfb+/4hyQN69uzizg66st5gIVeqlAE8grX77kv7c2NDTE9aX4Su/W17GWFnMbYs0qjmV1LL3nAqQdqF82shyBrZHweVPhQg3j/R4XLI+raFzE6OqH7Vda8Kxf2ePOjvd0josfRdq5ttve4E9bk2vtArgyytn079rmC7TAmSuBKRsvi9U3xxjn9jWuCQPY57B9bJvDLmYQrIETe00soRB0rbA6FTG/s30P/V8XFGK09cy3n+FW9Ws13Mqri9z+QVevEKDlFOAxZfuLjSSidt/b/Wo+hr2ajGeJfu7t+OPjg9zH/Of3OzmfUQSv0+sj+/l61R8ugKQYrlh+yoSm7JErrOmI/5QmMDUey+vN1WuUdif9pnjtWhVGlaIYFTmvcBCVIoKLhDv+EO13rY1WvDNeiQgQUojarNxigOB/j7EJTaUQBzGQLm7D7P5l31vJ+ZHwsSFXP1veSzo/rxofojeD7pyJVuuAPv7G441iKm3paOMe/TOhvmaVLjJVCqPm7o9LDa3+oN/3vn+1htY8YvcuNGWC/dVEYUwUTP3y2vYhtL3QTtTEx9oi59ZyCs6X879/WNjHYUlIgbAG4LAEHBbGmrRmqYma16KcPGiOdt8Fl/OOx6cz7h+ecP90wuP5oiJTRZAtjtBYAuhxhz3XtgiPSXw0FEjVxgujYJk5AiqIQwAFRkUAifI2dF4wYoSJRyWsa0KMij0E1u8WrAmPi02lGLCY0NTxcMBhWZSfRdQa4tZSdG6TYeiOycF44dDvx6w1cCkFq5VLxm31ps/GKhGdXi6K2jxZA/E6zyuCQoLXHbuooXOxHBe8Ek2BoDUksgYCKuDU52WpAg6MRAE1AvuSsK0rTocVp8MBT4cVt+uCo60pj6cTTpcNlz1jN/G9IsWaZGk82s5AgH0XPAFgzohsdexBm4QnDuBjwiECASpapvVL7knpRk0WzxGx8fgJQLD5w4a9Gc5EQd/bFo4Pb44BaL6xx8JU3V/Te1oNCxd0H6YK2prlepm1yrOH8fy4xwP9AcDnG4zd7nGDnZdfLQYZ1mICbEvSfeVwwPGw4rCuOB5WrGkxvN0wd/K9yHNsA6ZNKoATmZGYETh28eH22cPvJrSqIjoAa5it9cQN47GYE90/EurXlzz+8e83xB/Cek1bHQCRCRJpk6fKgFTurxfY2gR3HNp17Nh3n4E+j90P148YBYA992g+uK2Bz/nh4gKm1XMew3doAYD77Obbkd1nuyYkHj+hiTi272HXxUMwJhWrKawNfEqMth/riKy1IpuIo+p71OZHfXAmgOc0HDfwGqPu84yP0bnv97rx3+uXffFxffl+obrvaH1Wd+tj352hLrqrHHUMQUMd5ojXysAaG2kdavT9z3Pi5i/GaLmeQdDez208GRcL9N/7OLK9aeCfsa1Neu08sGJwrW3uxxBQkjb62aViLwV7LSYk6GtUrzljE6nT/HXovrP5YF7/6VJnnidXf9zwHKshbH6d15OK8si2bBo26L5rHTEpGe+rx1QDPvKlsX49Dn635ucAdBzmOdbiWNTvZD+w0FS1gi9NHqjoUfsQK873DtSeeNm3jFIvKLW0DttiSTK/aOwdpoKrcHoRag+sxByokUDI1Yt5+4UYC4GekxQ7ARTXYlNQRd44JFKb0JQTSEJEZP2ODBWjSgMhP7bODGgOFtPY/dkWEAuuQuyBlIMKIahYQoypXQtX7/WEQHu+gXPDYJOhA8Jw431DuV5IpBHs9RhGBPBNHxowaUFYAUQTC9WU75TMp5NlLxnLsmLbdqyrFpms5wtSPGnBSd6x7bsVwHp3jV4o7o5nIOqF86Vi323haiAeNUVHd/laMApC3gHsRv4vuoG1Yh0RgDXpKvCAj4HwYSGDT+/f4bCoSieVDY8PD7i/e4dashbDkYpK1LpDJGNdEz766DUOh0MDYE+nUxP+2ne99tnIh6WRZwksQGINWC4nvVcEIIWgi+aecTqd8XD/gPv397ictZNOYNaONVFFYTwdoqrXAqlZg7zLCaenJ5yfHlvnTpGCEbJrYh6RQZEhzCraESMoJlCM1oKPhsSPE4csSeUB4pVbOv7U36+ALf/p86RtGvrXL+uP9W23nzxwpcj6/OVfteb/tvYvEngYWG4epBCborUGNao0aUk0CgBHcKigWoEQISk1IiMgKEFPOC0RuUTkmnXeSEAuAagFLEpKKFbMxKRB2pqSOkGe6PgBEhI/VnMfuIG5QHUk1vYZ7ehZzRlUwRUX+KuiTgXTjmrX1IEKuGNiXU/FClpgarV6jwRSi+1ltmnXDCdnSS2oWcW8tssJ56cHnB+fUPJmwktWHOWBEFmXX+j4LfaoUCCA04J0OGA93uBwvEU6HJSsx6E7b+h7UEwJKUXr0gm4UEKtFVIyyr5pp8eihZPkKpzNOeuJ6ioVOe8qvmXJVzFCmIuQSS4gVpGpZETPXAU1F+R9vwZROCiRz8A2dRq7MKU4CjiOuRYwWjK81Hbdgjl0wcG92gUaai2ITQSjd3VVUQgja8M6mRQrqrQig1J2lJgQckbYd5SQwTkj23UrtajIVagWcJKNORP+EgUU91xwOW/gcEGqQFgWJXiVAq4FKFm733yAwdSLdQVQIQ/3eHq6w7u7Mz7/3hd498VbPD094Xy54JK1i+RmgibdR6hGSFAQWzskwNRwCWti6w6bcEiq8q7q7IsKTUUdv0sMiJG7DxeTik2FaAUa0fxYJSGRz31i67blolPUSQlO+rTxrmsuAaSEChcJu0Khh989eaW7YAAj2MbjPrGK3mhgRwZiqI9aQ8BulWYuJEO2ZpWQUMqOWlXoiWwvlZy1GACkxRxUUFCQawaVChalOSRmSHChJ/0eSzrgcDgipbUJQO2XDTkrezlFLRpKUf1jjw+AvrfWFqD2dbdto77exghsJsjBBHLBUVt3xo6BfmwtPmWQxRpuKqQ5JLmGGKBWQeWKiAgKKtDIEA1AHZxlbsGqiIDFuyV91ab+e2u5KjlHyQ8FNWcTuagqrCU2dgPjeDzi5auXeP3RG3x09xHydsJxWfDq9gZvPnqDl69eYT0cEVLSa8MOMhiIVCtqdjE+27fIiDNe5Sm+jZIWdBQXWdL3NxCBoDGH3oKWTKpO8B2TJPqO9kOsoGksFHa/hV0WWwdXI4/KUHQFcaIBoEU4uuZrtyZLHpODBV1oykFT7zrZgdEOrJbqyawOJNSW5PFTY1QhhAJwqOCQFdCPhIv56k5YhPu30AShkBauFhP1UN/XDmyLUiOsDQVabjo1DCjyq2vimlWA6oCygwlV4/XqZO6xKNqO4PFrAyDYYE3y5Lhe85HoM5J/nCw+iox8SOb3I5cCkBVLRhM4TCpu6CJMsHFVa9FrLEMheCmNpAGghRPeUTGEoOrpzFrIWfv617ry7LnH9tJJU7lW7ejciOVGMJSrgXcVuly5SBgwQ3+O+k9POneQ7zkw6WQdBUzbsezn+P4WSTWEVMctDyfG0sdNCIy0+J7dMROdi9qJmkFamDYAno7BIKCv7XYdCNekJE9e+9/9PjpgzgRwJBMcj23f1SXEBQeq7e9kcak+j8EdddKJGMtd51gHVTtw2P0Hkv53PTUjWw2CDv7O64T1QKwbhR5+ALLej9vaeuy+UcP5uqA8cO3nkl07CtRwMk/m7duG0+Mj3r17h7eff4b3bz/H/bu3uHv7Fu/ffo6H+/e4nJ6wX86aNK7V1rpiRZWlCU1J0Q5FwcXfCkNCARdGHYjGEPXjPLYwpAJNXklMFC1rsXsjRQAGZCupyIvO2DFF8rlUh+PD8C+DR9jF60eBYPVrAdKCLRtHXoirySJqyYNK0pLl4idvs0mlptRf1W4+0kWl6iA0BaDa8G0EK/vdjyaivhl5kqr0tbEWBrHiVBp3LSipDsInhODFnntBDAnEZ415s4p85FKVDA1NjBbDiVu8H1Q4tgKtw3pR1SCL7zQ5UoqTOa14lJXw68XhABpWCaD5qS62KB9YIdiVtVjZ/jmsGy3ZjGE9or7OdNLctXliphUdMrdYOThx2w7XfWlbh2mkoo0JlWd+vG8g9jrPFbTEhxOm7Gh+lJ56Jf/6duTa9quOSg4bJfrYdRxBFBlS3ReB4uN2TE90SaUh0cUmimXjxWIhf5+PG7JCfPK540RDdmGljFKo5RncJxH7vZq4Qd608cPp9IR3b9/is88+w8uXL3E4HHA4HPDy5Uu8ePUCL1++1N9fvFDRqWWBk6n3fW/iUE9PTzifz8gmlj3GYk6Azjm39/hj27b2/LZtOJ/POJ1OeHx8xMP9Ax6fHvH09IT379/j3dsv8P793ZUvCPRin5SUFBOCFxSYH966pn1IdjV4rqzL+KBjZsNLx5d7zYO/gVqTDBMVzVkFpTYTlzKRqbxvVhi8Kx5QXHzABNur4k0hqAAnALjofoqLko9M3K+JD7WYqZOBmv9KvXEIAW3uB+5k7ZHc3oSbigsifbU/ojipoJo4DxUCoeg+5UlOWxNIYIWDPd095vt0yNjcZxWMv+6MrD9L1g6HscUzPdGrPrgWvJZK9hyhludERBMIqIIi1XCY0PAEEWmNQJ7nKH1sXCXZ7Ro231E0vm8dL4c5I0a2KFawlrMJhmTvfqoPgXaHC1HXs+6pkG3phoc2UeUPa5JpM5tLGzuOL7GN67ZHy7W/w9xzu7Vqd65R6NjH4biPuznmBOFhXClhNMYEohEftvjDYgEdo1oUS6RiUWtacHuz4tXLG7x5/QqvXtxgXYDbmwPWwwEEjQdTZCxRhY1TjA3jIIjhIC7WZuPfiA+O+3BgsNj3JgFJQM6MkhmlFsTIuJxO2FpetzYh1wKN5VlMbJXQSCN7KSDLxXp8576fGE7jwvNOmMh594sJ9yt0BJKJ0miM1zBYoqtYS0RQd23gcLlctFuhkSG1a2FsuGwIjMy14SJKCgyapwwBRQT5crEKQN1fJRcQqInmtLXDhFpazEfUyJz6z45n+Lx28RtdixgpBfV1jUcRYxdW0vn8YQlNJWIs5l/tIurYi4kgVx9fAGz9BRFQKoTqQKxV9ZwQSHNKsZNak+3rvtek6A27uONYXox3tTMOfiK0EcdY1NdWKunkNjKsslr8U0VFa5zEv+2Km3jH4yYsWBwPtK51sOYtOAEcVYDc8kYoBZIzas1dDMjEEFTwOnRcghmUlZzPrIJSSt43cfwiCF7QQ0ZkLPrtSMiuixamidTGjVGynmhjdSH7rl6AY/PHrlLrwFcKxHg53jhsL9YYTEycwYjous8XUONQdKpaLaUVz4ip58SYENYDMHxv9x+fC9C6b6BdAT2eAEQ632WcX+2YxtMZ+Tz//2LuE5HF0mRNfVwswUe+YrAqLCWWtycIvCmDjgZYV8+iBHSOcOZvI3NngoQMidZQBYYh+1WzmLyJJYYISoviv5s2F5KNGjlXZTN8b6XWfCKlFXLQva5cVHxNrJAelwtqFeV2SOfwIATUqM1UggkgigmeUclACRqvsQtwo9UMw4TwyGJAZu0ivOeKUnZc8q4kVGZw0hw3XSpKiNg54GzNldKyYDkc9bEesBwPiEtCWg+IaQGnpE2YkopSxXREXNCwkhDIMnqed9BCIWCH55L0hkoLMz0UVn6FYhUFLkSOhhNVFtQsrbDS/UF3HQWCIoplsQkYF+n4cfV4o100F0wgw5hcGNe4XVa44Zg/VdFKSlER4s0aDJJ4E4mIyJY7+sCMQ7tIPV4Uw67sRohAsRzzXVSnU3EvJajqZQtWSJJYkAJjDYwl9qIqBrAy4RgZa7TO4SHgELWp3xK1s3kgFQ6MgZQQb74Mu4/hjSOJDUPRhkjKD/RGlAGgFSILiBYEPiKlF1jiLQKvKj4Fw8uCx826vpe6QVBNGM3x4gKQINp5x8iotWDbN2yXM8p2MX6Exk9EsEJIi/eIAKpgFBQqgBCYI7wLLJvIgAz7evXvSowUF4QUAUTUqgJNkADmBcCCKhFV1NcWqnDuTZXSxIx0HVLcRZmBep00L+MFmRrzMAfEkICk5HTZtOERUUSMq+HsFUxRheRRdJ1hJU8TR6zZeKqS4dhEJMEhHazAQXkMZxNIqknfXwTI4vMZrbjJ98PAwfbsglIA72Aiot9xWZYfw8z5wU1c1NBWLiLHN3wXM2zLczHUnxeP3Ru3lTuej47veaFg3suVAK3zdnrOFRY7uChXQWX1K7QZQW3vK9lENv39OaMOGALsLEGO5Hcssu2cMmRovNoG7p+QCeFaoxJoUVo1jgdKgZQdkKwN+yx+YaCR8v2++36hvhihBl0/cmXEUJAzY8sqQhpEsBOQCdjFMHrqRR0gX2KGPITdlyvRhC8V5wwFn/a6wJbLb1HoiKfqdem+mV1XgX7/qg0CGNoshKxg1n327s91HLZxD0Sa/6/H9JhLjW1tbzKPPXSAo8CVdPtWbsBwT9s3+YCMOsf9dDpBRLCuGkft+wVPjxecTycTBLS1itB8xbwVVFIRNt3XyfgXhJSCCSUKmMQwXG3Im2ttAnfbecPty1f4+M1LbA/3OG3vsfKGWh/wjU8+xU9962fwCz/9DXz05og3L4/4l37+m/i5n/kYH32cEer3sOYN563gm59+jBQOCMdb0CWjEuGWVBj68d09vvPrv47v/uZv4ju/8Rv4u3/7P8f3fus7eLOu+Lmf/mm8OK44rgtiCMilIC0LXr1+jQrFeNZ1xbIs4Jg0R0S6By1pRYgqVKhCOQoc6j6s1xVDLEmGIXlNQeQAF2J0LMC9HV+32hodrSFKwwig4v5trErHge39zD3vhOG4AFCLQIRwxEHPXwCpGdvlgBc3K968usH7Tz7CNz95xOWpYC+C877jO59/gd/87nfxsJ/xD3/l7+H//n/+v+Iv/jv/U/zCz/48vvP5t3F+/4Bt21CIkbeKP/pLP4Of/ta38K/8sT+KX/8Hv4Ff/0e/gb/xt/4Wvne6QwornraKbROsh5c4bw8afy0LQoioVAEwcsmQvAEg9ZvNBwisgrHH4wtEjtj2C3I+/4gnze/O6oAnDKt/MzHczfnVjvW4cHjDDQnDve/I9BVKMez3LcdFffXR9/bP9maXYK+/scbjHkMJGhdhzPPr3koNT3vetEu3AfUvOtoiHTvTCKSfO0flIwEgMESKcs45aD7dGg66z6eiViYw2v7tz6kvqFww5UXr88rFBEUo6bfn5wTWcBJiXLICFTa0uIYtaqpeiD7sn+hzkIxDofeK2/VVIaxhn/KiS/jeK5bfHfc6P9bg27Rb6YXJjm3q/dD3OyffRbWu/Y4+dsihyH4ewx4rFofD9051diAmtvWhWWta2HIw+Mo80GiOE43/Hn8+f/659WZzegyveam1gksc5s8YKD7/7CG3ZPsxGTfBIw7H+VqzwGrYDTOEC7yxArNiBRyCNg3m0PI5xQR0MeBmfg6jONNX5pCenfv4b4/1xvePz43rw/e7P21dIbo65ve7N1cYX+0iV5rP1T1uFMZyseDn95JcCJ36WrYb597nSeMuPLseIsY1Qe0NB66unT83CG31xbD/w5ONQhAWSAgAEoDy4c0zj3XF13d8uWSJfNW35/3vYk80RVa0eaG8OEMOhYbLJOOR0ddH/Y9pnDt9b3t+3ahXog++el+Drx8Cz+2Sn7jHncw6IkS5HhVoucIqLppVbX/w49j5DV+j/Sr9HPq5WA2cqNgVV4cDFZ8gw0kbTkfmYzTusvl/tiewc5R44NKQ8sKkqiBvESBDG1+geO7S94PRl4CuQeDmm437mm358K/ue+SXw57hivtcsfhRhvixx8DjVdP3ufCmc4PhsR157PXVtZjulYjI1cj6UMzr3L7q3K58vWEm+PVT+Qj1PXzpVN5oF5gqRbBbzXRuXF9BFoLKUg/XyNcn+zTlHVEfS4MfShZDNBzAj0EMoaBxIBt+QdSb6ZKvz4pnuMhUii4wFVREIIaGicYQcEiLNpax2pwYLQcYlEMdLS8UvO6HrRGJzwmia+yITWTJ+a3tavc9yvlWtYkzF8TGqa6NI63rgfSh6++H1ygPewi+5Bq0OM4/r0hF5YLMjMKKPWkenBp+D6lX99zrofW8GEFU4LgERi4VQWoTQHexKa8NqFBcy7ngTFn3x8Bt3FRb0AUGu9gYQbU53PzjD88O64IlMo4p4Liq0FQKQOCKmJTjQOzCk1Y3d6k4nTaczheczhtOpwvOe8aWBVmAQkA1H1xzw7Y2w1FMG0s+R9ommAHRRrQ1K+7oTfsIZOI1Vh/IAVTJcLyAaM3CDkvC8XDAcV2QlmhibISbo/7ujSqVi6rzZF1X3BwOWK3eitRxBWwfIc8JWQ5CQxDzYyz28tzrkmLTL/C9RpsKdoFoF5RrvHkzPa7loCkBnCDPmuI0sRGbw45pAiYy5ZitGF4sysHV/LPWBIYiKKbms9SINRUsKeGQIo5LxGFJ+u8lYX2IuH98wtPlgvNWcNmL+nqOe1pNGKD8qVwF215wIgLjrBNCsjaQkgIpR9RDxCGSiQbpHirWAEhdC+UES9sPyeawL8H6HjLRKfga06/kD3OK/FCscdjg/Av9bmLNcTzm9DWxDn6UCyPqGoim1eAPgYnsch9PfVzoGlTFGxW4D6b1iS7FzKbT4WN4XSIO62KPVX8uK1YXTyPNsbkUt4olchdNJNMtGP4WLWfTcBG9MOPG4L/ol6c+tpQYg+bQsl0jyBBHjY/B3H8eOaJEvq5oDF/dN3ffq72Z2x4E9n2KG0bRndln2AIb1+CZT07DGRH6uV8/oHuYfW3PU3vY0P9l39Wvp/uZBIXrRZRLDeXj6KUexkj3bMAkCKTNeZZo3AMsEIhpkezIJWHPm3FLPzzuorhv7NfE1loWgXMI/TrRGH9RHxdjNDRknsaRc3UP9b5/9fn4ta0+D23tbh85nm/zWTRjw7AmMh4DsfMD7cEq3uZ8sBS0McoS1V9MKWqjJVQrHPH4Es0Xa/eP2v/sOhoX1r+7h3LP7jfZGkNaWIMaBCkGlBIbr8lFnvaitdHV40f4Pqj14OpndMzS76eIci1cX2U8A8+3tVrHgbPrQsFVBHstiHvGXkpfU433Mwqj9lyjXY8+4drV0bXjd95fHJMZcbUR0xl/jtZWEyarLfqd59gPLDR1uVyUFLkslqzR4tSctQDzeLzFze0Nbm9vEWNCrRXn8xnxdLIucDtSts54uVhHFl/4nNBui5Y5TcGc5equ33ARxscIGI3k1Odgk45V2wTIyKKsJBFXPEwxXBVrtQeHllBwZcToCrwxtuQCRJryYrDByUEBgxDZuphedxFXUSoTmrKCCraVhqkn3n1SU5t7OsqcxOdprxEc1K88Og7+nIenpICIXZvmONkn6OxVsSklUVoyXwKICogjYqhIsRcOHNczlrSYwNSObdtbcYROnNJ+eqfotSZzVnQibvuOfQvYgh53zwVlV0c0VxUhia58zKwdDAshG/lcG0O666xkV1XmNGcAWnDwIVmEIBKQSEUE9u2My+mpFzKLNJKmJlNXvHjxAsuyYNs2JQVtO96/f4/z+XxFnvegAQYUxBCwLDoOT6cn7Ls6/iQq8nI5nfHw/j3ev7/H/f2jdUgixGUxJ886CpOCCYHVcdPuWTuerJDofDrBRea9qEx9WSXSaxc7fbB13QsxIiSbd9ECyVYcPzhK5hD3uzhsrFf/vl783Xn6Smf/+6yZhi1f/bv5cM8P830O/aM3ujon8SDH1pFqBa2QABHtzkf+8GCVAM66eSxZO6EVu29FxIrbdHctueByueB8PkO7LQYsKWkxVM4DKfoDsiqo1t2mJ3gV7AtxQYiLekwCMEfEkJoKO4egxVro+wlBCTIwIKw9nDRIZCCYgUMmiqFjSYniNedW6Cx1R94uyJcLzucTzk+P2M4nVBPh0WDFk8RWIOSAmgiKqGBbjAt4WZHWA5bjEcvhBnFZVYEaDPNZtEgkMDhGxLRo9+mUeqGOzeeSlcCshdn6YAM6mJwA79GP7dOVUDKwxoQ1RkRi7Ry+bdi3DSSCJSZ4J7qardg7WzdI3//sOvsEdD+PW9ej7o/36TsQqHynDAmBv+xQaRFYBddBxMSdu2L3xec7wfZkRRS8cEFJai44lbFbwV+2Ir897yqmtO3gvBvRO1qCTYtmY0iaYDOhqcu2g84nFAAHERyIAA4I1YqrjGj+gziVP26jkrFvTzi/3/D53Rnfe/uEz9/d4/7+AafTGaftgqct4/Gy4+mScdq1K2MVK/RKCWFdsNp+EwNhCYTFCLxrUlG7NSrgpMWoi5JVg3aDDFG7v8bgQlOLPheSEhm8w1YYumyFDr6RFUi3xOsgeNiGOmBrSAJcuRzo+12LhKT7oJbh6ULFBobBAxVz4C3aI/SOjyJJgUWFsPTjzdcsRYlKxKRFC5o1BRXtUiEkCOLiVRXMgiCMlICAhMV2A2l9LzQxVPOOUrWrbbZuogRCXRYQtMMvWZcKpqiFrbDCa1bAiAyVEhh53fyARtSJAUGkJ0QH/74JTpn/QvZTj1WvktYu1lcqdQEX84+9+E1Yer5MdH1ggREoaxNQUqCoKhCSFXD7sKwnfb2Tho4fE6UIBKnePZmwLAk3N0e8evUC++Uj3B4OeP3iFh999BovX7/Cze0NDseDFnXH2GIlCKx4alBkHhI1GO6T+9RkYgvEVbv6ksckHrzoCNacvoKTAidAWpGfr22+ttfrMTGCd2SJLwdgaPDvvoooob9XiDBqGUFCfb9N2UFoyjstUBcLQKv1gQPJLjSlRfZZYx17kXjcAQZHAle5WqNiVEJ7NhCiiXQNCKCLXinY2JNujhySbVKdLmtzzXw7Lwry69BwrHa1LBl5FVP7sz3pZrfQPsL2I+oCN0IKRblivohYp+Hn96D//iHuY60YDIoZpJQs2aOdeCLrKtwK6EVF/bSzls7DamASsfpabtqxaiT+USsIdNVzF5BS/8LPRdpcuJqPTp53wEsc2OxjtMUtGKb3OFTsVwfoPLEbRj9eRt8Kw282P0maGBsEDf/oSXYfU2LJBGqEitEvE6gvsEQrsg4uWKJFh5kUC9ntizpXyTuKKkEj9GsNi4NMLO7q/A0BdxBdHFQVgKJ+TqCA5CKVRM33c1Jjx0QHMsfQqWCcYU54rOQ+AeBJLI0lBFx6Ap2GcyV0QYd+SamN1+fYl/si4+NDMlsF7J6T0y2H/cyXuF4c511z9HJ1fKTmbNjFA+7evsMXn32Gu7ef4/7unT7e3eH0eI/9ckHJm/omDXi0ojwXmrICYl97ycRGIcFIZj7JHHo3wi0VeCFIA7/Fcc/SEnVopJ++Do9dxDk0VrtdKV1PVFyqF7DEqCKqMaZBlEWFp9xRcvHcUmwvazici7ZUE03yeVxbXDySoTGMZaKiGfshzlUftf1PF5cx0YVn0Ijv56VCRIuVQ84oKTVA3r9TF+kPFq8HFFTEUrGXHZSt8y2JkmyBRuZyHzCmiAgX+hfzpZUsXUpBZV/zXejH90DDYZmg9Qg92mzHtuL5UkrzRz80a1NfdA0a94geQXc6UiM620+M61hfPK+uEXvRZXBCbWiFmlfxURtn/Zh6r9ypojZY2vHtzY1UN/yboOSMJirTjgeINO/l6ltKw4PbO9p67mt0H//6GhKyQrHcxpgTHkW8OJe6UNAwd3yCiMBwdPUh2TqlEqnYb/BrTRp3MiKI7XxMwFzsvbkIgIwqJ+x7xul8wd3de9zc3OD29gVubo44HA84Hg+4ffECL1++wOs3b/Dpp5/i448+wuvXr3F7e9sIv6fTCQ8PD7i7u8O7d+/w8PCA8/mMbdsQohZUjPuNF/1t29ZEpi6Xi+Id9vC/n89nxQwvF2yXC54eH3F/f4+np6e+DrUC/CGPMpCrn8cAH5Jd+8bDPPEh/dzcF5NhPtle40USxY5bqxZCln1XfGm/YN8vyJv9zC4ylU2YoLSOd9rsQWPZGANIFhUjBjWR+RRcrDB0kR1B81+LBTytqy0RhC3WJN+T+Iow6MVaV/G8iImiRs0Dypig7VfJ96TcRKmor+dtTYL6j75itfXKc1rDKmFV/eK+hnjiVj+8pNjEWsViGs9PaVfMjFKV+OfXNNucaVihnzu56Fwd8hMWp5sQLXuxyeCvta7oMHKA+x62HjjR0OecF8j6PWpdk+xvWowL5Go6ASMphEpbe6sIQtU9Ue9Rba/70Ewg1k3P4iQT7SPzD1rO2MSfRUrbZ2LQgvRqgtkuNHVVmGX3w8UidUwJWDLaSCM7D5FnfkIfm40kDieiF0QhLCHgxZrw5sUNXr+8wYubFTdrxHFJOC4HpLjq54aANS04pIQlmlgAAQIbnyau6/u45wTUn4HNxWD4upKqIKLdvGJCLQWRt9Y8KW6hi5aVilC1SQRiBOUM4Yodlp8kHeNglcsvRMgEZAGkDMI7JnofWkwozZ8HAKm2pteKGtXnzCJo4qnRhXiAPQukqBhAzju2DW3dScnEuFJqRdIhBCCpIKtkjSccJ2l5bI+XrvAcE6s03Eu3ffcNbEpGAlBBJhQhAAq5GDR6IRlpcRkTQUK9EiLyOFZ9iA8rF70AKCAUEIJhW0rmqRDW3AvJgEGbv8jQDsZLUtI5V6hQb1DiuRf0RsPhU4jGpYiKwZvQFF/xFZwoZfOygRrSxI3c/C55zsexQScVlVoNY+v4ZS4VORfsuwmqG45Xcsf5BMqFqnABFzThPie0Ss1ocazdY4hok4bqQnSMSMGCWs09wcYfSPcLgeJIup8GgFT0SqBiNTFGHaMVcEo0kYlb14pirOmGkdo10S6y0q6DNidQoalqRCkl+qqoqItRubC9fkfNUXqzMFiMCBkcGHH+DpoIXROZet4MzuJTqWJCmAyK1GJU373HznnPOQ0u1OoYmvsFX7YPazfzvKIW2XJrqqZ+n5FuHa+x8UUSmxCEdxQvJp4ZiKzxTwWJcT+kCxFWppa/9Ty1CKwgEmgBBawbcWDwokJTu4kL5bohkTZfItZ1mqNhUbVC9oIaE9KqOc1MEUQXyHbRWGErEMkIYn4ndREckQCJyvkg6vGhKUmBcoL3hGLHMi2WoloHni9b8UkG5QLsKrwqAGQLQEygSwZbQbMKZAXsy4J8OGM/POGyrkhPB4QlIR0OCCZcEGJEXBes6wFpPeN4UxHTYcgbhkberdB9n2o0f5Oux7A/B8OYXDHM9g2QxoVCAIpiJCpiav4OqRjSgMyjiDQRbedTCaTlMYm0oZ9juB4LN2Kj5StKrih7bQU4Y/zVxVdF121ihLRgWQ6I6QemFP7YrHWENawN4mtSaCF5IzPbPWDSnFkiQoiENPhyMRAWDpaTNgKtEWoDB6yBcVwIa9CiqhStM3mMjWSrfKnOFUwuNM+h+W9SdRyowNSKJa2IcQGRF9UHEB1AfIMYjkjpFim9RAq3YD6AabXGSwtAxs3KG/a8IecNgCBEtj3xgloLQiDEpAT+ZU0QqThfzjg/PSDHJxWzLspFIULves7O4axgZGjxP7rIRAhIadGiaqePu18h6utq/j4hhIQqbFglqWAWJdQSUNiFzZQrWWRXoUQRwMV7rHmT4lAq0KV4S9H4uOgYCBwRF411PR6UTb2eYM1vAgM1CKSesG9nCCqCmHBJ0BIIIOC8n1FExZyZAtawNF4pE+O0Fy0YrLrebrViKwXB0O4CMXFIvbUiQKWKKiqC77nTkeP6IZkKdLVFGX6uzkn1js3Xjdp0fIuo/8ghoXd/N8zD/I99N/9sV8HCsYmP1hKRxffjw9dava65VOy75mX3LZt4unNQrSEQDR6t493qSBobwvEaRysc567twZDumxBsrpM+L7CGFtC9ulqTI5GGkVp9lflP9jkD1qr5RVvnQa0AX1ibsYHZxDyocQBgXdFd0EzsmGPBCpPFkAC8MFW/Aw0czy5CRc2/G8UshjIRGUrYn/nomvMQK2x3LPorHtSyht299Csv7vcaJujHAIZiAbs95GVijgHZ1fRNEN2vdPz7w/IWgZQWiMUm27YrJ4YZSwrI+wVPj/fYtwtEdsAEFdTNUFkYjbV1TfSmzrpO6gOoKPuGXM4AASkxTucztn1DjCtu4hHrzYIgGZf334XkJ8j2Hq8/vsXP/ORP4c/96/9V/Mk//i/jW197he9++5/g7u1nWPge2/sztvCEeLxFPj/gUhghvcDnXzxg34GPPv0W6vmE/f33sD/d4+//6q/g1//+r2F7egLVjJB3/IFvfROvX77EzfGAZdWG1su6okpRzHJR/ngIhPVwQIoJNpOgYi6MYCKNOq/FnEi0ghnn3fsc8Py6Ck96fIGWC2giAez7dAP8wRwtNnIMmNp49Hygxof6jtYgj7mPO8cmASTmPp5dLrhq7cGyLri5OeL164/w6ScXlK1i23ecLzt+4vEb+Nn3P4l/9E9/A/gvC371P/+7+D/9b//3+PP/nX8Tbz55jW99+hMQBGQmUMhAKfj6117jj/zhn0W+3GNZNmyXn8Tf/uU7/OZvfRvns+B8AVBOWA4vQEio24ZMDKkRaTmgAthEBdhrWcBhAfMCVI0XAkdgPSDEgH3/6kjt98o8r+CCCNfd5NFxZ+riYM8f1/l34zrQ8D2ljx3bWizn9awpnfQ1rgt1etGTFQhbvNvEGMT2QviYtD3M121mE30Y90l0jHk4Kcc3RQjVC7sE6n8GAWmloK4vtRrOqr/D8NYrYSnyny6San4suwCFi8sbN9P4mQApd7DtWwLtIIa+ibUGevoisjyiuyMe3jo2ROz3RjdctuJwF67GgCNc5Zj83rUc5XDtrnKFxs0mx5N9bHATS27l2aT7tYj5QgM24nkh3/88RGyPFu/1uFIMd6riTXV/19PgR25jHPxV2OdzLhgZzsO2Pvpffyc/2PkVV2uqVEgl7PsOiNY0cM6NW9S4aNL9CsBwBybDLHTtdSzL/cTQkFDL8Vo83cXCoc05QwWu5rDmeSsTij1cIKJaLNOKDQdf6aqm63e45m33MM7s+P6xMd1zsane8HCotKGOJzx/brx/49zxHKbjB/638dhtztl88vd53rD5lL6vtvd0jLgdZ8AjS/U8yfV1G1/n/KOWuP/KZmG65tnCgF5C2fNFH4x1FXP4pHG/tkdHwz+u/GvoXBn8el17DU9q763DZfI9csRULEeLLiwwpDj7PRowW2/G/OV5O17f/jcG9/wATLTJYhNTwLWY0viZJs5Ri4o2SfU8Qh0Con4xqPop9M9vO2eLcRmwBs0ivWaTKoGCxY5Mhi0ZXdDqXjxH0RvhhTb/XLyc7HZW0vxYCAy2vY+q8gh7+ELGg/JzZduuPKf8FePUzs0b1eDqWg++gm1IgjrEjnYvnm80tvmM3Jmr1wyx5/O3Dbf5gzafWl960p+98hH89/7FfX6Mq7gK/Sv1cC8Vuwts19rq8UqF4kV2X/t5DLwB6bFJE5qiPh/b2uBHIEBsfWsiU4FajbTH/6HlH1RMIDZ8UzHOFKJhofqeFEOv03GhKW82E5fWZEZzgKFxWzV/zt1vbX4k2RiUJjLuTFlfg6XBMrXx92sNV0X7zpkQuZ7bDU8YH+j+Z31+w82v7J9TUUowbgajZkYJKtrfmkMN+FFr9lkrqrDi71VQq2KzgY1/E3vesd13O6diXJVQPLdD4FKQWevaarVMoQCVB38RQBCxhhgfpi0pYU2MwxJxPCQcloAUAaaKGICYNPcC6Pp+2TIens54etrweNrwdN5wumRcqmCvQCZGAWt+mwgZym2qovubCz24H+18DyIAdQdqbrgdNezO8nEMJDbMTwIYVmvtIhsp4LiuuD0ecHOjDR5TYCyJcHtMxtEYuCisTanWZbWHziGPzzxnCKCdK9k+7zFXiKlhHzrvvEGXN+jxnVNMpyDavHP/qH0Amn/FWnspiG398YYv7qOxxSvNRyPl4RdbrTQODRbeKY/QhX92rtrGhqy5h4mgR05IQYW5YhAsQZACkAJhPQc8njc8nTacd8FmG7dT8z1mJxJUImwVoEvu8b0v2SKockBZExKzci+txRTsmldTJdNGFz5eCCy9dmms/xt1LYbI/4My5wY4z8F9Cq3nGGPOLqBS6sDr8XhJ+lqoNaoeN/hep1i4Zy5BopwSHTrdRxQVoQmkNYaJVWBojQGHFHFICcdlwXFZcVwWHKxWNKV4hUuT1VAq/l4t117ULzLOm5Jw/UYBZJmZfmWGryHGfYLWClYiradsWh19DramllZb/Hys2eHQ/XT7O7lOAtle5gvUuNOj/2wOdT+mr1sY/jSuZWMchebTf8XmZg9D6SEorVFGr+nzgS52/eTqvzHOYvMjBaJjiw2ncfim+tFEeWOsexvbvyO778+oYNQasC8B6x5xiaz1vl6/+TsN+h+zOc47YrsAuq/87PW+x7d/jz7zV/mW/tTVrffRIE1Qto0hww7ZXuW8iva+4bYCLvbV81opUPP7lmjzM6kQ3BKDiRpa48EYkJI3XIptH2LjvrjoINp64jENtdh1jCz7NbU6fBLkYutX1feNAvtkgmzNN7RrnmvFed+wGeepKPm/zUPH5a98T7uGYveEoFhrO68hbwXQoG3T+cStBkcEeylIIajQlPlrzxvJar1Aj/P89vv3cW7acHf7uiDStH2+Xx2zc+ueYzZ+PI/jqOX+XBj/Kw93ZT8wK6RU684rSnLWxUSXk8NhwcvXL/Hq9Svc3NyAiHA5XyxYEjAnrKsXI5gYQx7o105+bhu3AWHqviPXYgl3NFCkBwD9aQ+qRvCyAUr6j8HpMfIbkTmCSniKITaCa7RObSNBrhHmeAQDLAiyQeaBUbwCDZSUEUNUxUQbtKzejzqAHAYSWWhBeiBNlOnr2Z5HuwcOYgOeCBgUyobA8zr54TOtXyMM4MSYdFVwTQluwgwy1cSKitgcClNesw4zcTkg7xv2vOOyb63YJOfSJpp3pNIAq8AJ7j5O9rhjM8X6PSs5YN93bHvGvu1dldcXR2p4iQ4TqQr0sH5XcicGXRnxQ7KbNYFJkC8nbOczynbWhZ21y2mxop5lWbCuKw6HA0IIrXN8KSr88/Bwj23bQURNNM0BYB+/y7IgpYhatXvRnjMAoGQViHt4eMD9/Xs8Pj7gcjkjcdBixhCwLAHLEk2Uja0bnw7IPe+4nE94enrE6fSEy7ZhoQQH8GFjCB6YxQBOOt/IzjWlgJg00dSLjHwzdfDSEkl24w1+x4Cu/fbmmy3Bd4q2MfQNwl+rn0G+8eD6I760yf8AH//DsitAv23G138ntg2QFQylwBAEgJIVh5rQiVTAnPNaq3butI7UAiPqhNwSIHvecbmccTqdkGLC8XiDtCSUsmO7bNYt68MLqNSZdeCIAArgAO0OFLSIjwATSFwsSO9rs66l3PbwZrYAqfKlj1YjdYquRxqE+7irkKJCRDVrx9iad+yXMy7nM7bzk3aS3DcTPNIN0rsFigU8tZrIhTkTxBFxWZAOBxWYso6sZAURbf+EvZ56p2FdL0w8oRaUsiNvmxav1Wxj2wAW7/Do/li7uFBnRsiK83XfIwB533E5n7XIxT4TMEJZyQrGiR4zsJPOZGh4QA2UJwP34cmt8f4279jPSjRBj+dzXAYyt7QAQESUwAgXLvREkhOpbNPxjzQnMpeMbEJa+74paT9viHlH3HZw3JD3Te95XFQ8zO5riBEUEogjpKpo4mXLqLSB4oKQFlDsBTKh+Tgf1j4GAPlyxrYBj2fB+7dPuPviEff3TzidN2ylYC8Vl1xw3jLO245LLsgVEA6ta3BMi5J0gwcxbAJTCjasrs6eFiwmMqUd1JTcmVqBViemqoq7kk+7uFQnnJORxSl0UoCLgfTslQz7hUftCaqfDXjBcQ/UdFx51zD9ozjPCZBiZMAhqKx9fPp71KcRJEkoxKgUIKSCWLVGhBJQivmpuxKWKQdk1m7tUioS2ITxGMwVSYAiBHAwsQBNXpQKnM87LqdTD+SKtA4e2nmdUcqGUgKkmgCHiQ1mZu0inYFCvZhbalXxYnXI1R8LASkmiBCK+4FDUruRf5jbe4KtZZ3spf5xraQCmxjf46+jRqgHxqDKLjpdF7SoSBZr8DaQwj4YexbPKDFFmnCGbulFd3hWxf0lJdzc3CK/2vDi5oBXL17g1etXePnyJW5f3OJwOGJJWvzVER/ril6V5Ogqy6U4gFbgIh0iSn7UCcIABS1IaeTyTpQYv4c78mIFou7XUXud7yvXYFt7e/Nz0Pw133c9VhqDf3UTTVCSXFitxzw+tti2hUIOUKMJVTZs0t7JMpLP9J6Uwlbs6ofWjs5UCVwJIYgm5lLCsmu8owKFRecPbMex9ceJJ94tiZi70JSfu4EOYkVw3m3ACy6cYOpiOyLSip0C69wIHCBRmp9MBpZ8eQo8I+RKJ/JABCFpYtG7CLsYmdWo9VicvEfih2UpJQB6GVRI1USmmKHcXDtrB4GdtPAsDNG4y0RzMcxZG7dAX+dUZEoJ8V7UUR1kqj63ayPslKFo1nJj7fHcfAtrQ8bXZQe24QUB3umkC9+0C3F1vI4hNPDNztPH1xjDdfBQX6vH1j04hI5jVNheQ9dFFR7fkMWP3q0IuBZZek76zDm371JD+BKg5u9v4sw2qRX9oFZMzi74bXtYHebd1ZoE+kqxGU/G+P0m3wdZk25OSkTxDow+Z7WbR/BONL7fSU9ejMQv9oIBDMS5dp8+sHk2jtXx2ouLWkirTG/kTI87/HW1ou4Z+/mCp8cnvL+7w7sv3uLtZ1/g7u0XuL9/h8f793h4/x6X0xNK3oBSEKzYi0yMoBEBXFBXVHqzECzxJVfxvQPhSuwhJT0QdVEOru07lqIinboV2cgKvXgj2JgO3LvkegGtxpw6XhRzUWBbxfFVRDUti4muLhbHafdmQHEdxdw6eL3vWlSsIhr6PGUjRAorwdHmcS21A+3Q76xCIiY2Val1YfOEZfOtbO9tN9pDJ7t2vme5cAYzY8+l4YXramRNQK9HUiK/QBBqQSgFoSTQnlUQQaR1kSAT4NQwn5FKQhIV0QwmOgE7b0GxZKDNGc69A+BgNXoCs61G4MBISG1uqWjXh2selvTrT+13wrXAEg3r6Hj//SfBMRFfJ0cBRRcGQxdeEifIaNw7zqiO5A3XvF1rJxT6uBpiextURFo4ot6+ESXFXkG1v1Wkfed+lB6bKYHe5qh9L7LYj6oLtJOKtaA28R3/PuKYhQ17JwaNm65/nia3APYiQ29ubOtKoGDx2kCKxfA5ULGEUjZcLjseHp9AZKKY64p1XXE8HnA4rri5OeLm5gYfffQRvvGNb+BrX/saPvnkE7x8+bKRmV1k6osvvsBnn3+Ou3fvtGnA+dxwoudE5FIL9k1FpZ4LTY3JMhcq9sYTLj7lr3te2AHgav45SVR//8D2MQBjDHFlIzZrQ/dLaWWHEsgLDHXwSC2QklXoKO/I+4a8nbFtF+zbBXu+mMDU3nDC3jmxk9wZAJkIN1I0TMF8Jeqd7diud7UOitqR2URMTZSCYoCIrxUw0UNr1GIdxZw06MWALX6DCfwM9xtjPs9+uhiM7gMROe+6D0grsbRuZJrHc4HRVtQ1hEX++Q3fazFo/+n+n5/TdVK4WBMNE361vSqWIWnMGt8GEZBpBzSCjlSUXFEtd+d+XivAMd+UxMUyRvK0fhH3q0vOmgOznFoxETH3LYvHfL4PD7FIJT8faR2+i+g+ymXIs3jxqOcaPyB7PJ0AAEUK9ryhSmlFgCHpOplLRjafTsVg3SfWPUCxit5JOxhRUWTEkmq79jE44aea3615aicbMiJc+LW7supLerfIAOAQAl4cA14eGS9Xwu0ScLsEHJeEm8MNkhVbgxnLuuJ4uMFhXTV1U7PhkwyiYiRDHadEKjoR2IrjzKeMS/dJxApeAgfEqMKnKowRsMQVZTVx7JJRSwHlHXu6IEZC2hhhs++PikAViQV70WZTexGcSkXNWrQTq/rNwe6FN7EhaKxJ1tJOYR4T8bfxLZA27ogZS1ggS8IiK6RaI4esOInYGK5SULKuQxS60EA8KE447kXixeCsDR3EyIGaCdN8ApPNHeg+TuRrscYiWshs34d1TARicFg0Zh2ESTVQ1GvPBMBi1n2/oIkwxA9LoOPALh6mghmBCZuJfIHIOoaqaBbHAJA1STJBKSu9wJKs0QN3f+SwrpZrUtw3mJ/oe9BVjnXwN5/74W7P41+PcathocV8rExQsn7WHGapLkaneZs95wFLQcsRKgnZ9kLSQo+87ZoHrSbaVHZAKoJjC4YHEREQBOBgEGcXjgSAGO17Ddieim8HRNJenGIOpIg2mnKcAwJwJVSGvb+iZotfQW0fdRF0gfmavj/4fjfsxe1a7DsA9H3aMGWp6ofA9n31i/t98HUoJm3Q47kphgqyuUip/9fWylqRq7TCBj83Py7bPW0Yh60N9IzXEELHRvo56VryFfWMv6cmxUmHACBWjEVt//XfHWMXcQK3xf1BOxNXiRApuvaZv4iaoZwXXa9FAClkQmF9LXZRIvLxLVZkbT4hRSDHXTkDm4l/ieZmIweExcTXmSEsQKyQVA0KJQRhE+YFct4gVYsvpbCK6XIXrajmF0cAdBAEhnKyloB4WBoXSIXdfGJaftZSTCKi17WKNdhQmrhAcXhCAQtQ9h2VPNcXIDFCStamLHnHvl1wfnoELwuWwwo2kRwOAWxrWDrcYjtnrMdbLMsB62EFRc0DyljYE9jWEcvVe4xj+5w/Gq7YOp+T5gm4oLD6LNXCU8WoABdw0TnRgDOntChG3eJzXU/zZtfQMFuf8yq46YWgAil6Q7wo3b9L4ICQEm7WA9b1gHU94rgesCyriZt/WNbx1lFM1PxsYBCpdYE8LaJaYsAhRqyRm9AUQUnvS2AkUqJtihGJqfEc1shYI7AExfwjWwfXGJCSiUpZjwD1f6TxvHTtciEpBlEEUwJzAhBRK5uwDIEQgJBAOAA4AnQDohuAjiC+QUq3WNYDYlx0vd83EGWkWJBqgU4/wp4zRE4opSAmbUizrCuWJVn884SaAlhWSMgIWYU+q1TFLkMX6VBB1wwiwzmrFmosISHF1fgeZFNXWkfXQAGREhKr0BSIQSmoj14CajGso+h+5vkqv3dSCoQKoEiKgU0FBOX2qBFU3MAKJ0TnHwfltqWyoNYMLfTj1iBH51gG0a5VWhIARASOSrROJsaYNbcVGlcTAFUUqlhCwpoWFYHkgK0AWxAICxIztlqx594V1+MwghOUSxvPRLhqWPIhmM8tDg7sOpZm38NzMs6hHXL5iiMwiCM0J2sxbFFRqT1n5CZYPvBIRXGNXjhoOK7nmMzHyaUg78opvWyKkW3bpvm1XAzv9phjyDW52B96WsJ9qoZrw/AIj2+o83+18EzF6rzASeQ6j0elF6wRTMgAw7aAQUzAcziO/UFHewYAUWYTiwqAsDACbA+HtMKbWrmJD+p+65iLYetWBe4CeGRroReXNvFk8jVzTD8PmJWPAXv+qzx3gfGqPO6zRkUt9jafz8WmRkxtLIup5stoMbU04cyOErlvAOM72vHM3/C8pX4EX33Oh2XU1gEVDxSkFLBtF5xOD9jzBupdXdFIRNXFKXWeZclA1t+VBwVAtPlkLRl537DlHULAXjJSCjgsjCUWMAh5O+N8fsLtseKP/NI38Yf+4M/hv/an/jC+9ukNvvG1iNvbHT//8x8j/IGPEaXi/Rdf4DufvcV63HDzsmLfgV//9b+Lv/yX/wr+6T/+Nn7x539BhUIf3uLViwMu5zPytiHFiMO64ub2FW5vb3B7c4ObmxssxyPSesDheECPQ9SvJBMiVJ43I7D5YyCgNRe0qcTGd602ToY1ysegLiM9D3IVW8D2EGuoyuSiIxgaEva4deQijQVH6gbaa7+C91RrNU4m2adaUz1W7hfHhLgckA4Z6+2Gsu8mFJohFfjJ046XN0fcHhb8o3/yG/g7f/0/xz/+tf8CP/sHfhH/2p/7N3B89Rovv/Yx3nz6CaRccHq8QOoJP/mTb/D6dcS3vv4Cf/KP/yL+6l/7z/C3fvnX8J3PHvD4+BkIGeCIXAnLckRablAuD9pUM6uY/nq4xfHmFQoKMmWEkFqTYkQC8QcWlJm5+MTY+ALQ+6R5WajQzNCUfMyJjPf9ueiKY+rNvGjB44EvmeFlcFzYhQM6VtIL6rugNCxO9HE7Cg20YjKPxT3PjmEVFx37TcjAcli6L0YoDxiowgBpzlikWp7Ncq5ex8KeRzSepYtNObc/aDMaF6IM1qBGuUqw4i/px6y+ihf1FU04zmcIWU6BrLq+70R+RdE3WWDgeToXtG1qvkH02+Wx27BPOIYDi/ucF+qC6cQdE4Tj+74zERkn7Bqrp+EThk+Cb15d60rz3aPYpQtMAx8iq2qMyTQP8XytfJ7/82bj3fca76T5U/a3dq2k+6AaFlf7u44XFVoXkOU+ehMrssC5z3/3w4I1QFgW4xOH0F0HUVF5anxJEwjJ0nmnBEBIm8CIC4L2R2TFkSsBoVLH61j351IEJXcRe88pd/HWLpKkfL1qGEvPKenI/fL1fi4klWJU96H516XvVQPPEVf3zOYoOdfz+n7r7+qZKRai5yViY8AY+hpPqKfrTdLcx/d9urLun15P8XyujFhwn8sELyZgHq+BDhIa1gQ8mznNCzVf20W4fZjJB1bW7D5uX/x8P+qv8ZjmK9e6Z6/z+ofnnzGuU5AeD7T4ACaa6/+mvl6SPwH3TvuBdBmrLT7wNR11OA+C8ovFil9Z427d95yj1HnB2lBBGxFXVjEfYbS8ct/rabhAsPts97vFfnb+tapQoH0XcTFBn9cQwGMxdu5gsHjELrn5jRzIfFhqBfO6V4udJ4yDZjiEKG7sOArQuWh+qRQr6biyQK7ubcuVt7qFcb5SvwZkq2vritX9Bf1zv25XOTzyuXg16rqj8bvZoT6wzWyMbOX5M+7TPTvn9vfmj1FzuESswUsF9irYSsWerRlKFWTn47nwJ8Yp2++jr8EtrnFMyrw559X73WprKEF9y6AC+yGEa04idZEpbRDDKjKQgjb7cTF9ayATDBdNMVktj+U7Q9BGMykihdRqrK9FWz2uGvgRtvf4YOLKyrtoLVmHe2MXx/MajTM95L/GhrijpyTtb33Ou4shw/D1JwSD7+15tFyVsxNLE8TSn7XxNdx3Gc+ntH97ozMVF9O/DblIXw6BNj7augPjMXAFl2J8hS7sX6rAmwGIYQUqHvOBTTAA2utKm4SGGMExGG8WoEgQCtgrodSMbS94OBXcPW54errg/vGM+9OOp73iIoRMAYUDMjF2MPZKyGIC7CDLs+p9k6KCUj6fQAJGBdWiD49HQhfdSKwNKiIDEaYtECMOS8IhJaxLxHFdcWNcvMOyqpBUIBwX5RfDx4bldkIMiClp7UGKjVeuTcZ6rAOo6CIHasLZgQNiWhDjonmbEDT3YL7WuKcLOp/Y67LCMA+vYDHiHhu6OGHDXgcRGm/E1MZ6NfyxDvNN9xJ1pe3elordXgurGUmhIsAEhzhg5RW3UfBiZbw8RDw8Jdw9nnAXgIdTxdNeQdqnCVWU2+GyjRWax0clyA5tDowLsjB2IWSKqGHFGoFEmrtm0mZxUhW3JVL8SFo8736G7b3DWlAd1wdaPPyhWZaMIpqnLBBkMXxZ9HfnsOo64XwF9PXLfKTRjxKPQQC4nI1yZwFU6f6BWPxOZLFrNTEqzeMuzFgD4xADblLEcVlwsx5wezjg5rDisC5Yl9j4JpFVEEfxBCCQfa5UUGWL06H6H+TNIMSaP8DCKBs8z8apWmMdq99UK6rH+r7ngmxP933kKli48rX7PPaPEctpUXMhWv3o8KYv4QMMQDo230IbSDsvoMcA/lOG+encyI7hG9Yg0oX17L7S8Jrm+9icIFsz/eSc7eF1scL6GWyrgcOhMIGzKgCivl9FdKTFElIZYKASI1dGymwiRhFrSqqJkcNV3PkhmNevtLphdFfam2FUGGfJ9/nhTqj53i/t0rt/fY2jtEwH+j0iwwAcKyOLRcg+xTQKbJzqGq7rOVcTIiQgMmEJpLnu5CKjmuNeE2NJbP/m9ny0f6fAKhTIKiAYmvARX80Rz834WG7Xzb+R+2FV65Ur6d6gfpTlFQ2Tb1iif05zdnV9i0zYSkCW0n0xy0mJ5dvFP7SOM0P/rnR9bhOO7KR9vmlDHK0NqlUFLgtpE9hSKyK00esOrTHNVHX9pf6oTK1RDGycKG6jvzNr0882XoaG23r+eq7i19LCOLHxM17TPtKGhYIwcJM9xhhrgr6//eCsEO6DV6pejBgYS4q4fXGLl6/e4Pb2FmlZUHJBkYuqrNrmJFbM68WqShCzBY0E3nFSaHD4ycAHA5vbzQPaRBuDAyeZe0GDHeJq8nnAoqS30Aq61CnzQi/9e7DXuMhUsAILJfSyFv6xB2IBvcsPW+GkOWrBihQDXwVULYgy8k40whaTkn89WGT0AIv8d/3C9h2pFQf4yBFfxDAIU7UB4YCCDa4e+fb7TR5g9d2K7D1+j1ppqi0M1YrNU1mxrF4oZl3NjSDQC086samUYqROdVB2K0BRMsCOvSi5eEs7tm1HvFxwtvNmYgPZBWLKeAqYKtmskpH+AxtwRcpDMbLxh2QBFafHBzzd32G/XCBSES24Zks05qIib9GIPafTCZezdqM7Xy54enrC/fsHEAGH49HEoXpg3juOcyNy1Jrb/bicNzw+PuL+/gFPTw/I+4bAgpgC1jVhXSNiCoiJEW1jj1HPMZeMy+WMp9MTzucTtk3Pq3IwoYFuzNTmVEwJISUtgomqSBpSvAKzqQVEVe9f02CUvhsNglHN+lLy5bttmNko8Kevk4Z/CfzS2bMO0BB9eVX+57bRGfgBXt12h/E5oHUwGI9KBBVOCtpFAwwRK6qAgERFQkIsjcwqpYJDbkXNpRRkqS2xyk5Kznq/40lJVIfDQZ38GEGusP+BOXohhBbM7/uOEBlLiEgmarTvRQm/gZV8tixgDgry5B2AA2xBgaBcIEGLFiho8aoSHbyLmBUuGam9jVnSBJuUHWXfkbeLChNdztjOZ1wuZ+Ttgpp3Iw77QNa1WIUHjEAMMsGcBApKOliPN1iONwjLCgRVnS5i4jZWUCZ9A4ET44IB9erAqPBVLfoQE3AJrM5+G4fiLqDtGVKRi4DCghe3N6AYTUSrIG9bK7ggQI9pRNcmutQCEnUU1cERD5Va0gzCfX9ysMO3QXPcqSVXxJlHgDtc5n+oiQoSQr+LFhqH/jfpcMzV51DbRSHQe7ovO+K2IW4bwq6CU7zv4LCD0o6aM0rekC8X3QOzjhGO5mOEpB1yrcM3karc51IQsq3VJSI08bEf5gz54VjdLtjPBaeHjKeHRzw+POF82rDlauAFkKtgr4K96ngpenfBrOtOCgpYR7aAJUWs7WHBjYu0pAUprYgpaVABsg4KpuQe9XUhJnBQMitbxyxyoamWIDKigZN+mzQ7NZ8LQHfYoWAnJDTHnGwO6e8ePNU2VmBkWfZ/OqDg84kIyt8IoDIUztvY56B+E8x/1W4JEbkmFB9rHEBhB+cM7BngihCBIAvSWrEWBa6L7c1VFLDecsFWMuq+4XR6RMm6zmgRufm0trbl7YKduHWr59CBShQ759pniAtj6LW0DoIhoEYDssqzgqHqIL769GxkAC+4cRCvkcSYG/BXRUVxRaQVoRC0IAfFY4ja1lby/9hjDvcDCCVoN4wPyfSeS0+Omj8cghJDfT2uVbvWEwQ3hyNevXgJqgWHNeJwXHA4apFETEkFP91fJC1GRoFGutDx6UrL/vltvfZ1GXZ7rfhT25DXfl8aaUATKG39It1D8QzTtj/2+EM8WYZ+TqWglsGfE1+ppcWAPXa0xJQX9jtRaYiDpL1fkzPBEzwOpsPBA7HOJS4gIuBAWLj7TqV28QTigCqEPUPVtwWoSbCUgn2JWPaIbY8aK3m3Xe9YS72ArnU2tKTbFfABX24qipNViiaSYIlCMqJ3qUqML7WicEU1AawrUQkDFLqf0MUdmziSnWsD3UVQqiYkqycFB5LmGI87ENtEfj4gW9fD1doSzHciiwUaYVBduj6EbInTeaBgV4wDUZU8lrY5OpCTujCDzTEpcGKbQAunnUDfifY98eg2RgMuLtV8PCf7WzJr3LdUeLSL/AZLOl2Z+1XsOIKv8VbUaHOFSMAcm8CWJ2R93XAQMMSgosPMgChOVEppHciceCTVwS6PIRkQFUf9aqEp/dzA3OdpK/Ty7+JiOgVEQC2E7FsUAyFaRyfDUWyFgxL4rcDOAD8R/5v7hh3sc/8RhKtWC+18GxGFm3CJHseKlUK0rjQqlNMEvYqSyCGw8dmJBUABV9Ze1vRsXn9gRsOjDebiwoRDgYOvJ/a6mgv2bcPp6YTH+wfc393h3bu3uHv3Th93d3i8v8fTwwNOj0/YL2fUmlVcinSvxCg0VbSwU7ufaCcbJoEEVj+PyIg7vseqP+EJApIK4QBxcNsmopMMQBavoReNxqBzIITh9yZ4HzuGGFlFvlO0WJMQQkSKyZLRyTAfFVTVSyRN6K8LTmnhzbbvKpxRVIw0Dt3im1ChC9rlanu64lG5MDgXUNGuWcUfZUyuSruXYufSCkukzxdAxZnyroXsZNhUzn5caYlOaYkDAiiAQgTHBE4ZIWs3OJA04Xs24jUFQtoT4pKQBCAOOqeZgaxkZnUHdQ3LpYAy+dRq1zIUbzjAQzI+QEMFRkAXv/sQzZOK3aj7zQ1Ds4SCFxYNPrm/x382AqZjlS42dUUScmCux+Ni8fs1+sXDvwb/A8/8EWnos0F/epP0e3Q/iHydNyygrcHuG17BeM2hhCdRacTeDd8nqiCqYOuoQ0Y+6Ze1J5bFkq76VZxkeHU34P5m9USyEc4LC5jLINo1CAnaPdM9WmzflIYzFRNsSylhWRaczisOpxWn0wGPj4+4nM84n8+4u7vDd77zHRyPRzATStFGA4+Pj3j//j3evn2L+/t7nE4nnM/nq73Vz2f03xzj31th4P+Puj9/kqXJrsPAc6+7R2Rmvfe+3gACEAGQELGQHIgcijIaJdFMlGSjH2Tz186MaWwWM4kzFGcIkTBSXEQCbAJgN4Du/ra3VGVGhLvf+eEu7lnvNdDQkEQpPsuv6lVlZUZGuN/l3HPPrRHXzeSDMfmvxbnquhivN5PRx2OQjfX5P36dv4RD/Tfu1objzoHB2nN0jc/YgQ/lsAZLw5L2fcO+bTg2E5radxzHhtYOdBOJGWJT+kA0BWdrEmTMDYPhefu4P2L20+s1YdMhUOIsjJhk0ymLEvBLWe4Gs9wR2u3/jjMHCVA8DrZYSsb6qLVpo2nVxmdp90JT2TAixwUZIw8NS2Bby8v2swiiIQz6uafGVW1EaBY3ai3LhabqUXH497WZDyU0sZyWCdT6IA3a52wuSOuxWAysSXEXXJjIifZxCAwH0eux77vV0EYjlPsqTfUYnKbY02t6/pkN76EuaG3YeCeieXzxqWz8T/PwOKJ3JUqGHUxsTVwtfu+2x2u8IISNIipx7Z7Hxe6/HXXWimKPoQS9U8QJx3GojU5ZxYuqrhtY3paTDlu4LAVvLme8eXXBeS04FRMoYFIcM2vzOln9uJQFy6J7aWRZRqBKtka6xa/w2F7zI73hHPklAP2evZZO6LmhVRWeU7sho0ZbD1BnlARwJizrgmW32Klk3PYda23YjgO3bYNsO0rvkARk0lpr7YKjqt3pnYzk6wJdMIyOAFLxBBIGGoeQU8UOcI5YKycVW8ilIbeMVjN6VZEtb1ITAvZ6oB0qLFzygpQTSil3foRIm3ZVHMHus+XlMu0n90exHsSg4NbAlNChYkPAwEeDJyGCmI9FiEZux/QR67hPUdDLOF6tGf1IQNd85+h2jcSpmoi43nEPZiNkum0ma5bIigkvJoSbs+awyTgWyfIkbZzkj8MjfytyIiLgSdUgM5oAhWHGQRKHxKCqRhTYpWMLLqrig1SkGX7R9T20hjeIoh0qvnTsO6rFWl2gAlwe81l+o9dEG1CiKYnIcAYCi6DaWkwmjqZ1J3s+aRyYiBVDJ4LrTaigfzJMUK/ZEB4fwwC64eeOabdu18LWuItYuMhv6y5CfICZI4dqUcNUoSnHdx2rdUwyJb3P83ArOF8mKcbjewPQONbjOm1iHaIao8laRbq8AdwXBjPFcBx+Hm98QiD4pR3STbwZMCzAhKZEFIOz+Eyaxhc0gF1kZqxLQT0WQBq64SPoXQVHDd+FiDbxG3+2HkdwlbLvJVEfJy4oxgkpMzhzXHe/lx7PM6mIU0maf5MAiRJoWQEAvTNqI1AZwj25Dlxbc4NmmIc2/4s0wyO1MSWzEfWXjLIt2I8d+zZyin5o7RS9D/K8aB0RImhEyERYU0IC0CSFTdB9ofVmaRVSq/nAitwq+ChATkj10N/zNcjUYMayrMjrGcv5K1xevcGbN5/h1evXWE9n5GQTpEtB4qIiUQLTfehQIZum5WjDgYhkiBNYU2kIylne2Krug5xdzK6HzdDDCY+O4xquMu313jqOumtMTIzaBLVqLNlaizw3cwLnqfEnhi5mG+hT8HB+wHI6oZQTllzAOd/DCi/kaM1yfcYdwX9ctx5YLcOaRnLSppCy4FIycqJoliykTbgLK2l2yQlL8AaVQFu4ISfShi0i/fusgqXJmmQ8GCeCihFq8G+YiTbiJ15AKBDRxsLeWZvsyeuZJ5AJSxFfwHwGp4s+yhmUTmiUVPyhMwQFJZ9Q2MSYpKPLTe1O7srfSRmJV6id1rphzozMJ6Bb7nHsqFXFCJU3qWtFYJgFW4G1MRJnLGnFaTmF0NRRKw6p0La6DpXFySBZwKL1+JJO4FSAntGs2a73CoFzYhTfQXchRRebSoHRAJrfCI02h2SxV5NqdTHNJ9V3nZASGx9F8+jWOnLuKFn3Uc7Z6gEMSkBNK46kg+IEo4GM7VMlUlHAUzmBSMVOqgiECQXKhaDWAGqgWiOejFqbDEzA12xr9d/Zfvlfc/TeDIuxPH/G1KIOEhV2AAMX8H+L4WCtOV7ddbhodVGoapiwY9Sj+dxrZY5zB85kQpnHcWC77bhtuwpObQeOQ4WzW9Nc2DFGz7rnWAPzd44pBoBt+xgmFul4fkqa35HaBM3pVbRbmvot6h0sLgRluB5p04tRUOAiB5pWDIGKDpnqIRpvNtIrmaTrEA0T00sEVILFvBzxcbR7iVh+kgJvdWEMNl60i+3zhFNZygRvVNVr41dwyj2fLxjLG+Za/TwcOAQCxNZ9YL9Ww5/uh8b+U/Osfe2IHnbL8WCAoThAYn8/Yc2+1+afvZDDcV0AxiXXQa3X6wfcblcMAoSJjcAxDBUYJYwGMdXcIM2lc7YGpa5DAMw2gYCcMs7rgkKCun3AumT89Hfe4Fvf+Ab+1n/26/jr//GvI5eOdWl487rg8fGHkJbxS7/0i3i4nFGvFev5m7jeduSU8O7tW/zmP/hN/I9/5+/id//VvwYdwOdywzffvAG1HS0feH15QHpYQZb3n88nvPnmZ3j18ID1dEEqKyhl5NNq60+bFHvTz89EJqaKqM2Iiw96zkJd/00dlCj4fR1jHYE0v8BdjcDrADMuJoHhKYYgmMkAvpICs7bNTp0n/p6AOg+hKcMMiQksFiNG3qtfVbB7wsdzxumc0fuh/XG1qwpdJzxcznj1cMar8wW/973v44dffI1/+D/+A/wv/+S3sHXCm+98C3/+134Ff/E/+kv4lb/0F/DTP/cd/MKf/1mspaDfKq5PO/7aX/l1/OY/+pf4H/7O38c/+5e/gx98/hbbfsNpOYPkhuOpYtsrmnQVb4Xicq2uetbUlc8qPtTbB42+nCMlzZuiRnE3IE0XiYpqTn0jc66LYb+Ae3Ex/+p4wjgYggZYE1Dg8R6T2kTK4DbMIkWGpzVvchfjXRtfMdEUv0/NwmT2l/1nXXNHPWzF0sg/1DBqzY5YwteTWKMYNYiQ4vOGSYAweAgh4PT8Yc9jsuGeZKI5KfyPDgyi2FMO7c9DCNUX+XnB/IuEb7QfAZDgbbqf01tgOOQkNEU0NZf5vfWXN/KZXim/V3yHO8hkK6JBy/GJ6f4CZqm99hXvROM9KcoGeisMkx73UgKbhjWD9qYY9F0N4YUcIbr2iTr5c5EpM55TD9r0nMl++hBLv3JxLQy3dMFNv1Yd3YZAKucto6AUGY38AIQFXVRgKVs9pURzpQ78YgyBluz8JcPhKgEVgkaaZ/i91EEyZlMaIMLItKCUoth8YxUY6UAVsl46j1ZGfdkLygTjpEzXx3YtbCXatTBxKJD1lBovI+p+zumENVROP7e4SXEWhg4j8/f0BkhrVKb7PeONx8pXNO4lNJ/LVjdhj3HF7S00nuw9ai0uKtqhyXgKPzj2fvhmi0+VG6D7b4i0PI8g3b5aM/V88vbN82iQrJn145znJR8yh+V6kAc4w6aBxnPjaf7caY/pRR74E02/o7t8ZnoEzuU2lyL34il3ECETx7eeQzLxPBr7GnD8wfMUE442njrZ4AK/ed2wN8W5E4aw+sC5fRBxLI2pbjQ4foj8j4hM0QkQE5pCTtZLQ5EjJTtX72vTvGUIx3TpJhSsjfwsnk9aTuopVhJ023ut2763RCpYjeFH/D5K3Fci41J6fBo1FUTeRTQamn1juVcLJ+QPH2CLkZsNs21+LrakrQ+zI4gUeni94cTvj8mkvJzj+bnOaaMnnbOttjjBkky49fY/VXFTDd2P1nE00a9VQmhqXKlpOG9cm3G9HWvh2Ff2fuaHxkPvIcHqD2x1u+hXZuuTZuMrYtRzkvbhrKVgWVxoKpuglNYwtDckq9iAid14n2BJylXUOoDtWY9xHXNwG2EinhEHaIhqOZBjB/PloGd7d8LBZYg1wb9OtzA4wvPDfinzJfe4HiY0FbyVjpY7WsvB5R7Dyu45yJ4PaPyOEJhw4fRufq/J+D6EXWC1t9ZBTSKejn1KWn/XYTl6ul30uTP+QQQT8/uTb4F/1wf7diFBk4a9qrgtE4E6wKT1zP3YcbvtePxww4cPNzzddjxeDzzuDVsDKjMaJTRkVNGa9i5AM8EkjctV2Ihag9QKqQccDRoXx54DCdG1khhLAkomFNVQRmHCmjMupxWvziec19V4HwtOpxXn04p1WbGkhJKAlQMFHbaCVQCVrU7GieMeO18pYkHYkB97brGaTckLsg10cj6y1rV1Tc2RkNoHCV/qNuC+9uqYA2BiALA3h3NIu8XAYmtaTOy8+yBRMj/rOYudATO0HywRWhP0pr6e0HS4Wdb3PaWEcy6oK+H1ueDxlPH+lLFkQiIddoFrV85ATyOOFgE6a69b9/i64xBgqzc8HhWbEHo+gU8XnMXEjXLGkqH5VDsg7QCkgk1HIFzYzJdug788OFomdvUChaaOeqCJChz69XKfo/bDRcXIcvyRr95H0x6H6MOxYSIVFSLvuYt43fpSSIU2e+2o7bB8Clgo45QY55JxKQWXZcErE5lyoanzumidOCcb+AIkq/cNjqMNURId5OV7NzuP3vpKuhfLaXwij3NFYHaA4vwd8Yb0IQgO87lzDAkZOPSdz7nPlTj+ZOxrj6zo7tlTxG7BoffIaew99nP81Ry+RX/04NbOnNEhFDx8nOcJvnrZcj2hca76ZIsZbZB2nGcfsagORLS/ZV0nLo7T40LpBWnQmKhBB/3A+gobCKmRcoxKwrIUnI4lBsc9y3T+1I9ivfjChE6sQ+egOiUq7qYCe0dvqN0G4lm8MnLxYV88gvOen6GX4TGlhNif9k2OPDaGINqe1vcgeHOsiMCICKGXksHGV2SsOeOUkwmNDgGpkggLAyUBS4b+O2kNPDNQWJBJa1Tcn+eM7oftB3yfd+uycPzDPiEDvZP253TFKHsfnw0g83u6uwaDTXmGSTqoZOQEVOG7nhePs1zkM2JDxzwwaoUhhO52zU6YaOgeKSzfVeHYHip+p6+UMYn7oaNKH+JXsI/MFJyy1vV5TRxbIROgwhQjDrsjc/+6jEze/XkfSZ/F4R6HUNwbvzkj1v7jfdlPjPLrFAf7IGJTvZYVl4cLLg8PyHnBUTv24wnbtuPpesX16YbNxBRqPZRcsO8GFj0PWsw5DVs2GXUglNNpgnxkKgpBkySIKRgaWBhTHALk8OQpWzH4uegUGxHSRHCs0euuqIDptbyhhofo1JiuOIg6KQ2hqUGI80nSDq5PzZE0ivJ332MkiAMc8GSRIqGdrm4k+/N6GK+E+6BHwgcNknIUG2xRMea/hocW1LsJnnQkAYpNwFYS4xHrwIliOp3QgE0HOs1BbJPQlE7YrNi3Hbd9t2aGPBErmwmXNBzSUYFoAFZDC21qIC2sd2b0lJWs8oKOd19/jsd3b/H+7ZcgEZzWEy6XB3SICjDljKenFs2Qx1Hx+P4DPjw+oveGr778Cl+//RqJEy6XC+hk6x9K8tYoQ4krrXUTAKvKPZeO7XbD+/fv8eHDI54en1CPXYlVpWA9LVgXDeZyUrAhZ0IpqlotreFoB27XG7bbVSeiCkCwBrYJeKIQbktIJUeTMWVrOE5DiV79gwMhAwD2pH8uvg64xp2Mf/9HBBuEEKP5sU+YoJ346Uf77P4v/uRphJ/rH3/Ee8v9nr4L9iOasH8kFeYhYfSkCY/ARKZShxg5jFMHkhbcnFjIqSJ1LQqXnHG0in7ofm1HxX69YStXHOczylIC9PWiwEs6dAKJggQ++ZdTRmIli2/bYcTABGMmoongqOrsS85g1saq3UBvL3IyaUAmNvXZwWsnRMFBcgikW3NSrWjHhv12w75t2LYr9ttN/aRNSY7UhUYRvPWmoGMH2MC6vKzIyxnL6YTldEFeVyAXdPLEEIiUZfKj7lciIetqh10QSdoB9GoFmK5F6TnwMPs/mjE0aCkp4Xw+WVxw4Nh2tN5V7IpISdEi4Qukt0hC5qLR82Y1Mj8vxPZBCBFRkCXzZKDN5Nv6RAJ8bhGELEsTTxxhBRAPRhBOl8wBus+NoBgA5Q4ywS+kBcibTh3NB7g0JBPTqseOnZ+QfQ30DjLxPTa7mJdFJ4uuJy1AQptjqjUBJE7IrZvQwMs6ej2wbzs+vHvC+7ePePxwxXYAewe2Dtxaw+2o2GvFYWr84nEas00LTWNyMnMQ21U9V6ciFLNJ3lCbywKfFqWN+ouKMxQTNMyLiUyZ0FRSUoMTIZSMRAP9cJQzGNwYAEPk7mpLQaNxOhJr/+qNzuIq0M/isQje2TIAn2TifpPBvQOc0KlZrNVUuKa70JROL2icjTDI2gTAB4QOLWKZLWhihM6uauW1NexHQ603tP2G23XDdrui7SoYC5A29BMrgEOC1g60uluTgU7CTWlByqq8q1Nm5qhVEERccm6HPidl6OfzybXPCgROus8YjYXkNnYiK6Sk6v8w+7XvuxI/c8bpZGToSLxHkS/sAcH2tyAJbMKDFTkmMtFLOI6jjmRWTHyJBsD1vEk1p4TT6YSHhwvQK3LSe5ZN0EIbh2is/2dGUhPWHqCZzUUNG+nEjhSEIbuWAAC2RiUCd6BNwlUWKCJJg0iCE0buRIdkpDAa/tw3pBGRTQeai0oI0x3psBc9nbgEsr0ygXGg8AOaC4mJL0IHGtsze1egP46uBVzPQwW2Vp0oAQIohUhANiXu1gWtVXA1IbeUUGtDsebu1p2+gSiSqbCFNyzSKJ5hnJ+wASFCU45HQTQhB4sNSPAG7U46jWMGN4fvdaGkEW17I2+ITU17cibH3/vyAYj5c1zs4iUdp/Uc9oOAKJ44eEc0BLSI+U78jC1/STYpUfP8gUI53tEN1PWpcSoupXdSiQkmNuhK6t3FppquHa84yhQ3+QcwW5sYSFmLvlo80kZPdXekvoJsAgRZs4lNJfJpghNCPe0ffTeNlPpkryWmI7AJCrpjbCYqLeICgVZ8zm6f1S5XUvHi3SYAKSoIbUj2gjhSEIu1YOqFalvTJjrZWkVqjNb4rsir563n0yojVUblanxkawpizXEZWtgEBLDfezGwg6x4hljDWid4JvDk1yHR3VrX36cA9pgA6mI4k4K5pSxhq3ViUtWiTK362ikD2Rqe7f20gGpvO8VXL+3w+CeamIFRaJEpHieEoDxBgK6Ca7frDY/v3+Pt27f4+quv8fWXKjT17t07fHj/HtcPH3B9UgHstu+AdDBU9El1EJs1GY8Hm7AAsajdJ0AnaXQYxS0anTqZbyT928QNnfN0HxDrjjhFvhXYo8WxyYWiSomYtZSieafhJMtasKxDfMqFN3MuIUyVrEFfL99o3PHG4VpVSDrtyfA4F6IyMao+ge1OnEhdbUEiNG4WazZwFyQnVjbH/BoamhE5HeiWuLZhR2Xki83EnQQANUJLQ7wqCBZkxSbDkFq3CM2mVXMuKoxKmq9XdbA60ZsJZT1QloplWVBgWBRYMTbp2mThtr22KQAfSFDuYoT0DJ+UEVgvMRhsE8Rf1jFQrLnISQYbu51wPCNFY1EQf6YcfCS9o3R1R4T/KG+35z3LnWYBGse19MsUBwTORmEnxHOqkU3F55k+pWEJAp/2OK6EYFSTw2lHju9xIlmha0ySViulwtcdhAQind7tRUCji0V+4cQ9mA1G5EQjx4lrIgKnY2izpNrGqBlY7MZEJjCsjY9i8b43RvbWEMM7LL52n+t4y7ZvePv2axVgDlE6FbI59h3X2w1PT494erpi22643Ta/U2GPPY4EhjCA4vzV7MoQwrkL7aLm0+Pyz+vh+RE25NlzX7KYgPh68rhsOtVPR7kjBxGxARAuLH6omJQKS92wb9Nj31CPHdUEYno/IL1aM64ViZnuyIGZvTlGExuxXKaJCg72OgSeWht2HBCQ+52kUyzXZcFpXbGcFixFHyr+MMiCXocAyZjabUSVEJ+2S6CNM7aGW7fpVDqspFcnKOnldKGpwpP9NfxH7Zo2FPh2F0iIv3nu7HmsXwPposXdwGibvb8KJbSj4kgVue6oKWmTMRNaYxOa6oqXt47adaq1CjlarGD70sVGIBqjChum77XQwMQs9+zTZEzHDe0a6QWFCaUbuWO2O10JrHYKA/cIwj9A1IKo4LXI2b6/lENEQhgFGLaxS0c/euSUozY4/FGI4dUjjMmn4uIZf7KfxM9DKEkA719E1KiG3U7QAvuSGKdS8HA64dXlgsu64LwWJR66+I7VnUFG7itGzE06odIJFxo3GkQj5sHubs/IgeC5//x76fCasoiKJxCAXjV/T6w5opSM3giNASRC6R3LWpDWgrIWrFaLzTdtiiYWpEJYakWtgtY19myFcdSK3mDkH2sGh5Jr9LIa8b0pARGdVBCHGYJd8cGUwZkNjjUxjFL0IpM1eTNZY6CKwDn3iZve1977R41/gArABm8A4/feDFGPFriX+nPDRQiKA3Ql/OScUWgITc0iZmx70mMmZgIkT/v3Ze2xV0uBnAqYOlAbttoglvP4RHp3by4olTPbV5/sOgSkS0k6za5kGwBhPohS3E+AAzebY0VgNKT5Wh9UxuFPXKTwPqaSEBoAUwgPeC5kHg0Q/XQ+AI1JvF9vwlYVm2fRGlYWoNOwjt3yUc9bCQDZa3hDfQNU3DhlJZHXpjFvUcEk3Q4E4m4TDnVSZrbmBI3fKjInSAw+s2hShoh3bx3VyO0ad2rsWG2gVPPam9lIFVBsY4hAa1BxOMvV5mZbvROI2M8ESwCKgQ45++CODMqanzp3BqSCjAEliQula14N1CDSreuq4n0m5Oq4P5HWv5ZS0Pqiwnx2PVS8aSKsvdAjWTM/u6/vPQQBmBULYcMYpDa0Y4dYIyKTIhBs5HT1SQR0E4xqFd4spHVoXcedK3pqkNKAnmNgWe8ddVehtSZQETN5JjJkOJ6IoNeKum3opYDLEqLZSFlhqIXRhaHqyza4pSVgP9B2jVW7rcOUumHB0CZmIPxxzgW+UBTLS0hJP1/lisaHCTvWYSNYBbkzcuR0aRKd1ItOo/5jZE5pFf3Q3nz12wnUO9ptQxOtkR2tjnpYziinB5xfv8HTZ9/Am88+w6uH1zifzzidLljPZ/ByUt9l28Qq7QMLgU4bZzc2/vCmD4F+dmIspQApxTnPQlNRR5kqAHefLzAUjUdVyE6MR6qY1JKyDXor2gCxrLGf2THslJFTMYFtFTPnlCHMOhl8qsW9lEPPSe1WNO2ZYfAmLG2I0q+FGKeccVlWnEvBwoScEMMGlpSwJq0/rznhVAqWxIFdMjVrxqJY18mI71pSJms0Hvy+qBGQYvPMBUwZnFYwF5BkABkuOJVSQc4rUnoDyp+h5Acs6yssywNyfkBOZ6RyRspF8QBUlXPKjHU5oSQVBWutgrYGosUEtnJwXHQZKRa+rEUbOEyokLcbjn3TmCqRYfcJAhMHbNqcjQpkSliWE9ZyQjIfRzgAHCA0q6MwMmdkLjZ5PWMpZ+RyAksxTm5DbTuOerX4HaGpoj3Uk+glxCjFZAIKPAkr2JOs8VgXA4O5qChQzki1orYdrWrTSskdsur9LEsGW8zPojmfDoAUpE76d1KtuV33yVpWtJSQ6wLKmxLJtYyArQtADQLFkWrURzQ2SJwBi7u6WLz4wupkvbeo+45TG7mT2JT3geNM5x84gA4JaM0Eb2zwwFE7au2aV9SOVuVumEGzxpRWlTtaj6p5cm8qnmtD7PZNB5Uehw5YcNzbY3v3O26lxycYmOlo/rDcxWNDaI1Y8ydtPMs5oTBjYVIye1eOU2/qs5xkni3PiBqci0xZbOAiU9o0o/ijCqcJWgjaaObSmjU0QwcB51qRiXA0wpEohNVc8DeGJ8FtVTKsynJi8F3+zBaX+/XxJoG4Hp/6fv7RMwww1s/U3P8cT1aZSEQ8N0egn2oG7eIjFMkmpRN4isEx/z1UeICntao9UM+e/AKO2na0rhxqHyC7192EPwVdqub3U6OQWOyQiFHrEQ08nLOutwxIEdSs8XvrBegJCYKj3pBRQccN5xPh2z+94pd/8WfxH/7iz+Ev/+VfxF//T/4ijnagnBd8ePqAb37zm/j8cwHaDjF/RQw8vD6htw/4F//8n+Gf/KN/jH/8m7+Jr374OX76zSt84/IKD+cT3jw8IJfXuDyccb48QOy+pZSwritevX6Fy+WCsqwAFW3AZMUDAGtUK8bjEFjjEim/3rmcHlGTwCeduzDVWJyDNePvMYtCe+7xHHt2AWl9Fc9OYbiN7W87WSJCsnN0gQ8A4FjHHT6U1EU/uHeMdxu7znE8BoyXqVw0EqDXBjm0O+v1Zw/4BfwczuuCn/7WN/CDz7/Ad3/3+3j7+IRtu+J7//oLfP/3/w2++93fwldf/03853/7P8ef+8afw/nhAbs84Xd+93v47LM3+D/+t38bf/XXfw3/4H/6R/iHv/k/43u//4dIacUXX73Hv/nDdypiLAykC5ASDml42h6RecOSitUHWAUd1zP4TzDr/N/HQZYXKL7X0boPwx4ieN4/Ev0f7HUhPQQWhwQOh/AdfXrowYoRRMzuL2QGi9KolYVZtRi2D05r5DCem4ivOX1ugguhKa7h9TVfx0I9BCf0nBXD7CT2O1vTLvYE1tdgGGatOaTy/Zut0CEQoDy/FMPxiE3UyfiWnBM4s/nA0Qdjn1y3bk+uDaf8C+dTOvZqtTKanE28BEbMEVb9Dji1vWNc0HgxwFsmEJ7pE7iCc07nhUBme8MGzLYjsJMRTuhAPrH6p3G2g1M66gC+oAgzp9vzvxGXwBpHX+ox7OnEj/nkMQS/7OP6C8RD4C1//mu9Ft2SA7JcwGtRIB0spaIO2qCPXjV9bnbPSdcPCynHNZEJCQMZgkKChUzkxu5PYIEdaJ1QATQiSLZaisV67HwqwyOIknISyorEWtfd64HtqNhbw1EbDtasKUEFRUPkiDR/oQhw7q9jCHGI4gNiw5s7jTUIjGb4+atfUPJ8NV5a8QTcncOz4Gr6Op8Zg3Q4n90nsfvjg5a0H8zvbzwr1r7Y+6NBh7n5Wxm3juY3tYPZOclDkG3mKI5XnrxsxAXT55b5Wmj8QEhhv1/28enzI5Gp1296niCczrw1R3zuokFuFy2txiRaQ6MJOtFohiYeNn7mjXC8hq5ZYTG+JUdchMCK9X2i7zKxCQeMXk0dBmf9GkRWW253AxR694Gdoy6ASPP0mxCC6R29edyG2SDHF4IgAShWS/VcynsYHE/VXMXqw9bPQ90GnJHGnwznAKp4o3LJBE1YhUmZQNZXdMezEuMC29BOjzdIOLashxjzsve4Neys17ri3vtvx2O+94C3Sow9c7d2YmvaugLCfs9ra1xRuuvxfXHH9OHuogm7poHL+uUiWDzFptEy8o0uisXWrry1owlqFRxV9Pvuze5jTc2+kSzuAyFEB9W861eFrGR8D3I9Ut1zXqdMLr6RkMvgi2QTmnIRGhX1yGMA/FKwFBOaysod9iET2sdjPdLGP3ah2dFfbTZhFiH/SGjK4ikaJ64mym3/jA54KOTYjfGshQMbh127scQ8Xh9+0Ou+kPFa/trz/u8Wh7vYVG2zUK33PKchXAvnYMzDzVzURaZ/u7jEyB08bhHR5zt+KCLoViOYtw2p2UTTQBORcSSv05hAj9VEX9JBrHbyOHaIpBj4C5gARDORqW3D7apiU7etYq9dH51MYCqhgnB00YeoyH83B6ccJRfDEcWMAMBENnQWRAfBxeEZ2XD+JRHWkrD6+k+MhRmnZcGr8xlvXj3g4XzCaVmw5oJ1KTgtK8pSVKCDCcXem81XgVm5Vsl6PZLV0WisURGvI8HwbQr9At9X2YYTu4+1KBBCPThYgIZcLvg2DxkhB1nIufLDXjtfPe6V5WQwoWFvE+hsKjFk9Zjm+fBcU8ZdvuZx5+Ckal1e7RkjU0ZLbHYJ0T+i+6PbnSJgrwB57ydb7KwCY00ER+/Y9gM3Elx33QvKiUz47NUJb84n5KzD41NakKSg1x1oO6hrXx0g8CGAvYtyKA/lGVXjXovVIUa8/LKOvWststpDr4+xWc1+TB5/yrbMsTk2YPWsBhPhEueidaNJkQ3OsvvusYNxnBJ0XfmAllPOOC0Z56XgvCw4n1acTwsu8VhxWhcsJdtAFEJiWyuTVkXEMGR1Pxotni6CGnGQCZLep1IjCbCM3F5vysMtt9dh6XzXVhax1b2LildSnNCvr4Tvuet7xtivGuMF0jjFVFPfvfmI+Y5NmRf8jjru6P5LsWO5e3Zchbv7ZvGhi+tPN9RjCrI89z5D0jjXe4acbCMmXDfWll/vDiYdniEMJNEYfI5F1iWj1mLDrAq2Y5+uzss4SJyLpnFgI0KD+vMmQ1io9mZ5wejbGFzSeUBvslee7eS0lgXoLGBP/z0eJTLBbY8fjZXggb/3V1qAqBii1pTWrANl15LN52lfdk6MkhlLZixpCE8tJj6l+1IF5XSPa54U+5MQvi/COx5rwPMVz3EsSVTckmmsHcMj9XPNHFbF/73LSKChUBMGd7d7Hr99QuDT9Oe6XSOxRT7JZEVM5/suVrKCtDpYJuqA2kMjvSGJ9lBLYhVZZKCyDoc5yHlaaodB5DDV1Krue9B+N723mO0eRiEMj11CgeM3gXlEXo7QffKbEv1MNK2nP+b4kwlNQZXVO3UUEHJecDo/oJQT9qNhe3zE7Xaz6WjVGhYqtv0W03dlCmTjgzwDGYXmoq59DPaE1wFX93qDNN5pmP8chLTxYAcFOYWAlE7wSkZyUMKET0lMLjhlD1fj9QRNSX6m9msNY3cghwdqRhYewlN5KlDMX1M0Ad8f9jPfYPHjkVypk/HVJHe/V2R+Skr9JXH/j3FJ5e7fHtjphee7v9W3MCcFUvDfyrwsCYk7cs6orSg5rI7p2N4c6tNnYOTCo+rENCcD+JTd7bbhum+4bSp6dEziZVqUUyU770k166kOsDVzah2NE3qqNvXx5RyPb7/EfruCWrWpCYzTUtCRQFRUjMT2jEBwHDvevXuHzz//HLfbDV9++SUeHx/x7W9/G6fTKQIVAPFVRWpUUc9FvIgZvR643Z7w+Pge16cnHPsGADYNOKtaZEkoheF6BC4IJV2JNrfbFbebCs25+EmiND4g8xCZsobKlIsJgmizJeVkzSnDPejStWDk7nBAzQn1Hq7p78azftzhRtX/dd+0pq3T03Pvfjs/76NX/ehnf/TxbN/+McdsKz96n+FDRrBGGtyDNfjVxEjvS096DTk3cG9Kok4ZKTeklvX+1IYsHaU11FJQrHmsWvJ07Du2Te994gddG6zTcF9aOiWiwY3abYpGUVf5bhwinkpSOiqO/YimSyabzlyKEntSQisJnQF0nZKsIhoSvgl9ss9dieLSKupx4Nh3HNuGfbvh2FVgqu5KmhJpCnIQgVmBgg5Ba4LaBC5ckcuCsq4oi5I08ukMThngbA24bMCm3g2dTqKF5FKKTmZJSnDqrUKbDQ/UY0c7Np3ALN3IspY09IZuwAXMhteqAlvMCcuyYlkWFRJsctfEPSNgIva71gagbOuVfPNbcOW/1DjP9joREHsf42cYlsADI/dVsTsMBRHMMOWIMebimcz704Eeb3SdgnqIgDIbCJWBnEFlRaoV2UTHpAuObQNRQa8HuvlDP4gJqTByWbGsZ5zOJ22qIQXVZNsBIeRU0HIFzzb2hRzbtuHx8Yq3797i3Ycbnq4VBxfsFXjcDjzWiuvRsB011rJPuPLCUTIyb05K2MusIGMmQmH7nU1FKOZDlACir5NTRjahKfUxk9BUzmAjSvsUK3VsPAXWZJP9aAhN6eKE/0tvudpVsbkRkW+LwzIuiOpEWFIVWxkEaITWjcVY0uGTyrVg1yHJQGliJZuyEjd6Sypc11V8ygWvMsiek5GWdUr2LRlpKgB3OypaVZX2fhyo+4623yCtgmmI3BCaJcq653rrqEfzvBXrusAntYBUYIUAa56QAGFarxCbyquMKzLiyUzMuQc0o4kgMVJPEaMSsxYMpymmKeeI+VVkQX+3LKvZebvOoEicGNCmToxb4mS3mMLzwuLFfd9DFNHTaE9o9YOMySViBXYmjemWRZu9TuuCdTEhi8TDjHrsKE56HuDTyEEUXOp9PE9BeS+wAhFVCSyH0zNVIN9yBRIjQzBYUuR+MaHt2THEg4eNZxA6UTQoQTzpngsu99/r6Q0prGHipzzJ8AwXyGafBCT6cVr4FgL3+cq4YIKKA6LTuG7WTJC6TgygatMMk14PpoKUGKUnBZcmdW0vIFOsRxV+hjWYkaNGQPg1j4r5k4DlZKMsF2dKxlnskbdmm3Y/3w7f52oPtMDVYnLLEIebJ9WOryOW9p9zSi+OGLWuqxIESgF6x74f8dlEpmtmfstBVcBcSBqiKJ6vAJhiIAd4W5DjvbClRaUEUEZlJ9ALAN+PRsqx2+iNLhSbXt+GiazJMyFnF9ouOvmETQTAMAid7KC/j4ZBt8vkIB7usAj3Di6kEyIBzxoTHbfJLJqnWzF8iH+nEeN28b456JWDFpqmz0iw/JMYkpx4MgRBQsCbGJVVNKpV9Z0js3N/09GMOJoqoVmTULHinmNMasu0kEZEgf90ESOrmNBHF3TzO05OZeJpIs29nxvHZEvhYkTahL4UzZVVjOvQJuemghAz0TleaaqIR2j9AgtcEeebDdJjNHDc2Qp4QVjvRasHjn3D0/sPePv11/jy8y/w5Rdf4KsvvsT7r9/i6f0HXB+fcH26YrvdULcdvR5TsUQgDdqcafhkt6qaFqKMbJhg5Dj9O46ztPtloVxnBreOnhiZBRIkW3NJwGhISRwiqWVZVFRq+lqWxUTV9WvKGakkLGu2ZicjLRqmmUKsPhmR0XIzESN2dXBXoXVKHLFPznkqXvRnDcejsHHU6iETKjGo6XrOQkaQ0UJrTQ2VDxN0IDRoQw96V8F3F8uYiV51CKj7xNkuDrAribr2hqN3LPVAKSqQ6efZrNnfxWJ1BpJOjxAr3BATbrdNc961IHcXKEkgFnBqJhTdIdbwhMgHGYk6mDs6dSN+uZ33plht3pMs4P6yYkU9Psaw9Kcjf1WY10k9Lo44EwLtdSK2w93rDdGOe6LQ9E7PUC4Zr+N7hO5fc37t8T00ZjKb4bFW+BmLOckIeGP2n+9hL/qPPX1HqvTv2ePNZ2LXFgDOpKjeu9qTTnZuzfI5yxnVKcFFUsXzQoE1G1htJAgkYrGxCZq6rzY/IgJIIgANKXnRiZEygZPdO489CBEb11qtTrOBCOG3Zn9NpM399VDs/TA8HjJqMyqIadfdboLnW7XVIHLGhNz5rlvsOYhbg9j1sU9ECBHMv5tCrRdz+IT2aGp3o4+xN0Bk9xvPSJSW38OFHUyoq5lwVNM8/Th27JsOdLjdrjrYYdtQ647WDm2Y7zXEpmLKaylYzW4qOZ5NTMkmvIrGE+3YlSRzaO2leyMmqb9JzFhKxmktuJxPeDifcTqfTWiqoGQVvtdYh0JsKva47/lnU1jDq4teg/A93kDaDrRqPsJwRJIh1siOGzkhEUPENdaZXvSB+YkLTRu5vg2BotaMHGjCRLuJedVcceSK42Ac9UBpCS3X8GfV/JYTAw47fz6AAy74ZCJyYYtMbMdEhYmMBG9xbgdiQIuLZHssJC5CZHF8YFdWIPepYQFjseXXlrcPMTxApEGCDNHR+2jmeymHCjEPYQkAgKhgkHskz0EAmEgC34ngia31WWDK8SKxBtxoAjR3R6y5f7c1pMODlECrNbGujbjmMwoYC0En8S0Fp5KxpoTTsuCyrriczzifTaStaD4GskmvNkzHoWXHzwAAJkTcPZ+MnD/au+7OeZC3BTFpjiyNISXpKJav6yMxg0SbXQ4Wm+qu75VXHTqzbTvWfce6ZqxrwbpnbPuGfd+x74fVhnRy5H6wYY3aYHmI1jAagGZrsRm+0UBGLlEsoPm+5UM/UCIjUJrolH1qH/gUH1WBy0HgjVyMkUsCw4Uhu8U/ev1m0TLA9h7b3nT85Q6jGDgHgZHYcxgJnIAp6WhGQGtBBPhgKYCCNPSSjvPC6LKAEiDbDiGdsgZJqG1ETT5wy4dAOLkoZ2huYwI1LiTtw2qSYfQARigGx6woaitjTz6LCWhgcgDunnP3fJGwm2hqF8QmCmsgQyDDH51sSIYTChOoqahUMkpUN1wS2eImQGtfyGii95CsUSXEFW0NO26p8Z5Aeh2yMFYbCxwcbN1k0BjQckmvgQurv1LswWwXBNRhAlJWo+tOrjeMwzkXAFpt2FtVIQbpA7ODEvjaFBc6KV/vdwGmNZyYQVZPFONfQAjENsDARKZc9Evv6RD7lu5DfwBBjfvpmFNivfYhPJASSAhdsoldmvCNYSMDz6LAWYCXh31MbbSWB7hghRjuY01TrGuymwBY9mF3jBAZg+XNvYlNdmwmfE/aPNC1ntTagdYKpHUgdzD0mjW2nKQ2CHc0YnS2acpWR1uWFc2GxfVWtW7t9bdFsbZSFlBagHQAKaNvG/qu9StKQCZWcqUQet9jnapwKYCuhEckWDUNIb6joroCpqTDVOhAo4SDdvUptqaizJAIjITCQBKGdBPTJYBTsVq64hpkg6SIYARMQSKGNEHvNYSdqOm069Z1oN318QlPjx9we3yP6/u3eHr9Bq9fvcbr15+hv36Dfj5QlhWSFETSnW1DqTBEU0c8ZrmRxWaeHyTSWAPmm3qzRuQ726j+zWsyIUbleD+gNZacwfCmtZGRMw/uW7Y43oeNDVFhxZUEhKOpkC2OAwCFmBXwzX8f2+cnPjqNxsEuCCyAiZApIRNjIRVHXJmxpGTTkxPWTCgsQXpfTPTfBx2tyf6dEpIm2QD0kifDnIlEB/Nh0NF4ylG0CTOBKSPxgsQFTAXEBcwnMK9gLAAvAAqAbIJfJ+T0Cjm/Rs5nLOWCpVxQygnMi9VTBNIq0CsSutmLAyJVm5mPA61tiq0ni41MdLp3j4lU+ColGxpYKxot6LQDvWl8bXGTQBRjlA50QaVN/4YyKhhK/BV0K3hzSiB05YwUHawFEzRL+YScTyBkLYO0pgGjiaocbUfvWR/KPkS3PJPIyo0MNIx6oMNfit8l4ymRxQEMkBqhXDpaKthxYGs35NRBCwUvQRsCBOiMwh1r0ffPsqD1A3u9KbcODUIHLpRBUnEk3St7rthTh9SKo3eQ8MQp1fxQ6qaTblnXEByXQp8I2C/jmGv1RBOu9qnTnOoRBtNBOizHN8HrJjERPkje1mip/CfHshSj2o8dhw0n3ffDsJBmDf+ON7uAlQuht8g7NNKfeMjT8EnxvMlzLcef4uH4sAtNKVfY4+FstWE0gYjhClWxGW1YI9sPE/bpEKtaKthSHhwsDElBxzGJJGKCRCp8nU34KjdGbob3NG9U7INE7zWCKWbynGYIY0wxyzwIwGsgYzHMCyOecvfV14zV1WZf5hfXhYE/xQF4/pIChP/utte9VhjPkZEls+XxiqEAo1Iud+f4ko69Xq2WI3j15oSUEj68e4faDmiyq5if1/L1urGJCDBam2pBKWut6bRCmHFrVZ8LFYdNJODjhoSKX/qzP4W/8Vf/Av7cz7yCbF/hlK944M+B4wf4zrd/Cg/f+CYq/RlsR8P1e3+A91++xTdffUDpGW274v3Xb/HP/+k/w//0//0N/OD3/wC4XvFnf+o7eH15jct6wjc++wwQwem8oCw6ZMXj+mVZsK4LTqcz1nVVMV6y87d43w9fK55L++A0524CPvF8rk1Q+Alfq7omCdk4l/5ampvd5xP3nIZxBKYGGjnJVJ/1ARbCI+abG8g+ymNbvTOlnh+xQ8w0mmXIlHFyyQAL2n7gVLJyOUjwcFnwne98hp/5M9/GD7/6Al++e48/+PwLfP+Hn+P73/0X+O++/hz/5nd/D//Nf/vf4Nf/6v8eRIzf+lffRU6Ev/Rrv4pvviH8rb/5F/Gd18Bv//YFxyH4rd/6Pbz/6gvs1w0dGb0vkJQ1rzxuKNRBxcm1GYKGho6Kl8Vd7NLCBHQXduzVcAmOHpKcnKeYQMkstYhx3ZSTANZ4XG9ri5qO/nsWnvH1YfdSzOdY3O69Ii4mQ4addwAuHju4ObaYxUQChZGQkEgf6qW1JnPP5HKMeDQTdzQ0qahdawDCLsho/snqAe7AiQTEHSwqUhoCU+bYdL9NDcxJY2Bh0pwkZxMRIMCEm8SGLQgjOJj2yS1nHoMO3XURemD8UV8Qry/457XXIr8P0GIfMTrcD1rtkij8on+W54WnefChC+Yotpwmn244vTgOpPe3Q/et3j6O5j6GMyAM043X73fxiRZVKBp4xYSRyLHUl1Yks+POtk728yOszxI3Fd4yn/4stPT7ErgRJC6RWdVoSITZbbGhVrA1IAId3CbHEAgm48ZDexoKM7IAqQtSB1LXQRLFOAS6dzoaeUMlQVICKCm3ygQ1oseMbZg3J+M0LCbyTdjrgeu+47rt2I4D223H7bZhu+3Y92qx8aTJpMWjGE6ie9kH65mgKmKTxLpUSld/5nM6juO+fqL9D2brukxXdnAg/X0ho9Y/7qTvybEXAAxO25Q3Rlx9Fws/Sybm+2nrxHc8AL0wtg6iTEL36272ucCwoR4/xVqS8ZZWElLbZedAbfS9/W/reG4bzAEBalbiOWEx9SvZ/ZlyIf05TbkKhWBA1GWnvsfk3CWPw2x9RZ4hSe9pF+XlYOBiuv+tlhI9mDz2WE4h6sQmRKFCUy7WYtwm4we5aLEOWzJRiq57KoZ3Obc1atCOW3uO4zm61tQWx73tuui1YBv2mVTAoQPcBTvEsDq7yqT9k4ykDdp5EphHQup9cDf9HonbH//qmN/9/SVM3CXBtAcw0h9BnItvnNh9oZ4gdzsyhP6mPabfx4t9xHeIJWdvSDR+fL80nXf9snzZRzUFMxBa97E6oYyL6n2KApiIZEcHq6CHDaZqzXkDDXvrOGrH3rzpfbyP5yJ+3wKPsPhCaMLQMfGDxeq8NGEKpAJTbMJsefJRLiKQ0+CDab2PTeBBhXPWUrAUFZsqOZuwnApBuNix42eJ+aP+arcFHmfdCU0Fj1JrvMqN1ryWxNgcNMt2DeYowqcxRMgEfce6Hx5j1Mo9f5PobZgf89/6ktTnqYiVigJk7misXNDeOQSmYqCw2aKwPX0MhIh6eNfHLHrQuiDJWA8kWodM9nsW4yQnAYsKJA0chuJc9XcJzeJ68fX7wo5unBoR4GgVzn9vTXDUqj1M245t23DbDrSq96EjoRNDMkFxXYoagK8LABFbJwJYENysKVqJvZJ8HZNETXvJGWtREZzTumAtCxbD/s5LwavzBW9evcL5dMIa+8n6qnNBTipemsQ5xxR9m+RcXeNRifkX7SfAWKNm17VW5gMF8x324LkmkZvwCbOz1w0ByOAV+9/RPQTqD/fFc/w+/c7PzEVRZw4cPAe6wxL1ecyKv3hcCLL6cJ/iNbNjmRlrWSBIig+LCkwRZxBdwbyBjwauHUdn7cUhgNh3vdbVW2/Yj4637x/Re8PT43v8mW9/C+2bbwA5g3ABloyFoTG1DbF1G9oFKghbG/ZDdQlUw8D3/fCDL/FQe4S7h2AWmLL7TwJ4HwieRwFQvgt14w0hnqdhgERs4aKHExV/CCGmhJy0/0JF2QpO64LTaZm+FpxWFbxZTKMgJxOaclEy1vgj5jEAtn88Fo2lb3kGRS70vG8JMA/hqfu87ml6HTvE40hQ+IjhnfxUzOOQc08i2YHzV57znnXpG77o/gjDP40gbs6dED8Pn2i5qljs6bxLf1+xzxB/6/iQ+OeUeA+3pf5z8aUeofHg48yDpqX5extXUUyECYAYxuX5KGA1DljPm71Fsl7fZVlQ26jpL/v+UXbzp31o7xEM+xQcRDhIzG7UeOggTR/aOAZutzr6MXR9Wg9+2GHc5VEQgDpbL9XESRariU+rw/tDEXGjDgJky2yZgOJCUyVjKQnLkrEmnmJEE5nKyWrk9jvLz3xYk+eFcy/PXV8nYfIVMvyEmx7n4/m5mn/ToTX2IeSjyBcREYtha6T3gjshCSGLC62ZMKcJffplU+G96fV90xsnwu2Gx3gQ32N6fXtvaInQmNGYUBujN6ubs5L4BRJ9ZLVpfKO10W79LCoy1br2qSXT2hCoMGDsbUw5GRB7GgP8sRtvRgVez9Dfu98Pe+eZZtiGZzjdH3H8CcZJkJFvG4iSkW21MF9bx9PtCe/fv8Pj4yNqa8hJk4LeuxHWtdCbkgJfx3HAp+cSjym6+kngGbBuSunoVUbRyC+SA5ABPOji9KbFeaL6nOi7yqeDfkNEikbSk3yayfhb38AObHAkTbqRsk1VvEucPGizBI7Jm8IMBIngb27I+cRh1yKIl/75/Wd45hAdEHTD7zsUVkjA3FTeMZbkx/cdgDZwwZO6507VnB71mCAgYlEgCyAZuQ/FcCc/jkbI0TzQakOtB5bjQK2HTdts2Pcd27Kh3G5YSsatZGzbhm3f1ThCoNRlff/WJJy3QINING2M6UlU4CO9MGCwakHwobzWqVhLQWFCB+PwSXIWIB3HjqenK7748gv84Q/+EO/evsW2bzrd20jqOl1OiUApW+EG2pypTkunQrfe8PT4iMfHD3h6/IBj3wHpRjLjmM6XXOmaKRIiiJL3t+2G69MTtn1DqxVTRAMHtnW/qOBHdoGpeR9lE/4AdG2TFpQ0vDMBi5jMMMAFwBt3zYHQfQAIO404YvHO0ZB+nf8FBIVjSjndVNOzF/3/5/iTv9ZdoBc/kwgC4ys8wEc4juGAjdQJgfSCIDGbPZ0bPYVgzaQNxURNBDYZt6uY4O36qA0TpSBlhhwvb8Jl7xqsJga8sKgXSsMpgdhkmaGWXWtDKR0LZyMPpWjSbymhpoRKRg7zANrWkpIBLPCWjnrs+qgH6nZg3zfs+w1123AcB1o90Ot4DYiq32sY0W2yqgHUqSCXBevpjLKeUdYT1vMFqaxoAFw0J6WsBFUYyA5dvykpIK6TqAGCTXmoJjZzbGitqugB6fVyxWoXjBQaSVlrzRLEjOWk4kgRFFvjoXRr+HBITwRo3WVCdY3GVpsKuyM1m75+6veI17n7t/5w+r3tEQzQfRSW7l9DPAGc00SaXiiCYQAQkGSk3EGlg9uC1HqITHmBoiwbcio62dfI/u4XAVHQN0T4NKYYhY4G6VACMCXIy+pRAQC8e/8B7z7c8P7phutecYgCQEfvuNaK615xax1HFyUOcQLlBZxLkFYVmE5TA4sDCUbkywVLVjGMlIxMYQA2J294LJNoqPodtt8zZ1OJH0JTDuyJ3WMXERvhut1rD0EBdDB04sr4PUU2LgaeeHrCKjAlFBXiSKqQAC8WC7QxnxnUEWQWcIeA0ZKq41JPoJYgrer0ZW4hiEcpI9UDi/SIG4+qBOMqog3EtaIfNmV625SQTEBJCUtqqCG8p6BAJ0ISvV+a8DXUY8PGwG1bVQjKrmtKhC7a2KzAnn7mwyaJdhj52hrsBvjjhUf1UQFCQEHVWmv83p/jDdQO1rOJljDrvnH71I4K6Wb/jEimjWXm5StGfApE4yZN7/VSjmPfgDwmjbgKNUGTWoIC44KGehzYthtu1yfUYwcBWJcFD5cLzg8PWE8nm24OoDXzN5aDWdNzd7Vn3CeYU54aFtLzjgCd/LXgKuyDCORiAIO452Qne61nyewAI8bnFXZysyXA1kAYQJ4M+zxeyIE3B+fs7/s9YWHKeHQt2IfWS25F895t2gzi3L0BjIhAU4Owx8KdCVI7egK4q0hvsryMGCoK2gU8AU0hpqABuO5NEZAOP7amMEwCWzI9oNfW42cZACNsvXixz6cbalPLmCAczWoy7o9f8y4d3DyX9ebJj8EIb8z0OEDm+/YTAhf/vo6SfRIIIeSaza4AsAapaXpWYBNQQN4+mxcWXUgrdoKJTLkAJVHX5pSZtEIE6Q2HNOjUPY8zJW6tpzTGrUVsP+haWgobGK+PpaxYcgZbHKvCIi76xOorDSNhs4GGYdlWGfdqLsLOjb1DuGKKm4AhMO3gluMqZl+7ReLqhxlaIBYMYvAAJGHnJNbA4vtZhaetYAyCeWl9TVYw0gXyXMRCG5YJlBNK0mJEycXs22hMdX/gtkCgxd+KGg2sIt3wIsN9rOFWr6WeaxMlio1JEpMNklHILC7eYCIWvWqjgopDWmMolEyjQL6TVggxoWKyey+t4fIjsrZdBuWVepyvUBKTNd1ZGFZbw3674sP79/jqq6/wxeef46svPsfXX3yBd2/faRPgVUWmjm1HPXT/OLlcvLhWLa42Qofa+NGs5GfB8LVqBWoHoQ2H5K75GklCTwRKZPmT4ibESuBIpYTg0bKsWNYVy+qCwSrSW9ZFm6+cfJ+zThhblEjFpgxAxNE46ACxO2ORqSHFfVbSphgp+pliMrwTrVpXXKhag05tWuA3IkpjBqeGZM07vmxr62ip4eCKSoTD9scBQBvbbG9Ekamb3TPisxdiHSjXLm50UbzqaA17a1j2HcmuSRTE3Edafjtkygx871rM2fYDZd+x7CvK0tTfJQPUOYG0ow1KPrN7yt38ewfbozVS0anWVeTOzNxsx17coYsg7pf7Da3hkPFthy2mSWgqyMAe/0Bfa9jAZzjT9ACGrX6Ot7lPiDU7TvTZ4c+zZ8j8PWE0Pk3NHFOMOUWmnvjDs7c4lyhmeWyHeM8gvcr8WRKY52J0U/E/t2fQAl0nud+b5IVnjOvJdiOCzSHDttjnhYtNuasTJ86IJmmsWC2z5z7jWjgG0wxL91hFCTstHnNxPXImy62aiQToGprFOyIKh4gLbJgYyiQyNZ/PTOz1OMJjh5Ez/FG+6j7+fClHznmKgzTmY8IkvDat3ViHAOAF+Abphwl1Vsu9DvSu2GCrO6phhi40td9u2I8N7TjQa9VmGRPTUNEIxUSWRQd0lJw17u6CuvdJYEpFrPRxqP2vDT5NMmWbcLkUXC5nnC8XPDw84NXlFc7nE8q6KFmeUzSnk31utrwmMiq77wS3O0pQ4YgzLdesokNrZvEyx0eNZe+N2jHoxQmLAJqYf5nW2YDvZOQ4cH9kja69qtiUDzqpGeVIOI6MYz9QcsVR9N+1VfTSJlFEsfPtOFrFflTkumM38dLWWogiDJvq+XEHmsSgFN/7Hb6HdX8mZkjOSirsjs9S7BcRxaN9T3Y0s83WrCROyrQhL/5cv/Ydsd9Fftwe/NM5zufzM/EgE1kBhaBUMyzIczMiE86zn39KYMpfz8nj6s/M7rOK32AS9Yo6M1RHqNjvelf8JUNUtGDJeDgteHU+4dXlhDcPF5xPK06nkxKllgV5LSq06/W7dUEu1ug44eVkwEKP/HL4zuFBB32EMNtQGvg6phiJbBASERo5Ibai5AVEDdrYr0arSMe+FyxLwamu2M8rrrcrrteE28Y49oSjLjYAqOGoHYUJrQkKEzIEO4BKzaaJ6vAqF9TWfU135zfnzTCBqNYNObAhHkvJAJXgA5AjCzJfo+HL/We+XmZ/o9fIcAkZDSndrv+c685+SH+mObj7wdYamETzU1IcgIgirwNYseEXlpMtWYWmQIJDOvbWUBjoiUZzk13lhNFMOzgSI0/PmbEWneC6mn/IKZu4hr5GCLjDo8JAMu2Mhgic2FoUEhP/1djDxVWAeVKwWI276xCVLtZM6vGcrqHINYmgAjAaACYQOlvtuROqqLghBDCvoRIXtndgvhQshgWR+eEpxu06ZIIIkftU0YYXYlZMBhm6tjjySW+GdqyaGyC6PZU+ZU2fTRAiCrVVvRbkua4EPtl82E1vIbrTWgND64JDML7pe/DgsIjfE4zGfkuzVEyKE4oJ1Hkzy2yv3ebOMZ9+wA6iftfQJpDg/Qw+Docorov83nN+EH5+hNova4+FyEIXXS8YtgkwPM+vVRer+3XAeEPJuBj+Whr3JaTWDK+yPAaieXTv6C2FYJXXOXQHU9wnqYplOREQ0Am/p3UFesN209ig7Qc2XEHCOJ1VACqXhLUUcC4qLiOEQxp6N0yzAJkWzTOZTXCjGwkPsNEQVg6WyDO6CVUTNN5DCo9oz1cBaP1clk9YRw0RI4WoPWlNLeWIqahW8KH4vA7803ohm+9BF1DrSB2G0Serg3VsraFtT7hKRd9vOJ4+YH98g+N6xXZ7wuXyCuv5Al4WcFlAOaNbswyT7ksWWKexYbqOm9o18KZNF8Qg2+sdTjA1P2fxCaAN32iEsRH0c7AAxfDrMdwFCFtrsX5OyYbxaJOswPOzGqJzzZrydHovXCb5xR3swiyOf4G8lxtMJjCVGKeUcEkZ56LTk09rwZqtqYSgvAYT/F84W+OxClVlYmQwVC2NAa7IiVT02YQCtdHS+YMZiRg6J5aRhJEkIak8qQpN0QKmExKfkdIJnM9gXjXOAYOoINEJmbINYbJJsdJBUtF2H3zWwGhgFjAaWtsM3+s49hb22vmYbOtBJ+QyiHJwswQEKhWdV3TegHqoXWW2Or6uz0zm5/gRaBWNGFIFR2vWlEEQJFtvonuurMjLSTkANj2c0wJIUnxHWNdw1tg6S8fRuk7HxoHuPjgwJ62nMFScSqzxWH32FL9Q0TqxKH9QpIOSIPUC9BvaUdFZRbqYCYk0nxC2pgoBIISUisYEvSIdVxzHjtYbuO+gnoC+Iwmjpo5LPmFPHa1tOAQ4ugqzwva23kdAGkEJAc22J4EzR8z5Uo7euzZoycipYNd9HJpLBsw2mbhmje2HCUtJVzFa/R6AkIlYasxQD+Ud7vthPNAb9m3TRvxdMYxWPe+3mDAaGcYgBWne2O4RDfmpDozU7u8ck5LFFuqftalFG6rNLydvSNPfO17RjAfUDNuBCHpiOCXEG8ngTcJAnNvAS3ucqdP5dN+xiTEQOgONlYiemZBMaKpNQlM+wKEbmd5r5U4qp/srEt5Wb7j9QCTyUD3D+4UZjcXzR/BvvdYFx44HV9Dxx49qwh4XTu8h9lriuCrNv3GU4/58OgAfXKPXme5e0dflizqMn/n69QMeHs54//Yd3r9/h3ZsQDtAvYGMPNSVfGA8As3hmuXFnBakvKKsyhU8asOxqVhVEkKCgOnANz8T/OVf+w/xX/xnfxV/5dd+Afu7H+Ef/cZv4/TmAbfbhq+//oAffvmIX/ilBd/56Z/D2/dfgY6ON6cHtOuG3/nBv8D3/vV38Xvf/S6+/73vYbtuuDDj1Wev8Y0338DlcsF5OeFyuUCEVOTQ8uJ1XXG5XLAsS9QfsvHgiHMMUPCGS68DAbDmfhniUFMdolucOxqYfS/fRy8+AHp8P17jeT1EYQJby1O9m9xImH+kCW9y3J+sE8/zM2DkLN6ANXNl/CTv+TKGWzStNfrQyszJ6sMq8JqNP3d5uOD19Ypvfec7+M7bb+P90xN+7uuv8fq7v4N/8wc/wA8//xy/8d//Hbz74Q/wO3/zt/C3/sv/Cn/pV/8ivve938Hvf+/38OqyYl0yvvmtFd/5qQt+51//Ht68JvzUt8549+EJCYyNNtz2ip5XEGW0RNhE+cYJHbVe7VOWf0ub49/OMYRfJ3EW97ukwr86pDwNoSlScWe/R12g+T0EvXs9QKyBTuNrx2o9f03kw4gGb0c5iDyGVJmNh9WsFZMyzjd8uJ/nxo7H2HlSCuGiIUwlVpuy94u15r0aNtzBOLuA42dw5wetlwLW/qeDKOO5vodo7DerJ8bwieiPKeCSTSTHnNqEcaojNqw2MDzFDOijiq+OJiPyPW0+yjE+PSPjdmpfBPn35NwO1j07nXfw6wznGX4LIegvhqVLH7zOeFeLeUCjWVN9k2e99lp3npaisc3xzJEbIvK/YRuUb6q4i0W6Ly1YxLguz+1Y4PnzOZtT173oUcnz/5u39xjGPbsWYPUJ3izP49rbztF72hH5PhLZPrc4DioalQFkUXEYbh2JBYswFk46jAwVXRiNbWgJGbeVVcS3lKzY+fmM03rCsp6wlAUpZ5S0KD/Z9nvtDdf9wNX6nJ4eNzw+PuHDh0c8Pj7h6WnD9XbgOCo6ASJkg3264aPjuvg1d6Foj2F16TiGMOxC8AJhPClSYQoXftPXG68vcS/IbJzHZbi/l36vXFPHraZzIwWxxygcoY8FHPx8XzMh/B9L5T5eNO86fPu01p6vw+nsbH/er0NvsvZFJxh1N5le82Ue8y7xGOMnsQsjnolX8rAGgNdZ/DV9/zlO58KMKTh+LtY8hGf8eWT1UbbXYXt7dU9m2ycb7n0pPuQzza+dhqDNLJImQPDhQoxdnIc5hHeVf+T5p2OQNpTJuVF98PaigduuSTLOHlntCIQQvfIadSdBI8Vr0KeLKiYCg644h3FMBYLWrIevM1LzvlkCd4tjP0qVCMwSfoeCHOq3dYpbPfYI33Kf+c0pEsWOt89sTde2+6e/8n9PGwfzfsVHv8WzZ96tvhe2zz46b8Gzz4vJEOo/hNTfdxIVmYKgduCYBKb00VFrx9FMcEg8jzUMWGjYVxnLR4fUwmqY4+T0d4YRkuECvn9cZCob/zcn5EW5ws6r8KEXvqdLNqGpojXs06JCU6Von5zGzB476z7Pc7/nc5Epz6kiXtQznrlTnlP5V/acDsCdcYiF85wDNnmrabP4tXPH5b7HIEO9zt2jTOcUy931RYhYEVSu1MRCyYZgR615iMNqj+U00DO4mENUyjGafvcz/dskNjxn4oKJpFHrY48Zx5J0nElrlpPNJo+lX9ax18O4CYALtR8mJrLvh4pw7kcI1YOK9XQVSEoq6CbW29kReF/i2d6ozSVtdoJYPzpJRyYKwficpiGxJnCzlgWnRQeGndcFJxvot6SE01LwcDrh4XzBuiz6t7Z/dOiSi3DABuRRcFE5G2bAJj5rouFEhJSzxiAiBptZ/wbNPiaNOirEckh/LXjAHH5h4BkSedDdz+GmTGI/aL5sr2Hv87wfQL+2qN07Vue6D87dl2l9sl0nIGtNrFXtrzGfTd35+Fa/F0ZhwmU9Q8S4q1TAlMGUkWjDVbQvvZMOpOiG+RC5yFgH9QPbUXF89Q7v377Fvivf7nZ9QD0OtFdnvFqLDu+p3YYTN6tfqtbFUQ8c+xjU6MM2I3Z8eenY3eH3twtpnWayHxL3aea9eN47PB/h3pY4lwoY9oaJFQ8imJ8wyQhWfvri/mXJOK2r7q+zPk7rgnUtKi5VRu+NvoZyLpPxDz3kmeN+11EIXsH49GbvP75JFuq79w1/9Jzr7Ll+tx7Cmet6/1rumK3OzgMb0ms285Li5oy8yBM42wORURmOw3aNPQ4EZqwH1nM9/JiKZzl3giIejNqyx4txAuN6jbUzrmN/hoGI54/Wk+K90C48FfUZGWtKT3PO6eZ7hYj/c05YsUav6nZULMbFfUlH6x0N2stwSMdBwC4dW23Ya8V2HNj33XpzbThKGzGAD7G/E4yy+0sRa1GI0GrurJaOhJQjEb1M47wIMFzcalhM5pdcN0dtcmEVkHJht7UkLCEyRcjE0atdMof4lL+WPlxU1Pan5QhjHyHWDUVSI4Bx8siDLrsGiiOqKNaIcsns0cdCU4EtWubKJCBpyutw/2WxQoNLE1h8Bc/1CRBvDPKe82RxmvKGu/d8dq/XmU8U49Qfh/HqrTfGuBhifMvuQpomWHhUWxPWv31Xv+taC0drWi622MD5XsDIE0B+jQY+4raDLa6O0MBXh+gCmfEc5938JMdPLDSlTXB+MiYiJcBxHNj2He8/fMD7x0fcrld0kRBc8oReQNrUnxKAqgbEIniyAH6cdFwafV73IhmPJEOv3EdCU26IvNkjEVujmAXTPBZ0IkamZCD/7CwQr+8bEAID2VQEIts0lWQCUzEJ7pnQFAWAwpFsRUMnUTTEu/l8bhfDdZmDe5bZPLtLnkB54qXff9rYuuOj8Sb+nraHn4N6ATAKjXOKAFODSBadAiIm6AIiMwwG5jRXjJNxt0Q0YIspVRVH0QKHkuOaqtYuV226LEr2uZWCvN2GAUsUIE6thxHKMYIgVzzufUh2vqDjUoqKvjCh7hvavmO/Hdg7oUpCygXnywW1Vnz55Zf40Y9+hK+++gpPT494fFKRn9dvXuP161dYTysATWKzJOS8AoA1TaiBA5Rs+uHDB7x9+zUe37/HfrtBICqelq14pbsTTIifcXICRcOx79iu2vTSaoMDsNro25CSF9as4TYv4JRV6IOtiEaWGCWO5ltvfiBxcEDtiIiBmwH8uqGcKwhjUdMcFEMsCIYv8rvQJfbN+Je5oxFC+yvNgNp80Cd+9kcdA/D9yf7qnjyv5zT2rCWfwzfASYaugwKTrVSCqR7JE7cJlVLb3UeyaKJktWkD0piUoU1Kt9sV5/MZOWvi3EggUv8EV+Lf/dFb02mEYed13TDD1rgpa7KK+HQDbwCEbWe24qQl7Q3NBg12awxrkaxHhmDNL/vthmO7qWLp7o1dG+q+qyCLCQ7AQiRPVDxZddNFXJCXBafzBaezCk1xWcCcpz2gdzkmKXd9LSYgZUYuGSVDwRMCIA29quDMvt3Q6gH0BiQFHDRk9WuGaU0oaEbMSLlEwxkRY/dku1VrnOuhSu2HdNHJjVZckFi84zNget+PndXwU9Mv/khMem5O9YJSJET+99ZgoI1MttfcQLjbtMRQXOTNPlqowPbRpKwNbNqMmrKCINVIcaiHXh8XmiItTAjICpZDLEBESef7bdPgu7w8pamv3j/i/fXA7Wg4BNg7cK0Vj3vHVlVgKtTHNVtU4MmnHXACs4LcITTFSScKTcB3Tlkf9tzkMVjW6UCZPR7TRn1KJmaYOASmyKerO/HBiaTAR0tO4h++hhVO9kkMQ+raYltozDgGkoqtHS8EjzVIUGKvEAYzbnQuBYDDWW21C9Do36iAFaUGaWkIAfiegzXfiUCkBaAKa0CWXsHSkCEopATFg4GkGloYTT5syR2gvGpPoIyE3htyVqJHB0ZDoNbxFYyzhEnMPnoS66CBP+Y9yTzCNQcwnaTjz3E7lMwROig7N7U06TEVbi4O3qls+/cES2b1NbKT2l7I0ZoC8CSIGIvFC7JK/SnMqFVFqa6PT3h8/wH12MAAllzwcLngcrlgPZ1A0oCq6wGi9BaxBq1aD0uMD7XlRsoOF0ekBQ5YXChOTjLL6evHQPzWXXhput7ShwGd4jVgTm79cAEPPwEniA1QKppJAxifASt/jsBFZCRew5udR5JOILUPZEQLI+FHLty16KPaP97oNhqFtNG1h6K5N0slBqQzhNM4JyDU/QFBhuWLHq8a+APLwVsXMFe0puSU0bzly9dKY9KDtOSAwX0uNor2nFLkjnNRQYtgYwKUk+g8RgHaACmIhmDms9j2xwkVvTRgMCUt2jnRgACzA1Nez4OI6vE3HFTqTZsIfWKcE0vhYp0jz/GYZQA8Fv+5nT6OALAg2jQEMmEpQtjRmawB6D1dbTpssaLwuq5YizYzpzRhEwYEJh5FYDKy4FxgmIkJc3HJBRaGoPREJJue7/7sObFskDe0mJc748iKI8HWPEX85eeCwBwUpDY1+W77UMZ1IXLBZfVQ3gzceo0ckW2/5aTTaojd3wtC2s6axfy9yfxZt/PSYmTWZvEoout1dHJKnwQ+2nStdB0Q1kWFMctSjCxKqK3hqAfaUdFqA0FQ2OKelEP8qDvZTAaIi2lNvLQjcCuL/aVDRVXMT8cULlBM7FZh3Irb7YoP79/hqy+/xBeff44vv/gCX3/9FR7fv8P1yUSm9gP10L1DRiQMIo01s/Qmd7mJLbcQCklM01cV9nLb1y0/08+gPkJYp7wyAymr+EZOJnpadKL0sq5YTyvW0wnr6WSCUycsJxWbWmyPZheFS1qA5jwbigk/xGRbDWgOgUMg9hGlhGQYH3d9Trbr0FpDNVGGVhU0p8ohNMXMSC0ZMcIIlV3A3NBNRP8gL1ghMDchRgOsmdJu8mz3RUmf3fIsNZX62rV24KjY9qqFxaLCa5Q8VtTnimHF1oqtJAMwIA21CfajYtuVmLAcVcUiitkVF5wlm05hvqs1FVvsaQgqA07UqKjEYKqKNXfHhV6i2JSDocAAg+Ru73nMpOS8FMTAIKlitiEWW0MGzoThBwcS9imEbGBqg1AETIHfyLnh8df07/gog+h4/34Wp5kvnqfdaaObNrW7RfcV4yRZje38fJ/hFeLnY/kYW8wogEsw9K5F9BC9p4HywdfqfNZRe3DSxVxMFIMeJIqqjpV6E+2cnxEpMdEyM8XrmgoT+v3POamAXU7hfx17d1Gpw4qetdawcV73GNdiXJtRLJ7jT8N1eIhz+vv5w9fTjDXGSnm2LkeMOAgPL+kY8fR0npBpffh9snUZ69vIZ90F/lx0/kBrmnfdbjfcDGffbjfs+w3HvuEwkalWD417TOBVc3QfrJI07lsWFSnqgmb5equKQ9Zd44peW9ixnLIOqkgJy7rgdF5xOp9wPp9xvpxxeXjAw+WC03rSOCXlUeQmmmpv7p88F3FU3eNou8dGpgqfmgWtZcWduzaG9iZTM74gYdQPQmiKpzXl8ZDvOfdJdj/cR/Y2MDol/9XYD/lI06TAhJorctVi+5gwZXmQdOxViUb7cej1P8Zk31oP/Sx9nA9czTLWh+9paCwBGO5CyJxARclmI0cdOIfY3nChkJAAEKALW3wlEOpKbukEUAo8VOMdx1ka+ovjHkqQVd0Xa5xreJORwN0OhoCt5SQg6NRwGlMh717HbTEh7JiNztJ4LrHlyvO0ZgH1CoIKUDABJQGnhXE6ZVzOC169OuHVqzNevXrAaXUB0YxcVPwtmlvs5+wiEG4nLab3c5MuEf/oQSGw5tPOfF0g/jW5URJwAtAHiYLZY299fWZGKYuFDjpoBPY8HVBByImwloTj0MEJ224TRm879tqw3RitC5bEyFCic22EBjLChKBJwnYcKpBHZBN+mzVhud2wa8FiHA8JX1rjc5kgi/sVwV3DMhGh1hrXzNcRTFrdm8282abbWvPnDmEqCczSfXbgxrZ3FXvS/F2Ff5Rs6XiRiPphbSb8t7Y5/q0c0gUlJRy9oKSKTD41XFCZ7idEhlU34rQQihF8CDq04LSuOC2riqnRELT2nFjmWNJDven1B57ie1hJU9YLZdd8xB1jqpxxCprmMeizDxhxZfYGLNbXbY4tMI86HFH8DYmKpTVbowRLKQXW9DXEkSI39NycwvXYp7Nco1oNzfJdEuggXoblMj0wTLF1iMibYM0mDGFAWGv9vVXFiOBEa2+osTpur2N/tAapDQ0I0SEXZaAJaOrevCiIBhkfmKZ4FkOkojeA0bWVeMK0vPFnCJI3wygAUNP9YZ9PY9KGvOQJR/Jtr/Eyc1bhllSsbpQ0fgdZ3KzHSxPC6bVqjpVGfAQM3+wkTG94GkKwEvgxW93IyZsE0oE+ralvv7vvYo1SVQVJq+Wudq31LFgxy6NaWGIE+5xBp5MJHXbstw21Hdhut2iCYM7IyxmpLMi8oAhj7QL0ir3eIGiabyWgrDoAycVMez2s7mB7sndbZ1an6qpux5TU9osLuSmWmtB1gm7T8+9VX8PcAxgcNgcpobNyH9jiOcoNvTlW5vwtMvEUUQHyrvWBBEIxYVOSisYC9AP1JniqB9q+4bhd8fj+HdbzBZdXr1FOZ2R7pFUFp5Ct3uk1P4Filn3s81gVjgvaB2LfL7Bs12JEIWvKFOPbWDM4C5C9GYwzhsiC7mnHjZrFDYIEETZBR7WntdXA/r0p1Y01me30+OMlHY5fRL2RCYUIBcBChMWmtF5yxkMpeFiWmE5eGCC0MUgyaTPVkjKyc/kC85lEuo14m4wnRcYrUezQRPEwiLGMNJoiuCClFSmt4KxfU9YH5wUixfwdgdEA2tUmitbU0SrQGLWPeDYlF7oQ9G71PJuOq/FHsdxeW6phsIM3nDApH4YTgzpb6XgiPVuzdpqGUzAES066Hw59T0GFCxCwxUsAjLdi7dyUQaSRolhXlGM9/vucF6y4wOQ/se1X4yNZ/Z4zKF6ToxGye6zQe7wmm1gEaG46Vb+p1+VknDQVXU6eN1gwnW0vkLCRhLuts4TaK1AJtXbNC6QhUUFJJyy5o1TloTIOSK8KizJZk48O/+uoA/eY6gMv6ei9gxoittZ4dsbEND6TbpIusziRk6VrNyFgBNfJ64uRWzcTpDJsats2PD1dcbvdbNjhhm3bUetucY3lPix+w+Ai1sovlfAt9GPDA8Xv2HN0GQ2Uuq/vm1uS1S08soXV0FtTfteYduzYhHEjSIUJuudxDqBDBuBp/jd+J450EyyZC3veSXkclb2exWg9obpYV+8hFtgtnhMMXoqLgY0bhRH3ObZliUDkZxT/G38k09/D14W/n2GyMuqBvp4+rgePxGD+//zSg5U5fu6u9Q4vtC99eqbJLwzexwvbY8dxGPZLqNuGp8f3qPvVhszpECKRajlrGnkFJ81nUkJeVpR8QlpP4LwCnSG1Y/FhPvWKJe34uZ/9DH/tr/0y/sp/9OfwK7/0M8DxFd4//iF+9S/9BfzqL/8KLqcFX77/gH0/UDfBj37/h/jv/i//V3z5wx/gl//8L+B3/vFX+N1/9S/w4csvcTw+YckZr85nMCeczxe8enXB5fyA8/mMdT1ZMyWjLCvWZcGyLljXk+Iihh/rAOgR30czpGEhMmE+joHN+LHIyFP0ZylqFQS+x5VJBZXThK+IOAZgftBzERp4JsdeMFzX4wGe4i37eSSB2sGMMSiWtHGRbX+LABnWeHbPkwiOCwAOTHl6D0Jcs6jrpIROwHo64/xwxuPTFa9ev8ZpWfGNV2/wvd//A/zw8y/wL//BP8Xv/84f4usv3+Jv/9f/Bf7yL/8K3j9+hVevTtj3KwjfwE/9mb+Cz751xh9+/0f4C7/y6/jd73+Fv/+b/wS//b0fQjZB2wvK6QG5nFGb8mOXpELCIg1d/gSzzv99HCYyMUSr3c4rTlSS8Qs5RWOwugeNgVwMrkP7Wlq1XheRSUyIYx06P4inWrc3Ow3Oka8btWSK6Zq9BAITDC5KGvvDm/wNZnlmngd/QmQMButiYohN6wPzWiPjU3k9kIiHjWWKAYe6F3SfgDSvjHOyvU7sHGpWoamUh7aFkGEmGp/CcKEx88DFpUYTF6AxsWOcgmR7e+zH4YIGjwQhOucCPHY9abIz/nndB9HwM0QwjojhYtLRWQJr+iis8JjEMNjAg+wE9Xo6qm8AV0d8Aq97qJsW5WiLANI05+06KAndBvu+QPEAP2Z7OHOBZk7Q6PfCdM1nP++J8DN/nQjUrWfMryrB9qEYnue2WevBXiNyKmKCNUkKkMQaoQWgpjldSoJCrM2WWVd+N/uhnFcCsYkULwXLknE6rXh4eKW8y1U5HzoU1wa1ZK2jdaho/NG1/+n6tOH9h0e8ffceb79+h6/ffsD79094vN1wHDocbNsP7HuNJvr5znsddjT+6kWNXhurMfhaTJzCtgQ2YWbI/WncC35up/QNvME+OALGpRJR3iJEYk8PG6YiA968P4v5hP2w+9+MC+fHzCm0JXOP+03xwMc51P2//zguom5fT5TVGr24Iz7j888yzvaP/pQf/dmz17YeSXuw7xFyZINi3XldNpHyknO23kv7WQy7tHvLZK9nGKfXkZOZYBeuys5XdO6jC05NXHLniYvlnpqWyrAFtr5c/KXD1q7nnjNXr3ojsa9N5w2PS+MxH2D4PxTbJ+NU5sy6v4lQIeDe1FaZ3WcGMtmDtSewG+YnYPTM6N3Egxujsw6hJ9OsAsbQ0477vaqxrXoFz88H1wTjcXefHXeY14/7oFgKur/MN4Vt/+Q+us/dfLe6cCOAKQ+bnvUnWqz/7o+P8mP7ZtY80p+M66tRi+IgFV3roB2otWNvHfvRsB9NcY5mQ3hEY5vu+A8sGBKzr93vkDhcoULl8PPQe5eggzozm3hO8sGyJjKVjS9SEnIpKMu90JQPkkn29yUxllJwWgpOy6IiU9aDEz1QFoN67pRYB5Y4x9iFFWc8emBcHmt5DykNGMBwDrIcDLa343oD07oecdPMXQaGiXSxVI3jJPI5H+wSuaHHuHf4/PjiMTlIbCCE8xpJG2qIBuekd7Se7oSm9KF1ccWpnolMGcfRexNrayOO77bGIk+croHlNjR95nmNqk19efh9bTV41UfTPpTtOAaX81DhKf3oCVxYB51whoozKdfg6CoI7PxQApDCcGt/BLUGtANoFSTdBG8S1qw9aJkF2QRwTqvWCE42GPZkNYNTKVhzwboUnJcF53XVvZFTDG9RIY6CknJg8+S5h9UPyDF7IqOTuv8yLt2znkN92iyymLzVV3/PXmNHrBH9xRzD2Q8w9qL3ys79Un6Iv4CEOYo157jt6BPxGqW9Z/Qhj33l/CX1/3oOiQBh5fJ29GfcA40dYlHnApwYhARIUty/A9wBVBN1o4xOhNoJvWms7LVt5qw9akfHre2gL96i1YrbpsLYLjZdbABL7cB+21GPI3pha6uoxxCjdJdGnsd9fBlfxEGcLGb3eBuWc9HIsM1/DfzWsmsXb4l73yFNYPMN9fU12zLhGoqB0SkeE4ZO0D1WEk7LgvNpUZGp06rfn3R/lZy0d5ss0u+KQ0xXPGpys227691xXjOG3fzo2mBchzl/eP7wZ3bSare/0shHfMdQ9OgF7mDP8PcYYxCm/9On187AOGcfRXf5jj7PzkIEnbwvknQvdtIA0m8kYeTFcRHoPk2acy/fx45RuJUl90U9ckKvcXvPpdd3QmDK/Jumnfo3JOMqRdwpmmNkZlDhqFMviw7ybi9so9VWdahKq9haw2bDqvbWsNVqgkLOwe7Q+VpDaMr9u7qBCatijpwnJxUvjJ4rIjQSGzxqNghTLOD/MWJQSknq43JKY4CK5VpLTig5oeSMpSQs9nz9PY0BTEkFTGdxxSE6auft+wn+edwX3f/bY//A9TH2qteTHWMEXDxOPXz0YohlLGarHA9i9zcWk9/5MYvV4XjHJNQNr9ERIaUhNFW7cmtarbHuiVTvR32BYjW1HioodihvO3idJjTVmtZDt5JQjox9zzhqRYucwLnKgto6cBwWHwB6pbqyf2ZhMvjnMm6M23X7PLq7prVjfzDnaL7HPYb9SZKynxjlV+IcIVsDf8kFTMBRD2zbjg+Pj9i3PabA78cBsgvdWsUMdramJli6f1wTSojpCs/eGwPkdfCc7OcIxVZP7vTCNZvoLKyTwjToZ4gD5Rg6Z4koCniuwJZ4ENZd1W2QIvgjoak0iU19rNBr4lyzkwLGV/ucn/jo8XvfNvfPsqvw7EczgKZBHUVQMH4u98sjDFf8845Y6UiCTCc1mnEsEBHRZE0YndowGu5segdxM9VfW95mbHgBIKPZxQmI3gBw1APrtmJZbyjrCbfbE/JtQS46CbiUjGVfcLtdwUTYNkJtBwAt5GtzsIzzJfrk9f7TPEga+lGxi4qIbPuO217RqCAtZ1xeZRCAp8dH/PAHP8Af/MEf4Ha7obaKnBMeHh7w2Wdv8PDwgJKzikn53oA5bVPSO+oBAmE/drx/9xbv377F0/UJrVZrWnUjb9O6WAnlzANEhAhqPbBvN2zbhnbofg+jbAvMJ/iRFZOYjVTF3tw8piv6+vZgSYtazib2K+WBLQPU4GIfMJKrG9oRulkWpBfZ9r+fIMfPY48Jpm0mEHEXZIFfJGPiT3kWfD3796fv9id+9pMFRWPl+htJnNa8qwkIAmPsWw9seXwMhkByDiflQUjvHbk15BCYKsi9oXBFTQcqsQJgUPKaNz0tS0ZiICeCT7h7KYcSai1xjcQWSvBOBZmgYmj28CnBTGxFIN2DrVYQK6n+ECVnq0/TQh+5sJe9Z60Vx7Fju244tg2tV2sO04DElZFhZFa3uWyNss2JxiCAi6ponx5weXiFZb2AywKwElbFhB2tLGoA1BCESsmCxaJ+KkHU9vSGdmw4tiuO7QbpzYAKC66aToVPrJPHOgRHqziqBknrumI9n7CuJ1BKOjHzODS4DqJVtyY2BBHcwx2SQd6I7fXJeECPyHnG/54VjyZ/NvkbNVH3L/68sKmkVBPb8I0UTDQe2HsARCMxCp8L2BSYDu5dC782mVcDfp1KS6IFagePksVBGs8SjlYhJKqinnMEwfU4lOBSX14h+ev3H/B0ABsImxBuInh/O/B4NGxdcJgqqyrEKtkAiWy6VQpSx2LJTIDa2dZuSgZo+9cS+9Ob0FPsY23y51ysUT+ByBrQnGAQZAP9nQY4+lnuyQ2A3+VYh4AVdXgsKXOAnsx5yqICPs5qVJE+MpDL/Q9B97EWdekudgZDCcoG5qRuQlMpI3kD60Rm7EZyPOquCXu1prLmokoqWJKgSSKYIYl1EiaZmI8oYaE3E7giQrL9w/4JxZqpWgWwQKSjGllFCUVmbx007yqYwTY5mTye9MbYrI0lPgW9924iXTOgMoRy/DkQgaQURJZIj2RMbM+U7bqavRZP7Fo0c4SKdiSHui5f0tFqQydvKnaCK7RI0p10ImhHxb5t2LcNx7ZDekMqCTnp5Ppk00cUgDASU1fB2O7Cr/uB/dhw1E2Bf+mTcvYQCRChEOuaG65DZGpel92El1ycdgK0FPsToCMEif3QVzUCkjk4JUb5Q20tMMAYQPeTTygKIE4khJginBP/fgL5aLyzP9XzmzGNUIW+fMrWPcRMABpgUwLUvJAJhOlarw0gaqguo91FmzfYiMP6gUxoikMIUcWmkoIXU0GcawNh5AA9EBS/kDIekce5X7U40VM/YnuqF776dL2bNepqPK3XgiEZUWQfbzf243NRgZ8wcP73esy2BjDS5kfg8rAvLrY3RBNcZMr2lYE8Q1xKQigqMnwrj5QVHwABAABJREFUtkRToXTsx4G679pEZgBrYoXRiDAantNUzPXmfdZi8FqUyLTYxNhlWWMC0RCWYsvXXGxkEpmKPTF8nx4Gn9nnHY33arvZxITvJpqIi0BZU703QMZXK9IQlEBPCDFPX4ezDalNJc600XV6bW8uN9/mEza7WINba+jVGktiUxuNkWExsJEiibVhzeJDz5EU7FSQFjlbLEDaRJ5yFOpUXKpa46uLGOjUeZEhmjgU/9kwJWucJG3yHOSdgTGpuObAnkaMrOJAmUd8+wz5+VM/ZrIh29oij+mTRM7AjhVhCKlJ6zi2HbfHR3x4+w7vvv4aH969x+P7DyYytanIVNVCoPQBrjNRiLWJ4Yo+QdVFtUtipKQN+d6o6ORzinP3AorijRH3WTEr5Wzi6CuKTa9MJaMsJYSmTuezTbk8Yz2fUJYVy6o4azIfDTJh+kQmNBUXCoAXjQz87X006MvdxQ5MjrJ9fntOt83VmiDPa/SooGMHJUZLDTVpU2a3aRvxHFLiFMxfi/t+a2jh1qLIENK4EwA+Y6N2qlFkadLVpbcKPlRkI+UMjinXdj+i95ospzA80nKN2gVHTI3rWFyczvxd4FCUonm3W7GnN1FCF+gujnDsJbBOeZ6Hvowj4ppp8pDnyE6kvhOZomGTaFo3w0WTvwIGQ2xCqqe83ELpyY/cY1guYuWMapFndoqmVx4nHyjeWEYy4o3436gXWMquz5t9cmBBVtDkgR76G8p4QQuZRizo95xIC25ETWMgNHQYGRGTyLa9LJGTsPzaUuR2jn+LaMOLC9wlW6MudBEPTDh860Z4Vh931IpWdytUCmpKaIYbe4G8uW+qNQpgjsXPayjnPNbTs6/PG2HG3xn2NuEsP+7vnx8/7vnPv38Jh8dnPjV1NEBoAwfBRWAUAyBCCMrqIA7Fyeqhk9TqsaMeKkb+9PSIp6cn3K5P2LYn7NsNdd/RqolMNRWV1tzG1hZrbFBKxmITmskmH7faUPcD+7bj2HRqTq8am2rsQSC2Ce454/KgIjmXVw84nU8qOHU643K+YFkWpDwNV5F5JyJspFiWx2ZLfAr7bF/Cb5jv6Cmh9Ybi+UIwZN2Xa1yWOYVvDpJtEJ16+Ldhv8Secy9KMnCAhOMYogPshXhOqKki1wPNBBdDZA3qR/djx7bveu2Oit2mOuV04DgYh00x0olDdjZi5xuf39e3fUoiUCIIM0qeYvApfurd931HPXQvE3f1a13QRbFkQdN8EG57JOrms8BeCC29oON6vQEAlmUJ++T5F6B77y7vn4huACIGqSJ3ftrJL9FEiMkmGa7BaeAsidjIh2wkxTomdxHhvCa8ejjhzcMD3lwueP3wSkXZTqtN49PYLi8JqWRQzkiFY4iLE6c6NcXGbSIyYfhKJRS7UI/Wcnyn6XXIQfSmZ58X4uQK2/MQzW9BABJqhdoo1vcSAag1ZO6oKWHfN1BvoJJQ0gmtJNSjYim7YrcpY98b1qK4xLE3FCOubPuBQ1QUXhFRjaO7WAzdBUftQYj3feLxWTcyGsxitKpi+YjcWMnMjkE9F5uac6chRsYQSrFWmtkLf56vn1HT91qR/43hS9Lg3phZG8d76yqS4sIvTVBJ12suCS7C+FIOG4wGkoScVizFJysTKgOwPSYQNKnIpDn6aNRISGnBmjNOVJDFRFi7gCx3UfMzRPTc9ng8o1iCXk8nYDu2Aigu2O7qOPf3+d6mq4CBx5oj51TRRRWnUDsLsTyQzV95bMlK3s85Oxhnfs3iX8MnuguJGZApgnGetmar1SG1GXOOxhloasNYOhgJCWx52Wj6rL1qvcQ+unKnlLgpJJDcg8goJvYjJqrQelWssKvgVBD9Wtd6FQi9VvXL1qTcITgAoDdQH9iOXcTYb9yrNtP0pFyhlFG7TtsbTUDJekc15mliwr0QdC0oI6VRn2XSfCtH5p8M303gVFByNlxrRckLEiUkYbBPibdz7D9eSeJP5ejNuDAEiJG8Z9FA/xID0qacZeRs5g1EgGbRVVPcS9i6T5rEEDdiVpGppvUcooZOx2TbDMvsDZ0EVBlUCkpiMC+ay9vQCTkEramgB4iRy4rltIPzAioaMy7LApEVrRfUXfktQqTD+jghZxU3qztw7N0IpYIgvYkAkiwf1EZuzfeUIKvV8YQkyl+glBSDzxU4gAqoeCGG0FBgumZwyDxeEN5hQ0v2XfGHw3A6G5LErLVJKoyc7JpB91g7Gm7twHG74UN+i7SsuLz6DMvlgvXygNPDKyyXC8rphHJakUuBpAy2IqOKRMGDwSkDvm8QCFxHRl4sTDpownyqmL0hIrUhhmNyLkDgPbABLo57MbSGo2KPGocYgb6aLZWptmIDq3IqEf+/tOMOvzAibGbGwoQTM0454ZIzLsuCSy44layivDmjJLoTsV1S1uYQz9tlwu7jPQbpN3kdK3ybNjMkypPQEtu/M1JarNF4AacVqSxBYk1ZCbguzKNYSUOXitoPSNvRZQdXFVgS3x1JxauYk/nEI/yhNnlmbXTOBWzCTCIdreq5J1uUbKvqrh7CYyCQD6YIbiQRKGXUVADaoDwWEx2ymM8bzJRroefcu69BXdMEQAUEEpg9HheUYnagQXFIHOpPyYZMZRVVts5LPV8LEMU5UJGH+m8FEMX4nCuymFLiiOtgzxHjcjgqna0k2VDyojuqJzQAqVcVk5IKkqL8KBbjmnpjzGb1CgIlbRoiKhqjGy7kceZLEw/Q2KSjm+/uPeQ5EbENK5dQhWKMA2OP3qA2tloDXZ+azK22e7iI7W3Hbbth3zZcb1c8Pj5h2zbs+6bTf/cjSN6xJzvgE5FjuJFfTzFewvR5JlgdwdINjE1i2I/yIa2hEojmSsd5mog2/Zu/9TrXVMjSugEBrZtYKVh9LzGEhwig2364bcfAABxrZTAoqb3pncCmScWsr996igFl3DoqqQBaC9wO4/3ifQ2jcH7F7INgcfI0IGpm1v6REZc7W38vDIywtaZ5VeAPE/6MEffOzT1/3OF4VFTH4guZQKPdW6GJ8/NyDitn4Niu2G8fcGxXkDSMtmXN40U6OGd0IRxHQ1pUaIpzRjmfseQTmIt+2taQpOKyZLBUnC4Zf/2v/gr+i7/9H+Nn/uxr5PyE7fZ9PL37CuuZ8Tf/xt/Cq/UB/+gf/mPw+oCf//lfQLt1/L3/z9/B3/8f/t/44fe/h+9+5xt487CCpeJVyfjs9SusZcH5fFEhqfMZp8sFp9MZ58sD8qpDZ7ksSGmxJsnBt+SpMZkSBw9nxn5T5siPmDkGOo7nDYxs1DT869jv0ahla8U5ky7gAxcBJPMVBLhoDZt9UL6gc1mcq2HovBcwIhUUQIbAQOw1UV6W2qohPPw8txXRdRHXQqB8EeOLSu+Bb1TpICaUZcHJeKZL16FTS8m4rCd8drng268e8FuJ8HvbH+DtD36I/8f/6f+MLAf+y//Df4UffvGHeHvJOD+ccbms+Jmf/Wm8enPC373+Pbz9fMN/+p/87/Crv/pL+L//938X/+Af/y/4+rphKSfkInhsFfuxG04jyKKt9i/peF6/iHguJWTLNRNna050fwLMNabAlUXQ6zFsKgYmfzd8nAdXV19p2M3AMKWDuq6hyBFsDSMaLceD0BXTiFe7t8QaU+kLiYg1xx6TAGMz22uC6n6ud/vGeZP68i5kCrigW4ILA3tDJRnXk4jGkCAicM7gVKY9YJ/D9ombeTI/ENM4CRhDc+amp8Flsk8Jr/9J4Ia68ZWONUSkgvsUmRWFUKm/+ngXw12mGEFjRYk390gHGLZlvgfd8oJxh559Jy6n6jURu5/um71O0n34c9O8oDeI1GGLXtAx2+6Z/+G5hH+94wT4vYnvp9ebBvk4H4fF+PAea8FiDBHDBBLGoGBEfKgCU3Z5+/3ecfPNJCaYo8PozsuCpRhvAIfeA8NtODFKLljWgtOq9vZ8ueB0OmFZVstVEkrRwWJLWZHyAiEglQLKrBjaVvF03fDhwxVv33/A27fv8f79Ez5cb3j/eNXvn57w+PRkDYkmPlV3tDZ9BmmBHeg33baO7XfDSpiHAHb8dbiZ2Z5I5MF2awDAcNPhr4jIahWG7cX9sDzU+oDYfLJzOAPvEcWGRFQQqxOFyM+PW1+it3U6/4H/+xr7cX8b12uqBcW/Y01Z3bZPtf0XcsR5YtgpS17jJ+K/nP8Ofr0+9hnAJAb0/DphzkyGqEAMsSSygRXaZ6m1M+OZEAILYHgtCzZQEBFbuUiBC1IxUwyjdh5ysp8HfyX6N0dvGAhwnW+7i3e2PWqwWnwy4QTzja3bkEgX9dNPLzLsQ/gWx1LdH5BzN5STVHtDJYB7Azun0dYWtQ5wBSqrGCF5PGg9JMaJ9wdLRyfvaLObZPiwuO+0fpVOFp9QR+8q4CHOtcZ0IeLeelyBSUTJ94OvBc2fQGQCbHS/v8hXoa89Gj/+xCK8i2g8hnpheVmLa4FYVnqNXBgB+gFNiNZFzLooNl1FVEywGS+tiXHTmv67C2qH9ZfNu+s+stOrr9hDFxOZirRH68m+dzKpSNSSVDAgZxV90wGO2itTFhOaKtl6cYwHAafS+h6m4BavuURPjg66c0yELH+bxd9S9Pk414wiEZsSMl8XEZfRdJFtxX0KcvY8bornPZeS+fd37yFxD/2nsadlXGOP4e6W4ki/zF7ZZyBMYlOI/S/i4hHaw9Oog0n7xLh1MHekLmidway+L3VB7VozbzLEp5TvSyE8FfVyixWFOTAmFc3CnV/wr2NFvawjasG946hVBaZqxXYcuB0Vt+NAbYrpclIMDGIcTTgnR3mcbYrpJGyn1j05vjf+r/E7TiVjLQXrklASVFxjKTifTzifTjitKxYTllpywVq0b+28rjhbbr3kjESsgjqsvZeL1Ud9zYvYmvHepeQ9abDa1YCyaaqzzKXlRIP/n8L36RqMWM73QsR/ergFH06MYj1/kmd3l7fcReP3GEV3QX0ZmInnntNrB0/H31VExYrgcUVE/7Ze2Z9m+ZZep4UBKQvaSWJ4oFQbJIgDgozWgKMBtaqgR4Mg27XScJjRJeH902Y1zxqaECkxHtYCFhWkum4V++1mvW5zH5liiWz9Oj6ySvOK/5Wb4d/hMXzJLD4yGdsJY4rBme6X3dnY/vLewmFOtEbCRGNYtGkJ6J6wHpbpe99np7XgfFrxcF5xscdpXXUQd1HdDucNdyju3Ym1L8t8RugMhHsx0RtOIcB250wB3GeYei3o2WNEvRg5ptthEYcgn+VLgPsP9dUCoa75KgD22kjkQf4KMgKhOC07lylBE+Fh3y02DW2PiME0TvN+eO1XJ7+M9zhFxM2Y3LFb1ikKcX+LgZ8JzAe5yJSMf4fQlHhN4bmdGb1XHks5wuTf+1cfJlR6Qqkqdrnk/OL4iz5U/qgVez1wrRW32rA3FZjamw+AM+6bWKhvtTXfcx5fsGG7mVl7okMIX/MsxYUI1LpyCKWjs9ZWu6Uk7A+GCkVZXKiioSnq5Sqy5+/D1ns9hKbuRISNn54n/Rzt37EhLFNuQNP6JPMpY99iWnuW/9tW9UEo7hfi79i/9xXivhVj7wTmBIwRaxzJzaivWX96GA7D/i2XGzZBa/mNO9C03kL2SoCY3/A+Lmj/s3Hs931Tbo59TiH1m7U2HIbtej6bc0I1QdLaG47GqE1jx+CcN0WJA0UVwBkh+v1c54P9BiBo7ZxIAOoxqHv20V73G2LMo7/zjzp+YqEpZgdixQKfjqNuONqB6+2G2/UJRx0AdSTuvjNsEblK693vJEKOj09aMCltWpPP7AAiG6A7crmQErJdcVynJ2iRMZEgAabqaw+7oYQOdIJQhSB51qBEk6Kb2JszR+NZQk7e6JcnpcRR1NJFPdTcQngKH6XY+rPYeJNDe/5EezbFkh6BYTx1ArzDccyXLv5tYaZtSL+WuqkFGK1hGI7LQsIJTAhgfmpQsnRQA2dO4XQ82RMQYEkssoByR/Y1JArqlHqAlwV5OWM53VCeFpt+o2CtTrTasCwnlHLSqd/bDYdNBdfkyuRgxD7npy/on9rx7u3X0Vyik68rtiq4vP4mLucTmAmff/4jfP6jH+HLL7/A1RpPRATn8wUPlzPO6ynUCAOwlY567ABgwFhXxb3W8PT0hPfv3uHxwwccx6GK1qb70duBxAWlLDivqsgrrQIJIFESwLHvuN2U9AHYpGho8yERI+eCZTkh5RXEOo1OGbtaiEo5q/gUObG0R5HHThjG70Gs9bDIDU7rGLC1xBqGB480AhTYs91T0aTyOPaZvYYf5OBCt23oGZv/nu6Cv1EI89O+X2fzbpxDtZ98PTpYEP+7jz3vPqs9m3XNq2qtT/MTzVy9iC7qcrp0cG8qOOYNzC0jp4pGOdSSNfftNmmJUOuB7XbFUjLWdQEv2tT+0g5PnKN5tIkWQ60RK2UlSaesUxxhILU3A2hz+64kMhZUaaZArQIs2rqhokJdNEndtw3bbcN+23DsKvahr6MNaBATHIgmFw9qEmon1L0at50V5LhccHlQsgbnBcQp1O6BqZECqtqswFQzoimHQimkRfCvjWcb6n5DP3b49HYNEC0xaFV/bqIV3TJmykkns6wreFk0SDp27MeujfxNr8cQ+dB1ORqLR7L3bDvp4dvtWcLz8SG432EfP/FTwPZ90WkEkU5OdvsTXVgjKoYDMvq5KAQa42fEINa4gsgKBJ1AGUBtkFTRq4FCjLspqN4g13sDkpJvmJIWP5pRo9rLSqYA4P224doYTy3jKoSnDjy2jmvraAAatNm8W8A+xAe1sSGbIm52walEKJmRU0ZhTSSLkX4d3M6eZKUcE1pTLuCcjGyrhF2d+OXTqswX2X10BXRMt9mCHHgc48IRd/8fAVcIhbiSs5O/YNGrW37xZOBubfuacoBRiawj6TdbJLY+uJvt9iwUUYzqJvbRalViMh0BGhAU+kmsSaLkBJIMlga0jsoDCDL0CL0fKrwBIJOYP9dinApYbjj2EiTb6uJ5vn1CeCGBu8dijur42h9kZS8ID1KVA8dD9ZpkxMiefM8J65hGKAECarOeiyBODUle5ItbYfvaNI1eGoV+NEFiEn0iLcJ3U0O+3XB9esT16arCdABS0qZjJkZrFdv1ilYPoOn6ZAKkK/GotQP1UKEpFZLcQ1SIUrpThtd1QmiHk3ZHTqf3zpJhmcSmxJrpjdREyWIn8T2gSItPtwnwz9alJ8E+ga/WZvmFrXHLHfXvPO6JK2gvNeK+cc7xJp90NTT9J8RRzO2i11956+MvBU5eISNAjlwtsZODc+Q8OvlXc1L36YksF+YBMIE4hKZSV1HQWlUkZIg3TLFm1/w9xDV0IZn9mePrYU90bzo5IyEJ7pqyj+MI3+kEDj9q96aIsV4/Jku6HXhZzZZ6uP3ogHA0y8V1EjERVlco31HbEcR7u+hhA3UZK0biIF9KLlZmMVU3AoMXZkQbafuhr8dml4kJdxO8KMdEomSq9opRaOPMUpZoylttCsu6LCjLguW5SDbIBBBtDYUPRIB45I0aZIDc1BTgD7H4R6/hIOW4UIuKaRih1wRtW7WvDmKxxWIeC4kLaNgaBFmBkNGkg4XQmbVg1RGgH0vXhgMA1Pt4iJI8FI6i2PBSqxb4xQt32iCpDTxzE6v7d58IkAHS2IUTR+MEovHVJxZUI0pJEE5dyEiLJC4caBmuyJ2AX5rA5hQTp+xaTb6VSNeX4GUKB8Di5dFIAIubEetO2KdjDbOq+MOB7XrF9ekJTx9UYOrxwwdcn56w3244th11P9AOba5En17Xgi73Dxqn2/swGfkvKV7IYnsjWTOTC+pJxI6wl1TQXvddXgqWZcGyrDitJyzrCblkE5/6WGhqPZ9xOp2Qi051TtP05CDI+pRlHmtVL5kCxOguZthwz8KQO1FT31d+4h5TJVunqWWk4wiiP9eKdlSk1NCa7cPWQZvZwWoe0WFd8T3u4nMdPXW0ymh+z+f/HLQfHyjWbGsN1ZtMGeBaNV/3GJ9tWhTYYkIjNHMK1o0KTQFHdTKPiiQvfdxDYs0Vejbxy2qNmyYi0KpADEfsjeFTDwFYE2MeJJMXdnhxe7j1cc3ZhfR4TL/+VFGV7tYb7lJssqwi4n2PMMT/ZW98F4NZJmKYmUf4KthgTybc+1wDCYJALBiNYuJ/R5FT+d/dF6HmmKTf+SYYKSsakuM155jb0PZnn4WJAAYSEgQdrROkVxN/RewLtTku6ng/mKI3FSRyAaIObUhcSnmGteunJExNbwDQuspbiYoKNBMAnqe/urjrcYz76uKQtc7DHjxfHevgruh0H1DfratPrsHp+R9//2ni7/zcTxJeXtARQ1Q+mvSiayUEMPEsR/B73TWO3PcN+3ZV0fd9w3a74enpSf3c0yNu1yfs+w31MDGqqs2VmPy754Qu0J0MyxPRqU/HsWPbNtxuVxz7gVZN8IFsmlFWYdJSCspS8PBKB1m8fvMay7qo31pPWBdtjqZk4gBW4wuy21TrAXTNJpoEXgxfGwjLtLZ4iEwEAfe53xbd2x7vRs1NnGDW72Mnzx1jT2s8OuLWitYZvY34OjAFJjBXpETImUJoarYTAkHZWYUqj4ylVuxHwZ4zyr7jKAVHOyaBKhXvld5R0aBaX8O2AX4OGvzwZKc9H8R03VzI9EgHjpqQakOqKvbRupJa3XSqELARvW2QiP+yS5vizZdzPD094XQ6Y1lUOH7bNl1fRHE9AcQ6uCd/aeettAYvf981utC0ZqfDrVKQuolsVlY3EocKqaycsS4ZJSWczgWvXz3gzesHvD4/4HI5Yz2dkFcVGuWcwNm6R5lsguXsY93m2d01nF5FwrpO7rP9bInJwBDhNSIDMz3Htz1F7lsx0coMO0usQ3kERetDTeBNXC4YHKLmUDvTekPnhJI6EmckKsi8Y10ajtZ0Wu/hk+YyrtcbtuPAVltM7M2JseSMKsDR+7R37SxtDxNprQWkpDWtu9DI7URzgya4u5f3fqujNcS+IvI8rd8919eR4xXzenFhX7/eii9JxLIjzlJb4IJU9ajWsCDoJOgso1H7hRwiBoNzQs5AyRUldxwdyAJIq9H8xkb06zJ/ZiXf+JAHjXHIhF3smnsOgxGTKjGtxyWNeFC0gc7jBIGT+fp0zhO+ZHjuLM5kZza+i5jWRLKbtQwaryOa1LrnDwMeCByOh2CGk5QosEmy3vzp/YkASoYne31+xNLke7V13efEY89i2KnWLe5zGwdvltfr1VyQyHOfO2Fu93Eq4Ot2Uaye5KQpTb0NIxcJEXupxx0OAfKJfpZTshK+c16wcMaSK3LeNUdLjosMO6f2CzZdUMWKe08QUa4IETT/DN8+MI2UsjbkpaLN6pwin8SEF79AugcgFV10jXAHpDI6VxVPNnMuCegJOHpDbzeUmsFNa7eEZjmvpbhN+QzCAqmK3VFiI9EbobVWtO2GymziKh2clMQIFnBm5Xa00SBVu5LgEgEpJ5R1RWmH5habrqGjHrjuN/DTB3ROWEDglJHXDEknHHLCLhV73aEydKNWTqmDi5IPe9UYeqxtBqUC6hXUKpJUy6usOZIUf1fhmAxpVUXFGRATNSQjqyeYkJL5zGh2DHvhWJ7/zIieVfEOx/kI2jhDjcCFVAzdbRpYp2fjhiYE4ozbdsP6dMF6esB6eY/LwytcXr8GHh7Ap7P6bs5g9WaK8xNZI6VAWWu6gH0gSnWSbldcI0Gbx47ecMjwU5y0Zuq8NM0vnfDuvBnNRe0tbAaOk1ElHmoPkjVyaK5WOKOwYctFBZhe3GE4uobPPAbrEFuTcMHDsuBhKTinjFNKKKwiZonJJo8bxupN9vrCI3YmxNCVFDGcigwSmQAIAIiJEhGDOYNMcEr94wLmorYslTublpLLi7potfEKIDag6wCkovWKTgmA1rgVq06guiKlbFNSmw0E1XPQQRMZBBV4AnSNDBwl2Xl6vUuQErAuhJKH/3V8NOU0ptcKkNOiYpXrjupTvg0zY/MViTPKklHyCk5L+CBCinMiAlQsK6FLgiABQmhVhTET74oVpYzMC5iyCsNNGJOwtevRhMdA80SNOSiERBISwGXYFmmAmByVKNEXIDRRfFjfXACyOhYncK8Aa12idsHOhCUXdAjObcXeb6iyo2FHlSvAFVW0VspUVSiLs8YCPeFoN3RRjOYlHYovCahqHplCPNNjn2HPteFjYIoAoXdSTLnLNMhmFplS8fPbbcP1dsP1qvzO61WFpo5jD2H0o9axviZ45b7m6A8MH+AfxmL3aOBwbNi+ZWhzX2IXmhp5IdnQCbU5isOR4chjkOCEe3ksazVub/ZlYnTWva21b9ZfipLmXVjUgRMX/wgZYiO0uzl2/MKbRFsjVPLYl6zJ2UXMJHQ8usfAM07q9F1MJHOLeWHvfX/Qs2/98zu+IfMlMZFVw9Y9No5YfWqwIweaZ58jd/+eMWP/jTNq4g6QiZ9DfSm/rFQsjkyEy2nBvimn49gPsLZWAaK8HEoJvSsnTEXORn7PNky0k4CpYdueQPXAQ2H8B9/+Fr792bfw63/x5/Gf/o1fw6/95V/EN3/qhB998bv4/ve/wmc/8x38/M/9Il69uuD9Fx9wNOBnv/Ud/Jmf+hn85t/7Dfy//m//T3z/t7+LhyWB9wPLZcXD5RXeXE747HzCw+UB60lFNcq6Iq8LTqcL8rqCXWiZFsxCUF7H9uFzLhpAyaTC+sjtO0aORKwNnVUUxwZgOOYCwIWF5zUzagVzjcPzQth11VqSxprdhVD1iZ4UDjth9X0fUPTjMHHld92vWcUoPfNlCPXR3E8I2+TcpuBekONBinEys4plE7SpWRNMpfwuBQkdRbTRnOhBm/qWgsu6YMmEh7Xge3/4I7y9bfiff+M38Et//hfQuIH4DT771jctNxD83M//An7hF34f//TL7+I/+Nlv4Zf+/M/jtAC/9su/iO/94Gv889/+Pfzr3/8RpCUVRgej1h1HPdS3vqBDfYE3UZooKLMNsszIll+KYfmhThhrx8QAzD4eR7W42eprhlu5YDrTaCZW6FVzCTbHNNfMBDKWiePRzg8y/6MYYUMnjV+V7006jHQk3A7+Gkbf0I7D+F6ODfgAQ8UnUzZ/HufuvOhkaxWGw/t5cXzGMbB8EplyjN7yUH0dRlhq0b2huMZwZC6YEMmKkO6hWWzKcFzHCQSTOAoGOhp4Svzf7xtAqv6EzsNnRMMnYfAEiRR67ZY4RTzpn3laV/Hp5ntq94MRfspdpGKJiOurflLGeYhoXmH5K6y3Q514U6EeaRC8rFgReIaJfeKYMXmCNStisqEE24dxZWz+iEyvwaNZznJYF9/rojbdbjn8voRYB4DWtC1duubkxdZ7NuGcnBLKknFaF1zOJ5xWBtOhzXoQTeuZkEvCuhSsp1WHMa8LlkVra1FvJ1bxgSVjKRm5ZHQIUkngkvXMTsA3Xj1g+0bDdTvw9LTh+rTjuu94+/4RX339Hl+/fYe379/jaoPqn24bHp/eY9tuQ+TXBxgavuH5sa+pWG2tBzeaQFpv8KXbHRMQMBvuPQ3LAwYWPGPw3XGSnEJIUW+GrvwuVmuzurMKDRvWGrUAEyOI/fFs7YAi8L+D/Z7Vrv3r81hgxKeI+tHH/x71FOe4SH9Z+0zzAP3e8/bIGaZ4GPDrP4mnkEclIy8SjKtDFlfMFnRgSS7bZ9wScoGoITbj4lDZ+v4SIXojKV5jUJz47nVGH2WiWWhqEqly/2i2n/17DNsCKz2rq5/zKJ6ttJW+nHdoYjXN80c34n7BaHoPCpygNrNBvreIbKgX4YCAWwb3rsJDLswhh+5ZAbg1CCvW4FxJaRXSqg576c1iBgmeGEjlbdz3KB8ghciVDuUk7X/qg2dv5GDbv7OdHutjilanfJbu07uw1567DZ8Zr0bDD3uO50GEjEtvvU3ACyuTwVtvZjtDMBhIABbPE8isltYlm2gvdBPg6Dp4XQcguuBUx9E7ageqaI1J+06U8z14twh7BDgi+Rx5sf1EQ0ygZBvabmICpXh/s34tRfmJ3vOcTfzXVrWJDuh6WlJSUX57Xk4aM/uAI+eh+Gu4aC8n5zCk8DG+BqL9MrbX+F0Iq3rcaXEgLNYbhmryaebv7rlcsNB5iJ8BCFG2OIRin8eemPcGjb8mP1fzK8wY+CUQca+AkKyE0Wy9sIx1xF2H0zDrz3vv6CxgF5ey/ctdfWWIOvq995jHBdsF6OSSChKPAYAh+GYv7UgpGWxmg8RoCEB0IjQhHIavK/+TQ4TL//Ob7eIUiDhZOeAsgkzQBzNyKlgYWDPjZHnxuiScloTTqv2tl8sF5/MZ53VVXn1W3od+n3BeV5yW1YZrcdQJsj0nZ+t7NjtAnI2Ta47JubruBIlswLEe7nYGNjDEFV3EOFqpI4UaXlpfRGJvsflAMRsc2hwyrfd5iZjiR+ycyEf6FGO6eGIPOxRcy3lveowYNTno/u6Dg+SDknwwkg5SwjinrmuYe0cm4JQS2rrqcJtaLc/KaIcOTWqF4Fze1iqOZpIboqKLJIS9dXy47ZDeo0e9S8c3Xl2wZAJqw7Yrv6UezfqajGckZPUw7ZMSXbzmb18eD1/jjoiScLd4zCbPtdH4HsCsSKvxkd8v6Bo2G8mxD1wGxnszBrc/M5ATYcmMdclY14LzaVGRqcuqudZSsJSsdTGeztLsu3QVok0MeL0teT3Zz4dHvjJnAGHaPcZ1ATj3Mc5nHk/UP5y2lMZ647fmWT72yTBuS2cIq33u3fZw7MVZIHHa70AIzg3emN8HXWPKI/H9NGJyWH6qXHk/O41LvD6iOaw9nzzXioTCrss9dj8uoH5z198VdQRdLyNbgPKfprhR32pgKMTGkbB1qOtFYs2I3dOUkoo6F328NO5iNZ6BCiYe2I8D21Gxt4qjVRytjTxDNHZwAUlxHwaEvVZs0oW1SvB1s+Fqbn8TqbCpsooUA+7ULR5kE+dF8IVz8dgw2/BM1QVJJiJVWDlt2fRzfLjmnJux5URKQRRr6+xQTNsuCFtuMnNsfX86Zj6va89mbBjgiNrsiCDc8wrdr84HHq+lX9XHOeamueKsSUXTcwPnj1fwQFJjkw67T71bz5Z9JuYQAMvGY+q940gJe0p6b+qhfFuI9u4IwOTjwqyKn5S3QUTgTnDYU6A1sywMwHWHLN9qvvdYfafhxGI+zuPhbnaAlAgc+Zd/yruY0vLYkf/+8XvsJxaa0vvQUauCz0cFetcG9n3ftRHSmhm6CWzgbtEAo+A3n5hFSh41CcI4eIBDBpjeBSF+t23DuUq0JywOSngTjauy5UQopNPMMmtgqXFcVePXCZ06lIrSzYkp8XCx5KuUoklTTlEMc5LFDLBHMQEIkkY4OHduI1exRaQfzDcchwPBuCazVxx/HIY7AOr7q3yfDNm/6NnGCZhnCkq973s8j+82mjuxADjgDnDa0LAkkAAvmvsiVVDeQGEIKCtRgyxwpdQgnLBwQkolprwty4r9tGO9nnBbb9i2G27rhnW94np9wvX6ZE0UG3JNaEaOUx4Wvbic6v37dxpYW/N24oT1/Ao5Z4gIro9P+OLzz/H555/j/bt3OI4DgE5YvVzOuNi0ZHe467qG4MDtplOg2RL+HcCHDx/w9ddf4/HxUZ1RdoXrUdwt5rCJoSJyopMJeq/YbxXbrs0qKixlDaHEyJRBKSvJKNuEBmYVlUouKmJEKyvgqtcxlSs/ROCCHRFITeAeSbdpb/Y7/SPcu4opUPLtM2+GKFb4StVkPALHsbMw1s0EUDtQMW26u/03A3Hzc+xExn6V53/5xxyzIZz/diLYQuDTbgR6f9AJJAxXLfSkHZw0UUsZKSvYmVtDcYVNa4xZ2oJj33VaLScDJju6kTxrPYxYnzETQ17CkSwAYytERLN4IkByNPEkE+IQkfjc7mx18l4FdZ0419mbK7QI3UiA3qKZ/Nh2bLcrrk9XbNuOVvdYw2Sia96gnl0UJ+lUytoF19thU+iBlFeczw+4XB6wrGdQymMVEIX/gdlfaQ1VfKKCioxka8qFB7NGfqrHgXpsaFUnsiSiofIslsnbNWjTJIdUEpZlRSkLiDNq69i2Hce2o1Wb5FfbmMSA2dNgxAd47meer2r/DcVP74oj8Zz79f/8t5867nysvwp5kVvf198pmpIjEKaIbdzehDmywI6EjeSsQD5J1cg/VRBXwITeBAY6ATG9haWjCaGxTvlLBga7PXthuRQA4KkJnmrH41Hx4WA8VsK1A7sVPhqJ9cBbYOvTbEJwysXQ2KbJUijn6mRZfeRkILjHYCaMp01c/nUA2iE0ZURc9zujIGJAk3gGq0l8gA54tkDvIqsBLYwJg97cazGsPU/iZ65qpdcllpH7nxnEDsItxYLVdreRKAFi0zNDnRGdu5FaXFF3ND0trUFKAUNny+0ApDeUOhpUHaxujfTa9IresoGnRrQQI8AfO479pk391VTdiaw4wOCsxG2fUO+NLsQNTv/z2OM5SOAg3wDREYI7xZqwvXCsjS8c5IK71+g9rmE0nYkTuM0e8b1A1UsrcAG2amgUZL35D1CC3L5tePvlV3j88B51v6EdhwrlGoDHBLP5u6Vh3tCeAWnY9y3IR8exo5oCs8eAPCF8Uyh0VxMKcCnS1SE2pY1jHT6FzYFybQTh8XdE4aMiX8JszSXuq4r4mB0mLzrTRBC4v36+LuN1cJ9/DprmiA59v8KahLToZT+XZ+fpwD80oU/WyKtDNXrsb2IGi4LZ7L7RX2aKfQeAMXw9E4O7iRdOICos5+rQRN9cvq17Pc3emzZSQs9JhSX5Wdw2i4khhHxm4YH5+5m8QVVFmOJOybhXzGMK6ceEj5dxkOcPBqRrw6vZjq7CAEdTwHDfNuyH7pnaDnuFUXDU/arXHNINKDTSTUqxznXaeA9RHCJSgTDxZimyhj3GTML1qesu1FcsnnRhqXVZkIwweSoqMrWsq4lQFZSsjdsuxAca2ZAKaDhxxH21AfV2pVTYQoVVh1BFg8hUXOofP1pMCKtGvmiofYhNBfECw353YTRWwVMSUsKiaBNRkBOMnNb8GgK6CQT6MybdM0zo4Emd3Z7bO/pxAL2BSoICfknBUvd33qRpho8jxuBBpuxiNQoBUYeSJUUJv7YoiFQANluTK015pguOiRjBpZm8sk/4tQZOdmInEEHhAGr1HtmSfFmHXTu3a9LdJ0j4OCcv5KQ2qO4btusT3r9/i6+//gpvv/4aHz58wNPjE27XG/bbTYV9N/VbKjRVgd7QSSDMaJbbEDRfc/E3L0p5g3QiAVOHCzMN8VmCag8TjEIXceiynnC6XHA5n3F2EallxbqsyMui+3NRMal1XbGeTirUu6woyxLTD0DzZCZdndqQKEpiYboTdWdSoRyg6Xm2PuIcu9yReRnI7NiF74+Pp4uZPyCLIVNDataYUu1zc0LbVejxwBE2PYrUEz7jU/taF3BXAlUSoBOjEStR2mxFbc2KMxPADS2IUe+oTcC1xxRszW0zMnlOofhRh+aecjQw77jmHPhtWYpiXilpvmt2DSI4urXTu+2Ka6LrprWOSg3MVf8mE0pO9wnlizk8f7V/mbid5wSKSycM8rt7v0ECcizNF9PzfFv/6c8ZOfPzn49TGv41CpAjeY5z9iLv3evEZ1KhDdbNETb+uZmLmCTe9/66RG41PXf+fo5RJP43vgkMMFJEu7bs01PvBWnUFwz8z+MDToorSWL0ltBd2IM/vaZiQIZMU9ZlJmnMxd4h2NvFm82nfWlCU232a35Jpz09k4d/0uNTz38uAvFRreN/Y0fr2tgkn3CygiFo5vcp1owALsCrQlM33K6P2K5X7NsVt5uJKT5pTeN2u2Lfbir8Wyt6PdBri5Xsxcbk4pUev4vGWrWayNSmDZvt0ObMbCSpZVlxOp2wrmcsq4olvnr1Ct/4xmd4/eY1iv3Mi/qcUnxusYk7EeNZUdM3JcFyfFYBw2FPMewKWb2oE5g/JmjMIiHkBKMgWI1FJJ1N9ErJHGGx5hxPVDxHhT4JtQLcCT1EaJ7HbnptayOkxkHk80mJXaYYPVccR1WhFhPS2euB2krsM48jWzPBjUNsqpHhf1YDdMFHHQBRYhiCN/AKVKThsPh7TzvSvoNTA6cOruovww4FwV/fQ/MJmO3ogE1UfWn7cN/38Pew6yKWAx3HgR4YUAocyYXEnPwmIih5DMGQ6XPOtm3+7CEECyPtigl4dMGSGOel4LIsOJ9WLOuC5ZxxfnXB+eGkTSanBWUtKtRRrMZgmCXl5CFZvH80EoohY7GXVEiGS9ZppeJ44/+PvX9rsmXLzsOwb4w5M3OtVfucvqIBNMELRBIkJdIUybAoKoIOMyQxHKG/4dCf8f+w3xwOR+jBduiBlGjLsiXbtCkJJA2KAC8gLt1n712XtTLnHMMP4zLnqr1P9wEIoIsRzu46tatqXXJlzjku3/jGNwiqBUg749hE0I/d7pDELvJ7T5GIJOAAqIm3GM7RIMr5WjGwghbKeuJxNGg1Mc5aVtSlYVlMlPzoRqpZm+B0PuFyOePl+oLryw3P1yte9gN7M+yt1AXXo6GJgJvnb7MtVcCZNw7BEMhjlup2rotYDi4tCUjzEdjJ7O8jrzzawDLmZs7XGMfcOCpig3VEBLXYviRiHIfVf8gFcZgrVOD27J4I/NbCRYIaJsc1hz0UPjzGBlo34mZMog9BvphKDnYSD7koeg2BgRDGw4STObbmcUnm4YqBKc3CRvlc/3l6jPhrzsKB86eKY+xrj+/9uZbLRAg1k3Gs6z7I/fAaovgEXXXiu30Ov8cKrwHYOzGPx1LWHDSbFgeZ3X7uXQA9QIXt/XyoWbxH64qiIURc/JqJiwXAc1QGfAcFtqku5tBkYN5wcUNR8fqo4+/MKcKz79b4oo7ZhLg2iFCkg7rXt8jwzKUCvXRI7Xci5ssSwqrBC9JcMzbtOV7bRabc7obYFPnnMqJhSf91X4ubUjAPLGi2I2/gUM8twc3FJQugHUUtv1cGOgOdFZ0MVz70wKoLSItfGwCwGCgSYzk6pHQIFRTHxGw4gGMddEDbAfQFkAL1AUogsZpciTUi2B3vhwJaPUesPiBsqeDuIkzacbtdATaBpLMKlu1sOXUpJihw3EBHherhr+84qBhhtC42CTLWZOIsDIAqbPCOiVBVFBt2VF2cioy4Lmqr3fYogcnIyEUtRrSYSryZdOQx8wAME+OxiaMmVocplrU1ZPwyoK6c2Jvhb9VjMa+/q6LtV1uCXWxQW2vg1lB6A912lFqB5QQsK0ykZuD/LiUEeHxnVUVCF8LRkILfUEUnExTocLyRGRVWay2wOjLBSNyeIg57E3y9yESjjBECzo6LEcd2Uh9KZ42CJApqMmz7Gzp678PeqGF9gDoBlHBaFpzXFeel4lQZKxVvOAEWJm+icps12WfLY6y5hR0LTIgClORw4+DAYzUjksuEMdayoJYFRBXkQlOlLi6g7oOlFBBYw4TEWPMYQERWk7BYY7d8BsX4Vbyg0ILeFL0xVBmtA6pBZrcmHqhAIGAXYlIlEKxWsK4rlq2Cqt5pyHwOB7gjCcNqRVoUtQqWfpow/551WC6MpXpTG1dwWRACU/b6o16lHpcWKlCtgBbIxiCqaP1msSmRX7eBhY94D+Z/XdxTdBDfzXHbjWUXsiJtoLKhoGRzS2UA2sG9g7iY0B0A7dFMqCAsKJ63LpWximIVwmlhiDZ0Fix1wXnZIHSg0w1CJ3A/cOsH9nYD1OKpshCIFF0YeiikKVRvf2j75fdzdI8HVQVgdb80rQvQ4Hek0JRfbLV6r+gYytG7iWF3Fz1vR3NR7BteXl7w8vKC6/WKq39vnvPOImZZI80Y35vXVVJEMc5wTnEJE1boPKoQORi1dsovzwLMrgi5vwycrQMukojevI49COQUFsLXehcFgyHFOENpo+McXQDDRAJdPER9QIZPPiaQQ7Te0Bji/+RDV16pbnaYyGNXMV6OAkOE0FZz7hOJk4kTyisIBA5M9/YgbFQ8ynzPeF7UNfJnvxYxoTleO+dPzdhtgtkR897dxMSVNPOMgIftPD0CB+BxJwjKIRj0tuLF07aBRLC/POPl8aNhHGT15Opiy9KaiYx3AaiibMa9PV/O6CpeG1YUaih1x3lT/If/wV/Bv/eX/21Qe8YPf+4Bf+IXL/jBt1c8XFZ8cfkT+P63v8Dz0wtO2zs8fnzB8/XAn/3zfx7vHt7hn/zqP8Tf+T/9H/Hhd34Lf/qXfgE/951v41tfPOByOWE7LbicNrw7nXC5XKyutSyoy2K1r3UD1epiM8X92rjqVhP1pmX2XMZzvQhT5vw9nkMeGJMrTycu6Fwv88eE5H3RWMWJ3fvrjoHRzhub6qs0ve5r/sK6rneren7NONTzzbtHBQ7qvsqE0QF4k7CnZM47oXzdyJMZjp1OfjnF9eIcimE5lmIJUAjLaQFXQlkIXAW8KEoFtvOKf/GvfhtP73+E3/z1X8cv/4Vfwa/92m/gW9/7efyZP/tnse8veHkCzufv4N2X73B7+Yhvf+uCP/aDL7HwD/Hlwwm/81v/Er/xG8+47YR1uQAAzucLVAXP15dvvgH+CI5YD+x2IPgVMcCSmQGJPEKhs/l7FfpqYI4ITlvU1WbR5Pg54qWBhQBTjDVedWAsnhfM8RapWi44iR5Z3jBjHzHcoGMeDNZcqLH1NsVRDKBmLRCgaVCn44YUsiLT/os9CPYcP/ZbiOlz8h7sNUy2P66p7TF2wz04TV65Sh9LgRWQ1b+Qw6BHvk/uyz7NTKL2OPTC4nfmSzQNQ+xv21uTvpgalgPnB4Sv0fCFHJ/B/mCfi9I2DD9IoFm1zHlk9vipKVmn+AYjKLa4IoQsBdAG1QOiDXhlh97C8XU1hc9jtR4HpxAZ7uz0yMc+7wtieAQcC4zBHlwivvH6FMUuIedgN6CbgPOC6J1RANazUgthXSu204rzecVlLSaIRep1N0JZGJsPFDufjOexbYuLTLGvFVtztfqQitWwMiuTC1QOoHifTC04bSveXc44vlAcTdAacN0bPj694KsPH/HVVx/w+PyMx+dnfHz8iB+//wofHx+x7zukd+zXmw/1ExzS0TtyYN48IEbEhKYsj3TRbnKxa1UTuIDhI8TG50MIQkYN/tVtJsD5Kl4vVPPT4qClQEC+vk233noZKuy1xDlh4nYVkw+cv881wFwHQOI/n6/xEIjuT/i1X8+ffY/H78zWv619ZqE3pT3Eq9gcuZtyV/m+Gj9/8olU75/qj6L5qf44dujOGfZ5Hwqx95YwKlNyGvMLoz9y5jcTMDUz254pTFiIUCnCfU3h/Tgn84sAIYRWxrWJj+FexvlUQOBtBDLSZYj7pd+fk7KwPOGHKRv0o1emd7M5wWVUWB9RK4yDCRWKSoqdgF0FrYvxnlo3bnqvxgkhX4OiKKpY3MewNyxnRhY3IzEQgEr09lVAxzAoKRiCIJ4/z59Tw8fofLVGTpU5Wqy3XF2ZsI3rk96V7tdQnm/8QBmviuesko97O8eRvnicGgMuMhX/9hhDCF3Yai+qQ2BKgb0L9i44umLvJkreJMQByAeyk+MRo1Ffp0UePKLwaoDbtom3W5lQK2NdCralYlsWEzhcTKBhWaPH2cQOq4urZr0dEVs5BuKCizWF37w+Pu2FHISbPFXHUqNXOoR1/PEh9DStrFwXISAaAgHJd5ruQNRWgVd8JUQ8jRHDTeYsQ2ogRbIwPT7rk/m3eO7rTM+xkGnvZJanOk4XXnaPI3Na5yfDuMvWsmmS0sUFlExwDiisYLnfSAPq0Om8+/j8MgTJ42uc9ds7rNxHznct9pkLUJRQhMCdwOhoYHSqUDC6kg/jaLkv4jPbUOLgbwhYOiqAlQlbIWylYAuhm8pWG9gWnLYF55OJ3pzOK949POB8OuO0baheA49BOpUZ27piW1b7m68rww5LirIRrL5HYlgHqEA9flJflDEcFv67vI8AbJ3Z48xPOkeIpvoqMO+kcV2B5EcEdzzWzLSI7vw8VCexrsAvPF+RaTidyB3/MOtLZPknhf8J4ajcJ1OMQhhiOaaAk74JLmIUXP+sVXmfsnZBgYlN4XK2PI0YKDfcnht2ErvOEDAp9gYfVNB94JL1U43e1R304QkgiyGv1x0PZxMjk6Zu261mr84zYtg9EO+PRnT2WEL+5o64rKpwAXBOBzPnXHnEGtF7I0au52DUeM39a2LBgCs1m4A63D+x8/ydhxYiiOtSTGzKv07rgnV1YcTqvdxTzEludxM7UPO/TIObEsLeFOf6OufMf4ycYub7vHrU3fWIsDA7QelVPPbJU4bTsRUSH0WhifMwTGVpxOSGLYz6xsh3KE9EFMZLgSHcNMXE6cUp7i8jBm4GJwmkKAiOcJ6mX5YRqxFFDuV+L4Y1On8jhoXNWboGIkWG2eRL0uB/j5jRfTlFPdz66ETNB2iUQYjQmbAUy7lP25Z9nG/lsL6h0SMVQ31bt6/ID+yx035UmXLp0aNQa83ercX/vYbQFAGA91Yx0BjoTOjcoFIg0lE4BENN9Kw43mkc4ILFa/zhT2xA7MjdKsXAzflL71xHxl5kOhOihiuQWp2Ky7x2p/3mq3Wq9tyLgM6KUJnH2p5gF2Sdn6+gSXDe402Kzh3rJZPpPL7W7oWP9M8W+U0I6rP3Xob9ZybTUamjzwQi2GMgExQ7w2r03fC6rsNvGk/IxKaUMXBZF5FSVgibzbT+AeNO5obPj+D7KClxQxDSky3EBR1iYI6bIHJA27uBeeh0r3/S8Y2Fptpx3AF4IIWWks6dwr5FU7qrexPBiXCUNyDMazzJ7tV9I3AE6AAsyIjfTZfMnLZNaCEHW8kLreDiaug+laywNV0yY2EDJorazSNt6G26gcVIXEYUH4nXsswO7mu+aBK8mgoAwzBPG+VrjsDpaX68G3N6/VSKq3FvUG3vBSimw2lO7zFew91dOtYR6BGstq13zxG8NgDTyeQGnn+XJfUEqhjpZi0SufvweZ5iTUQFnoAyjEBVGMu64thvZmDXDbfbhu12xbouphbrpIa9VvRW0I+C4zhwNBNh+Bqs+2d2HLsZGe0d7WgopxWn8wWlLjiOho+PT3j//j0eHx9xHAeYGdu2YV1XPDw8pMJukDprrWjNEq3jOEAw8n2Xjuv1ivfv3+PHP/4xDifuL9Wvm9/bpYRKoomahGI/wYjVbd+x3w4cRzNhCwKIF1Axw8o5mW810joX0CSkY9P6KgzJK5EGYjSVfW6fWGA72v/J9n4mUrPT8sf54g2/BKIJb/W95a9jf9PIiPy75OOsmKVmxDXWrI7znhze3RHObXrfAXMile7HcycDPh7mpxGvPS/gz/+boBjTkqfHRABLVjB3lQFLkFiBao5EaseyBIGnOxm/ZaJcvFgi8OJl29HaDb0Fke5tBXoxTbcwMiCW3iHdpzgWdqDbi1oiKSwlvaMTABG0Y0ehCinWYF/qmOKgYhPl+37D7kJs1+cXPD89oR3WfGF1WLNPlas1bG2rN3edjIRBBU/PN/T+iNYUgDUwny8XnM5ncLWpJ+L7ktkmeRGTCWA5oaq1DlA0kVkgWtzeWmBjfru3Hb0dkH5Y4xaVDC6z+cXvpzRT8DTi+GqT2qsB2MexY7/d0PYGtFCgdpGpjH08AQUnKPmZVTodhLt9pfM/Py0izwBkbp871dyfdsxp3+yMaTSvhN+iMCycdmv+jOKAlmXTkT0QqIpNRa8V3NkaC8QnZWp3xW4xvSO2vcxkEzHXpWJbVkCRk2re0rEr4aUrPuwdj03xLAUH85gyH2knMSjEn3xqXCRR2Txe2KYuVHbFeJ+aEBNR2CfCFvtO8VXYvhxEG1OxIyGZ7isok+FM50MDym+dgRJj4dmt9jvdR3OMxbQCimmDLjilCNGpIPPG352ogCiT0TiPjNvIgQdvcEGexn0kpp7CqwNz8elcXKqyEYbZic7WwNYNAPV3VhEczYCekyiCXa5iYoJxhhG7JcSQTbI7FNYIA5iNsKvjjUm1gHsxEYF2WDMLCEQlgfFPgZ34eGMqaYiGlRITgTmbo0s1UliKtTlh1EDN7gX0SKLm+46pmcUJj9LvH/BGjrUs3gAWxVdbRr117Lcdz4+P+N3f+R08f/wIIkUtQK3FpjGcN6yriXOFiBREUEuBnBYAJlTV2uHNzy4e4yT9QiZwFk1YNhlrNB+ZOJvts2jCGk3v0dQxpsuKF6aj2ASM8IuBFBMd8DrG+va80O6/Nzs5aB2iGXYKnif69UuA7lVSNNeQ43u+J8a/o0FDk2A0TcxFZrmeV/pkQQZMDGvkaJpJvAOlnofGlNm4Ppb+VxRe7FoS+evEpKUADoAoaDEZ18mES8xfhYjU/fmS78F7QQPVIFSWu+tDQtnnoNX3K7OJ3EWBzdcBR5ysGKQfIMWmIrZI8twbPJJgIzZ1Kq5dFyPn7fuOfb9hPyyGsqYPAG6viZD7VMQI55VNHAllFHCB7HXw5/okICIU2IYo1XCJWhcv3IaKvPvLGgLBK9Z1wbauOG1nbNvmOEbFaTHRm3UzsZu1rp43OvExq652XwuPSdRZKE7yLgC/Nt1tujXZmnhUTr8LgmOfRKaChNEtxu7dwdduzcbHseN27EZ+hDf1wygjTJwtlAyGUIGkDzA/ILVApEYmaF5IBNLZiJaF0bsLnsm0FzHilGw4JaB7UBDNEJETgeA+CD7R3qLOgZlZ80VdbLpJKQVVTIgxguKcpE4ElYi5AaFh54JMDCpAofR/ITiU6xUxycwOwTzN+405Mj/M5fp1S6zB7nNNETVrqDr2HU8fH/Hx/Xu8//GP8eHDezw9PuF2vZrg237g2E0YsR0HpNn0N3iDibBPcCDcxTPMlJNOQlCNaIpHPP4PciCRkSeIFahLTis6nS949/AOF8dlLpcL1nXzL5tmaWR7n265rqhLNXHUUkYuFLbGfZ8QwN19YgHY2kiy0ZaoWP4egSs64LYrpr1EcTgJd4gC74RVsuWzNpl+2ILId4QF0tWmbLmNalzAe5vuJ91dt4i/osmsdZvSBTG/wL72BTR8U9gKlVzPIjCxNyGQNrAIWMTErgqwshESNIoNXAAKseyO20EotxvKUuweHA1gwlZtwmg0RIc9AjnGIYIOwMiRlk52mLhXax1EDXBB4fIG99g9GXOa5nNXgHUxANt5056kaY3owKTusKXhv+8/fuDBilGUnv083z8vq7P3r/E6Nghc3FeWL8+YGDew5tf2bopuptfVV3+136WwRLxRPnY0iX32ICfmOV5H+VwMAhJbE39UcpmAGJqRZ1R71kJG5Du/JznZ3f6mwWBI3zWRBUPk1QtXpJJNq/k4iWbr++msc8z2Vv3HWzjEsZhc71MeG7ntTGzmwNY8zujS0fqBfb+ZoNTLE24vz7jdXvD8HAJTNxz7brlZt8EUSezBvF9L5jhEBIgJQB37gdvLi73ui/lLFeR0pNPphPP54vWES/qod+8e8O7hAZfz2cT5liWnXcY+ETUxvhmtYxBkIjjbNKrwsZxbbtS5HIdQADzVBXMv+etPAsFBGPkke6BBMtN8rSBI3SOOgQvVWsACNFKACjTRixlnM3vTCWgdRpwBPD6zJnwTRwixL8Ocl8JYejXsozvZ4DBxqKM1Ny8eqaphhSOP84ldpXpsv6IuFjfAY5KIvffjSN/LpaPUjnKYkA6oOzY8bETErRxkMyIXgvjUfv6sD1XF7XaDqmHaIQwahw248JzN440U7311xCCWABuIZuLM3bsmUbE4zl6L1ZO3Qnh3OeHdabPprsuCy8MJ5bJgu2w4nU/Y1hCZqigru8iUN3AxGU6p93k5AJcUxZjo6yucyfGMbCEbeZifrgdLChSAIHf7CMDMQ5j8+XgJu7aGCrKayBpY0bvVOIL0v3CFboIuhNaB1g+sreNoh9cfDlxvO462u1DNGZf9hNttx/N1x8ttx21veL4duLWO5XaAyhUdVwCGS0GMCJKEJo24kSGHNZ+wFPCymOCkwvI5H2cd9inrGG7rgPi9xbPAq7gVA6cADM+4FyUbPtHE5YqLAcX6gue9JhBBsAl18T62/hSvG1x+1kc0fCgZkSgHPnDH7tQcqItIQ73eXFALO+nW8gRmBtWB8bOTZrtfc1ZyYpXXzjJ++TTmsH3h+TgiPwfmxqF7Aet+t+dfb/+BN7Hb2MCI/f5S5IWO01Oi3gCFT4DFegZOBuzua4mzR7CAbF1Ch8CfDhufmDaQvqRDTNBdACpG+iNaEoeZa8bsXQ0KsyeFnDzoInPiTS4NioYg+VouHDURFYJ2w7s7xBtb2J4TIuDRMONi4DLXxiPGJYBrwWkVaF2gh2BZFKV21FqgKgO3iiYINgphKVZ/5hJCjWy+sxBMi33cl6hNZi3EY66w/ZqhBeXf3tJha5NAnQB0CBvJWXhqJhX1pqkhltilo2Yux8O29Z7YZExEZVLHnuxLtTmO2aDSAF1APuQBudY9V5COl9sVTVbfy9XwkokXJaLA3tFFcbu+OP5nRMrLQ8fpfAEvBeuy4nw6g0Rx4ArZbZgRxDBuBrBwAReFagxK0fRjJDZ5OsTAx0AEjzu5QKhbXbtUdEfqWMeQQXR1AXxfs6rQZvsuBjgAgHQxYZPrzZuxB/k2bI4/EvSCnAJvHJfD4giu4LoY9LDvKFwgdUFvNszpdmPwI0GPBq4L2tpRliMFDSyBYBdMiPViPs9q84riAtohBNdVIWSNsWAaEy9DKAu+b5YN8PUkkTu4bRrCLPblkl9DND/wOSiA4u+tONot4wHgF//Q9szv97A6kqKowMcMYSETCN1qwVp9iBERKikqEVZmrKVYzB65SlhUvcfp4x7lzxZO3uMgmo9IG8XMKCHCyNXWjQ9dMn+jjt1FA3DgT1aLJr7nVYr2yW8SCtcRC2mEeNZsyGUBY4GPrwCzDQYkqrYniS3321YsawUv6vDfvQDnT8QEOnljyj0WEeIGcywWsbz5zfuceQS0ESvYNag1MM+K1ld0F1uebQO65GtZzcrsm53yGC5AfmMoxXYsvilMgNogMCLxfLoD1AFiq0eooahdG1Sb46sWB1qNsWIpG7a14JADt+MAyYFCFWs5YVtWNF3QcYPoDcJOoGevt7MCtKJIQ5EGpt/TjNg/9KPl8DyPKzw2iBoGAMOUKRrRo7GJHBMsAFUbINLFv0yk+Th27PuB237D9WbiUrfbzX7vg5Aizpu2mG8yf3nVFCpSNtuq8b9YYxr7loyrSFFXMzw0GqcLRTxsQj8W0wGiNlSv9w7tzokMoam2g6TDVosmZmcN095wowRbl8ZFMxzQmtGInUeUWajbF0SMqpnvZWwcmKF/DntDC1BNXNgaiZjtPQvYhaZGrG21Nm9IJmt4DYEuZ7GYMEAM8hx34f5Quftt4qEzJ8sxDmYGeWFGVNC1g6VnR1EyBGh8B0XUEu8fNzMy4/hdrBG3kfn3qC+wDaXQmcP8No6lMPbrM27XK9qxY10c51AfegnFcdzQm91PXgjLsmI5nRDNVetSjOcnV3z33YK/9Tf+Cv7m//TP4+O/+jX05x9jP38PTz96xO+edujxAxwq+NH7R3z1/iOW5Ybvf+/n8Et/8hcBLnj/W/8Kf/c//z/gH/2Dv48ffPmAP/Zz38d3v/0tXC5nbJcTTg9nnB8u2BwrDKEe4oJ12yxecqyeSwHaEG9K3zhhi4DnzBRC/TTWAOD8E3gTbreYclkQC6z7ug8uUOCHJhZIn65a1VyPXDj9ctg1MINK9ddyPMCfWpb1Tsh04PfTEfnK1/lOBYgEoG6DKTOmuMeoZt87c6ZSYEOnc2PybWANXk06ujY7V1bUreLMF3yhDT/oPwBIADnw5Xe+h1/8ue/hH/73/xD/m//tf4b/4v/83+J/+Z/+p/iL/85fxO16xVK+jefnHf/4134Vvb+gKHA8/i5+4x//A3zviwV/8he/i3/8G7+Fjobj6HjBDtdMflMHU80eRTORY3BX1AUBs6FWkxw5gR2UuXyTEPdyW+5C0TbAqGLU3yI/NXsYUNBdTKWGCFgMo2PtIuyhW0VF1p3EgAMA97FXYCMt+Rb2XTy/Nz4xZY4+aoPT8BkeP2fyTeTAJE18hGF9s2nSRaaUQkDBBaly2AxcZ8nxIIWJLsb1YfYHGK+SwsmrX5fIZWBxMxxfMhc5fKI9lu7gAUqMB+Eu8jpPtzjh0hH439cezGfzJ3vQXnbyebHuIu9Wx3DyvOOCDG7K+D0ScKKo67nIlCV9jp2+wa7mqC9+juM516l77xZXRR3LFlIKuYz9MzgakY8EZy7W/x03j4LLc79eFCbJIGIDf1kV1fNprhW1WPxIpYJWoKyEdas4nVacT4yiYvlj5eRarduKdTG8pC5svWdwTBs2FHVZVqzLaj6SbD1wKb5HAJDciy2WgtNSoFQgShBhfO87gpdjx8vTCz4+v+Dj4yO++vABP/rRj/Djr77Ch8ePeHl+Rrtd0Q4fjtisHyoaXqMOFUI3hrc220tSnW/EqGqDaal3Fy91f+MK1bbljEemcFsUcavvq+DWmrCd1eSK9+2JdmjmZhMX2P135J9xr1+vo9e9hJ/zsF/HL55rtHc9jxh4ZaEh1EGJ+X+NH/+ZHcO2eTY9/Tdczqvr5kZvro/S+KO/lt7VjpI1NL1XPg7BEx81hahJF7JGZSakeFSI1cRjC9H0Ws7XimtP9vPiQupzI/3wPLHe9JW9mOIjYPQWajwObtPdr7KnDGVaE/l+7vOmL878NvytOHYeNX5BLw2tEQ4yoamFgKsKuDOuvblorPljbd1zIo+NQahqPqagohFhkRg0NvbK6LsM3NaGiWaO6LiQaHA/XNhjqqNI2gEdwvOZA1pdXHNh3WV5vm6iNj9dz/hbLCIF5t4K+5Xnlxj1z7e2xa5tSHjm+lek2BmrD1EUhXSDotr0tStwiA102rtiFxObOgToGCJTGuspcEGNOML3a4ELfMjAHjNGsB1BbLyEda3Y1gWndcW2LNhqcZFD60Hb1gWLD2Gs2TNTHNv1zwoP9UAoakLV1P3Du7hI2OkYcpYDjOcvFIRYauSC4yuqER4vOaCdeAPFozB45YqBdQpe6WKPtS6x5nV8HvMtiS4gANNY9+nX/HxmuzgW5hRrpyCtZBymGetPz/N4jhznpez9ipg1elWspiWR42oM63R8Cj74naZuWh1cmbAb8fpQteEHJfoHcI9Xv5nDTsp664uJTMH9gzAWLRDugBKEKjoVCIAmNqhUva7K8J5/QdYOF7/nCym2SnhYF1y2BeelYi2EhQmXkw0PezhvKTR1vpzx7vKA02nDsqwpjEikLsphQ+XW4oNI4u86YYfFMQ4QRAlAhbIJTUUeBeDOsc77I29W+CwMQZ0cLOiJjUQOQOTDNkZOMOsUzK97R0lwJxJDZ4CRdyqiNiGA9zZAJoGMzJPdXPn+iPWu0vM9FWPNmm6wv47XCmItezE9lVjyUnht+tgPiMcS786n5MB1Yjzrjp0a+n5ACwFqWLr0jkNN5KOwDb9o0tGbvX7ZD9Snq/esCPb9hPOpmoZEB+CiN+JxPXsvRfcBTiBgoZp25a0dmvZ3/u6RFwGQV6ftCybjv/DsLkJNxfL0jP3SP5px1olXAZg0VWUyDlWtLjRlAlPrUrCuFcvCWKvVfaxMSgg8HZM/GFvH7GHYRtCop4bdVc9d5g+XfJ8pF/1cvmAv87mbyXftw587PkUMRsup4QeBHcCA6nhcfLboa0UITVHu34jJQhgbft2j7qDp5zywJYkr55DCfeyf0M0rvOOuz0UjNoTZAjhOQzb6yQZcYoIj1Aa+KIHjnCfbElmIkHNy2OosrJYvCBdUJSgblmBzpyg5eOdtu+NivYVj7ueQEAry30ffnAZehdkm436AihpraeFi3MJarbdzqfZv5ygC6gOLCY0JvRRIrVbblJ7DlGxvOj5eq/VZLzG8MXIy95shMOW/sz0tec+MdzcJFZHfcsdpWBki1n9jPZGD/3+XVdLwgbY9KdyZ+QlC4rT2+GmYYfY5Rq+Lm6sp7SAPYhkAkWsphBnQ+97gGJodOY/5HMoXpexBnnIbaOa5piG05H0SESwtBpsriAU3beaW1ft2jEgGwzi7l7/I52w754cVUhSqPPqARcAsoIYpLvGvbmtL++Tr0x+FsBVlHqkwnDbrF/HYfN43c2TfuFp9HIffcGv0Yqa7TYM0xJqLWP2OKvS+uT+PKVGIwDeNf3x4HQ/Nf9xb7jk1VRlBF4VQRjEyRyiNst/cmBEn3WkzHMQea9as1RZHEO1rrSg1GpHumy1fC01lw0hsFHfINBvozzigzzqzr3FUn/79pz3wc+93/75zbDu/qt2jeIsIdWn6uv99FMMT6nVFvnBm0aoHQt4v+F/G78yZ2sahJNUU7pBiE4EjIY77ZA0QNQuUzKbg3HbGjaxYIWprOZzp2znIBFy6gMuKdT2jLhtEbYrz09MTnp6esO87iCgnwG2nDZfLA87nczYxEpEBx07EAOxeHO3A9XrFhw8f8P79ezw/PaEQY1vMWUWxCgLUUN6dFXm5GCHhaNaksrfhGL3pnatPqKsbiCtKXUF1MTXiYmJTRjp2IjuFJuK0ntyIq96vS+B+vw8bYcV1QngeTa+i/jPp+HcGbBrrVUewSZ4MpWdyK62EEASh+4jJj6TlfTaIvCtlE+Vny967O8BiOl4lfDqJtH3tg+7ea7pmeQ3iNIrfWNuphGrEVgWkmBDO0hcTY5IVS2u256rZUpsgDXNQKkak3Hf0WqG1guvbCvSsKdYVPNWhLENujHSpTuxR2GfqCu0M6Qd6O7zgL5C+g7sXNkWAwilAJK2j7weO2w03n7j38vyC68uLCatAnWAYfsCI1cu64HQ+43w5Y1s3iBBut4YC30+FsZ3OOG0n1FKhsIKdRPHWl6qQJf1dTBSs945ajFi41BW1rpYsSwc58C2toR871EWmSjQeBTChQ7ijO2AOMoLttqxY64KiQG+HNcHtN/S9mxBvBE8OMljOEvEAcO9DXh2WLU37D+Oxd8Vb+L6Nf+DT/fR7QtHEgjvwZIOmfZNfYXd4TPv0hD3MC1OIeDg+QmqYaTlMCKEW1FagYiRyE/tqIO1gFyjQwiA19e2+VhCdsG4mAPi5Bqqf9dFqwdEEV+14FuAKQi8LhBTSGlKGmAuIqhMQ6ydxVSjEL6Ua4beyB+s1xaYKuzJsxBGeQGR0DSTgYLlH2N2hqpz2HxhBNSygt985aX9aq2nP1YG8Kfh2ijAoCqbQXKPZ7BhNEzw3MkfElFFXAjfxeWRuRKbp3qs6UmETlVOhHAwuFXVZjCBTCqQ3SGdUKEhWSxSlA1qNPN4WHF1wdC92KNCOhkMMIBLtNmEAXkRRy4lweIzLRqkEVTCxNcXCfaPf2xQXEQcQfBp0iuZMifcQdhkkGe5GMjFiol2CmDotx2HktfhdkKFd7KdqTNQo4En8JtZKkIASQAly2Rs6Itaz+MxBid4gbcdxe8HL0zOenx7x8vzRxE+2FVslbMuCh/MZ27aCC+H2Atwkpls19EYQ6Tj2mwssuo/okfR6nGVVG1v73qCuIkbMhu0PfZWUqn6miOmxA4Ggwhm+YTzNQ7174l7mjXAApFYDdAPoosg1pjwkLh7BmjuncDCPKRcS9yF56+M8Jr8SYrgDgAgkZBIo8RjSRANDDIHGVCGBXzdveosmrN7QuheEu0Lg5HwpoO7Nb+6TY0KEyNRIZp2OYCjYG0fnvPQO2CIygb6pgXsmLCuQTTcmDAIoE4rbASKbmCutJ3BGINRJOAX++zmgj/f4OiD3Z33MIPNxHN585HaoHziaC9q0I8VJVHu6H9UA8jhzjBBnWVOR3uJO6WJq5gCgas2dpWBx8J0Loy4hCry4yE0UmSwet5hsw2nbsG2r5YenC06ns08oX0x4yvPlZXHiY3FFdOY8V3Kyb/jleRpnYB2x7luP6dOHkZU89nxtw43QOK5hfrWp+d5F7Y62Yj9uVvCJBlK3ReYHek6+toaD7s3Mw6YHIDmTKUxMo4x/h6hNNkdICovFviXIZJO8BEPIexBNxqVa8Vw0JkO4yFipZjkE+dqz0F5komn+vDMi7K0S+VQoxzacuBpimvYc+9zs+6zrsAXhO9+aH3t9EAzrIXVA28FtkBUD277j+vKCp6dHPD3a1/OTiUzd9ltONjdfZmtD3Q6G0KCoGpPDU/4IFznEEdUJwx3gSjlVyJ7rwohBQvcm7MImXLStm4l0XC64nM84nc44ny82/eh8NqHfELBfF5RlcTxkkHJBQYhwPBSRBhmgbvleQRYD/UnmIx1bIDJshcl8lFvhdMn5G38HdUGOeExglOT3oxT4HEpQNwEuFiNPFJ8iEfahFBN1D3J2+JQQduhdUHsQmIDRNMdOtvgcgqLj3BXRQu0PsF3SIEBv6KQp/AzyhgC1CVetd9xaR90btqPj6B2rrhYLenGUi3pjhA0dEAA9ROHgAw1in71qbm+tQSbhi7dyzMVTCnJ3ikxR3rs7Unncf9BdXGAvpGkPv/7wNXeH4w1/msWpzJD850xw4vgUIxivYbZ5TOVCntQcV7y2e4rXb+L51ud+77nf7FMSasTraxDXJSZwiQvGOGbHNsVkiP/Gl/2c8ScUMaW5p28a1zQfc/fZKHGPmCwG9zFxLiHilw/F8BsRP84yPPcXLah/f3DHaFaY3+Zt+6ivO+7zyDSf09/Hz/axR84gKt74MYSmXl6esV9NYOp2CxHFSWRKOmbxXgC5V8ljdILlaV1MyGC/3XC7Xk20ar/ZUAuPK7Zlw+V8wcO7Bzw8vMP5fMHJxUjP5xMuF5/gt5hAekyoJLJpbuRNUPG547OOaUHwVMOnMmUdjD65TjFBVcMXhD3CVEeDr2GZV5DG/6d7Me9pssmYIWjn649ZEUSUuDfkmEx8t/96/kf2b/OJ3Zq1ZDy+MAHV/DSRE6OZUHox0Y9W0GvFURpKK+DdOpw0GnWZPHewzxqN/Fbvsjg+xKZs2jvQWkUpJnaQeTIzuBcrPrN5zSYdpXWomAj4IKiFNVUECfvzhuBnd0Sj+n4cAAG11AxmmCrqYjXe3gWt7ehdIT1qkhTmHNIPi897NA76Zya2aedEKWxRuMBIvAUMxcoFp8pGSGTCu8uKh/OGQoJaFduJsZ4WbNuC01JzCh8XW3tBoDVhGRPRWEoZ2IrjVSH3F/65RO7OfDfpkqZr4/+wbwBEohlLXKiCshHfYt2IoeLbqFSZSImtw5Gf6yS4yajeMMgwUmGRgto6ajc8ph0NdVuwH6vFSK2hLgu2tWHbGi63HdfjwPl6w3Vv2JabTbpWxRMI19sNt25CGoCMmFgJxIKu5F+KCsuLxIemREwxIjffvyKQdvh1iHxskEdM+5lyn8d+Zi0QaSa2pdFsqGOIQTGCTRcxrBsWw7cmqBINghrLEAq3mzOO+wYOE0tebJKuOPGyMI5iYlPFwXQhEz0JzDsaeUsxgSBNJpLnb+6PaE5A0r5IRoDhD+4bfSymki4QQ8Lsft7FLlMzmT83BWKSrDcf7q8CP1UTllGoNXbQiISUgN4VTUJ0qaO5MFPgBqRwfMLIQndkMjIiam/NScAeU4Z4lthn8uUx9iwAYoWI1Vrt0hfDX4qJV0cDCeDYO8GEi0TQQADbOTaZMJZuokOFefhChKiOQpnQYaR28SZuEeA4xGoDreOQNkR4GJlDrOsCwoKKjlruc4/ANiepllETgYlUmW/zwVchUAYghzrF3buLA+xadxEUFUB8DVEgK2/xGLVCBF7Uu9V4fM1HXSvtVu+QFMAYMVasO9UOZhgZV4zQbvGDY2C9ofcdvS/gXgFmI/tFIIXu+8AFKNjE4KUgRXFiWFitnlccltNLO9D3K3ZygafC2IoJMOq6gbqAO7C76BOEgRh25IA7+xRhE+dz/FBMcEK1m+iGk/FFARIfJlitGUZqNQxy94FJHqOCzVYxBP1oXivpSeC0xjWGOK9hLQWNCB2C5g08Cq8FZc2roTdB7+qCHXaNiQtKXVHXFesmNnGUgdNqdUxSRd93XLuJ1fByQ6mrX1Nb88QTT8aFs23XEAqpQTswAdPeCc2WvJElyXx38c+bjSWqOMSIv9Jl5Igae5NzPQzkCW4fKMX4RQR02Jplt+fSBXp0AH/uj2brfMMjmheLMSVQCU5GNmLutlRrtuKYzqpYS8FpWbDWgko+DAuOFcJtsE9kTf/hOBlTkL/9BDQEB+wrBk94GIcUtCkuPsqegzi4onDBgIhxYSL4Nkwx6pT2Vt1rOUQMLitq3cC8AahQDb5VBfEC5gqoDfljWlDKhlo2AC5y5LlGCDDa+plwF//Mmnbj1RFAZoYA43mllPTVue78SYFxqGMowPDlMbgu8M7A1UspaG1Br83O0fehePM9IfB/BUg8txQQlWxCmTmQZmsrgA5ocXzJHGBhcYxSwNwBtvqWKKy/X+dWDRPyKbDhYEwEwY7b/oKCGwo6lsK4lAtQb6D9Gbg9A1whDSC62YWUhhQDqwuWZf39bYY/pKMdOwJzas4BCn/Up/reIINHbBU8uOLrtCAEFVtvOSziut9w22/Yb7vjH/vAWu+apiKKQOZZGRuENQtnmD7V15mvG0QDR9S6EE3PSDH4zMUBAI5jN4G2Zj6wGe+StNm9awdIO2riABHjjfBYVQfOTAIThHNhWhVfh/E5bfhB+n9VszMuJDPj5BNKYs/FaEwBGaczcqWCwNgVnSS5H52dBwLKukQ0s8x2EH6tg89yJ3g1/ddsZeRk9uQc8FHI8Qx1kSkGSTP/o0DUJjk+ml8E24MawdRoqqFX5xaiQPE8jw+FCIqePWxvLV683q74+P4rtONm+VkMqlFFJ+PyqX/+Whfj3ALZiCQg7PsN0AN/9k//Ev6T//g/wL/3l34Ztx//U/DDDX/t3/+f4FwrfuPX/yX+73/v1/DdH/wQ3//hH8dv/vaPcXTFX/xLv4xaFvzO736F/+q//Dv4jX/0q/jN//HX8af++A/xp37hF/Gt8wnbUvHw7gHL5QLeFpRtAUfTcl1yEGBZVjCV9IvsQ2R4sucpep7+YM7n77kJITY31wTAsS696TKeP62HrIXwHTvXr+MQuwrhZFvWlEI7Y5EMwUfDkEbGETyiz2Ha5M02d0diNwFiht3UVw/zWu8kuhEcqfl9jahBQWbxOR5eb6vFhgA0k2btvUNYUc4Vl2894FvXL7Hgl/Du29/Db//L38R/+ff+azx+fMH/7f/6/8Y//xf/K/yHf+tv4W//7b+Nv/CX/338wg9/Dr/2q/8ffP/bX2Jhxne+9QVu1yvevwiUFvzowyN+/LGBlg23w8QW+G3pJX4S20RNP5rtCQRltfvmOENK6KndkzbhECEylZyJwtPr3Q/qirU8C2tnA1rWHmGxtq91IhlrOHFA/683kKljUCY23XJwbkveyuBqiDsN4xgsACj3bgzvJufpkYveALlMve/F66iOI2tuOPf5095TjwOEMGFCsV8w9gaNrWbr2uMGF6Qyf+MMw+DoIzCNiX8ZDuPVnpvrkTP+Oa5mPA4YRN/B7wocEXB8V+b4WPO1wyeO30fQYafvnsiEpnxdDEc+xKdm7imp5fzkX9ZFJlA5XOzybWGL3/TI6wTkujT+lIkrKA3blxHGhFWF6EXuG7JeMBKr3YuL5IcAqsUFTljv3nSnJriEDpAcYDlQdEElwXoQjrah9StEFkBXEy0uwFKL8bpW48jXWrCUiCGNNxABXAGjkqA4X9hBTYSoGheP0+D1PDbeqqlYVwgVABWihEs7YT+d8eW7G56/fIfvfOsLfP+7X+LDh494fnrE8/MzPj5+xDX6El5eDF/fDxuIfdtx2+1rJ8Ox1YX0k5fh8V4lw/y0K1S78WnUG5YJxiV0sQOKHDFV/GTEJjqL5qvbUeMZh9jBHfd+stGv//ZNj88957W41Kf+OpA6t8vhnzMIf1sRY8Y4uP8+/5Tx0N3v1dfbVLPFp3Zn3LHIuKZ3yPTCsI7AQzjWsUqupxDwrZ5ThQhIik/BY36MYS/xWoXseZXZcZmBB4foCr36Dsz2HilAHHlD1DIIUWceudL91ZvTD7r7spzdxTFUTVjOr5NxLAEBo1L1z6qohezaQKfXbVYHJu8D8D3Fjs+FwEfHiB/i5ofXyRoJLBaOKEEBF86CY/uS9RVt3ovS7fk9eMrxnimw6fliWOAIWacrZTZ7cIymd5/D57HOIqYgJN4UtZDXofLP+rjFcJrp84TATwFQ1Hp+VAi9E3pTNAWOrmiqOERxxHcXmzoEaGpDDAVs/X4hMlUiJ9IxdMH3V6xZzvWLzHWIFaWQCXWsxerSm4lNrS4ssK0LzuuK07ZZ/S56pYkTI4tjrH+PgQIAi2EIbGJAMQDcRDNM7oe8X01zLVKuePF7nmvb87/MhSj8ZogQInHWuCb2fcIe8gu5fnvUuKZ7SWSCP0yUAErGodBxYv5j7FHDFObHx/3RMQDOVZwIQJ9EuSOeIUFiiibaoICG1bN9i9jzsNEAXVw8uUdvHqe9HFc2vl79nHEluy8jH9759mJFZjK948l+2/2JnNwMKimB2IdHSeA+4UM0xbcKKYoa1rUQYa02LOy8VLw7GY/jslZsbDHbeVtwOm04n1dcLhvOJ//yHppaKtLwqSaHPoR6C4fN8/PngT2BjJdieOindy0aryOKjc8vqtnHO2sK5F6Fx1xktnrm870etg6MWDvWNZCRgOcYjl/4V4RGFELxoVKWAsDqUv7i+BryNSxksnjShDRGXhPvTB4nkqoJy8XnycN3Xp6/ZG3UejAO68dl46ithXDaKh5kwflQnLpa7bpbT0thoLqACtzfmO2tAAMCQRPGrSue9obl+QqF4uiLiYmxogJ+rx0zLsWF3TymUPcTije5zwRW3+8yBhurayaoL75h7yInpYzzGIbpFgJQyrh/ad0VyLherC7JFr9tteK0LjhvFafTgtPq/mlbcDltOG8rtsU4KJYOyWSDY+3konS/MFk99TzFR5OPvEJsYHfyofz3wUXP9YBpv94fn8O4I96cDD0i/wemmNGf8omNDrsWvih4QxGXumNPXr1OuFH2t8w9YLMgpj03dEoUcCFLH/QEt09+YiM2zqgiP1O8np35qJFnXTBsMxRDnyEuXPRkxkdz+5OudsRUBLjYI7I3oJBh9p18cJ0P5QwuwHlbfZjg2zsC1wtxKck4GphXgokK2XMsVAieFbw3mk0UavqK4UhBvYISpBCk8BCShdndQorqHAGrh46YbSk0tBIoxOIoBY1K+OMpFrL8Jb6P9RzH7N2Q3wlZMwLyXyPbxt0zImd9FbwhRLjv9068ZryYP4njcWawquOSQ2hqoIbm1glQnmLSYXVGnWAaHIDpvfx+W9zutefJTwYfLrog8hq6mCpjikHJ9nrkv5Uj6i/o6jo5Xbwn1S8DENr+3ufkIu+qlqy4BMa4TzrsEo2wN65FCl5hwr5/yvGNd+HrRHom9kVQ//pxAUbYYy0YuE/G42Pdn+xsZMKZ3SWpr1+DRgAGlSFQwEYqKRQ3Lwg3ZAQnJpCPtEnDT+QiUzVVyOZpFlF8zqbCu0JETYcVAW6ccyZk4axmIz1diz/I46e96rh+dPcz3T8Iw8HNe/sTd/sZoxBP1Vd/cbfKA8iZ3Xf+LgwlM1gNcO2dshk+No8ZR3YhME4yihEQrDz+0vfpXnUPon7KBfojPpZlw7UJWgO+/e0vcT5fIKK4Hjc8vlzx/PyMwydVx9okJl+jJQOjWit673h+fjYyH2w6sYjg+ekZP/rRj/A7v/s7eHp6gqhidWEuTpEHv1c8FWgVqEvFaTsDqjj2IHx0I7+UAhWgUEXhBUvdUOsKcDWiXFmNROWTbal4oyQZcA0xgn86hwSngFxPk5mYkw4jI712YfNTvKkkrGbwWydPZkCWDjtCAHQ4mvE7e70MxEAZXMVjZn+WJ6v56OkB9m8rMH2uue4zh0Vcrz6nfuZNX51zJHvpeeDXxLxJBDDmSQqUxafwFFBdUKMZvC5WLM0G2xAfUp9evWM/KupefZrU8lM+0B/tkZOvmbFUoKJgIcPvAuRdmFDU5OeJCwoa0He060doISerGnABqegK9OsO2TuI2CawHA3H9cD1+Yrn5xccx27BixM162JCAVwYXWHTgaWjyYGn544ff/VjPH54xstzA9OKy+Udzg/vULcVYDYBKQAdDFoLeLGA6XDhREs8LNmAmvJprStKWUGoSTItRGjHDS9PTziO3ZvNFiwu0qL+PhFM9WaNaqrAdl7wcNqwrNWERvrNmlqOA+35Ce3WsPCCSEJD0T4TLBr7NTG8KamZk0TySMhryLlN5tghipJ3jYtzQeRz++MzRwSPxX2fbXkPoxmA8iCSxHuRCZ2AbfKlQ4W+/YJMN4huzASt7A3Rko0bpRTbRwITUZAdBAHVgooVQop2K7hVX79e/H9rx7UJbk1wbYJrJ7z0iTDhza8Zz3nlaBDNCmqpWEr1SUDVirVLcSXr+ir+GqSNUHnOcHBK5OZkyO5KkDyQyyXiwPEThr2EB+ezkQ4QSUaqGCG4iUOoCxwOix3PZjaiBc1rHbGOAzz0SbpOWIGrCEfxSJKUob7WHchjcrJHzYKbFfgU2jukM3qzRrpy7Ki1QqXlWYgodlFcm2CBNUNVJ97PTfXBX4qCl6oRF7kaOT6a1LoToKgY8Ld4zCHNpmG31ryWUnIfz+SsaFAhQRYTWmsmhNJKXtfWDuxHMxtThlhUd1EqOABCLs5UXKRFRDK5MpRNnKClOVX8rUGDl8sFlQlLKSgultal4divuD494vr0AdenjzhuzyjrAlZGoQWV1Z9ngrq8rU5i8OKVqk0QaPYV+5VlAomD1CfmX5TUHi8CKRYTzEWXka1+GqMNMTfy0Cae44/3Rv3I7HO6SCbgMDIGk9nCggFAT02d1oBhRDF4vKUzcHgXf9l52l6LN573Pab97k3d/gfJ62T2goiNkEzTx6coGhlhWJwwxkRQLhAtWNQECPfGoKPhkMOBRJtASaKBzWXhbJDe7HthgqqDTsX2JDJHjc+JtLtDaMoLfCEG5KTWRgpCB8HV6wPksE8Oa0xyIVRF+vvBk1MXMmjeFDH2+UwEeGuHfQZJUakkwh+7fe/dhUpbXvtYw0yaKQ2HcCKzTRRaF2yLiYhCFEINTX1SvaqL7HBiErWa+O+yrhY/eg4doirRhH46nXA6nb1AdsbD5QHn0wnrZs3p23rCum2o1fznKHbZfShU05+WEiKQE7bB96Ba2OMQNw4CY+/97jGfiEuFONVnvlIcSU7o3vjWQ6imNb8Xnz4vxZRU8zzvxGD8HO4ndt3/XdQmKXYhb2yOY8IxGKgTkbR4bsumIOvnPtZPgJ/xcvY+w5d2GcC7pXNWkZyLIERm5xLLKLZvA/TLz+UFB3RrxGi9598iv397R3zGIAl5kTiKrWJCxteXK56fnvD48SM+frCvp8cnF5u6jf3ZYlqi+zTA46pBOojYzADUKZ6H3aeunucxe4F43EdwQVlsGuW2bNi2zffdCefz2YSlTids2wnruuHhwcTAl2UZU3IXayqExzw2SdOLpgO9MIwyRICYLc8wTxxDfdLOjETK/FLkWia+OGdOsRbHepD8Pqgz1hTCIDXSDApAZPGACAOsUBYXix0TgGutOFozv+KNMa0JluVA64KlNUgJUUIBawGzkdBYIlcUhyCHDVE/TwEAiZjXfY/bDNaGWkyMFl5EIxYXWBXQcaDsFad9NxuyhWAwuVhRcSGVanEtfKBCNN96fC7ENlWiCzp1MAgHfGjBGzuGeJRfW4T9vhebmsWnPMvNfTFihiAAjeMnp9d3gBiA2Xf4zh/BkZMhaDyVxp6kaNCf8iWecYVX7/h1TR7xt/tr9DkQTj/72Pl3n5JTNW1witxh2BgiIyJYM3b1GoPhapiucTJmFECPtU5ARl9xfXCHC0bBGelTfNfM8Xi8Be4JUoHXf20o9g1xlG920CdX+yc+eool3uKhqtN+wYQdeD7BUYCH5znkAlMxUfjAvu+43W643W7Y9xuOY0c/Dkhr0G75WBQlra4ULmnakOTewUXnxcU5237gdru6aNWO3iwvXmrF+XTGw8MF79494It3X+B8vuByeUjRh+20YalLEhRS58Zx40HU93O6+7wxtco+fK3z1D0aSz4v5LieSTKMgwaxKta+zn5tbPwJg4vrFFh3NBnE5SJATQBAvS7ISY4NuzeuOfLachaPxZMc20ceg4rk5y5mAMBgNDL0qQeuFPlcb+id0Utx2zHlkVAnysWXNU7UGtiQ3Q9RwSrV8pHe3d4IbGqZYUZL7+jFJgn2rkkkiBK/4UUGgXxWn+VneIz8I2LoAzE2i8ColTJfKSzoEBO9cVKlrUcF1JozmUakBYxrYYeAya4x1ETFKhs58bwuuKwF53XBw3nBulkevSwFZVOsVbGwohZgWYrfJ0wCUQlpQLuA2BtJdJiP+8+tlp+xE1Ci/38kDHd+SP0NkoAoPs0TVsMAh2sNWzVhJqKA+BAZDZFSb44iBnHgMZzPITbiCiujLCbmLqI4DkZtC1ZvCm+tYbk1HHtDLQ2Vb6h1x1YX7O3AVgsWAKsoTkR4VMWzCF7kisP3QcSmosVjWnuv1qxRZ/AFZGCv3njKVC3m7NZcOfuUwFIUs/jBsAFmpxggcQKXrTnjAVtu1tXEkLsqOik6uvUu9W7T4OpooiWPaUKI860cpdgQp6amA7MkoUlQyAh/ROpCU+wDVEyQaq0DTwJ5swqFyJTnWo73A3CsMGI9dV6APSmGJEXMBMCFfl0I2slqISphwjTI58SesLx3XOM5fChBwPKlbvidQF2IGPBoiAhNFK2LiTV1yabSxCtBbnddIEP0Lt+WbkJrpY4Y2/yExV1do05h9Sf1k1WPBVUIWkLsh1Gq1UbWZbVaLcwwCIBOgi6H4afMaKrYm2FVu4tNhbgBY2AMOcHc+uvQEIINhBAWF+3WGNHsHjS/T1zM3lWh3EOjyTYEywtM8ITGBZ5y/1qsdlyXMqYB5/IYjaQgb+JIIzrWQZPuA5NGTTDW21s53KJGiGguqXXbC8RALfYZYOsYoj4QqKG7eOVYd5qNDUIwkabeoJ2hZEIpISDVFaDjhmNnUPE1WEpeQxsmId7Q7JhED3wsYi5G4YpaBCgd2slFugHWDm03tBfCwUBhgS4rCi1YF0AXhRwNytbUrr2jS0NXAVqD7A293UxMxIfudB9iQbVMfg+GazgRci0FKMUFPrzBw+vGiRF402Q/TBC/TcLrzAxWw/S0VPACNO3ozfa5FrMlXcQHpFid1+oghNaHIDCooxSFdEWlYkKSzNhczB/9wNEbdid1U7FhbLUuWOriAw1NgLzUCq4VXJepBmjNO4UIVQuk2mCZpoqmIVjnWH0YO19DKf4/NbSbfwx6KPvKHIIiIKSIjtUCzH5Q5OqtYd9v2F+uf2T755sexYXqCjEqqTcB+7TkasTcWopxBVUtrg7M3WvJUfeNXH4WarH8w38kSnwisQTPlZgJXBxKLJPIFJvdLAuBqzfwR7tQDBtwISqC1ftrXVB5AZFJw4TYX+aeVFHLhkIrgBXAAkIFaOJiUfV7XUEo4GLCAiFWEntG0D03GXmYTrmRHZ/aVo+m8s8W85gtr9U+X3eR18EZjUzZ4iLWclcfCsFBEXUxR/J7vNg1YhdcdmFl0p5DiKJG36UhkSJS85shfpQnb7E2xyDEYnkci6KSAGr2qmt3YVGrkSlZ3KAKFFaQGmdkXQxHXmpF14bbqeLWFzRqkPBl6wl1u4CXR+D5PXbqLux2ZB3CfBkbt+4NHd1je5GO/XrF7Xr1RlWr74eE6IwvZj1EXDgCFarFcHePk0IUcz92HF5baj7MxezYiN9t0jxceGHCs4C7n63VRWftFdujnpuXEPGMuN9x3w44Jw6OO0edxYbD9TZEOywGbFBpnmcazyeRtahzJ44Q1WTkrgnxCsqEMPCTyMlmLExh5AhGCmEElvcK2yMX3FMgY0wBASzJc1CYzTKBqWg6JzSQNSWQc08MhPc8aGTR8Y/5MwVDOPKBwBq82oz4DZxHErzxJgx0zgFJFCJhbm/TBo+3tc9Lgmih4Km5M87Sr16eVxRpu+NX/MZysuenD9hvT1A9QHABDHLxcv8M1cUoRY2PLlQhpaBdr3i4LPj+977EX/2rfw7/yf/ib+Lf/pUf4sPv/Dp+9+MVf+4v/Qr+xF/4FdyeX4Df+hG++ws/wJ/4k38Sv/5P/wX+s//d/x77bceP/uk/wbaukN7w3/39/yf6fsV3Hx7w7S++wLuHDZeHBzxczsYzqAV1WbFuJyyrcbiWuqHU6muLQVrSbUROMER5zFYo+hDizViFh2+KITpHS1vAxYaeJKhIFk/HcA1bH1P9IfJ6zPyDyEfCH8dqBQYmaHhZDJXOaeZE6J4LUr6yfzlPJHorxTGA4T5tGErgiL6xQMX9N5Dxvu0dRSEf9tQ7RNsnvHbT9DUhhhhIIBDDBlVAYk2f7DAPA6BlgZ426BfvcNaCx5cXfPjRR7yrjH/rB9/DP/3NH+Gf/uo/wf/6n/02/pv/5r/DX/mrfxl/5ld+iG9/q+Cf/e7v4pd/6Qf4k3/mh/jiexf8zo+fcfnOF/jd97+L/+HXfhMv7YbrcwPIOGhv6WCuAGIY+eSrEqeBmzsyLhu7aIzHYC0FoFwwL+L0UlHLYjF9HQM1g7thYY0m3hE8hqzZT77sjn/h/JBxrhh8dLGab3dhbOlDaOo4mg2E7YYBtMP8d63V+CHblj0wMQRlKRVlWQCuCI4iEH0WwdmLKzniwliugdpZ/lKAwj7MxzHswB+6Znxn10OtH9lfUXv3vYT8zGHz4fmwBodP769dHJE7hv9IwVaMXNwVI9xWxGcplt/58+HvKyqgyX6UEKbz+zXedWA+WdsQQWs9sQAzB9HsZbYPKT5wB3gA8MZBryEZr9u4KyodULOLb+34vfY8KdRwC7VYyJrnaRJc85zl1X1Ouw44d4NR/LEdxrWLfgaKepz3qqlYAyBkYI1NOw5tONBxVOC4LTiODftRIKtiWVestWBdbR+ti/Uk1Rri+y66ASC4GBzCYp5bKgRCBOkMXgpUDdew5kgxm+/8XsNYqzWIqw3E2GrBeVvw7rLhW19ccNu/xPV6w/V6xfV2xePHDz60/hGPj494en7G8/MVzy8veHx+xtPzC16e7d97O9C6CX6iWawbgheqxtWA+nAiVY/lfe2WMh7bBAGgxxA5Wwc2SLnIzIDWtBcz92q45uFzfy914G/6yKwRvlqj97VnHdwTApKf/ZYOj3kTu7Bf+V4Y+GPE6ePjWo0sGprztxEA3V1JffXPEcuEjY48imFxqol523kxBKyjcbnyGCwYgr7OTsxzDyGm4rlDZcLCAyfOmAzRHzhiNuTnHOcdA/XGrIXws9Y3NgasTZ9rul7DF1meYTiRDnE8f7sYCygIni9DmJyLTVgONvzJ64wEGywuxOhkfHYTbZ2FWOO8R/44boVXq3UMnNTETeJxI3lS5yIKC4QZvTMaeZ+RWl2sE1xwKprjdbz3cL/3SWDsj8wiOR8wX8f7DDIEEDzu8rUov4f9/kdxtD7xcCj2l7ELRO3TFg9Fegdah4tKidWS1L66qmkbYqzRSPszn1UB9YEFAEixNY79RV6jJhN6WpiwFTKfsCw4bStO24rzttm/18WG3ZaBiS517u8bIlOvrGH+y3qiQ7gieFi2Uy3eCTzZ1lrwLllhIrc67vpYR76+prgx/0ujV5FVjfsRsZ70SWRqxAMRa02ltlf+YORun/4+I9dhHzSfYbFHGo/p6kyGgqKjX/Wud9VEBuA5xP0+zq/pwo86WLy04cfFhVcl+OKF0Suj94peg/Mw1kmuMT8L4wyz1wTwpo7KhBxG7iKg2hTSBNICl7b1NpjwYhwZz8Eq7Bqzeo8nEVYCNgbOS8F5qXjYFnxxOeOL8wmXbTEeQjUBttO2YNsqLpcTzqcV55NxfZdlSa5nDDceOgLWF1281ygOIrW4rbLVQeFcI2BaM7Dcw56Ryyv3gPR8PAcHnUJkLDMzs/ek0wqe86TxW/LfpwBZ/P7OsPtzJtHjlJrwfMuE0jTvVZyjIGon0+MdG4VIvh7bBbL3CtW5CFB03OfcgKopFCmqo6fAB7gUNl5NqYxNVzwQ492huPYDrRPkQHoyYUZ3YZqsp3g/DMNE/A8BXvZm3K0uaE1wOq04LQzy+J6pGE+rECoY0SnD7hhp4qO/pcN6uF3AzoNFR6jzCx5LRX0EQAp8Jl4eNkZ1rAFVQH0opgCI2I2AtRac1orLyYTcLqfVrulacd4WnLcV59OKbalYa+D04UnsteZ4IiyA1SbJ8RrDZgJHHAvfX68MPCZwFcbA/SLAGxoZkalMljpy03DcYfs9Jp1xQ/g1C6uQuY+fF6nrIcQf744IakMEzOvS3XgYkl9eo/be8gjMgs9fve5pfT5wQShbuyby2V+97fDhd6eUftZ9pU53hHy/qvE21IMkyxNhdR/H+UNIylIri58DS4Pn4fba477kZQ67pBYnLqVAthWlvy3sIzk/MJuYsbR6f0EmZnaPGSZVQ36dYkhb/URkirEW42UtlbFwiZYVBLdVtYz+a0QdSFDI6qSq3depCyQWQmUMoSmEWNHI0dwE53XPeBSvXBmGBgD7/rIlzLnubb2M2B9u7mdkwHwW3fmuiLhzrbmOSGh05Gt9Jj6jYnvfJr9QpEIIIans6nahqcGJoPvXo0/3tz3P8ZGuaIcCUgApULWBPK3taMcO6YfjdJqRc+TLUR9ThCCVfRYmhRYT6iNiiyFEDYeQficuxS2iI+S9pBC7CttJSYf2I/b0fSyq/nnNRXwzDOYbC00ty5IAdwkRijBwIt4L3NPIUnHj4qcZZD9As5B0/5H8ZP2D8xQa2c0rn9zMSO5Hwm8XpjBhrbYBa0EqxZtYhSufFoDgDbgOChtpb0kRH/uqd5PDwvDdC0yNKRXRsDl/3emU3gWc907na49xv3/K3+8f+FOfFmBaOMhYMHNSORW7AIwk6U5eNIj78bBQKJ3PZCQ14SAytwtDAdxdj1DQC+MS03VLYWitTjawYH6pFfu+e2IBb9w40PuBduy4chjPgroud0HDWzlaE4AYdd1ApRqR8/EZT9crnl5e8Pz4iN72VF81MqB9r8VBOgKkN+y3G67PTxAVa7ZjQtt3PD99xMcP7/Hy9ASVjrVUVKqAEHqzQJBLwVIXbMuKwpzqq6QWPB97N6GbbgGDTYy04pOBYAsKr55EFRBVFK6gEJ3yIhvYE3BPkqFkSrbz4gjLj/t1kseId20FZrNNLi5EABSvMf6evzbBgTSesdgpG8MSqPC3nR9zt8/UXmv8LtZz/Jnw+iMEMeResffrj9yz8wt97rl0/8fZSfgHtWsOd06q5qedmMxcULjaZFxv2uylYCk1g9RSCqiRn7wFt9IOHPsNsm0Qn1b6Vg6VsZ7mGxfNGGOSgq0nkg7KiYZAZSMGsQM8IAU7sUzF4FfpRnyQ1qFdHVA39dWlriAibNtmfpTIiFT7gS5POLq46Iud3Pl8xlov2E4XrOsGqhUCE1FksmRBl5qFKDjYoZFMcEHlitN6wrJu1gSPUTQn7WAo1spg2DRNAxprXqTXggIBcK+14rSuqMtiE+Z3b4ZrDcV9CvtnD/BxTrhsf/LdPYhGer/6wx9kI1V6mLvjLnl7Zdd/X02JsfftBy8m+YJJ4pcJBYWIRMY6MMX5SMo0nj/5SC0KXldQb7a2iNAK4bgJtO+2lvoBkQZWJ4+3bgXIdoyvaO57Y8fj9cCHm+BxVzztwPNhpG0SYPFiaYBi6vGFCQ1ZzF8YqIWwlIrFBTbM5rCLY9xPBYsELANrwlBQ/wQoQ+5vIIAAb+SL9TNcxmT3dUqq4wi/Yormep+euPuZ6UZAiMyEQU7PpFEYmhIhJzoxxzQT8knjMf1aXUxOEWB7fo7ipS2yuKDDCnvSyJJXCNpBacvYEGuoFiuS9461Ncf1KtpRIb3gaHPD5QB7yJsue29OCjSA1QYdmV1kZqzFcol9XQE6MhGMdEYBS0QlGlVd7EMJ5AKI2tundkODoNIN/uyTKnneBxf2EScTMnINAAauqCjE39/q/waWlTcWL37rW98CpAPtsOsEQpMDL88f8PGr38GHH/02bo9fQbVjPS84LYSVBP36hMd+Qz+drHnYJzmcFoaINbIcKkCpOLqR0gpZYTSAIbWqmO1hF3s71MBXlak51ZNXdUKQmXwrGjMY4p1CQYYhYKj9R+oRSLLvPQNd7NEEA7Z6gN8+RSL2aAqgQU1gqhpgAKhP2jVyRiTvionQ5f8tThZLMnBM93ECSnHbQ+7jWZGkH3sJ25Mx/ZZgzSAEwlorQAWijNI6Wvf1TwyuK7oqjr3h+XrDk95PBwaP3ReCQ8WTKwrSIxzT96KmyH0BLkWZq+W67B0Qka9L72iNcDS7t9ZciCxK9e4CciTQAyAXUiLaQBRNStacp76PlDX9pcVMdnujeeYtHdGUEw2yx3Hgth9oEsJGh+Wh3gilCcBbnEiw609KoGrFp9NScdpWXLYTTtuGpRQwFP04YKG0QKjl/ipE2OqC0/mEdVvdHxoJkKMRD/a9VrPdp9MZ5/M5RW8u54uJ3KwL1mXBdjphXZZJ2E8TvCMgBWNKYbALYbAXxeBxWQCGZk9diDBzg5rNB4A9TWK99IbuIkCttQQffXNZ7Ms2e4LIpmsqwrcIWmF0B1UPZrQyfdXie69PsSq5aFVHbxbfCwMqvs5VfQrEvdCUNQwLmo5mUvHClh2cmBgxW5NQAKgEcGUs3uUS9jAL3eI4mQ67mLCJmVbDgwNHQryPX3vPocsrYUZbb4reLEc/+mHfJwGuGaJ9a0cgZfE/jik/blP3fcfLywseP37E+6/e4/37r/D+/Vf48OEDHp+e8Pz8jOv16o0phzWe9+4gKk2JuGbsZfGG+yU2cWV4vhF+Jgo75vAqqFZUJ+SeXMjt4sIcl9h3pzPWdXXRpQWXywWny3kI14foNlkLShdxYUe/GOHjCC6gGgGL+XqBhXxpZ6ATMD+ft2FnhmMgMValoAoNm0v+vhqXyD8zYVw/IjYb1Z1kLWr5TOkovaC2asKkbcHSWuKnqkDrPe9Lq9Wn5yjERQmUC4oIOgkGyT/iTPXPrgkvqgIdYlMePC7WrtAOnFb3oy7UqsToarZAdhNsv54WXG871m1D693IoL6/Sl1QqzVWqDQjO0BNiMSLycq2TzsE1mEGa3J7Y7EiEDlyFJICq0b+Lmz7/JV5eiaulhilBYn9kfdj7Kt8X/+Phegj1sa0TtXj/yw+fub8B/lzCBPYa7HHkBHXTJNiJpJ+CMzMt4Ziwed5xmf5vI28zyeHcNMgswc5Nt4/muEcBymcdrtETlurNbQmiDCIinb+/hoWDE8kBX9Pz1VDWMROP/y5SbIFAcSwKwxb4E2xee8wsBTo3Z3+/x/f8JiHEAAYa44sx5/FoUW6xULtsOENtx17CEy5yFTEmLGWgFciU4E0+VZlpNmPM8q8/Gg7jmPHsR/oh8WYpTDWbTVB0ocHvHt4h3cPDzifLzidzlgXE5qqq+Ewg9CLABHtXSQCmCFUdI/ljzVmseXret4rm5n51sjJZuwl7MqwLWP/hz0JkxWkDh0vPa5R2hRNzCghdpQ7G+EZYhLfeu9gJscTHPvxRmedpvUFkTAuXHXyAPlIWZUCKRZDL6Wgc7N8u8R5IEly870vTjoIwS4o0EuHuFCM9JLTE3PGoABLrWjVm1BUkkDAcWOFEov7pObyMz5CjE/Fmy0DJ0DJfAZqgjQxaMXWlov70IiVlYNc2ac1Eb4PLvjg4r7MKMQ4rQu+OG942BacKuPbD2eUApRKqJWwnUz4ZakVa6lYqWBlI38UrmANMmDUGgynzyYa93PpHQPzjjqc7xUjNvbMD/zRo/QawDSAlIqZXlejAXzCz4KwF/vOfqeJvfhbgLlMMYCRGanYBEgT/fR9K8BSN/Q+BlO11nGsDfvtwK0ehj0cN9yOitp28DwZjHhgP0VRtOFwzDME7kMYyEAlE1Qjsmlspud0zyXIa+j3Pq5r1PGDMBoiyXE/AnOO7yaSAH+Mfd69Xc2u9zCNxtyT7iLszFBULDQLG0R8+3YO9g4NhuFj2SRCxq1QLdbw7ZoYEutHeu4hhYJrgRBwSIeK5exjvY34Iuw2YeRcIdaX63DyA7GKXzcemKDtyOXDF9iggTLd//ArNIlTI+teXRWtySCvqjW6dbUGAVUjLjYZDX4k4s9Xx82aCQwEEbkb5leX4k0fhodVcgE8F4RevPnS6Cq+z5t4w3bBsi6o64JaNxvotGyodbHm7lIhCvQmKEUguoBQcDRBWVfofvPmUvEUl12gz96ntQZp4lhyM/GbskDImiMIjGU1XBjUgVIg3eqNTqYxP0OGGzEvzrtYsGTdpnjsQIkdl8Q2ijeeLric32FdV5RSMXNuDM9xP10qWHwoEiyH7GJ7Lms5jpm8sS0WCbbFCqSwKTrdcvveneMx/L1Nm/cae2d0LvazznFh2N4GkRt6VwAm1tKloTdxcbZmHCjHrKCL72EgRKksDyH0xuh84PD6cvTTRSNKpzE9k0hBHqse0qwZjAl0ArguKGzckl5XaGno3CHEECHDPtxOau+Q40Dbr2iHC055TSIJhI4/Jo5SXLjAm08XLuhk+d8hVo9vLtR1HIeJt3ozs+VC5M2CLtxAnmc6kZ+CW6SC3mqKqCRZVkPWwuwfO0diXQxzLSD0Y8dxc0KwN2jbaw+hqVYXE5cqJv5TSkWpFcu6DVEcxxyzwYAIQuZjWcU+l/RJSSXWHKxG/8quJs4UjdtkK1EcdxEg7WrvLYcsiNu+duw4bjcct9sf9q75PR8leB1FUdmI7Yt/FS5GjFWX2KIxsZXdj4XYfTYeY8qRMXCJxOgAxPC7eA0qhOqDd7hE/BFiUwOHsEmz8fohz2NxK3NBLQuWsplgAVeosp0XCYhNGZGoAFxh+944WJACGzq0gsT4IoUXF1YoOVjcBk0AEStmTZ3hw4M4BbLsc/o1+poeW3U7gsgZPbZmx8m5cOIy9ngMqA+Ogc8xLWKthhCo41EKcArqGSbJ0tDQpuYZgkzCoiECEfh9fB6NmNIxJeJiHDlfJ1VNDNBiO0Lj7vWSiqrryP/Fmku1AKCCroTWCdtacTkXXGVBw54i08pALcBpO+HWrhBdIY7fm93uFjdkbvp2jsOFKno/8HK94uX52Wo1EgM9IncYwh2AR75K5mfE/YByilZF05ANymgpXiU9fB4yvvI3QOTynxObGqnshB8SJhI8o5APbqJocPYE03NGdE2BG0RDR2uQfthgi36kD4N2kDZviJziXTshYBI/VADKUyuujt9TPD/wjXx+xNqBocBxiGioHFhlNKvaz9YQoDBbz34PtFA2l6nX5ToxlMxPEhO0M+B+VZkM54i4Y4rnc4lGzklAjGOC2wIZMBkikQ8cUyK/ZbZm61KSaE/5IvZdxy2NK2a3LLCpCcckne8CwYso9k8NTI3eHPbZ9itMOKSBwq4Ctqe0gBQQISy8QFy4qW4roA2/9PPfwfe+teI//o/+Bv7D//lfw3e/u2DBj/DPf/v/iy++WPHv/tW/agKm6PjhL/8ZG/JXK/753/s1/Phf/TPobcf/4+/+5/jBd76Hb3/xBX7+tOLd97+Lh4cLzpcLvvzyS2znM5ZlNXvp8cqybaiVfVjg4s1bxg0KQUUKDiBNQ0kVuZ6VI8aSaS9Lrm9STbFiw97gfpjT3sRgDTimQLmKPNiJv9kFvatRhI/LE3t1qCetqoExqku5+btQNMYZ5yW4G9AxrCueZevPm2ppjssqYhK64USSe8H69sRqdbWgYmAYDAWJorC3U/oQNHg9rnfziqTWYibaTZhNAXBFuXyBnTY8vOtYyor3P/ox+u230b/7BS7nht/80Qv+zn/xX+Hv/l/+a9RTxV//638Of/Nv/CX86P2/wq/8mV/CUgtu8hF/4S/8KYgA3/vuP8R/+9//Om7XJ6iecRxvKymLXPMOl/Y7Z3CCjq/pCCwKiHjI2YWESTzt/itxvbDrIQTh/jI4J3f1K497xHGW4rUvw7j6/eokG7wYNdfugkTzMLDeNPfZ6+HqtS4p0prr33HuwNdnDJCUgDJ2lhIPWz3+AyV2cWBOiy+eVybHCqMy/Vo4bQwS1RzkOX/w8GkIPzb5/9c1Lp0wVyVJrID8jTVsSQjqS09hEvtdPNY+nwJeb45djem/UY8DNJtuzcchBtSlD/M83GMEKBwvGj1VCNxQu9deLN5Q/26xhwtO/Zt8UIQsIxYSkIvADL5NXOdRb8unJ+4dNVYiwyyDS1OYEeIgXU3oyTissJxIBJWBhYAKwzh039H2F7TbCe1acRRCqzBst5AJxjCweE5pogOc8aprYFtuCutTszVng0uU2QQBVUDSoVxh/RqjL8XEGUMYXrPJmqsJtm8L41gZx7agPZzQe8PtW+/w8vyMp6cn48y8vKTI1PsPH/Hx8RHvPz5ie1/xcr1h3w/cjmaYReSoHh9lHaqQ+S9Rb1JH4m12a7p9tm72rkRjM8FFvsZjFc6xCq7BK1sz/vSHF6H9tN6wOR9lpbvY/q0c5NctD50sqwRLfco9wvb4QBPAc4G0/0P8bvaB5PnE2H9Iv5mYCsX6Nz5tYfZ+NetbqzyEo8gJxMycIoyFnOMKFxKIIR+qjp9KvLELub0ahkTItQpkuG+2f8qD1MU9yJ9kogZxYfTucsbzrd4epL24JjTyK42asWZtnik7H7znaHyvTCaCvm3YW7NhHwrbLxy8sTHYMuKLwQ+zQzCJb8TwiNgz03d47JIcyG5fObiz9bvBoTZEZeJIOk8yOCuBodytxciz5/pLht0Wn6s/KPplUjwkzld03nhv4jiaZGwzZRQmEKBAovchMtWtjnJ0qx91taitqTHDHWTyeMreI7Blhwadpzj3u9DdXipkzecLEVYmbIWxLRXnZTGRHBebOq0rzuvidWrjHay1Oi7KKfJGdM8nH4f9LoV2yTGUKArCbpeonaPeXSGrMIzB7Z7jjZ/u6tCxVtLOqNdEEAKcwbuImiHlXh28fbdgLmB89zkyiIhFafYvbaPG2w4bEPFpCOCN7NHex8yRc0ZFYlWY3Yq3VnsXyU+NxPfuxYXis8R7OMfGbUvg1t35/EUZVQp61RRGtbSTcl15+yJAZHteFBJ27A0dId7GRGbru9iA+kMgDc4tcOS3OBcBVgdRFR84oyhQVFhMtjHhzGwCbLXgvFW8O2/44nzCF+fTELZZK7Zasaz27/Npw/m0pi5AiElFjAL4uXptrHgN6C7fAMAucEFsA15ICJDAGgUxKB3eExb2OuMMnVYGkfvOsEHuExGxVKyvccy8SIL1iEGcHznZ2IEf+udLAV9/da9TxEaPPUgy8jdb45afWM3Lat/2ZfmJ4ZKwnNF7w6GANhfSDW7Z19l/92FeLhicfM8VuRAqCAsxzhvj0hj7ARwkaNRh4zQ6KpmYYocJMjIX07KgCiGz2bfd6moiXoMsxotTNrviYYjXjdhrBcYBK+rX+qfElz+L42jduANC6KHAEblz4GRTEB55VuQw5HhxVfaYyYSmEPZZ1AcfGb+gkAlsbrXivG14OJ/wxeWEy+WEh8tm4m5LxbZWbNviQojWA5o495Qzm32z/4VAS8QNTe2+dO9pGjVP5/UU9e+Or3RH4UmdRsUjjpwug/mtiKvmfGX46XgSz/Wm8K3zDUhH4+ftg33u8hz3UeRxa1cgBkwdzYcnZdwWYuXBHbXzLM4XjLp09CNQfE5vJYcED3vwSwc2NtuIYUtiMJVm8kdTvsbDjvlHVRlDctImuRiShbxW01dxmw94rO+IquNmEPHhbsGrs+F4b27gczYnI+sxY+BT4NvBBfd7Dc21Y+vVeqCNT8OWO/AQ642cKWLC+F9gWNZ76TVjdLAck2SL+zCyVsnIvQqFTcOoB3Pos3jMS8NP55CU+B9ZHT6H1IaeTuyPiPE0Ki+U55qbRGE/3H2Pw+0TIff2iP+iDzRfdbhOeByXdi5+O+wJYH7J1m38ZiBxeQaJGdueEIGL5jvvUcVEprrV841rdUAO/2q7DadJkUYXgtIhFme9aZFqUp6J9eYgRcwJbPWB4vxiDXy6AN4vsyi7HgYhPt2rT+SXWi1PRsSmUeegTzGGrzm+sdDUtm1mJIndqYtP7vHpndMFHQmBHbGJ0pDAFwK9/lieeEy/DpL0nThFODgCZqAxnHtlxlrNIS2eeJlqfABjxTeiiRkESaksiynS59eSYHt8BdA/k05T9GByAq/J82Eyxrnf/z0f9Hs9ciPG5hrB5098uWljzbfr1a3LX87CX58+MpbdJy/vfx3nFI9OwBfAaHaJDT7+Zn83JewojhHBxYooBSUA8jVW7xS/YxJcrRXSF9ssrwo9b+XYj2aT6rZqgETfsR8Hnp+f8Pxyxb7foCIprGHGPaaRn7BtlgDt+w377ZrBRUfDy0vD8/MzHh8/4vryjN6OTIigLlYBuy5LqTitmzcXW2OeFYME7Thwu1pDjEZiEuFd8Ul7pXqDqBV6mSuYhtBUgGNgM5F2vGp0y+rSWBfjm/9D7349/8rXTfxNp2fFWpkXaOybAS7crY0EKmh6M52eN72OP36ci73WDEyPXfDqrL/JcowKGtHYV1/30MgPwz4kQBKnSulEDOgz20vFmihZO1jMvmkpqLWge2C6xFep2Hns3mhoasfuE0mXz53az+zQyemmgCrd22SFEc2pm784DqC3agRff2yHQg8CiNEPOEhGDuz6BL7bDX0/vPHVwP3KBXWpqFQAJfQuOHYjKAHA9eXqStkrCq84bWds6wNK2UBsgIYA1uxaGFQLhMimrLpKfk7TIm9iXGyiWGFKtVsLaA6o7EY8BbywZiFHNqDo5CNEcTRBF2sUi4ZsVcVxNLy8XAcgfYifqAFAFqAqiNXtAk0+iu7ey+ptY21Hs4diBJ7zyo9tGAnga7Voi4Ui5vhm64RU0VNMzj6Hvf5ko3xiXjSyRZFw/H00hYfQVIZonkAaqb5CF2vEONiS4dZ27PsO8Unh4kxQlWpCTMUUZ5duU+Le2vG7Hw48d8a1E/YOHF3Quje0lXDu3i5PCiYBU0ehjkqMyoLCilLEJmQXQvGpQEEsvxeb8oJUaAHkW7h/UkKRWIM+fQoK9ubAuDMJYAB3IU7GrVPSH4nLSKhg9wg9H0fhJ3LdjVjprsHfkXSKRuy0SZwESAu9xUR1Qo1WBqAaU7xo8mVgW5/m3RUsYs32agruMf1Aik1FVml2X4qgVmBbDQ7RDmwLQQ5rTBGNCYI1G08NQzRgg33quin1EiDNGgDUBWC54FoY0m36n8ITbff9tj2MTJfJW5J/ddiEIHzCRLhKragqOCaBmIjJS1EMNUe/fg6JMVniLbAmgBC5GkEHT/fwbRwm6tjQby8JLOjtCjluUDEyYmErQpy2gtNmCvGl+PQuOdAO2GMJaN0mxcphryvtAPXuRV0NblwCQ/AimYFAbE3RR0NUXsaS1wSQoqFqvo8GOJg0nwFMHssnsEw5vcqU3mcBAQCwwmgWfgIRsbe2ZDqIsBlahr8JguKIDTDFeV+XIkTsPROUEfbAz+M1xBUEV513/iSwxWQgYHzeUguKKKgS2iroso2CMZDXXh21m3MoDgDVhVNUycja4Z5e5Vuxn3pv0IYU0RLxycKtmUiQziR8vw/iZBhMhWQ222UFrG6NQxIkq9GIdxxHxuLE3a7jGzrEz7u5kOZt33E7TGiq59SAnrkWAA9GNDMawNZRrRWnbcPlfMLDecPldMZpWUEiJsjabTq2OS+bTVvZwMTz6YTLw8WFphaL6ZIIOMC7Wiu2dcPpfEqhqdPphMvlgm3bsCzrnYh2AOj3+8nIP9kEWIx0mBPJEfk5Z+ylKuhs59tcbKz3avvS93wXQaeOTkDMFM8mECnQYjGQOpqpGrvJ/QPs2pB6DICY6DoU9mtn9F4cmJPEZLoQejdyWe++5+cbHWtdXPxBBziYglM5IWIQns3HkmsFe6ENABACN/5TxKyEJCaRmmBPFqO7ZpjafQ3lhKzMLd1O0dh/5J9liGk17E4k3WMqeDTwAW8O95gB2hFe0zBTgPsYE9B+eXnG49MTPnz8gA8f7Ovjx494enrCy8sLbtcb9tsN7TjQWwNBXYDPUYDI+6Aj53CbG5NNuLD7MfX769PkqjUObtsp9+TD5YJ3D1/g4eHBBKcuF5y2E7bVxAYiVl22DXVZU7wgG5yIHJskoMTHZ5sWSRbDcYhgETvYHISegBucRKUDD424h/2zggksXgr1dTrnWcDUl5i+ijL2sZqNN8JoxBCS18mm9KljbYLeFxzHMYm92aTedhxoR8PRugsVFnQxAoB6TsQ0fwm6fzaHt+0TxX10sS118cbebOJV4Qpmyx8AtYl8Lnyooti54Xrb8Xy9mTjfunkRroDJGseWdUE7FO0w8RDJgriOhi8Z0wIdXPjauOFnewzMme+EDga2Pv8OGLjVgLoS1brDtCwpn9bSXYIO33M0XZfY2PTZp9z9gj59r/llyPGDUfAcooAWx8iUj2HkWPMpJh4RPnw0GkVsdH9SZn+hU6E5v2TkMxHbgJCDDhyPTqGpHFIRNr2jY5AwuvRsKhnXcyZyTDnNfJnUcIY7gSnY1DtLSydCFsEFc+4u84QZ/mSs8V/riPf6PRxvzYfFMQi56r56xPt22R158PgCKtiPHbfrC64vz7i+POPl6Qn79WpiUM3jZr9/Iagt0Rs3fc1E3JxySZGO+aTr3izWVJv0trBh9g+XC758ZwJTDw8mSrptm4tMWV2huKhpNOISi4kx+/q7j4uQNsX21dhzYeM/aeh5VQ9LklP+HHYonHbsLRh5x/dEPC9cRlqLu5qY4tUrvLqP4zOkiLmTRKLu11obBXPcv7Y6mUqkT81DHjtKnKMkXmNYlAuss02qiqawyPdyrxubAyFAEWRTixPUCG5M/r04gRDWbKaa5Lhai2MshoGUwrl+wZoTuPmbTsD4Izqk97Ho4evB1zwQQ2Zakqaj+T9qt7HOWrcmdGUFtGLucLc+CK+HLdZ0eVoqNi44byu+uJzwsJk493mrIBVwUZy2BafTZmLAPpRjKYb3L97ETBSEKGvuY2bUiAMjbsOcO76ydeELXFw7SIkUsVqI2AYgPq/t6ZrFwMjYU4r77wjXQJy+P0m8NOM7TlQgwIi/Q/wWBagLe35lS773hmPpWJeGZdlRl4JyNSEP7Hb1RW1acHNRqaM39KODtaC0jv1oNk3YmYXZdmsBGVSB5j7OtsZ9zTf2dWtDwCuuS/AcwpY1r4+Iavrqz92XbAwURZCFChFQyxCqgALScex9NAsQUujgrRxxvZoqipjQfCWbHN5rhagN7+pkxN7FCUNxDQC1HMobIEZa4baQjXQdcWis4LTIBM//R557Z0N1iInGfTefao0V8ZjZjksXvPYvqjbgScTzcI9TDxEcakJSx9GwHw1Ht88LFwYOAYQmCj1MMDKw8FjsjEHCtFSSAHbJPzH8UxijcQxObvdETHVMCoyGDMtRK2pdsfgAmbIslu8Uy10sz7HcX1RB+w1KlLVDKKBNB6YqgnZYQ4mKpmiKDaywmiC77TqaDBJlEGdDHM59jq1r+/e6LrhcTHQ5bA0XSv8yCNuMpVacTmds69m5N4vxBWB4k00VRCTwJnKl8KYUawztAmu6kzBu4g3ef4gb5vdxqGNj1nxEMKEpse/h49WGshTAc0yL4bQXjy97rjVkrUShvaF3QmtDsC2FppwQ3itDjgpZqje3FMuN1AiIqop22LAkmwYN0Kqo1Uhshdm4NIARy0Ng03MYPRgViqPaWlhCRIwLKjM6FSgV+3R6jPTFMQtWJyr3HXLsaNLRxKPrwIjIBp1RYt2c9XyDK9jw2d5xO6ym2nevb3Rxkdc2BCldMMamQlqTPqkaSbLYegYBvYqLn8AxwyFYmJywUlCXBe/evcPD6YTKjLbvJoS+71AA67KiLKvd9hwn3CE9hKYaxLFUuOgGHNOnaJB1/NdEMxX98CEIvflAkInPoiY0JZ4XDtupd7G7RbD2v8j9RIPrZ9dsv92wHzcc+45+HC6k9/aOAhPzYxfy4WhyxPiK1qgKm0Jt68/3ZfG/skyl3IF3FPKGSMWYTP4q5hq5W+Q9wbUggKxNpBtrPAnFXl0CqIC1ovACKhtQT1BanPxKxt8OUBPstbQFQAFhAdEClAqiikILlE2YJIYAGvYZ9bhRkyvVCM21jqbGKYkbn+8uPRhrTeP6Td7dAspRZ9CoXWPOuex6KwxX1xQ3iOe5NwgR3uREaeYAqgR026viRHyPlqHsg1Kl222c7qnljwSViPH8nJJvZ3i77dcOGyJTAPVoniqKZX+oif9b7fkQs49brdhXwvkQ7B1ox4GXdjPbVEykpJQFlSu6sDXkTXU24O1NRG+H4VTtOPByveHx+QUxWMRqaH7vOLMaAF5LVhPIaT18Nw/s7i7m83/rqLUFtjy4GQMzsFTZA4V8V7vZcRoRdUeTTDRBm2gZfAeaT8V0Duo4Sj/M9nWvxdugqjY1XTUwTBQE7PhEnpH57CFQ4pCAGR7H9uPxYkJQ5M2KsXDHB/MXlWlvuU33BuAoFlgeArdLtpdsOKa9p5WyLJZSMo6Meo2ti0BZkENaRJys7kMWvTZxd1qRhia+M5JHyvOen2F7PnSSpVvdkFoDR1PfHMcjagLx891L2SPc7kyJyPhOd8/Cpz+9jePYD98fLmbCMDvQCc3Fm1Cs/rEuBZcLQfGEX/z+d/FX/uwP8D/7G/8ufvmXfwE/f+747sMKkgL88R8aLvn8jON6w8YF3//2d/D+q/f4B//g7+P5w0f8sZ//eXxxOuM7X3yJn/vu97Ffb3j37oLvfOdbzp2vOJ9PqHXB6XyxPem44rIuKNWHlpYQl7I1YD7QfmfrsSCE1BKHSQHA4Gl4bkSwtUwmVsa+hr2V1v4bYlOw/GrUUeP97breLUGdXNxngGmfzZqHqloDOAPa+xAsTI8SOewkWOA5FYhQvIhke4egvflnjn0e6zvEeT2vTZxDoT1E0g03JILbXpMK7TA/a7IlHke6H6Vc+wrtnn02C3lOJ0ItC/al4fnlBXV9xpdfPuDnm6DxB0ht+HjtuPUrOheAFLeDsJy+xK0R/sdf/01ob3h+PnA+fwe/+Au/iF/+Ey/4lz96xuPTjh9/9YImbw33WBACxTRxUWxZan6PmDkGv40vv/fu+pmKC9kUcF28b8FylYhHyNd0ikt1ySFcJiTsvsTjeNKBZSkUQkN0cRxm81sX7M3q4M25v613b0js/pktR18Xq3eu62hAzFpsStjQfT4RBwEhUloivp1xn+mBY9iJ8YENNxzXEhJxQYgmY3IZE/YYZgC5YT8RpQpzkpwzP5PIEUEAKaGzNaKiI7EPkoHHWm7udkM5Y8bJnFiKgKi3I+sC0URtvtealDUG0wWXE/fn51mu2Rt11XoXVQgL41Ii0OQGC0JcyuoKB1TbVNT/N/PIuD1iJ6/TsttVX0qIPqIcECwY1zPxAqTwTXF8KkTOoSYcLSAbeEXFh97ae1XHYQoUlQgbA0tvwH5Dv1UcLLhRB/fVmtqdU2vLh6zRnEyUl9SFftR+D1VXk4nakPuN0A/Lxd3duzUA7FwoAokJYAGcnA6BomsHSMHFBK+0FFyWCx62ii8vG65fPuC277juOx6fX/Dx40d8+PiI949P+PGPv8LT8wuery94er6a6FQ7vHnZ8E+ZatxdLd6nbhh6KZ6LRhzneRiODiwEgg2nV46mcLtR7tncnnJyeONI4UjHm/+gj59aW1Y7S7uPvvkVd3HvWzjuI+L7r/yfYuyru8eHbRu122iOH2tUUngi6t2kmmKDnHuNU7gmsL/KIegNF/WeMD9gvB6F0JTtm8BZwOTvrSlMpWzxFonhBtns7PWp4H4Fvz9rtp6fqA9RTdvN0TQdMZpfmswjQmQqVm1wPuAxrW304GqNK+tb2eMLYUIRQmFBZbMbR+s4926xgAiaOouADOO0QWWOmy8FXKvjlrbZFEiucNQpZPZDce91zmvVeVv3QlPJ2fIYovXmWGxH02ZDV/sQqYpeYPu8cY2nOrnXOuA5pwnNGm47xM5GTY818te3J4LTQlgMsQ5sLYgiInbDN5oLfLaGowsObxrvapxU8zmU+41p3J/ENmIBel+VXRzvf1H42rFa8sJWq9sKY6uMU604r0uKTG3bim01HnCITFXnPU4pGvLDxbqPnzFxpTyJ14hHXTDR4i67p0IulmAbzesM9/lRCivpsP8hhgcNzD9CreHjOOInifoD4oT99EbexTriV1tT0+eZ8YmIReNLxGJ6GU+JSzIulccibHzOqF+SkNsrs1M5kDJiUbdzlPH9zJW5z0DtPXXEPNMture5NHp7tI78xV9zOluAgE5ksU//Kb7vZ3FI8Kc8B1Hc9VRaCSz4ft31TBpUDus7UM37BTZu+8YrLtuCy1pxWSsethXvThveXTZczitO64LNB+ydnP+0Lpw91rXaoDx2tS53Eb6UfC0Hjz3sHZDnEkKpEeuRWoyZBjAEoScs4s57B2boeYpCrWABynVrbtH30Ku6dwgLQs1C26Agxn2kBfevyNekeU9AYT2QU/+ZxA3RPG/7IC68773kGgMIenf8wi6eUggzeW3Ehasgzc/X31Yj76OwOLY3mEzk1dVySgzDchy4kGJbCOdKuFXgVgXHLmhqQ3FK9G2oiUrZR7WaW1ijjtHLUuqC9QScxDh5AjtfW4OEEE4JMZDi64L+4MPWf+1DQC6Y7aEVIVcdhdWjsBqZkCfP0GKzkY+ZOzMcy2q2OnrMibFUwmkNgbczHrwv5uF8wruHM7a1Yq2MpRas6ySsM0NGCQSE6CIbp8qreqo2dDuWYQzrTBvoOQR7jaFIQSmAjQ4OjMBjT+9B+wS0Vt81BMB5BsSAluhzxp3YeHKw552WgaG631QTVLJg1E9WkVEruX9V57S3bjyV/UgR8Yjbkgcidh1KKVgWH8iuilUVVU1oK/q2uBDAkjyUjJk9h06/bSvAP4L4Z7XedvWhLiZIY5GBLTT/jCEsOQybL75JFFUBIklecqCiYV3CFxpHYticwgTDk7/R0v8jO2jyA6Jm/yyfHp8ZLvwfjw1ukIV7Ft8Zb5ytL3oSmQpRqEomNloo8qDwMYGFW881hY0NXzrF2MXDlgJNXlOKTNHUY505FrKOFgKlwMihUpDU+QrZ90QRDtneyi1mVwz3Hin+HbET3f0lRaam4zWP2J5t/zMem2N0I/OcX9H/Lfl58AobBmjU7Iks52t2H20gjQ30DXxfyxCasiFq9qXtsNqhAugdJB0M8dxVBmY4xW8acSuGkkrxm6LeQ2cDaxUixmEQz7+VbUgtPF+JuFnvboDHFLjvP+AInQnzX772+MYKBUYS800iYlMPg2ATyelcDJ6aSrPhQkfyAB0gADDZ0vhsbuT11UKj+TEEB63NERQ2ZfhaQiV7BjOQRO6lENZiDqzWAl6qTdur90JTy7JhWayZM0F35lQEnJ3GnKTMZNb5wyWd8u7xuH/s7+OgV9/9wk8Lg76emBCLanje+99j2m4/gXAej0yD4Z6d/I9zgTmM0yfPH/9BxNx2Gu5g4zUiRXL1U4pGPBr/tvtT/N4VrMtmr8sEHA1jstbbOXoXrFvFsp3x+PSUU3D3/cB+7D550R0+zGiv64rL5WJNjg8XqAK3jx+x7ztKKRARHMeB2+1mIPKHDziOAya8YEaziwDUfW1XLMuKuhgBCXBVVg9mnp6ecbvuOI4DALxByh5XuGKpK0pZ7AzJyE2cxbXFp5yaSqxEwAS/l4jCjK8jIoTiMoC72C5/Ebbi7vd0byOSGB/rc3qxzBDp7vWnNAk6Xug+8Pvcnnl9zHsrf57fATDWEt05zZ94ED4R5PuJD9b4TFGYyTANIeoWwB+IjMRIQNEK4Y7CBVorpFfU4lNv1gXrtqD1itvO7gztpaxYuuNoB1o7vtln+iM6FGJTS8S1HTlmIE42nUcwaKRKyiZzViuoRwEYYGhzwp8qunjAf+zoRwOJeIJprDibSLkALvzQWsexN5sIqGIBijIKr9jWFevpgmU9g6jCNS4HSO2kU/Vk6eiSgbsobNI9MVYHo4kAkTama0uz4CaK1AH4jrQyX9vEIYxcCyJU94sxofzlesPL9YbjOLL5nTWAC809RJEc8Cj0GsAQWytWp/v/jHc0k9XBDIx9FR7q6zeEvfZPfszrx08bx9+B7myB5YQGqlrjf8cQpPFG7ASZOD1XBMSqSDK+1IrSqhESvOGhd0E7GkQOSGcrCEi32+4CmaJAfYMTi37nPdBrQV82U4tW8STWli3BQdViYlKliBdauidRHbWY2BSzoBSAC8CVwNWa/rkWFzQaQhPFiXGZUJHRjooSiiey9t4yhM88FrD+C5++qZHIjKQkfG8WQwCMOzqJPdw1utCrODHA3kjc4W7MW1ApkjUH/fMz2DsezXy5Tum29fnbvkhAeQLKY+KfvWYFq+AQF5laKk6nk7slEzjr2tD7AYZgq4A0RaWOpQCtqtms2w5VmABJXUFcDdyFNUV3X5LaDbzSfngCZYAe2H2GSBbdwdaM1t2mmJAVUMpitrUf6H1Hl5b7v/UDt8OKjOu6oa4LylJBt1sCLnGfVA1EsphFTASL1Yn6cCE+I9PHvQvR0pnA+WYONZJZaw1VFcpAv92wX6+4XZ9x7FdAxRt4ONXhbdqeT7c7drQDHid6jBlNLtZF4U1YwycE+CtKgAi6r89937Ef+7Drc+IaxcLJZod4RskYElMsRWkjjFwbxBLNBq2Ih9X9tKikD0+yicc36qSTMd0j9hX5fkc2yYy48/5a53f/GLPK+Pi49lkZetcME09jWMzBEg8ND2nnVB2MGdPKAVXGBjuv1qxAeWTDOFzcUNPPZMynuCN4MhcAZAKVZCQQdUL0cdjk5CiG9i4JakRc050w3oO4jGHH4prO/7ZYfoBpd0JT3vyjEzGZQZC3lZLZlFcRXA9rELrejGwT5L9sdMzzHtdDAStOug/Ytg2Xhwd8+XDGu4czzsuGhSuO/Ya9NWizpq5CViBcq5H/ai04n8+4PDzgtK6oIRS1rtb4WsJfmGjFuq44nU4pFhBiU9u2ZRPUmGLgnoUn/4bhO5kC2KxJ+o3DlnfsV5tWJkVQO0FqcRGZIDWOWErFCulZFGWz3+KYjfrP1ixCaGJTGjWnATnJx1u1rTBv2E5vjM4CcYJSZDvcDSMSF7AMEHyeVKEuQhMNVTblRG2/SR9EiyBbiTdPI4T3XP0B9rqlsJMSR44VBBaPgMACCCvInyrdPLtNG9AEdwGkrVMHqSExOcDiUhOa7Thaw203kWorMIw9RuXt4R4/+fDYSxStHTj2G67XF7w8P+Hp6RFPT494fHwykannZ7xcX3Dcrtj3wwQTu3jMGaCsv6wTEoauihGDorGWioubw0FkZtRlwbatJjDlmMu7h3fWSPjwgHeXdzifL9lUu9YlxbrJA1+J/abeyCaauYT1zLOJTam3WoUvKC7yTwRtMdHd0Qm9g+vy8wapP8UjQAArqOuUD1ls8/qKA8OSReZmmJlN+RERL2zHIyyORvG8pii4i4tjWRG2d8mYbD8alpi4oqPIIlrALGDuozlgIEMYnnYIAUGGrbW9OEjW3LqJRrtYb0xJ6wocTXG7mUDyti7YfPp29SEF0SiqXhDv3lQz19nvYu24Fipveo/RhKVm0TJ/Z48YYi4z7jXWwgRhIRv97v79+vPPSdN4H+R+mJ4/h4n+nLEi4yTuTsjxvXnNau6PsCFjZZOHSxGo3n2YYafJ47PXRaq5cKX3dlkTLJhtt+emxfyoCUzVFJyLqTMR2wYBwxr0fDrx3VXU6QorXl+wJIZYUGs1EoWT681rhojNyBMBwIRq9PXnhTqhdvz8B3d8bq38m3uk+IJ2s69uI2yp+5qyEZ3oLux7vV5xe3nG8/Mznp4e8fz8hNv1inbsJirgcXOQt1Vgwnu+zoAhRAFMk4OYM6+35tkRc6uKNf+7aOLDwwVffOG+7HLB+XTCsmzZdLKsNXFRwN5XrcPr7ndxPrnDI8biVxj9q7rZPc6RD/okB4tlPVkQ9+s6mSGddvrn1u2wCfcFVLL3mPeSk8kjhp8x4vGdHDo1oo0q5T2G5wlIMfDuORcyzw6iNkU87BOrwlQGCcEuh6Ozjn8QIoYOQWGFFEb3aV6FGVqKiXD4ufSCSWjKBJ5JNdcLAJAyxAWvhN8YK8qFHKMRFfAc1XNpy7cjl/80Rw3/l1Yzcx0Xu/ZGvEImfLLW1fATZlzWxQSmmG0qZq1Y3dAvteC8LB73maBGYR5iBk64J79fPJEyGFZ3yXOk4Y8/+101/TCJz8KlIfwLIJuI7QLNKx5TsGh/c7pgXrOIC+I80r8F1jC/hr+35VTFf+2GQQnLsnjOb+fWewdRQ2Fx8QJNEppCwVzQRXA6+dCKtlojNytIO5h3/4zWREM+8GZIr9lnbS3E8GNPDbrDGBSFu3UivWetH8DAvsQEt1Ukc2gdHz7vSyG2qbAIoXr4d0YMohikL4F3R4z79EYOi38Z2sUEnB0zWBGExGgy6XdlUMPrjCRHjBSBCUHdtMA6IjK7OkFWm5rG7y7JpzGYiUeM2Cs4KLMYVRwWU80YVUxfNCEpy58YhzaoKhqAgxiHCPaj4eW2Y28HmiiEyQSovIGjiwCt+z4MLIKTsMow2xpT3fWwhhJ0xzcrQNVwjDKtPUiIfmDUKWA4WfFG7rqu2LYzyrIah6UUFK6AeK2g7dilg3ziajLENKY6q9V3p5gzxIrDzVT3IUwE8qY3ZTLR7mM38S2YL1y54lRXvDufcTmfcDmdTVT9csa6LskRCjFnZrKpwduKZbGceV1P2E4n1Lqhlgois4vZgJ0xxiyWY9P5Wgd094mAQgCJNbL1dmev3sLRjgNUTdSIALdj1qxO2gHh9O9QRdt3dPcXixMNmYfAome/kZ0ZgZud4kxwPGNMD5becew7UAqqnkBl1LCkNVPqaw17b+h7gfYVjDNYF18fHnt6TBSCGwTD4gqAtl/RPxI2XsBcUdYTlrJA6wnCDUp+DXRFU4HsVp8GCOu6Wv1PO3oz0VXzH4ZnkWM17XACPxm+VXwAEuB+TSWbrNkF5bQu6NIg6JBmGGWXqB/UxFQT+xAnJsIeU9iw1r0DdaSCYCKv258SYz2dTiBmHPuO2+2Gl5cX7M7B0bWj9g6uK7iGOGkDd2sc49qtqUFNHFaD68QFXCrE8V9VaypozRrTVAToDdIij4xY1NbdjFGkeMNke3sIFaRIWWCLuw0UaTFowYTOyG3btqx/uJvm93EsNHiA5L5WUtNNwWLTPVdmLGSTrwsVy5Nh+8cGjJUU9Q/RwMKMShYrluQwARH7B0pNOeGEATVxNdGKLgXUCV3JBTQksTuray9g3qC8QcsJQmc0VDAtKKUmXmJ4ZQW0jC8UH+7HYHK/QgzyoX/EwdrBmIQarjc5BjQGA77CZe4wL7KLkrGpx9neiTMed5eDGQZpYeqoy6GPXAfAXdNG1KMGoVjsZkx4ueWI3tBdC6TDRBX897QU4+WID1uDBtJrkbrvsXj9IA9HYz9ERsymxp0jqmCfA85qTelKJswVzZ/cm00JZmBvgm2puBAgN8WLMJ5dYMJaHNz+kPlf4QJxcZ9ZwPytHGEvjqOb0L+XQzSEpHw7aI/7NoRCJ3099G6Ym3hdcsRz8bmnmhuMcxPDbSP9v8O1AAQKEDg+k3lCUXEuMuwEEythKMuItwJbKYy+N7TbbtjNsZtPbjt6PzKXj1YIgrpt9OKOrxl7u0EMj1NQArQYRw/eaNKPbvVit1+aQnCeNUbuASA4LCHSlXZddVxT+FaL/Y7BwwqhKbuQHsfDhBC0E0TMjopwCneIN1iFEBAx2+Cc+LtbGMrP7o3bgYfBBEYijouwYkZru3POiBm1i5HmoV4bn2P6OJxxpoEuTosDgSHFCoqm1fvXeFu7y47eXcBMLDSrhUFs90DV7DpzwXJWPDxUVH3GX/zzv4y//tf+HfzCg+Lxn/+/8JvtN/DDL/4irnTBw2XDH/vez+Hj+/e4fXjBy8sV7z98xPv3H/CP/9E/xj/6H34Vfd/xc9/5Hn7ue9/D97/9HXz7iy+BLji/u4CKN2nxgtN5A5hR6oZSTXyqFGuAD/snavF74hvsIlMT/hL5gR06YPa7OovfVX9eKezr23CKqLHO9a/ggcV9jv9GPcmELob/iscQxAUk7TfqrsDd3VjbkauJcRslggR/pfQxavEGABgZyXEe8TWoZH7cnLqdW5y7Albs0oFTisCZE+NcXAwZIK83Ot5glgchzhLiNuw8EGGApIDIxeeDYloU27bhiy+/xHe/+10oLyjnB6w/fsTH647n246bKt6/CH7zN3+Er94f+NP/1p/Db//Wb6Ci4Ps/9/O4PXeUWnHZVpxXYFk6am1YltMfzOb4AzoKj2Hid7iXX+97m+rNYiEqmLjFtDbZ94Hvh+RcxDpTZNNvDDULrowNvoreGfMpZo+NvwW19aaJq0Qt2DMVURfKHo2H968/8AUbUlYM73R+yf0gz4FXEk9C8rCPEbzkfL0BO3oNwmw/QkyBwyfYNehTjUuzEXESGgj3iclvIvZBBPOae9cOFyCY76FGnSDiTSAbOP2+2IBhjBhQCHHC6vjW8BeOz2Tc7/E4ZdQBIudRuRVQGG4GF0aAc/EM0408zD3gVD9IQSoK3+ifO3BZjXwtBlw0YKof/Zt8xKedfwbcsqrxicK/i++VLBYBABlmVhBiNwUrFcv5PL4SJYjj2AygLoR1KVhLQa3eRwYFiWF9BTBOJYDSGnAw2s7obNxn6RXaGcKAFjLxWhEXAkYGxQoycelYb768aDr38cE7RBgixZqj0R1z5MxTFIHPWo5OveU5E1ncsJ4W9LXgi8vJhE/6gZfrjscvv8TT8wsen5/x1Xe+ZeJTT8/4+PiEx0cbeH+93bwn6Ughe1Xg6C5Igw6F9eFxiU/B6IiGYbdnGqJZ0ZA9cmuN/ApTg3fc8wm3+MM56NPLHvHitKbC30Y4+dZysnH+4/OoxzHGCdCM8S3/8POPmAR+rSlvj8ciYT5pCoAsl49altW1hs8o406HC0Bk2DYMK05zGvrsfo98qJ29rp+DRn3JuzKk+2ewxtoQmYs6VqynuF+f8HvTD8TP0Sdg1yoP77DNcw9ByfBOPBql43qbWLZVxIbobry/+UVxjKqT9aoWtoGZTcR6fNg4uyDn8TOj1IqyVB9aVsG1ZNwhgHN1JXmYc31k5EECZG7tYi1dU4S/92ac4xg26wJTuxw4esMhJjrVvZepNxPHCswxdJ6zO4zy7lpvEY04PX6OgRhT+Ox8UcLrwYg/66N3twU0bEJkGWaHLTiS1q0f7mgmHBYDSiKm4MhVnPMddQ6RzJEDy45cAwKrrcF43iYwZYIcazGRqdVFpral4OSiOafNesuWtZpoDo9aNYd6gK8PQfSlUPZRRnyTzIkpIRIK+zi4+SLFxarV8D5l41R4rhR7IONIDCEGBfw1R0AZUKRlk5pDEzLhf5XPk/cXRGQV/ChOHCnsV+Ap9/XuEMKPnCveK+JRfxdQXiv4OrfnECugDGIT28mBlOHe41W86Bax48A25r5qPyJHTVsUO8xtLzMK22Ak889lnKvmJ44XA5GAuvVyvLXD6nxmzyBiA1q6Lxbx7z3waYW0hiY7RKzOUSJ/cIx+ZcZlrXh3XvDF6WRCN6cND6cN59NmAmy1Yl0qTquJsq3rYhyQbUFd2IfkTPx51Vy/xuexe6elJAaWvG0AJCbuxd2cAwthcTwMU9g6i6/p9D+J2oISxNcXvNc01lbmrDT1jea5Rs7ge4nZ44HwvQDyvJEnYZim/U1V7IMght3ARJbEh+l5/oKIM3zguEJyALnVnI19QrBeHyrsAqbOU+zd7rkpOflnGLsvctouHV37EKRj8/sdNiw65KiWApxXxr4y9spohdCY0FlNoIVtGGdX8uG0zYZoh18lBRpsUGMT7Ec3LoB4fqCSIv2AWD1D3O5RxDV/8PvkX//wmmnEAePGm92efQFT2rqMhSRyVovzsz8q8jJ/NWJgKQWnteJy3vDlwxlfvrvgcl5xPi0+hH3FuhQTTqyMpdjwRKaxlwD3uxmbstfhKgpVsLIN6uwdvQVG44/3sxZYfFRc6DtMrMCWtnGEzC/HgL3YNOFy8v2dA1FcbCSE5lK8Kbj8iUcOOx/7K2NDBOd29lAj94n9bT3qgtYE+3HgNglN7bvpNLRjR2uHcT8Bw3mW6gOrMcSmoHbt4hyhGHWvez83ggDPi8jqo/kntbqpPSPsHvl502SM4ipMldOwfWp73zdzak0wgA4fxo77PiLSqOUZlvfWtlnYxN47mg+w29vhdiZEav1qjMWAFLCNzwtMIr7FOL9k18bGFpnwlsutWYxI8/NtP9tSLXaPyM14vpdj337Ny4SL2n6X0ScGeMzj+VrGVJN9iHuc+QCmZeUbyZI4NxR09xy7DvdrJP+tQA+RQFIwa/LvAEJSO+NJFH3ehquxaykEe8ZM1tRjQjH4KDRmeKovIGMu5JZQ73ts6O2wugRgorI2UR29HziOHcfuXG9pfj5mWBgmTL4UrwMAxjdT68FUvy4u4+dPVcQg25lfzCooZO9fPM8SMhtFaj1zXciFMAcfBNC7lgz1uD/xmbSlP/n4xkJTQRa1xCFA8O5A+/jqTqL8ZEqo/ctu2yu1TnJk2s59LNpYJNatOW4qjd8aqc+Dg+rKbszwTSau7EqobMn7UiwRW6onWS4wxasR9Zac4LxaM+dnhKaYR0I/E4KB+d/jyE32ub99g8D+Pm36+mNA/+M3mezk++jdJrU/6/15BFKien+P7k7k9YtEah2b1N+HhnLjmJYW5zE1LH3tB1T/ZPrKuMyeHllwjOmY1kCxZVNoa90UyzWaSb/u/X52B7FNIr0dDbfDCHdElJM+ZP6s1dbk5XLBu3fWIFJrwb7b5wUGQNt7x+PjIz58+IDn52e01rPwaq7BAqFaK9Z1NQGT3nF7uWJdKtZtAQgmWHW1Jk4oYamLOymn6BQTmjKxKVdYrxuYVxOZYifPORHQsZJMdMiJsGk7opPAjcUchAFIIIryP/fLKJNpGs8jhPOYku5YtPOav1sfHpxOjxnv+frnV0ec4/TY+xOkVwHmTzt0XJdv9ATNPRb7Mq5lqIvPQDEoQF8HiblAXPzGCqWcpPP4igCwuO0mVWgzcujR9m/yof7ojmn9ZHEg7A+TAXelgGrcF3JVaDdxIULlZE4Cg3WxX6s1iptys08vqQsqA50FO9iEWUq1idyHiVJpJzAqSiUsy4ptPWNbL9hOD6jr2YRcKITf7PyFDcQAFwcUwssYUAkyhdqlVmsWKwsIQBObugcH2lqAZzQBVKXm5NZofDwOK1oxFRNMuJiIgQhwu+24Xm/e2DFIhkSMwhUhnBNJViib0gSejwhhAHXDLdgazeJ2Kvv61qbhRz/nT82d6f2W/qZLJf89phjF3rOfnfzuQegIwCKhZLd14/4YTUBB1DwxLYBWYF2h0iDtSJXTfsR19evCQGkF1QVBSnV7+saO9bzg2oDn64FrExtisyxGjgq0iAMQJdRi02ZrBWrRFAtdXLWXg5iQ13E+RsIQYJglSL4+FAkOR3M/kU+OlXAPpvZKILAOYgCABOziuPM7iEJdrlRvIrtfPTGRVSaldwIS2Mug3feHqeWPNT8SiA6gjVhv8i/qBbspYgImYoNNTAgSpBEpSinQhdGFsUhBa4uRkiIPVJt83RfG1hn9IAPmyAcwmYVEgBKxJ7V3NBwG0DjghCAgSrcJS1xwlALtDgFqEHd65hFx/eNcND4sBumnt4bGBeQTs3WKk+xnZA5rInhOTWGGSOxNb/RkBrMnodC7c3gdN/+sj1IY8DiQJURJb3h8/IivfvwjfPjqK2g7sNQzzD6R2wpLSiNP654QH4fFjuS+oQBJhoi1aDc3SEpqyarvv8OnWwMj2Z6J0TP51+J1I15JErAsl7snCQ9LH0RyYTHSBLML6JJP74nJjmPvZROaDBHkLA5QFJ3EeVzuVyL/mQ6dXuv1+or3ySmSGc8FKMs+4cSuEwuDaQCv6u9XmH1C6CCjiXiIVgrKupqY1364kMa0P+jeR4YQDVqDQsFs8QMzY6mL5b2l3hHPdgcob7dbCloBuPuM3YGOIKnNF+iOpBlgS76+rc/5ORZOUean7M3Sb+kwIU2b3n693XDbbzh6i5Ak04tIGjRt4sAnKhPWSricVnz57ox3lwsezmcsXtzZpdneOW6Q1rAUxrqs3vC/Yd1WnM8nXM4XrBMusa7LEIxybMKEYCu2bcO2nbBum4lNbZvldjwA71kA8XNHxDo5cXZa9/H97t+I+HEQhlu3eNO54jARaKAUctDQYyI1wZts7WGgdkbrhNLhJGX1xgXNvSzMKCzondAaoVM3oSmhu71uE3vs7+pTNAP8T9sGK2aKWGEq+oJ6NpU27Mfh+2S3GD4nhUZRLyxVx9F8kTBlwy0XE+SKWDhsE0mH9ZL51Eoy8gHNC02dlIooEjqw6zZYvBnsrglM4XG4+7ZavvZ+/6yO4d+nPDniIoIXLgWtHdj3G263G67XK16uL3i5XnG7XXG73XDbdxwuyn0cB9TJ1S6lgEyCdTS+RJIR7SHpBvy9QQCXirquWM9nXB4uePfwDl9+8QW+ePcOD+/e4eHygPP5jPPpjNN2wnbaUmSqRuxPhNbFbGe3hvkgWoRfDSKuTXr0E2CaHuNBTJJtUh4AAToHOG+E/hArJERTCGDCreEnS+kuQiF3mEfGvn4hlMLP8Lho02MUausclBO5YuqDimKpgrY0rOuKY12xHc1zSpkwZEVn9aLJ6y/zlwwkGH5/BrGOvMBFPpHoOMDdyWIqzucfxYQmgtu+47YfuO07TtuCk56MuFOq5WqtofMQCRtgD92tXwBG0Po0fHgbR+ROabfH1/jZD52u7R3uNefg8IKiTs+N3HwOlsNDfv6izPv/6/5G3vg0EgxCsmzmqSZznk1yd2bzKd1nZ/cHATnN0mpRcvfXELWZCbFfh73bRGs1wZHCGfMyT1iZx4sRj4u0nP5lijUD70Duds1/p1G7u4CauXBcl1EwCnsz4taZfJJtPnlf/jATn8gfXv32TW6gn36YGGA0f0leY9Wxn9RF71pr2HdrPH95esbT40c8Pj7i6fER/biiHTaRL+IBeDG0z5P9PKcARjxmE9QdPwAAHYSEaFwpzKCFcDqd8HAJwcQHPFzOLvqwYFm8TrZaXQDkgh1qzdCzEGA2/vq+gMdB2fBFr/Z/xM3TlibEfdcsqkeNJ+o9uZ7jZbyeZPiY3mveWfBjfyfkc/0OjPWNjN799/f5anjYbBLx5miD9ghUGKwFZboHgTl191N9CjrmBtoQ+g2xKWsutzheIw5iIwmDyMU5nFTgNS8TrvOmPo+XRLqLvXJ+RvsEhCKwWk9f7Joq7P2ZBk6qhi+TFmiQut/IwbGe3CeF/ymeewTOJiFI5fdZRLM2BgJacFjIG1U8TjbvYSSMhQlrsenl54Xx5XnFZas5Lfa8LiaQXyuWEJdSdXGpghIDBvw6B0EkSFH2N2S+GGKAr2vL5pNCsG36nduVMe4Fef94co/hJSyv8ff170ZcdDvlG0vzPGNPW/OKyeeMADntNBGUShKHo6mTiFDrcndPQN1xtwYlm7qurKDCqGvF9friRJwNvbn4vApueqAfCuGCUiRzIbgI/BCdGXF+NFhbE3vP/NROuSa2Sz5oZOY42GMItVbHyMw/E9u9DZ+K+LTu11UB8jw1SP1uNgBSlDoILSIdXRJEeDNHLRUgH9zgOH0tVp82AjNbY5Y5BYio1wXj+voaZXbVGf+ayHZm5xUxyZpzBSPX3NgH7LhByXuUnARg4p8MTCyb3QOXE1vPI+7xnLkNe2/rTdC54KgVTYHj6Lh1wfXouLWGvXUcYpOpm3RrehdFVOgq23CXpRiBq4mgiECK1YdExONHMQwXRvax+puvBVX4IFVQmQhXiIbyilIWlLKiries6wnkU80LeUNbsSa3svuAJx+qVsQambU0aPOmlozn51jT41d/riZGCVBlKCsaCfoRQzsYW1nx7nzBtx7e4eF8wbttw2UzTk2tg+wemEspjNVFftd1w2k9YakL1mW1Wmnybdit8oinoBikKpgQAhrSJljOALMtNERV3spxSEcVgnT3OMXqydQVaE7iZji53vEcANJcjCnxuFFvMsFzI6Wpi3cAIUAonlOI/X53XhUb5hzNiqwxqEUAOSCHQBvhQMfBAKugOgeqgIBig6j6cZiYmzohPCAXuuG4vtgvulhtWdUG9hUTOWM2bExKAVoBSgehopKgy4raVpTeTHjDuWcEu9+ivu9Vzb6Ukgm4epCZNoYAVMMeqRaILNDVcJguLi4StWoEroasTbUmiZta/bKAy31T9rqsWLftrlk7fEfUByIuNwH1DtYD1AVUO0ovhsvUjqpj1Xa55n4oi2ETHYat2rl17Pvuglw6OHopWhyNZD5MJGNcjNzRc8Deva7WO3o/rJlMJJviFSbkyERYlorTsuC0rDitb09oCsDA/XxdhiRUfneuSwwsYmYTqPMcJ+u7VNxLCeZ8KxrxDX8L8Yeoa0witeTtUTEUCJG+WXbh5MdsfGaQ1zVtaB9xcZGoCuIF1mACAMX+jumLRk2UaRI4IKMh56WZa215voNUPB73+oLi7m8RS46YUO9zvvDv4WvS3cdzBs45I4wx+T3x2ruvyAfv8StrGiAXl4xat9cyREFCoK5pL+PciIu/VuDkkSfGBxx4CoDR9FkKulQUVWgRaAhwEhAcl8LV4gNVLHXBUjtWJiP53xbDPYUzZ4y3ZDIRCEGBHgVdD19Hb+doXdCb4Ggdveu0vsn/fc9Ds9gXXofGiNHFfboELuwNhzLl69PSi1pQNL/YO8K/T7Fk7nH/gqILWVPQVLMkYBgJF4jSiM9V0I8D++1mDfXHbhOJjx0qBwBJUSpyvIE8N9Fc097cRQYHsF+QzGSEwOwIX1c06ZZTRHcB4U4Ujn0/m5iPX3cXLUmRioyRArAcFfUU0SKKPqO8T3DuhHosqkLoauKz+v+j7l+fLVuS+zDsl1lVa+19Ht19H4OZIQACYwKwgiRCIi2BsBkOyQ5H6KP/Wkf4iyMkhcOiadi0LZJigCIhmA/NAAQwt7vPOXuvVVXpD/moWrv7Di6k4czRunf33mc/1qNWVT5+mflL4SBYaZ7PLtq0qdnuuoxCNt8luatj5ywiYHTLgxnr0P24GaP0hsa5qw+rxVwjTjQWnB9sOi7muWNoSPfztEKqyd8+okyvY4vZ3aw5Fmn8uFnBMjKDMoNzA/oLfvdv/hr+j//57+Fx6dje/1t8//t3+JXvv8Uf/8s/RFoKfvdv/y4+vH/Gn/zk3+HrrxlSBf/ux3+O/+//5x/hj//oj8AgfP3ll/jq7Rd49/YdfvUHP0RmxZs4ZQgBtVYQZ6RlBYGQljWaUPJErBM0PI5dEh0aaime6fkLFJi7NCcTHricYx1s8rpDMYQZF3K9jfCcdE06WaEXy4zNJowM/SWu1ObP53sh83y+iavI9H17aqJN9Rq0sJTRLd+B43tk+ZwUcmTWawLAPofmMYE7hBOCiKhrIaeKBdZCImbFAytbEaT91kkUoc1gqWqMJaUCUNdGZmqVIKWMu/MZX3zxBbgsuHvbsd494eVa8fTyjD//cEVhwk9+8hf4B//wv8Ff/43fwG/86G9D2oYv375Bu1Zkyrh//AJbBj5cn/Dx479W8rRXtEXO5o09ARGgjwJ0t4Ob6SkxbMfz6tnir95MxNeC52qIxVy1oBMR445mbs0LH4/Yt867bj7j8G/IdUicn9r+e2uar1B3xTn6iEmo/12QPSaVPEZl5BXWFNrzdZmcnJ2HbDVYe2D0mpcgnbyyzZYOx5wOXpkYZZfzpi8O8RIg5LW9VhIKwW1sYCDBpncnQ/FAUtkdy/d7bjiVKdUgU5ERe2cjglDghg2n7eo/3xRNAm7iuu/gxbFNCbBF1595l5hzVzHdYz9viJND63ttypMBrADbr697rlXTOKK9/p/9RlPRn20dTjpj/scsJv1nQBCzF8uNWnLGwglnSjilhMXqweb4DjPhtCQjG9AGncnqytAapFVIq2CINaNIOOWEwtqYL6VkNQFmu9SORk1zf+x2+FrXfAzR2IPXuVl9jNs10mGEFbbgzEZWthHNp3U/VeNxTjS2Q1oNwhISgFMBM+k1C7B2wV6VUGvJGfd3K95e7/F4f4enFyWd+vDxCR+envH8rDk3l+uOy/WqjWmNzOa6XXF5ueKybehdG9mAk9Uv6fl1BsIrnAnBaFBlCDyPG3FTPVfK35t91ljHP7+pNr2e/d8JI4HHGo1I95PZ+cvfyAzjcQnuh5nPQSNLXDzu5/Geya6myUcPPITcRxpGkMa3DDuggWfPzV8NNpty8+WoCyT+QcyN8PFtLfsFMQ+5OSsMDQbZ63l/w1+IWo5PNjEXws/LZus8J+x5Jszi+LV5MUQx/gIlpxByZWhS3uw7sfnchKJgPnFH444CgKxmbpAUTERTnv9tZFMjl0xrkZr0IJiam8XCbIXBAD1sB1XjEuQdg3SqoRmx1NYrrk3JplpTnHC3mqZaq9Zdml/vt2jUXPqY+Hq3MYAVQEO/2/yGWlxfnMD1FW2RGmQTmDCgb212oW8oYZfmZVaLGzVRH84MI7PJdb4lm38w/RaHMJ/YmwtpHhEbQYoScqw56aMkrDljzQmnJeFUCtalYFmy5nZYMypvlOUHMlPXZPDQKuFL0fCGfI779Y9MCTISqB6+EkTxliCbcnvK8vUEnn8ZmjgyHMeq04OznYPWvMzr/ybKYzVm7kfpWhu/HSMLuG8KP4fI37G9iqjc6y5D3S73vQx/b9IahitJEPQMu47i9wQYSbfoOfdRUTSWjZ+471oOzy6H/E5FjghpA2chMtJytpy0js6E7jUyNz7ua9kSkZJYbjv264Z9q2h7t/Q40q57zfPXgC5m+0pVm40ICxNOKeG8ZDwsC97cnfD2/h5v7894c3dWkqllwVqy1bhy1E460VTKCakwUjZCNqtX1vmLsN/ht8mnt8s2zLOTYr6TGFZGTswybe4fYvZxxJpSANrs3c9D57dPcLIp12nku7r2GXlHdi7WQOmAwqkiM5V4PPPu68RBXPNDxHIYo4G46xRI5CUJlCystxrkyo7hgpUaBUbsM4imnKBtjFBgpmLELbViN50lcP3sc0KvnhnaEG7JqKeCbVux70aOCK0z6CQQ1rq0y1XJFaVD4/AECJLdW83jaKKNI/ZMWIPQRMe3NwCtg7tArIZUAe/X55M1G94ecxUhFygw0o4Ez59RMiSV7xJ+isarBY20rspnvzYzJJRUcFoS7s8rHu5PQTR1PhWsS8ZpLVhSQmHSlJH4PansDYUCOw8O0p0gxAabjjGdSurPh13pUtJ1r8d9o17XbCyryfL4dMB7dgqO+0R9MzMouZFLWtBGpjkdI3TJHr6ND7atYcMdmdiOEQJfdXPg7kpYuVse6bbvuFrtw77v2IMctNu9df1E5kOpLmxNUJMSDTrBKic/T4HrZ8AtgIMSmuyG+T0Vfu5rjFkgY15NJFNuYUhgKce5Sb4fvwSBxfFsXmE0tRi2uNvcr2dj0xluQw2SvEEeCACj2YL/bb4SJt0OCn/o+HACKcQzz2tYAM9AYwgy+XxTVSJ9YC1OSEW9x9JxRhfFE9hqs11P+GnPN/DmHrjZElwT+p1jLZopTxpxxPj5ZPa4ysWM94fvNfywCA0dcAOLKfeOFu9MLpGdq/pqqp/Z7E2xsXRcUIL/hoYPwHEUxWOa+TFdT6i1XRuc1Rp53sOmtLlMmjYnolgKoLZ/5DzOwypd7Udztqj3yOXpIJsPagNq00GzNQUgpXvQXBIAjvsDQDSl9lvnhn9gNjeL9TPbdyaaGhcj5ki642RguzuyfXRm8Mnqi2MeFekaXGTyBUSYZkf85khEYQFc8kQoI5lKQDJSgpQG9UOKz8nAP02WLDmhlKTJbGVBXhZQKUoKYg8loRrBAU8mGGRTtwtDp9QnYs2vhea3Pv3tXzLoP/NW6hoSyGFtu+Ce3qT5F4eTjHN3wFb3SfAiBnxrsrl90xSX+mO3hciH5RDnOcxFjkU99vdtx3K5pEEAhiZ2uxFepKMvaxRE+BLpfUfvVROxpMfieU0bM+NyvWJ/ejIQTbsP1gB83CjXsV2WBefzGafzCSkl1NpwuVwAIIBZTz7btt0eatx7BxNKjAwMQppFk6+366bFTucTTusCToxqLJlt74dAlBKGkQLYpSCVRRN2yopcVghlJcRJ4zEnhYSTnSxRazKuZrXgmi6MEn/HZAJij6G78EkBGM1K/LhfV1j6NVelANARnYdDSU66NNgY7c0ofBsT/bA24UnSFobyyX4LfODb/xxL+ThO81dd+ZupDbOJ7fmwlxvRMDTtGAXfCwK8UDZNLZhgM1uYGGzX32oN4onXsnkXerIgqDAm5lk1hLe6awAIDSwNQELZK057NeOhY687pAlYGAkdmbMOW6uQXRmYCYScMnoiiOwAKurW0LaKl+sV1+umpG+ZUZbFOvmeUdYzUl4hyKjVkigSa0IvaXJ/FYE0RXCraMFs76IF7W7pWJCy94ra1aBoVZ12t/ZdVmtyAluhAODJYbU2XF52XLcrpHecTndYlhXLcoII8Pz8gufnF1yvVxtfNbUcENaylLAADk7FPOduuwRNHx2e/Y/o4OWmnbi+GcmN85pQ28uhicNS/uQ14vVtood9wwkS7aMww5SxbxIMVpTTexDrySjj/GRuEmmB2bIs2NcF10tGF8H1ekWXim0r2PaC1pQ8xGVVP8izV7KxMsy2KfEQsHvQmzkwbB2X/Z7I4TH0va5Vtf2OtsHx7thv3QNxVlYPirkrSj5XOG6RyrtRaBQSTz47A48nEMlL+kYQRJksHeQ0En/7BfHkZM0Jvs7G68mCzcG71mI/wGRX+vG1Et+05HiG6Ugiw0cTkIQhmQHJ6F0JpnT/WkylUsHt+gW9CeqyYK8N217RqydvNBOkAiF9bqLFkSllDZQxAQ2orWLfdpRlBCDReujxIZMGWa0/Hwh+iDVJvzdIrerV0egyIIARK/EEzjhJiYS8mMlW3MafCxN7JNff2NevYPNxYU7a1Zy0m/X1esXz8zOen5+xGHuy9I5unWngjq+/7wXuc9A2DAeJqT/Wn5Jx6bEH8YQT8kYRrdiak0FO7Parzvl98qcU3M/RSXz4hD7HHSz2hCGy47s9HGvlBsMdHXwk/tY50hWobx7MMxBtjnzb9m3ewiAJGH6vJ9ge/LvwabXTiAIOer7+rSC3yFooI71DLFDCKaGQsrQz2+cEEFUtGrfkT09UrK0ZCKlJZlpslJCNMFrllAEXbOSS5t/qdXUFQGyM5wK/SAS/GePb+wsAe527KPlQ6PVkGT4iB8nW60qgb90IhuqGrV6xtV2LnExeJ+JR3C6uw3QKMYAE4Lxk3J9PePt4h7cP99olJWvCdt037Ndn1O2C3nYwEZal4Hw+4eHhDuezFv4H0dSyaCHeUowMwP2wUfCgRMtLEGYvi78uB1l36K4QQJ0lGsB9at3UZ5q/7/N7AHl63a4LOT5rOaHXULRWXKlzj0m9f8ZENEUCrkBPBK46lt0T6YyJPvAFZvX/O4NYy7qZWhBNOeN+N/KrmJ82Bl5c5/PQ1693SxAGmumZvVYlXkgJGzMy79iYFQfjhj4Bcl7U3sSKHBODs/lUQmBHgM1H692O03Td9abKXJM89R4QKMiBnb2+oY/1aImv1eQ5kRVA+/ouSbsN8+taYwCGXw3TMTyCRO6HeJeO6+WCy/WCi5FMbfs2MEnrwFZbtWQMs4DCD3b5NQDlTkCyjhLpgHPpGs+lYD2dcffwgMc3j3j39i3evX2HN4+PuL+/x+l0xloWwxPLwEbm5CAAkIpeNWlU87PU5vQiGQ1UmQz2OUkxCn5KamMZMYIOmn/DiQEmIjkvFnOMtfewAVXHmI7u3n3NAQK+AS1ML5psn8fUk0FYNKitJoHhKFb4mUpGqcV8mxX7XrHuA9NqraMnJUPRJLUEpm4PtmCJF6ZowofAC41mf0/9ChBZIM67S1mXC3JCZfP3RbDtas868ZVAbPw0gZ85HTtZwJOAPjONHfv8n7AU/n1tLgsjoPoZfxvAZ12dWafPDvPtdVIog1vQauiKby9e/PzmfpSfx23ANg4RBVhaaI+kRZia0zPsvwhJBdYHYPocNMaKQfCOYG7n+nV6sqJqNp4wyBGIylbgGEmXft5dNCGmVURyX/hSpqPECkb8Ou38rBZVz8YxjfAvYTrmMz7i7FnTuM1aiGJ2GgCai/q+ze8FPhn/v+r2s2/9NN9+xvadYyi/oI1ZQ94w/ewEfeIYBlxGdCN13XC5vOD5+RlPT894enrC09MTpO2gvoPQrZOX6YKJVGBODAUAbw6Q5hgVzI9tA0PQ89Si6tO64nx3h/v7O9wZYeK6LChFkxFT0e5Xy1IAaNdijblSdL5y5z18a7h/R1PnMwq/PDYXE+EbuWgxXDyWE00B4pvYkP2WabJdp/kOTDMp7sWnM8+xB7MQjv/JeO3VqI4tJEmGv2kRcSTyAaEnGiogmpzV3H9tnozlhSKW4EG2X8AwacOrSVmRiL0YyGx9b/xQMlIuRz+4NuSaYs27XcssRlCVkcUJB5qNq2MtbKTw+bsJ6V/gpjiX2h8a0Dfy5LSgd41PA55cdLRhHM/pYr5/zB8BcUIm7VzIBE3ehWAlwt2y4M254M39CXenFRmixSolBYF+0qwo5e4gIwFjDrtFWkenBs40ikbYScPYbHtbP3bvh842/el2FY7yN9D1EPtq5+o4qL7vUyIxuQ5PFEmLPhaxT0te9IVJnTQM7Ocw+YKqNKeiURpEBp7oqzh9UzLxTGid0QFka1gFKAFxl4Zl33GqKwzQxL5tWEvB3juoun4GNL6hWBORFZBPMY2ZNGrGiRz3U6IBJyJIIcOCVGoa/2SkKJ6EPxeJurZ0Yi4dLxmYrctpUt8vGcbV+kj2fE2b42pMZE0bZMT7DGdIyEhNk5aaja3iU0P2B17ktpcT53qCCyjkiw7DLN+PcoeYwWaPu56hbmk0hjsMMoIj5tisq6VvTmzrXSz9nlf7Tk+EDR1NCHsH9gZsTfBy3fGyXbH1ht1JEABkATLpGKEQEgy3Iw783jgGlFhNlIA8cbHrdd1Fg5QeusYyafIisxNMqazPWfGdXFbkdUXKi+p1kNqOLUGYsdaK5fqCUq8o20ULiKUDPRmZkBzkJEHVXM4FuWSUnMFLgZCSdVODFpABqBBwzmgWUznlgvv7Ozw+POC8rrhbVqxFMSkiJxmfMN+JyHIpGlcs1igsJyPIYsUuBQLtkeMNO7RRDiCa2CoAelMSESFQV32s/hyhv7LkXp+XHosi6FzpaBBmCDcL4Zq9YHKk1l0xp+oNxY74laAhcUJvhqd11UuCQawiratdwgxOBa1WMBXA4ieZGZ06qFdwr0pahY6dAO4C5KL2gzV3671jqVrYimbkfmhWwEaoz0/Ya0PdNixlMeIcbU7Wa7NCowSQ5YdIBtBAVJBkxdKqFk3JRWM+goEd7DoWjru71yKGr5GRvHsRtesjToxiBQRLXyc7WgW4y4TdyKBgxOUd3WxSJabMhbGsixZ+ESNPzQqJE6SLJsA3b9DByGkxnZggHdhbA5IS1vXsBCvAKEdW4j/HLVNvIN4A02F7teTibbP77ra0yZWu82cm3vPisbCQDWfzGF3dmv29K0kCaYO7UlQuJNJi1fvTGffnO5zWBSX9lVMK/71vc8yYAdNhCZmPzSNTSlPh1YSRkPvcQZ+pGJ3pbbPcMdJMDa8y7JYnm90RA7LogPQEoQRIsuMZoRQVMBUwF/vbiKRIbXKCF2RkIw6197jAiaaUGMBI+tyWc6zBCXBmuU/DrovYLIYu1XP4tjG2ofrMFz77GyLF5AyvHPfJCw8RRIEObzg8SULxtxdrwQoeHBcfx5mvTwusYD7YnNuhNrGDKnNMQO0LR44EdCioGeTgFjt1W5iGXUJxjQQnKWZY8z4wcipKPJUyKsRk58DKmFltLcnoPl9e2bZtKk/q3qz4UlExvRczgxEwe/nqhzlRkcR9VXzZb/58n25woXkOdyfkdozP0X8yvCJF/peIF1WwhqIMzCZ4swS1i5TzUV/33rFfrtheXpSEb9/Q6o7WdohUeAdiYiMsdqJvGnNMyAgSzG7poq+DDNjwbJ/WXqxFYrYBAey5iOR4u+Y1ULcco97jMRYPbMwRWBKTE01hrF07xzlDS+z3ItpFXBJZ/EQbumjshGIdcId1RybNtQ17zXcpcTwmWAwiPoTLKbg/bEwSI77foT3Nraorac484PF738e0S3GrYJozt7iG+eMEy92hm89/yduIt1IQ4jETWquajyEbTuWEx/uE3/nN7+M//9//PfzGX3vEv/7v/gm+/vINfu/3/hNstePf/uRP8PaLr7G8+RX8d//NP8Uf/rf/Pb58+w2uT8/4V//9P8fLx2/w1dt3+PLtO7x7+w5v377FaV2VqLMULKv6Hkian8acldS2C5ZlVZs9iHU0J8H9al8PLtsixtVdx5DJBQMy7P4Nwh2dd0HoZmOTkvoHA2uwn/PAHnx9ufzxeLYdwWTCmPe6AM2fFy+uGcWg7ifFL8QwJxKQaLNeTgmJUuQM+BzspNiAwi563EmMme1ghKmeV8gql4Z7rOubAZUNTfM1VAc6i7o2uiAQJAG97qZDYYRdihl3E0BMHA09mDPKwgBn1H3HiQlffvFGc8F/+gEP5xVfPJzw9ZuzEox04PJ8xf/z//WPIQT8h//R38K7x3v88Htf4fF0wv2S8f0f/AB//+//J/g3P/kx/vzfvcePf/zTn9Pq+PlsA78ef0s/YsFOIH7IeQFszIyYyRvkGMkUh+5xZFiPEjlmnt/XR+O3yFkz24L9HCyvAYDGnOymRz6XNDTRIsRt23G1ZtteyDbbdyklI6tISJyMZMoaCSe3O2cMEgd9AvctbFxgRVTE2ggwirFFrBh6WMlEkzywEZlGfroNEs8CgYZXlLDJSZjESWumRpquAnycPLfDC5v9iGT4gMcyOpOF19VW0PjYsAe9Jql7LCbpOhPxfRg+5UT+XlAnAkizGHuLQjDpfv5znqPA87ed2Beivj1k5MmQF3iLP7ewTyUa/L0u3ANw+2JeaWNzORj4ffhuFKSQYeFNNiW5jUODcIFByKxkUsuSsS4LTrlgTQl3nHDOSpK8LAtSprBPEhPWRX9zWgvOy6IYPwmkN7R9R9uUxImNnLgUxmrHWMvUaAwYPkOjSDnWmJxMOomiYNlpruHyhyzPWwgEy+EnBiiBuuEcdizXZUEYbmNC5uOwjDUIKKFLhxLlnzKj8II1a/zv/v6Eh5c7vHm4V4Kpy4brdsV123HZrkouUxv2tuPycsHHj094fn7GddMaitYFW21IsBoFmZpayG1OvmMdTiQi8AZTsyk34ow+P+jw+ZhIhwl388eNcfiZjSadfLsTld36Thc95yafnMEvdePwq2XyQXy8ZxIVBOkUTAaS+wDuH0DCjiJ43qb5taw5956jk3mqt/R4gRfuh9/h+/n0vMnqolzGAbY6bu3G2Ucw9TJiD8PldhIOvzYbFHvP9k4y3V6ZHohnmrEEPdGjrTldi5lrY2YzLFfD9batWbd/oeuykxZ7J2a0ZPEJv9buRPiGXfQOdMUjNIGwHa7RC/G5OxmINphyLNjHbm7QIvae2hk5bB0lBuma1y8NW6vYesXWPOdO86eUbEqboHvtR2CZh9sVFBCBc7pX1wWoos2OyfM8zUeg44L8pW9tmiLzlCJA1blh983GQ2s5exALkHUD4hgNgeMQY7O5ItaA1MfAxqgAKMxYmLGmhFPJWEu254S1ZCOeylbXrDVeQU4Ns92MRFOPRTF3WRBzlVxH2Wn5Y4iDeV47lgA7RlfyDwHI6s1i8DCtOjLdQFPeBbweYIyJv6+nN2Q6xZhN5B8mELxO2XFxG0b9xY2fSN1aqAtBWGz+sdlzEmsKs+iIFT6LGpW3jg0Dum84Qa09dFzYsCGrfZnE0MEKjt95dd3Y0XRbhhz95L0hGjU3DYY7fVIx+0vfmBLavuHl5YqXlx2X646XTbB3wi6M2hlNSIntRCDw+jLStZESziXjfim4WwoeTyvePpzx9u6Et/dnPJ7PuDstWBdtIKbHJOMNIMvt0PiR+/Axd0Ajx+n2vCe/Tx0LmcroOX4T90/GOvBN7DMWJ20zHMVtIFL7qJsDGnrRfiyYiaZsb2Z3obuvpP4q3H/xnyuYcZjPrif8fCMvX1pgONJHIxNMugfSLbdQZaJ2FqgO/pqe9mPrfOxNc9c8x31stjZhtWZd9VCr1XL3h/2ISddmIiwpo5eOvVScl4xtydhqRRWrMyCCsOIv1epXvOFt6FcmrWkni4OLPoQShLPilN3vO8Dd1i2pru6Ha3kdm0cCO1HIHXEfhHrIJyWb4pA/bjPE335vbSolCGC51yUxzkvG3XnF48MJbx7OeHN/h8f7M9YlYymMkllJpkwvKkkOW56SwOs5R04UBsGp50wFpmx1BG4zAdNvYX6T3mutP0qKrXrOd8qRw84WG9faSNvEbUO22msKYhIlJtP1OX4Q2in0+NBXJkcc2zEDUm2xQW6ueUOCvVbNId2uuG5XbNcrtqsSTY0G6C1yXCKuZdcHI0rzJqSKQ3rMyuzOODuKqT8kgl9UN0U/9GGYaT4tXI/CNdtsB7rOHTaH1vFOQyYIrEugtrSTdTvJlEWcoLN0HOc1bakkJNGmoJwSwE46LxaDHDIaAEKcW/xkxpu9LsLHwImE/JHJ1hBJxJucoNSlJxlRNUmD19Sbs2WyHvCmBNIMi+DhgykGRcN9MmdI5GaeuH8pEjrUqTJ8zh98ItuXW3R+LvEcc8xieHCiOBu0YLOf1pvtzTf/qs7aDmk38zO+aU3qLP7kX/Dc7kPc3HxUz3PKiSGVzK8x8kXjZnAieHS/F4j4YOTv2zyf769fl2MnPNmH3WwF8fOzORB5m4kASUBC5Ip6nY2uOWtcAgoCbfdv5/jZIJi+tXo+v33nrBBnjKy14uVy0a4+Vogaxdh+I2Kz96a75gOoCcI+aMPI8SQPJksM4oQgIgph50kKytyWQShMKMmMQmNC1MTIFMmROTmr/YJ1PeG0nlHWFXlZwaVEgCzn0dFhJpcai2tmyZ0URugu+uyD8e035TZB41CM40J3eu/4ef+E6dkX50G5+vE/OY1JqmG6X/5bwTAWb34SAJYpSjHDNNGYmFpM7cHbo5LXFTC4CGeHcT4YwRSkFef11qxIFGq4mUTuBkx7B1YnUDqfz9h3TcxScrR2tOhfwXa5vKB1TZQuy4ImHft+VWIRKwD0ROecMt4+vsHbt29xd75D3ZVQqu4VORV00iSx6/WK54/PePr4hOtlR29a1JuMOZZByGtGWZISzECdBJKuwhIAiXZk6PsOqd2cUzY5aEZa1iRFSRk9Z/07F/RSAC6gVCApoYex7iAoQmA5q/lwdulmrnrayJieghnQg/1KnAxR33cSG5eYLjztEBhHs7k/rYNQYpoAcjinucI8eDSN1MSEsbjEj6Xn+57Amll+z+cl43l2YwMQccMecbgosonVTmTMxnZcOVwyQGQBTJMZRPBuGWRAlhv7/kik7OnZAOTMCYUzpDZw1+AqSMnKrtfXRTTlY9VNB3XRAm8t0O7YWwNvHZI1cVxIiZw0ybVrYrMA1Yq3UBtSb+hZO7V6cJhA4JSRl6LAaRd02Yx1ueO6V+xNIMzIeUFe77Cc77GeTyjrCZQLOhi75T4ogaJ20mmiCVDRKQCAzkub2zQSG5lYk6RaH8VPIAUGxMA+0uQwg1gAS2RrVQPVe61GYpWwrCuW9QROWYu+7dF6107WlNR4SbYv9qAshSHm2U0Sd8TkiFrPdqcolpGjmHMBmZuXR0PS1sWktuYV6m8OWTESP+Ljg8Hs651i/76UKc5vPE9+2TjCFOQZZ6W2T84ZLdayIEmHSEZpJYrWOSUItKt2t84U7tSyFab/DLPil7Zdt4bWVM4nA9q8oFyLjUZnEh/PkThk78yfz7bUjWNytFP8DAzg6n0oCBF4py0Bm/OmBBogViCL3AG2Hd4ENuIvnwfiTrTKVmZnw56SYeGBUVupdrrR/T3Uw3DeRiBVxyyST8SYb+ckuFs7xj2IUCjmsFhAkKz4WYQMMEro3bo79wqggEgLoZ08thmo2IxB29d8c9IPtAA7BxDStd4bhJQzBECtRlpHFOu1iwQYqtf8GcPM9SCb1WL3X4/VQUY21bt2nPZOAsQGUFlitTp6XtjmhCuahKrFB0ZcCsDJmJozF72yQPK+b4ABu5AGtGZFKLuNAyJ5HkYctG+bTdoeoHQkpUaXA08CmBxeL6ibnTn48lM7XIlsgH0fXQoVPDH5LaP4s4va383z4UhJGZc8k/ka6ZQ5udqltR/mhxarOBHS8D1HAc84By+oBxAFhgpSppDx6jxMgtz8GJcHNsXjL8XSNeG8NQfdXV7FKBzlBhFYtGuNF+EFEYHJdYECvi4blVFfC2XKsoKdJDbvqK2Ds5JIMRtRbN1DN9dadbzhyWZ6zyIRjgg5Jaxlse7n2omgNYkO7GNzP38k3bls2msd3dMdgKEEl/0Ahh+NcU/8OeccxQ2vZWtSUaWidu1s4Uom7BKGJqR3LQJjBM6sfrAQHs93+OrLt/ji3Ru8fbhT+VM3XF5e7PGMum9IzDidVjw+POLx4QEP9w9WsJRwOq+4uz9jKU4CYDZCLkGIHYmDKQVhtnbUVAi29xZEfFoUOnSVb2K+vq9611utydTZQW0X/5UmIIyiC08oVtkgKDlBlgKuhEpzioEGk9keAFvXCh3ATqy+fidIlSBMqK2GLTQnaQI65pHoaTaWr6dh100vQtbbnO5dfQOxbmC2btzRJGZwKShEWHNBXbp1qbKity5h52y7dvxSXFEgtWvRFncQN1BSPeWdKa7bbokaO0AJKS1Klg5EwJIhkM6AyZve2igaM72mdoh2K4X91otGVUa8rjWmmzs0LpsQhNNeSHfdrni5vOD55dmIFF9wuV5wvV6xezKtJ21OMkvldDewV+2i7sC++BI2KW8oMaeMlAi5JJzv7/Hw5g3evnuDd+/e4t27d/jyiy/w8PCA8+mEpaxj/ZERFLHZlMRTolMHsScOut1qdiwr0TYnt+mHjxSyNoqiAXDSNdP5EMjyYFviieTKdC6RrSmyhKQuRgxq3nDvEPaiEE/cxcF5ErMd9K9R3C2iSVIMirx4W4zgZOQZpaAsBWtdNemmaiJsF7FmBUBtgmTJUak1TbjqWrgjHRB2P4kt2Vgtzg6XVSPlooquLSf1ykIo2dZwIjjZedi1e7XAso6n3yP9fkJqHZQ8qc4SBWbFjimh43WZigBm34Sj0N+sgUNgMJ4+8Sv8Ox5c8flhltNnsVscBC/Za5re+9SBtfs4reEufly35/yhgsITJIKUz5LFmbSDB8IODa/+W8/5Ez/edLnP9cP3cHM95m/psTVhOSU6HDMSw6MIq8caIiOXAg9dBoL5MLbv8Evnm2UvZXxnujVxso58zrgFRCBMaI3Qph214Qgftl/E1J79jM8Vr/6s93+pm2eRh3khnwTr9J6r3nbixJeXF30863MiJbrPFiAchRAmc/sgkHLbmlxWeVGL41ZiyQZNXMWGjliWBed1wXldcV4XLKVYoYk3ZiFkKy4HCVCB1jFI9yb8ioIgDYY3mPwki33RQZVMphjZ0qGYneLr2V1PsQQ9IL7lcsXXntSBmxzGZHoAk//oIowA0Ih7HWJrN7Jm9k1TGgW/3v3MidSrkYM1IlRAfQS/hzY+4k626bDwHWxcU2cktqI6wBrzGLGUN8zJOYg5eCKa6mZT1t4huzrZTRq4OUluQkod0hOUrAcILMzxIklHOfNKNo8PCXRtpWkuQrzT6yiSn8mGmJWEsJuNTMyajCGCwqIdyUkD+oUJ50S4XzIezgsezgvuThnnJSNDSQRzJiw5ISVCypaglmCFW26H6ax1O0eTv0WD/bf4pW0O4REU7/LPJWwvxFrwpF79od8yExKm37yo3++m0XRqApf9bo4x+b4G9g21UU0HEx3jVwJbH55wZeccBca+y7CpTMkZwUMu2fA2XUclZ6xLUQKTknFaM051wSZK0MfQe9SYkQXaXVI0lhPkTnZurl8dY3ASYJ8fB/kQto0Nudh6NNKkhuGTsJPfBGG4mP1PA4NsIy5AZPLhpsiti3wyTq9lC5los4NJk2+7MARZ51sTVGlWR2h4JJrKv17Rml+3eBbNNHfchtEEz9lS8kS3DhrNeKwQtsPzMFSEdi+sFYszdE2Mch1CgsCyZpurdzUaDzIiZXDJqJx1fyAwN4ASuhD2KrhaV2o9Jdayd1K/kecO45aEq7UgavP11sBQ4jIqFGtlTlryQlIvBOXElpui+SlLWY3U2MiNy4qcV8VoQCpjSgfVhL03XLYL9n3DXl7Q9x3cOlrSphKawKlk3FwKIIqDL8uiPpuR2AszWteiulwASgl5ydilo1nce80Fj+d7PNw/YC3WmTQPHMZzfFxnOVm6FrYWlLwEdpVzsWJXi1x2QeNRVKrxGrV/qvmODUDfO7CnuC8gAU0NJF7L1qriSgyAhLRQLel9b2aTgAi97tHVt0kHbxv2nFGTkuUQwZLgMbB89vRD0xnRcRFBVqjYvxFeVUFKXXM5RInwCgMrC4Cm5OW7Ek2RdGA9qVxLS8hVKSVwMBEjbSYrpsBFceh9Q19PWNcTmAzvZUYHQ5jROUHYCCSg2ElCR5aKlZRYTAjABlTZI2bR2q5kXOJJudYIQY2BwMd71iZrMNKewMkcJzEjtQNGmtHBrYOz4tquP4lITVJSfU9Ju/U6huNNE4gIQUAvAKDkoJRT6I9m85lyUvKukrVpBOn9q72j7bvFuyxxeXNcR5sh7LsSnsDsCy8GDFLaroVivTXUvaLWHZt10ww3sgv2qs3orlvFXvUeeP1RLhmFM/KyYl0Vhz6tJ9yfzzivK0pOY269om3od5WrmheohfSZixLQJFbCjMyDiNx/h/HMjtnBchBBILK8hymniadk3JE/mEKWMWUwLUoMRQVMGaAC4mUiFFxR0gnEC4iUQIrJiaeyvbeAUgakwMmrlKwq6XlpBlcocpFBtOrbHDe49W/m/MHbMT2+lsDTbj87/NLVOM22r90bTSwz0h2J72kIQo/BnjQfNq7As3NpSvxgwJLn3W9zjIuCbEoPxIH3AR43SGHfRnKyNCgoozjxILA00rameKbIRDrl84b1PjB5k8gecoYs7yaT6sRGWoRTq9oTsNyJZqY8m8x/bdQBl5cNralcqbuSejqRpxacj+/q6LudhvGddiT+HJj3hHt/ZqP4D+GvzMnqh3VoNqOANTQpsycFC42bbdicPGs33aVEiXXbrBnIHsniQVzFDKO8seNrJq7HkAOfAKJQwgLcgTN0aHGncIATYwwwckk8zixi5AEWWxNj7iLXK1NjvDl3RjlAaKxFvzkh8+xH0HHqUFKp0LEgaEMXRB6IrwU2G5ykG8mOWOL6jX4QH/nbTKzpKwF3GmE6qx529EX1JOnaNHzltpO5541CBs7j88zcXF1fIp7B+QvBOf8qm7SqOZZEKEUJwHuvKAsB1FByxxcPHb/9ox/g//Cf/cf42//Br6O+/BnuH8/467/128iPX+JP/+RP8dWv/Q18/4e/jn/xh/8C//AP/gn+33/wB3h3PuPd4z1S3/HXfvAr+OrLL3A+n7WR7emEZSlYlxVLWZCy6pmUiuWWACBG0o7PWpSV1YYBGxGiTeWYb0Y6o/JyZFhkTJgG5vnug+BFvoi4F0Eb5aqd2wdJlcAK1WFzH5j/9XPy4q1YI3HjbRX7+VEPfaD6StAxcFZMzyHDiC1vRZRg3E/E9IJjN7G2IdaghlTHg0yF+wUMMhFv7udr3Fqg+KdKSOQFzsxwouNu/5B4ns/0Ox9be92MrIZTwsKEfGVkBr54c4/WBQ/ngjd3Cx7vMt5vDWtmXLcN/9f/2x/gv/6H/whff/0Of+9/9R/h9/7O7+LrNw94ePOIkoG/9Td/Bx++ueD56Z/+XNbGz2sbNSyMKGWX4VfEfb0hiBIfY5uqw+7zYmPFGuH4r839aPTXGnqtk12hclR1i2J5c2Gik8ZHoxEnvJya3e2t4Vp3bK1GvlNKKcibU1Jf49iQrKAUbUqWUoaSH/v6Uz20b9dpvGDE7po3ASJQSyYDEkg7+WruIaCvyXSVz+l5bRKiqE7NOQNvQmh3Iy/sJgtaYG8wnDNULxvRNzWzl1zejLhz7L/a4UnUX2SMGAd7AZlhTjyRFhAb0Y/hvIkgVsWl18eG91Hcb+WUaqGnPU/1kGcmqjsF3ohCiahEWpBS+EMmQirdlxavib0+Fmi/ji2Zzh5+sVsA/phMM3E53E3n+2zxInm3AWEekBVZQvH8tWSc14y7dcV5LViLEk2dc8a5ZJyXBafTGbmw6SgBMbDkhFyUuOO0LMgpIZHex7ZVJZuqFQSNA+REKIWwlIyyFJRsPrwV9EuFYhyTDMjJYzGWk+C+p7mTbpnyZL+gKb4iomSePUvomjnOxaJ+hbFIhF1MJv8Fpnt7BzUlPktmkxIJkBmFCk6J8OZcsNc7LW62AufdfJ5qjWdfXl7w8eMTPj494en5BZfLFZfLVQkiEnDddmu+R5pf2CcyvWGgqs6ENmXx5kcCGeNmMVWBIMhKXMn7JvOL6f343vy+hOiZ52PgIpP8059rAzJvEqErk9Cnw7yGzXMHho0hQ/2AIy4dYX4zgqNcKXwns3nMaA63QNmglRiKDH1gzSvMrDHKQd7NhrsMgtuoR6GxluEyP+wRDJ06XVuYQ1aH5ljMaNZMR9+G3M/AjR+EsMdC34yhsM+9ZsZ/6+cw/hjnRnFNvh+3I0Oc3V4Mhg+iZKKsOZHsvvHISdIcMo1hqrNIKuPb8R7qbjuoC9jsYl//43N/TB7YYd24PeQ54iMvcu8VW29GNKX+8b5V7HnHnieiqWqxGFXdYX/2IB0w/xFO1qYPFsHe1acWI/zRfK9v8xJ/OVubdJH7Ivo3zD/rkRPdTGZoLYVEjeJQB+7oAj4ngiBAnEhh1CwRAQszlsRYUsKpJJyNGPG0mJ4rSUmmspItas4AW0wTcGxC5a/5ExNZr+fuz8uyQw5+3MFWork5EmZnCr4LPXkJB+y2RsqsmsOPbmPc/kI8lhhjb//awHqNlJNNub5wmRe2hx/D76vXPwYRhJ6z2to+mXW8xro5+ql6mW6zc+R0xcLzExAlgAAsP8HktJumQc74ySAOOe3Xrw+ZHuM9n0fxmZvfZN4OOfb6yramNSXPLxuerjterg2XBjQkNCJ7ANVqlkgEhQASQoE1CssFj6cTHs8nvLlb8fbuDm/vT3g8L7g/6zpxchu3wTIbEXsXoDUIBNUszZSTNgDigfuLjPH0XAhzWRTjhfkGPsJtYGliMVSv+fAbp/Jyqrnw1eE1TQRok0uvPNbJQNMa6YJotCmgOF6Ql5Dj3lr7yWQxq24yaF43fTSk72hoUtWODN9GfQ8lz1DLCNItl9t9Eqtj7E3xmbDvYWOj+RFNppi550vGpLAaWMMoWt8BNIXL3a1qHdLNZ7N6WGJGp4pMCUsuWJeCdc1Ya8LWO/auMYZkcyoxBeGyE3eqby2gKki1oVRBqYKtMq6cAF4Bz1Gw/GP3XRgd1ORbsexf5tajgYdOHifZUx/TSZ80T1tlodWOG4skiWhztdaB2s1+VDGZhFAyq446LXi8O+HN/R3ePJzxeHfG/fmEJTNyJiQWJMvtZhHDrcTWg4Q9Fl0SPO4Ei88Zcc9gGuKwrXwb2IPpuolgCjTpCvPh46Gg+ZEEKfbn52T2pWtXx9QOOObt6B9zX1T/jjoNrVX3uspmTUqvuF43XC/qa23XLTggWqvhW7k+SUaY5dcpNLB7DTA1RBMmYiXLsvjF0L0e4xz6TWNZlmMggsBJZfjxs54N1QcfExkfzCMigGOqQ1f7jmD60fQaBkuM1/Y7Mftr2lLJyL1rfqDXbSXFByXkn8+5eViGTzRIttSmTy6nWHGPzErUNhNN6Y7aRGBksnl6aI4ggrD6wN0T46x6lWB5br6MYF88mHJ+F6a5T2J2PEczodkvGevISPpgfpmM3MU4JZgMMjt0zh+L+NuNoBW6mQ9uaE37I8PvKT7HuMhwn+Z5q/euVwCJo7E0MUM4abO7htCRzeMUXWt2FQu13bucMB0Kq8tFV0KpsN7MVuPgm9Dfa7o4xbW4jIONEYGMAE+JBZkYrQsqq75WwjFYXEDljdsWEGBEQGxGjmn5M7fvTDTlLHneNW2vuyZKkTOVuXMgITyGcHFj2++2D44SUMAmUhSLTIZV5w5Y4B+kgJsyVxvDFwM5CTIDhe3vzCgGcOSUkI2tMKeMkhRIX9YVxQD2ZMQ4nLUgLxnZFFuHhznpYi7W0Xk4imWjkCUcrWOyyrz9VYokvtN3Z+cjZsHN8888CKZFSce/yRXK535zfE2f/fzmw8OOnG7g01McAorMuBhzS8dEg0E9kmP0nvepm46ShllC42KPUkCNXl1y79PzR+SyoCwriAStV2xVGSp7UwGQOGEpBXfnM76wYkdmxvPzBdu2WXKNCr7tuuH54zM+vH/C08dn7FsFESGXEkUSTNqNMWcGSBNnGEDJ1m00MZoZL/t1U+KhVMCkCTpK7JrBywLJGS0xODOoFLSU0YmRlwzJGUBCZyXLUX2ihtuYFiZLyKt1xOSL/elGh3tzto3EAFc/Nn9n5eyZ+8ef4pNZF3aMKhEF75NN48n7+2TGjmDOzDh+aMnn1xLnOmmv6MFxOIlJbkwafFKeUdjjV3tjAM9mwDh3hLz17/vRNQFInQW24Feyq0vQYlLv+p2I1IEwoqm9XzWBmhOIgeeLFgK/pm1rGlH0JM5uznqCsjoyOriMgnryoIcoWRQ3BTPq3tD2il4buBLWIii5QABU0aCDM+JCtEPh1jo262ICzsinRZO1y4J8WpGWE6isQCponNHgPaf0npAl7VYHnsiNCp2vTQQiDSQaUCYhSO9KCNmtONYCS55AIGSJrK3r/UxqXNTWcLle8XK5QIxkoCyryiZmXLeKl+cLnl8u2GtTQ5lIQeUOLSxmHbuZoKVDBvspYLaABTc4KeB2sCkAt+4OK5VU+if/GAZYSqQUGcxOfcUAAQAASURBVPP8lObVfUl2TUokkxa2FH39UBzSdJOEGW3GrJ8DweXNkEn2KZsj0E1P8TCaya6b/Hx83xhdbGEJj2x6DLhaMiNj3zdcLs7Wn16ZK6Xb9dqwQ0lCU2agE7ZdE/MSj8R4t61yVvvMyT2dZDRZUbQb7seiwVtZbpt4Al9HkESo5ayJrKLB4khQM4coiE+Bgz07b6F/bpnezU4Z83oO3lgiBFmilQXBkl2zJhP4YfX76pxPZBpNiSRgAajhgLmN5npG9xLgQCRT6Nci4barrSxCmsxvRaU9MVpipM5aYNoSatPn3jLaUrBsGkTfa7NgsQGJnaxoQAIABBGosRJNiYIkl22DGNGl35rZMfp8QYgld5mDNScpa6BaCUhUX2lgYZ4PIjgQUSQREFVw1fuBTEb6RVogIAJwDyIgB6Re0xaJdb2i1x1tu2C7XlD3HcykiUNZO5hABK3u2CJFWYvgCaSEYq1Z8qwWHrCQMcmL3ZNBWtF7RzWZrwmHc4J6QkoymSqaqJRSR2uM1qoVn/n8llg7re3YpUfSOwBE4ax4ElWDF2TNJEVKckWxZqJw36YJWTGZFn5Y0LQ3CCxQZgl8s2wR0KdzkeKfKBqcuxDOxWJuz95iG35dZHor8IBP7q/Y0vXiB0YuCQtnK4xIQSRFVtiWs5LLlFrVr00J1+uGfa9GTKP2gCfAZSC6F6aTj6cXGBC2bcPwt0xeG6joXTF679gnUqtWaxBN5bIip6yknOPCdPysu4/v+zV2eaii81UT05x0S8//1iMmwEh4NTc0EZAT4bxmPJxPOJeMJTH2Vi1peIPsG9CbdsRL1nHvtGBdVyzrgnVdkHPGumpxz7ouVqS3YjGfNrCKiWQgGSmUrqW52EX1aEp8eM+3ABfh80/9jkicTFNi7WE7Bs3MXQMgIXODJE6aEhlHCtGwgHzV6GOwrDtaPYP2XhCgx3J7wAhZjeZ9JgSYvxPX59fsD7s2lg6GdhzvktB6R24dLTcD8Y1UyogenHTRSWtba0o0VZWgrHZRO7sbaW1r2iUM6oP0rnIiMQOlmP3HhpFZIW1VwgjvytmbEpx5ojQxhe5LjplBZZ9jIY5nvaZNbI51sc4LNOQNuhXS1Q2X6wXPL8/4+PQRH54+4OPTRzw9PeNyueC6XbWjTe+Try5hX6v/ZLK4T1adxZLYyYRSMnxwwbJkLGvB49t3ePfVO3zxxbsgmnr37h3u7+6xLAXZbXDHqqAJqN3Bc5hOSYpXaT7yhA2yBkLJixMtkdXxLy1Et6QjESXatISENJFZe4BcHxZQAmDZCpZY62QS2sEkiDfdzxTrnGudJEkkAgK6PgxqJvfJ6CAv5IA82/VbEULuglIX9LVPRFO+dnQN1KaEz7l1tJSCbMpqZ62IByYbJpxnwm00MYNiPQoAr9nJ0zkZ3IzWOuqu57NX7dCpXdO9WFXHU1JTj7MPYN+7sAxIymXj67IVAZgcHASePnxh4si0LmL7WddBB1hK90GH2/+5fdAn78+glRyeRYZ8hs1L2Dp2rorDLmL6CTyZydefy3tzn6azGnpBRZHpGghGkUE/6Im58QLZDkdRquJ7RJpY4D4Z4Db7sGeb68Y+dB8zgYWjo5Hr28+ZovNoqa1o+3F/L26L4x06c8kwBv2ZmH3fAptwPCS49G+O+/OY3/9TcIvX5ov51iPjE2YQhqgMP6ZZsfe+bdg2JUq8Xi64XhTDr7UCPPSEd8GZCze9W7C+NruHtFg6cVZ8xfwXvafNZJUhikkLW0/rqsVk59XszmJ60AOmGmtLSf3zxAShkbjHNufFsG63GSdVqBilZbDpnJJRsO2Ck2JWjs0xGwzCnJiYwJjchmMzs3X9swITGWt/QHPDv4PouYDGfJrlxCxUZt/w1qb093pK5o8nJdcGsAtU93If5IRjaqATWTKp6ltmQoYl25IXtpssA4HIsbIpkdsfOU/+stqbtQuACiFGFkLqGpxOnZElAZIBuG895BNkXPOrAxhzsoQ3scJ0TWmDvXd7urO97/dORLS7WNI5nEQJLAsLTinhlBNOS8H9uuDhfMbdecXplHEqSePNBGQjEVSSKcU5lYhW8a6cCtiK/pVAVOd56w0syQoBXC6LqhRCrCkG6fynfrimUawsFj+zte+f+y2TsEY1vhMy8+jjaQLC+G0cx/+dZO1MnOC/H34iAqNTeTd8QN8PcbfunK47CSkXNdCgRPrJus9LL2i1Ys0Jd+cVlYDGhFatcLOpzV5bR21AbR0NNXAxEIdP5Pfe12vgk3BSMolxJaJByAxCLnngRjLIt1vv6qG2hkjkZ5hcNP2fWclgoDGR1ju2Xf0UWEEThinxarYobDe2FpX3+gYJIyFhZUuF63ZPmwDc1Ac1X0OaaMKaqA/hYVgl6gorGmIeiFjTh4jhACb7EsBm06NpHNnIZlur6EhBiCJtt47BBGtzC+qKx+ytKU7sMjeOr74L2TpGZiyc0EDW7IxQO2ErFWVvuO4NaKLrHRoLXZcFp3VFZoou0mSk610ErVYt/kqM3BXvKVzC0HKCMrLrIBjxfCKkBCTv9lkUD1pOK/K6IpUVnFcgF3DOyMRIIE1oYsa5d2zbFfvlgrqekGpVYqYuqG2DSEcjPZbwovc7ae6M6iPrKkpAT4ydGYW0O+ldL0pSKlr0VRbFrtZlxbIsWC1pNOc5RyMZkdyKZVlRppybnAs4FSOBSZbkrAPSRYvs1VTWokuwFnBUIuxgXCqw7YJ6rXBaIE6MnAWvC/WAkkfBbABqhjeb/jZZGgzLUNIUqQ0VG/YtYS8ZVMze9xpmI3rrnaGleppQqk1gzQZzUjcrdJXeLatbTEwzkpFmrDmZndXR2462CTaTdQmExgR4LonrVsvxkOY6WmVJr4zedoglsy3lNLCExEqgzmz63ZNFlRQq0QkZhNwqqjQkMTzWCGhGQwz3fSiKbb1BS20NkhKQMih3UDJbmRFFngQeTg/r2FMScM8q/+0oWmQs2PuOTlp41SFIyOBE6MjoRtS5e3dZIbDZzo7ZwtapMIGMZCpl/Y5jGe6H7rVbbK0fzOAOxfWlNVBvkF517C1JUcRIR/dd8/euWzSN7N5EBaqwW1OCqSqMTgW8ZCOy04Z9y7piPa04rSvu7+9xOq1YLc6UWPMLXtvmhRSKxyeUVLDkguLNGFKOYiQ2mwFWPBV+QdgyFHY8++sg9k1h248iKk9aT/a5FnMQZxAtYFqVZArJ/l6QKCNxQeIVOa1gXkFckFg/Z16UCJ8LmE8gFEASIAyxZ02ud5I+txm7+YCaVOxjkyfSP3+PLUbgmMiwjeZxdZtyYH4cWAjsuP7l298hfD/fj+fy98kn1J0AlGAFDghzMh7d4oEWyxazRdRmsxhgH82feveSHEG1najda3k/RkTm4yY2br0rMeNoMjr8Q7/OyFsVw5uJjWTZ7QgtYMtkxX4QoGqRd4ZgscK2HTBi4oTqhRIY9nV/ZVXNLy8X9N5CpvSp8UXr0/jY99W1F9TmBEX9SDRlYEGEfjD9Pv4ZNrtuFM+O7zKN155AD3jNySj+I8NGPIbVupJM7ddNG1lsuxIL7LsSP3azPyyuRQfc+9PNr6kbdhkFf44pYqwJhul/qG857QWYMFEijcM6vqJdiTEVIhj2E/iHYRUTZjHyaXz8HBtEjNt8+LmpsOPsvWsuaBNBa2mQTbUGlgYy7Mrti9CiU1wv7jCNQtpxxYDH/sTIrEKsEMVaDM4j9/fNnprx5jmvbC6Gic89Jmi5Y69pS0yosLx34wDvraP1HeeF8PXbM/6Dv/EVfvtHX+FXv3fC97/3gH0j/Nqv/wBvv/wBPlwa1vuv8OX3fog/+uP/Af+n//P/Bf/mj/4l3pzP+PL+jO+9u8f3v/cVHt884v7+PmzysiyaN72u0WBIRJvLemMr0ETYmTQXQfGoHDbtHOlVXEOvSzDqAWQscJsaU5Gh4eRjfjt+MXx7rQGeyeRHnE3fUs2t+Xod6FrArjFr2yeN5kvWItkKga2wdJL3nql8G1tuRt7bpKJ1O4fEN/PWbHGHT8gairES/HgOxlCYPl6WJ0EwImOLMfDoXs7N9JWYjundbJAGUD8irTKNjeVe03xOKZlMVHxyXTIoCd4+nPHVuwe8/+YeP/3pezwsDe+3isIJW2U8Xxv+1Y//HOs/+UP87b/5t/CDX/11rTgR4Ee/8dex5rd4ev+6KBM9BYWi8YDNWRPQrvW9UZF5HDoHbm0dAuZ4jFMrwPbrPqz0hm55UT2aStYgMezdCQP9gCNHIkioekefG3A5/ttcV/XACIMIxO2+pRjJlNbDaJ6AErAC6n5GkXMX7Nse+JA35fLYLzEDbAS90tWXcUpAb7g0bZ7HF3E96ECKyTlha+hLkw0RBcsS5xWR6ENepmJWUWPkxdamRzyfJ/JSvODLiKaYGWJFY8IjX8vxCCVGTRGv1yYGhvGbvm00TQbHSjuiiEzk+LArnM7L17eSSSkhOzBAQ/EbBCesml+7jfLatkR5vgI4BtfnMXBFbXo67JkQ7eTWiuKrhiAW0qLLNRFOJeN+LXg4r3g4rTifFpyL1rWclhwkUqd1NYyKlOSFEE2CckpYsuJdibWRck8JrSRt3M6WK5sEhBa1M2QN/rQptOIgxrYJYi0IDYLflEd+sxUzM7HVvuUxw21f0iva7P9wn3IwTRfZGsrsFCU+TqxET9YYk033ZdJ4X7MxLxDkBKwpA5TRsSpWKEbCavHH2gRbrbheNjy/vODp+QXPT0/4+PSsxFMfn/D0csHF7egmSk5Vq5Fee5NaqCwgQgOjiqCRFmY2mH3pIyHWwIfcVnUVaZUss38Yf7o1Odu7Y3PYp5s+dfsi5pr9xsmiu+lvbT4BvDbowzm4fMEo/Odzw22XyVe3D9wX8QkzMBDHogbe5q665j1a4/k0iKb8udhDiRsIiTR3iS3OzWRkajTyZw6YhWhzC7XPjCKL9G6z5zcSDiRT7ueE/zO8iRiPIZ5lUHgSYh1F0b3/PMxWGbal/UaLpqdj0KQ3D3fC59U0OWe8A/Hz0DnsJDdmgXh+JIy0bXxZ9xM1/2ZzUJCyimGmJn3duJFxTMynYqcHz0UADGdJFpbvSJT0PojGCZzevBGjsZNxDlfPSaZUWlKQL1WBPYvhiARBM9I5shyu1+WTDc1KoZt86YhoXKSJ2mMN4pzoEB5zzX4GjWn2mzkCQDx2IeGX63ojrKXgtC44rQvu1gV35xPOq+ZxrCVjLVljRknXZTGdpvnkw5cYpJuaw+CYVcxtm18UJIieb8JBYDHiV0bKYqL46MeMfflngyTAR9JG02Wvjy2NcxoPtsYK/k2dN04IOhorpqFbXY9Otv2co+85/MQp7I7ZDoETlMuwP8O2m/GMyVbXRapgE7OEPUue00mKkXDsVxden9eoVft7fD+Ix+wcethJsyjQfarPPGzIeDYZzr7O6abO7hVs2gS0Y6+Cbe94qR3XBjQiSGJ0ElRSSdGlIhvJJos2F12JcVcyHk8nvL07483dijd3qzYOWzPWTMgsSNSjUZTXQyWC5sc2IGLTZE2WoxEAT7a76gEmVkyxSegrHWfPkbL55+SwIqg+t8l0d+BYCL9lzC3LnRcA6BhQla0E83fCA7XfzTn6MBkLIggneK0OOEGkajxfADH/BoCR9OrvOzqaVMNPfN5aLgQZKaATysEJE5WIisQeRpYSc85IhbpojNobYzgO5N90wkNv9gB0I7xTPLKRxgC6DQwLa2wOCY0JOQlKESzLjnXdcapGnFgBIsuzb2QEf4rDe35bEwyCYwZy2VGS+hsLJVDOEMuNkF6Hze9EiU4e8sq27jl6NCyMkJM+f6BxT5dBfZKDZCRd1PQ6PZ6qjeMS1qIkiHfndTxOK05LxppYcxxIoi7EjWrPkYk57sK/A5QIB4E1LQ/HKOB+QcTkfI2YPnG/KQ2d4Qbw7EaoCpDpRPCp+WbyF33k/Yqd2Fi/OJ5zGFxulbu/MTgBFC7QvPnNOFiu1yteXi54uVzw8nLBdr1it/zR3kYtmutoJztXXWi0Z2INPmA5AdYMO4nFKQ7Y47B3nQR56ECNK3bXa0Mj2eVabkPMK4prC8cDbjeN8Qm9LjK+GvdZ5aZjwZFzHURpLnVfz5ZzRm09GkrlUlC65yiNZnfOzRCI+Wx/hD3QNWPKfB33rYphC5nJKrARfpslEgPwRiQdoB7EvwyMvEQZa2isIzPr3Hab4i+HsQ4DzXWQ+zp+Y7vJGpOtbicSVKcenTOE4Whj4vMNGLKKbkQBYvzGG/6bsCcV5I4x9+Mc8AEa9f1z3JfM8fJYmOpky1nCqAX0vwHRxgEzLic9SGRj7jtRY2vOtqjzQ0a8wR89poXXREz3wC+dONarZyAzARUaM2xdkFgbGyvJsfprXbrhQYq9eP6exjGnW/Md1th3Jpq6Xq/RgXnfd9TduiT4TaFJIdFQTL45SOinFGMAhBBRy9onpYcj7SawmNIiezjJlBqES1ZllhNbIaZ1LMsZJRlwnhM4FZRkoPqyIpcFKRck6yLnwTUnKtIivXQA8VQBHMmlvCjQkxCOi/C4AG+F38/0nT/z4XdxtlUJUAiHgxL83DG+1e6RuLdHi9CPcriTmK+Vpn+PY2BKQ8yCIA9uj4VtXwjlrkealhj50cc4q4OQ0KVHEKXWXZ9bURKnsqKUHSCOROPXskWRriWVbfuG67Zju17Ra0POCff3d/jiiy/w1Vdf4/7uDgQllLpeLwbiahD+erngw4eP+PD+Ay6XK9B9jiIcnWQdGzgRPLiTiAwczGAQWq3Y69WSBySANyYenYsswVW7GBVQKkDK8aCczfjWUIAacoIgbyAAA+az2+sGmc0xdkkA/W0U+M1zIUZSIQeaXn9+xPHtE1/l2DHtwX9zsxAsSBYfx/PN/k1bH5aveMD5aEj52pmBbsR33MEciRPz2Y3DafBPA23peDpyc17ufLrxZl8mAyldfrtCnExGc+q1UyRb8ZGvy9e2XferJcZoAD5Jww6g9wyRAmkVrSa0lo35HchNx1lIWXlb27FdL9i3CtkbqAKn9YzVSJiqJVGUsqBY4fmHj0/4s2/eo7YOThl50a5BXBY0JlybYL9ekTuQS9eAFjEoFXCqcLKzZoEegZhBphaEBnw1EYNTwmqJg8mJB5yIAJqcUvddO82lhNp2JZhj7WKcc8G+bXh6fsbLywtKLri7uwPngst10+4llws+vv+Iy/WiZHXLosHt2tD2hvW8IucFJN6axRWR6ySa/AuyoJEWxx+LXWg836iphKnTEEyvTvo1iKZsHQRQZ2v4VnsJxjJ2Q9pli+7PfzUZvtNKiR8Co5oVlpLqoJEVEIziEgVn2r5j3y7Ytwvq9YLL5RnPH5/w8nLFdVOm4lardqXeN+0Uc1En83Q6/Y9eD//+Nk36qb2iS7YAaTPZwpbMmbTYwpJ+SynIRXWPPkZRHc9kU3y0rWY7zIWc2iuGTnTRgbfECa9IEf8cXu3D083GzQuJ+31wqtxJmR2pLjGHw/qhMaeYrYCEdOZ7t7JD0gNcT9vsCoIp2JyczwsxlxzUG/PaJ7SYb2dEAmT7tELLRIJGnhxrDjtpUoompmghZcsZ61KwlKJrvW9GhNA1oQoNyXyAlAyY610L/FnXdm0N3KomprEWvWqCjBJTBblW14R6LR7l2Ffvwzlku48CCxBrlvIoupOJmMP3CT3f2iqoWqKmjRQnlVWUGGSFD+KBjFemz5Z1hbSKLh3bfsX1esHz8xOen59R9z0cTwJBesO+CfoOuIvqhAOtNwPzdzQjmkrQ4imfP0FIIz52bZClGTN3q07IM2yWA0ERK4lZlzR13pOw853kby4MDdKoQ1IO4nPHCTzZozf9rXfwg4NtHoC165HkAXNL7puIpnybj+Pb58hqbj+//ezwudJvw9v7zD6SX2ck4PRP7UViJe0opWAdWXF6VTZWSgq5GKGQFnVdtx3Xy65rR8Q6m+8BROr9LTjZvXL7kljH0osznUjM702tFbJt6K19QlrkgzgnUfWGCILXWlGN+HOQI72uNabEaC26eOjmAneSzWYnMBnDPCnJ1GnRguXTWjThx0CkXqsWBkFQWDtALsuK88mL9Ip2kV0XLKXgdDpFUY8XhSyLd55MSJzhJNhxTy2I6zon/OTwl49EU+FrGImNz6uY0+w20wBEAVgi8DCc3MfUpT06SLamRHajQ+PBIdGx9GcHVO3zI7Jg58QaZGaTSw6sz/rzQAJO9Mk+VO5MCYi+L1AQmcgU1NLEbpNdlmjl3U21s6fqqNqVjHavFbU37L1h2yq2veHalDi6GdFIB4I8MaeMlN22ZMOTR6dof3hBRiTb+frx4H8apAPxvbCTX+Hm803cnyd4kWCtiju+vLzgw8eP+Ob9N/jmp9/gpz/9Kd6/f4+PHz/g5fkZ1+1qXWAtAU2pk3S+euBEzIflYd+UxNoF7KSJGvd397i7O+N0WnC+O+HLr7/Al199gbfv3uLtm0c8Pj7i/vEBp/WkBelAzIFwauZglc0zsSSH4atQ4IkR5LIkw1gJYquClJRf1EhBojTGzfYVa9uIptgJu8kKuyPI2UeBabdwDDU9K0+INA/N9bLbooQWxeLO9kMjZQ2ekBd1N0QxH5EBWRcQ3Ac9zunaBKV1W2sNTRJaz4q1U9Nx7ALuVuQnUGIXHQg3vc3e8wQM/xQRNO1dExjnv/dasW2bkStfUXLSAlTzTz3pU+PD1q3J/bfJ7/ycnHktG7P1C59lPm5dnhlP+suvItyO2XGOn/9l4yDf8np6b/KNxnsTFjDfYFgSBVmQ0383+XJEfl4UkMTtSSoMNroJ+xzRZIcW+/XiUy1mkpj7A5NQzEGsG5rqTi+Ycb3orx1nA1RuCYQYEI7gzjHs7UlCI5A90t7kExxDputWWeFJMyNQpnwOmuTUO4WZM9+Zg7362Xs2f+/b3/N5J9/67f95btu2A1C5QUljVWzGYRe1lxXX34Jgarteg2DKE+298BYW5Ktme/RajVhFCzNbA3o3YhROyFyQy2okwmp/aUxTwNxAqJbYq5jd6XTG3fmM8/mM9aTkiu4Xqius+FStO8BsUbmBe4UrTo6jjDnqxThA1+QcTMuVPanfZeaRwDRsSPRIPnJQ5SCnYupIYGvaBKPHwRS7nXZsBb6DnEDf7lPaaFyHr3MY8Q8xkEZyXiJCM79Wunf1E1QhJXdoos0IfExJuxxRAjppIXQn0i7VOmrw+AYIaAyIFY0LNPkxlRxEBUTDb2UiICXkRRsetG6dSokhVNEFii/beErIV6v+kj4ILXsP2fSz1vkvY6Ok8SMxOSaJNcmwYxAsAIEdpMQhs0cihxFFmY7PopjHwoT7teDxvOLhfMLDuuK8LliWhGRdy5nV1uGkkGLOCZwVC6FE4MzWrSyDyYimeJAAi4yO3CNpAuit6ufMB53n5Kl+j53kqWIURyqxUhoNgWJN6rP7Fy7vNW5mPp3jB4RvlcSRUI+xH39/HlPVy575rjuNjtikpiezNijpRJCetcNWEy2eaYonVcOVlpxRV40tbABOrWM7aaHbtu/o2DVRt4/YthaGKdkJJw4CBb//7gv75jgGUdfucnS0kYBZqpktPMsqS8IcdR2aqEGkxUqeyJZSRmtKhEVNSaqY1OZuMxH3K9iYOApuJMwNnY8MTWSqlhzF5jL03k0FGNlNa2qLeaKlQezhS1jC/LCjdXPUUZwIwPxXkJYsNniCLoC9AayynO1cEzvpO4VPMDACS+4hIyMkjmQdJYHR5h5I1v2ZEgT6Xm+EfW/YF2vItBM6iRKjpYTTcsLduiIRUHLCktyX0yToJIq9l5SQhLFEUafG4BMbYV0a9iknJb7KmVGWrHjQukRxaF6KFYcWcCma52J6hkTtiZIrTusZ9+d7yHYF7Ruue7WEQwayJmy3lEIeuT+pvpwgQ5CYIZTAtnaXxNaISf/mlC2fJiNZQ68laYzVZVfyhm+5IKeijd+MWCp5no7hWWnCs1S2MIg7IIyOBiKzmUVt1r0JnreOp2vDLpogBSJwJuTcwe4zv5rN5L8YhoQOWCMIcrlBCBw/kRKQ9NaCOCiZrgBc3GsDhboTkFiLCmmSzd5oyOI8nSpob+hFictTVnmWmNBT13uctLvv3ruSbAjgXS0BQlmKXY+TGCcQqtW8CnrXDqsCRqsqu5m88CMrGWDKEy7YLRRnOqZpURoIKG0fMQFRmSKlj066jjv2jm5Fin16r7nRaliQJHInSfWQ2YojMdNiH6yEoI5PqXeoMrv2in3TeEtOBYDi5CJAa4LLyxX71rRgWiYScMIohikMzimI/B2zCqKpYbGN87X7DcM6em9o29Ue2lyiG/l6rUpsu2876r4jYi6Y8GDzD3NKyMsZvNwjW0PGSIpdivoJ64q7+0G07onM/K0WxC9v82LebM0cSlFM3WXvodu94W+w9QeiSJpni1t7ngJbaTM7bkfJMCWDMwNrUcKNQSCRwFSUMIoW+7wAKCApIMkgcRKqE3I+gXkBBX3tAkbRfdAK0AJVrPbopD5DyiBQEK3pOYkl1Y94gMcTch7poDTJf3e0pjDWYRPT3+qzDXtPP7N1yv6+H2D4jURWrxMFbJMNO/0gMdTfNTBvkBIRqJOnlCGS2A2o1P1bonsX9D6KUQmEzkbWDCMDowSmBI/HE9w/7egNw690F5TIfIwEkDcXA7w5nBL623mZTZWSFa4TQfoOtB3UKwgNGUp42xODkNGlho3p93IU5L+O7fKyjRiPYxUyx3iP+T4AohFAxFFk2NgADcJc+FgbnmALzHOMZ8jRiSZ0XaqdGjEuckDL/V5vODRiOL11tFqVZGrTgo7teh3EfPZwIll1oZTQguMQ84VYDl5XhTOap+ha1I7303xnkzcciEPE8AQwAkoJuywKxW0RDXnuKA0d1jJZDmZglNMjfhHvTbZXDLvrmm76yYpVBMhd0FJH64xaCbURuBGoAZVMr9vYqM3TJh0HHG6kfWc6sKq63lUIQM/PY9Pq1w7McnImDvvU3cnNHBpfHLLs08zPX/YmVnItIuhNm/VVaihJ8OW7E37v7/42/uZv/RBv7hIe1o59f0Hrgk0YP/53f4Evv/o+CII/+qM/xn/1X/yX+Jd/+If4wReP+P7DGd+7X/DDr9/i4e1b5PODNo/1/KtlUQLbYrm+TCBkJJpItMnzqyh8qCjaQrIcmuFFm0Y5YCEJXthmeQW+RmHYu1Z7aoxqiscTi5L4icscJU2nwIjmSaBrlQyXICaNF2HkgjMLxGyqY1EaG+GU/i3dmskYcHLARESvvwNAFVBOkJ0Uo7TYgM89Jz7U3ArDVgUmM2z3fDulHeNXu9fJR0mGToy1bD/yxlO6E8UgIAI2khKRpPPebE4lcNS8syZKfEQEnM4r2ssF5/OCr754gw8f3uBP/+zPcf+0YzMS8JITamdsreJf//hP8V/91/8Ab9/c4e/9x7+Lt3dv8Bs/eovf/i3Ch/f7z2l1/Hw2xQr09Uym7vKoO7ZlGBGL5a5qJandHAnbQ/EGMrU/cDEni9FC1AaR0cxM53ANfSreXM/0lhMVDsy2R/6ceE2D6UkW9fe8OCy5Fcma51+CZDRHczKCEgeiT2TgAkjT3Ia9SeR8dNu/N2zwonZdt/pg6eAMJBmEHXr6VkfjyNkkj83dt3nbo2C7Q5sUwvS1tA5t42skI4DmcDjumIx80cWFYVkiAmkeKx44N1kDe0mMwdqGKAz2xouaP5PCf/DGUu4LEHk90M06jOmhhf/S1ecnIx0DLIYZdorG3NU3bhavF9MFZkPYTp3QgC03RQmHK2Y6jFezKcsFbiszPGNjvD3meXgVs9+Akd+nmkZxkpIYa0m4Py14OK94c3fC4/mEu9OK85JREmHJSevGEqMUICdYUz4lGDBzDIkaWMhsK8s5TYRMCUgEzooVEgmkXa2JHw2fw/yZqJ0Q0z8h3Gc/S58999zzOcRzgQIPcL2hthDbetf1w75kp335uRMKZ8XMWwc3QusAd0KSjtb0NRlOH8XZTDfkB2aPWUOvvXbs246r5VBcXi54enpWsqkPH/F8ueDl5YptU7JrL5C+vFxwve5KAm5xjk6MakRTtQtaJzQAFU5GAyQhVBkmo7g+jFqVMa7hMvj3MNmWMccw2aWGI30GywhbgiZ8oA9f5DVtCnkPG/pwdp+BaZxshOa5M31ZfD9uA8FxAp1XmZxgiqMRTskZxZsIJI7aTTZCAV8nOt1pWiOIYwZGKhK5o2K+nBihTDKSuORYVpBEOb53e+k6t4fb40QtFitzPCtkuepsxxc9JhFy3Uw1T2ukm6NZEseYjIjbMtzS40duVoKZtDY87A7HL2wcY85Ptsl0HyN2JyMeD5kjj+NMY3rbv2TnLqrcbajMnmFA81MYlDqo6b3gxGBhNFKixd7ZCGDtiDPRlAC1MfYgSDRfnARMXePr8AL4m/F5BVuVsULiYRNCTFZVQeR4dltkfh0um4c8bQff97hfXSeJncyNsS4LzsuqRFMnJe44nxasixJNLTkpYU6iae2ZxRU2qmsUgtYjcsyboaJsTRnBVOKJwMLrc9LAR5ktdke+Vif/xW4m2QPuo9GQzxOEGGvJXLAxN8Vij8xgn5CuWw3L5elBaTRfHfnJYtjcwJ8Qx3PM0mPs08nINHY2Zz1XbTwj5rQtQLPR2Ox4Vp9AoPil+x2G9WDeRxcIaw2Py+n54dTBTIoRJVJpkGwNctxKmQh+1CfnSBaLyfu6NhF4Y2wQQ6xpSIXmcHYiy702G1lUrmcG1lJwdzrh4XzG/fmE+7sT7k4LTmvBUjJyJh0HTUyI9ZUYQzdZEywRWH61r0gxjOBQpRj+va7jfqgv8vzyWON9dkwmu22aiDoF+rfKPpcdOlQCPwTm++p7MvnvOe/6HR6yV8T8UG3+qjKpG85hMlwkjqsEeiPvSdBg7aLi0MQEb6TppMQzpqenNfYp3f1K8yCjLt79gBl/HCTBugsdewYiN3n86/GtjMX8tXPTZnxVgApg78DWO657tXpFAok1vnH7231xUrv3ule8JGAhwUJAgvkFEOcS0TkZ/rjgNZL/ap45gIkESO+xy0ed3x3N7DS7HpNRbHHZbERrGm9jrEuOGpi704K704LzWrBmjckxAEgFGgIPZEvWFyMu8jyl4QAOu0ZPdMwXtjk04kDqu6jOUyUSttuk0zzmDhr59ur6SxCEUeLAAOyw48VwDRBxbAzZMBSg/TOvcbJvittvZre61BbLmW9KNrXvFdu2Y9t2XK0ZxuV6xXbdotkHG0aRs+KyCQC84Y1dZ4cKC+oA9yGOBhHUNNZuo08xAVj+xShFM/kDw+UDpmXFiMRrEubr0/HwOgKvxvWDRHxkFoDietk4CMIAR/A+jH9fzxZ1blnj/WUpWARAU2KhbnJUt6H/h+swy0+/H7rWMikXjnPiZCLD43RvHY5HWg6UcTs4AseA4R4j/gOMYdep6TYexxw6zGVbo7dWxGw66d/y6e/0xXgWUv/u1qcRmubo2PNoKqTv0WTfjrMQFwl2SA7y0UMcbHzB7POxDv38w5eyc9C1o0ludtbayEs85heZnqH/CHrO3W9pN1svMDyv07Frsqv1WibHgskSsXU+mBVNvhb0OjWRiJFixEwzkhKWUSJwETSWqZatWZzW6ttEwh9TEcHfaY19Z6Kpy+WixUC1WkGygd8x2Xz7/GGPTtjMOI0AB9wo+SQICgclgOJOViKUTMqUXZRkqpSknxt4nnNByUt0LlPSDu00m/OindqyvsdZu0HzoUvwcJqORFPmSB2EMIWDM4I703WJT5ObcfmMYX9bzPyXft8l7GG09V6QL2Ynd/rMObhhPn57860whG+PMQvzoSjGxy5xnNDBDPDp/OKs6GdPVzmcgxyuOIx7B52me5hzjqTvbPOglDIVQbyuTXVOx1YbrlcFZVvVQETJK94+PuCrL7/Au7dvUHLGtm24Xi5omyZH+Pp8evqI99+8x9PHJ2zbBohoobMDcaTJMSmr0xsdZinH2EnrWoB3vWqhCiWkXKzLarLORQtyWZDLGg9OK1JelHQqF3BelGiKXLC5MnKhjnhWgUxjXsCLTyXm0wyZCoxg2ud6vE/TLBuC9VP59C2yi4YZE3sUP8+wZvSrtttQeyK3e/vkGMcVMO3A35dpaODzn6bXtxsNBxMSSlhAEE7wLGxfRgRX1P59c7YjiXNcuRfnephUdbCP71Dicwc0d0I/f66/vK2LJn/u6MgMTcgmNW9bF2x1FMWXbKzWVUkRtrorw2NX8re67ZAqSEg47w3rsoM4Ye9a7JxLwbJt6CA8Pb/gp8/P6EIoC7Bk7eiSocZFbxV9a+BUkSzpjziDaQfAo4DWlL2h+wrUYdyFWiuIGad1xVoWZCs4V33rgHlXsshmxbvmJCW2rioArtcN23ZFbQ2nddWiR0p4uVzQasPz8zOen1/QWteE8rKg9abkM63jtO3IucDRxihsnUB/N97C3iSCl2v4UtNQon3/oKPMboAZxnDdOAzdWFkOpLrDjHn9fWoUH0xeOn7BjzjO9zj+8csD0dRstJoW7O6bmuHZO+p2Rd2v2LYLtusF15cXXLcrtn3HddtR9w28A3nfcd0yXq7aJWZdC17blkvCZRNcLk0L89htGkxOogWoJpIRJg5QFEDIqgETDTtqDvJMYiicMwdzyBmapsxFcY+UAXR3s3o4NMfNd+pEATLup9ycLCj2TSYsneQmcHsr4Oy9mr9oTsXkEA3dKMMJEOvYZ0ktPvM+J2LpdkAimODeiZ+PBDgwE0wxKemkPswJZbW3F2MmV6Kpbh2QDQzsKoOQNAFtawpcFrGEAE5aTtGUOZuZkXIBmiaqCmCkA8rKPYLk1hWkKQOvJnPJWPNArO/WtbDb79EIpEx31IDpfR/d2QSCDCdsGUQsKSWbSq9Ll9V9U/DSAPFuRMDX6wv2fQP1BkgCekOrZAkxEusvMaMzh75rdY8O1wT9vpM/uY4QUdKTumvSWW8J0pKSkDXtYuv+0CgiNseUoUEsIXTyAhnx//W4kx0FWPCgj2AYYawrQB377kVwk+sR5BjQ++rgjct7JorE3GRFwPoFP/oURDossBEYn9/2+eKv/dqiYNemIzkpqZB19rHzIivYrJpU7uQkXhQNKOigRLJ67Tkl1JSQrPBISWt2LWgzG36hJdZIb4J9V7+91RaFQNIFZSnIWddnyYJlKeHja9LnNLimo5VYctfgss0R9rG1jTkD5MCQyhrFbLUDoxObadE1h554LZvaM23YDUQ3OkbvRk4TWAdNVltKxmlZsa5KHpWMtK7WqkSfluiZc0bJGefzGXd3dzifzzifTkEudVpW3J1PatMtK3LJh+KQnLMVSTq8Bcz4yRGfGduncxth9Hz2F6KA0whQxdvwpFwKfTqTJ44Aze1Dz/V4vlEoDIDFu02o3uCbc44iad/n/Fp+NtEU7DZi2me3hOguEkEIIS1k7r2jUUPqPIimZBRKJFHdxNLBPYG5IeWE2jtSbyCqAO3ouxVB1mYEVaOQ3AsBXMH7cRR727X7X8iTSU+lIyF6MnyqT/6cE2u/Np8swFsH1E0XR/GckQC9vLzg6eNHvH//Ht9881P89Kd/gffvv8GHDx/w/PKiQZZWweLEkPYYnEDxvnaqJJSsXb9OpxXn8wmP9/d4fHjAw8MD7h7OeHi4wxdffYEvvnynBFMPd7i/u8PpfEbJRXWiBVhFhoWqk3qS49BkgMhiBh1wRVgxY+g1l/qWLC/shBIwEilL6gfMv+LD+vEEqbD7yABrYsCKn0avOBjBlAfIj4iJ76N3OQTeRnITDxs95IfqNnXpGAkUOpkEqHvFuu6orVoRT8NeO2ouyKbncuuo3JGSgdtiNioD3OZkzRDF6t978dI0x/w6Wtdz7l0B+cbazeFa1cd6uW5YX16QmCJZR0F77QTDcTNtTESTW4kmPzQO+Lo21w/sBO+23frAAkSij2DYKE54NFton6oWOex7+CnH7wwRdLTMZYBT8AXr+Bqm3zjRSJDP+AIXTXofXbYQi1/XzxRYphEw9eJev3ghsQIOC85Z0vyBIDFc+iFoHANTW0/QPNlbfCTHPoOYJoJ/FPJqPCuW54VpmB9kNrH5hDINks/BOJcbe2AuJlOZ64VARsKuYuIzdw5x3X+ZGqFvef259372rm4/pc+89zq21ruJ/qmYj0dxXjN554Th+7Zj3zcr0NRCAwo5rFfphGS99iCoHPYHdH5QQuKClLQreTKSwd47elJ7XwsjshJ852T25QnrqsSmueSRJO9YBZQ0pLUdmjqTpkU/+d7wueW+ls33mRh4Gic5/H6WFzfRLPPTQh6EIj8KllFcQoPMffIBDxtNdnyczPAfY4169Hf+KZm2Uyaxsc6YdC03lT+SBD119NSQUkNODZUbEnctqAahoUM7CrkfRpF/JJY4xVBCJKZkNkJCskY6pWQlec4j3uVECV0E2XRo67BiAkFqgtw7RJLJH1ZSua7XJEaQFRLtldmKwNRsgaCZERDszTtAIe7Z8L3H3601LUBOCb3tYCjJS2bGKWfclYw351ULVE4Fd0vGec0oSwJl1x0ahy5ZiRe4aOE+Zx4Z0UyTNAYmYM10jBXU9B4NDFrY9cNfHj8/ym79ja0LssQocSxvTs4wnMMzdEMXmA3ANI5DN1I14gafk+QD23FZM74m4Z+k7MrC7UkO/EasaqB1AKLFqWwNnpLp5mzE9q01lJqwLhnn0xrnt7eGSg1smKrXwrg+d1Iot1vh2Ae1IP8SCPZdCa9zESDngw1Ta9VLECXoDl/XCH2SzUGCQHobetr0stueXizFrEniZATTtXVs9XUVXDJsDrYGqRVStcCbZkJM6UaeEpEcM8Es6a91SJJhnOMzmMPks886AzSwNPakJgCKrizg3gILdv0HqGwAJxCrr672ipMAOEZn5Dastn2naU6z5nxI0genBWAtqN53YLOYWSkFz9cLqlTkXLAmxqkUnJZVm9N4sZrJYhZFLxNE81dISdRKSZF4lo38I6Xhy+WckDMjl4z1dMbpfIfldDaScW2WtiwFaSngrERTmZTAonUyfHTBWle0uzv07YL95RktXXWei+h9BSK26Iml2tl2rH8nz1SiJ/Mn8iCv5axEUWTYfxD5eQEAUeRkaG5ODvzKm8LlXHR95IHD+6ak9/oszOhNLRISAF1Qt46Xlw0fLxW7EISS+tQ7AOpoMorJX8XmNr9oQrMm0DUtdhZSe8BsDC2gZK19FYE40VTSBlIzSTUEkTOiWIDhaZ4w1o34hLoRRu3IpUIWgLo2gNFcGtE8jlJBeweadTnuFQxGpas2+zGcTXUBodt9E9IixO7F0gCEs+phaOFgKiuIGJnFiJ4URRUndBHTX8hICViXk3V5BEgYDQmZMioXbXTRepDQeUOMvWlMP0iILclSfbqm5B0iIOGDrgzb1UxNq43F6AitzQJqU1In6aIERsRKULdX7HvD84cnawInADTxtxRrNJUyYIQyJAx4owyRSLb1BGiy5m+w91V3Nsje0TaNyVxfrtiuL0YqZTE1GX5DqxWAkm8WVl8gm97NKaOkAs4r+HQHWu+QsjboSyUhL0Y2NRHdJcewaPgMr22bE0g1MVNxA+m6TioIlRiN08B6SNEtBoXu0H0YYSgxEGRr2h2YMDB4Eve/CMwFTAtKPhkBGQOSQciALCAUJFpAaUFKq5HtqS+XeUWiFcxlHEcySIrtYwGogCiNtSMqo4nZcLA+7HgiUE4oXphpmLETUNz6SwObdVNTotBGMeVudp/p9+5x3vkGjM9nC1OXlozXbiPKhPmMHajtRI5DGXYhA/XQOJ/bGCMG5zhPN6JL9jKYrLpN42A6ZogUYaB3K6fQRY+Rm/Jp3MTt9UNjHPO/iYxw08/J5A+zICdBZqBkQq4d1/2CWjdANjCp7ZgM208toRKp7HtlcbLrthtOYPKmS+AW7l47GOW3do6djEIFHkJk8ku0SZbKvBhfGXc+7HEwxIpS1DZ3TGMUGEIaWtWCDY17q1ysVWVo3as1zNst1m35zr2hVyN9SIOsjN21Ioy14NCjjOKXLqO4T+E7iUf4KaLhM4UAtSjQG6MBoviBz0M65tPO5xAzmSaskzGKBCaZOOJiA6+K+D1PGDsEImpHdDbbUoycxeJ83AncZrzRfgd3gRQ/9aT1iAVOmuOAE01xPS0KVcxCCd0Uxw+73rAwmXOJ5XaHY2qFW0KIcRx5ljc49ivYhBp4sSwkaliWjDUt+OqLO/z+3/0d/K//7u/g7bnjh997h2Ut+PM//wvk0yP+9N/8BC/vf4of/cZ7/PSb9/iH/+D/gT/9yZ/gN7//Nb5+vMNX92d8/90jvnj7gHI6I53OmufLqs/yumoTZmsq63nxOjPUNyFmzWewdc4pg1jzZroAyJ4joDJN8U4ZBDm9Ixm5n67HhtbVViG4XG1h67svrf90bUTi9J/db3oaDRbiXhrJMKywzJsdo8e5ewNtmEzRw4h+jxQnALzRpekLJiPdJ3BKaCJaAOSNaGpHaxsoMygnxX5YlKDG10XXOLP7A74+mBhUlMTcdQyTIBvBHboXDsHwKSUx7dCGok5yz8zolCJ/RSmbm8onUaRCSAtFexUgeZOeBuGm+VpJ5cq6ZgAND/dnfPnmEV++ecCffnPBSxPsu4BqtWEVPD294P/+B/8IBMF1v+J3/pc/wl/7tQWn5R5//z/9/X+/i+Z/zEYjNuu5PD7u1G+zEF3mu/Hr2I/7dpoT113CzUR91nhLG+3UwPW9uVmz/BgxzMkSnUA9osOASPg83sgTsTI1v5gNi9TaCIp8scSD+HkQw5lOkCE23RbTU1B8oInmMEgQxKgdKClpcdtklan+NrI56Wb/qjynrnpJuo8NxTE1Bw2AFeR3AOhaxNUEkGbXbvai5+cLKbmykNc0+D4nee4k5E2m4j4rlmbz78wmFB6xOy90VpuZIV0L4DU/2ufNRETL6jMc9K3Zqb5uIQ0CJYQ62jSul7o20xT1V3UeeFzFxtetqt6B3rRxRavTnHhlm9kGk/kSNiIL290+FpcTnKptynvAaAiVSEnUMpRkYMmM01Jwd1pxf15xPq84r0o0tSTFHLLZZuhV/b6U1G5UZWVkYGRLWeBstnpb1dBKRuSh0IvWjTlhtJ7m5LPD7JimOd9O7d57t5ghg9IoQBQ0JbYCdN3EvR5kVkpEJai9gdDRXbfZAOvUJKsXSKCkxBxRTN3NlxXSz3pHEkZt3bBTwx+cEMivA6qKa+sotaNmx+cX7OcTHu/OeH68x/Obe7xcrlpTcN1xvV7x9PSCp6cnPD094fJywbbvqLWidTGCKSU231tHbQgigCpQclM4DKRxlMAsw6Cj4U/G0Nt9EMWB5tiW+p9i9/xojw53ZHw/kZGjS9eaEDaiole0Rf6ruHcMfSazfecvk/3tz+HDTBVQZqcoceGYC0xk5BzJiKacYMqxXSWfStZcOTEhGSbPhEGaBCcdMN/Hzgd+vuZjiOszd194imfZ3+CxBsgdorhWkx9uB5nqZggsc9waP0wx/Gl+SUfUcx5qEAADJ6acFvPzPPYU81MEh+5HB1dDXE2EMxfkJmrkDRIsI4Dz9GWd+hL41dCJw9fqQYblTuo4/3FGR9/H//L4mvt8TiqSEOoy4pwsQALH+gwpLhQUDFqWNvmRfstlmFPUJYqqX9vWpnGbPWX3zJvJWPWXOeYH3filQ3YhSC3VsNH9qn5jIwpkLDljLdoc87Qa0dS64rwsOC0LSslYi+Z5MMOIc2yeh11xfOhUMUvV5zUh4m+jHmI0TfrkYYQd7PrGhG9caugh96/0GE7GCMhhLAa6N+wFJ4Bi0jhJAsCSwj5We8tqtw07o5ThzQTExtvXJHXPR5vlpBmUMq1xly/+LfGYrwS+B4vhD4BhXusmOMx39ZqGUX+CIOWKOUUwEqru/T8h5DWvY7fCVk/AagMB0JgPd6SkscDETjo1sJnEw5dxe+GVqTGc1gV7E1z3hksXvOwaj1K/CqMBq3RQb4pZ5IRTSXi8O+Ptwz3evLnHw/0Zd+cVp1PWOE3kWc33Q3EtIgazkix7qb9AIs7BLpxE7XMAQzyb/PX5ofaGIn/RQDlsjbmRmyFloYhl1Gditj/m+nf55PMB9fuC8dNzH3RyCWQ8DaxfprmpP4+G8K732EhAJJm+60E41V0vOEmbxcu6k4abHe9UxDKfu3nKzXSo4+l9wnt9X/2At7t9YrpGg2dmR1P8rvUR7ydilJJx7ic0AA2EvTO2Blz3C7a9hk0I6eiByXQwtO6oNSX9uZLgQh2nJMiU1S8hnZNOmE7SjfjF80hf2za0l+cTdZv3jum7fUx2jycKlsGmyEogpfUvBefTgrt1welkZFNrwbpkq5nROGpvrGuhCRIB3QifOwnQyRoxD2zaVBQCqzCMBTG7TK4RB64xcPBhF9JkJ+qu3Bj0OLD69X3GEXSQbJPD2nG9StLgQWyXrc4RMjkkcG3iubaqhvQKXB65v9XndUmI2gL1hTS3vbau8e6m2EcBK8yQof4tm4/n131je8ZljUSq4ccCUR8eLi2mPH8ARF5DqxY1YcaCDK90o95sAU3Y7KMpwAGvneSly1Ibm+GvIY42/Jeb63klmxJectTnKa4uSGhxrp67fmsP2ahhnjmJyPJsjKvAan/mul0dwjFezu3gdvuIHA+7m+S4Xg5zwRngJxzguN3cw8nGi1vvDhlNt3dWTg7qzbaf5w76USxH1vUUYrz0+TsRTRGMVDuNw0/H8NO3PR+ON+xU8YuCE4h26P6b556IhM3qHG4mKQB4HHq6dsPOoynadAUsXnnjv3ZvQ2svxc/R/AZgDCdDsSyw3nufVx2i9xwaf2xixHadUXvTuJ5o3I7FdTeZbX8zYJ/ZvjPR1LZtaL1ZYMgK+E14uxHmtyVMdTKBQOYs+TdC1lrHZ7AZbzqh1IkxIhxm97WtMIyxmAO1FHtYt8eSFeTLBp7nrN2dS14tcFZAXLTTrJEOpZSDfZfTDQMuObHULPg8sJliDIYgpvh8/uzbbsNtIPOQVPczPrt9Tw1j4HbJz++JEx98i+i9/VzEr9WNwGDGmI8wnozEIYgQvbPZDTOigh++yj1o7sJABuPrdAQXuHr8ISzdWx+ENtPviKbHIDsJQe8Ffq9oo6SJr7U1XKzjed01yTnnjLvzCW/evMGbx0esy4JaK66XK/ZtC+UhvePy8oKnj094eX7G5XJFa82Cw9P8toISiChpQAIoZwPpVBjVrkl6216RyAsaCrQLZdZEqLKilBPKckZZz0jLCSmfkMqiweZckPICpIQ+gb+OYug0UyME9joY5N3ICPmi73YjLiOTwCP1YpqedPjLtrEP/Q59+2cHdf6Z3XxmHYU6k8+vsbENch8xyk91KG/nY2jfON25SPsge+J6p7VkBivZepwL70ZChe27q0JUi30E1GKo4GCLr7PpGm1fLgUdePFCj9e0ff31r4CMROVuKVhLwmLsn0vSriYZgpIIpZAB5Jo4nrPqot4rltOu60YIa16tWGsBKGHbd+xG+LSe75DKguVNBd8/QEBIZUFejaAtF4AY2qRHNBicNaEzcQZESVmUXdL0qiWeultFk2zbtg0AcFpPWJYVJZfQQRROmRe8NdTe9HhZgbh9V3I75oz7+wftYLquKHnRBIrWILJjWc+ahA9Lhk9qSrjeiO5IxMMQcSfALDyZ1qiYcyI3MlncqMVkAJK7MbBE6aMh9m2vPTnt277j28F8/kRn2rlP35w/o+kcwzGdnUqCEempxSkWNNbOlg2tbti3K+p2Qd0ueHm5x9PHOzx9/IB9uyg4GMn62bpbf2cz7he2dVawqDZ1NBV08eDRmMeJU9hdDqR7p9F5iwJ6jMch8BCA0PR6LvKZO4qAQuaSVuXBVlI4uvqtKWAUbsGsF9zGQRSLDafDCo4ddDeniaCEcc2SJJQ0SUIej8N7UNnOwWQ6kUxnZc4FcDjT4WboWDsoPgbAnH8r2idnAmayoAQZWQUFsKpJitpxfVky1n1FrVbIh4q+NwB6XU02cFmQctFkGenI1tEapsNqa6DUNcG9ZHDVzm4AAkCsrZmOVAddDExRToRZpkyr2XRvCyDPv6cyM5ECyZCJBMjlqh3HAaGUUujyBpmYpl/H9pMf/xjrUvBwOgG9D19DRsEdvFOaDDIIjS2obiNS0ictWkwB9rAVKwWIw5OvAQxCKoHpe++sZ++TgpW3yQmA7i/dyHn1BTVQ5QWh/gjSGAOmht8jAWx7UspMrDKK2hy+psll0YRALSRIE9GUBozECAWOhDjT+sa4Lp+b87X4Nfizf85Jg42avGKay1whCTnQR6DcO+r5te07ZK9RyF5ygQfNmnXb9XNwmSopY2ftfOaEM9o9T5nvW/XkcJ1DntyYU0bL4xoA9c2TdaEXaBK8y1Ml6aFDZ2xYIiXT6MLsmEBvNJEZzEGW17M1T6Qzext2z0fSQQ+sQovevMsOlDzqtOK0aAd16pbcvmtXeWU7N0Kq0wn3d3e4u7vD3fmM8/mkSVHryUinVqzrCUspSDlFN/YgF3IgcNKbMSd7h/c/BIZv7HNYhGYJOn4/v7aiK7VWVLMefWzdQyIKFdwNdDt85zM4hp6TnZcXvRB07pMSw7rd6PuZi8jnQFvcF0wrNcbGjzXkx+2zFyh7V2n1L7XrK6ywe3g0YoU1AuIOahbYchuFGMJWfEdALkaEA9Fi+a7AXWvTtcRgaKC8G8FVtWKI6KgykUxFx2tbg3aVgHhxveN1KqdeG+4RNpnndqJrYobJnVqV2Pdy0eS0jx8+4P2H93j//hu8//AeH56ecH150SK63hREdbv9M249JUIuHIGw07rgfD7j/u6Mx8dHvH3zBm/evMHj4wPevHnA2y/e4s3bR9zd3xkxh/ptWsjlAU9dRz5HR4Qa4W87AAzSBEG1SRK8sM3XhnMduo+hRH4CGOaoeKnp7Elfz3iXd0SHBabICHhIOjSoY12cHZ8lghJQOUA/yRH4nFOdmEzfeUCeiKxY0mUjdL+iqaFud1CmsNHLoiQNZS9GBq9F11tNyM0IFK0AUhMfxQLYXXXGLEbM7LNcfVtjs6a26UVqF/bm9j3ALFoYvjXkvCNfrlocYH4rczIiKdbx93tpCSNk4wPxBB6z81+ZHgNgSc9jjsaSEOjgwPEoGE4w7v0cq3HfIeYcptsxDqF/HuYybvyY8d4ohLRdJBp4he/d5brNIQ0pm9xsArAERtY96aG73e7HVZ8zJY7OU64ZlPxp8h0J4Td6olvkDbmY9fGw2SZdu3+RrbXeNvS2KzFZJB1MwS/zidnJEJjgXSo1CK97ZvNdYjLbOAigBSviFpSdL02PQyGcSxULfLEAZN3MCQA0GYO8bUnHuPd2aPm2yS2Hr8FWPXyEjxLF79/xvdvt8+aC2ujzkV7LNvwdmEAYSVC9a/FUrWr/1bqjtj38BEB9HLWpp85tvUOiUFwJNrS4xOSOFTekZIXguSCZrmi1omKHdP3esq5IRFjLojbm6aREFVYQNU+xwA+koTUCIQehwbCpDPPyGyV63VocJoOY73ac7ECTWrbXt7rnxiWwYx1jcp6EpHqXvFDM93FzDuS2QTxN62f2Hf2/2wXgtq9hSMzKgNHJcVmxwq5kcRIlmypl+BGqN4d/SzOrm+lPAQJXYiIj8MhIRbsxLiVjWYr6BEXxwCZd7dVmupMTUupIuSNZHCgxo03YDgPqi1qwvQG6/qGF8n95POMXu7XWFN8hAjUjsGhdO3Hbd1wvi6j9m1irmZTwglTuCwOtIxHjbkl4c15wVzLuCuNcCKfMyFnVPifSB2tiRzGiFE3kdZ2SNOGTJBKQAcWqNMkQYesqIWY3UjQ2rITjM7dpnDTUs4QFmrxMNi8oFuuw/wQcSb6GBCmuzmPuupDyly6P502LzzQ+PyvywEMsbk5ONEpeCGxr0a8p/GU7rGP2plNh9pTYHI8iV1ECMMkFPe+4WzP2ntFqAdDR245tU2JESEdiQqWRTNFlEHFkm9vUBb02PZEkEGtdrxgWUHtHr+0wvooz2QjZ+mXHql0WiujcEi8Sd9GiHZm165iSgav9n3TNloIFhKW9LqIpaR19r2jbhn2rOi5W4Kv3U7E+XU9WvBuxGLPbeh/4IY3CTQCGFQEh68VsE9Z7Ed2zJ1+1m1wtXjglVZsnpWTl+6LkM51BwpDOEFG5AAKWZQH3dJDBApN7Tp5h1lwnJeH3JKucM9a14K6fkVLBqe0oS0FtFTmzNmBgRskZidRHYmjiZBdG71oonFnJgjIzlqSkM5wSUtYGal0kiBGYCbkkbeSyrDid7rCe7rAsJ5SyYslLNM/KKevaSVmTzoiBzujSUaRhrSvqumKxR9tPmtCZElrdgG5l2l0TaHsXcMkjbADFuohVXnpMJ25PIovnQP1IAaiTJQT3WCuJjaDPGn4tZZy/YlpZ83+Sx4JU7ql9NPS+x4iCqKEDtXbs14b92rFTgvP2CFQuvdTXFYsm2dVpZS+odLtD36YGOHGg1+8kEBqU8K7WirRXJQjNyZ4zKm9oew0fZS6Y7oE1AR0M6RVEDbI3UBVwAbiR2a4FWM6aiNcI6FdIN1+mNfS6a8MIAMjJsG1NVNNEdEI1Qqbcq8XZdqBrcXuTDlo3cCqBvws1iJFgS2vovQKipFkkhMIFyB2UgdQTGi9oqaJmb8pWLQah8VTaK2TfsG0ApEUytPQGUUAAUhsqQ22ypJ1GXe50mL4yvJQNH4Q11ZBalXxk14YJKWUkEdC+o7UN28sFL9+8x8vLBbU2EOn8z4sSTaWclURgLZCcvKWoxiBM75MTMFIxDG/I2N46eq2oW0OtHXUH9pZQkZXvn5riGxjSLaWEzIxMut5y0vW4lAVLXpHKCqQFPWXAY81LQVkL8qK2pjaas5h92AWaV/Datmgc43a0IMgQxYhuht1POj8w/I5ktoPi7CnIWjThlqHJU/ogTlpg3t3eI5AUMJ+R+IScFxAyRBIgGUxOKrWCeUXKK3IquiY4K3kwryArXlCDMYNIm0uktIJS1nPxQn0j5WnW5EdzjSwJOXM0UHOiqVknz9sx7uWYw/CnHJtWXAUAjVwUiTVz68PLwWWXYNbVdSaN4vM47nAONclW/DzUDhEgCo1HTMDPc3gEw1Y2mcoCL9j2LrkwG2ZwjRCAEd8LGGyONYQPOfmKhPisNcWkuzXFUXupI7EgJ2ApjLUzXnYBth29XYG+A9RVZyJbc8yM1hO6cCQQv5at1h42oa+nsa583CZ/g2h08dWP4Pd6ENrrplPEx3/45B5PjGwci5+qL+KkloYjEwf+1pvat/u2Y980f3LbduxXJf6uraLVEZOBx/8s3udyYqBaPu8BB37FCpG0l5nFr2MUYPrMi3b0FwTHr8kIehx0ZHCS6bgDp3EyqJE/Y0Wl5pXdxujmxitx/r5OdRAnHNLjFPap4fnCnszO5mNp0XHzPBKKvY3Nh0rTROzezfPD4xQUX57KU4ffaYQgnQjUNE404u9TrljgJ2bXi+Ov7sdNuJCM2XWM8b+urfaKRB0lM2TfUDjhV3/4Nf7Of/jb+N/9b/8Ovv/1CdvTn+GrX/kSOS9YXgR/8X7HP/3H/xz/9p//Y/zkN38VS8lo3/wJfvPrR/zaD7/E24dHvHm4w92yYr27w3I+gThpE+aizWJTWVSvWUNZjXtpo7FkzZm7aJyTU1KT1mIorQsk4o9A3238jVxKXT6CE1cpIWa39afEGSC1t3pvan81K14M3K7HPO3SYk7BGkbM+fj+LKSEJo5D+lwcecjm3JAV3GHkXkXMw2wFkBYOgRhNOqphCZmB3RpxKiZpS6DrGupZf9NFBuENSEliSQkjozlQVjJi96uVyFj9rZKy4csas/AcOm9GwNKNFIdQDTPOnJBKwo4NkA5KyQRth8YNdS2RANSUFDEVAhtBjscK1pTwcDrh8XzGuibQ5ao1GgC2LsqbyoSXy4Y/+Ef/GH/8r36C3/obfw3/6X/2v8Hv//7v4/Sw/CKWznfeIs8wCIOGXeF2gspqL062/G2obKKpqS+AYTAZgTBMrjvpa627NWitRrSi+FMQT1XDWCx+RJgK7DBhU27niZEcWBFhMmUhUPwyJzZSayfEGcRTc22A52I5KWcXOchjz71qVUmxPKcn9a55ZaIk6kLsxhm8uUrzoJZhBBQyetwHZj7okcizugkIHfM/9DG+EmjU0HkGeKv60XumxclW/Ov5+O4AGBEWwYukDWliAJIcHNbzIlaSK6sdEmZQTxPeP859EKJqfl5Xr97OWgKXd5tGSLToVk8q7rXtLeZa78385hYy9thy6ZVspmfFwWe4TUNGYoIoHh6Wn2NAQDQptXzVTCoPM4CSGOeScX9a8XB3wsPdCXenkxY7L9pYbMkMlgaWaoXfMF9NoJFhtrkQFew6V0h0TovPLTv/3hX/ytnUBodpJa5TprhZWBx93FtqDWIF1kOfDblOjqk7WajXqSWOWL2P1GGYzZ7zud+MtKxRQ6cOsSAdg1UfizZE5NTttCfbMXY61p4Wtza7F5pPsSTGWhLOpwUPdyetK7ju2LYN23XD8/MLnl/u8fz8gpeXF1wvV/1sr9hrw7U1bLXism3Y9h1ba9ilG9EUQUv9Fa+vraNKh6bTqQ7/bP0cu4zRmcS2nFSO+y0ly2GjsC8mBwU2wPB3iNhyCPBJgeovfXMb2HMO3Pe+MW/jvO06Y/bQkDGq7ofPC5uPnrfrhIU5JZSUUaIG0/IU2XWKkXcQkJwkznPO7ZAeExpnY0Rv5jdGs3J7NotS75l9h/xzJ50KV4fieeQkIvZDEMs3HznwFJiRMZu47nI7MMZuHqNJ9UOiQabAcCe7N441+S6c5Mx1O0yfyXzPtONeFG4Pa6SbPKIxZR0osHOFEBL7OZLJt3Bbx72OZ/2ef19xYzHioxCDh7FmVtyiyUQoIirjlKwDlhtmlwPcxAQHQcs8D2hMi1ezeZzX6clpEgR6X6Z56wk10PygSW2rTWdzI/AAwcD9LR9fSaaSEngsSjK1GtHUeSk4WXPEkpOuQSMiY/Y6bAQBTEzSyAlC+O8h82k0LvVanZloKuxl+y6ZLRn78BwYP8K0bsf6NRvsgO2M9dLNh+vdGkIHQYZhH7DacoLa4IbNktvw1sQevt5lWusxEhJ+njjxVNSF+PHkFpUI/Gpe63367LiWhs6MJoMWMw473uaKyjyy9T/jEm7Rjp2zyc4UDAYMoq7NWFibGnVO6NytuXg3UmgGmb/X/Kxf2foCgLdv34DLBZUI1y64bDsuFpMW86th/he65gGsJeH+7oTHxzu8fbzH28d7PJxX3C0Zp5K0qTaJ2dqGp4pAeoWwE98rMYrXP8FyPyLHy7FBDksQiGc5TvWYafMmsST0p6M+ItxHOv7qxqqJV727DzTwjvhWGDE0dop5broQnwhEyDB9W1juB+tuLAeMDY9sRvrVm9U02Li6r9QBTE1+DPkLna7rbtBmKEQxzlFkWqWO4fn6dBKrHib6pDa0Mo783jYBuGOrFVtvqJYj6nU0S6lYl6oNkFgjrRTHnbB9kMUPAI/Htd5xrYLrTshm05TEYU+o+PBxHbPldW2h8Qd+as/qLmtMFkYY7dODPd/ecmJyItVR6xIkv3fnFec1Y12UAHHJZltZvpA08/tc3pssZBaNg9r+3eYk4kPOO+xcvQaJAauR8jrkCftmv390yGUMO5IQ5Iozyc4IQ3xmHYc617mv+T5qARCZb0WD5G8A5TTG2mfbrR0OTLoO4J6sZrsgLw25NuRSkWtHLRpbB3XDYzUnQBtuWH5IyuCc9frdnyYl89KcrxR4xXh2Webn7evKT8+xMdeVhsmT457qW5qDGXKBSBxCjXsoxqg450sfDWof79k+VEHK0915hapsEHZGffw+7Bzz9SPuZA+Pac1+SzK9ngzTK0n/LsyBhTC5LanC0WNOLl0ZZA3MKOasmft6PJNvyXN+LT/R7ZLD+PKQHXqhw+84GEGzkWmfKy7agxeGyNYwd7Plbu+oy0+TC0HWKBP+J1PDCRlzyOxuDr02bM7583G0Kb8BwCc+nM8/Ml2AFg3thp1nOSwwn4kNXxAnlxr2KJlvxFDiUJexI1vOdIiMfAYlr3I+COdDoYluz/ZNhm+Fj8Kh54kElCxX1eN5TJqD1AncG7iLkU0Noiknu/vLtu/MUFBrjYF1RemEFwDMUAC8GoMssTfmk/gco2GIkF6YFrRPhe0GXChplCbmJVKiD02u1iTrtQyyqVJGZ19PCMmpIC8rclmR0gLmDOKiQbO0WIKHJdGSs5gehSswJUz4zaYBvM2bqbfx/cngm80K3+/htzfG4V/22fE9Ag5g8qfGpi/Cb9/P+Pz4Xrhh8BVxKNR05eML0IUFuw4QwJnoJuOZREy7uDDtCEB2uqxxTocrgScAgDy5pI/EBj+3b9nGHHtdBZeUElrv2OuOl5cXbNuO3jWYdz6f8PD4iIeHByzLgt4anp+fcL1elb2Ss5I8tIrr9Yp9360IFuEk0LS2OKnRpoWoO3KQu6lIqLVq8kVtylybshJRJSWZorwoYU5ZUdYTynpGWc7I5YRUVnAp9v0CSgViQbshxydAzdeZPsGFuzsbEWII/8JdbRrFX/FNn4+TwqThuBwcrs+6cPNaoptl+hlnUYBR9DR/b3o1HTLO29FDWy/inZXmXZljcvjb1gtNh+FYXNNVenAESvxEVlQatlkgl3a9ml1sYGqLhI6BrI5S9WE7+OL0NWXdm2BAUZefuQ5/GduPfuu3QKJJ0nfLglPJKImQSZO+MivRVE6k72eM5J2kOqF7t6G9gkBYspJMlWUFp4S9Vlz3HQLCup5QTiu6AM+XqxUjaXDSuwhpsNKdICOBS1mdHbGEvtanjlkaaFJQrJtxpQVq+15BAJZ1RSmLJqA7yAxY4aAmKjcrQldiqwSANCC07ehdlMhoWVCWxQrXCLU27PuGfd8tAJYMgDRG0LANnMjPE4hhzzaLJoEuvs6MENANPDVq7XUsT5o+HcGJ77LN3e3/atsIskusgpvNxzgMHv3n23U9A5K04xBZXrc0tKrJb71e0bYrLpdnPD19wNPH97heXgDIINMsBcuqBduvbdtqQ+t6S1NWhvl939XIJ47CLLXZLCCVtRtK8jXADiYEjP/p6Mv0dwjbSRbOoFSyQFEoRdsbk/kYwyyft2EO+b5NipvDFXN++qmSTzgoz/FzdySj26c53zOAMmzP4cz49x2oMiwiLvyo0XyWWnDR3AKRWZ4bQYaRTWm9jnZmaomQO6MntcmV9RjQRmSaILWWjL1k7DWjdsFuyWSaNNNQoCDHXnfUJij7SYk0yYjzqIF600IbmwvczIugcA/Rm5HfmD0QGt7thKESbYw7aJIxYcNH4ooCHNEFzsApkCa3eCd1uEMfnX57JLa+lu2f/bN/hjcPd/jB11/jVBLadgGTYF0KqC6g3gKA8EBvTs4yDgMQNHiYSDtxI+v4so/b7EiL2l46LwsEXlCrvqD2g07DIRegtxY22NEnGYY927wHjaTRT5MDEaQqvg0Sp/E8k8Z40aOSUQ0CrGMHlmRFSw4ijHs9kx/MOmgAD+LLf/p8nHd0Iu+DtFOxj27xXRqyKAYZcJI6RoIT1/iicHnApAUxXYAsGWmvqH4NrUNSjzk8g7HagWFHs06AOWsSu0Cw9PEbseLctSyACC7NxsTIkVhGAlVKWgxXawURodZRbNIFGj9JMlj7/f4uixZmO2Azg1KvZJsxjwHq2L3oI3ljpOSNgG4xsL3kDGcs79umHZL3aiRVjFIKTuuK80kTopScyh7ryR4rlsVIWaYgb+gHcUB3zCX3ChgYBBhCQSjmg83sKfCf2WLNuux1lSrxPtnajiITAw9J22FMenzYoUOvuY8wAFTKADVPnlDgC8zg1iKo3W6IpkbixvFv9Vc+P6l8fD63sd1ELRSwFA6Ckf7oGBD3QCxUvJgd4MlpbouYHGFbK1kyinQD7EYiRvMk66hySTZGZrt2G5EJf/p8kRAhWZLYKCx0vEq0MPsVbZEkRy5bRZv69oraKvaqXRBfXl7w8ekJHz5+xNPTRzy/POFyecG2b9jbbp1fLZGD6egnj+mq9k4ilJJwOi24vz/j8eEBj48PePv2Hd69fYt3b9/g4fERb9484vHNA+4fHrCsC3JJkVQu5vtrURVrrRlNwST27lnujwucnAmkBYSwrtE0EQnYqKjPYXYqwaECLfwnWFKH28emR4YPYoEfsnMkaACnk5EE6vjACvrj9+yJ03YWEQQ74oPEjCQeAJRhZ0NtX012sqQPFr0fTTEJEfUty5Kx1IzaFl3PEMvtUJusiSYQdgiElQuptZGI4wccgbAZ/5jmlz17nfxsL3MHGgMv1wbwVZMRiTSZlBmcMxbWwnBPvgETpBLQrQAWYjaISslXqMYAIPAwmR+OA8Xas+8C8eVbGRl6YMJ/gMmlsjeDsIx0XCAwkqLhnw1d8inmFrb7OHDYlQFhif1W3JcaPlC4cpFYZzLGClA8YS/so06wdh2mxwAtMtSKMRFSglC7jkFgZedjckx1juJpve2QtpuvcdRXI45iRTrsyVmWDGbCayZrOODgtoSHD0SBybvosLwsm5OT7woZ5FZ26QIoAY0ni3nd1jyZb/+e7s2sUGX+Ok1+u9z+RA7f/e4Lxw/4ujYn5PV55etKeo+Ckn3flYx+V7L6FnoLwwaKBJoeBSe9joKU2ga5ktvguSh5Q1kWJLJGKPAYnZjtqPbmeT3h7rTi7k6JK3LOkXRxKEy08++92d8JNE8Cu8bPx6gA3MZ0Dp99+puD3JbxHT2f8eExwUTXmy7HG59Kv/HJQdxWVNl9nLQezJXAg46/9xXk9l4kPsnxS+FrJse4PBDOYG4g2lVmQovBKOxyP53DKsLAiPzeUOhi92fFfDNOXTsM56y2pQhyF+SmXc+4tSAoZSIrjhkJJZ0QWMprw/A9KdMJblyPEYYvSXDMyPWMdp7WAnuNKS8pI0NwToyHUvC4FJwTsCbBOQOnhcGFlJCIXWfpGkjkuRUjrkYpITAnSiAjBCBKYFL83LF6AFa8NopjUyomt83+IIIgWaKV3piYkiBVX0DYmo6TdmAQPEX+qP0w5NJIaoq1JG67kC2jNGxV1zEKAulvTX8FUaonuht5oduiniTrNj4JA9KiyUIouERgyShlQVtOaFtDbVcl8V0WNO64tiv2TUNUWxKsiQDJVnai48tGYrmJ+g/ogkzQ+8aCanLEmxV4PFHtdS2ORSTpuI0kpqOnBkWG3wrUz2qtWkGe+7y2bnVoAldS8gCg7Q3ghKUsQ2+8kq1ed2zbFdv1gm3btWCYlDC5EVCN+BBWoMfJOqwZ0YWaZIatTmYiAYMc3hLagEl/DCAXoNGkwQv9ibRQEq1BkqCId8DsaASwdLB0dMpgEjQGumEJTAnJbDBvJCYgjVPbcXrXaxMwOmvjJxEAzDgvK5gS1tqwbRtKTkqmnYBMhDIlIKfEYNG4desdkgSJcxBRZU4oLosSRUGOSI/cl5S14+pSVqzLCcvpjHU5oawryrpqMXjyjvFGcuLJ9azkxJwSkhixzVZQ1hXnuzuwdOwpYb9eUDcYoU8Hmq6JJADnPPRxYJJajJlMwmoHYccprfzLDFM2YgIItKGEkQenpPEgJerzrvc5bBAmf0w6HsNacBeCAJVFraM3hjSBdC1IqEKoACqMzFuA51fGgaOF9IJWjciCBSlB5z270PCrtoLU7utO0JghpQHIww6wnJZ92+FFquq3LrH2nFzHiyoaVyU+3XaktAOFQaykiUKszcKWBt4rsG9oUsFVkEk7tbcqIBQw5bAf9JgSeI4m0TXzn3bUwAI7OFdwUkZHQo8CJifUEmm6ri1uiFyAophr7x29aMGzkrdawbYVcnvfXYCNpFUbn9RaIUY4qHEt3bzbKBtxpwBTQh8H0ZQ0LRJBF03WLBojPy8LlpSAVrG9XPH0/gO++bM/w+V6RW8WE8xZm6twAueMtBbQkoGSlLCbLSDHRmKUEogSpKutr/ZHskJwskRtMd2XsS6MhdbAIpLF9rxgKCddvSQAs8mXcsZSViUe4oQmWijNKaOUjLyuyGtR2etjQDqfqpHBazHp9Re5hL7TFjazWm8al+rDB8+e9GuxiCZdxzoBcLQtEtt1/N0u0pw1BqCkssQJbCRQfrxUMlI6gXgFpxMSFwALmDISr2AuYCogWpB4Qc6Wq0i6L0IBifWeJX0kNjJOqF05ADsE3ui2HVt+Rs5eEKpz4uiDDRv/WFSBKPr3mIEn8I7vODZ49BNU9vgxPvWj5u/B7omairc+9PBlR/hagmgZImbHuc/s52O6w/erUew4D718vTYxch+/DJnGcSZOGvaM6yWJsZ7nGlt+ToyTtGhKoL83oqlMWJaE0gglAYUFGzXssqNLtbiOynAO4n3G/soI3QKXE4ZIi3vjmNRAyebE5FHIJXH/LG4rU/zWboyPdReJpjxua4/cRg7STi969gJ57frdUPeqtu3LBdt2sSYWG7arFrs3yw0AzFfHhGORF1KOjCAlgrgZD3jivpgOMV+UxvvalGbCouHj5daUWO4eAQlR9OmFlQwr0E5WBMpkRamkpFOOF0zn7oSq43SnE590txaDWwwbQOTq4ggKdgD73pTAZsJnJJuvSAl+sio/vOGRF5RN8ka84YD7qRwyR+WDNdMyHBbUQU0bQc7nH3NFJ6biODLyPfQLn+ZyjBjH6/LFfMsoINkhdQfJjjf39/i1753xv/jhO/zaD77CV1/c4+MpYe+MNZ/w+JDxL/7Ff4v/37/8Q9SnD/j4/ht8/1e+hx/9xl/H4/0D3j484u58xv35jNOyYjlpc0pKCaVoPmMuC4QThBM4F6RcQv673a7k6hT5TMxKatQC00TEIJPnn0gyH9Li4H7ztGIRBCuKEc3dkGb+Cem9b5aPQALD90mniTjhDgzTmrFCmvAsPT/HOA+4tckLiKD2HbWNJlymipDZyIxNlrfWwbmgQXDdNnBZUalCWsc9K3HH5eUFnYEqAl4yOKdB1tM0b6paDFi6YNt2XC4bamvIpzuksqJkJZXar1eQCO7vzlhL0fhUYpSFkZakhZKG4SUmZMlKRgRCykljE5H3ZDFMr+lRSMfI5od8JdK8cOZqJH6CnBqWUnB3PqOUHPUcicT8XEYn1e3fvH/C+/dP+JM/+R9Qe8ev/fpv4rd+60e/oNXz3bYDvsrzfLFyAy/AnWTWnHcEGT7bZCFE3q2Ix/nVZq51t9cVtVe993Vqste66dMe+i6IGICwg7xwHRjFSmqnGy4z57S5zvB6mew5x4qtpGzzx+gTFONuA1IXAF3QqzZOq61GHmtPCZITsse3ujd86UoMiA4kX9sw0hBdmz6EngMmobt0PQoD3RoazZuPy7B7XR87QDrrbiPnYb8etxmryQ4jW2OgsxiRoe1DL1yxwa73WriDuUXdkBBDuvkSXZtJ6OU5Gf+4VtdFXTpEW1n6UAydPc8hL9y+IYpwH1vnYkO3h16/hGx7TVvELt0WpyGALR0XnTU+7ym7gMqlZHHSzFZkyYxCTuBOuCsL7k/agPPx7qQEA6sScKzZCOGZrBjYwUrRfCUj91a/QKBFj87/bCSGhif4GlOSdobGiJPqoiBAOES29Vm65haYDdmlgzuM/HDEhxG2oYNdEgaOx+obLHbEavMpAZXl18W8h9pxiQBWwspmjcWb2dauf8lJPJiVoB8jHpysYHvK4gKgdvXeNa9wJ6AS0JnQM6GXhLsla13TtqNuWjtwuTvher3Dtm24Xi+4Xq+4Xq64Xjdsdcdlr7jWist1w+V6xWXfca07tiaoXfG81gnP1ys2dOwNqKQEGuS2Jg871ckh1N5U8kiNy1peCAkEY412WEmM2/fRiMuWlChup+RdmrP+2th/vTFu5B2Qy1zXDwdP2H91fO2CVXcUJr7ybgyyasVvjWQqZ5SkZA1K2mAkuKxE+QxtqMSQyHkIsho/BfOPABl+i89Pk7V2s1TvkK5bIQ5in/jcfhukua5zAl/A8B2AIJpKlvPDNnG05nDIUzINCUyuz+yvyjx0Q1YPTGHIwIghh9+i+kZgJCIiN+eOeHRygoYemFPUEIQ+sesdk8MO7rGVcbsP9z8AEQoSJMUNARa1JZwxhBKbT5usENrpEy2fi6G8A7ZPbb5j0pQ0bOh+rWlJu3UUhdWvbrP72+OWzDpb8fNODLFmcFGsKOP3o/kbwgYn8/ETETIprlGSkketRjJ1Xhec1oJ1zUGguKaExeo2Mo2Gm24zhg6KgmybG6YDlNDK6gWMpMNrcqK22rCGqFXxPESM+zdyjua1plepQ6D/9W4ET9KVmKyP3Pv4j6ypodXJRX05ExQYGfauXyB921yZMAfNue2RcxvnYq+ljdq60KdunNlNjHVt614i13/IUZ/j6B3SqpIZtZkIFEFqNcsmPV8yPp1h78WyxPwTy+PwfEt4fD+FvGmtI6eRg0bQWG4jj88Q6utKDQYAvHvzCHDCZW94etG4q8pkk7UAoACRxtQyUBLhtGTcn054OJ8tp75gLQklE0pWH5VJkNgqz2XUkcNyFJQYUSwUQxafs0N2bYriTClh35PV8sJt+LHmxfwz08zwnNWBIbvOHs9OrjswRyDyqmT+LqaTm6XRFIMPHG98V/UFx3ue4w6Pj7tEi3mj8khYUJugN0ITtcuUVFzC9NJrNb/U9j9II22Yba33sK2P1zfmvefVD33q60G/5YLVpCfrs+K/ai94zWy3dUpQHZaTcksUI+lTUkyzAwxvdB2vPkhGzlovR6xYf+uCa2sojZElGb8F27W7LQNwsjyJ17jZPGw9zLCBzToxXmu6NgCASfU9a53ZQoxTKTiVgvPJiaZOuDufcFqMqyNpHpa5I4GHD/vD6tEZMBAr7EG3uW7z3sNiiNIJJzY9Ek2J7dJrszhy721eGnag2PfIyQ91LfNfnx1A+FxXe5ZjHjBGzdTQVcMOdxJONxHI9qRfU+3NhrVq/YHSuXkdGacEtjrb1prqc04olge4LIvhuhp/TuwxAj0djQ1bE6GIcQ696haEz1yJCXIcEsXM3FxVJ546RR5qfM8uXJjgrDjCI04S5HHUZnU6iGgdXw6djMO+3Q57Tdsg59Tn3kXj5/ZQsr7D4gs/wH2klEbttOf/JHaZ5T4LwIEJ2X76kMNuW4bPBRyHytSq23Ae/4ZjFjY7/UvHvFXE98JnAaa1ijH/Lfei+fo2fanL3nKOGLbWba75/uKIY42MyTheD70wOzkxiyfxMcmSiBd8OjQUd8SuKXSO4gkNZpd0MUyxaW7vRJuO+VTdr+zj9HTMzZ6z2r4uN7Volu/J1AJPa9M+B3EVwl7SgSWzqc2mZa8JNoIrmzvhk/eOvZMS53XFbjssPwc/Z6Kpwdw1JtUoLFSnEwA6KTB7NHrMkfQbZY67Fz8nC5T660iey9p5rSRlh3SiqbJkrEvBkhmlqAPmnYtSsBQyknV7TEW7hoEziJxoKttjdPKOQHV0lBzMfrcCwpNNjwn2Mwg3jZ1+8dtcn5t9HMf40+8exzXe+zTS/R03X5S+M9jNmwQHOUnB535DA+h3B8ytSPii1fnzSTKpJwfDi9vcaHdBQrdnN53CcPRGksNkfGI23i1BK5xk7fL8LUP8y9tIi7SfXl7w9HxB7w0lJyzrivv7Bzw+POB8PoOIlP1/u6K1Zoq9o9Ydl4uCtq01I04YXVlUaPPoYieiAQnSxNhSNNm1W7evbd+VxIp0vRBnCLGStJUVuSjB1OIkU8tZSabyAs4ZlHWtiXXcc5lMHhwBbHqMRDCEXanzLWwYcZUxmw8yzY9Z0Y13wqX6ZN1828wSGHJxvDX2fT0XufnFtyw2mT4xBSJEBqCOOd5Nfbi6Gp/JdJpDM8WphX0lw2gT/1umfXhnNjkOKGydihNMuYLsEYAJwioZxx6G3mT8e5IrjfEgGkQdr2X78v/P3b/E6rZlaWLQN8acc61/730eN25GRGZlQhkhlY1tCqkaZcs2JSGBwJ1CosWzYZAQkhEtGghKIBuVZJkG0OTRAblh6BkamAZIFFZhq2whmbKTqqwqi6KyiMyIzIh773ns/a815xg0xmPOf59zI2/arrgb1tF/9t7/Y/3rMeccY3zjG9/4tR8BKigA7lrDvrnQFASVDaAoRCk6VRhgEgPJo9BUhyVrzgFVMsJ3bSbsVCsEikvvGENRtoZtv4Brxf1wME2BEWPPPHwnYhtRMYIe6CyGiAAwOpjEumtFajM5HiT61hpqaZ9cf3JgWVxkSlSMjO5B1fBiNlVKEQoTqwqCpuDs3TrHiikJlTKDOfPXAoRM6QVklwnE/LRHmi0CAthYndEJPGAJzrAUX373Rfx5x85v357N57BvcZzfask/teXf+hysEClEEtnHlfQT/dygY4ecJy6XHdtW0VrB0+NuXd2YLKnTGvbLjtZentBUHwYcmZmJIuyZVJrqyhEgTRHEbbOgeG/NhYgW4SkHmG+K7WDjoHzWx/IiYUT31SDcTRKbJYYXkGsJrkHkhfjT5tg667YKMLAlk7x8I5RFPnJMeC/IIDPgyyRDfHWs3Ys/Z6rYK2nXj+NmW61QUFwl1+lYv2MPZMjGDEjydOd1Nf/KxD3qIso52AtgtoazD5xDUPrIe1jdN75er2ZlipHKoAZMDoUl9XvH8Hsw1I55jIHogh5hmYStyXWFfG0Im+xkEYX5GVDnM0acEgH4LOqb1A0H3GXg7CfoMDAququbAFqFyBN6f1mgxV/9q/8mvvziLT7+1m/h7at7VFI8PT6CydZ/VsZeGS0E3MpUkUeMR3UPhIJwFkPFi+gWUvl8ONlmOiAAkEVEYYes4ENM1CtH57o/IAhdzGyiKFwAVRNbQbxu4ymL3zFJp0ZKEreFz3x6DTEq63JuAFZ0uq0Z05l5jQTTTMTYAcyA3oqPkddgJYQokB0L8nPMMNeXXCguRHHhSS3cJBGCHEHs65GrvSfBjE2BXJ10buN6KU7OY5vHb8QyziIvInKxKb83YRPnLgBQiuI0L05XMQJlHx3nOaZv5zFxAJlxTeM8dcgU3olEBZF11HSBqim+J989bP0VbUGSz4JxGOg53CEwUgHPNdXvVWFCKwVbcx9M1YqhDhOZkmEEtMqMrTZctt0Txxsu0Zlo2+yxu5Bpazm/VoxgSBAMgAD9KEAl5IzL67+OjxjPn8MVYpvfFwnP0Oiw9fj5MSnB7anNk5vjXebbGrunPQuMpbqIKM3i7M5TWZ/XMRP7if3+EYKiee7LGX82GqTb92Vk5msWJFgB1j3I1oR5rumNkPnwsV7VUiDarKsQ4Il2TdtnP2H7zTntkekzX/L2XsbvTgqh2dU28REARN/VD/7VbCH+M9wXEQAdAsjAGFbAFkJTHz6EyNQjrldbj2ItDnHjEauYTl9nRtX2CzOhVMZ+aXh4uODtF6/x5Q++wJdffokffPEDfPHFWzw8PODh4RXuH+5xd39n5FG3ASLzesITs8/HuZ0VYEJRFn+Td1EmUy62Il1fl00ACs/mBxJETo+H2YuKp+DcJBbYQJGI0TFP2iN4/5MQpOnofguQNfGErWnZY8yPRTSaCdj4VyrmW48g4y0YQ16Pxd8kgSqDhVEaG44r2/QDqnXYJbZjEBcEUgbQASVFv8E5vZCyGLkCYwBiSdLFJAKYPA6//RnGkQIYgB7dumJ6bK5gcLWu3roZ9lUKUKiAZJgY1SBAunXbHjZWg9r93aPSX+Gm4fd6AVe+EHEQ0pcJ3FTXt6Ryu++M7GfExZG4N/9uBvY3sZP/XIsUc/+fvOcz50DzPRGvmBgA57kFzmnuadxt/06Kgq1JJCRyEhsv10AjzrslDRqHeJj4IbkfiGXtVQAIn0cAX5+io0weO1nsx36sKWJR5rxBFKXBiITR2W6uEpgiU/6MOq7rYdWMkfPWqd8TdULfXBUibW3kG0tEDr6Z0lgu56f35dlzgdeuWO6LnBf/Pm5x7+KaAzO2GN3J2Mfh+P2B8zys2MqvETOBSvXuRk6KGVbMYcX03X33wN8ALu5/t2a4ybZbUtjx2SAnbLXicjFB04e7e9xdLtj3hn03AdMURmErCONl7s6iGl3we7vpRLzcXBtbqvP8v/1aAatnFXZgviHGy7qWrPFSXF9AndiqMNInaF1j1sHp69UnPhNyfZjiJ9OBuPUn3SCv60I8RJEdMRHxV4HWiiCpPM/vice7zEtBm3+1Lmu2eAEDh1jEGo/HscOKiKpWjCoYw3EOsg5JYxghavSBzkvxfHS1ZhPqEGaIDPT+7bnI73MLfyR9LnV8dzH0OU5TuNUwwsJWnLJXxkaE+63gshVcWsFdJVyaCQRvjbM4A5TlJfkvSFKZ19ZJXiqlofCWogRrU6IsdspxYOtDcSJSHCuFSiDW0XuLF0QxMdKH4yRnZ5crx8ZcV/GTdfgmtx/7ITKBq8VzTvHWJaUQY0NU/dp4no8XwVVgCh379xX1zq86J7FG4eimuIiARPEEoMPG5ajAXT9MoEmBfnbIAEpXXPtAOQcqN3SxPEtDNdJV76hgLwbZMHhk0w5F6iJhhA8Tz6thV4DO+N999VjPg5ETxYIhdLveX+IYLTPejkKwaCLynbtl/Io2szMHThfGnmK1FoVYgbD5unBhDmOFwcimQwyDXTq/3eBlVsUDKUi7sxbFJenIr5/xDjnHejippZKtVWOYsJBaNlULQwqh14JxWmHVcEFgAI7/lRSU9W/F8IYJSgyUiiEKGQBRAe8NW9tx9I5rKbjIhujFyhgmvCMmvlVdfGmIoHMBGrnwQZlFANV9PrJ8Tq0VgBpWV00YpLUN27Zj3+7Q2o7Wdmx1R6sbSm1TlMpJhoi1ZslHkI/dWhv2/QK5vwermkSJDhALxmDQ6Fg1qCeWYfsz+xvFBewaY07E9tsSBGP1tTaElJPo6IJaIY61/h6E4CA43Wzq//n8yVVRNI/DcjLGBBcldCGcQugq6AocLwv2MO7GGBBm6xZYAIWLPK3YGIXXookPqSpKKRijg4fRuKLoi5hwjp7xRo4PnrkSy4d5pqjbPD/qE4gYTWGNwjyXUthyCL0WnES5vvbwwaIImtTEFjNWiUKXRTCOYIWw54HQpCttpIgBitlnZUZEDRFjIe2Uc1gwfWutFeLNDo7jsMJtF6aqLmZ2HAeuj4LeR4rdDX94CTQCt+dSrIEPGeYehZwhNgXYsXOB4bKO622lgkRxXA98eP8B79+9w+PHD9Zkh2y8KwRDTCiGS0XpDXoQUBlUiwtWms9uotdG/IWS50wbWmmoHGRhEzUyPl1zHKUYCd7dieC1lVqnvw7zTWvZsG0XtLaDnX/QfByWWlG3itoauBQMiIu/mziCiLjI1IHjeuC8Hr+CmfPH2ygLswGrdFseRUAN4EomWEFidkJcNLQUMOzak7rAe9gRYRBVMDUU2lCo+d+W22YyG2O5xAbmDUwXlLLb+3kDl2a2hTcwbfZ8bX4fTMAq8A2ighC2Ej8ea0IQOdzw/zyHVMLXJLM1JcT7osAlcPPAU6aI1HL1ll8D0494SDMU8pdnbzyNnLLHkCmcjdx/rGlRCBMCOsj13c7Hivt5ATniQfN3RPznuY+VfwgCAh/SebzxDap0436JxxKRrxuetx9uYxQuKOBiAnOeEgJVWa+d+dMuBCwCWrrDVggadTQaqCSoNMDaoeOKIScGD4AVIidkGFbQR3+BQlMRq85YPh45pCKONuAux90yCnJsDRUXGdTF3sOxPRsX6sVAQbBf1znjIJugoN3jEHI50c8Tx9MTrtcnnMcVx3WKTEWDzoiJmDS5IqIh2jjXFIGPUI2SrIV7FwG82zCO1xxDIZkoCogsRo/rwYFdRqxn51iywQQyZ1+da1JcFKowowZP+Vm8+G2x/MQ+Fp7uzTBe4urAZRxWYTa5O3uL4a7Wbqos99fzJokvW8MTjRybrnh0jJeILymfm2L+CqJVuH8dg/ZmjmUAQIh3hQ/5CWCpNz9e5EbD4gbGiV//8Rv8A3/qT+C3fm3HJt/g6Zs/xHh9QdeK6+PAtjN+73d/F3/z//lvockVv/Gbv44f/fhH+LVf+zXsreH+cm/iQFzQth373T1qbQAX1LqhuaAt1+bF+8WazFKFq6xgnLA8NtssEFUcx4FSN/MVxIVCyfCpWNuP69VwLMTQIkAUQ8/EO3WYuJQJqx6Qcdo8I4YIJScIqsDwRktQw2kCxxTJ3BoHlpLjI+aF+8C5RrlguM/iPgRHt8abJuZfXciFUGD+pSpwjgHlA2DC2QUsiuPs2NqG/v4dPnywpsBDFY/HFVQqQIrjuOI8DhOP9fjzOE4cx4HHxycc1wNKjLq9QheLE/dtA7yB26uHezzcXXC379a45VLQduNn1Vqdy8rYdmsY1mpB2zeM69Ub01EW8oTNNJhRYc23AYRwAbBgWwRowbUObFvD/f09Lq2hQEz0ChaTyVDnq9qt4gI8Pl3xb//27+B/97//P+DP//l/En/mz/4qZs8fY1vWylgLbxvgOT6nz/whmuvc3GzRUoRPYXwkE8RdhXFD/EWgLjIlwZ2SkT5R+mqxlAUHQqa9tFwzYpWEEmZzaY57aIKMxcVHTXQqGrwH58qxQE1I0tf+MOzOwfD8Z+SrRq7PVm8hQ8DFuY9kJUoQdvUe8bhwrvMmOKr+vZT4EHk8Z2Kb3qzyBsnEM5w+cpOOlbqgWinsGLf7yQOI5sGqwzARUgg7PlVijgBequziU7FomLBeCKAoi4lsBwfajWWuS7foqx2lr6nQlVcX7/Nrpv4TVrSW653H23auAvLYhlzY4yVuye6cBhvBQ4X/JDHBohBtMgzWMXwX3tgcO2rEaAQ0JjxsDQ+XDa8uDQ97xd3G2ArQSFHggtWAX8MombPaBsMRbS0MH4t8rbN5xbPBglswgUIHQYQA9CmKs+AEyTkejg0Hr9mbcInXrGnJDD24GJ5FHLFW+JLuefpTzCb6aNwJyvGT+XAQUgBPDX8Z6Bgufmt7Yy+K9ow5eRG9z7/C7OKFjgHm2FR0b7hlzrmFatH0xQT7ARHCSYJOFScrGgP3jdB7Re8buuMHT8eBs3ecIjjGwHF2XI8D1/PE9ex4Ok5c+8C1Dxxd8M17xtP1sOfOjqE2H6NIOoZXCBQpFElTEWSDJYn18lnoS2psjrX4m0KkTGc9zOQZvJxt8uLcP/ITCEwRCl93cwL6exZ/+8YxdvvnGFgUplcXl9paxVZMZMqEptye0BSSMi47JV5hcH40f/H3qHpaxcZ7YFuzQWzxGMhtg9d83oDQFhwZt4mW1yJ48Z9Zl7LcPiKYaNJNjg52XFka5jlAXwtCPEmdU7/iDKp5MRE5dPGc3JrHpbjeESP51c/nM/DyuGjJj4AY0TgoeIZrnUPm4XTuf83nx7HdjOA8XlqrnBHrc9QjGC7m+ykxJwgDhjXJEMvJBz+bZgwYPJQCK3AWj2lNxIox/LXAV/iFBWi3tYbL1aPJBFM2oZI1ws21xP9I/5oWEWnARBSLiUU052Nftoa73YQ89q1hayags5WCvTJq1NjQgjfkHJ9zfa7l8JjdxKUqVVQqLl695mmsoUWJ2pkYg4jjDxGQ4L9M+7E4j4iGklEPEzmNISMbyFr9B1JUM5qRa6k23wuDlY0b6GjD6ku4oTP+oIgz8sTXP/XvGehDUtx3yCI+1Q0v8kSxH374obEuzhg0+Y+Y2OiyzNg9hgtNxSOEW/KW2KRaOaTWGGFyW2+4vBmL+GpEwZlG2jotCtGCKopRJdeamOse8WF4/j3q+F/SdnfZ8XTt2GqzPGGIgGKkiBepQnUAMsBU0KoJ3tw5v2mvxcRtWF3gZmLgdm+QuXu7lu4/sxoMz0Dk+hnBubHjMxsidu/gwhBL7DTfqLe2wDddX49n/B6bqYl7bduK4cVunvOTAi8kgocOkr4hkfuBGWaYLxu2nSjq1+xsjRcZwv++/+J4K4AhHdQdM1mxQyLTDnDB0jzYGNtMFp/Qis2FbZLlWs15pS5CJ8s6oRpXW/13zbkT/Ca4D0ew/Lowgz3rR8rQwhiquDsHLtuGfTuxt/CPgahfF1+4LSYMnxIYOnCMgWtXtMbYIKjwtSr8GBYYaoS5Hr+gTRCNsYwjtvqzee1Fcp5lvomtqfpWKi61Ym8bLm3D5WKPfbc6663ZvLQ5OFsAhf0htx3uqeT3x98RcaUvufASphOHxS9yPpX7fYnVgLy+3d6ba2bYKKjnciaWs9aM3DhJy3ifR6D+0rTlZgPUy1Gj2bS9d/UbSFelAUo7HaLbQDRWIMBzglSsIXJrG7b94pwnWxvND3ChytpQt5aCarMBvK2fhvuU9NvXup84RwWyrncdw37GdqyBVaVPUyxPosaUWa7kLZcD6q+brbM40u8XaPrGSz1Z3oKb4Rp5mOX+vJAtOeK+vo/wffqYtZIiaZPip437aBRUZm1+dZEpF4ov7D5YfkloO0wMPvyzmjHZci+XUPATHGrxU2j+mbFGbrTUsdzYGPjctDGXYsB2YZK7fnvP1LmFMT5m7KjL99ncvT0HwGu7ofM1zFOaosWrvzVPN/6gcOSAFAiMcb58k82PqD1T57ip5D2ImoCsURsjfeAVx80GSnEfiEzkSWM+hN8ZY4OdtxCxnIbJXILQed+seQ6576wpQstkOUj272GvsyMRkDC6iDXGERMQTkz6O5iy7yw0FYvI7TNAKGTqchK+HAHxnN+ImDAEu8Gh1Fu9g0ItFcVVsWt0OyyMvRK2FkJTVpy6tYpWGa2wJ1udqBaFI0sHFiNuVIAbQNWST6X6Yxr+qc4d+4qF2CeHO2rWSYzm4IsLosuFWf6ewN/ty/N6zleI1r8/uQO+oGpeW9xM+c9v6/c+/306Zv7s8oZ8vz7b03IMz9anZeexGPmIjzUEcx2xz7jYVAJhBvJSzvi5GN0uP9M5Xw1VPIdlQScAdRUzY7LOGC/MCMkAjrPj0UkQVoh9wf39HV69foX7hwfUWo3UfHYnedo5nOeJx8dHfPz4wbtymbJHySSfpkGYC6R3a2g1RXKCRH32boG2kieoiitKV5QWieg7bPs9tv0Bbb9DaRdQa0aeKgUGkjuZl9bxAKRLpqE0f+vU4tm7wxSGQxOk5Nsxsf797N7qMsZv3vl87vjrYSE/CbzXIFE/mRrf/t5ll5+8z+UuKObTdMVWQP9zR5qgZhjJ1fgpEF1NIUHU0uU95L6IBLsKKsMKKcVJ9C6Es4ITAazkT7gx5Hm5COa4Vv1jmJhfyVaB6ExCDOvANwu+h9qa7zS80KVOr4ljAWOGlg5VxSnW1XVA0Bjg4p1JSQEuUBQoVXC1RBZchCEWwwjwZ2GIpsMZCvOA24sMTuCOSXSBgwvL1RRJCQXfFEtfLLHLiHlybAII5sjcCi0qKLs6BsBFXF3kYgJjmZymSHbNBPI6i6btpFuDEMDa4u1pnDeeOa1pQ273vW7PZ/lN4g+ft4fzOmGuk/S5Ofvp9ktJXLfv9PVrXlNVJMEtgmG4oEjxpGQ48FaY5sU6Dj6+tC08QAVyLNcIhHgmLmt04SYjdJs/2KwrihO4CbM4OAB5ADdAdnRX8QhmrnEBHKg6suZzIHwN+L1XDYHkCU44Te+2vlpvTEKA6CGWM0VKJzkxgogUUlHv4smIcPgzY1jn82RHomm79eY9YRunt+VrfHRCwTK+M/gIgDb/nP5qTk0L8Aqb0CvU1otM9FcDLMrZUwSIlcBU0EVx9NO6CjJnx4ghnvomAlSA8/S1zIqvopPbcMBRCd5hGEmIiusaSXKopiAwOcirQIqdEImJIvj9yq6yNOd6CH2c/cx11gDXEDor4PKyWBu//du/jR+8eYP3v/gFvnz7Gg97sw7zo6NBsdVZuGOJwAEM8qTzPJcA2SIQhQpGF/RhQqNGjhpT1AWan5nJ3ynAW7Lr3K14U9iunI+I4Rnz0IhDWTzia2HcD9e3chdmzqkxZNmf3vi4M+k61+Eo+rTuxB2EAihuhAjXtTztj//9/PhuAIfP2ICZ0JP8fMzFTD8qPKnmiQqNnK6BJcTqIiVGhJxuSBTTFPRRrAsLNMGLEPXbWsNl39B7gOcE6AnAC566GbkAXArPatJSCu7v7lAKW+ff8/TkXLS8dHDRx0HEKOpA5/Bk5qClkNqFIMKPuRknL2gLIJTZyElWJGv3KEFDAeB+GImNc65Gwmit2bn3jnGasICKSZlULthqw95cUGr92TYTDmgNrZk9tOJItxef9TVmxHBLKrd7ettF49tj3yRWhA/CUbyI9DVjrHDOr8Vn8oVbM1n0+a9bC1YWV8vtrceLDnoDAGQWlofAcsz1m8fy3Oe+EwFoYq4JiDk5j8LtoosY3axZ01DerJ1kuBY7LJoECbHuH6wCVgaJC6HH3C0FMgpGKSgiUyQoinuV3JzP9SnWoOfFAzMZPscJOVZzUyD0kra8BW5boCDvLjScCHD20whn1yuerk+4Hlcc53FL0l3WVQgyyQPMMIPYReBqwb5X3N3teHi4x5s3D3j7xRt88cUb/ODLt3j75gs8PNzj/uHeCny3lr63iIkgxTHfkH7i2i9AOPk9BNv6wDyLgJP8xBMjmRdltSs+HkC+zpYbu2vzG0lImGcdu3P7y+4HR4mMF4TC3WZ2UmAUfykAeNemHGfMVsQBW1NcqxpCnqpc8II4hvifiwlNRaIksB4unrz2TKMsQlODzDYOFZTeZ3Ik7BWQgjz5XeupY9Gf0Bk+xlVQHy/aBXwO1GNg2zoux4mn47RC26IQ9pJOY3ciOqubv+0JWC94+BSteRmb+gS5jRkjJnq+SE8fKiCx/MRzPC9udfp5t7vR9Y/8bS76t6mr+G0hZnz68QUy9HWYGcTVO49ZZ+YQ+cjkji4kEZpkEVK1BHDcO53vVTgG5vhY+sIyC+FWEQWoZlIpOwlG6BkTjSaJuUQTBLcfloNero3652NfmNc4rhpBU3QqYt4Y4+G90hLvRBLc7o1fB7Xzz845bGRjhWaHq5t7sN7n9TldhgNuE+mfbplC/v+LLRLzOT9izPSOfp44j9PFpq44TxPxMNF2Ex5hIiuypxkHhYjJOGdRSmAJzNPP3NqGrZkgKRM5MU2MMEiE1hru7u7x6uEBr+5NaMoKTQyPyVXaC0RsHNjaGcQT1VmEBI8/wg+ZdhxYY7xvu07rNot4lvf4LIjrOa9v/B6fnb5maApFjBooVB7KekhzuuYLTNF9lAAdVujgnZUCS49H+ALDu1BFohix1iz4S5AEbgsqzfCIivt9kq9rrKUaBc4CHQTFAKiD+QTXinKeKK2BawO7uGjlAlSCbgBg4gI8hp2bAmMoeu0ovWNEzjRKUpU84QwMz4WOb8E1v6+NS0FR9fpzjwGyONg65UEJMjrGeZrbE7icF6e0UnCpBTsr9sbYG+Nua3i4NBPnbuafhz/CUG96xKiF0Nx3T3EUFBOKguWWa2sgMhGB5z56dMtL8Y0lVknsDl6EqybO+YmPnzFS7Ht5TxCswOm7hSVIofZna/LEcsqEUJ0K9rk5l7ZstdFka8e6v4zPwt4g5pE192BVs38OBphPJUDbMPaBcp6WM2HGNoD7u8hJVoxhUVY7BeU4cfJAK4JzCE4vGKoMjEKmKUG2pmkpTqwFuppfGelsCb/YFxMZPRtYrVspxee4/Z1rgpON1/h0xcgslgQwrOBwDCt+f2FTDEmcjuught12EnSYMP/sCSrQMccGA9lAYmIJc5/xTJyyEQxzMUfyHBQupObj2HE7hXpeoEJZIVIwqPv48TVcBFoqyujozBZHqn02MKpSCgQmaGM+nc3B4kIvkfszYo55VLVYzmLjajGKRoFiN3xPA2uF5edLQeM9fTybeYKtRq7A1oLqPBhVTdGp5nn5fduxt4sVgLcNrTZbe2JGuWOeHeoCiwk7zsU6sLaGbd+h/R4kYngEAeVkP/9hwoSyjuWM3BB5O7NlFaJq5KMQd3CsPDD/4nlQax6y2fe3hr25UFapiYHE+ShZzosXDNd8V49BbuI8D+i9+6V1p1brDCqEMcjFvG3eLRpaL2Ib3nyDPJ622LJg8LgRqmMAusQjIgOqgvO0ccx12pjodgkmSJcsZO79tKZj0NRpQ9gXGe6bPtl6TYqNFEQV8CYU1Yvsay04D8PfjtPWuV4rhpo/WHXGvuw5Pi0DRQ3DI4LnrO3YFFcMERSPqWqt1o2WCMJkjSdkxjyjd++oe+tbko+b6tehloLO0c3bGqeVUhynFWAohow8FjjeJI71ERH6qMb/YhvzjDXXyE4iN0yWoFAZOIcTzh+v+PjhA54eP7pvjxkHYuJ3CkBPs/ekDNYBkuprHXvhSUBERo6vpN4EixYMkcFcwTUaKFpRbuQuiQ17KdV4OezNFk0AqRo/zpvD2dpdLQdAISpOOL0Zy9NxGPZ2XK3IXAXi8U0/X5YADuCQBFl8D8CFxAaUi/n6RaFFnH9h9wIgkBZAC1Qs3yIa+Wa7VzZjKyrtqHwHpg2EZveRCmqxBmTW8KuisAlJMTYTluJmPglXMDcQb2BqMNmWghBH0bBbJUN7L8YXqBoXUcnzry4SXIrF7lzm+KEI+AMgdawmLbRjDMFHADD9N/fz7Gfg0LfEXI0YYvV3mQKo8/fZ7yEwE/uB+0VKMxu4QCDxBRmvWZg1C6+s3wOBxZzXLBomi20AwnCbrEqOkZI3XFr2q2rxUe8T61Ux++KftVxzCAORj5vgZwQnI8Zd4LWbCb3qgOBqgpgyUGSA5UTREwUnWDtIT0BOaH/CoMM6x0vHeV5xnE946ifOcf57nRb/vm6x6mdRBDFmoyu/lToxv2QsOE4eLWY0/t3gb7ZFvmnGI7MIPtdIx12MR9ABcd9u9PS3reHLgfP6hPM40Q+LMVSi2NfXTAoeavgdEcvMc8m6TVWPo+c6HxiEOLYmjgean6rm0jrmQwCEJ7ck4i6rl65Z9BnCcWZ+1Oc5ZyE2wRv40iKJnD7hPJ/n9440ULi4P8jf7a+lsC7/d78zqoOyci0+NbCWCKioN5ICtFg8wd7QgkH5PvssZRH/XAoosXpA3fcPQTh1wT3JsSIE83OZc5+xzv0SaOo74Vffx3ZXKloRvHr1gH/8H/nT+NP/4J/EnbzDRgO//7t/GwLC9vAGHz5c8Xu/+zv4G7/9b+Hp3df48Q9e4zd/4zfwxRdv8erVK1y2Dfd3Dx5HMFrdAa7GkaEKUAGVBnDDUHb8b2CcAtXD1txhc7v34Y3E7La8//ARzIy2X0wItXcwG/8aIvjm66/wez/5PYzzwI9/9EP8+Ic/wmXfjMNxdkCCA3RCpGOM8DN6FraLLrkyVZvbMmyueEzF5DxCGbYW+bwBnuPYK4fDcbBi4o4hMjhEPQ9OOLyJ7zg7GIx920HMOIZA0CGkGEK4fnzE9elArRU//dnP8P7de9w/PODx6YqvvvnGmtcB+ObdO7x7/x7nYX6TKFBLBUDo3a4FE6Oj4DoGChdctg3jPABRvH64x/1lx5vXb/D27Ws8vGqoVYyzcX+H168esLnILwF4uL+gtWY8J7HcKhdYwVJlt2+eg0jjbkLPKgxoQWFF7+I4MaG2irvLjr1WNDK7aKIu5hGsxVWjA1QZX331Af/yv/yX8NOf/gz/+f/Sf+tXMn++6zbX/unHBD6d2L7buRiHC4Q89SxsRwiMbOL5HaOb4GHvJhyZzfDUxNlCwGk2p1wBbL5Zo8SL5iMfRe7XWXMBWL7WmwCDraFPqS5m3Spqc45pKeBKLnCjt3wRr8ZcC7KIfI0W9xvFeOxKJtrOPGydYDFeEivAVrTk1UyeSw28wq9/YJtxD5isGFgl8x2BscsQ3DT4Q2BxYX/dx2VCweQ0iQikCEQ6ihIsbLFYWKQDsObCqs5p5LinkkYpsJzAXkksLlQZhqsrJWaC+IT7ozmWfMAtEpPmv4bwDQDA+fgyTKB+FdWDnyfC77CceYrJMr00DXsA088Lp548NrBxFby/JWZm2JgN7nBhbIXQKmNjQiuERoTGhPu94GGvuN8r7jbH+Wux98SjGg9nCtgaI34VztcoUFZA+kAW4bP5+7M2LMRzGIWrxWM5/qbQBjmXasX8RQUkMZ8Qy62Pe8MoaPDUGgguj995AqxMwxsZcSy1zn3NsaAEVreBHI6VwnLbUd4rEAkhZXJMzqe+XyPjIMocqlDoOCH9gPYTGB0sLqpKAIpxJATmpx7FChmrAgMM4QppDNkI51ZwnMWEpoageyw1RNGHCUs9Hic+Xq94vJ44zoHX+4aP1xOPx2ncxDEM51XPWw7nCa/3kpwvTGbXRNXyrWRxdc9kd5R752KOyOvaeuKIouc8XhY7GCnCoOHjhKGi/AXTqY/FF9M5zsYPcwGJ8VwdY1sFcLZSsdUQmvJau8DLbrCCBBd8TQ1uv+fEFLm2weMj47nOBs7BlwjefQpP8e1z4BCbmvYabl/8Fnu8qjexyzxhZG3VDU6CwAJTytf26LhEYhVYTZM9Ic4PYccvKPIikQPMHLFG9tqmWx47pv8ba4sBhHkdErNc8rtAYPvi2JIk3hNCWYilIYJ2t7sCXyJZQxsS7Nh7FjN46e8o5LYPYJhw+/DXh6rnNXMJgZUWUB6TKs/akcCKmBHNAV7WRs9+p/xhl49MhDDjW+Rv7o7lHgp5DQzZ75VMZGr3fPXm82zfGu62DXdbw94aWis+98zGVZ6+xeQzLcJHFHlJmuOFTJy6UkWj4k0MHAdemoIk3xe3rB3y847YK/YZ8zq+XBFzI/y34TlQb6YWglM65t7J8621WuF7KSBhSCkQBkbxq7k2+HLFQxIFC4OK5xWJU0yqi39vN8EpGTa+eh84nKszm9PD51ysBJqzM793bSQIv86gGQ+oADqA4b66DPft5zUMDn1wROeaITMv52sLzUOZooew42S4UIAqCht3sbKJq9qauHSLgq0JLLc8hZeyWW6Hl9g+uL3WFBGwcc7u72xccGnVmzVX7K2gVrJMr8w7J6LmC8CFq1R97HqjRQ6/33AlS3FFDaxMMcQJrptA/FJnBsc3sXA8sJgaXf6PZwKLTi4Q5vuJAtd+Zr+X1yf3wvPWYdp1jsmJs9vVW+s4EUKijl1HfQeS90wmbsMEqi5yIQM8uuXOlvgkDs8hFJ896/WxF0iWPMNyHcR95BA4krRfsjwPRExsfvX0yZHqiASo134txxHmK3DkVqypTjz64FxTYg0FxZpmF1Yc7D9VcHQTHT9FUV30PBojxLVeI7uXtMX1i1q9FCHU4OQrIl8cdXYEszetFuxbNYGp1nDXTARx3yqai1hHnpTV5lPwJAguLOmik+H7ZXzs37TcNSDWd/KGLEvwlM8t8y94Oer1FTFHqloWj1Hg6sNz3EUMlX4Z0q4HRjGNeKDtU0ppte00gWs/Vkkfbq5g0aJ4RvRwHHuei589sa1p7hPX2rBvO47DcrCj98SCCJEXtDqx1ipqC/senBT/xtVnDx8TtgbejpVYy+L5GVOkL+BxFdsfhmmQuh9rvqM6J8rA3VjtfM6K837iOzHrcGKtWLeJV4Y0FfB8ffy+N/NvnDMq4Y/73Mu/bzlSEXNFMyvTxmmmk1OK11VHEyzLC5HHGKJiwiIuzkW+1lUXFJuzZq7Vgb3Ba5kAr3NYlrCciVEfRpxXOuaHxSz+Ecpf5j5ikvv3rf7e8+12lOnyNh9rRFDIs/dPRzw/7/N1xXdXTDPOLW1u+MuYNn79ktt8pt5gCuoXwXxDH7NDJl47QmjVfh9DkrMdXLkYF5GDluCoqNrFDeErkK/Ny3olt/c0ZqctV7Zv9p/i81PIbXXEqcyWQxOLFfOnx69Wz/1Hb99ZBST7lVL2jcqAXqHA6KYOGUrr06W4UfQzBxio7vgaqe5WXKpVK67cqhmpvRnxtzkZr9WG5p+L7gvpmHsBFzmRhrhBsUGpgqiBFmKNvV6NbEfmZBYXP1gnUATy7CIYrEE0WUZ1gMlKN5PCfqGbqQHosnDrfFCYmHWm0eKYTiM737Est6v3+kf9fntz07mj5f/5ISwG5TPbs/0Tph8cTrn6dTASr73BrqEs/nKZBu/m/3kc0/HxLooeJAVQHAtqOEdM0QNuBidRyPjSjNB5njhO62YjItj3Ha9evcLbN2/w9vVr3G07VMQ7oZy+uAK9Dzx9fMTHDx/w+PER/TyssNmVERlGwjOypkC6ePBGqK1gu1ghMwDvmDaLNi0oYe9u2FDbjm27w365w77fY7/cY9vvUfYLuDRTnCYT14F6gtIDQHEBEFt3Z/GVyBLI+3OpROibTa9w9N3RoekA27GupJTnxulbBv7N88+dprkl+Bbvu3n5+d/L3tZ5E183FwaswdjN8SzGPOPKZ0fsMVOCyBSHQnOlAObvSR6HB2Og8HAcHB1Qf8ATF6ZeO4tHZzFdFNbY+63LUyhmA4huGGUFNF7C5msQKaKQQpUMbNAIAe2aj0j4kSedNIooAIUpRMswUlkfJohCrGhsRE8qpsROXAHldBZUYeJRTjKnYsREIO6RFzUqoCw348XGVBR8GREiXUU1YnttG0L0aX4GGahoOEQw8p0VZ8Xc4iSlUqmAC8VFYZXmewBCmcAlu7ruin6B8rw+uQf+PvUEdp5fBjd2rFnfsTqCCxg2323b8xl9M+u90Cr2uWI1ue+8WOEh/vJtBQw+XTU+s2mcywLqqV+POBZygjGKE8frXL+hee9vitJe2CbTDOdGsAIR8/eK+3DWEcU69ZrvFT9T7DOSSotX8LzwMIl0cBui85LGtz/fkgCzbjdAqy7vXc8D0z9cjjGK3gBYABE//XFzHBnA3O73U3Oki/9nf88E/SenZONRKd95e8Jzf5/d3G64Lr8lO5ihniweZP5TIaA6oTkC3amOLRgq6CI4ugClgjC8oIc80cTuQ3tw5qCOdZWYyaQg0YBMHIm1eHE25uu5Lq0e7DzdsMHihRBKnEl44Nn4IVtDu5jwThTNsQKlVFwuL6tU5Xd+56/j7asHfP2HP8MPv3iDt68e8Ppux6vLBW/u71DvdvROKBAQW+wyAOB5giOSs2lHXOCjn1P4yx9x7W4L6NxewAEqt/2nF7mkIBhivZ7xTgTIRug3QvWNKEAcYybGpk8U3VAgBs9x7GoRLCKyIhmikvsJ/1PGsMLCAE1jLPAEy4A4XJs30RFEEZ2I5GY6UaCRtBxnvhjjzYERRoJK+R4RL/I0H2uQgobOzkSlWDdkwMDRAExrQxOFwvz+FIGCzWNmxtY23F0CeCxeeGz2ZHQnWvt7hWwfzIzaGqrHBwbC2jy1QiHNxAqDQKUmKDbGwKSgFtAgSPE1mjn9eOvlqYAXhL2kLeJWBixBVwrCS4xkFXy82k9Y5xSytbFVI8X1w0UFzg5VExBtpZqw1Naw1SkoFb/vLYgbPAs3l4LXWcTp4xYhjk23r6dzc/u5+Zrvhea4TfAt53kGZvZufW57/XrF/FiE4LIDAeaUWj+rXggd3xkmKtaZLNZw4DqO6dPvvH3Ea+tP/yPXgM+9P757JrQWgFs+/135WDqUxfXNc/AVIa3z6iBRiPQ5yTnMtHOeRDSTcXk+Kk6SmUXdmWgM/9rfH4U567rwcrYZrBsuoLk2CAyUP0dHHyfOfuDoJtZxdHsYQSEEujLCS994CSEMe6yMtlVc9h13lzs8PNzj1atXeP36FV6/ee0/X+Hh4R53lztEIss05EJcdxY02CX2O+tJlBtfLoOSSFxP8XoQZbyec1TXufuZZHMpjnEyboQDCN41xEk7KwJsAIDtKclCVt6hkewFm0AXI4FsDiFmn25TYDFIQWSJaCHQEMhCis1txSRoihHqtuU15OggyE4EkWFd7dW6bYmaeECIRs6k9bSdFI7/es7rEHuGoSyeCESBLkAf6l2sBcc5cBwdWyk4C1snrGJjlZapi2V/Pohv4sIXs7n/by7TjdcyH0v8nT/8gvGyzqdQMoAEom72N4Prb7sSE20m9+l9ZVzXU3y6hodvRh5LA3bva61oe8O2mx0tzWNn93Mmwb87PmqkchUrUFfHkLNDdNguzE4zITSlsgivRpySfuJMpFdP3Bq+ErOcp88d9tX9Ts4xrOlzEs1rkrcpr3kgOrkCYYl88r7PuHnGneT3Tv27ZmcToHCBFLXCcX/PkLm/dYh8ctufvc2lOz5560wF/7uZKzcz7sVsGdOT+wpi3b5HFmIfOI/DBKeOA2c/IOOEjoW8EftwPz6EprqPXXF8fl1LW2vYtg1t27KoaAwX5nPfoLaGy+UO9w8PeHh4wGXfzdaGXfBRZIRf73DOhC6R4ncCvYupEhnGceMDLj7it/nyt/7nL7+Hz33MGasv48exFnvdiMlgnkIZ8eOzxzMH7fodIhYzsyDJVYjzT1/vdq0I4QiN+yazYzS8WCbEplCQ/mUNX1ldJJhggbqT2USHp7W8ECnWPbZOZqVZM51aBVSLF52acEcpDWMI2uhgKpAB9HPgPDsKn7n2IK+xxYNE6jFH+WTufu+bi9UE8dxiyGncbTjPTl4hElGdFL83Ix/eb4y7yrjfGx72HZfdxJgbG/mZ2Rq1UDW/pDrZvXrzh4rAyhgFRtK1LnoVjIoULAjCNy1LJ5HlqH1u6uKrr8VtISbz/DX61rVvtb3T55rHcBs7xRZEfvLjNA7lHBc383SdexomOLCZuX12tvm5Widjs3dKnnspMZcqpAxwLWj7DsByo+UYuNt2sBIIFefRoQOoRVCo4EonKgtaH7hCcBUroEStVlvjNWJagO7FKxgjj9RwF1psuJO/HduMeJa9u28pJmq5riuyrAWB+a6vR8GiutDKGAMNU0D6pWxDF6EF93lMvEsxyMmIMDKNEmWhIi2YfmXnczhBPYqV0nUpWb9o66aaY534/RIfJzYAmD8TZCF1oiusQGpQweAyfTWuYC7oY1gRrGMKpVjh/lArfrAvcSzPCT52bDYn1HPZRGq4eC0Qz3OP7mNauxXp+nGPLiYCiBDMcv8LQHOBgGiewcXtbXERrCC7tg3bdkGruwlNlQ21VMurBaYgiz8Va0yIyxFngY3hCxVt20ByQVEjU9OVcryG4JbfihsyXEzo4sdrPmgITPk93zaguMBrKQBbUeu2bd71fsNWN7NXHA3mwmZZ458SJ+HfZyS24UXLQUMkgIoXyBuO271ITMT2k2svFKTjxcVkKl5IKJIiU1b8OtCH+zhhC4D03QM76r3jOA4XEKoAXETNO5aeLr59nidqsVh/2g94caFCxUTwj5LPgAgotLmfYT+aNyw464Fr7+jHFQQrjB9ihfLbXmHFmwKGYe9AAXUBqHjs7v7OcDKsDIxRUWRAhq0ZWdDGDKrVbXnH6NGo6VlzgnXNLgvW72O3lGLXiRhta7geT7O4RQRdB7oX3p8ungQRq59ShurAEKCngozdEGom9FXYbdiw8zqvJ54erziPaxbUgFxMtpTEHKyQlCy3pQWqBVB1ESgfv9XmF4hyTa3VcsKFTFBqK95U0XP2FPfNE2ZUyHGjAnBBqdYwjksDewM5E5qqKLWiepHCGILDi+HPfuI4D1yPK85+oB9n+lgaOaL+8oSm5kaJrVHka5Oc6PONzaOz3B9DBRgQEMjJ2jDsS9nFuDaUsplgF20gF4qy5h8m/GsYhPEOiRrM+Te+BLO9ThQqUkGM9+ZzCNyRzF5yZGd1YqXuR5VCzolkF9pGFshPF2TlC9IzQT9CcLYiDpgdvT9BFRyntc+ET5n43A33nwKqWGy4+rGseyWzvRJHOm1mHoMAMtQLiDWPj9RsbMR8mh9wVCSbT9FyLVyIMMnemsIi3WM3cT9nOH4uIpA+oIEJqR8nMzBsMIk/CJwEf4q4jxRFCdxh8b5452kYV5EgIO0g7dBxYOgVAwOndBz9wHFe0fuJcxx/nIH/K9nC/2C2HIa6v22CaCvKM7GCtEeKjH3tvS7wHp8im6ucpPqZ5zDegY8nj5N77y4oZbjJ6YK1MgZ0BCZzQv19gb8QAUWBCGZu4yx9NgcMnxvqBH7Pn4ZQ/BRJct92yCwI9J8Os4N4GbPO/wHP8cPF/ati3CvD6NQ5GEt+EPSJ0FSeBS3HvZ6V27PZyGTxteO8Vwcw+Eo+n9mxW6Ns+vEPBVGBRtGdE9pjTgsAHsatUPG8nq5ozHKUuj6jeT1JptB3EcM2siEGzbVDRJxcPxHSRB6XtSDw7HkML8tfvKuCH//wNX79x3f4rd/4Al/+4A4/vn/AD7/8Ao8nQ8qGn/3eH+Jf/zf+DXz46ue4q8Bv/vAtXt81/ODLt/ji7RfY9wu2WnG53KHWiq3t2LfdCxwAAkO5AaWhg3GeVoj7dD3x8emK63HiOLoJvDDMz3l6whAFlYKn64Hz7Di75eQAxWU3EXyC4OnDB/zspz8FATgOwXEotq3i8f0HyPUJW2u4u1yw79X9DxPjkWGNT42fYwMli59V3I6J+1/AgMf1KUiw5MbDFGTch+SSEBdgGHZ4DmMmWHMvxjEGjuPAh/cf8PT4BFK267nvQKkYUHQoHq8Hnq4nHp+u+P2f/gx/9yc/gQKodcP1PPHx/SNEBNfe8fXHKz48XdHP7hw/RuVqMacoatugMvDu4zsgbAkUkIFL3fD61QNaKbi7XPCDL97gizd3eH2/4e7uglcPD/jqsqPVirv9gsul4fH+Hu/efUAjYINCpGPbG6ANxqkPvMIwxFLYMMNxmh/NDWZDBwYbttxaw+Wy4f7SsLHFItc+sFXgGB09BPCr+70oeHwcGP2Kv/JX/s3vYSZ9+7ZyAZ5j08GVSfEV92+8h5DHTGRFym6bQvQ+mpXY4HTfwQUQdXSIN5sI8STx5gWTm51HYfuKJVjtimb9Q3Dgw/+HxQchKtW2hrJV1L2hbtttY1rPK4edMEEImr+zzTsO3FO9QNcvRBRJQnHDe7RifzWeljBC72lx6+bazHPdvi0Gg9WLqFruWMWEBoo3gVlyhXGfNLCQ8M/Iub+OA4kMiBRr9FAoG3xZgZaJEBTPo8vi07ILG5glKhB4QZ5jhMSMbGoatkhhOCcBM+ig9I3tyvm5xDXMkSdQ6S42MBZbrPOztI4NexBFHvpl2TEg4hh4LC0uxuw5VPL6HPVG6B7XmPA6m3BeLYbDw3KsWym4tIJLrXjYdzzsG+62Dfdbw94KNs9lNfZaLwiKY8/JT4qYRTUFzFRDDJ7W2wk79OmXPE9jUcQ9HgzdjGXHxIKTidzLHLtQb1bgPhGrjTumkni+por0bFpg+5EIdRzvVxdXdt+UYaLLHj/aXDXOhxWrmv84hjiWYEWknYaNa993ha8VMkBDwN6oSxdMHYCL2iv0PKHnARrd2MA+DVQJwhW1ELYG9FHQh+V0jIc6cHTCVoFLq3jYzY5ej4GHfcPT2XE9Ox6fTjxdDzwdHU/nibMP5xTbTBG4wJTEaQQH03KcosDweGIME9EXGVa3ROE/eA4FuYylKM7sZvYytqzF+VzccuMHL8+tXI6wOyHmQTMfEvWbrRSbjy6Gsz7C/iUMoLErzZjAYjjMwnbHEVKQFyE0VaxOJh7+XsM94rkQ4aXE1aNg+vbOBOcqVlCP1cL/d2E2ciMS1BSLXZaYMMD8wOF9PJGqDwqdYo0ZVLjQgotekHhBuP+0057ivFbwaxhELD4ZowSusi5KcYY3tnPliKmXXBqHK9dcj0fN8PjVkviT8w91Q8hpg/zMc3E0Gzd42acYBhD8LPWfxa93IbZKZCMTGM5CllcSUW/8pFDhZ/fxBWxEn/zUzOWprTtkYhGZzor4H8i4nMBeh0xo5HOLC3YXcNs9H7SVgn1ruGwNl9awbRVbq2itGK+RGXUlxyHkLdITcnzO8OBojG7CVgWNqolNleq10I4HL0JTwU+Z9YDzcmTDceJ8rEKiomYPHPyG9gHp1mwtRFe7DAzp6ccSEaRaTq/Uap8vxeZOsTmkRNARXCU7ecvdCUgKaIjjU5RCU2fkNPvIBswyFH10PF6veHq6YiSPcWIp894qMp8ZN9dftjXN8+7uO0btMbvglIrFq7EKgVzc0XOTUywHziWCi0zN+GRypqc4SywQBSbUVpgwOBoHWm4savnMhg2v7/l2VsH3udVqTXJabRmTWr7crmdl4+SLC9duteBSG+72DZdaUQme57dNHfdRFm94UNz3c04V6RTsIL/HsPplHT1t6Vq6K/4+hAj2ohtA84sRtjihNNVl6SDcTKZPcLp4H/CcUTdj1YXv4Txk4luznp/xnXGOOU6fVH0/7HkzUYX2btxeuO1xflDTmfsxMY3ucUfkMFzIy+281akSVGxuhL9q19hr5Tx4U8fdsTxuamRTaMo5yQuWr6wQVrCYglDUnx1qOI3ChTVgTQn6eaCfB6Tb8Zfi4kc057NFWHZsQ+KiCggDwgOVBE8daL2idMtdFvg+dMV4PzvUv9dN4euLX1fjupNHurJgGB6budhqKcBWCHs1cbe71nDZKu5awVbZYi4MsApoxDxTEIcGwMIv8vouTp9q4gNwjECJYblkF8WPnBiRzT8uUKpwuVsYXOa8PM/rBNe8gtyXJZBGDTZhyEB3Dpm7R14mpum3EqKG244t5htD4f1OUPxvrL54zONFx0PdP1t9uwSY0klwu+ZAhIkuFxQibKWg14azWY58eJ4jxccJWV8yMR/TO7FLPysnfcbmqAg/OP7WQD/cP18dmxBLXf1TZ7VC2OsS3LdzMMZuuijU85rk3xDAhhJ89LkXSumy5hEtjpTHzJ9XfPi+tyEjReVFh411DptjdkiSz+PrDqbWTvD0Cs+mYsVtO0fdYsQyiuRKYMntZI1jcXahhl8YudbwK5DxRlzv9DEWLIOoeL36fFPck7AxGacAy07gw9rnUPptYTPW33nGGVj3R8s0cV8JSE2Qdctn1GOQPBjHQKBIECjmt06/AFjq0UA3JjiuUq5jftFE5zEFly7zkL7OQmdD4awvc16LyLSJEjlvhNjU1KrQtI2yTMeIodd7ENeJTPRNF06V+zxRyiCwnCYzm3i4CrqwiSQLed7lu7H3v7PQVKoGcvGkuBVx1FqsM5wSIB0JqkPh0kxeYh43Q1BRsDGjVsbWigtKWffGWqzr4bZtFkSVgr0VC6TIVO1rseAnyEMm5mEqhgoTxaFihCcDEiugFYW8a1h1oSmqOXBCfbsw4/f7jr90fY3/yhffJLAUYMKM3qazQDf/T8dyDvylSGR5bxaUJFQ1g5Xci677Wgb/NME2sVf5RMUv/Z3yWFdwfv26aSziuDy0zIGr637jSJbvIY4FB8v1gC14bgzCEQ34gEJ8ishfp+W6LPvOY/L1U5biNlfvI0zyBpMaGOoPjG7B7QsruuwecKsYyf/u7oI3b17jB198gdevHlCYcB4nrt5Vp5QKEUE/O56eHnEch3c7H0muYDKyanGhkuhwSUTYOAqaN4AE/TxtMRsB8AchipwwumG/uzfia7ugbvYomxFHwRXwxEvcMhXrGGx3zIkgy9JkRkYwu0MsAGHe/0838oAl0lu3Iy3eNEfzbdLwJmK7fW5+eP7Q22d1fevyh04P8tsO2495nZDrR+YHP/ee9dm4wFEE9klRaRpkm2wmHuVmKQ4zPbZQhXGHJMiD0BlUaHRjWwrHIwAXMYAoCJouQgSKgueXtUUht2UZAv7xsaLA8LU9lK01AkR3fO19ZEr9AkjXFEcZlVCFrasoKIMg8cIGGb7+MYHhHVPhBUw9HAUHpAAnI0keG3tx+ZAg20VnqYrZkdyySeq3L4vWY07q/KyIIjQEQmwkCpjDyQxC31SPno6p7ZcyIAi7FNfjBg5Z7RpoKn4ud8ZemmOGslKcbs5h2eH6yed7evZ8OM++n8Wcx/3V+fIfscU7PBDX55/R23Uiz8fXCSJYEbliXQ91mbcaAQGFyBKlojdgJOAkWr+wrfsyYo66XVOGFTY077C2bZuJa7SWSr0hOFUc+Irk0epTxb5ScTltRpAgMAHY+D3fZ7/afdY5nnwsrj6M/bi1VUGE4ATpPQG2rtjReUBMkGUV9YljZYRPuWyfWSojYFjH/M1x33ycsLStCYcrx8vzr7oJ3Hxupro7cSooiwiE5AZ8ZTJBlVqD6GiEQ1Ps1SyQtQWHQIUgxBgey6lKioEpjMAf4gIZI+kU8wEi6AFYLfgJkalU+F3vtZ+kCSMBgECHprAQ+XufF9GlT+gTWoo4MNNQyv7pDfoet7/zt/82/vBux9d/+Af44Q/e4odfvMGv/9qX+I1f+zXctwK9NPR+AsMTDjEkxIs1fD+ZnF0WR3GiQ3QciUKk6eN471BVyFDgVI8SNEnnUWyrOheCmKM5NxneSWM4iXyqMq8JFROw4kyMrQRl+6mejJlrIhG8mBP5ORDNc9JQ7xfzVdi65a1E1Zh7kZjJFdsXtYSzdImcaHEVcu1xcQEhI8h2F48J3yO+B3BwKKaOAb7xfaU2cBEUFbBE3BtiU8XnkYMWGqC7HQeXgm1rdjhemHeeQcJW7wo6xZVj28bAvu/mP1IU6Y30waHeRbfYsUShdaeOU0+IeFEwE5DiWO5HiaLTMKEHDMinS9X3uokGGYJR3JnxXs2wYd/d//bY2OPjwuQifBUQxTmOFAmwImY2nKNt/jMIGtXFpqZafS3lljjh27p+RVIzxPGekySfg3E3r2HudwKOyxyAC5OQz3GK78bNOAlhjhFgmiwkwGXdCCEA8nHg0w9EJjoWscoqrnFTqJDHarZqigzQkvy+JR7mFvuJ+bp8TwqauNUPXyuFphZRsdU+WUGu+faSYokmfCQBwMfXx3eKznWoDyOZxvzi6U0EESqSzuGzR2Iu5uTNWHC/CXDytRNFwid5af4ikRcpZGfHKICyRwgPnS4sdR4HjvPAeZ7ofeDsan6FfupCpZdOZmtKZbRWsO8Nl8sF9w/3eHh4hYf7V3j96g1ePbzCqwcXmbq7w+VyQe9GdjO7NIWl3Dws84HC+0ynd/qtdhD2/tnpixZ8MaIlWly4/Nt/IcBJg4t4QNpt97lZ7Vqmoi4mVqARM9KzYwaIBeqCywbUx/iZdmTOMcnXLblHGOE7YMaxcP+LV9yBowtLBQhTsJLMnk2hKSf/qYlNnX3YmsiM4ckWqBfshI+wFKpnUip+j6v0mSBPFKAB9K44zm528ThwHBvOWtBrQSfrOGdFRLcOuGZwDeCF2bDY4hhXITxgXcKXAZ3PLIM430vL9Zs0puSlq+Y4udnPzbEs3/lJXBa7p1ynP3cesY7HZ5nJSFj7jrpZbqI4HmLF28AJKwQeTt7u/fSiMxeGyAJmW5Nn8iaIDerJ2/BTp5gELUcYx8VkRGmLEGOtvu3GOYvmkGvKtHXhV2he4zC7qX8DzPuxjOv1itPyMP87CvFXmx+J/4WoQqe9NgYITkj+9CbeftO67i2JtvVY7Ls9efesqcAftd36Np8Jmr/HLY/GxZmGFzSe3WzWcZjQVDSDkN696CTscmC04VeIjU0XJREXggBsvNdijVn2bce+79haQ/HCfJIlfmLvhNQqNsdcWmsuYhTdlSQLHtXHqQl8CpQNM42Yb2J/Os+bPj9fv/Va/ZJb9zw2f/77zcZkYrcxpmjOM4t95NYR0LlmxZqdL3s8lvkwxc3v9pPy+fnQ9FllicFkeT4mYHQJCrILl4JSBTUcmDh3EQwyOyseG6n7mv3sID5RT39sHZuqE6+rFzM01GExbhsm9NDPgePsaGdHa80E9/rzZgB2DUuxTvcqL2uOieevyMWtJQibYmTTIVZkwyAT4iJgK4y9MjbvdHnZKu6b4vVlx6u7C+73hkstLspMKKzgwmitojTzU+CF0wCm/feGHUaAtOZFyu57O1q5+nlMhtsiiLghCgHbFwfe7bbhc8tbEh10GcM8jYE4Tgb3S5EE/BA4vCUpWtwRgvnrvH6ej/uWY8l5aQeTcZQsRFm3X0E09L37fLMCmohhS6kYPMClYr9cULgAsOLMCwGtbChc0Y8D2hVHFxQtYCVUHjgBaGcrAK+ErW5mfbtmEZ/lhIO0IV5kQ1AqiJwaE3yMYeIpsIKAMQR7u6SoybyONsmfx1rxM4XFFCnwtubfX8rWxTv+yvAO81Y83EUgnGUHVnTgHY+5VlA1QvBWLbcVYnWFFiLS4rvNMetexXMRtGUBDhuT401cAIxMkI2UMahDS811coyBOhq6WFX78O8xUSOYPyyG8dIIKttwbC5sDWMoOzZhh2XEfABUIHXx2eI8VCEm64/khJAJeJZSABEXkrFzKY71XC47SvVmG5U9P39BK7vnRoy3Yl7csm77QpDjL+O6SXymUlFKg7YGkt38A4oufE60756zUDObKaQYAbafKHGxIygAquUf67ahbbuNA8cbqViBa6kVjU14PbppVnYhQ49jAceGVoMbzu7i08baoQBOEZwi6Gp0X6KCQIpirg2x11heFt9jjcNMWMZJZzrs2g9g+LocPlfggBajnOidcHYvTFc1n9B9vX6Yj9kBnGcIwISwoUfq4afyFXq1eIbgAmQMEyfyYqvCLtLdGMeh6BLiHVYUUQoB1FBrs7geHmZowcDpNgZJRrWujgMYDC4dMk6MUqFeWEAhmEFAV/Gp5X7eglkGKS8slLiwU8Z0vm3bhq023I97PF0/GhcmfDUXmjpOE1M6R5/YLzN0CLoYfttPFymGrZHsuUsiuFCOzaPzekJG9xjO55Aq1ImLqn4NBAAKeJCJVkVzodpQmlhhTVUUblnE7lIuGWOaz8JpX8Wdda7FBZcbuJqgFDcXoyrVhbI2lNayQRURQYfgPA8c1yuenp5wPa6JuZlIsxGaDeMRL5aPItOXtkVsQNaoI9ad8NMUHuNbQUKs1wojeXa1gghzzxmFCkANxDtqu6CUC2q5oPIOaypmjU2YG0ANigpno8Go5wWiDFHnKlKx1xQAPF/mBN7A54g4OY9rw7NYE0qJpp2z2NJs2yL65JfCIBrKz65xjAm+G59ojJGfs1By4owAEASKlfy75gbyO902Bq45fZ3wBTXXeiIT2IjXLQc3dxTcFctJKpJED8PmhAKzCqo5pZ0P8X2L1XyfpIkRRr5OSSfxmTgLp4PXGt3UA+7LscV2P0uRPFYKnDeuPc2GEqUwWAkbCG0QWgEqG19WpUPkNKEVHTjlQB/dC0C8AOpFbXxzTIEfzCT/s+MNPy65HQQT2bK8PkuFlMjEaAp1hjj7DS5J6vkT88uld1urVkHv84SEPXBiCjvXLcXKyAj7ejPm8ozmbwl2+nG7m6V+LDZWfPSpJqZo4lLqgrdR2BsZAwKjeAzmPnOZHIzqjXhDaMpyiOrcCytMZWbnxTiWPj3Pz5zLnIjq94e8kCrzE36f7Mcao3j8lvPcfXYyvI/Y/JAxTFiEaMyv9c+JKnqZ/CcWmEAG9PbaLxhnhtzP8DEZgsGxVnGuPeprYPCt4rtjn6o+ZvPEZkz93ejzv9rt7SvFn/zNt3j7tuB8/Apb/Q386Ld+Ew/3r3AnFV99c8Xv/d2/ib/11/4GtgL8g3/q78Nv/uZv4tIYrRbc312wbzuI2IXpL9i2Ha3uCOysVvPfjj7w4Zt3eP/hA969/4BffPMO37x776INwHGc+PjxI65PB/owme8hig8fPuL9hw94fHoCYPjJ7g2UChPGeeL9N9/g1f0d3n94wk//4BfYasP799/g41e/wN4a3r59jV/78gu8enjAvlshtX3fe6gqtn0zod8xLE4iu8eFHHsWKxZWj98n9sGLoO2My5k4haYwTFhieIfxgemrHWfHu2/e4Ztv3uHD+w/ofWDbLvjyhz8E1YqP1yuoVfzkpz9FLQ3vHx/x1/7G3zTBCwW++uobUKk4n05cn67WyISrx1+z2R5Hs2v3/Xs/cfaP2DYy7LYYjjuUcL1+BGrBOJ9wPL3DV3/gwul3d7i/uzinjszvvbvDm7ev8MXbt3h1f4c3D/e4bDvGuOK8ntj25oK0xQpISM1dWYBSyxE4p4bVRaYuuL+7w93WcNcYvTZsHWiHrXHssSD7vD8PcXHqhuN4WcKkKVj0+VfzlcmXmEU66xZ+udmphZPgsYp6Hj95tTLMf9bZ6T7fa6R5X4/dVoE8rAhut8xj88p28+UKUArK1rwhgcVWpZmYdakmDk5l4ftSmjF4VI082TU3SCYylc2/4pg8Jxw8B/W8Wq7/OrEVw9woG2Yl9v1cnAcTXyulQKRglCmgQXl/HE9y/CK0cOz7ImccOWcvsJZhv3Ox6+/zUaHOsbWiWBY4B8grm9wGWQN6/0ImiHCeg1V5x/AZOWICww1mr/FY1MWkbF++QmHm4AeMIyVpA2OcxTWIXKV/8ltH8ve9JVNisdPRKczyX4bFRdPCrVbcOW6/75txpYjAqiik2Crj0ioureJ+K7jbCi6NsFfCxoTKCo+yzEcRAmAi38E3DD/Mji84xsBa5Jlj0zkPMe6ZJx8jMTdexjTP9xOcT6Uj51Q8DyDXipAygwiUhseBHmPFQfpmOIznnxaBVtMsDftnYlVUZnyWfqgPEyZ4cyRr/Am/NkM74Hgg3Gai1BTUaxZ92TWF3Gguxa+bi5uMQrnmWcmJHbMJwtts5QKIN7clV3ojFVRysW1mbGXg0hrOLiY0dTExzMfrgcfrgeOwmpQhZscN5zHhqZWfNRQow+ZyF8MLT+dLqcdus2FdePZYMKe8Uy9qM7hsHle61eEnPXs/PfvdMDZ7vwk+IUWmmvNwtlrQeArcFILVaUJRYPbB4iD/L/IgpFkbQsCNnx9xBy2xPJ6J58QAVmao+3bRVGFaSH9r7jvO25z84KqE8FJcE/s6EwsgAYSnYFQcQtitCa74vtU4YkZAotvlN8/PbZCqNZIX2HovjsVgVjiqH2LwseI8otZGHVMI+0l5rSjUMWZTDrgZ5lAeUTgZ39Ybx6OTiUyxFrlfFI8RHEQN5Rt7u0R8q1NcTmeeC8QGXbkCtRKhBMavZIJSIFS1iF/JnkvbwC9wjmWuAn7/7Q/ya7dU9tp4C80uH5/xKO5LhcDU5gJue624VIuhtlLQKmNvDZe94W7bEvOr1cUHCDln46AKYOuY846puD9eJ8ZQuKBSwcYmNFW5eiOQWY9zIzRFyHtvpzzvzFwzfM4sN429cQmF0JQLrmrv0G51uZG3I3PUlvklji2YGHhJ7wlum2ZNW+bjPIaK9SGwh7ObkKhx/Ty3OQZGF5zdBQu9znZugQsnSyTjSIQt8CnKbkMN63MhCILbuPCHx43QlOXMajbB4RAmxXTvNfAMf3/m+3CLj6iPzeD1xJgM0eUS4m1qwmjhy48YNi9ou9zd4XIq2vbRm0NwChJiXV90oHA0Equ4aw2Ni61D/cQUrAAMa9Q0K+a1xT0KG7FwBfw6S+8+rW6tZ8QNymaTTGBt4X3Alzkg7YD6WrGkwW/8ujmDEZ/MaRZ43EyPu9+UGEdFNpINb9uB8KhlAeDCZlbfxKUAhJkjjznvTYXGEPMtPeax5u0K9jWi1mZ5t+BNLueT8SEB0RzDHGGCisWQgCIaeFptMqftiytx0xgx6pCXC5o+NMTscDSawBwv6rwsZdOq6FG/fB5eAz/AABozrhiOYVhubShSEMTEIi1fAtjacyVFORXtME4EwXgC1W0qxRh77ny9gE0dq7Za7zFjJRguBjlB0iFq+ZBKjI2BvTAuteCuVdy5wNR9Y+yVsBdF44EGoAqhkmXDCgENQAOhwn6P2s1orpBC0eRtW5UAa+kH5g3EzfLTZHk7VX/fgDVqhILZRrpocPK8HpMAKkDFQAWjCIGKr5+q3oRo5HjPIRirq/O+YmIzF9TSzB4XqxXqdlTTJwBwM/llTD4xkLmhaLwVTf+iplOTgxS5TGs+ASYoVwwa2IgwmCHCkMGQQS6WNfkDTMg2iMnLT/ut6XfScqix0IRo0XOBqbXUYC6N5v+QKoYO56O6Z0swfxBIAeDh9dDivrj6c8JWayXiwnC0+FOLTzx/ddxRAwN5OZsJQvcUmyIAlQqGi+KRwvC7wMjiWrkfP4V0J7eKQyx08SnDWcizJwaRJDboAC4A8hTdp5gbgMS4VBX/zn/sP4sf/eTfwhe/+Nuep4qHae/MzQQcb5Y4ilhu/h0xXPgkk5Nu6zXlPXXrTDcfXmzlXPXx7LfMMK35R/fNA0OzMMbshVLYGc8NLf6uuRxZBIiVgxI/Q++C4HZLCpSsAbthDc/q4zwvqI79B38iRKIjLzFrDxahKdzGi7LW6txcDbsSKeMW5xh+I92E3ybyC3fvvd66CKOrmOCUELrX7TI9u7bfsn13oSkb8t5N1wdkdKFXdZe/mEKlB7AMS+YSsas62gBptWBvDTXV6a0jc0vBqYZtc8GpZmq+tXpHeY5iY+vqaMkYUzYEhciGkzc4CB/VCMd1M/JOrZ4cdag3ErPE+Pmo+Jc+/gB/7v4R/9uvv8B/8YuPuJ0d9qnPdYUFsEyGxbF0oMtehy2EWMREPut0LIHbTcAWn10+FIvCPMT1tq0xZ35XBkwJYCwB83IEc0pTHnMOSvV77VYpRXSWCpi8chTH/snhefFMOI1jLjDrwT67Mnkc6g6cO51T/dRJow6gpKooYMrhMjz4eDnb9XjCeR6Q0XG5u8ObV6/w5dsv8Pr1K+yteeGbESgC4DjPE09Pj3h8fMT1es0uuUmeCDCc6SaxVYolnPbW0Arj9IKYcVp2hmFgBMBgquZEbTu27Q5tv9hju2RXRPCtsqgVY0TRYUjMeeJpHdtEDtpPUh9zuXndtgjv40+djsVNMBIfXP6MN+Uf8aIuH/l0acb60rKFsEy+qM/e+Et2FccewgE2iEs6B/N051xJ0bVn5CIKJyASkkAaxkhukF/ziVL4fI5dJVAoMATeRduccOrVLTfOaDpzfl01xDvSeCO/73MiJ9/nNpxVZp0C4MbapAMc+4pQAsUdEiZ/PyT66roCpUK6WGADBxmUIULg4XNPGcFkkzMcfi80hLstkfiIwiSywNZ8N10Si/BiXmQCVFRRSgOR5lxRv+d2PprkECwOyejm7JDY4bEDAJnwBfk5OnAnUTgxC4NngbQlYQG4UNLsNDmzYsj3hm9oTs9yczJK8YcXIq6CHTczIJzX77KFKSG63clnfrehHgDdJ7t49lx8aHFyv+X3uVaQA9HspH63m7o4xW7CAtC3om5yVVMLOGutdn/Gy5pjAKwjzYxDXTDBHPEUl2oNLfy8sgiIfhLwUDr1QU7IxCzFsHn2/hx3MxCwIkpCLH9rWGJvpcXhXgQcFpEP8iCNmZbOAwSkkuwsMIqfKzC8IIV53N+2fRIk+8WMuXxr4m59JYUuIm3swJiTIiBelDELioUKmMX94GGABzO0GlgxOPxOO+bigGZLVeVJTrRCS7UmAurJZzIiRcL2bL6Bx9QZ0K5nb6fs14+AkUSNed0UTs5YbHCuS/5kCobkNbdxWLCOGeS869ozYVGLA6vP/JKXsH3zzTs8fviA68f3ePzwNY6PX6JC8eZywXj7BhATyBAvFC7s9sZbY0SiPDs9Yrokw4s11rEcnvd6vawDcE/RFFVFqdWIMxEkayQ6lsJ6B9FI4CCzFTeM/vl5Uwpb11JhT3jNIswgGJvI6vwsE4MhyNZZeL5WMAATNyNlMH8652LGzX9wv8pinyAcfSrc8Gxc8RzLMtTBXMl9SrwvfDpgCnaE0BSAPgTEHXwWcCtZfGa5bRvTHbBCke5iT9VJVOAcy9YhrkFE0HufPiS7MKy62McYeLpe0Z6elsIM6yKiVXN/oZQf53ueJlAQ5xxzcu1GBSiGKMrZ0TsD54n+wgpV4tjDnpgIUHG/msEjYmjkYrwWE1QuJmwcKvYiRtaoRv7danFw2snlS3eREFtcSUhhoNIWMs+fKDf2xI5prqMU8frzc7yxKMs5++uptu6LZ1mStpSEuFnglZ3AVZxQdWu7UcoyN8RAcRno3Q/XVdwJDrgtwnPhl4X9VnyLDaVpi6ZNR5Lq08fDnJfPn4fHnNOV0Lz+4Y9rnreLq3UnNrnvPGLuUwgU+RV3f7+fluA6u61dQ52csAh0RCwdt1N1SaanjZP0y61otS1FRFMxf8UGXsoWGKJ6ws45eVBl78ZjhUVR7Hz0E+cZHbAGhsc6ETkgfkZ44j+5EGrx4t1tx+XuDnd3d7i/v8fDwwPu7x5wd7nDZb9gq5sLoFb0cS6ClqtPT7nWz5gl7EqidjOkSd+FE9S3cTrFqdKn83A/i3HSr0Um20OsKh1aWJJOhZzQM6+Io3zeNI5uH7peqPjyWdxq8Zx9xy2YrT5OLTahohbvyhTfCZJ0+tj+k5mhpaD6lbLiV4YQsPeOs5/oQ+wh9jh6R6tnNjcQse+iJWaXW5TIv/HT3xOiXMI3gfk9vQ+c54lrCE6dFb1VCBOEveOTaGKO8VDHGpHrx8vbIrly81zYlJuVEpjj9XZ9jQRMYr9zz4CP2Vt/KNDaz2/hj/vH8yjW2D7Xvzzg2+MnT2y1aiJyNYj0FEIRNlY7FKrDCvhSrG52TU/BwBCaQtzn8M8WQaCM5dahlOkbEMznriWK45Bz1hK+U2TK7K2dQ84bzMurCsuzRLx786C48MvVQx4Ncp2xv+M7Izmo8PUWQIHFgRbTDXBnMJ0eT3X0iNPWW0DLt4VvEk9m/cPtB4KUrfCiaP328fH/S1vkaAyDM5t7nh3H0XFG8WMQWs4zO5uHaBktn43ON1k0H+LNgAufWv5s3zbsi3B3LQXWH9qzTuRCOFyzYLFU62Bu4stTlDZ4nTZYyQqh1cemk2tyDj7zNb8dyfjWq3WztoSPfYP1pJ2czz/frJMhzf09s283nbJUkLP1Zvma608sQuE7zcccpnMK0M3Qne9bu/NN+2RFNfAJR0ZGUysiz+se+IUpTeRq0uHETDHiPzHjPE/U3rF1T1ojOvyaZdVmGGMfhm9f9xPtemLb+rL2GWFsFbyJojwj/Pzx7+zfyy3EMUgVcBFelJoi1XA7bOILBayCAhObenW54O5ux1YID01x16yR0dYqtq3h0qyzdikmTl2q5aYAAGwC7OzE3BBltgKm6ligCQGoMFAsJxDN7ZONU5wQ7+oFtibbSwT39wJjD7LRah8jt4cQDVEXq7Dj5GIUXDgRcI1HYz8Zj+c8IyeMmOgMxfzOOG1xlp7hZjF25hyMcaReOzQteoYekROJOFEtL7K1DSfxFNOrHSdzkmXLyejU7T6AsdUdj49PeCoHGjOO48SHMSC1Yt8L6uYd2fsAGmGMjvO0Dua1FNRRcHiTlGs0WSmcjTyIHcOQWO8Y5zkAMqw0/B0AaK1lrNI7zTjY7UDEaIZfAbW1jHNf2qYe4wpZkwHR4fdpiicpjHxTXbywtAbeNrR2QanNfAia2CIQvoHHNgrHncJjV7B4MWsUiQNmdwCgrJi5jVcSa3w2mL2o2NcyYMbY0lHVfrL021ja70livL52GwHZ8tmKAhYjco0lr1GcpVwYfl3MXoYQgjZLrhEoRddMvK+6LzgFxGspqM14LaVSYuqtWu69lGprDGzMretc2BoVBbEYyKsMoQVLc8yNa0Hpxo0JTHvbLhghsFoFpfu+FvI+Svj3vvayzQUiNqI6F9S2obXNbE+JbvNWzNBKTVzLKGTL+iEmpkgUAPXELJj5mcB3GF6PQZghZEJBQ8UEZDPedAtNCopurC9oS1+ZzG8WHTj7gYI619Nx2mj2axX8p1hzbW3p6INclIlQmmG7vVYjNTrGy4XQuCJaSgRvTgFABuS8ovv3crE4l5vjkcSADCtabw19qxidcUhH1wEaJ/gwcp6KZGOz6Q/DY6qZS6A4h27x2GAjqxeY7ebsMGv2IwTJwpbSoHw9u0Tq9Lt7iB9B3UaziZuVYmI6HstFge85Bp6Ow0SVujVsE1XDI1lQCOiqxuc6D/R+4NpPWwMC04xYxsAIEBSNCWiM3meRufVboLw22q0hA0uBsgnmgU+UclhOtDa0dkFvHf3oxmcr8XxDkKyhHYopfGnrjxUTlNqsOLSZIGBp3nTRC8+Jy4xZjiecj484np7w+PiE47i6MFc3oalh+Jv0RWBKFfVbeHHf75aR7yyYch/JbqfjqZGjcb+FCNmN16XWQGggNDBtYN7AfEGrF7R6j1Z3MDcQCkzc3/MlQhC3VcZWLZiiR2w8FBkWfzkPkdlEAAqbeCn5/QwegC0J/j73gaN5x+RpELis/t5yRXzdKYX8Gsx5BrALVEVs4/udUFdeVVDE/PZMZNqCV/J5nMD+yEKn/N6IzG6x8hmokWPYRtY1XpOLozrNhgPXCHEnIP0Li7/m34AT7XliUKwEiAm+DVWMPkCDDNcfzkHzXIuOiYWZLayo1ex6GdE8wnxbDHFwQKwJSS3YtECpgEvDqQ37taAVgCEgOaH9gIyrE5M7BNZpnQiWV3pRm6NRXgiUPBb4nKIleiBMAS6PhwtZbMyOgtk6GbiW+39h9zVi94iFQ3isZz7lelxN0Ps40T3OHcPsBKkJGFQOS+j33/lbSCHpefy2BRcHt7xdogB+4EcFRHwKm1xRtM+OG5LCv1vneHWMppQ2m8x4rjaa8da6CE2RGi+6eMxPJlxmq1WUYH4uurDjm/N4cgEAP5xPYv5nfxOlnz7zCAr2dW0QG59kLEIl8Tm2gv/SBzTWYA7MJL22m8/ZldS5VrgdNZGeiLEsl8FFEcJ9KzZDkYMjAlTgqUDM1WC9599y6b7H7c/9x/+jGNev0M+PgOzo1yc8ermWCtD7wPXDR+wE/NqbN3j76jVa2yHoKM0aL9g4Z1AtqK2BS4UQo9Udl8sFqsDXX7/DN+/e4d37D3j3/iP+4A9/jl98/Q7X8wBzNVGHpwPXfuAXP/8Kf/jzn+N62GtcCj4+PuLx6QlDxDBHLos4AaEfJ1ot+OnPvsarh3tcLjv6ecWrVjHGN/i9n/0hmgsnvn37Cr/x4x+htYIPH96jjxP3D3d4/eoel90EpCEmOFGK54OGxQ0o9poSQ12UJkQJCDHeFNDgZQLE1QqaxsA5TpzXYfnG3vH0dOD9uw94//4jHj88op8DpX3EtQ9c7h9wysDXH9/j93/2M9S24w+/+hrX48TjeeKrd+/w8eMVUMY4B86n00ZdNX+scYGQgDAg54DJL9l4JSZ8cb/h1d2Gh1cPuNt2tGKNqvbWsNWCfdvw+uEBb9++xdaqxb2jA6ODADw9PuLv/P5PUUrBj3/0I/zwh1/i/PJLfPHFFyiFINJRa8HD/QX39zuYN8u7Hd2FHd0HZ05MBIT0O1or2EvBVk3gqHFFLQLXVIaq2v66ALQlDvTSGtFaY4fuMbakkHj4iCu/aHIzbTM/SOd+XKASmI0Xh3QT6NUO9YLNWKUZS35ZLC9g3zdFzg2bSKbGxKbUmuKa6G3xhnQVKNXFnjfUbTORqWpx1rbvqPuOujUTog1hU8f8oTS5yX6C7CIVEZ+y56EluarzGjALtEaT+chx+dmGQ0bhD7joaghJRrG2X0vI5JFlrlAWHwMAhqBDMka2cEzArI5DmcoDg8GiKCUaoQkO5y4WcNpjFcuiWO4DQBRCiqIPGN5E0XgvhENN+AREkPAlFz6rnbtAnDOe5+ui4QETp6uD6VoUZvf9exaPztyCW8hoihO+R772srbAl+18Fy6E+3YxZoqL2dxvDQ+XC+4uDff7jr0Vu1faUaDYmHBpFXsr9rMWayxRTWRqCggIQmpAXewo+TAaXA3zbRBFmSUUmmjWuLCPZaIZs3ndGZGj+hEYxRoX9yruTeZh8cyh9LcrZsAV10VjzXRcMeaSqNm68DcBK/YM54q9iYxYbJZcXphfxLD5UVH8wRB4vk+sQcM4ozjSc9tlmLgQ25HoOYAu0BCg9lCMXeyIiEG1GreUxiwaJotsxPnKxv9haImYVsCoKF5k0AXoRbAVxmjWHOxaT2yF0QxqQWPgWgi9k30fk9dDCLoEt9H4h12Bsxv36hT7PUYL+ftVF90gnfUNEa/mHy9oEwbsJsDHqj3/ucPMQlnn57LHw+TzJv4uBBTijE8aE1ohNAIqBEUJJCZSUBioGuJsfgweW3H4W/A1WiMuF18XltiFYhWbTSXNw/e1LTFhmYJQomlXbvPBsdv4DG7smfHanUPl19DQVuT/N/wJXxeQebhYbynSbyZgGssxYoyTh8pzDZA4pmUdUgJEbBxqHjxhXh5fN4NPwlG4Pf+e/BJA2UV+chDozRqjbmdFyBtnauIPQwZ0uI0Z5jebsL75SurCQTKsMZYOL5xX9TG05PTha5C/njiouRyQQqjhgyiAEMZ5YbYs1gG7tb4uuw+kMC61QKcoAkxEj8REErMOzMdeNOPYasWlWj76btuw14rN+cJ7q7hsGy77ZrF/DMW41+40UOAS5FiL44FULA9k/PHi8ZkJTbUQmaKSYlMpNOX5qrTXmHUEMYfWeZK/ujNj0858KXKxKZIB6gMYA3qa2JSOAR3d8CBW40iwgIqiiJrIFLm4NlkzivB/RIat5eE7IwR/KK+DiOIcU2jqehw4jjMbTB694zgOXI/TmkJh8iLynAj4g//cP4Mf/Uv/DNZTDnNvHIG1WbCJj9iYt3rJaF7oU90FK8e81rT4jX4dn/PqQoBBl0NLLqRa3CY+TwkmaBZiSMlR0UV7gn45V+/72GrbAX7CUHhj2ZFiSJFDyfeW4kJs3nTPC4xijLKqC5RNm1aZUSOWpcjXOlbIjt2bxTIxdLZ6EQB5raLJpgQ2H3k1bwAWKNgtqoWbY7cdYa7//q367F2qamstFnyLKMeN5Tes0RNpxK5jyZ/aHm2dSLmZ5RhC0NTFeNmEprhUE+SU4CxojktK3NFFo2Qea6qk0cTgKA5evL5lFUr28R7X62ZVWdaauH4U5892/TXtpwt9hc8OQgFDmKB94JTh/PEOFcNJbPwUHKfgLOJ1LQpIyVygiqCrJBeuknNnIBh6og/FOQRn784RsLVSXQuDSUMv+kVtMTZIhzWyh+t3iAlNUT+TB8IENDB2JlzKFJm63yrua8GlMbYC7CxopGiqqJiiUhXARozNcfgQ4kuuUq0QeIOhiA00tD0qmBpQdlCtIFgzRBEsnHGrYWfPy1pOTz13pAAENICqgiIC6h1ge98QtQZNLjQl6rWUPmbDz8vaXQJqNcH1y2XH5bKb3K7zhy3UXfxqmL80+pnNRlWG1WTVigtNYfZ4qNg5aQ9xQoC3C3gLcTlCJ0phJiH2Yzf+2ZwvAlZCUTH1JueNBN8KgPnbYXvST3WBLhmu+CQ5r6NunNMPnb62X0Hjx0iIVCEbuajbLhWvOdThdZ52HIMUnRSD3S/0R6w5GUPfjGN7A90Y7Zex9X61HFU/XG+jY5wDUEI0GqGssXDfww0Ku99WvVlbK8UbOWwm7usaDGEUmBhcjYuTejMhUuUio3/lP/UX8I/+n/45ZG3WGisAvkYr/l//wH8aD+9/hr/zp/4T2P7W/wVvPvz0RmgqmqHZR+yeA5M7C2DGHOtPzyFFbWHWsyBsUIAjvNjNQC/cXEadWQhs6/q9i79kR+d+lK8RGT+5MKN6fcdiX+KT4qWk5mP78WHa6pjr8a3KMF9L/OoTZQxrwtfeXCDWEZljdtbY+LETmcgqwXOU09+OuCj8yHD7mSb/Mt5h9aTut0SeM6+lYbBWI2x4icL8bWFCUcIQQhFGUTaODUUDuF++fXehKT8oIVnU9vgmfp6AhjsdBAewXOWaLADbasVl36Cvv8T/+x/5p/Cn//X/hSdSm3ddbk6a3zzoKmh1ktOCgMuenCVXDzWxKQMDS20OXBuxj+tm5Ed/fonUEd0eiQlfEuGfLB/xf/5wj//ar71/1qnCbpeR/PGJywgAVwX+4t+9x//wP/DBP6JQJ1/5kJkDwp2oOJLAhYB1eNMnvujSjCtiuHTMPru0PguSwjHLwiKKAoIlxFAsE8gDoTioFdyPt7vBVV3O8bNfr8t10zyhtajchGvWcbUsMeQTQ6Moxx0hFWB0IAiTzx6zkNQdjm5Fiy9pe3p6xPU4IDpwf7fji7ev8cXbN7jbd8gYuF6vOA7vIKTqIlNP+PDhAx4fP+J6fcJ5dgCKUshUarmiFLbOfN2VoomNVL/v2LYNRNFRpUO6glhBXB1YsCTUtl3Q2oZaN+zbBdt2h1o3d7ANECKwdU+hhaghYSzdWQmvAoibaQNLCF7p72NvHUG+0Rx+CTuqGZiMbGLT+aFbTC7AyemQrCjCjXHyCcV4diw56ZYxHkSNdV+/7GaHQXKQKIlRevOWz55TdkKG2n1zZzHP2IPOuJbqysxxEcJptlsRAlOezFscSHtTXGN18EoTFElHlMxx5OpEbQdaRjfyz0varBCEzFxwMQeDGYQBDtAOLi7lSRJ4dyfzZew6R/cpFQWTieTsbcfedlSuZquUUWAgniVXxG1TSaEFONjDXpBU4c5bKaBirlPXAdGRToWILHPJwRIXjiglkl1kBFlPmoWVmeQ+GBE2AjteSJgBQkWBxFgSK74WU3QEjXmOSRwjBy4IQX7mZ0SzMGBA0MFtracJRqxzbrEBOZvdSf3j3fzP2+zPj5Nbh/Nbv4rmLySLDUt7tjqtmDZyOYwoVgLBiFrMHpBRgsfZlSZB3nnvsqPgC9q6YROf+BOWOA4RURecqt6tsQYg674dcBOUPE/cWoJ0BkYplL6OFYtqkQX7uDENt5uPP/V9J5EiBFWX72de1mA1UDJBdzy/58sX+a+i1oHv0yB5DTQWgHsJINMf0k9PIeeY+3Vml9RsPJkfYK+y+5sFYEURsaINFztRNpCmiBMoeHbKLUpej8Xg4uIxDkgyDwCuGEKRPDObklZaKAtkNE4ipjrFPZs+YtjrLKqjqF/WT69TnvPtVVkFb6KRS3yF1/tBlu+SEYGZX1NmjD/mcvP3eusOOr3rA0WAu1Lw4fWrxRfcvfM1XGCFJxGbvQjq5lotAXraGDvplSxDTEvyFeABDH/NQOi4r17iSxM0uF3LCOvwV5QUqAr7I+JFTb6mhh0SWgp40wec63uE1iZCpVBIfv8KQtgagk8nEtY5OG98CAzHvP10vs51f33fuoVGFn0yj6fvmeuKz3sBucCFADRsDTrZC0iqdSv3iRT+4fDiG5xuZ135HzSLs2ONiwMJEtc5TIzyOA4jzFEUw1lMMYuI1vh0GrYAofaMMWLszO8Ksl4vFX2Y8O2LE8GJNdqdc8IsZihsBFZbK5Z55KBdccKbeCJeRnfweQr1ZUchJwi2Yo+6FI8UJhe4cv9huW+rDxD4SG6qPu9vx+Fn8VefS3ELV39PnJijbsSVjWAR93juN5JiLsoT4m+LYN1KzJzr9rMDymmxzKflXrALEwlwM+eeuVXLsJxz0wqbZ+Lxeby2foaIrPufmg0TiqRXYCfLxVz8wPzOxB5s5AyYXRlOxhgrRuHFMyE0Bb+Xt0U3yHtit3Wxi8va+FwEfV2bnq9nL2FjnoWT9rcRDCwxZ8ZZ1AvgejfBqdE94XybFicKotp0IyKJXiujbQ37vmHfLyYqdbnH5fKAbb+YOA2bQIOIop8DwIl+dotlFcvYBewexdyKh4Piy7oxSV6EuK+TqLTGNbe/gYDo3hT3PP3Y9B39/RlzmN9nI/TTtPZnJ793ADFypCN0s4UjABNeMEKzr2XkCREyXzDmjqeNbRz7HICP6bV7yroO2OFb0VsdUwRx2xr23qzb0DDxqeOoOM/q8xigMTDIkmbClGI837Y9XyPiufgZ86if3YtVB7qIx8DuykYxVShTuxDzLILGi0xy5XpLc40yHHhxwGOjmx+315RmFPX8LAnPhtgnT3y6w/DeJn7s8zZxRNvR6uuH3Zj2QzFGx/X6BJB4kaYXJcPFH87TCURXnIcl/E7HU2/sVJIyHAdLbG9+13p6GX/SnJcES66UQr4ezaRxJGPXNcp8UV/Plz6IN2sBkSe6fH8IQgWmPUJcb01/YOZkYGsOvANNrkPuX/vBdJhAeakDpZ/g0zEGBQDrui3LWjiDzonuU6x3E+b6ZBzEfEss/9NR8ln/+WVvEbeYr9fP04SloujRBc0yuZhjWnLMqVqxiz2GP2w9UvfRuTBqrdi2LX3sbbN8GTO7WFoQIciFpaIAYnZ+jM45q+J74IqBE6btYfJO0M/t0hzzdgV885uqy5+Aj41n2MfNfp75t+tjHuOMk2ZcZ2NdHQ+L/NaUMbk5inxPjL61mGeKm87rcDPv6TYfqWpZ6Ol/LABDHoXm7zFxZ3GrAqVE5HxzL4rb5lj3RvjZcR9DIM+LJmQIiATW6Q2+pthxttawX3Z0FxE2UvDAqUb0UCd+GUZuY+y54P73vYWgBJUpJmJLpq+HLozGaiSwWgsureF+37DVWYwQHdIvW8Olbdg2yw/XaqS1EroAnjOyLqPFybcVhUwEwMQCTEAaBIsZgnxBlESMGDNMMWYn7mub+Xa8zC12fw/LW/Tzf2CC1OT7pfwem0vlxsxzZLYoBBGAmLAa4qMR42P+jH3mUzpzyYHRzUUfN98J+Nwlzc7qlsMdiUUVLmi1WelVsaI3aZafhFhRAkpDKxVbafi4PeJ9+YgKxpULtsKQh3twJXBj8+eOA6NbzvT0YpdjDNROKJ1NMGTYcdi18bUE7MV/I32lIPYOETBGxsGxPsXvQXZ+Lpw+RZv9enx6ib73jWtxgrc/Crt4m3q+0tev1tAuVqRctw2lWfFiqRWBGWUzhtwm7idDvCu3i9RgjhlzHRfcFp4r8SIvVgY5hYVUIFRAQVIzFAJaBGV0dO0gIYjQzb0gJ9uJKECCSi7IBjIyqFpxnzBBpKCwz3N43GqsQRdKs9irsImgWV7WTiYw6RTJxxQSn8LvZqNXvN1EyDfLKfLs3BlxmArZ3BkDowigS94kfel1LsPslItDcTUyPKutq8IDphVs66dpr02BQ8DaVFhsavwauEhdaQ1cWzagYyfY1yWvyLkGxpiftgywpj1BOoOq8xU+M5ci11YqlARDO84xcI7hZGN44woXVaIbF+dFbM/9mhCQhM+HOHcz4M5tctjAeztlYbSJLZq9Z2a0fTMRydFN0FQ6VBiqbAWIxNZF3YUeLF4XqJyQXtAPsxWs1u1YyyyErbVg2zac57mI6A30ftpx+DiL/Ja5l5SCTiH4VTzxol08RaQmzDiKFXt7h/u8i4VRhivK6OQRqeMMI363i5t+Voi4+lVHISs2ANm1AAHdB4fUCtEBIkDU8/bDYkLrGO82a3Tz8Qs5EXniAFHUEU1cQISNbO0aawwUawW5TQABjrVGVDxogLmDS8dRB6hcUYo1TuTa0LYN2+WCiyhOUbS6WdG4F5eXtqG0hhL8t61Zwfm2o2zWETjzaeoC38cV4/GK8fEjrk9POB4fcfTTC+WHk7Atlh59gLzwoDK/YKEpxiwGZlvXgVxLAsNyTxmAj0fAm8KFn15BtIGogWlHoQ1MF5Sy2TUuG5gqVIL8HhjFJMkHRqhwMqeIFzTZalhK9TjC/O/iYgEhDG2QGjlmFvZiyW1FcXx+z/QxAmOxuGWGKMxe0OjGg0ghNMnDAHkx6Hzc4gzzSicvcU652y3jFz8wnfNYPM6i+dblY8ZjijkJqMMYZQm1JiaSqMizwDSvB833k98iAChilDRWj8+6YfesigEx3yga9agLZmtxV4AAFEA7AFvDY10lVr/mVtykpUFpQLugFjLxkMpoDBQX70MfkHFiyGndtZOD9bKM2bzOYUcGboX8fHYt9i7wbCJAGS7qO9cPSifG1lRrYDWSVxbiHToGhuMspzfi7P1wrEWtSNZ5TCEuUIkhtc57H+MgbTEyT/Q8xwy1IVtAnptGckvsZU2b5EbauEHOhWQf87OB3syNcgkBQS9QJLImn/FcZS8IBLioiyLPAmNSF5gKPmaeHRY8JizqgqEEbp444TJtwqZq5DlpvpdmrArogo/Dyfi+dlLMaoJieIMksfGPwKScqxJ3PXDXdQGJmGkJMe3h67jn+ZVnLHFjcsmfWNbB+OMml/9HDfjvYfv7/uQPcL/9AK0Av/7jH+Phix/g93/xAfruxOu24xc/+X38rb/x1yHXJ/yJH/2H8es/+hHuX71C7wfevHlAqw0AsO87Lpd7tLajth3MFaqEb95/wNPjE37+81/g93//Z/jq62/w/uNHvP/whA+Pj3j/+ITr9cTj0xUfHh/x4ekJHx6fcB6HWZtiTZ1N9NXkIa5PB65PB2QMKwDddrAqpB/4+S++wWXf8fbtazQu+L3H93h1v+PVqwcQgOv1EX/3J/8f/N2f/AQ//PJLMBM+fHiHUhRf/uAN3r55ja02tMp4ff9gNQREkDFQa03MjYjAwoso2hyva4OywEiGWMOg63Hier3i8ThxPQ48PV7x4f0Tro9XPD09ofcBLhUfrlfs9w8QJvzhN1/h3bv3OPpX+PrdB/C24Zv37/DVN1/j7u4NPj4+YZyO0amikaB6IwcdigaAuaDWDXd3FxSuuNzt+PJhx+uHO7x+/RoPd3fWqJuBVgr2Zu998+YN2n4BuODu7g7MwDhPMAHX6xVf/eLn+Oqrr3B9esJPfvcn+PrnX+H169d4/foVtmY29PWre/z4Rz/Ew8MdWrsA2qF6oBTjjTHbOnies0lzrSY0vW0m9MJcsFW15pFc0CN+dDy1q4CpodYC1ZfFDx4umEogjPBpwq9audD2Sn4uQmwA+V61cHz+DbeJsgisB+bqwlKRV9SlrG61QZMtu+TDEJwrujm2xJVcLIdrMWH+0qxAsxSL1V1YyU7A46sbfM+b6UU85UL40WAtfLlcNdXie+SD8mH563npkstCYUvnhbzhUK73AXrzGuC+usymZ+SOKDmWTV7hSYGZ6jxfpoJWGqhGM0oBUDDU/QcdeS+Y1DmPBFYxfPKZg5l4FcGxKhefSkzRNuNPz2vtnoBf8/ipfk38bmqIXuHmO5HXRP29ihdpxGJTA5eIrdA4C8R1DhtmxtYq7vYNr+4ueH13h4e7DfcXE5qqAEg6SAcqES6tYGvF/GhmtMqoJSOtnNfmK7CPmembchapq+d8Amub90ldiIww75vSrEGzeRGYG24XBt+MV1SSQxyv07PYWWUkjgCYsI4j9bcjjsz2Clkh4XCer4ZMcrio/lkjss7gLFcVMlEcpYHhNWHG4bL1vh/DfWrxOghj+hfy2Gi4YLjXmhATSi1o1fBjReB3w+fwXE9jXbByi+AwBhecUIvxOKFeTN4HKg2cpxrnuJjgvRSCFgIKwBU4AAwhE9RkRne86hyM7kXnQ4DCJihVhjUPNQFhATqBSODhppXJqAmlWv2EY1Tu476ojXmuG4Rl5UHOs/wbyHW40BTdYLa2minK4bFrcRHcVhiVLE4pMLm8onOs2ufmyhdxoqfVEgsYUc8iS4F7xEbwEjERKxODWn5GFSxiTSZS/AJ5Yhlfur3iZb83U9KMl9X6+JFOjWMTvw3LSrBStdW8MWIOW9yBWLJhH2K1HFR8zzw3gMSFX4bbDbUYygAgxz4ZEIs2s+nPygeLRwkxIVrEplI8ZV4cKn4cef6S8Y/CcXOa35WxUeTEDbRycTt10+ivezye+YIwRwikCHNsqIJTyGEej3GyJ7+F3C4UwWxU/UK25CsHsIY5OIRu8375PjhHQGO+2SN4v1bz3JYmYg0Xb8beKmNv1RojleJ1bLYORS0eR2zOnLk6mwMErjSFplYBKbImJ0xlPkJEgPxu0Bz1NrYpTzfPcPU5bkA+IITBHcAEiSL6oqQgmcLFgJBjh9U4EBV+reBrkiMcUPP/xjAh236eOAMbCmuZE54wVFOw6Hoc9rgeOM7uIlMnjvPEcZxZa5un5rf4+k/9T3H5F/8Cfv+/8Bdx/y/8t9Pemxkze1yLC01V80lKscbXxoP0PIjnJaKOidlqAQuLz+PAc9brGYcxferM8WHWcQemEnyfidf6GqRkY1Ai32jH+PL4wRVDgMenAx8en/D4dMVxnOGC2LVQa3KxbzvuLne42y8eI1tNqiHhC2/OzTsR3L4RkjGrk7uNMcDqXhK54FLwF3xA5PVSzNgFgZWxjz888wUXA5TOnLPLbwqU1jV4YlPqjY1i0MVcLdWxwswzw/ML7IKBiwC+qolwk+1XRKFklFb7fEGrG2qrPuwKIEA/OyDAOAQg8SaItv7bdXUucmC+vl7EOM64NfK5Y0Clu+jaFI4KaZEwMXFVPbk7wb+wtaudo2kHMw/ox1G5YBTgXDFkCAoRtlqxVcFWFddiP0UB0gqFoo8zbocJrooCKN5AXWEZAhMrOkVRuxjPBeIcBcWgqJB9edus/xo2xj3uMPtiazOcz9oKsDHQyHK5BXOOWa7U4i6rNZTpH8K5sf65yQWYOItEvQU5n4+LE7KK+fFkvBzq9v4xYGv/EONsj+FzaeagJXPcLkBIBD4HwAdA5G6M5Rh6jAufb7EOZ75C1wapilI6no6O7Xpie7qCmVJsh0hROOwBo7owL5JTbtechzd1c+Gnkr6z28HMY7u/KgMsNp91KOTs6OeZuZEpUL5ojxBjsNf5BzaP3KUPAiw5Gvd9fa6RDmROI2wJ4Akzsrnva50QDAsWawTWvZmOHwqIkOfaXbxtqGaO3DIFwGAbRQKeOZNlfckdPsOLXuI2+okxTsvpjWjaJB7RcK571iTWuQWwmCx8Oq7uS1TnDdVivrSYbSLEHGSv1XObQopoUM7M+Nf+k38B/+j/7X+Cf/U/89/HP/GX/kfpS9w4dY43/Yf+9l/G7/xDfx6/9Xv/D7y+fgVu+43PQORru8f1lILnt9orQNi3ZyhqxIj+B4GS53UDGMaWbqUml1od45n4oD8o6hoXOw2zp5EvKlQQzqQdglWsQOFxfezPn3eMMDyxQELjLE0j1yewFyCRFpjDa3ZTyZvkweK+YhfHcaoZb3LM0dSMsPuycsgpfBI/OrheRXiD5NdHAc+TKYJHlj49OXcx9Ru8LiPuAMHjBPPbA7mfqOu3b99ZaCoTNkQmClCs2HQSjaYTG4WuVtJgxNrKU7lw3xrqqy/wt/6J/yb+/r/6v8Ff/7P/dfzZ3/4XU3CgtYbWNmxtcwJesa5wWAJ0734whaYKQMWTtSaOY8CfPT8XVXd60imHWzwPrAn4k3vHf3V/ZwQgUC7UsY6xClKJetm6KP57v/sG/90/8Q7/7O8+4C/85nvMwT4dLtvWgW+AkGaBib13XTYNZJhgNYAbYIviHn2nuzn3HgPqZtLPm34LUvpaHoD/8019AqdhWg9u2fMsxp6OZ55DRnO3Z/bJ35G8WZSBI7CK57Jg3UWWercufKl2/MICKhkDWy14uNvxxZvXuL+7AwNWGHW94vHxEcdx5LGf54n379/j3bt3+PjxcRYHs5EIzXEDeu9OzCSfWw27k4HHGBAnaIyzQ0YEyuTFzzaXWtuxtd3EbGpzIRx2Mj0QZHxSmQGSGqicBS3ATAatTgGxJ8BcRGcE2WExOBRFYxleLZH/dEw+XfOWca5wIJCW97tp8GE1F/hlX3o7X+D7QprOT/+O4/yjtgBbo8jsj/7AGqzCQTk2YsUCas3xHYC+5PXME/Fkjy6goTrJMVQ1Ie6wekBoRS0dQ7qTV5385Z1Th5OQlZHqty9pk37aOUPRC8Eals9EHzxAcv/kZiwQ5vpinbFPQIGNNyuMcBVaABh9wMhmQeCxnyW7dEzi9FiFo4olPrn4fYUA6mQqJxYHcGSXliF1ATt9YgTZehXVSCdjGDnZujmXGfjHP42u3L5e9pHCFM2VssMBDZuTCtVLzwk7pnBvbtf/CP5y7ibYQvOaIWlNt1FQ3KyYMuvc/SWTLgLFm02Xz+izF/wz8X23n3xml9ZfdZ6vrsedBWuACRd0U/IHLNkQBL3RodqhYp0Yu3eQtXnYIaNb56TegXHCW5e8qE1y7oSzDNRiieNtMyHRrW1OFHKhqaXIIotJEHQ5yn19UpAYr9Jn7m9EtJ5sik0doLKXJ2EuQLdJ/OO0des+w5aFK29CU57YjXetIHB8rw9aFSvS/4QwEa/PgYK1gN2fmueGOS6nDxfe4Dpm4/p4otxfMCBDLYujAuECKWURnuIkkNfCkOEdeNk6s4ZInd276BYtGdimufGgTpQAVhcKiQCI8nrleRNuxOnmaQTV5vmaZe9dzHvu8+b6qq8tiuWzE5zXeA9gYksApFvQOOSTo/leN2ZYYUJXnEfHcZ0k2/O8op+HJfiJAO8Ont2wIqCNeRDX00GkWE9vACeK4t9wQ3yNK4yqNe2IdQL/NCUYIF3O8bRX8KQkgTwpO7uUDv/s8p203P9nYNPsnIScRwYezpgjfcuMJflmnq77vClK+8x8zjGri+/nSQEsa8kNifVGdGf+u9nSP4MBAohz0RSdBBOodHC39bPUAk/BG0gfdnyYIIsoMInBnLFcCNOEkLAdycjrH2JTpVa03tFaCMxO+xukOfY4XUQdhDIF9uXSIDpsDDX4sJKRblqtn16H73mzaxoJ5RAGMECL2RITg4DzNFA3hEoJ1mGy1YI+CN0/N6SDMAsM7RrRYhut82wpTu5gQqlsj1Jz/btJMH4m0iDgGXEpSAi3Xa5iizEs69+xo/iFImTQ7DqwEnfj60QsTjjP6bvMIviIIVYR6CnqER3z1nkyATBgFUGN/UWBvOiz0aNTLHWuTYvw9PNr5muiLn8X9p4yAwA0i9kAT+gzrxYfwAD50idqwG9XMSDdu22YgESA9bZeMVkxi3o8YCSAze2m5lyt1VI1gbPHOeXxFiuC5wB/M/yaa9hzIarve+O4xnFdfewP7l4EZ91DAsM5uwkPBe44/Z6wWbCkmP9emNAqW/eHfcflcoe7u3vc3d3j/v4e93d32LcdrW7mA6oRjs/j9K6HRjQL/yC+bfFIbwHyWIEpfC7cvofs9TmX5x7Tp4vniLK4OomJ0HxD7DPjn+VK0LPvFJEVOgAwEYvb89Lkuc4FwHxoVjbwWQUp0EGrbVoeIdYTmET4G+H/ehyeAp/w+1am2NS+bZn0673j3Ez4Kwr4BpElFWXuew08wsUI7HI5zfw5iVAOg0jc82GicCJ5jOrnMUlW6qKc8d367ItezhZxaY4LWi7C8+jWfcIYD/N9y/7yjUu8+8mXzij+9uNLoXDcfZ3jKY9qsW/pM+Vj9c9MaOrp6RF9HEmyC5x4uJjU6d1keu/WTSbJBqsAUIzZiV0Rbq+SjasQgsaNKE50KayMLCTOB2O+J8fmjPVC7jYLCtST/Uz52fl5mn4xlkGc1/c2QW7PevHpGgdEIsyF7yrM3BUZlkR0krxd78PEMhWfCu/qPAC6EdBbfV3bwjauU/ZzW/jPn26f93u+7y1zDzneTpzHieM8cJ4HxnlCenR3CiPusXcInHkxt4TAVHTXCtJbMf+wtYq2bS6cuBum73jIQCTxJf0GZpMdthBPF78ojt6vaRLs/TkicFQ3sM/c50JTy/wmRAw9y19y8/iLbwR21nHNifdn90y3e/l2hTVvCVuCOZYt1vV8mRPGVadlXL7R4zJgxSzD98xu9cttWndhc8r2H53/VIIYQyAWMDGUJkVqzdspZjyb/hhRvqZwsvaC/Shr2r21u3Icrzi2K2LNV1LkwQ8+Cjcu++4FdnOcAgI6u4lYeae+4nkZ+ez8+/62XP+HRG243acB79Ztx74VxsZkOTXvht7IxKdaYVwuO+72hruL5bZqayi1gKvjY6wwkoICbB0d60rK5Qam4nAJo6uChmHqhYth+bw+btesVZwI8DGVIBQSP5hEdtwueRIk2vXq2Hco4PbB1vVSSu4jUfW0AcWwgiUuUtgaPrE5P8JlvtOyv3C0bKpNx2s9tPTBNOwarCDE/WsMdVK5Jr8AQ8ADQO1AGygKDBoQVbsXYDS2YodLbdbpVBVcGIMGhhdFntcDvQ8cVyMWdxl47APlYPBxmAkUAXfCEIBcyDxWhkGGz6fgi7ogyFCLuard8yhsaK2BiCz3CqSgYOJaQTBmcnLvdx39v5qNinXCA1dQqU7+FkBi7bexU2rFZdtx2U1oqu0byrYnXl6bFZSy33yREFwyTEi8oUahWPUEN9VmVrluNkgtJ5Y+DSrYG+owCoQHWKLPucUnEoNQCFwAkWK4EzlGVQTUB3qIty8FLtoVOkx0k2HFUrUwpJnfT6WEdwOAHRPz98LEkcZip8CBvxNK2Vw8gFHZRKZqDYERyvjdhKYaClkDmRQ9cZ8qOqyaGI7lBE1f0GPMZzbdBLW8mLnVPHpRxeCCwcNyyQLU0jJXOKLALKI+Usf6K0BAqSZ4j+KFCWz3OLs5h3hX+q7sD0odvbTFYRwRuI6LPiziFdY10QmKohhrd0u2e2ei7uJrlaZP+tI21Zl3j0YLJlRqbmIKRuZazAAMY5fhjC+3FcUF4LetoZ8N57XglA51DKX0bgWAbusAd0UlYnKCjBPSrTuqYjdroiXxCnJRkLY3dCdMig70AXD3cGKo+5sxwgjR1MQElYxsR2TFuxk9ev5zkPk7s0mMFVrZfDe+Qoi7EcXz9vcYw9abUm6use2+Q8hF1DzfOny16CPEDCeKUtw/M4IrW9GZKLDtIFJUJ/CHP2I5rtm11YrbjIe2edyVOXbV9Bd77xNj6i4a6uKlzAAJgeQAsaBUsa7uYJRiZOWg/ZZmjeBq3VDbhrpV1LqjbTuqi0ztlx1124BiApmnnBCPVZ6ujzifnjA+XiGPj7g+PeLp6SmFpoKIHSK6pLYObM3EOvdt+3s9Xf49bLFWKqQIlI0aTzQLriqbgOgsmDAh9eHjt6BAUFFoB6hBeQN4g1KDKJv/EnxEx1lmZ/rijXcUtVis3aUnjgGFiaDV4li6F7mLQqUDUdDsa7rZKk0fAvA8heNqhl3Zem+8kyAF2y5s3Q+njVxsCjfxz7x0C66VWOOCC2WH13wml/EQtAr/b4wZZy23BjIEvXcEZmoYqSx7BEDqArARI64kZIWSdcA2l9TzWmx+3Fd04p+//jX8xfKnw4rNffM8DhTK0yUCChU0v2Y0FKgbSIsJ9J6eT+cTMtiOf6gLWnIcFUx8aiRGySAbb2T5oUrWgOt+v+D+suPDx4atVJxy4BwDkG7rMNk1EHlZAh0Tv/e1M+IEBhiMSIiuHZAjD2mAgOH+pgEXrJ8MGBz7MH9g9BPnaZhKPzvk7C7mfbX892kCi+rF4IE/GVgQZHTHn8lEBD7JhUUzAegzDlvYBo/Vl9BserCSYltRlAERcPAH1DAai/WDj+HinMyZwynFCrlbrSjN8oK1shfoAKVEjhU3fBm4OMIqNGX3JE/QxKAQOI04zOMZiPlGAOajB1AXGEa8h72A1WIigrDhB+TYxYh1RhRSJg7Ynetja1Cskd5YZFkXAlKcfsTEhwPbSJwLcfyO+4iaD+F3bG5LTOvjMvMgLy0QW7avf/538B/5s38Gv/7j38DT04lrJ7z72PF//df+Mv7u3/h3UI8r9OMH/Kk/+R/Eb/3Gr+PNwwM2YmzbBZUbxhC0uqOWhrAhpTSUUvH+wyN+9rM/xFe/+Bp/8LM/wM9+9gd49/49nq4nvvrqG3z4+BHvPn7E+w8fcRwnwAUdgut5oJQNBODp8Qm1VC+cAZBiuYRTgLN381GJcWkbRARff/MN3r37Gtu+oVDHh77jm+MjWqvYaoWq4Jvf+z387Bc/xxdv31jMgYHreeD9x0fc319wt+3oZ8fbVw/gfYdCcfQzm6UERzabNnrcYeuK2ZyuI9ecUwTHeeLRhbWux4Gn6xWPjwceHw+cpzW5OY4ORUdR4HEIrqPjep4YovjF19/g8Xqgf3zEeR64a7uJovQT961CSwVDTTCFAysxTPf+7gF393d4df+A2ioubcebu4a7raBtuwt2bdnNfndO9+XScLm/oLTNYkkm8MM9QEDvJ16/uscPfvAF3r17hw8fPuDrr77C0+Mjnj5+wP3DPUQGvv76a5xj4Msvf4D7uzsTlajV10vnKSfQAxfDBPa94W5r2Gu1OLk6Bsq+JrojUApDpUGVcJ4HgPNbRvv3s02+0UhVg+Ac6LKUWCipCGguXps8WF+rIs8pLr4wxGOcARnd4g/nS6iLsCDyiwvwHLZ/sVL2fGAlardESCGkAIYLplDigCZg1ixWd+FqIoZycSFgclw+/GKL8ye33O4lF4YIu/30NdjFtoHpSqVN8ZgcxUWqgoPE0+ZxKCbE2bmdiGLj9Ct9bc/C6lLcd3ZMbcHZTPCfnfsZYudqvgYrmAZKsWPetwsqM8YoxmsE0L04cuhIsWLxJk6WAw8JI7M74vc+zGdwI4UVKM6N4lXcP8QE6LZuApjHSlEIOsW+skqIwn4jr/0UdLTB+DIRD6QfRrBalfA7iI31zsSoreBu3/Hqbsfr+wve3N/hfm+426xhRCGApICkm+heZbQCVAIaq8VSBNAi1iYKq6SnYvGdx3iGaTn/N1RmfHJTNMwlsjg8xrX6uFaL4ZmM6xZLZAQ98dm8LYFX+HvUnwv8aoX6w4NjnQWFpJbFRWCVIWiNEJdwMV4XdMrj9cNNvydz55gciDHQY0QLIMMarh3HiX5YY6bT85Iypl/LiW0PxwYJtVVs+wbc7aibrSUj8qMmmwvz52zNmqum1bolZsgFVdSFYq14/8AJHQp13BZM0Gr8ZJUCSLXidjLcSxguUmSi4uzjrouimwMKHnCxAHGhUrrJT8sQT9fa2BWB+85RDP+yZtvkrM+4zP7UZYxNrIsoOFPBPUQKFVUyLlwl9jpORmOypiv+vFuN5D+4xIaN32xmt7AAPBwDYxbtu/gcBZ67rIfEFn+TElh8FXa+72c5AoTkTU0744JMJcTiMI9RAQ38GYQKBcCWB6UMgbLuRckehYN168fs87L4MUU+NmLkEJWxnUWOWaGFXWwDifMjrqmPLcGaf/NlJcWlXEyLPhWZunm/n28EV6RW42oFyPD0ix2f2X7HVhVghM2n2TQgeQy+psj6O9I5Mu5BNHNThOgmdL4n3xcPnbHZS7Rnn8aLYTf8NV24bRRrusfqZPygQpR+dkuhKa+TadV4HrW6fTMxquIiUjFX7d7yzB053kdOPAqhKYrXask5cSMWTVPwAMReo+HcPTF/07N0iPrJvNfffpVmzj7Hh+SYImXDsjkEOavnvOECcV5/QowWonY+ri0PYJzZ0Xs21+in8d7F15x1mA0RnGfH9XRRqePE03Hg/Y/+frz7zX8Yl3/lX7CGhNfDBUs0YAK/jwT6n//TePyn/5fA/+y/gY86m1jHXLSamGHiIqOgV1s3bZ7qjdhU+j4g80t5rilMhilPe+04iC7HQmYjo0FVcq00fHP3ifM+TN+CiVFijkdfsheGgXx8esK7Dx/x9bt3+Ob9e3x4fMT17BgyTDRNo7ay4LLvuLtcsLcNGxVUcIraNKqoZP6lreGe7yoj/af0iVRNAImcC0UE7zzkYZ8ua6h9DkQ5xnNfLuhiLy/8iRA1TDOgzrmlfP4ZsHhjN+emiBxZ2gUfqDlkOZBBdb/Fz4EmPihue0WAPmbtRmsNW9t8eWbjCzkPe8DqvMboJpIs5OJlwEjR2MDy3dfzaxt1ABpxr+evc02A+2IpuAusXOLcPGaKnLDZCwLURDymwbDaswE7towvScFkeRCDKLxuw3HXWhRVAFbLlXdRHDLQzyO9G836hwp2xYjwHYO7D4/Bw8/4nLvyfW9z2PqaHnEsuR8Yq4YLt7Ti9ohtTU6/z11hG15uyVc/izD5r6s/4r6hQSQDWgqEDTNAKaBagVKhVEws0IWLrImsiQyeY5jglLjmwTKFUoPAz1diVDp+YSJHkg11+pCMnZiKC/dw5pUS34HxzWy+PKE2a76lIWLDHgu1LUUiKxMomhRHTkhdOHUMCLPXBDsC4veEEhMCSAQYzqEXxXlccb1a3Z/xjpzvz8hci9UlDAxPyqnzUcIXhpKvBeGzRK2of38INmuIHnsI7D6x7dPWNyXjSJmI1JhiskDedKslMuxmQDE0eMV274TIBMdcZ4LUc4LPfM7PLY3PcwkvYVtroaK+aY3HAEw7Lc4lIEC87gKAxxgrf2apkY6/OZoQBZcIjhVS4gb/2L/6P8Zf/nP/Hfzj/8o/D9SaidoY36FpYfRHwj/0N/+PJhbXNrMPcRwrgUcVkX8y9VxKLYkQOFTfeZ5y+IT+HEUznTjXvDK+SqitKSut96a+ckESLJpYMJs02uTH4gvVCrqsvyzPr3UJEdHEaVN89xrOBG+tlHxvzRGaUZlhn2INNCnWA4law+m3zesb84jn3+L3V+Oc4xv8WiHsavwe+4yzyQmJDHbhfkn4m/EQExKDWAOd79JU/TsLTdk1D/EZU2pVAL1PAnyCFuE0wxOO7N3qS0ErxcjOOPEP/9//1/idP/Nfxj/2V/9X2FozUqI7N7VZ4Wzx75qBUByLky7MOzBiRwB7CnRxgoZJAYLGAJ8DXDqKF1YEsF1KQS89jUgAEkN80sXg8+tp+oyIeHIZOMD/4De/xj/3kzf4Z3/rG8iyeDBuB7LefC6c/+lkUg4V+xFg9if35JPw7o++6esx58CLI3HEkdb/KRYdu7e3xfqfbnMaxwScx3Wb0L89Fg2v++ZMb4Mq+1w4lS4klcVBLsoi8yHDhDn6MNGUtcv35wtYvr+tEHlnmtf4wdu3eLjsUDGlzOP6hPO4mkCMGnh6vT7h6fER16cnExVgngTtCCC8QFNEzNHZGi53d2jVHOfzODH6Ff08nZhp3VgLFyPf1x2lbti2Ha1tqK0hVK6RAVPcDyfSiBGnRSypJv79uVapTiMLH1MhUrE4cetcXDs8P79r5shqjrNclGNPdGvIV1ZRyt14gBPPAzHmF4OE29fnn//unJk0WG4s8PzMPjc8FUACG8jgNlQFbb5FwBVHLZ84M2kNU2Bqgn/TMZjzyYivY3aH8+So/e1Aj1j6AISpavwd1qNf5VbIaKUAIONAJ7HEazEbomQdl4pgGW/kYzuKY+2nqRg76MWAYGCoCVnNzgkCRQcRoW7F16sT0d3DyKQ6SRAMECtETfRNACcqGdAXnXvEka8EmFfiFhRDTi8kCnIP5tgRMQvmJDAKQpYn1pUMZOnnieN6ZGddZu/IGmutd04N0oY6KGeOnZFrTZ12IQvStDqUz9Ii9uRWI36SOUM568n/WwrMP3EOfZ/53rRmdPOeNC2a7q9/d/y086Lls9Muhi2aOwuHLGVrcvzPR4LOUJAMVHIbvhDgmO1PUzr1LkoASAdYLYFIMkBSgFFAY53YL2PTiGlcKLYyDDx3AdG2NbStWSe0Zl3pCkVw5EB6BlFTTCodaFruBc37OwMKf97XyCA1pEOiS5E/RyF/mfeHF5GpBVyQAHG94A/5t+S9vz2OGYipz78IHETWoopPrx/WMXkbQuMzjmSO0DnGMH8jG89ECrB3X9UAwbwAgBWlDIgUoAhUCrQztJhq8hgFUq1/mihZgpmtUKaWitYG6hCUIqAiIGtsZCC/J7GGqvndDqoYo3otfENeG3nmI6z+WnYS8amVQZ4X9uT9h3qXqQWkzDghQPgpiqRY/ExMEY/e2QDaF7TtezXSxLDEfvExax2b4UUfpgNGAAEAAElEQVSnal23SY1QlN15QuQrqhumbTGylY9dmkMsCTyExV5xEmqCPHGeXoz+mY3JhCQyCQbYsYb/IZTFsiLiZAMs82key/oAIhbS9DFFTN1evDAiBWKWpDORdY59TnJat5ti0EwUIH3cGEeroM3nkjU34ghhyxP8NHuRcRaQ650u3w0H5Ydadyf0AeKO0SrKMBIZyO5H4YITp4n+HCe6N8HgUh2oKubv+X1cwZpcYx3MChEcGQOHniDq85z83mSHnFISK2jNRAUBu1anxxkhFhNzNRIbL00EpzvxUMUFH9ykcLHrW5gwzg6mK+Tsdg/jw2SrsYRo5yJwrB78GijvCcp1LnEU3M9jySG1EFpmLG6+ktndIKfpzXGomECgZYmNrIHlvt9si0+VxfBEKUDDy3oc4N1n5yTB76ne7naegcUqLjDHxEbmo0mYALxIVCehabUH4WHSWiit0w6QA3kJp9GSENS5Xnxy/IokU4Q49TrHpw+oWSCeZBOitGnkdjfm0/Rml/u4HMNq0z65Lc98hefvySJM99ljfGTM/gK3wDpn4fsc96JI0Z8uI3GcEZiCLvfc90eEmfAnE5naaiSh73B/94BXr17h1cMDHu7vcbm7YNtM1N4KkI2IIENAPFzUfhbqW2jB8177l9rYiuKZdQVfE8xzbHwqEoB8b56He78cCZ+ItbAKsNyeP2Kk09zfnBf4ZIwvweFyfv6L708XLCRJUpjjdsgkNCTRISJtj4MySeYFQ+pCFyka5wFoIRelrQWybekbjC7o+8Dos9i42yTFIHLsKWyXu7xMmQQLvkae4zO3Okji0z677xpvppT/8RBYLTb3hGHg/LQIk7/EjTIuzmfwmYGIm+GZY8Quoi4E989+dn7If9Nlji+vxzxPIdActss8SKfP7qMG5uvkbicGi3Tzc/oSUmkIltqaEaJSuiT7otNXYMYxSOj25D+5WpQxlV0TW+tDENHeOZNPnvKRiMFo7k3XpUWxztsQoSqBRRFufvLNWrEcI81jZHjsq5TaaHMCuH108qXGugkyXEGN4DvKwCgFUqvFujCRjSBw3d51TR8yumImOT7GAozUEmvZd91ucZ3158vYwiaJDCO9nQf6eWAcJjI1vAAy8C/zJyOYUEjvGOPEeR44ewiNnxj9zO5GRl6wPJyJdu+OzzfLMwkAPS3m9oJ/w/Kr+fl+nDOWK14AoRY3FM6prQ7kEJckEWnYKLd1qy8IIM8tfdPnmy/QYQfjfsZ+iFYfeCFR+UGlj+PXcfniT7dcYjjHXbjLacvCj4viGg1BRvOpg/isFEUi8JyCIogYEROHfSjMkFrNzqsX4ozhpMFnF4PWuNLPWyiPKs+DgjwKKDNKtQKzVpy4okhf1T5lQgU2tMw41Vpx2WnaQRc2M9v3NAVbaX7fS4vJ0t96FhyJKFiM2NNawWXbsBVGJWCrBVspqETYC+NSKy5bw75Vz2tt4NoCoABCKL0ML0wiF1YxzCAbHJFjhFQ8f8AQJ8MmgSEfTuDIxX56CZK+CyWhl8AZl39brlLTXBi1f2bHCABDdf2c5n03bMvHrGNcN/HPcpzrHPllW7oINzcK85gWG6U36wVAKO6/OelzER9RMFAb2n2BXC4mHHWeOM/u5GPz8x/2i52Xk68OOXHIgZOAk+w8r2yizqcM8Hn6ZVPQqSBhgIGjD+sRUgldYDZbTaycStg1dp9huWZFsfr462VYr6f5L4GP2bm+NBF7tApsF0BdtKefgLj4HBcv8qsotWErJopQa8W+b9geLgABpwgaNwQWG7iQdBN3mXiXx6msKFVANDxed9xBAR0KVCsuZEkPzOeQ+0i1oFHk2EzgS4v5XALGEMMYTm+KAy8SosZoWo0IB8cThhPcClBE4Ww9KAhdjWAj5ATEwmASsPuOCuOfEAqIhh2p43FJ7CcXNmkVWyuzSY3jBNYxvvi1cVECL4Y2K1QsdlIANKw2VBnQCqh1q66oEC3AIGeVC5ROnHoYqRKCwTbuGSZuUlmhZRICuRj2UhqnyCE8Rgbs98RzycjBhQlU2QiWVFBg9iywwegejOy4Ge6w+4oLdhzYkkh3borNnVMFXRVyKuQUDC8sOMdAH9Y/lQP/gHd7fGFzLNYJ8w9gjjmZmFtgTbmOcGAL5lt0nteqn/5aCHMCWexQKmF0Mt9ydLvfKBbnLA1qKHK6osAgSDe2sHRbvVRkFu2SCaBtW8PozRqUqYno99OI1GWDFdjaiSKZFrE2elxusdLEJyACGaf5ITxM5K40MMQErjyOUQyPpdwnUoW2loXiyjYnSynZtdiawSjg4vTWIMtwpRQzzyJNzz8lbkk5L1trNgML4Rw18wu9d/SzY7jFC9+pVmuc2LYdXCuUybGsge5+7HEOnN2x/TIc3wJABVybc3A2lG1D3S5o+wXtsmO7XNAuF2zbjtI2tGZ8HRP481xr21BDaMp9Ri62bo5+oF8f8fT0EdfjwOPTRxyPjxgfPmI8XnFeDxPJHWf6hfC4tEJQasFl33C3b5bHLX8sSuGvZDP8rLgvHtykKdo6cVnOON3mUInfAO/HTKggrfYTGwgNgK25tm8T87Nx6ZU7iZcF34PRx/+XuT+NtW3LzsOwb4w511r7nHNfVw27KqpIihQpkgpEyaLk2JESGXEsJArkKILzw/kRwEmQwAgCRIIQSIkFJwKSH1Fg2UhjB3EAy0IAW0orQQ1kKbQsRR1lSyyaZFGqYnXke/WqXnfvPXuvNecY+TGaOfe59xUfpZh1VtV+5559drPWXHPOMcY3vvEN9aJlz9mhoNDIn3Bi/zqEOxIoGMX5kTeYD8OnzL4F16V3Qq0MVc976dh/AscIbDBGbbipHoMBAx/zPSvxZXJRNBq+qrm0bofVYyiFN6DT5KbYd5CLFfSBpWRsaV1Uh0tFmbdV76sa/bSz0ATiQR5DQHiOjj9y+Sx+//KD+KPtp/E/W38YABKDCMc0sWiYTRKCCfMRA7yiSkE/Lu46eD6ECe0gMAuYKw46zD9sLcUOe2tZpOmQD0gJRQsWrlh5xVYXnOqG2/WEu+2EZ5cPcN8F5HwPhcUks7jR4zlijiLnZTTFM8zAsUMXvMi8TPBrCSA2HzByTDMGEQJ3RzPhl/1yxh7CUns0WDqso7fzPAHzV2d//Iob4p99PZQxt10I8IUczJSDhiK4dvBrFFhuNgqn1MXDqXewKApGXBhCOOy5c/Y8Q+QAzb82H3GpxUVHGbVE3lC9ISgNvC9I/vAifVxnka9C5kTlRo79Cl6LHJqG7on7hfFdsW/6GKvvTxr3WzN6s2tXhXoezzq8h69O6LGfSeSt4iR1mglRGGRnT/Ne1I0rFZfH5JwHd+gj1RGXdt1dcMS3hv88Lj8xDunP8N6738Anv+2TuBwdh264u3sd52eMz372K7jBge/+uPGHb9YVp8JmpdYFfW+gWnC6u0FdbmyOUMGzZ8/x9W+8h7e+/nU8f36P/X7HO19/B++//wGePn1qGORxAaRhIcXtVrGQ4mgdpA0EwXF5ClDBqTDkOKMdDbuD8ObvwGIPJRydcCiBWHF3c8Ky3eLdd7+Odz54F69+/Ab70fD+/gykgtvTCad1BUFxvn+GSz/w2quvggvhg/t7PL3s+Fh/HfvW8Pz+OY524I3XXjErTkBpjtO45Q4MsYATN88Cs8jLg9FV0A6BNOA4Gp4/v8fTp8/wwdN77HtL3HP3PGElguwNT++f2b5DBVBG3wW971gL46Yu6K2jVsK2GUe7kDftJsZSDMvdtorT6QanbTX8altxWlZUHFiroNCOhaxx98JkxcxrBZcOxQ7GgpUI8MJPKYNHt54WPKE7UGXc3Gz4+Guv4Hx/jw8++ADvfP1tlHXF7e0tvv71d6EooE9uuLutCEH0yLWab1NBZA09WusoBbi92bAyoWtHZYvjqXpYIWQ7gbpAEXy/f2SGLAu8Yue8shu2bdje4jkYRf57fh0Cow5+kMj0cD6S24do5ivR0FeDk2YxGaf3N3NLHE8iIBopRCw1cDN/IUwQmthjqbKAqwmIh6gU4BimYxPGNbLPCSzO3Cmd9nzbPbtak/Xu+QR1G1RtQNy2u60IXouLHiTG77y1yB0FNyOENWLcCQCXAq0FKkvGWc1NesR/zNHMjZKbFuiomuKJ+3iGy3QAnQmtITxJMLkIQCePSQkKi3WD2xj+RFdvnDJgEagLJzAzijK0kBfFW/xUiKEwcRFJWzrNI88/xP+GBQshRftN5nkx3X0b+se1vvJI/qY5F0WRPPZKQC1mt+7ubvDq3Q1eu7nBk5sVp8rYXLzchDpCMMGFpTQadGS0ZnjVlDtWWB6UPF4zkVyXxkkQOzAZQJjytbYfeMMW52aovxeBzkVBZ8bKeVNz3QZ/KHkZkWeikuvE9t0yCkoBF5oCyAvkLSdRwN4AwfYWssJdsT07kgTk373Vkrmi4DFrp+Q9RBNrVYU0ySaml8tuzUwPwzlaa0DzeoIevrDFOLUyttMKKFI4FWy56D7VmEn4iyQQODzjY2P7L3tvB7te7QpIs2icgO77YwGwMNBLgdaavPmFDes/EIJScH6GrzEGWABykSmQosM4JsV9bKJRJ5RH/vpoV9i1bX3o7o6QF3NsMGMCTC4sVUxsqbAJ4iwen1QmF56yvzP5WoyvC9sJXO1PhOBEuEfveInAim2tmUW8lnwNAUjdCMILgx7raPoWS8+NHGZyTIvzqUKsGp6H92suxFiqYCnVRK1DA9DPOMapiPVnLsXRoaj5geMFhTNvSzxiGvIxskSDzXtrumVNnENoearKzL2cPXbNeogUG/I6pLx3/hrNbcjt3YgI5/uu6k2RiE2cV03goRYrRiF1jJU8n8ICkHOQH9yOaMY6853t6yjt+sCRJOfCeC3lY+wUePCvR3LktU03F1P8iumcY+wJWdOSa6qYyFStJjS1uCDF6oK7i2MAJoBSXKAK4/67T1VK1K0MGwIX3DThTTOaVCiFBRD4vF7z2zpciJsk/eJxPe5zxGXHfc25MHxiGx735ybfLuZmgfnTCxdQsRq97m+OfFnlipULFrK1W3wWSwhNdcmmytGQtLXm4iEuRu1++NG64+0Nl/3A5XLg+eufxvvf81tQP/+TeO83/m7IX/l3JqGpgV+NPZJR/ti/6Dx6yp/jPhTnWhGe/vh/Ezfv/AJuv/h3YcPuqzvwlZw2ZsfY8RarxPW9IOo0McYP0zhzqZlfjPMdU3P2IMfEjH1CmVEwz9/Hdbz51tv4xjvv4IOnz/D8/oJ995pTmN1WVROxJQZXw89NUMqFpphQWbEUE0OEiDXz0A4phMYAiYlyKGg0y7ryD33tKsy38LtG0BR5DdzavXpfHzpswGTPZr4+4Mto3jMo1pqvTz/HsAWYRKJiBqkAQoru6zWaNIiaKE+f6g9All/m4o/QVxBFJQVzReT+e0iCdgWEwVpQ4rpVrCYRU1zM7Jpctr9b/Cjj4hzPRgjxa/fPGZxb30Ydf1TDzie7ETEpz3V8IOQG5thsnzDaJlbiKmB4hROWUo1PJbAmkNG8WDV5cBBv40Kew6aKwiHo7HUtXSHoWNhqscUxaxV2bp35q5UIlRT1Ea6ztAMxrxSDR68AyGsh1e51rdWa2dTFBesjvucMzJRhItb+UAK0wP/uilRM3nAnGnkLtFuTaWarVaJagboAzlHtavVWR2toTbDvtu8f0YzaheiyrgyBX4w1o2r1PU0ajt4zT9zj3lly0K6/1MTjC0fNMxxb1vTNYu+38fS6vMLY1g2nbcPp5LnSUsxfUwWkg2A+FgNorbkvB2sq6uty+FP28V0Bmvjz9+cL7u/vcblccLQdUYdeijWqt1rtipGLD/4aW02YAzqWm7P1ylEzC2CeHYwQmlK3ezC/MGvZbWyaWjOwrtFQenYK7Fq6WCMfQcyR4Gra+BOXEa+oWq1q7C3S0zbmZ8ZeQGr5kEd0iON8sR9H3fA4NOdU+kqYXuL+BYc/RwPvGf912+5+oK3LwCPsYTZO8Z//q/9r88ummC/2KyDGPD26kfOZeLmWxrryLPDs5nX85K/95/BP/f0/YXzG8TE++14I4GBIVtS52GOmyc8xtxJMDyHiD8Kww1c+zhzXhss7AuCYzcGfTG8scJvMTzpHPtYlzTWjEdfEb/Y+pzGaX+L7SKfIZzMaRYNaE1z0bpuOe6r7ger21XEIVWum6uQZ86HZ/IUp3o6fCUNN7l0M5dWQxiGWxRzzbvBBoRiiyFl7NV77zY6PzAoJQk+t3nkR0XkvHK0RtE7DbRA2AYXLUOWt1RIr/Sn+yb/3f8a6rliqkWCsk711R6yeXLUNsoxRC+eLIhj1G+6nodrQRdGU8B+dfgDfdryP7zveMgNRLHGCcKwQ4lkG8M3FsglQx6Ly68qulxQJXkqDtBDhX/mud607xHTD5yWQptzv9lh2MWLIZ+JH3Oj5s8ZQPwzHf7kjqDR6Pevyi+LzNSczMnDxCagvmaRX34AEJq6fj++2D8lriacezn6NeTVO0Jz7McnVCSqikcCxrohDbKpnQVs6BaX8ylTWfhWOm23Fa688wcc+9jG88soTrLWgHRecz2ccLvgSha7H0Rz0PTK5EkUiPUgOANph6pwAUAqnSraRYxr6safIlPlh7EV+FUtdsKwrat2csLagluriGzSMF8LoJ63ANqguJj7j4lg511RSTMCKOkzMQj3xFNOMPVETz1uH8Gvrk0YEYeymcHral/IIsNLPO8w0oK7sHobwZcbw+nhZkW8cv6IEqqol9R7Wc1wFntMCnRbJ1RqdX5LCNRa0GrAxfW54rCFglACg3xMZa0vTCT+SsBkddKPz5hWUob+SvehX9yhFsnuCRmALI8/bfFZIs8GcjbIZWZ/nmBx4Lli4eANLK5ZlmguCuheRkAVeKujaJ6K2AU/xsJvUjQLU3TFXOFF4iBQwzAEvtbooowUK0SF6dBoI5VRzapsLJlQARMXAypw3DiaSWlHmYV1O1Qv7ldmuj9n2oUWwrOvo7BzAGRn5yYiVBmpYzBDGjvwc/XvJxycnzWQR0/DRcHpJr1e1jjWdczzMWzhfueg5v2H+7zXdTD0ZNazygOcp/YYs4lG3a5NzZntRaib7vInzsm8rEaxRbAH+eh721fwn6/htoZiJTdl67mBtYHm4cXzrDyYAnowiCBYibNuCbdtSJd0eJji1sAlNLcWSG4WjKGEESWafaDjO0z6TCbK4S+4fKiJ4Kk5spEkpNs51dMdK8RtCBlNxr2N+BwFRw74oeUI43xqfjKt5AsBbTo08OwFEYzaPfd69xDmBkfMtgqHxsTEe4d88OJG8KSwEiQiIYs4abMAuPlOouOhUAypDtUBksXp6MBQNXRu4e0LL75n58CZWxdQSbIj5L/BYCh2gDuZu1xikFcIA6SahqQRByVdTJDxe4ltGUJQ7CHkyDpxgxNirYCTe+JwILgEMcrUXgkxCRY/lWJYK5Q5wx1KtG2KIAAMwv0/ViuY6Q3uBsomBWqGPBfcA0h/IxE0Q8RHrCpPjpJPdYo/TqsdNtnmVACQy0EHahuhmP9KdEyFUIvSPgHzEWQHkkb9HUnQxRMSug2NSAKzoal3BA4iwZECQQmgQnqcjRWqmOTEfJp42SGRZzPJAIG3+mf/2Yp4c+jzr62P4tWO9K5AClR2AwrpuHL2B+XDgt07AyhBEMZ/AyP9gE/SZY7CREFaQx/oAUGvBNonsdO8koNPeRGQCYVo6xLuDQxQHj46V3QWXrFvMxZJ4vr5rKeD6+ISmIraKJJKZNSu02haLpaQ1FFLsBPTD971pznQX2MpEjz+fsUsSIZwUMcU78/ybY6jhS/npPYgLHh7x0rlAsMNsIQeYhslfQthcGnOBRlInfGNMnxnrQKb9mcg7LsccmcCwmKMShCi4D+SkBmJPDDrVknytYRoPYnaSxliv8/oDpgRY4BHT3xRjbWaRfXyP73NRdDav7UGIgK+psD1XQRvg+10RMjIVDRHauG8J3Ln4nPnhD8RUfLziOjNcm/aVGBOLb3qen62x2I8ZL9vPvpVH+lHhhesYlygGPJw4kASC2Gv1Jfum2ywuA8sIge3bWxOZurt7grsnr+D29glub+5wOp2wLCtKcXEI77RBop6kCQEp/wZP9M54JzDHGcNvzDgiCkFnJP0q5hmfMy1IXCHvGfeP9a8ez1/NB51J3Nc2KOdcvB76km3jm+wlGedMnxkYAA33VK9OO77XyNOG34UI5Cy+p5msW9cFkRRTRQpH9t5TOOMMs6et8yC5kUd5TF4MrqFFdH15RA7ex8UgfejwQa+EBPyN6o0G1OPywFCgU/z5gvP9WI5p3/pljtihrp95MCd8P73eUR9+3/W703ZQvF2vX0vTmqHrNUbwdBT5vhj4gFriuWmDFeSbbxuYcIhMjaYEsW/Gviue9LN9n4hfFJ6fLpnmy1S1J0NEChi68R6Dxr/t4Rhp2HaP7QgRN6eMnfvLSBITTx/DmIT346Pza91/piAn2v4louguEBX7Cnl8HMxtIbrqWCglhKbGOiUmHBA0zwG9cNd9TCIBqdN9DhplFLpdzUafIDQ/Oz83b5m5Lz6iY7Ld3Qsf2x5dpo7sYh4x2Cj0RQq5tt3fd0xCU71BdRQVc7Hu5KsXI62b4SkQK3YEKAkztRQjLLjQh0JzX4u8nvM90gcNUW6bJj6X1ASmbb4NX+KFGCn8VOiDvcEOmv+X69ttdpB/s1Dk+jsk2P+ALcJfZnuCR5M5z9yHjfVrLjNjCFCFbbdCZXW/8boIBMiuS7Hu/LnILnMpqGoJfFEBd0ZzPxE9qlTsMRecUoioTvM6EI3IWwEEKgV1dfysGsmQABcX674lzai8jbuJjY2+StEsQlyAL0T4YqyYHlc89vCIKaCw8SvkxMJSUUvFWhmVfV4TsK0Vt9sJNydbO8tasWwral1BkWPmAiIB2O9jAbgOW5Rd7SiE1hYQM5QXBFGhqZHHy+TPacRtmNbLFHuYKJj79wi3KXCqcR/H5wXWN609n4zx3rjzvVHA8P4ye0/EavG9cYSo7/zcWKvDd5zXnAbxIz4/KsbtdMfeA49d0jao/50BtqIjKEzMR2BiNctm+ScN+0luqhW8bkbsdXJUb5bzXHXB0RecuaDXAyJqnXNrxaGCejTwUlAWxnKsqO0A8QGiA0xkwtwioE5oIrkPlEoQgfkRQeYUhWrLa4992vYNj+tyDGOPsXvfjtH85NEc7hMIVY/Z3WarQLR4UwgXO6yO528rlnU10llhrFwtNzHh31cNhhDzLvJcISLdEJsj6QJAEi+0QisXAEn/yT6f858dpUR5pjfd0YIixYrcy4LWXWhGgxjaUTUaIcAEqrrd5xB4jC7jiyokCK6qGeMF9tnV8nNWLMoZi1INERFGpZrYaZnFQrRjxo9ivc2YCtCMjW4WITEDuHaWeq0zgMxjsZLjKiHU89Azh4+hkURnLEVKiFpFXARQmUSKiBJz5ODN0NSEByNv89AfCDxH0yBj4DM0nSPZ3OvS0TQa2li5xlWgOcXlRABk7JOPzZKl8JoEX0OhMIGh3kf8A5ivD7JxL4VQOqOzCad16WBpKGJcCRNEQ76ffHwV7mMCOA4Xu3Nfw+6t+QxChN4ZaARCcfJv92KV4t3QrZiw1oKyGCFdu6D1HYUUvcHsKJw4yl7KMPm7uYYLEP5q7AHq/r4R6Ox+iwIrjyhyxooD1xt2FUCxzwo/shOb/03RWbShi2NJ0QAGth9BOno7xj3I+QvLxVZGKRtKI4g0SC9oXNCIIcWKUxg2Vuajb7i5vcWybeBqDZgOMfHjJsClCY7meYTD4lWr+6qgWlGXDdt2Y6JSp1tsNzdYTjco22IdRqsVnCoVlOJcumXw6oxPZwJTBEBaR2s7zvfP8fTpe3j2/CnO5+cmNPX8OeS8Q/fmwrcuDMg0EVcZdVuwrC52u9g+NjdteSxH7LkUBiL3mFHAFz1hRazQlEzZzcRfpNiGSgWgCuIFRCtAK4AFQAhMAQqxYi//7GiyIAgBTCteFUTzLrNvC7PnUOuI01TQu811hWOPSgAERNYoMLA3ouhkf517Cp6cuNhDrS6MWODrwg0FBqYd+eo57rK578JVXqDsCu6GtCTWgfxui2lm0uqwmQQ4OT1yf+YnFfaGdeHbisWEI+50n8nFGoK7pLA8tTrYMHzMUbD5B/gz+Df2n8P/nH4Q52MHNAQTw0/lCdM0u7+r4g+Vv48/0n4EpSNzEASbG8tigkC1iBc47CguTtqUgX6kHwCU3PeI1IqHAHRtKFyxcMVWV9yuN7i7ucXN5YT7fo9LuYAawZr+qdnK8ris2diLdRTFkwkr9Ak7HXFT2CXHhiAeh4rlSbzY3fD/ht5MRH7fL9gvF+wXE/A+jgP9snvsOrie5gRR4hc6zR8qgT7Mno+t1ymVkrYkfUxyn9+BXqXIDcH8Lhd2EwzR+iiUIp1FQuzaixc+xyMa8WZRi/tSJZ8rKJWvCuA5iqnhmHfuEYZ7ZAZ5wi6mu4YRhQV+EWMSMR6Q1cReXof4nnC5QhQ430sRLVgtkQamZCR5psh1knNsvNlRYKPRsWG6N8MRdKyW5vhhxp/stcLGVwssn1+KQ40BiXHK+/sIj1//Iz+Kj3/ik3jz7Xfx3vsXfPI7PoNlucUrr7yKu7sNdN+wrie88cYb2E4b9uMAF8Z22qwwbFlQlmqx27Kgd8HTpx/g619/G1/4wi/gS1/8Ei73F9xst9j3C86XM5gIT+42nLaCm7Y4L8P4BpfLjst+4P58gQKo64rCFed9x/P7e5zPZ+y94VBBWX3/64TeO54/fx/n8wd45dU73L12i+3JgtYPnM9nL8BmPH36DMe648nNDSCKD54+RW8N61bBAM73T7EwQU8rSBVFTczvtMZ5FgTfJIrwOYUSzO4pohBZ0s9p3ZrzHoftOYfjserNKkwM2HixRztw3BsHQ47DhFEJqNpxuzCkru4nLzjOO9ZXbyEixhtdKgoobX7xfOVSCBUC7TvafcPl2IEKUGdIqdBuIjXRGGVdDHe6tDPacaBW44As64rt9gbLsoJrNRxSLcboTDg/U+zMeOWVJ6BnhDe/9jV89Stfxhsf+zh679ZUmF7FVhmlFis67c34oIXzURb7rtdffxWn04anz3cTwF8O8LlhYXZekYvuuTizxeiPa61d5eXTvxp7DDNb8Sip4SMIkYiwC0bkjr0z3i8uKjXnO7N+xvOM5qS50OaDfJSdm2+5M+6RboC9ZsbvjTsZtsPEaktZwFzBtIDJhab8dcTVYurgZnHs4gri7viL46MsiCIsJfX4cvC4KHLzhORhhr0wDr8VmWohF5mKDd2vRmPPd+/NDUxaIi6odfpb+rmjCdl106dxXQQxUXj/RBEGiQv3MKG7XYzcoHF2OhQ9/TcG3Oabzx3cjCurxQItVsNgFbeGbzLZ2CpsCHVcIBCcNyDHg2JQfVIxyDkhE6ds+oicx57ouDL5j+RQ56m74hOA0RSsFmsMcbNteOX2Fq/e3eHV2xPu1ooKRYEJMlRSVDY5Bk6+e3fsxzAvTo6fYbSmnRbxUfg3jpsgYkS79+aOxNrwZmM8/Fc4j5EdFzGhNMJcPzL7fLGAY67bq2bcK15KXqsWIlMuzKqUviS7+G1liz/I7VknMnetO5YT3xGF+aApJ1Ece7eTERF0dLSu0O6iHHvD+d5qkM7nC9o+NWxqrgrQBNSsOYCoQEnRFrYYjimLs+tWIsGdYThR8FV8TTD83yHgZXMkhTb8phFCEA5gCAoZt2srDNICRkUl4CgFhwouvWPvAhZFZ/vZLMWDLi7+IQolq5EoDMOewgbgWnQ8xnPOY+oj4y7mEVho3HeNqZgo4biWWDvkYlLVRDuK4xPWVNgaqRQXmirkojfw+zFjBnP+yP9rgpNuAwk+lhZ/9RCZEj+vyD0E+BZ5MN8TbToEB+EqePN1b+eZ62nZUEkTEzLRF8prZ7iPWCvqAnzlMz+OSoTP/NLfBmdem1zkzR61AkVhecJSXPh3ag5o24mNrVJiTrb5MBgeJ4qtF01h8SmmAfLeAJ7rQNyrGacZgnRXE8B3przHV58fl2Xi/DocDcDjVFbbSwyb9X07xLNya/O6l0kcMXBny6VP9y/XFVIOXTH2RPc6fL7odK6PzJpFXU/4NzEe07iwqdtlnFzIxJUqswu3Wdy/uMjUWivWtboPXb1uujo+4Pi/x84h6jBqyAZ3OEU8XfgjRD5tD6bEx4y6FnucnXePvJWvwfgZdyTD/7BZ6s9PcxExz4dTh5l/mFgYM4pW2LpiiJThx/k1lWrNzCsP4UXAMLreXGBqFgsJ0alueKI1lLB/Hx7b7UfHfhy4XHYcX/pPUYRx+Z4fg/6Ff9M46seeTbsCR0ouDNt1FPeTXZttHhkoES4/9ruwPP0azt/1wyj7c9y89bn0A0x8d/JpQc5Ccbs3Yx46bF/WajrWEVgxStxTTfgkvMOxtiafY7pXid89suUFAG+9/XV8/Z338f6z59hbs3w0F2iP2lNYXX+x9VO9KR6Frx7zUWENnURATVCiEVsXc8/V+B8comHh3wXPg9lspmOwIzfn4zzvww9s7hWPQjEWDgbUNeOPhldq2s8RMwT/y9aLiFpNlZLXt4yaChBBoIZLBz4qmsI5xm0xca7KkXMAehfjzHfB/f09gHuoGm+wO6YZfqmoQKgYHM1qmFt3S6ARx5lPGKggNET2vNCRQuQQJkKaod+w9XOtCWjUuEWe277PeYu+iYkS1PMK0cjUcH0zxlz878qAYzvH5UA/DqgYbhn1swKBCFlzDOjYQ8n3z258Zi4CYXX/mCFMgA7RP/OhgOUqUnwsx2QXxJoY2NNkYrYhfKdw3zCa9C3uT5mIZ+BCsZUFbyIdDyZrAOwP8XoIgaIrXPi9p/BS8VprFEZ3XkdTE/e6HB37fmC/NByeNz1ay0Z0gbekR+XaHwqLB/d2YD8OWyOtjVoPX7sW5rnQFNfUChk2iKZAMnzosHkmVlZrxc224bi5QW83hiMui8VuAKDdMk/ssYv7cVAFqkLYcPcUBQaA4K3A6otaN1t2vhhuu+8XqAqY4ZoqlgPmomnzQzCowDDhEHQSURdYVOPvBA7h4gnhX/K4nQ7nuL0OH56QDZXMF0TOJzvcpyQTmupkIsQ9NsJwRjD5Eu5DkseM9iNis4ccKnpRU+FbfPTkHLgQmioyL4qBGYpjiiKWQwFGXJbc2FI8PLb8Bvx9hFFHa/d11FDHfQgfbDSP8wyl99hMjRsAmGxp4B4gHvGu2+C4iPNyh7/16/7r+M/9gz+Pv/VDvxc//tP/Hq5xqA93MtLHpFH3O7iEwaH0cWIbMHL80aapO2LQnDoZn3j8xKlbEqdiuQnFhBVOtd/jzXz9nmn9j9VvtoUKfDqyzXIl27+Y0bs9CrMJY4vlN2VvLm4uYHaeVX5y5BDnKHee8xb5UTR383mQPHNW1z7RfABzzpPyE+cYbTSPR9a8aNQGR03cVaz58uMja+1kMtSLT6MQJ0WTKAofru5vgreRRF288GstHlDVJRV8l+odfFxkanT3qhgFcj5M7oen851qr1YkfbSG/+T21+J0fg9fWF4DtffxHfs7GXgRkIUeQ2TAFnEtJYWuUvCAg2hOU8HYWPzETrKjEdCN10ThNKb4PYCNmCfuOOUtj0U+34XxV7uAMeky2ftR/JcMGOdY5hrayMN3kIeF0y//2NmZnnaEyeGGB0IPix2viyXH77MIw3xS4fzNqmoqOjpJhcDKVMQ2F9oRZnLE4zhee+UVvPbqK3j91SdYlgqRhvP9Gef7y+jUqCYydT6fcX9/j9YagugZ3Y97a2it5wYBkIMWS6pt9jYKWqzwxQKyWiq2umBbrXClLivqsmFdXWSKo9uWK/aRb31BphEFqGfxlmiHuRHhI7gwnTQLFIPo3hninx0Ag7gaLMSAfGUXmtKJ8OCOoznI4YAACc6NFWKb9ByBT8pLEQDZtHTDgAjKI5R8sDpethbmef8RjtiHRnQ1/eH6VdNXyNXHWyJ0ekksNXcOCQoO8kaiDTqKmv33UCeO50lNUMpEpZqLuRlB00ia3cmh7rTSGMO4hyQf7lR8a44gtvt+RgGwmZomcnooTOFdp3vpgzc5zMRkxQrsBOtJCMNEuuLt4WhPn0WEsxY8YQXcWRqOi7iYhc3rLoLe3KgzgcuCuixeJGOFFiCyLiO+jrnC0qO9oR0H9q74f739Kj59avitr52xkLjCp3dnBxxQsGAtFFeNuAUnHBtQ0ZYlxfusQ2pxp28KtDTG2a5rQA3xrzEUCqQQ0EMbRpOtS+dvHkq4LY97GoAGwjGd7OTkqL3cskzmKnxVAl40Q+FkThfwTRxoTGc3/1uhqewf+yOmRyQW5zO07i7Df+CXXsm39nBczIooYOSZrVZsS8WyRGdGFygKQl2A5TTWkwUeo7Arr5gYoGIkdjISeThYIeQQ/p0RHTD9Pos3wAL8Yic8grJxL217jPWIqTuSTRKCeocJRgLBeOgrZRj04O+TfaJ47qGdGX+/mvO48ggRwfj43ilB57+rzxs4AAY4KU8VYLGEeilg7RBy0EgJrIyqxbr9KYOdAFzIE3mVUMU7TUXCA5RN0YR87CIuEges1FZD0J1jXGZRDxEZgV/spdAkEWQAPa8fqPsKORIIB9m3EwAezNGUIAFGgDuhFPH6x3TMJAWb3/bTisk72mECn6bNx4AIlJoPg01mSnumwz8TNaEpHcWtkWAZQHg3IDfIUCpQKRApCeybWzYmrTrAK+6HRCdzESP2kVospiBoqpbPyasRGI/4RcPU5KjEjyDzEoxkF9RCcvAgOhohBEwx1mYmuVJwLMb2xXjiqlth7yb0Gt3C8trnZBF8QUQsN+019OA5mte3XXyT0WWli4x7xYylC9bVwF8AWWARAEvsOSmkc3XQdP0mTMu85vkfx4F93yFyoEuQvMKS27mJqdEBRVMQrvfmnx1k/MM6EE9CU1IKWFwM8BEdvfcX9oalVpy2BTc3N7g5nSDtQC2EZ0+f4oI+Kckb4Nq1Y2/HKOAG8jMfdtsq1QW3aknBqTl59c13oJfYDiBtksITuU6ME9j3Z//OwCDi+5yEEeLboCmaehhT6yDrzkJPRporV2MYpPu4JsD2rJhL8TeOLFLAYpF89hgrySwfNhofMQaL1+o0VvFciLpJl0xChGCbzfmQNHGRPidFzftIcqeckJMEFEKSqHL/CNKMqIk0q+9YRFdzJuL6l4naQa3bRX7/NMeim/hjOkYi0QjcpoHpcUu3JKklglx0o40EUty3gash/aBaCtZlwbYtOG0bbm9ucHd3h7snT/DkySt4cvcEd3d3uL29xel0g3U1Qe3CxbuNul3xrpLgkvMO03pJS3Ttpnu8EtcIQIfNGanSWNMPFncEIZFMsUk2CaHq9Obh+6QwwdX4znNjzLdfyfqIL3sBS/NY1Y2a/9RxM9zfngZhAq+vH4Db7FKwLOq+fMmYWtT8hCC7x8CoJ9pqYbB0J7shJ4VqRJ8+dGHMQ6B/vo1ACr7FeszieM3hjqAgLmm6vodozSM74hq+yRlG/G7ravghs30hUOIZI8UzD9DDD/V3TQHLh21DquNehf/qv0z+VkeIoqaQtnZAG6DdiAuQFEXvkcyxisur2Cu68ZFjyXamsUKnG6zpgtnc9GondX8uOjZxuHaxXwtBGBa/MiX+lKI64BT5KeELOJbEHl8ZYeZ6n5vFqIjGnbHw1T/b9/8gPnZRa3bu9iP9TSegqcfLAsJRwnf072RGaSZsvh8NR7HO9dZFqmesF76p7efTTabhfyoGCoJppO1+4NrvnabeLKgf4/+YjshHWIGkiQCkCG2X3LcMk/X4GUaciEKUEPzpV8S5KGYYfoAV65igzuKFiko6aQfb/lScUBQ5Anhcbn5FNFWhIWaWOEyISVlOK5bMQ/vyTcfjm/ztukBw2NWIWR4KTdl7fOZcqRhG7JaffPX8/Gy+dn6OAMOVxES2SY1UBPKOeYQgS8V5zpjBfK1mBW3BcKkgFrAT+FkZJNfvmcfC1sv0WWH3wwdkQiUClYKyLFjWDdvphPV0ctGkxfy7wFFfuM4hBCKr7aPbtuHYL9j3PYXdU1iGNJtvPLYjYgE4WY1VUUs1ISEiVALYC1iXUq1LIxTbsuDmZsO2WQ56KSuWsqCyFVyBOEm8hYFSCHUxsdwoKDIfOh7WtIW8UYU4GisqNna+z47IJi4AIy5zLIzrFPv4HCpBbpCYe9MHzO28pu+Ioic4/mDjBMOA4t2qZhM4xF5GMaZ6QWK8Lo4gIj50Cex6J6R/iuPgsVq+fhqDJNRcvY/9XMlEeW3gwYXRYQJtxYlsvBS0tqIdDXQ5G8ZTauJPXQWX3br8HceO1jpKXVAuFxzaUY4dXAmlMpbjQN2Lw2LuAxSFdPL6sGJ+ZRAyidDRpvshSWa0a3NBB3dEQxSTMEi9oi7c3RtekmD4lh4l7UVL7JWYIRrNBarbHiPelcpOZCuG85KT7EpJzPdhvBF+XrrPEwZJOa+ByE3Zi8yvC1G4EPJA+jwK1RBsszWaHq+EoI6idm/4oqPQOLqQ2kmZEyfi4lMAdMaDYYVUXTp6UxQIKvvckXE+qppERV6mgmKqickl4RZiuW4MoYarcSOaYhEFsYmNZDMZCQGmQTi7tsDhq9MUw9BVHJM4lK+76OwZ8aKRGkcxZ8RuKW4/YaZ2zuM6Xjz8DMVE88cz1zY1DLuouMDIEGtXVUQCbWBHyL2RmIxYDusm+5iO2X/Q3AdNjCF87t4jZyXmk83Yl+/Hot3Jax2dTAQq7KMREgndRVUO6egea7A3dCEqdo/trBIrVBDWskC7dSQFm9hemfx6LoxlWSwGbx6TkaBzN5umQCeGFkyxRARJUZRmfA6JPVSBEAYhANLV7iEJWnyGIq/PBxNzrgBAFiZ273JeuKE3hkoDiYkKhL0VtaK34nhGqeZHhb9+VeRBhi1ZcxaFiIm9ySLoS0U3xSEQvGHO6rn6KBhaV5RaIExe3ElondDFCgfaYT4/xPYwLi4UtWyo64Zlu8Fyc0LdNuv0Wxjg6nnMBezfVctiggruhxzHARxqROfecDmbyNQH77+LZ8/ex+Vyj8vljHa5oDRBmRZlcTyWSV2DkLAuQbpWE4lph3W9fnSHFyu5PY78bhbVhz0W64ANL8Xl4mRqYrsPHPak+msK4A/zgeBrVwGywRONHFeIKFpBavgRXNSbtHijHjZ7ZT4B+/fR1dqxqSieNzsAtViQiM1+BRZHgY1ZszBmQuvRGCb2eU37anxOZ4i7rQsbxeQcIqgXy0/Y1xSGKxy7hjcZVGsqFHnt8IdVyfPBJvRkuUUyH5sHzmG7giZGoyo4tOMv9g9wkY7/st6gKKDCEC2ZozffEldx4sqM/wl9J+75Gcg7OIvQ8DUmAUaF5Yb/F+vP4vfffz/+1dNn8YfOPwAieFHtLMIrQOlgUdS6mKAjYl81TlE3p8hfH0LoAMi5XKJWWEEFtSzYlg0324ZTX3FpC87HDmp2/aLiAOfjOYxX6JgPKMnqIW5yLWzuww0vbVQTIWl9R9eGrj337OYiU92Ft499x77vxl1sB3o7IIfjejo4bQBcnFegwokbEAdudh0vXcVVDgqEbUDga0zoAsMaAfs+hBDFxCNzQTYVGcIA/umZw0n8ZohM1WoNAyMPGL6iFRaE70hgVhey0yEQno60rV0TyuO8vvHd813T6QE4E93+EvkYeGHxaEc9vX76pPnP07kQgBC7D87SyGVZYXPgnB6mYvLupg+b/SRbM+qfbXn34KLb/sVCA7/XyR+eY9H5ZPN5m6Mjc/94jm/71HejrhuevvMcP/8Ln8ff+ekvouFV/OxP/0PcP93xsZsbfOq7PoWPf/wTuL27dRE84wRup5PtTVRA1TCLZ+8/xRe/+EX87M/9PL7xjXex1oL17g7aFa89eYI3XnuCdVsdO7Ri3y6H+0SM49Jx3i8mytQaLkeDdHjMfcbzFJrqOI6O1hTHYbkaPVVcjgv28wfo2rEshseoml20PpV2X/d9x+JCHs+f30N6we1phYrgfH6OlYGtMC6XHff399DejIdPJYtGi8ckhRlaTRgw8qhdGo4sThbsrRm+3Q60o4GZcHNzYzFcveBy2U3clYFlMdvfxDhMJrIneFIZtNwA0IyJeq1Y1gXHvsMaMFnsWgtAJCDpjg8IWMyGtPUWtZ3dtnl9QRCpfH85LjvE9xIwQ9TOf28X7McZdV28ILBClXBaC8q24JWbE165u8X5cgERcLmc8WytUO344Ol72L6+oJDg1Se32Far+wj+PGg05VYxH+bJ3RPc3t0C92ec1hvcrA2Mi4t2qPuG4e/Ai94eF98j+GTAdK3jr7llWAhj+OPc/Mrfaf/1qtfkR8y1CnPe8+rfGHFGqEZnviT81uGXWUHnwI4DL2cuJnq2rijL5uJjq8USZQHXajw/rv4o7t87F5jIsV/HAtkiNAAuWtbBws5TKXYe6d/QlWUZYpID50sHL3GC61g4h3MMSY6DpJgqJV7Rma/eH7kPo2oYlh98lpBlJJi/BQJ4MR+yczQuaxA5Bt4HctFX47SqgSPmiymskVn6rYFrmFCmYSkmNKXMUDY+pSdn3DfxWI8UJrpKUdHp8ZvkNZmFci5sOOEUUOvIpWUTpUeGLQJwcQux2FEU1ffIyoStFpzWitttxd224snNhic3G24Kg6UB0sHoJjbFJuRBEnUlIfhW0vcILlH3QUr6Tro+MYZeyFkAoAAcRc7VxXlDsHjgoVeFn0zGI/Z1mthGxJtXuBg59ui1MkDOTXbxHsPRqn9fML291gWU9WqlmtCUKrLoNnZVdbLz7DPthyDqEYOfhPh+X2zSGi7nHefnZzy/P+P5s+c435/Rj+4+tr2DlcCigOc2u3QIBP0AtFucY/wNxaorysqWX2Ox6ZtxUHCNC1g1BbEhJogurTu2isTz2EWEoGw2M+rtPG+z1IKjC5oKytFQm3jhs4lJNTGeVBfF7sJcKsBOFtHTpNw/eMVhH+yaKIS6mLIO9bEcUVvFDOcA+x8IGSNdm7e0MmnfjJdfTBRnEpoqRKjO/04ewkCXEw+g2LCynmo8LFTTFCbKvL9gjPGEIwNANHvP3JFq1qGMSMbjP47CbM973jzBO7/r9+OTf+V/h+X+Ha/b5NyzCRh1cLXivc/8E+jdRPI/f/s9+MSbP4UQHDHxm25F/L2i9opaBaWIizAIejUuNNTjNZDv79Mcyhgk6hv8/HU0UUxuop0grsynDrQmPn+uJ8l4Tb1mlh4W4093ZJoLc8zI5GIQLhisolZk7nmLbFg7cVeELG8m0eGPbG8Rz9GEDzUBRxlzzRiMzrPpkeH3doxBmyGE9MliDofQFPm+5Xt8Lewi8wVLtca161JMwH+pWOrij4qlsItTkdfKjPtDvv8EXpG1LO6bUbH7FbYovEqdSDsMyXGPLFRUWjpyg8R4ct5FjI/J3vKDWB9jv8HgeiZH2P1o2ybYBDq9Ux8FFyVqhEL0ByGI4s1HAieaGmb11myvdyzp6A2tdxytY989RjoaLsdhjUx//m+h/8zfsGbIznXvIjYHw4/wOvAKH+8QytSp6sz9RRBj/Xt/HseP//M4feWzWN78eWiIVcJ96uyAOUsKcFqfcOw09so5D+EG3T7BGsvm6x7O0gc+OGJlRQ4lNphHuMbeevttfOP9p3j/vfdxuRyWG/LcjKjVXi1LxWnbcNpOWJZl2A3YhZN0SAOADpWGIs1iUA4B2oLCljNZ6mKxPnssxCXxKxEFooaGxv5tezK5GE/4BpRDmq8HMPvr830y/10NB1e4F+d7p/t78bPWxbCLbv5ed/xT5u3dOcwCF++BZkMZJQH1Di4dJBYLmanyXDgAqOWgetTUZ9FcuBDOu0RP/DX812guY5fKhm9EHt3PC8FlSzE3b9SF4MUg7YLtF0gsNTQgYhzDv2Dy55Wcwx32yj5L/LUS3p1azUpv1gS9NxOckg6rZeKokYi4QR2fKnbvC4FYE1/2u5v/jaaJS61YS7HYhq09yWM7Yt7FHCnq8UPqWVjuI0TCFhcwWqprA7h4WWpspBaLr8WHykTF6n7CcJq3bTtZszuM6rgGOARirInf3jsureO877hcDuznA8fexl5/HDiOw+yC1xkpkFiFcRkUl2PHZd+zkXVgPhKT3NdvcQy+soukO98rOAfJ0ZBJUEfV83oV7XSCtAbtFr/Kthpnk2yvYFUTOy6CSLPFPl+LcY/ga3D4q+TjZnN41FYd2Her0WcCZHFRuhBkJufEs9WiMPweUeA2lsno4lwbIMclQJX0Of1Wmh3xPPGUlAiudmg0ZPjkgytefdSJ0GAPi+Mx+Qzjek1HJfYDE1W2bUKgQi+85wVD+C0+Zj6wNbsKLqsMPr2OmJNInYvIKXK2LDXzQyDjuUkXa2AqggLjr3Y6oZFglW4Ctuz7OybenQ918Hxf2uDVN1qrq3Af32ND8+0Gpxmq4H3Hj332T+OzP/BfwY///T8JmXyN4LmGDaTYx6e/p8/Hg+dC8HFyTYZ0f4InQvEcJ05mHzq2nxFveJybsZf5akyDAzryfvHmqBPNnR3hb405DVwpm3F6hJ7bJseW/OQZQHFfnBRC3U/SxakmS+Jed/K2Iy4MPpvKZP/88/IGh78doZiK4WU0fHCArkuKcO1DjtqOh3/5aMdHFpqqngAF4EUedqHEpnIYjrbtLwpWo9wWN0oWIBWsXLBwqPQWLKViCwJONdCs1JId2AovTgThDM4zKPWBjA5Y4sYjCqV//Xs/g//41V+PTz3/Kj5x/yZ6FNf3uAfiyQAXuPGkFJUFUjfcUvOFFxPOZhQ7GRk8CjnYFR1HB6KhKsy+QRgINhX+kRf+M/BBZ7xhnJK88S8e83OjAIfggMNHBZRVB0lCR5nQh798npAvP2Zg4oX35/fQ9SX4xH/40XMSJhy4IDhdfUAI5XjSzVRd7KHSAYmfLmYk4k6kDGf6ER0f/9hruL09Ya0E6Tv28wWX+3u0Nsg4vXecz/d4/vw57u/vvQDFxvg4jixKUQfellqxrhtubqyQkoisQ4+TNKJTABOhcsFWK07LhlM9Yd02LKuT25YVvCwodUFdqnVQLEZqFJigjaZsO4HYXPmiMualB8Gmimv3BwESUhRqDePCZKQs6wpi5Au4Mv1sBK3DzCS3omOroPHFtj3TNOFmAM9BIZ+s44Nykvoqmf4eJjM+L4NJixg/0j2fg5L8HA+U4jMoz8PPOYDv/DvG+ZBfIpDVlgFdhCUZQIRM567X45QgRgR9Am1iQm7TIxM70/sfFgY+xiMd9QnEERUv8Bj72Dh9HXMqAadwgnz+Mfs89nshsZd58ZkHqZYgAt7rFX/sa78Wf/C7vog3qq1xxWzHLCOmglSjjoRV8SBvXb0bu3eMzetIEoUBa613/MQ7d3i9dvyD5wteLw0/9MQKJWqNazX1awtY7H0fSMEdGWEngnBVRdl3HMuC4ziwrpuJTbGRGAG4zfbkH0USlsPFyxEdBGsjJY+0V6wFwjyFZvEYnRw9REFYgiC+EIK2pOGERXBGV2s01/JkCQnTGg6neHpdPH91fg8+5Xr2zy8c5CdLsjwgHmTIF2fnZ0TXj+wO9ciOFTabCxRLZZyWBad1wbZU3CwVp7XgtFR7bl3M94MXXjoAX7i4GFVBXRzM8PVj3dYJIRITYxEANwhOpOchRuhARYrHEBBK4wEqRvGvqKRStBVCGAl3DnwsYI8JEB14FA/FzDTtCvmeytN5xh7uETNNb/S/zM/NO/5YRfO+Pxm/ab7lbHRMORpxREFBFBhTKSCtMFiiQ1BB6B6cEEgYRawIqYpi6YrVE7eiBtC1pmhdcbl07E1wdIEwIB6sGbFe0PaGutj9BWBk/RnUzDWBUQzuwVj47wQr4kp6taoBMoAlAaYBMDMfhBMkKTvWr/nQUweDaX+w83pctuzYG7QrqCv2RY0cF8mTveOydqyOcjdPmPfwTzToNxjxjdvBKLQzMmwxn68MEaDoLJ9F+b5Hd7d1PQonp2SkDfLwY5k6XJcN0k0ctZSCbSsOeHtwrmMl2a2duwFKgogBCM8HedBeiinHUwRKWaCZTzrgovk7Jfl1AhvSb4TPheHfmKlRJwD2FJt5OaHM7ZO9czwILkTg+4UnJpIrDyRIZHbHC79ad/EpsqI5KFYCQniWOEiNIUJm5y46KkmSKhDGMvZSFzsKa2idGhqKtVtHdM+Jc7N4zMgmKozem+ECXvysqpDmRTQSQIl1JqHeh5DKIzuIkD7Xtq3YthW3d7e4Pd2gtR1dDhz7BX2/eNHlEK+OYtLocm5d3ji7PyQeUEqSN0PsOshNzJy+yzgpXNmiuIcvmJA8InVP01QekjeRFDey1USmYsb1V08EiFiLvRsO4+LOQXK58qxeGgsE4BdxScRk5LFH+LQP1tMkMvTivRon+7LvpHiNagptpL/PDHIik8tvIbhEkVzXDHXG+h/nNc4tvU0H34tfT4iJpB88vy/WhAh6Jhx9jw7MSC2OCP95GslMbkbIyExTsULJuOUxHZp22Pclk/WfCAPHSAI6XjAEv1y0A2M7H4Uc1hVsWzactg03NycTm7q5xe3tLW5vTGBq20xgallWEytgJzIAvjrCzwt3LfbKAVZPZsqP2NMf7vOxl87SRxGw6zX8gOnPgqjCcCg0brL6/4d9+aZjnWP+4LXX7uIvezy0bQKdPlMnPzS+dTw/rfIxLOMHmAm1MogWLwiwkxP1OSEtP9KG3/yO1juaE7QEauKzcKEAmrzyjBnHtc+3z+DE6GzdUiQmun/kPhWLE2OejI9/XL5iHDa/5kDj+kiRCoITzfXl+0VuM9NAKvBNSc3zvZ6WRe6p4wx9jx0b7pWtkSC1xj5wLTJFJomNFJoSgfYGbQ0hABqbeJwHR9SWl6PTY7qsjCOABNpoflDyCC0vRta5CTSExDk+z76VaXRtqpVTOMiaXHhCT+f9Lb6O0r6MUxi+a0miZUk7Lt26hgZXOLxykJ8vkl6LoiPByaWgLBVr6zh6x77vOO87+LKDsKfAwiw2Fcm/j2pvfrlX0YOfH+U9v9pHkG9s3nVIklcapDfDTFXG/LN3+dy210s3YnVPm2fCinmXVfO+RoFiNGfpTSATmZRgRaBWMFbS74h8FpeRryruX8SajPgpbVauVR2+J419L/eOX3aMrveU60JI90FxjXPF++LnKMoZceu44pefQ2wpqvNLfBdzXHX+HhCMawUApDlmDzG4mdSWH00MLhZriv9dRK6S+Omr557LOZ6JT6U/Aw9CLB5fts2EMbcthYUj3iCeihE8jrRTYjBXgNiwm0WwLDtWbyqyLIuRbcTm7xBSf1xHbx0k1nXOCjJsJCt3rNUKDNYCrFWxLoSbzfNa64LttDqBdxAJVQSgjsJW9FecIRWFXCG8VXkBFCi8eA6KvXirZHzCQasI8amYIzzv23Z3Yr0DQKkVC02vB1mTDgJcDX3gEQDi/gYGOTBN61hu8YPF9xa/15ybES/C8wykMCKKwNtt2N5iRSN9rA1VWOd0xwsDuw8xsrnQBnBbbUUf7L4vTcbeyC2eG9HYOwlEBWABlsXwyFXNvi+Kfuxo7YAUTYKSMqMupyvfgxTgzjhVxnLasO87nj17hk4CrATaL1DqqHXFthLu743Uhr6CpIMLcC8wTK0fkELGRQCDxPDhWgpQkD6JL2YbWnR06XnTSyXrEm+3G6KUhRZWyPTYVlmIDnlOpywAuhHi3N7YfmPFiIMYo4i8TMwbgiZ2Ou/hw9UK/87nkRpObI0Ein9GzLfhiDn8jxQnC89bY5aPPdQMFoOVzJYSwNLcz3EOiRex2DEIqyFAJTpE8uF0186MA9YdtwBQ6jYW5PgbbBxKKWDvSl3ct4vmY+kwKTB3ylV18jho4AXuA0eeUkWALlaIVR179IZBgZP75eRYu4FCkLaCtA8/1yiaUwUKiuOrhmOxKkodrzVsS65JYVc28dr/y+ICz4E+9OB0+m+Gxf6+WdDfxFCDZHUd++q0vwTxCt26Oz6qY/Zngo9C5NwJAqGDyAqZC/ex10Z8MmFOrTXz+UFWRExRhFtRuEAQ2Il1Pgq/Ec6tg1o+RACwmDim+aWbzUNvjMBQiBNUQ8zKvqOjo0Ex3ScErg4TyoKTj0eAACLr7G4DQUAQRhFxlkUkVmNoIjSFrvPviS1P4lqJqengpEixghXtJvjee0XvDcU7cgZuELj6spiAiXhOvLdu9kNjnbheljdZUlXoskxC85GrX0yYsHdQO8Au4rdVE5BSLlBebBcReKM4Qe8G9lBhcKlYlg1cF9Cy2j2uFajF/IxiheMozs1x30NE0I6GfrTk/Ozne7Rjx/n8DM+evo9nT9/H5fwMve8mVndYrFEwFdZGIRPIilRVgN4g6BZ2+/qkR5YjA3C1N4XPR35viApsVts9JzCgVrQqRRyCiP1svJ7IY2pywSkN8h5ZzMAN6sZe1UWoFFAaQv+BT9a6oBZv1kWcDQtA3fmF5QqLDxMl9kUgmCiV2ZtRohT3pHWLKUGK0hjiDWFqrQNLdlwkyPPX8RFZ/IMO6GTr3XalsKBad/XIB4g0kB5QOIFfx+cFp1O8yJrZuaXhB3jRr6jHI7CY5Ngv+Lul4SsFqAr8B8e7+LELQTSua4x3/DRb56JdXlxqmEgBwMGU9/0n8izWEf2/J9+GP/6Jz+G//+VP4Ot4B0yElYpjNBW1jqI34oIKBqODqaJQB6QAQibuRrCAMmLQ8MOb+d4kVtxRyTiyW1lxWjbc17N1nA9RSOiD5mPf+qPUOtmjENt2LlPw1TCjouTYU/hWDUfbcciBJrZXtSgWOaxRXmvWbb4fjol4wwHpMhXaIv1wxJoLDI9cXoIIJYQmpnjeGYwjRgv+XIjTsUGM3dXMJB7Sh4jI5AdD/bx0in0ciytcwKW66NtorhuPUqLR2iQ8P/nTZtJk+IpwrmwUb00YT/pjgdm8gI849qlBcB8+28hTf/hx5WOm66axbWTMGlY9c4whbj5hHYE2aZ7J9bkOd5mM50FeSEb+b88FiFgBBvsjuB2GnX3IhdDgol2zeB7HcSibUODta/iFX/w6/vJf+Rt49qygUsENd7z65FW88uQJ1qWiVMa6LQB70VbrKAuwucDe17/xDXzxF76Er3zlq/jg/ffBNAo2725ucXtzg21bsG4FSy0o1daWasfRdvRzw/NnO+7PhPP5gp2Bm2qxQtsqjtOKo9+h9Yb9suN8uWA/Oo6m6K3jfOzowugqeHZ5hqMdWLxYLWxJ1BaIdFAtWNeK/RBI2yEN2GpFu5xx1IrlZsW+X/D06VPI6QY1mn9SCFeR7w+Eg9m+y31IJeMkt3bg6B2X/cBxNIgojnaY0KmKcaQLQ5aCqgxRYJEKJcLRGg4CUCx/vJ2qizyaD7csjM6A9B3VauwAz2e1toNgMVZdCg7ZoQdDn3wc/+B3/k/xg3/lfwOc30XRFaiLxYCt4eCKjgW0n9GZsSwrmnTQwaguaizCxufSBmmCy35ApKFwRUHFulrJ4xuvv46bmxt845138MGzpzg/v8f7772HbVtQK4HKrcWEHHuCwhMXgDK4Fyzrgpvbk+1btWBbKsrUFDMozdWLTlXEKhcf0REh4lU+3wU7B8ob3HQybT4GVKZdNXP/lhU03y+8Cn9ex0M19jzkd2WcnjGw80XZBV9dKJjLJHzjOKNxJCu4rqjbDXi5wbpt3jTa+MLFBaeqC4ZzWZDFZuGjCkG0gOFNpJ3lz6WgqDXvq7JgWQzrspyopPm1Qt7BWQq4fhY0GX7kg/sQT9L4s8IFKx3EJ8fEOWoCeMR+IdAqXpxGSi6SbidhPONifq0LCkG9wA1hQzqkNkhbrECUS/LPADimJejUk5vBs5gyDW5NYmPh3045TaKSdtJOS7343w1ojJ/KtU1yH3LgHWPABs78OI+dHGPojo+p1ZJUImyFcLMU3G0FtxvjVBWVmzetPUBka6j4NqRquBfUGqXCcWTphM7u65kqxCh21+D7BXZlQtYgmxvs64jJ4t0QzbYi6zL4OMyIJhNUCbqMOjUhTmyCETw53wUUYFGro3BhDRNELGAUsBZA2JvAMqLZGUcOJwq7q/+chKZADPQG9ZhJyBvcQNEkBA2jXi+a3dDY+3rDcbng/PSZPZ7f4/LsHsf58Ny7ZtK4eLONomR4hefjhTrQDpA0FAhIGrSvWKSCK4N8nGw5Cogt71Br8bFQkDiW6g9r3mFYjfkrwFoZnRVd7L5FPR0VAjWCcoM2xQrDfIQZQi405fFqE8U9GlgVXRuqNHQIFojNU29aZYJIU35fzUs1v57w4Y7lt+aIJpkgEwSzI4p+8RKqhhucSRAnY4/gJXotZwmRKfK6jbRvdox/a+5jI9vtdsFx9bAb8+lQnuSVAUA0exTnyxknSDxfqVcnMIqWLd7ff9f/ALd/6f+AN3/n/xCv/z/+VZBcfL3bGwgWgzNc2OazP4HzD/4OFFLQ5/+/eMdjMnYh4MXjtmUJHGc0kliax3HMOTWK143av53BFbFMYua+P0iMjyY/w37odL7XY86w5jZpB6BT8bD9w1KKwypd3feHv/qGEPGaQWMWa5mqgNf6iICqrYcSPB01Ln/aPP9chlUWEIZY0YuFmDrSFDkh/A49MtHE8Poi9zTibHjNieMIIRDm974SYyEy8ShvyFKXaNpSPSdYPW/E7usNLOKqaYN/Z8asnktQwCuuDJ82FXwk7tJ14rOljSMUJRzbq9guTwOt86+weWM85sHRKACO9QarHKiOB6ZwtP+cnOPcBcKv1cBoYvtBcDEcx/ANQ0khkNwHFLB6taN53doxfj+aC5UL7usNcHnffndBmXhEXZ1RUKOWu6IUQa1R3wirLcpaIc+r1JL3KDk0Jf7uNeyl4vazf8HyfqdTrn1g4GQxpc2MTPgNfNySsEJAn/Osk8BNCjBM6y2H3ceYxm1I0an0Q8cdeWzHW++8i/c+uMe7z57jfAi0FAgX8xsI4FqxbCtONxtubjcsawGzWo2JehxD3RtyN0AOgAS1mEBn+HAcXKpigu9B2sh5DJhIDKK01mum3CdgYihrxm4hxBILn4bDkzk8nwnT1YZ/OHboWOchVEo+/6I5Eq5y6z3jCyaFksU2tRZocx6F+y2izRrZqKYAYeS7Ys8nHc2Mg9c+BNzF/Z8x28xsRE6uIDBZYhOE1N5B7guQ0tX+BSiatxzq3X43R93zMLFPZVA4xuiadxYKR+5vs1eVigmIMhdvxOy18q1Zs4Lg6ImPIRTMiroQVExQlVl8bsHmTGUXFGmO4dhrLNdgj8IVpSwmpl4rtsJYH2Fk1qLB9UwIDQtAQ/ylkmkFRGOEyEVyLSMWL0NoKu8x4HrLxokTsvuiNPxDUR7148wQF9K2/FxHV0XrwHlvOO8H7s87Lucdl7Nhdr11Ew1zocGjmfiURK1aKaDieWkR7O3A7vajZzc4m8eSYkdqewFiL/BYf8Kwk5eldMUVrsw4CkO711qpYYlyrFhrRWVjRhUCemH0Ujy3sXgueYFWzddZHGvnYNdSDN8uYsLiISCeeAihLAuK1zeUUt3/Vr9H7AJhFUQMhzqhUw3sEEiP2kwZOA98lUU8UEJoitPvsXHXzCWz+7nB5ukwwd/mPyd6dhosYmvp4xWEKeMgjutMcBnSl/8IuYtf7UOkW9Pjfthe4wLkgfNEBiK56OSutscaZalTnGEibU0E1Bv0sJwzqYK3E977/t+OU3uOj//C3wbrYd8Pz8shBKeAfvsG+PkHlhONGGfiE5IOXy+aNhQeDZBHpYzX4hBQj7fxY3/330Un9fQqjcqXtGe+J7gvEkLREXemgGq8NmtCh/1UhQvdRlOwMX8ihEnzQrOGw/hHYJ48NRtNmx2gSNSShN+EiYeTUVj8G36lszZGnI/jfaxTaazjVkHEYQGELaelalzL+JTIo1KMtg+g++TD2XaehttQUk0OgojZY/LcrL8bGc1QnNc47/j5j5p2/shCU4UHQaL3oa5vBEm7yUG8YfVJpWKTjsmDKVfuLewPC9aXSLC6015dGTEIeSP5Dy/mhwMbVowXYEOSBQEQFRQGftOzz9nArWvOAUlnyZY0hSARERoVvFk+hi9sn8Zv/uBncNefX93kIOaxi4oE6YkDdOAC9gCkusEty4J1W6+DEC6pCv2NtuD/8rUn+G9/23N89+rklIeBP01TmcbzGosHL58E1/7YtPFOoEw6aR/6AR9+hNP3YjFJhJPj/N29vL6uPB3fYDPwHc4zkRMAkogahFBf8u6MIpQAXXhq/OzexS86ZR1oU8LgsRyvvnLrHWI6jss9LpcLejtQuIK4epG4FflcLtaFmmAOr4qkimckUAszlnXFzc0JNzcnMFf03q1TTzsAX59EphS9lIp1saKDdV2xLSvWzTon1rqB6wpyI8fhsBGNeCCqID0ANtDbHPPodChu4rwHIKyct0O6F9BDcxqao1QS7IxuX0HWtWJo6z0wGwZTPuWh6J4bpk4TEmnckUuBruZ7/nMCyl44Hs4hVQzw8iMeEeTneiQL3nQyiJ5YC3Dg6rvp+rOAyd5gmMH8nnBm1O+BW2Wafh8AhAm4JXnUhczk4WMmAYO84CLu8SM+fGAigAaxJV1gzxvOZN3SoAM4G4VJRiDNj4sEo8Z897lDUUxEmaT637/1vfiXv+Mr+Dd+6dP4w5/5IgAr/OjdBTTccYIH1yGCQ1zc7kQHIj9fMkI7fC+wva6h9QZV4Le/9hR/6d1X8MO3z/FrtzN68ySyJ5hFBLvvIb0LvrRv+LPvPcHve/1dvEoXCwrEArnYa+yxW5F2rVi8YAmwoE5VAfZAPSei+QwBUCTkmNHFONJmxByX+TPitQ+KiBH3wANYN5ofBqTNz6ZDGsjr9Bed3qD+Oszfgfl6DOTJ7YH0heV69Z5IJKeAiQVROqmoWs6cnaw2nPDHeKy+hgoBp2XB7c0Jt6cNt6cVN6cVt9uKm23BzWqiHbWUad3Bi2yLd3oo1oXLxS8kHU3zoaIzibIlZqMj1+IZHiUYKcTXXQivZKI4unhh+DHaNYWmuvsK0X2cyxBeyU5TkSSiKFB5OI/tv0EA/NDb9hKfJAJm2/8f+E/+XbkkIrZPWxIv1DH/bfnBMfspVmIXcnTiHjpYC0iLJac92cGVUUSxlIJWxQC0rhBhdCHcKWNvguf1AHZFa2I87Or3SQlNALQOJQapq+lLCBgGqIlRoMRO9uGHAV2sHaSPaSJIgwD9gjVWZAAd778u8HQgaf4OIAWYHstxOexeF1Hse8Oz5xc8f75jP7olRop1nmtWpYHOQCVkEXoUI4Bo2rnEBdss8I/ux0Fiby40FEV0RtC1v6macGgU/lzt26rTDuqhrY6AVlVQSkFzkDtA9Sh4yv1Rh62eCTZhi9OTC3xgOHH+hI7XxcszseOjQPFve3N+V4D6qqkCz8TmwRYAYsk7c3m6/zsvcvLbkD6lXRPShyUde1TuJ2qvExjoVGsx8E/cL/EkpqrgOC5oveGyXxDdOuIaDZjytS2CUY9u1xqAjK07i6e1+RjDRG4LERYvar66m24uIz6T1l13K4TABnil5F2hK3u3YwMzW5AFHtMxxRS1FKynDdu24XSzYj2dsJ428I5UmefKGZ8EAVBhZFn2eCa64404KgiDU+H/1NmYqxdEp29PLz7GZEYUAL7oZ8zveXiZfv9nIewoMqJR5Bm2jXxNhtjbLAD0gu1TuYofQijk4ZoeAgL+cN/chMNl4DbTI77rw4ocmc2vnf+m7i8rWZKNyIqVNZJaQVYUw3oQhXAYtkIzTtUUoEHiEOkgwrmoI2bgAFIfFo77HuFFal2soGGMpAO5XDyOfXgDh+9CRKBie1MA0ta19PGJTNkRfr8nMlUB7VfdHyS7QMjV3g94cQJFkQJl4qMyu9C2icOdthNubm5wujnh5nTCdtqwrWvGLFngEfsUYu81Ep3BBd6dxwUOZqEdm7uxBgE8WJPz78ZO/pCh8J+qSAayQBEcQp5M2PwZL3zctZs0nr5an9fvShwEenVtLzvPtMUvrGM/d4X5E/alE65gH5B5TKbJFmHCrwwcZ0fkRUzsWNpwXC3xZ+utq6DB8IjeNe1ebCXzUGRoFzHatGwFQO+acW4L8ZcQQU1DFx/qn84J0Lx84L/Fx8BU5zlw7S9FvE0eU6ctmfeNF2wHAvYa8cTDg2BJFgxbM39WROexFw5y2iws6uIc0idb0t3HiCYDDeTkB8Nspvf19gJ2RhqYjg6iqOpLr4Gnf6d/efWgfN14zn1htRElZf+3EdqjVqO6oMMSxMVovuECQGnhaXxX/iRc/T0T4S4YMHepEaEXhabUPX8az3U1UnJbOtbesC4rNhc0Pbp1kir39ykyqqomaN5c5NfXxWyTRlFrCPv4IP4yxck0DTg9nDiP7OjNRKHacaAdO9q+49h37JeLCZG2HeJFkv2wwu927GiHv26/4Hx/j+O44Dh2/5yWcRGLoi2LFQ67X10n8aIYlcgzmTCqCS0W9y3NP62TAOXw9QI4tnnhxAqfreQ2lgpATnxPn2q2Kb4hjGLFYR/n3I699MX7OARspjyQ/eEF/2+QjofbmKLzsKT0FTbt8VbEnzG3hr0GAEl8IGNPJ+GI23jOQnNDuy0J3hILn08oroc8BkvfFV4fETGgGgmqVEWFQHUBiNDZSbvmPFrM4BGquDi3FHWfn8a9xNwBGxnnz0Qxe5qxLAvubm5RmXFmxoUI+37BcQxB6cd0JPGNJLu9ntaK01KxrSYmtdbqjVMqTnXBtlVsy4pahu9mxYNW5EsgwMXLbe+K+W3kA6Lqm2+QEKOwoUSoAsDWhofuGDvq2KsxiVAHFhUFbS/Y1ul6abQh9+ecgOcFtoxrcfRYOyHGHYIRFvcMIi/8usVFeJqn8biSkTjcdrvsRYrzao5TXJ2vA1//GoqKk62JQui4OCIrLCHqXnATMRiZ0JbjB1ACxMXOg6Hh41vKdWe1WHNcvYC/NXRVrKeTYQ/98Pib0XpD2a04KYQIQADaAWndyE8A6HCBbjF7x3H9c1yp5mcAk8gQKK+fiEEFsAEOH8VL3h5ZXGb4KWGpFbIsKNsK3bt1z+OKaMAFKDQKl7yolGuFFh5za3KmouNoFtk9NP0PHMg5tzX8Qt8LY1bR8L2GwEv4RSNYIqr2KjZhDcKCaE/USSEc4tWTzQEN4WfxQhefj6ouelMZqiZ+pxqC9zHHKfd9rkNIfKy+mBwT9uFiO+rXbDGM+ahxLqCegngQ616p0kDeWMuKeK3AILYhgsc9qqH+AxJKQmUI9Y8CyJETib0k5v01P4Ov8KSXYTEP7fyIA3H194f4X/wW+E88pyomJxv3ZN5T0xeeRIfcL35Mh/QOUSNfR0EDHOczvNfuucZDnFDqOZOUKhcTnWlKYI8vqvuDtRRIXaC+50TnYzhubCciuSbt40yUpnXC0e5RaHEbx1CxAsiIdUlgRERiFFogMBHofnRQASoXF4K072UZc97iIN+27eIBJ+HlPHXfw2cmSDyvCoEVYF5NvKt/2xZhgp8qDEg1onuvkMIgFRSNGFGs8NPjzSKK0gXaO3ppqHXglqJqDdK0u7Buz31KecYy7VSK53ChAI4O0QPR6Kiyd9gtFa0UCBhFKkq3hh32Oi+EWBaAbW/VykMkjAFlS4yzdugh2OWCcxTVHDuOywVtv+C47Dg/f45jP2M/3+Nyfo79fA+Rw7h6xXyIyiU5f8ou/eEidioE6sBx7HZPyGxb4NqP7SjV/aLwGTkKSGxvaF3QqLgfURE5rSAwU2EXFaq55gpVVFpRqKLQAqYKuxEK1QbtFxNIiv2RK5isaWblBbWuWOoNlrJ69/QKa+0zSteYvJiPC1A4eYXAlJOCzdloHkKFjOTtNkS8Xr3D8nZQRe0F27oBgNvBDsAKrrVNObY+5rCio2tDcLZA0RN8CEnA32M4neVymToYg+gPLwb2So2Mi8DWLb51E5DtCm9eYaTs/Thj3y9ox4FPdMGbd3e4KPDJbzzFl8GWe1aCBIhBxe+Ji0/JIKSb4J3x11Ds/ppjVsC0gHkFqLgod8fveavibbyDIFovWFHJ8jzbtmBbFsNvuKBywVIWrIXRi4C1QFrH7sIBEluaKEhtDKsWrFrQqULLBl0a2rrh2XLCTbvDcRIchzdsamKiW04cfyxHFrqLibxbg2VxYn0fjUKAgeWF3Yb5lUc7Y28mNHU0F5nad7RsjGk+ThQ6wLt7pwhT2P2pqDoti7qGAwU/OQql3UfJuWifyeEF+twkImgxuxV19nYbozGgd+7270yccxojK6jxHKAX6WRjXc8BprgBkZP5IxcR5lCtWAce94FGMTHNvtcsZk0ea81xW/hzlEM157TsuYzwEE36Zvw0fLNIbcwFxSNPTynSQiAThyAvVqACIYE45y5zN+4HEzRjzYwBdOCwyewQ2zNi7M0nBZo5Ho7pF1R48U3OE/dD4p5RBO2cfsBjOj6477h7csKz+wNvfv0p3n+mkMPEy6UCy1rx6mtPsGwFYOByXMC14NW7V1F5tQLauuCd997Hz/zMz+AXf/GXcDnvIAhub0947ZXXcHO6wd3NDU6nDUu10h6GQPuBrofFXmI4+0oAKqNuFTsrzpcd+36giABsAl+1CarYYxeFFvNj+mlFc9GqcwXO7cBFGFxXcNRbMJK3TWqiqzfbAmoC1m7FIXDhqYNx6R2XV74DfH4fS18s7iLOxjHBiS5c0LjlOgPDu8JbQ071YsN+uOB/t6JlEas5qF7zACJ0MU4MCqFuhtepwJsDCPTYIaJgrBBVHIfnsV3oqm9PTAjy6TfATDiOgnWpkFLwpX/6X8ZnfuJfx8/90/8j/IY//6/g+fmCS+9Y6oK63eC9V78fv/jtvxG/6cv/AZ705yi1oa4LyrLgcLy41oLWDqxLtXhd1fmYiktrOBwnPp1WlGpiLMtacD5foCrYLxdcLhfUWrCdNhimKonPBs58EFDXipvTCUspOECosIJ64+f7WgsdFueex/p+LMcofwvs10OzzMGMvR02lJa+uIY5MCWzEgUJuvmL3zneMp7RB38dL4qGASGYySUaZA6uCqiiLCcs6439XDbn6JrAVGHzOaPI0IqsCBTCqYD9Xka8bXuvWk1OqTYPekdfFixic8J4Yep2k33vddwZsWcnOJqXN3N/w97NQ2nRcPxmA29cKYCFUKSi9sVzfSG25eKvNB4UdlDgifSC4j5hFOtDViyL+xgTRstc0NoFvV2S1zQ4aN24kRpN6P1eafBm1MWWg6Ngot2BFHHMKR93++G8SPfxZfItEit+MJ9Ux/Nh968zl4/jaOTNr1XBOgRQKim2SrhdGbdbwWkhVG4gF0oCdRNqdrFgaYZ9oZv9riEeC/O1u+m6OlzBOQ8VClDzuWrFfwoX1Cb3D+FzzKESu0/+fBTNMpuoUSFoJfSFrG7U7zJzAXseRsPzcPEDsM0Bi/KHzxfcIEVBB6MpQ+EFoGz1cVQqtC7AstpPtoXKqkBXKFd0agAaVLvFfxI1BQoibzKqJu61oJgQU2+QY0e73KNdnuM4P0d//hx63lG6gsV90C6ethWvwayg7pypEGDtHQ0NBwsqdRQ6wLyByYSyzee0u0HkujVsY0PaA1wCk0B8/YhXVBApqJgvT92wUlbLpyszSrc4w87JRM2KhBhEQWcXmyLFQeJf1XG40JRA0Yt6faEXQ0O9oa7FvFpi35Kx7z6iI2VzlZJjDcIkUvxgl/Vfx1yH+eXuR82xSf4v8OWbV8xvujyzXSrwRJ2iMNVce6KCJuIixCE2FefkeMKEH8dfMncpQ/CiT03g7AIiDhp2l1XBf/qP4tl/4w9j/ff/CJ7v5weDNWIXMy+e8/6bfwbMhK+F0FY0dQqOxmp8jbocVgDOBf3Jx/Hk/j2ray3FsQHHB7wOVtl3Zf8+W0sulDuNV1xUhDeUImAhFKe5ju13f12MQ95m+xxJ/nLEhC/OmsCHgxsjbstZDWdUEKAMlLBFMwdgnH+nbnithA1T55YLooeOcels34ggVyPYzSPsor7shL+lR+SPELEodIjyM7k4FOeiCsGxSuYb1+oN5soQmTbBqeqiU4ENUPp5s0DztXuo4a64vcTgoHtuJ9Zfd8yiS8Tp7ucocNx+Ep/9vt+FH/3p/zdOz9523MvnFxy6w8Bdju0V/PR3/Dh+zTf+Ab7z/S+i+v5IPN435/kocsoI7AVj7GwoczzjATW709Vreruhj/txGFbUGvY+i0iZqNTz7TV8/kd/Dz752T+D5WtfuBKZstq44CLD9huQa6gV1LrYd8H2M3ZMPITmTGhl8ddOzdqKCQGlaJHHSHbfgpctoxHGg7ggK098vdvfe2zlybeMP+WYKTJ6SQ5NzInpxbEdxNfOXITHeLz7/IJnh2BHRfcGUwpYLTID62oc33UtJgSE5nk/QLSZd6UW45M/LBS2moNShrCEvcccR6JumJqQ8RGIAY8tNIRUVBPbVjIRLBOHB2LFJBbn96jntk4Zt+HBWk4JQTfaUTkf7My50bo1MXQuSPD9Ej+0+Iv9b70B0g3HgADSgM4dIOMtmG/XPUXs5+DzLWpOkqONwEgxrWPyWLmY3+FiYMS2JwjH1Sk0BPC650ng98b/aqJy/nC/ldXfHZioj1c0KKdJiCR4jeqcFCqE6s2iTOSZbGyEwGI2NGsQncul0MynECuIxf3SuG/GgwNVMARcrCFQ78BxdFy0YRXGhgItjMIrtnXDqXxk6Y1ftaN57Va0OQrpGKQvFvbHxfh8/+MSDdG9wU3UjbhmS2LsAKz+iEbzVcB54F7rqpafIyJQrVA2mWuzVQ1NFHsX3F8a7s877u8vOJ937LPQVDfNhy7NnnOhKYVhJ7SsoLvX0d97C4djfj3z7zaXoklGCiyp8X/U/aMhuhNx2chBhB0lEJrnRQEfhxDLbQ3HUrEwOweY0Lig1QLplqcevh+BqovlZw34EMdjVVBVEzasi2EXXuAZGhDrto66rdjj2MacqzVBUyXz19hiuy7O6ZWW67+LYT4SsSSQ/kGJmpaosy0WG5fCYFQTNNbwezXXaIhLdSH7N8JGxY7nca3nUzj3RsdWoB4fArkjRCxz7SB9y49oGjt463Aj7DbE8YCIiYnJfI2lYNkWu4eLibqBDX8mhFieiVehd5w/82PA5YwPTq+iP/kO3Hz1pz3uCvFaF5l649N457f+d/D6f/hvo3zwtvs4ZtsCk7DRdkQjRaZG85NCbqEo8MH4u+kDFTgmlj7h+Aka+/SUFh5aT+5DAkgsbAg1uh/gfASlqPUYsYi9T1OYNUSviOL9o5kLJ/9vFpqy12VeKG5X7I/BSbpyqiT3iJFHst+FzOao4woWjtlncXEOgXjDLgm75zikqJ+D+NoIO6TuhyCvGYBLEziHCJpYZOCr5HGgTq+37W3k9sbf4ibYs8bB8XH5CHmyj2ztjJDgCsZkm9jLviOWtYrfCjLS01oq1roYAbhU1AAt4OCdb8ilBPHdTJ2BEEGU9mLLIXnok5OAYgGrsA++K/qFkxcdWKNoUVMUxXws9gt5Xm7wxbvvxqfPb+Ef3n43fuP7PzsKHb1IsrljbsCdbYTvv/ad+MT+NaxlQV1sQ1iXBWWtKMuCdixehDq6T1cu0FLwp955gt/96gf4v751h//xt7+LGmTg3DjVOnG6wSYEFmCTL4UUPvSga+DBHdWPFFlo+BnXqMTVO1/61fphf/iwr4kw0wNyevAtei3ogriHJhJmDqonM9TFpaQZCbM3HPuRghHwDeKxJZLXpUKk47js2C9nyHGAYYXlSozWdhxHPA703gAQSIxoFMW+zAMQO20nbNuGZan5muZJ0OjAUYiwcMG6LFciU9sSna43cN1AZQWKJ7j8VuWW5GAhQTKgMiJNRFUKRJCnQVayPb0rLKyQPgqRPWGSog8cRTIVLYL8Yo6tibG4sZj2kCDK5lnG/c5pJrieo/N8GERfe++gN6RBybc93AQ/+rzPb3hI3Phm77nadyeA9IXTyXA1f4/CPXXGk7q1UycbUzrX/jMDWnMyQwQpuqN2JznbvROIdg/YGfgo+8u34Li642FYY0xY/QbMwPe0OxGNYIvDUTKglNi73TkYDLjmRATHGk6W2aY/9OlfwB/7xe/GH/41X0rnv3XJouoQ7IgEU+GSoC6IHHATU9EuwM8/ZXzvrSVaj2MotltC2NbXf+H2bRAxulRQJTQR76pOKWJ3HA1NCH/u3Tv8jlef4y++/wS/99XL5FSFaEDzQrmKWi9m89YNfdugKqauy46OOdgaInBWVE4RLyDn5tWNsqBNUzQqblr8h4ZzFHsOyF8/uQkBlrykG8ILz4TZifh6fuHUlSPmTghImZL59Hnhcw5jPYF9vt490Rzr3woYZKzRyemL7w1SXAZzPAp/HtNRneCzLAW324bb2xvc3d3i9ta65d2cTjhtG9Z1wRLihTrGO4L3LJgTRYd6DKAwQnoE3UbW9igix0NiD48Hh5CSk/om4YXYfZNsPxXhBUHHRDfgzyP/DsWLe/bsvuR10eTWf5PjygzFO+fPuZ5n85cFuWAEN/4sWUAjQl5wrC7aKl5gzSOhrgqGdQ2gUo3UJQJiycQQk3rQyXmvKyvWWtGVsC27KXYXQWFLLEmcYQAysCKXHmCkg/6zPdX4r+pYS7FvhFP7j3CY72+fftWN/Wp9jxtIQBbiPJ4jAFVC6yY2tR8NRwvhTtt74zKqwITY2NYCPZj/V3uOwoRCWwgFdbdPzX1I88VNPMX3Idh7xbuERPI9O3GRg2bhwLjNzcQJNez7YT5pGQXQ86xPv53mO2XAINCvEtMvK2LO9FUA4xSJQILOCy/23Q+LEdwtIBclZLVgXKb5TeOj3B+OvR7Xe3u40Or2RRRgGarVYVfc1+DC0B7jG2JNbkM8tu29JxEtro/AV/vCXEA2wju9usAhEjTmBpHtz3OxWSQhpIsRy0N81P0YCtGD6MDoqpMxxo8sFMsjaYdUshP9si4OsHPiACGSFZ2PQUGmcIEcFVS2DvZ1CXJCdMFyUNbXJlc2Mb8aotRe1Kya6yfnWO5dc+Hw9bxVdYIBMN7rj1ib0WkgOyi7UJZ1UJcEKA3fGnNtFPDPq+d6HfUuaO2Y5sMgcUf39lmISsVjP0yF8RJC4iPRNeYu5d48F/3Geb9sHwjxqRwg35NeFE3A1ZjH99j7x1vNRlCK4vigW5GyP5gwjXsZYC17t0PfkyKEjl+vQk3EfuHX5WsSZD5oFBckKc27jES30kfoKl4fqrDYwJOac+GsCKILbPhCQfQIAoSZNtvTh2jbwEOWajjkEiQAJwKEaAaAtAvhZ3QXtqHJ72YuA4/LeRS+miZ+d73eJgmayW9zpBMv82VsOHRwRTXeESeaT37o8cKc9rfExQ7LN802itX3kvc+/JiwZ4j90pIlqkHGHUKNI5Hir405PmEa85gaAReZVD82E15JwiRMaErVSChdCbIfOLTF5WGk3V68ftUxhPHDl675OYcVOAXeoepCb+H0pztBLiIkL7mLj+OYkyIqMb0j8cBjTjn2Me9v6vOVrtgt4wjR6IjTZ2sQMUkWcaWvkSG+vy58Dvs5C0sNIcOR5Ex7oR0izYpRYB1IM40ddkI1yVcjVgp8jK9EjsfGOy6UebYDcb7I3y0UGXhb7N9GETZCsc0zI3iEyJoVPhnJNxpyrLW6AN6C1fcuS/rNFj7mbeyFiojzIi7L7nsTKVqVXVDERsGK5mYCqM2TDqCJidQuIli6YPNEc9OO9TIJmeaYHgBGZ6jZn4y9cAzxTD540c+ep1fcBXr493+M+O8/q0OaF1b2DolOiy4k1fYdR9sBTzb3NoSmjsMKwa34+z67MyaO1xoARilGFApfJUlsU+yq8bdSoMuCZVmxrttodJLEt5KxoLPFr/3w2Jgn/8dMXPiLnPM/yYpw+4cpmRuxiX/s7LfZz/iycYxi/YHdK4afqPLQ/8TV4+GM0fRXPdb07+fpPMf05BxfiwvjMxB8gPQFw9+yvyl6ELZicU22efYhS4jwo5ioiO97rIyCkvunEccEwjKJDjyM26MoBoMUXlwMCcVxE3Jy6RArUR24xrIsTk5zmpfaXnsce4piPZajT/cPsOFlZqyl4LQuOJ02bEvFWos9t1SsS8W2VJyWEBTwsS2j2BcS+SvKMY7yshCbsqll9lIRlNAyTTXKgl/DZsbYqZPtZhSpRFfglznmjhdc7ZUP/p6xPB7EPj7nUtBMJPMWREFcJAQuwOIYSMRmQujdhaacve50OwDAcy04o+IT1SIcWyoxRoGT27n1brhh7AkW+nOKZJALhpD7i2JOmwkfMLkQC66JVcRWQILIK9jvKiN/yFR8vRKqKLZNrSiy71jXBeczZ2MeACA+PJdI6BfGgQv23iFYwSQ4LtEVFb4/GOaTMeHUtXAuyEaue7+fXmAEVROZQMeNN+d4NIfa+qilAMuCJguaHFZYiDHdbftTqFousKBjKZs1fYjXTBGGYSljno7vM0KoTVcXvTDH30ST/d0axFMXm1IvQI4zUsBFcYbfEWfBvn45IsdJ3ZZDIAbTT49PVIFO5BQf9v3Thcfy+ozAautpkCt58r3ImyMVL74lD7dse7aFIYeR5pjDO4XZB7F9RTIWNeL7ICGF0KqXRCmbyJrCi6jUxXyDMubrPwOva1vZu6DWa0wl/C3FIDqbn+H3V5H7S66pySeJzwrMTOQaiwJwZWt0+inz/UAIT1mD54fCk6rF68CD92Li0Py4zJjZGvFYhexeqfN5zG4QiDq62xIrDrSikwKCeMFKUxOb7NrRqHlOxmxYLRVaxcD/LuBu5HsGewMRr3iKAN7zmdI7QAfacQZIULyYkQBArJiTxPKyrIxCFahAAwHSM462fdiKDyNkjqsPP61rYCBByE3UFQBsjecq81XhPlPMS9VBPA8bHTbcMKMCUaB4cRpaccwcKBpCxJF/spMX6dB2jVlGTNqPht4uOM6S9sCuxhZ1zFe7Hr9om7hQ2b0LqaB2AZ18XyHzEaiM9cNKABnHRdgLRKnDxDDIuBsq3q3aZ1Xv2PcDx8WEpfb9YsJSlwv65YJ2uaAdu8UfxwGVbkThWrEW8k7fZgdT1EsmYX/SXPfsPjIXRsGC+siKLQGPJWJeIxpb+D6uSCxZFRnfKAgqbMIYVGAF+IE2+p7F135b5lZge3Z3cdqwo1wWLOuGupxQyoJaVhAvAIrH5XCfLwi+DPJOq7VULC5OEQIPgV2R24syFaOBYAUcAosdyHkivpv2fkHbG6SEz9tNXEcNT0lhXc/7dG3oeji/x2xwCFSR4xJhR1L4twtIGqDdikaQjqoR24my2A0MvHm6xXccO1oXHK3jvF9wtIvx3toFRzuw75bffP0twdEUXxVAtfj9JCAEVMmbK1C19SNsxWniNm/KtVgzhgXEFcQLCq8obMT77kUIth/7vNcCUivkWZeKk3MYlrpgLQuWumEtKxhmh5Z1QdXNzPMRHeLJ90PzmUtdsbL5uZ0atrbh5rThDhua7jjvK86tYhcF9T4Egh7NURyHM1ekdbFiv248xeDKdsdx24Spigo6JO9xi2agznNs7YA0E3+BcwoDC6uluJihezSxJtK3nDAnJbB4YQcR6uwHhf9B5HiY5558SomTUzopOnm7TM9Ddd9TuufF4vxib7xCQifMxgpJR4Ma5sjnId8fncwTv3A+JCKG8/0Cgf8QMr/6cIZc5bfjuckH19ge3C+Nh4kLc1q0cBWgiYSP79LYMzQxEfUiVkMjLPYWVnQuUOoQGAe1AOhx7YgWFcNpIKjlXMwLihG174x8sxK4FNsGbDnZfSL3q6mkoNWw2er5o/AXaYZtHs3xpa+8ja/+0ufwzrv3+PJX34aoN3BmoFbCk7sNr712i3UrMMGgBet2sgIp7agL4dnz5/iZn/1ZfOHzXwC5WN5rn/wkntze4cmTJ3jlyRMUwrTW2PkEAtkbWjuw7xf0S4PsHegNRRXUG2S/QPYDrdseve8H5GjgJtCjm8imAOoY1lqAhRnb6YQ7WfFc1IrWiHO/FSVIs3ldi3oRcDWsnB0zd3zigzd+Lb7yI/8CfuBn/2947f0vgkFWa1CrYWK+7gr1bBCd+CVJ8lqOZpzJwK9NaOqweR2LwwXstasVXh2jKU7vO+Q4A6q+Bwr2dpgolSi6WuxGr3wclx/8nRAwlv/4z0Cffh2EHYs3A/jYv/cH8fnf87/Er/nTfwBPXVjFxqFCX7vFVz/2I/jkVz+Lv/fkh/FDX/zLqNX5BFGkXoBaCi73ZxNEKAXkxT+VKggLDnic5HvGUitO22Z7z7KAQTifL1i3BaXbPstlNG9i5uSknE4nfOyN1/Dq176Bd+8FlQhrKSitebzqHCpxgR1i0CMruCw0OKiWRyKLqUUHtqU9C4Dm/XNgGjOWnH8dj2lvGVwGOAbGE3RNIO8qRM6jIiKsmwlGKTlP0vH/wB2ZGFQWcD2ByoqyrKgpNLUaZx5smILmbpjxmuEi4zyVAI2m0sJgLbDC5AoRQXURJGWyfSCEQ4jNnqpx/FktngnBnYjPCWp+pUrGc1d4p8c1aXcCVeCxX3NdUFQtHm4ex5F/E42cswEDML4NuZ0Qj9oEgFarISoryqJYwBAXpwFbU+suCnQT8AmcCCqQTnZ9abZsHogLRQuAAjF8391QUXGxOxMhEOdwmIuqHo87hhuDoVGcN00rOA99st1KZfz+2A6/ZnL/ohRrsrMuC9Zq2P1SCJVg+dMrubL5CAGqmBUxr5w3DBcMDiwByLxSDI7VDCGb5/kJgoKf4xySbAAZ/oHC76n5YMb/G4yUEgA3VxAxBCY6RSAUlBTTJlW8ya/g2/UZKo26ueRoMid3mUpxHLGYrazGIyvRfEQA6SagYI1EC4DD8BFVdAqx2+DSiOeA2a4j/O1uuckQTMziyUA4widT59JqFCPHmrC6LGvWRSgXQl0JS6+GD7mgV4Byg20yfL3ZCWX3uSnU+sgpMez4ExTCVsisYkXPvRCKsDU9YLGYjWztHV63F6InjQitMBYmLAWAEtQ5PuY7Wl2BHIrD8WHLo0w41aNbaC/GQPnrh51q+sRhSzAEpuLu6MRzIEBvX0P7kd8BnJ9h/dm/Bj0/tekSjeLcj7OvHSJTRzQMw8DcYzjDPgSeHqc2x10RYzjrI/dD3wU8HrTfxJsq4N//o7j40CgGb9a4Zr7+ddhCN8MWs9UQl7LazmVdrCnYMvhlx7f/AN76zt+K7/niT+CVp28bf6NULLX4vmZ+mBQryJ6FfsddGyIMQc8fd1Icu/UYU0e+Idll9OCO24L1a3Rund9XRdipHOWrOXA1e9jsP9yXs2VIECagpzzluA/MztGZ8vjiIkGeT4ld2sSmxPMVsRk/nKyxSzyeI4Ytxjz5QHPuJxrhOG5ayeLdyiEyxVcCZikyVYpxgENsKvGBGVfQEYdnzhGTeIfFW6ApFlYdtXwysAuHdvH5H/59+NTf+3/ip37gd+L7//q/jRDVSCFECpFus4+/8J2/Ga9//fP4/Bvfi+29r+LJ5WmKYeVcDFs3jZPxwEIkFeP1ZPl2W3uS+0Z+DJn96SrYW8feGo7WTKDc47fW7OeXf/3vwMd+7q/gzR/8Z/Ftb/6b6EeIUAX+5HhFbDzs56QVBfDifFuTxqfyBsB5n0ZD4OBqB+80+aVlrn8IvgaZaJuMe4jIfSfm4XGB812yViL4sHF+hHx/LhsMvFvjNZjijul3fVxL6oXjvhEOFItBspGHxeelMMoSIm0EQofqbtcuDcoFKl43CYsJbP6x+/I293tXHE0AWPwS+L7tY2QCY8woXBE7YmJFwBXXPP5toVtgjNFABphFzDX4VZj24BSmGs8l7qYjD9XF5/luPhrBYnOl5r4VXCzQEM0Cw+6JxHPD5rlCOYVe3bXyWsWoBzanyjBVj6vI1kRgEupxljkEhvQhRonUG6EwDIv3/D1idx/2zsYBGS8hxKYyORLjMtUFuW8S/njE1Laufe8gExJhttCVyOJRgQliFxqNIioLCA3qHGJChyV7Io5Uv2+AqY1y4viq1kjwEMPE6FCUrlhQcOIVujGYrab+sR0tGh45hhH1R5ges3Ba8BpmruncqLywNVEtLk7DsHgDNPlysZZ8fCPm0mJxt4Xatpcfori0jsvecb4cOF8O3J93nC8H9ovxwqVNDYE815DipFCgLqjf/aOov+6fwvE3/hT2t79kODNNGAuH/VbXerH9Yf2uX4f7L302dSgY5HWPPNUQuAySesaaGCqMg615YyET9iUViDc8CnsqpUB6AaSDdAj21FJQ1PceIq8V4ulnQRHBsixYthOUGGVZQAwspVj+aVlQI39IvkZguEz4EqJqnN/ecYg/ekPzHM0Yz+BYTSI6wLDdIcrHZKKZi9nSCsMeOfe+WKuSa9Wi/GL5WnYxZDhWQuw8fhq1qlFbKCXr5WMPe5TAR9jv5GzaulKvh088ye1UKWwiU4uJKS6f+n6UD97MektRi6PUOcIpNvX3/z/Yf/S/hPLWF3B84SdxIPLe/oDVjV7+2X8B23/47+Abv+mfx/Zn/3iuv5zH8Xj1k+DjgnJ5BmZy4VznElPoiJhdqIWxhF8rXh9dLR4wgduoNTMb+87Nt+HV52+aBSBkjG9ou1VveLmg7/OjAmbGa4Z9BdKy2NcN/8vnZ/hY1sDPcsVEbtuvhKb8i8lmYtZj0ouRiC2FSaDefWtEAxq/Nlsb9iBRn8PFeW5iQm+iuQ8Yd8vEp0KAikQMO+nGbXKHx4RYNUbEMWF13CR8ac0sRv43Yq3M8U0R5FXfngiI4/75mP5yx68Y5bcPdyc2AnEHXeJGslfKFdBQcmYj/S5sE3At0f3JOyynsXKVzwwp3UEBJRCQCqIBNiCK/CK4GZtwkGuDT5dFsWpkCAaZI9/sZt3ogX/y/ufxszefwm97+rPQymlourkcHqDZom5Hw5tPvgtfuP1efN/lwHd+48sG/tVRTFpW6whaFgcpXMhn8df9i3cX/Ml3vx3/3dffRLsAWm0RUxa3TDE3kGrQGXirERHDVZtRBktGqxcV0ZgrOXPigz/s33jhM+e//GNt5dNX6cuenA+d/qEyqU0Oon0kR604sUG9oEPD0ciCWNvsU8XysRwq6PuBy+WM1g8QgKUuYGbsreF8f4/nz57jcr6gu5hAl6Fmq7DE4lILtnXFdjrhtJ1Qa0XvgmM/0I7DNjAyIndhxsqErS7Y1g3rtmJbFyxZjOkdWDk2HNvQrIOUkce7KprfExAQeSoTMDLwKEVxokBQFZV95SpBexD7jnGfIgHnNz+UooeCdADvQ1W11ALSCqoViI4mgIMxEaDOBbe5K+evNN6C9Ipj5eS/r99+/ZziI+y90zuG6EXOf7MQ42c65Lj6OQyrTsHrvH6GANgo3tX8CZkC34jl3BkSdacynEsXmbBOg9bpKX4PkSlRsa6qfsaPT5wDiA113sMkjDlgRScU42hBcRLXETaQRsAFckGccH4CGNDpvtrzEaiF4/L7P/UVA8szMPKC+j4KaQFNEUZ1GwQnvFo3rY6fen/BX3qr4J/5NsH3bw29OcDr5K5j33HsVjRUa0W5rSAu1qnrMMAtVN7FiWz/rde+hj/7wRv4va993Z5PgrsH9SLZ8WvfyYB2F8BTESybrUsqlkCPBDeglmQMkZ68D+LrlALtyJ8BQlytM/9VfJ2knZyM3Fg6U2FD/G02avN6pQdrcTqVcS+DdIKrIun4+jF/1IEYXO1lOiaEXfP0iEL6F4hdIE+u+9yLRORH2Wx+lY91XVFrwc3titsnt7h7coe7uzvc3d3i5uYG27ZhW03UMPw/GoOUYAW7mGBUJ9MUBAEDdL92emwTT3/UQQAjGjkg4v8b4yy+tY9iWziQEJ2X0rnG2AcQP6e1msfVdNUHz+k0//TBO+Nu02RLctL69xP0+k3+zrFPze+JfzATRNjtuSVfE1sKbUBVABWlOJlGLPjprJACSCdIIdR4VGBpQK+MCsEK65i7LRespePCzQhNCrDoAFYA8yWgWVQU9icMXAzXUPGl3L8VeKmdzdkwLeOXrZAkZmLcS8WUFJvHluiln/GtPWx0LCZVT+qbj9ec9Aa1FKzCSbO4Ktfwj/GdlWNmFbsvohBpsEbIkZAyIaGePpq/34P3AYbbGq7RBQjkqvec6wX+meRiwiEkQGQE7xKECl93uWcCGJs8pT9/dX9o7O8pxhMzYxZFYKR4iH385EPFv2OyTUc8Z7732Lvjy4mtU4KMlTrmlI9b2AlKGxddmhTSdIhUur9gLoONoXUEYO/CMPl88X5DSK3wOUFhAyoDSmC/97lN+PyAqsfgTnJOgQePlwIcm+2Wiz5ENxkThzCfH56AuRI487g8QM5IjD42W5ZiYCGMG4C0+0CtN19zzQqg2QBWddB2P3YT9vUxsESyA7+rdcQqi3c1jq44JbrDW1FZku+CXJ3+Z5Bl+Xp+4zoGyDkNOJA+EgMf9oj7Y6Q3mnAT2P2czdxkF8MWzyIBc/eVSAJgWmcjeSZJ/Ei7rtN98MfDwnf2cySiJMCKSNqUh8IG8xFi48g9f1r/D93Nedw9MSKzbSXHoWCCs0pWJB3hcCbTHySja62ovZsomSjExQomVwFxAyOJ6QH2tO+YIIHtucjNpXcDU217uybGPrYj3ZxEjG0PQwiJaxBTggClo9sBQmTK/w3HN8qwQYsLwAc5oPLUhQRA3qgrP92Ljbr7f6WCk/Ae4i0YcWDsYRNI/VCUItZoJGvz9uZ9nX/3cwkRK0XeW7e4+ZKPNMbTHB6+MyOrknM07HrTF3v4+W5f82yn9Z7rFHq1bnONzZ/h30GxQMaPq/W61IK+VJzWFXLqNopMWZSiat3bugK7KmraKniSSqCkLmo+hjXuxvAm7BD14t3oktNCaGqyA2SJRDCDRWNQkKrHj+zI4h+/D6Q0xhy+5+ZISOJfMb/nEcpYfCJ+xvq9ij38mP/GNPyB2CtFLQYjj7VCXKo58XUITQVGoAPzjWYDiMp63zsguZYp/KQH98Vm/9RvNu0Ycj3bvsKIbi4hTHvVqclG2MfVx8R97xBvj/1M4hpJXVfayP4MoBKwMGELDNfzBVFkkHW8CovNurrYVmwMo5CtTPmPEAYSteICI6pHsnIgkElEU0WRgqKCqopFPDENs3nLcs7E+iDAnUFn4GgtOyVaIar5rtHZ6Uo4POK9Xza6MrzFfFZ+aJofzTHEafx3XFM1UvDOADSIFzG1fcflcsblcsHlcn4BY+0iOfdKYdS6uGDiYkXMHr+I6tQIwAVXmL2b1RCBYMfGTdxDAenWuTTOm+EJZ1z5mWEvmIMIOHC18fYXE5CBa80FSrPQd4zdw/dYwcjwaeec38vGfpyBExN4IjwhyCNGFuKIcCZRitz9GN64zhPDQYx64EPGtRjR395MTCmMOQvlDbEr38fCjrhgraoJ4cSakOICxgrz4YD0c2P/yQI670QVvye+NcdX6mh25mDGZ6gTVsQFOJdacXju57G5jNJ7FhcDfg8KY10qbtYVt6cV27IYNsWEpTKqP0plLNXGqq6r54m8aJcBojoEKigw/oKkcRMgyk54IHQdJLexA7vPTch7HuuwEHnnqmFTSK+Fc+N4uCsGXvWCD6/dCdrdCHoZ04jbUjszUifce5SiHlMqYEUsxE7esRjlUKfVidoYiRWenlHw9/Y7vKMVv+V0j0/WDniMkTyHFJ0jMFWzNGTj9Q/3iu+/yTJijCIwK5A1ktEgbJlYerdiMlInb42cr0oQKdixEhdHJyv0t+9QFxYoKL2g98Xv79mwKrI1HJ+xq+LcGhY2W0mFQBVo6oKmAutK7WR6C+44/dmrAkREWGM+CXtev3iX+tt1xRuvvPKPviD+MziIrWiulgLUBdoqtFQTa4HnbhD7oRXjlh4CFeJdKUfuLwQybE9/cUOJuW6YinWiLwVA4vb2Io08pobYxRBPH2GbzemxV4dd4TzfmEckkcUOn9J/kph/5vEDFc+7dSukMrvBGYuLAtFEJayTzSf77lKKY1+2X7AXSUprGVPA/SVVMlK5s8ZFpxgJQ7hGtANCYOpXzbVImgl9qa2fKNkPIqX5sQVKBULdx9SxWBn7XoorT7Y87lxeE3A15+eYl4g8v6wvvG7MHVz9O7H3mBcRehIlrtm157/FCzvzd9HEMYNMab/RVaOyx3Bc40nh0hvfKeLoKMqzeUjo1DIeS/sBpI0hMs4VSjF/gc3eoVZo6+jFRIrIi0/sSCcj43QpMIJct7w/OclTwRASmHiMWZLqPkt0cbWuIrYu7OMEKs56tyt/MUac8JP4i40BPNdguFflyNtpFliEpUmyeuAHjl0wk4t3AtACgWJZqhdtRBzpogERX2pwJLzBYHPBmdbRG6MpeXH12WwBJoxDvUjYr4u9mDN4SF0V/SjQfoBaN0K6x3NUjcdS2UiN5r/Z/3p3v1UUaJKYRxMxfEIli2iO4xgiU5eLi03tkONwXo4JCkXRP4pjGE6sFulQdES/MHWfmeC4GplQSxQHMQD05s3vHtcRPliHdyrmIXjTG6MTQ7zonGAFCQXFuhVTBfMKpgVIH5B8Xx/FB6INMfns+8hI4wAIK7icsKw3WJYVpW5gXiwfg4poCINY144vcyn4xdLxCS54jcrkq4dPMWJoYkIpCi7G0XhXd3zAO759cW+PCF3IMANpILX5ZPulMRs7ul+H5Q1l4qKIdHQ05/gYt06lwSSpQ6TFMTEzY7Yv9wMqLQtAAI9hiiEu3THvL9+9jr9WgN+07/iOt7+Kfb/gmcfDe9stRpaOJkDrwH50HM15mUJeEGD215o4WDOQwgtKWUGogJrQNiEaL7hQS11Q64riPLLCC4rHx8mB8rVLjjUG5sLkYkc+Vy6vP8ErfMIbOGFdblzQw/zOSqvF2xr+ucV1XTpQVxQoiihYLuClYt0WnFBx6QU3e8V9Kzg3wrm/LPr91h5W7OSYXbMcdDTEPPqO3poLSJl49nHsJuDSm+1t2r1hi/GMooFhb/a5voEa5g+MQko1Yb1stDKblAfnGB6M2Skd+5aDYBLxGrxQCYpOth+qxxGtNxceuybu9wmbYPcZlYO9HHtkFDuNJkrXD0rOS/KgIz/tsdpALAOviJ0ggVfz+9LH1hfGYR4Pefj3xHknDiOR+6a+sB+83mLf4dvrcCcQtj5wFHbhlEqKzgwpBSwC5j54OmRCs0D4g5GDtQ8lGIaYF6wxH4Z/GsVmBNv30Y3sXwCglIHfQ5FFY7D1bA4/vziBvsXHO++d8ef+wk/ga2++h+7is3UhEAS1Km7vKm5uK5aVXXTQ8BuBCdkdXfBLv/RLeOedd73wqOCN19/Ax15/A1sI0RPAKjj6gX64uJsI+n7Bfjmj7QeOfcd+HN681/bBy/mC/f6MiwvjH63la8KO9O58CTF8oVQTR7TCRcGiguI+pIj43AewVfTXvxMMwfb8a7aO0hdJc4yv/tB/DZ/+3J/D5z/zz+BHfvLfcm6/zYMsjC4FlRjfeOW7cHM8w83xDMzOANOOo4kVIfsab0fkIFpiPIFtN88LdRG0vSXnprcdogeAKN4S2zesMsKKuzogr30ajU/QduD+9e8Bvf2WFfEUMWGVc0P9E38Av6iK4lhdrcXqB55esD3/d/Gl7/1t+NTf/hP4kosebKs3cFxc1JgJp23B7e0Jp21xm0dYywIqOuoCKPaZkT/oreH+fA9lYNsXb7RVRv6jlFF0VxinmxM+9omP4+Nvv4unv/ROCuUxvOAw8hLNhRFKBddHJrBNEdUAVxtL/t39mCgm8idTcuQqpr1+a+zVITI5duj4ydPvti4MVgp7YfyQZd1QqxVFcaHEuDN2pgLiBcwriCvA1RpEF+P8Ks1Fz1ZMaTu+7++xrcYFEBnPwXN2RQsY1eNsNbyOyDCfVpzHIEAxDr461hANoQMTmXNtcf4xmpgwh3mgbOjjvJD+NlUrZjRBGNuDVAxLdLQkcfDwFZTNQCsHR6vYfkcuDlQM5ylqflkXBXcB9yiatgZy8MJpdyMM+5VhtzkE1Ak5nwgmwsUxJo4dgQeXJXwcYCpqi2LEHDi3V/6KmYMWmc0HKYtHcWRuFSZeUeoopty21YRcqsXBEWfZ+158JO6X04LHPY6YPMYHvk405gH72jX8QGAxgq2hOok6lQQWzJUwfID9fhMMaxEidN8fxXG2AoaSiR0qAnsb2M1X6FX8rfpr8EP9Tfz6/iZCot9ET32NJS5oAhWGfVp+mclzdWDDuwujdC/0ZEZlE1E6mvGBWlPXyWuQZrEwPEaD+9vqgA4XAlUGVS/xVYIpUVqdo0NU7vcNO2rFrM6bOQh0MGpfsYoJO5Cof46vPcIQ3QmfdloDJk4pydkMN9RE192PZcNG7GNtXtXCQC3gJfDPEPDRFEqHMhoUTRXbWnDoMrAQ8ia5iTm23GfDV5x908d0zM0XzUkaXHL/NUG2eT15JBWeO0ZBKRDxUxZWKNC/7XtMeO/2Vcgb3wH+6udszrowZ2x9gDWJCZ+oi+VSEhuYty7CaMYQsQ7B16nvB24/2KB1t33xGRF3RFxkP7Mhq59fv6qHgsfnzv2JJu2K9L3qUrHshwtNDVGgWhm8rHj/N/wGvPb5v4lf+MQP49Nv/llsy4J1cZGpZbHfq4nqLZ635Rxzz43EhWiM97CTwS0gNaEM9mscnxH2M2JGyjEVDP5P7I0vciJ9Yuh0Chn/xRdQ+gIAWx45d+IybiNx4m3ia0ZbB6O76A6P2DDiVXX8O16fsR+gD2PPR3CUeb7R4AQFR3jm0yL2anL81IvxF58P9epRUBbjBEdj9BSZAtwiwOZy1L+qZo205mvGGhSJ3KWiRUwmYhjaVAP4+l/41/DF3/4v4ZN/8V/Du3A8cuI/RYPU6v78t//MX8ZXft1/EZ/6+Z+APv8GnjsPIe+tn6cBEzZ9OHB54hdrv4nBHEK/frUTviIIkQwTpN+74UaHc2gNAxccXfCdf+tP4ss/9vvwyb/6f0K/PPe/Wd2cNTvR5EKBADz5GGi9QXn7yyYcGWsFgDUbLiZ0vFTwZ34D6pufs/VfqsdbwdsutrZLCBTZerQ6ZOS+Evo54X1z2FChFBmIOlrpo4Y2haYweHvq8yt5fpjW3eT/zPthfj0wBAUe2ZFtIyMX6UlZApxLbThC8N2gag38lFBRUaq6UGzYNc8Ruj3oYsKcZrMELXSa2HglpRagInNu2QTdYxlVF6JUdbFRqyXtIqDePRcOOFN1YFpqdR4m/gQE74I5BLdpqkuZbJcIFIE1WG5q1CxZPTZEIM3jChYImvPJJPPvZkfU/yEYOQ1yfp7b2Pzs8JMdv4YDNIp8JhurTfuik/Z8bPy1PvGzYajPZw1uH13n9cJ2xYcHh4Wcu5M1e45BZvPB+fXOzy9kOFenbnbT9+RazL5XFZRmljY55Y4/a+YDrAaHxTBpOK9GYP4kyMSmIALWjoUbTmvHpSkOMcHXx3aIuPhs+Hy5R1DuE8O2Dzv3sJ4kc1jssZ3nC1klPDnfm2x/JZ2Eq4igTIa7q+LogkvvOLeG+6PjvB847w373nC5HLj4v4+joR19NAUK/qlGXO6eRD1h/b7fisvP/23w9/829F/6PMhFHHPvZsNoYj8QZeA7fwR3v+m/Cvob/3c8/9zfRDR2VFGXwlFrEpRrBLmGCGo5ESa0WnDUilI87hFrMqvMII/pCgGNGa0V9NpHvgGGY/odAKb7AWJQsdoiBaHUCi7us4YYojePz3Xha8UE9g2j3A/LHd8L8I31Ddw9/4pxSeE5VK//Cy68+fjOLwmnMXxuAmpfUHvH0gWlCkrpGYNd1TzPth7ugoZfyTYH2e108CXMv/BY32O/uDi9wucezzHOG1fXbIBE5Nj94VzfxbGR7Xt/A5bf/M8BP/83oL/4M+jdsHVq3vjKm2JLb4ZJ/eSfR4PiIIVAMoc58lsE/Mk/jP57/iDkT/2vcATXkSljcVKA3vh26Pf+OOr9+6g/9zfB90+H0FQhLFx8nZvA81IKup+3RDESmaaC5bY950LA208+jZ//xG/Ep9/5aXznez9vMZDaOGDa8wcqO6E+L4yl7/b+JDn2xcUFUsvEN3ZbYOdhWA+z5Yiv5nBExESAi1NGTHQ9uyaui/NJQArSbnZPLBNlXAv3ydwZS74VWZ21YRMCawQnKTTFHq+S2zfSDmI2/EYFcnRYF8hxZmHfzUSZwxc8rBcOHeel03N+eW7KPZ6PGEdt7f1yx0cXmnqZYUwAz9WZ2SeS2OYwhKauQa+lFKye6Kq1+kTlFIryD7/+egRlf3a23N2JxIeDtRSFD1ksGYSQ3MbSq2YiA5vbUCG71R3ffnweui35Xb0zpDO6MNrBOA4FtIMEeOvj34/v/Prn8JXXP4OPf+1zkLP6onLBq6WAl+qFpRtOpxNuthNWF1rYlhW/tzxHu18AV7CDCwwVvw5Nh88DEsCCVwcUJg8A14VO033za47kEq5uqb703y9OIfqQ5/8Rjhc+xDc30NUfRxFNBBn2U92Ry8DLwV8TNbLiI3Wi3Oh4JF7EIY+OeGjEsN3EoGCCN7VW7L3j/v4ez549w/Nnz3C5XEz4pVkS1K6DsCxWfLLWBafFwPrKBPVi6ONoWchfOIhLhGUxYn7Mx1oXK3pmK8wgMgdb9TDSB3k3RXJgXQX/UF/D6/IMr9BlWFMxZ4xELUDuQRAOAxGOWIeiQeSAagOje8GMkWeDRNmJ0KYi3VIsEbAsm5GKagXJAtEFrB3qxPEo/AZga5zNNbTjwb4W4Nq0T+hA3HLPyZfEj2njDnD0ox+hFmzvG++k6bnx77nYTAGEWc7rGywP6PS/dGjiEY5ZH4CGRY19Em1rTl6Ogj4jAEmIuHm3wiCAkxf/mkq9zZFHeeQ9otw3hGb7AwTAFaM4vBoMYIzYCinogXCCaoJJeXcoiEfxlBr5Qj2YSEKbfR8BriJfUNkSytmNHkYSZCcE/vW3Gb/ljYa//hbwmW8/8jxaF1zOF5zPZxz7jjf1Fm/cVJzEiBKXy4F2dAvUWkvxyMoFpXT87ts3cbk4QKGSoKMlJ4zo9w/7Hb5dn+Km3aNPnQdFNyzbChIPQEtxArR3Bw0F7HFDMK48kr+AI0QJkM/3x1GJ8KTs7zHn4qkYft+W4mP0KgVyPS2GS0tXf40wOW3pC2+enhyZnCtzfGVpAxxRTPedkInx2elzpzR8nFRQfoRr7Pb2BstScXO74fbuFre3t7i5OQ2BqcWEDANkJmYHVn19URmAnu/3KVbiczBubRLQFBl1XBUAZlJkBLcArux/7pASBLUg0zhwlDu/fWMWZPmekcDG1TEFPjkHyH3RMB7zpBlXNP6N6d+xJmh6xTQ/PXiK6WlfG6/05DdMkMI6HI1kE5F15BJ4x3pCBrzwBEZvDCkEKabSrdW6kvcOtMXeKzAQYq2Li6nuKMxolunAUMOPy1bzv601EiyBjiyqhAO3YzTnsf0mNlan8XjJax8m2OLepYgJTcG2J9oem0iHiRFaYNpVncB7YN/Dj2y+FVohHnUrlIsCLaCgRqcUYlTytRLJjSDSuXhQi6JZMWKwuGJzFiJziOQsufai028mz2iUYYt0SHMBGjUiKFvmNG1sEkJ1zENxgCsCY2CsxWvfyS2JjD0hE+g+71kY1tjB59j082WP8J2SVCs9k7dzwXWMyVUyV4e9C/A+zifslKpmfGLdnuLcbc8v1RNxsMRLYT+lUvIr1MW7susTFCBGqepFtAEUzOsgfF24/bMYXsiuobU+Pj9AfP/89M+ddDqPQ4iNxP4cheNzZ54QEQwRxcd0dE8UsZCJgIaoqhfj7F1xOXYc7YCqZvciUcWxH+Z3Ne+MEXGLi95EV6x1Xa5FcLzYiF01xzpMlowrZuGasUaSgmDzM/Ys+2Yj06phBlGM/mFk97FOxkGefLqKfwhXc5xUHFQDQuBp3jPn9XO9/84YxQiq7PqQ6/rhzHgoLADAgPQPiesfChnMvz/c223PuX5tnNMgQM3XoYADm+o2PmkRsWeQnR9rQWETfF0XcdKNA/hq/geLZHimbhpzH4+9YhouwAvA2Ir+StE8L3HV/FirDy3pt/zwmMNsriXprEhWrbDX/QIjLpN1S6DJn8c0N+J9agLXTN6ld91w2k7Y1tVENziIg7GX+35LtkdZ13AjzYgnYkDs5+frBOwk4BBDHOIbA/2mq3WbPiMPQFsxCkWza5U/worNgrmJdQI+Rx/aLhsIiphpciOJyUgRxEMkWgw/iu+DX8McC0niivHnSPW6IL7IS9bobLuGHwWwJQS7723+plKHbxDnrS7YVtgwY7oFai3YthXbZTPRCPcPmnYcvePUBBcRsBhxgxRANUKpiTpce9bhb87nb76zzbvoaN36ChEB14pCFcRWU6vuhw2iN66E+B7NoQ9+vuwgPPCF5pGKOFNHWOExeIzd8MHmmTDiYJqfE3KR5m4ETnEag8SYW0FaCE2FAH3MzRBusILZDhM1AkDuF0dcCLzgV8xrspAlySI5zk5oGb/b/DPxJhod6mZ/Jfbk3F/tPLcf/HFcfuqv5jqLBGgUhEdOxM7BO2t58w3rgmlxVCaKiaaYTLMIehZfDIHXIaxs9y7EFlQjYeZ7DyaBKSeAsnqySwSsglqs2EDJfmZBKSYbKuqC8/Mehtx3yO3fbPq1D5LONzsm1zln1KM8Ys3MP+MxrxPHB6VbfHUcO47dRKYu5zMQBYx9kCfIC06WaoT8dV2xLOYrEiye6lFk7sVRkoXCITJJ2JnxbrnBp/GBEWpc9IJhMQHIOynViloBVuvUNoR3RlyGwFzS2xn2LnxJG5YRK4jIFTYz3/oRKnk8DiCw0hxejCEd8294AhTd+NwGBr4RNo55rMEg6j70A80skYvJGIkkuniN87T3DEK3rSsmK6C2js4hrtGGyFR8BwgU4mtzXFkMB2M1wqVoAaVo3rUfQVlYPRE243rSB4k743F9+gROvGKC5r0QtGVBax6zl19xL6L/zI8QKo7xsjWxYF0q1qViWyrWxfNX5AVuk0jbspqQFi8riIsV/olicVJhzJn0XWKs3Wdj9rwSACNWDyKWnyGSrEXXcx9EKDz7WeHHK1pvV/d1zN2IOQSkM9ZrBfNJJlW3qemHhPfo86oH+cbJ+ghMEGARWPdzvzRSCDO6GXUQHDsE8H5nvN0Yd9zwxQvjNb24726OT3dyRMRLp9W6N4oCP3le8YW9YqeGH7ptfv2Gr9IkdErCgzSLBgVQaPElx0iSk2NScKFUJRmiRj7KhR1bKAXUCkqvJoCgyHrBIIXDH4d0XI4DR+sgMrJOUUZnxUEdh3qs4OdINIR3VOxe5i32+yBekMbknf1AqAS8cnvCt73+2j/eovj/81FKNcyHrIh0qRW8ruBasVDxONfGxoQ2gng2xECJ6EpUKtbAjJ3PG/p1fmfy2uI17m+a6EwHq8/jsEGRk7nCF/iF72KaPp9hec2IO9yUqGWhJ6J2FPhZ1KNMiW2peNd7tT1G/XMiH2jjWayg0deJFYkFPuaCWRLrM8ThvOBMQzjLhOrCXtsYexmBdhP/6AfQF6sCyzHRTMmHiIkVurmtCjkmMUKa2eW8aw9sSOyLw2bGfVY8vIcYZvnB8RAbGq+f7oPfeouPOxTwQgkXQBGC9aONsOV6F77GbgcZ+rEccT8M9NapaYF45ZTm68KWdx+H8J0iRxYing3AAcIROWOyQuVSK0ptkF4MGxY1bgxJxqoamEHgDbAYS5oJ0UTOVrsYUTpsIxfUMmweusdBMuYy5dpFYh8v4nH2M4Qyjd4jYx/pAkIZxLa0ZXpVsCHpf3I2NwgbBlhxUDQ6sXXro8wej8Z9AKH7+xQwLMoJndIapB9OzPZzkYHZ5LLxmFB1CPZYYYLtl1bs6PnEdqCsK3hZEMKPdi/MSSAxYbUQTGpNsLeG/dhxXHYTcpHuuRnL3bTWsou7uIgLq5+vBmZj86+rC9x32/fFczHsI0Dk3YnJ4la2hWl7S7e50h4ZpwowDN/cGOvc3V0gtAsZwZoFvQBWLFBReMXCFZUqKq/gsrhv5A/PxZidsMJaI7R7/hoMoFoDPCpYlhO27YRtvUGt3hSPF5Sy+D22o1B0Tre5+6W64z9ZdrwBwW/TFa/FegN8ulLm90AmDNab4l0c+GvyPp7qgd/Kt/gUK1A6mKwJmMA4Gl0agA6mBqUGlcP8InQAxpnr3nzMmmVYt3fj/+zeUKxNcdaUg4hwxUYITQMbcH+XfH3DpuLfuTnh0+++j7+5bvixX/w57Jd7PL9cTHjZ/bCjd3QwujK6Eo6m2L3bdffiacCETZkrajHxqFI2F49awTd3kE99F26/8haYGAsx1ro6h6yicEXhkjb2re/6GD725V+y9e4xXFNbY1CkaCOj4Pzqq/jajeCOLvi+t9/Ba7rhZrvDab2x4nIFwAyuKwAjH9tzbsdVQf0AOda01oqtMbbKuNkK7vqCc1tw7mecJ7znMRzR6doKPg4c+wX7YUJ3+3ExTMJxDhOgsZxZl+ZraIg32d7rwpkpKBr1Sh63Bwaf8ZUguTEI/xJXukjmuUXMPPwfAG4zkiVnIlNelDkXys6Fewmnho8Bm9zDCxn+UfGi4mye5IWI1RthlOQ0RrFi8aY105oKnwjzd4zngvShsb/TKCAfPtkVYyTjz6snMGIWayo8ck6muDXwrTQl08/4QIpTYnIOWHjdAi0FpSsKC0qR5HOWGo3HzN71dNv9rGm6GnrJc5iwFDiXJwtiFAiOefX8j594+vhJnCG3i4/n6Lrg/r7jfAFO64JSTaCJqeN0WvHklQ3rxi44CKh6I0ouOHrH06cf4P2nT7GtG/gJ47Qt+OQnPm5cAjXx7mM/mw/RuhWuHA3aO9q+Yz/v6Lv5Evtx4HK5x74fEAiOo+Fy2XF/vmTh0tEb7vcd972hiUY6xcR9VVEPExC2vc8xAxdZU/i8KQz5+Hfj8gO/HQTB+vmfAL33ixPmbEXGfBC+/z/63+Lz/8S/hO//6/86dhj+Ay86EzKbKiJ459Xvxlc/9qO4ac/wmbf+Ltbze56DMP9lP0ajhKNLch9NIKHj6JLNVXvzQq02xP17b+ja0r41MPYf/O1oP/WXATaxEVFF/9zfQWuMXQj7T/1VAGrCKhi5tMi7byU6yBOIztD1FnJXUf7s/xG/wIZbGQa24mZdcFpXEyrcFpxOK159coMnd7cmvlELTtuGZdPk7ah/V6nV/RDnvKmJiD19arHGstyCHXOKexAcoGWpuLu9w+uvv46vvXdG+eBinwUXaijW7IyaQnqDHsateFSHOk6cd8B+D8HAjFt4aluiavtiGBsddoTcCJnAkgxMlkIawp7PfIxGIaB9L0VhszekYraaAPMhXYTAFnvmbow350I5XEFU3X/lBw8gOT+xpV8FL8CwO2T2RBlcq/mfEVsVK3KkWsGtgXtD7wIqBXVbUbyxWgnft3A2giePc3AFG4xzy9uSBs/zSBFrkkdnTOACFIXt4bC6B2gffqjjAFa0PmxIpmjCN+Alr1sJKGLiUqULiggWVfRuGD+SBz/yApnrMkVL/xxKka0QsycXHsqkS3o5vrfBuf40+NZh2znwDB+TuMYZe1HHkXWKsR/LkQIphGwcHnmtLThRdUk+1XzMGpODGRQTOHw/mxspuulrb/Z1bO65nyM03RuL80wczR8oiSFZXg4ACUiAqgRCceECQEIsA8YfjvxyFFyLwhpFeg75c+Xb8Gv0Pfxc+SS+T95GnXKH1tgAgHJizYDV1rVSUUrL/FPxtcRkXIpaIldYU5SgyY7LztC+ox+MgwE5DptBIhaLFKAsjPW0pN0DFHR0T2Oy7RtqghgqDO3k9g/e6AaZh0icPDlRvo8m+hA4jv+X1HAe9fcQQCyWgwS5sJ19vuWZ2XCU2H997UXxOIpCFys4ZbJzZ2GwCLq6WJjXr3SsUDBqF1AzAemujF4EXRja2YUb3NfXEHPB1X71GI4roamc+bY3xfpD1GP5VhVUzIePK0Hx6X4BwPL5v4vODNx/gPKVn81XiIZfPuKiLkOYtwlSeOJq/BQZ56UVChsEwxlSNCvwKQqbDRehnV6PiJdcCMBrBMXxmw7D2O2raRIHVUjzfAaT7f9NsLSO5egou/OnXTCImVH+4r+Fb/yW34NX/+qfwHvbhm1dPB9ZcVoXHM77XGvFWgoWLunXWS2qDlsXQRXm1RIP27NCg28aHrv3vgde1TOpQqmnlfgwsxC8R8PzKWPdq7iTrCY1NL/MOypgNTuswCTmZo8u07lDDWDMYigvJRdCCJyozi1ArmPLx3LEKiB4joXCP3GNl1g74TcShviG83SKi0stXu9Za51EpszHQ/KlJ6GWqag9GpDKxI+PdSZq8dbl5g0c2y34rS+4uI6kz5iNo2H3fftzfxwf+HlHzVcIxWY9dymobI9P/qd/ESDG/4+5P4+1L7vuO7HP2nufc+977/f71cAiqzhPGklJ1CxbVnvuljy7HbvtGA3DRjtA/gkCBEEH6CRAGgmQToAEQYIOutOwgbadhg0P8TxPkiyJlkSTlEiJIlmciqxiDb+q+g3vvXvP2UP+WGvtfe6vSIvqdkvvFG7d93vvDufss/dea33Xd33XtQnwxM04OF+J1qhp5sGb3sNTr3yGYFyn2OsGgoqYBvfFxr7lTRpa9Wuq5FZZi+J/KkKv8W4ulZxr//mpD/8lFZbaiEzVUqnF7Yfxmm89Cd/6wzCfIfJh4ivPmZ+F7jPiwlER+eYfhPd8J+3WHeKXP6GcwM4L85qmSL7zNJVKuH7dRnaI4nSelNcyOF8RWwLumFa0ntka+Ti32heEAC00YjAulfmJQ9CIjXCPXkvPu4TB+b+px6gx4PTcsUjG8UCvi2ja+CgTyBbLBvOxt3FDs3VRLZeoX1Y7rqgNSrRmIlTlAInVMYpx6N3v1jBvgxF6DXprKlYqhqXZeSvnDid2+5X2eC7REBPz7Xu/DLxc8+gqNBpFxa8xEbNcClVWstj+Kk3rslxMDueXNLUf8ZF8rsV62N6rMZZxNBi8Co1b4rCrTUXEm5/k1pyLNwpyYVOrFemcqNr9BR38pliJuaW118zJ0HdwoVgP04Nef6/J22CGPfvXGiryexIJaF0EkYlGKiqG0+dWoOf2vJl6qSqIhESqRBXgsL2+hUiz7ygNltq4zpnLZeV8zexzId7Ahiw91vf77cushyMjn04fXTmZo8FiVs0VKsfVua3B50Vzf1B9+2CdGYRIsIZezbC4w7JytSw8PBy5Oi5cHxeOa2ZZi9Yt52Z7e6Vky6/WZlxiz5HZOTahXD3g8p/+Oc6+7/dy+eN/qTdkTVEbvocU+v6ggbva2Ok7fwfXn/5pnvjQ76Z98WPG561smz0G81eHn+L7t+3vvka8Lty3cB4Zl+YxpmKJ/l29+ZjtNRTlPnutWIOOF0kcPobXq1ToGqJ9XVUTa1xXjsuRZV051MZzj72fV6c7PHVYuPXqF3EsfTT4GroM3oB+8D/MR5FGXJfu33hdk4+SC+cBbOuPQhzrVfP0Mmwio0FoMPwg+B4QzJZ2nOTm1bp4TVMMzjkzO6Cbk/EJqsVcdB8xpcT+W34IvvAxynu+h/KVT9BKQ3LVZmCrNmXZCk3p/dBnb+QyxKZEazpiRf7af6GC9IZR9pjLJkp8x1tIlw9Yd7cQ2RGv7g49nxhIUUw0F2JKXL7vu7j93C9ofWdLmznvfk6gRq0J+fLFu3nzvc/z/J3385bXP2N5PPOjw2h2542W5YTPJeNE/bxljLPXybgOUK9tk00dmwu/y3azG5igfparNrS+LxzCjtemOzxzvNsDTP2I0HFUxRS88aD6Cs899l7e/tpn1MfVhCbN8FjlOaoxs+mg68AF+qQZd6t2Z6DbuqpxV2geTan/2GS7XzcIJmLaY/uNjw30RjF9NHycbHBFBn/PY5pvYN5/wyziR0lBfV9sjd6hvAN8dEPdF4oFEl96+/fzgbuf0ADFuot0gvTGodoCDF4gQR1qYkrQtu8NIxDS5Cz9PLygtTGKGbYwhDuUhDgcfgOkfZiH6mag1kieMmkVUg7kOfFb7v5rPvbWH+I3f+lfkfeTFnqvK0vOmqxGgbGQtIuudx3Z7/T5bH/Gfrdn3u1UKGieqbuZKUaaAbBqLMyZNMpcaApQdBXQEzjCHcoxUbrj5Q77uLvj/1+jQkr3mzEhT37/xl931OPXErv0j9mu9+03PWqZ+wTcFPa0R4LvogVMpeTeXSt7Z8JyWpxzE47DtXYyp6LAQ5xAAsvxwOH6QF5XajHlwnWlZAXMIpoEnENiN03cOjtHpolnn/lh3v/cT/SOh07K96BeA31zsuJE2nRIV4EzQBrNCGjaFdC3LAXKK/CsPMWvtDvsuOC78he5wInndjtLASO5u590Fc54LryJD6xfptVCKAuxrrSqZCgppgZsBWjanUQ6cbDFqN2wQoT1SE0TNSWYZmSaYErUaImKvi+ooWpGSOoJP+k+Hi5NgXjANdZT+xpAcvs6Pw0hq1/tMMfCnCM3MEBfC6fd2jabozv3nkBxIyO2xLeIZRuhgJu+JuaQm1hF8/VTVu1Q0PQehFqQmjU4LCslL9q1qaxaAAUIldaydVYHrEund+e4KUe3YcPDtycnzYzB3wYM2xh4gIaemAzd3gA9MdOdFZ9CMoqK7Ss6iNKDhaYOuhNikts1Swp4oO4dZl1k6M+885K//JU9f+Lp+5pcQ1hy5vLqmsuHD8nrykvc4ivpKZ5fA+lwyZ32kOOycDyurIsSCkOITJOSFmI1wrkFOQK9UDCYo/jZeocvcc5Lbc935Oc5q95lRa9DpJnAQkCadvAUGrWFTaLPbJOvtb7mcDPW197WB3GDIRY9yaPv2wAN+iFD0bTZYjsF27dgBI/+8WscPULYnhB9zf0q723dkrvdGv6HFweZt8m4GnP2tqTTG3jcunWbaYrszmbOzvbs93sTMUw9uN+uGRg+psAQn3Lf0EBce+Hmva3fBScgioP4KRFjwv1EBSCLBS/wyMACw9HGgCzxfVdkU6yp75E2Cjj0tMy/3O4tAq6+3zzK7wGlv6pubrPOC3FL1MWS+rfY/+26T+bouB4Ln04MSmvtBC5sYsmc3rVtPIIo4COI+t1RqClqUrlmGtlU8gNTEeYiKkJoBO4pJeveMpHCylqLKe2b0CU6vlpIWvu4QOvgTeds217qutn9mmW8p5MwtmMg9PHbUgy2wmwnBNE25glhFNT2u9J+tTX963u04bRQGuTsHRgzec1dFCEFT2CoD+ZFCroukilnD2G3aMFky4V1WVlQGxU8mo6N0KyoDroQnArlTKTJOnx4YspItTHGHuN50W3zbslFO1iGuN0TdLy7kJH77IUOrPXOHo/Epzo+vkPrvrotjHJ/qtGgnBqCIdgxgNXakbnN36oV7LTt3NrGwdL3LE1Wj+KhsW9s/AzNCNpjFOqAkStaALLpt9q5Wcwq22cXdrVi9Vr1vqkQUuznFTaAajMfsV/LJkZ0kqBeR7HEvAGfmz1R0M+dJunjVkKxzlCbc0bnoC5X0Y5N9vyr29xf36N3rg6Q88qyLkyrkndq1YLWUrUrV4hRgWoTDFrWletDIJdy4iueiE3NM9M8M81KxlNCXlLyp4iGTXiH33gClo0iaPcF/F5u4umNPzsAPGGbEA3RhXI2iTjGOhCfxyJ9Lfk6OBkrW9MWwr7h/dpdV6xY09Zf95XryRp2cFELNishxr5ErN3BqX9u31fLIPzq2qzdx6729y7q02w/a/Z9gSHo3RpSlRjjx7Df9p1t+O/jLIal6XGBFZAqOdcwsRRpbaI1euK8C03VZm+p/tYN6DnGu9/ahnMR9RzEigtdrMztve2hToq8MUe1cxYjVnpCykTCW85QCtIaSVRoSsWmFCx/1ANytyHI6FQzzzP73Y7dbmd+aBxiTb4v2XgH8eSGgDgNTj/V14iLvKrIQ+z3uscNFuttfQ1f/yNe1M/03VNJaypef+prnPpmW5+EzZ46vqdHMifXh8WFmkO0bgTNopAqXUjOfUex1+n+N0Qlu/1krOOt7761ge47jwna+h7iPp2YcIAX/4DbV+sW0yDFgKDY1DQl5qTCfELTYoNaWGthyZW9dcGJtbKYeJE0F7LVDm7DNxi06+5WNr0r+tm1J5erdcmlNRMgikgr1BaoQTZFTW1DdrtBhxkF6XuevOEB2/kyZpVulR4r2IwNXrR/OkO7nehH6/e+2c9O5wclhRQTxcH8qlyzFTmu/W/NigCCY/tqEdjG20I1cTH9m1vFPgSba3UhqU70C9YJ3u10UJswPfZm9m9/H/nZj/c8hheDuiCI4gubmB2I3/O72b/pbVzfusP6sX+uibdacKDPvyN1opmJsQYrQrM9PJlvPU2pF8Zh/mgtlZIcy3bfctN1LbgonccyEREXRxmdDmtVwUOpRQuqSzWxXx9Vs9eGH1+/67s5+5Wf6bA8rXUhzlIUb3axKSUjmt8h4/51mz2qxH/VQ829FWEML+fGHFqEa6JiXRxNC5E1Ydg6/orh2jV7cebCejyyHA/4mnGfhaZ2aYqJeTJb1kUTNSFbcuF4VFF5f5RSaKVxPC6IwBomnj1/O1el8HqAt60vd59S540+0pTYzTt2u7kXVyaL+9QVdAEzvQdjHTBiH/HuYOB2yv2ysX48VhivAVARbMdUxj3W19p3dnzDBD6b7+G+uVsBm1T1IV2Apg18ZWA34/P1PlohSfNboeKf4zzp3wnu2zdSSmoLilByM4KHCkHrw7CeYMKHYXx+rUXzG25H7LK18G7TiazvXYP8qfG1kh27EFPHQkbc60Tr3vBDxHzF1oVyys5zZjvyup6SlW/A0QVcghCqkv9isjhmC8jhrocJ88dASJFgjX9CSniGwjvRSfdBdLBd6MLvVc/F+O7j46nftnEi/CN8vm1OaGNXqwszNCVMeQwtoZ2Mu8dQUocP5gWZNKzTqebFG1sMc9glFeeBnvPC1qYYKa859qjrsggUIyX4kNdaeawd+EDIvFgm3s9Dro+iZEoTGcw5syV6rctq9yXyhcvIm/fwhYeF98aFMOkHe64wek7AO9rWZuu3UZ3MHkUFptD1qDWRwWLI0K/XvOMN1iwaR5ZCybFfswgsSyDIgg0nx7zjfFlYS0GWovtIgimIEXCSxf1tjKPdJ226LiMIt/0tCB2bjhI0d9uEJIHphq2xgU4Z5JcSUWYmAoSJ2jI5LzSyXaaSz0otSC1ISV8zA+o2uxN+LBbtWBZtQ+ge+KuvwxHLWvOjGoxdo/Qz/ez4yHXY+3zf9/hI3I54vsfthnumeg8VWqsn+J94LAUmeheGvYMhNIV+nth+1Y2Gsf76dctGiLQ2aBv/SZIKz9jlbOOsjWy/CoXkSJgyUpPZGPr1hZ7P0Dy4PzaGbNyLNgp9tpgQG7ypj7CMe1Lt32yet7Hp9ju+3nFKvdb3l9ozZer1l0qp23Pyc9zmcZ3IbzjKSSTwG3947tz9bHVdPKYHLTq2e9H9ooEjBRceNS6Ex6hLa0SgWTzhPKwYIzkGpAgF9QuVYG0zSPxe23MTa2aRUR8rIqHSWSCSrOCaTYyR1OfJWfdnby4mHRbpBF0tKhz3pG3/KR5bho5duB0Vr+feYB+9o7tNqyYuHjL80e0hQXqzuYGNYP54GQKvrUGpKnq8mI++LtRVm2x5vOm+2Qlq4/a/aGwW1NiazW5IrZALVRbFVtaVOk0wTX1c+/VUFZdqtWlH+lxYlpXjcVGC8FFFWwp1kJGh5yekNWJTPEwLk/xMRE/Ux7TYhhelE6d1WVkxAVbsU8Q6aRrTpVkuJ988An3zApDQrFDYCh62ImPN9/BIChNTnElhIslMCBNerK/CdgkkAqLFEYYdgpNiIyHMxKgCRrt5z25/xmRN/Fy4KppYQBPnSlrnZyMhPwyV28w8lEpBffwx/ma3oil3GP+mlsLdes1rXDMDL7QDTxGBSq0qPtzKSl5XcjlS60qUApKpdaGUI41sry+URYXMSskmqFWMZK4iU60Vxcrcprrwo+WSmkDBBTu8OzPGeAIV3YDvuPdVPvbO7+ADH/8pLpcr1nzksGYjvxcOa2GtlVyFKpFKYC2N41vfy/raXcrLL/Z0mUIjgpgwmKCiU9PFbeIHfohyEblVbnH+xS8ySySnHVPZjThK1Md8+b3v5OrWwoN33OaZz3yaUhZqK2STZhQTmaolIC3yYIq0fMHDmLl7vKQdE8t6i2V/izmdEUKyuQHEQCNSauw8O1qBquIQIc6kmJiDiozsp4mz3Y7zvONQjiyHw6/3Mvq3HrU69qNcy+NyZFkWjsuB4/HY+ZfLurBma4SUs+6/XkQkXtgEW16n4u1W+BXoQihe/EwdhkPQeG/LJe6+bAv2WY5NxBFjGW6gxQ9l+BkMESz/nX+Tu/f92PxjZOM8VotdQD5uf3bRKRPg6LwXF6Vg2JUN1GZ+jccUmP3a4q6tG4/t7xX67dHqBgGh+5cdPjm5rK9VkCj+xT3ewuMef4U3jjPhNi1ACYSqzVBiq6RWKTFpMX9LGlMV84ksjuxxLphwxvAxv5aQRs/Z+6NoLlxF+D1TZ/dQ/PXmtzN87Jt0/Mt/8TNcXS62RwWoRYkfoXG2Szx264KL/Z4oUQVhTKyh5IXj4chrr77KuhyotbDfTTz55BPsd5PG0lmFompeoVSO17pma1H88Xg4cH19bbxj5Zgcrg8sy2I1T5XjsnJ9UEG5XLSA6boUjg2ycU60H4TOZM/BiTQijRkVbRl5S6AV1ulCcRIRruvE/qjFSyFEjfnJxKb+0Tt/+v/NERCUx1KCNmyI1sw6psS9eIuwXHEZd1xlgeMColhCNjuVixUzl6oinZaLyrWw5NWEpkbhZHZRz5y18K0Vcm3Ulii/+Y+Qb7+DFvYsP/+PWGtlWQtLLpSP/ASgqysg1FCZUmSXEvuzmfI9P8qTn/kZzvczu3lmt59pac9X3vp9PP7O9/D6nSe49eWPc7i+4vLJ93J5feD+Vz+nneVn5Smcn+15/PFbPP7YbXa7mbOzHaVCytVwQ8XFYoyseWXNKwRht9spXtKaConmSsuFFpWnIyGRW4Y2ir2mGHns9i0eu33O7tV7JKnE0IgVFftKESkVVpQLVr5RnvSvz3Eal57ugpXWYxIJY1dszd9n8Wcbe+/AETwSD/2hOFywfMwmlnE/Khg2myZSmklTMpvhRXtJxQhEsa91zVp8iCBhQuLUGzDH6A2RYhd4CiEqB7ejBHrCHi8NjMRit6YiaCp8kFRgqjbCNJHmQiqrrYNKrrpeo/FZkp2HF+Rr86EhNNWMY+xjbSmyMfrdlun4Y//qu7TxN4IV3BNVNLtuxfUtp9BTmO4v4qVdAkGFq0MAsY6btTZSzz9q7qKUZHnLlVyyYcAel0PnPoPGUl4cHaTzWrfccREXPlSD7vbJ8aieB9EA2kahqRiwcbHe6JDIwBVu4BGadI7GtsFOiqnXoHjR/9e+Bo/bNqCBHV1UzMdEmjWKsPltPAxziIZwsAQqKkRMHR/vVVfajKeQPZcdK6k2ghXYf+ZNH+C9938FTEg+SCFGLSxN0WM7SEFIURu6/Kb6OX46vovfWj6tc4pq5yuGMWuDiRaCWQkVE5ewIDR+ZTnn6bnw5rQQRUW7UhiNhqYYgAnlqiWuDk3j9zWQjpBFbbwUBV0qOncxvocx9rTYv4KI7Tko17fVQC2iopS5USVYsTgaDupNHnU4oj9HIriQlPlx3Y8UVATDRH56WbuoqD/B9oTSqKFwyiVvnh5S7D+aP4D51RWkCrGq0FRs0ESvrwaLDfLgNxcrjFVsVrHTteh7i+WioXUu6k061Ow43k4fF72Kvst0GKhzAkU6R1VvRWNYih7p979Pn/15u+Fs9qBqjTxa98dd/GatjWyw09Z/7zanT4JhO/VHyxeJ9NpO2d+ivuMDpC98zPZzEzTb5Nm6ZTVOoNSqwvWxIMXFhNH720auCbL6PGaTStGi7SXXzq0IJhwUghCvLkn/9M/DbseaC/s8s0yJXUrkNbNOmXlaVWgqReaoglPJxKr6Nl83DTt8bBpqUxzvDlixV1O+OmH0v2mW3+43V2OwWgPiACobXH+8rT9vBXFaw/i+g8MzPBzbZ0VrAmnRYm/jQZkIimIcto9ZPV+1fBlBN9omYowex/FVgKSK5v1PzNsNOAZ7T5uFaDbZrn8bf25yIp5jjltbl5wTHJU/n8y366IqDIG9qthcLVuhKYtR6uBYeEOOUhvL+ZM8fOt3kSUwXx3hhWc1brG/F+fJMtaMN3WPXqNt4gKTc5L6+RdSDdaEQB4RmvKaz0YLiZff/T0suwtWhDe/+ClKbWrzUT+5ofWsiPR+EohPIYu3jCubO+akjyE2ZSJa5fTvvXlz3Yg8NcdDhLY7h/kMakZuPUm4+3z3n7xJrAoNBeTp9xLuPkd787uRF37ZhFPjSWOL5c5bOLzlW9SzfulXSFev0jbf7ffq+j0/xP6zPwNVhWl0zHTd9KbfpfaGli5cQutee4d7gjCubbNO+7qxdbrlceJcEff9b9hxPB5ZDeogJdsX7NpC6w1lPU+hvFHU/5dKDZUWjDcUBualuVfp8yqEZj55NMyOIXAhm71SoIVRj9S6YR0ueGtV4dzWCE2beHkjK7H8skPl2D7rDWCQZhxV5Rz1xnFeJ2ExSN9tmnLIS1X7pCzi0s/VMRavOXPuiDe29GvUGGnggz5Xxuxx+282eyuQWyvDUnWr0D/Gd/TSahfNGdz8pnkU99GtxlTchtk5t859sUYQEtWLaSBB+fox6j3UBKh+ewUTOXcOs8fnjjubKCnqkzpW5DlKac758LVYaFWgZapEikRqCwRp2kwqJBsWvYe5VY6l8XBZma8PSBCWsv4PXxj/jg/lTXhtpGZo9F77HjK4eqfpexlzxXxLFxd3sakkbsM8qKomDmbzGufUR0pV4ahlWTgcj1xdH3h4ecXDw4HDceW4ZtvfUYGVd3yQdu8u5e6Xdf20sSckw9edl1NKoRwecPxXf1lFPlNimmamWYWmYhe63/qkjfozf4H0g3+c47/8b7g425ugTxl7j/ta5qO00iwt0dGcgSvLpj7Bn22dhu6fY3m+IRCkQlPGl9nUmlbDH4vXvLh331SArmjBHEEqXzh7O8+sr7JvC6U0E/NatMHp8chxWbhugVcf3zMf7nGXM+T6Wr/LdgYXrHN+SrU4ymuhmvn4Da39DkGF8KPVBIrbqE3tXjKx6WRim964Oxk/25aTcfNlI/AlOna2T3iDKxffvGk1m857DSbQVCqEuhnbvu6sDtb5YiGw/uRfIv6WP478q7/IWrQmBhOaasb9GDUKQwRMMYusDSRcaEq01Z3UQGhFY2zpaKXaUV/ov/hT7L79N8HrL8OLX2AKJmLd4xYhB23iWT/4O6i3niSHxGNf+DmNmZt6dz5XcjSefYBv/vw/4TPv+m185xf+Pq1lrTl2X7k6RibUbqceqXnrOcNmMayYf0OPEd2H9gDYt/LBF6maS6EpLtsGn7P5+cjAa49xx7O33slBEgXh6euXetzpdq36/DPfvLXGs09+G/fTOcuTiXe+/ElcfMpFuJ2P37kkTQx3kh7mVcFiJtX9UbwkWGzcusivuUJgPr3YXKBtsQD1C6rVvDtW6o1w/f9qRj1fT8cKxH3Jb2De/5qEpth8vf/sZIL+N9vkHbzzwoJI4HPv/hGSCJ962w/xfXc/1gMQi2KhBdtMRnDFRlDBydMtBp8C+jdT5OwdvtzguVeEBcw4wbqHsVrM2dAufH3ybRwtBO04ZdfTtIg+TZGpJO0w2Bo/cvUJyuO3WdeVq+tr5ADHg3Wkztphui0gh8BViEwhMc0Tu3nP+dk552cXnJ+dWTHcnrOzM3ZzYjfPsHPxHxRCMZW6VjRQV4JEYnvR7vueqqw/eu/8It2hABdF0OtXk+WEy2/48JneP91/fuRDTv5of3V14a/3ufa8Bc78NgvWFccLXqsqGK/ryuGg3dFyXrsBumlGqKwmwhC1I1trsC4rh+sD67JCqz2gqqX2IoCUEmfzEC7b7/b8m3f/GFIzn3z77+BbP/+PkNqswNkMeUpdBG6OWrTnSuvqFKgh0K2vDAezji4L+hd4IOe0dMFlyTxcHkK9BhkKn1JL71gkTTiGPR+5eDeUlSzP8G3rs7SSCRQi2j1TDa6S+ZTcZMII1Tb8agm7Gsl5pS6RliZkOsI00eaJkCYdy6QdYSRFCEEDTnH3rzHgIsZm2gY5Qv9pxuyROTyCqO0vG50N+Q0cSv4XYNtddIRp0loHDLc4QOsiJAwj6mCRkRIxIyPWjUZoA7Dyc/dg0oN3L4oq2pWdpp1hqMUS7Ll3x4S2WYdNEypBupMSvt5avkGHj7Ua582/2uav/R6Nd6lD8KgzK5t9zYMrvz0mTFAGlDqK4OvAI7fgnjtT1VWpURsbGCKK5hz8h29+YMRHVbU+XB14+PAhV5dX2tljvyPFRBPhsBTCcmlk1ZVlWSi5EGNimmc+uXsrPxi+qt//iAhANMctEGnTzFQbNSSkagGIknKPhrdVYoqQogEuPiei2vxN0Ysnn3t2zyfWZnw3MOjpSuyv29wrW6+jiMgC3De+u5v6k2YYm6SXMEQ4erHt1n7hp7kBMDa/G4IKre8Z/d99ztm7Tv491jF9SDwB6zbw5q2x27dvk1Jg3k3sjCTj3QtOu2yMH52U52IY/tDp4ES37tCZz+BEvkD0rl/RC/BOC1WGz2Pf5wHNBkg8EVppdeOPnN63gUCHzfjbju3bqV+cC6FtL3hEAmzJgTpjvdjf5u92h9p0XpHtcGwmYweQTwbZv8NtniZEdI/y3U+BRrUSGrqXJrQoG6GpCG0FWaFFK8jUmLdWfX2Owm6aOdvt2O8WdoeFxcB/5ZIoWB+6vHa14fQ5bvfThihUTQL7vR77qmz260ct83Yhn/7ktnT7UhcR6YWm7VRE7CaasRjENLoMpKiQc1Win/m50zSxS1qgSC0WUFeGKNp4HnGPAoQyhT5nJQQmy2RI2Ir6Si+Un+eZNM29EBmRDWlT+rpwUcvWhaZcYFEJbJ6crG0E7a5sXWslhNh/NwrspZsA30O3hSd6z1vfy/vrgSZlE9+OMdmOi/szsvl7e2T8/PCi7bpJCns3TTu1XoA9BJtaLwCW2ggbhlC3DMW6sbD2Fe15p94R2IvbO9BmoL4oYUqCgkqaDAyb4rcxbnYVfXNpVZW0o4m+daE+8QKjsd/0PVU9TeuiNpTUi3XR6eRtOfWevzHY4tfvqFYMVrKQQ2E5Lsxpop7tN+NloOg0MQWh5pWaV0rRYiAd99j9m9C7GE0Kck+6btKk3R+9AEU/3pNOCs6ZlWQknTb/iRfn275oC0LD+o3dsaODnhv7h8jJ/NatUggx2WdZbCGjAGA7VrWWft7Uau+Nm327nojD+XyrVlDs56gCk0mL6kLdEDD0zFob5A+dk7pXeOeisk3Eb9bwEIZr/QK1e3kYttW7ABTRhEGxIqIgSAtoAknn7Qnobifv4hyeWESEVoomLmkES2jp+vduA4lcJi2gDIUs45q3p2u34/S5i6SELkqy2+1ViKcL3VkBuF3XjTs8rsHmUV4p60JZjpRloa4qfhyAKQTmqGTslhWKBS2ujKJ2MXkCQoaw1zwndruZvXXMTN6FStB7aoXreEGuxVhzmKjNSMFG0HVxqa3QWBcD2P78SKJaHl1rFmdKCEYgVSN5Wth7+nDRNKibNTD8WN+PpHmRppN2XGisDRKTuH22xLnZ4QErjO/U+a/nvdVcE5vr23XWqu1HIiaSeHqrO24boq47W5elDgwEzAczP95taIiDnJ53M3nZacyZM0uuHEtmyZlgjqm0YKRoJRUWMe23fv76CPYP03kmtgat0AzvKI57FCeMj1iyF7ychgI36hhk+G2iYcT1Pd7115+8z4ga5pacFJo/8vDfeUiic/Q0+dWsYYK0ZgUa6yAgVN2/S7FCNC/Ab8Ofop9L6+s/cCrmM85pxMuaIwgmMBX7nqlCq0Nwqu+nt5/k4vt/NylG8sUtwhd+wV43RJD7OLZhjxCIb3qaw3rgiaeeZn3ssS401RN4Qk+oxhhM6N8EeicV/Z9N/H83z8zz3PcXGiaCVofdtUXm/rkXrQXZ3CVxAqWSVKqtuVwKNStZg9Z48I4Pkr76Wbi8N8Q0DGy//JbfipRM+cBv4+yTP97vq3fNLVm7zLd1JK1c1MsFcnxeVSfjb+fN15iD20J7fV2wKXCzbFnOWizlRIRqol34vBRNFnb5x2pNL3KmrC6stm7iCd1oFedXwcSz/V6bk+x3zJaUr6Xy0fw4bz08JF9dcX19zeFw0IKwq4MJlDWOceaVx24z73Z85eFdwvGlkzmfohId53nm7OyMs/2e/dna/QltSpGIQbtT+Troa8vWlz+fCAc2Fyx0IrieU2ubOMts0Iirvt5IW/K4Y+NjuHzMFFvT81IikNvLNtYK2zk3YkbFKYX66LVZHDVed3pOnUhhgrwa7o58o9s9oMdQoGvHSSrF7Pu2A2EIoReX+nL2fS1GJ3J48ZCT2QSnajlBzePv7Rhrzslo5K1R00SZZxVVSNONE5oSE3PRfJaLZKfe0buZeEqwPZ0QIEZCSoQpISlpN/E0EUVzzqFpjNbRuIZxoxvSChL0fseggkOOzdXaWGtV3DFEzfc2FXQezSnMZ8LmObqe3Q/z+VhLsaIxFaVwAv7WRktQEi9YXG7nVZsXH0X0NjZM7cZeW3pMKO7r2hz5ZHiKt7eH3MHIb8qQVBssLqAD2NzPtXBeKu9YM69ZAagEIzaZKKcWgGoeQ+xepZj4vjTzC9d3+KHdQ157LZqwcrRCo2DCeXKyLpXUZyJTIhCK5uyxG+VQRfcxGKk6E9uWprVxoTWdCxaTeg5UBWOFEPTNS544LjtKqUQy1IWaiwmjuvCz+q3BxhLfV5qjp1t3UAnVLiIR0PWcRD/jeDz+O10j/0MP3aul79WKGalABnGm1oiI7eXR92rvdNg6KcwF9RpaxOL7u5iv7HGDfgB4/KxrcNiOUoqu77hZN0CT0El7iuHq/N4238HiO/dva/MimmbTx/bBvvD1N4FHwiGLUfU1pwWyQYLWhj4qNLVZw82hdyP9+ud1sa3qBCUTqfTCHbMprcdqOuF7MZC0Ti7D8T8XXLV9x3GeGAJVgo6bFxW10OPDNxDNt36+72Pug26vzWK8Pob6Fx1fGZyObn+/zpxzW9lfIcOG9vd3+whOb3bMVezzTfLKRICsiOiG2bFSCy4cq9ewiasaupeVQqFRg2EDwcVNhvhoSqnbkWVZaKWwNLVdMZi4nmGOIUdqDFCF0qpyD3pcyOa70UZtmJPTTFi552sDIaK/NxBw+PWRFoy0htm8rDbU43hETkQdPL4MErSg24Lx7puIxi6U7O5d9/F6bLkRLNflpb8rW9+SMQddGKVWjxU1f+3cmrIqXqaCW9q8Y11WSlmV+CLKd1AycbNxkY1vpWsimN9PjGx9TD2ZCjlTa4Z1paUEURsLem6g1+9V/V3JlbxmbWi4qGhQXQu1ZapUmuFWjtMorqZxJiFSShtjiBIX9Ro0HzjEOs3vCAKG3VOVRCxorLgtitF96+YVW/qcUGzb/WJoneAeCSEhMhFIBElEUZGpGCaCPbTAdkbiDERqi2ormgl3iVjueWKaztntzpnnHdO812YS06z+TpwBXZcpTYpvNRDjPvmd+V5u85F2n3e2HY8Ba1koZBVCM0xEc0ErrRVq0ZzDvi58q6y82lbeURv3pCJ4MZryd3I+sqzX5HwkSqFJ4Wff/G6+/8Uv6zmY8FFZK2teKNk4QNpmBOdlNaoJjrkPJl0jyJHZQmUtrRd7laplDNWK6muDXCvv/eSPs5RMriu5LsrXZKVSaOL2Xn3d3GB9xzeT3/oO2tvfQfjEzxFffxUQSqnUtbAWvS+qeZCY45HUHjAtlYflVdrhZUpIlDyT8jQK3UNknhKLPEZcb1OmK+B1AitNsuJMW3y3agfzOy88hHbk7ADpQeY6ndPagVKu2M+3SWmvjXisgWQLQpNo+0Hg9bM9r98JPPXVI7u0sMYdR5lIJCZJ7NLEftpxNu855vLrv47+LYcKTakg37IuHA4HE5pS4exlXcgmYrIaH7Y3DnJoKtq+ZZNJ9ywr1BDD8wM9Fnd7PjyGgfGFHvN6vgz9O9ILFRwTxPFQ499JtRNyt3Tre0C3JWpj3I9js9cOP63znw2TixJ680DF6OIoZuul2/5d0vNiQqOY36nx4eBASFPuRQhbLKQ7Y90HBJyPb/8YuFqPtdy/ZVPg3D9y4Bgex/rD/uzh2PhlP4YjPXIr416GaELRrRCsKYQi7FY40u2V+fGGRbbNZ7tP4AJTWsw85keoQoqaa4uthxedgE8ddgLG32/K8Uu/9KzapZBoRQtUaFqQu4uRW2dnXJxdsEtnTGGvexPaKXs5HqBmWsnMc+R8t2dKQpSmIgt1YTkeWQ9H2to4Hg4clyO1VtZ15fqowvW5rNrIbMkcrzKHw6JFXw3WXDgctalczpWctcAuNzEBam1C4I2vYjR/LQhzipwlWFsjtUYMtTf7iJ/7CLJkUsuklz5Ftj0zBt07as2al8rZYh0hBhNuMQ5ElKKxfq089fxHudsqty9fYn74IllvfN8nNMIXvvitv4+3feJvqbBnUf96LdmuQ7kY2fawbE3ZclaOZmkoN6oJVe4ghyvW8DiX18JxzSZU0YgRLj7wA8zlSHzxWeZp4uJsz9lux/J9f5A7b3qS5d3fyvu++mH2+x3nF+eEs1ucveUDHNbMu3/g+3nq7RPPtVu8+qZv5nh9hI//BOnlL3E4XPLg4SX3Hzzkldfuc+vWniff9BhPPvEk18eVAOz3e3a7id1uxzRPVCrLcuy44izCLs3spx2hNepaiBKYpkQVWBctBMNwjCklbp3vefLOBU/cOeOle6+TlmZ5N4vdQyNMts/fsILLUkvfh9U2mFqK7XTVuDAjnPRcmsZEzfAEjzGabVzqd5oYhESCaOGfYgLSY3tCI1oVjzfnmoxXpfi78fej4e8myqYckxXJinGHlPQ98677HCl6EzNrQmK4lwpd2fV0rDKMNSGYcLrVgxQt5pUYiBZjVxqTCxcUFS9obF6XJrV1zsmUMIqFzT5Jq8OWAmxxAP9dx0DM30bPudpzCKGLXXj8PD5NuhipoLGA1x15PCagXJ1m0hEixEn3JNy/z5FSJm0QUjKxZI19GOJSYpiTaJCO60aGoBw3z0Pq61xwzLNC7n+IiT9bfO4F0mM66r7XdJffNrfuVl3ERLRu1uEiHNow2QUqeIOYjdtlwfzDbVNCv64TJ0QYEWgbmLc3J3FMzvMENr8VR9SCd+XaK1cglIaIYtwNxRKyCXg0muIxqSBT4XPv+hGuD5WHt7+Ldz3/EfNDXfApkWK2Wi0XGYmkpDnn75DPcKSweJ4wCBK16BGpKjhgTbxbyNSi+Pyv5Nt8uUU+c9zzA+kuT4aVyZpxea5OsT9rPiKNFAUhIq3SSoQaNQ9rFc9Kl5CO+xYTXFyrCrbHkEhTQoha55qFNaNre21IrEhQIfMWGi1GCFGbUaREmLwpSrTY3HwtwXBEx6MK1e+VidY0quWz3Scs5rM3pHgjjmCi3rYXixCiqIAwxmUpkJsQmr62hUQLdBHTFsyGGwDsnPtg2AetUbNhri6Ac8PwRQd5xHxlh3IMqtY93cIEz5d0vBh317VpuBfAhzbe6xHLG2t8HF8yP7zzA2pvtlNsnWrjSXSN+gbPeO7IpNml4DGT5513e/J3/vta37K7YPr8R1Benn2vfUaP2b79tyO//BPIeoSgglMSG1K0oV1rQYWnJBPf/k5KnLn6zMcVc7Zan1yaimXap7u2TIyeTxJKdVG6Ss6JPE2WGyusS2RNiXWK5JTIU1LBqRR7bOqYmsY6Ogbt5H4a/8jip74FNrE9zmK4DY94W++wfXYLAwMbHQIgg5vcn3uMeHKrNJ8YUHvq52uiearDrrFGk6CF7n7eQWg16F5R3f9m5AMML+01IDfpMI4roHsBshEmEbNfNg7Gn9MYJZhQQui50ZQ8j+0inHrvqtmdantPM15JydrArNez1qrit77WzE7l2lhyYS1aQ3bIDTkuKkJRx5qsTfk4tcfquub6edZACpG1FKYUyTUx1Uoq0eZ9GNiKONbQushGS3AgEPLCoQWWnEnR6hXdnAexWtHNvAWfSSOf4Nfrdb6dM2Yx5kZoqtbKg+/4UeaP/0PjnXsT2uE6NBrc/Qp85mfh4nF47pPGJRi3d8vbDD/7/4Pv/T3sPvb3EedOyOBbNFQcwa1QQQhdCGysrctv+e2aU/+238nuF//J8IsUyBiNo00Yr4tPwcCadCJa3stw184dGfgV3Q44ru+NZsbtHvvvzTmur6+pEjWB36+JDvg4v8Xb6tg0spiMkS+W0HPLHcei0axpukgg2DocIoLbppLCwLu39UjQb8QWxxNMFG2Ix6gddSGr0P0d/Vvs3n9rtYt8nzYIkv7e2L9S+pi4rdWvH3UeMcqIcZzHHDUmU9EE44l7zHUyDYYt3rrd2G9daEssrtIccb8S/C45Xupr2ddLj2fsgyXEca1B/d4WrH58MwY9Tu97rH5mNGFR54nWplhUbtoBu9TShchUhNM5GUJsKu6SjBcaakYsT+o+UAyqGaGxfTXhKRNMtRBMkos+aia65Uo9Hmk0DsuBs3nbDOtmHCFGFdqUgS93RZFNzH3CR2JErIP/Uk0RpTLI3BrLKJ8Ki/kw/EC0uXLRsco5a1OK45HD9YHry0uuLq+4uj5wXFaWPOoI47s+RHz7BwhvA/nkT9Be/yoacmsN2zRNxs3yxu2lcwlEhDSr0FSa3f4O0TVfQ4Dm4X/hb3N2+xbrMhlftuCNh2mYHdZai/rN30975XnktRe0di6p4L3WJWguQ+sTjCtkMQ24HS8UEfIayHElS+wNoZSn4TxKe22t5NXzgvpZ6vPWvtd98fa7ebXMvDC/gw8+fJaUj5RaWdeFxZqAHI9H1uXImz/7k7z0xHt5/LmPcu17rmz2Adw3rNz/pn+P3Wd+krou3d6WVjsHA0FjP/NpBOn+uYbQFg+nZE2kk8W66lMkr1Hy+4ruf8keLm65nYN9bfZE+804+t7tHHNRn0vH0z3xLntudsy1OKD+679GCYGWs+47OdPW0jlD7iN0vLJhmAXkMhqeNqCK1oH2xl2W89V/qC2hViiw/sJPdeGrGmPn36iPKZQgxBaokpiWA0cSy7KOe1Gb+WRFtUVMXyQG4X1f+KcwRZNGbJs9xuZ3HTbPc67BfJee2eoB7MZ1DZzsVdsaVxcc1VMTvvTYe3ni4cucLQ9s/fjOpj+3jtEJxwRXZ4UQ4eEx89jhMGLM1rqgoevQuH/+sECShcsaWNZiongutlj1/pTmNEb7/SYO6mvOBFdrIxf/XkBOGx3SPCtqPkZzfMTH1xRcxOrvaqNudozTQ/ORIwOo4/JvUes5OX7NQlNbn3V4V+a0V0/E1k6k08Wiwcd+veby4iluHV/txYoYsU7Z9wr69stwx5jxWZ3I7pNJZGPMLHJ4FFptCkhp11cT9djAkRqYtX5D+8jJNhlt12uqmyEFWrEFVKuC1hFabOxkQmIjzoFdmViydp4r1sEp54Xn3vYh7tx9louHd7neXXK1f8jF2Tm73cz52QX51m3y2UzZ72hlx343IykO4+83uHmBGBvQfjh7vnD7UGwddRscBypowznv1+tPrZ04jo8M76OTpY9/O3ndRhjnkT/amdq/vIirGbbeNn9tqFfis8/Cuo2xdzGcsmoB07osHI/XSsoqeSj+3jAjFLwr9RRppbIsK1eHa46LdhGqRdeZghXBir8D8zRztj/j/Oyc/W5HrZX5+h4Pbr2Fxx++rAFMaHgngiCBFFRJe0qROU3MU2JKG6NOg5Z1w8sm+1RViX4tqiadmypiPlNf5TLd5/H8GlIueYDPL93moqvpmorpEmaO9S5lf4fjw5e5PD40J8GcNmX+azDnjqtkyzlkKAGpug8EggkoBWqeqGWilJWcp95NRTupTIQSrWhRgysv/iYE25iNKCkajG276OrVCF8T6upAkz1VBVJ/9cMDzPHvhl6+i76d/N7PQbarwVMybgROA18nhEhXwXYHz382h2JYt27EWqsDHM2ZNa89uZ6Lgzz22AI4VR1cLx69kUd3SPzeDRJRKbUXt7INkNvYN91JqNKsY43tvUamtQlt09nHQDt6eejtoK5lpw3QiEMoJwQVl8jZXhNAPEmjwRPNSF7VBKwkUErh4cMr7j94yNXVNSDsdmd8863GLRbOWTlbrrg6riyrkr7WbMVupfDh+Zu4fXmPH98/zQ/lz1uXTT23FAOkRLKu0x/aPWCW27y9vK6ddQs0NHhpNVPyoqSEeUZ26hfUqRFqoTlx2bIf2iWqgRUKySaFoXN+Y5vNxnWb/4bWPX5fNwFjlb5WRaA1+x63VxvfRh3Q5otuY7e2NvFRK+d22Z7bePagqrtpreIFPa1ZAhrpoiGtFQONKrVq8aIm2aQnNXrS/gYe52d7YorMu8Q8q5ChF8N5ge62eG887JrCJqhtJqCyKWDUwCN2soWL3cQp9YCEVnth7yDQbY9BpOh31++3+1ieR2i2Ketmaq6gJx2lz5kxidxtesSbOpkyPhc2Lmdzv67xyIQevvCGUDAShDzyemGztW3Oy07UHT0r9vQh15p/4TrM/HPexo+FT1twKcQoTEmAYGq6gdJQ4nuspNiYKrRZrKNh5ey4sj8uHHJmNdXtZon7vqrcFrlTZxcmolfaO1Nv184G6Npcnd+80zHfHA1odSOwYI9tIYK/sFVVfu7dFW/Y4cVUXZ7CA1bvFEsjpcBunpFaVJzTCDjeGceBNR+DIUBhAE7QouNpnpEYrDDQwfgIW9LEpMB1raULJ/Z7uxF3dbsnehEEMRlmI8pqAXrtNrl7+iEaKKddebTI0v0U2yvtO7eiF/3oYOlYL1XRkjdOlEePk4+Rk8/9ej7OG0BZe9/2/V0swMBCXaq6drVfA10QoNKoWX3vbbFEsxhpgHcqViVNQaRg728bkmeTYuDJsKOnO5U9hP75WAFhNCGxFnxMv7Ydaq0peNiGr5i9u0zzOHwzXjdwnYn7b7XScqFET2aqbQhoLDVPO6QVklgXAdF4bSVbjtlIfQQtZAnWpTJp1/M57ZjSrGTAkHrB8QjTBS1q0QKN0XXBBXB8P2090eR+pV+H+pjjAYzEVE8Hc3IvtdNLUKAYiycMGLU0JT5PpFYVG8VdMiM9GPimhdhWPGURje4LbsMDQrGEOtQWbN5bsgbDjAQ+99h7edPVi1wsDzReyZViJGAl/xYT4SinIpNixFA8OWnX6/ao6ZXVVm10G4od2RozMaImHivauvT4wYy5OPDNiDNcCFt7mZvBTQFagjpByTaGtd9nKUpsqxr8jpVpa9BV+73YPqXIbrfj1q3b7HY7FZgrhbyq4LaEQC75390C+XdwdOEx9LpaLpRlJR+PrNcH1sM1eTnS8kpolWTE9N2UtMBOcveKBBObMlBcBVwC86Si7fvdzG6/Yzcr5pFS7ISO7dxuYrhlFAIJULJcF74Pnvy1a+i4WhuxJRuBm7AlL2/mnMcEXwOPOg1n2iPfNRJI+lon8OrPOA5or98+vCjV/e2A2o3QlOzj/mDHV+F0f99+notZM+a5cqeDFj0y/BJPyjlRDxzH0zFrxQVzumeu2J4ogasFiC0QiyUsgZx35HW1bmZa8JCbkmviuhJWIaLCDWtrRMFwtIH1dsEN+19gJAGp3j1OscSSV0oSqsThZrqpDMMWvzHWuCmH48HyiM2WgUfw9XyaQa7weMHniWNYjk8Pv9zntgtgliG4hBWuGmF726FPBTtc6NxVwVqfFb67enHXNh4LmO8k3lnPBKS8u44JTE0WM6akRK+TzpRBySZxt2MnAvOefRRkf040nPQkjrUE6iZqhV/6F5x9yw+RPvth2uOP2bqzxJOPsc+9oCSuFCNXP/iHePzTP8EuRe1iPs/s5p11GLfkmq29Zn5VdaEB+ywlCvs+QI8xtWuV7kWeKNSQtvR4+fW3f5BrSdT3fT+7T/44XD/UJHMISAnUB69RH3+a9PA1QoyUaSLPhf1ux7KsnH3Th9i9/hp3f+nnKdSud+KJSvV/T69fZ6CvQRnjwmYlbX3uPhdu1jrLazYSoOKlJecuHASYT+FkeI1lt10pmxVq6DodSdeYonWj33N+fsb5+Tn7/Z6UNIX3kfwEV4eFj4S38e6rl8hXlxyPR5bjwrooxudDtXvxJS5vvYXzB1/hhTCKIEPQAqJpSuz2O87P9Hs+/uR38tuvvsLsxS5pViG0Wf/tZI6tAPGjsQ8MO9RJ4D0O+vp7zgl+so3rxW1vePQN+mldDEoU52sWMzUXoagnU2ckoGGIG2/jVrtdjS5q6jDK9ty2qYCRY2rmC8S+Q6g/YMnjWix+dfGDIbJXSu3juV0NXjAaumCI7mld3MRfbz6v45y+x7sP7tiQoPOAmCgpMaWkzUfmiZx/teD41/co1dcHKlQphg2kBCF237lJoAVtJy4xEaYJ0kQLUf0TnGCmha19P3ScAIt9aUgrqqZuTY4kmlhfa4pfeJ64OuZo+6qobx5i7HtxLaWTdvo+3lq3ae4vbXGZLrKJlb45vmlz2OMVJ+3bh3fTWYtiZhrGO9Ym/FJ6mns18Xx4C9+dX+AWi3XHrNQQKAgualyBkgtr0XzQ8biwrEpY9vNuqs5FwLrTxUgrTYsW55ndNPNt6QEP14AEF60bgo/JCFm9IUH3pRtEz9GAOVxoCkTMt7TiMdj49ILDigEM+xqxX4yaE6UJKQnTpL79mjPr3mP3xRoWZZaiygWD9KhCtjrWw3/a+sMgSMDiW8NlEKIkE5acvy6G9Bt1SBBPs9scTiQBkUQNCVokRu2i2qRYZ3f6HqkT0bgc7oNgvzLyjPvb29xKa6g4jGacO3HTRap8jjXDZVoTaqgmRhP6XFUwG425+/3uEfrgpdqE6n5b65dxglM6rckkVnTuib8u0Axo+3pCU35UNkTxzfXouClZzP1j/aZwGhuerAm6CKD47wR6Hr1ZzChD7KDGSI3JhOcUG4mtdAK/i1ZLOD3vLcn+axWsCGJi9o5G2xWaD8O4ZMY/3nioeMrmpWOk+r7oXTMrwXxqO4cYCLHhzXxVPFrnlQi0R67pN/qopViqU/oc7ILNYDyCRm2Kd2ujO+3o7GPkOdk2JUrJZl8qhUwJkTpVWlSMI1ijsVoTUmv3w3oTr21MVf0H9L5KoYaMSDR+RMOkBE/ijO0ccW+l2d4oNr/0SwZ2suUsjXgR/L5p/B9BXPR9vKbHEH0di+VFvECqDMIfyj8pVBPDXVUUsdYeu/UusqsKSyn+ECxO1Rw5VoweWuvFNI6BuD/ldiritmjggR2HaVo80mpDmwlXpBaaZF2PTlKshlOggrI1F+qaIa9ILsSctZszRTEXBTpB1A+qzsuTALVYB9UwCresCLe0aoWhKhog0nrOFRQLwc5HWt3SPK2RyVYk/OYciuvptRb0npj0EmN3j0QxkSkmfdi/Pd+pYlQJJFKqrVPLxahIb1I8f77g/Owxzs5vMU2z4g8p8vfOH/BHw9tJYdJ7FEQb4PVctRWs9/ij8G0tUtuB+9XiyrYqv81ybKUtlHpgWY4sy4G8HqltgZa5UzNfoRCcUOzlFaWQy8KyHCnlgLTMv/nWHyC9/EX+2ePv5Hu/+HOd2NyqxiS1ZKRlbBai+fGiz14IZQvAO7mroFTdCE1VK8B0oSkVmVLxUuVg1lYpoh3ZtRuzC8XRfQPHL9vhoU7z9UAoR90jESRUiHrdNKHFBtKY6n3Sx36C6Zu/nflzv7IRbFj0OahPSgjUJrzlVz7C3fd/E09/4dO0mmktAxlv/NeK7ZpN54W0ice+8izSZlZmar6Ceg3lnFaOTOmMKe2p8xkp7SAoj6YUeH2Gzz8FsUzUt2Se/mqm5gvKesFxWTmsmSlk9mnlfFe4Wm6WQMeyLOScOS4Hrq+vubq6MiG8I8tyVO6Y4XylGN5n97HbQNTk9C3EDYg9NxyzdfxSXxYaVuQqA5cWN19qC058EEZ8bjof3aZ2FoDhw0P4svX3eKOH6kKQVviJiey5iLAlik4KLrufZvuz+51uy7w4OQoqLNX36S5fQmhCqMM2ivmdobq/ZzZp4+6IOds9LvHx3R7mi245jtuCIgdBrBR18+E+fhtb7IOMdA6vxp5YfG5+vJ+nNOV/mb+6LZ4eY9Mta78fAuMnx4HF8pZFsaYQ9HyDCDlVUq3kWqyRhOIvzQKCLmJ2Ew8rmvN4WaRBUVGKeZ5UNGiee6EkPjeaxp7znKDtqSUTRH2jdV2oWcUqj4cDVw+uqGtlXTOHw4FSlLu+rgvrsnA4Hrm6vubq+sjDq9WEporyJWNSjo/5KqVZoWVuXXiqlEpWlwxQXFgMg7zeNaYo7GaYYiSGRlQvn/T5jyEp0qaoAhC5UoJZ72L5ZQv7QgjUWLXQ1xo2Iae8i2de/qTGQyF0HG/ky+DZD/0Jdvdf4Ivf9R/x1n/z3yGief2csz00z7xYUVwpKgBqJQEqQimR2gLLP/9L1A/9+xw+/A85rAtrqURrwnj2rd/D+bd+DzHNTJ87Y/fal9jNM1OaCHIgz7eYr59nyUfaUiE0zlrmnc//a16+9Q7ec/0l5sdvI9MT1IvbhDt3eOZDHyC9/gT3Xn+dl19+mVdfu8v9+w958aVXePjgIZcPr7l964zz3cydO7dp7YJGU9GcpH7NsqyA0HYN2cE0JVpLiGhxkC/yaPnTmpXLOE+J/W7H7dsXPPnkY9x+7XVevV6IRf3/ZVmgwc7ET+pQDL8RR29c54I2JhYk0nrhkoqeWA7Mk2AjgjB8wPap6ntqMLzSciERYhPUh6oI0cSELTsTRlNoxdhVpDTY72KwJpGGt9MgpEK0oleJkTgrtyTERIzWwMyaWIdo/HfjLQ+ba3kjsxL1xFDY9dlaEcsxubBAQ5vz1L4GzB4YPj1EfnBgqRNRguXT2waPOcX+6eID21ybv27MSDs3UV6SCnIMm1TNWIVuPdwyG9ay9TkUMCTEiTShY5oStUxUE5cqdTTDcbxBBdYb3syxNyIVK2yGjZ3W8/UGFaH7BW2DHW3WiPm4Pt+qYVHSsQ5wi9gH7iYeHaOyacDgb/hdAQb/qtnPImNtsuE+nrxTNlCe/186NuA1H6Ock/7KjgfWSrYKTM8LKM+HITSlN5qQIpISV6++wvrE2yl3X+L+/SvARYw9PxOt2YD0vPM0aVN3gtpjoREio9BdXOhHiAFKaHYNmbAG1vCAw3zOvBx4yGvEkJli0qLmaGJTKZFC7E08a1s79ufjo+uZIaKnv6QBa6mEXKzoXhsizbud1hG1QM5CLJBzYco7cl7Iy45ajgiV3azNhtNupw3urZGi50Q6X03ExIVbv48hqD+q6I3NfXcK/bzBBIO0Fih4fiNIL5SNBKJxNqQad7GIiZo0GirWXlIgl8rcAiWp7+BNi8MCmK+fpXGsFYrnUjiZSzfh6OPa5/7Iw4ftfmqOttiQucCnr44A6kebD+VrNcrpmnXsq0dRTWMFz6VWF7Wpht2KjDyYf4rNA/f9txFLwGoHetF6VPykZer8GLNU4jx3bK1Z4azjqct3/C5iPpJ/8D8k/vzfRNY8io1deKapTxKeeSvyvg9R8woSuH72FylWh+E8lWoYuqCc2M43i2HYZRSzaKXRiuGOKZJTpOTEV77jx3jnF3+GlheokxXOa6aBZuJX0k5Eb6vQsQ1EBZusXE7zkOB0Ud0fze46Tg4WO8gY921c1YuZOw417p/Xz4LbMPd6ZHynY9gCNYjm1M1vcoGpKoFiP3tI32w+aJxtDzZMt01oeVMOz924QXde6PZQnMEk2URncsB5RsHyw57HH35nay4KoPV14jwR24Nq3jSt676mYXZeE1arcpVf/Spp/TDr7hZ8+VPk2lSscINzFDERuB6Tm1ck1QT5AilUUoy2jvXzU6h6HUVM9OERoSkxPlbJPPEr/5LLZ76NO8//ImuMY527CFczoUCbSz6X8fnB9mF4jPHndW3q+iybOXvvQ7+fdv2Ay9/0x5l/8i+Oov0+693baHD3S/Dql82H397F4Vs4IjJ94p8haVNC32EI/bT0+vOKO9RMePhKH2tvLF1Ko14/pN55GnntBXJxDlfrAlPBQROvU+i+0PAjlXcw9givGxu1FuMSen4myHh/Debr2pXdLDOmTdii5k+CxQw65SvbBrsu0haFTaNZtVDNsKNWpXN8MX9ucGPpmJUPjnNk/f7nUpGWu22SDb931LSFnn92X9wFY8XuSa8RjdKFPmIIZovr6bpuPuus7g0V51HDhfogtXUhM7H8jwpjCpPtOD1ODR77JYtn3eI3289lY288drGfzWb4eunrwccrWlxfvTLAauVMyFSsznPbvK5VxTWq5Y+0+WxVnk6tEBulRT7+xPfzfXd/ZpyGG4VqQiwS7Hfu7xjPsVr9uGhdUanavKfRjDsfeo1BbOp7zymxmwpLrqwUomiDYxUMUjyxeP2MYZkV7F7aXhENT2yiOce2UkrmsAhTvGGLDHoMCkHrh8REgGw/jzH0Jqt9j2dT299EcyLZ/PUq5GD5mODtTfXepw3vULCcdcnkVjnmzGHNHI4HDpfXHK6vOVweWI6LNbFz3puQyqr4Ri3spwnOLuzcgjWYnkxASn1H99Wdwx9TNI2A0OtpdT07DtysNF75mb05UfFmorXremj9dGV5z/fCk++kvvMDpF/+SeTBK0SbO3MMJPexW9X5IopLiPHWNc/aDKcQltCl6wD0fIPz2MuGM7jJjbVmzdYHFy3LfY637zBfPeRwdcXUVp3HNQNqM3LOHI9Hjsd7nN39KgcDR9W/kx4Tav6u8uDbfhfl+iHXH/y9pJ/9q5R1GUJTPU9igYXbnx6fDw6QC0tNxj100S9v/BJlNEqbvKF61Li2a1aISw9tbOOv7xL6VY8YI7HUIZqEiYWieRG87iiM+pUufiaWM6kmlFRK9wWlWi2FceI8DsNsXvT71/TuqY6EQJggJqo1/Km0XpNO5zd4HKY/K99vnHNtnnurpJ/7u7QP/HvsPvMz5BQIpdLpA61SWyDVQKi6xkoArYgqeFNk1/Xo6I7zQ+zomj9SceSv2b4/DkGq2eW64WG5v2s8htrguSe+nQd1z0uPfQvveuFjzMcHQ+CJEXd4A1PkPk/cf8C98zdx9vB57rrtbG7tpWudVPPZAd768Gf48lu+nXe+9Etc4R9q9Q41s66ZknO3/aNGpXX++Da2de2NuvEXHLtxvKt5/G97joLYFUQF+GtT7MTX9b8tvlJfctRKN1Rc8RuJyb5hoSm/yH4bbTPGFrYP8VbExIufXGjqvS98jBff8u28995nYN7hAlJf61Q7EGuTdOtUD2x/46zYjfGwdLzfbhS1J4QVMDBiN0aKaLUH2J38vnEgO2EUeidnT5ZXz5o1VCVuEpIkwqyGbV+s28miokefe+I7kCa8+O7fzDOf+0na9UPtjnA8Mk0Tx7MDJa8cr2fO9jvW8zPy2Z7dfuYLPM7DuOMH96/Z3h0swGpo8bUgYolGdwO3O24bifQ+KTfX1v8nIG0AQU22pq5f7teZZO0Nr/23Hv6dPbK0+2cEqPFlnQZw+l0WLDg5p5SsidFV1Rn9kdehfOwb9U06JCQFYlNiLSvLmrk6HFnWrIrUq21GpRIkMM975mliv9uz358xzXslSR8W3v+Ff8lzb/4u3vniR23EvLjH77WYcVdQeopWlEVTsltpZBp/5eK38ccvf5xaG2up+qhKNl9KYbHuPG9qr1OBSzBRKleAVxCO5s6aGsRn7t/j3v5pHjt8hdesyCra+o5mEFX5vlCoXWnbRVjEHPjQTHSqRU0uG1EwpExcM8GKYOKUtZtCNHDSkg0hegHpdsOxBKOMf/v8lLFIToC2frRNgu0buultq3/jv7J118b3NP8+N75YdV/rQVcPpnHQyfYyL/C0vbmZSJITxFr13+nvCwNszCYOoGJTlTVbt6rayE2Je7lq4UHOBe+QCyZa4XvjDTmGsNTp7/te6PuIGAnikX3oDeIk5pwHJ7ubUfd9rDsJDZDG371+J79jfo5dyPg69ASPvzdgc6AWWllp2TrfBnrhvgi9qKtZkHY8ruRSub4+8urr97i+vgbg4uKC/dkZMSaeXu9xdXXF61dXHA5HIxTodSUD8J/hAV+Mj/He48sc82F04wuBGoMlWROkCUmRb4+v06RRJFLEg52qQn/rkTInap5pJdPmTCuz7nOe8G62BlHRAXWENOmrxOTQ57/7ksN3cPvUxj11EH60gsA/YNgzUSdfRL/L3bOT5K7fN//dWG9tuwdsJxHNAgJ/9elE66KI9uYmZoMMJFEw2YprnVBfR3DbzIGVYGvY96YbdkyTFvHOsxarTXOyDq6xz7NoIlHelcu7CUq/Rx7UAhjoar5kTLqPOxlj+zlOKizW3bsf1pkFGV3Qt1t8d5N8QwVoQyGaNoiB+iKDqqvvCeNt+Ose3T945O89NBkhQvd3u4clfvogbfNaXwfbeT58vT5r5dQcNRsfGV+HSOgfs0jkr/JNvFfu8Xfjt/F7y6dM3Ez9h4qCl7UKqTZCqsRY+MgH/zDf9Ym/xhwj+wZrhfPjkavDzNXhyGHJljmqEDRxouSS4bu/wZj6c/f9bM73jvKb9bq5bvcP/Pr7p1nA28HhLtIyYggPpLSbqBX6yQ0UnHpE5MH/H8AAmcgUJ6aUEAIqNOWdAVqfs9tYrge4goEWwpRm4pRIVlQcp9QLu/qUc5u48R22/ocnfWijcGKQBbBnX12joKiaQnov2u1zZdjyZqDE1xKZOolZ9U0nQ9h8PjyyMt+wrQtfs4iiz1CbXI9+9/j71ziXWk87lvTqN4wE4PdzvE+TDA7z4E6f2hsHhpqBuiIqHGc+oXaRGufRaundKPqVbP1dRsFOj4vN541dWHN04tPrx2yWvjZIIKIK6KFWgsdeBpCceIc3LcOFJhcaSjxyX7kWFderpWnHyTQjO2hlgZzRIh5NkuSSNa6y7pExaGfJKe6Y0o552jOnPfO0Z4ozKUxYn8ixs3V/M0CVsX8jPYaJZsy2aupC6+Ci6Yt1wQ3tOGKAVVGgN4TYuz8EE03JVsgHoSeDPcp41POIEpAonQCSmomoVSfke3xm979oTBdTNexiR47FhPJUmFDFY4IlwAMFePbOe1gl8uzj38r7Xv0U8+EBS1Zh5nXVOMSTP6uJw/j+dP2md1POH+dNL32KZAVgwwlwInxT8BRRv7Q1w41abxjQbOwFup3x/dgc+r7mexzkxQi2j2kRWlAR5KYkzUggEggxE6fCYckc15U1Kzm+L1PEhAW8O2lQQWXrgHpx+zZnZ+fUVjguC3JYzEevhHwT7Zj5eq1S15X1eGS9vma5umS5uiQfDtR1JVCZgzCnxH6aKSlTgopgKyHKiFRBSCEyxagYyTyx383s9zv2+5ndfmbeTUbKN0KQ7Y0OX2v8ofubi1OzxQLF1qCcroNh2/yhe6KKEWPv9cIR8CTPVgRq2IoNDcJ9tk0sap/G8ADUUEmTN9igRw8XqXAibMX9ZfcP/Ax8Hrexd9ch4ra1d1Ldpptva4KCvRjHgPVtcaaoK63xTS39OrQjKJacHh2rtn5Y2c2UvNsIvSk5uoowHY6kcOSAry0oIVDDhojWBn7r+TB9mH/fUAGsnHsH21IiJXhy2wjoPRwbJIYbe9i8PS2o2cyVR3wVt+Ngfl7YkBZPaunHe5phSe4/NBPrqptnxwNLLeRiHVpaAxeiaoN4s53lodm499PTuKD/HUhiHW88xkzeVdY7yVpCcxqC+0GM7O1JSwGpC+EzP0d68hnCVz+nQsaG/7s4zylB7DTRGZ/7OOHOHUxdwcZXfdXe9ML2ixACr33PH+Dxw6vc/YE/yvt/5R+zmxLzPLPf75nn2QoMLGo0LK9s1iFwci4+OnpPwVPWLsDRALHihFwKy7JQX/kK+Z0fpL78PO3+Pdp6HHtfEOSTP0l913eQvvLL6r/VShTtbH7nW76X+tQ72b2jUXPmtU9/jIYRpR0r9Wu3BHnHHjex/9YXFBiJNjb7y9gQb8xRrHBdiQfe0aZ0DNb9ktYGYbATB21PbbX0mFRQrGOeZ/a7PRfnZ5yfnXG23zNPsxb51MLt5R4v8Di7By9wuHqgtnNZOB4XjtcHjofjJm56QHr1Ze4F6bbSu/ap0Eti3u24Ojvjc098iCdf/Dx/96n381vv/xLzpIJn+/2e/X7P2dlZj6W3IuJbkSmPoQdm6vbsdI/UmL2nak+wsyFGwMnnui3dfrbuY46f2b9rM7/T14rj3lZe2k5t27bYu+St8JPN2Tb2ePXDx1jqxdHHJSUjdNU48ChRcZy62et6N7AyYiT3s7f7cmsQwojXRocsJax2kqQCO31ddRKc/WnYP6eZOckmEsPYJ29a4aXb62rdcRGQGIhJi6nECvxyVYJdiDMhTRAnWkwUif5Bb5g7VLUdCrPbnC2gmHKl1ajxetrgH3EiHys1uphwoyyZ3JTIltJEak2FrkIgl9Kxj+DzGiWhwHZdtI7blVJO7oNjUr4PNhdSYyvmAerDNBOn1r3fO5pB4Lw+5CvzWzg/PuC4XFKb5hCO66q5HesO6ymMtRbymlnWleOiInbFC5ypdr2ReZrZ7bRgMkXtRtqaNryJyYUcowp/rJm6CpkFpI18g5Fsks1rSVhOsaCensaaVOn+nI+Lg7kiEHrHUieAVMVH0qTnYX7mukI2Dd6cV9a1WNjWOE6TkkzF88dWBr7xRSvDh9+K6Pl+qB3VdewDGofvd3t2u7ObZsYIccLFjqJoh88pJSQkStP8aCza3bvUFZqKr3hhvXc2dpvXD4+NfEK5rwKAnAisVBo1+PqoG2xKLUSTSqPgbak8tgpiJUkiNtYu6qffoF+t56DFNSZBpWCgxvtieQfbQ92f66Irdr69v4n7xY8KTW3smMdHPhzDDuoXnWCW/qIOrW2KVW3PEJe/EhVCDlZM1bCiEseI+lpIBClESdRQ9Ofg60n3Vc+LhI3l0WvfEK7byW3wocDJvSfXK6d2vIfGcGpXPH7zsZHt602AxGyjd+FWUYaiuJiv9aDBWLN7q2Ooc/LGCU3lqtVats9XbC7KwIu9eCRGj3+rptR9niQjaYoXrQjKXTTi7hp7MYsEUQ5ELaQ2ISLq12S1pykOQmc/xDBGEbV7xXCM6Bhkn8xjVdh9qBYXlSZdMM6PPrvcJ7XXbnFktV0y1hf6ua3UTdx+6iNCMwxhI966ETDWD66UsqpolOUIfe07L6gUfV9X6O+iVcW6QpoPZuusn7PH1j4QW2zoxH5rLNbQfEyqosXJ1UR8DL/p+ErV34mdA9VE6VGuQguYIJgVh4tHxVCEIZBCo5U2hDlNcLNU96u8YFp96GbcBI/dVFQZLejEcIBmeEmMp3Pnhhwdh0W7o9amIke6zSpioILr2gQikLRAmIQQNyYsoIpgKg6kAkiBFGdimNnNZ+x2O3a7c/bntzk7uyBNE7U2/vr+Fb453uEvhhf4n03v7+LDpVUV1q+ZVo8mJJXJWZsilrpa/n9VPls5QmmUpj7IWg4s5Zrr60sOVw9ZlmtKUaGpSCZIQdCmLMHy34rJZBVPL0daK8gXP8ndt38Tz7zwae5f3h9Cn3jRY4W64mJVmgVuDnXjCkFa9NUGxi8qNNWFpKoXDwZqFUrF+ER6nz77m/4w7/rZv6m/L5VSoBbRBmZWeSiWQ45ffpa6XFMevg7370FQXlcSiEl5kE5eRsTimSPTVz7JdBFJoWhzpNiIodj9z0QJJJvvb/3ix1HJn0KTgrRCcOzQGz9KQmQihB3CjDZoXGjlSK5HlnIN+UiOZ+R0Rs632e1vMc3nhDQTY+CsCvsMhxh47CjMcUedLijzHQ5T5rBkrnMmxcxurkzp+jdkLX2943g8sK4rh6MVhhyuTWhqYc0LOa9muzexbXPEdhj7pkbF/4FzaXQvc3zZEAKz+TQTAd343uFRUP4ROFabmTjSH6wo15HbUwTXf249D+R+/ra4UYVWBMWeg/uGzb/B/apNLO5X3tzHsT06CLkXLNkbq/R/a0EufQyCN6AR1+3oRun0cNvkdupkfIbf6SJVI7ex5b30l+MV6uI+L82KKMfHBruPjlsoUX1bCLkVm6LjUBIq0kLnKvjcGHfI782jfwNqxdpnWP7B/IIQTOhIixqaccO7/Uf5jGOkb9Yxp8harDguRcpaiEFIKTBNKlohVoxSrXggNPW/U9JGK7TG4WrlcH0NNNo0UddVscLDohzCtXA8HDlca3Pe6+trluOR68tLHjy45Pp6YWmNHIU0z+ymM+bdjjjt0PyL2tNSG3nNrMeV5biwLCpadTisLMfa44pSKodD4cEBUoT93DjfC2e7yBSEROjzZ62FJhCjFjwLzktqRLNFjqOo7nDo8ViDHqd1wYKoIo+iT4gIuTUef+3zvPzmD3DnCz+Lo3ydU9sLhate36q54aq6EzQgE5EWyRUOx5X15/4JF3/kf8Hxr/zfONtPzLvIvJuY20PiPBHrSswPkSgc1iOX11ekn/s7PHzH93Hx3Ee5J42YEme7mbPdjl2amOMn+ZUpMafE2X7PnSdf5WK347F2Sbm1J+2e4vbjt3nm6mke3n/Ai8+/wIsvvsSXv/Qi+33iTU9eUGohTVEFgZeF3W5GguJNeV1ZgwonuMBWsfyXBPU5Q1AR6lwbVbI28Jgi+93M7Ytz7ty64OzBgfvLgZaLBTmJArQW3hAX/EYf67piu7Ttf84RC0ixIvgo9jvFFrQwyuNsC4yd8xc0F0uD0GVxNG4PIREs/qjJONoiRAnWcDqRknKupjT1JpoxTiCK+wNg6y20RnIcTASJk2KfUYuKEcVG+8NwqcHkGHspHRMdeMfIsPoeaaK+XkBsPlNs1myojSJDxw6GfbXYqbp9DMRgdsVzYmxzfHSD5T5Ah5Jo9IZ9HcN3YcLQv08Mu9D9QPr5+BeMWJPxOiItgCQhtURLE63Ouln0ZrCGv1rFeLdZAl5/pPisYS1N/WkfVdhwUfvJWGzrvrWflNggiTrC0vOjbQgx2WFZkEddnxtzhO4HWaRql+utcLbiUxpcYGnIMPjyQZAUrMBeXx0sJ+DxOI5daYdEy1n66Iy533FIu18uWLGWzJrzpuhQdP/ytwYVNLu4/DB3n/lOHnvlszzY7B1BjJ9jjeRD9MZw2gQtJs03VDLNbFGKkTkFdlNkZ+8NoVlc5jhg4M3yMrUWHuPIjiNHURz9GMT4ZsoLSl3MBI1jnEdcN/OsOY6qfLUUArk1Ys5MLzCpHgABAABJREFUZWfFpMF43JNy32QCmUCSTetKyQvrcs26XNPKSgrCNAX2Z5o3nLzw2zCKzj8VsaJ8zxGOAlu9pY6NGIfU71sDiQ2J2qzD+fUa51ZqUF5VEt/vGlKEkAsU5XUI1gyjJRqBGCshVlIpTKWS1owgtDWTV+GIYaRFGyM2CUi8WSutNXfER6zUeeru29ue4bUnKQQVVIjKnUox0AXF28gTAspF3H6XAyU9pzr2RgsCugiG50arY8py+vD57bY3hPFscgX63etC+sy/pj79PtJLzxq2gPljhhOaXZW7X6a++0PEF5/V3FPCmmkICaPoZYv2yqrnOs2E5UCcZuqqH97EcQwTQ6NRJfD0H/tf8crf+H8goPVRReulPOZSGxWoWUXMXv6+P8L+tZf47Lf+Ht73i3+TfDxa3jWY4JRiutqYctgHMR97iBOFYYPsnkhrKhrvY241Wc14xT2+NSNaPVaqow7WxcxH0yXH0Zrf9HHv+q9URLhukKKGxsQqLtbsoVdVsWJl26+buG0L3XcKXtsjW4/gZhzbNdbqwHtP3VrPPaG+ELqOOvfCfL4uctx9L8t5GObr+PPgjDierXOix8LN5r/l9vXnRnvtq0gp6qtX3etdzKs5fiKGz2320IAQiuWuguEU/lwbxYSmXPAh9DHQuefcnxiEWDLnX/gIa5+zNjbOQZFACNrkqO9bwPByBhajW43mhLI/aiGXIWpcaiW89DkO7/l+wpd+seOu/YH7o+ZfVcVOhmbBpgqnYZlEfdTx8i7I0NrwV6RBfPXLCELxLbNjR3pu6dkPs7ztO4lf+Kg2mDPf0BNC2iza9lTLTVqf+8046zqTfv+3PBjPpfhabV2otWtLCXg9jSA9B3dTjlwrMWoePSbl4TYEqTDFwJQm5qR1LimqiI2KuZz6w8OnH/epCboWSqWGYrxOxdOakrJ1fzOOpzYGGQDXluMTjEsuXRhETuaqncLJc/fr0bnhUYljI4MHa1wWy2Y7IqcZcN0rpBRYjZsk0IygWWuwGA1EIsSIpGDC7mbdRTbbeRin1nd732Far7V8wzQJOquCaFMY/7tei+WcYuW56WnuhVt8x/o57CKQWrRmpDUI0eLGYvly4Wee+G287fgCP//0b+cH7/6U5eP0oXG4aP5uw1UBn+fBcliV0vfJ2gXOax/XSqhaIzFFbWR8OK4sQBIhRVGxoEnHtzQVy9xqwBECtaiIIoiHHBr7aeBBrpUp3Ky6aBg7neBxlnQudAjO+93wBX2v3+xDKjDY+v6lR9H9RbYcWR1x56nXVsk1sxStd7heFg7HA8fDgeWgDTspdqdEjOs1Md19jrg7Iy5XxHxNOL8Y3LXookUTcdKYo/uWRmDujbW672nxuF2v+7TNajicP+iYf8nakCjn3AWn1nzJ5dkt0uEBc4S6m3VsTLRLWoViwmcmXhOa0IIJvgk0q4/E8gzFcoKdXxgxjpF0G3oIEx977Jv53lc+bnbRRLDND3/q9S9R15XHj69R28Ji2I3aTxPQt+ZLxUVvzLVz+6sxcLMmAo31hc9S3/N95C99gvX6etNY1Wp9zAfp6LxseJz6T0DMl43GxXaetvIWksW80XQiJuNrT1NlCio45fnKaH6zz82bRqxyrngK3gxYeQXV8hSNhti1TtZ0cUqKOeql2F5vn1UdEwuRiNZgbSrHVPcG9dOmZrwZi1eULxApEsmGa4txK/RuOa9Gupsg5h9Ks4afzXCzpjUysRTSL/8r2pRoTetypFgUIBHHECOBL3/Lj/HMl/81rPcotWkD5+S1bHQHp9cchE3MY7Z26weOJkR69YoPeV252rTTGhY1FOH1F7h+6gOkey9zfe81Dsu15Ylq5xq15mVK0uOQJl/k+W6x9bPcH/A4reck7d+3Xv8w90JweQOte2muWaPr1WsF7n3wd3P+xY+SHt7t86c1t72tN5hu7bQ+tu+zW1zW4+rgVlGgZcPBHJ981KJLf3IX0jFdjwN7HPmrHL8moanTc3CjMXzVDezQMQMlo4wA5J13P0WYUic9ewFRYPs5dOxLE7Nh8xiGzWdUo3bnXAM/G4JgQYQVYyhguFrxoYkOtUpujWwELg/OnCSnRjWyLS5LMSIxdGVr8EJNHwUl6DRz6KeowE2dJ9Zl4h31Lp997IM8ce/LnMtCkEYtK8dWyetKWRfy8cC8m9jvdlycn3Fxccbdi7fy7P6Mi7Dyr8sF3z+/psBLCxYOqtBUiBU7gU529PF0YH6MnfT5NDZlMfd3s4hwI/zvcOPuPrYvQwuHpJ/eySRum59kcx0j+acEMU+KrUZ0WNbVNo3hJLhBvEmHJO+mpgnVQy4clpWjkbqPx4X1uFBLJaXEft5zttOCk5QitVYOWUHxVhvvfPGjllRy0RYX95hI0047l6fEfp6ZU7RNPij5UeC/vvN7+K3Xn+S/vfhd/Mev/6PRqb0UjuvKYVk4HBeWUoy8LkbYkL62alPQqLlhsoA5cI9ZXuKVEJitA4ODFbtp6slioqgYFGLdBzTRUsWE7FpAsjpqTmxWQE+wCgFtcGrrVz2ngvPDm4xCy1HktJ2R0tc+Mv4t9pmuTCybdeFJ/m/saJtNzycCm19IP7e2PQ/ZvEnMzbcFXjHkwz397jDrcydbGwCpRsSLzzSgDDKIMq1WWvAOBN4lPGqX8Fp0zqIkR0IkhGTfPYR9bt5h+19HHYbDPvYUhjGyse6F4/YZHu47cOOFqog6YEWqihS0xt+8ejfvCa/z167ey390/hnmYN3JUuj2o4kHa2bTqikARx3XFpJ21jFRgDhN1GOm5iNXV9ccDkeurg8mMiXsdnvOzy+Y5plcKlfXBx5eXnI4HDrxI4gWw8Q5ElLk/e0VzmThrfVuJz+J2fSWN0JIrQFJA4GgybAapRfXaRP4VZM5ayMDoWkAldqOOIGERHT4rulY0mxNBgPbXPStezycKG47COiJq4GUNTyNqfevjjea1+zrVrbrrW2WmP1eu+Taa9soJtAlJ5uuExsvSE5nCJszERSQ0uDCiZsaFEh3/IruYSYOE9Dv8O4ZycGAG0bWAJimaAVHkXlWkZoQHxWXiifJEi0SoAeiICeArwQds5CUJP21BKaUZKFzqZTCf12+iz8rH1N1e0NFTgh/LpZq69yfHUkehfpOjGfjuNs5hmAgm/57HK13i+mqxZu/9q3Fkux9fmx8M9t16Eap6b7e56aLH7axR/mHu0e1peV9rViiCzLZdyQa3ymv8pH2Zn4XX1QBTONY+7IMTYixWgJc+Ilv+6O884V/w4e/90/zwx//C+yYyU3YH67ZzRNTUPkUMV8N797g9qGNokq/VqEN0MoDKb/EVqGH1O3RS7L94I2m1eOB5ms/jWKxE2GQDVgv4j7IzTq2BUkBSAF288TFxQWP3bnDncfucOvWObvJuv5kJcZinXj80FzvJoXXOqSMxESaZ+Z5VpGpFLtghtv2rXDQNhAdTnzr+6UCjroS2vZvaPeeKGIEfC18L3mI+Z6KH4x4Qa9BY0wtGBkKz2zOo23fa/7UiDVO59Cjy6QXxHig3+fJ8KX0eVvcbADA5vwdKPBMhyfhVLRmKFeDJScMlBWBIA2xgqNqry0NA0z083syTAahOIgX3FmHUQN2a2lm7kZif7tgHEwoRYutm42d+iogRvTsAJjHYxZ/11aJoh27g12vCL3jkSf6hg9883xF2Uyyvj/YeOQ1q+iFR99N6KJcVf1HAaZJizR384797pzd7ozdfs+82zPPe6ZpR4wTQbSwRYMom8vdETHAyECs4Cr/VpDr4FY1W6JTzL0f6fuhkpzGUNcy1qHbv2AAlYKe1n04F5sfw27KhvQUZNgaLWBXAk41ke2VFWrGO/nkrN29qhOGqtBInUxSW4Cm3StyqaxFC35Lrdy+fJkvPvY+bl3epVxfcXk4shwOHA5H1lXxHZ+HLuAgIixPvoPLJ95HXC7JT7yfJ776KSXSeAcyveM6ik07BccQaa0Rou5PtRXFHgzcyz35YPuwEZhFxLCGzX6gswgt3nX3IVJFE6NKsNNYQNKKrFnPKwbCsmpC2TGupqSYGrQjaqxB51yqrNPEui5M02RrTou/G5NOrXSzcI9mxNFqvs26LKyHa5arK5arK9brK/LxmpYXQmtMIbCLkV1KrDGyBk06D8xQOxpNKVpnmqkLnu5c+HQaXTNGJxfesIc54UNCMb9C8GTVVlDjDVgBOkdKaf01MJJaff9rjwhc1K0NUJ+siSZbu59noHu3oxvHUtcfG9vXLS0wzhnopMUadP3WIKMokyG2UWohr9rVurjYUvUElgs8Sh87qgseMvxoF1EphVpzPz+PK2G8TsSvW5MhPYEpVliNFt7WGklTZLebe3KkOQ5hMbMnXkKDyKqJgzjGPHvBIGP/0zmhxCEnwfYOhmWA+w0jQfmtUMaHncfNWmPjsDSDYdOeIMGjk7adLW5+hhCNOME+jCS6j8/wg0Zhb/eByhCYyo8ITanAWKa2YjGX4/kbEnX/bxPn2BzzBHk0O5xCYA5JO7tO+kgmfHz7t/4h+PKnkZe+pCIYG9xzuCDSvzuIIMcrwlc/j4shh2bzqW0J0Z7cDD3uCEG7yE+W73D/x12K1v3m5oEl+/tf4sV3/wDvuPsrXJyfKYlmntjNs3aRfSRW2YqlDSGhjV9r63/gOCqo1Rpcznd47vY7edcXf1Z9yZxZl5V271navdepd7/Kev3QqCYW56qxRz71s6whgtDF6GsurC89x/Tmd5EvH7K88vxAVU6C32rCY17kfRqnbUWK/FqHcMfJVL5xRxcs8n2iuqBR28x3L2ZXknPJK9UK31txvCf0hPOcJs7mHednZ1ycX3B2pgXNKUVokHPmzcfXeXD1KuHV57m6vNRcwZrJ68qyrizLylYcCcY86fNSxIRII9OU2F/tmfg5nvumH+atn/8IL3Kfs90ZZ2fnnJ9fcHGx0poWdqWU9D4hJ/fv0Wf/+SQ+fORv+kNj26Go29nuf24FH8X8LRhk2VFcn40A4s/+qCWbfzaKX0tx4SeL5+q4j1vi7XYubsXmOo6FFbwJxBTUPrkv6EXmOffv8u92Eas+NH1ijbkliOUonSIq1plPxSRGcYnoHilYF8PW/XYofXxUxMhELno+c2B1N+3Qc2pj3GO0YqqoXRBD0E66MvISpTWOuVBlJaVKEGFq0EqjBhVYiU2tYwmN2oyo0v3AQqDSyDTRTn29YUmqtOBxsYsR6BwvPR7U7wwp4UUsrRmJ18YaBpbie95WqEXvzxAucgJiJ3+LaNMVz2VsbM2aC8UsZGna7TbXyll7yNPhPtPxPq8t15TaWFbtardWXTPLspBr6zFhKVWb3mSLrbpISCZE2O33nO/PgDNolRh3IEEFpqbAtEtMcSK0iZaF0ortHY1ScjdctRXt0qm324Spy8kcTV3YTayg2PcE61puGGITUaFrd9YkGnm7KgEaiLGxrip+vZbKshZy1vHYTRNraTRU/Lg2gdw2gkL0+/eoeFmt1fwLscJE6Xvm2f6MmCZazf+jrplf61GZoC0EsjsztJhUTATDooLGlCJCaBUkIlU7yE0EJjEso3nhiWNkOGtHYwDPT9OGkLWtRWnFeDe6lxGB6jiV+SVCJ/mrcEq2Av+IR3JRAmL3z/1Ux8VKyeM72+YzcSzTwhg6ygU0HRPDCwguuE5fm24Lm8dgRiYbBCT9rhCj7QeB0gxnCWLkRr0bkuogf4ZAiBNCghaJTIA+p5ZoNdGqiQuh+f8amu770tQOiBfxNYSMiM3bVpCSdR8JKnju+Xu3eNKMrD6C5r4Gqhj+ZCQuEZ3rbvO6YePUr+uiOrj4vMa93Y4b1rnantqA3PTVa1VBEpr64RE0ryZiDdIquRVqvVm2LOdMgp631KEpPXL0PLPmAy0/X12YQTOKtGDFOEaQTolQDAOorXM2YHMv5mkEIjTN1RoZzos/O2rgmIqfYNX507EyW0t+iMdAVvzfg5DiCjHjaI/MBYc7T4/W16viBR1SwIUqHPA8Ea9oG5+t4/S1f5fnUn0fGaK/I7+t3UZRMmDV+IYyKLfNOSf6oT6cusYe8YPH1dg4GeEPE0F0W92LC4KVIwXPaSgOXxuEaPk3CaQKNXlxSNCmbG34v8XsX2m+v+o1S1AhdolRC/NsXYnlMqvliCKBFGAKipUJ0snkXdQdeiFRuoH+Yvebg/s+XvA2CNQ+GcQnRbWoXkFztDA/kmzfrSXYHjszT+ecnd3ibH+u4pqzNpDQggnNuXzH8YyfvrjPDy93ONSDxssbkei1LJR6oNTjaJSYF3JZTRBq4bgcWMsCVRsorOvC9XLJcb3keLzmeLgirwdaXVUQKRSiZMTKK4I0YnD/0X2sjLTK45//GOH6dd50/3mujcuhzUSsAK55LtbKB/2zmsdmXjgmlrtTrL6RKa2wdhKwinwVs4XZcgFraXzut/9J7nzq5/jMb/2Pefof/DeUXFmz+mQl277f0PVdFTOS5z5rxfbRiTNWeAIhCTE0JWon5WGmOaA0OxNajBBjJkhEmrN4RO+3GOeMohugc3lQu1zEEUfzz/FcnuXnaoVcyHWh5gUJO2I4Y171Hu9qZd5dIBKZS+F9LxaOceXOw0JpiTmec7ZbuVgL1zkz50yShRg0F3uTDm3suZqw1MjZ1vZIPCtinF8v2cOak5g4gO+Q7g/aphoMaxXxn92EOT5sxQidCxL6XuositDx4/E7CJ3QrmIhahs0j6B+hwo5ASIqbtw2+W23S+Yfuf2LXkyw7b4d0xC4N8F7FR+Qji12kWA0su8XatibW147HTTOlJ4fGH/v4N9AfOw8/ZCTH9wf3+Bw/idxiWL9rWzfvPFd9LmdYMht+2Gbc1d9P0FaIMZmvm8kCSoIGoKq/oYAQbETWlOBQOe0sh2rNjhYjzzaOGsfFXVlbGi3HEX/6Q1Y4w04JMAu7RDgsB4IrbFLiZQaKXne1P0cj3UCiGIPHnMGGse8crisyG5PLYXD9TXHw8pxyRyuD1xfHzkeDjy494D79x+wHBcOV9fUUjk7O+fOndvMT9zh1q1bpClpI5yiu2FpkAscjlosRlwI88yewHJcmS6vWRfNn5dcYVGOYEFY1sJhrdZcp3E2R3ZJOaqlNvhNfxw+/xHSS59mUhoqAEEStTVe/v3/R972D/5zenlwFyiIJlwd+cq7f4Q7y32eufcs0RpnekGlx4Vv+fLPwsO7nD33C90f95y+F6toEbj6VrkOSlMRWI0LsK6NpQiP/yf/Bx7+zN/nyT/1n1H/3v9Lp3WEeO9F5Jd+grwcObz+Iq0Jx+PK4XAEYPnCP6SssAjESZjnwBwjCUgIkwi7KfHEY7d54vGXOLvY88rZjpe/6w/zthc/zmNy4Pzigtu37/DYY49xcesWz3/lBS4vH/LCiwulFWIK3LlzmxQjtahYlOf0c45aL1FWSpk0ZkmRYD6nY7GgufEY9HzO9jMX52fcuXWLO+dXvH65cr1k5jhB2rGuR2rNvXHGTTlyztClNaTbkRA0Oy8ixKaiL8F9RqoKnvctw6OUrehNwxsWKZ81EWolxtHoBhzTiioOM03MaSaazQhJfdAggdoaa141zvb57VwNz/uGiJb4qDiqZ8g8rwoYZgZYJKWnPuIb8Dir9fURe9GbXVelx4TOi/RaAA1sQufGDh6U2SgpvcbH1d628V7fhsWylU2Lift52etq2+RVtnwxt90YhoRee0P0b47fIIg0HZ+NLWsWJ0o03g2V0IXu67jdZn9oDam1+6EaSo/8sTcSaZuGF9AIJjjt9rl67On72CYRcCqQtMlb9joGG+uNH3PTjijoPHc+k8imQHST6+HUnLsoRwzWvEO0gWEtXsgNI+4evpMKSxqvsTWLd4v6Tu4PisfkpwIW65pZS7Y7IVYHoY+OBjQBKey/+HGuZNucY5uzMq5y8ryFCk2lpDUAiPrLEkTzbymQS2QNWmzbm/Q67ytUigSeqneJIbCKit4U35fJltMb/GrxOEa0gYDPT4/vnMvmRYqxTUy1sZdE2u8srlM7T5pI8555d8E075W31KCWleV4xXK4oqxHpFWiNK3xmUzc0feqWq1ZDiBbvFVFuF1UtQFYrY7Wo9h+ZMKaLSpGGoLyoHz4a236t6bcKp8zKQaQVfGRWgmxGRanglExVm2gWxKpFLVTtVHyyloKS6kcc+Uoigk1UQz4Rh29gEXjJrvZ/Xcb0NGEGEJvujW70FTSAmb9vNb9YucE9BgBuuidGObnPBDfx9ynSE0oIXRb5hF0s43MfYpo60W8/tLWdMN9sGL/fkj68i+zisXdpWrje2/gRNPP+tInYT0SXvmSbqlBCe3aHEagNHLWHK9cPUQ+9wtAIDx4jZhm1uKyHmqrNOelc/Idf+Y/5/6H/x5P/8n/jFf/6v8VzUM4j7kiZGoVahFKEHIMhM/+LA8+9GPcefZnubx/nyONZGt9niblrU2J0Bp+pX0PjJHWIngTo6biV003r47J9HVvpM9tPmMI0mhurVS3nW2IBDiPx0FXfL8zXo+djwtWtjbwes11i2G1KoRcCIq7hUYLldbiiBs9LxccY25dsEnxVDaz7WYcztVzXlKjGVZul1Ot/E6hBUJzTEn9h4DxPsVqpjHfq5pobcn9UUvR5gjOK2mjgL0TOdx+tdZFpBTndE6/bPbUZic3cGddq1ob4JxVt3Gh1S4CqLplDUIjf9/vY3rh09RXvqgtcsXPZNxDF4CIJiaVQu3nCFY3Z+KIQSpBqjU5ECTAidBZHXymXAprKax5NbGpaoJTihnmVomf/wjp+iHylU+Ra6ZUeqMSTVP5/lM3zob7iv539+sUkxlibObnNXptQL8dtg8OX8DOv7Uuxl9KRT7/UW0E5QGkY0qeQ7OaWarZacO8Gu79aWwRPHfq94ixvjE/1udlqMoV92016EJW2PuGHWlKhKgiu9rAWmezinGoyFSKiShxiHdYbZHeysF5bX3O6fgEMV+vQqiFUIbQVHURl4Z7I8N82h685ST51qTcCzEczGOUwQmoln9yt15PR71699XFBHVcPyFiYnR2x0PTeuq6FsqideHHo9a7e62Gi5uGpEJY0zwzzRrbl1wpTfkakpwHZvUFYYhzQ+h23Ke3g3on+7FsuJkucGHXoa9qpAmeT2/ms/EdXLQDn4rfxAfLlzR/2RreoLw0emOT2hqpwbe1F/jk+Xv4nqtfYpp3xsNttKJrReev+jmde/dIXtLPQ3zgg3PxXbhSBa7mWilTpLSJOS0cV9UKuPU/+d9y/Mv/J6agnOlWxXKLMHiVuuNVa8TSzOcqZmNpFYnqF9y0wxuLiecvLSS3lOAmLhv/9phtCFOFUV/JNnbrUZbZQHR9VF1/2XjBa145Ho8cDgcOy5HluFDWglRIEklRCCGZfsHMlGbSg5c0Ljq/MJHuqHvCZHtDSsQ5aSPu7mM67it9X2yWOwXLkQUjdFeL9S1e6XUdxiHMyYSgXHzq+i7nL3wcOTykcaTspl7jEGlIq7SSNdOvau0m+q0xShSt8dXxNHyji00NWxJispgGcpz4qce+m3ddfpmfe+q7+d4Xf66v22193hP3vgQirDKw8FILORfj96/mV496QPUpW693yYZ75lIoz36U9f496guf0VxlHcJS1Xhm1ca2jc0T3zp0LgVCCYRY+/hmUYH7HrtKsIZ3mkuZp6T2MyVqrLr/B+V8tRhI8TTLc1OOuIlrUohEMhG6XdCNW5vKxUBvluzCv17PoI1vFGOWSYgISTbjZXiGZStHrQlm+YLigFkCBWE1YdxSKjWXTdPn1v2Y4H4JHjPoHEkM0Xq3Ai4eV6yWjY6v6Lx+4YM/xtnVXb7wbb+P9/3y32QuD80G2L5oc8Pzedu6cY9rsO8phgcWyomP2Bq9zgGkv1YfmWI8mXTvs1y8fo/48HUuD5eaj86l+5alDHHSNixIj3fcP3Q/OlhdpH9na7XXB8QQCEnzg6N6eSPma3UsVx/6D2j3X+Xy238Xt/7N3yFcvv7IXB5+8LZJfW1tIwi44ceGMNZD91cCIQxOnnjRjhcu9m/q2UT++1qtX4PQVC8JtSRf60CgUjIasTVCq7gC8ySuLjoAxD7YXRUxWKdP+2+TDA7VSDfeQQLAp3J35AeJqLZihZbm4BUjqFWdMAcTxzmumgxfc7YiicpqxIcRIHu0aGJYXRnMieXm4COmTJ+082oYnXTEAK8pBKYQSaIT8Kl8n+neJ5DLV2kzFEnmsGSkFZbjkeP1A2KK7KaZy7M9FxdnxFtXhMcnLs8f4y35y1xmVCFfEiEkQqxEYl/QAJ2w3F0+u4tt/NyTsza+2JV1a6Ar1l7um4Y5xCa6cbIKOqC1PfxzB9Al/Y7ab7pz3s9MBYUe+ajTArZh/L1rdengcGEphdwqpqFDwUlVGpDepCPu9rRaOOSVh4cjl4cDhyVzWLQbUM4KcqUpsZ93nJ+dM08zUYIW9FphCXbPoyiYF0PsBavJElhTmkehVZhIYVAwalEA90cf/Bx/+7Ef4Q/c+wnWRQP5Ja8sOXNcFq4PB66ORw7rah2TxYSm0E3akrHVCLmKJTcTTcEAh9CF2GJUNf3dZKSMLkyigcvfec9/wh947s9rYCE690INukxdMroNBUGN2VvfxGuphFisq4SS7FpshFj1ZwNjxSJv7VBinvYmoeNrysd5WwzQicWe9fhGjuBrw1ZJT4D5EhwOk8XI2oHIfyn+S10YxcbhRL/EHIS+vsygDfkTKy7t+7yQEVZgaZVjrSy1cqyFtak4XwEywpIbx0XFxtIkTB3Q7zHpjTqGaASOy43fG/IiNqa9U4ONTCkG5nhSRqw7t42hEuNtHRjRypXnfzB9hX94fA8/Mn+FiWIJs1N7qA5L6fcsuCPuisJWKOQgR62Nxdfi5SVXhwNrrux2O+Z5p8WJMWpXrWXh+nAkZ53XwRy3Wmsnh5WqgdnT4a7Ox7CZe5YQLw0+Lm/jTax8S70HkxZ1Bg8MBCP9NKIkgjJ1qeuiwLsBLVXUT2igoNq2eFqakZqt85xLxrvTeJJUtd9v7R5jTTkZyqn1/UWWLHRV7+af53PARYgQvfsOJrXN2vQsmOje1vxbW/MNCBe/7P9mOOxe7KKoigagrWZaUyKlg8zUjItRubhUDKICSo8ayBtw3Do/J6TINCemeSImF5EQI7GGk2IMB7jc19LbZPdUhBhUGOC1dJufmL+VPyG/vBHY8CDCAHLzDf/L8t38KM/yf28/wP86/Kxvc+orGlBS2wYkFOmBSve+9RNRCsLwXHSu2PwIdIJ2v54efLT+nf3jfBqZffIgRb/KE3Uy9n3pXi+a2PIz8QS57ldiBEv/vOpgTqv8o/UZnpQj35de3STtMFfwdP5EqXwovMLTcsXbwyWlRWpthFD7PbLMgO5FKfDdL/0MP/Wu3813fe4fgTSmKXFrmrg6Hrj/8ErfI8MGVVXIIcSJED3ZdLLEbYybG10b+9Y37pEk82Edhd46z8a98PtWW2O1YrZtgZh+gBX3+Oc5OCnyBuDyJhwhBOsYUplj4PZ+z5OP3+Etb3kzb33rM7ztrc9w5/ycFNAuU8cjx+OBvBy7enJtxba7LblD16jo5jLE3GLsYwh2m6LGb01AzA+natKyk9S3c9nBhI3fviXcZPPTvOi2J4v9OzcB9EkRR4ybxGnbfO5I7mz9NbbvbY+uAE7u9SmxmL4veDHV9nt7wdQ2Lnnk72AxswjNul+EGkax83auGXAgRjQWKrhQB6N4qxe1l9aBAewuqR9m193o4g611P5aFZAIY2yMoFUZiWd1tFWlvEogbItMxcGXMSY0J2r7+NHnwfBrjbTiMf1NO3py3YCdbGK7y6LK67Wq+14LLVeqCSiVXCzBqh0/53lmvz/j/OKC8/Nzzs7O2e/PmOedCrjFpGRGcdHorXMf8O5eDvbHEAZYaUQMHdOm9858b4/6tasXJ+I4tM263PpWesH9u3XOqE+mBCQMpHKRRy+s9CGzAgMDjJW8wYgfjyvrkvk703v5ncfPsWtWbIp+j4LYkEtjWTJXx2uOy5G1qMhNza/x2KuvEo+XvH68UrzkeOR4OGoX1rzaPLRko6/X68+x7J6A208SPvdxXluvrbue+haDjKXX4sRkt+lKfnF8SNepixe0WhXQk9RJMmtbT9a9uhgDhxmEuKDEG6SvQ2KkhRVCJKTMFCNL1G4THfzMpZNDFYzNxKLEkwf37yspeJo0PhFhSlpgWG4Y7uHxlY7pSl6OLNcHjtfXHK+uWK6vKYcDbV2JzYSmUmI/JZYYOA5XRkWmLEkxp8jexKWctDMlFbVWbME7JLitb30PczxRqvlxVmDpwjLJ4q8hkOr2DZygWy0G0LDSdj0RI2QNIYwTsanmxAD6figjE0bbJPcejV3dZuhw1hF8u83Z2j0ZYLSLE4QaaMHF2bIm/3K2AqIDx+P16GxsQlOODXZ81O6E/81tPkZYUoDfyDIWA/WhoXVsT9eJ31Gx2KqBF0SLxsLaQTlR6txjOZxgJbEnNUPVWLN4gUAp5GJ7g5Ru2r1o0m0aeI1PO7ku2PgSvj+IF595Uu2mHWHEEzZZt7O+x6bdFksvKO8iwR6jhVH45SS3IawzRIROOgDZz8WEpvDX+lzqfo8l5O1c3CqN+cVm4uvD79sUInNQ3Hw/zdo1fNKu0Psf/j3MQeCHfoz0Cz/OdO8l7RxtSd3hy3nB8ea7YRObKQm/CwiFRouGX4RRhB8RpqhYbYyWXNokldvJ96lvJfl1nrj7Ce4cXiddXBC7WJZeQ+jvHWIFQ/hs+K2OSDoZiqKJSbfZV+mCzzz1Hbz5/lf4/Du+l2c+81OUUlmy4kT59We1QUPOFCeZuI32+KuTt7WY9risHO7d4/5P/z0eXj7k+OrLKq4jtqcGj62kX7MtpXFsYxG72y49cHJY/A7hjX/7jTxOYsR2Mp9qMd9wXVRM8biooMtxUXw9r5rkNSxdRGNUJQlNzCb4m4xcWkphrZnj4cjV1RVn9x7w8PpShWFyxomCQYYQ1LATAz9We2dxQUWJ+4aZTy8+y2PLgd3yGq/vdiz7lXXNJqgCKSXmeRqi3yY+9ob47OsdGxwd9H1+fr4+tnG4OBba49UhOAWVWsXwhdpt17YINufV8iTaIczFnrxJyanY04j3PErxe+pBjDBI0S6aHt2nCNtxaLTULEdlzVBwsqTF4puCoy4K0ZyosRWLk00HQMfHFHtVLLM51EU1TCSEQI0mChYjqyipaAhRmI8jGIm19bF/A07yG3yEkEwMQsxU6fNSnKAaiBUlnAGVhbAK4ahdwtKUmFJgN81WEGxEjaBdr0NtStqI1pmxKa6v+W1QmyRIrEgM5FqIaSJErDg26r8NNyqrFhYJaJOFGBUjNx9NCcmB0rRBjNtLZMxz/dZKdaEZUTS4x1x2zxWjUR+kVKeVoB26amApjSUXjjlzyKvlwL/KvXXlcFh0Xawr66LNmA6L7lWVZrltPe/i8yNIX/shwDQlFfpME5KzNsVoM1oWL/zD3Qf5I+0zWH9j/W1nZkNsgRQT3rlPRLQqyasdGrSmBDDtAOtrTUvXu/C+SN/fhs8dkFa1O5xqramQRxFI5rdJZUdkLY3DsnJYC2lJpCmSciC1xlSSFsbgpBz7jhAcGQZviNPjaAc0tevcLk32SFoKGL6BvfLX8wiTCqlRrHBBCy0RzT2o/5eARs2GOYdISBMhJPXXS1HyF4HWc1qOoZvvU6oRRG2OO3YkJqxTao97upCY+QjNfdimfpf7/iLRiKeA0bJw8Vu3ydAbTfW8QW39s/WTzb+yIambGI4gGyE3OdknTzAWhn3V94b+/YDNTZ3P3RcyP7dDZmj80c2cfguICqAgiRgSEX1UiVRRkSjFVXRttiQkI2DFCjUquVrq0aoJmhEKC01UrNnFxTtW1PE735vsMuz/fUfajqPdz1PfaPMuMSzfJ4b4qI241nF+HRPpBQK+rFzkZEtU8+faxDgJv4ac/K/DoQKPMjqtNiUkN9let64NbdOjh+fLqgiths4fSCnS2kxoQlkVf6y5kNFxU0F1IYUJHTi1baHaTmw+YHOuA9BMKKRG7fjbxGwTAaHQJBAoeNNA8L144LwhQGkr+hV2f9rmZzAfebN+bJ215utnYGha7uXkd8Ol24jNVWjKRItr2Yid+HdbHlX0esTsJfa+1sUMFbeoVf32Vgs+lfHM9QBLx/3pk6/1+6XX2E6wVhepelTgUzq+M/Cb1ho5CyVWYhFKDN1Hr17MJ14ga2TgokWQIlZQgdBMfDNE5QFJTDQJ2vXUPqc1xTEgkKbIbITtGGPHeb1TvcfGSbSZQpr++/eu/B/1aCDV8LsqnSgfquJeYoJt21vpYijBmnzFOJHSRGM23ysS08y0O2O/P2e/P2eaZiRFJe8uay+IfKoUvvt+4cl2xfPhQK6l525KLeSykOs1uR41RsnaNCGXhVL0eVmOrGWh5sxxOXI4XnF9fMCyXlHsddSsxfBSiaIFjkolrgTRexai4xC67iKNaQ6cP/9prqe0KQYzXM94BtGbXhnu5nFFMIHbVpsJgWYrImws68paViOcWzNPhNKEUoScYTExqYuf+ge89Dv/KBf//G/w4P614euFvNYusgYbLM74StKxD6GIqPCBx2lViKL7XZFKKIWCimEhlZiaiV1o0y9pWnCrnFSIhlEm0X1MW4Ekjfusa7tYrK6CXqu5SYpblqqC+NQDyA6RK3JbdJxE8bEQEiIwU9lTVGinRWLaMwvsS2O/rMyHI1O8ZiazizdLaGqaJxqNqUxdtDBGbQSQ89o7a1fbn3usK21T3DRyl+rzWHwgni/VRxQverHXNY3fPAb2ooSt0FQXQHTxuM7hsX1WxIQtG2stpGrFis1wy1apNNZSiKvndVwkXwnu1GbFlMG6biemqEI559PEPiUt4J4Mk3TBqeCduI0nHANJZPDDDPPwwh7p2Jeef3Qc33JzWnxfBpbrTSBoPRfWj6b3AB9z/1T37Xys+1ht7JtUh/PMb3fCu38vvehUT8xcTIadKqWyFu1mPxUl+K+lmPicFx8pV1e7qEM1sRQ9T/cJjXRv2KQYX859VtAij908M82T8dU8F6djtEU5fk38zV+noyk41zntUwjG30Tn1Dx1kaApqeD2MR9pFKQFalm5unzA8XhgmjT+FKCsmbpoLLsumcurhfv3H/Laq69x//4DRIT97ow3Pf0mzvZn3Lq4IJ3vaZPydq4PRx4+OHB1OLIs2hw318aaC8d14ViyimekWcd5PiNIIcjKtIvEeYVpRXJRrv6ycHWsHI8L+zlw5yJxcTYx/ZY/hhyO8P1/hPLhv0x5+fOkpMIwAtz7k/9PHv/J/4rn/+D/mbf/7f8NYdKxSJOLuyVeeNcPw8UTvPTEu7m1n3jm6jkrqlG8/3g8UtBY4013P806TdqMulSbU/S14MWotQYrTEH/GGcq2iX++riwrI34L/4Kd370T5H/8Z9TH3xKSFTbd/zyl1iXleNayKVxdVB7CYFsNQwHGm0JxKtKDIXz3cwUhHx9IAncvlzZv/KA3Q5u/9ifZfrsx3n1W34zb/3Fv81j5Ypb+zNijDz9trey3+956aUXee31V7i6uuKFF7/K4XjN029+CzUbRhKEskBBYNbGRfu6U8GpmpAMcVZfL+cVCU35VlTmOXHr4oyzB1dc7HfcOttzsb/m6lg40kAa85Rsv7xZ2KLbqU2ATm9yTuzxWhfhb3QOLSf5CLNP4v6w7olBIQBi2OzDvn9brN0blkT1wSRGCFpV0wgqKFEBJoiOi8cuNjX2QnEQGjq3RLTAqjUkwnNl4pPrGb/31oMNrr3BOWDwGv10QzefXWxC44wNHh8Aq6dhE3vVjl/4J47YqBbDPzev79/pOHzzfNfgV1UrxPffde9wE0N7tck/W5/kA/GKd6Sl234RoTcux5B+CcQU7QQcD7eGONaASONwu89hY0OrCk1h+VHPfdeq+1urWX0k44fTqvqMtD4iIslhEBOMMm6++Di4iEu1Anj3m/RKm52bpjUfxV1+4w8V2lS8PYrmJLqQkuOoVcV7VMA1DM6z5Zm6UHwrhgMphhacQ4P0uhfFS1xUQHGCLjaFeHlbx+mc31OssHatKkysIUXrmJJXTajQZyMqERLHyTX+c1hPOl+uc52Tik3FFIlBYeMYhXmeOO4m9mtkZ0Wm86R5ttR5X9rsSblVek2x+8pe9C0UGb6hiAmUiIuUmF8IQxAkWLM7UcwzzBNTiLBGluuFY1morSoPh0qKArOKQUTDpCQ2LahfAq1kXE6owOBjOe+z0nMLKjbvjqOJvllYXs0/r0H6uq7SWNKev/fEj/KjX/07hOoRGUAjaJXtI76ofY8ICYM210gIeq9bdoTJ/GbDokuZVRyzNNYKh9yYssYJXwsHuilH3wOtrn0TtQImGGB1ml6LpfPMMABcPGfgbA2d+57xCNBx24F72S9FYzQrTcR5blUUwxxMDzpuPAQLN5A3HmNsxIwAWcUESPT3Pe9rxcKtNYKLrH7+kx2ndLH6YKLStcC6VvLaCCkhy0ujqcpaWNfSmxyI5bs8Trr3E3+NJ/+DP8W9f/zniZPy7God67JVoYiKkJagjXDmL3+K/XJgevASB5rFfJqHLN50qmgBfbIxCTS6oJkIYrkLj6c7Fg5DLC4qRmMn3GHLahhJF5kq1lTQhBRKeyN/2eeTF69rfOh1BxhkOnhtzYBlj/tKg9ygVKGguGOxPFlpmhVsntvovra51SI3boV5lDg8Gfc9qu49AcsrNVsHIE2x9CE2ZTy4pryiajVmlUbLmZq1CVmtOif6vtlcEMS5dxrvYMLT2mTJvju0vj2pf9EUJ2uKiVY0RxotroHGxf/0P+f+f/e/G8saNckY1lWB8t2/h3g8sHz7b6P9wj+hvfoVsyXNzs8+Pwjr/haXv/3P8KZ/9l8pb8j5C1iNm0SCqKhf18gT7LrML3M/sGoNr9cK5DKEAXI2wamNYBrPfYLc943ts9sX/3z/SQaugYsA6dyPVuOA5eidA9XzXB1FOd0L+9pso1a5FhfJ1AeOnVT1G6Wx+dllDuw+dpujcRciPPgj/ym3//r/xXJIvhu3Pi/tB61/svGUCi3oQMhIcNyYY7/bW9MwbQrUGr0hXhdsF+kCN5jPFoPQnL+9rX5vjjK27R3Ca9s7NGm7JAK9L7ugPqnvx4/UoniTZfp+7BYsIFI7v6nWqnkfGf6Q22PdKrql1IYeeuJgYhpLziyHhePhyPX1gcP1geNRmy0790uCqEjxfub8/JyL27dJ04wb1mICmcHE0prhoJKG+LPXcTRvfG1n6vzjcbT+uZ6/3iCFFtcm3tKueZMcuFd3vIcvGcdAx5NmoiG1Ke8+Rd0DK3xzfZUnWuFJuU/dnSn3vVSqidOQS/dPNBaULoQifh2Y2JP0Qdb4PWD2xvBEXJBFmKdEOq7UP/a/5+pf/n9505/+L/jq/+c/JYLZyWZayi6aGcY42D6lPm7RJk5JBXb3880S2AZsTuryj2I5H/FSP7E4jI3wlMUZwQUE6evQMeqt7dApM3D71jQGyCYUeMwrx3XhcDhwfbjmaHy9VlTUu/ul09wbtE/TzBQn5T/YPYiGvcc0mcZBMoHb2Le2y7MneO4t3863fumnux/UmjerbHjjCrWvjZ//9j/GD3zqb0AzMZtQaVFzey1WaxhjPMLWKOt9SoB8djYaW9Y8csDNBGqb8mglab1dlKYPdOxFQJphB3nBtU/E/GRs3Het8oGrL/CL5+/lu1/5aM+1VFxQ0c/R6xEGv6KUwloyy6J8yFa9MQ1mf6XXYytf0MUdtdlg/uIvjvxe83i32TJwPQSNpZzbie95QT+7BYVBatE6U8/3bIWmgvnGU5pYp0SeC/M0UVJlCtXue2MmdWzmkU3qN/xQ/mVjThNzyqwxk4MLhw7vNqCNgVIU5qRN1XfTpOOAzhmt3wu0UBRDkVOOvou/Kp5t/qTfkyCW9xcy5pfXSsmVlq0Jrvsn3ojM/B4xrj7NBC5jtPq1wb1Tf344WNo4t6kNrIHHv/jzvPjB38Obn/8oqSyjxjSF3hCjc4of+fe2WbuLR2nMpxyZnL1hddN6yOamQYWE/bUlazyXc4V7n+ewes5JY70+v4u+boimuW/lnLQR+fdadqTbHcVb1GamGIlWf6Q4l757+Ibqm5RP/jT5B/8g8bMf4eq1u4SS+7rH3jM0wDQe8LpREa8HM1Gz5rVphou11kWd7aR7Lbf7s/p784ubn5sjRXQbrzPsV8fwv2FWSG6ZDhO4oZCKd3kKpRFaIbRKkrE49pMWdk0hmBEyElJtChwSSEE7nMaYkBjtgk1AoLoxc1fGilDEA7WGEoOKbt6t9A2vtMpSCksuXK8r18vK1XHhelWxnGXNlhCrLLkSrXsEYAGMdlDdktv9EBTUi9E7F42Cy54MR897ioGzpCAcTbsKP1buUVKl7CZKwtTVdOaUXDgcrqmLUHMgrxPLsuPseMnbjpfsb92hniUermdM805JQykxMatzSVByVa4GAilQSxcoeJS0OAIRB3v60mlGVKwaMnbXbRME9qI3T073d1cc9PbFNIrUnQBvzohduzv+DVXAro5iWQAWmhtasdttxLc6RD1yKSwls9RKEdG2NynQmhK6Co1cC0tZv9Hp/+tyzGdnHA/XHK6vubzWxO1hXVmWTK2QppnpLG1UfJVA4w5vNQdbuqBKNAGypEB2VFXPaZpIae6bNpa8Au0aVNGOiE+vz/OHjv+YJ/NrHHJWcvq6cFgWrpeFy8OBh9fXPPv+38v8yme5/cJHu4FRhVIF6HMIVpQUieIiUwNUU9VGFZnqzykyT1qgPU+Jf/qB/yU//KW/wl9/z/+cP/Dsf6kJP5t3QWQodIMZmYJ3SIi2SdZareDCNt4UtZtWahZsaVKuiQo4iAWCNAcKPJHmgYvP98q22KV1AOBXO4yWbovOwQHBATUnU4+g0y5PfTXZFt+1/v/uyyHQlOTdHF20V3XjgQVCjDjNA+FclQSy5MaxVI6lsOTKsVQtWKiVpdS+rzYaaaqkpF1vqjmON+nYgi0OAQAjAIATYuj2Pp4YXDPowtjzQ6um0KvjOgru9cveIg/4g7vP8kRaSdHJ+nQHzJGt5qgsSoJLnnCx4i5XqCylshyuePjgIQ/uP+Tq6po1V+I0cXHrNvNuByIcDqoQvBxXKxALtv6VoH60YpLjcqTWwjxPyDxZMXXoCagQBKmVT4S3sjb4bLlDaivvbw8JU0NIA3Sx5EWME9dF+AvHb+LPzp+kFaGtUA1sV4ATCFVBh00SuyN9KNDmjofPZQ3CHPDYzG/3T8ZNH2tktB70xWazQjZOlgIvtK3jZftq/5oTQ9eTWR1cNCE3mgHIJoCpNm7zsyea7f7iZE5LImuSOgNDbVoTQ9he6sVPN+uYku+v1o3EvAs5EVcLPSD0Tt29U7ZsgLcQSHPiKl3wt6bv5kf4En9NPsAfq7+EK4p74OqHSOOPhV/iz/Eh/nT4xY5sqOCGqG3AkyS65v9peSe3WPhN4QX6Xe57gL6+u00CNLMFRXBlj+akFFHQtlXfL4rNMnNkbSIpqL8htmxtx8lc80fbgMEueBU2bx77mKvw/4v1LVwR+Up5jDlUvjPew0vTBjanfnMvTqXyNh5qQkmgBntGk8XVig4Iuic9df1Vfsvn/hbzg5dZzL+cYmSeJy32nlXoobbC2qCK+h0haYFmziPQ9kApIFRRgNbFnrygrjHW+BCr+VqHE07HXu8Jq0ffIVjCW5oVmY8CqL4v36AjBgXf9ilyazfz+J3bPPP0W3jm6ad5+i1P8+an3sz5fkeomePxmoOgRJm8AHrPFZQeRQ69aNbQxNCDT0/Og5Nz4ibw124TqpqecybV1IH4rUCAC7m1OjrQVSuy9c7jLlwRgnYObIAUJx17HDZi0fE8gnWN2dS3qdXiBl9z+pZTv2lzb098pWY7V3eOGM8b38CBj5GYHeBRf6+/Fizu0TOI0QUBrMOJdbturSnpvItADcV2da6EYNcnXeRhiGrZian9cmG4LRhvAl61qU/gosoOH+gc2Y6LD4gKOustGYTenmA4iZNLH9vub46BtbU77s1NAwZ9P9SkhSXic2ZZFt1/pqKgUas6nlawnnMxO6c2cLfbsz93oakLzs7O2O/37HYKlqdp0r3QBI8U/2Aks2QIdXthuYtM9U4TQJ/VltkUIyWoUMsgTZ6Mc48DBiFlwxzRAvo44SJILno61v6GmA7GJG+KBxjxr1QF8Y6rdl75u9P7+eDll/hb59/M73/wy6SmCUQXb1rXzLIeuTpccv/yPteHa9a8sqwqyrCu+vOymIjA8ajF0S5iYofPR++2xisvEaaZw3qthQCTxpfTPDFNBmYasK3gpiaEGrpmwv+fuT8PlGWtyvvxzztUdffeZ7gzcC+gyKiADIpBBcQBExFwCMEYo+YbjSaixFkjJmoccIhiAkjUbyROSURAVEBAFEQRkFGUWWa83Pmec/bQXVXv8PtjrfVW7XPxm+SXwVPQ9+yhd3d11fuu4VnPehZS+KtVG9lVeMxECarzItB3csurudLrr0Vhd/GDGaisIUnDfOzoSmLqOqZuYhhHeQyJMSW7fVp0F/u6U9szjiOr9ZrNes2qX4sQgY+XHLnXCuY1Z2qaSMOOtNu2Rx4GappwJROp9MGxip5VF1gFxy44bZQVuxqjo4+eVd+xXvdsVj2rrhORAcu5bLc42tq1h2Zvi3VkMZHDhI4ExZjFOvT2cpFXOWn7LJ5nBslbw4rlBcvr0s5xEa24etL92I8X761R4olffjyranC4V/8g5+V4xcGa03XH/butTpfZst0es12ImJQyN7JExW6XDTF2HUuxXAcR3m/nZx/gb4qpFg2Ufo7DvWKQpWZwpYlN9b0Wl9S+BY0ffRV6dqiV6J02rmQmpzbRGYFR38pcJWZ73bxmnIXdmvs3gTL15VXTN5uodYkdjVjoF7Zaj6o5sdOcAD7+3nAmMuAXHqRqfq4CUyYmtozrTNzSGn+FHJ4XcdLJpuETIlNtj8052eKqi5/FsQqRVexZx451v2LTr1itRJyn6zq6D72d+pmPZXXTB+nHI8JmT3FxeW0Twpo1EcpsxC2m0+tjGEfVuIoshGarwjslxlB6naaqsUAMJ4pl871hbmplqyJT8zSSpcCQQBcWb1ruZrYE2tkrmYmcW54kOXZgU0fufvARPrR/Lff4wGuFhFXEn6WUyCooZ6JyVtQqtVJ94Ow/+1Fu+4XvlTvkhXQ9JRHwGQ5uJu22mLC2hHZlFuTQj+2d/MdCUm97qflDs2d3tF7BB2LoLj0RnGUUZilDtcY6FSmdJm0U3jHsdiI2NY7S8JWlSIqbfUfwQQgVXU+MnZKVCmkScsDx8ZajoyOOj48ZdiYiPOd0Xd8RFvmZDVE56Zt0fdeqxeWk6ycTbvogB8Gr+ExRDFHiv77vVdRe1qf3nqjNNcvYxr4/8X56zU7sgxPY6yIvU5/dGvFPiHlozqKvm1W8aZomhmFkGOQaD8OOcZSYcRxGplGauWeBqbRoirUAbo7LTOTNCEl2DkGbrYP3bX/3fUe3CiKao81AlDk/BFR4UYgbTWiq0tb0HI/POXMtQoB3xbeGXmsqMKGpqjiXXbiW1+OIXUfMleCT+GGNt2sp1KhCDtoUc6nhHe2oyIAbJb16hLSaskyYnqoOGqlSY5YBQOIn+q5nterp+shxSHhfF029MkXMO+hi1Gl4Xt6jFPoiMYRDhfLypPXqQigQY5W8rdJI41XzwZKdFPzJuK7XZmi1ga5CnahZMGZf59jQ/EybnOgcxTv1kQ5HUH8jWEEuWUU4hLyVa8YHaS4bxsrB0cjB9pjjaeRoGhlTkkbfKZGGRB4ydUqKD1SZAJuLxgxVMUJpusz3/HS6q+/C3rtfLc3SQSaLrnxgVStdrcRS8ClBCPzemc/gkQdv5wWnP5kvPfoLOhcbmavVhYNTYRDDBgO/Mt2dr+r/mlgdvvYiyKLDGEoutMnNDowsW1FhIW/Yn4iouuLAiB8xQBbhbI+ev/MURvoMq3WinxLdMNCtInFK+FyIMVC+/F/jnvejuGEgOyNwSU0j1EoNQmApitVag3gInj72bPqevS6yCo7OyeS6S+lwXU9gLbF8SU2ovMU/SKwjOKHE0T4EQtfhu9jWrFcc4uJQ3zuvohTM65z5OZZFzQ0OM5m7iFSKfK85RamSJ1Vt7vOVRh5weILXhiaL4UGJdxUbLmD41LLJpTUpKmaMY8bK7Jrozy4WmloeVl+co4MZk5bwWTFni5fU3i+x65PRosSYUseOBN9J/uWkwRwvsakIUekO0DqM1CQzoWRK8ZQaqCWQa2r1f+cgdp3a2vYSNKLoRb7dbtzJn4l/0VLmHa7JxX7fVYv7BDtqebHeA4sZlnGDnE9tF9L2obCC9MfOmlwuLX9WpiTrtkgjVG3+QBsYtakqK8mvFhP2D9rHW5pImpHW+ujJtRPeteLrU5Vmi9h3MvVZRYNzCPgS8SG19Ze16cFiHmkyrlRXWl2kar1aqo+SGwg5VJuv9W99CESE20TI8/69iFQJ3NEOuDuuF5gbO1uDp66IylwvnWtblldWFYkynoPh3rk1/1qt3r6nKHeJgqLdSHBGy5PtfC4+LCbDMWt9L5Bve5YRtQFMmmsWDREsvpnOKs1vuczizdIIq8Rntcs1KxcvF5JLOKf7zwk5Fc1LXRAxTBej2IyKiE1pg5ijw3mayHGvtR6Lq6hFmuDRy6L5QIiXlh8DKNmEaRwdjj47OufovKevga5GeiLRiR31PkpzchC81BHBBWp1jLmCK1TfCR9rtaHfrIl9B76S8kTNick5iatylhiqJFYp8bF8gcLUcrDipME+5ZFSB1LeMU4DYxqZpoFxGsj692OWnyXFvcdpyzAdMk3H1JqgZnytRA/lnvfD3eWunPqz3yd6a0BWvLJKAzFaf4mh0rtAJpNqIGpMPDrlOHq5VjIYzNH5nhB6EQP1AYINkoIyDIDwJ1yqUG2NSEzamoWrIxXHMBWGsTJN4P76g+z91nPg3C3sapbPnZPiLoI3mj8wrK+ofRS7MlJq1VhQfEKMQUS9uhXl7z+FzX/78ebLfNDhSc5p05mDKgKNAROags7DKgRWnQiDrkIHWfyVTPNWUnHJVBLV7cjOCcclANVTSo9jD+8GUkmMYwYyJQ+EuKKLPb6LFK91QKAQcf4Uq42j322J4QKrsKL4xNCv/pZ208c/Tp06xTiOxBiZ+o5ptWJKI1MaySk3vHjG0OZ6roGJVW06MGOAC76gQG115hF7TM9Bojy1ncFJU8xSaKo1jpgQBtY4ZXwTkXIQ7qIIH03qC2b/oER0Hcpn4hPkrLGbiMhKM4QKSgVPHwJ7MbKKgT5E+l7E42fBABM3s7qem79Xu7Ws/xk2DSoqYM0YiksUi/HM3+HUL14kNNUwmAXWKo63vWeL9ew9nT1H/s5iYk7UM+qJeNcriOvkhisepuu8yHAp44smrYGbuNSUU2scnao8Nxe3BOObXaAq9q7vY8F+u1bOtaEDnTZGyNJb1FbRGPnjxCh/20cuhTINwofqIpUqWF+Aro+sVz0hepwOOwAwHppUfAsljaRpJHaS2wnXXGqqu+3AwYVDbjt3wE0338Ltt59nf/8U19zpzpw+fYb1Zh/nAyUXdilx4cIB586f5/DomKPdjuPtKK+VCynrXgImB6mINGcMEWplr1/Rx451H8nOE1crLr9sn80/fip//dPfRHGVlCrHQ4E6USps3vQK1o/5fyh/9WfUmz4sdl9vc/SO0y/9SW57wg9y9Yv+jQiRg8TLMRBV3O0Tjt7PB676RO5UD7mrP2R9+rTE1jWTU5FhDsPAH33Wv+QRf/JjDMPIlDNM2oifO3Ko5CLXszV04ykUcAFQvGU3teGr9cPvYnrxsynnbgQPeRrZHu3Y7SQH2+ydYnNmj6PtwLC9wJhlGnwqnqkmJuVyRx+IzpEy9Dhct6amiWlybLxj5QpHf/SbXP7FT2Z49Qs4uvFdnO4jl+3tcfmZM5w9fYqzV16O6zxhVRl2O7a7He487K03cGqfPkbJL4LwpcdpxLnCNK3wAWIX8GEFOeO9ExtIhpooVWLOEBwxQBdlkPBe37O/yuwOJ1Id2awFzy4pfdy1/rd1WB7CCTMp+bCYsTm+Fc6PxM7VKXanfHrLgyUv8ycx74VgNojl9X4e0uBwTSTCOwdhKXSlp+Zt/cn3pXpqkddsDfTmP0O1tEXOW/SxuGHq+KPdae6zGnjpwSkec+oCF9dazP63a+HUxmocueTdSQ1HXrsNA9dPaNz22WEsTgigaJNna4asi9etCy5lxcQxlsP8UoH/d3tXvnH1IXk5ZiENe79Xpiu43CX+OF3G5/sLXOMnxbFcoxejnFobilmd1AF8LUi7VKdcMmMi0j6os+sVS8OvxOeKqKjwGBPFxfa9t94lMk3w0XxlwzGLrhkPbhE3VeEgeOPv2bJyTnjUmsHeYVL7JXCYvw3ORDk7fQQVrAPUbwknUWOjIP1iUQUEZD8JhlJ0bRoW14bXhiD5XIWKDGksyksz0caSl/VTfXfNLRKSL8ldR2IQVBwFGyZQcS4JURYVf6moCIaKYlhoq6GLvZUPIjjl9RaHINyV1WoWJ12FSL/qm0Bp10QWol5H6yeYB2YYzhO89G95Lzyom1nxhr378YUX/lR7E2QIRvBOBrxHGRpt1a+KJ9eqvR4Dh9stY0p03cg6F8bqWZcif+s8rsownTwNlGmCIt4xaL8fDtnPLU50izK75GJvWN+bNSMPGD+84PxWsptxnwpMOJ53xRfyqPOv4/fu8gQee9NLMWylGUf917kG34jYmAnveI/zIkJcU8KVCYrhm1VxGVl7q64j5couVVZdphsTozcM5lI8asPcnNXam/21MNmaYHV/aSNs1FxE8tyqjebGYarUu30K6R4Ppv/j/0rDs5dAteZh8yHPEYl68Zd2lMWfyWlrvRMThZ5ztiUObKIxTjl4pcrQdOMFTsql9Tqwy5qA5W9l/zehpOrIU6VkJ0JTzlFUaGpMInpQalb+o2BdUcX7y40f4PxLfoF67mPC01D8NmUZiFOd2QoRSpMhAZHVDe9nDIHsRBAuOBGRr9rT6LJgb66LDSu0frNiIlPNbtlnKjS3pzisb1wSuQa1mg2bh9sKVrUYuFQXww8t35UlZXQ7eX0f9N5ajUY4yZjgQLPmEhcnbdpOxZGrFxyzqtBUVW7dReLHXrHUOyLCf7vH3JQ956RtqK9Tj1GrcN+8/ltF2N7XMAtOVeFz12z5e4VSRHwzzYP5sLhHN4BzEhIsBXAdc7O42TDvBMNHz0MEIVRsyfwswpMLFOJX/SjpJc/k7Nf8JLtfeyrGC3aAryrg5yq88zWUz3wi8SNvx527UddhbTUtTHyiX3H0Rd/K/p8+l1s+7xu56hXPVvxR7YH3lJCpJbTYz3sRnwzBS33KJdk3VfACi8JKnbHwpI9JcYSsfPhcVTzG1q65Bqffq8ir9UgXt4zg5r9xVWxgRvgxqRR8LnM/07JPvNY72DT7ty7iV+n301h18dDQU19DnZftc70PZscADr7yh9m89NlceNJTOfUbPzyH2s7N7828p2RfGZY2Py61I8SAaXCV+WOIX2LmxDfXoz5/FlZsf3HidZefX3peQsMHLd/DUkHNC+ffL/I7vb4yBE7sXRNtUrtlXnfuBxHbaHhb4+LKX7e94RD/S6GJvJQpsTvesj3esj3esT0+YrfbMewGhmnUQYCZisdHz+bUHvnyLDoB/Yo+dCq+GkTEOEjN2LgKs5+xupJ0kslF84rDnuQota+xpSb2Tz811ne5qhMPzB9kKLApO7K7aBi9dzgK+ID3HVYLDr5y53JI6Xqyy0ACJ2I9Ba0rXFQXs+tpgrTF8jldKFLrt3zLtb4G+wwFx7rrGLpEeeUvsnnsd3LheT+pDGSzq9IXh0MxNxsUXmUIGRnqiCfRBcem7zizt2J/3f8v7or/M0fbE0ZltQfGgbZrqjU/7xpnqom9ObmWJ150DjkB3aJa005pYhylt2GcZADnNCgPr8h7dyHiYqTvV6oJsKHre6JyjoIT/rnTvSziUspLb33MIrKyXZ3ivXf7O9z55vfy3rt9Jvf+8GsXCLiu9VQpLuGovPlT/yH3+6uX87oH/CMe/pZfEf6x2gWPhyCxc60yfKjWSlKfIyI1yqnNQTjQ2t8rw3oUpkZ61Jro5OJRra/cQcmOkj3FB62lSOTsqVw73Mz+cI71dIG0iO3rwm9A4S33/mLu+8FXsdpd0H69rAPcJ4kzaiHtX8FND3gsd379rwr+Afq5RWSopCRibzpoPWvMV2RjNd9qGI/4Mjf7N1sHVXhrNkzWVxGNzYqxBAxDk9eKPtDFiTR14t9TJsdMiiI0lruu2SHnHPUS03PrfAfR0cfEqkukLpEnG7ps/k21MUIQHZ0uSi9L32H9+DULDl99lvqXrXvrCVNeulxFlSlfYA7VSYyTNRfLFiNl7WO76hMo196P9NrfkmGsOcvQYOXw7z/xOzj+nZ/Dbw8JKgLlm101+YLaEjtHwWVZ68kX+gs3c+1fvoi9ckSIlRg7uk4G0/R9pxol8Q7/XsydL0XW7zhOeD/qzydKmWaxqartkkXWS5pkoMaUEinJEAkZbCJfTzmLuPA4MSofPmmsZ2uz1DmXrtXNfXHWT77AkBp+7DS3zqGJQFnsUmqVngnTDdh+hPrK/4LbHkKZ1N+4k/m1xiSYjTA8xRkn2RNCIZbaBir5UJstMMyiPU6m6if9evPtS5zDzue/n5X9z48fk/GrKlRWMEhXkg9R4vMgKpwKIs2B4KJYqhsiLjaHXHhxChKkhda43y6HGjsRmlKhqyoCDV6Lq1UJ41MtjCVzPGaOx4mjYeRoN7BLiTEXkgH+QZoNQ+xF+dl5Ss74LEDHLXd6EJ0rXHPuPQJSpUSaRlAzP1WZyEVVPWZnTeACkJbkKON4smCujiCqglstTkH2SvIFqkygtkwy54lh2KkDT2w5BWogYtdRa26BjwVu3pa7Jk9LMZO2WqxSr8YHmy5r/61VQVEldlq2UxXsdnKNXLWtpeqHBjFowH6SZjVHHVULvTbZ19KcrI2uOhDihFiVOXlzZKYMi+VoiOCDGFNItTCmxDBNChpNjFkMzSV1eE+qMIyJ7ThyPAwM40jOheAD/WrNZr2h6zpcdZSUGSdzAhL0eFPwteaCEIlRJvGFTgkO9r1O3q7IRPqiIEcuItJWcOyPt7ClMqaR7TjJeW13HO+2HO52fPAeX8Dx7bdw2zUP4fxtN9Nd/xcK3ovhnmplxJO9JDTRi3K+14Ql+oXYlAKbpuLYdx2b9YpV3/Hgv3g2f/igb+Nz3vFMjsvYJnN3DiJBm2cXBq8ZUwthXFv6aFOz/NRsjaV1Yt+qW0RnC+u+iJGgrekqyaBlh/Z+C5Dtb/q6wWlOpwK7pWY1M4DVUtjZMYDpCS5/5/SsvIpvKSXTvIirCPBpe8TsOEruZRYLq1VsW62kKkr0EzBVezimAkMq7KYErrLKhVUVECBr0eCSOuriC7MjC+fZQHl9jiVeQgISopOBDEGB+S4EuROSPdEIrkV8YwsSvONOIRG6qJiWiTJZLmZ3r+rPnBA8XWCcJkouhCgCLsF5dlPi6PCQCxcOODreMU2J9WaP9d4+680GnBewfZoYh4mUspJrzO0XORdNsEuKhCCTSVty5lDilBT3qIX759t5Xb2Oq8sBd863ywRlbRa160WA4ALOdTz7+N78o/X7+KXhAfyL9bs0PhCw0hUBQZ1Di2NRUVObwDDbc7kpRpmp2ORCIRctF9pJO2Aqrva/9hRnzQOLpjV30e916/uWLfsGirQnKmhk60m+UIDVyd6z2MQMiKuiJD77QHF+tRUEgxQ/syNKLquNAyLE1wVPDE5IBP/9OO//+tEFWVemrrsMRhvZz5ISzQQscV9O9xLwSdCOU4x8fn4Prwz35ivTWxnr1MBZuV0nCXJX+WO+2b+FMwwnzk0SffT9JSb6k3QXjgnczBn6MvIQd4M+t0munFgbUgeR2MfWqExWLy3eqlRNdsAIlrMBaifAHLgsI6XZV1ix1968Nn+DrNFi5ya+y5piqr7uw+NNvHC8G9f5I+7rzp1oTC6L87MClU0iMV9QtFEhVyXdV2kWzyZOhTQhnBlvZdCcwJSqQ5Qpkuu+Z9XtSFmm2roqjTBBY1WbWGa+2Ove9x58KfhSpAim9rnMV1D+ptq1qroG5GtbeksfGUMQoH4Blp5snDEizdyAdDFYf2kcldVqxTVXXMYVZ85w5eVnue7a67jmqqs5e+YMm/WarvOUSfMitUE+iIiK6fZPU8GaekRASn7ftaZmEb+tXkAhpw21zhrjvdcmBFmlsevVD/hGqLCmWhOXwoQgvBKySytdNgAy69+kRdN7UnDA1OFBxeuCTeGa7bLTPNP7OWGe/zWAXPalYyY+XOxKjKgMVvyx4LK29SHNybTXv0MjtZspXEYMce1cBNgtxQk4UEITmmoK2nLG0jgbA6rx3LySjYsqGEnWlqtr8a/YVDkrH8STppyoCc09J40HJfdeNrvMa3/+LFasrMlsiBJcVRhJchDatL8T18WJzdFEUvfx/+Ty/79w3CE2zAaMe43XCpRI1OZfcWWybj0CPkvBtKPvVPRCp+rGKA0aPgbe2V9L6Nd8GjfNcSFzk7iDE+mIFaddlVjBLRuqyhwPOd3TGujKhKO2/mn2Xwg1Iv5mMSuI/W+kfe/a37VGmWJFOWtCra1R3US3rLl/GGT6yvZ4y0PGt/JHV34an/axN3MwbWUtGalDRU+HcWQ3bdmNO8ZxYJzk5/ZaRiYxYQwTBnII6QrnGgDXYoRxwDtPCp4UIlOamKZIN3WqND+Ld8UY6GOHVzKJTVUAmkhyDUGua5HrXCut+c/SQWf7iYJztYk6Xyw0Jfe6EoJMZSgOfFfpSkeKE2O3mICtPi6lMk9Zk01JSZmh7poQFrlArnRdNxMjLqFDXG2V4sU4kYaRabdl2m1Jw0AeByWAFYKjTd3rg6ePnn4hNBVUZKrvIquV4AfrVS/NHTEQwkLcV/M7EwyaXYcV8LW64wQ7m5soFrZMfYhZYsO7wFk4I98tX79Z8/l/tELuSTNo0IP8a6S8Ss71BLmEhWCqvLyfTbbZsCVI3M6/NLJRrYVXn48MKXFD6kk7z92TipgcHXB0fNj2XNapJzjoYs9ucwV/ccWn8rm3vU5BdPP9s8iQCQ5JPEXLxiztaj7AYmKqYhcXEQxallxbHg5RMOUg+XL0QQe5KSZdBWua0sTgJyUiFkqRCXLSZEkTmWqF1KDT5q0pxenvvBWmsbC73aP5nl5aR8MaWpx70e9BMKFFnOsUqzspGGPZtBU4VAAlm0CR2OSSFw1ZC2EpW2tLjET8icWAc5OSO3EdNRez4pWTaVTRBzofWHcr9vo1e92KzWrNZrVitRL8sOs6mRT0tlcRSha/G2yYhUxsyW4m7kudQfyGTaWqTTRc4xmnhEEt6ti/JppcQ+C9j/5n3P9PniNEOe+gBjxOxU9mQrR3rgkzt+kujQzideJvXOQslqdZ4as0gVHLqV3O4LOSqaoADSaOQ+Waoxs4feFjTNOWqVoD6EzcCk/8dtJLnwO33ICRB1OtXPGtz+SW//RvuOIbfpwbn/HtQtTHkXLm9EM+l02/5q9f+l+abaq2TjJzfIjEh05zzcKyaHXR+rzDVppFji5FYlS1XFbXfVGBqTRNTKMIHg1bGSix3R6z24mg3zSNi8ZaPzdOxqAN3yJ86ZyTKT41zyLyo/zt2+//pXzS21/COg0zcUwTiJIz29VpPvSJD+eef/niEz7MBOHa1O26IOEY/lxnMdwmBjpMGo+NDTOslbZWjXBi6fPJFNo1PwCS62ti0HC0JfnfzmdZ0DVv2YS8chYBrkHjzd2O3XbLbrfT67wT8amdxJTTOLYcU5oCJsl1db0781VWs2gF5TkmlkYIr3m1Ccv2rNYist11nTRnORVEUrGxlKQGZcJWF9vnZaxhjZmlnBSqlGtr56aTee1CV6DORDrnkTpARRoLnZfzUWKaCYhJ805q4lc2LfdSOUwYZg6nasMXLKYxMUwTjbKcoO9imwxu1cbm61UEP0ZtfukiXa+TnZ1j7Sp98BpvAGhTJ5WYsojsqO3OJcsgFMRGe+dITJLz5iIitl7suzVLSTOI1rGciS0u77WuhyTxX0kiUNJ1EvtkIzXVjHMwlYlcEs47pjFxeDRw+/kjbj844GDYcTyOjLXK1K4pU6eCSxWf1ffqWg9OJ0ZDq3nkT3gg7h4PIBzdTn7g53LVR94kNXy9hl2tdDkRk6ccH1OmiUd89I949V0fzd+78Y8ZXaEYCcy3SBwXg+DAIRD7jl8P9+fvxY/wi9tP5Ou790ueTWmCPBY0Wp4FSLNRsy16mJ1pWKHdQnnPUNU/Fmkc7PpEv1qxmtbsZ2k2GpMMrjp+3PfTv+o58I+fhv/171PyijRERxX2qRVKX1p+DcIJWPcr9tdrNl2k84518HQOAplL6ahuhQ+FAFBEYAQPBfUTrmj8bPH8MocVDkVVGzZ7ckOyEGzX+bauzJa7ha21WEHN2An8rH3TcONlPiPNHCJSr3FllbjWyJJLvycvMy8Kwc3FTta2iAw/c5bUt7qGYyY+XSyetLTRdYEBgltMK65tWmDN2sSTJab2XgViDCqrs+/xinnGBZnShQA+UH1QERCt8xrpWq+pCx5CwMUOT4fXoVtFmwMEpxA+S1VihpSOjWR7cf5wx88v60iFtT346k/4kjsITWlTE3Di/iyFpmZQVe9Uw1iY83b9uawJITEKGezSwj5s8jAgHyLMrMgWO9cl7iBCL8X2ka8iclHrAicU8i8xkuvEmAUP8rVQHHRUIFBULNBqAdRKnSS/yQuhqejigiJ0UqjCgU7jrhTvCSqoKf5xFgazOkEpUHU09EkRB8ERbQ3VOufXy3VlsUnbRG6OJw0tsMYemSqdlaycm9CUYYQVazDVGKfVJlS8q1YdSFJpg7qcYaFgLAsj67VT0jVdrO7PSduy/My1WipbCSybHKyGKQDP3NQlzy01yv0rBddEUASHJ0k93buCcxEf9HfWAOPEHliTgQ12rHhis4cFm4jpo+Se81A69Bov+GX6eXLN5PES41QBhsW1Jjxf8dXPojDeL/iHYs8h0IjRJuBXnUxN1SEEIQZiF3HBkWsi7QYlp8owtikXsgqiSw01k/MoIpkIfgeQy8SURlIdmLJMJh9GEZyappGbHvlw9v78z3G33CIxXc7kNJHywDgdkfMWV0UILTpHuus94T4PJNz0UY4e+ihOveVVzX9bHiZ5RNUGUqB63vv47+ABv/OT1CiN1d4VHTLkFIsQobLo0bUa8aEnRhHyxnlyCVQ6Ee31E855pjGAGyDLnmxCoE6bRPQaV8DdcoMIqSLxAd5Rq/L7XMGGBzb8Q33+pIKpzvnmQ2KQGmbc7HP01d/P/kufw/FXfC+nnv+zsg4cVC/7OoaOg89+EuG9b8F/+D3k4qS+kgojQo7OKTNFz+AzgaDcn0jMMFUTDKgUX8XXR48PEYLDTRnKJBaqeMYpUBF/uOpPSSN2XOF1GGatQtr3PtB1a9brfTabPXb5kGnaEf2lxaC/4oorGMeR7XbLMGwZdruGA86YhsVjdY4ZQQXdFF+w32FggZC0A9ZIX5sgk/GKVdqj8YHkZ3PzloRvjuCkFtcaj0SBr8VxhUKuVYjmRQTipFEkNRtr+ToWmyh2SNHat+bafRfpo9QcViGwDp5VCPQ6vKTTAbySMzk8ijE7bd7RhgLzgN7ZZzRBJDmaCFXDERU1N59FbXZs9o/M9wDa78znWzy1xH1nLGgRm2gMZkbFhBsUAJvPzc3nKl8o8b+a0ENpRP6sYpcmNJVK1qnS8pwpi6iIDf/TT9KEVWqt83BOvXBWE/HOtYaFaMLg3jgCXmu4tjYyrbnuEjn6vmM3JbnX0VNTopLxvmO9XtP1EQuQZb85jEBdkaHIXRfYArvdQC0Q8eQpcXR4xNHRMQcXDrjhYzdz7sIFLrv8Cq696105c/mVVBxHu4GD84ccHh1xPIxcODzm9vPnGIZJBjqPheodKVfGqZCySG4UjQf31iv2T5+FWjl//nbG3RF768jeRuzbVU/+GQ7/yw9zt+/4OW5+xpPJUxIe8VQ5dzgyphsZX/IfCeWIkHdtsLF30AVHf+uHufIF30U8vg1iYOZcgY+BbrViEzIPvu3P2Os7TvWeGDdEJyh1zoVh2PG8e3wbf+/dv8xLP+cHePSf/BjDNFIZpKkpZJLPOOPMNo6rsF9SqhQnNe+SK5tVT7feAIF67haqdwwpM047fPBcfs2VnLnsCvr1HmOq7G68id3tlcOUxP6HjtjtsXKBnB1VW7JSqkzTiEy916E6Z8+yv9dT88RtL/l5OLpAjjDsdlw4POT2C+e5/PQ+e+s1MTjOXHaWw/OOLp6CkrnttttwtXLm9CkRlqyVPHryumNKkMpEyF5xtiyfvUiNzzk0xs5ia5XXHRxQEq4W9jdrhlS55WhiJMk+vcSwxYsSTPmq2US1JV4HJ3sZSix5tgi22iAPG07euIzNE7k7vL68h/S+VGd2Uq2sxkCzSZuF+gTUr4ualWHFtNyr+oIH/n3+JL6LD1IDuFooHq4IEw/sjnnHuOYJ+7fLkDvnJS71c7366TdcwTfd+TybINemmBzkiY+g+dnf8Dnl+pkvcicvteXxtbb9VFX4x/hWrW6oeJHV5CiVVAs/u7sHXxU/wrN3d+cbug8ZfDP7Ced4eHfAS8ereFC/5cq+ElzXYsylaKilOVXFhw3D8q5q0y2KfVn+mOZEVEJkwaiq8HHkBxWHcIJAhae81kDJoHmC+Wx5f3kfuUIeTNiumoS22j/lStoaQbPOOfO8tHAPOSROMD5bp7FSNAxZB+pKAzNNZOoNn/FNPPzt/wWfR5aco+oDXofvzHtQcAe87T9ZZydFKUxkpTRhG1peKyKCIqwmdRXxuFUbM8HGxwKSg027Fk9Qhc/jFHsQ7quK62u8WWrBP/abKa99LvX8jZKTBeFPr/oowqQaN65WMjhppaKJMggjaP5qQqVSW5ZrqgJeig+G4Dnya/5g78E8+PDtvGzvYTzqlj+hVsnJZDB00txWxJZBxF9yLmx3Awe7HQfHW3bTSPA7+jGxP2bWu0HtvTQ9SzOR2P3oRCigVKc5m1OBQlkJc8+a7JM/X92dY7fiVn+a0BXuNV5vXSx6zTSH1XziMRdew8vOPpIvvuXlOB+xzWDhqe0e7xwvuvLzeOT5N3JmvF3WgsJongRehR6mJCtAsWVX5e9lDcpaXcWOLk6EYNhv6xK+hA5Dpoy/IE2xFWtut9zBaT9V1H0oay446dVqw0mtT7BW6p3uSXnQYwgf/gvSZz2R9eue37jWc7OtHfM3ypjEoWJT1c0DAbTOKcPIzK+ZLXQtGrdspdk2fbNquUSSAUwp5SZIE4LwEX2Y+8SaqLoJENcAxUMNUHT4qn524ZVXhWm1ztsFogrEOQLu4GbhlTgEQ1cxUph9WFafxpd9F+F1z6c7/zH5/F6EvKV+q8JLbmKyPV0s3pgxUhloLw3gs3BvVuEmvVe4JjIlDeFSoxTxHav5F/78U76U697/ajbnr1exqaR2cq7xjP0pPvpZX8fd/+BnG08YwymZBbwqLPaC2VP51zjDuYhYa1oIyGRdC0V718wOL1z4JXdUA/H8sj6kaxaJtcQO1SZQ4WvGIyJT9nB4qJma5b7Uok39Ory2qoiN+SUxTXN/tTQR6YN5nThk/3oPKJ8hPeDzqccHhHe/Tm3bHHVYXFde/Az8l34X5Xk/Qh86FUrU/i5s4KrDbQ8Ir/1NfEm4YjuZNriial2rlB39y36Boy/8Bs686OmklHFBMJrgMlnzChNNsp4CGQYbySk3gbqUs16v2Q+UWhuGkBb7IFXjNJnt0fze2VrVXkgcVrNsn2F2AbaL1S5I7S45GejgXLqD0FRDaBYxbvMnVDOlco+WtZDFjaiL5yy/MOsnaE4140n/wp/i+B88lc1v/qg8R/e/RYPzS1jsqNff62Bvxa4utcN6ckTIZM4oGjbV/sd87aze2fIHjaed9eCrbfEsRElnnMtyEvu3ts2xwNwWOJxxzFv86JwOeXaaOxhnyc31NLVpXvM871yzmxINqQA9ApiVMZPGkXE3cHx4zO7omO3Rju32WAbnTRMpT6RpIqnImgzuqsS+o99sWKdERDCDEAKu6yBGrTELJp70OoktcJLTILwG6SdY3hf4Jf8gviy/g7MczzfArkvDIGvz77GMuCx701EW19y15+BUqMnR5sfMw+lLE8mruq+rFy5TQXrEfv++X8Ej3v+77Oed1LsRgT/x70U/38xN8EH3QBHRRMsdN6te+o2Ob2P6rR/D3X5z44+bzgPLT2x96KpJUUvCk+kC7Pcdl+/tc8XZfU7trf8Xd8X//sN4z63X2c2P0L6ure43/8z6ETSu9Iu9sfCF7aE2G627Ws9He0x5wZtR/nXQoeCrtYpNrQXL9TJE01dB/N/9GU/inu96JZvpiBC61kvjqqNm8QUxX+C6j/4519/lAdzvfa8Sv+hAeByICKb2lNRauPdbnsdfPOwf88A3/TrjMLTY1q6Dc4LXO+W84xzvvMejufy293H2tg/owJRAnkIbaFlL1tigSvzt555FibettqB2SRYkgt/r2qqCcVpsFWrmbB6ZPPg62yHwip/AW+/1WO5+45/z5/d5HA96+wsIw6HiGLOYUOpPc/3D/hFXveNl3PgZ/4g7/9mvSxuE+i1V7YEnfAf1Ff8Jbv3YzOvXvgMTNXKLflQTH1+6O8uzzJKaHbW4NC/2qAMmL307OWq9vs/kmJgU0zfuKki9KHJp+bMYIg5H6jKpL6Q+k8YiOv1FBjzioPOB3gtXse868mO/i+71v4wft0jJVnBgyVFovju4WbBealpmzVy78FJnM16B8hfML3pPveo68n0fSbz+3fiHP4HyxhdT0hyPdo97MtPrf4dT/+ipTP/tx4g1CffUdrib97r5a8l7NCcqBV8y3dFt1OipUWrHPgQVnBKcQ2o1Ya7ZXCQ0ZfyqaUrKf5LPWHJhciLebnmSPZa+3IS9aoWbHv5VbN77p8Qb3yc+zjAkj0wb0rpZ1R4Bd+296B/2xRy94N+LLcsyxNIGESxjB/MOzjli9oQkIsWCFzsMx2ri+eheGm6SReNodgYsfKuLvaT30Na9c2Rf8CUQtD8g1EL0BV9mvrxhqNZrmpUT0HJ8aH67xVDNa9YT5/TfXff/oxtkLhKqYdA3byh3dScMQhOO1KDKQyNDBSMAtMUz/2tCTy6o2IQGIC3Qt4CuVgFrNQopi4cBh6kUplyZpsw4TELKHyaGKZFRwk2wBd7j1DGpywEPt155P/z6NKPvOOwC1xx9WAFubbSqEvi89j7/mE//i/8oCsRZCqMlJ3HSVIaqYlzOhDsUCAwe7zq9nuJ4u+BZxzgvvKJGoSTGcdCCu7k5AWZqjhjJyprtgwtK2IxK+lxMy7XFtlT4NE/gaAIb+qyLU1FwM4lSX6glNMt1MoNMy9/PwIMIVBm5uoXt9ltNAJepkm5KLfZ77f5KlROgiJH2S1GF82li0gm+bVJ7vrTIvQdHx1Ls3R5ztBvYDhPjmCQJCREXO/CBUhw5JYbtQBpHSs4EN4OEXbdSVUMvip+dPLp+JQ1XQUhSXkFhme4gQU8qQogStfEZVN+Nhe2YOdolzh8ec3B0xPEw4N/wPLYP+xrye19Pfc8bGlhQMKEi2BVIzoOPdKevZPPEHyP92pMlWGUmjnTBScG466RRtEusx8xq1dFvRx70mh9i5yZyVAcce3JwbHyUxkbuKDRgIOIJlV4NZFxxStYT8PuEybSxEwaA49s6XsBIbcHX9q7zf+cFr3vghGSggRyLIMs24vJMzFGZY4UGxtgmLW6xdyptqpcUNAQWEgeitlob/4s+Bx9oSunOU3QKZsaJ0r73FO/JPlJ8IvtA8p7kPNl7shO4zDsnNjT22kS2uDCX8CG+xM0Bbs5NVyZ4SUKF/ANS7NMpOjWTp8qQkzj5Jg4h5E/0dV1rRNIGrHEOBIWAbrfvhAUl4MldDziG3Uipjn49kUoF5zk43nLr7ec5d+GI3ThRXGRv/xQOuP32czKNS6fvNUVPbcaSwEIaq2qtop7aSXDnYxBxqlGnn3nHerVi3a+EyFQyn5r+kpoSxxRGnfbY952SUr0Q52qlc/DV5c38yvGD+Ib0eo5SVf8/EvtBVIm7Hh8iPnT4GKn4Ji7UKrduBp/RfWPKy+2K1dm/yH2l7VWbMtBKiG3P2B63f1H/ZyJT8hyv4K28RrC3w6ZyVH1D2ZpGdpZ0QAI6E5qSwrIITRVyGrQYrQW6WpSYlylpYtgdc3h4gd32mJJFrLLvAlMfmfoo6/N/52b433TEXhsNRZ2tgbYW5Veq1Oac7BV5bpAra0IKMWozt5drmQvXppt5ErcSyAwqqGK3ycBetEGqlsJpdg10lcRsvsftqJWH++t5cf4kruaQB3KDkAdaSK1W3+KYE35gtu3VFxWbMt+wFHyxJuaysPC6luvcONdIlu0EJbBvIqGAyeCZb2kApiVgTWRDgJWOxJeE9wuokXWSCXMSIcmWJTg0ooryJ4UgXTO5SvNerpmMik3p/2TKbxVRGX24UImdp1tF+pU1yU4tmbIxZ7NIlF2RGUSuKgKB4oPk0u7ZDLLrbagzMGZrwhlhYXm/wsnbX0o5kbyCk8GEWVO4aqncpXXc6eprOHNqn7tcfTVXXXaay8+c5uprruLsZWfZ29uj6zpKkbh3mkaJe7M1ts4NLO1wura1uStrnmO2MDhwdZ5o4HRv4+e4pCpQoplJIwpZs7WAxKXlcXM64RYN/fPVtua1EEKL681/LY87NI39d27XiThRcwrn7OEues4MgNVs4mOzCNksVMYsBKDncfF5gthreWkTDqH9rQH53i/2J0rQwGLFJh2FixrfehWo8pL/Vp3kIveFVkCzvAivn6d4qp+bi9rJm8Jv8W2zzFdjvj6Smp3cHWIe7TlzY2DVeLkJfkHLcYsJAl1i++ziM8olMyWnObjGIICUg2ZwppRCUfI8zsE/ewbhhf9WMI9Oiv5BMY/393fhoDtNrIW/DFfzIG4DaPaorUNrkiquFfq1b0sJ+qUVhJtwjTZB1lJV4A8Rm7LPV+d9kMXYEzBZaae4Q2nAOHW5P5jTe5jB4ZyayFTKiWEY2W13Mvn26IjDwyN22x0PvPn3mMaRm4sI2Y1JCLrDdmAYZDpLLonqCqlOjNPEqOLLVpTIWoi384jBE3wUQaHgL7JxVYrjDiUUipWSKWginpMWxcMuRKYuSiNnDO1fsxnRB4iyh7P5cCdxh7WzmQi2s/up+6xcZBfaNfUSa0bnWAVPKFpAt0lzXoSYrTgxjtYMURqAX0vVCRWVmmtjcuTVihCiYlyX2KE+YppG0rBjGnZMw0CeBsgqMgVEJ+Snzjv6EERwKkqRiSrTdjd9x2bVs7dasbdes173MiVBp2M1G6jgpMNs7kx+axbcSSHIBBWtGC2nLAKDFns1QX0V9Ave4ZzkChJfhBM+RaM/WU3eS8ELmmh62/vOCuDqU0ppJtqmfc6iNYJXVJ2CdEJEpBrYrvs0pSaqYYJQDw6Vl6V9Lk8XuK7eypHuWXnMQlNN1M1BXnf8+bUP45NveAOvvPKhPPyGP274kvmRovgm+l52C+yzmY9wuhbMFVyEytwhDjOhD+ccoTpiqIr3CMvAhKaCgz56duNIHFToRoPdWmSoQKZoOqhF5ODnfNbNArZiP9C1UC2F1OuhAeil5caA2V8bCd6O5o8tN1v4aJjjGJl2I3vEyHRUIVvnPJKTiFpPTfhPru2M2ev9v+jRbjZGBbLztT1iZ0HLkzxi67vo6WPPKvbs92tOrffYX21Y94JXrFay961A5avF+rMNLGhTdCrUJMU0O6+qsVT6pAeS7npvulf+N0voNC9DBKaKCk4Vm0IdufUrv4frXvps3v75/4RP+aP/JIXcIiIZDgcRxemdTmCKvPS6z+ex597I2hUZGqDrKSpRsDULowW0WvFl3l+W85VSyV7mI/kiTZ3WuGwxCiVzsHc1H7zi/tz17S+Xde8RUvKX/0vKG17K+onfRn7eT1MOzukUyszhL34fV33jj3PuWd/Bql9JbuYcp+77MMLd7k05usBdP/+J3PTHv8uYErlkHvA9z+Ydz/4+pnO3NhtXneD/BTeLf8xp7/zFYi2KOK2n6zo2m7UIk19Kx0V7SGo6qQ0nmcaBcdix3R23x27YMo47pmmQ5nclIjon2GPXdQx7V/HWu38hn3/0xpYDpZQlThpEaOpt93osn/Sh1/DuB305n/buF7MOji7GViva+hXvvO4zud8Nb+WDD34C9//Aq5vom2GDxaZvldT8huXE3kf1LSJ0M01SV3nbdsU5d4bH+SOEhihrNDL7Sljc2oZboK/rZ+ztDpfzZA7Vcg43W4Y2xS5nFdaX2HCnIlNbfRwfH/PyKz+dB3z4TwmHB4yD3ItlPWj5sGtzcK+/A6Hj8vf+actHl4RC52WimbcJ0sGzWvdsNivWmxXr9Yp+1Yv4unOz+P+UyGma89lFvN8ECywfbkJg0gwxC7yYKIMKIDnXsGjZ6K6JX4HDeampbneDNNzWIpiATq1y+jOL33NWG30JHTnLtEIjeeVSmFIGJrxzLQeptRC8a6K41MqwU1KPjzi3wlWPuWzBnRaDgrpI33cyQS84+lBZRU/sJSfoukDXOdI00ZVCV6pOhRasqyxim+p9IxhRFEfoZfqa0/tZUl0IOjTkutmR5edPKZOnjEuenKMKu8vzU008/95fxZf91a9KPpgKu92Ow6MtFy6c5/yFA47GgSEnEjCMmZIyrkCong71j7UQdAgTyJbbW63YbNbE4SbOH91MOXM1d/mrVyshUgRNfM4EJ8OgqEJYJ0ZWaeAx7/ttOg8pBlyMInaj5H/nA65G8J5SPKkmvjS+jV+vD+Er6tvBR7kOTjAQuVd+bmTm4nrajM20o9kNqxFr9TlGiVNTEmG/3IlA/npNKpUxZ3aD1EX5w5/j/GO/l/CCH5G9Gjw5GSKsxG+kpll91XjJE7uO/b0Npzd7dN7jSya6SpQeskvqmOjog+ZFZZK4zCuR09C9YupHlr8ayaY28V6Mb1CNqAIgdfvlvRG3WaG6pWnH8G/J02eCtf1O/qu5DnUeOKU5khzSwCBEVMXO2vvWO/oYWz8LbKQ1rPtFHcgFFS86abeX9nv5Pk14ymoW9oYLNfmi9jarKEc1HowvhCbKJXyAVjOJkeBl3zgfpGjZsFmtnaHXxMDFEHAx4GtHcD0lTTgmas0t9qpZrpdzZW4INuGvE7jxRddt8d87XgN55lKAy/5tEYAG+rNwmMWs5aK7X9v3RhKdX0IbwN2MY33cAONv8ShZdlL2s1BZS670e78Q32piXJIkz+JJNbQ1bE0D0XsRbEmSt5mwCl7qJjYIIOgacFUbfVKi5nlfpJSgiTYLgdWBTGYPVQcAeSsaST5DlXVSZ/Kc81ITNkGpqv7YMG2HCNEWzVWk7qf2fXF9qkcwa+eF9KeuUkzHnKcWJepKHDep6HFun8uE1NoET42n2iAMPWqRn80FCTnjrMNauMM2kHOdRU4W69rN613vIHMTswmnymvIHrHnMfOx3PyKrjp8cZpPVohQBiMLVnAZZ9Nma232zIeL1lvVa+6snm54ByKA1/LNPMffQDLw2XLOLOLSl9rRCKhKXCYWMYHeBJx1cJMKTsnkYydYR/HU4iFEKsJN9N7T9R1d1+ODI+eJw2HL9uiI7eExu3FgKJmk2F5oRfpKdSICKqJPEvOnNDJMO46GA453hwzjVnC2PHHw6EfB297CrZ/+6bjf+13S+ZtljWpeWeoATNKspjl1+PB7cfun4W6fSPfqF8q5KH+lDYtA8URdzx/6yh/iE5//E/zlE76bT37Bj8hwK+3LIAZtChXbVHKgxg5Hj2NDDBtiXAGO2q1xbmJKEyVvCd6Rvfm7CeccJU+kLMKcOWXFOsEHh8xtMF6fDAaQBvyCDHGq8ndZ9qvHgQtk5+j7ntVKBjHKmvSsVj17e/vElzyHC4/7Ok499xkkVmyHHaVMEsOvOtJnfjnhhusZHvwYTtWezW03CdZQqkx6niaOxpFyPLEKAU8mekffF1ZdJ8PmnAcVz5KopRJckVg4OLyTBrlaJgrHpCTrUrQqKm4SHEiwmZkz2/uO/c0e2/E0QzpmLDuiX/0t7aaPf6zXayV7t5IwKUUVU5ztbmUebIBZf81bi7aON6CvYYIisOg0nIkqxOQcTVDKavzez98LEi4xqfFhjQ9o79DQRUdrvvUl43NWonYilaC4jAj7ZhOIrJWaZQJ41SbO6CT/66PkjqugQlPRq2CAiUxpXcmf9BI2hGgeLmOEbmg8D2j/Nly68Rc0D6k6mR2x++JnClUdZhu2hq5BrYHI69ZFY9xch7D4yiSwDPtu11A5zhguoX9rfIwZJEevvzZVl0qsUufKKigVswhNTSkTkkyZDqXiUyGUorzG+d7Zazf8U2NDpzGyxdzBK56vcZLzIugfQxC6WZW14evJgQuXwhE8hE7wm6LYO0AXZQq45J7KlaDQmkxrYRwnaiqNI2VxD8Hjke+32x3nLxxxdHzMZWcv4773uy/7Zy7j1vMXuPn289x8220cHG0Zp8xQZQAp/RrXrahTIoWR4ryITMWiIlGQkvLVkycOmbOn9rnsqo7bb7+VKSeOxoFxGojP+mau/KZncO5n/x86n4krDwTGkBnGwtGQyLffxqm1xMHZVxXHND4ThKPbGjZn4iBO8fXVSvL5Te/YrKKIc3Ui+B2Q3Gu9XvN1N72An/+Ub+BJ73o246lT+N2OCuQkIgYhBGKsxFgJEWL1FCqTcveSxtDB0WxiKYWj7UQmk8j4GDl71eV8wj3uyrV3vSu5Om68+XZuOH8L197jWnZT4dbzh1w42FJcpiNQ00CplX6zwjuprUttvFJqx5nLz3LVVVdRcuHwwjmG4Mi7Y46HLUfTMUeHF7hw4TynNisuO73P/rpn79Qe425HCIG9tTQ/1lKJOtSo66XRqdMaSrBhbpaDYLbVk9vAUBmGul51XHbmNGdOHXL9zRcYtxPUwrqDQDnRbH2pHCcpKA7j1kh8HtReBLz1rMRI0IF8JjTlm9CU1ZtD+73VgNuwTTOX6tyKxkJY/WBxXpV5nUtzvVk5Odd2/hQRdUHiiKe7T+ab3F/xtPFefE/3fskhfIGUuKdP3KO7QEiO7B3OZ0A5Xjj+/Y1X8dXXHPCT11/OU+96u2BV1uthmCnNwJ/APwRzOJnn3+Fa2+fRri/DuWUIDa3P6L8dXsHDugvc3W8hl4Zn6B/zdeED/L/TPfgX8f0YlIT6TNTn7zvPl+5d0EFVnYpO6jC96rRfwjO4wE99rOP7rz1WoWLBGkWIR/1rloEb2SdcSa0fpeWgDqQ+6gDl1y/uZ0OAWg3BQ2NmGr5ifGL7WkR/7LpZXabd/Sa2Ln8j7v3j11X+tg/D53x0IjAVgtjh4HW4k5M4T4dWBR9402d8I5/67t/m1Q/9Rr7gLb9IyCMoX0/wRL0WWt91C+HIme+emLLUrUYbzJALOc33RwSPZI8e3+l+XLjbp3HVn/1XVBJMemKA7FQXwC6wvsdtT3oaVz//+wTPRoZVlYIOcFdeuNZS/Rd9E8d/9iJWn/t1HL7wJ8mHt2oM7VnFKAMvNJ5crWRo2qrvWXU9F+75CNbBc5cb3tKavYUfJKJdEmd2en0t1jziIcdv4C2XP5jPu/73GcoENTc8MsZCSoUQM7HvKdUx5cxunDje7jg4POLg+JjtMIDz9NuR7W5is95KH4/i8YGqQ6C81EyCCHl6B9k4G3rhghf2nNd9eL/jj/CavftxejrgbtvrGTUzkCG3i2FIupvW9RyP3b2ELk9MlTmWldWA1QVeesWjedDhO3npFY/isTe/glU+wPmC81nWDLK/Q+wIxeGz8KWNkxCQdRhDpe+yiMb6QKvWXGLx4mxyFZFd+DaL880PmZCbCE6FJhoWrJ6oQlWCBTn8TR8kv/u11E96KHuv+s+ND2kYpV/Y+xOYl2ttz3PNozrFH+UE59qj5Pm58RtQcSP7cE5tuyQbRTEeG4IkvLjmQSUnqTP2ZTVeE3kUgfZeuHXq92uVWmCuOjwP4QUFW9MxLOpPKsRgzlHgAOYGfa3jPf7b4K2/z+4LvoH+5c8iHt0mMazmTAI9zfXerCJSVldi4QNKlr2QUmLSumDKwtG32532L+PdD/96HvonP0e3WhFilNdVe/Xu+z+Bsx96I++5z9/lrm96LvHoJhGbUsGeUgo5rrj+0U/hilf9Rz7wqCdz5ct/mtabaX06ehWaHbZ4ADf7Kk3vSy46NLouhKagFKdN8CbaJK/c+kcuNWfmZnwBv8Rw7fS1huYq1okn3XInRSUEQ1BMu0p8URfrfvGq82v7Gc9oPk/jSLnaen/0NZyD8d4Ph25FvdMV1JKIH3hrq6MYnwnnKNMR5QU/RhmP8V1PyJnsZrErEShSEZA0Sk1d82wTcjlxMWrF3/JRNs//ccgjNUhtVH9FiySrYQb2kLhZfiG4f1D+Wuu90jpR+xxt4IhJH9T530qLjYuEx7NIteKxemfmR4P5zXZJ/Gy202sPpMWSM5bvmD/gHKV7aD3xs22sDe9ZvCFWPzXMxs7CRAWcJhCuAhdupf/Vp1LTjrzEinT/WQ2y8VQ1v2nP4dLcZLPgV3NeDZfCPouWPObrZZe9NkwoGOit60ZwSjfjgbpPSi6ze3HM4mJOhi+Q9X2Lvemi1uyWPGA3rwkfdFCDa1iYwxG4qO/IsRgmJLUIGcZYyFNmOJ4YtjvGox3jdiQPCZLEJi70RB8ZXWSaElPS2k+BMRfBJ5AaufMeZxyMqJoL3qktrq13r/XL6TnUbNin2Klfdg/kC+r7+ZXwYP5pej0bEk1cqC3lekKboajAa7ENqNeN9lwoY1Z8sKp5rJSSJJ8s0P5waRudnP8f3OuJPOhDr+D37/Mkvujd/40NSX2KCpWiQwKUDWB+3TmPj1BroNRIrY69dSUXT3Ge6fCQIXgGZyJLEiPhlF/QrI7HhrF67+h9ZH8VuGx/wzVnznDl2VOc3r/0hKZCCCLw6w0LnkXFxEIoV92wXbWqzZdJOCZxSqszuYviGrlzXtdZMpxX8+nJcjAneybiBKOMHVEHtfd9L/h5Gwwja/S9n/7lXPdXr+VdD3o893/LC1lNw2LPyf4q2r+9P36Ye93+11ClNjbnzhJ/TqP0TlMLbhq436v/I6SBHS0saeKzQfvTgvbE/dUnPIIz21u54S4PoasTZy58hBIcxXtKSeTkKGWumQOtn0PEkLOuea9CU4Ihmm6IDUkw2y9tlLL2zvenec3Zh/AFN/xhs4+lVhXBcXzqB17B6+/zJdz/fS+nm47FcpmwZRHOSdyd5y5veT43POgJXPfHv0BJCRsU7IoIl+cv/lZ4w+/SPeE7qM/9UerBbVgduGnBaJ6mN7T54OXhFsGd00aZVltZ9oVprBgc5JDIMbWewknrbzFEqdVr+OG9o8ZLi1glfFzHqu8puZJGEZxCudzkTPWOLnh6HXRfH/89nP3z3+L85/1Lrn7Vf8CNg4rzan2jWpwkWP5cC7F6iMb6Wt+acQyJOoQXooK03hMu3Ij/6NtId/lkVm94IWW1ooai/PVM/cP/zOoJ30r+vZ+nd0XF3qyPubQ4y17bop9SBQPxuZJUgMx7RyyGVc3ioiIm19F1irHaHjMe/6JfV34mg8zSVPA+410SvCxbHkUTmmqYoPe4Ajd9+t9n78b3cuHBX8yZN76QcNtH50g9ZMgRmZqRcbngL78L4TFfy/SGl7L3hH/B4e/+R30P2YNy7T8Or8w5xuTwweHHGVfWj976shrPqf2pxXoWO6iIaItz1IYsYjvh6lTJWymEksk+4POcr1gv0Gz35h6Ldh51/iwtTrazUjs4S8H9zcf/MEvfgAP9aGqgGoyjhmVZBFWvYiGsKq3FEET8JnZCzvZRSXP6kKo7zgVN3FybnFMKkgxo4bQZpDqT5QVsUPdXKyVDTpU8FcpUKUl+VqkUJ4XX9/ydp/Apf/ZMqsvNIMrNgDM3/iU3X/swerfl9G3vZnCuqcVbU/sr7/YkPufDz+VVD3oyj3zXL5KniZyTNIYqgUkAEwGjk3OkFCh9hL5nFReTg5BJIF5JyLVUbltdxZvv8vl89rt/DWohTxMpDqQxkoLDkakl4FR4y5GJPoqAjIuUIBOhcCpzcMLW18V/aY3iJx7mKNxyFWK4gTylFN0t9ty6SDRncpJr/3Un1o9E9czrxZ5lquLF1p+CUlkaD1tjHw6bymwbr1RpBJy0wT4ZcHWJTmr+6xtvZhgGjo6OOD7asj2WJoi+73Epc3S8Y7cdoFTSlEmDTAtzOILX6QUx0seKTaMKIRC7nq7v6ftC1ydRXW9ghACpqFNPObdJUuaYUs1sh5HdMHI87DjabTkeRrbjxPFuBy9/FjkJcF+gCcJk50k4EpCqx3WnOf2Pn8nhb34/e1/xdI5+9VtxatKjFXJcoeYtwUkBfdWL6JQIs3mZJtB1Tfhm1XVsQsfKRQGCrcnwDsmeKRTaVFWPj5HQSQAbYpTEywcVKvFtgp/zUSbELvZOA0vrbHBP/LxtHFnRi7L/iee0hnG3pFA75lekfRbLfq2IZknziWZ0ZkBFCicVVAgE+14VSatODzClSlElVYA3ZQVsR4ZxYBgHdsPAbtjJYzdIU/g0cOHCebbbrU7AFHXKGDzTNJKn6X/X9vg/eyycdlZl5+A1WKpVwd6kJMCBaZqoJZGnken4uE19MEjLyDYSPKl6dPSN5NKaHNSJNOCkHQpEhIArjmkS+9qvN/TrPXKtHB4dc+v5A463A6mAiz3DNOJD5MKBTCibkgjVhRhlJei0h7+659/lig+9lnDrh4hdZG9vj7NnzrK/v0ffRbbbLYcXLnB0eIGSM32IbFYr+l4EDW3NOFCRqkiv5IQQZJJVrIVYxCc9ob6LW0CaMX1Q8bue2K3o+l7Uh2OkiUv6oAnWvCcxYIll8/4i9DmJz+mP5gTHbKJc3sWeUrCthXItKXZzU0H1TcDH1VkY0WmMU9385i0eac20ss8KQg4SkleRAnUaRcRBE8daZVppzYkpjWyPDzm8cJ7d7hhqIgTHqlPSTN8RlLB63/8Te+J/4Yja6OD8XOhF/5Vk0JILdB94FZkywTpP7ETBFucYdrsmDOmqY2jg7UzUrlqQJii5rmQStL0lCcpMRlwEN3gKX+zeI/emJAV1bWXNIkg4bYxFVotglvrbIsJIfjHN4+KEwxpqRfilNjC0Jen/H4cRpu06Li7g4vN5jb8WRPVaMdphwrVJJLAMBRfJRivmMscAFLIrFJepTpphi0tUEjiZ0IWruCANpsWJ4FYIXsi8vQjYVSRWzCpYVOzz22cwYLNUQfPq7DEtMa0Kvtpk3CbMoM+523f+Ejf/p++jHNx6Iq7GiUScgdJlcc2tobbZ5lr1Gi5Tq0vruNcn3ZMzp/e489VXc9npfc7urbnm6is5c+YM680KHzzjmGW6z5TaNFYr4JZSZiAH24ozMSVlgWed09jeV0kYrbkEE5iCUiVuFJDebKuQyKuKN6YptQni1DonzrZHLCa3NY79TAECrxRXK+ToeqmVJqJl+0L+Vu/dskChf6/f0lJlN+cSJ0XH1GZZU4oWAlvusEjE7fnemrE4CTS0o0pRa24gmrMwAwkk4ZfrayJptUL2BVKe93upMi0sBKJeq5xrKxDP01xkPReQeKMKGF6t4a9C9rM4VbuOmhPPvlc/ghMCgncCoHot0jQ/jV1yi8ft7+yiqdhO0aZpi0UvsaZmO+R+yGeURl+3AJm1eVlhGJuwY/vr7Hf+Cjzn27nln/4Md371M7URWQA0HwL3Lrfyl2WDCz2fnG8WsSPncK7K/Q2Kr2QhD0jzmUzUq9Vr7l1b7NpI/A6KLwoqaUhaisRTag9rXfgxJ/fE1UrVYlsByQW2W2DpR7WAtrDRKQnuIbZmEhB4miRvPD7m8PCIw4NDDg4OOT7estsNTFOiJCFIjFNiGhPTOOl0FiHS+k72aCpJibw6ncwKeE4au0ObjBgbKLnqerou0pq1F764Fag19y0mMKBFfooK5UUtTAWJXZaNb8EHXOeJtv6X+0evl639ZZMWJxph9dDiuQc6DwFH0txjUvHNUFVsSePAaRS7Lg+161kmotWUSXVkVwslZaZxol+tibH7379B/hcOm1STU2IaR8ZhZNztSMOOPI2UJEJTvqpwkHNtgqNMlfe4KtMHui6wWkmuslGRh9WqZ2WgtQHVs0mzrdAeGm1g002lmTcoUdjuveGOVhwW+yp7wxoHTVjfBKYsJrN3mPEv63GoVeLbhinov/Z3c/GlCKE+zrHkTB6g2deWy2fxjwa8p2T7bFzsC9kLD0+3MaWB3U4EOna7HcMwMNq+TEmFpsQuhXQb93nfK3jXJz6Kv/Pe3+XYzwR78622L5yrJxpIg3dUfagJks9eT+6bJRyiV6K9tg9eREh1f1ClkOlqwVeUIOykyWcnRTqv192IPslnksa1Ts1hcHL/pfHHcnQNHhfrBrtPTXRKhCUuxWNJ/Gq57jJxZo5nlnmLYKt6/9B/La/NiZInpjSSptTWhzTsyvXVV8aEupe4fasfLPKs+bJabWHxGVAhkBhYrTo2/ZpNt+bUZo/Tqz32V2s2/YbVakXfdcQutIKOfkAMo5HYQ21/yoLdp6y5uDwn3/XeTPf9dPyH3sn4WU8gvvq39FrqetUG/uo9PqtfTInLf+3f8tdf9a/5hN/6Cbadp0udNDtrjtXVrvkR5z0vv/ZzeczhX/DCqz6brz56E71hfN7RaTNDy6dhFpRqhDTL3VRsNAlZ1vkisbgTMrbF/Levr+CvLrsX19z6fj50z8/myre9jBA8fRepf/gcjh/3FPpX/Sr4Qjm9TymVyYiMv/iv2A+eur+veImjfvSdhCvvRF7t4979ei47e4bdOHG3b/xRPvQbP8uDv+fZvO1H/xnp+ICWVTnXCC629uYgc/5M9iNpBoisup69zd4lJzRVVKTH1n82kakkzbfjNKlQ5iR+bpiUFCuEUtluipHFnr5bUU9dwQfu88V86rm38porP4MvTO+YcxPdGN57PvX9L+eN93kCn/GRP+L0/ob1es2qXzXCec6F09MH+NO7PpTPu/VNlKuvlnNcEHtTkol4r7/f4/nkd7wYvz3AcIoQgjRX28RmBx/mFB8JV3DdeMgfHJ/i78ZB/asWv4MRyuccxmx1wzwbTr8wqOrv5mb+kzbKrITlYnkxQGSa0izmNI4qxjXwh1c8lPv+9Zt4w90fxf3f9kLqsGMcBs0dc4v/2iMljj/xIYyr07g0Ml37APbe87o5/7QzUVzCa7E+BGlw7lc9e3tr9k/tsdls6PteBIhyIU0TJSXR79BhK94mBqufl4bqfEIU3JohWlFYr4Xz+nBeiGJqv7zFMUFy9q5Kvh5DaLakFBGbKiq6ZHbRMIJLreFyzrVdi3FMADNoDAaaNxcY0ij4L7MwZ3BOGte1mUkIEjTf4J2jC4nYJfp+UnJ5oQvQdR3rdcfeesWHvuRfc9+X/GBDImsJmjtEavDKwbapaq4tZQshahOWEj/ivGsCofPnne8/iokYppGL1AFx6NAkz2/c72v5svf8Ks+/11fz2Hf8IqUUxmFge3TE8dEh07ClJlnvtUrzLhXi1zyN7neeQXd4Toj02oTf9z0OaSTYrFasVyu8c+xd/+f4jwnW71yBNMlViAGXK9UVcg0ymbLzhJro8sAUA4RO6tLRq4irNO9RenzfS9PdlPB55GvS6wkhkEtPjpHoglxEu4/UhXmoKqYARtiwOMfwWxd88yfU2shovjiC4p0hRvq+Z1Ok2Xm1WrG3JyJL9WhH+u1/yzDsFtjj/HpVxTksyvTe06/WrNYbNus1q1VPdMA04rTJJ8RLy48NdKwcBK/5FhkRI/F4r0J0JUtOZHCCd/MeKkXz2Y9/GEZhBGgRMWUxFa6Ct+epX/BFcqNalIyr113jSyGmil0wodlGei06nGohNBU0jzcbd1L8aI5KrT5k+cmSqGS+6wSB+yLs8GL72WI+zVOsXksV3K6WKvtT5aqdl3qREX/EV5iQVJBHCI07oypf1CB5FSxIxFoncSEKZkem0uFClPgQp1o6JtBXKE6GxlidYolv6IU/maN9nGs53+tFrqoPs+euWj5sL6N17FIlR7w4BqjiJxfKzC3ntNgSJwOTinMyoOcSOqw51daWr+onhAmOw8k0YxQxMEKm/r0rVvsols5IDOnEBhYVimni0qLFKDY/hHm9xoDXlVCrCi63a688phwIQQU4kjTKh9ipcKUOnXDCrUoEHbiC1EVVTKO6oHZ6WVfR6NA6qFUwR2JIxaeD1PVMSFHEbxxkL7yVMrVhaa3uWrRGXXKbgmxNwyZ2bOun7f9SIWftPNF1Xmzda2haXcvhyiJXkV9JHdHVizHwk/fdcMBqe59K9ZXiVUTRK6bjrM7c/vLEa3jFeqSnTU6whKJNaeYNhfMmtTKxfaEIBkPRoTdObJqiWm2fScroFSeZBdrlkpT5GmHxouAnl9rhnA4nSYngPKV0Eu/4oI28yi1SArc19JXqqToFOxfwUYcYRMnbS02M05Y0JrbHRxwdHrDbbkVQuGbtR5H6Z4iyP0zU3TkgiH+b0shuHDgaDzkeDtkNO0YdspBf8gLSlz2J8ooXM33sgzJ4oYKOlhD/3PBG1wTA3TvfAO96A2MtZDeL/9ggEzPXNrn66l/6Pj74T3+Muz3nuzkm0cWZ7Oy9J3uxT2KjOjxrvN8j+g0x7NOFjQgr+Iz3iZqPGbIjT5k0TuQptnWSUpG8N+U5btAYNERpNqyKuXkVcJL6ctEGSokJvAs4H8Uf//1vY+/1L2F94Va62LEbRg6OjjjYDpw72jGON5Gf/lTOlSICzaNcX0el63u6F/wXTj3x6xle+TK213+QM3unWfcr9vs1q81Zwgaq5fI7ySu3uxE/jqx6x2bd0XUa72uA7yvUXKh1IjrwfpKaijMcF1KphBKYklO9vg6vn8kRiC7gg2Oz2uP03hnG6Zip7Dged39b2+njHiYO0ZoEvdfBUg6bvC14VaIm4xpofK6dKBV15Wj0tVAiEUwYhROFuyvcYOV6YH5Fa9POGlQt0ZJcCV070hAt8U7Bml4LuZHyLca1wbW54QxNGFrj3Kp8Ol8h630vzlGSlwYnB7XaYBoWQlh67laDL3MsYD5CLJFrNQ/vLd9yizoz4rewazXXvS22bM1hWOxWNJYw/m3VZlXDYGc7gZ2PYuA21R7nWuhla76JHiL1SVc04l7Uvpw6nZYvWDxscZvFmRruGU8jl6IDzzSOc17DQavVaB6dMrUkaS7UvBj9yHY/5TrPzQvBJx0MIs8t1YTQLp2jThnvHJksaEb15JpwzomdwBF8xPkowoCawfhadPhDIafcxPqhMAxbduMxY04iJHFwQBcDV1x1BbHruPX22/nIx27ipnPnOXd0zFQh9ivi3oYzZ87SdT3Hu4HtTTezUzxrtHvvgwyfC5J77NJIvjAxToM0P3jP3v4+6/WKDihHt3P9j/5DypToOvELDs9q1YHLDENiGgupi4TgqcpnryoyILbDeIKhCf2EoLzhfsVms+HU/h6b9ZrNek0XOyx4rhXCNOGnxFNu+W8Mm8hB2gMqJWVyn7W2IWhSLp6pOOFEpUpiYsoVV0Q0EeeYSmbY7qjey+Drktnsrzl7xeVcfc1VXHXVVVx+xVmGqXDr+QuMw46rvuYnufD7v8Quv5/D42OmaaR3Hl8z3lVCHUlppJTEqg9UKut1xzXXXMld73p3aqkcHVzBwe23cuGWm9keeFIt5DJxOEzsJnmc2es4c+pU46fKEKwIruBipV9HuvWKbr1i1QuHPETh17XwlDnXLZZ/4sEnXBDeZuxkjzk/seo8NTgVi69NiOjSOSpLTrXzwil3Pkqt3wfJfYIOSA9RRSpEUKpZbPt7QntIbXh+nSaOjAZoTvyFq7XZvFIrNSuXSXGOog2ytXr1ofOZG74uw+nkB0+u7+Lp8VP4Tt4tcYYF/R5pKg2eXGdeq7dOPed58jW38RM3XMW3X3s7wSmapv7VLT7n/Lkto5P3brRYMfRzLaDhCSzyeBW/U+6FvETlt44u5/7xmD8cLueLuszVbBd/L7HEPpmnhPcRVDh15vYGauN0BXrvVCyt054A4/vJvU4h8EMf6fie6xJP+9g+33OnY/AqsBvUB6qvi77gQ9fqPdXyn2xNmwbTWq5k60NEpSRisZY/MBHjGbcqLaYxWR25jKHVTpzGz3KtMjOHc/590wC5hA6JabwOC4oNi1MZG0JwxChCU07rnp/x5ufwms/8Fh751ufg0ygvpJfKO482BM1xCbJ+RIylMmXlGE2JcUqkmpugSmrxk/E5PMMVd+f2+zyaUx9+M7c+9Mu57C2/pblwUO6b4V7KJyyZ2/7B07n6Bf+KW574Y9zld/6N7HEDDr34hSmLP665sH3RM1g/8fs4eMmzGM/dKLGlgjyDD7gidYsuCH+l7yJ97HD3fzTdWLkQHIf9dZz96z8XfoNynvq+Y933YtNVrMsYm+tyKw+/5YOMKFcTVHhZIrBcZdhgRnzWbhw51kGB5w6OODg6YjeOOO/pYs92O7BerUWsSOsrnff0wdNHT9Lm6C44fuW+X8fXv/+XiX62fVbT9T5QK6QKDx3eRqUyMYvqJRWakhhdreAcgEpcqMZG4p7F/aTyiBtewcuufRyPuPnVxPFAaq61smB3a97SkzOkUKR+3ngPc3OsNMR29FExg5yXchOXxNFwaeOuNADbcB65LpYFwWydnOUqBq2ivRDeC77gKt0H34z/8Fvb8C7vT+LfJ3Gvqu+rvRtFZWA0NymKz7fmceX5CdfP8hYES1z0Z8l5Lvi8bub5B+WY45z46hjnfLJqfFlN0EYEpPoY6WJP8NLHlHMmBQhTZXCFUrM0ZJvtrTPu7BWzCA6oXrVxnAzoNM5zqdQX/wfqk36A9Sufgzu4BadYbGsSbo3UXj2m+KdaXetJER9K43qMKUvdOwsXMBXxF6nb8N5Hfwv3+KNf4C2f+fXc/zW/SIyx5bi5FO78xufy/of/E654y++Qb7ue0WziQmiqbAdOvejHueXvfSenn/+vOSyZxtwxX7sczKFi9Q6r6y94AHrPa8sNFUOs6vqBxbi5Bex5ae0vQD6XQ3u4XDtdszkSI1UVILP2ddqj7UTL1UEFyawm1N5ofkvNcxpuq2sF57nxK3+Kuzz3X+nTjT/eQiXWH3gjxw98DOHgFrrr307tQnuL5d4VnmCmxJ7ssgop5XYWJjQVrafG9nutug6K3lPf4rwKuHFLVTtvD3R9Cw/C+Gm+7YOgta5qvUHaoG+9Im09zeh1w6U58T3zFdcQU3yL8iCwPkzFktqDVrcAuPqbn80tz34KTnNv47jbAMeZI8p8TRpSofgPVi9Y9LzYGdb5b+Y41wZ+LQSp2hkZj7HidodyrZyKBWFrcmmXfcPolkItaO5wcb3ib/uYhcSg5RC215ZgdrFronxDZ5fS6k3LPTTnQVYDck4HKy+xKr8wa4CJIkpVxLp65wDbex1Mq3oHhksthaZA94JTwfz2cycYoEPq20V7T6fMdDyxPdyyOzhid3TMsN0xDRNpkgFh0UXhNTiIrmNkJNSJ0WWcj8qTl1yoOEdSnC+YMJJ34rMQvnOMUR+hrc+SEmkcScrJrrXw1fXt/Jx7CP8wvZVVGeZhAZhNVztSKymN2qMzcxfn9H/h00B6CCbJZ3IuDERe9olP5LHv/VUdsDvjod57XJlf75HvfT4vv99X8Yh3PY867Ri9CPxMOWlfe9Z64YJvushjvXd0IVI7xz4OG729HaCPmeASHuFFWH29ArkWaplwPohtDIGV9+z1nrN7a646s8/VZ09x+ak9Tq0vLQ4+qIAmFe+l52vGnxe+jFkw0Z14zGGAxZkKuUqPkMYtxWIXFdCcSmFS3D3pjpI4MzQc3IeI70QzJMSZw29dnOYv7/WG5/POz/4a7vnm38UdX2Ba9vDb+6IcCl9xqZCDQQ1aI9c6pvW+Y599nBgXdtxi5OC9rJUKLgpf/D4feR1/ca8v4Lqb38GVhx+DIJgXwVGyIwdHyV5qQ1YDcSoUo7FAyVB8kvp3cYo5aa4cpZ5oPULGfjmKe/zBFZ/JZ93+Fl51p0fxuTf9MQDFz7wInyYe9vbnQkkqAmVaAHnuvyqFzbmP8gmvejYlTzJEXQdpeCe8+L2X/RxHX/q9uJc+m253iAsRR2kxXQE4fZa9f/QD3P6spygsO7M7qiburV7kvN1NrGZRlJfdBmzWSgKymygxUrVnJE0TSeN768vzXnpDqJcWryr4gKuOLlZyLKxiR+omHW4svsMFz0rz93Uf2fzhszh43PdxzWt+EZ8m7b1Dhn5V8RW1VHLNpMVQl9a7q7F8ypmp5Lbfcq2cfvKzOfj5JxNikOECavfDh/8C9+G/bIPvjJfhnKPmkfqCnyJMY4sroIWc1M1Ztl/67ez/xg+1dQfoPRVeq3kIqPgo/RkhBvpSmoaI8LmAMuf9vuQmLGUDVmWwCM0Gp5IZU2KYxD/mrLhp0euUKylXcpa+uKve9Ftc/1lfy95f/j7uto/IwJNa53y3VOH1Oqnr1XM3kl7zPMLDHsfhc39K/FWV2tKJY8mRAu76Q8/jr3/wHyDD1LJgO6JEjK+CnZjofQujm8mxL9yMeyo3pSguHK3XCOn/8rXgi5dea+/wLivOJnFC64PDXsvi6EXIWhe842rR9DKWXuZnf/PxPy80VcWZOwN0NIil1pZUChlxVh77w0c8hce+9VdE4Tx2hNAJYUOBd5v00IIx/VfEpjShNxUv/ZCyaGzxatKQUcV4QBswc66kqTBNhZwqVYWmZDEV/uoxT+UTXvkTvP1R3851r/zJWWCTGdDYHL0S7x23q6Hsu05J40LGeMRf/SqvvPc/4fPe/59BQdNaYjPi5ERJQZtYpKmglNQWjMuRGOaEw4dAVITnKJ7hDdc+gYd+7A94472fxGd/4AUCptdMyZO8rqvU6iXIlRIDhA4XOlyoDT2qdVEIAQUHaktETqwgO5qK+UWESRX8apGIIVKySJryeLUeY30de59moGZscH57Ny/eVi51tm+t+UBSStN5qG4uRgv4kmeRKZ0abQrdSZsr/nvCDv+3j2FK7MaJMQmh2Xe9Nsp2BCXp5aLAealSQIm9JAw+4nyguMiLHv8zPO4l3ytGpevwXYfvegiBTKBWT8Am08yFk1JEVGqqmVRT+3pKlV0JDHQkX6gRXI141xNqJLqRElOrk0jTQ5Apzs7jJwGtfeyYXvBD7H/ZD3D0y9+C6/eJzgm4F/y8pseRrEkAyZFrZUyZGAoxVIYIU/ak5Egd1A5qKERnkxuY1ze21oQg7UNoyoO+QC6QcsXHLImaFkeDTajzHnwGF1qiatQMs6/Lr1lug8V/5J87rrcKOrXWLbaebqolWHHiZ2qLHWAgB7NQlQWe4jQKKEkcOwfJ9FpzfzGRqVIaiVKaN6RZZ8qVsVTGXBhSJhUo3ss07Ckz5Qo+EvoeFzpqiLgYUS7jJXucvD964y4KjMS/SMPYNGw5ODjH4eEFDg8OmKaBPI6UaRTgUJMFKVDTwLLWTBF8C44MKDcVXAN96sXnVo2c7fCho+uP8fGAlDNHu4ELh1vGVKgu4LvE8dExqRS2w8S5/nI+drdHc/Wf/Tpo8y/AzQ94AuEdr+Ij9300q49+kM35mzl96nQrRJXNPi+/7kt4yA0/z/nbz7HbbqFk+tixXnXS3KENojYFyMTgYlTijvO8/CH/kie86aeIaqe9CZToVKgQOmK/out6QuzxjbishfgQcLHTuMBiAg3+nMUieXHBdKdVTuwlixlMhMfAqhmkWkZKKm4pX2JFBIclrAuY2Fnq7U7scwEHbaquJHNFBabQoJ2ScTVR0qRCU1KQqCULiSRNjOOWo4MLHFw4x253BBRi9Kz6ns2qZ7XqRLjsEgMGAcZxtOXb1MRB1kDXpnF7fBRQa76v8mFKKSo2IYXXYdiRcp5BUZDtqskv6DQ/KzItwELv0XU5E8samFhPgrka6WCRpgMlaatp8I5v9l/Gs+sLZ1PhXCOKuFobmNJOsgHtFqQrQF4WwU+lncffFJW4xb+1wjf5x/Mf8u8SqeCEGO2L+pIWr9MUi2XNati3eJeKkvisuKAgUC5FhS5MREiaUFMapXF2GhmngZRGxqwkQKVElKKKwta4HyT5x8He5zwR9i7j+A9+rYGxgdDiOzBgAepi/7biaLvfRjSVa+eq467f8ixu+i8/yl2+5Rnc+LP/HIajBmZIEUGEfFCgs113aAnVScG/xfW/xBD4Bz7wAZza23D1lZdzarNiEwNnTu1z6tQpYtdRa2n3aUoiEJG1edUKiLVWq8jPSAFzrC1FYFneQuhV5L2qeE0ycouIV+RyUogFaCIiaZrIU5qFptxiL2OxiIlQccIuV9s1rZjjGuAIkjP5KWDTckuRBikT+5FPtrD3GjvhEPur72O++cQUdWtk0zVpucXSDsnz6vw+Stpdrq/2ZMvkF2bCJrlU+/t2nIBycVm1zJfJf2UWlcq2l3PLeWzCa1Z7SXvrikzbM+q+EnGtUcc+miSlcn4qONbOTmMe26tLI7VsvrOfeU0ShFjtFrbKEvlLK2BcxvhmvcuCfB5yJqQshGYqdTGFy7tKSp6bn/aVXPP9z+Wq5/8b/J3upFMwFxMxveeh5UbJ8dxs71BCvfkhSuHf+YfyPelNQswvGZ89VUVdKnMOvJwqtCQCVrxMqV/4WnEoDpuUVbKR/GUNSB49qe116kP9ohgm62waR8ZxWAjTjOx2O46Ojjg6lEm5x8dbttsd4zCKwEJSYH/KTcxmHEUwINcEaO+k6Y8akSmuVERZJvfJpItOyD9dL3FA8E1oqgFmzaapbchiE6dpbAIFOdmESl3b/R43PuG7udMLfqSBlga6zqJ67uRaqbM/oYkAAGgzinMLuyAFg4qTvVW8ekEnqvRFJmD5WuShosx9iKQuK3FuYjAhIJcRLU/xlyVlpjrq5/GXHLk3jRMlJ8ZxZNwN7LZbdtsdw25HGkbKJMKrjaxTq5B3dF8IziHAc9eJEHXfd6y6XsF6mQIpU8RDA6rbhPCL7qMQCL0SGlRkKggx2GIo8Y36L7P9FkKW/Mw7Ws7n1EYa5GaRjdO/nVcCKkIo3zfCCfJE8z+1FlywwpkWFsosypNzJaXC97+/519efcCqjE0kynzDOIxM4yg5lDarGnAtk1cmbXgTnxOCp2rhphZpVEDMBKePbuahb3++TPkEJmd+8yT9zmuo3Mjt2jQQ6hy7L/1lux5uxjfsqhd1G9UwJ703MQRclOtqZNaoxMBohUrL6/SCTWli8jJpZs5VlhzdeuLRvLLazub23MkGnUvpaH2rJ8KgO55sm6RX6jz9ycgemtsK4Vb2YMkmAKgiZFnWGNasY/fTyTWbRf/mZh63WPPmqZZZVPsMyH3pvGfVRTbdir3Vmv3NHvurDfurNfurDeteRHaiFmiboEBRKkShFZVzEjGJKYkNqtlobpqPffAduH5N/oRPJr7sVxefZz6pimGy2gDnwecLXPWfv4+xi9S+m2PbdlkEl5QhAZUvvvFPeOG1n8dXHL6FlZf9hhaGQjAb5NoEI6cxZEWudYsJy9wMtozDl/6mVjh7fCv34H186PS13OMdL2cbO1b9CucCXUrs/8H/K2nj2bPiR4qQtacpCQ5trytBIOAoH3grqRT6K65gNw5sdwO3/uqPcK9//pO89xnfhRt3LD2l4DJiN0V4VH96osClftT8fwh0XSeCHZeYQEfJSfKYkqRRuAk4ifjmNE1M48Q4TAxjUuJ71ulzqC0JBN/pZ1xz1mU+9cbX8N7rHsmXpLdpblfxXicROyHSrsh8zkd/X4YwrE+zt7fHZrPH3nrDql9RSuaalLlnup509VXNF4jQp+zdcRp5xdV/h0+//g382ad+OZ/xzt/Bp5FSTWTEE3VQBRWunc5Rdjdx+95VPJabGcd1u0fBJlyywD7Uv7Tpmxf5X5vqI89FBWzn2E1eS/E23Qc5S+6ZJnvMAlPjOLavH/bhV/NHd38093vHS6jH5+Xn49jujw0gqbUKzjFN8M7XUO7/OdTQ4d/8Cg4X99rEeC3XcSo2Fbwj9pFV37HZ2zAMpzl1amSz2bDqe10nMkW75FlIxZrAJbeu5FSYkmCDJrLQfPzSqzqnTUO6DxUkabmed9okIxOvqlOBH63ZWb5o4pF28QUjuKjud4kcjShYRbAju6R+PzYBYPPxKdHwhuDnnNSbzapQpRtY7FzNjXyanYi9eg8EaYyPfmCz67jx63+cu/72D/HOL/1hPuUlPwAuac3ZU0Khi4HghTAUjBjrnMRONVNrolOCTKuFVtdWuZFmbI3L/ZFDapeGipV2HUp1fMnbfp4XfOo38kVveQbbaaLWym43UUqh7yL7mxUxZ/w4sZsSfdeRvvT7WP3xr7L7iqdy5sU/TZcGYvT4TkiTjeTqKnkcZaJaLXiHTE+lAhM+QHSBXHPrnwoh0PkICaYy4iYTihXR3BCiirl2BK1V+hDxocfHiAsj2XnwK3zsKAv8uHYdLi9iGOeakJ3tzbam9TnBWb4srCjLh8y21VqpXSGXFYnKKiV5jJkxS2w95QKrHjdO5LQTX00UgaBSVHRB7nffr9jf22e1tyf8B++E4BkddZL7Gt2ltceOa2QVHL0KHrg6El3BhcpYRqgFFyPVO7IKRkjOHSEEGVKQcxNDac2oWZs1TKxQm3dMgKhNeXOzlTObHPsge6BkrBlNalHyt1WFkkwMxvnabEQqSYRGgg5vQYauWKx7sUCULR6rO5mdoGi+aZ910eRycR1mKUh/QtAqqzirNkwZ/jCMgwgQap7r3VyJoDpqcTa7jIIIpZiwoAR9QZrqQxCxCs1X9bSh5bt+rnHTEVhT0kTfT1AyaVTRZyZ8RKaK6t8479tE9JPXa77HF4tIif9wDb+xa7N8jok3LNotNK4RHDVrGpFLZq4JWB6h4gAZIbG5KGR7Zj6Q0M8vrT1Wc6Jk14hyHuVxFDdj09g6kuviFLKVTRXEvpnYe9HGVO9kqEdxEPW6ZSE7FAqpaC0sWs7tqX1A2y4oSXKIWmTibFaxFBsUGPxIiD3dqojQq+IkssYKiQgqluqj/E6IkRFCweUiOHVeENzsvlutLFet7RRZ9z5TgyOhSbn3IpaUC2VyilnnE8IfbeGXSk2Fmk1YOGtQAC0/rVXEEWuRep/mv7CA6cUYzfkxGl8t8L/W3LfYA9772RYoCOTCyXq/C4CX18zO9gYn9lfwkuvYMEV/kdgo1VO8o8ag+YHHTUgs5yoBiz+kzil1elqTG9AG1AgmhAp2B8GMsca2fKJOZg3xQsm/9ICPnLMMBsuZEKLaewiuEh1E7yQOcVY3FhJ7reL7qvNCDq0yWKHUym4a2E0DORfG7TFHhxfYbY+kUd6VGbcPnlIjrkj9pLjKa5/wGD7rRS9Xw14oeUdKO6Z8yJAO2U1bhmEnwxpyIv/KsyRHyQlZcOj6QZva9WdUpjo3jnokbj2Bp1Qli3tpgJavHXEcuOKZ38zgEVI8HucioapPxeNdh/crgt8jxn1iOEWM+3ThtAhNxY7QgR8GpqGn5kIaJvKYKVn8s6tQ8kBOYsGjDh8q08SURbhfREKiNvSizT7qN0qZ8dsgYszn/+7Xc+adf8LB538l3R/+V+rB7SKcMgwcHw8MY8I5EWDZjYmjo2MA+n6F845pcvQUdr/2i+Qps+o6drvCpluz29vn1L5jf72h7/fo1p6ymnDbYw4PD2UI35DZlUofPV0HMVZ5aIxZC/gI3hsFXwb6VaRJqJaOUhwpVWADVELoJU70gg/13Yp1v8dmtc96OqYLB/9X99B/7zDbZ03YMUZydjiXhQdQHE59t/NOcwO17zgdrjDnru1oMfz/AKbq7E+swVPjkfYC9np1EUMI18FisVIqGeOQLnPjeZCtbsET7+ucb0LGEvvrEBp38mENktZC7LH4bs7oaztjZ/+nTYYWwOwEiFvd4vn2qVoab0128vvGZLGYuV22xfm0OjYtfl/+TWvGW0IQf5PdN+fp5jN08sJ3BHe9wyvHwMQTPZ6gWKMwmx3Fy/3LGjcCkJ022jmtYc85n/d+xrKZCfoe8+PgnDSAWEOVCHxcWvFiN8m9TbXCCrklBUqCUB2RCDWQ0aZXqjTpFiQ+cyKgHX2VIaC1Mk0TB8cHXDg65NzxBYa048yZy9lsNtxw003ccMvt3HzhgMMhMTnPtd/1Xxl/84e4+soznLniLKnALbfexoduvIHiPZdfdSXjLnHjDTeRxlEHPXhKziJgA5y/cB4PrDrH/ukrue5ud6OMA4e3efLBeVwXtJ6QiA76GFnFnpCCnnPFRxE4Lr5A8LIWvKMET/UBH3qiDt6NMdD3HZvNiv29NXubFfsbEZuKnbbMOWlCSVOimya6ceSoZOqUIU2UfqJMHSVvoAZwE4WJqUCqE7lmuhLInfi5IXkVr6sM46h6wIF+HbnssrNcecUVnD11Glcdu8Md1QX2ujX3+oan8+bnPI17/pMf4GM/9930Tmzpo/7D7/En//zzhIeD1MalMT+zv7/mmmuu4U53ujNnTp+ipomz646jPnI7hQshcBA8R0cHeC/6rOe2W7bjMbtp4tRmRek7FThK+Limr5E+FNarQL/esLe/x3rdE6LDRQdBc9qKNng6UvakIjlicR4fOqlNjxOrzZp9HynHO7oykVNp/L9L6XBmcEFjencSo9bn2NeNe2NiJPo3gm9USpDavveFnAMhyPX33gafCm/QQwMQjIXYbLlKTgs2WCUf0qbaorUcs/11+TNNbbyrfHt6O9U5knR+qn1wKiSrGKjiNXXR1+GofO+db8JXaZKsXj4bOA6y51nXn+H7PvFAxT7UxjfMH/WV1a7a7MxA+XeLh+acNojF8sIv3budXz+8kkf357izH0lpydnU2LfqUChrKvWSQxcf1DdZXaFlc3Ncoph5qZWQC99/beLHrw/8m7vsRLhZ/6JkEbYLToaiivhYJWBcEu3vKdMsUNzaJ+XOztfVuggEozHOfhucWw0RsHc3YYmFcIxh4Pq3pYpoplMBHhEUhMUJXDJH0EbQGAIxaC7PzJuI3kSLfMPsPYVHv/6ZBLXXOCeXVEWSWzwEGFfCRESTDsmZmiCLclWrNTfLeTkUevGezbmPUN/3xxx8wmdw5zf+V1IfNSeWPLd6fT8fWo51txc9lY/+/afxiS/617jViorDl4KPlVCKiMvmwnYYpCcrTexe8COQkvSmVOXhKv6QJxGkCuzEpjhp9I23PJ/NZz+RzsHhm1/MwXrF3nrNuu/ZbDbsr9dMqzV91ylXS9dULYRa2iD3aI8QRNDbOUn6c6GUkSmLKO92txPh3oMLXDgUoSkfIqt+LVjOlFVMKtBH4aTVEKjZU7K87u885Mk88e2/yC/c/xv52nf9fIsrRRBSBmJL/QVJmJBsqYni2KOIGLoJ77dbj+KKFRU8ldeXnwtv6tHvfz7BO3bOQa3a84LGnILNSAuQ9iqwwNas4bBWnHKNjF/gk7vk+sls2JvZCT+nDHNYPiPMzHyMWZJDfJ0KBjaQO0psrlCc8x9fZKrtSXlx2d1+6SMqS8F360USTp7Y0jzN/F2xltZX6pqIqNP+kFIroZpQRyXpUFic4KEx+PY6MpjLKXYpOVkfIutVx6rfaD+dJ6fMODm8r4JtFodNiZn3lNrh5WdXn+SqxN8nkqWScb/xgxAjru/meML7htEZTm/Ct1ZqlhzQ7FzV/rVCykWE9JTHknQoaZ0ucLcX/yQf+MJ/yb1e8uPs+g5fFvtIc9urX/Fz5JI5Vi7n8vdJsfmyvYH469/JUVVfY7GG06joMd9Afc/r4YN/offfap6zaNacR6p71NzZFlwLCRxzj4bVtDEPcekcLUcsUL18oNmTyTowSYwZF164ZE3qa6ngFf9q+6HMcVA9iWNYnOMW/37sK/8d1z7/+/nYk57Gtc/7/oVAznz9ApX9t79C3jYE6kWD2uYaToEs92rZg+H0nL2dQ1h8JmcJKc3QCJ/Pt2DwYr7lEi/3bjGwy3y+ck6ogeJyW0cGSdg1XJTD5zmQLV7Xu9Jq63oudv3Rv2+fUNfzAnCq+t+r/sUzuPkXvo1rnvIfufnpXyc9uK5SnMRu/k73ZP3wx7H9nWcy4zfzu3p9ZzlVb7RrKyNetLZ0fRXzdVKbsA/cIlm3EJqy91HMo7o5p5nrEUsxO60J6Oeras8upcP6dJzaGnFDS6Es+exWayxIzXLO1hA7XBe5DWD3uACuyF3J1a6T7t9q1w4ah7eK4ETR69c0A5xr1zs236Q10xDn66z3teKafVBGgPhaj+LCCD9+GBmOtxwfHHJ84YjhaEsaZnESx3KYLQSE5yMxsxeRmq7DhSCi3Agu4RTTdEWEIwsygCb20nPeqc5B50VcMo0jk8ZNqcjACFcT31heRykTWcVrqvGY0D6JIoNHx0mFpmC2K3Pqp/dP7tk4JIZhpOTChOdl9/9qHvn2X+H37vMVfN7bfxkbZNDEpiynQ3DDL/jLX0aZMSR7bZCcsKYTPUFWfy7auyQxqWfVK8bkElP1rHYTcSf30VPUBkpfuAxBkIGj3jti7NjEwF4fuGzdcfnpPa46sy8iU31k5S8t3AMQDQpkPQbnVBxxjhtbvKcP+53sxZZyS17jFzZFbVxpW0/Q3FwLqWqPYa0q7BJFw8JLjo1z1PVpbviyH+Ruv/ODmiPIusk1Ny0SwW4L9/2j5wBO+UI6gCvMOXN1XnuzXQtF5NbpMKKSdJhEmnEIzO9ZvFfb5y9ObQ8nxbYe+J6XUsg0PjgIJ8FJf4Hh2cbltd7TVnv2lZo91ScZBOWgC15yti7qYDrBw1F8/HQ+5gtufz2vvuzTePzNrxQ8tMjrz7Gc8LNrtX5/ibulv8K4NVXz3GIORvn12mPrKjFX4u/8lHAvN3sqSip16Vwr9Gvc1z6N6TeexpX//N8x/voPYcNJ7XxsD5p9xblWDyp6vWdOs3Ela7tmbZD2lEjK6z8hNOV9+/5SOYKTftfoK13M9DGSukhJMnQsRPEXq75n3XesYqQPjlOv+JnWv180x9XQsWk3iG5DWTyy7K+iuUHOjDkxZhHYvu5f/Tof/omv5m7f/Svc9LP/hH610j6qnhjiHG+KcdbYA8DNArvy7SyKFNeMT3oqqxf+DMdf/r2cfuFPtBRQ+PFilaVtv1BdJUwiKt6nKH3G6gcaFqD3MBfZt6EUQtA6cDUh8XJiKMyUEsM4Mo2JnDUuNwEn86vW55wLl7/yF4TbXk3gH7JF8d63SEKZYKS/fg/Dh39a1qb6/epO9qiguJRznrv+4HP56x/5Kq79wedy/Q9/RbuOwqNEDaroj2y+4GuYPvIuhnf+6Yxzgu4H+TsbdNZwCbsP1bX7JHan4Ms8/EeELRdcN0d7/RPYN3I/ZY0Z/3quidUWgFeWH/lvOv4nhKY8RvY3Y7gYONQCQSlkmeBL5A2PfDKf85Zf4yWf/k/5h3/5q20SRPBRmwZDE5oSBpUITM1KvebpNJAjq8CKJC0lJ13kWkislVydkEFTZRwL45gWj8yUiqjKl8Kdf+df8+HH/SBXvegHOFIl50JtQiBN/Kp9zioT0LpOhLOCpw+BT739pznfRfqm3i7BpQcokRITOQRpZFTSi6jaT5QY6FSNPgYJEoWo5TiTLvCoG1/K6+/0aL7wQ79B7eW6RS/BTs2TTnfy1CTOvDiaKn3QBVyL1+ukYYL3Smy3JNQQO/ucyySrNmJzRdeAPlEIApJMValSo9/J5EyYve+JVQwsc5p60fvrn82nJou6mnXVc7EAdemUpPEga8PBwDhNJxo+UhYgphWpL5Hj9JmzdN0KHyLr9R7OIU0dKNhUKjVb4inXwqvzt6kqL3jUv+EfvPan+K0v+jG+9q3Pol+tiJ1M0hZiogjbyB4MMtIOI5fVBixNOTEmmbY+pkSXE2t1UMM0MkyJIU3stFljKlmUL50ThfYg0+aKcxzuEhlP6FbS4PgHP8vqqmtxwLrv2Nus6YKnpIlpGMhJhHuiFo581SAImzTt24SdLgZWq551F+lDbA3ILYxXOxicitp5VfB2AnC7qII23gJTAS6tsQvnqZpM1IvAh4u/Nl9rPzXg2Rr0bO02u2xfRyFr6ithjeFL4q79rs5Zr0Wv7fdNjZAZADOKhoynXATNpWIS8iY0VczJF2ke3G6P6VWQbZwmut2WuNtqopk43m4J587jYo/3cOrUKfY2a5163TONI9M4/P+3Gf4PHQYczO06skAsCQp6fU2kqxYYp5Hd0QGHB+e5cO42Llw4x8HBeco0Qin0nW8Kxq3wUIxI7yk54mvCFSFrV+9EnT1EfAziCyvSBKTnZAIfUuh00oQRJHAoReyZq4VVFF+Li/goE8i224Fh/0qu/6TP4/L3voqbHvB4Tr/+19X3Bs68/r9y28O/mu7Pnke4cAP9qX3Wfcdm1bO3WvHS6x7P373+xbziwf+UB7z2mbhpYnssDVs+ddpAoyC4L0IyqBlPxDtJFH//Yd/FF7zpZ3jxQ76Nx7/5pzTYFAVPR5br4wo+VUQ9ueB8JbhVm2DjjAzpnZASTJBLixW5Fkr1LclDAQsLyMRXzXungaF6jyUIXOwpGiwl/28JqQOM3GUFKK+2wfzawr/VQq2hqQSjZOlaksZNqpqgYL00AMjeLBQhgyBJr88DLu1w0w4oeAIhVHwBn8G7eDI+uUSO7fG2qdAWDcINIAxqXw3IsiJLKZVfu+pLeOLNv8dePmjkeiMKGxAkAGkkUDR4ngHp6LQwbQUtbfzL2WtRVZokrAkIA4iKkD+XzeUzxA6uSmPFU+KT+OnphXxr93ienn9rtsW1CIixUM+m/be2NSnN1gruajFBnmIFhXrSR5w4agPkvy08jn+XXsQ3xyfwrPF58muLly9q1AEl4XkhT1tDR67SgCCxkE2QSeSSmXJhzJldzhJjFhEfkIZMiWFFcGpkyvCSh34/j37j0/DDIUl6GigVjofCoGIFpVa6h3wB+aq7U44P2P/sL2P3uhcDqIiBAN2yr6uKeqg9NhDXgA+9dUW9rhOjzvXP/Bbu+h3/iRuf9RTq7nAWDnKuNSIZgC915TsCEaZ032xCi1H/Z3bA//nj0x7yEFZdx6nNiugqLif6KLlBSRMjVRv/54YONFZnUZExsFXWrcT6XokuAuSpeI2KvqWSIY3tchQj6jZV7rmAQRUyXE4yaSdPScX36pxgG/BesjZB8HEKUSbOKN8b6II+10SnrKHDgGOZsl1OgIawiJE0WXdULfa49gQTtyilNuJjUiGanHSayUUxobzCTFADFcmo9v7OTpoTC8p+bPlZO425YAJSRFj+gdShZuGc7Cu+1Nbs3YSmqjQp51oUnMlkNxcqU8o4VDyrAHUhOGWbzTlp3qt1Jjsv7oGll/On0qYfFvvIzWdv8I3l9iX4S63G1e7d8m5J75KKFqckzTq+x9dC1dyylEyunuREvOLo6f+EfN11GldoI0UUERvBQPzc0LjYE75WER2u8LPhIXzr9Cb+XfcQvmN6QysY1jILrhWk4VgAWwUDXTgpnKajoZ2v89rSeKQWmcrslBQnOF+di5ZOxW0QwA5gmzI/fe46/kV4J7ujQ46Ojzg+Pma73XJ8fMy5c+e4cHDAOAxNXGoW+RMfNE6JYRABKhOaKkoNl6YoT7/qiKsVq37FerPH9u/+cy5/9ys5M9zGer1ms9nQhUhnwpVuLvihQNlHz9yDC/1Z7n3DG6XZM4m41KTiBOM4yh7PSaaxF8f1X/pUrnnx07npi7+Dy3/rJ9okCOckLrUpG3MeJhfHJmSLqLMJlUoR2KaW1haimh8TEmrVT+6LNJwaacVXTyCSQ6CsAnka24T2GDyjd0xBBAKyNQqqjcspk6esNubSOdI0qpDvjnHYMQ5bxu2WaTeQxlEagm1KaJbJobUJEtpkyXlycYyyBrrOHjINsus7FTbSRkvLYZp9lT3iNffwtk+1gWEZUbH8Wkb0ISXOBVmERSON2co7mnz92jI/FkWEokVYA3Pl91kLt67IZJQSsmKoYqtKLqQp8+9uOMvX7N3AT37sGr4hvhfGnfjghdBUShNtqkq12FRPgrk5MgRP3/etiUj+Rol3uerUXQG9xRdl9cFptkWIQJpMK43z60QPXRSRb8O6LKaDGRvUi1ZPXNv55y0L0/i/64K4KS8Ngj7MxFxrJDW/bI2hOae5kZJlDlBPnsfykICl+bFZxOLSOqzoadh5g5HcMoapMpm6FTIyNrFXptwZ6SW3hsZSMiWlFiMVm4xTGxo1w8p2HU1wmQWU5eZmSLe4n8s944HopOi6ih2b9Yr99Zr9zZpTqw17qz32ViIy1auwmMSFhZxREVzHxz7/qzj7+hcTbrmelGVy5qiTbmsREoGRIakV94434N/xBgxVs/OShqvaPh2IOchO8G9pJE0yGcZi8NpWKt55YugouUJ1fOXtr5N95jvBdbytJxUPcFaAm0mvIJeyrWlXNRc9uQZPNE5pveaqC9dz+uYPMIRIjj21r8QgWK5XgkyLLSqknJhSFr9ijXfKMhCRcNeKfbth4Gi75fDwkJt+/nsJ2yPJv3Mi6/lKTClxKKW0wn2xnGD5GXEtru27yGrV03f9/+Qu+D97zNuotjxHvxXhoEmuX1bSuWBIXvNYE9GKrDcbNpsNe/un2D99hstWlfuOb2W9v9/ide8zIUa6rsemAfexp+9X8ug6JdeK8HOakogvabyTUoKFDQSZuPR5N7yWl1/3SB7xoVfRRU8Nq7k844zgZVMcHfcp59jkAeoes6lc5GFuFqWoJy6SfC0/oxH3LVFoxDHFgcTmm1lRf1kru5SpKbc4zj7bTDrwdF1HLplHfegPGPzEbr2WBhPnSGkiBC/3RIv2fR8pZUUphVMffpP4qbNnoa1Ju83tC2ZDVXWCtKfmyrgbOcaTp8LYT00ESQ4V6bH1rkK1JVmtZ77uc254kvxZzf8oxhOgke1LqbggoJaEJeKLffBEjYm6PjKlQZrxSzGYQPEqx0Vm5G/9WDbYtDqYc6yUJNGrzTcSVK0rvVoiPmGCHCF4ZjPqtD5YRPC/yoSw1SP/Phzezu6tfyDv4x2pOsoEe7/0LXz065/FXX7zu9l2AWqkaOxRQuS2y+/JrXd5AA94z+9KfGg5gq2fWttUuy5GqNKQuRRynoX2ZnzF9lIbXiBXhVILaRTb/UVv/PdturGJiHUxsL+3FgGpcSR4z2a1xoeI+8NnccsXfTd3fdUv0gfwcUV1RRo5EVy0VmlMTQIbSZ6ZZwEqFyu+c8QSCDFi01R9dsTSEUsiKG4QvKcHOlQQMURi17NarXBhAB+IXU/fibiUkHEnGUjRr/B9h3NB/eY8gMIER5fCdMvY3TAK/YVq1DhtWBIiUEWIw30Vos56vWY3TnRdoosJ7yOr1UpfseDciloQ274TYa8QJK+PXkSQ1yqA62NHoNI7yMWxG3eUaZCg5hI6dnRMPpC8Y+VVCJaRWqfmA2Q4RqB4qRmfjIFZCGouCHtehgrcMZda4Gb6OxMUdBoj4FzDl4xcLI7D8LaWQTM37FlMVhv50bC/5XnJCZjvAbSm7mzPOkexxg8vHBU1j/P5LsOrvylXYMbIRPy9ChlMc7Kp5BPTDfFlIQ6v110JTDaJU8j9geohLPzQbCeFiCtxYQCX2mdyWsNyQeqHPvb4FuM7yQN8xZfSPmy7l26BG2vNYokz/U1iVCdw2OXaUME6ZxeJ2VTOjb6uXXfvPB3S0F3THCOgzyuVhnnmItMwL6ljeT0VDz8hsmY+QuMc4+C4WlXobJ7qfcJ6KMbkQyTU3MQUbEBCSkkwEqJQrqLu1xikzoVOVK0y8EwIeTKQK+WC95nOxM5iESI7SPO/imSKCLaQ+4qT2rirQqT3QTDFkBef0bgtJmaM/LI45ZoVqTMX44Lp3vagzZHCcTJEYN7jhZK0gU1zVFFqy7MPtkdZ1glONtth+WCdxTdMjniZ99thrzmv2YtsXWUhPs/JBiT7fIu/mf2XNi1Vi+eWe8tDdNSg5PnkWs6fszWkQ6o25FBeTQQprP4j9yxlJQIXI/f6tg6N97fcu16t8qVYi5Z8IMsacmLbQvASB/lKdI7otLHZBRXWDFRrTMGDk6nFU0rkMgo/ahoZhx3DcESadlBTw4u8q42zINdKru3rHv8lfMaLfpvXftHj+Dsv/m3FVUZq3lHzEa5u8W4ghAnIeC/1Gu8LMvhBJpDjFFuzGtUk4hO+Gh7qhD9VjOegZqXKqg3FptoL94Xg6JyScYGGw6mx9aEjdmv6sI93G0I8xalTV9PFU3TdHqv1KQg9P3ynK3jqDbfgOM+4i5TJUXMkF8+UYcojJQtWIOiIYUFZqWjid6sXET3nVR6miNyC96gwq9fBaz2bP/41bnjMN9C94tfY3fwRwJOy2MDYdUypcLwbcJed4ZqnfA/n/u23k6eE7yXfPT7eAjv60NGHSB97ZC3L3dzuRoZdol9vWMVO8KHYszlzOX4Y2G2PORxHYsqssmPVQ18hFRmMGD30QXxpdYVaE9VFHInqKgXJPX1G+Hi67kqCXB2u9wQ8m37F/uYU22nLqb0z/5d30f/34YPUJpZCU96LkEPOWe1cOVF7uChl1hLU0pM1EI7m4bQZ3L6fodeT4n7WGLGszzYxK9eQOhV5XNRIjXugX+e8GFxkjZ/UE6flcMJTwulgA+Fkyb+SA3QhzMJTasMXLZPNh7RP3j6Lfb5ZXErqCfZ9+2O9GsYzUdFJFlhFS35qex17c4siql1jfVmr+bX3bu9jflj9jv618CnkPRy0Xv0TcYo7AYHq4BDjBwXJiZ2EJsVpTdN7qi8iMlVEeEXyTzQvBlfE/7TM76LO+uqq1sqzYrxy3r56Sg2zSEk7z0urGWyzDpSUiUUanKqKjodAG55RrVHIbg4zn2kp7FKVHzGNE8M4cLw9ZjcMuNixOb3PmCb++mM3csuFQ7KLxL7n6m/6efb+4JnEr/5x7vHu57Le9LgQWa03vO8DHyCVyl3ucheuvPwq/uq97+N9732fThTXGlCFLkDXmfCX4/SZM1x73XVsVpHtwZ257eYbuf2227hw262CX5RC3o1E30kjjHNM+VjufRBMLHgZ1Bx9wNeAq5KfBe9b3UrE99es1mvW6w2rvTWr9UYENqwBqojA/DTK4Muia0viZhlaXbWW64M0hg4pE1KijhpjFuFRTSOkZPYFYhdYr3v29jacObXP/mbFuu+49dqHcftqw1UfeR3ROdavejYP/Pof5M3/4bsYbruRUDKPePrLeO23Po7PfuZLeeN3PA4H5NBR0oRznsvOnuW6u1zL2f1TrKLwrIejI/pV5OyZM9RppExb9rrImdOnKGSOD86xPbiVPAxkXUShhz4E1l3PeiX19M3eHuvVRq7dqpOhTxFCUO5B1ma1pT10s13zOlDGIzF88I6QYH8leOxmdYnh996p/0VzLxUiqdJ46Ewss1aSzziXW9xsnB9vQm8+EkJGelvm4bINO9evQXI1F6Lm5AsfyYLfU43XOufFEqcIRuGdpzhHp3HePGRPBEh/xt2Hb83vlKZqX6B43p83/EU6y5etbkT4OuKXaOlRoKuFbLZUwfoRz9M/epZ/ce0BP/vhU3z73Y5bjmO4jQj1Gs/LVoQa/Vp1ELEGASfTnUXtB6DwlesbW01hUQTQ58KI55nTJ/Gd/fuJLQYI+BBP+Kzqg2Igi5veBLyExxZd4fvvNEnNToCXViMvpVCDiCpLg7N8plpR8Q3jYs2YjTOHVxXD12vY4mwDH02GoBHjCiE4issL0FLzRupinegrtSYyqXcuVuUld/Te0XmIAUKohKB8JF9kWEEI9LGjCx7njOXJPKQElMsv3CgT2wDJKWTpSB0xFen1GvPImCfGMjGVSYVSbC9ZPqT7VAeLnbr5vZy69X24GOicCXHKGm9iV86yX+h84D6v+HHc5rScS6mCqdSqjdMiDB/GkTgOdOPIlKVeNWXhIE1au3I4SpwoY5bcoVQV6i9Sy3vFr4k4cgjsjnfs1gN7mw05Kd+8ehGkdlZLE/GZkAZicPRdx6rv6KuuexVbchqvNbUDaUSg5MQ0jgzbLcMw0fUr1t2KzgXNm5R3E4P0p2ltL2XBcR77pmfwm5/+FL78rc/kyNPspXOJpdgMmtsVL4NqSs2NS5WKCcIq18RsRgyCUVo9aAYOxWwV2VchlBaHO2xRzfl5qxu4oAMpRNx5HsI+4RA/1lv9LPaEyQa1XDpHCH6Ovd1CMIDZLjSTaz1KWv8suhcqgrHJ3znFvgXvaa+lfRImptMgdL3A1p9ZoWHZaIM7irnZ8ECvQnneae9igKr1HRHB6Oi6nth1xK6Xhnu1ncI7SExTYudH/DRJ/0zVaqnyhYwPTK24bsVdvu0/cdt/+Eb6GNnbbNhb74kwiA/sPuWz8btjwpt+H1xhmiBp3a0W5WYWqSOFINK4FnDXqiT4mnFWq1M/Ul2FqkMfvZ5LqbOokmFsiC/MpeK0799SuLkG7GbhAuznNljBEY7Oc4/f/mFKCEw5C5+76gDpIiJVCchJBnuLOIhyuKoJMKgIs+bJqUIqJm7o2Hze15Lf9+f09380u/O3Uz72PkRoyrhzC6Gptubsvs49PU3A3+JI75Z6bws84NI4pMZhubuIc1Sau9e4zP61nuYln1D2hHDnVOxOcesT/Jc5jceEu2Z/L4/rfvN7uf4fPI1rn//9wsdZ5Pdzyr7c94Yb6NeLQzhwiKYuFYfE8LYuJbdfCszpS2kjXfUa66iwB6B4/Swi1QTI3MyZO/mz+Xdu8fx6B5GW2h7LT2Hn2URoLPQsNI610+u/fCnnPJtH/APq0Xl2b/vDWRCjwi0/981c/S0/z01P/2eyt10WEXwH/oo7sffIJ7J7w0tYf8HXcvzyX5rPw4dZRESxl+qK2Asn/sedvAW0ukgtrTfC4l7B4BciJhq/zt/TRP2WfD/jttqj/YEz8b1La3/Nh2s2gYvWhm/5hg4N8rR+pxm7spxC174aUdHVskHbFlfrQ23x8oo43ZvLYm/r4dJYcGm/g9P8V3MO6x1oOAyOqhytqnmBx2mFXDlUqZKmIniC8gSDkz5S+SNFE6vs25SF611yBc3TfQz4Th4uBuHcBo9OGgGvOQzOpGoXvkfWX0qJYdSe+mEQDMYhmEeeRMSm5ma/oUoN0fjG08SUJEYqzvOWyx7GejzkXuf/kpyT8sXkOoxjJo1ZKTuVR7zh2fzpQ/4pj/izZ3LcYppZQMP6buV+1MbhhQrZaZYlNfyWN9vgU83xHV57DKMIvoSIj576/2Puv8Nlya76bvyzQ1V19wk3z51wZ0YzoxkJjRISCkgkyUgYLCFycnpswGATLOTI+wMcfjbGBBuTEWCSCSKjjIRAQkhIYlAelGY0Oc/ce889oburdnj/WGvvqjPCfuXHesyteXruCX26q6v2XuG7vuu78PQBFW11CrXKGrSaz0W1bUYFchtn6RrHom3YXMw4slhwZDZnwzc0GcwwfOq3yP/h4ayp9lKwbBnGYk2leP4vHio2VZWpRh+T9D6V1Fep+yIwlZLiu0Z8jLHYJGK4GUiu4b6v+A9c9rrv594v/Fdc9cYfkrWo90tiR7DZjLGGLT2xZuwxgomtM4f2dC4xThwHbgrnWXsMNH4d977wyKSXVf225vpyJIVKkvRsF5uF2OySY0yjNcrvEBtjUiLbSM4OsvCRXR2Y7GvcWzkOUbplTqY9vvTsW4TrUjkUmruFQQZLpxK/ymeJcexTLv0UGLEHFh0Ekw0+o++HijdTY0LJy7S0nsVupN/9flZf/jLa3/iPbB49VmsyOUsPYSjCskVm2wimH1OkiLDLIOCBiCHkoOdJ5ZaSIaF9WNr/V/oBvfXSt3hRHSVOVNEuZ/FW+MwGaHLGeEc7k+HobdPSqJhlydFSGIdp5Qg5Ihz2QQfaDsrFj8p7yYmh9vSKbscQAh/4l1/IE//za/jw93wxbdcy04HRKQYa34zrWfdXGaZirMN81XdiXvVj5N1HZH2htYfVAf7X/wPrL/tnLH793yoXYezLJ5UaTCIlwRiaaMk0Ezys7BQ5kvoAUzkK4yHvmw59dhluEGSgbx90UFqpZxulf6TK9xXRxMCgPcoxZ3mervcMpGK/SsydVLNABz5J7eEwy8Noz6p1jrM/+A+54rt+hfM/+A9ZLDaRff+oeqVzdJ/5EuL5B+hueAb0Bwx3fJAaG6RJbmAnA9Uw5NCTTRFok/+V+lAVcc3K5SpYtP7O2BIYj3+rH0BWwKPtpf7s0JL+/zj+N4SmJgpjkwTIap4sltZUgN1bj3cNn/VnP8vbPuub+ZL3/bI0+ttRpMIqqcPasRGPQ4JTk4Zly1goThabrABnzhFSxAQLBDIWE6SxIwVE7SxK0WdYJ1HKjJGQZDJMBE6+8t/gGidiOZpoS1DuheBR1Bn1MydniSGQ5A3IrqXNa7q2YdZ1LGYtXSfTVJyxOqm1o7EO5zzRekK/JkZpEkwhkrwlNx68xWanZEy5BifXD/Kiu38DnEGaRseJsKVFQTZRlEdS0meyVDVcIgXTJxsRqDClAXN0kmORsiS3JZgtAaQG32Y0BqOwQiHJTUic2UnsbcZG7notDWASdTrSo4Dz6dLO09dEiHapTKDWpo3SKC9Bbc+q7+m16aAYkzBpLL3Y1A6ve+zjWfdrlsslMUgByxU1vYwKU1ANjpk6LL2f33X29/j+5/5zvnf5R/inPFVAOS9qthijgh9WxaBkImtCCCFiWIvSnwQCIYgKYlSRqZjEWfVhoA/SmNUHEZpKqUyNkiNjCViWvQhNWd+SNGEZ+h5rofWOWdviDKQYCEOPzZm2cdim408u/0Kec+8f0C53GPo1KUUcWQFtmbq70XkWTYP3DTdtPIHOWZ4TbqeBasyd2hlnrQ5a1oRbhaY0SqZMsLVeg1W1SQIMqK0z1DVrKKDKBASUD08pXpFzbRYtJAib61as7yNboDha3ZMluaaI2lCDZTlGYl/1E+X74jRMIpuxsa8+M2VpEtX7mrUoIpNMg6xD3WP9MLDq16zWK7mHMbB/sGTnwgXW6xWNd2xtbjLvOrquYdaq0NRw8QlNlQJHSfqLBbRQBRSKbSdFzj3yAA/efy9nH7of0gAxwtCz6KSR2TlkalYjTQXeN1UwMNmWd131JVy380Gu2L9NRQkkMW4aIcr5xgsQoUlDnXSsPipZJ6JqTYsxTotnkJKRRERbPmMW37cDxLBLc/ubuOua5/DEm3+HfPpUTfb7vse97eeIOdNszDl9+hKuuPxyTp+6hK5t+eb8Lv77ZX+Tv332D1ldcx3nz57j3MOPsL93gbbxMjll1uGcUYBhAJPouoZu1tF1LV/2kR/n95/27Xz1LT+N394U0UNraLylsaWo56ShsmlxTYdtZphmhvEznGsx3oOTpMqrMJEQN4vqqPjvKWE3MwqmjaluIWbJd3IU9FpT6/o7/bnJWKcJozEKCDqwEp+kSoYsz9fGBAUwhQEliVGOAeIgxNCo5YAk52lImBz1+56c1sRhTb/aY9+ssWuL6SyzLGSC2axlMZ/TzWaybnyDvQjVsdfrvq5jyZK1sd86FdM6LAqDMfze5V/CC+5+Db9+xYv44o/+PKk/kARKG3XF73vOHb2WW08/k+fe8SpaUp185J3DG1dJMINrafMg4qeNqkFrg7tTkNwqsJbJ+DwQEeJ6iW4mrSlYY/jhg1/nXy2+gh9Y/SZRbfNYcJZ1YIwdzTNQip8luag2XYvHNZGYPG/azDh5IW3otfxg/F3+Wful/PDyFTrdh9EvGKuQ6ehjCJbeeAEwkvjzIep0pxITaXwUYmRImfvbS/izS57P59z6P7BxTc6xJqLlEWPgbc/8Hp7+jv/Em571nXzmH7+M2Gt8HTN9MvS9FmnJrN79RpybYRbH2P/TV2KdgDQi/OUmAiRZL10un1zyi1yvRI1/cgUq5Jf3/tdvqP5+LIJIHCBzLIugh/0EYD3nyT3S5yRlI9SCw0VyPO6GG2SNpkDs14TVCpsD1ozgcIqRrMCXNQJ8J2t1cqgWJNMYtMielAYTIUFJwSlp/JxBC/7atJKKSJuuWQNWRZ9GoKIA5oEURjGpur5LAUYbQKbiUsaW5qpRTGoEll1tPJ8KvZRGuIovJiMNBgpwlL0lfn8iiJBRskDW5mjqZxfAS9Z7DFHJ0+UajetLvuHw5+PR6zlP/E15kql7eJoFjS+hMIw1GOPL6cqaNGicCpQiiYGULC5nFVfI2KhNCzkRjcEmizGxXuMQ9DOoAG9Oo5BvjlFsT04Y4+TCFIGACSBR/8mT857c5ykoIbtRARerMpufUG37az6skWmOBWjWHxchvJCl8fTM3/pH7N3yHs6/5y2EfpBGcSNrad33LA8O2D/YZ3dvj67t6FS0xVonzQgqjmutq0mE2G5Tr8nLwrv5b82n89LlO4VMZY1OUZLn1ub1UlDLEg+J0fQKKOknUCKTMVnJU0nfUHL9cqNqY6cx5Cx7eNApY9LAM/BT+Ua+7ODP+en2Rj7vzteyt7fL/v4+q9WSg+WS3d099g8OFNCGgu3InrWkmFW8Iso0BGvwTYOxY1zddZ5uJoTh+WzGuWd9FVc9eDMPPO0lXHP3WzliBmazOd4LcIsRELzv1wx9T87w8MalnJ2fYmt9njtPfBpXP/gBsS1Ng7MSH8zaRnKeqKTj9cD8DT/C7S/4Zq549Q8x+IZBCRk5J4gZl3JV2C/XTQDMcMhn2ImNmO7r4oImJRHIUgMUu30YjLQY0tYp7Bd9K8NvfC+pX9F4T9s0rJuBMIiKf8xyXaOKTZlCjEwTw3QRHMOwJsWB0K8J/aoKTg39Wj6L2tsCDseYapN7FUeCOv3dqz9wNd4rAsBemi/diDkKaVHIvodJD4LbWScCABRfUVkTxeZBiUamh+T+QtgyiA2dTn0tpl/OP1cX9GiSScFZK3lSBe5iDDWuCZKkiK/SmK5f9/zddA8/c/56vurgz7nQH6iwVBjJ8yFqQTbVuMdp8cM1IsZltXDqGhEYFtKf5ldaOMgx02eLDSsVlBxIveCOIYooY9kHzoK3htxMyF7ZCem4YeQRqR2Qgpc+T7HHeo0fBeyP32Ww2vRcCulO4vSoxc1BxYViKShSCGny9zF/YoxS43Kmj+mhuWTt3rvYDhFDq8Vhaw5Pt9Cc2pgEOZKTYNwxlik/ircqxlwzJyXBlGIlNaMar1H5+hB0VTZBxaCpzy+hwJRXZpDBDjPvWHQzthcbbG9uszGfsznfYGO+YKObM2vaUQxHsQEpaokff+DZL2Hx7j/k7LNfzPz1P0862NdJxFEamNBmYo1dCv5a7LOb5AfF9kgcniuZKKH+X2NNSyBaRzSBaBxBax/eBqILpEZ8icmCVTZaPzFlD/oG17RatEbJgLKGhzBIAS+ncofF/2keSIYUErEPY0E8Iw1bMZKCdI1756EFX4TWKpnNVagk506LzakWt0tOatSmJqTwvOrXdLOZTEVrRPRrb3+fvSzC9XGQeoUtZEJFjwupscTp1ho673He0fiGthEMZD6TCTwX0zESbWWfSKwvK1vEzAaGQXxyxsi1RQWgybimpZvPmC0WzBcLNhabbG5ssbm1zWKxwWw212vTY13EuYa2lde31tbr49XPmZyJYSCnyHq1ZrVai9hUL77AUIh/ttoAZy0vvPdPiCYSfVM+GaVpUeoSMhwm2TI70FSsvdRqSs5oFO8rxK9CvDjUbGi08dGMP5TCadYyVmm0SVUcCDI768R/uhX+1aUBMxGaKrYKpAnPN57OtAqPGNlX+gjBE8Kg8WmqsfShabI514EMoziXnEPJj6rAYorQzPC5x2RDvwqksGRYBxrf07SNiIB5p+SokmgKkSyHrMJ0FOCjuhvDmLePjzwyfor4hEHsUcoiwlDWpJwxzluaztN0Db71mJWRuHYINf6ZFsIvpqMINhcSr/eOtuuYdy3zMpFLhyE4JeMZlIBYG20BI4JtMei9y0aH0Eiu4576BaTcY0+fId7wNFYfu4mkjSKEDDnR/dQ3sTPriLMOu1iAl5x7f+sSHr780zn54M187OrnccPtbwLkbZPRvC1noo0aA4FzTSXlWW2SHDENsYPinwuUXWyM0uWS1D6F/FfWY5rsA0vHKOw/a7PgsSoOsvGmH1EM20rztYpIMhGyToMSkzQWD700ZGEzySeyNzhv8c7LsBnFSHzj1S45rHc01jI3MLOWxnlcBp8NMYN1klOHIAQw53owMvU8t9KMkFKQAR1eanhWB8NIbJ9RwgBZawR2EsylOqlxQra1SfZKyir+6Ije06RIM4hNnc8SISsJMkZS09R7ZZLmH1mbl5H6RuukJtQWbNo4GpuwKRHCwLA+IPUrXPNJUzH+rxz70bKFoyex4Q3egImBGNQgFozcyJ6yTMjzGqvLJOKCqxXRP8AU3HUM7sqaNvnRcb3YL+uU6VhjVHluSnn0GZqQVTE3UcnXnynh3RSZbMFwSjpWYuGC4wvPwitpUX5n0RqxK3VhW81zEQf+pC2lFdw7UaZ6ChlM4ka5ICXfL2vU2ungMzPBeETY1JL1+o1nUaJTnQamtXA592RE5DKriKn3HbQRkwKmDEhRXDbGILY0WbFdBgqprwpFlTs2wTr/V/6jxAhVrKaIBKRcyYf1Q5b1prX2ct2dM5iY6xqS5ucyhMaIQFKWoRqVeH8RHTU7KvY1R0yW+zL+nvr5ZahDlEa6ScwmTykdTokwDCRSxc0LxlTECodBBPGSz/icK37uXaN71xFNFF5IMpCVCB6Ehh5CZoiJroPW2DqAIBediSi8nso5KuJyilMbbew8ZAYyUgdNiZQDWYnriVJjUEFsyjaVtWE1FotZ4p0soL0SMUMVlI8qIE9K1KubVch0WsMom6pgNyUP1fMszcWGElE9CvuZrFngUKNKMVO5YD8V382SeFa7Wneu/sxozaaYtMKZqrdfXkPXRM6QncUrxc85WxugcxHJt+NQnuknMEaeb7M99NEyhlyahHKpnow41cUYK4L6kxJMWzQf0ZAZIdM7k+qwL6O1fmdasL7en6ScqFVYsVqvWa8P6PsliQFjEi6tyYhQqaxLg7QXK38owzN+71e46cVfw9N+5xdZI/djGHrC0JPikpRXkHssgwir5IjNkWxE4C2mCO2MuFpqg4dyELUB2WRtDnAWGi/YnTOVm1B8R62vyR1UoSPBHqT+aZULY7UuZTC2wboZbbvJYnaCrc3TLObHaRoRm/rOzcj3rmb8/y+9hO9qTmDtJrvNBrsXHiLuWNZ9TwoOECHYEAdCGuS9XeHdaMOmdSKGoDlOUmzOeRUxNRasfKacIluv+jFWQe5v03U07Yx5H7hwYU+uy+YmJ77137L3Wz/LNS/9Hj72g9/FkAc2tjbZOLrJav+A5d4eiYRrZnQzJ49ObGcPXPj730DzUz9Ci/Lyiu11nhQT69iLzS3cgkl+m0Iku4xxGVuGtSg2EKMZY6Yodi07qfNZwKpwSudnbMy3GPLAKl5cvCoZFGVJyZGbIm4XiFFy0RDFDto0cnUO46cFTWOM4yix22iGzOT7ir2Zgj2MQ6WMKTJOJR6k2tFHpdRKgxtFpkpje+GXRv06VpELOXfNzJSDCR7Jewo3UYQSnA6flZzCKVfFKbY2Fb2dGPIahwpOYurVSlmzvaSIqpWGIPJoe43u4VwELExZb2NsJsyX8rWpn8WUILycAuN5jL9H/MzkXsn5FeRUz7bEsfqak5eR3Ky+lbx/qV9mY8jJShOPEztgQsb6hImaO2ncL00EudoQY20V1pTPi/YF6bXM0rSdo8SYxluc+lGrnD2DkfhzujwvgmOj8wQSJluCk5i/AeHUKd5hJ3i+Ra5pMgYTI2kIyjmT3GJYD6zXK8X0ZGDOYnNGzHD2kUfY2duTPNdYukXH0Tf+EMsv/m6e8uHfYj7rWGxv4puOmOHUqVMsV2uuPHOG3Z097rv3HmIYFHvryCVnN4Z519Kv1mzMWy6//HJOnjrJYtaSTx5nY3NOM+uIRCKZuBoIK4kFnRmHyHTe0DhZ+ybL4BJnbG06Ndp41vqGWduxWCzY2NhgY2NDsdUNZvNOuNHWCSc4Sdzsm4HYDyrsIfz8qA/hwIufiSmyTAtsH8jpgJQHyCpUrqZCGsRgQ0WmmrbBkSAG9k/fiN08jk2Bs8c/jSP3f4Cjx06yIrGYzVitV8Qh87Z/8nye8yN/wE0vexHGGGaXXMGN/+C7+NB/+VZObc+5/rrH8tjHPIYjmxvEOGC9Be/5+BO/nNMfeA2bezscOX0JR7e3cMZy4cJ54qKDU1si7pAzM+/ZmHdsLuZsbizY2NpgY2uD2cYm3XxOO+/wTSPCl058lMGOgyFU5CHFJEMxFEOZtV76IRqHXfYQJXcR3N6L7bqIDqONdRLvyb9iPYqggNZpQvHzRTze1NhdfuaxNuOs2ETNcPX17Bh/VeEBHQRtiw+zo7i2uhwRG6biaiVPc064xMl7XrE+xvNnK65tZGBKCDLk8YeWV/Dt5jZ+ytzAN8ePkFPifjr+nKPcaHd5w/o4n988JGdoDDnBOsPP7Z7ia46e41QTKQJImURrMt9x2Tlefv8R/uWZPcYUx1QfecidkauXqddUB8sUfLZiNTD2Oyj+0CcwOdb6GuVfpI7wo8O1fJO/gx8fruals7vEvzmHaxoFnWDIht/e3eJp88DjfFShKOmLSNrYukowK5RetSdazYOsIj+xDPxMiv1IbiCcSGn0Lk2c02E1mkFVTEM7qtQ3Cl5Zm08NCKKTMM5gUkSEb5OK+yM9NVD9NXr1XMV8ysL5FGyMT/HRGOHtehtxLglPoxWerveWtm3ompbWWsUBpMcn6VarHF0VOhHx5apoQanLxBwJOdOnwDoNrPNAnwNBpQVyXacl53GUQYBVoMyM0jxOg5gqUqV4TOk/ir4h69B3jBFhzCxxmHMW54Uz7uKAH3qG0AtHQvmU0/qVzYZh2TMs14JdaINpKs23KUjcM2ivWzK1Yd7gIUl85LSW08+PcMczv5Zr/+THReAqR4YcaKOncQZvDW3bYGYd3hmcbUgmC3cfwYmMDnUhRNrWsuFnHJlvsLlYyJA3JwKzMhgj1D4iqQkmnve2H2TXFyFa5Wll6R2qnWjWYXzmL694Lkf2H+DSsx/R4UQ6hKUKTYnQTZht84HHfx1Pe/8vYcO6xuc1dyjigb7BDxKDeOtEkA61TWJgIUNvWoyJOOfxLtLbgYyISIr4s5G1m62IdTWede9J+eLaaM6VmF3q61ZjwvKZy6ouHz3lybWt+ccEWxUUquZfRWxKHiqoU3IEOGSXsr5T+YmZ/K1VrT1MJqvAVNb7ZrWnsAx0bHSIUtO00jvjG/FXGUKKDINgO6kObNC92XTkKHXwUrs1xnDZS3+Wcz/zMk58038l/er3sLWxYHOxhXeeg8c8mdDNcfMN3BOehbn57SwNmCC8OtPOSP1BOXXI2vODVSxecbECcmYVzZYLIj6g+IKcSyPtxE/q/Sm+MEltQCIKivdQURC9j6bYMcFFE4CxRN9hU1+HWEwFpQbjOP9530jzntfCfR+uvO6Uo/QjpUTyM+J6j1CFBURoIOge3H3tyzn2om/h/NtfSf/xmzkkhnRI2mz8XJI728rjLitFExLKwECjQF3NHS+iowzksFbzTF274lIKPmEfxbUqdV2tZWgjfTaJIqlY7je5xEj6fobRTiqeQbnnwOW/9f9DfNaj3f4EQTn0dyUpZwwZStJspX/4E55XXs1orGgmd7bk+8jGNvqzUuO26gdLrdapGLfz0o/qbMljD+eyxWqtmgWve8JX8zk3/XfIq8n5HD63gmxaDNlk/V77Lo30m8iepEIVSXsi2qe+AJMi5uQZZtd/Bv0tf6F1KakZnn35d+DalrxeMq7kTDp3H/tv/lXmz3wRB6/+8XofjGuZff7fI370JtIdH6QMUpQeuPEzGkvl5moEIzaj7P0ifFLubLG3jJ9h3CITbMyM665c10PDwAvuorWQi/KQxES+LnunIE0lxs1yf0RMyOhgHa1RaNdPwbLl2lY0cFLfKQUsuR5FTLbgUyaP+9eocOwh4b9JHEGpJWRbSzxmarTlXShDnQUDtljja/xYepKtDgJy7Uz0DJL65io+oX05QQZbD4PEhtkJ18NrH6XzjT6cqH47B05F3LPEYDFAQIZsLWOmQ/KaYS0io/1yxdCvyFn6FqIKvcRYhkPLqScKLqAiPlGGa2Xgw9s3kkPgbHOcj/kznLrwEfohaCysYiphepfXfMaf/leWZOG8THJA4b2NfX1Q+C+xuBJKPU36ZeTia3WPsohkcK4FpwJhimOEqBibNVJbsWCNDmzX2NJkjaesofWO1mVal+kczL1l0Thm3tKQsDFi8kU39mgS14lftsjAFGez9i1PREv04YzqlanIlFO+bUmpoPhEU7nwaAwjQ7ZU2MVYjAPnqbZOeB6ZK175b7nvb/5Lzrzme0nWMiQo3NwyvNVmo37DaXzfCE6iw0+LzSiWQE5sxK5ijISiFRELfzDqtWDy/CI0JXFaspZop8zzRMoOoYiobSnBizETwVqNT5P2Axf7oMbcaPw4jZPLcKkyyKPwT2ySnCRo34qYmNET5Jz184ltqD2BikUcEplScT2jMYVR3QGJsZXxnSGi36sJSsqxSOVnaIz9hh/DHj+uvRdar8tZek5VXDnW/D4rr3jMg0v/wDD0eu7SU11qHWWPx0D9mQiAWRrniKnwVy+OIxdR/uKvs0TH3hpR3TYG18hQha5rVbTZKq9H8/9UMCTlxcbEUIWVhqp5EmOqfHbZa6MYUx961qHnL172+fjGKSeguBxDth6GtdjILOJETjls/sXfDn/4C/CSl2Je8b0QVpQhXSlFzO453C99t2jamNGjljq8yWJDxRdbus6rQLv21AU5T2OQ/VHrWhpKOrH7Q7b8QfMZ3Nh/jNPre1iuhNfc9z39uhexqWH4K4Wmog5ISFlEz4aa86iGSTYaD44QWsmtjM0YV8T45GeiiV0QPdVmwWneKn7k4Me+hXY2p/icmjdrLJYMxHe/jua5X0G4/b2Y+2+h6TrQvUQVHZWHTZG8fYojX/bPOPvf/zWENSXQKFyZoulijbAQskHqXVliTybxoYAAn7hmrZ3wdBQLqxbvk0zKPml2ozn0ryZI1V5rQqQbvKjuNV6SiC989y/VKd1WCXyuJhVCWC+iU5QG8TKlQdURIStJwoLLqq4rpG8XA84FnBswMZDtQMDR0DAzDSE51sGw7jO2l0JHUwiujYdGggtWAAmGTLYNtJKcm0q6ls/bNi2N9/T9mjWeC5/3T9l80w+QVntisHMkxEGALOvZOfUk+uPX8PiH3knnLY11RGfpe0PIiRxk4pol45AJK/KRJQi1qINRdTRnx4ZrY0VF2RayDAlL1CAqom3GNZASYQMJkJMCoDmX5FMXjtXrXaxhvfGZmsqUaNJkuSfVoqiAi6pzlzTMKEmx/F0NRAyYouyri7ck6gWQKclvbW7ThDVDddaQFawwxBQZ+l6aTCdNBzGPk0PLZMeL6ehmc00oWmnsVodfhdwmVq8QK8oeckoQd87zQ+278ZuX4HyDdw1ORZNGJWVUUElA75hGIlSuhrZM9CoGOGnDemKIQQVAojQIJ23SSgJgFRGCmDJDgkWUsAbjKOTSlKTA4hW0NWRSCjKlh8yim/GmrWfwInMbr7/6RXzJzlvpD3YZ+h6SFCYEHJd8yXrLh7uryd2CAyy3dI/h0+0jAmRZEeKSfSOBUDZmVHauQlNOEzttmnJFAG8EcurxaHCl5JaaMFaydPla7+H4HP1H0IAaqP7PhKaEKFHokVMi9ph0V4BravhNEgGOIjQ1tdlVsjHVoqpRoDmEiG1aacCLER8Cdljj1h0xRNZDT8Ayj0nA365la2NDVTg9Xetph55hmP2fbIlP+ZHzaJNKoVJ+nmV6Wk7EZLBkYgqslgecP3uOC+fP0i/3mbUO7w3ZODpvaVtH2/mJ2qwkGcVtfeCy53HV/q3ccvzpnMj7nBwekX2phAnvPNaMZEZrJchx2RILQcg5mco1m+FcI/soZkKEIWZRvA5CVN+ez/DAECIb4QInb30NqW0lgPKJ4B2haQizDmMt840NTp48zrEj22wu5jTOsRcd37z6c/rZHJ8hztfEjaUC3Vb9zBjQGyM+vGlbKRC2LdbC1931C9jWY0l4Mo01tE6Eppw2t0kTpQCNWS+ccVJYMM5rMX8EyIrq8qEpMbVXSwnqutazsp7HHVIAXiVZlT2cR+C27h0FI2U7montHBWaZdreSASr5KnyMKYCzyiwiDO1YCCCU8WuSzFPtqdMwDBhwAxrTFjjTaBrPPO2Yd41dJ2ARcaN9uLiOtRR5SxJZiNkiBI72cl9zUiD1xfe8qu86rqv5fkfeDn7ywv0Q1+n2mUFcpYbl3DLqWdyxd1/zjtPPocn3fpqBYXEFzbW4bwlzrZ49bVfzgtu+x22+rNC9PMiVtY0XicmefAtN8+v4wF/jC9Yv1dANcqSShUYQSMUi+H7dn9NBjdMAPgsN1hASFvst16J4htyruuixNAlgi/+opK2DxUtx69TNpAMKSW+r3+Finnp36svKSuwhAsxZfaT4zWzp3Omv48b9j5MWK/oB1WoH/qJ0JQUoPbbI7zrCZ/Ntbe8lj89/UJuvPkXqEKmZcKCfv2UN/9L3v15P8DT3/RShmHNEDJ9SDrJqBEigBUCgXeW5Z+9koTD+07OOyZZI6rCLZPZ8mRVT8CrckH1AjsKVCsOtRBaBMgvxdEpoF4sgRR2cDpVBiY+fbQH5RFD4GKb9nDllWdYL5fs7ZxjGYYaV2TQplUFtbLADaVwVybvyENWiaYFSKO3NKRbYzApIbASSrKRZul137PWdVMaKQQQt4f2tkzvG8HDMr0IYHAzfOwlYRbURMRDJgl4zXP0ezctUKkdKeJxY7FSjmkDEwkVjzKaS4h/qFuGcu0ElJv+fYlXSx4hf6t7VUV5CkBjaozGIVG08fVqpFefUJeVyRPiS7Ggml+Vp5jSOFTiSrnppXg1BYtK3GhRoSmbRYlbwZsUteEkTQja1sKg6VwQ/5pj2fMFbCm2USegqdDh5DLqxzH1QtT0cXINSiHN5IzLaIz7P1/vfx2H0djcGKSJCRB7bSrx/IrP+1Iu3PkRtj/tWew/cA8HH31/LTobk+iHwNBucmF3j3l3rgpglCvRFb/YNDIBwU5E2qYL1Bi+fX3TBLBTP5PkXg/WEzA0ZhR/k2ZKAexFyKvAfmNlPBkpsGQdY1nWYNIEvBS3YwqEoHu/X7NarVguD3je8qP89pkX8KR3/jy37u2xv7/PcrnParWqE/pCSOOUpFz2tZI050cZ9nc0H9cJta2na1sW85aNxZz5fIwtu67j8jveysc+7W/ylPvfxTET6boZrW+wrogPSjPxoP4l5czx83fSJ8Nud4Rr73t3xRMMGa+5c7aWMqE1+pbBSf7zaW/9WfrFBnbdk9dlkkTUfBZKBbGsl5RTJUUVMbdChJsSJac+ZfT/qfoilwuZUPM/kzFtS3zRt8Mf/wLdi78NXv0jtN4zNC2dHxiGkp9nnWqQJlMvyjtdPEcOa1LsCcOKvl+pQLHGJIPEJNVH59EuF0NZ4q3is71vRNjEFZ9g6+cPg4hrxJhkQl7KZG9o2oJLjg3rUmE63GxnzCRvUH97+HdUUkyxeWWqZZ5MZJCaVToEHE+bHXO1DvIwamuSNk+ie0mEABMpZmIIUmhYr1ktV6xWK160uoMDFRYZhl6bfwpRD7EB6lu9dVjvwTQE00g87YzkGdbX0HIq4puz4WE2eefWk/icB9/KfDiQqZfrNf3aYXtLcH0V8dCZf/R+Ax/XYGQPxaz+37t6ucsEYOOUMFVUvqEWxeU/I9dGvhKCQSn+ZaBRATIa2twScmTIkZCDyink0cX2CtLHNNpgZZXmmMkhEodI9FGn8JRnKUHSJkiuFhkvpkNig4yxWiwv/fKUtZukQTgHch5IaRABuDBUkc2kBdicS0OlTlCf5DFjQFPi6jEXBMXeJvujxNzTK2Ye9XX5vrWOWdOxMZtzZLHJ0a1tEZiazdmYz1nM5rS+GQWM6yErJeTExh/9Kuee97X4N/wy63MP16J20nMTgZuCWSc9Rxmq4fQ5Bf+whip2J0VbXcfTpugMEUu0gVAIDIrbRhdJTSKHRI7SnOqweOtpnQwIsN7RKsHSaDN+TIkhDKzpFU8oNlGzVyNEeKPYfI6ZOEj8arIZcVjNEUxGzquxE7+k+VLFSo2SsF0t0CUlpEnsL/68FDb7IOKPXdtNbDFVeG4YRLDKZNlrZUyBFOvFPlnAWYkFOhWsapqGxXzG5mJx0QlNZc0rKmk3R2IWAs0QBxWaGiQmDIEhRmKNfdX3eBFfb7oZvutwbVOFVIy1KvYqeUDTNFUkquRH3nq5DwVn1/u5XvUsVystwopNdoUQqvja4XWRq0DI6POkcRnjeKA7zu1b1/CCeLfm79oAw/g6gAgBWKsFZltFZacx7hhXH46HksZXKeU6gajkkjEnvu/WyD++PPLj9834tuNrPVUz5o/OYXPC01CctrFGfH/jaYdO60FhInqhpJUJHlhFiuNY7K8xdmlK1brSfrfFXc/4Mi77458jLS9gTCQESxgCQzPQDi2xjTStYMBlEl8pDpTGI2NHIc18yAqWGD1PCuPybyFpj6yhKbVmIkzF4XwRjfFTHu1Dyd8vMthDjix5sXMiMrWYz9iadyy6lrbt8K5gzOqdTdGbFPFJY+T+DbFnCE4bRuTzS66SyLe8lfjpf4vwyO3ku9+DmZXmE2k2K6Kfy+USBzTeY0yHz9A8cifHPvYWLlz5FK7/yKuIzpMUxLIY+tkmsxDwRsjapmCAet1lirNX8drJvcqIgLjm0rL+AsrgwVoh3KONU0OzwMbdWuO1NuGdgewFO7CWYZB4KGVE4CyjYpwDax2GJHtEJofFKJPRU5LvU0xkm4kesjeTGvVIarbeVR9QGjUWzrLVtWzM5nRdi3MRt+pFLK9taRvx4V6FYZ1v8EkGOFhJlLGNCA/IhOsO1B8Yk+tzRqGJsZlZS9Wj+EzSmkBKWGdqvNgAzRCZzWfiw42l7xODNjrnnAnrXrCl7GnmIgScVbix9a2IyumQjMZbvEMaiFZ7pH5JDisSF9ewiGWE/QitMWxkS2t1KmjOmsuOtROZpCv2ptilklNYjMZhY65c9XBqgM7Eb+hrFthLzVghsxdMrHoPxTBKrTQzEbiqdk5rQAWX1zVQnjbFGguJWPgpTRV5ylqvQmvmudRss6n4yP8OdJWtNIZVgQO0/mikkdQag/MG1/hDNX7x9UVwAJj4hlKfUsepUI8ppUUq/KPPtwimkCqR2eNSS/aD+LnYUwQW5bpZrDdCAHYW0d0asckq1Gv+v6/EVKBq+jOjqj6PFuSu90h/WHLQmKMSUqVm6L0lDSIkHJUNg3GS3zwKH/7rPkYsWvKSHANREVurU1nLvjLq03MsNl/zDCNkt7rm9Z+MDIWwRrlNSGxaMewkpHTnHD6ICGAhxAlPC5yJUNoMTU8cggjWxkggMgRt5TAiVtigNllxdpPUVmCJUTa+NKQVsTTlDeU8CnsWfDo5krXjUBOQvDSWqaZaRzCIrwsiJpViAJ3QmnQ4RA6RFPRvNU6ra7SQmlMa1y+lxly+H3F6U2wMNZyU34/p0ojZlvNjFJSqOyNL44oQFpF4QrElweGd5piKBZfX07ezZd/ngqNL/ppyEfOnDvTwzqm4pYhNeY03qxhgsa0TPHIUzNXXMuVjaS3Njjhn5boYav3jYjpkzed6PaXZSbgEXsyYEsoLHqx21Miwx5SFjJ1I9HFg3S9ZD0tWwx7ruGL3yitYXXEpp9/1Vnxc4Yr4Qna47MjZVuGJnOGpv/czInCuez8TwA4Q15i8xuQe0iDiaNpgm3PCJAPzBZvf9G84/9P/nnT+YXLskS7jPIp/+QbTNKSwInkvgpxaJys+TppZig8NsppMkvuqNfmsdlYa3E2NSbtuk82NY2xvnWJz8xJav4Wzc37SNbx0fhc/4a9jdewA7zbYbDbpfMe67zlY7pLTnqyRLDw9mR6t3FEn9lBmjRbswapf92AyTnkEzjligtV6YLVeE2OiazoWGxscOXaCxcYmewdL7s6J3b1dTh/b4Or3vJbbXvx1nPu5/8Rsbtg+usFjrr2SKy6/nL2d89zykY+yd/48hjVdu8HmZsPmvCEnw31f+U3w8z9C//e/gf0f/c+YbLHO07UzvJe6QYzAkOhNxhuDn+yniDR+OmMwLiM1VeHASchjSMmRkmOwDR+95hTH1g03PFTI3obGtSxmGyST2F8f/LXspf/ZUeIn51ytqZjavaU+q/gzTK3x5gIATn0co3mueY/+zWhAi180dU+b6l/Gmv/YVAmjqpP8/bj/hDdU8r/a8FBqvWkUuSZzWPy+1GmUg9I4EUNvvKdxIwe6cVaFFQpXRQUBTXWBh+OmEk8Dxb8UTdWcpdEpZRUfNDLxuoQ38nmmuX6pNRYUgE/AE6ZxNvU3ZvIXj7r21N7wyUsoh3eqyv+oR57cZ7Q2WT66yRLDSeCSJUiOuo4sUgNxCVIULNYLbyRoLcQ30swSVcAvReGMSw6t8akxQM8wyZ8LPzOnTLYjrnKxwR5d52gG2WvRWoYU8TbhXKZwcYqAQDlkfWptBxSGz8LhXK8JIcpAFh16OUTDud1dHnr4HEOMwj63hpMnT3DlFWeYf/g38E3LvJszbxuGENiYN5w5czkPPvgA/cEB+7s7OLL8fois10u8d3QqfOitxXaeKy67jKuuPMPmfCHnb2G+tcHxcIJhED+62j1gyQHDMtCv1xAzbQfWOGlyM2pTs4q9OUvrWhazOZvzGRubW8yPnebYkS2OHT3KfGOTbjZnsbGgm810mIwVXlVOxGEg9PKIWbDqGKLUsAcZFmk0nutdy94zX8Jwy7vx73kDTRwwxlWORD+EGrI5koj3RsOQLevdHY7e8jbWviF3HUc+/qcE4zj7tK+je99recI3/Dtu/bGX8fA999GHxLtf9kXiS5o513/9v+Ge3/ivPP2lP8T8LT/PNWeu5Oh8jgkD/XKXgcit13wBV9z2Vu598ot5kvktjpieRddx4dw5gs1sHN/m6NFL2ehmhEEEoGatDMiez2e085Z21uFnM9q5iHI1zmKt7NkYe0wSG5OycI3ImiNqW7fJGWcss7Zh3ja0bkWjtSePDAteLZd/DTvpf3EoZyUr5lxiXuGuKyMwKS/UZoyJmpOLkHWJbazR5ruh5C5qU3IWvKL4LFdy+gaUB1zw/FFgUGx4well/qrH6iQqGYrkePVwhM8+YnjT/iZXHM2ccDLsqu97vrt7iP+8czXf5m8n0pBy5BRrPiM/wofTNl/oHiDrnJicM9llXrE8yYsW5/jV88f55qMPM3clRxdOSMqJf3b6PDlO+XWp9MpT/Lz8OyLQBdG2RrGgLLkilIFKUlcsosPLZHh1fwlPtBe4ll1hrUmSizEGbxwva27jp4ar+Lb2TkC4w9Y32KapNYc/2Jlx4yLzruWMk13gigbJs43kReeGxA8/7PmO04EjvmSBIiQUtQE6R+F9SMOlLJScJpzIJII0pQ6E9jmYXLrLU83jRGgrYaxwf60qk5a8Uvyx8tSMQXp5lJcz4aCNGFrWXE7/kwCei8+TVVShxnfWIfxQL9hAzmitZfJHGgdQhuvVdFjzb/XvteEvjcI50lSouJHWM2Wv2xrDVE6S8yr0Lau14MdJk9xUai9pHABWRCpyirXB2VqLOinF9DLEjPXQNF3Fd6x15MLM0b6aFCNkw+B7ercm6BCQFILUkbS/KWXhpcYY6de91qTEdoUQGYa5iEf5lrs+9+u49F2v4PZn/F2ufOuP0weD76WBvrGGxhvms5neD9nLcZBBySYnvNEhT77FZsu8aZh5z6Jt2ZjNqkBIzkn6EpQrOgQRE47Kj0obR+kODhRbLbZRY2zFEO458xTMzoPcvXGavXgP84c/Lg3HOuSiDJ7Btdz9gm/kynf+Mu9+8pfymD/7mRq7oo3xxhhSM+PuG7+IS+59D0fP3a6fWWMR6/Bqqw4WJ3nfdS/k6Tf/Fma4IGtFVJqknpFsXYJmsq8UzbqojoLFFJGbwlewUIURDp93Hu2WJiYirDFCWkWAAMRSFcHuqc0a87TD+UW9XBYcjtYYnPrFmBLJGhUzkEe0cp8Fdy6CiuPDey9N0sUWx0RKJcfMCOk3kdsFR77iX7D/J6+gv/sjwtEwUuM9+yPfyIlv/hHSr3wX21vbHDtyhCNbR3DOc3L3Lh7cfAKr5R7bj3ycnY2F5Fl9xi422f7b380jv/YfiecfUBEYCEaERbJVMfMCvGetPRl0oGjJT/V62Uenf+P9ouSJFC4mRSZAangleVaOoXVSBy752erYZdz/7K/lsj/+aex6X0XbVGQqRnaf81WYv3wLy6e9GPNHD5DO3S/7NUvjeN48QfPV/46DX/wX9LvnpM9P2mSJqWBEsPztH9a826m43VRoarIeSu1IYx1nSww1rsOS24s4X+GeHObiXQxHrWEp/vsJVSC1P9aUwXdOatCMHN+Sg9b8vtvAHFxQrvwEA6hvWt5jTKrrbwvmXFr9zJj7C8dET1Sv77SHRd5lxHMLD3HkGoyXP+tnLeuvagBJoi4CcaWRvfhmRCCy0V651o/7uPFSI3WNDgTVuGw6uCAbw+uu/2I++0Ov5M+e9FU8/R0/AxpNyhYyVVCq3IlsqD8z4xmOWyYXel/psTTkm9+Mf8aL4eE7cXe8n843KpqTYb7J5j/4fvAdOz/9UtL+ecaYzZAfvJ2DV//4iF8B3bNfRLrrQzQ3Ppe4fx7zyD1j/1sRIaPQTa3gTRW9KcImo8CJ3D5Tbbcp4iC5vE4Rkxp77Kr9L5zKgo0pflViozJ082I6AhCN4M9lOFAyRnhnRdAzZ2LMWJMIRrBWk7WmrxieN0J69JpLla0gkZ6pMJXUX7RXxrvan+inQmiuiANbXea2Yk3OeFmJpS6t2FIB9OTnpWdCfWxWfNhlvAWvviJlD52ISzURQrT0AdbrSEqD8g11h0cVxM4iTqoJ25gAAQAASURBVNs2DWbm6eZzZvM5bdvhvOzPlCIpIDGpk/UfFQPNYWAZ4MG8xRvCGb6Km2mHNSlEQh+I/UAKgoVInVFqVzll9t0Mv96T2pty4CuOWjadMZxZfYAPH/90up272XjgwzyyWrFai0BWSsJDFT5LyXvFp+csjN2KMSP1rTY1dFbE/mUg9iD7w4qof9J9lKUijDG5xp1ZOZGNxhcybEf6wqzi9iYlnMm03rDoLHnjOOycI+WBqBilMxZvobOWmbPMfWZzZjm6aNmeexYN+NxjU9B88GI7RrxjxN01Hpu0wU800Grf0Piwuo9KT9K4r8p7jHi72LnSi4/aKMmljfq+jEk9l7/2P1IGBQuXJCpEoMI1WGx2uCz312VEC2Ty7hnqMInCgRP3LTyuEAXjiylWjK+IATpGqlARZTJZhNOctVTeKlLD8arhVsTYFeaQvKXU9aL0NdQY2tpJmFxYfwVLH6+viE1Z5QJbTDQY5deg4qDyCklqeiRyCqTYE4P0AJR7Ldsqj3YPtI9VuXOKbWXspKYgNYesOW8Rn0qYKjSVQUToEdvovWitWCP85RAifRCRqSpETNZh4kUQaagCU33vWDsr9ydKzbAI7QnuIvu5t8oDaTxNv6559cVylMEYIxyk2iXG4J3UFH2nvU6N1I+kV0zsa4rCE0f3RtFqCMMgmMBqzboXPZmYs2xS52peLVo7We6rRhhF3CvpdTWXPY7ZU1/I3ht+hrzahyzccJMzyUN+5Q9jv+Sf437/v2JSL/63cnMl8JS4S4ZVCXdLcLQqNJVM5VPEmCrG3vcD3q+x1gn3z094hCWWTtLL+vbu07lm9XHe3V7PU849QLd/wMHBAcvlqmq/CHcxVbywcIllnWXlX02HzAjKVmvfSMhV+gJQYUGrdovkaoyeFRuyWaXP616d8sumuY+p/bLCm1c86aZX4cn4+XyC7+UqNFU4+8k1zL/yX3Lwup/m2Ff/a3Z/43tB14TsCyM1LpBBe4pjGT1/YMSgjJW/sSP/V9ZprhiNXELZ49Wif5L52Cc/RjNPXlcZE7WeqF+XwLcQn5x1UuCaqBZbY3GUiT6mAnJFAbkYtkpIkgqkGgwBIiiOEHVE0WNCEGGKGMA14AK+TfgQwbVEPCEaQgTMgLEOP+vo5nOyy6xjL6S1lMh41pfdSLrs8TQf+gOauNTGEFkUbdPgvMXZzLlnfANH3vEz7D7vpRx5yw8w72bMVIkup8jexmXsHr2Wjd37ufPI47n+/AfwvsFbdSQxEFKAXAR4hCnmVJnRGpQQo0GsF/KxqwlDHpNZUAI/taDIpPHBMgFnk96witGOQYEUdxHikzaiTZOP8pUst2LIq2YwJmceCY6jPtOYLIQz4FBj9Sfm4/Xn5fULRX6Eymu6XBPQWIJFNQaJ0oQTtME1VFGjcu4jweDiOkKEhDTtjOwDuSi2oHgUgE+eJ1Oymkomss7TzOdKbBYFWxFNKitDgy4rYBg4ctL2P6OJkD7TZSmQiDK6BgI541V8qEz7ChqoRXV6QxRFxSEkhpg4SB0beU0BBCsxjQwm6RTKhEmyxg0w21jwtzfv5jf6G/iHsztJ5hi71mKXS3KMIuxjDJZEMqK++/h4Nx8MLfOm4UbzsKgyOhWyK8CFBsbZGIxTQSlNQLMdI+hsHej02FIsK9dHb0K9F7n8mgLuZMokk+LgdENWMtgUVJyuw5EMobatXLO6QZjsh8lhMmWSba5LRYEgiR7Hv1GnUT6HwWEdBd+Te0LAJSGzlGTZpoz1mZB6YjbEJDJ4lKKeb7VI40iME3MvtmO8doXsnMf7V8GWROh7Luyc55GHH+bCzgWIA7aT5iAsNI0KKlpXEy3q30tM8vR7/oCbzryITz/7Di7pH5EpGVaFFQvYqGtkulQkGJBJ0tZ6OuvpXCv7GUs0autTZiBIkhMz27MNFu2cPkzUTYdxssi+2cD1a7p+Bd7SdUIqjsOa5cEej7Tb/G58LF+a/pKtvMI7y6xr6Ta22T3+OM7NjvGY2/8Un0IlrRcgoDRQWhX7MRUwMDVZKqq8NWkqvr/4M+tBmxatFbXtUVRRYwZ1FMboTjAlZcyiRJ+jNmaPTXI5IwCmtEvo/stjzKELoAr8SDWmZtt6+od8k94oTbwA0rixa7xUiLnyvpSCZB5TU8mYtWG3ACJxIASZdBrCGnLAGifCfE4Ee+pk60/t9viUHE3TlCtE07U0nRBXZrM5s65j7Tpiivj+gD4MrMNAHwc+7+afYx0GES/MiYCCikam3TcHD3HlR1/DfWeezfUf/A3OZyiNJo4CrhpuevpX8oQP/Dqv+7Qv5znv+G80FhrvaJuGtm1UtMLz0ObV3DI/xqn1Dn9mruY56w9LwqcpNJQ4J5OM0UY+UwuYKOibMAKOmFRJj1NeY7HNxV+UXxX7PhqAXJMDcol3ck3eUn29UbCxxEBQ1qjaoSxR8xACb+6exHznTm7uLmW9Yzh6/gHWw6BCU5KQFbFIAd7Pc83Bz3DXE76CG276SdYGZMNrTFg/hcTqT3vL/wMWkvcYFT6VRwPO0s6hWwe65UBkICaxGTEVH1n2dLmXQp5MZurrct03GbBZcgTtTSnOV2MXdEJx4SaUuEcAlaT2NaUydUp9QImBc4kxBQiKxZdfRIf3nmWMXLiwy8HueeKwpjHQeYdxBlKoyuBlOitQE8tsi9AUGpeMQhcph0OkhRhlYmEfBtbrntV6xVrVo3ULVgGoKhDlW+J8m0W/N15T5PoP7RbvPf1srt35KJdcuFOmNkchkZZ9NfqHw6JT5X1Ko0wIYSTRq/hDaYAam8oeFYeUJUdWVepc99u04WIkohbwbnztVAAM3QspgTETBe7/2XIpfoWpP6HmYiXyG9dbqnu6NiXLyWB0n0Rj63sbFRMaQ0ajwhclV5T7EIuPUnvmjMW6KEToEHHOMYSATJ/WyfLTwp9+dqPiBhUSmQSX2cTq88o6K5/SkBUgTPXfw9HwxXAoSa7YgzzesZxlOu7HX/nzXPdl38S9b3015z703vEvM9gI7tjlHP8H/4H93/x+HnjooUqAGmJkiIF2sU03d2zFSNO0h/YQ2UqhA6gORdeu5LUGmwRgvTkf52FmPJf7aBnBW7KC99mqnRNVdgG5Za0UIKmKDOTx/goIH1kPK1brFQf7B+wf7LO3t8vu3gX29vc59b738vGDA/b391mtlqzXIjKVMyIyroTwAvyJmJPBHb+UI1/+Hez9yveRL9wnorWLjsVizubmJttbGxzZXDCfd0IsKYLbxvLU296Cc5bkHAOI/VBRswLGRZ1ImxSgO/ngRzkeo4hXHrrLqP0vuJbBeI91DV5FBtwwYL0XcqhzImKdYn0Bwb5TFeEIQYpwRkFeTKy2o/jvqZ3RVUUhFpapNpqayaRKYzChx/3+DzC84JtoX/sjGO9JztP6ROuF/C3TYZIKNIjgVPl5PeeL5MhpTY4DKayJw0qmsCp2I1MtosQ9lRBhKvmh5B+FjAtKHPMt1nrAEEOi7weMWZFSph8CxljWzQZbPrBoLc63WCsT8rwKcwu+EWVdWF0btpBny8lTbVuBCA7/Xv2HmeQC9VdZfGyUac9p2o2mUI2pPxMiq4nlMTbBxBgZevXLyyXL5ZLlwQGrgyXr9VoaCoaBEMc4oDbnGlObt0zbStGs7bj5+JO4lD2uDw8y83YExLUqZjTG7Y3n9eYJPGe4jfde+myev/ceLXisxAasBPQPgzSqkiPLdpsPPvErefJHfp/t1VndN1kaQnst8jtpeLPOYbKTmFObvDFjg5IUuJL6ncqu0ZxPLaBBJju1Kh6QE22MdDHWGBltMBGhzajFO4p+nNwjFZkKLjL4KGSR7DCuYHKOZBO2TDG9yI46wQIk86wiSmi+MNrMoEXAGAM5BUojC9RSY82BpUF3GidNY+WS24zfiegaFWukfj05V6j5nFPBAmsM865jcz5na7EpAlPdjHk7o2s70vZJXFhRG7hTEdkrAqmB9XrNar3GvfLl0kiTki4XwQCN+t6KlFqLiGEqudRIY7dDcHnHSDrNNguxMUVcEZpylQ5UU6cJj15ja3mU5qgas6kolUxW9ePkRwO2VOkm9qSIC8UUMSkT9ZrZklcZQy6Cg/FRwnbq8yj/VqxD3qM0U9hSQLMS75fYX3BTqddko7iVU6JYFnJ+zIrLqzhtiBFCUBwDSh3DaNEV5N63TUPXtcy6GfP5nPl8zsmTJ7nk1Cm6rvsU7pD/80OmG0cl1kz2Uwz0g+TafeiruHMok+cyal+9FJubtoqLyQQ6Pxl4UkSlbJ3iVsWi9B5lJfmEQj6KgfW6Z71a0697nXgUlezmKFMOS3Gx+IhUkgREAEOGLlkO7IyPbj2GG1YPcdPGFbzQPoKZ+uak2BZlz+ca+wjpwpCnKdlYmFL7PjY6F5Ep2SNjQTvlyL++OvGjd1m+4/SSMEyK0ZNrlLKSuib4o2s8TWjVvpVGUl3xRhvZJvmkXJMsfkAFpcoeKoNLYgiEBLc+9Uu48r2v495nfyUn//Bn9AoEohGxqdhIbNjFjtwmaZA0Jd6Xa1imwebRdFAtZC5knULYoe7hKbY0/l3BK4s1nmAdBhVgGQlAQoQT/Haa711MR9YkyBjBQbq2pWscnbO0ToUEjNXJcuiFkEE8DqmbhiwCTb6RGlDKWcRZXarki/j+19MCaWPBoLGCTEsW8pDXhoVMph8GrLFE7/EkFg98hGMPf5jgG/C5TltcdUf5yA0v5rp73snJvXswMWKNxKnWORH1sXLStcHpUK4gdkaauoLGgVR/UEjBu/OT/OVjv4jHfeA3aQ/Oyf3USXqmYDsBaYbTnA8VUO5jZLleqZ0SEkiMqeZN1nnJeYwhO0euAgWyYFPShEjjIpMBJUfGHHFYWpdZNJ5Zu2TWNbTe0zWexawT0chuJs2pXhq1cxKcnCi1fhGRa6pNkLcreI+rfg+036s4dWtr84XRaV1ZccayB52xNF5IJ92sIwJDBN8H8UVBBqiEMBBL7cfKZ7XGQJSBVG3b0rpGxbes1P1zoh/WxP4AmwYMUmO9mI6DlNkPmYWBPiV6Il4FIYofsghhKltbmw2EPzFiYNWn2wl4PSJFjBZrzKsqhjTCZDWeCyqgZrXuos6F4neqzcvj65tSexJkoMY3FaervsKN/kPFncpk9yKyKaLqtuLB9a6ZKv1y6PirMONkStwnmHvIWkPXz1jERX2rUyCt18ZSh+ytjLGC75ep6bbkUCmJMLzigU6n+lbSkKjRSBNDQhu0tSFkgq/SeCLi05JOQceYiVje4c9VrmXQmMJYcwjrePS1qF9PMbX8ia9ZYpI0/b6IqiSJr8Sd+YobJyWqpokg2EXpx6qt1rwBidutdVq7KJPeZX+UYRog/i+k9ChRAcGDS4NO2XvSrGUqKfFQfhQVkxuiiLi2Dc4JV8I6i8Phk5LLjCObQeovmqeEIbBijY+RGBI+RhH9axuJKTWfiBrTyFCiIkpqtZSkOE7ZYylBsmMsU9Z2NsQhEIdCdJfhfCZLQ1SK4ttIUeOyoYpPST6rDZxJc/5UuEN5PAejvKxJHahgONMjGa0OmhqyUWph5Q6ZiTV4NC5U90TKSl5U8rwpYJNGatpoJ6arRIFmfM1MzaVzuRblvBnrHqUBVBrxoC6kEhfmgsmqzaQQjOX3ltFWluakwlUpe6zajovx0GtVBOlEkFdzeVNsp8bAVuot1hptqJdYP6SBdejpw4qQ1iR61sc32bvqMrr77uLsEx7Pife/XfKyxtF4sE7WgeR4ylMjM4R+rLsWrhrSqG5JtI3BO0+XrPwtknfFv/MviL/705z4pu8mvvx7yMOKFHvKTU/Ww+Oejr/hqfSv/yXcck8mThsV5bDIHrReG96K4HycxEsixN+rP4ttUgK5xdqWxWKbze3jzOdH6Jot2vYI1szBOH4i3wjO0OWOjblhZj0mJ/YOLnCw2iHkA1JcSV3DKGG+ii2B89pepbirtZJ3GucwTUNebOLWu2DQnHZJv+5JGLpuzrEj21xyyUk2trY5t3OB8+fP4Vxi6Pfod+7nMX/xu/RbDbMLjpSXHBycI+fjLDYcW9sNzE/S9itmXWI+S2xuefEtv/MT3Pd1X098+fdhnAisEnSARBHjpwUVZwyD+HafBZNOSQY1SknZFTBJr7klmzU5N6TUcOelV9MOgYc3Wo6sOi7bWSHii+Bdy7xbsDHf+mvbSn/VUQcYZalZSYTgsCmRUmkgPhznQcGaTI3RCj45+Vb9mtG8XOspjLaoYNFVZKq8Rv26xInyxmWtlVy45P6FWxAL9lEfRdx64gPUORUupgzY9TrkQhonm6bRgbYO7y2NszoB3jHWpyUiHTP18sH1bXKJ89R+ZbEnST+bU26V2CnFdo00eaQS/+Yxux8bV6f3oFKBR69gTC1TF09cuYlajyz17YIj2MkrfgIrSePQep8n2HHxOKiAbREDtlkbnGwWQoeKa5Ic3lhShkaHJRlraboW18h07BgE702Tun1OqcZTmZ4Uol63UVgsal0yqRDgxXRsL1qWqxWDyUStwYhQQiLFnhR7wc1tkXOpmRXOe6kNmjWkxDAMAGQrA6fwFuMsq9WKvYMDsHD82Amsb9jdP8CTyGFNDl64JcOacGBZ9wOJxGUnjnHNmSu45SM388hDZ+kP9iFkFo2j841GFJm4XhN6OHniKNddfQWXHNli0RhW64GcByyZzluObW8Ql/uw7mHW4rNlWAUGxfe9S2TlNTtjsDmRjl6F27ufjfmMeduyWGywe8mNfPy653Flej+bmzNmiw1WzSax62hmrQxWKZlhTNjssAl8gq7rCLMZQ9/TrRtC15KiCE2lnDh/7efQ7dzNcMMzCQ/chr/tfVhnaJqOrrXsdyfoH7hD1ucQyM1AvvpGzGd/Ff2bXs7qwgW6D7yepm0YjCVmOPX2/86Dn/n1zN74E5zZ9MxOiGBiOnGGg/vvIscVd//kv+D6f/Tv8a/7MU6dvoQuB5bnHsY5w2LW4J3jqbe9jpuvexHPe/BP2D7SMawT6/1dcn/A8c05W0cWbG0t2NzYwAEmJ4mJGkc762i6VmL4tsX6Vn2wxZgIZLSFlyryl6H1LU6FcUSwq8cZw7xtmXmPIzFrHNk5hiES1msuunksRckhI3RO63C21QGvGg+XTkuNo6v/qQ3dyilHmndjKuK+5cMKH8dZJ8NFbTWMtVFPbKNgAjuuYzusKGKhxvmxMdEJRzYbw1dur3nF/oKvPWm4pJN8zVlPdoZoMv+Ch+n7FsxAjgZy5Eze58q8T4ra5GlH//h3Zg/yywen+frNh5hndKAZYOD+6PnNC0f4e8cvcLLJky5Mqg8qPlhqUOP1lb54xZzrn5UhB6l0vStWmXjrcJJr2eM9YZsjdsVJs6Y06wnXUGLbb2nu0Fqy8sUKH80Ll/hLL8n89kOeFx7NXDmTGMWW/qMAP/6g5VtOZ37mIc+/ulzPMItPSEFEw/ZCghDpdMiKCBoHSp9Nrfsa4fNmLfiZIjJVOKW1CVPOP6sA21QQRg7xzNoBMsHzoYhNTdduWYsOatPfRYh8jLG9VazVCQeh8U0dpBhT1Jg5kV2ucWMNIUCvseBpJYfPZuwLKrXfMvw8pRGzOyTSYsY9mMv+Q5sSs9SeouLq07pUKu+JcFlDn+u6c02Da3VoWREuy2JYjDfYBDYLxiKMV8jW4UkkIiRwjcHOLHFoiF4Fz4aBXuvBoR9G7CBnUoR+PXBgVvLZsuBhLgROv/HHefCz/i6Xv/nHGFRVTkRxZeB762WXiviHCl5EiaVkEJGl9Q2ztoGkIh39QFiviY3wfJOV4ZNSb+9ZKf+kD4FEJhw9zcef/HU89j2/Qrd/dozBtelT6lkWf+4Pefj65+Hu/XN27/4gj4ReuBe1bi14v7WO5rf+PXd80T/lyKt/kIdUpL8M/DVW8vudJz+P+V3v494rPp1w9l7m++dodDCxd5bWOnAt773xBXza7X/C+697IU/6wG9q5Ks1UuOEDpDBJMg5Xrz7izEur/G55mDFHlvFjQu3ApgkR2U/1USHgqBbtUUl5jefuIUYLdUk56LkIdr/jDuUY4VgcVGFh1ypSSner0NshftX3G+uNUDUjpbPOQ4yT2x9wT9k+eevZet5f5ud3/kvxL1zki94R9NY4q/8PywWG2xubAjfcGtTcSzD7Owt7IbM3vZRQhyEB2MS8y/5DnZf9eOc+Orv5JGffVnl8uUknHUZBqXxQEYFGDLG6G7XfPlQX8skf5Uh7iJKNPa/lH40FaLMaEyiMjoFOyyqBjkRm477n/W1HH/Pq3jgGV/JiTf/LDEnHUIZGVKEN/0c/fO/gfTmXyQ9fI/WIdTuZZh/xXez+1vfy+LL/x92f/Y7iAlCgpDlYWdbgm8s9yXXsIaYRxGyuhbqIijcMzAmEZMKntQjj+vLOVzMOG8ES7sYcXz+6pza6H+VO2NsHRZSfkZWwYYkOXs+fiWrZ30l8z/+75gLDx16vYzilGQdpFg3m55EHs9Ft23BGzET0WiTK+4yfUy57lWAOxeewRizFThluqdhxAMO2Qsz8peNQYSGi/C2Ck21TUPTtCI25aT+4KoAq62vZ3Pmiz/0W7zuui/is//iFznI8l6Wsr/SJOetH7VeP4upIsBFQM8aT9o8Tt59RH+n/WDvf6Pg2U1T6+kpZZov/qfgW4wxbH/1d7L3i995aHkb32JmG+T98zVGGd7+O3Sf8zXE97wRc/ZuHZxU1oMZ9wKMHLpc7nd55Xzoc4j4S6nd6T3NkhNw9DRu9+FDPRPTQTrTvoq6dNR+xXTx8Rax0seaTK3ejkGgruvC46xD1zJEpO+n2EpDxmm9mpS1bpHkfudMHYydJd4uQ7HKvSo4kwbq+vdjzG21PlzWbM5GRIjyNM8Z76TRf8teVU1SrW3Ls5JBBS4ceE/ynsFZVinLoJcUySnUvgpjs/SFWy+1vHlLu7mgnXe4xgNZB4UJd8SaCASyMwwqPDiEwH50vMZ/Gk9ff5DfdWd4/vl3aptiIg0yuCWENcOwEi6KgeX8GH9y5nN55u2vpd15kKDc8yLokRUANE56q488/CeEGDk3RPohMgyJGFQgsaZRIoGFmdSmDDgn/tt5WweNNbNOsK8UkWGqYmuE96jDaZSTV7ms2WCUs+Gdx9tG+HMxEVMgG08OEVLAkmmcobnkKrb/5ktJv/UfSY/cRzISJ5chni47GuPonGHeOBYzx7wVvosJEZOEB32xHbXdtdqkpDiDwUzyU+OkhmaU01KHtyjubnNhAcnaF50PsdS5+pnRq1DKnapoVWZC5bJm9L6LqK9RLF5Fo3TIgM1GhaYcNkdMHOS5WXLBok0QygAJzRvL8LHczQkxEPcv6DAeJ+vLOZwzqrNg6uciFxEy9dsR5RAV4ekiFp7I0ZLUzWYdahkmvIpsrGBAjBzt0M7JztOYUO8Bxoz4QOn/VXJbzlm5jiLkUziCSl6XuDUFUupJynm0VuxKwWlGgVYz6cuWYTsSZwqKIQJTdnyY8n2xxVo3VUwnA74dB8QYK/XFJjZ1QOd6tkWz3iWnULl3IQhfe71asfKOxjn6vlexKcFfYgh6P2MdvmuDoxnW9L2XHO0iOnIVmprUlFRQVAYglbhI4iGnAyJiZuSgJum3QwWBoopTDyHQh6ACXlrDrrmE1Xq23i8j6yKobZXD4rZPsvG0L2T94bcxe9ZL2PujX646P8k6zOYxXOjxr/kRnDFk72WYl+7pOtiWjDUeg84M6uaCfB1cAASvk3WW6PvAatVDzqzmx0m7u4Qh0bTC/XNO4+aiBaD53lP3/ph3HP8cHnfvn+Av3Mveas1yudL+s74KTckpJa3rFJ79iOlEMoWuGAsPS8tNNR3W2LGIrQlGa2vaVfQKcoaYMmbrOBxcEAH5qYbBBBeVofbKmTCGmIvU1OGj9lpoj2RUDnIKgeH3f4jFC76R5W9/H03bkmLCmCg8LYKKe+nay2pTH/UOlZ9nABUAqyGnQcSLs+JsihccwiE/ieOTF5oqAWhxIkaIK+PQoonYlBkn/DgrKvXejY8ilFQbk10RqNBmjwngJ3F2KSTnRxWXlURWGjmsiJ7gE9ZLoRE7MFfRE6zFei+FmwzWezrvobU0xoMVsILNLVZnbqR55A7iNc9k8853CGHUe21olsZNb+DMu17OPU/7B5x+8w/SzVq2t7Y4tr3FbDYjhoGD/Qu4hz/A7uIyTtz2VvYbAepaLwAXTQtxIIdBCILWHGpANLaAK5q2KikNY6tiZ1VcV0cxJoxKwNXpjoKrjqIaNS2tG2pCsCpgtymJpGyBu8OMK91aflKcU5nMYCzYzH1Dw+9cOMJzN5c8ad5jXVnpo65wSZkquDs9J33fShLQ3SmEqrJRzPgqVhx1zqWZsmdQxchigCsZedJo98lukv9bx7oflOylILgSv7xeAwsSbOhESOe8TiJtsEVoyntoPNl7svVEBagwqkhZAIcapIgYUBGaGltDyr0QUNEWwYdUFPGkWdnkzE4weBuZmYj3ER8aBjfgXOShoeUd5kqeEe7geD5QIrIcOSdW2bEGZukAkiYHXqZUd/M5//jEecIwZ59Ivx5IMTMMg9rEw2udZHhSuJPWdqxNQ7bQJChjvqUJR67foz9/CaQOl+c16Smq/nm8NuPi+cRVVPYSCvIcIhX+Vc/P43NkvU+TfQ2EGZPq0lQyZtyT59aAUe2jMktySV4rgEzxoBNQbPqJLBhHtqqiWQVyLENMrPrAcj3QD0K2ysaRtVhuUmYojvwixC3+qqMAcgW0yDmxXK44f36H8zvnWS9XzBvde1pU9s7jsKSQyDqNUQBvKbZgIVnLs+/9A1rfYhsvRegqMGWqEmue2mEQd4ZMVva+o7ENPltMlH2DDInGpowrgb8B38kU5iFGhmGgH7RZOwR2aHjg2KfhDs5x6sEPYmNPTpH1cskFoF8uef3xJ/Lc1bt5zezxvGT1riq8tNw8ybnZZXS7D/Dg6Sdw5f3v1aYtgzVeCYMemVUjtj2TVeupiMMUnz5JTMqUqGxwxmkTvxTTjXNKfi/xgalrXpKpJNe5Vv8SpMQDoeUISxpEubeAUpmszcqGmB0PxjlXND2mXvVct6fU4TQJNgasTJvKtuyUogqa67opiZq8nRZAxGhXkAW9t7JVNeHOESF6SvEvpUgIPUO/oh/WDEOPs5o0GnlkhdzK9bzYjsVioxb5fdviWq8imZYD1/H+zRsIMXHD+n3YYc06DKM4ZIz0KRHypLgLhCRTmPMjH+fSh29jF731NVErja2Zq97y33jfZ/5jrn3D9/FA6EX1vJGYq/GOrvV0bcN8d5+Tq4HdrUt51u57udB4Wj9OIyk0/9LwfF97mqvDw0LSncRKtdkWSeYE8LOTRl87Wlj9PLKcR6CUYtfr1wqdFvCfIpI5/s1d9gSn1/cKMS6NspxJk+710LNa91y1/Dh/cenzOXXPH2Ef/jAPhUgfZCp1iFkSWQMYh/EN66NXsbFzN49918uJJbVQAnxpNDa2ADXyuVLOYA3eO7JLJBcAj00WF6BpeprW0QxBP5ckxCEIqcR7j3WWxjcqBpVG8ddc9hr1s4tPTpoU5pFIXiT8sgKVuQBlWtC3Xq6RFvQT8plKQ06JEWssqjbA2otrn+3v73N+5zz3338f+7s7WCJz75g3DY03mBQJ/YoU+mLQZKJ3JaiUpiptQlA0vAhLxSEIIWwQ8GIYBhEwHAZRGS8iVlqMkrxOkmfjG/ZOXcmDJ5/MY+96K/ODR2qc4azhlhNP59TZW/jY0cfSnb+XRb+U3DIXsSSJXZJN9RxLcl5jeQWkys/K+0vzYD70d0D9HqCEQhLbAiSdyjC9wvmQWzDIk22hTeXDjdjThqr6nods8xj/FWGzIpZS1jb1GYf/Sl+MSsw19X+1KTWVXMwcziGLx6UUwMmMBCcD2daGLpudNK+HiI8BXwCsoSdMANqSr5V8UyPlWujRt8NmQyrTqfVz1vpWiUUrgTh+Agjy132oO6k2uEylqr/X/338d376kLBYIW6nBJf/nX/NPb/8n7j8y7+Vg1//95zb2SGmxHLdc6FPLK+8Csxxrt+5gy27T9u2UjjxArR5a9ltjnAFS0gwBGlIQd/DWsf9ecF9LDjKmpvjNk+OD0jEVRoINW5N2mxMztVHlY9UQMsYlNCjNncIMjV8f7nPwf4eu7u77O5eYG9/j72DPVarlajIr1ese5m+V0jd0tA2ihJHFdMonMvtl/wTdl/5U5z8mn/O6pf+LbPZnI3NTTY2FmwsFmzM58xmHa1TQQUERgiq1BGNTPOsQYJelahTI8rEjRiTFsfCBBid7F01CLnuT813TJncIEVO6xvamcE6RxNUUDlKjN33vcbcvUzx00JCo0I+XdfStCJkVERDKugM9XqXwk2d8lVJ5YlgDMEYUn+AeeUPaakmgMbTzojtdc6rQAMiRBQjdpA1EOPFBb6TA+RAzkGLpkJmrrm9xvW5gOzq+0tzi3cC/BozsUnWcbBxko3+AOsOiDnS9wOr1RrvPavZMd7bXs0N8Tw3rC6IOJVOshECqsQfSW0lRoq+pdFjbIeRtSKkEZgoXsr/J7n/o4v7UFITRR7yJM4RxmxtHI5KlIwx0IfMw8FzPB6oyFRPv16zWq1ZLpcCtC9XrFeSOwz9UNd9jRNzrs3ANoughPEeS+b2zas4lpc82B7nUrdm0xxUgXsRgXKUCXMzY/jyeBtvtFfykvhhwsaGNJrqml83nmbdENZrQt+TQuADj/9bPOHjb+Tm6/8Wz37fL5FSgCjiUmXSaM6G7CQoLbhMIkOZuPAoOyzx3GQf58xgPMtmk81+R5s5kfyycbjGyfS06PEx0iRPjA0hBrxzJFss+Ij35EQVORHBkUyypflm4uPGxO+iOkQ0BST2VvHB4r9rPBXqOgsx1BgrKblzFJnVdap5+Gh8R0JA+V43wngpqxC7xmAlV65Y1BirNYWYpEMrFrMZW4tNthabbC42WMwXdF1HvORKHnri8+g++jY29s5KU7UWK4coAnt9L35stV4JJqz5ltMiMlqXGPExQAu34yANIa56U5pUjTY7UxYIOXkp8GgslGs9Q/2IEpTl2qYqDlWEgZIKdGCELO9VaKgUpoS8mCuRtmDZ1hpCiDwSZ2ybFc6G6kNqTJ2ziIaEOOImFZZQ/HCyZupd1HhOTFyutRq0DpRK/lvIOAYw0pyRMiKoECO9Fo6HMLBWkVqpmZoqfuc0pyyNFV3bMetmLOYLEZ/c3uaSU6e4/PLLmc1m/6fb4lN6hNDX/ZOKYFMRIooTUaLyKLbYGNKJK3H9eZxztG3LfD5n1s3o2lawRnPYphgjDa45TYRJE+SUGIJMOF73A32/ltik7+nXQxWZyilPxOFV2Igx/5XzL28mDZJN09BkmK33edLZj3DX8Wt5fn83yc8na1riC2MzNiUlCLvpiVcyBFlyrioWrZlWGayQS5FYxdGm05eKMPG3nVISSRibCYowZRFrK7kuxnDObbAd9vC+2DUmwxmoDdDeOdamJVrHVpbpgTmW9y+P6T2VffVZt72Zdz3hc7j+7b/Ccjargn0pJdIgn6MQTWKQ6VVesbGcx7zNWlvzLfIYI8q/6oeKeNBUMOFR62SMRkb8sYgCFKGyqciKYClJ6iSTXPZiOUbxoFF0THxyEN/iDM56vDN4K03ORcxD8tIkxXPKoB6LcQ2rzZP4R+4Ruzpp4M1bJzFhBf0FQYuiJRudnHfJdcx37qM0xoQQBNNrWtL8CHb/viqIUiZi3n71c7n8vvfw8SuexdbHXo1Paxn2YoTEXxJkOWVZK2guV8uh2gwr936852UNJOAj130B19z6R9x2/Qu54b2/hhoHSmMKup5zDORYfBJVkHbo+3HqXqkhxkQykgcZ57EbRwBLXu6q+JTI4k4xGn/5tcT77kBIEpGcLMkaVimw6tfY/TXOGDrvmLeeja5je2PBkc0N5l1bsdrGiaC45FAtvm1FEFavl3WemCI2ia0JwUyEYUtDkvjJmiuY0pxtRo5+Noqvi03tmpYErNYDzjoVPuxIKTIMjQikxkQySQhv8m7j1F4dROKsxaZEv14yrA4wKdB5wZPcRYZ7HEToEwwYhpzpY1Ruh+TStTeyqqyUurVgqtYaTJa8pcQYRS8FjUMK5iXYlNbDoBLbJ68s67zUe/XvRzzdHCLyUmv7hfqm19bU/2lNR8Wcs+IglQykmGjF8w1G96WhvJcpqSZCNi5vkw/lffLlpAas2NigmGrBVUMQUhDW4HxDO+toVTzfmkYHRo2kwpQzxEgm6JpVn1BqDSVnjlHXf6k1Sh49QpvF35a/Bxn04kkhgIk1BzchynXw9TIewlnLiyaTcdZXOz2thetf1a/K3quiwNWHaQ5gqoZKfX5pnJpi2EY/XwxSF7POyrnmMTcM4eIqRpdJ1FN8Ue6vNNtRMFxT6j1UoWepnapYufopIakbjJPXKfelxoa6NkLw9GvBqWKMDEPQ3EPworYxOFGKxTeejMP6RmKdQaa+piDrSiWASREC2kwYIz6qUHETcU2LbToy0gBW9orcb8mVq3hR8ccmAw5jkmb+VgWnM2noGdYiXp2T7vGcVGgqKL5ZmoDLpM4iDBr1uuXKrynr1uieH/2s3J+KpZf6HCPWVHVVqg3MtdZnbFmrua7ZMT/W9ZuzxCKFs4HGwUqcyEYFWye8Dnl/oAiL6LmVhhtnLTGn8Tz1OVHYqpQpllWcVM/HFOwqF3K42L1KRNTX0203CgSXva2Y0MV4FMKtMaOwnlNhZKj6e4g110OSXVIODLFn3a9ZDyv6uCamNTGt8A89wrZZsT5zhuPveYtqoYvYuIRk6TAWESJDiKz7voqIJo0dE5k0X0DT4fbPY50Idpok69E7j/2dH2X3S/4Jm7/+A9itDRF4yjL0K5MJRy9l9enPwd7zMRaf87dw73jN2JBE8VXSEGOVwEt28ho5YXWYUIziJywWSec83nbMZ1tsb51ge+sks9lRnN/AuznOzUjY6g+ct7TtBtY7YlhzbP+0Ck3tE5cHhLzE2xZrHPvbp7HnHsCGiDeedUAE4VBRHmNx3Yz9q57IzunrOf6B12HO3s9q3ROGQOc9i62jnDh5CZddfjnHTpyk6TqshUeObrGx6NjZPc9HP3wz7WzG2fM7rFf7rNeOu+68nb0L5/AWQrfJ/G98Be0dN7Nx7g42Fw1bGzKAwNpMftXL2d9esFpGluvAejUwDCsMma7t8N7Idc1BRTEj0Vr09hGCinSkiPNgvFf7FiD3xLzGRM+Vt93Kndc9nst2I8cf6emV39lYh/MNXWfZ3jr2f2/zfBJHrR9aie1Nmog+TWpoUxyw2EOxtXb6wxoTlr1Y7Cgaa5ni94udqjyLsfGr4vTlNUusNom1SwxU/i22vjYOFxv5V8R1tQpgxO56K80QjZNhhI3zil/Kwzmrk9EnvBE9i0NNf/qiNSZizN7rI0ujfxGVwmZMkmuZsjZ26asbjclyacSsBpxa+0sFBqwQQa7XWZpkSnNqOdfSpIVwk4x4aXn9PKLfZspO0lhTzy0pd6OeTs7q/+VeJs2lXLkmKuSvC46MVY6W1AC72Yy2a8nIXlute8FT1d/HEPAp4WLCFpwoS2OA1FSpcVbQmOFiOrY3OlZ9xypmBgyrIWIzUv9KgRiHet8wRgb8ZpWwsJYw4d83TSM16KFn/+CA9RBEnCwnuq7hxMkTXH75Gbr5nAcfOstyvebCI/fjOcXWrMGGFcPBwHq14mA9sL1Y8LQnPo6Zg/XODr0RKGDWOELKDL1wdxsDm/OOx565jKsuOUlHgtUBTYrksCYd7LI8/zDrCxdgvcTEHm8SrrG4ZIkhYq00H3prab2haQxcdgMX/sa3MvvTn2YRzjJrHGbrOPdd/dk8/uDjvPfkk7muu4M9v8EfrS7nlLU8b3PNpi/2weJcAqPiP0AztHTzmQx7HOYQA9YknGgNc8Pdf8KHr3o+3W1/ysHuHTwi4Sl+1tBe+gRmn/+P6F/1o7gHboGYcEdP4D/3a2g/+qf4z/4qtm/6DZx3xI1jOMDv75CHgSvf8fOcP3KSbv8om86xs3Upmy/5dh7+vR9jceE+Wm85+kc/ycnLTrG9sWB75tne3FD8f0XXeOabc6548I+xIRDWK8LBHv1yn8YkukVH48Ai+Kn3jqbpaFVcyncNvm3xXYttWhGldGoaSqxpjIrACK4Rba6xaggistM1nq3FgoNVYNY1zLzgsFjDXlzK9HpzccWLptRLkNzTOU/TdPimE9EmMxk/WQzmJC6vGW4udg5JEAr+ofGnNMeKMKFzDTlbYpQ8qmDSkHjQb/C2zat5zoWPcyrsi59F/GzTNPjavGeJMfA1mwe46FkujcbjhpAiGW2Gcg6bogizRTP6l4orS33KIIIZf3/+IDZbcnLjx3WG37twhBdt7/OqC1t8/am9mr+NWEIexaaY+GutQaaUROyKXP9D6yW51EwUz//cfC9/mC7l2TzAsbSseJ+crw5WKfmTKXiCnGxpyCxYzped0MF3BatK4kRzSvzr05n/9oDjZacG+rWs85giQxgYhp4LIfGufo4L8KS4Rxd76gCenGv+JJ9TMdasnF314kUMofhFY6SBVwZgUmt109hpjHdsfc0y5LfknVbXpGZsGMPYUH0RigdIHVViJuF8iuCEbwQrrULYJKwpuZTRWEuuo1UGdsnLa2MxSJ0oJxWYKlg02kgn9j5jxtw1Z+kRywkTAWuYDmkLk3ihDvag5FNaW42G0Cd8K7x9GTwtYtoxxEnUqTXgFDFR+PvGGIbNSzDn7iGFgRw14kuKUToR5/bek5uWtukYhk7ypDzlyJS835GS4LZmGPApYWPgxB/+hPDxymYvHACtOTdDz3q9xltDdGXgvcRhM+8Z2hmxDRBEgGq9PGDPQI69iIa0HV4FDYp1GVJkHXqGlLj7yV/GJe/6FW558hdz5i0/RjZWh3dobS9nQoQ+ZoZ3/C6hV074IFzhlCfiaYqfWbvC/cZ/4NyEVzWK3Us9ub3pd9l9+pew+d5X0l94gGRFpFNidoPH4+yK69/5i9zy5Jdw43tewTqV4TaytjAy1DNr/dIwclVtwYsuomNsHB/RVonXtfkYU/OIKl4yybmmWLmt/8rvi8CU8OS1dmLHnIKKd8nLTGZkAiMnoghNxZSIPigeGfHR1bpqLi+iXEVSJIWBkMtgBjtyfskq+utoW4+xhtUbforNL/pWVn/w0zTDvsQ11kgzd9Mwn3Us5jPm8xnzWcesa2u9OrQzzh97LMPOQ7TDTcxiTyay/P3/wvaL/yn7v/o9tN6rTUj1GhZuiFxrcMrXsEniS2cMjVN+pyviL6aKETnncN5V3ofTvpg6gF2TahHMn/rewpdSO9UvOf2mn+TBZ30Vx/7wp1nHwBATISX9NzDESHzNj1YBhkILiVn6JFcv/za2v+7f89DPvkxFpjIhI2JSG0c59qwXEYees+/6A+LBHlWkXh+lT2WyMtEMU/7Npg69ZYKDGyNrM6aEzxYvJL9Pwc741B0yMIEqBmGLz8bo9zqUxYxidcYUYUEnuykXTNWzesaX0b77Naye8SXM/vDlU3pO/aKEFSI2pUee/J6svm2sVRVRxWyLSJzarwleWwSVYtmTuYhMqa9rWtg4irnwQM3ZS22lcIPUq5a2p8l1kL3grQq8eU+rj6Zpaizrm6ZyEuxk4G6KEv/43PP5N/8mq8prHgdgihCqqbbHZIjHz2DO34+JQSIlrRUlK68Xz9yIfdILMO/4LezOA1ShKeNg+yT0a/J6v/aYpFf+EPbF3wGXPpbwa/+G1vmRE+88/pqn4B/zZPp3vYp84SGN2yD+6SsEI1JsyD2K41vucRl6JjXM0n009veJ/VY8u4rpldcxxNPX0n/WV9G89ddozt7NyP82Ffcv9e9aG9BVVPg7F99x+HylPjOxedN4bBraaGxXsC3ppkoqJqF+roiFlt6e8tpZ11Maaz4ZmHRY6TnY6giNlf7ApLetDI4xJOoAqmq/FMvUr2oblQBoGpcZqS95C63HhFYw8hgw6zWYTBogRunpcIq7N94KZ6Jr8fOOZnNGs5jjO+lhlKGPWXmYEaL0zw8p0ofAqu8J64HnxD/kz7eezrPueT3nEphkqvBoHAb6YcVquS8CPTnxwad9EVd94Hd4+/VfwPUf+WGC5pJRYbsi5GasB+vV9thaU8rGgfMYI59FSsoqPqyHSDyU4ZMNbeNV2N/RtQ3WoGKsvdwWirBI0BwN8rBWnSdDGeAg+8nVulgZTJpMpI9oXVnrES/8FsKbf47tL/wnhFf8W2LIUrtPYHLEkIQj6gyNt1WkCLLWJ4OITV1kh81jT6LUmeWHwvkG5wyNs2q3Ha1vBL9oRAzGGsNq+wq2du6sXcDGiCi5zRljhGeuiVjFRKi4q+QwUiXRn5mp0CE1lkxGcsOQVTw4Z0yy2KSxP1ZimKR5yjDQ9wPrMBCGWNei8x63dQx3w3NIQ0///j8mrnZUaMrTdi2dbQknr2axe19F402pD1ikh8rJXk0mE1B8RYezSFw64hXFEonYW6mJlLjbEdoN7rvy2Vjnue7h92NdqoKkInRnak8IJe4oNRdbeMap5snGJKyV2p7JScScQhDNDOWkFWFHjGVv61I2LtyH1V5O6ZfUPFb3c1nzwnMu/f/FV6GigMops1nOLY/+unEen0XMeL87wsNXP4cTd7+bxdnb8THK8DrnaKyhdZaucfRto1yZgUF7b/p1z9qs6AfJ9ROREAf6wbHqLSF98hI3/zeOFEp9SUTUhbsovzO6Hhvf0HoR3bZl2F3p2SqbANmnsmUmQ+tSVGH7rPxsyctso8N6opU9pz3kNgVCDpUfMpx7kPNv/hU2nvL5XHjTL+oeltjVHTtN85wvw979l7T3f1SGKafMsFpJX6m15BNn4IGPV/wmYWC+QXrCZ5OaDveeN2IOdlSvRfx26AMrk1keOcMDj/8KrvnQ73N050Gx7a1o7jQ1Byr7RDCdJ5x/NSFE9vvAej2w1EHS0osVq7BU0RkQfFX7W2MaY1zFdUMug2ZK7FDyIdUrMAaaGeboJSIyqHfCWrl3OYM/ehr3rBeTPvRnpLs/glVNiIJ/WiP1UutUQ8J7jVd1uMkkxTFMvxVbUfjHcZDaenrtj9B2M+G/uEiMlhgNseQDlUf06Neb4liKF6ifMhpMGZQzmZSzp7aaGl896gX/J8f/1i4szSEWK4rrIMXNlEooXAmVZdKrd7YCOr6KS01UVhVUtRr4j2etl0SuwCQYlzSmgBnye6sBipWiZ85ggiTCKeN9Zt7NhEiiReg+DCpQIIClb1sNFhLs72DufCcHJ65n69a34Dsh/c26GW0rKnzD0AtYah2Xv+vluFnL9saCY0eOcPLEMTbmc8LQc6FtcDsPcnDPbTL9LwykwRFbmXZkDdLYpJNmBWAfSKEhu9KwoR9eAcWUwZqkTcJOnA5QG7QOFcglcZRrkuvLJaarZASiUECkXl9ZjaQceV+/xdtWR3jh4izX+X2kUF6C/lGh+U/3t3lKd8Cf7S14bNuzZaMUFcwouFHUYU2G/WQ4Gw1nZuOiLwlEcctlcaP/lgm0ZYMU1doYxsnho3BFGKdhU6YQXHzHYSKkXtNsJsqhsnbtoSn38rC+qdNPfdNinBdRFWvJ1lWBFXE+ZkySsmUkCxtVrsu6XAosWICJsYm9AEJnB8u7ljO2XeSpsyVzH4jO0XlHSIn37V/Gc+zDvMec4QvsbapEKa+7TJ4781H2nOfa4V420xLnLLOuo5vN8G0jjTRZpn77tsEPjRaHEjkHgVSs4cAv2PVzTtsV0UAocbKSyqIGaIVkZbwqD5eGKTtNGsefF/X4EQmY3rG/eh2NTXQK+dVkdizqHXqVXNR2S9FjfPXpU4ujy2kEB+pagWrbalJuCvCYR7C3ZOOUNHfyKUwRIRPye6MJYgyiklikV2LMDIOQ5mKG1jVSiG108pFkZJgky+6iPCYGpfj2qdOMIXJwsGTnwgVWyzUGQ9t2VbUyx0QpWMYQsckoQRtwKnaiJA9rijq7qsNKpjSehi3nMRZjUYCobTqadoZzDSZZaQiJhSgLJhs8KujY5FpUtQgxrfOR2HXEGHhwfiWbMbE6eilN2mFj7156JaOvlkuG1Yrn7vw+f37VF/I5d/8Be77BGcuw7tlY7nDlwZoH3Ban7vhzUtvI+VpP0wgh2TUiLJSNQ9LLVAFPcS1j0zATv3F433mM9bJHndWvNcmq61XhT22akUBKmsbuDjP+ZH2Ca90FnuQepiVUH5pTIhlLxHBzPMl71kf4G4uzXO1WjIQ0W++LiIWNfkoYT0yea4qcVt1ExW9a9KW0CJCM7t8CilX0qgg/yKSMXBKlfs1qvaTvl4Q4jAC2qamc+kcFlS+yY7FYSCNb29QCSbYQc+Rue4R94YJzpznCJesH6EMgRFVUV5BnGIIITkURqOjDIISoVMhuGiNEaUspoG4hxG+95j/xCLIXvLO0XgSTnIW2cczahsWspdu9iUu944HGM+9aFrNGJi5YnUbppBh06+IxvG3xNJ63fB83DPdWYiPkSg4sxDyZMD4CAofvkBYqJz83aktM8W2I8c1VgV3Vd1MmJrHrt3ZnePP8yTwn/AVX7HyEECQJjykyRGkkWK97lr009V764K8xhMgjITGkTMyWlGXadMwiqmGd5+CKp/DIVc/lslveSHPPzVUww1qEnOwtzkI2ItVUwGznZdphSlkmniTZO9k6bJNxrU7M7oMKSI2NQKUprYgFOedIWQpMMSmgkTI5R+Hga0xrjNFrDZWgMb3mE3FHY5AJoKpyItO2pXhc48eqvq/kEadTIGwp1lw8x7mzZ3nooYe479572d/dofWWRduyaBu8y1iS5jdZkl3yxHbkiS1DY00kl1OBi2EYWC1lDclUKompozaNiyhNGAtTIVAmoafOc9+JJ3D0gb/kzqOP48qH3giUIqzlyo++gdse+/lc+/E/xq7OstbfeY1dCmH57MYVXLJ3D2kiXFMmnuUkatFVIFfzlSIEVZ4PjEWV8n31Q7nu26zE2THmGmOs8fmaiE/e7688shQSMp/YqFui6vo++ty/8jBTaKAUkNPk1/qZrakxujSmWG1EHQnTkseJ3ywiE4ItjGIEDnmu84kQPS5G7DAIYBWjFGmUtJOL3VNfVPxRqlLgGtrEpGCViiEXkLQ0vJbm13RxkqIOixJN7lUei6zTo94tDW8+/J//EY976Q9z30/+M7a2NjlYrshAiInd+SnILe25R/hY9Fy+dz+z2YzZbFbFrS9snuaD9hTPsue4anhYpmmrIJtzEldcwQEhn+OB1PLE4X6CihdZp0UURl+T9dwpdo6xwT3XBuEieCEk4eVyycHePrt7u1zY2WHnwnn29w9Yrg5EWKkX35OSTnmzQqqv06I1Z7QYjDN4I6TH/je+j+Nf+53E3/5+jh47ymw2Yz5fMJvN6LpWpjTEyJAzMQoxJunrCbFDxOdCE2iaod6DqI38TSMN/KEPDENP6EcBqFwKT+RqTyo2YBSYREXKyz5UYM5YC86pCFCmHwYOVitWKvTTD4NMVjGGtm3purbmqqXJf7wH+nkKcUnvlVgcsTyybxzGyU9CDjotI6s9yELqMIoVAMnKIOjoHKbYZiCmiy0pK83vqp6rV76KyRYCnTYQGi2iWGdk2oi3lGmxQgSz7F1+I+ev/QzcvX/BsYMHWfciMOV1atYtp6/jxN4DfHhxCZcMZ/EssU7IeU2TpNGWzB2p49r2AKtY5NjU8misEtnsFZXKda2Ma20UQJS/ksDFltxc4cxUG4JTxQPLFJR1iHwobPOXwxbPjEuOr8+zXq9ZlbWnQi6hHwilgTkGcoicP3Y1mw98rMZa1lpwlmhEPCqqAMn15z/CR4/fyA3xLk6aPXLbjJjQFDtC8MktF3mJuY1kG3wRhLQSP0vh2zM4x+Acoe959kd/j5uu/2Ke/YFfkSmcun4NXoxpKldQCvoi7FDwS6ONnUxyLt0veRTwGbLlnu2reWRxGdedv5kj67M1vzfGyCRsFRORqUhO14fgasmH2phaRVE0z8uPfqQRRxBw3o4ndxEdtmDIGcGaU5JiYZmQkUZBsyJIljS3LoLYxV+LzRyF0Uowc7iZbOozJ8cE39JoCvOo55Q11DQNs7alaxpa37K5WLC1ucH2xiZbW1tsbmzQNA33POGzueSO93D/Y57GNe9/g0znCpF+GFRsRxpFV+s1q74nRiGKOJ2AapWsX6kfBTzPWYWmpPii8A5OY9UqNAXKphDyus2uFs4LkaWSAE1pBhvJ0HXqrhJupeBktCFUH96NIm9Qsdzis4wx3I/jJnuUa+IOV6WHcWHAqoCvcULMDiEQhjD6MkyN/w7hLLqfyr6vwq3R1uuFtUoIV/JoeQ1fhBl0+piKc5RHsxZ7HCaN8jYJEaEQzIrgUtdKPLSxucGxY8c4efIkV1xxhquuuprFfP6p2h6fkmMo05aikPxHgc1U91Qh0KY4TgBKp68lPPH5DHe/l+bgfmZdx2I2YzGfM2tbGhWdgNGf5IwKfqG4r62CZat1XwVAxTesqthgDCUHYKwhKMY2TswpcWCuW9l7T1TilfOejfUuT79wC2FjgxASISSsjerDUl2rPjsVpxjXaS652SSuHvPrgu3I5xSxLr2WKkSegtrnGEWgNkguWsSmipgGaM1E19gjzRbvd5dw3fAgZ/qzFIHcbCZr3Miwi8HNuNMdZ2VbnsQ5jmQRNijCYXkiNCWTk0r9LvCZd7+Nne1trLUMQxH6GoghCElCGxlFhKpVMdJPLMdaYxSPKAmWxhRVXElFuFKJ5R916M3L9Zuyj10lMJdJY+P6kr8wueBqF9shdSuZaJaLftQEOy/CndJUJKRBbaYw6M9ECCjESMyWg0ufwN6ZJ7P5oTdjH7pdBTgNbJ+gv+GzyHuPYG97B3a9p7UUgznzBIYnfSHhw3+MuetmjJKws/X0VzyR4cQZTt7yx8x27qVNidyKb7z2L3+PWz/tJdzwl7+LHfaIjQirN12LMZmUgjaniz11OmncGBFTCchzchasptbpDKrKAiZFnvqB/8HNN3wxj3v/ryp+FqufHzEImXYngu9RhRACqz5U8VbnJaeICIYejQHvMVsnMY9/LhlD/Ms/Je6cJyfZl0FF17prn0h46heQ85tY3/p+sVnOihCNcyTcuG96wXwPDlYcLJesViu2NubMu5ZZ1zJrGlrv6WYzupnGjHYSiaco4jsuSA0iG8gjwWPEWzUeL5mWUxGoeDhuL8xe4wwNntmsZb7u6rXKsePC1hnm93+UOMi+N1Hiaoth1rTM2hZvJdezOROHNXG1TxqWOJNpWy858UWGe6yy4SBl1tmyzoYmG7yxeNMQUR9BxmXqNM+UZTJc1huSctIJa2PeBGJbhNA8WiVyFoKhUWKP0T4irb0WQl6J823pN9eGqoLdiZh2BhOlIcOWdxCxmonaVa2PlnxGniUYVao/L/iovF9QkVbKmsLUxiNMIfhnxeny6KtrDFCGJ4jPSv1A7NfkMIgAhXO0ztG5lqZptfbkMEbIfgnBu5M24NSmwpzJWWNZa7HZS86fAZMqFm5UQETI7EbxfxV41xpcto5IIBgYau4q9rQQBkuDGzlr86scUgYxEgubSdPpdHGZaX6Xq6Cz7MlUBVGcYtMZSCEokVHuZ6qYvgoGZoOJIrZg0ujLUwZlCVx0GVkVNNO9nwvOoznIeN1UIkKcnDZVjTiBqVdSMf4s10PqKFTf3raNNitKLb/E9kK8y4q/BMgGn8F6EWx0XvKknJJMsPRe4jvQerRihyqmg10zOEtoGnq/xrUd7TxhmxZ8Bif1iEzhMmgc6xylY6XghRUjA6rob0qkYSCs1ypIkyXPKsKLSbAkmQAa1O8VUcqRt2ZyyVf1fmTBjkSXoRDgxxg0pzpPW853sh7lpEduRrZOMVetMuTEztGr2N65W5sUqX8vsdY0ztJrgOw7lfhQIUdTn1JWtJn83zqv2Ov0uikmb8dKsSn19iz3L2msV/ydrZO5y14qvBKqCOz0GoxCrRdftCg8CeVnZ8ndG2ul2QdHMIbBW7KXOp9BmC7OyBoa4pp1f8C6XxLimhhXxLwmpzXOrFk8eCsbD30MY0VkDKMNLbEnI4PxVmsd0FLEpoaA9Y6mbXHGEYfM0M5YPe7pxM2juA+8jdWD9zDEWK+/NWtmTYv/jR9mmQJN65m3Lda0kmd7y6w/R/fRtxGuegKb7349YXsDAIet4uiCs0nNx3nwRqQ1YoykoPsHEaBK0ZFiA8ywfpNudpzFxinms5O0zVG838T6GRipCaN1VAu03YwcLd3sKNvbl7JzcIH99R6rYcl6WJNyZHXqCs7e+DwWH7+JI3d9EGLCh1xJ7Vhw3pG6I1y45HHMH7qd86eeyMbtt5NDYGs2Y2tzm6MnT5EfcyOXn9xgazFXIcbM6WMnOHviJN5YdpYDu/NTHNxxNzYiJPoedh48T+Pg6Od/PubOj9A97ukcvXXFESKbXYN3LY2xuGSYuzUX7Ao4YFgvCUMgmIB3AV8EOZRHmhGMJ2QjXIBYBudofRIRmcoZSBaTB3IeyGbg2ltvo/FHiG4Taxusa8g4smnwfkbbXlzxotTIs4pWl4m6ahfrMXp9+aPyt4/imx7Cxycl0PI8CmY1eUy+n77O4ex1ii/katsLzjUVgM/T349nfCjOKQCmodR0tJGwCk2VgbqFBz02bMPoe2pKOjnFR7/v9LpMfygxK5TamsRTFTmfPH/6GUY+9dgCc/gK5UPfURFaqZM/6ntMFfEq/09Uzrq8c8GF9Z6WBvPCX5I4dXK/KeKL8leuvJZTr6oxZwxi2I2zFSeFIsppyTHUxovynqWhVsrPmahNg+UURWgqHqqzXwzHvPNsb8yw64FlSIQ+S7OgycShJw4ifCLcM/HtBmozsdRkPF3bknPGNw3JGIZscLOEa1vaboazniNHjnL02BHabsbRrU0u7O6yu7vPsH+enbiimc1YHDlCax22MTQ+s9HNuOby08TdPR6aPcSF8zv0fcTGiMvQtp7trTmXXnKCa06fZE5k2D0rTR5R6rVmfw+zv08+2KMj0W0uCLPMetUztIqPmYQl0vjMrLMsOs/Oc/8el77vFZx79t/lce/+SebNjCNNz5GH/4x3P+aL+Kf2Jppmi1viMTZax4NDwz3B8rhZAKsT043B+lAbQUjwofWCa7YkbrQp4Yh4FVWwznHjvX/Cblzx0Mlj5JzZX65EbOnZX4l966/R/I2/T/db/444DPjlebo/ejnDZ3wxx9/+PwTvOXKa3eueS5MGjt55E+1wwOrkY8mP/RwWH/0zLn/wI9z7Od+Ied/r2fiyb+bqd/86JkVaZzmytcnRzU2ZoxsDDkMz78gpEvd2Ces1/XJJDj39sCKGIPwrAilmcvakNIC1tF3LxtYmzayDxmEbj+9aXNOqEKpsmBjFr0ZgVF3Rsl0ahww0TcPGYoOIY/dgzbxtmDUNIa7ps9SUQJoPL6ajxlpOcm7ftLRtS9N0Igil/mXksYqNEvuizUuKV2eyNpEZyiBo50Rgqm1E1KtpWpxrSBH6PtGvQ60h5Jx518YVPOXCHbx74wpecP4jYASz77qO+WJB0zZgjGLQ0vtQ80aD8AW0EV/yl5J3Ct/JarNfFa9GeUTqM6I+X+oFWts1ln9y4jy/srPN15/crbnBo/NrET7M1B6R8TeTGhPqxAoHMBJ0cNcwDLUG8bnmHnm+nQwOnFz/XL4qogPaZJdz4YeWeqW8V2nQk/69XOub37iZ2d8/fC5Bh4d9NHasM/QYbl8NXDHsjtgIpWVAxK1s6UOqQlNylsLlyCO0pH4tYRmJRLIvxpAoq5CNIlQZqCgJh55XY4vSfBiGi5JT5TC1/t6UQTrab4FiRmVIT8mDzaRhTyDGLHhVLrm8RhiHfD2U9WZVmspqzdQwimpMOV5F2Dwm+X2t71B6kcY4stTdJAa1NG3Z19KPkw0MtiVtHcfv3F/thinrTgO4/vgZdq7+DDrzbszt74eYQQeojbV3wTuNE8ES52TAnqyhCXdLm+oT0OtAJWstzhrh7bZGmo5NrhT1mDM2ZhnG5NdYA633eOvxrqFtGlrb4JLFY2mMZ3mwJsZIvzrAmIHZfIZ14BsjQnpYfJRYM+bEer3myO//R+574Us58urv47yxKtyn9iuL2PkQM33IUlMcpB4RY6g8bwyjcAay31zIWFf4wwXztzinQlMO/Nt/nZXJ9MZK/d5awbSr0JTBr9Zc8fZf4kKJj0v9MWVIRrA1fX9X+hqdigFdbFPVJ9iWBORUcRNX8I+cVWhKHsZOcXGYJGlib11Lf/JK5g9+XLFmbZ0yZej4pNZSeDoT/Lx8nxXPTORRbNs6og04U/jFOtQnJ92T03xPOXMmqh2V+M1bC95huhbvXW0m5s0/zxxI8672Dzjf4K9+Eu25O2m9NLWbqZ/IcH7rUsywJG0eI2+doN07T2o8kBhe+9+Ye0M0DTEJ37bYYmtlGJm1I0dErlcWDgnCi6i9sMUfWOGwWRUusd5WXlI/P8rQztlanRdfm4Tfbazi7GZSMwdCTtL/2J9n+w0/ySpEGboWIoPGaiGpGJ/mYqX2knX5CJ838MgvfKcKJ5QsTk54cdUTyMbiFlvMr7ievVvfJ71fih/KHpVY+lAKKIkJhXcv132S9+akOWXhBdR3vagO5zQWMaNQWxW0ZxS1rwJi+rDaC2YKNpSBODB7/U+w/qyvpX3jz4zizxV0KNWAIt6QpYWzTOnKCE9Oc/EiuFmihFKbMtmOZTA9d9TPTkWmIiVHh+Qb8tVPwVz2WPLNb8Gcu6eiO1Us49RjcOfuxYZerk2xIdbWYVZeRSWbRoWmGvEtjW8qB8J5Nw6t1ms37WssTfrO2cpbKYJLReA8GkO65BqGJ38h7tabcLf9hdQPdJ8YY6CZkW58Pu7WPyc/8fk07/xNpD/UkrYvIT7uubB/Hn/buzGrA4nvcya853Xw5Bfgr74R7vrQiBltHsFf+1TifR+jfdwzCX/xuhpvGyT/brwMHyo+yj4KNS/D9g7XJo0WQ61eziKgqJiSlf1mjWHvM7+Uxfv+gP4ZL2Ljj36WIuRz6FHirHKUPZ1H7OjiOsb6nVwO9UXFXmQR60i2xHAjn63mZ6XWZUSYNqhvtIhdcloLdWRsFu660W0lw5IMLltSjiJepJi5K0qNarv3/ZzBzziV9hBDJ8N5nLFVDzBrbgWG2/1prg0PCrfQyrq1Gu9aJ/1YrrF0sw7Tdbh5R7PoMF3DermiX68JoQeyxDne0TWervO0s45m1mC7BjvzGC9aAUmHskQypFDX2hAl30khEFY9drXDUx56FXtBeTRJauslz+zXS5bLfdZ9zxADx1//A9z6ed/C8Vf9Bx6KolMgrVp6cYz2odtBxasbFVxuVWyuVeFlg28cjdN+PfWjFWP1jqaxNI0XkUYLJiecM+QcCUMvezgJB6UPa6lL5qTD/KAgl6W25oz0yicjHBsZBhJIJonoaRRBHec8G6/+Pvj8b2H1yu+n9Z4hSd01KZeMsib1UXheQ8oQAyYEEfm+yA7ZLaMeh9hZKs/eeYtXPrfwpFUMU0Wm9k9ex8PXfg7c/laOP/hhsVXofs0jP1QES6RuXfZN6ckTuGSSX6ktKjFN1ussdZVISKEKw5D13LPU9aS2mQkxsA4D/aXXc3DrexiGoa5Hn1q6U1eJzZstSCevZNg7TxGg9tYRr3g8+dNfSPjY21g8fIuINSnv0BjFjkVsQPuhco2hJLvJ1V6V3rvxoWI8uQhAwu6RK0nNDIzhwpEzHF3dI3UVxXIKP7bqXiQRuLPOYKuINio0VXRZCk4ha3LvxDVsnLsDE4PG9iKydv70p3HfFU/nitveyvb5u8jZjL1eSQZ5hSi5WUwF/rMy3Er9tMQeWR9yPVIWUVMTxaiWOism89DpGzn+0Ed45LIns7FzNy4llLhQa7Wtd4SmqdzJfhDx75WToVSl1pYzpFzEpiQmv5iO3JfeI+WwJlnLhfvhfUPXzZjN5jRdS8Kwf/QM/uw9uDRgG6FQxJiIQXZE0vUmtXuL9R6s+I8y9LvwAkokWPpLTDIQBQvsh0iMPf1dt3Jw353CtWtb5l3HfDajferzaHbuhes/g+20R7PaI8bIynt651heci3uiZ9Leter4a4P1Z71fMlVmI0j+LDGPuYJNLe+G0Ax5UxOhhjg4U/7Ik598LXcdcML2bjpF9S/y/kZD9mDjQVvDbX/NOi1CEEGZpos/MLsheNSqEooRps0ti3dRlFh7DEXhYrtIKGXiCVmctPgr3sa9jFPIv7FHxLuu42YMmaIWBcAw+zpn0H82Hvwj3sm67s/RjrYVVtg1Hf5un+dG2h8g3GGmNII5immU3KJgpUZrU0k5T0WfUzBMKXuXAcbK24SdZ2hPVVluKKsAaM+OmGaDnvqGswDt6hNQHNuWV8pyd+PeZpcp8PJ/V99fNJCU0J6lctlFYCQAWkJmzV5tjJB1lujE3zKv2NSUNS0S1HxUe8gfloXaEmgjQIZZgJ8lGBBgk8xlNaqEoSqCTqX8U6dkLW6GcUorVeOfujJVoyxN4bkPcxmGKBZn2Nx59vI3mNSJg2BwBqSTMjbOXI17UO3YGKi8w0biznHjmxx4thRjm5vM+tawtDIpBLEOBzs78tE72VPGnpoRRnSO0vOXkljQmCPMeBwogptp45JEqrxnlS6rDorfZTAboSQxCGUBKa68HL19ScF+YYJei/O5c9Xmzyl3eGm1QbXzHcKsl8RkvKeX7rxEL+3d5Kv3n6EBZkYxoTJoIUA4zBkDpLh7bsNDw+GZx9JXL0YE+ZS7qf+Ox5lWnjMCVuaZLMQnHttslivVjKVN8QKJoOCaYlPZn/8Xz1iHD+js4XkZWuRqpBIi7iUdx7rJWC3XsVZrKjCZiWlVZEpa6U4b+RfShKmgUlB18erPRItkF9R9pbVxDSRuXfwzG1iJzr2k2PLl997vMv8vSMP8YrdE3zl5r300RGjCFEkIhdSxyrMmJueXbvN0bDGGkM2iSH0HBzsE0NPCpF+vSLkQNL/cirNqYmlm3F7e4a1m5PTfVyaljIRoo79klM3xZigBbapyE2RYSg/032EsXWnTJfLJ6Ti+VHfqOMqU2TTpJhViBcfXM55wmyJVQdRgO3yGqkm0rIR748dziROmKEWVQ4dpuytcTLvGASrXWX8wymIVQCR8fRrmiAq50mUHkMMrPuB1apn3Q/SeIS2BmsBqGh7FELHxXpUh6mApjXF4BlCiCxXK5bLJRhD27XMZnNAEm0UqHXG6dQwh7cNjXVKOJOJmd56vG2ksaKsqdIaUZpgsh0LpBgtDouYXNvMaJoOa2SMsNgISVKdRkFZ1XtTygxRhPUo72KFcIx3PCU9wM3zM2wND3N6KzNsXMJKweZb/KWcWd5NDpHPuueNGOOkKSVLkS2mzPbOPbSrFdGqXrGxuKahnc/oug7nyxQRqkK3S0mVbDNOmx0FgFYQ0TVY3+B8K187sVfGOqxtlB1qKcX96rUKEp610SwFcox8rD/O5WaP28IGjzMP0Rmd+AJkE4kY+mx5/2rB9f4879nruLx7ZOIzZf/gjCjAalfz+1dznrTodfK4TDtPag/lZKS5pARoxowbq5idYl1LMz1WE45UCN6RFAeGfs1ydcBqvWQIayEP2UamXxQybNHmggkB/+I55vO5gMFNU21VjIE+9Jza+ygX5ivWw8DRh29mL4QqMDXESB+l0Wm16kWJWpOJdQijzdFkWtyAxC1lkk1SwqyrQlGexhrZL87CdZ9B+/F3Mu8aFvOWWevpvKWxhlnr2Zh3zJQYM2ulWahrG9519HqedvAh3t4+lscc3CEJQFkvAKYQ1MtKFRAiIcW8mkRoYFVi1xpnZSUKkquQhjSnKpiScp0okoF3bV7LU/Zu5p3NY3nh7k2s+pWQof9f5v40WLb0Ss/Dnm/aOzPPdMcabs2F6gJQKEwNNMZuortJcOhuNRmkSMkhy5YcCv/wD/9RhBzhCP+1HKFQhCMsK2TKsgaSMik2zWbPJIZGY2hMDRRm1DzP99Ydz8nMvfc3+Mda37fzFkCxqSCbd1dknXPPyZO5c+9vWOtd73pfbWaclNQ8tkdkmLTIVAzFiFt1MlbAgwzYzJtnHuXsy9/hhcOHOfWDr0miokCe99KYn+9+hHL5JdL1tzDO4jtpAHPOEZUknAuEULCulxnjROjB+kmaQpBCTZkDzZsOp2QRAU8ENIix7BSdq8BOLT7u7Ht6NGKJuo2VUshpau8nOZ1pe3Ntsi+luhXJOl7cDv51ixxvvPEmb75xkTcuXmQ4OWHRBTbBc+wszma8hd7XHENIBq6uzW3jl6S27vYinGPatYhRRO+GYRAH9CpcpH9f3ccEPJTrnHPGxmvc8b1/zOX7P8GdP/gdhp24Q5x+HHf96PdwzjHo3hdUWFAalwyvnnuYi6ceINrAhevPz0XUHeJMO4/aGFIETHDFSWLcxkZtGkH3A/mvSULotNwths7CgDtxwhyeIWBEHUc3f63vIcTc+qL1fd4udmt+6vdzA1fNeSWWTKmOe6v3bl5TjNXP1IIwIb2JWxgai+6AnRWgqoBGzTu0mGez071GY4us7m61ER15TZlm0vRqK4GmQJ4mClHcw62lVGGHNpmygj+xCTXcSkdzs985bs6JqOH+TsQsIYvgHyIk/dL/6//E/v5eA/xKgSlGzKtPUTLEo/O4V37Aq4sFi+WK5WIpgrsh8Hh4gAfjq/xJf46z65egyN7mvTQFVpfNe8oNLuRILFnJ1RmSEGLpDd4Gic/KnNHIvpyoAtUgxWtbZpyllEyaJqZxZBoGpnFgGgYRxK4ihAZc11MuvI/0zLebWIypgJapBE6roLk4F/nQE/7Zf0042KfrenE28gGAaZhI46R1vJnaWS+21F+raLkUR+oErfO86wLeOaZpFKGpKTXwuQoTthetS5TOhYgh5iKNmEUbZytBIwoZchxHxmHLZtiI0I+K/cQYMaZIju4cHbT8vRZbbnbPrh3iiICU2YkPDFRqnTWCswnBTkSYyaXKJYA2wjYSm2Jp3lU8oWuiTLfKUdfsXOacXpoKU3uUEikqRCVCU+AtZGcozpKNrEHOgnGO4e73sP/Gk7x1+gFWl5+X62BVpNsHLpx8iRfv/Rjvuv4nZJ85SXsUMnGxoAs9zgd+YM7wdFywyZl39cfSgFdkr4K61tfmlzm+kKJYbkBtIzDqvlWJBxUH2F1fdhuTZaxFFRCNjOPISSz8OK64m2v8aFrxs+uXRARuvWa72TAMA9M4SgycZsG4S7e9i4u3vYvTpuPwxe/ItU4JE404diq5JBaYUuK+8TuEruNq1+GCFIStc+1rdYq1tuZzphXQizYZW+cJYRbo8caK2JRzfPy53yUFL43plTClsXCDmoo2SJoMyWK1qGerKpcVlCZr02jFQUvObE3grcXtHGwu8ebiTg42l9p6XUkazs0OItklss9E74nek6MnFXFq0jvT7lUt0sg9kjVkRs5u3aM2JOfdvOJtRYncBKiqGKlkJC3fBmpcIb/PLdaRX90UIP2Ur/J9S3mYI56aGgmsoeLAIbDQQtdqsWB/T0Wm9vfZX+2xWi5xzvEzP/xnPP/wL3D/Dz7DlIWcOsbIMI5sBxGZGoaRYZRHARXCEWzUutkNFTR+akKYEtNIbKOQBDOZpe1LRhqNjZG11+SKy2sDqthFKewzN7VVIaLqSpMaXqFj1e+ITSl+Up0KQfalgogYvpAPuJeBl8wp7i038HHCTRPWa/zF3BBSnfMMMznUlvmOVKecm5qxFdyxtjZ1GSWnaSxoEEGs4LXpUIjg1kqzuuz5gf33fpyTr38Ol1Mzf6hxujgp+SZOtVws2FvucXBwwJkzZ7j99tu5cOEu7rn7Hvb29v6XT4h/DYc0R1SxtjyT0PIcc9e5NOcujvzgh1i8+mOGez9A99zn6fue1WrFcrkUl2AvRio1XpjF4DTu1zrNNEyMw8R6LXvCer2WesgwqKBcnbemifKIwHkl2UoYnorqtuR5f8olKiaNYHRmrkXUmCaloE7tDu8zzosTeiMfmzmHM0WIzpTdteHm3L2JiqqoVI5RRaZEMCsrcfaZMfBgHjQ30XVN17FaK8o584w/4q7pCs/YM9yW3hIxJZ1LVZBGsEvLFeO4YQOLnHmDBYdGBHeNigiIKIGQIqwvs/hTTmBEEHm5XDFs12w2a7ZrEc+JcRJhOSU/5ZxI0ZNiELJIdWcwFY3W2HSnflBFzGQMKP6pMb8zFS+tMcm8+jaSorNtjoXqIuqcxjS5kbHNTffm1jjyJGQb2ZIFJzbWi0CKgVjAz4m7NgjItaik9rp+ppxJznHjjnfTv/YEN+54F4tXn6QYQ8yZ4fQF8uY6Ze80ORzCsTYXlUJ64GP4J7/C8f0/x+K572rz6wjsMZy+i/7qq1w98xCnL70keH4Wog/A6dd/QNncIDJJrugtKSL5XJbaqNU80aq5DEXcfUsu0jTjqsifINKlSANNza1tGnnkR3+faCdyGoVUkIvWB2ROxDwLpE3jxDQlYiqYJEQV4x0meJK1SohS4rF1mLN3YrVpdTg4y+a1lyhjmsXeSuHcOz/C8bc+z+JdP8eN734NY2RtjyHhvJGmFBuwNlByJGYRYCubgYIhAptpoh9H9kJg2YkArNVGCWk0iZi+p3gPIVKyFf+cuo+hTUZKngOdB/r3pgrcWRqeISmSxxaJTV2xLPuOuEqUGCEmLh3ez/rwfopfcvDKD5kw4ArBe3ol6XitH+YYYRoo0wk2HtOZiOmVjJ9FBOJWOqZsWMfEJhm2yeCLrIvBAHq+4kSeyJOsPYVM8XI9q1yQ5EHys90G+7Kjzi3xfs1baaIlRWuXkhdUurz+X8AFasOdBFymxY61iaHmZTknqT3V16hxXsXwjFGh5hbNtRI5Gq81/NCIDNLMaTC0ZjfqXqn7XMsZ5lgv7+QPJSVKipASthTBaYHqIlhr0fI3UQRQKh5SiXwxyZ5UHMns5FHWUexMJG5LYs5NEL6USCo65/R5GUgIuTbqHmN133HWSGCwc23rTKtNSvWa5TIL89RnS72yNgIq/sHM8zBvg0ox89pdU5C5ZtveuY0li51xaCOYpwgJ3Gri2rT9NmvsVMfT22YGFdlB843dnKmJlBdxqbcxtgYl5xxeY4b6Xs5JbOBDIqQOVLRRhDILcRIOUi5WyPdoI5/ibG3aqbpjQc0HYhJha20MM9aSvBODpNAxThOhX5C6hdSAjANtXALJK7zzDYsrJZOyEuWSxHsmTpQ4Sfw3TcRpVMHcOe7KOXF87gFWb72AidudPF0EdLJ1rG97iIPXntB1qY6rrHutIVvhZBkTVMBK8FTZd3cwf63BlnoftKlY3MeL7ONWcLvLZ9/BxfPvZBuW3P7m442EaWvDTz2PhhHV9cu0dWjGjfT9dGxUKL02Oxkr623l7xSKYqVKnjRaL1HiaTQqeEqND5U3pnONgogo1fcrtQFJRRWV/Fzn6y131IVPG8GdkWZ51zhrnmLEjC5bo3m+xNSUzBS3jNOGcVqT80hmoJQRYyYsqe1ls9Cp0fW6EHNiGCc24yCC17EatBWNK+R+DtPIcb9P8kvstStsugPWl69QDDpfpH499ongjJDdydpsKCZAiz4QOsfyyiuEG69D8NKIZJw0ukyJKQq5tGJlIpox1++MA7IQ9WtcZkyPcwsW/T7L5RF9f4j3ezi/xLle8dAsVEArGIgoelkMAR/22Ns/w6nD29gM1xjjmvVwTBo3XL3zUQ7efJbj+z/IuUvPY0dxx6WAN0UEQAvYK5c489hnuHLhnex/43cxBU4fneL82XPs7e1x5fZ38OYd72bVZz7ANbzJnNrb485zt3FyvKbvV0xH97C88DNM2TA+9T2867C2wxTog6H/+j9l79N/k7ue/hpnSSyXSxbOY43UWXLXYbMlTok4BWLvGUiYEslTJhHwwTZs2mpcEFNqxPqcLdbWWEcNWgQElc+N4LLFChW6mCxCOtaKeGo25GRwtv83NZt+6iGc1FqLEbGpKmjRjp+yNMzGBXWda4sZ9Z+1Ri//nnGiuTZifnLZ+Z9dh2pMOAsS1DVe6qQ3x22Nk9Eiw/nzzJxM2b+8m80KnDrZO1ebTBtrSGPeXbxYscEKo+6s6fOv9SqUGgfXX9S4Yb52EhntBlKl4QlgWqOpbb/XRtn6+93bZkx7nrnpnGocfvO1rvFJLlkbsKQp1tr58xbNDXbR4TnernusaffWGuEVOv1dxqg4fxSxqaj8tzhREIGF9VpqcdM0yTpfEAf0YWAapHbZTCrsLCBgDXjjbzmhKUPCO0CNQ0qSPaDkyDgOTNPY6ojOWFk7kDw35Yg1lr4LOLcihI4hjri+o987YDMltsNIzpngveKwVhspM4erBcfn38X+m09CmrDTyHRyHd/1IpA+FMa8xqWBO84dcWq14NqVQzbrNXGYcMay6DpOHR1w/txZjg5WkEZchuAc2+0GYsQNGw6swQTPRCF0HV23YJoyJ+st283AOK6Z7vkA7o0fE1ym7ywPfvH/xuuf+o9531f/c1ZHp0Wcf3XAm0f3csGc8KI/z6MdfGpv4Cubfd63n3n3YaGYAMbyzauBD5+FYK2as8EfT3t8uywYnOGh1QRxwpYJYzTX9MK/LlbqxBjHW1eucvX6Dezf/78w/dX/BP77/4TBGHKciICJz+J/77/girUsV0umM+8gb04YXIfJgdPbDW8c3s+d157npQvv4e6Tl3jXN/8HvvfOX+Md3/jvOFitcMaR4wTDmk0aiMOWkiJ9CJiSGTaCMfbOapMm2JLxtgARtJk6JsFbUunAG1znRfyq8xA8NqhJJGItTpY+i0KmWEtCYpyScssHnPN4X4WXIIzSMLoIYt4Yx5FNmsgmC5dxt+H5Fjmcd3Shx7te+AlBRJ+t9TtCU67q1atgkYi0JxWAT7ko76aouG+g7zq6RU/XL1S8SrgO1nmmMWHMQErCC8lFYsdPX/w+f3T6nfzyWz8Uwd6+Z29vj8PDQ5arJS4EUkqs12sRNN1uGVWgyViDD57QBTFt1r1Y9mTNPbUOVGsVRXEeMUWec3zvBZOUmrXFG/gPTl8XfmzdtH7KPiA5RG48PflFBSLk+5JzExWJMTKpMUysDVLGKB94bq68CZxBv6jIk6smKKCC6Ag2qvckx2qmUTEQ5vqMGhLUvFN4I2Kidi5GrnenOEgjZ4YrbEut39SastS46qc3O6dXkYobtmdrA3eWE601aOXFGBWJqPX/GfcX0Sm5D1XMYrf2WGp9oBSqFBIFxmkijgMpxn9FM+Nf3WGtxRtHcJ7Oh5vuWeMhtRy5cOXMgxxtX6FnO+ewVGEGauBCFYF3UqTSvMZhssXmJA9KE5MsqFlIRuowKkKW0K+lNO5tgca13hVX09PFOkMfRIxumBJ5mkghwEOPEI9uZ+UCfv2m1BZSYhxH4VDFxMkD97J4+Ues73g3/VPfEYxZRQFiFpzVdCvs+Xvh5ScbB6HincF5bJAespx2zBuiNNtXjlTwkks4C96AcZJXGhXYrnU84XQJf7oPgRAWWByL0NP7Bb3vueFO2G43xDwQxy3RQfSOyRms9g2M48B2u2Gz2XCy3TJMCfdP/lOuG0c22tivdZgpJhU7KExR+qFSM8GS+VlzCmstJotZSMmKReRCjCo8pFxwp32IyRWsydqbYJvIlDMGDyo6Da5I/uacNJk7xUhmXo6ML4vw+lrDvXM4d2s1NdfaXc2dbKYJ/1RMwJqZn2Nv4inMi1ezqPWezTt+jun2BzFdz+q1JyQ33bknIjpQexRqn0KdM/P+UHb2nEwVfLMkrIh5mkQymWTTTfnYPO/mvUTMvxR3MYbgHJ0Lc37HvN00k6dSyA99BPfQh8kvfR978SlySozDwNaetLjk4MYPOTl1P/21i9i3XmIg462heIsznuwgJSf7fs4U5yh3P4J74Tsi4qW5i9X8zdZrTcG1n+9kgaauZ0XqDLZgvSXun+K1O99LDEvuufg4B+vLkA2pJFGKs6b1TCYKMUemKAILwoVJij3FNsei5rpR6wEijjDf+1ojLYpjyO+Uu6PPuf7En3DgO9I4cPLs93DON66KM5b9d3+U7ZOPST9eWyzrZzVzjVnxkCyJY8MuKw0HYyHaeTu9RY4ZhZ3HmP6idYErq4VZlHAWnzLQ6o+lGBi2hM/+f9oeKL/QOKzWl8xOPp3rz3awAwy5Gjm0V9FRZq1ghsaoAGltJFL+Ri7Eex6lPP9YmyelFEq/wNzxDrj8Guaud2GuvqbnrL+/4x2kBz+Eu/QS/qlvYONIuanfu/J/HD4EuiAiU+ngPONiycF4nU4FqKqQibOzaKDT5nqnxu/BeaaGsSjuVKTHPGfhh6b7Poh/9XHS/R8gvPw9qb+aeewSBxZf/juMH/xVFl//hzeJo8Xb7oO4pRydIxyexaVJhaYyvOsTlKe/iXvkFzCvPz1zfLY3KN/5p7gHPkh+7A/ovW84Foo5N5GW2utnTBs4RQoQkHXuWSPCERVR0VjH7fIX62e3sqctP/e3ufrz/x7nv/jfgQ9UfGiXR1zvfb1/0idRx/A8P2+Vo4rgVeXClgOAxjtmRxStULQ2254jEbYKqInBc11zLYViRajFWfmpo0BC+8QNJicR4zCSX0jNOGu/NW2fu+GXPLH3Dga34NHhec7n620tzbXNmHlt+3F3L4+HC6yN413xZVKxrWXZGdP6u4PvMMbRraAbJvr9Fd3eSnK9cWAaRiBjHQTvCF5EmLou4DrpLc2W1ptTKtaZ0oxs6nUpin0wTuRhJG63nJie48U59q+8SEqZUbnIwzi0cxhGMfnrfuc/4xigiIiosSKM6tQswTov3P/QETSf7folfb+g63sx3nAiJOWd8t1rHFfFj2xrCcVQSGlkGrZibpYScYyM40SKI+MwsNluBAMEFp2ncw5vxOzaedv6BKVH1xDTREyZcZpIxTAVySONMQQf6I2l/OF/hVksyFimjAjvILz1nCNTNIyjZRg8w9CxtdpXkRJB5+qtdlQstOazQo1V/NpbfJD+092YVwxpZK5dueuDnHn521y660Ocfv3Huu5pHqbv0foSWt3X3MTdrmulsSqGkhETNuUKJOUsVVO8mGITJLbGUrC6TNiGb9tiMO/6ON39HyCFjvSjP9Yarex78dnHMKGjxIn48o+xakgdup5+scQ98km6l78P7/559r/7JiVF8jSS4ijcjaLY+g7HUeq6c/wNc/hzs9DUzfGQtZZzV5/Bdgt86Ljz+HncYiH7oeKNIu7lFccxlCJWWq7IHllr0TV/rkLYNXa6cfu7uXzhg4z7t3Hu5W81PKYYw5t3vo9zFx/nrTvfx+HVl5XHJfnv8f5tZEbcyUVSbdNQzY8WT7AT72OkbqxxUM6JacrEaNt+Qync8cRneOXBT3HhR78H01aumo7Fysl2zpG8I0RPTJEQAuNUr0Gt0Qi/BlCBoTQHRbfIUaIaYxWJ4drWjtTmnRNOpuCDHddO38f6wnvx+7ex/+J3la9qGJnIqWj+VeeriPDV6WWtCE1VI1GjAsM15zAgwl/WivBiUXOfVLRP1BF8z3Kxx95qxd7z32R85FOcfulPWNiM3d8jTpP0bpAZ3vNJzDPfwjzySXj1Se1YMvhXnqSEDvoV/fPfE5NKxaqEcyxiZrd/7r/krV/8j7j/y3+bHDrxPRN6isTGRWMjRCA+VzHqqHzopOtFMRjjtB8MoBBzIXdLtkcXMC/+QPtddvoiMeqbINw/Y/X9MIrxqti067D3vJv02rO4+x4hv/JsM2jCyDw8+Wd/l8Nf/nfYfObvMd24LDxfxbO893S5x3U94Z6H2T7/fbzeHzQ2ta6CWbXH2ZKzk2tZ+7hu0vlQbaTiGl8lp0R2jpSk36byX8iJuiIZxWZTLhjb4X/mo3DnQxAC5tXHW61Q+ss0R9P8rzLGNaT5Fx7/EkJT8n+L0aYuoy6xWZIeDQpqg2UVmZKHqO05DeZ2gwSaun9puLHRRbsWn+dmcuqsVHJHBZmdCL5qQFmd6TJQrMEkS8gFHxzOS+Kz8ZbtYCTgMlBSwluHXSzou05VOxX0nqTRazMO5FxY3/kIm8UdhPMrzr32bVa949ThIWdOneL04RF7iyVd8GTnCMbS6ddrxnA9JbbTSBwnounoVEDCGk8xmRwVSIYG3NeGd3EhroV8h7W+NfBWMoKzXn7uuyZAZJ3HOI+xfk6mmCfhTkUAiky8rANRnlawJP7Xy2f53eFO/u3+eVLV16hsK2MxxoFJWGP5q3tvYoylJHXGkxspT23Ficw2Zd6aCvsOXh/h3qUC/7NFnkwMowJZLQCpQgyi1JbUFX4cJxWIWbPdDqJ8mDNTRpUDaRvZ2wsj/8aPSsbV+12F2YLzeDuTOJyVhj/XhKbk6+dPDvnlowHnPVgBcmniUq5GkBoc1PdUoMMUIRpRS0vzfz9xWAFOSoEP7w08tu454ybuCbKICdHbiPMthb91dJFYHAHTBItSttxVIj7d4EoK3JdvkHLQBpTMMG54Mh7xgL1M2HGnRIO4qlBsMEx+wdatCESu2j3OlQ22qFohhqziWmXnWtTGZ5TMK783IsJVAZi6UJUyr1U7YFL9XoA3GBJ85zjwkUNRGC4KDGXq+eZGbPn2yZIXh8BbI3xyeQ2b54Y9CUhVpVmDwNdSz/fHHmsK7wsjZ4yohmedu0bnoDVOC1i2rQtYQ1GJZlli9f8VmCo0wqUUs4TcvCtmkIsC/6r2O2kRUIAqCSlKJY4aZG+gbta33jGP6zrikSKjnm5MmWmSZibnPMHL+iYiJUWIKAmyKVKQwEvhTEWlXAMTHbZYBGmwO9uzroeIsj0KANXGeeNkfbfGY4pT0rmh6vqJo7OsFbUgBlkLbEab95QoU8evhffFV7DOQFiSDCyB73EHm3CalzaneWT9DCXVNRgF7VwDkDGGcZKxV7RBM3Q9i+US60XoUVxjZYMwVhTCjakBzjznsB6s7EvWd1jXyR7lgj582zNmFlTeqWsLWTOXhMkRcuIX7At8KV7g0+5Z9st2pzlLnSSLFFR+jR/yxe3d/AX3DMO6EnCtCHqpIJYLAWMd396e47kpcCV3fGr/BsbqrDdqE4KKfVkLaRbEnGHe0oha1cFvHoUZiIA00qc4Mk4btts122FNjEJskdhFkugKGBlbdA+7tZIpgL7vG4AdtcAxTAPbcWQ7bTl77Xtsx5HjYWSYRoYpMsZJxKTixGY7st4ObEeJw2IuTDEzVWBB8iFtNpTrIO5IEtLmlJqgTfBe1V8L4aN/jenwNpb3ZI4f/zzLRWC16OiDw5tC5x2rLrDoAss+sNf3LBdLlosFf379G3zhzr/Mr736T1gryOIUHDBaXBNwXGZgFb6BImr2zGsvdYwYATmb3L0xc1GsFbmzEh8kKaiuab/y8j/m98/8Mn/+ub/LjfUJ22HDtgJutcmyoOIBWmAqhav3fIzw2g8xm2OmHBkzUoiaRFA0//Z/zos/9++w+Ox/yUUFt6u4GaXA/e9nc/AIfnEP+Y3fxmyvYYOQaaqLfIVxu35BF5YY65gmEXorug62xmTbsJomOGE1FrLGYJxDhKZmASRjmEkiRWNkW3MJDS9b5WWeh1VRvO2ZzIX12rhZ8s3FNKDd31vpePmlV7n81kXeunSFPE7k5YItBUokWOiDY9n1LLoKPtsmOiWhgRaCK+bZLpMQx1ozVJEmjpLEMby5XsgGIYWrXNdluXYJsNfe5Nx3/wlTe3lZ+SK1KO2IKvTgvYr62aJNr5arBxc4tX6Ta4d3cvfJi3Nh0s5E2Oo+W8GtWnTJNrMb7bQ9A9Pyy9YYRRXJqPFKURK4kpGrWKh+VpgBwl3y002F9Cyuja0BpWJKpl620sCgVoAotdBjWuxVsZIK0FZXdiE52jbeU6okqSrCKvcnpdQEwrBCjssinaPggeRaxRiszTuil2jDMoAX8m1yIoSQcmsmlfWJuaBPza9qOpk1/sgYIwU2WSPlCeKsmTDqBnXLHqY28WgTd5F8qd7bnaeJ4LYXd5HOy/7TBc9iIYKcfd/RqeNdLpBefoLy0uNcMQYfAv1iLar2fU9wnrNv/gFPPfwLfOTVL3Ol6wje0vcdC+twBXIx3Cgdl82Ce7mqcaY6VFUyUkygrjc1v+SmKz6v8xJkyPiJClqlOMljUoX0VO8rBGPJXU9+5M/RHZ0nLpaEJ77W9qC6zzm3k7daie2s9SpWII1KJWdxCZ80v8gau2oTGUXXYiUUVqwk5dgEEclZcyFD33UE77W5fxYodFZew1cHPFvd7K02dQgUm43unVHm0TCOjMPIOA6Mw8g06vfjwDjKv6cYpSnNQ29gAUK+qCI9xuzsN2/bj2pOqbmiaTlYobXJihKYPtEQkeskhJp5zzMaZ7jdddOathbeKkcTd8wibCvK/AmKPkgKZutXk7Em40zBWyjOCoZHwVtDyANHf/I/sX70L3DnD3+PyZgWM2LElSZ0PRee+SPyasXxao+cRdBpHBb0nQDBT9vT3LHY8Nza8qAZ9R7KmNkVtKz7HlrsQAVmBOOs8Vyp+sAzjongbXWveftDHHJlna0Or3aa+IX0DN8p5/nZ4ydFZOrkhJOTEzabjZIXowrlzK915fBu9i+/wLXT97L3/Ld135QjIvt1zOImOYwRHwZcCFrYEnypYk1eiUTGzXikc3UvUlcZFFPISg5zHhfmXCgq4S9b25wYGg6pX0oxWswqFJspuRYRTftvBrxz+1kB+umEd7z5Dd48fAf3X3pM8K8aE5YKR9od0oYTd0orny86J+OxZmvl5uuZS40LhAxlNLO7lY+s8UhSI4OUIilHYtS1M1bxmrqTQ43ndgWeTY2hd4SYbs5By9u+vv3n87/qDmQUgqzfV2GiEAL9YsFqtWJ/teJgf5+DvX0O9vZYLhYs+kV7jfsf/yOmlBlHcbwZRsk3h3FkVBx/ipIbFYw0VWqB1HonJIg6r1XQA20YNXVf0Rit4eO6zxqNhauwfKmCAu3D1Q+6E2ZDwwaTkpiq6GDWQWoqFqTCboLf60tZI2I9zgnuYwx/wa35w80ef9FewzrPOgX85JtAXMUgkgqQCllZzs+aKqJX86zcYryS589iNEaoTdRJ96qCFvy9a+J0znsKIlJaX8M/+vMsDs9zxna88ZXf1tdPbTTUWKELHYte7/3+PqeOTnHu3Dluv/127rjjdu644w5Wq9Wfauz/WR21OaLu66XGTyk18c8m4qaHdZZTP/h9tu//FS48/TmWK/nMIjS1oAsB7+Q6FhWZSpVkkUtNSSgFhmFguxlZn6w5Pj5mvdkQp6gCWJq3lJpbiENfLobsDEaLuCVLXC74g+YIVNxeXqdi5ILRaRybMlNKdElITrl4guZaNmctmApuVh3W6y5k2gSRf805jzaHaDG3qNBUVJHTaUp8Y7vi0lQ4NgveES83R/mck86pObd/3+YZvtXdxftPfsyYYxM4w9BiJGssLib2feSCz2zdgrvKdba1Lld2crWa7BghBT6+OM97xjdYGfDBs1z2bDYL+pOOEy0ob7dbGLfk6iCosW3KqZExax4reVTde2aR57KTk9bxVcV/Tc3jSmnnKMuDXmtr1UlQmpCq0JS1Fcev5MN5Pt5KR84KlzHnxDElpiT0IoMIsogjndShtbw1C00VwBoVVrpO+PLf4/idv0j443/IDRVYSTmTvvuH8PDHKVffgIsvygkonl5+7/9J/NS/j/u9/4KtktW8z7jrlwjf/QPS3Y+w+vFnGY0FxBwkOMvxXe/j5NzPsDm8k3tf+xM1c4izkIeBIgUb6thq+TQAldRTawYaK1Fzbt2bUQwiV0EzI6Y7ScguWU2TpmliHCLTGElJRJmMcUTABkd89JdxT36Zqe6bxolw4dUX6Q6PBA94/WlizhQl+1Whskv/8P/O6V/7j3jt7/5nYrzhvcQbKeGDIxPwXlw8HYK/27bHyP2pzbO+iACEtU4FZaBL4EPBOa/4VBWrtjJfMHhs5XxTm1Va2HJTTCL1shqzqmqkYn+CSy26jqnvyamwPbqHg2uvsT37AN2bT8q4KIUQHH3XsQidin4nplQoOWJKxHuw1mOskK+kg/rWih3jlJjIDN6wttIcARDIuJxkPc8J4kSeJsTZEbAOX8ctZhZMZrfGyFzHf9tjp8N+B4OdsdhdEhugY6PUpIpCUQz6ZnzD7GK37S0UY34bhreL+/6Ljpq7i0lYaT+bP0+t+1bBmvq1zHGTNuVaCa71res6X3HYihFYnBMxR1O8CKI415rpComUwbjaXCY1u1JrtDCLKxSk5lRGcp6YxY1Tc42szWqURPBB9vqUGg5mqPFwxSd24ludD/O9AbI6ZbfG1vmaoWt0JWJXPKOOgzpv5/t/c8zQ0mojuVlSoakqVmbdrbWP1XpqrRPVmKLVL9o4mK8DxYhba42rtJkyl0LR+g4WXBbSYvGFXBIu1dxGdkjvAnRajy2GUsZWT4lRyNKpFDxgs5EmD2pelJX8qzlPSpQ4USZtnFRMPim+h/fYcSB0C8ZOGredlTpd5QxUTA+KCJ+W0oSjkpLkTIqUkzWxOjmP0gCckogt5BQ5vvOdHB9d4KQ/4PDZr2PiOMdLxnD9gQ8zrk5RXMfhy9+fsTYdjwaj3zsqnyy12oY0gLTaATOv4yeWizKvAwA3Du5g/8Yb3Di8k9veeJxasyiKoRZjb5ortXa6K+rx9iwbrWXUMVRx6ZLFWXNm79S1AxFLtzcbsjhTMI03ovhiMVJXZZ63s6Zfxb2rAJrBlKJiHbfWHIMqeJIxVOEXQ9k/YrjrfvZfe+nmpi8ylERJkxJPE9O0ZZq2xGmgMGn+Ulccq3F1Uexc1qhhkpqtNPZFtrEwJsQdOxemlMlGmpGHYeJks+bklVew12/Qnb/A8Xe+rFwagx0jJmdpkHCOxWJFefSTnH7tRwRjGdZrOcdhIE3iAB5DrTsEFl2Ps44cMtOYmtAUlXugPIbgOq0vgSmOtHeO8dy9nH7rNbpuyXK1z2q1R+h6yfG9w7kan5ZWS5RaT92zLd537K2OOHPmNmJZgxkZ05opbbn9O5/n0gd/mbu+9Tv4NGKDp8/SXBWj4FPTqMK9l17m7Jsvgvf0XeDsqTOcPX2arut4af8cp+IJL5UFD8VjFs4QugVnj46IF+5itX/E9sL7ufzis9zz3p/j5OJLFDzWdHTes7fsONjrOXj2MU4f7bO/OiT4gMORxkQeIsSMz4XeGva6AMsFG2AapxZTg8d6EddwgEOMWE3Owi8rBSFNu1ZnLoUmplixNLOzdhhELMwakfygGILr/qyn0f/sUYUMm/Chc+RsSelt3F3FmpTlzM5PabkOO3hj/b2RBg7aa80/r3HIT4Zs5W0/rLEGs7hUqTXMNOMETcQ537Qv19yszh4Rf9OmdevmRkoVba5NkLVBypiiNYByU4xUz6xCCTefumIT9T9jmkevbVHQjJ403qxer5uymx2AtQksmVkkX3D7+frqj9v13X2fFoeX+V7dfKV39g5qjKxPKrtXwNx8n3ZqVTrysbkg1IC61sycjahrbL1nU+rIpTCMI8cn61YT8WrwU2uLKYp5jDOWbMBRMTHlgpUscdatdKRCmRLEjBkTNmZpwpg03s2WnCXGc9ZQihUOsI4D4Y/1+BwIXcKnHj9OuDAQpsTBwYG8TdT6a0oNR3jztkdZL+5gXJzh7te+oXFSge2WNAhnwIfAUfAsj/aJywXnVz3GVEEHqadYA3vLBYveMw0DcRyIZJgmtscnbDcbERYdtqQ0MW43HJvrYDzjmBiGgfLQz7F48AOYex7i4PkvcBAiB6sFd3z3b7M82OPocCX71OkzDKfv4Zwbuba6g9XqGL/Y488fZghFGnGt4YtvBJ468VyM8Kt3ZIwTs94npz0eWqx5eTzHe1eXKCnibBbBYjfgxkjwCWd7LB29X9L7BZ1bcPnqCTd+4z9lHCZiXRONYcgDIxPWGtIQ8d/9I4Yba9y4Zv3qjxm7juXr/w3PfPCvcvbx3+AtV8BYTj3//+CSsZwseoJ3lDiJMLEFVwpBTTlsqXV5qV1ffPBj3HXxh9g8kUqEJAIZffCsXMdev2S1WLHspe+hCx0meAhOBPStYDO2iAhlVgO3gifreia5rzQi1nV6GCYV8sliGNIFnFdeQgZntZn81oI9ZJ44aTLsugXed3gf1ExBcgKRtlB8A8GzxTgkK8aoJh0FjHE439H1CxbLJcvVisViSd93grk6MZDYsGUYpCEp7TYC58zPX/whJghe2/c9q70Vq70V/WIBxjSBpu12y8l6zTiqYFwXcEGwZF+b0EomZ80ZUyKOI6M25NW4vlDISThIKSWcs+Q0N7UXSqv7YstObYp5rzCm5e+CEQhP6GvHPR9ZbbF1z41ieBPHWdBpGgWTTEmEW2quIj0vMx5kbL0PNb+3TbjLaNM4Gm/VxsNplLUtjmqgUpRQnWm4d0qROI1iIjYOmmPKenjnZo0pmdGIoL/TGhwYrYnsxCc7PBtD4YbteNydJ1mHLVe425yoKYDuj2233OHXlUwuptUai0EFXGv7bgEqjqS5uJpXiKn9mnHc/mudM/9LjiqYJZiw8pLqGKzxhMYBb51/mCvnHuAk3cl9b36DriQV6JKmc4knhK9jisHrNXcYvJH6ZNQGZZ/FzCeWjEmJMiUKUWtz0qyYSzWk2MnhS401LTN3StcAjWdyymAT262YG41xouzts+r2WW6uwfm7CBdPcNYwbTZs48Tm+IRpGDBf/p/IH/2r9F/5n6CIkYKM2SJ7se/gZz6KWR1iEvDCD2Sd17oTBukFMx58FgHBKRIn08TaqgCQVYEh64w0jjuDd4ZgEd7zYsFquWDZL1j4QBd6OtdhjSOGnqfPPsrdz38bpoLJifUwkNJEioZptMLDjZ4hRrabLZvthvVmw2YcGVMhYqQpeEdoKubcTHErpztXnU/Fh7wV08QqHmWsJbQ6dI0xZfyYLL0H8mPtTcE0ACVlRJyqwFRya/o1ueAQAavOq+iJFW7acPuD+O0af/1NqRFaJPZ3IkxeTTpvmUPxG9O4vgb1att5WBE8Yp6TqLCU9hwLtgOAZTxzN+Hq64xn7mb5+pMoEEk1nRNOzc3mjzdh63JGUGZubbZaa8ORSLiSJC8jkay7SfS35oh6W0Gxm2auo7e4KE+otIdekjybbA33PUp641m47UHKqz9msgNb6ygpMa1OMfb7hEvP4C+9QZ4m4dEqFp7e8RH8s39CiRkPZOPAe8Z3/yLu6DZKv6J75mt67XKrDdV8qYoIlgRZ940mB2ALxmYwwtI1DuJiReqWeDLj3hE+XoMEThAKXDbaNC69DzEnxjRJb4UKnI9TZNIegpl3Motx5ZZfqSmZXvPUfi84ZTWyEQjQcPyjrwvy4X3rX7LGcPiBX2Rx4UG6o3Osv/05xZprPFDviKzjBshZGs6TuEOwy4uTS3iLzS9q/UnjQN6G0bb7bVosUA1EBMvZwXdrTbrMtRD5Odz8j4pl58bhK+0l5jqLdl/tRAj6nIqXKLdIFTHAiAR2fuijxMPbMH5B/tEfUc2D2dzAfO8z2Pveh3v8S5Ij6QJdSiGdvgDXLpKObsdgmwiiMZb1Oz9J/9w3qYKrIqQQiAfneOvOR3GhY3njRfan6wTv1RzeqsifGjnquiJf5ffB7Yr8WRHacEbHkWXvW/+Y9Qd/ndXX/r8Qhx2RWKh1XYYT/Nf/UeNGG+2j7l76HuP9H8JffBZ/fJHiHQXZk8PX/yGbD/063Vf+R3IIrZ5WSqasL1O+/zlK8Oysdq3O6LWX0FXRJMzMM6vjxiA9QcVob67OmxYz1XV2V3BqFty6/Wt/H3xon7PsYkjt/sv7V354Mrfe3JqPOpIlz6xQkeSSmWREGDSZQuKfs07UcJqZv5kwsr4aR1t9SyYXwX9SNpAsOLm3tshaj4p1ZKNlbP1+4zs2tiOUyFW/x7l4febToZJOO3vZ8+4Md8eLvODO8ND0EiIoKzhXMlnPrWAdPMMpzoWRfU4wZAKFEgxmtNhFgJKkp8cJn8w4SwlOx22tYQneGXMkpYk4ichpM/zR/dU6h0kJYmI0Ha+eey9bt2AzJhYXn2SYhEs5DCObQXnwMZKS8iacrm8u4FWsp1/usb9/wHJ1QOgXrJdnCIslt7uoOXA1VZJagjWZl/bv4u4bLwp/omSmVDAqEmZat0kiTgPb7ZqURmIciZOITOU0MY4D682alBPBS64RgsMrP6PvOnofCGpcF6fIuqxJ24EpZWLKMk6K8MZ7J3lFKAU/Thi31dqrBEvSFxMZx8xgCttg2Q6BlTf0naMLjmUXWHbhz2De/Msdskah8ZTWCZ0RkSnvRMRM60rBObzV52nsdfd3f4PX3/Nv8cC3/kcZ4w3rrSjvXN8U3pL0fFlkjKt1iq7T2tOc0HjeSA9IEux2miYRmsqJgmAEOBRzl3OzReu1xjLd8wjj60/T3fNuto9/TfUrhDtnsIyPfx1/z7swp26nXHkD5xyLRc/e3oqjxz/D9gO/woMvfwlOnyHniWm7ZdiuieNAjiK2U00KmpBP3c8zVOHuuZ5Ai39t68kwit16Llx7Vnh5fd/MPJ0THqizvuHZM+ZulEZUaxwFa4UrZdpDCnSbU/fSX32Fzel7KS8/Rg03LIWHf/SbvPSOX+ahp36f4iyVg39ycBuXbn83OSYO4nfx1y7RahO1j67i9jW2MOC8AVcFarIal0YadxzJL87/+DMUpBdht8bQODrGUKzDe2YedBOwUoHMnBinSDXeTWl+j1vlqByouo87Z3HZiXCxd2pQIjmnd458+i76k7eIZ++me+MJiGKSnFMmO9Ee8N4JLosKMTvhUls1E/U7pr8+5abHY73FTg4TBQ+p8YKzji4EutDRdUEfIox/8OK36L3HBa89HmLOnbzn4Kt/nxvv/ct0X/p7ROUE6C6Ne+EHArO1HHBGUADJSwtc+Mp/h9V6tXcixN+FQAheRYxlDlnFemR+RY2FZZ0u9ecV9wNSWHD8jk8wdnvCc37620y1fxF0/6n92miMrfzSInFSiglOrrP90j+ie88nGb7x+zu8CzVbq1js7/8PeOW+55xbDRAKOM/e+z5OXB2Rc+HGU9+SNbULOO8kmFA8j3pPrSXFqIL/upamrLyMon1w89xr6JTRPptc+6oczeBop+ZcjIWz98C1NzDn7sW+/oTcGKF5IAoHEoHJ/gy1oLdb9/vnHX9qoamdPaJWSOsdALK4XhhRQnMWcWZsAlPg2qiaP9zuUYuerUja3nRu4p9PRQJEimxKEkDXv5PXd1bcN403uKwqt5NcpJwTxia8R1xrp8h6HDHeibJl6LBLq6QrKW5tNlu22w3DMGC7Pey0pTs4xdHxAaf2Fpw9e5rTh0cc7u0RvGM0gR9yOz+7fI3OOkxO5GkkbtfEAWnYHAvRFDxBAFMvTmLeSfHaWStkjqrw66rAlNMESwsVuoEYJ00nUhgJOB9EcMqL0JQ0klShKVrBt1TCWG0q13srRQcljVgIFH69ex6pSxQVuZH7YRrLRN7DGt82BBG/EcfN4nTw6ig+Mpk/t595bgj87DIxRasqdro5mUJt2G5jR0dAE3Eo4r45jCOb7YbNdsN2OzCMA2OKTLkwauEnN/RyF+y4NY5WUDHaDKmBsa/iUkZFxvTe10Ye6xy/d3KKrQ389vGCv35uakTbYqpyp4osaUKpVxBjtBFVFxBm/qDMsZuIYwWKw5CV3A4lGz68NzZwpBTU6aWCvhmHFCmDFbVFaWCRpH0vOsbJsO8XUmhKEXLhB9MZbkyWS5zl/eUleolpcF5EeyLizAeGU2bNz+TXuGGW3FsukowTgakiCqdNXMpKUwwqMFV0LlCJyTVQ2hHlYqcQVMHBRqxoIFBhyobPXO3IBf74esfHD7ZUz64qntEILKVwbSqsbOJarMqbqtqq43luJJFruY6iSpgobMpEdKOAte3eyGaUFegr+lVEpizV6cM0MokGt2UGfWtxKxslqbaxskNOzrPDBIXWqC0XpuyAyQpO32LiHDcfO4Be/UmZAYwK5NVrNU0JUxLeGrq+gyzJdTDS+OCKiEbJf27+ahzOuPa9bUVTVVFu4mY1udN103opHBlPMfLaVfvBKYCBsfP6bTLBV/GB3Ei6qYpeGFV7BYwKL3lriXbFskywPGSPPRV1k2azTXE8e3g77968wjJGQuhYb9ZMceLi6Qe4zQ2cConQLbDeatNPhBxlP7daxJHRJXOyWEoR4A7jwAZw8jCuE+VrL0JTsvfrdNSpaIxWRlK9h6kRjXOKfKI8S4lFCCy5irvl2a0oZ1IqfDxd4kZdsDTxdVWM0Tt86DDeczHts+o9b51kBrfG+wDOUZ1Q5T6IsJ8x8xw0huYqUolctTKaiwKMNb0umVIiMU0M45Zh2DCOW1KOBE32hShfqA69phh16b71QMKi1z2VLI1MkwhKjVGLukmJDtPEdjuw3m5ZD1s2w8hmGNmOE5shMsbMGEUosiBAQug6fOfJGcYxst3W5iYpsO599NfZfudz2OEEZ1GxDLnvK7OkW1/j2C6wJ2s2g2U7dKwWgeAhPfBR9ocrHFx/hfXWsg6BVb9mtViwWCz46PY3OVahkLY36/2ublbVpaM6J7lWlxaIzBrD7/p38+vlCUVglDiggH9R0N8oaXBuDNlx/dKm6U8+9xtshy3jKC52pSjh1dYCjoGciaMU26898Ck2R/ezPvMO/Lf+EcP6GsNUiEVUf8epME0D0+//V5xkcE5cEH3wlFiYpkjceux6SzEdcbCwFjGImCYwhiD8LQoGH7Z4L3OmFMM0ZaYoDlKxCkXpmBGRhkKKEvM5J80N9fqK03KmFC8kQ3XhlmSs7tE3k1oleZ5LLcaIEC7UFGQGnkUFvBZbdWfPmTQpLfIW28quXr3G1as3uHb1GFJSYCtRkghNLYIn9omp83SdY9F5cvAEPxMMHCp0ZGpssxO75TlXq4XpipIZijbgCwntjXf/Jc7/6A+ojXwAMay4ftf7OHrqK3LCxrTitqG0YrBRAkHoAn0QApb3jg+9+TWeuf1nefTNb0Go7WuVzCMxa2tQ0gJyJQvNjRTzc2qhxSpAaoom5Qaqu3phTsJbIbzlRpqUV4BM1/RZLKqOK7mQWUl4NVZqRKLSIsiWBtf3LJpn56xbha4XueRZdIpadJLntob2LM3GjaREbTatD41iFRys47weFQyUPRMVOpW9yWhuL1dRnTcMuCSExqTr002pfanNYlmFIyAoqaXGjEkJQ5kqnnNrTbKbHAesAHdShFcxiWQkrioCxDhrCd7SBceiU5DMC3C3XK3Y299joY6W1looIg4guU8mjeKiMU6RzWYrJfgCBye/z+sHh+yvliz7nr3VipglBLpuep70Z8lZ8IT7zFWsk0spfaziqm1ibAR4UFEpXQNb05EziFaOxFVZBaZyquI/We+9OMMH5yk2g/WUg9OkaUN/eBbb99J4TG2OdHO+aiQPjNpAWYWrsk8Kxgn2klMtVtMaoksWIVwfxP3IaGPwMAg+I+rysZFeuiBCUznHJrxqTS2czGr/zmlMbiwmS7Es5sI2ZoY4sR1GxRW2bLdbhmHLNCg5UoXIcxNMkvnZIbGkCx4fZA+tQphzRKxrq2IobfRXfA2NdevirPubs3KNnL5WRjEbnd9o8QdrZlGULEXMWw33iGkScnuatBE+UnLUgoTkXFKEzVR3T6N7/vhzv477xm9ioiyc3lk6Z+nzlv0f/1OM9zIvkgjklQLWeRVmUFJmSkyjFCv7xYK+EyLwR/pjvj/dxye7i2w2gdB5fAmyAprC45slp33mzhAlfadgTJ6BWc2HZymkLAVJKqxSAZOiAltVhCS39aXk0va2nATMDtOWD45X2Q5DG48yJmUdSTHOZBV9iwvf/W1efdcvc8e3f1OFdiq2KsD8lAqJxJRH7JRU7FjxQhWWsjqHqwOD1bVE5qgWL4y6u1t51GJEE69E9lzn5DqWnbW0qDhIHeu1vQVM2xcMpomQUiNcdc2pe6xTAuNqOub+t77TCgitCaqKiVZyj5njG8k1K0GuXr+6b5efeEihUAfyrbV1/cSR4rQjXqZCU831VNev8lNcYIyObdDrofezaJDQjvLP+f6nH28vOFWkzVCFSEWwZtH3LJdL9vZW7K2EZL9YLum7nhBCa5DPpaig8cgwTUKI0EbPqYqHVNzaKjZam68V86tObzVPrwWnrMJtIjaq8e/DP4t79VnsjctCItzF0FWQtRKXpPiVZG/JQloxKi5VBQekKCaPUjc+JdQKtl8dCKGuKlWp1zoHVhwzf9ltidmzpcOPozY0OCEkKx4n60pqxdhSuDlmZnb/rLl1KYXj9/8iBz/4EpW8VEpFMGqOJLG8jbGJ2WCMOlGpyOP+EeP6Oosz5wkhkKeJXNcsIw34wQcWiwV7+/scHR6KyNTZc5w/f57bb7+dc+fOcer0KZbLW0toam5OlPGfFA+b44TaHJ8aAdx7T79YcObFr7G/v8fe/j57e3usVisWi4W6EJkm+pWiYADjOErMqG4+Uqsa2ay3rNdrTo5P2A6DYh8VU0YnWRVUcjiX5Z5Zbaxr+OFOXoJghqkYcokYN1ENRATXE3GKmCMpd2rqUdq4tShhUfMQo06BrSRaCSgocizJ97wvpEoymcVOpZE7c31K9KVwZYxsp0H3+lkId7dxJ+bEA9d+xCbXfKjsiK+audle628Ls2ZlHdd2CdNlLq+2eo2xfH/vHmKBx7o7eX95maVbqguckHRq7O2Dx24s0ziQpokq/ldzV0rGOUtxtsW3VVClxT61RreT96UkAjAmzyLnu/evrsmtKafGpYrvGG0iSjk3wTS3uybeIodcr6jxYJRaX+8ZXYfHEo2MVbLUPnIWHKygIlV6TeIEwzixHQZivEF6/R+wLkJYiVkI1gUw3/0jjHVtfWqYLgXzT/9rafCzlugsPqlj6eXX6S+/wlBEQDlGEXQM3rEmYKcNW9sx5YIzcs9cFjfJbGtDWyUBawEWNQGxEn9KLuYQMwcjZlV1La4YhorSlSoYl6UhphRdl8aRcZhEBD6KGIP3DmMCxho2H/6rFBdI7/2LuB9+llW/wC2WuL4nLJb4coP1sCW++2OUZ35MfP1FJYPMgmWXfvNvK7YmTdh1HvluweL2ezCnbyM99W1ySTKvau3bCJm5TGACQuQjMZmJ0Yx446WmYp1+PtkPTTHz3lho+/uuMOwsJvSTUUgTNbLV1CmrcFbB+0Df9+RceM+lb/PjU+/hwee+QlwspO6WUsv3uxCEkJpkz09pxORAZwogTbcpR6mP1GL6LXLEmJksnEyZhRERkYhlUaAr4AuYlCEmjYeyCNwUp7FOFU3bib2h3YPdGPOmfFQC8hY9zsJgZQejrMR+XdFqzbGmCjp7ZCg55SHsBufz2l3xwPrvn3qU9if6PjOuWOdZnXdzVl9m8c2iTR1NxKnuSyrmyLy+V9w1Z9njC7r+NwFYg/MTqUh9zKrAgbEiRlpKxLgMZtoxIasiU7PQlG6vSI068o2yz/vSW9g4MU5bpnFkM0We2LuLh7dPycJpDESpa/pdjBzaXJ/nmIyZkrNu7/LzjGCFVUh7Xklrvio/qU279fdGY5NSBSo0P6xilRUDSUVc7ev7yL4+N6TeSkd1gy3Wau5VWjpl6hquEVFdHgTfRXkLGq8XybGbeFfS8ahNs2Y0zSwoBDGgc9ZhQi1MSX4yjlH/Rh4mS6NTNdgyFKxqKjl95JiIw0icRuI4EqehCQ0KIc2JEJoPuNATVGjK+4Ax1UUSGnYuEYjWZNSoQUeZTRk2A3mcmvB2SiqUnCI5TZwUgxk3bK1jESdsilQ8vFjL6BfYYcMYFuJO3uKjMuP2SP1uSvHm+2Vo7tczTF1ngGJ43LyrVNHD+579Mi/d+xEeeOrzKppu5zVQE2ulYszzpQr61ncxO2+5E6+aHYHgyjFppEMqsXU+UzHEmTPuIoBim1NSV2m6UkrENO3zFSNjhlJxxaLiYHCrmbGA4BWCzYmAsd07JD36UaauZ92t2HvzNWZXUOWb5RpnTqRpoKQJSkRE7tlpINFrYeY1VUyRElsVt66NzmMqjKkwqFv2EKOYIEbBKZJzmDdfYvvGi0w6J4IXh+8SJxll1hI+8WscnTuPfcfDvOfK06yvX+f69StsT26wWR+zWZ+w2UQmZ0j9ghxGQggE39E7z8V3f4zzL/0AO21JyZLzqJhyoCRxiB37I66+82MY4zneO8Ud2zVdWNL1S6wTAy6nAtgo3tz6/q1VwQvIyWCMJ4Qle6vTnElbcplYb084WR9zsknc8b0vks1E8TKWvTMUG4l5YpoGCkrCDh7fBZyV/WcaB65evoyzltsvvcVz932Qd23f5IoH53v29g/AeToMR87xzhe+zfOnHyB8+wusb7uDUhzBi4nU3nLBsvf0wYhoR3GYKPNp3A6MazWYiAmTIr0pFO+wwTOUTFGR21AKnYFOc0JbwJqkDac1fnFIDVVqac56KB6L14YxNxOtrcdb+Z1WwyWO/lPga3+WR42hnLOULByflNSIwFlMqhzdGh3Ne39bMXQdnMVENfVpHDxubtwEdS++6VX0aFHg/No1xKhClCU3fEAcjrXeW/JNOM4ulr5rpGB3cn9nbWsOqI9qhCI0QjPHp7t7jp7cbm2Y9mlnnKHGnCBrT8tvauxT5k9d1+y3X4+bLrN+U+Pn+h5G88zdS/rTrm9528/rSvgTb2LKzt+U9oc3j15Tb7Tec1MDbV1aFHMpN+2szDtanvfvWqPPNfeVHLd4EaBNMTVeH9Bw1p+Gk9xqR4qZOEZ8sfgEoZZKIlg8mUDMjlIcTvekaJ2E7t6JUFfOilV7HD0+RJwPLLOIs48xslasPMdInBJxnDjZB+/WJNdjS4GYKEmwEoPEIb4L9IBNE2McKHnAWk/ne6xJjHEgTiMn4zHHOTFsN6Rp1Hqf1Og26y1TisSUyEbMarfjiPWBXKSRa3X6DCUNrE6f4/TFJYchcrBa8tSDv8pHr3yFw8MDDg+O2D9acKF7kRf3H+LTZza4/gDTL3jspOdwYbi/lyDn2FgOAlxPpnGljbP8h3de47feXPG/Ovs6m+OV4GEOcB7sFu9Ggs94Gwm2Z9lPdK5nEVYcrDZc7i9z9epVNpstwzCKIPcktULnLNOQ8a5gv/2HTKUwGG3+8R4+899wWcWFCgamjDOewcuea62sbt4YOmforBW+eP3qPa+/85c4WRyxeeAXueMH/wTSSOgCeyvoQ8fhcp/D/UP61VKaQbteaurei2mmrl3o/mVLbSQTIXKDCG46ayguImaoEm9ZE9UMytItOkLvwWSWyw4TemIs0qx4i0216hJ/U2+FxvwSF5tZdKGlrEYxpWqcBQURjhWzlI5+sWSxXLJYiNBU13Ui/FZFcbxwFnZrlaAxqKgvqECGxIvbYRDxnBjZbDZcu36dk5MTpkls/ZxzdF3HcrkUs4ouKD5QzVCEd7EtKuipuOZz7LPKA+fSGg1WtC5qG9epm8ZW/7VVWDGIwGbDWwxSl635fM588UbP9XHkD4bAp8Jl4euq8H0cR+EvJsHaimIJlcdRhUtq3F0Ny4wRzNrYmWNira8n3fKkZ7cOF+FcHpnGScRLMWoK5/Da+CtiVIY0xYbLR629a3q4Uys2wlH0juB8E1511rTnzOOqUKyYzzsMyXZYM+xwDecB1Rr0aj1Rm8Rk7JWGRVo12i0krY9Ig3VS84r1yQ02JzcYtps/g5nzL3eE2mTplCutwUjd/42hNfqNvselkcn1ujNL/tye66zWHUUgRwSQhYmfDZgic9Fmi80OlxOuZBVziWAsKY9zb1AWHlwrcSuWV8dyMTN2U49cCvmDnyY99jmON2tunJywGQbM8XXi138X9+hH2bvyLOlgn2wNI5lNitwYNozbLd5Yjr79e3SrFb3fFzOuKWKHAYMhuUDuluRxIPte6gVNcMLNIlJar7HZkpjrhrvCP2IWBl0QrlrwwsnrnGHR65qx6EV80AU6HwjGA5Zvnn6UaUw8c/eHuHD9C3gKrmh9bRqZrMZuzrGdEttBuVLjKE34RboFI4LlJwwZqzioNBMbb3Em47Jm12oWHLQPLngxXbZWxVok1JH7lHITJq94s7XCTakicLWPQMTsFWfTGiMpYXKhC771C2SbiBceZrzznZgC+88/BjcuYUCNM40aSvxk1P1v9Ei54TbWGsHuao4F0HRmZpM4qW/KXKy8zlbvmgaW3/odpoc/yv6PvygmEkZ6rAQD0f6/Jv6khvdmNnOwFUUqqECH4pQkYomkLDlVMoZkbROZyjWzKXOOU3T+2Sp+ZHbFmkw7F3Z73nZyvNW3f4sb7/k0y2/9FqXAVLZsSmHjV1w/dT8xJbrlGezLP5YxVeTvxnf9ArnfZ3z0L9B953exRXrcMIay3IfxBLc6oLcWSlbj9tIE+g2F4ZFfxLz4Xez2OhQra5Sr/WpGP2MmI6btR5uLuCtPMCwOuXD8IsVp3lksLktviLUVK9baXtS+i1G4MNJYrbmi1b7Ahi7W61ab+G3jo6WSW93UGNd4q2XXGc6YNoZqR4rfOyBvjgn7R2KUbmxLB0vd34o2SRvBzlIqWJuJ1pBTFf2vphTpX/uU+Zc+6l7d8GvdM0xpceGMqipWa+rXuSG8je3SXnJOQ+u+w+4vZN9vuXTFFepvy1znyTe9XMUhTKsfFF0UC5Bdh9kek8KyrWeN47C9jn3tCXjwg4SXf9CMfUpO8OMvkt/5CcxjX4Vx3d5n+OBfwYWOG+/58+w9+1XBIYMIF0yLFS50gpcs9ujNVr7X2KBWJ6h4T+WsWNPqXk3cO7u2RtS6iTGJ/e/9rsw9V2vqFbfd+eymYkiyj+hqxt7L36WaztLmJGRbcI/9DsW7WbS1VP77HLu3s1dco4rwuYpz3DR+ds7OoEIvBnAN+JfXUIGK3f1cjT6r2NRuPVWW8trfq7VtHX+1tprNbATXaq230GGd9spVMYl2n2VdSgiWF1VnICWruJ70DrY5ScV7oBquCHZR5ySt0bBY2f+Mkd2tGLUS3Yn56t5aIakz01Ue3jzDiT/k/ulVinJjAeX13swP++Xjb/K11fv4pfVjwoNFTjSVpMZoMk6fMGd4sXRYs+B9wzUW22Mx0xxVWClGqR+bgolFcnJvCdkTsscYef+6QjVzuimK2FQVGta41hZwKeMpWOvJrsOmickFgvaTxlKIQCwiUla85JchdLgQ8KEjdAv2VvvsHx5xeOoMd9xxgbNnz3OJFS/40zgX6IfLHI43uHGyYb3eKE4SefOOh7l0+To3ju5n74k/JmpeYwqw3Ceev4+9134g+ESOpCTCUilN5ByFMm9ErDRjsL6jWy7ZOzpkv+9Z9QtWfc+iXxC8k3rfOFHWW4odyMWQihptY8B6gpdYmBCIxbCYJkLX6ZokWO9mO8h6WHLrRxUTiox1gb7v2N/fY3+1+Nc/cf4lD1fXeV1jvDXNGF6437MWReV3+7bfy5p29w9/e+cVTcMP0NhAQg/5odVfFCP3KFN29iwRsa1YbjLSd0ISXDJPwgckZ2qPsLeWzsl9Ci7gqBoeGfPN38A++hfZfPEfEJyHkrT/RGKs7p534e99BFcK8fGvEsYTloueg9WKo/197n3j2xydOhL8JEW2mzU3liteXd3FmRe/qWJT0gtX94Bssn4uwa5feODPceG5L5Ly1Grsda11zuzgRx7vQxM49z40vGP3UXlKf5Tu4s/ZF8g2C3esgLVl5uwrT6TGdbc/+Vlef+AXuOP7vwU5UnzQGyTrYJjWwifWnTCnQgm93CvrSE5qcC2+tjVmnWMUiYHmsSFxZGl8zsqZMfou7WiLdWkcElsNWpp8Zo0DPN4lQujoQmSMkYIl6jphQHsYb51D9lxA55VPjo5AMeBDUCE3fTjPhVe+zZv3/CyHz/2xCP2bIP0bTsducGRd451zRK8GwoYZE6tGxRiyVdEjZ3FJzJWdGpQlPTeL8q+7joXy2Drv6Lxr+a4zc+bQYpJSWH3zN5lQtqXes5wkQbeNzqgcWyTYqnoUbd3R3qwuSD9oE5qyVnVHMtGga0PG2jQHvTtcjlrPKUXWl+R7mAaiXwgfTx/F1M8zx0VgsD/3bzF9/beb4XLla5cbV0RkSnllJkucn1JiVGPrc5/8FW788KvkzYnwAp0jGCN8+xiJroPNMWNxbNYbUtdRKPgi2GU1FK5iU9Zaog+KMcp1qLGqa3nvTo3PqCCpkf68XCxk4VPm3UeNWccN5Rv/GPPIJ3E//sOdtFATC6NvWAOaWp/b+dH/3PGnFpqyOkk0WtpZLPQcpDeviUy9cNcHecfJS+wzatNOVaHUxlUthO3UFG8qxmIqMDQTP2/+SDUwq4CDLnCm5mWq2G4dpiDiBiXis6HrLZiA9yI+5AbbgsiCNGs4DNY7et+x7Bfsr/YYRwGpz588z5XbHuG26z/m6Oxpjg4PODo8EKcWHxgxfCleYJm3fIsL/Kx9ns5aFkGavQdvefHOj3H6rSfoxqtECq4TkSsTjDZaz4/aoCmuUZroN3EcEeuQwNnRhDtswLigpBA/qxrW5oCWvCpNTxW154JrhpJaAFuM5beHe/k1/7RMvOr+lOdiOUaAXusC3nVtY7PGt43SFm1oKEIAh8wZEzm1mJiiEyVfa1Rsqt7yeVOqA243mUtJxMBOTk44Pjlhs9kwTKM0F0VR8Z7U0bAV8m9KCG+NQxoqjYiNWSlGVgVLZ70QV9rGodfTiSDNnvNcmQy3dQ6jDnWyFsu8MbnuDBUcqndtJxJscITdmWo716gYnbNWnpIhG1X01gU+1wbsnPmd4yP+wvItjFVylr5jVc6/mDqeGA5wFFyCB/xVkibYp4zn2tZxYCZCNng9JQn6FQTVcyu5cDRd57S9IQXQnSBJVh2D6JZKYNRU2Qsz8Nmug50/dqk5fiWSlfmaFNq/ZSxlOjLXsyUUcWmpBbNcnex3GuI+ubzMN9aHfGhxTUmmIshTixpVqKUoKHpn2RLLhCdxNq2Z0nya9fxzXSut4w/z3fyl7jWZS9lRnKwVNbi3O4Byy8Lr5zKGmBO2OHFc188T08g4DcQ4UlRIyBkRErTamN7cDwrSLHyrge/QAolaRKr7RSND6z5XCU0lw5QjJiWCK4RFR98vmLYbVW6XtddgscVhiuP1/fsxvuO+9csEF8Qd0XlpvLLafGWlmG3dTBqugbVx4k5ifcC6Tgv78/pcCaa1OUyIODsEKVMaUBxTlOQmi1OEzFEJ2MiOnzXP8T1/D4/G13BBko6cC9vk+F53P3sknu73eP/0Cv2ipztZ8Iw7w9Cf5qXQcbq8yVEv55SyFI9AgTGne3zRGMA4iqpXF+PAeozrMK7XrwHjq/CUihXWOMGqky5GReZKAzqlCW0kpthI+dK8rcQx3SOmadJGqkyOiZTnfcQ2pWCH9UFABB94X7jOd4d7+WR/lc1xhw89zst5VqE6OU/f9udSBLCqq0vWmEbAQ1nAGmBW99osDcDTNM8zSsI6EV6Roqx+bg3+LFWQ5NY6tut1E5qK6pBdAa1WbCgyzsSNa+BkveZkveVkmBgmEZhSoXCKEYGp1f6K/YN9lssVMWfW6y3Xrx2z2WyY4sTq43+NElbs/fL/lpPP//eUaStqx1NmGCLxM/89hx//K6Rv/RbOQCwJFzILY9jc9xHKbQ8z+Y789OdZXX+FcRzYjgObYctqXDEuJ6YkYh9dF5rjjS9zgmKsiExVYFN2YzmMNfyGfz+nzZZ/wPv4d80P5XroHCmmkggUoCCpmrfRYkIi5YlY1dvjIMCaLaIebb2o0WeYciHlxBSTxkNQ4kBxgWl9wrDesl0PDBFZZ0Kn55nIoSd8+Nc5/tzfYcgGH2V7TBnij/6YkAvx9acp1y6BkRwvRhnNXmr3gKEMA4ZJFe7FzaNk5vtaE5VKQC3SnJvL7ExRioiKWBV6gZoriPtZFZsSgn3S+WDZ+5X/PSd/8N/eVLmRhFwCy5y1wTOnBgQbZmfiqmScc9b1+E+TUv3ZHQURwt1sB9IkZHFvJeopFgHlUiJFT4yenDwlBXJwlOJl3zKz61DNsebv5ri7/qY6j+mAJRfDa+/7a/jNNV7/4L/Nhcf+keT8YcmlR/4S5uQ6lx/6BQ5+/IW27zlnuPrAxzi8/gr99oqAa1bFU0NQcrLDUnjnm9/eiUproUSLdDvxbAYtRCig2ZLkCq8XdZGpka656ZNh8hzzaV7Txkcp/PGZj/DxS19vQAnQ4thapHhueS+LtOG2zRtNuOxmZ9ydApRx7TzfLl7RFKyTNBzPOTAqNjw7ktcGr6x7R847ObmO9RA8qOBuLgrMejcTfAy6T5bmhpSSkDZ2AYkqhoDOk1oMK8bhShGxqFJzDo2zXG02qwUy0x7WCJAdnCF7RxU3vpWOlv1U4M6LsroI1GSKTSI2VRLOGHFCC4FFF1j0nYj0qXDCarVib3+f5WLJou8VzDUM2y3DODKOk7ji6do0qPBOilGaHbYjB8sle6sle9uB/WFktbekjJktp7D9klyikCKtx2aJD5o7JhBQoM9VcvsOOFXnggrdJG3sz3GipCSgPiqm5cTBSxriZNfw3/8s2wc+SHjyq+S+JyjQZzVvrURECkK6zUmFhWQ9SUnHpOIIbSgYREBkHER8yhhCDnQlaCN+FoHp9Vriu2miChNWtyNZG4qSSGUfCUFBfDe7GdnKvnGWMSW2Y2Q7TWynSRwix0FIU9MozpgqwpUrHlYEUHXOEfoFi9WSfrkQsm0IWOeamEDNvZtYnQ64ojGuoeZodTVWwE8vihBsavwncUNGAf6K8yigm9KMv5Wde34rHCK8MangTXUPlTheGrILzhSy5pmSD2TWH/nrmO0J4y/9B/R/+N9gQUhzQcjWZXXExXt+lrNPfYEq3pSVZGuAtx78BGcvPUk8FjKmX3d0XU/X9/SLnr7vebg/5vpqQb9a0KeeTsW/nhwPeC33PDdaPrw64byddvBQWWOd4nJWEfba2CuHPret+7KGlzb3JIepc7c5rcbIMAwM24HtZsNms2kiU1J4jjNAnZVsUiDnwpnv/gFTqTk+uu8L0FayETwli2N2BWZL3W/rfPJOBext24sqzcZYs+PwKHimN3WtnwUypNEBQMVzSwGbySZBqvFFmQk5KGF45786P+pQtvr/Yoq4Z7uscaTMpVqUyCnNj1yv0058yI6o5s48aU0opeiNrP47RoBKszunZuLKrXRM00AVaK1k5KS5c1ZXkDlWZsYAdb+nVOxEA/efip/+6daW3XqFgZtrGGan4BSkOL/oexYq9rvoe7qua+YLUeOSmDJjnN4mMpWYciYWpewZaRqoa2MtkmagFTehNSqVnChVlC7FeR9898+RFvu493wM+83PYm5cRZU5aWYNn/53sZ/7+1jvcEXOwZcibmQGijXY5JrYVBWZyki6V6zMv2ogYet8M4pRUTBZ3aQp0lxUkOdnR0pJROG8b4LwNXbEoPGtiKWXXFRkR+LK6w99iP7lJ+HGW82Z/MbP/RXsyTWufvDT7H3zDxoJtDq6VVITWZrUXYq4pIUzxAwi50z+9mdwD3+U61/7Xbz3DOPURABBBcb6BavVHkeHpzh75gznzp7l9ttu54477uD8+fMcnTpiuVrR9/2/3CT4Mz5yFvetcRwYh4FxVFFRFdYyRuo9y8WCvb099vf3OTg4aCJTIYQ213LOpEnEuadxEsftKTKOE3GS99lsBjabDev1ls16zTCMVD8YWbZKw4xb47XzGif5llc1YpbiVLJGS1EzKZl9boZHccYdfFHz6FYYTSLYQgGTxBEn6x7QhF2AtlbXz6tCOXES4uykIgMxRnUPSnxwOuYH04qHhoucqAjXpMI+KVdhjyrukdq+IAhvoRrZSK2qno+cSiXQzI68s1GD1fzHa5wZ7ZppeUA3HhNTlqYTFUZvgsPUnBEGaxmMIarYlLiriUB+KRanZgVFC+i1WVmhxJ14Ua9VFSvSPaouzzetyIZ23+cYWOpzzSFM62bGGLJz3GqbmTQzFx2nRefXROw9yVvFdGecMabULkLKhRiFVLHZiCjhNMVZfEVxH+nhlH3CFIdRdyzK2/YuA1MqWN1LXcq4lIRUQCYg+cpkYUqJvvOsnv4Kmwc+wpm3nmI0I7bvMd4SU8IWMFb2M5laWuc2SviypeFUOTUgFRFYynVSyRguhhQzKSr+kGesQRy6RABPxh26PwQVU3YUYzHTQF4c0MU1i4NDwt4+YbVHv7dHt1iCC2R/jjAYDo4usP3W55guvarYrggqWA8m5xZXgyGEwOrO++ne/wv4kji2Hp7+NqZEnEltbJui86ygRFolUNT/tKnBWjHzcGpsZFstfLf5wTR8aCZ7z9hKbVCqbq/WlJaPShXRtAa+acr0feGdl3/IuFwSpwmLIcVJjKJUkNUrOSZ1gcnDaAvGG0wpBG+xRQ0J0q2Fe6RsGGPhGFlTkjeM1hNJ7OVILBmTwCTwRhq5TBuvklPkUgl0c6NWq+LvEIHmGUUF56g1jtrk30Te2Vn7kLhDoOZ5QcxkTJEmQGMF+8sqUN2W9jYGdu4/9dTKP3/JMzP+V8pMIK75d80BG/G8nlFt2tB1ImYRH5G9qD5LYnPrImaaVGjJ7NSQBYu00WNjrSVKbGecYFMh9RgXwVRyYW22MY1wlRv3Qz7r19wZyrjmC/40Hz5+RhrGppE/OXyQfjzh+0fv4D1XnhJiZpzwyg+opPUa31XSdptjO9egNtHW67L7mWscWW+9oYr+yyNrDKw2pG8TJlKSVxZS8JQhZtNc2NGGQBGhvbXmmFP8rxFOk6g47e7XTcyMGo9FbUpyir+6m+I5o8FbxZwrR4cizbmLbkHXL+m6XsSnfMCrk3wpVjGtqLlxJJdJcUDJfVwRQm+wjmCtiBEMgwiojhNTHES0uOHQIpiJE7O7Sc3vfAh67jsYttYLS07ytQoEqVCHzWDGxLg44vj8/ew//1gTTY4pkvPE8umvs7nvA+y/+iNS3IoXUV1lcuTgR5/l5N4Psvfct4m7k1zj2yrehIEoyo0t7qvXt6ANeFQsao4Fai1FXkLrJJqr3fPC19AXpKDEaY3oShWZr0JNmqPWf9/EgTPo111sRjHCXFSQo84Q0+J5TM2zja6pKriRVUisrrtUToSeir5/FZMpxmA1d6nCxzo4ybeYUQSICK5VMnqtO9icKdbhchZelTb814ZAwYsSJY+UMmKIeBVSsk7FxnQ9RY1Dag0lpswwFTaj4McpS34/pMSUpdl2xHASIyebLcYZlqsVpw4PWe3vMQwDb75xkWEcOTg64o7bbqOzhvWN65gc8TmSfcf5Pc9t4TzD3oKj/QXb9QHH169x/fJbrE+OyTHCOHBysqZgWK322X70V8E5Xn/fL3HPDz9PlwwxSROfw1CsxyAu3iYl6Jf4YgiuJ4QFzvc4F6Rm55349mHASdyKAbLEaxTBN/AFYsD7FX1/ir3lhr3lFRbdFYZhwpgNOSPu0CmqYLesPTmOJMDaTkRLOtnvrOLk0ziSFNO58MzXGRdLrvlAwXJ8/TrOBqacGceIHyP3Xn2M7WrFQddjbUff7bPoF/TB4UzBqFEPmp+nXEjbgbQdSdtBOQwZR6YTdSkxP1S3XalnWYKh5WGmFKxemxZPGgsqHGVNwJgOazq8q49AH3p8WGJNDzjIGssme8txPmR/l3qwdUjtSYUhbMOSM5lZGHJGGnUdpcZd89edqpSQqpkbASUXR40Hdp8576FVUmjO9qVWHClMZKZS3bCLxmKzwdCuSVB1J7eKCViDct+0edDVZr/aCLnz2fWEZZ03N3323BZaWUTrv2QpNlQcvF0ndsWzKiZdX6G017yJ17bz/FrvtabuazUWrlqipb1W/cP52radVF6jzL+fN5kq79U2lPpq7Vzke6t/q3e2cZlNawYsFXO+aUuZP5c1IkBnnKzBXd/hQ6efw6hwiXKOamOhl9/lNNfaQeIsaSoDSI0beCsd4zhJXmMswQWSYW5KrLWNnXix7nXZGqmJFIvT61dzqyoEN00iWGNyxhnE2GeUGmeeMne++BVeuf1nufDGdxmmgRSLGljKuQleJLXmGAWjG4aBUowI6QHTNJLGKNiFNpFVgYYpqiHwKLFcAVwQ1/pcMnEaCCGwv7fHmZe/Rnz4z3H2uR9y0BsODg55/KG/ztlu4lun/iq/lh5jeXBA3DvND9z9/K2jY3y3D6HjO8cLntgEprXBdZn7Dgq/do/hs69ZfvH2jM9easwuEVzkb5y7QR4DIfTkPoLNUvf2Ha4bcMOE8SMmWNwUsL0hrAIHpw/ZP1iwd2XJtavXuXb9OpvtwBgjccpMJRNzwaayY8KNCDTmJONwpOGs0jYnE9d5h/e1uQ7GZAjW0mXHsuultj6uufzWa9h7zjBdv8j+cMKy8+ztL9k7c8TB6VMsDvfpD/YIfYdbdJjeUzpHCbbVSLBKId6JVXMBgtOY2YDL2GgwKTfOqXew6Bzb0bbvOwf7y45Du2Aa1RjvFsvJqjBzrQkZBIMyZY63i+JEVNzaFqwJeFPAZ6z3eOVyi0hKR9d3BOWNWqcC0MoBwhicC9pcKFzPnJ3kyZRm4CCxpyMDJ5uN4IoqNLXZbIhqJCbiUkuWewsWy56+cg9sxZIzxwm+crLgE0FEnnKyPMMer5UF0a4o08ipdEzOmT9Z3s8HTl7EI83ofqv7nRoViPFnR+gCLvhWFwbm3C5lGDcMucMONzi210lTNZZKzWjEUnnNtvHAWp4hN0gx9YD3nVyPIg2JyTg+t17xq2eE65KyYAXPDZ7nR8eUHA+mgVNaGxCurvTFLFdLnHWCJVtHyYkpTjgndbRK4LQmN/FI7yxBDcQ655tokrWAyY0XUu/xaUYeyZdZ2wX3m2OMcXOjnVVmWsW5VHwlKzcxZcixNi+LPA+ICVfOsYlMTcobzilycuMa6/Uxw7D9M55F/+IjeEewXg0foQLrlZtkivCiE5nbXv02l+58lPM3nibktTTGVp6ss1C08az2FRWJZVLDETWOsmCSxmY5iziy4kdZRY2icbNZR8pEpOaWpkm5NTo21ayzGuPFD/9b2O0J6eN/jfyZvys5R5ooJeKuvIH7/h9RTh2xyRFjYbNZc3xynZPtmhIT+4sF5UO/wuGlH7Hfd3hjiePI9mTDsNkwbgc2T36V6dx9TE9+E5D4q3a5iClLRRzkmjprwLsdzFO+itGeVUMEh3cG74Q7E9RA19oqkmo1PxZsoZsG1nbJatxIjjRNYhSUxx3RDSjWsZ0im/WW7WbLMEzEXMjGkUytdRuSioGh4rpBBYo8UjOgQAievu/pezENrDx44b7PdTirWFqME1PU2EV5X0k+OFW0VkzmFKvxGovnrIY8SUTJksSB0RjKdkPOBV+vtwGTVWKpFBGqitOfxdT5Ux+1dmlR3CdXSEnGh1UsqP5nNR+Q2Fu5qVoPq7CTnTYsf/TF6uHRuO1Zx6LgSjt5AjVPq/1XM4OnFKkW5PaTiimjDbxZ0fzaJSF5Rc1tsr6FM012ru3LLcfexb8rvmOVY54L/oefIxnhYOSU2G42RHuN7eZYePI3rmI3J40/aIB4fBX2zsD1i6Rhi8mpvXv3rd8iPvRRFk9+WZqi865YoHw/PPrnYXnI+oO/xsG3fhM7nmi/DorxC580F6sxQKaYwqnNG9jxrSZK0vp8zCzEJfttanWG2vMjosoyN9v1riJg9S5VUa4qttJENSVHFhsa4fAr3CjxO/P4qOPOGsONr/0ehx/+NCc/+FLjKdacEx1fVBwRzT9taT0/yWZSsmLEos+9GR3/N380IQNT8++5D68JcekT5pG/MzNNmS8gOx9R/7TVv+rEotacTJsRCuc2SlbFABK7wh03vSy1bmNavq18qG/9HuY9n6L86ItzfaziGwdnKe/8BC5HSvCEl36g3KhJcronviJY8k4vm0sjZXVIGK6JWKCKTHVdx2E+YX/9Cm6xx53pGr7rZvykIh0tNqjxtuZEinkLt9oTi2+4AbrGRGMFy6k5784aUfSilZ26YXuvyrUopWEcQMNurNHvSxHeUxNCM61eU3EbudQ7OAvmJtF5KDq+a12/1jNpjV1Se9DYyFQBAbuz98n98da1/rB2zjDnKpXbouvjXB9SY5HK6bnFDl8501k3sWIl3ilWe1OlbiS8OTXkS1Z6iZH4pyFRajolQohigNeMRW0dW5Jn11zwx/f+Eu+8+E06E2UXq5yDt81mA5yfLnNbvKYijHUPrXnQXJczyHt+cv19NWvQOFSxO4rAvaUYctkw+X38tGV7coO0vcFQTY7jxKRcTlkXkmIEhn7R0fe99A7aGsvp/lp3XNVyqOswJUv+oAZS/XCDu179JpcWt7N6/QcMecZvjfd0S4/rMyC1xMViQd9LjbFfrjh1dIbTZ89x5ux5zp2/ncOjU/Sj461jy3qzZRgjb16+xsVLb3H92nXWmy0xTly6Vji4cC9P/vjHrJ59RkSFSsaujjDvez/l+gmr5d0sXnhMcHsjnz3nCCRCmE3NipUcdbHaZ+/gFAfLJau+k5xNx8s0jGzWG9YnJ82gsfLGipFYOARP6Ht8vyAbyyIl6UurcxLpAhZBrCyCqHYWhat5a7/oWC1vPaEpy07Z0dY+fap+aFt/6nrjjGm5gUVqglIXlDWt4sqtLt0SEO1fUk4A1rbYLJdCLNIbUmOcZDMOiNQ4tsg+o3VLZyFYR+8C03v+Egevf59VHvE2CK4bM90w4n/0WcxyKXgBE8TUztGmKGtDjgSgD4Fl37NaLNhfLtjfW7K/tyd7fEq40PP08kEWwzFX7/sY5174qtTI63pKkrXFidnICw//JWzc8vTP/Cr3fO83dsxbaT3BsxlUuFn/Q7UeqnlFxVeMMfzmdC+n7JbPlAf5JfsU1sqeV/tf3lzexbHZcnrzlLyOlb8999QfKnw13wOs47mf+Yssxhu8cP+neOClr2KNI5nCwY3XmEph2mwJN95oegIYqzGi1k7SDqfHGmwSfDkx9zeQq1iUzBuUv8xN62Q1VqvHTpyle69smCrYFDxd6mSMRun3sWbOK26dIyuGJTF2R4f1wrH0wdP3Hd2OoLKxlrte/z7ZFnIIalzbyLyAxxoIyRGjiidVLvVOfNC0Deoc1pzZeU9XSuPQAxgswcm5LLqOPjiCtzgj9Tej47ZkEX1DOfG7waupGVuR7LsgRpg1/yxGxBwlzBFzIe8dnfd0wdN3QR69CE55L0JTtXZQSm485Dl2Li3+yorpVGF2ticsf/h51rc9hHnqa8QajZsdHrSVPNDkQvnE34TtMf6X/j3SZ/9Oe+0quty0GpDaruw/It5/+hO/QvY9Zz71N7j0uX8AaaKJgBtDGgeuffmf0D38Ia4/9oeE0M3mbkb276w4RlaDAWsMMUx45/HeNvNhZ6oOklND9xbx6XlajDPYYqV2satD0npTBbO34xr7w89LT10dro18tJPRG1pR7k87v/7UQlONQKdujJWMURcL540Ar97x4r0fYRU8P7rwc3zk0mOsTFLJl92UZyfkV7IOu486fuz8jxZCm588N3nFmlRVUKC6zUtw5bwlFGlctzYTJ4glS5De9UxRmvJTzEoaSThn8M7T+cCqX7TBdG56le5gn9VywWq5kMbLnJnGgZgLB/kqF90h79i+wjatieMAOeJM4Y17PkaeMq/c+ym6Fz5PX9ZYHF1Q1XbnRSTLiaNJCKFNhF0w4CY18VIJDB7wGOvBeLDyMNbp3+kwbNfsbam7qVBOblc058zfGx/mwXKRf5jewa/l7xFjagtbFZsqRRaQby4e4b32MqdZ01Qavao0hk4d1kWUQzYqIwupLZpEMN9zHQe12F2bana3oBgTm82G69evc+PGjVZ0qU160yRFTPT6VUDmlhOaIkuwai3OQdAxYG3A2SBiU1qIEpEaDTis49NHE3+8XvLxw4QxQRtMVWnfzJIBjQYwIw4ow27+p85J2cjqE5u9g+D5lNZQlJSQVxSMysD/78ZpLriB3zg+z986elMKA0UbyTXR3iOxR2JdHOdtZs8HipON4gP9DVbukLvLVVzuqS6vqYANqtIbjSr/SbJkQyCEjuC6neYJIcxnY0m1mcRaihVXntIcb92caDdQUgVtNCA2bQGSazM7tBc8mV842vLEieN9ewOlZHEbKSIiM9tjzF8/3F2mZGnsb5tEqXNJQcMyixRc4ArV4aaCEjVQrKeWjeG34zt5gCv8dr6DXwkvIuGBuvMo4aIKTVVuWAMjrGHKSYRMsiWWAiVRjPxsGNbEOGDIBGvwRord3hZsE5oyzYVFbbZvmWNWdr5Z5GHGV+YAZG7KlLaTXIqoKRbDNEUolWAUdgThAhcP7+P1o4ewBnrf8eDwBt5JkcQ4O4tN6RyurkkNQNMCq6zdAYyXMYzZWbOV1K1j1moxAE1gjAqjCaDlMclhUlT159gCsgr2Pjq+BLXoo+uEc3DWjFyy+zzsrtH7Fd1iQb9cMbLHE+aQA5s4pCcEDTKjwdlCiuIY5H3AZHG49EZEKH0VIHQe63us79rD+F7EEZ04NpsqUqmgbVvLigS5ZZpUZEqa+f6YB7h7+xJn42XQdT5lEWvYbMVZJaXMugS+d/bjPPriH1CdokUQQfYl40RsSpyiPXeHN3lrsaBfrOiXe3T9QorrvsOFDuMcBUnuvA9YH6jragFZK8xc9BRH+UkIiM5Icp3mQvGkZH9LwvuFgLNhbgLC1jVdgalb7Fgfn8znZyQurQWuosSD2hw3TZFhGNluBtabkc2QmJKopQuR07F3cMj+wQEHR0ccHh6xWC7ZDCNXr15jnDJjTLL3XH2T7l0fp1x6keVqRWCBAYbtlmyOcb4Qv/tP8V0na67J2OBxXY+fjtmGBQw3yOMJQ4rEVIQENU0aH07y7xhZpF7Vfj2984QAJltcFvJD1XaEOW61GO7lGj80t/OouUgj3DlDKRlrvRScUlJRBQfFKRCdFbRMAiiWhLEF742IiTpDyoYyihvzNI1sp8gwqUNgcey99E2mKWJe+hHH2xNiMRgvohhhudJeB4/7xP+G8eWnWH76f8fV3/9vMbYQgqPrA/1igX3l+yJe4wMpi2u074UUcvDX/8+c/Ob/FWMt05gYJ2kItdYo+KZCczvjpZYACkUFRkprfjAGbdqU+dWapZGxFOO8R1bV4YO/9n8kvvo0B3/zP+bkN/5zmXtIEa8JPxTJFkoRd0YJO1U8B6DMza4O04D/W+VYLBeEPoAxjNPEyWZN7z2dd+o0XcUpRuLkySlAiuTcITGerK82OyG71fRMkCMtuMzkWteKFbL+SsRaWF15mWt3PMLBG09gUBGeacJeeYPh1J30Tz/FOE4ikpod1x78OLnb5837Po554auY7XUohlzGRpZqZAeNvQT4dDhbeHPvbpLvuffG8+2+W6MFvlbo0g1xh6VqTRHHj7q/UetXdU2eG17qfc8584XbfoE7T17hj85/kk+9+cX5BlQAFXhucTcXuzNMxlFS5Nz6jR3g46flG6W9Zz0qsDYLlph5j94BRYA2/uvzdwWtalNKBTaMNTAZpnGUtzVKkna+AVF1LY719ahuAipWliv5VvG9nWJaMaap+VexZoV+hPxiZwCkKICMAaMOwBRpRpA17dbay9q51pW8jRdxFZWmStmo7vqlv8nm6e/A1ddFGEOFppwVhfquX9B3VcRmgQ8BowCjH0bCIE3PKWWSYhExZRVPErX0zWbLarNlf7vleLNhb7Nitbfm7DhQDs5ythuYFr00sVXSpOYMOSWqq5uD5iilH6uVy3Iu5KRxVZJGs5Ii5ILD4I2lc6GBnc2BMk0sn/q6rpO7pPFaaJjJhxW0swaJtaoYlc7P2pwjDZmJYZrYDFtijIDh8GO/yvaVxylXXqOUIs5545ao5EURUEgYdf2VPIxW8BHhzoqpGGQfqHddGlfGKXIyjIIJlbkhUnI/KM5iipsHS5afG2twwbPYW7C/v89ytaLrOqz3bTlqjg46D501WsQQUlQtRApYbtt57eI2NVexut4JUZO5yMlc7LRWGzQzt9wcSym2BscqbCZuJSK8YJUVVRxESxMt8peeZ3v/z2Jf/J7mCAbrxWGU1SFvPPJXWB6/wcWf+SXOPPk5Zrfwwlvv+HnIhVce+AVuf/yzhPUNIeB1QoQIiyUvPPKrvO/VL7Ga9lilPY2h5H32/MCYV6xsokNFe2rjP0XI9cp/lHpIHfs7yFUdU/lmkambhKZiUqwtEmMVE9mwPj7hLbPHa0f3ctvlrzaRqSo0lVMWscCcVf9GF29TSVh13Z5zFDJCXKISkmgNv5WkZ63DukEFz6WAmhUnskZitGDF4Sco+UFyPhELd1bWDylS7hY9rDZI2oYP1XWjiiqL2LKsLVWArXJ5GiHEOEoVNzZRCLoqLlayFAlzFDenPAnBuQpOlR2shZof7+xmrbhTamykOa+5eT5JfPSvdIr8KznGcaAUmshUFais44+bRNB2QfZ6Teo/9XP/qT/k7orFTd8btHisuZLR2MSri2lXiUl9R1cFprqgGLJtry4N67JXRBXLnHaa+VPZCW31r1IRF/UpJcwkjtIVSSs5k/s9eP/HiV/+LRkn2mxdcoLXXqR/z52Ml16n3LiG2axnsayScX/j/0B8+nt0f+nfp/zefytCAJOIAfgUpeGULGJTk8fHjinJ3E21aEtpa7mxFuv9Tm6iNQ5XRIxmB741ReK56h5YH4K9i/BUWh1y6cF3cvi9P9Q1ozpDWdbv+igF2L7rY+x97wtwcoMC+LdeZbzrZ+hff0bWDG2EyPtnGB54lO4HX9b8TQuBOWFi0poDKvAdySUzfu8Lut87IQrFJPmxNmYsFkv29w84ffo058+f547bbuf222/ntttu48yZs+zt7csYuMVyshpL7xKax3FgGLZshy3b7UCcRlJMul7KOF8uluzv73FwcMDBwQHL5ZIuKBFGc5EmWDWO4pyzHdkO4qAzbAe221GaTtZbNsPAdjswDiMxqrC6roE1qDUXHsSdvQP71GOCX1bRzVa8rfmHru/WKFnQa91hxsYrJqebnZLxHaHzuCQu0ikJpmqtIWVweYd8AlQkejfviFNUcalRP/fUsJiUEnFKjMPIfdsrHE9Raj2TOLlO0yw0lSvRll2DHPkMsyhpwTlpSrypEJurCHFp2LAz9e9EEM87zz3bZ3hl/07uGy+x8VLDMcjfGwMhBMpioe+Nxm0wGhGoSTFSigivtkrNbnxpioqhMpPjGsBUGpE556zklXpN52/r+VfRbu/n+mLFvOtYM0ZIWDffo3/zh3OeTBRRWCBOE+MURWhEQkVKUvEEI7VclKAxxsQwTIxTYoqFKUpMV0VZas5kd9Zdo3G0NVV4Ysar6mafisRbKUdMTkSMuDUbU19SMfXCOEUWz32dFAJjp+KdSesBpeCY62iVkGpNrXtJs5jMSd2vdTu2JYr4j5HxYQrkVEhRxm9RcwW0qabGXo1A5qxiAtKsE1MkfPezdO/9c5y+/BSLs+cpIUDXsViu6Pf2wXi2uXDNHxGPX8Wbgln0gK6DzhKCnOJyscSHQI6J1d4epw8PcH1gUxYcUMirA/kMZcLmSQhk3hOsuraqGLn30lDs1LzDuUDwurdZEUGw1oHbqemBCsnp92aeB3VeFHUm28VajDa2CRG3qEhxwbtIF4oKnsn1SypCYKuQsa6VfQhYA9OyYx0s6xNLjhPBGa2h2VtPaArLkIFR8v5ULKOzau6T8RmIEV88C5+1tmWwnRgWGO8lx3cSD1ByLVjKuqJ4Um0skd/I0dgcFTdjN1+u39v2R5LWmB24ryh9QBknKi7YhZnusksCbxicxu3yEoV/0ao38wjms664cX3NXeyvkbq1oX2GWuW5toi4jY0R46aGtUU1UUkasxtsiwedr7VuIdvllDAugFWOwG5Nu0iTyQ/dGU6XLbenDZjCwXSV590hp669wfHJdXKcSClxGK5xcXGKu05ex1ghFJaYKEziOWWkbpnNThORNtjuYpWtmV/vVU2BKwF7xu3nUVBuetQBUn+3g4sWbYgp0rw95cJUjAhOGSu4MiI2mG+tKSYO9kWu2e4e+/aanswBM5PmyNqIKRh2Nde7GWtWHGGH02SMZeoSC/13CIFSbJuHtsasWTHHInIc0zSKGGYUp+DOOjrn8MZSUpRGQ62NpTRp7b8oViomV9YHShxJo6zh0cu6bazsNSJQIHlbTolYopoiSIOoNRZXLLE7xbULj2KPrzJceITlM38izbeVZE+hf+5PbhKYkhxdv+bI4umvEhVL2Fl+BFOwKoah17CtT4pl1uZzwS8zzt40bOV1zA5uMBM1brqfP62hYzZMNDPOrA/5zdv/RuJZeU3b2AE19qv1g3YdqlEcu+Ok/n5er9ql28FXTMU8Grgxf75ZCIVbE/hA4ienzetdGlg9+RjL8/dwcPENSr+UNUlrhHLUhqCIs7I2ZbSuZKQOm7KRvbHx38Q9eYiJIWbGZBizYZxywyMyhmItLjiW1pGMk7y/gPOe06dOA4ZxO/HWW29hgNVyydH+HovOwTRx9PL32L/tNI9utpw+PCQvAtNqQRwOOTnY4/regu3JCdMgosPXrl1nGCe8KSyvvsa1+95HefEJrl2+yCKIEIRgpx5rRPyIYeDs098ln7mbs+sTwm33YF0HeDBVKEGXLQvG6V6v11qEoMAGizOBUjLWdPThgNVi4ujgmDOnTsi5sB0vM8bEFLc4JyIVxmWcNyIMU8REKXSerheujTe24YsWFRRyluCFL5JzIm43ZDuKkFbMEAt2SnS54HXd7XKiy5mQjWAqcYI0yXqiRjNMEZMiHjUvS1EaCXImUHDeNhzeG3XHVdFXkzNKesCiQvzWYY2X2kF2gJjKedsT3ILO93iv3BLXYfCIMZCX50eLDbcW7mEsmCx5TtK1shrFYouuVPN/xWSKrcYYIrYqkom2LZU6tOTamrkOXR/i6Gu0dqJrXsvMauw4NxoKjmlIBhGZomjMkIkxtVy/FMkXS5lzfzkXo4J8UkcWMwUhxndB+btBjJSs1bpFXVdxs7B9xZeh7eNy8jtrf7sCO7+vOWFB8YEa7844QF3OWzNYXZl1P2mxcn3FlufU61M0pi6tgU5e+CfX9RrxZr3uuzmxaRvHvJdVTMzUz2hVuQ9EuE85biKaUN/DNv6Q/MA06NlaQxe85OlG8KbaLGdBRN+8IwWPlu20sdRoh7TurTpe235Y0MbFW2svS0ly4uwMfd9RiohXeyeYOaAxXDUPVq5hyZTiePseX/kGnUHHedImw6nNt5KTxn+RU89+SfYwXRenLAKOBhjGseU+2+2WmCbiFCktPhfefJpqbSpClnGXYmYcE8nQhIGD9/K3KROcY7Ho2dtbsVou2Os7lq9/i+Wi42D/iMPDPd6xGnja38V7wmVW7hCzf5o/KO/joc7wj28c8bf2B4x1nFkY4sawCob93mEcYCx/8W4J7nIuur95nKtYnPKOfCD4JTYENQj1+DDge48fHG7cYvpEWDpSdiyWgb3DBVdPrzi4usfx+pir129w7cYJ06R4kfLctDwtfRI15lUeVHCemGObYcJRscJfUfOXiHJ9hihYRIwsnvw8dHD28hPsHy45c+YMp8+d4cyZ0+zt7bPcX9Ht7+G8F2xpGSB4MQeTtxI+qE5A4elDtobixZwGDFhHMdpAZhJWhRi9zTgipJHew6mDJZ0f2VvsI7pJhnEY/6ymz5/qqPtWNfaoIhUoFohxzQBANj3FjpD55FNqDcUVV7TWYZxX0aiEiZFiLB5p9LJGcvnQdfSLnjGqGap2Zn3j9kf58BvfZzuOpBvXGeNE13VgTMvVRhV6c9bLa/VaNwue4KSByzlHKYV1LPzOZcOFkPnScMAvrBLeGc6OlleiJ4wbXBJDjK+vHmRvfY0vLB/k56/9CG9hmqQpzKcg+4muM69se94aFnz0YGh7Sq1lpynyAb/mO+ueh8sVhq3klGkUjL7krI2uwgPxSH2vYXS2igMotqA8ae9l/U8YfvPqHg8sM799tedXjrYyn6zj0At+G0xmz9EwkZILny2n+dRwVQRsrCPGyDgNmstGrYtqPVlxSOnREVGefiGiCZ3W5ihFBf+imhXQREYATrst502U8bWDZ0DFaepIFJxHWtlEgG/YTozbjQj2xZEUB7KKGZU0keIwC03lyMmN6wzDRj/DrXX4au5WEyfdd4vi3VVkumiseNsb3xGhX1c5ftUURx/WYYzE0gUrc09xJUchKUZkbcQmuZc5FqJVUyNjpHm2tIgEshoQVS5g0fjMV0MDr+PG408usb79Ifo3nhNRpHFgTJ4pjQzjwPWTGwwlEk6uU0xhGga2262s0z7Qf+Lf5mhhuP7oX+aB4x/RO0eJielkw+bkhM3xMdev3eDk9SfZLHrhQZWCyRJPi1FxbUCsMXTWhm+FMGjhGK7U0VUb5HXuaU8WLR7SOpgxkArve+sH/Ki7wB2vfJdrzYBpp4nYyDxNxopJ33bLsB0Yp0gylmztTYZP1oq5qHWh5Z/BGZbOiehigdD5ZjAVvOXie36F2x7/p9ic2uexGlcKb1OMVaPW1GLOcv/NvE6nMneRWYNolXkVOZ+SiusoN8IY+tefIVjDksxic5XJWhFiRjZvU/uBbqFDYkKNGsrOGNC86e0C6sBNOCTMU7PmK/NUrbmI8C5qvl+UF1CyGgTUTKbUsVf/031zZ80rKrwnc1Dq41ljR+Gk1hp2JpvSRI6a+EBNGKn50Q5HR3MkQU9LE8XKO9clp8yUI3H7KmzW5H4f3niGtNNEbSiYx79MHjbYFx4jxRF0/hjA5UT34y8obwNtwM7tqyHjrr7KdP4+/JVXMWmgmQIV03Db/M95tEARs/O8Wt/eMSaspl5lNpacb63sn+GRT1DGgfjCD8BIPynG0P/5f5/tl/4hebOW67qDR1cOGEY+c+VKN04nhdq0aYD1Y5/XpnrhhRtmPFOwI8O8NlWelzTP2wzOZsRwejYeuJWP+lkA3c/0pxJAtP2qfi/CA7rnzROh7YNGcX1DTcE1r698QbPbB0Sri1SRqSo0leDmWpoxdB/8C8RXniRderkpjBhrMd//w5k7bpSjEjzBGVIaYHXI3vUBt+hlLZ0cx4/8Eu7572CvvQmlYIsIrvsnv0J++KOcfe2H+H4pQlMh0AWJm47KCX2c8F0QfBbBDmyDTipnJbfPXhERozVr7x2hhJazmIoT2STYbNFeEnTd2rm+rctZJitgRWTSGGjmd7sYSY1rZexX7NFSlDtJPXGqsHdd9zCm4ehl5/O1m1YE4TF1yID0CzKLtlRThJn/oYIdxjSB850RSO33rfzrKu5S+6CjhobGzfHnrSY2FZxv/MycgZLJCZIpJGdIFrItpCyikKmUxpmyGDW41/4+67RWqT2XeqGr8WMxpolxZGN44oFPs5dO+M59f5mfe+UzwuVAjKyqALGYYTVUEtuS5xq/omHCfN8LOiZNFDE9cXBpQvdSLjdkF7ngXiP7gcPxmG57g2GzYRjE8HhSoamYopj85USxIsAeY09KkX6xkN5B1HzJ0HpMrXVkI70XpSB845SYkuwnBui21zl94zKbilkayVsNjs56jAt03YLFciW8tX5BCAtst+Dp2z/EHeklsI7NdmRKV5m2A/2VDVcuvsWLF1/ljTfe5MqVq2y3g4rkGNKLz3P9rXdTnn6Mdan6EeC2Cff6K4SztzM88z3CpUs4i3Kt5HMYW+j7QOiD8JNzpGDoxontOArfQmuZpCK9o9stm5M165MTNus14yD5r7EOH2RNqpxlR1E+j2XVdeTlEovMTW+d8GzjRO8MffBiPOYcXRdYLBcslwsWt6LQlK3riG3rjakbz+4apfvRLEJrm+CqoeCK6v5qLaSunyDxYeXNzYLb0gvYYoksMbp2kaig7mwqIT0oaMxScFVk6r2/wtIZbrznVzj3wpdZkoTHFDNdN/HWh/4GB1/+HwFDcGLSia4J5uor+FdWsD3GTifsHxyw6joWXeDZez/Jh49/1ESRizEECkfTMZe7A44uv4hDavm5csxLkj6OXDAOFldf4cod72H/4lPKRwdKjb+t9I6r2LhwnOSrtV65T14FPndjCLjHbXgi7vOweUuuULE1Muf17jZetmfJPhLHgf3NkzgVrrJux0TJVizLsHfyJtdP3cv5y09TRaQSIkTUv/UijIJr1EDn0nv/Ioc//iPSZi3CbCkRa8xoBCeyzmo9LVFF9pydua9VRMjqety4d0hMnrLqUNxUR0D7a6sBdiCEymF2ynG7BWNFVYd2Xse/M9pTYtUIrKMPXmInJ/3oIvoqIl4xZeEhFid1KGMI1hOV4xSTrN/V9EiOnf1ckj9AtGC8ESOw2YCu3h8rMVrfsQiBzorQFFXvQ2tjKUai9uBXnpf07JibOekguPbOGbXYxRkVvRYjoSowVfvngg9iamQqV0vjod3r2paoyoNVwbIaA+eC2d4gPPsnRGuEj2/AFsGOnAvCfywqmnblVeK9j2JffLytV0lF46vQnnUeY5WbkwuTxlab11/k1Pt/nu1rz0POjWMbvJd9P4lxxo3HviA9R9qPZowhPPQhmLaML/wAkHUwRumLTCnhXcQ7e5PpZs6Z7F0T+7IVwzY7/E5dZ4yb+z13haYqZ0vySrg52S814NVpOOfsP3Ef/jnHn1poyhhR2ZJHbEUqay3OlraZeu+4/eQ1Xj79Ye7eXqQ3eYcQXQe+ZlBt0M3JZo2wZX+qO938zPbn+m2uwCRaWNagsT1Bg3yZOA7rAt7B6A2Tk2ZC7wz90jNN4nw1TeKEXt0YTc5NQdcqcYqSZSEA0jiySRNjVYGk8FA5Zi+vuG16kxtxZBy2DJsNcZo4vPwcV27/MKsrL+CGE+hmp9S+X0jzLewsxLLpNPU2UzMqN39vJUE3tj4EvBMBHd9ETH5ydtrWVD6PKd3wk6qElsh70kt8g3v46PQEQ1oroV/JYUmadkqBxw4/gL9xhX+2uotPrL/Pft5CU2qUJtsQqiN9wFhPsY5sxWEOa7U7T5sAnBC1MYb/96uH/Id3XscX08CfjAhBnGw2XLtxgxs3jtlsN01dMqo7c8xFnLasDq5SE/db53CmbhxGRaYUOHYiYGNdDRKcBiEzOd5ax88fFTC+Ff5ngpqCGEUXkVbg0J/XAr+pM7Slp0gSDjMCqERSClUxUQTP5P0KImLz6GLDl9b7fKi71kTpmgJ3kaTgiJEPdtfYFMdtbkRCeP3PwnvCMaV4cnGUlEhZxknyXsE0IRQNw0ROmeCCuMFZae4WNeMK6ug8cG4G1SoRRhPwOeiS61dqetME0TQeKwVM2ll4RaVyYRPv3592BlZFX1XMohYgU5Jm8lqAqqIhZQemUKKT1JrnRr8KLjZVZL1PpZJUMryb1/gOF/hoeY2cJ0ySwrU44mmwqglxdTVoyJ+BqMrAlViZ9d8pCuk0pQlxQJSgVsZtBfvLzudWgvktdWSdC/NaJ4fZuQQKxGjinXNBehoFZC0Fhu1E7y3eBYLrVGTK4Wzg1LTmUkkY4zk7nWCbu7Bvje3WWF2X52K2qeNQRahwnmID2YhYWl3756Z924gzjYhjZCzVuSqjWMUcUoIcMTkqmFGo2g4VS98VueiM4RHe4i0TuZsTrJOAL/QL7o+RFRv2ysBebVwmY6yCyXpFm/puyS2JtVoklvnYYVzgs/EO3tsl7vaA60RkynkNAaQ8UIHGKpqQ40SaBnKcGMeRr+T7WW/X/LF/iA9tv8VRukZ1eJji2ECUEc9X7vjLXLjyQ7514dO859nfag53MvdmYDijgWjw9IsVy+Uei9Uefb+kXyzp+iWh7wmh4zVzyP+fuv+OtyW96jvh7xOqaocTburbWeqW1K2sVpZAEiIpIBEEEsFkgzHGBOMxMPaMMe+LAeMATpjBRJsgJKOEZCGUUUS51d1SR3UOt7tvPmHvXVVPmD/Weqr2bYl5mZl3zJ3qz+577j377LP3U09Y67d+6/e7yx7ka+dnZC04NzT6l4aGQjIrhYMS4mQlDEgz4kobxyN1ZTRQLerGUtI4d1WdX8AgQIhSgBFUay2OyxI496Gn14bJXsUhirOzNQjZFAPOUDcNB7e3OXD4MBtbW2xsbuHrBrO3z2LZSQNtVYNxmPtuwlWefPxuDh46yMbmjNp5Fst9Tp08IY6pkxnuhd9D/45fwZuEb2pcVWFO3kkTOqp+F7s4LedaTkSgjYHcrghRRKa60DPtJ0zqhmlTk5vJIFjosoAtJU5PuRDAZHd8br6POYGncRzFsXWspEpmjRO135iVjOpVxMIOgLDmNFhbimWSCMQoY9v1PW0nDXgxg3UiWBexTB+4DgNsbG+zYSucn+DqCcZV7C1XhEXH6p7PUT3m2ex85K1kX2OsxU0apptzZtMJ1hpWqwW7u2cJnZwRVe3Z/s5fghvfw4Hv+WWqd/0qy8WKvf0le7stfZBzsPIFEC9TxAxAouBaWjYpgHyKkJyAWCoQ6a0Q3MiZ3vZCFNUGTVKi+9wHmb7wNXSf+nNZLXokJZNJSfZffXGJS3LScdTm9bW8o+RZJp9f6+zQkSO0bcfG9hZ939KFXkmwkjtEUMG6TAxOznR1PsBEjJkMYg9gBCBTUb7iIFAcsEvSeu/VX832gzcxO3M/OYkr4cF7PoNrl2w8dJPETCmRQsv0lo+SNy/CHbuFHrBJwHV77A6WT3ox9cn7aU+fhNRr/uOpatnrbnrGd/GMG98wiM8Up7jTW5fw8PRiXI6EyaVcdPp2IK+ptZtBTX8toKWIUUVX1qeQzaXRRu55ykUAr6jNyw8/Zud2Pn/giTzp9Oe00aeckWNR6mB3mgebC2jCklm3uxZXfPE1zu3SkI6+npwRAyib8/D7zFoByJwzNx8pMMUwXuXvTknOru9H8CkrCOrlec6K+McACmFE9dtokXfNjWOInyhk5vH9r30aDNIcFbOAK+LSl0kuQvYYBOhyA+nKD2N73lxrS15EphUsXQPgjYFLvurbcAYu/KpvZe+jb8Hvn6ZWgYfiapGz5Kqu7TFYQoxYa1XMNJU0fMR09PzAWHGD6wMprwg506fEKkRWfc+y79gMga2wYn9rA6ylriXXzVYKYVmLqyknBSKliJTGXyI7nzFDg0VKQckBeQAPS4NH9I6cpQCYECEmiZvkrCuCvlgjpO018mXBjb1zeKekXSUviLttJIbIquvk84WOtu9Z9R0hRg59+Tews9hn9tSvZOfDb6I//RAh9ATN+UniyuubKUe+/oc59t/+jRL98ujIEQshS0HcnAaAUmoARp3pFTg3aEFACyVlz7Sy32WpAlMak+umYT6fM9/coKlrfCXuKqmAoTrNhdxVCpWZZOPguug0T5NcVH4gDdOu5Ct2KHIP39f7OmQ2xqhAgRHs5DwrJIvQSU8M4tATVOAsJT2DjLoOqUt6iX0md3yCtNqDu66Vw13jJ0PGxpb5qTvYu+BqDt/xYRUwk1wiY5ifupPTj30hk+N3EJa7QhjKYDuPr3vuv+bbOHT3tXzqUV/BNfe9nz5GOhXZTwkOzixPdpkNb5hGaXBNxd1M8YuyB4779dreltcbQuOwj8seqwWbEOhUYKNtW9pVS7tasVgsORErbr3giUx3HuSei57O4ds/MuzP0ggg4iIxisCCngwKqiNCxkYI0CUJkW2grIesZOcibK2AfTmHdJ1LX5CQ48V0QMm4KiLonVWis6X2Ij5VV57aOfBFsETXk7fqYjkKC5dmy0JCGhpNAFMmO+P4ljMluQwaiwzYcCr4dRwfinOm+EiRqfGczwW0Gm6fNgOYteNhAN71vZ1nawwg9EVoqsQ3GvsWIs/aZ5bP+0igdG0M1v/tr7rWhsAM9+kRxaZHPN0YESNz3lH5ao2YJIUapznwKApf3o66muUiOqVzOGdiRv9UAkoqFOYwYKAxrd2znMlVQ/1lr6S97Xrc876OvXe9XsSmVACPW29gubeHOX0cs9pTXQPZY8kJ99kPUT/3JSz+8s+gbSkCts45XPDUoRfhAMBYi/cVTdfQ9f0gGCeCWYnfOjHlxy6LGKf4JNrIqaNfzu31cbQpqdt0JQJdTcNk0tNOWvaj5cGLrmH68F2cespXMvv0u+iDNLJYa7EP3MHyic+jOn4fuWsV84Xmzuux/YrJsdtHQfLZJsunfzXVifvonvoiqs99SONodWU3/UCGSznRhSB76IB1ytkbY8R6aZqp65rpREQaDxw4wOEjRzh64YVcdNFFHDlyhO3tbRoV7DnX9eh8uMbPRR7FtQacQx2pyUn3YnHFnkwnEi/MZ8znc5q6ErLT2s+vViJU1batCHOrmNRyKQ3Fi8X4aFWUKbzsh1i98T/Sdf1avcPgL76S+oqn0O3v4h/9FOKdn8Mjhdai3VUIHylLTuScpfYqvJ/Xov9h+9UCsIoQ+soTQsArXi9CbtLCKIYiJbEueGHZb1Xot+8JXUenn7dtV3RdL2JTYTQRadueVdvTDiJTIk4VQhhE23K5J3qe2MF0wikWWfYUcUBMSZzQ+tATe5mzg/iyWXN2s2uiMs5zeHUX+97hvYjqOwPGqJGEEdH0qqpIqZE8M4aRRDeMq2AZQ55pNX4zRUTAjM6fdowvyrhJY+FI9jV6KBVhraF5B0YRuiLaZmScxFyB807IDRjjnJy1MRFC6Fm1nRDp8HijzsAgYxojbRdYtS3tqpeGyewUm7NkNRcogirYUs2Q+CSbBMYNomEmGTJRsUoPuka0N3DED5w0lJmUyTlgjKEPgSY7aVxCGi9E5lFyrz4mXIo4I+YyxooIwL3zR9G5hqsWd0NWor2T9uyUpDHWRiPGVWs1IpOtuHuruD+UGkeZC05nisznUkdKKTFtGg6evoP5wUPYyYRgLNk7Jk1DXdUkLNvLfdrVPunYzaSwwtb1UCep6poYMpNv+lH6//6fB5LGfGPOpjc0x+9i0zfEvCQcPITNgRxaiC02BbzJ4nA2EcJJXVdUdUNVT/BNQ93MVLS5ltq+mhmZyosDitaORzzIDA1sRgm76Ihg0BqciqVrHJiiCgKLw4409roA9LqX2HOwm1LjqOqaadMoWcaR5xOaSYVvPMvdHXLXyhzL4op2Pl3Z1vRI/p9CpMuGpYPWOPpsaYyjoqaxFuuiOJs6I6ILdQ3GKuEucG5kApCVACp/K0Kw5CwY6xrWVbCWIn64DqtlI0ZhpR1vpNwbLJFUyONGiLXynTUBdjPiWMAgGjaQrod3O777nBmaBnV31phf4s91PK4cbTFnehU0jdocgNb0yl5DtuQcVEhbzlbnhCgvGK40b8co1X3rhFzn1FxJxNc83nc4X4vQlHFDfmWsECFvbo6y2/c84OaEfsHBfocLw2lWTDm0f5xl38lOYC2X793HLC25sD2hBFEzcA5SSoQYZGz172VtxxjHM0bPm7GBsNS+SqVfsBbjCtlUxlmcos2AgUUloEbMmDuXCWQgWwsmE4mErG7eGm1kPbrPuzKZc+QUSFbcHgu2M9bKyh9Cnpd9XmN+kyHGoWYp3yuYQhxyXhGNL3ieiGHHEIhdpKpqiQeykzpXHwl9R9+1dG1LDC0xS401hF7MvEBNu1TmUfG2HBMx9XK+jGoYWvrL2ORU8CPqa1VkFwfcT8h3PSEFYgj0ij0O4ppGCP6pTZiT99EduJjJvZ+jD6s1wfw8LNL1/B30/ZDJ1YTFc76VA3/5x3KO5/Hbi8c+F9/uMH/wNoozuCBwjoE3oHlxNmARLMgo7sH6noXR+q7hkVjAQOhDzuEiJiwYTGHDKSdAdqzhdcloX1LWeVA4PbLZOFuaSMqlRMjydR7rDMP3C1a4DlMZJMlc4wWYtPaqurkVzsz5iHesX8Ils3hvqZ2n6Vo2Hrof5xtpPMnKhzAlnzRgxGHUiuID3hoRVciZkNaWaU6CLUTo+sCqC7Qx04ZEqyZIMSWSkbqcb2qqb/k7tG/+TdnPV5nUBXZOniKuVljrWO3t4XKmW+xz3913ctx7JrXj8MEt5vMJl+/ezdYVV7C1NSO3nt47Yl3R2Mxi4winp0d5xkPXk1Li7M4Oq7ajnkwI6TR333c9+7d8mp3FHsvKszGf0jTNwD9O0UAyNMslzfEHaA5cSO2nONuQs6PoRsYk4pvWaLOclXHOUadjBGPzYG4hjdkzZlM4dEBMnIxxnDzjaPuOLrYYl7Aukl2PN46ampQzVSO1QVe7oZk6I1wlWYRgEG6NU/FtkyMmGWzhN2aN6At2khM2tGQyoTfaZCyk6RIXRo1/bApYouQV9JK/A1aFSjCl6UI5VVrnMLrJiCO1xdsaryJTBo+lxuYGZxq8mVC5KY2fUVVznKkwychr4zBqOmes5TzTJWXg5+QRSyz/FdH00girUlOkwTxOm/bMuCsCa3XnPApMmVFoShhQwmMzikdpaVLfkRgmSCyQRj4Ghh7oc3mIIP1wjpQnlrOBgu2JQYsI4dsRy648ja8U3xZ3Zqd1CqugZuHSFZw9G41jyv6tn3v8ch0llavEr49saP/inbfUaXMpycmZMtSI9eTRlGgQhWLEuo2eFXLk6XOHQDiv4T95+Dk9woZGO1POxDIGrGGsBc8v98uM0bsMvxoS6X1Lw/fL2SbvyQ9Y8NprJWn8dzCS8WMaTvBzcOcSY5kywmUENWY8j66+60jJEHqwpsZZRLB9WDfK80TXoDHgICeLt4K3lWYuchqwI5ss0RudtzJnvYXkLNEZgsnCG+nFYVtE2SIxBRGmINN3ndQWQqDtOmnaV6H3jJH6dhRMLYZE32cVKtJaehKMo3Y1xmYq5zAI735zc87W1pzpdEJTV0wnDfNJzXw2Y2tjztbGnCvzA1zQTLnaHGM+38bPZjyJlpvCBbzyUE8ywrO8fA4vrjPTGg5PtJXNCtdzvY1dREg92ISpPC43VAZsckTTS402QWUtde159+TpXLP4HAfqk/QRUvLMm4YDW3MOHtxk59Aep8+cZn56wnRaK3bb0y0iXRfpexVsM6OYnlG3F4dwcwYBJIPW3TOBTE5BeCgx0uu+5CvHbDrj0JmbOXz0MJvbm2wf2GZra4uNzTnNtGE6mzOdzyVHc2KyY7xw8I3u2TYzvA8REh65VEPciLxx48zAXcsZbMhUlaWuDKSOSWOp/JR5XVPbhul0StedbyI4pUYqtSbJdwt3vPB3K8ELC18XhtqhNDgr36EISOhuE2Mim37YWxLCePHeS66j97eqKkIt4rnv2H48V+8d42MXP5PnP3gtfQjYthsMj4xuet45EXWva6q6UixAhDidtfzaMc8/uFQbh53hCTO4Yc/wonmmpibHyNFuQc8GW2FJ0+0TQuDivQe4aX4FV+7dT45B8VCnXAjh4TlreThNuC5tcdAnPr2Y8rzNboD31/kVT3Y7hLVaa87aZ6Jr77ibcld9IV/W36+N2aXKoLmVHjKv2z/Cdxzcw2v+4YzhyfPAtfs1L9zqKSYt1sJFTebZRHLomXSZZW8xFt5jj3JZe4a31Qf5xp0TWISLEPpSa+hUtClp/GqV32Gpm4rpZMJ0JrGz9zIPYoiErhviM4k3lBugGPxgMmyLVApIj0L5nIJdFM4CyRMTdCGyWHWsFoK3tu2C0K/IsSfHjhBaoopMZSKrxT4x9WsY5/lz1coNsAXAP2eujBiGiDiMOZnJoziSNYZ18Q5Zi9rvARKjJ4bG6JQNJuo4p0SfLN4mklORKZymMZLjJxJmMAkv9XF9DwYq55g2NXVVY47fwswb4v03k+dTMV81iUUr979bLelCS7YqGK6GRZWvqJqa2c49rC79Sq52Zzh4cJtpVWNTIm729PsL9nbOMvEVZ5zFWyNijiqkFEMgPP9VuC98mnT6AYoJjJjUSc1Ixkvh8JRlA4pZjz+NA9Z6QyScLs3mGlsgY3PV2TtYqrBqU9eE3EjDvskUIdViVtJrPTvFSFYFYmvEINs6j/EVrmowlZgzW+twlz+ZajqluftayFnMGuqapqk4fs2rOPjwzRx/9rfz6OveQDHJSqEI7ATltmUxNvMWny3ZeJIRIYcYo4heFbEWStzoyF56jYwZayhgSNYxOXkvk8mUqq4Fe4nhnHjyfFtlEptBuXfDBy0h+FoNaBRSGa8xzcgqIqXxuS3isgy6R9mMmKzw5seepfWB0VSA9f403VxxlN4rBGMe8HQx5RKRXxU9y4wcgiw9OpJLlc+SMdLcpHmOJCg5a/9IKoIe+p5VmCRE4Z+l0w+Rs5hYUji/a4Nob/8kKI5t9Kw5FwPT/GkYhzwMaHXf57Gxpzp1PyasVOns3OfJj2ZKv1fMUUysTRyy4zR8TzkUKXLvC36AA+/5dcJan5gMseJ0GRwW//jn4i+6ElM1eO/ggVvBeuxXfy/m/lvw3/Cj5Lf8BxVlkxpLSnkw6TSKVaaUBG9PSes9GetUfN6IcA9Z84c8CggM88Cg9YmR4yXlkAqX3cDXEpON8y1WHPPZYR7rX4bcepj84y4x9hkqtpt1NclCotRKYFw+ZS2WNZXWcvbSGaXTbchlCv9pnRNV5lXzrJfSp4x/6lfRffLPiKcflOZ775m98scI7/6NoYYjnIUaP98ibh/l4EOfo1mdIs+mpJg4c/WLaLol7dNfTn39O3H7p7FZzkfvHM0Dn6Oqa+rKqflOJX8vj6rCuTX+eVkDCUoTfBpw6jzEhRipPXnvqcr6LHsZUq+KRXAglXEyg/BAiclkuNcy/xK7FRxmTWx2mLjDPVIxuwLcrGEzphg7qFm6vGjS37v+M+V1UIwm63ZVzl+JZ6zGoG4Q2UR5KAUnK31G58zQ4TMUY7jSb1iOg4yuQac94o/Al/6mL4dg78kYerKY8eZIMGI35gBvsppJGmK2wu1ImWQSyRpEPHrsB85aAylsCOAcvK9cR87cxj2XfjmPOnuL1NxK3qcCUyQzGOgUCDKrcFxUUawymoP4Rx7zxfFDWmzlBKtM8hkthuw8+MTF7iFySHR9SwodsWsJnYjK9iEQkwhNxZS1buPpLbKuXBGo0fUMsk60dzyDrpNIFwJt16t4L2qKUVFbD5UYK0QM2TiS8WAlfqvrRvKgqpGefiw3XPzlbD94Ex++6GoefctH8VUDxrJYLDmzs8fJg1dwaidw9s47WS6Fmyq8T09OHfHzH8MZ6YvHGDFO687SX/dBuq3D5AfvEDzfZJwbz3zvLLGpqSYVxkEfAt639F0PIbGaTpg4MaiwRnCW2PeslguWyyVd2w01bOFZOcV2i4lEFgGRDBNnoampMNTWM/EVq7Yl9T2Vzcybikldy77nRUSlrip8Vf0/s1j+b1xF7Ed6DxjEONHPW+IkUh7ESos4lRgBqRgYSYVsVbsBe84SK/1JTsW8s5G+CEofU2btYXAqLlUheYPoRGScmsI476l9xfTkXew//sUcPnsPc29pfAVZzoAvXPMKLrrvOo69+G+z/aHfp61l3RgVAu8f+xxcjkzuvwl34ACT6ZRp03DP1S/h8r0H+OTR5/HiM5+WmnvsSaslF7Y34+yc2ak76XM5B9LwOaKgJURjOPSAcGc3j9869BlardV6X3hL459FEGrdDP2L66yGZ7mTTGPLY/MJ+gFrktc9kFc0BloyB/OSPPyeyO1Pew2Xfu6tuH45nAcAR47fzJ2P+RqecOs7ZC/VfpxTF1zFMjnmd1878DWOP/UV1Gce4Pgzv4n5h19Lt1oqBzMMuiy+Ek6v9H8VoSnUsE/zurqm8pWIUg31HcFGcilA61U0XmDcZ2WdeiqfVUzQkuP5J/wLgEmK44L3lsp6pFYixvdVXUmdU+Mhp9zP0r9lchbAP8v+5azBxYRPYt7XB/l2VIGuEUPTsULqbEIvUCyvqobcCFDMYIzVaufw1qjws+ZOsWhCFANm6dWxSI+u9U5ysZJ/MIbHpZfUW6k5iKG07LGCKVSyT+qjGgyFjeb7ZsgfyWv9BIV/gYrW6XuNKlCZSuMZBfOQXnpjLK4SbHf42bs/i409/R03KD6rmHZV4Q9dRP2sl2I+/lZiylgrIo19CDjn2L3lWgiB/sG7xEzST/BOPkPRFBq5gnLPJ01D87hnUF98BbgKb6C95ybakrNqz17MmRwNyUaCkVpkiEFeH8V3FNOxZpxDA5aztj9YK3u4yqQykD1SmS+aw2qeTLmHQ2z610c+/vpCUzI62nSqrqh6IEkzkQgheOvZXpxg68T1HM4tjQOnAJbFDMraVj+yCrwJ6DHk8gWEGLI1ygwaAOdcvmUoLsWlqG20uCgKs5rEWXF2SLkiVj2+dSz1dWKUZ9lKnPpSU6vDnjRpDWrtCcQ7oSQKKpgwLDAhHVdetsmjYYdlJyJTfbekXS1plyuaxUku2DlLvTgNJpCrKRiHdTWuavBemhKFTKiEQuvXCERZ77gGzVYcsXAV2Er+dBW/unc1P33kPvAeiojTkCRJMVYYI0KaFofyUVlSBMWk4e/qeB9NPM0l4ThdH4Tw3wcVjVDl4AQXrm7g+guex4UPfZ7d/XvY1yRaFAcb6mbKdDqlaSY0TYPzNcZX4GpwXlxoncOqEqJ1ciD/3skjfMXGPv/+3m1+/OhxUhJSasyGNkb225ad/X32VktWXS8Ow7k03MWhudX4QjA9/xKqRh3FfVVR+3pswnUVxqnqvwZnRY2WQiQ15f4KmDQWyXVjQZJs88hNQZMuOYIYlttIMjj3zwyQxqKoWSOzRnVgyRiubnoqdrnYLjW5KnCI4Wz0vHd5hG+eH2NOYG4CKUlSXgC3AmBKISFrkgzOZXw6lwTubEcMQQOzUgwsc93pe5SD3HrPkHxronWOmrcpQbEZnicb8TopImFwMBCsHAVTk6VV0NdzyZ5pADMFFC/K80prAAVTUbeF9Ybk9bs2aB1YBkcAmdMyt6/mNJsmcqlZDD+Zs5AQCiw27q5m+DetrwyJccxZXMJVXCWow8sA0BrZPwQEWQeqx4PqfFtjcuXBBfaLrzJeEtwVAaY1PIgxmHej07Z1WFthjWczrHjSmduw1rOVV1jvZX826gZpFPgw0uw7gFkiRSlAvX4vOyd7eikaDAQdu/a1vCcDYIPsbeThfjhTHDekcGY14M8xq52WkntSCdCgUHK8sVxulhh0X3ZegGRruTh2Mpbqlqa84AEAe+v2V/C3Fh8bfrfVBMXY0tTjwHnely5hu7G8f7XJy5sVR50F68e1WT5LUtKsBl4hSENZ38rZenH3BT4+fRJHdu/G7J9iP3eyV6VAyLFsLxh6Hnfms9xy8Bk8+YH3YK0jpV7WZSlYZWlXSLoHWOtolytWywXNYo96MqWpZyo2NWFvephr51dymdnj/Wzx1dMzJO+H5NCa0ihRBDsk4EwqhhijkLxXqxWL/X3a1YqckwjnleZavaFCSC+Bnyr4nmeXd2Vem7WmdWlOKE6RRbiUJE3qVVUxxeAqdX41ImLoqpriFmW1Kbc7dCUnjx5mvngX8/kGMWZRIDcGHvyCELAFfqaa1ExMollM6BK4V/4U8bP/nck3/gwbH/7PXHD4IFsbc0K7pFueJLRLaZa0hsqoCJLGE22I5LYV8F4bIQxG1Khdwlp1qvNZHOmUgJsV/ysb+ZPzQ8Sh0FZGTWK6PDBhk0i1pwTJQY7iUOgdNgpZIgdxsutDL2IcrTTctX1PShnrHZUR0cU+QR8yxnqmzYQDs02m8y2m8y36ZFh1gXTiJHuLU7Q3f5R47G7yQ/cw39qiqoXYNZtPqWsvvzNFjK/IvTigdyGy+ujr2XjZ32Pz+rcwP3oxu7t7OH+WvjtFip2C/nHtHCpHccatDUMe1ipDvG1yHsBBnIOqGv7NACGryxOZ+IXP0PYr4v23KtHAiKBATkQD2ZTURwuFlKQ8ibhX2V8REKOAPefTddnll2Od5fTpU5ATp08eJ+ZEH5MWA8XJvShQF8EY2U+FjF2KO9kJ0XoED4SkUZJXawz3P/bF+HbBscd+BZfe/B7qnQcHEsfmsRtFDFEwSWLM0K2o9r4ggLsRYD4m4MT9VJ99D3a5w363ZGlFvdt5h68sx17xMxy+9i188unfwRM+8bsqtirkL9PfR64PE6oJ89P30fdB54u4LRbhlvVGtdJ0Y4zFhCjN/krYcEoMNsDHDj2Lx+3ezuFwciwIkLlscR9VXHHB8qE1sELGsjT+z+NZHh9uxKbAJCyG/R20SS5n3nbla3jlHX8CGG2CG4v8/0cNvesFiVGwEIwpxQpzzvwsr1deW/JiqOsaE8IoXhqjFPCsE7DYWgHTrcXZiLMRq+I9KQqhP8KoGF4ArMI6KEU+JatgjOTOgzi1OoRFZcgm2SNtheR962jU+XYZObf7EIRk6rTwp3vUmc/9JZe99DtZ3X0jebEjJEUVSQPZy7qug5xp23Zo7HbWDaSHlNQdPRV3qjwIUWAkvgqgZ1A3xOchqa+9NRgvsVUGqsoNhUocUvTKWQWk0PeleyuWOEwzyZtHl0kRPXJGG+utkO18tCRjCSapoJXCVlbydldigBBJ9AoSJs1TpKjtXYVzAnTGJHtXr6IKi1XLft+y6HvaFIm6jk/e9HEueNGrOXXbtewcP0ZqlwMho7RlWWu55Dv/Fx7+4Bs4+u0/zd1/9EuyB+o+ZLOC9rmQr4ujdUm4VOUfM0AFpQliIMNpPpd0f/UKnk+ahtlsxnS+wXQ2w2sB59wCYx4AV1mr+msphWOLM9IAnjXxyFqMHgQZDOQDF7J4wguZf/yN8vOm4Dfj7ynCCNlIwcak80s8QM6bqCJTvYhOqdD7UAouKdJazR+guvd6QiGL5TyIOKd+xeZ9n2Vy9n4mOw+KS5F1muYaZjvHsF/4IHbvJKlfDfm5SQkbI/Mb3s3DT3sFF930Ts6mXbog8U0ISQUtDVuTTJUrOo2/10k9kLAxkYw04K5/b2wOVaJtwdsKaS7FQWym73raTsVFViuWyyWr5YK4aJnbOzm7dSlHb/ug5hRyDqJ5a0xZhdYjQqAeHbFQl13rq0FUoYgkSD4ooglSvJC4vY9BHcJUKEbJLm4NRnG6V4jbuxBN6srTVJ6JFhFSqqGuB9Erb4zklsaiNs4Sc6+dZ+Uq95nxSJSruGUMZ78dYoFy3pFljUfFsAXHLkJL42uOJOhSEIBzEZgRXB9Jevmc756PV9+LmFrKccCockmKecTjHJGpAYx7xCuW5/9VV0Ed5csvJTb1yGeLo7EdxJWLWGMRQ3GuFMPX384YBxVcLxcyic7rshb6oI0yOWNsxIZIFSK+iwyNUymTzT7+0x9kds0LOPWu19Pt7wuJVeMgA9g7bubIt/8oyw+8hXDq4cHxyhjIt15LWuzQ33PzIHYGInjQXPk88tFLCde9X3FUMzSg1pOGZdsy7TqlOHL2AAEAAElEQVSavuePdg/ziq09/v39W/z0Y9JIUDN2aJgsQlN5GMcsAic5UYeGSRSMIWUEr4+7XLz7APddcAXbn/sgwVjaK55KqmrqWz+FO34fTYy4xVmSipOVcd5/2ldQP/CF8Xd1K6r7b6O/7Cqaz31QYs2URlGFfK74YVD3tT6IUUVpyshkcbKuhHhdTxqmsxnzjQ22trfZPniQ7YMH2djcYjKd4n1FzuJWdT5dqWBrQ95RxGvHGhWmND07KbY3NTN1OptOpT7iNYaLQVyBl8vVIDTV9R191w9CU6vlkv39BXt7+ywWS/YXS7qux3zLP2LxvtfRvOYfsvMbP6vzRgvaDz8Ax49RH7kI7vwcRh21iohbzgiZK8mcCaHHGghVIEQ/EAApZahSyNRczVeOuu/p+wrvg35WRy7Y5BqurS8xlKbEZEHnSdfSrVaslkuWqxVd29G2nc6jRB8Sq1VP2wURmBrmVVQnLAZs32k9SbAd94haipJdMZLnRBDBx0wXggr1jI5cBrCaK0nNr1JTGPmc3kmznrfgXR73BcBYwx2XPYfth26l7u4mOke0lqTOVZJ3FqOJLPVTpGEoI/G85LDFWXstIFrD3Ush2BqpExTx1yL+b624VpW91btCIGZYuyafX+sLpBlI9rysorjQdh2LlbqbeqmVMmBNsgbbPsg8iVHFB5OIB4lykJCYjBlEc7MWw5zikJAlBgpCJkop6v0XoQ6Zx5IUWi3Y2wwpW4yRlhkbozS+W3C+x0aHjxGXEi5lnDUDQThnpAHQ1zw0v5SHZpdQ5cCd5goet7pPzoIkbdR932O1QV7SGiX0GKeknYJlWd2XImgIZ/XMNDg9/uTzb85mbB3c5sCBLWxd0WuOY6uK2nu8lZN8Pmk40u0S5xVua5PlcjkQO5xz2Nf8JN1H3szkNf+Q7s3/nq3NLY4ePcrhg4dw1hL7fdrNOX1loO/JyePNlMpKbCkN3Y6m8jRVRdM0TJqGyWTKtJlSTRoRn5o0+KbB1rXUF5xBuSTnYCxjzDYSt8bwoaxBS3EcFPwGstF7bMUx1HmPU9HOUVi5YFXSMNio0FTdVLjKMN2Y0kxqzhjD4uxZTOwVKzq/6mTBWGK0uORoySyjYd9kFsbSuYqZNcycI/mArSLT2gtU7QzWeT33dQ9JJZaW1y7xdNlrBL+LwLnCeVDib/m3lNb/PrzQcI9LSyIGFedj2C/FyXaokg2vnclam9HLjM9JAwhtNATO58ac6z+k/xJzHn8uZyXwqhu5BLjYbAg58+6jz+Mr7vsghCC/Lyb6riWEwIlqm/sPXs0T7v4YfZCGR2l8lOcaa7FKHKwbIfp6dYm2th34ACKqpvVCYHNvyf1bVzBfnCDvP8hO6li1HfMY2NfGqbqu8L4he8+tW1dyaTxDTpnjzQEenF7IM3bvHHkiA36EfOYi+qFiPCareHDBInMu1g66D63NCWO0oeAR2UjOxDjmYxJjjj8bNcZMRjg/MQtOuW5wkkjDGJwvV0Dee0SEFFJpkMSspWBm+NyljlYEj3LOJBMpIu4ZM3rkGKNxm8QuMUQV6urplktWdl8N7IpbquJvfUe/6ghdR+haYr8a8mSG5nYjbqJaHyn4RanPFQwqJxGhcRhI/ZgtGkMOiezi0NyQEuS+pxhd5BjWBEIBMpYOwwJ3xycwkw3Mzgk9J9eIcQA5s/fVP0TzF/8F068G4Xt8xd6L/w71De/j9Jd/F9sf/gNdupnVlc8mTmasDhwldUsmD99O5RTkzUkca1Vwt+Cb1hitbRtIVhs5H9lwVs6ZAlzBdc/4Dp5x3Z/ovdZYe4iC5TUSuufYUoPRRjzlhRQSiMFirBDtpaFUsPdC9EWrWwYziNGX/WowgSjCeYrd4AymNPmYPHydBoBI/8xGMOco4JzR+Xq+XRLeSG7uFcMuYpCDOUYe8TtRUkKFZwLkgDWjYFIoeZ1idzFl+iA5b9v2LLtAmyTe7PqOGIPs+8ZQOU/z3f+Q+bXvZ+/bfoz4B/8G6z0xQOoCq+4MADkmqpywAcIyYb1jXs2Z1Z7t+ZStjSl1bXAmkoyIqhgD+9OD3Dy7ggvOHuOWy57JNQ9eT57PhMg6m7HqOg4cu5OWQG8yMfa0K8HBzcSAs6RgSUnmQuUaat9Q+QbnGqzxwr9Iaxig9GgLm9RAnzP//MRt/K9bV+o8zsQYlAJWUfk58+lhDm5LbTLGnrZbEmPA2BWYhZwhXkQ2LBbjDdEmEZbKwk0y2iw9Ih8dttd67XDme0h2aApyKescL81WmRxbQp9lzykiKqDrPQ9NPFJDTdL4bsS40hUslcLzUG5VMmSbMTGCtbhK8kIxpKtEaMDUODuh8nOcbaj8nKaaUVczvJ8AFR+/4gBXHQ9csLCIcWKFMVb25PPoytoUXHABPaXJaM1dY6ASMxREbLh3Zn1/YqjjaBZGEXoqe6EZnjPy19aRxXJuJNbjDUbzRH2MIr9fOgJff1XBt62Iy3hH7YRTPOT9Wld2TurKztrhc0hOvTZew7iNZ9Y5vz/nR5wj4/ONxrjjC41cL/nbWPtRuGl4uiunqRF+G0hteBSgKu9F69u55JPrv3MN9x1JVUMSVfikchaoEAvnIr9lz02MjXol1jsn9iszSZuUy5k2fDnMBYbfY/VelT3f2TF+H/gPJOXI6kxKJT5cO9/OsyunRNdGQgRjEikWkSldC4ofxRSIyeCNxC+2KqtGeEzSlAKkiDMiHFhZqL1l2ni5pTGQLFTWEAyI9qDyY1Igp0AOHW1Q8bgoMXnX9Yp3FtO7gPam6b8xcCpLncZYg6scFY5pNaGqnQq1ZTY2Zmxvb7KhvKPJtKFuKurKsTnd4MD2JrPpjMl0wjX1HtXkMFVTUTdTntN0PLbqecwGJF9jKw+V47KpmEVHEC6icnnlP41rnSNF4TcBigllquTxdFhv8MmSTM9/6x7No/Jp3j9/Pl/ffoKtuIDsCbXg7lvtnAPzDbZncw5sbHJgPme5WrG7u2Dn7Ird/SVdHwbhBMjkIA+XM1mF7r2XSR/7AN5AZYWXmxLeWjFzcRUb0xnT2ZSNrTlHDh/m0KFDbB86yMbmBrPZlNl8JtjEZEpdTeTzWrBUcsZgBv9pFAtJpcEwKUaUOqkja+zorSN7VKRDYmFCr+JHFRkRDMFkur5l88Cc2caUaf5rt6D8j7lKruAUx/F+4OBbW3i8jlHgpuS1OqdTwrpiqKW9B6C5W8T0hdshsUwVK3z05CAmZqCYX12TDTwvneTDW5fz7LO3431pSjPDe8VK43k5h5qmYTKZUFXVgGv/yrGGbz7U8y/vrfipizuchWfM4SKXucgE2lbMLD6TtqjaPR7ym0zylCP9SY60x3lS6Lgg7uO8YOVv3XoW351vHUxMqrrmwspwaYgcTxXPnbUDzkgS/BQdU7IbhARMzrLvInvbGdPw6eZRXBrP8vH6Ur4sHsOkgsuPJ/3r2gt5/myf3z59kL9/dE+aYg08eR45VPdcWqvRQgZM5tp9TxfhmZPMKklzW2fgSd1xPlZdxFP3H2Q/LshJzKTeu301Lzp17VDLMdqUJ+dsFqGpupiDzJhMGqyzyuENwq2LI94eo1Wev/JXnTRVOjWUl+NSC+i65pIdzY8EHxKh8BATy+WS/f19lvs7tKs9Qt+SoghDi7B7wpgkPREWqvr8a2qutanWKTduECBPRmMzOaOtUYwJo/V8bfQ3DhjX3xDjmEwmMhi6kcEkrReM3D0MNLgB83UZXLT01hKCzLMYAw4x0fZWz0w0j3QSAzZNzbSZUFU1eec+2vlcGiitoXaGHe9I20fxT/9KHn7XbytXq8wDx3wyYXtzgwPtCS7Y+wKXbFjmm5tMqloat31NMBafI7kPEAPOZJbOsmqXdF1m8YxXYnZOEp/1CvjYm2DnONbpHmbcGAsVwamU6bYuYedxz+aym96FRWIF4Wt4vNbGvPafeeuorMckq1+rkRiGqnE0bc0qruiT1uSSCCcbeu2Z08Zha1WsT2pluIrsivm75k6XPh5/yVXC2X/0NdT3fg5jnNauE/Mv/CWnnvISDt/2QYrYTU6ZECJd29LND7O46svZ/vQbBUtm5N4bzRkN0luXLORshwZO44sht+JwynWROpCYIwhH1ZNyxgWtoxmzJpJ7/lz/h3zlARo1a/9xDo8FGPKStYxAt6gxks5J8MCkuVWpN36RmEb5vSVi1ZzDrpG6bDZEa3G55IuJlC02xzGPjCJ+ZNb7wHLSPMLoGa7ni8ka1wtGNeSfKY9xqooppQHnLJmFjqFbH5uC7SdyMmN+yvARBoG3AlAbGAw/S4+re+gLayIxdhACMfoi6xzedX6YsXbIVYZmah2XO778B9m6/s956Ot+ms03/n9Gztn8AP5r/g7pTf9acz6Lffgu7OVPwIYV1d4J7HSK9RXmjk/SPuMVuBveS1NXxCCijSD3t+S5kmsIFiZip3HAgIXfwMAVta70Wmay9Wx+049z5r/9a8Ssz0iviNaeC3ZtnBgAi1CMxSZLSvaL59Pf8LUuNKUSUXDOihqO9LWc1owJcUEITF4T+dFZdc5nzcN60pRf8+I8/El5bdAcXEUFFJfN5KHHof3CZ5g+7xvo7r2FsHNCuL4GZq/6KfpP/3eab/wp7Dv+A1UtNcxq6wjLJ38tG6fvZnnh49lsT5OTiPIdOH0nJx71HOYP3kqTe+nLQOq2UrutaOqauqklN6trqsoPYqjOa763NlhFtC6puElaW+uU8yyNWK70G5WedBECl74q7bscetuMChCpCNG4nNfuon41jH8a8I9zcIk8Yi3l60dMDlm/RlCJsn2M58T4p1nDcQRrMgOeOPKEVexceY3oerFqoiA9iF/cv8ranqIkHYyxFHathZH7Un70fLrimgtL2UcS5GSIJhMNRJOFP4OaRMVIRPkOmeHzF/FzqU+v3bO8vo4ZcqtDu/fSPPhRDvWnMG7EtTIMXFipw4nI0XBmFLFF5eWWetjQ05sFd/uzx3wzr7zrLfL7gpUzLEkfsFOOn8NikwjyEnuIAZPiOQ+rfSm2iEY7R+0Eq3RlL1JucNZ8Q/Jc4b2ELNyWLgTaEJQ/IWLLTS1maU02BEQEV4TfPdlWZCPCUn2fBMdPmb4PVDsf4NhVL8R/7B3cuvuwRPQps+oC/WVPZLloSYcvhYtPYe+6WXmagdT1kAKHvutn2H3tL2mPs87rFMl7K8LZk8LFzKLH4JzBexXnrT3JRUIr93fVrcBAt2pJXaCbTZnVleC3XnhVKYhAToiBzCio6JwK4zU1deWxXvbqRKL3U2577Et5wo1voTaW2nsmdU3fS/3Sm0zjLTPlrlgBToZ45Xy7vO4zbi2elZjZ6HpLCt7pg6xYj/SRiUBQlvlqGQTxyvkDisEacw7vriC36xi87L+qD6J1OwkqtBZqrNa8EbEW52nO3Mf8jg+zFfdxTaP1ElnzVxz7DHc8+vlcdtO7SfMZ06YhpoR1jsVlT6M+fDnZeaYbMzZP3S0myb7i8odv4N4rXshVD17Hqt8jxUAMLX27omtXzPqHib2K22Y1/zNyjg/bqOaiB47fqvC1iPqBGM+sCy5WVYV3fuwpH/LdR8QSAwSfudqckTbu4U7Ket/MHU/p72PVtpjUsqdGfLc/7Rs5fP913PWc7+Oxn/wvkKMKyzluesq3c/VNb+NzT3wVT/j8WwgxcurQlZzZvhxCR778aWw9eAu+rrng4Zt44DEvZOvOT5EQ296u71l13bDX1anCR6f9DL0KLCessVSaPzdNQ62CU9I34Fk/TdePowyDEM4Q/2QtQZZ9V8XuzyEdnSdXNkmbJcBVwh0ddT7cIL5W+KKllmGQ/sascbfxpSerCEtleqPrdeAHMPAjNGAcOFDZKlfEW5yX3DxrT6LUuZTH6qVP0iL9oKUXMMUoehBRRJ7JQfY3g+yR1g+5EZRcU/cUFTlyxlA5I0JWXvbidcGp2jtq7we+ahGGNOsFLX3VdU5YZuQmSV6nvXSJNcEkPRN1LyqCbmgOmTK4Y7eKdk75Ldbitg9Tfc13Ye+6HvPCV1N/8u24viflrIKGwqNd3X2TCMfVExV61DecGbjgFumTb6qa6XTKrDuNaZ6IjT3TvKTd2mKxWGCNpetaHWeNhdUI1pDwsSK4gDfF5NIMGkjJyL0exUjHvcRgxrqhMUrxCUNMsx6rlMU4jJn+mf+anKq/PsqfgZxwuTilConWWyPAk/NUvqZSgZyN5Rl8VWFMJaR6I2CVw1AZT+1r+dDWDQ5QA/i8RqSBJKCisUNKb3RCD2PEKJaTFEw0KQ+JLNYPTi9JiUHZGWgMla3p+56262UtlgTEZCqPuA0mp405unhDFPKIJoVjeiLFuL6AOFkaaT2WkAXMi76mrhMH2h1VdZ+QbQ2mBtdgqym+aQTUVwGfk26LD/ur+ZZ0wxgEl2Lu8NsdyYnrBq7iV/afwPcffIhfPHkF/+ulD48iToKAkFPUTSwLsSYEUmeEYB7l+zH0pLgidCv6dskF4QSrGMTpeRDLUeAnChlwulrxhMV7Mas99vteBSayBrYO5+RgYb7Np694OS899gElCU/x9QRfS+HC17VuugJOvrw5yetPHeHbD+2QsyObmuwifczstj2n91ecWa5YpkwH9DHRdR1t19N34qDjfIJKVO5NqvCjtMF5cU3qCa4oPvsKayuMrTFeHxqAWG0GkfupJFJNHLIxo8qUgUJewwjQlfXfB5DQSHI2XnrAl0r+l0g6ixtXEWMYgittWLS6fB9FICQvyU2WQssiOd6wfyFf3pzmzfsX86rZgxQo0yip8m3Li3mWP8VFbjmsrgJQ/vr+lfzo5p1yYOqeYa0jhih7yVB4sAyO5WXMvK6Pcuk6OhMdr39wwo9eHtCKKyVYK885tzVOCH8lGTWqIny2M/z+A1N+9NKza81VDETQECNBm75CCPxB+wRebT+HV8+1ITDK6GY/3kazdlAV8N7k8bMKjlrcKDKXmhXGiBt2Vlcesd/TOTPCCueMRQEiJCkUob2ulwRUXOTTQPItO/TgKDIkg+ddfPfXuDSQz2ZwtitN+OuBvVKOKA4gxoi4lFXymHEeYz0bscURRBDFidCfUUKa/Hwhf9hhHpVOaqONklLQ9vLzA1hegKIihoKsbcq9MEIGGI6GjBTapHBnGMEREtiQ9X5lKRiQxzlL1uBzeHHKiWesKGMLSCdgoElydjsMr9t+Ma9YfJY/2ngh37v/ESGcWzM0otlBtKriedUe7wgX85RZ4EAlQWpW52RpPCjNqhmCvLcQE23X0y5blssFq8UC16544tnTVGGfPq5YpYgpQBBjwI6Fi/bvZLM9xSycItYVWENCAsbChEk5ceMzfpArbnwTk8UpEeaIPaGTpu+2XlI3IproVy0Xpyn3zy/na9t7aa2jSo18RlVgRoGWGIMUDYCgxOqUIl3XsVjss7O3y6pd4UCbbIuiKwwiBxglvp6fQlPVmtBUFAUzUkIV+UXJV5RsK6bTKcY5mulMhCZSoou690Qh/4SuY7m/T1XVhAOPYufQk9jYfYCzV38lB1bvJMXE/t4+fd9rU0dmd6dntVrQLmaEGKRBPwbCh/+Q6Yu/j42P/jaHL7iAo0cOs705I3Yte2fPsHPmFKHvhjhT3EiNdjRIUafteoxpBeTwifsml3LswmfyNSc/oJioJCuF4GptWbelkM5A4hsB3pI+695qPUXP8G2TF/D0/eu4MNwn4gChIwF9jHR9L46wuk/HnNg7dDXHHvMSrvjMb5CwhJgJKtTmq4rp5gbbhy9gc+sw840tll3i7P6S/WVLvbOPS7vEE/cwmU1pminT6YyNjbkKBUT2nv715Oveh935zLj/Y7EP3c7mJ17LZthhMpuTYqJrV9SVo7OCGQsIk0byRmYo5ltrVSxCAM1yxlkDRVlXeMIOW5XzTs/BXBp9ARLh3s9LgXsAuqS4GBBBsJIASqNgVhcYwdBKeH1OMnaenWkXX3Ixzln2d3bpde9oFwvaEAbRoJjKEZCwIQ4FC+8stYsEl3BWHGtEfBCydL5QGu2cPi554LPc9riv4dCDNzNZnF5L0caENKMF5qERqMQnwkZPqrwdH7qPLknzi3WGyjtR+raZ5t3/mWMv/TEu/OBvcXa1NxRRnPN4v+Lg6uPijpB7ehUeyEQRxjJpKNCUomQp1K6LOlklaDlr8BY+e+Fz2d5/iE9uPYVnn/gk22FnHOicuWDxMMWtdz02YPgdMA1ntYCxVjDSfftNV3wbX/Xg+3jLVd/Dq+/8Y2zWGGzt/YyktdJINToSjW9Ffncht0EJHwxQiEu636zFzc45JnWD1QKcuGZoLm/z0GAuILPEjcYJWSt5OaPIWW061EUpjoVACU3G82gomuc05PRGAdccIkGbcCX3B+OTxgfnW5VLrqGQGKOGYlqo0fvcnnyAB9/9R/jYMrEG4yda2BWQixzou47l2rwc9sy1s6EI2pa50XzTT5De/V8xq8UgkpyRfZ9+qB2JG5E20mOkiXqaaqrKDYR3Y5zGQ/KZDLL2rLFD7hWHe6ri2oVgM7g0636bx7ykOAtmo6J/SrS32swRU9JmJFkPEj8KiRNjVDQ00nYdqxjpvuknWfzez2lDeAbvRHi5afCVxxjoP/9e0tlT+NrRm2ZwsssokBd77vqz3+RR3/Aj3Pn6f0XHWmNDWiOhgO5fKlJuClZhMFZIVxkBcqXpROISwUeiAufSIO4rRz2dsDHfYGtzk9l8Rl3XoAUbmUgquIodRKYKMcUA2eqcMJbSGlvmXnl/VnOSMDvA3nNfxeT2T7F43rcw/8Sb9YgaGyNyqeMANkmB8IvIRH/Dl6yRqADqI5pSkKNIcnG7dm+0WJOMOqKMrmqrrsWsHLYP2NWClbWM4vUlZwK/85AUiylEKQtJ9m/30B1sf+K/weo0O02jTWMirJ5i4np3OYdzxZPtmUE0bn0vt0bJoipGBro/UopF64Xn8VGev+4I2bUivLZaiuBI2/bkdsnBY59n/tBt+P0zxDESGvI0EWGQXEk+u1QaRGDSYX2Nr2oZPwTTiSmrM53gdl2Ig6h8F/pBuDINlS7NLU0ehaasGYSmqqqiqTx9XRPraiiiG9RdqZCsbFbsxg3jVGLjgqVmLc6XcSstt2tVjOFhdKBPTS/mno0reOK9H0DC+Ty8dmkMLY8RT+YRrjqKTQ8/u4Yxlf0PI4G6vtYXkU7OgyvFfhjHQQjzHIyvgBxjXMM5BfHymcZ85Zxr/a96DzGaA5WvWS9ajH+uj6u3Tgu9XgtQfmjiksZ5oz+X1394xBdsOZu16KRkwj5EEaPRwhCAdY7eepzt5bweFO4zfP6TnL3zFroTx6QBMQZxykH28Iv/1o+zf9On2XrVD7H7J79O2j8zGCMYa0jH7tAcTUU2c6J5/DPhMU9lefYkzZNfwN6NH5GikPf4SUPdTmjaFcuupW5bXlI9wJ/uXs7fvmBBiFMwcs5jjIqzmcGh7JFzrqoq0mSiwuFgrBXjhT5w0dkT+NMPslqe5fSjn0R38BJM37K68mnUt1+HO/WgNFuuxbd7r/kHzN/3Ok5+/Y+w/ae/Jr8tBur7bsGfvA/2z4i7ZU6ka76KcOJ+4h03rJF6BPvsY6TvBU8MUYjXxqrwZF2Jq09VaSNDzWQyYTafMZ3NaCYTfF1jsKOgw3l0DYJSJXYvYz+cDQ7rhZBRVeLYc9fjX8GF/R1Dwd17j8nSeNKp6OZyuVCxqXZwCe76nq7radue1apluVyxvyY0ld72m8y/5Sc48Uf/WoRoyhqyDp8i1R03MDlxLxObabYP0DSNOIwhTRMPP/8bmLz/jeT9Xd33A6kN9H2nja5K7Cuxp5U8I0QRN+hVLLG48aSUxlhn2NvNoAehCCxkiati6OnVqGW1WrJaLFm1IroYFIvuQ6LtEm0fh7lVmt6MUdErLwJmrojVDc1DbtwvFIsI+ntNSGB6UjaEmAX7DnHMdQAb1ZnJpcHQxFeOKlh1ahLhlaTNLeWz33rBU2mWO9x/2TM5utjDr+5jXQR63JuNnllyJlrAq5iNCCWXfK2IoeeBzDhsBVbHW+eeU8MNp5iHXxPyKwX9kaCe1wxLzp9LyKZjnhhjout6lt6KU2rTYI0jZ8F/UZJer7G7tvwAIvAhphMJf/Ai5l/5HZx5y3/AesEcfCXNVBhYrhaErqXres2dE9YaUm4ljzUqyquNJjkbskn4aNGeImy0WJsxMWA7g/VF/MzibAValcy55HUOX1dcavfZNT2drXhMOEvdTLAqyBZVlMP2ei4OeUW55x5vRJQEbRaNOQ5xjUPE1x562T/kyAf/EL93FoxjtjlnY9pQWSEAgtROnc04rbFbm6WeOp8SjxzBAWfP7rDUPSinRPzAH9O87Afp//x32dre5uKLLubSSy9hczqjWyzYCysi0jWbsmFSz5hNaya1YN+VtdrYI85nk6ZR4nJDU02o6lrMeCqHqTzGi0uidWZwV14n8ZczY20K6aXPUVEakfYYFhLEQBoEkcpeKuvFa6NfRMgjBbeXPV6IZNWkxnlD09SkrqdbLIh9J25w59nVpozNFps9JotUWWsyvRFcu/WeUEVMlajrRKgt3mfNe4w0yTkLodSIhsryKDI45EpW95kRoyvXKKyex5A056JxMsaDRoCQBCOWZhUcWXstw4gHDv+mv6OIREgqlId7Xcx8yBKnGDU/GbdZWVMpr7l+ytPHBpGCPRpLIPPfDzydZ5++iXc+6mt42Z3vJMZOG1AjZ+stbr3wGo6evIPrjj6NR9/2AXGu7TuJXVVUyFiPryqayYSmmVCpq6yYkjiMs5ydHeKOA4/jmgc+OeRPl509gyfSpcgyJ/ogPI1PPukbeO4tf0aFJxvL+y58Pl++uoP3H3k2z9q7nVtnj+Ki/gzXbV7B03bvIpH56OwKHtOf4qK4e06dFBhdUWWgB+xqIOczOvwaFVGMueTHDCTtIuYCDALaY9OF0YZ26KO4iEa07q73dwzC/u+vi/9/XimDGMwVvkIid2p4QZnv61G9Gb6XAKM12jLH5MzQPD8LcTz0gdjrGaHcg6x4hLNOReO1vphFHCBqfJn6ntx3tBdcwfKyJ7P1qbfK2jCQzRfj1UONljL3IRmZq5b1eybYZ3RBzeT8Gm4X1ZQgcfobfortP/03w3yJREgB069guUvUfeKRYq7ty34U+9k/Z/F1P0H9p/8KFyPOSWw0+dTbWD3nVcw/9PuEGLREafD33kD/5K/B7TyMO34XKQWiSSJSY6T5rTRsGsMgtm+SYqEDDoDOZz2LtUYrdw8+/ezv4Qk3v5NPPvt7ec4n/2DcQ2IBG3T+G1QEOsnWpg01ouqahuavIe5La/FjIdmWWVMCbl0DMZ+7hmBYshJzSNJOqZWX+tnYZydz05QbrTj3eRgqAiUeWiNbFg6Cnj0DxprSKGaSBNtKOZCzzBMR/srkHMhZBYlSXMtpE20XWCmO3eo6gkRlRIx2UtdsfeQd7L/k1Rz9izcyP3CYrmtZrZYs9nZIMdI86ysIvmb3w2/HxERdezanNRccPMAlFx7h0ouO8L4rX84PxOsFT5YJRIqB6d5ZLllm7ptfxFNv/QCn2j3O7Ijh5XQ+x9QVKQYm04Zm0mBMFkfa0mipeQrWUfuG6WTGdDqnbqZ4V4GxItpdDLkKmV/XfbSGf3T/jfz9Q4/i50/ezs/NrySpnI8IBgLZU/kNNuaRlAMptYS8AhPZXx0nsSSZRCCKuAlZxjt0RDKVq3DGichUkoZGZyDlSOwzgaAiUw5DT2VqmctR4xAlVJMhqnCbzSNx21pDCD25/H75Idl1TcJ54bgUIyy0blOIvEMckcBkL9QeI03KztVY63FWRKa8m+DsFO9mVNVcRKbcBGcbPv7owxxpDZ959AYvuDdxqKtwpiJbS0r938ha+quuR9ZW12uaAx7LmCMJZ2UUoDQlhzXnQHqDsJSlnOXyQoPY1LBfcU5AP6bB45lTRCxTHono66Lg5+CeuueVVzMIbl5wbTcISksjvrduaHh0Ts7V0mQj77qISOa1PXT8nbI15/VtexjXv2q8v/jfhq9kbIfxYcDJy5gWtLvgrsM9XHuF4fug63udr6K8rHI2GCh86wFvWLu3Q1x9zvvX31fi+i/5ORnPGv0HJ1JvEgNjBo0OjOzjBYeqvCd6qSuFbDAqFpet1BCKj7PUAkE6KcZxOe9K0cN8QfZ9/eASl5TYRARt+mzxoiItgiYqEjnkXjkpVg2WRPQG76ByllQ5+hZWsadyFjebQozENkkaTCL1vdZPBHspeFvognB0jMUheXifk+LmWhcjM2m8xLDaHOtdJTGQlXvSTCZsbc05cOgAs/mEra1NrIWt7S22D23R9x2Vq5nNNjBY/HROthCNxdmakKVJ66Ip2PkmrqmIRKklOsHOs/KWvHXkoBxcXw21RFN5Qh9J1hCsiG01WLybYL0lRYuj4qXmFH+UL+dF3MdRP8fkCcu2x3sZ9sk0sTHvmU3mbG1ssTXbZndvlzOTHWaTls1Vx5ndHbq+J+fM7s4uzhqapqIyIv+U9HxbhQ4/aWimFRFp3jLWMJvPObC9ydZ0zsZMhKZmsymHjxxSk4Yt5hsb0tDV1BhraOopdT0FZM5YPN7WWCcTPyg/JAZDUrd2TCLFVkyxkyFFQ0wBgyE5R7ZiKhoxpCqQfY9rpuArorFEl7HOU29ssMqwt7/7N7GS/srL2MLPVY6qFyMs64XfK+rVWn/RuH6InWFts82qszfiTSD7flCDt5iFB+60jl1yGGut8Bys4VF9x0v6+5nanjCdYq0dawTGgBp6+dI3oA9rR6zjOw6u+J0TU37oghUhSk/KmWD476c83zNvxbxoteSy5RnuNxeysTjF5uIkIQX+4sLn84LT14uZfFXx+u3n8mp3L3/AU/ix2b3Sq1F5XOV5ng30Brar9Zyn4B7axGodyTiJzIyKAvhI33ZshY7HdSe4oz7CC1Z3EW3CuCj4k2zsYA0vrU7xxsVFvPqAzJ2sGO4qwZ+ebPiRS5bDPblh33Ffa/EGrl/VPKWOpFDRh8DFseWF3f3M4r5iCIn/fugpPPv4Tbzvwqfxlcc+I3jnWn2j8paq9lR1TTORtVQ39Yhb5QzZ695qxUAieYmtKQJDKrDgxvgoD7iXUa5sIoWIMYYUknIMipCAJSdpbFutVnTtgtiviKnFkHDqOe6d0/fY/D+7aP4vXE3drDUQFrxnrXFf2tlJGawVMNxShJP8ULVfDypKvFeMGgaOgg6rLfweByRDY4WD7n0iei9iRSrM7WxHaahOKqAaomAZzlq8ETGLylrqylHVFc56ZpVj4j0T75h6z/TIRSyf+yrCLR/jopf+IKff919JRsS/ppOGrY1Njhw6zN6zvoMntrew2dRMq4qmqvDKEbHekmbb3HDomTzxpndgyTTesWo9q1VFdeen2HnmN8Ctn8DtncIawWG98jyd1jKcit2kzaOcedrLOHDsFh5+8su58o6/EJHCYf9Q0SlfDFQqGlfhcJjGkCeJMA3Mmimz1Zz9dp9lv6LtW1Zdz2LVEdOCM1/zt4kfej1meYfWIiqsr8HX4D1Zef4iXJxlvj9wB2H7IsxkRrzvNto+EXOR943Yk/ez+Zm34VanWTpZbzllEWyfH2bnGd/I7J7PcPaZ38z2Z9+q3K5ICiLWmEr9zpbYVPKCwlsjWZKVWuAQeCqWbMtYOiMiWyomWzgsA/5zvlzm3LNHPkuJdRnyskEgY/hv/UQb8bysX2Q19kul/0jFj5Kk2BIXGs2PrSFne46IcHlrJdI2BjF/tJZMEnFNRhElEaBzxCw132AjJkYxai7cMeU1FlSMmOV3av9L+cDFSL30ZBXRqiIAB4InWJMZRHEVI1SkaBTAMcIDlOy/NGirWPuwKZXk14Cx5xixF4EyEYGTvbCYB7nydTH/0bzVJOHrQhrmc3k/F37mjdzz/O9n672/Mex/uZ7Ct/wTzIdfR/UtPwNv/hUwFrfaxX/+/cKxyQE3m+GrGrM6RXPDO4hnHiZOGhEIB2w15dB3/GPOvPYXRWjKyFjmmLRft4hQiLm1CO056V1xToSoMGx858+y847fZvvbfobjf/jz8tkqD9kPxqTrXOh1IcFoGPDK8+WyWtNYWyBjzm9KVb+Is52LgQP6XEUXvGf5zT9G/YZ/DeRz8t4RKsjDOZdRc9pc9rWSlyPcIN3jhn6TBIEkhhNnHmL/I28ktwty32ncm1m+//eZff2Pk9//u1ReDMknzYTGJiYnv8De0cdzyb1/KUKBKYkRfLfD0Ts/Qto/K+GxGoAX0QjvJV6q64ZG+3tH40Cn682AYtlFlGcw31T+SM6ZYBxvf+zLecUX/lTismxx2eFJGCMxkneOEBJVFJ55TGnoW0wRkhVOdowqXpVGofEsxQm5NaaMvQx+YsSM0hquVO7t+g+ZtZhuqEHpvR6qAeWfCzame68xRezFDmPjSp4/nDXjz0kdVMfROj2vdLdSfLK8qTyAZlLvKVyDQRDmS2BQf9OXQ+awMyoopW+w1JeSgWgLE1U+T0wJb0r/hOYjduyTZq1eUQwpdaPXHkWP9Q7rHQdXx7GVU54shCy9ylIjSVIDQs8YA7dvPZ7O1jz+5PUqkIbu0efWsf/8Kd/H8+/4M9585bfwsltfh012WPAmS43JZPj01lM5Gna4cnUXoWvF/FHFpmzOeJBau5U9xFfCoxOOxARbCT9ChGvsgAVKA0YkOUswhh6kplZV0lvuPMZKb2TWM5Mg/ORQ9h0SkZ6YkBwqCZc/hkRKJ/DHHyKffZh91QwoHMyw80ncNV9F3DlBevgurCt8t57Qrbj8R36JM2/5NQ79wC+w+N3/VWItFfEXMwxDjmKIIXuNFVEU73BeMB2yET5X14txdhfxGXLb0U9qpk3NRMVtcpD+wLZdQspUmm9VlaMpPJTKU8TcW+O47kmv5nF3/QW3POmbedLn3yTiLNaRqhpDprJQOfAmUyEHeAyBPvT0/XkmsA2K2a/FJeYRePxaPKih5PC1fKG5WNHdKHufBDxjKmbLvZSzIYOY71HAXu2DdqWfX/Y8b63katERo9f4R3gbznkqY/E7D+LqhuQsETPshwfOPsBVy/di9x+mm0yGHlrrHAe6k5yor8DnyNGwg5vNhvGoFieZ3/NhNvpdegOh7+j7lti1xNCLsHpKsl87J+YkVoIVk5PUk9Z4dRlwbtyTnPPUdRFfrPG+nItjvj/yE/UuqJF0YfymQUSn9IRJPGFMZiN1VLlloaLp3lc85p6PcOPVr+Cym9+JyxlQMb4YedSt7+LOJ3wdV33uLcLdzJnp6Xupp0cIvuHA7v008xn1ZMoGS6b3f4J+8TA7TY3tOrIdezHII78jq7Br3/XEILWrzli6rqNvO5qmYec1/zMH3vs7xG415GelXjLkIYw1HTmDi8EJMk+siPNLnH9+mbGAmLeStE+VpKLlcl+c95T+jYLLOxLWONAoMlm5186KMenApy8PQ/H3GPoXBjFNhiNuiAEyBkIEmwasrghB2QQmKrepxELrMVkMayZk2vs/5Mtu2EeGUEfxmJHnrw9n1JDVUNkRV/HGDnnSILSme87NR59FvfswR47fpK/nMGbsgoEx3hZhYV0n5fxdD8CV22CHGpUZxrc8xRiDiQGfOvwtHyU/+cVMr/0zctNI3SMkWtfhneOK7/kZTrz/DYSTx7Q+JoanRDkjs/Nc/Ld/lgd+658qpuiZTSdse8vk5G1Sw5k1LMwBxXKF59ubbhRr09cscYW3FlNV2veKmjtmNU4VETHhsRVxwCEB130pD3t6LkFUXp9bQ7WNwmMb4si/Buzxf0Joaq3JRsYeT8br4Vo5T+UqKbQaK6BguYFZ/u7QYr6qoWNKimWGD/RFh9daslU26rXIHDTJLx/a6uoyKNBwThVT1RSTmCvUXhzBSgCWCmARjSQkURtqTVLClAy+dxZcPUxoc877NWt/12SwqqirSt0Fe7ppS9t1QvrKmar2uHpKtjURT7IVlZ9grGHHTXm7expfnu/hrf4avombB5Sm/CZRF3ck6zC2wljH39m+n187/Wj+0cUnyM6TVGhKDv+Myb7MIGyKMjwpkIMcFCEFur4l9SIy1S4X2swZlRApCdqaXY0AxQkm7SlWbacub/IQh2gNIpoNPnf1d/CEG9/B2x7zlTz/jrdTT6bUkxmT6ZTpbE4zmdI00gjnfMWhKvN92yc46MadNKogxaIN7K9a9tuOLkZClmRAkkzEJSHKQZStCLiY81ANZ1bNcJWnqiu8FcGabCuyq8BXg8qsVREWtEFZd8JB+TUbbVQYEiiQpPORmvsyjvmRO4VujqzN76yvYdBAahA5MrocxcVDRUcpIlYml6RO1s9mSrx88yzv2jvEt288jMENB1AG/mx5IVe6Be/tLuTrJg9zxPaUk+pXz17JD27dz3/YfSw/eeAeea85UxmHr3UjNOUdCzjsjLrSeL9GEh6z9CWO/3xsyquPBn7j/pofeVQc15ZZT9TXTkxG4LK81iJa/uO9Nd9+Yct/un+Lv3vRaSmVaNEjJAEz+xgGkamv4jb+a3w635k/gclRQY/RsbKAF3e7Czlht3lu+IICnkV5Vu592VfXHXYGwpMzZGfJTgrv1spObFHtmzwMo/w5zBshJIYoxZe+D+LmrYBsASzkgBcxr+GAZ9hux1/w/4pLzqECdMlblybl/IgAZQhurBMhQ+OxptIx9nqYa1HMeH2uCm4MIlJ2GEP0tYordrZOnyNrOLFW3B6EwjSilDdUbh6iuMEIHA3noAhNYUSd1FhwtRSfyk2L+vmLY2XM494OQkQeQLVSFExrQWcWZfxvbq/lTzaew/e0n8Y6aZyThNONoluuwriaLW941XSXpq7wppITfU1Az1pV5k9KYEiJvg8s2479/QX7+3ss9/fp+w6TdgRMzYmo6pxWG1BDaS6wYK1jlk5L01ZtMd5hq4oqjIqtn77q23n0A5/g1mf+IE+79repwr7sfymSQ0dAAv6o6qGX797JFeE41bSiM3PZm6oG63X0M+pyFcjqYSuN5dKM1/WB1XLFYn9B13VMGxHvLIVVjB2CZQxYI+Irzp9/jkUloTFGiaCqsu5jxgbHXZc+n2Xfc+ldH2I6nUmh0Rj6lGhDZLFq2dtfsmhbVl1HioF2uWDXWDbdF6inh9i/+Ik86tj72JtOWO56ljkRulaSGO/o245+ucdqdwdpsIpCbHjwFqbv/zW2q8SBzQNMm1qcKuuGNJ3RLRfsd9LQ2JGZNg03v/I/8oz3/Sw2dKyW4kCX6aiqmuX0Iu64+MVcuXMrH77gxXzN7qfIRoJ70dg0ur49OKspo5xXY+xq5IzUIl5Wkpg1lrf7Z3NFe4z3b7yQr43v41A6Ru4cEWmu6GIi5Ew2Fl/V7G9fwd1P/G6O3vtB7nr63+HSz/wWXR9JyWJ9zXQ25c4v+5943ukPsVlDM5lifSbj2NvcYm9vwf7ekraLuHoiDb91RVN7nDUsnvpKwgNfwD/3m6h2ThPvvxVnYNI0bG7M2exOU9c1qe+IoSPHqI2Xcm41tRTnrbHavBkkh/DyCD10OZOjkAGLwjo5kqMhW6sitmb4vreivNy3Pb0Sp4mIUFeWmDdp0Tlq44G1Dc5VY+O2iYSQ5b6xFh5miCFzvsWLR44cwVnLarlid2+X4ycepm1XtO2KTKJ2Doc4IySyuhYkfEh0XaSvtEBFyZ30TIlZi+9FFlEek9UeV934DnK3JIWepHbsOY2FlkwmxTwITWXGGFVwatm7u1ZEK0BcclICr8Jh1ZljHHznv8N0e6ycw4SIzb3EWZc9lXjx47jstvdB3YgzinOS0xDPASZKVFviqnINLlTWiCK4g8fe/zE+fflX85gTn6PZP0VQcjigATBy3qWxETglQMGs9QJoIdaOZAbDK4+9kzdd/iq+5b4/pfKenLXoYVRwYxBQMErIj+r+mc553Uc2rp3TRDk+U58/TllnLLWv9LmSh0atsGWkYCiCqQqIGotVQQVxtvZYDJFIn0VcR8ILBTRSAZDQ4pmSmkss6py6YJiBAJSj6OBHjIq/2Ud8jvPgKqHO+ttaI1iMjfOGfucUrq5hMpGiVIIeFZaMUZqTY5JG/BAGcNQ7VW0vOQpCDt7+9p9m+eG3MP2mHye84VdxSX4m5KRiQ+oeXfAeW8ASbYrIU3KuaepK1f5LzqLiUdYKqG1FaOqhPOUj8QJetrppzCGH3ExeU9ThAzFoA1sII2HejET0PGyXYx5jTRH/9dpYKIWg1apjuViyWLW4H/qXLF77L5l838+R/+gXqKqKjaai3pgz395iOpvhvRdRzgNz9vb22Nvdpes6ur4jdD2hl6/3HriNO/74Fwm7p+XcXRfI0YDsHMK/3kerojmQCSpcWIqErDWTRgX6DBJP1nXNbDZjc2uTrY1NmqbGeTc6geieakpDixkj+JJpW81RTS4k/AH9Emwr5+GeV+0umzd9iN0nvICtj75Oxl8BwcHZyBaF/zQC86yLx/zNXyMBQ0HstO56rsV8Y8aHteC0YGxLXByIMRFzrwUPh3HacKR4yZCnahNIVuwsIUQoSYMEw8oxwslj7FtD10cRLA+RmDJ3bTyWKlnuXHmMn3N1ODsUh0RQwGhDmgLdj2hqHj9zEWBNw/PKz6yLTbVFTKTtaFVoJKWE6QN1Wqqgqfze8sjZELM06PYxDbgBSQoILktTf6aMg2BlISRxNep62k6Ig23Xyt9Dr+7VgpMOhUd1t5EasBkIjpXz1LUnVLXuf3HIUU0hUeh+ZGBo4llvUCntOTI2ae0MLmIi68VMYO09nakPccuha7jo7B3cfPGXc9U9H1wboVLAjGNxVeOdQgZbL6yux37Da5iShY8Y2xoSfN5dkp+ztl8zxja6351DmBoAjxELBAZ87IvC4fJaMHxhhuez5hB37iitj9oohCq5gAjDuIHs7dYIoqzHCkVkSskh67FEcZOOURozur4XHANZk856rv7Z3+ALv/RjpBjOec9pd5cUgorfimqCRQjjD7/tv3Lp9/8Mu+97E2mxQ+WEcO+sxVaO+of/BWd/5UeJeRTS6279LBy8iObopZz9wBuYOhGZclVFtWxoJhOm0ymr1Ypm0rBZ7/JtGw+wnWd0veBKWGkSL3iQYCOjIMN6DJWBX7hvzk9dcArnHClEYhcIXaBfniY3DZOH72Ix2aQ3juqOGxTjgeXX/QD1h9+COXuCDFRv/U12X/MTTN78a/ShFwzHWtLmIVZPfRGTD/6J7N1PeqHk4Y9+MnmxINx3K9kIoTfovhZC5LIf/7fc/C9/CIwZBIEqFRcrJPRBFNYJ1mGLYosp8/j/57T/H3oVfCznQl1jLcYXd0dSGgqMJ57+aq7cu4NPXvxsvsHcPogWZp1vbduyWq1YLBYsl/J1jDqXesVlQ6DTs0FEqZb0fSDu383y936B7vRxEeZwjqqqmUymzGZz5tOGzaZivnGQyXTGZDKV+5kzt1z9Qi666eM8+IrvZfpn/5WcM6tVpGt7cu6RGBKcFzKpjw6XHCGJ01GIQXGtoGRYbYZf00QfMSJtbl6LxXIScnjoe4nt9LOtViva1Yo+JBWFyvRRHlGLycDgvl7VjQjSNA31ZCIuQ06EpowT85NyhgRt3FhlMFZMJ3IWseagRImRvCB1xEK4jTnjU6JKluQsuRolDEW0RkjXFnjU8c/z+YuezaGHbmK6OEGXVdR1KO6ugfFrddd10Q6po5rSezOQoB+5IGQvUxKaNtiPQlMMDUqjANc4Hutx8fl2GSVnyzoTDCNl6FWw1pqKyso4RaReGWJC/d4VmFQR/JDx20fY+sYfZf+jb+HIq/8B8QN/gK9qqkrmT8yZeDqzv1xJTcgbUUC1ltCuEJquzNvmyKUc/cYf5eTv/3+lJuflbMov+i7C8S/g7vgEfQQTwLbFJdtRh4i1TonBKiZiZa7WFq5JD2Ccp6mlrpD7QIrazBzDICbmvay36BKVzwJRREOkL68qhEHN/3IyPPSSf8CRG9/Lw1/3E1z+zl/DdSs8EFZLFmTM5gFuuubbuebWN6uLZsCZGmNkzd596CnM3P0cMYbpdMre7j57e4LJx36P5qOvY/PAlEOHLuXw4cNszGfYvmfVL4jdHpbExqzB2ynNpGY6aWiU3Dc0wDirQlMTaiVkVVWN9V5qJsaQnRlFUGxZEyP5ZIzV1vCddUIFjBiGYldC5lFhiRjFSTWmIZYa8lsnuZ5z4nouef25boSm8jTTKc1kggERogjiRnY+XUFrXsraUE4HhNzTJ0tPwtjEpMqkSSY1kH3EGG18WI8zc8ni5CpE4XV7DDEYkLyviAqMBLtzt6H1OudISGOI2UrWKEQbJewrMbhgEushbcHThgMpK4JSnmvGOZMTw1wap4wZGmKy1s3KNUTQWUYg6th89c5NvP3Q0/ja45/AeU/s7JCvVbsnOHrvZzl24RO44rq3s2j3CDHQ99KYet+LvpdD1/45zd5xfAgi3h8zdRRCvYwbLKYHuengk7j44Vv41KEn87jbPyJnh93nhse8kKPHb2d+9n6SSXz26a/hSbe9h4886VW8/O53U3vHS/s7ePf8Kr6+vQXnE1fGM9xXH+C5e7djneXT8ys5GBdc11yCW93DBWk5fm5dF+U8AbTnRvar0hA4CA/FRLKG0adP8eOBIDZiFjEXNEqaoaManYUEfUrSdKbkSdEOkEpLjOcX7lH2ImO06T0nshOjkIIxnTN/kuxDEiepwDZSJxHhGxmzlBMxRELoB1HSEAKxF8OAInxdmqKcYimm1JBTicECq62L2b/6hTT33cjONS9j/pm3S2xgJc849dU/xIFPvQW7c1zuY3GuHWJgWRvkUXQtFawwOXzy2JyGuDPlSMqRU6/6J2y889c58y3/C5tv/Oc6V4TUaCzEy55EvPgqpp/+U9adK1NM8N7fo//6n8S++zeJ7UriuGSxNmEevJ3mPb9JXu4QzYgfmOUuk+v/XJpRY69Ye0YAE4MrGhSmCE4J+U/w2jX8X/PqErOVPapcT73hzXzmGd/J0699/Tm8lyF51n1JRi4PtcJ1fFKaJRiERdfT+LLnjtWPtfm2ft4Nc3DcCiVWLBwaBhwfAyY7nRNp2B/L+x34EufpZU3CYvBGyazOagPu6Bg83AmNBfLQnpU0HtDGlDK+ipdE5QrIYyThhk5IoTFGMdGpamk+rhzz/ZMc/ejbcGHFgSOHCCGwv7/HfuNZXfFE+kseS9Mumb34FdQ3f5yNzQ0OHdrmsksv5qKLLuBdV76c17Q38Nvz5/KPwmfp+452sWC5s8Pi9GkO7N5J0wW61R69McTQE0Ngf3cPW0v+c3D7AHVT4auK0IqAfYxZhN5CJieHqz11NaGuZtRugsmeGCB2kb7qqeueFA0m6hnsBVf9J5dfzS/ccws/f+QqbCfke8EKZEMXKNzh3YTZ9ACHDl4IpsOaSD7VsUorolmRUiSo7rfJGZsjg8yMEX6m9JB6+XuK2pxvR35pTrQpqSu3GUTuTTba8KDrq5RHgByTePJpw6iYcIQBDhvM1zTmFPw1KcdHTDksTgQSjDauOi88DuuQNmWPsw3WNDg7parmTJstJpNNKj/F2Jrnn8q89/IJ15yGI1mEt42p9Qw9v+LFsg/anBVzj2NM9Uis0BQjnFEQVPDBwltcx2iLELUZcMfCzTNrTzYUbrC8RNY9aiSba/0DYUElrVknrc0UI9lzmmkkZDynIViaWlTkee1R6mnrrsEDV9oUkWnzRbHw+pWVpzAO0yPrupzzvS/+t/KFNsLpqIxQqY5l+WylXje8zzFf0pdhiH+Hn1m7N6XRYS10HvEcu/a51+7L+ptdi9vlj6yGwfLMEo4MT1j77Gut3Oei7sYMGLKYwHmpEygcl0vOprGTBjxIs4EdXtDCeVYlE5yn8oIlpTQ2ZHsruZRRHnYRRSkNOMV0SuqCgtl6J9X8nBLZRepKmh1kjnbEpoI4oe8ipjLU3jNtGpb7C8iJqIZ+Td2QoqFtO0yyNFVDCBGy1ndzTwyJGIRwKH5vYmw1mdQi1Bgiy25JM50wO7TNpZdfyoHtLUJKbG5tcuDgNocOH2Jre5sLLryACy6/kNVySWgDtamJIZH7yGq1pM+BamPKxsYcPz2AnWxivCV5g2uc5IApk60lGydGbFhyCvQx4awhO08fezCWerpJ37WkFeAr2kUv5ocuQ2VwNRwm813VQ7BqyWnKsmtJjSNFEQOrrKXKBjeZM207pvNt5md3mG8uqPcWnNrd5aLHXcnhoxdw/OHj3HrTTfSLFRu+ZmI87XIljbZNzXblMZWliy0x9xzd3mZzc8500rA5mzFxcp82tzapGk8zafiDI9/EjzSfwUwqTF1jp1Oc8yRnSdaTLTg3GZr+sjWan4mYga1rqtoQo9ROgs0sFntgkPgCjYNtJfF3CkQyva2hmZHaSLAV1BNp4pxtsX355Uymc3Z2Fn+TS+qLLjN0cI9x+WBY7ErvwLh3ZcwQ0xSBnIhyuc+JK86t52fyIJDRB7BIY2zU/bYY1BljuDAEgp2Rdd3UTS1NaUZE6gve5LR2YI0Z+E4pRY66xN8/HDhgRejzbDT85okZL5vt8nunZ3x9eIjlcsnn7FHscofLT99JCi0fuuQFPPnsrbzngufyqp3P0tSO78i380fmifzI7D7qSuJHp/Wa2hrtTiu5ZB4EjMsevZ5vlLMyBBHuJ3ZcGU5ycTjDNAeSc6RoyS6TnRl4vEdc5Hu2TnLAW8CTc6ZLmf/w0CZ/64Ilv/7AhL930QJy5qpJx/HekIzlmq2EjZ48kfP+tfESXmHuoTI1oQ8Y0/PVO7fy7gueyEtOXk/dlFqU1XoUeDUz8CqgUWpakEUgOccRu1LzhqR1fgPcGGbcnya8st4V3o3ONzFbkXmC8g9SuZcx0RWx+qqm8hXOFwES4RcNXGcn4utVZZlPp8xmM6bT6f+IpfN/6qp8JWJcKngw8D+y4Du2CE2ZdQxN48jEqGCeCza3LqhQ5pf8xZSC/oAJqXgzavDgIDpHrCJVEAF96+wwR8u87YOsa2OtColCMUG2OVMZS9M0TKyTfdjXzPqWnbuv5ewTns/ko39Mc+SIiPxNJ8ymM7a2NjnztNfw1Hgv11/wAh6VbqRxFrGcEEPBZbL8xcFreMIDn+HGq1/C1Z97O4YG58Sc1bct7lNvpts7Q7KSh4zic16FpgRLtdlQrXZxd13L7pVP56qb3kmtZk6ViqbatV4SEVeSRtjKOrypBFMLiUk9ZbKa0HQTFv2C5WqFWyyJecGtT/9W6ps/xtmX/jD5zb+KPf2w1nhFcLBweZLG1jmryeFij3DdX9AaC90SZy2TScN85vG24viLf5CDH/ov7K06YgwYisEZ+LjP5h0fZ/8xz+Hgp95IxhJzGGvefS89bIhhhtV+uDw0xqN4MorjyP5tnRotOvmeCIBLzdpq/iL13fNPPGD9GqPAYqxW+HrrcT0aWMtnL2uv5FoSU454ScaoiYQlqcDZucZ5iFjz+r+bUdhqPbeQ31eqAnmIQYY4JFvJK6MKGicRnjLJYFS8sbxyXnttMl8kdDVcA16WJYfPa68y5DNWy4VGX0vroxTMKA153pBTFWNDVXIxOphlT3G6f5TctvAdqkrXYiUmEr6utC6rhqS2fL61j6Dvo9p9mKPv+Y90px8ScdecoVth3/NbxK/9IXjTv1SuuxVDpH6JNw2VmlT4pgZj2f3yv8XG+3+Hrm1FiCrBwe//RU7+ya9y6Lt/lt0//iWyNZofypgNY2gtlfc0Tc10OqVpGrxzyr9J9H/+W2y94oc5/dpfxIDwanTu5ZxFTF/jhpKXWr0RRejlvLqMGfPkclfWaktf+hrXwoDTWsvyW/8JzTt+k/Zbf4b6v/0LmXw5f/HPsY5tjAJf8n7kf0VQ31iruazB2EQ2oTR5kffPyI84q/V0izn7EP3b/x1NWOKnM5mL3lFZmJ+9l63Fw1SxXfMYlLVSrXYkBrF2xOus1b3TDXO6qjzeF0G10RRw2Ht0L85lINf3EuBNj/1Gvuae9/Bnj/smXnbbG+Wcy45swaaEy4kYLdZIfdvGREgiQJCQfm6TLBitOaQswtMw9HyUvaNsH4NRnx4JWef6OZx/zh2PsrcO2Ah5LZZYw3UKHqk/XdKPwrt3ZsSXCq5hMcrnLnt3MfYtvDdLqOdc97RX8axrX6+YyigylcvXg2lJHoRRjbXn9EqcD9fmbM4qREwnpIkQxKCgIGkC7eicsYZkGQUlYMAYi/GW0XNegFtUWErHdk1gylXKyfd2GLc+ZQIiWDpAWFr/yBnu3XwMD7mD+Nhx3eQKLn3oeq1hFsFS2RyMMVzz2T/kg8/4fr7s+t9nN65w0Q7icBYRmrrhwFPxoePW5mLyYocL27sIXUcKgdJr6YVMLgJ/VUU9aagnwnnyVYOxnk9PrsblzDXtnSrcKJymPsujM9BhCMaoObHRGmQvffQx0SsPWkxnIyFZsqlIxkv8lkRMKqqBvLEW350A77EOTNsOMVte7rL85DsIMZDaVvsfe/qup+tbjv3+P+fSH/5lVq/9eeaNYzqZMKlr4QdLsEjqg/adyjg4Z4aYBSOmQzknXLIUrnXuI8F0dIgQVLBWxO1iT+h7QtdjyHgHBi+1Iu+ovcM7WacxZ3xY8aRb3sqNV38DT73ujzGhF7OKJGtWjNEMlQWbAySJPftezRO9+xIz/W/2clpXdKb0fa33AK3FNkDZfEwpimhmX/qkk8Y1WfeushGW3LiYyPrKaw1xzYQyy14XrcQN3ms/spr7DWbMRfAmi5WRtcLJyyES2h5iHgSbwDBfniYWkxKj9R8v+dH2yZtkf3WZ7Cp5zSxjMV2eAcScL/SdiL3FQA7CBx56720mZwc5So9wDLqO3ag9MMS7RrlaakbXNMJx8pUKjUofufTKSI996UUfcWxkzIUWr/WptSh/iF3H13KuYr7c5Qk3vBGz3JGerDVcfHL6fh73mdfh210CyllMHYfvvxbjKiaVoZlsMpnNMc4zi5G9jRld37HsOmzbkruS0wtP2XkvNVFkTwlq0A4MRlj5W/8x1Xv/iFOv/Em23/jL2BzPNb4s65oSCxT0fsTpRPwmk20ZnHzenWUhBTAMPd8gMW+l/EtgCCONnjNO6yIZcGrUMPQWJqOiZmAH971SmzGqayO4CqWeDxTtgZSlhk1g0BMRgz6nnBKr+Q4Dt2DogdRH6SIpjROlf8OZUueTqwh2l7qQs4pfWDv0jbjyUFxggHny2Btz88EnE0Pi+MHHkNolB07cNmCsJegay0h5yLuMMVoX++LsqfybxWgPpGhkyHrWZxqoncEfvwv/qTNUsSNWcvZ53+Od4+ir/h6nrv9LLv7mv8fxN/06afekCkLJe0nGcvEP/zIPve5XuPTv/gJnX/svaOqK6WTC5sac+UR64/pK5oQFOeuj8n6S9BGm4T5k7cfJoOYDoySd3JJBacwawRTXAbSSfmjP83ptLenwjHW2cm/V5kd5xX+d6/8EMlICq7F4WBJm7wVAqlSN2QxJ4tob02DPaHPRWplY/ly792btz/EYK6Gk/n9YMCWgN8PIDoEk6811Aywii8BarPE4G/FOCKtZHcqiupdLQ0QgFvcubQSzZVODMcErm34ev9aqGs5WolzYjIdkCEEDsgzOUtWVBoY11tUYV4GBTRP5Gu7gA/axfLv5PFg/HNilMdmoYplxXh+OAz7zP1/4IPPKkW1NsTkom7ZFCDji5mMgR0kystGgMrBqW0LX0q9aKXbFIGlJCSZy0ZnKo0K4FnStE9eKCJiUyDkSgjQR0vU8+i9/h88/5/t40sf+MycsNM2MejpjOp8zX62YzqTxoWkmVE1DXQdmk0QyNWQJFGISN53VasViuWS5WkpDYJSGwKLqLcRPO4BopQkkn19nkDi1OU/lmkFoKlpHchXJOtD7K9UEozGHis5YWWeAArgl5bWDSNTQtDrmuMMmMhb4y7obAVdZN8POraIPdli0w1atB72xDlcZTCmyZBVwI+Fi5jE+8/2Ts9TZk5MdlOTJmVds7/L6s0f4qq19LqkrTK70/cFP1g/xr49fzk8fPYanHt6RK833GD6y3MJbw5fP9igFu+IkjwZVA6nSGGbG8r0X9/zhgzU/eUUg487ZWwZhoAIRGBiPP4b1P3XwA5d2/N79Nf/g8l0ho2dN5noRkRElWyF9vjJcx+vds3hl/ykWcaXJXxzImOhe85A/yl3NIQ52p/mYuYQnr26jKqqnMQ5OyhKc5jVVa90jjaz7c5q8sUNPpsnjSSJnYWm+NYSU6FSBuAuBEBIhlkRZbVOsU2EkTS50fYnz6toE+3/JtY4ZnoPxsdY8n8GoGNIAXlghLLL2yMbq+pSHETrICPZIy+JARDPeYZwbAr5sRlEmO7yOlAlK4Wy9TR1NXoblTqFjZyDK+xo+wBrYLz8qZwiSYNkSrKdMtmlQmBfC3Zo0XZYGMhEZTENydoCO728/ydwkGBRZy3z0qrgvexzGMXPymZNGB4oWaDG2NHSJc3uIAnjs7y85u7PP/v6C1WJBCN24t6vQFCSKG0mOWkSwDPfNOquJoggB1Y2MdE6J59/3dj501XfzjNvfyqYPGD/RhFEa1q131E6AHu+gIlDFlQjltK0ATCER6zQQA/RjDXtxTtoM3gfadsWqXdF1HTllnDYZrYOSY3OloYiZOXP+gRZeYzJTCBNahDAW7jz6NJbNIUzOnHzMC7j84euGwDZkKeguu575rGXZtuyvVuzuL6SpoFux2jnN5At/yfT+61mmSFi2VCazMW2ovSV8yz9l+oHfpT91L0FJ4wXsdRa8s8zziqaakkJgb3eHxW7i2BUvIcQHmZ75Asv9XfpWAPV7f/A3uPLPf45PfuO/4+lv+mHBJ9dE5LYXJ3j0sU/ywMXP4qUPv4dcV+qcIIRTjKrDu0od2O0Qw5YjRnAbR0bOABG3E/eJl8cbeG3zPJ6/uJ4D4SxtSPQRUpa1ZH0jzhHIKnPpDFc98D7uuOxFPP7T/4lUTzAu0ydDMp47nv+TXHX/+/nLq1/D1516F01d0zQV08lMYt0Q6atNTr3gBzB/8vPsL3bZOXuK48ZIAeGO25m88scw172L2fI4blrTtQlyIPYiLNWvVnTdiv2dHVaLPUwKzCeeum6YTydUVUVKiXa1omtXkCPeJCorQpu1c9Ism0TV2cSINRaXMzYlUi8iEh51GDKWylha4+jaVppQU0QtdEu+KbuQNqDlFEkFhI/nkuVLojZkHaqnej5dvvbMNze46OKLOH7iOPfdfz+LxZK+71l1Pb3pqa24ufU2EYKAd6UwWleepq6oQyJ7N2Rk5wjoMJ4y1kDVLwgq2FKIuoP4HRI3lHEshNOkxZuYkLmlsVBKWUgMdcNsPmNza872gS3qRkjV1hzFWEPoBIA+tXUpe5c8ndmZe7nvyhdx8e0fxHej84+Ac2tFNlPIXXmMR/QcGhyFrDgOWNvx9Nv/jIpMKAl5eQ0jhIg3Xf29fNstv6ejNF7rhfVhry4FA32Nzbzkb93/JurUSsxkJBYoz7FrCfu68EhSoZsvRSx+pLjV+O9paLj+oudh1I3ZiSNT+fecB9GcDEN1zWQhyldVJU27Zi3uMeJKOAAdpYiSS74+4gXWVVqAl+eloThvhdRP+cXn2aUY+oBJGINxZgCDSyFXPqPTGEab4ZIIzJamr9RHde0Q4RYR54Ijz30Jk0ddzcl3/uEArjrvCX/y7zjyfT/H/tv+N1y7knmjQLtppjTf9lOk1/+yrr319uQIJolgkpUCjPFOipNIrOe8CI/V6i50Ota8e3kxX1Y9xHvy4/mqcJMA5plhjceUCLGnD/0g7NSHMLzmgC+goWNM8m5iWgOdK5yrASFR9V3L3u4ee3t77O7tw3/4KY78xK/Q/94/Y3trm8n2FtXmBpuHD3LoggvY3NqkrmoWyyWf23oa2ze9n8UDd6gQw5LlcjE8WCVY7dI0teAtqiifNFZ91Df9KGdvu5aT131gWLvl/RtribGj7+Owt2nkPeTFTt0RrTFMGyFqb8zmbG9ssLkxH8QTCgBrKG5pWrhB55WiwMZIXOqsOBDnVMiqA8pOIXDKW8hMHr6D6uQ95G41yh8bIy69ihGUnDLrfhLPM/C9gNWD8BfntHmVnUSKIkbJvgUPiZLXFBHDnDKsOmIuoPkYrzsrgtNFfMpaydGK2LaM1RqWpQ2flQ9KMpT85cCxG3mw3uLwtOfI4gFWkwYxDR33+8xYvCn7+bmNI7k8YS2mZ/j7ukhVUryw74XoPQpXlfgkD79LBKPGR1AXIWPEyTYTBEMKkUhHG+QMCDGyf8XTWE4PYD/+dlYq8Np2HW0va76Pkcv/ye9w97/4O5CCzlfktY0KTRlDdCK2kVwRh9IoKo/ETbLmPiHSVxWxicwmUypfKU6xRr9YG7siMFXmdME1xvrJ6HSytTzOFadv5J6tx3HNXe+iEMi0Lj+QvKwtZME1zFpuJ+UAMPo5R6x5xGAFZynPkyaQ8/Esy9rwO2AAj3yP5wA26+gg/LU/kA5caUAqfzO6v5HhK371rXzkp795KDaWFWGNktSqmok6ck3qiqYSknWtJGtfXB4p544IC/vk8SGKK1AdqaKsW+t6iiNQykqIUIHEnDPX/NJvc/O/+kc88ed/hxt++jvXiunaeLnWiCZvWGJO0y459Uf/lspIo049uPRZ/I//W/J/+Tm2/tGvE/7N38UEo2dPZPHJd9FVFbWF7KcDRl0EqYpQTwgiIrQRW0Js5PxNUawdMYVJLW+pzMm18QT4x7da/ucrev75nYf5ZxedIXSB0MVB7LVddaxWLRu3fZqu60RYEVi89Htxn34vy5d+D+4t/xt57yysjmP/8JdZft8/pf7dfyaJ64ELCM99BdX1H2TxZd+E+9AbyDd+FPvsl9M9cDvh/tukzoFEJ2JSkbj0H/4n7vj3P8nj//Fv85mf+26wRnCQEOmL+2we6z0x5kGgKsY0iDCvN3GfD1fZl4KK88cQOGftGGlS987RNBMee9+HueMJ38hXxC+wMbNKxHP0KmoSYpQ4q++HxuVBkFBrSX3fc+YF38XqA/+N7vRpeV7Q5pedU9qIUjOdzphOZsw3Ntna2mZra5vVY54GBw5z6e4xJtMZxsg83Tp5K594xldxySfeyb61LHKm73sVsWrJWTyGhTQyOpTFqjj3FVHSNIgmxphwLhGS5Z/fs8G/uHIh9dOkdTo96/quk/NnsWCpj9VSML5V29K1IjQlrpSZhIMsuGER6nS+GkS1mumUyWRCPZmoGKTUAlJmaD4tpOhCqAohijCRiljEKEJFg/BvLvlNVpJ5xDtLcJZgrWAzeHJ2IujozEjgSZHH3/VBwmpBr0Qe7xzZO8EhCvJgdH8jD0L95ZxyhTi3hm3p9GIgkytxcF1oytnRJTeJaspAuKka2WedHzHHdSGd8+Uqufs4RnLPM5JTtH2Pt2ArSSyL66sQ4QLFPM9ghyYBH/bpPvw6Dnzld1F/6L8yufAo3ldYJyJGbdvh92pcVeOirj8jhCKQFZ5yxswPcNl3/VOOv/23OPyd/wtnXvtLZGOoXvit2OVZ8uOeT+z2yffdQCYKUbASsbbeR7yOdc5SryskdKkLGqRpRsnDVkl3ZKoqUtc1MfR0XSKL4Syd3+Czz/kOnv7BXxdNViP3XASQwDlH6BNHP/DbPPCKn+bSj/wBPrTElFgt9qATsu5dX/mTXPW5N3D9E7+Zp972FlLlIXoMFbdvPp5Jt8PJg1dyIYnDkwfZ3NxmsVgSYqCqGjY3NkXITufV/v4+YW+Hbu80JgVmk4b5bEbd1CouJee9jI3EAs5ZGm8lZ3Va81JMNVtLMlKHkrxHqMUjEY5S9RougxmInwNGOIw/+udYQy5ErnOIbmncE5xz0qxgleFg17gPRcxC649WRd1SghRiWejnzRUQ4RebZS/psx1wnc7IftSQaS30FaQK8AEopiOa35RNbD221Bw2qpDOkHMbyQlSlj1VcqYx/tYfFoxPawlFrEXc0M2AXxUi/uB+i5xLptSzS/xgzJfc31IBfpD3WgybjJ4TpQ29YMrFnCU/glTwkfpSDvb7XBWPD4JWFpibwDfufpbKRkLl6a2Vmn3OxK5lft+NXH7P5+hXC/oQVbgx8dCLvofpjR/iwS/7Ni780B8yaXfpbSd7X4jS8F3OhL0FF6WPc+zyp3P1je8e9r67rnoRsxP3cMdFT+aiMydodh7i6k+9nuue/3286I530sxqptOGqQ18W/oCdWUIpuJxcZcr+12cMyQcz1zdx4c3ruJxy2Mc6PcGB8BBQKcMYYmmjcFYGfvSMFEuabqVPS2bch4XEmURmjJDDawImRVcV4h4xRjODKYuhkeIiJ1HV2mwSCoAbK3gdJBJfR5wR4OcX+QkXJoytvLTevgUwQzJWWIfCV1L17biGqrkzhwllykk4ISQy8WUynHy1f+Mi978CypIYWjOPEC+81MsL38qGx993SB+lVJi52t+iI3PvY+TL/xeDr7vP+OWu8McHwyz0PuFkEOTEnZzRsmJ4BKYLFhhUq7I1tv+FWe/5eeYv/Hn5fllpVlDuOhx9I99Du6h29l/6suoPvN2FdvScV2cxb35l6FfkTODCNWQr4dTZFARGOVyWbDtUuvN667ho9h1uQRuzZqCnfu99aaR8neHzL0MNN0+z/3UH2BDt/ac9f+PGIQzo3iJ7FNreL3iEAPBWveytJ4ADqCI5oW6Fu2wNgrOcm4doeyJ63tz2bvL3vqlrvMtTiyX7TpqXzFzjpm3VDYLKdxZkhEBIGssJJEJgAQmkwlgAq5kCaVBOQdMDKCO4jZlnMCXuBSxKeKVGGudofKOpjLMK8tG49msLNtxwXR7Rs6JEDr6rZq2m7BY3ccpczHdrObA7Tczu+QCptMpBw5sc+mhQxyYb/Kdpz/N71/wAr7/+Ec52y/IyyXL3T12d3ZY7e2Sli1NDBjrMeoAbip1gDZZuYgN3ltyDuCgqQzBSL4juUJN7aY0fpPGbeHyHBsn0FtSgBB62m6Fqwy4CltVwqEALvYN/+rRT6LuLKGFkBx96kVMz0di1xFTwORM7Tyb820sPaFrWe4vsCGx6C1t2MNklYbNEestREOfIslkEWWuRJjVxIzNktuQZY4PZ1COwmnSs7mIBck813hMMcSMAZcHt+wxenTY7IBETK1MLBOR9aSOyjlijcdbERmVtSMcjcpNIdfI4lSRKdtg7YSq2qCpt2km2/h6hjUVBs+Mhpcfs/gsOYBZk79xf1Xj7N/UNZyx5e/yR2mGzEU8MUsMVVghoynQuM8IRmsHnu2wJzI+1+jvHPHXca8aWjHz+PtLk1epKZT4oAg6MtREBBdd30LlfTBwNYTHrPS3Um/W2IZzwow81KBtOcwfcZaUX7mONX/x0H7puOVL/rvJBYrWETbnfJbh3pg13rT+2/rtG96KJi2DngMFZyyYeMEcs/YurOHiw/06970WX8Pyi0poJ79v7TtDjJiHHzSIkWrWhhohHCLCl+NHYxAgsGJ4kZ3gOM7IDm/W6i9lcHLB+rMZpvP5dUmzas5JTagyVZWpKtnLuq4lhqDNimX89B44N9wHk8XkMMdA6FekEPAWZlNpCvdWzBK8dSz2Fyz3V4S+48PP/p944of/DTmehZzouw5jipGOiujGTLeKQCQlQ98nTBYj6kTGeivNZbo2cs489nGP4fIrH830wAEuvPQSHvPYxzLf3ODM7g5d39OFwCWXXcLFl16GrT1+7tmoG0gW02foM7iatFrSrRZYl/GTmmynZCa4ypBzT8w9pnJUdS2iiliIEBYrUi91suikCX/SbOEbEVtsUmSq9ft+p6XbX9Hu7NDuLTAxicl2FUh+i+l8xjQHutxKLImhW7Ts7uzSTDawyxXJ1mTXsH3U86jtTZg0HD56ARdceJT9xYJ777ybO2++lXtvvZ29E6eoly2mbuhyop7UUHkuveAAj73qsVx55aOZz2bE2JNDz4kHH2Lv7FmmG3M25jN+v3oR33PgLv7t7ov4VxfdTeXNUGNz6oAZY8B4R/SeruuHfToDAcEummZCCBWruEtvLc2hQzSThpQFn04hsVxGNpqGjdmUvltx/PiD7J88CdWUyx7zOK6cTDl+6hS+mfOsF72IQ4cu4MTJ03+jK+qRl3PS6FNMgoc0azhn9Cwe8JxMTgZMQQwKu1rGsNRozNrmKznJGj6R0driKDBV/kwp4bUBTYQxHU5FjpzyV6tKhIfEXMponT8pDhPIGLatGbCVOkReNW15084G35bvYLla8llziJ0u0rsJd9eHuWx1D8899jE+cPlX8pWnP0vjI9ZWHLCBv1/dzqYRfHuoYaekkcmIpwz12rV91hoRJDEDH90MogPJWnxKTGIvGK0thmrKjbBWzbYt2z6PnzeL2eQPHN3jdx/e4McvXZCEQMEN+xW70VDZxLX7nufNM6au+K3T23zD/DSv37+S723uo+lb+t7ThMCrl7fiGwdMpK7hpV5jtM5Y1x5fORUJC8Jl0hyzfM7h7FPutvWGL/QNn08zHl31vG+1zcu3lsO5Z8iilSRJpQh5WBnRKtYq9uOH9zGc11ZFc4xg+lVlaRpP01Rsb26xsTGnaer/h1bL//Vr/ByafQ6cB1k3CWmwFPjNjDwkDNGKcKRxOl4ycIyCAkZ/rkTv+joa26UkwlB9yDK/9PvGGckFrWBJwr3T5sic8dYSxTmW2kkTuSdrDpiwOVGTqZ2jahoa75iHho3uFIe/8D7CoS2i2cJ4x2Q6YTadMJ/Pmfc38cnDL+Kr4i1MSaS+JxIgI31Xu3s84+xf8qkLnsmTrn0DoVsJhpOE4+UtNO0SYxFcHhEb895S6XlbziKXJZ+YHv8CF569j9olbOMGgy2pKWaizUA9YqkG4XfpHiT0RScicJXB9BIQ9zFRtT2Xf/ZN3Pzc76P54B/T750CFayyzhJiJnaBPJnAt/0s7g2/KPcxJtrQ0y2Xauqme5/1zDcrTn7FD3Lxze/hga/9Ueo3/zJ7O2fJSXpgmrpiWkeqY7exffwuCC3C//GaNyLGHAli6olJuelG4lGrfYxZTV+KeI7Mq1zomhSzxWxGnmnpJfDu/OPhlxB5PW965OOcKzOIl5ef12WjuOOIDY2PPODtX/qRSNngyt/RTkyz1klVcgY7/HV47ZiTrK+kJozWiFhcMlibsEn6O9L6+yoN+fopSxeMAa2Z6WVFgLqMRkoZSl3UaK5nREyg7Cskja9tocmey7vIaI3CMHxHun20nqf4Q+ESDvNIhabqSjjwImhY4X2F89XYY1RuypCkaN6bwSxPqzjX2n768F2YN/wCpl1JbuAs5qlfDVuHqG/8CxE4qGt8VXPshX+bQ5/5U068/Ceo3/xLuOUSQ+LMa3+Rw9/5Tzn5u/8EG3tMLv2Ua83m+rnqqtK9bcZMjUELJ2Kx3GP55n+Da/dx1mrjdBSDiZSkT7Vw0UuOqh+uCP2cT5emn+Ni4K/KG2WjKaHQEBeV9DtnJn/671i96h/SvP6XWOuw0v13bCwf12Iefuc4043G9iI8ZEqMhAoRlPmmsWCmxGIah3mHW+3iJw3eO8WH5f2Z2GNSGOPenKSHIoUR79e5IPNau97sWLOz+t6cK32ZZuDiUZCSrEIK4k5HEd+2OfH1d72Dt175dXzjbW+S88w6EWBPVvkmEWviwJuQuMIov6j0zOZh3xEemSE7sMM+N2IiZc8o6JAZ7rkKJK6j4Wu4iuxlY+133H8LkrX2I4zYi9E90emeIIILxdxi5HysGxwbW/g3kgNEX/OpZ303z7j57Xz2md/Oc2540yBUUfZdwQUE106oMZsX4dpHlMn/xq/DBw6w3/a4ZYtZtSxzS+qFS5cMQug0Y9xcyjNCqx5HetAuKHOtzG3VJRgmohUB0nLf5PWy5myxnF6DmEepZccYmS1uxB6tWeI5eNcnONF3Qy2TtXq3sQ67WPHUD/8aXVoRvMUFN5hpOmuorOXRD32az1/yFRzdv58je9LPFlMAI7UFZ1XCQXHJqqmo64q6qWkmDZVvuK5+DEs2SMZwY3oUVy3vFDPZEFj1Pau+ZxkifUr0WXhVWXv1Y8zChQqR0Ef6vvTvZGI2ZCtaBSe+7sc58N7foVvsEoLU93xd4Ta22X3J3+XIe3+D2BsxKcuBlHr65R6zr/pbLO/6PKtbPgHZUFVQVzWztCS99ufYomfzwAbz6YzZZELtPB6DiZLflpomSQSHQhLOZB8CISfhA1cTQuyx1lCpma13VjEuEYVKSF5HrjDApK6YNRW1d9TOUluZZpJDyJ63tfsAz/zM72G7lfDNs8XisRYqLJUxIr6clJuQIyn0IuB4nvEWofCqSjwi9dnybwbGPag8zBpqnzOfeuFP8qwP/Tv436n773jbsqrMG//OsNba4YSbKxdVUFCkIkpsBHnBhKmlTWgrKLQ20ohiaFRM2DbaoohiQBBpFEURaRV8FZAMknNBUQGofOvWzSfsvddac873jzHmXOuUaPv+Pp9fe99Vn13n3HPODmutGcZ4xvM8I0WiyTGUAdxgoGalsbr3Mk6rqirP712PtcKf63o78GuynjxjJsoTHHw0YvFyMJrgpdCrma1w/MWrRMz7YpI90VqL9dJ4RRo4oeZkSevTYuDvdL0wRtcG74ZGgKAmXBlTjuJpEKzqPykmvznfAMjGtN77osEZN1jNa8+79z2Eu8eTXBmPaxSp63jM+Cmq9crBh36bA+jRUXB5a6iXOwT0+pD1kZLz2N0zdDknRppgWVqcSfiJcLQm0wnGOboQWfW9cAZzPpXERD2lRMj8BMzQ5AX21FhIEP7i1zBP+29M/+o3SKETP4o0aCdyUCWxwBBoZa6LzfubtbjoiLYnxqx3P3eOPohBog0O1/vSmNYYqXkBasor+rgP3fMbuf/tH2BjeVzjllT0C8Yakrg14Yyj11jKGegs+KANUqMtTcjGuRsgfKXQa94nZmlyEwMxmHLdx8/K97AYQWkuZDRpyp4/TteIwiUIuR4x5D2SCwn/1TmnplOUNYeU55Ty8ELg8uOf4mOHH8b6mVs5eOZGuqzZSZkDksSsDqN6qjSK2ygYk3a+K+9lNBa2Za5KPhhtwulXayw+gW8XoulOMiOdFU7l1ltew8Fv/i8cf8tr6U/fiTVippvHPClwx6tewPnf+3Oc+IPnM20aptMp0+mUyUR4ytZafOdIIdCulmVt8M4StJklyapmM5V4sHidMMSRhjwmxtGnnusoOxUozpINVGOSAGqsKcuYZr6/+UaOc5V/7vhXG03l4EwSZXU+VOA1u9U6p27o+aLmgZk3HF3kxgH8cORBPP73XR4plsRaEipTBL1DxE7Z0JK6Lecic04KxGgi/ywAFVgZgCGJyVSvgvvQDx0BYwijhEqBzAy0p1T+Xdwzy8mY4qTqjKEuZ6TnnAsIfujabZwtYNZFZpen2KupjMEYL+dcjIUkgSUbTVmPsRUYx9QZpNvXIGwu184ZDAKOGgDrSIgx1CoEFquW3cWSbrWkW63oVu0IeM0bkxnuTkrSSTIB1lC5WgDYPmjC22GsmNWEGKm2j3LPd76IPgaCcfR9S9sv6bolfbti1S6YTqb8/ZHH85U713NBt5LEoglUk1o6RYSerluxWO6y2F2w3F2yalcqpMzi2CwUFZ+2vMickwR653G2Inc+wzqsrUjeY32lZmEO3NizDsCURBIzJJJ5OSkzqyTzcqTyvPFMNOVPU/lJCSflXyYNz0nqLln+WEELk7DWy+9ij4lBXOWtXHcHxVE5gRLCDY2F75stcMaS0rTMrZgSaynx/AvuFGMV7bAIiKDaJT60mLO0npAMn+g3edjaUje/wTAglTUom99ZLnDw3Ms7qhwo6XUcgLyReLRcG6ufWYgrJDivifzYZQtsTHRRxFFdH1h1LavVilWrgqFO1pdvSO8kEVgkpWAmdW0tBJjE2upW9gfP6foA9z/1MXYQUUHlqyJY8q4vBIHfq7+cH+L9QsTXjdDi1OZIAr8MgNrM+EgjUW8aydVDou97MZrqejo1FIi69krRTw2ntFtIvp+RNAJ6/793pPH80q0nwUB+TjlwH4yksrHbns0IMe5Ko609F85kA7ekPNdVNEEGB7VQsmf91g1ezKZc2Q8LUqXvGU2B/2XNQ7q/R5MD93yiachJRtPcpEwE1j3NJkzU/TcGDf7Q18yiXV0hNKGoTMA66ZKFGsENxhpi7JTNplIxdFPR9zgckgsFqEhUzQV3dnY5u73DcrGkXbZ0fSvmMjEQYk9IgQJ6unySOYFSEpsT8ZV3XsRpuYORgcYE/q/rXo2JASZNSRaNcVLo9xX9dD9/fcmT+Z6Tb8L5WlzQjbiQtiqk9n2gqmtcpcUCvcjFUCSIQGB3d8FidynPsVa7oiupIeWxN8QMuRtrNhg8lw6vnTOMHToc6KTh3lvXsmgeSkfifjs3EGdzKQQZSfS7kJj0PfPZjLbvWSxXnD67xWK1UvJnoN89S1rtyrWJicYl/KzhxBN/jMOf/BtOff2PcvDvXwTLUxokJ3COO578Is7/yx+hqSuayuNJxFXLHZf+O3Z3d+nXL6a/5OFUn/0HLJIkHfnj/8QNz/gzrnzdMwkpYI2Ml7qqxWwkRi46dS332L0ZmppOXdfzGHPWY0yFVSPJnMSMp27SoDmmgLGBFJ2Acljq2PEd3fsILOl9RedqbNVjY8QnSL4rpjQhRtJqxcbRj3PljR9itVrSxySmdVgSPZe998Vc88QXcL9P/U+2zIqwto+qmeJ8jU2BZr7B6Yc/k33v+D1Of/PzqF/7fEJqB/FQWBLf9GKa2lNXjmba0FcO76XIFFYL2r5jtVjQLZeY0DFvBFCZz+YiKPMVIQba1YrlYpfdnR1iCDiTpFtXXdF7L7F3iAJ6pVSS29h3YKIKRz2VS0RnxfTNQtd29L0YKMRsEpWTUIvshDGTiayaF0BeY0s6llMPzr14MaVE1VRsHtjPocOH2b//ACdPnmR7e1u6A4SeHiElW6LkHsYQenEY91aE/V47mnhrpKNPUMOOvEcx3tWMbgkKIMS8D2TBj5qlOKu5lRQIY0Jjm5wyyT5Q1xNmszkbm5ts7Ftnc986k0lD09QFdGtXLavlknpxinT2Jk6tn89Fn/lbNRcR8D+EiLFh6DLrslmWbmpxJNJAO7wYCaWTGmV85Ipv4IqjH+bQ9m0KBA6O6q+76pk8+XOv4nVXPo1v/dyrynXJecTVBx9ExHD/4x9lLwE4g2GGSep0n877+d57aUw2OolDzqkE6Ewe3WtWkp9nSk5GBgpGQh/5OyTO0zlsUDKbgpJGN+8C6OpXMY6Ujh/B2AKClo611pbPKUQrubfFHiYJEOKto/JO9+H8+irGMGL2uMdc5Bw5GjV2xgoRuY9RO1yD3FtbyCaoUWbXJ2LsyKZAYiAbxHSyC/R9otf5su++j2B25UPZufXzzB/9DRx/x+tpmoapr7BEtv/sV7AIMbFvWxGOdR3n/9h/59Qf/jz7n/Lj9H/xK7RtT4wrum5B6BZY09PUjrV5g/M5Z8vGU7pOejHps8ZwyAe+bnaCt+4e5lv852nrhhQSfbtS0b2aX2Qzbu3GGclmL2K8mcl/oF1lYiT0CYylaWY0kwnWetq2Z2dxlsVixWrZkqJhPpvTTDzrf/GrbFx4IfsO7mf94AE2Dh3k0Pnncei88zDWcub0ad7encfk6vdw+t5fye4XX47rIhvNjAbL1HnCdEYIPVlkEKMI7bpeOpfse+x3sDh5O+d/2Vdh2wVnr/toiRWNgSzqizFKp+C8uBU8X0Sw3lkmTcP6fM6BjQ0O7NvHgc1NppOJdLXvZM5b57SALACsEL415B5hSAXqUvC2JKT6kBA/zxLtph6l+6dNhpCEdOl9RbKGtu/kvq0Ex8pFm3PpsEYNCvNcSSKIkpthBTcwSI6geUM24D31tJcxfeUPCjkvJS2SBoLpNO8CTO725Etxx7qhWwhqCJxIaqibgWsxo+lCpCpGU7L+XXTjB1ibz9meTQjdlL7rmUynEuKqOBD3pWOGvHzLcp3xjVhwjiysLf/Wn2W8Y7wP5JGQ0mDiEoIakPSBLsi/c5dzEeP3ROMwIYER45LlJfdmsXkh5vQxlvd6JLvveaOaTa10DAXu+YLXcO0vPYMrX/AaPvMT31QAbTFvlfvotXAQnSP5wSYsd+FauX/aCV7iZENdSfxa9hj9fYqSI2VSTKZ9ZEwmg8mCy5hiWGZi5Pwzn+fwqeshBm3akY065P2j0+7guWA1VB0w5VqPYp8M6pthXy/bsaHc7z0hwDlzjPF0/ffo271/9y+/zNAhcnSiZsAK/7nT//IXvYEP/tz38LiXvpl3PvMJw9sniUeaqmY6mTKdzphNZ6X4Mp1MmU2n1FU1MuWUOMc6MbJMSDzYx0ijc6dXg5i+F0MeZwczxNzs4SM/+T087Ddez8d//DuFwMgQm0wvvjsXP/npXP8bP4kxQkrw3tGo+cXhp/8U/T+8Fnf6mGBwSs6yr/45uu99AfF3f4TZfL7HJMgkIQLXdU0zmVDVVemQjBkRW2Is5lOZ7JsQ87iQ8r47jEObQRiGePK/XRn40c9WvPDuLTZO6Gc9sU+EPippRAU2URCXVRJDoerv/ierb34W8Y2vpDtxrOC71bN/DV72U6y+7wWE3/0J0vIm7Dv/kvioJ2H+7g/LHAj/+EZZk4MSAVAzrSgmATf+xg9x9x/9HT75c9+Vtz9WqxVd3+N9xXze0qsJXoqSzy0WS6qqEeyzsYK12HML+8h5eNd1YqLc96WYnONAq/nJZNKwOWt4/M6HObRvk0mzTt3IWAidmKbHENSotN9jEGkUPAghcPzB30T4xD9gnvDd9H/xEvqtbc1rJT7N42w+X2d9bYONjX3s23+A1SVXMj/vMuoUWB4+xJVVS8LQdT1nt7Z45K0f55hL7FpL17YsdnfZ2dmma1eg2JrNJm/amauYYGmukfeiUIghll+88yA/c8FpfvqLm/zS3bYLuSOoMVe7Wolp6O6C3Z0dFjs7LHZ3WS0Xapwg+1EIEJPUsqyTBgqSq3iquqZpJkxnc6bzOU0zoW4awaN0behCIPZi4BFiz2rVsliuWCpWv2p7uj4Ww6k+JDVNzYISJWYoidJZI+uDs8RUIWIjJzhD3nMMQmKPAYOY0vhKRDvGRGJvSp0tY7NGi+2G3AU372FDXj4calIwJrfYbDSVa4zSKa6Pso5gDb7yNJOJGHLVNdbZPaZm59RhJD6ye/YpWzoq9iHSR7B9pFezoaD3sFM8yDi5ppV2gJytrzHvTtG851XUtWcynVI3DdZ7NSQz+KpW/E661vVd5F4/81o+/dPfhLMi8AqnT3DTa17IJd/2o9z+sudRJzDWkT70JnjiUwmf/xh88dM4AsRER0tfe7q2J9aDUCkaxFjVGmxV4eoKrNZYtKOVBRn71uGNpwqeECvFviORKf94/+/jwR//Ez75mO/nQe/7PRSWFYzSWkKILNKSdneH8//Xf8PZigAsFktCbIXwniIX/f2LuO4rf5h7/ePL6KZTGYvJYl3Ppbuf5HNHHsrhrVvZtzyBrWsaXzObTvDOsba+wWQyY7FYcOexY2xtnaVrW2Y2sj6pmNYzptMZk6Ypte+qqmiaqRLtpQuuNWC9xVXVcB/y2HZOcwSt8TmrfhEyb4r5jrEMAiTzJbATNRBKjH6uw668hv5dGtYCa6UzW/ReCMgD3C1rg7c4FahBFGy/HngH8X8Xc/0fPgLCJyiNZ0bYXW8NPsIsWlqsrN8OjM9YW5A4PHM+jAUzqMkNYiiT8ShjhtgaoyYRCRVMaj6V6yYjsjVIfd9aI7lZJg6Xd8k5Qb7GUTvagU1DHBijGI/Y3JRJa9FlZR19Kx+tMDfkZynHi3vXyg9X51OFjpv8JrZvuSycFP6MdyRgmiBp4yhrbDH1SikR+5a0WmmtuFdzfzjwjldzx9c8i33vex126yTRV3RdIMQVQu6S+ZCMoaoq5sdv4kg14Qv3fjz3vv4dtF3PBZ97B5+//9ew74YP4k7eSk9i0q945Cf/nNn6OlXT4JsJxnumzmGMx5iAMUE7RFb0ep+/fPtzpCBGaSkZrc9IXmEtpGjK1cr5PIliAGasLTlwiEmJj0aIo0qOyznxcK11fkV5TYmnDNaKoXI2/g1JDEqcGskYf27FigNxNik+LbyIjOnasXFDDPRJahQmxgEPMAoWhV72hRCIIUIXiKuOsNQOrGqsi1Y2LIiwx8g9CiROfecLOfTnP8/Rb34+5//lLyiJLjK55Wqqm68m9V25b6TE/B9ewZmv+xH2vfePMTtnBjGGEVPwY9/6Ao782fP1Z7JnZ9xQ5mSnub00oQFTsMXQt0xf+1MiYslrsVaF023XYep1ugvuiX33a1hmoqR+LlKE1S55fgqGnsoak3lYwuVQs8losC7n9yK4yDidt27ABzT+yth/WSIKFmCHR87NxgsI4GNbBOj67DI3Si6X6+TaCAlk3x+ekk3vTWmwkX+WRp8J9mbzxoDFStwwwp3+pd1nzHMbF1FMVqQYqdjHUX5yLh0Zl6qsNKTJneIz6Zpyh9SI0CRZ6whgsvBU5loWV5X9PwZy80WQeeudY0Ki8ioY8Z6m8czqiokKFxoH06bCWwtpQjKBEGe03ZLzT19PCAF73mExzXaCN6x2drhzscAmw5NuvoWTMWBCJ6ZlIRL7IF1QJ0ZNdAIh9RCGe1ywyRSJATm/Xg0JguzRzjtqN2E6XWM6Waep13B2SkqeUEjLSevNAR/9gF1jwCZmxhF6jU+1+aBQV0aGPiQ1dmuIzRob8wMsNnfwqwQL6FaGrl+SELMp4YxFjDbQsJgi2HAGvPyFzJ801MlyLZPo9sZ6iFhHDIKyFBXt4CsxXd5/MlZvADKnJY+chJpNWLxxOFMJjw+vwnePMTXGVJAc1tZUfkZVTXFuxmSywWSywXS6D19NMUYaMBrrqTPHMw6PzCE6l46MYQcV+2URSDbcFnGS5Pchr8dG8iqrNXerNdliLZXjx1ENdTA2GmGvGj/edQ0b769JxbcSVgimTBYVl7Err5AJ2hn/dflh1ajZZOxa66F2/Ln2PvSTCHYdh8+UCk6ShvV39LUcpSDFHlA5x7X5Z3d9r+GHMt4NyPoFgxHDuI5cruPoWmTSm96rpPmT1Y3QkrmUo7E4uo5778XoezMsFXuwhfLcVP4/RqzlL7Pp5HCVsyiFMlekZmf0XLPgodSkQWp62sSpvLXy20wymVJ9bh0hkoIhdImuBesC1hsxUiDQtktC35H6iDEu9xilcoKJxYgYY/eJGDo1pe5IocNWnspXVL5mPl1jd3fJGeeoXMVsMuP1538HV33klXz4cT/LVX/7E9hFi02evpUO7bWv6SMsl0vaXqy8SEbNbYUrGlKkwmGqiu3dBeuThvPOP8LXP/mbeOxXPYHWR9ykEbwkOS6tavoEO2fO4CvP2cUu7c4K31lma1NsqvBmytrGfmIbsW5GiC2ntk6zPH2S2Ft2t3q2d84wmToOHdnP5sF9NJMpGI+fzKl8TewTMWguYhOT+QQmHkJL361wkxpfN4Qu0kz20S9bzGxOOr1F6HrBI0hMJg37LjiCndak1Tb9akm36ulWKzZ2W3a3d2gXLfWyY38y7Dt4gP0XX0C9NgUDbd9yyFkuv9+9+bJHP5wbPvtZPv3Rj3HjF25kuYpMZ+vc8973YuPgfi689GLudf/74udT6JaE5YJ2scv5J45z4o47iCGysb7Jf98f+Imrr+K3HmvYN78SYstqtWC5XIGtZN3qI8laTF0zda40AHHOQTAsV4GdnR1WITA9cIh98wmusjTTCaTAarlL1wbWFlA5z2w+BwvTzf1MN44SYuTAgYOsHzrADdddT2csF9ztEtZm62we3P9vOqXuejhXFdNJGBoR5M0gc16MHfGdXZJ92SZssiMMPO1pTlgiHw03il4ElKPtBsGkrtGZD2SMmGCJoE946xl3HziF+j4xYkMQrm+wZQuJMRH6nr7vOBQ7nlqdpl10dClx5fI2PtxcjFtsc+nObYIfEPnaO97LpPY4OylcqMYIvjNgHkHTLlmXU75WUK4RavwEGrs5g41SbxV/CUt0TmIt8laQSo5V6sHO4asK530RNwZ9zoEq8dyLd1TpYUgm8YDZkq0tQzCeh62twDic9zzzyIJfPXqQp2+eYh4butZQ94J3z/qeEKpSQ7NOahzCNVSswYkZUd+3hGCLWC0ltR0ZNfLN4+VePrJjOr7YVXzLPslPy36fi+kl3rGKH2YTpTwG5XvvLHXlmUwmVBVYGryHSeOZTGpmk4aNjQ1msxlV9a+Wef0fO5xVnNawl8cQoez/BjJ3PkZDMMPebVLCROHtYTNvR75674bYIqWBC59SMbWU8doJlX0ULtkEjkRlYKLEBhMcrq7oraVXga9zltoYqpjwIeJMwJkeTAcYvAFTGaq6ZmJrojUktwbeYitPM22YNA1N3dBUNV+3+jg+RXqtma2i8F1XOwuWO9v47S3u+8VraBc7dF1Xcq8QemLoMSlQO41tjTQX9F54Gc7qw4hZh42JioSPUXDVGCEkUkjkJpjJZj4OhCh1devNwO+yiRAhRgNobSk6XOdxK4ff6Tnylt/g1OkzdEmbL2TzWBLR16SnvpDmr3+d7lt+is3/+6W0fY/d2aFfdQQ1mEwpYizMZlMu+8Lb+OyDv5nz3v/HHCewvVzQtiLanzUT+knDpPbUyrWyRrlulefUo5+CveYD8IVPkLpYMMW8Nrm85itXLHPBnDE4L3hJNJGeoGPSKR4ka5JT/cC5dgi3hgFTKjNtdJQYWDGejG4XuMeQfMXiqb/K2queW9Kl4ZF5TpHBTCfnNWIKm2IkGlPKAEZzgJTXO0YYmgqmNbXG4nAxEIL8vDcWGwN9NEQbMMFI8+GUzXNQfmleP/QckpxUyi9eMEEr9YMo8yeGYdM2aIMgHQsAOCvYdkAMkrSWYZLWZhnGnmQkVvAEY4qBjHe2nPNYJFxXXoxC6gpf1VS1mEx5X4Fi43nsGsWJixbUDLcz46W5Tp1Wuxq/OMy9H407/zLiakF/38fSfOHDZOPd89/3R9z2FT/Awbe/jJ0UtWZt6M6e4I7f+WHV8Q05bxDHW+HnOzH9mTY1s8mE+XQqXP+6Lk3WvLXY7W3MdIIlscq1k9ysNp+BS2U8QOZVnIO16IwZfomcdzym5S/zvRnjADnPTLDYYvLaXyJ1q5ywD7m1zqX8nsM8HdRSgGgvdSx5p4u/ziOjwnrBxwZuYR4/zlmsFw6THxneGJO0iYVsliF/HjUPj7oHJW2YMRaxZ+8eM/r6pR+mYBQYI8YFcTh9iX8Ss37Bf7j+9RBa0Z1Zg8djlK9g4ogfHxk4mDEJhzvKewWbRfV6nZNeydHalq9bxv9sfhnliuaqQrnfesLDnMxfnZ5fNpgarXllfWa4XmTTl2y2rsYvun5kDGZYKwf9uLXCIft3n/1fvP/e38hjP/3nmMqXzyqrwaAVjkaagBSjKmdLjfRcOQ7s30e1bMHtEjF0XUeXed1G74Ea/0Y1vE3GFMPdYijPGGIa9oB8xIzxpihmNEnqzyhu+NYH/xhf/tEXq7Z/qCXGmI2YBOdsTr4V1/ecDL2+t951ndNZ/2itw4aelTW4KDUo74RDVFlL7xyTFHnAbW+nsV5qDibJPdJ80DvRZuR9z3o3mNJ6j/OOB8fbeY+fQ4hc1R9lhSVGaPvAqgss+sBKjaZCkmu3qiZ8+qrv5cr3vpjQRmIXRLsfhM+fgqxdPR2nv+HZrL/zNZz42mfT/MkLCKuV5C5VxfaTnsOhd/4hx7/iGWy8+bepvCUkg+9h43H/gfb07azd/99RpQ6OXicNxrxjWjvm3jPxcyZNw6yZMKkqKmNxKH6XKghpaF4eE13fsWpXtEGaWwaiNMrtWjCJqvFYE8ScV/M40UNUeANN5UT7WVdMmonqqy2SUqgJbgrYJGthExZF6wyyrydjS9Nd0VY5MF7zY8nB23ZoNHOuHM5l0xetPZNKTpXjn4KBW1uaQZDgY1/+wzzgfb/LBx//PB72D78o+4tNul4CJtfpxSjbVzpGK23IkSgxUOccthO+7JgLn9fx0ugtBHpjS9O3XNuROSx7FjFgnBt4c1k/rXuedQOHNGqDmYxBZOzYZ16JcZI/4ZWblQ0AGXaBGEjK9wuBoVnGyKukGG75qvAmxT/FlyaPxlg+tP+BHI7bXN1cwlo03N1sk+tNMMQQsHcf2vO7RIlxM4Yi98+RbMoUgGHdTBRTVvSalX3G6fVSHZdx4oFgdQ0yqlGTWksg9oEQKoIVTHH8eazWIYvxW+ho/vQFwo/0uUFk1u5I0pD1AEaxkuwZUe5nvo8xqrlSv7fwcA4cva5Ltu+o+kp4rDGUuETiSbkHH7/XN3LFnZ/go5c9gUd+4f9mujyt5m+p5CRYI0ZTFlwwaowm47a3Ytwe9mhaon4d4lAHehnNYB4FAsbEsYZFsY9c+1LtmPxG8Rfy69gyr3K9KygeWtYTm9de0QZWTmJQb222QACGWlme93Qd97npnXRtS9t3yjEeeWek4XycdRgS0WatVCy5Yj6tYtRkBoPP7BHinSOGSBDIQ0tq+pnMEP+SotSZQssdf/RCQt/J+LRG+FGlXgZu9zSnXvGTTJxlPpM8aTqZKMdRrm8qOhmHz59Lc9FosjdEUj6c6spGuacp5zU6P5vXnmFeD41+IKwfZvX472P2hl+UMWIg2JR9l/fWYHPgzhCj/0vHv95oSv8nRUa5IN4JKcFlJz6XbxACMGQqsMZ0BUw0oziPIdwb2Rb900dKA4EGLUhnkyk7OvHRhVBrC6yCtuT31UMWsiCD2quLvQ7oOgQB5YOAeSGEYjQVejGyKIRVDWRj+ToIVfIUNbhRgJk/L6PPmxfRXLy2ZbKUovueTM2W5+YTM9aJ2ZSaSyXj9B7ki50d8/T52nlDGctEHF2fWLYdO8sV24sl/WpF6Fr6rlfSl3StKcu3DgwBQDRYt+rMikwE4yzOO+nMqR3JQ9/TRylwxZTou5Vc474ndC2rxQ5vv/KbueroB/nr8x7FN21/jCMxiviPCU0zIfQtfdeyWi31IUY+ubeGCAhyV1MFntDkgfECem4cxlUK9KqJjHXg5J7iKulM57K5DIxnzH/+jOUl94FGF6L8uzL59r7TXR5f6sOMv0l7vy+bS9KpObxXBgTyX1sSIciaIbG4zOWxQCLl7/PCBUMRTzdH1AChKnNKP5NJZVo8qu5429mKyhoesdmL4VpJ5/W9dOxnYqMuTGQfmlj+Ol/D0XwbzlpACmNG4IQGy6Ad0LO4rWe16lgsV0UkLt1FVURGojdSDAlJAuuUiacaCBze/jyH0+dpU6IHumTwvQjsKuML0fBPDzyJp26/nZfMH88PLt+Hd1FcqmPEpYiPnmAjb10eYd0mHjs5o4FrhtulI2bUpC1EFat2nRhk5TmbGNYs/VoMzQrYm3flcwu0+NcdOmb2AISp3I8MiI5oKwKwYweiNIOhlICLQoY3eTwlpHOa0n6NVRdt7aBO2RPEODApUJXHojG5u8Eg7FcHxfKZ830QoykN/tkbOIo75ngd1OKfzr9sNAVapLJGCHtRDBljCmq8oOcfY7ntTsHOwAB0yv4n5+WsCL6Nc5qMOzHdYjCdKvskUijvu57lasnuYsn2zq50Te86uhBFFNZ3IuqM8tnKXbJJgs6sAsn3WYMtr0meEDstlTVMvAR5FoPVGMc5L0W1qiJUU15/yVP49rNv5XWHvo5ntO9REqJ2uNZEOSVZKzwG62Re5E4AMUb6ENjd3WFra5udnV1CSjS+EkGl80VEl4snWezu7GCEcq4d2SALI0KDbPQjcRk89ORHxdCu9mQ5ekRoZDWJSazogoht+7UZa7Mpy1VL23Ws2o62y4TFIIluJffl4AdfyQ2P/xHu/sE/pKkjNBs6ZSyf/Npf5n5v/XmuffKv8cC3v0AAFSPF0gtueje33PNJTHfu4ODxTxE399FppzZrDAde+3Rq76iqWoxVnRCznHEkbYIra590TohR4X/jZK6q0YF10k2udGYZo8wpCjE49qDJsgmyVviUIFbEqsE3UY0oHMbVuK4l9EGM1tolKRn6rqddLli2LX2IGFcV07q02uXuf/d8lsZztJrg6+NMZms007l0tF213P19v8sXH/N9HP5fP8NirWZtKmIYSuIvhbSqcgJMJyE4kBKr1S59uyL1gYmD6bShrmsmE3HvnTQNlXb/SXHCajXhlIPd3QUxxKFAbBzBOdrVSpJzTbCdQYqBJmJsFMGbNTI3NeL1xtA5Qwgaw/faqQl0TRNxqYhB81ojZdikhMXBFEnG9Lk2z0KKGGOZzmZs7Nvk4KFDHD9+nLNnzspcWa1oY4/RYqAj4Q20XUXoe1nntKBEgrpyErNrnmNSJlhrUoopcZvRYCnHK1IwS0XQWsAtm8kKg4matQ7vpTA5mUyZzddYW1+nqmratpf8wUvh3lU1E+upqhrrPH7rRs47cR190xQiCUkM/egD0UaitcQ4SorL2iPXLRtQicFJwpjIJ678ei6845NcffGX84AvvIWN3TsJIRSzqW/+1O/xhqt+gKd89uWFiCZbY+S6/fdlUc0xKXH9gftx5ZnP7knMX3m3/8hTb30ddZLugkbzPqAAKPkYm0x1XVf26txFMYua94CMuWg5esQMuDD8TQxDDAOyP0veOFyrwSxZC9mo07oZwIkyVzLw7JzkxEE6hiW9LmOzqWxqVlUejJxnUgFEKdAb868CLf5PHnYU+0v5VHOeKDi2teg6r0ZTCboghCGTGN2LQAqyDwZjSdZjrWX3859ifuh8Ni69Fyff8sccPnKerJHTCXVVy34ZIquFmC93XUe3WnL7rz+HC37o1zj9uz/CdFLRdUKA62oPqaOuLdNJxWziqTzSPUJjLeeFpFhVTgl0FofjctfyNHM77dLSq7FpUKODru/pQydGTUFMPAsJU2NXwS10XR/FymKg6miaKU3dkDC0neAIMYKvGqp6wmw+Y2Njk4MHD7H/wEH2HTzA5sGDbB4+yMEjR9h3YB87OwuWZ7e54uYP8uHLH4F//18x75ZsHjzExsYG29tnOXPmNFtbZ9neaWVMWacd10XE3/Udqw+8gX1PfDrbn3s/9vZr2JzPCrSS71nX9rgo5rxBxyoKullnqCrPbNIwn8/YXN9g/+YG+9bmrE0nVL6iDUE7uGiRhZFJDQNoqQnCaE5rvGRGRET0vdM4P0VFzSr0yomzFp5TQsyEleOZSs5xbh3OWWKQmLl0KEmKMxYyqUqxnVPDbc+xb/tV1v/8pznzA6/EvuQpRMTMuo/Qt2ruobl5tjvKhDCvsbVRIzkxo8zkM7lCuRNXT09vIC/TKSZiH2iXS3Z3GqbamXI2mzOfzwEwjeQ6zg6GglZJqqC3PcZCRE6aL4RSeMgE41yUEhJPCEGK7EEJPwYgqpFjEuOYtmOlwp4+CN6V9D1Wz/ltmpc+GxfAeo+1leQq138SY2tW8/0s3vuX7C6XLJdLVl1LpwLTTz/vW3nAi9/Ix5/7DaTQgY67XBx3BnorJNjoHESPmJFY+nHBg4zDKN6pnbRClPzNOQtWi5FORGx935FaJSdHMZwqwtmClco8CaP5ZJJ0Rk3GiijNyXUPzhGdFCeCElXzjSkiJHKhMN/LwRxLOvqkgnWR82y5sQM+ek4d6Z/5+i/8KTDgZyPc9y6YQfla0vVhrxxwfHjvjz+Zx73073n3s78WGEg1zhglTjfMp1J8meljOp0wnYoJSuVzyULMx0ofaSsk9bpSwbrmk0M8MsRECaTY6lz52ad+/ClUIIYeQAyB6sAR7vbU53L0DX/IFT/4c9zyBy+UnMc5qqri4FN/gu69f8P0m36A+Fe/i9k5PeRyoaV65U/KXjufi8A6qGgVMR4UM42G2WzGfDaT7rbzObPZjGl+TGdMpmK4UQp3el0jOfcZdc7L+I/en0kFL7lvJAVPDJbJdEoM0Peyv3VtT6tF/WxWZa0hrVr8636D1UpweamDRJYv/AHWfvJlnP3l7x9MUG/4FO7Ga6TzZuVJxqjpi762CgsjYpgZUqJbrfj0z38X7WopdZggeKMJkdVyxWqxYrFYslgs2dndZXtnh+l0RlU3NE2D855qPPTOkSNq/SeGWEjge0mBMjNyR6u6rmmyYESNOgfx3piU4GU/N7YYusaYcM6z/8Nv4OgjvoPuLa/GnD0+5KkJjJUO9k3dMJtOma/N2djYYP++feyve26jo9m3n0dNOprpAUIILJcruq5n4n0R2QOlNib1MMlPuoy3hb4YJEnIbEohuZj3kUgp8DOHjvJLt5/HCy85Qx9Qs+IgOF7bsVotWSwXLBa7LBYLlnkvWq3o1LyzD0J0T1icS3hjpVaihv3eeYyRPWW1amXsrjrJPZLg86XzXQj0fUfbdWIytVyxWq1o2/xVmkMEnQMp5YYz8n3OgyrvCpbQ9QbfCUkzRSN9MdQExGgDHAnxsmmUASXIhyCxXiINdU4oa6tczoxK6+eIiuVmMu4AWsg+m/NOspHdsEZkfEyIP5V0lnKeYMP/iSnz//qwNq9/chhEOGyDwarRYB+jkgyAKDlXcB5TJa3fRipvsXXFZD5nbWOTyXSK846qmeDrBusbrf8kGjU89N7TNDWpj1z+46/ixl/5Xq765b/lhp/9Zvq2A2dJx2/llt/5Meb3eiiHH/W1tG/6HRKR7i2vwJFwGBxOPmsLy+2WqZ/xya/9FR7x9p8nJCNd0WcT7HRC7wRP8SkLG6ziVx0QBPb3DpcqXKrxQUj9EyKPu+ZPeM8DvpVHffD3cZOpdFVMEeMtFkubWgwSs/VB5gOA8xGbhHTnYo/fOc2Vf/+r+KrGRAPBEVsjbdOM48rdD0Dlteun5PvOQOo6dk8eZzsFdtWoLvUd86pmPqtp6pqqavCV5KV1Vakp3ARfVXL9ncE3FY33WJu0ZiCklGKmBiIwRuaiGBJoHTWPk1wmKdgLOodL8FdyMflqZO5GiL3gFdLprcO7SPSG1sJuH/iHe30rX3Xta6mczOXJpMJVRuqddqAl932HN4n5fErdVBifsBNH6Lr/f06Z/9dHqx2UYwhUxlE7R0JMLiNBOniaGpIh9oGu7cEmyW+cxzpog5L2ch1G66MqsZDYyyTJVZHcQIzNB0zc6Xg3BuVfgNwnMSBOJiJ9J8VY1pqMKws+jMnvl2t2iuJorlnIf0mEbzKSjDY2kNhQIXiwXuqj+v5kjAcRNeIMsR/w8Qe1t/Ge+hIu7M9weTgthkIoyQqJeUOyYCqm9ZTYtMRO8qqtA5dy2+WP4G5vfwVdaKVOZS2+slzy7lfQdh09kaZupO7Q9Tgcfd/BdEKzucG+/fuJF96Dk5c+iC8zW9xy8Jt4xO61nDhxgvVb38WZs6fZiUvqqsFgeO+Dv4sn3fT3UE+pZhvS3ErzV+cTxvUiUG9XpF6upTVJu/9CFpwCBWuJKSrWpZir4urZVAfkeka9RSYkUuz3pihqVml1vqO4ZE+iT5k4nxDlTy8xsd5DeXURvpt0bhlNbZ/dIS9dgi2J4KbP4h0rHe6tsZrDCsk5i3ui8mFigD5Ifb5re817LaHriKHDxKA5M4xj0CHllfrwgVf/OMe/51c59Ec/To+ul9YUgY8YROnaaMDEwObf/jpg6FUhbRVov/O7XsT+1/4Ux77lFzj4up/RsSGxSp4HKRox9u17MRg0ghN0eg0SPe33/hb2D5+lhEejWBeY6z5IuvYD9NpkIsUoQkk1lswkOj1Bcu0xk1WzIXvKOXwm4Wksl7uIe+skBs6kYjMQoq3iwjbjGIoTGOsGMh6UjSfHXxkrHvgFQ0MTIXeb8pqZLyAGUjmzHmoLxogZZcZTxvnQl8ruY0x6XSQ/FoFGNjiPo5gwE3eH+kG5hiORhcAfgqvkusS5djiXce58L/PDFvFlvliZyZRFeokIRs2kFPHukW7ZwkVLKnCUeN45Tw0YE3FJGhFUtafOJGkioVuyXEjdralqnJodOSzTqqHxlZBmgxj3EAKrnV0WZ7aI4g5VxrY30HjJPSodd8lKQ64+SoOItmtpQy97LV6NDh0JyU9D6Am95ODGOJypmTRz5rNNZtMN6nomsbDxkDwRR0wiGAnR0COiaGeRrThvt1ZMBVIWLhRBeJ4LDmMrrIHpJLG5IaYls0VFddZjQ8XuYosQl2B6rI2EuCCZHm+hskm61Rqp94ogwA61SuukYpmgSGw1b87CR7TFnt7uQrK3xiImoIhoYo+QIVdBpX42pFsWS42lwdEov8Vpo6kaYzwGR1XPqJs5TbOOr+bU9SZNs8Zksol1E1JSw4k8lxIQGBoupAGfPFeOEIPuR4oR9Mqf7bryCGq6neMjo2ZhMeXxYVS8Mqo553WOgRCdm9mW2pyuZ+T6B9ylppLJ9cpzyzi/gP7l7yCPTx0tRuNAo6IhK2ayftQsIe8nmdNbPiOUKo3kpzrG7mowNXrvcW22HMNk2XNk7GDP35XfQFaJJ7IQdhRSmUHIbfN1M+JjZvLnUVOQfD0NSBMpJbfLC1pIOT4fRD45PsjrQBp/Ln2d4dyGj21Gn1JEoHd9ppyPrMn6BsUhK5+HKXG5Q/dFa+gVY4lmuDfygqNXT3l+mdL47lw6ahy7bcCNbkFMFmM8MQW65Q5huYBVD3icN1gH1vSk6DQ+kkZu1tWYxrM2m6qAwmjj3p5V22G9Y3Nzk2kzY3dnwbfc9he85uHP4okfewVtvc7O3LKVzrLbL4ppexsDwUG1PuOCCy9mvrbOarWSeW6Fjx4SnDp7hg1rueLKe/KEJz6ee93nSloX6ZuWWCX6VWKx3bO+foDZ5gFO3XmCT3/kI0wmjtnM4SY97Nug8nPq9SP0IdK2kVtvvZ13vvsdnDhxJ2trM84772IIlve/791ceeXlPPEJj6X3PWHLM9s4iPU1GIObzqENpBSIYcXNN9xI1+1y+MgB6mnDcjexaldUfsLG+hFsU7Nx5DzWDl9IiEmE2RMHtoe4YrE4i2kcdjLHJ8PEVcy6yHoXWC1aTp44zfp8HecrwqxmQaRbidl3lQ0op4l7P/xKLrn/Rdx6y62cPdly4fmXc+DIEdYPHMA0nu2dLc5un6Zd7LK7fYbd7bPMmooj97iUST1jNtnAJsdvP7Kj7VbcfscpXJ2YrTdUkznLnY6N/QdIXU8MCTdbo1suWe7uYFJkUmU+pAg9mxhYP7iPtl1w9I5bOXvrGarasX/fPubzNeazOZWtOHv6NMvdHeazOXe/9/0h9Zw9dYIzd9zBZZdcTLOxztbuLp+5+sMcOrSf2YWP+LedWKPDVYqvWbNn/g8x96iklX+BCvGMGuEmq9tPKrFBzHVBXeJsSaIkZrElPhm0IBhDiInnn9jPC/Ydlz3Ha3NRZ9VkauCA5kbFpVEBaN0yx/AZv+pJocfGgLOO2ntS1fPQnc+zald0lYMkHIJKY0unPDFrhX8nOqwkeJyRGKzkOYzXTjnhX73jEM84cJL9TjhQ1hlMtNhocMkSrB3pW+R5coWG/UwgfqO1El+a8krNXp6aefw5ljMkvnxjF6uxF0lq6pWz/MT524TeEkKFs4agZswpVqUWD7mZhtSjrTWQWzEbVZokyU2zUBDUCASJCGWLFfHcQ+ctX0aLMUlrk4IPFu8TTLlqIDW+sYEnJOra0zQNYTbFugipofKJSeOYTWtms4nUUedi8uHskK+dK4ezVu6PMUNTyCj3PqLKJCuxYcAQEPN73aBVZxXw1uCU0yJbvSWlwfACkFpLrjGFXudIKg01s95BXsPiEhgbQc3zXfLUxhCrrO2SOeswVDHi+w6rn6mPmZsLWItrKqqmwtU1thbnJ+s9dTOhqmuJYWOgXy1ZrTr5TEHdnUIkdi3dcslid5t2d1sax/baNC7mWFrjVjuITMX8SASo1sayNlmTjVMtjiB1iORLXO2do/aVNtEV/L3PuK2xWEfREPQu0VWJYER0aULCTyxV53G7HmtVd0AiaXzsXUUzqaWx7ZtfyrF//6Nc9YE/wt/tMparFadPn+bERVdxfHfBmXe+DhPBmUhVWeracNW1f8WxsJDclsiiXRXbD+fBuQSxx/Q9KUYqZ1k+6tupbr+e1QOeQFpsE2+7ljzDpAFh1LplDygfM8WhqVTjqbzR8+kUwjHYJGtjXTdUdYcP51a9LJtK5ZxmTz5VAnU98sZUatUaxidDcobuGb/F9NU/zvZ3/wobf/xfZZUr610mRgleNLBEkppyKD8pGqVSpmFuYqQmatA1fuAg5A9vGbiWkmcFMYaPgj9YI/MujnO9jGmlbA6z51NJ2qhovxgQy3nHiDY5RPMjeTgG4/mc4CSrjWqjGYyfyOuQ4PvO5ZyVYtpUGiMoBjg2mpqoyVRVVfhajKa8b3C+kn4CpQYfsWrgll9nyD9NuaVFg2pSwUbcDR+CjYNUGweYXPM+TF3JfYuB27/iBzj07j8krXYwoE3XJSahWypaErHA9KrHMLvkXpz865dhjRjaNt6r0VTDfDplbTanrusSk1gQ84ckjTyJUXgEoSMm4agnnGD85XqbEf5ybuEeoxR5z5Fx273CbI0OxnucjiVbAsVuwIkRbJdsnmSMituzritruzJ2YYoRQ8EkRjFV0CBJYsVs4EG5zrJnZJxU9w6TZP9MPbEfBBEZg0qqB4m63g7rjdX5qjzKvN6MG/SUCj5DQp7T+QK26znkZcYkXAqEAvnIaHcYmYwZt7UO9Z2nRNgmYU0k2IiLe/lgqIa1lH7RlUxj97yOiJZr0Dim0Wc3+rnLQ/lYuXFm+UPNt4vYn8HooKwfembODOtHrj04Yxk3GSwGLmqEmqylTiu+6rN/QbKiiMm4ZlTcX9ZAo5z0pPG0mFWda41oJ3VDwhGiYblaYa3UwWIIYrpQGgikQfNtDRE1ve8DwYnxvSEJrxiVIhvNzeLQZEJ0nFJDM8pLfvfDf4KH/OOLePujf5IHveNni75vaKDX0+emjYXDrExi1RWVulE2e/GiWTOaS2HFrKJS/WHtHEvvmfmK1lVUxmDUzK2uKtESOtEmoqYsIcndDmrElZLooR67+jwpIWap1pGMJcRE2weWXc9SdVIYQ6onfOJBP8gVH/l9PveIZ3G3d7xYjDx64bXFXvLMLiRWITF5/a9y+ik/S/PaF9Jub5FI+MpTW1h/6+9y/Ak/wGXv/n26+Zy6rmi7jnY2pb32XfQPfzLu+A0cNlvUl12qfDhD4yy1NXgU20ficpsMLqVSt8lmJ3lX7vuebtIQUsJXNVjDKvTKY+zBRtp2l0TAFyM3NX70DhNrnIXaO7nGOQYwYqwsPhDC6ZMQXzBGZ6UVRrJO8GxQ0xdL5a004YrCBztX62SzyVTza9lDQliRYoe2gSY3U6u8YAbOOJyuvw9990v40ON/nIe//X9oPILUQVUb4rwrxkpevzfOjbCUpPwG0Wk466RReDaWKv4agRgGBYTEKMP8H9ZzrQskCi/IOIQfUrB6yRGNIgUSr6lBv8n1XF2/dfV0STRy2WjKaH1AjlT266ixXsGNbI5zBz6nGMW5wrlzirNkTtO/2/0sb9v3ZVwV7+CydAZfNaJ1vYvmN4+naCDrCHrlceWwYpzbBd/Te18aoI6NunK9waiWx2Ujc+dxykEOoWexUNO/PrJcLIkhiCmX91S1J4SOkCLtaknqOmKn63XoRW+t5lqTumYymdDUNU3TAFKDCH2g7cTfo+97bMmzfOH4xHxyCTGjVW2FdY5ooE9j89Jz4+hCL844vROtiz6iCnRyad0keMh1f8MH7vftfNnNb2etPUtCapEuxcKrNViMRfQzWpNyfRDtvY1aB5Ymm2LIpIFU0n3foGNu4DDkQ9mljBvoWeNkPdY5nXHKHLKOG3DnQzjRWprRkM8aSlPWyjtq1Xr4YmKn+gpyg0PRL+b9NnXDtRM+cixmWtns3VpZ33PoGAEXpLlmJBUeStFVlvmumhLU3FwbaZmU+bWBFAQrlMbuHUmNprxzWNUh5VhUKIC2mHlWleCqk8lEef9TJk2tWq6gwWfW38r4LlrcpPw4i8YVFP6ws1KvHOqkqqu0GfcZzs/YwcTUGEOarrP1tT/E2ttfwe7X/zizN/4PZU2lwUjRlOVB8/WM1f7vj3+90VT+QApaOgO+clReXTU16C+VxVzcNJQCea4LJjJBUAlq6BX8Zz93kZPIcxj8+3ICZs0/uQqSXhiFNCzlSuUEwlgdPLmFphHRsbORZB3WV3jd4IKaSKEirxgVbFahdRx1NwtxBPaXN8/iawUBoCRsObEJhkLcqRRYyEfKF6ckrVncqtdEzScSEkRivD6cwDpRNrtMqo1Gi8PGQnIE4+giLPuencWKrd0FW7sLQrsi9q2YYgQxx+hHnY6zwKUUftHirjp2Zsdd4wyV8/jak7t0ZFOuEIKIAWJP3yVi7GhXC+7z8dfwkQc/lYfe+Hf0Vc9Wv48YW1LsIImQpW9XhGyCo8KB3B+26wNdH5VcJYWBlAYDn3Mt2DNK7Ey2IlnZ3Kk8xnvwYkAjhDxTMMJE4rmfhV++0vKDn0n8/lU6T5OOmfIYjmKelN9XyTLyD/b+vdEVpoCPply3mJ+Q/zxvknlVApKCUiY5WQfiSKxW3s6Ur7KhBJ2jcdTVIpvsQCYElLe1hQ/LVx1oFbwck/1kIy3vbCT5NiaDpYMHdwYuxutJdsAvlyjPWV3gknZIS5rcdTEWZ93lSjukr1oxQuuDiC71xSLSLaIjEO3oJqhDsyS/sdyBqEFYpwIDb4IAD9bwzUf/iled/01818m/Y7uqNLB32GCxQZxDPxnPozeRo8HxwTTnIdVWuY5SIDFFKNWHSNcH2q6n7QJdJ0k8OucH8zt9foLicq7EmnOvxPWvO4blLK9twz2Xh4oQ1EAqYjm2dgFXX/Bgvuamt5egwIyeE/I2GAE3JEuefD3FjKYkYFisyS7lClSZTLpS8Gq0B6SyFuctOJd51JgCX+ZAFigFwgCspVTIOVH3Lpf3Zg1+ooEUJDBOGsgkTYySXjiTg1IVc6IJoPiQOKzxOCtdyW020rMetLtzygRBcgcHuXahD6y6luViye7uguViRafd06zzmBBISIejUNYZgyGRIlKYNqacT+ZTRZPEdKYPGFosApqHxou5kHPUpi5iwCzI8pXhaWfexJ/t/xp+uH8nZlIVc8cYjbiDJ0Vbk4ioU9fRR+3QaQMxJrq2Z3t7l7NnzrKzs4MlagJai9urk4Q9JyNgZKw4z2A4dm4dPpNeFdQWgHhvISYVIyoBQENKSAQlw62RlsMkYN/6Ol3f0/Ydi4UYjbVtRwxRi9VO3JaxHPjg75JSwq/PxH1ZhXpPfP+v8M4n/DSPe98LsfO5gD5OgvkYG/bf9nYBDs47IuCkdhNPQYAW73Iy5ItpmclxpvVYU+kcEyIvRkzijK2wVoyejBGDEePsABo4XV9SwkQnRm59T6bElT0Jg0tQJYOxHusaXNXiVPBpVkuSsXR9wnUBVwV8BExQ0CevJY6YAm3bs9hdEBI0kxnT2TqVGoHM2hVXvPWX6KaOeT0lGah9hQHpTKqJljWG3HFt0lRSuF31WAcT56grMUxpJrUW0LwUMVTM6L2n7wIVkZMGtrd3JM4m0Pia5ESQF4IUVLwRMmrWjEgz2jgU26zF+ApvDLW3hODpgxBe2z5IxygygSMNVaKRaSJGzcI0Tozaqc0MiNI5cbi6oW9bFssFk+mMy6+4QrqeI3HCqdATgyXS0XVL6Dsy0cjExGw6oQ2R7R0x+NpYm+EqT3GRMgNIZqzDeMOnH/htHP78B1i7/bMkRBzehyQAhhbCMFEMF0tBRHZP6xKuqmW/Q4hcfejY2tml61swEFIohZr19TXW19bZ2FhnNp1hvWc+X6dphLQc+146SfQd0GqxK9GFjpWCkill928dc17BPe+1cAwkeMDn/oaP3u9bufKLb2e+dVTGSFSBkxVn8G/55O9iKj8QvgBS4n471/OJ6ipigvtuX4fxVUn+X3PJt/Gdt/8v/vCS7+A/3fQacleETMyNMdInQIXaIYg5aa+kbKAAi2MRiLz1AK5GKCLjAgpp3GqMGYjVqUTtZMNVm4FQfY/cnSrFgTghBTE1JfNDgSvEgAtRCzmukHiiXvtKgSSvYjRS0nvhtRCoQApfKlP5tz9CL13N8z6F5gyiY0wDcJc/uR3WaxIkXbuEyGSoNg5w/x/6VT7xS89g0lSszeesn/gC++NpLn/ow1ibz5lMGsDQ9x27O7ts7eyy+90/zOq3f4zKdzTVGpA4/dLnkFJge2uJc2IUl6YN3iZ2th2nnSHFnrZdsn/fJtX6GtZ6NQhUMpGv8NZjksb9ZiDEZ2FApx1BxMi5FaOpmIU12hHCSWyZ1CQoJsknjPU0lRg01lWDMY42RG56/PcxffMfMukCs9ka09mM/fv3cfDAIQ4ePMSBgwdZ37fJfHOD+cYGs/V1KldxZnWandNn2T1zlvXPvgZnDGt3uxsXXXwRR44c5tZbb+GmG7/I6RPHuePUFlf88G9z4mXPYTad0Ewm+KYmpYZl5Wnf9WqqruPAxsaIsJmKydtq1bFadmI20PWEToWx1kqH+vmUzbU11tfX2djYYH0+ZzadFhd97yyWqhQbsshWQlCj4GXeglLBg3IHpUyWGaoFJeknB0aS1WqpJA1E2BiC3IMoBTGvKqA+WSW5njvHiBpD7kAk5J9RYq95Z6YoJWM49Pqf4ti3v4j6Zf+JPiFFvpiB6aDkzEivhmYJ7bzohMTjfIXN5psKGie9tmKG6AS8TUFAb/kIKsCOdG3HclmLAUYnexEJNZcaCqBeO00Zo12CESFYzPcrZbFaKrnzuHtbKQJkc5xxRxLFZ1KimGesOulU3a46MWsNsh+bH/19zEt/iNUzf53py59HNkA1Wow2n/0AtJ0YdhQcFXKCmFLi4895kn7ObJqTIFqmF9yTi57yI9z0kueQYi+vaQR4L+ei+4wQI2zJpYbutINgMnevdd6XeRFcxPQOY2K5bmgukY+C8Yzyb3TO5b+1WSSUi4kmm2jmwqCccJm3OTa0o4JELqiM3jk/Uvn3OXak8r8h7v3fHHfdjwckZM+LwpfKQUfr2vCzxLt+8Cs1n5HDW0vtHNO6ZtY0zGZqMjWbMp1NxXhxMmHSNGX+xBgJxujWrF2kElRRckm0UJrXloIVamG3azNZN5KJIEbj3ZQioesJO2c4/hcv4/xv+G5u+/0XMJ1OdezIuN7+s5ew73t/mtXfvBxz+k4t2MlrxGhwFpq6EfJP6cpEWQdqLa5Op1Nm87nsI+vrbO7bx+a+TdY3NlhfX2e+NqeuBH8wis/etZg3xOnDaipF4YgxQTosmUBd1zA1giGuOrpO9rrBaMqWdTYqCTCSZF1ZrehD4NR//TbBJg1qXOmwlZjBuqoCjY86NXUMaSCfxiQGAW3fi4FPyHioimpjpO07NRPf4ezWFmfOnmU2mzOZTGka6QRcVZXGx+dWxDjE5FprUBybUivJ68hgGpvNpe56P+X3YjBYhxrnPH0fhAwbIzEamrqnrivW/uEV9GdO03mHd072Pyzn/cyr2X3Js9XApWY6aZjPp6yvr7FvY4PLNgwb64nJZJ26rlm1HaHPpg6yFlrLIDTxHtPmdW6ojYUQS1G/GNB6zfGdGzpjIkTBXzz/GCZ5YqDkPX3b0bYtq+WK5WKpBlMLFgsxmVqtVpIXdT0hJjXpUKGBNYUQIQaSjhiTYEW7S22CMpCPJS4I+pCaVhcifdeWOdH1nXaAF0G2EPvDQHiJgRSDkI2cmp1Yj0uCn4pJayomG4IJS3G/3Ge5YIVgnUUMInIe8jiXhU85sWAkVNV6o+Reir8nEX+P1769K/5Qe8z7bSG7qCg/j82xEfK5cJT9Nel6nX9hhrPNeHauSfSZDFhESYIZO+/xVV062xkjzRJCiFS1oa5qkjH0fc9sOmNS13StdJy99deezmXPezW3vfA7mVSVjAG9H/6iKzj0+P9Ae/V7mXzl97B68x/StWIylLRXjPWO7vtfRvOnP8FNT/lt7v+3z+ODT/rvfMWHXoz1rpB9jHMYp9mDsYWfa51H1dqYZHF1okoiPsV5MB3ztuMJn/ljwqTBBIdRIZoNAZIhukTTTLFOyOYZZwght3pPSB0CnBqWxLanjQtCG8EtpTZnLbapiRkPTNI4RbrdBnwl5KqNSQ2pUhNROxDyraVynknVUPuKynshUBqDUdJfXVdiJlBq6HLvbdI54l1pvhBz67RxbDiKQ76UuDuTf1P5m9GanIFrcr6fyvr9liu/ncdf82e87Z7fwtd84S9VOCWfLqkhRQhgekNFFgBZ6lpMtTrNBc6lYxWDklwEX/eaaSYifegIIdfxLSk5EQ0Qh5TB5PwU+Z+aJAODIAO5hxapsUqX0qB/o3mR6ZHGWaNcRA2k5KX1lRJSH9G/MxrDZGGIwRKMnFPef4fXk1eKmkvnFcbq+iFZtinrZa6NUcg/YliTxNVYxPtR8I/HLG4U7M066onHaJ5mrORxf7Dv4Tzt2DtLIwqwLPZdyC33eBzn3fA+bnn0d3DB+/5E3tsK/+bWx38/Bz7+JqZnjpIwdH1gWjXY5KinFfsvupgL7nkFd7/HPTjv/CPcEGd88Pg6P3h+y/bO/Tl+4k42j97O0aO3c+edx+mXLZ949DN43HVv4o33/vf8x7MfZtd4/jTeg+/3t+CwkgNn0UwlzTf6Xkhzb5peyYN3v8Ch1Smy0aTcD2QNS9o504zIjKN5HMs8ZI/5g7EWGylkU9knU7k/QDFBTUGqhZUzuD7hibI+OkE7QoiUovs5cpw6dWokFpamGN1qpWRMS1PXci290z0pFCxIzGHUKCZGgpp0dl0LEbyroI+4ICTb6NQ1JUnk5nKugwonIqTYceBVP0KyTkStxqjBSS7/juOAXLOCFPvyu4xV73v1czn9nb/M5h/9GL0xZKOpmGIx/Eg6PjBgoxiA90kNclIgfN/vkF71HML3/Aa88tnF3L8I5jCkKOIS4RH1pXFSJtkJV2YgHhpjSmfKnKsVIxModXWr8Vo+J5eFm/k5jMnIdqhB2qHBTj5SuV4DloOxRCsdcgHC2FtN77EZ81xMNs5h9DPK/pUZcpkfUF6HEb74zx1pwB5REZOYkI9iv1wjyC+V1zuja3Ce1+fgkZthVL4akVmFg2CNk/U6UGgOJp+f0RxHLO3IvMFAL/lqUkKpcmCMQTo0e4sxIjyxJIm5SND3JAe9SSwAQk/rc24k+ZEdkUaiNmTMjQRIqRBxcwwcbaLtDTE6WiD2sgbkJiUJNQZOUerNCrxYG/R2CVAmNWyDMVNqv8akWWParDNp1qj9jNpNwYnhlHUTsFLnjkYMapKTR2aUpigCZIyT17cRq0aUzkvMkMeaMQbjErPJfiEyezWHWtXU9hRtu0UfdohmhbfCG3U+4b3BuyQmXUZEEJJ7+iLmMcZpbdjhjOBBuabbh5YurEpOF0NUwd+wLhDFmEq4PklrG5akavKICE4jhpQclgpnGrxt8L7Gu6H2D9JoqqonTCabTOf7qOp1qmqNqlrDVXOMqUnJyeuHDmKrYl1dr83QfOBcOjIulzmh/+Qww7qNfnYzWqMz0yHXR7LRU16jsyBoTI7O6/CXMlzKMsA9hk6lrmAGk4e81mo2IZ8xi4vQ5iAotyST410hyXu791EMqMafseDQEK3uwzHnEcMFKpj2XS/dl7ie/+RneU8YvvmSyNiw7zFcX33OIP5WXEBxrOGy2tFrmHL/sgljft0sksx7w5fcFXQ/STkGQdZeRypi5pgyyoTeU+WBknnMptRbybmbEZzEGUs0EW8dwcWSizgl2OfO3yEL1Ed1g7wHnFvRIsznc7p+W3EgMVk1CbwTM9IYA30nZlHOJ/o+kmJPH2TK1XUjdfckhoOVdzoWlcdue6DH4vFeTThsS2Vq5vWc7znxV5zZaDgd9tPWNVXjcbMFu1tb9ElMiCebNfe893149GMewyWXXsrpkycwBjY29+F8RddH7jh2B3fceSfVpGL/Bfv51HWfINJx4WVHmM5nONPQuBnbp45z9Uc+wvvf9x6+8IXrueyyi7nynndj30ZNd/oksXcsl9fQ944vfvEW3vu+f6RpPPd/4H05sn+N7RNHMcZztwv2UcUFZ4/fSlqtcerUWVZ9JBjPzm4HSYxbNtdmXHTBIT7zsQ9y4sRRHvKQB3HxxRfRhh5f1bgQ2VnehnENpppQTdfx1rPaOsVN19/CzvZJLrzoMGsba5y94wyrtqNpJuzbdwDnKqrpOpUz9LuWtbkjdC0nbr+NG2/8IrHviN2KC887xMUXX8BiuYOtDPsPHeDAfe4BaQ5mwmqxZOfUUY6fPsnRY3cwmdQ0lSPGDkLLTtuz2jnNfLLOnbu3ccftd7K9tcOqXXLwyH6OnL+fE3d2VFXFkcMX4GVR4+TJO7n5hutJKdB4T1NZFhbma/tomg3W1tch9nzx2k/zvve9ly6uuNtll3Lw0EEWNrJWSdOeW2++idtuvQVnHRdfdBFVZVnsbHHsjmMsFwsurCtO7uzwyc9czWK5g6uu5OJ/43m15zBo3JcK3po0FsSwp5GHrO0jw1jNkzA5v5GaMkZyUzsyoMqCKKnvBxFBGYf1Vus8sn4+75Z1XnD4NP/t+EF+8fBpycENkgdrw4MQB4Q3xtGeZsQIKpsExyhWPU734CwCtd6Tek/0HlLE63k75/CVNIerG4evxeylriRGs1oTyOYhZZG1Wdcjx0vvOMB3HdripXce4kePHGfqtPmGNYpfRhEUqauHQpqlVlfVgheKQV6OU2X/NIC3yiHVPEczU83DRnua6nNkb7J4J4LWlCy9N4RgizDd9ODyKTmrXEWHsdIoBY0jdaMUUZbW4sW41pC/xHy/tG5tSmKpGCQQQ8Yfh/ipjx1t39J2K0LqRIheWXzjmZsZzcSS0hrOJipvmEw8s0nNZFJR11pXd+6cTMuMFdG4tdK4Rwye5b4WaaBi2Tc8/GlcdOM/cvDkDRiT4wM1dYNBXwZAIvTdsJ/ruIx3qZGEbMpWeO6DCUBKOaex4C0WweqED5jnmLy2iWJunmt+wSTlpkrOkSLQJ6KNJCoI0lQgtC1dLU1rTTKkPhBaFU62PVHNWU0KxLajbVUoj5rve0fM7uyMYi9rS73O2HF8JzGnBSovTbeykZLzToyKnZgVS3yrDXJxkiMbmXtGueiyvuQ8UnMUq9dNTeGkJmfxlQdbMZlMmM7n1M2MZiqNlC7/+OvYOHIevqpZrlb0d3sAx1rL/mZB99Ancvb9b+LE8WNYZ1l2LQk4s7XFqdOn2NraIqWIryvqpmFy/mWkxz2Ntbe9lLRa0i53iX1P9d4/Yfm4pxM+/mb6264lhlBkKymLUxFupCEq50+Eo/naWuc4/uD/wNruMQ7c+lHBRozTdSlzuYemFufCkT+PLVxeFB8aT5eMCcLeiDcNMXxKNK94NsunvYj5K394T2IhTRbGTx20mUnj92ICEjW/Vswv7xU2ys9syliV/DJzkIyCXUXnYBANTUgQFK8SoZia1+lD338E6cuaoXlCzkXz/mgVg3F+4Ho6xRH8yNDRaK5UdKD5a1Q+FKkYSuXmqWJiYFUAbmTvNHJOmVPitPmY956qkhqY9zW+rrC+4vr1e3FntcmD7ngfJo74BMYUvMNZ3Zedw4VIzJghw55vraW+5t3UdYOpKsE4TOTY476XAx/4c45/+fdy8K2/Q+VWTOqaZD3T//xLnH7JMwldS4yR6vL7M733w+huuoYDT/xOdt/1OuX5T5g2DU1VU2vd3xrZQ2NQswq3t2kfDPhj0vpbSLI/5DiojK1zbC9Ld6mND/l15noY9iTHJd9Ne/awsQFyMkabd2vwwF1yUaM5W6nPpjKfhpycQTBvywgo+2yIiWyISh5DbsC5qyz2RzXSgTLGC5cpm3TrHMi1QqP33JmkRoc55hnM+vM9lw3SkuFrDc0EM9FYkPJvU5pGjw+1+9A6mwFkDzeM5odR/NEmoktF45j5IBkil/hccYeUBg2Ifs2P0VnItdWBaZxRo69sKuIKtyebpmWIpzS1YOAh5mUxD/sBF6MY2zgz8IfK+uEdlTb0zevbKJKSmKZgK4ZoDATNO1IaGZ04wXHPocMki7cVdZXwvgIsIQiHxydHSJaQv0axxYlJ8OcYEsFJ8zEfoxhNqPYiGckGTpx3X05f/ADu/tE/w/aCQYkRlczTEAMPesd/40OP/3mu/LufYqtvCTHQdWHgsWUNehjVuEb3OTe28NapoZvXepLXMS53x1ppBu+to7KGiXXseE/jPBUGo2Z802bCbD6liQ21l/fso+gz6wQRB6YSfhK9GGkZK2M6RIk3O6k3doslq1Z5/SQSu1z+zv/B9Y/8L1z0t7/ATogk6egjzS960QF3IdEHMd+sX/U8+hDp+yDNNa1lUlnWWHH4fS8Hb6hdReMNXe0IoZL99YvvFA7kpRdTN43km9ZQG6hMwgYx9Yh9T+x6CFGbx6rpv5U6Qq/NcJ2zVNQYZ6kmU+HMxcTuYpdVu6IPHZWXJm3WGWpnabTBWTbWc7rvV05eO/OXQx/pW+GDZTMgweEdNhmCGrrJOpnUbFhyR2sraXRklDfizi38HqBRI2XvJcAyUUxmgVwmIldKR77SZc16xNt/VVN6r/iBcLjlkblWvtS8B+7WALZKTCZmT87a0pjCav1blDbDOpn1h2VtJq/fsnrazAE2eV3NWL9+9hT1XEzZL/bWdXO4KqtwsBaT5D7nCzDkrFIfwoqp6p69wWTe59jQ0Rdjx6F27Mq+7Z3jSYtPS0xYVSV+HO8n42bUJsjnGfQDeuuy6bWx5CY7mSdVOOx6/YZYO/MOrZpv5bpGIqVA30mM1oVI6DtA514lpkGx9xITxCRGPBqvCDdK9EeTptZGwlOapqZyYn7Vd53wGlSH03UtPup6GXL9Z5g/Jfc1uYYyjNlzDcSPSRri9TGIf0kI2oBb7pk0yJE93hjDYz/3+sGI2wpWF+2AVQQrRu3RisascongnazFQZp2uRBwfaQ3gWANQT0ecvmrxGL5KHNFtMJ5/uQai805huo4iifJ6IKPNYoxRqSnn1HMQmtr1lI5bS5Ze2rvqSuvJlq2xEsZ1yyGjjou+l6ajGUDMzGMzqbbBmecxj2yl+eYEiw2RmLh2MbBlyQM72mMjHdvjRhXaoPPvmuJQRpsJsCmKLlOI3Wwylvh1KvxKlD2CtH1C5+xmUyYNDUGqduH1rIKgWVKtO2Kxe6C3Z0d2uVCGlFGNeo1soYYhjjZGTGodE4b9ZT4MQ31R6PxtrhrgtE6tgGzc5qNv/stth//dDb+6pfU02EcM2YcdcglBmO///0k+9cbTWnmbbRzo7NIwqjgr7HSxT6OsgRZVE3pECEM61HiZDTZMiNwgmHjku0ie//m3yhgiyZj+eto0xteZ/RKCbKrrCRz2VU4EJTcJImaZDflNEzCuKjdLbUjnzoAkjvXJ1l8c7cil0LZ+GQCS9eZpJUIEWTmQrh82jQ6Q+tELF+A1OGKkbPJ0pfQGF0MtJOe8+AqJRqLAEe9NTV81muR0EwOdVIz9CGwXHZs7Sw4vbXL1tYCEztCaGmXCzGbUiA+qtB02JjkHgyfiyIW895Lx13nqVxVOncXN7WU6Dsx3cjJXR/kGj30k/8TX9VsTaaE0LNa7jKdz1nfaAkJttpWDDxiIHeq7qOEy+JyniEzHQslWYzEdI450KvLJ2q8YioPviJ5IUwqejBEeEqge/F94dlXJ37n/kKEC4mRSdkw/sfHXZeGMm/S6B+g7zVaSvL43fNEO8Ly9r6AwaqpjpIWjL7aKBFLOTjI/87Igt4vY6ysAxYyCSIvdzLOtKPKKGAdPtzg9p5B1py+x7xs3OVayXVIo7/Xz4ihC4mmXP9MOR8wk5iiBkg9XTeYBmSRQwSC9bx132N4zNaHmacFq3ZB24eivEvAtt/k+s2H8sA7346Pe907C1E7QiIS0K5rNvJNt76BpfeEBD4lfPJS0AmG4D33d7fxES7moLPc35wiBFeCAoxRp8dYTBaCCnFC6KVrXUqc2Lic7bWLuPeJj4wud7l5e2/BORbopbxofckgNOk+lxdI1JkSBT8HJ/Oo4F6Gz05NNvnYhQ/jfndezbsufCSPv/19ur6Ls3YkSmdnI+ZJJAHxEuK+nYyKqp3TQq0CReP5ngOvvNbqQ36dCgFF7mP+1PqlgFh5RFstfo3BtWEOO3V4Z7Tvi8AtkEIQcnEI2uVbi+luIOgmJLFxxslndbLuWidkO6uisGwuNXY/jhaMicpHs+xG+OnPWX7hkkjb9yy6lkXXsQqRgBFncKT7ulEnUOt8KSYkEwm2AhNUsKOXM5/fiMweQyJls4+up/GWpvJMIkQja7NxIuICyzornrX791BPJJEyBuM8phLTx3y/A9B3nRjOtUuMNUynFTF2dN2K3d0ddna2WS4XTBsx4CpENudlXVdygmDHI6O3c8wAB4aVNCeAMIwxZ6zuZ8N4lnpswsWhkE8WzjqrhgCSWK/alrZtpat3L+R76XIp+1AuJrtcSB0Vib7jcy8j7t8cCeVjqQMARfgk67i606sbsyQerhgJZEFWSkkKQr4aCfSc/q3HuRprKgzZGGwwfXJegOhkFbCPagyYLMkEEVAXGMMoSc6SrCe5ClPV+NDTxEDXzWhWS+rJnGa2y9pqSde2RVApIkZJHkOCtg2sukDbB6paQMDGW4z11DYSKjFcaruVCO+8rieVwxhf9tVutaLte2zqwCSq+VSFX1bF1GIy5Z0ra6814n5d140sH7qudMsVbduR+qhrhcfUFX0n5+Ax4kRfSXFCue5FPCBmOIjRkatIRDpj6XbO4mzLsuuzobMOUHmidJiRexOEObzHITnf03PpsN5hooyhtbU1zr/wAvoYcN6z/+ABTp04wc72FovtbZY72yy2t1nsnCV2LduLJfXWDhjDrPaEMGMynTCZCkk7WTF9yqCXc4lP3vOrOHzHZ7n1no/lksVZmhM30aSEj7o25QJHlLgoJENwlZjO6nq5fMTXEbdPU338bUDCNVPOfOvzqN72KtLpo6y6FW3X0TnP1tY2s9kZ9m1usr6+TlPXg0EUAja50rUk0YN2k0jqfC/RWTEWi0HiGOfoexVOaxHKAFd94jUynhmRhI0poGiwluAE2LEJLajJOvCgM5+WD6J/m7v/PfX2v+QPL/pW/tNtr6NyA0lWChGGY/VB3nPgy/iam/9WwI/isj0SxtgBeBmvOZmwdrbe4G2XfDVfe93rcLEvZOW7mhH8kySADCiZAvpmckGJM2Cv0DjHnvn6YHTdintePxO2Mziazf7Gn0uePzyn8NXOoSMxmM+U4l1iON9M6kvgpo1+fAFzUozaMVziaOM8V/3wr/OZ3/oJHvDc3+DWV/4shw8d4pJLLuHCCy7g0MFDzGYzrDEsl0vOnj2DAY4/9mnY//ViDjzrV3F/9PPs29zEWUPXrjh79jRnzpyk65Z0nXSidW2H39oWQyGTcN7SzNeYZzGYGn057TDhrHS7NTG73otBhIC8AvS2K9lzO+0wEFMqYzM1a9z49c/lsje+CLp2VOQVktF0NqdpJlhr6ULg5od8M/s/9Ncc/+pncPDNL2fuLJubmxw8dJAD+w+yf/9+1jc3qdfWWFub0dTS9T13ThLxf6cESyF8SGy1ksLZqiWkxD1+5He55RU/ycVP/e8s//wXCxEjRe004hyVtVR1xXQ2E0MgA13bsVgu2N1ZsmsWeOdoOjElMRjpxDBpWF+bs7G+wfraGmtra0ybhrqupBiQkG5CcTB2k/B8NN6VsJZFz/n7RO5IH0d4xQhPyvnykHSXOWk1JxXxjOBSxqj5kTGYGAtoeM4cBSeT3CWlYe9Fr0dM+aEdixQrWnv1f2EVO8khFFPIGNKqixojqhGGRgjOV1RdoKoizkc19jVlnpt6gulaYtIwFRVm0gOyv6UQJT/oOkKfhcdazHGCX5TiE56qApC9IQIfXcz4/MLzDfMTeg0oufNdBfElD8vrurU464lWBFwY2U/6mIox9KptpXgcE31EzvnF/5n0nJcy/4Ofop5O8ZV0yotAH3pcCJj7PApWLbz3jbI+O8nJQh9K13piVLM9GYjVvsNc/D0/ydHX/zYXfu/PcfSVP0sMhuSGrk5ZrOm9dOur6pq6rtWw1+NyAbIajKf2FCPzfmFNITruxW1SwZVkPR7brJsyAUthzQy/k7mTuwuOO9nkPVgLOyYb+nNX4Oj/I0cazbX//Z/+c2cn+PldFp/yhH/mWaPXy5cvF0S8E1F1UzdCRp1M1Wxqxnw6ZTadMJ2IUaDLxMAYCD0Em3E9LSo7j6siVd/T1D1NVQnprZIcZLaasFr19CpKHi6FKbh83k9C6DE7p9h97UvYv7lPPrMZclprDOF1LxaBWV2NYh2Jd5yz1ErUl/E25BFV5amy0dRkwmw2Yz6fs7YmxlLT2YzZbKbdfgaDLYUlh3thBqKhLcVj+V02ezcKVEabqHyFmVg9TwqW5JTUb9XkvO9DKWT3fU/btixXS/o+aDOHlC8EVueqryUHxloxkdWC6mAAYQrVrF21tF1LpwSR8ZoXemk8sbOz4MyZs8xna0ynM6YTKUrP53MxwIoqzD2HjqG2oHuOnn9GzKXYaAuZ1FdKNiiFVcqeHzW59a6iqRPRJxXbJzUGk3hqumqZTcV4W7ZRg207Np/7e5z8tWdx4Dkvxv7Pn1OMxJRlICRD0kJtr8Lk5XLJWS1wLnd3aZdLMSZOCTdf48Jn/RK3/Mp/UQxqIMdZI8Rm68RAptJxX+m6bt2Qvwi2LN2DDWoWoaSn1UpNphZLFgsxk1+tBBOQDlA5rpFLlQ25codAl2soSkZrM+YWI13bEnutE8XcjUgK/p2rOP7Yb2HzrX9CbNXQSskOIWoX+DQycgqBlAIx9WKm6MVoVUj+UkvrncEGrT4FnafafdvqfcZkEogsLKWphTb/kL1TTahy9TinaNrcJuh1yV9dJcScZIcuSPk5g9nDaEwaJUHruPS+Kh0upfPRuXbkGpAp8QVpwIAyfC+XVwX7uRNWyHGBoO/ZiCLpnAIhjFnbk5qoBskOG2G2tsZsNmW5u0MkYazj1G/+J5zet4TUopM1pNuvZ/u9f8W+hz6B8PcvFyJiFLcdSyRZQ/juX8e/9vlsf9evccEfPZPP/Mff5pHv+EXs+oZ0HN9jhJmJ5L54r6Ykfd5l/8umew5nK7xrMWkFdECPoQMjBghknZeNGGOpqrp0Ehwwhh76XvBU0OcipD81re77vuCSyVhYejXHktwvqZl75T2Nlz3PGkNIvTSdIFFZizcWlwyObDglghepEQi5RgzCfYG69wqt5Y4K8cUXXCGbb9yVCDEYkKXxD7XWaIa/Gf0qxy97fq8Erq+57s946z2/mSde++eKjZrRuIqDYXgr99JbS5/AU+FtTbA9yZ1btWg58lqU6MnmepJFhZjo+kjXG/oo/Jyo91y2eiXCGYaamn7JdYAhnpdHcmlY22Iq9wl6rHXc1cRgRMsu9zOmODJhSBov5d/LiLBJ140sGoWSM+R8veA82URK8bposjiUko/bpATeGIdah55DXk/+fnoFD+ru5OKwJRekcrxq9kC+b/fj/NF5j+V77nyHVHJt4sjuGcIt7+eLlzyAyz7wx/STmgqpg9/yyP/I4c+9izsf9i3c7SN/ids6SUqBzlh8VXP4nvfiQQ97KBdfeSUXXHwRTVNxSQw8tl3RLXdpFmu4WUM1m8Jszgfv/vVc9tk387irX8/bH/hduBRJtuZPzBV8d3U7L2kv5TzT8d31MXzOrZ3QPa11vNlfwlWrO/jQ7Aoe3V/Nerej80XiF+uSIrAjXBEdH5rL5SxZyLwjUykAxUozBmlGY8AocUpqd4L9N94zCQmTHMFKs48eFQOdW6EiJ0+eLHmxtY4YA6t2SQqBqqpZm82kwUesdR/rtWSW6PuWbtUOpjhRarJW51boe4gRZ4XQB3nNku6SkMQYsVuRjVBJiVjNOPOtP8fma59P6luwjv7SB9Dd/SHM3v0aMT9BjcytZ/drf4jqnX+MO3mr7IP5/lQVG6/+UTHv1s8s72q1OYXgoskYsA7nIraPOYuX+fOKH4SnvYT0yh8CDFi03pd3Jf3MOR6LCYKcS0ip4M/WZCGXiLyMc7iqpkpBOGxqNOkJxYjIO+k6aVRwI3uviDNzV3HB+a3ytEwZ2kMqnIMu+bEpQjVL5xve+ZDv5vEfeTU26n3FaN8ou6dmKS9lqKrBzKWY3THwyOQyG8gi09E9z24d+Wf5NV2SvduSNIZRToLij/n9rbUFg5LXHO3Bo730Sxml/FsfVueXCGY9zlVsn3cJt17xEO79kfeKmd1of8JkpFBspqJVU1mJ+ogpyJqmgtos6gKpIVbG4vB0SI3Z0uOS1qeTNBHqY2TZ94TKlTGUTX1Lh27NJeV3kgNMal9ypmxaFtE8Owa6diUk174fcCoDVvPNuq6pa48vbreGEDzWRcBR+SnTes6kWaeu51TVTB71FOOmOF/jfSMNlIwlJalIS017dNETpKRdlXUSWJtIDry3pCCiIJLUHmLyWDOlrgxrU0i9wW42TJoZu7un2FmepA9bCJHfYV3AuYRzaj9jhTojWDfa4TXPVbn/3uamU8JJiVR0qSZE4RHEPhazyNxAFDUkiiGCCtNyYzmSVU6MNBZLUeLzylfUVUNVTfC+wbsabAPGY21NVc+YzzaZzvdTNxsYO8XYCck2xCQNQo1xWkMKGBPVqCCDP0l5nefOYQsnQta5zEvJsZ0zgo0lFRQDaq48xNXO5tw4yzryQ7EGRniX1h4HUHFYfMsSlPIcGsRCe3i3ObBnEJ9ksWcxmbLgmhnb3/RfOPA3L8URVSw8iIb9CCt2OV8zJsNj+vGMxpiKvxgZNznuKZ/3rrWZUe7O+Hz5Uj/L6/rot3twclljNDwvNdr8OgNrLK/reQFJ5f2G59kiavZZcGWSvl7G2IfmDXs/of5Ob340+edpMJdKdpCl5rqIGWEjurAVizIVAxXLMAvJqkAs6hphkEZl+f5awWlyE7OSIyTl0N71XvwbH+ubG3QhYZcdXRcxvdZXdBhbI80mQ5IGSH0fCSaIcM8OcwHAKHfIJompoolEKqDH1gliYrVsiabCmAZ8z8a+Q5x/z3uxtbXDqa0t3HTC1vYW11zzOY4du4PZbMajHv1oHvzgB7GxuUHfd0wPrOG8YAyoIfWl97k7Z86c4pOf/BjvfN/bOH7yGOeddwhjFkybKbu7S26/9U4+99nr+czV15JS4MEPvjeVafnc1Z8gLHY5fOAg3k2489gpjp84y223HuW2oye56oFXcP/LLua+978Pt91+jKuv/iz7Gmi3j/OpD76HAwf3c9PNt3D02HHaHvrk+MIXb+H88y/gAVfdj4ue9NXsnzs+9YFruO3aT3HFFffgsssv56KLLubGYye48ebbOXT4Qmw1Ybq2wXQ2ZzafcubYbXzykx/m2rUJ977nFYRVx+5iyYEDB7mj7cA4Dp9/IfsOH2ESl9x23Y2cPHWKs1tn+cIN1zOta0wMLO+cMw33oe1WbO2cYfvIQY5ccjHUiWs+9B7Obm9z4823cs1117Fv/yYXX3IRBw5uUleOyhnWN9fpjeNjV3+aj33oE+yc2eGyS+4GCa79zA7nnXeI9f1r1FXFvketcbwPfPrDH+K662+g6zo21udccvEFHNq/Qbvc5ezpXaxfY7a2wR13HOXEqTtZLnepJjV3fPHznD12GxubG2zvP8pNnz/K9dd9Aess5x05nxPH7mB7e5tjx+9kbX2djfUNbrr9Dm4/fpxbbr+N/QcPcPTYKa56zNP/LafVXY5cH4vlIVFgICTJPSwZy844z11eYbT/QN5PrDZz0/xMOdYEaRwhTVwlp8YgzflS4lcuPM3P3L7JLx45RRZzpZRIQZCFvTYHe89DaWykMDRGiCnHtqghn3zN+1hyBouTfc+7UpetKkfljRiFWqm7WAVbsxlh3tiMGock/f2zLzjJr912kB+64DRzCzEYEXkZXafTEC9Yl80EkfdtPFXttU5i97ynySu+Ge1Z+bAZvxnipBQzkCfXcWyWiLFYBzbonu8lNgWGxiDOoqT7It7XjancaK1EDvhFbgRlkmBhRvfg0sxINrcYEzY34yajlpEYe/rUgRGTqWZWY/0aJk4xRvL7yoH3hqqysg54h3VGMf54zu1jkGOOgRuQPceKYFH335sf8GQO3vIxbr7HV9C022zsHJNmBwpZxJjEEEwnjXC04uheK7qUhrhwj6gYqzw+V/JEY6wKeNUcwCnnJIjRlDQQybVjqUVr1DKYXlmHyXXAGMVJzPbFCNPYUbM/6wTD6nr6tqNr28JjIkYxD14tReBO5l1pE2f9t88iQxWxF9EtsdTLo4nYhDZ7FYwji5x9yY8GrmGOu4uRTalJ6Nz2CP+EihgqnO+VtyFNpHO+GfFYXzPRGm49mdBoHXdjY4PNfZvUTUPbddRnT5LWL+T6rZNU176fFBNnTp+m7XrObm1jJzMm3/kLbP/+c+najqaumDYT1g5dgPvKZ3Lk2jdz9iu+n4s+8lq2t06z2NlhtVph/uEVhD6I+WZKWJ9jVjtwVmOEFAh9J9qDLDQ3hrP3fiJNt83OgbszDSs2j99AMk6vuymPc+mQnCxHysN6lw8DslaXHOouG5f+DQls3zH7g+egaUwxBPpnjzSed1rLtipyTQnGmq2cGxm07jnkGwW/sLovGCDIh8o6MTGJInv7Kcculf/2nAum1CdIuoMkeS2bItZDRTbg0aaoKswvAuh8ijGoyFl4xSkI05g0yk40F3TWiEm4GhRnM+LMjc2vXXlH5T2VExyh0pr2reuXcXR2PvvbU1xz4EFceewjJRc25T20OV/GPbxTvVLenwbTh5yziSliJPVw4K2/y4mvejaH3v5yXN+K7hDD8ik/A6/9Bfb9519j9+U/JrXxGz9DN5lTXXoli7e8mlnTUNcT4e/UNU1VifZihGXluSRrvinwaOEkJYm0CgCcxDQvN8E159b0+idHznsHk+z8uU0Zx5L+j/4zQ5qdkhlE4WpkLhuhIsz6+4wf5HGWD2sG/GJ8XY3O14xryIRiqIcUvEK0L95kgbri6TERTdB1MptY5PuU711Uzp3BJFtwhWI0pjh0KsYAgegsMTqNScc4QSpjw+S4IBms+iKbjD0nieliUqP40T5vcwMmBKuINpFcKtzRFLSxaMwNPrOZFKX2WxqTMegvM1dpQI5GAI0xxWAxG3dl/mBuADhg5zDwClXXozX2fP8yh3F8TzOOZnUfzvt15jaXhtHGaIwqVzUaHT+MrqvWInJdIptZnGOUKqxrSKGlD5G2l8axIRkSnpg8IVbEWEGqJWcxqklMis0GMbgIUQxlyXMsJhYHL+H43R7O5m2f5qb7fz2XXPP3RCypg36lTeii6P0ve8Pz2I1qLlW0fKpDC8KPzeMpw8jWWuqqFrNc7zGqw7fWY02tHFyjPN5IIuAsTOqaWVNTG0tatewsFsS2w5FovCclR4iW5TJIAw3lzQoHb4K3E6AiRFnv60a4eTElTCt8Z2uEL05IhFULIYnPAYm4fYpL/ur5LJdLuqh5nWrsZNzL57UmkEyvNStD01hqbRa6Pq+ZTByV1SzEJKgt0GCswVdqEDqZ0DS1NmYQDr5NEdP3EDr6TpjXkSiNsEtTK9Vk2AROGppRWapszuiMGBaZCj/ZUI3Agq41hNBiTRJ+aF0zUd4+KZJCT27InjQXCV2k7yLS60d1nckSg+SXMYmxS4y9LK/OKKdIGlNUTvgrJl+Lc7FOVh4jTFzXvYQa8/U90fdEI002MuYoe3s2xJGHddmAVc59MFMa7Y/kUFHfR9/LWCvGKnbI38dxlVG+RkFokqx1GYkoNSmTdab5JRICnuR9WbAeY0bGfaP3sFjdk3P8guAUKB+P0X5bTkPMecSxm+Fcle9QGheNcq2Bx5t57oN3RjGicm7YUxQjsVZ5bMnseZ3M3ZXPpPs1Qww23nOiGuqYHHzoHpTHg0H0D/I32aZA96akxmzG4J2hco6mrsQQz0BcdUTtdCBzURr+TCYN0+mE+Uyas1dVhbdWmoumRNsaxFNFNOaBQGg7Qm424jSGdKM4Ot+INIznc+2IGr/kBmmheMoITmCsjr5c7yLjh1mb7DVX0niN3MTYij5G9x8xmgr43tL1lt70dAb6aAnOkikfw7wTrnJel4QT6lSHrlwEvcA5jyy4gP5esIYBkRxyP+XjBcTgMp+LNcqzqGjUWLfydmTqm0caZKPiEAY/jdCrH40aHMY47PtDPJkK1lmySitmm0b9OIZGNJRG5zLpBS9xyul10Qh3pRMdkGCGwpOtncWoyVrT1GqE1ZfXlnnnxITRi6Fw09TS7CMGutWK7CfUti2r1YrFYsFquWS1XIqZW9TGVRmvNFnxLnMzN7sZ1OLkMy75QDk1g+5xOf8Fe/YY+//mhbK32YSJRrBKO+CUuhIO95hRvfVfOP71RlOjT20wJTn21uGMJdmKay55FJthh3ueuGYUAEsQbL0IlnKSNHhDjT5l+iffjP6dBXt2dPWigv1IMmYGsWxxpo+jxMCMXKCxeGOI1pJSwGjXKEnLh2jfEFE0XDao4qkoJNssbiNpMqHF5LxhanqAwUGyoyJEGvDpu2bQOoHlzwZzkxIgjzIw2eS9GnW4Is4Xkm4F1mcmjJ6XnFvCsEoGn2BqIRlHFwy7q5azO7uc2d5he2cHZ0Qsu1q1xCQBmDhPO6Kr8WEp90cnqmSCuhBFg4kBG3pckE0z+CBdKlwlQlfdPOdGRWVaJO36QFeAQYihY7nYpu9WrNolbdeyW2/wxunD+LJ0ywBUxKG7dhYkZGe8lKLcPXWwHy+K58RRVZLo+UrNSiqMr8A66YRVWBmQUYtMJPit+2tCqcmyHDkdzgHdP7MifKnpZr7072StMXt/ncdvGj+R0c8GwC+TjrIbTcpjZ/QUUxAFHfApivFGGl6P0UYiAVQGLUevky2xS0BoCqCTg0RFHXPmTRYcmtHPjc6znT7xm9esePrlnvOb4TpIoCuBeB96eh23WdwQsjEdIuh65/rDeczyM7xn8xF89fY/CtkTAYYNsLITrt33cC4/+ymuOfhoHnj6A/KZUhKwvOsG90uk80LCDiBJLy6Ztu/F7bCyVLUnBE+qah7mb2FCTYi+gDig5hDZ1MqIWLnrW7q2FSA1Bc7ODnNq/VI2Fse4+cD9uHLnc8P6lfeifDc14T6XDlm9NfjPrFxNqGSPoGzUpQONotgxJdrQY4RrKyLZWFERWFsc50E3v5frLnggj7/5HURrFdgZkV+AlEYusgqGoUFQro1JoXJ4FD2gRv+F/2MSycRSnMbIZ8zwF6N9Q/aqYdZK8GpBBVKp3LJcODbkjpNZsE4Qz2ajRMySjWgxV1dZnd6pFPS88zoiJHnCi0lO8tlwShyMpTV5FEMai4AvKfAz11X85GVLXvjFDZ45vZ02wTIGegu2qqUor+t59JWK9HU+mERfr3P9o3+Ee33gN6m7XSG+2Uw+terA7HHtgtT1xLajCy1914qIAgg20qWOZQdNHZhMYJqEyB5TSx/Ebd37hK+SfC4j13CXisYJGTKYxPZyQR+lK3jXt5w+e5JTp46zs3OWEFqqqqHy6h4ceyyBHFKWgreOA2Olk/u5dqQiFrAlcTUpFUHdEGDlNVkAjmTU1BMjMVXu2pMEfPDG4BvPrPFFKJyLxgIOUMC+fL1yMmp1TYsh0PcdfeiJ6rac96HsOpuA5BKxiqQ6g8MDURxU8Knk1KZpVKgrnd2M8Vir31sH1pGsIxkZMwLwijA6Ey6lc1ovCX5iICZosqSUXvm/q3CVJFpJH1XfUTUTqmZJ00zoOlm3JRGTfSkG6aORu8THZInJSMc+L67rfYysVo4QO1KqWLaG0Pci/Ndr7Ww2mXV03YS+6zUnkIJ12eadunN7Xwrh5LtvFKhKkNZnxH6T0LZsbe2wWq5k1UwRnxGeqOBPQsymrC37SwGNEhoTywfoZ5uc+K5fY/MPnglnjsu+r64VRgmLxmQTAU2iUo6VxqY6A7hzrhxJRVV1XUs+U9c459jY3OTud78721tbnDp5kq3Tp9nd3uLU8Ts5cewop48fY/vMKXbbFs6epW1qrDHsjxGsJMGpF9A1362U4AHXvZmP3OtJ3O26t7G2dTtRndajFmmUl61mr7A8cDF3POBJHH7ry4ntNrtXPorYd6R95xHv+VAmX/wEW1//LA79419w8qv+E0fe9GLCVmBVTemf8vPsvOp5LE6cZLVq2d7ZYTqZMGkaMS+rKio35AzWSAKfouYMykQJkzWq1bZ83wX6FOk0PxFhogBk3g6GTmORx1jIn9eYfOTizPgwujHmIWuM4RlH/7LEkaD7fIhsuwnvPPhwHnr8o7zrvC/ncbf+g8ytDNykQVQ1Fp0MDv6RJRX/cMnX8Mib38o77va1fMX1b7jL5xli372hWEkkvsTAoizNMs5SEUvmHFtya41xs3CoDwXMGYNROZY2o9csb6SxUAbWzrUjryMxB1FZnBiTdkaRIqWfzLnsW5/NmU++h61rP16MDMsjBNrVkg/+3Hfz0J94KZ958XO45KKLOe/wES66+G5ccumlXHDoAE1T07YdZ86cputW1JVn8y2/x6mveybNn/0SBw8f5pJLLsZZy5lVS3PLF2lXC1LsSNZirnoiaWOD5afejNvdpao99fo+Pr7vy/lqrqOJIv4YkyDGeXcIYWQw1am5VKfAmYBnQsKirOuf/7of4bK3v5ybv/IHueRvf0O3d4OrPM1kwtraGpPJlD4E4mLBxe//M774yO/gvHf9MfPKsblvH/sPHOTAgf1sbu5jbX2Ns806b14c4BmbvewbScRtJiFEumbKziOfTPOZ92DPHuX4HcdYLHY4ceednD1zhm53h5v/x9O54od+k61X/RTTtZkUvROlk1SlQP5sNmNtY426ku6Ci+VCCgl9IvZBOqNPBfPyzlHXlRhezGbM52uszWZMp1PqyksnQL2+pbheCv4Z1E1lDxJhq/4sjYA7o4hXGsYYpCJ6NYaCa2EktrdJjDxMyoIYiWvymmKSxSj5/lw6SiGkYGOUczaKc8AwRosBZEyAxlE2YqKArClJ/tuHqGbPgT7k4q/FBUjNOimAT0E63ec1arbBvu//75x5+fMJi21SSjgtwvSpAuOIixWhD2omLXFV0muexdOQSsxp7ES6oeo+8vlVzWeXDZfULe/a3eBxzQky+XQs2NPhIuKY/G9R/Ss5QDHPxDB3xybXfSzxjfcVTTNl+uqfY7q5j8lsSt1MqeqaGBNdCJw+/wpCs46fR9xDHov/xHtwiwXeu7IGpNka7ZmTYiQVAyka4unj3PyKn+eCb302N//Oj+GdHfBPg8Tt3lPXFc2kYapdTKbTKU1dU1e+PCrvqasaX4k5vTEWE6MUlWzuwpsnhxlBDalcp5zM5nmoQeGeODqTgYYCjnYK1RjWWUewoYhUs3mQ1Zg1RwL66vlDlLjxXDzM/w94512im38aQ/yTECLd5aLsjTTGX3PRs3LS4WPSNNKpazJhOp0ym82YTWfMJlOmEzGbkr0qEIKlt0YwLp0HLhlcTNLRK0rhv23a8tzpYlL2s1iAqWEMBS325U46fdeVMzZ5LOdctOCOGrs4M9Q6ijmrGu7UvvzM+4pauzTXajQ1mShBL5/zbMZ0OqGua6qqGgzXRvEgo+uX49Zx181Sx0gU8wSLCE6dlYexrnSL9lWF9UJM7fqO3d1dUpIu9W0rcUDbdnR9R9v3hCQG97IWCYbvKyGzGGeV6CTFQTFlyfUZyc1b7dLbx7CXTACEGGjblt3dXc6ePSvF6NmM+XTO2toaq1VL12l34nOMFTUQu2MpguZ4PQvIfeWpa31U0in7rvF9rmOQxCSyrhvNQU0xmrLW0o/itRCEsGetwy9bdn7zhzjw7BfTv+y/Us9m8ulCELNPv861kwt4zPIU1m6z8iuMMZxddbyx3+Ty7dvot7ZY7u7Sty0mJda+96c4+Qe/xEXP+WXO/N5Pi2GWdr+0vub4pQ+in084uLxVCq51JcabfiCYQO5wlNfrWArH7WrFarFgd7lgd7HLYrFkqSZTbav7bF7jVewj2ImS5b2MY2MdMWUDq46dLnDTPR6C//zV1MdvKl3SQkz0KdL3keWTvx/zt3/MmSc8GfvXr9KCdqf4SRaah2KqW+J7NSeIGsdZK6KP4CAEQ1CysjVGurIZO6yHGbvQ/4spvlFSqClYdDYt3kPu1rgg9AHrOkIv8bkL1WC6kIY9cMhd02A0VcgnRvdoNYHU9cB1Hbbv/wUx07/NkbfYHNvKD4XsleJAVB5vTSPEsVxDZywWNS7se6Jz2n1QyAWZcGuJxLpm995fyXr1D5jwCbbPbtGulvTtEjdbpz97EmIQdM477GwNc+OnWN7+OalNVRWzr3wqHL0B89l3YYj4V/8o/dN+g8kfPIu2gnu+4cdJBw9q/i9ic2u8Cr8cztdUvi44XOg7Ideh49A7wBNcDaYlpQpYkmKrHfZaXZ9ESBNQjDET7PSaChE4YkIUQqDGXWJm2mFMLIKvqLUNMdjOJlOAkcZNzhgm01qIdykT83tIYlBobUVVWSZVxbSeMK0aal8LNo+avyu5P8VEtKlgdePHXc2j7iquGots95pIpb1/Pc6NSg15iOnyfg/IeYSIJ/J/XfOnchcCVKWrmMYJUWJ70/eC3cdEWLZYY5g0M6bNTHDhc+goIgQMROmMJ/ctUXlHxNCGyKKFVQ8xCeEtYrRTt9kTq4DMTzGAG4T4jGKVcYfFQKB0c05GSFij18tmREL41PsaRWSWxWLDMdQaCiGPvMYOr5nHv0FnVDLl5+LVEhC7EchM4hzP2CRjtcNRxa6Mt2QN753fjSvaE3yoOZ+NCBc0kCae59a38Fv+wfz0+i2wcTnLxTa729vsbp1mduI4+296K1vzKWG1xAPeeu7x8ddzw8O+i7t/8o3M2m3MbE5YdfjJhEP3uJIPXfXv+caHbnDB+UeophP54KHTMnjCEZn06zQR3rdzIY88ex3/eJ+v4cu+8DYw8A0nPsBfHno4T0k38prubhw2PU+qz/KG7hDf7u9E9g8LeIyJPLG/mb9t7sajtm9gM7REbYuRkMYWYpaZyPwdhTnkXmhMjJV9TeKaSO7SKUuMrBskiSWFaJWFcCreMQFvoPGGaBzWe5bR0kZDiNAng/WOLpxbO9nOzu6eWCYSCVHmWF2rgbSBpupFGGSkhha6vlwnqbXKvmdR7CHmBhx3ydeMCHwtiVBPOfFVz2Lznf8Td+Z2GePJcPZbfpZ9b3wRZ//981h//S/SHbiY1T0fibvxE2w/6Guo3/+XZWy3X/0M3AfeQPsVT6V+02+SllvSBXq+j8V/eD6zv3gBZrktayjD2htUKBqVGJyimICb1Be8oPA2XvXDZWykaAghkyJHpp/apATt+OjHZF1r8WsHqLodEW05Rzp8Kd1jvpPZW34HHyPLez2StHGY/Ve/mZqogjBXagI+k36zIEzFHhhw4+tccG6NtUwufGYzjKFL59se/J089lOv470P/DYe97E/1WBFDTxG+UCOV1KM0pjJyHpskgiJs5gpi0Syuctdc/BUfjSuYKA57VCTiza/4XC/5Jv8QoNIqjBw8t6quOW5dozN3Jx1tJsH2bryYRy5+QZuvN9DudenPqoWUrpOaVxcxIvSCQf0b5zLNmd6jWQ5REokIoTwlqLit046tzoLhF6eoPcugTT8MshzMgHYUDAFRT8lXs15Rs4tjd4zBEcNJJKzYJRDpbmD4Goq/lMys+SnMhedqajqCZVbo6nXmUzWaao5zjZYW8lDSbXZ+C+pJKFgzWkwuU6KaZuk/EmGOEq27YzpyhaVoiUGj2FC48HMLJ4JTT1jUtVU3rNcVUR2SCxJrEipxcQwzLc0CLBMjqeSRiVJa1FYrE1yDbxHdEe23PZs2Bt7EcUmzaViSNoxN5Y6pzQWtKTk9VFhbUNVTamrOb6aSrzuJ1T1OsZNcK6mbuZMpxtMJhv4akakJlERU0XCI+YIFuMCBjVENyJWlxxUyL/n0iEmDOBwmN6WNdzonPPOEYPwfErNotT+yFlEEXnY8vv8H0OtMC8yORY3d9nn2IvADkRyxWaSzOSSSOprDviw5C1WP8f2Nz6LfW9+JWe++umsveUPFOfLzYRE8OCsGUymuIsgZozZ5c+U4980NsJNpdaBybzinM/o80s9t/xg9O/hugxf7orYJs1NMi6QX8Jow17NA9UgMi//Mm9MMWjyWSCtuGMW2Q9Yw+j+fql7k/crhCSf15Fc18q5k833L6+C+V4XEnnmxI53McU9rdPXpTQgdAzmV52Rzx9sULFpLEbulkQ4xzazjY11wfjMDltxIVwgY4h9oGvFyHoVerqY8EaEbskaKltLYzYjOKxzNdEYumBUnCLzNDkgVVg0bqfGJdjcP6OZTVnf2GA+n0m9KEWSF2PpB91xJ3ccPcrabM7GxhqucpzZ2cLYxGw6oQ893bLHVxWhjZw6fZxjd9zO579wLR/5yAfo+xWLrQs4cctNWOPY2Vly3bVf4AufP0qMcNVV9+Ced7+cZlLxsY98kH57yeZkP9vtWU7eeYrbbr2djX37eMQjHkq0gVOn7uT0qSOsz2qmteEzn/gMa7OGI4cPctP1N3DszjvZ3t5lbXM/+zfXmN7nCo6fOMmtN3+em2/8PBNv2L824bOfvoH27BlWZ85y5ugd3Hb7ndxyx3EuvOQUzXTGjbfcSt1MePjDvowLLzyPe1x4Pv/4vnfxnr97E+dvHuLwoUMcPHQELOwsVsw39+HqituOHiXExL79B7jk4os5NG949zvexWJnm3tdcXfO3HYz8/UZt99xO7vLXS66+GLuPHGWU2e2OXLkPG67/Q6u+eSnqZuGoxedz0UXns/6+pxlu2C2f5Oz27vcfssdOOOJoeVTn/go3WrFfD5l9/RJ1jZmbG5u8Nc338aNX7yZ3dUKX9cYA9tbZ7h2Y87hA5s4E1ksIme2O3wlv2+7lrNbp3HOMWlqZmtzfGXZ3VnyxS/cxonjW9zjistZ7CxZtdfzqas/y53HT3Pv+96HIxecx21Hb2d7seLIBRdwavsObj96lGf/W0+s0WHy8pEgi69CnxsMKSjoLBZX1qp85JpnHOFQhQOTY3/FOxhhJBmLVjSBGHuy4UaMkZ8/dJwYNS/S3SIb7P/zK5Tiv8YMjRHUKDyFnD+lgmMInyObPWZ9jxqpeP255hXjxnMmJYlzc86GIXPxS2MEDM+98JR8pDTay2zW6WgDFicxXL4uUpfKvEE7yp9ybWvPLj+Y9erXmNTE8C7BQcH88vVJ+nytJXj/pZlIws/U66Ox66ijNzmKGJhMSeL80T4bjTT4mJgwelYq6a4xEn/kfMQ6o7U1B8njHcxnjQrLEO6aU4mPieX6JBMgN3k55xB8ZAzq9Y8hKodbjccY+LsXfex13Pyw7+Kia/6e5vStBOdwhf+W9oyngiMaK2OSjD2BtWn0HJmnvkJtuPSOGjV6Q+aktWL60vU9XdsTbNSxLUcM+fXEgMqkWGo4WYhjtFacQk80hqwgQ3Oy1td4q/mHGnD0bcdquaJdLUl9L81RgmCKmbM4GMyAcaZwJ4a5ImMpxaGmnUKQGEj5DYXToDnmQDiRR26666zdYxiTUspwquIVFVXdUPUB7zp85amqWgT8kynGJeG0N41wNFOk71radsFq1dCuJsVwo2kaLjp1A+nM7dxy6BBd17G1s027WnHq5EnO/8/P5+grf5rzn/Eibv+tH2Q2m7Bvc4PD8wkHr/s7jt/nq3j0bW+nv/gizp6acfrUSc6cPUu3tUMKLSlk3V6lDUKkuXHSbFbwqaA55MDh3P+5t3L6gd/I5vFr2Tj2WfBi/m6sGCjb3PTtHDqcyWAOQBwMfCW9KCb1uhDuSRXGOdl4hct/OoA9mrWN5sWXrL0gWs3I8D7lZdQhRzReX4rDk0sBqqTJe1WyJBNVfzrwx6TBeCp7T8ZTSt6huppRZkkCvElEnJgd6dqR1wRnbDGZl0wxEYMlWMFoVWZdeEjjz57X9fF4KqYCI97x2DSm/NsJn+TS5W20tuJOu85Vpz5IN74DhsKNcop1VU4T7bLnSq5kshmdNWoeQMFISIZDb/6tQZdpKzHI+Otf5uSTfwL/2p/Hzuf0bStNjT7/cfjCx1ibzUQ4XQs/ezKZMKnEzEo4kILPhhjobS2YSq9N6mPmRTLgjgPRDcHG5fzuyrU+lw4zesCwPpf/yh+kwWxK896yfw3JOCZrjjWGSMkUrV4CNVvT99YwK9fUTLnp+bmDBidn0pn3W56v43GPWZU4Awg2rz+Lalia+ah6SnrWkl9azdtdHuMak1C0KlZfx4lpfzQkZ0erxggn1Lmuw1M11nqeCVIK2vg2G2rmc5L4VQEEvRQDd1SaU4y+ZkwzaxnI82Ywm7pr/BBH9y7fBDFZocSrxbxE8c4Yk5g+kef/0FDKKTckN88zOjdkKTP6u6H+sGfNyBwTM3BIKJ9PvzfDa1kMcZSDDJ93qKeeK4f3HtMHCtdXzfdiDGAcIRm63rAyCYeYQnhjtAmANB3pQ8R50Q5ZkDERE+7YF1h372L7kgdy4SfewNJYojH0fVAzqRWrtqPrhQfkvCcZlGcrWpM+6u5qLMaLNiq7njgn3K1mMhHDKS9raq38v9o3OG9JVrBd6wzTac2+9XU25jMqDIuzZzl5552cPn6C5c4OXRsAT0IMj/rZGhs2UDUNVdXgfYP1DdZKA7H5bJ31+QZN3ZCILJZLtre32NrxwgdbrVhaDyaqwbrkc9EYonWY1Jc2ZlJW1/Myvhib5cM4K1zOumJSW2oXsaYbxp3OiSqbTE1n2qC5Fu2c5nWha7UxXMREeRADpACpx0ilQ8NsbZ5HxKT/h7o/j7clu+46we8eIuJMd3hzznOm5smSjW0sPGB5wpjJNhSjq+sDVRTd8CmaaijGYmhqoIuGguouuz4GgxEYgQvZZVs2lmRkS7YlpSRLSk05Ty/z5Zvuu9MZImLv3X+stXfEfUq7DF2UH5Gfk/e+e889J07E3mv4rd/6LQfGSUzmktwP76ixxFq4JqGzEFqklmOVe1xJyhCj+PUgXK9+BIKKaJvEOrLSZL/mnumiJ5ASMoQi6BCKoNiBIxmr1/DW2mMwFio0o/9nfwKofSzifEljJIZektyfakfCt7lPcBiEKjnWkDsntdFpZHs0byvBk55gkhxRRBetxqhSF4sj+zbEC0aHOuh7jF4bhnNO+rCqs2CVr4pN8j4mr1/5mrRv0WhAbEgn/EPBt/P20M+RbW0RBC42PPtKtD/Z6EBSR1U5fOV0kK0pviSRSvheygYwCqyHmlWOB7Lvz/otzlmtN2W/hn6eLDo59KNlEdMi/Jkg6Xk2lSeGmjgNWJPoK09X13R1S2j7sqKcVa73ZCJCU/M5s8lERNj0/GMItN4V3jMk7evrCr+sMmCdl+vkffm5fuohf7jVQsbsnzM+FdDelDyUO8eNg7BZeZQ0K9f7jeRUI1wt657YEnsMuYa1Fh+Ff1FCy5T33pinDEZ5CFmMOnPwKFjWENfkuFM4YFFD1kQy2hOTED9lIUvBWWPwxqrAtdUa4SC8WXh9GAo3Uc99rKuRBbUyH2YsNprDQTNc+pytylAto9cuGp0JmPtBogrwyi6zSQQYLfJ5hCWfL6AOPtOHSQGbgjw/+wPd06XXBBFoIwRi3wqnrO9YLcc9PB3tZiO9PL2KtY2GThU7YnJcKAOchC+gtjON8hKbBeYGbGic/5bro7Et479FPN1gNYd07dfrxn7dQlP5hpncsDNWVDWGixdeT5N6bkzPcGX3bu45fkmmGDunya0d3WklWOgGSvnsFRwoC6OkRWjSH9VwG+R26cJNOetQESijgbS+hpAEs+FJJcGX5/pSHE4lwxpOVRxfBmsNiVCa5weDNmT06cT3qAewgCONxXJGdy3fsLGaYxbKIiVxoiOnnr2JzQbfCiggDR9ZQKPC5MlYWbRE/9YYEZn68DX5VO86Z3A4uphYtYHjTcfxesNyvSFrWCRjwehkduc5PPMart/5Vdz3+Hupu+NSyC8k9phYNztU6xvQ9ZgQsH1P5XtqVfKTeQsVtfVEk6cGOnxlqIKnC5Gu64VchsEQCBHaNhGPDT+984187Y1f5pfu/Cbueu4JCTwzWTGnnSYr9Op91GuXSfa31OG9ELadx/haRKa8K0Z9kGw0ZZ+ksoBgnFbe/MlMGv8sDZuuXJuCFpSnZMcykNSQYGX8lowU7r7Mq6ebTsZqcW70Q13Xw/kPny0HRqkAkKgzjqNtl9WwI4z2Rlb9KyQPM4TOY4G3k4JSeePnfwvtJOn1+8dPtXzv3RX/4JmO//I1lnp4aSk2xL4ImGxC4ihYTAylsQUE5P/29tO8b/o2ftvmkzgHx4gDkGDL4lPgjfsf48mtN/OW/Y9S1bXYgxCBjmWqoF3jZKxNuWy5MBlSwhDKJNEqWELypOAxIeJqTbhTAqvFqSRTvIJBuixIqt7YasONFK22j18mGs9y605es/cYbtKUa5wywBXVbsao0wVupaOkTiVByAFFPlcBxXPzcCyAIMhs3j5FuhjoQk+nxbxI5PTxy3zdM1eIzhbBQZOUSKcAoVXRQWMyVVEA6ljWvJxjBsNPKNGrGS8TYvX7aHOzECUJLJhbyntQ133K+0AOa6z6xnRyb+uizwrAMQaIvRIHhQjkSHouenJpuJZpHMaosnBRT7dehLg0uTMqsmO0UCrPSWqeIn/z4Z6/8VTDn73zMnvXoU/QpyQTeb2jCz0rKtogTeVdTPQBAtIoefGr/yinP/R3+eLX/Kfc/oH/BuccTVWLempTc3zm9Ryduo+7n/0FrDkE0xO7DRHLJnR0q8Cq3VDXkWmT6KMh0pNoicnSh0jdBaoqUFWxNMhblzik4cfjfbzdXOchcx1vEsSevlsTMaw3Kw4O9zk6PqDt1lgi3iac1T2cQgneSQHrKin6l7hJSaW32BGVAJpJFckMgXvKzQd5jZK9iBb7dD2mPG0lgVSgxaa73FxY+VL4yYFzOVS9PxMKyzo2EHOSLVebgAo2MZAMwej+ckiomelpktyR9JScnK33FdZ6bXLxZJKltb6IT1kzCE8JsJtBMfXtKmxHisj0l1RqeBLxikBUtAEbdW0Usn2P61qMsaSQSJXspRBkEnxSsamu6wGLcx7va5z1Gtu5UmQPIdLVjkQPJtL1DTGGAgakpIC3ik3JNJckzYnOlesdtcgdU9BkkxPJbw4BQjTMJg1xe5sUofI1B/sHdL0UyI0KalqdlpZCIGk3YG6uyLWMHF5nKvi17/6rnPsXf4lrf+h/YPsH/qjkIyFiYqLXhoekJIMcg8c4xBciqqX3/hZzZd3RUbG90jBe4euaxc4uuXlytVyxWS3p1mv2rl7h8ssv8vwzT3Px+WdYHh7QL5f0MbDqOtpelN59XWMrabhMviL0PdZuSAne/LkfY9O2dJqUS4yVpHmuF0HNlCBMFlx+22/n1GMf4Npv+t3sfvAf0DzxUfq3fiv28jNMnv4kzlec+fCPsPeNf4TbP/ovsSkQKs/md/8FeM//k/R7/wLxh/5sWbfedlo8hxQCnTElrqqrCkMqAgGh7+m2zvH8b/mjPPiRH2Sy3JOpA0q0AnT9WLASd5VmZS8Ep6zC75wrDbgDocPptJahYHeiEKWkrnx+4zBIMIZEHQ74+os/x8fPfSXf8PxPF4G0scjw+PjyApChSR3vevq9fPjud/FNT/6vXxaDZ8GnVEQv02jvmVz5BgWKxySyHEcLOTtn0JJHjj9rzLF5CeuN7hshoA96r6Pkopzb+MEtV0yWPB8Y5ZNShBQ/HzTKufObv5eDL32S02//rWyuXWJz5cXyGhIiyfO64wMe++/+OLu7u5w+dYqzt93O5q7XcenCPTywaKkJqtbe0W1aVqah63rmP/F3qaczTu3ucub0GZaTHZ6a3su55Y9RvfKyTMZ76K34s7dDvyY98HbCc4/Sdx2P3/1NvOXGp/nA2XfwPeEzTAvRUJT0UzD03QBuiahEW1TZs7hULtCi1yHvl0d+5v/N09/4n/Hg+/8nemsKDlE3TRHPqOuG1XqtF8Rw90feja9qFts7nDp1iq2dLSaTCc5ZlhF+ar3NN8+P+NFrW3zf7WJfrIFJ03Bqd5fD197L9ucf5cbrvo7jn3s3Vy59kT72bDZr2s0aawy3bS/Y/NO/wmIxp6q89P1Id4gCqDXTScN8PmM+m8n96ToRDO46oopgTGcV02bKdCpiICJ2p035Khwi4ndiG/JkQLIoQWIQJ9BcMIZYJjwJyDtgRhnwdwmZ2pGElEBUoew0DutNTrkQTwapRCpaCrNGiUWySW8mAv1GHymoTU5ZOV9jv5RzAE0r09CMGkIsNq0QcuKADYQ8fTIm+ghd1DyMiNnaZve7/lO6Jz9NfPozWgCTHGXr+/4yh//kv2fnD/0F9n/gzxOThH/JedKDX0G47w2En38P/fExXdXRd1KALpMLkL1ujSlTI33lSaku5IfXzAOb2PLU0vBt24d0XQly5Xokow9GD8OR38KnDYJXZCahKSQJEbgWgfYw2yH1NzAknK+ZTmcstnZYbG2xtbXNfLHFdDajmUwIMdH2HafW13l5sc3h8YrZ1Wc53N0RoZylY73Z0J/d4cL3/QVe+MG/SvvKC4PYRuhpX3me5//+n8HalAMwvTci3iATHCbMJjLJcj6bMZtNmNQ1lXM6yU+n+ekU3Rx3CSZqlHRrhJBm0rA3FG/IzSKFRZcS0Xo6WzHpViLGRm4gGh5Cphw/pADneslPZYpvFhI6WQwZkvZhIhrlTt5aRxrdl/9DjpL73/SzAiCQYYUxrCjNXEZJqqN9ksVpmqYRwlpTM2nqIriUxdpEqEDqD8FmwTUneaa2eSXEVnSTlnbTsp5smE2nRZAHcvyRcXakIUbjx3Yt/g/Fjc0oLy0ll1yU02azYcKc2gCnpL8qx5VZXEoEprLQVJ782jSNPCYTzSdtyUduFm7ITZN5Kl4pBttMcjflPIdiYlKxZ0dVWRYLmaqbi4kpJdq25Xi5xCrxq9fJO1GLfdnvpyiCUEE6szA6UacPsTQ8x5RkYk/GdJwpVq6PPX1KTM7cTrv3yolzd9og1vU9q/Wa4+WS1fGS9XrFZrOhK3jkmJhwaxyZVBtCjuMG/yCkUn9CYCzff+sEwwkhQIK27di0LaEXio/k6yJeTUracGalSB0yuVUEo5tmoiJNLeEf/kWmk0bEs0Oka1uuJ89qcYEzV17kY4td3nzjpfL+vzi9k9v2HuexnTs5e/R5lstj+q7DGgj/8G9w+vf/KW78wF9kOp0wmwpZYDqb0N7zOqbzGRtfc3T6bm53RxIXeS+CnlbxmLwmUiqi36EPdH3HZiPCUpv1usSfx6Yipo2u4UzaFKIH1mFdVcgIJx2m5hPWcO2+NzK7epGjB99Es1kyOboxCCMnQwg99fv+Cct3fS/NT7+bUFVstOjedT1tuyHWDaHvCMujgrkIXpOovCelILVFB74X8eLgrBayIVk7moaZaxBqS0pZJ3+2AaMW7Ff8T65YSTwkTVAm9ITeichU1xOqcBNhIBNYBgE6wba11mgyxuGE1OKlSUDsrR/lP7fSkc/InNj/OT9JMep1E6KPDLATu5XFqCSPkb8PKnJmraWpaiVAWEyKhHZDAC7f/3Vsv/IF9t/0Wzm93MOl5zhKgbY5w87v+684ePffwNx4BVdV+HteS/1Vv53N+74fu9rHANU7vp14eBV735uwh5dxL8swpuqH/hSBRGcaAJyzNDrp3LuK2lV4V+FdrUJ+DU7rRNY1BBXLF2wzUJkKZ3uMqbCmxroG6zaY1YrYOkIQXxmx2Ag2SLwkU9o7Qi+2JYWA6TsR1/BeJl/aiEuORCgDALJgvsRDck2zEJ6xYKuK2K6UACK+UghTjqaqmDdT5lOJB6eTCU0zwXkZjmScDE8y6tuNGXxsHhZRYrCC3aVCxBr/rqycNPjuQXhq9O8RdlnETBTfKLVCBpwQUiHVDcIKOc4ayonWgEsR2g2bPrA6OqI2jvNnz1M3E2w1+T96k/z/dSQBeQuZKSTxt9YC1hMNdAE2IdJGS48hlJpVBq1zXTC/ppBfSp4zupYmxoFghJH6Txrt89FNlOtMEZl0DPcl40jl70ZvLumS4YabciquKeIolAieUhvUn2e8W/JPrdUp+F/EdJOQJy+6LT5dneW3HDzJjF5EPSvPu9IrfGBxL18fr3Pf7ozdM6ept2dUTc3f9Y7KP4xNiXa95ODGHseHB+xcvcL00jaXL73M3vVrdJu14P/J8ppH30NKDpyni4CruPd1r+WTr/+d/IV3nOV/eGyfv/PgVD6LNaxDz3Eb2a5qqpRoVz0/ed3wjp0lH40P8/UHj9Nv7bIVNvyrs1/L719/iR+bPMAfqS/TWMOPd6f4g5PrxCg8FqqmNBxgDN/WPUdvOnrnASFEyf5TPzPCFEuWm4QgiokQh3g9i05L6SchYlWxrJiYp+wpn8U5K8KyRsSkKjxT07AOhmUX2XSBtlda8K/SQPobdayOV/Qx5CGMJFFxwIDUGJOh7SK1VzK091TOKqZkpK6apOOk1E31tU2KoymO+YeSO0ci1975B9n5+I+y//V/hFPv+9uYbo1JidPv+QvsfdefY/df/TWiMfhrLxAf+yDdvW/Gf/hHBD9XG2l/6u/T/7Y/iX3f/0Q42tOBSIbuu/4MzY//v1h+559m/i//etlDOT+OmPII2uQXZtuk5aHiFULoxYh4T55Y2WuNIcZI7AMh9sSg+QdKtrMGv3sBu9rHGfBn7sD+nj+L/4m/Q73cw0wXLN/5B1h89mc5/NY/we5jP0s6ew9+dYP1Q1/N4rlHBd+3MuhHeBlOBTVO5v4WyJNOBtx6aCjPhsiqQNSYu/Utv/Jufu6N38M3ffpHND8SG5YF/nIbXPZJZvR6Ax6v9suQO41L7lV8YhjZTfJLfDkCoNZTLa2ICA2Y//A2w1Iyo58pT8eMMf5b5xiLdhkMs/195o99lIMH38Qjn34UsEVUKpXrqUPSRnFBqVsg4vNY9WDazGQT8iJW7E1ltBnBWG1iSJB6RWkdMQQpLSerr6E1Zz0FNK/LzUuGUHDRFHtSDLQ6VDFzKgND/C9C1xVNU9FUNbX3GhslFTMQjDRFrS6bmspPaJoZk3pOVU+x1g/Cxi4V0nPGaWMIwitKuVlZL7piluInzYDb9kHF4vITLSTBE6QRzFH7OdVEYt6qrgUPdJ7jlaftG0I8JqYViRZMTxYy0ByL1QABAABJREFULCI6OB2qprV/gnCi5HTkvHDYaKQB3WidyhmiNQRr6E2v/AMn9sZEorXEKAMdxDYZYnIkKqDG2inez6irOVU9p6pmIjrlZ9SzXayf4X1NVTU09Rzvpzg3JZmKLFYVoik2L2VwaVSBKoyhW21IZj5OlvhO/Ghovsw/H/OvVKDJDM0uNuXml4FLNArBb3rfnNsOb55J56RRHSWlwmEezk9xPV3XY/K2NbD73r/D4bf/Mc7/9PeLOC5pOB/9+5MP/XlKowBydBeNYeVnTNsjed/R7wbDPXyOQeg2N02PrbHa3mzT9c+HSzSOAHJQq3vgBClUr4EUqwZBbY1xLdoslRutjMRmhe88esdflwdISepj5Z0L62eEkwz1MLm/+a6psc7xY8Z/TPZiQ7aQ15E++6aHiEinLFAdpW5P/ty32Bbb3t4qQ51WmzUhRaxzbJS7se6Eu90m8MgAOecq+iR5j6kcvpqQcMQgdbE+Rrz3NJOG2WImA6GrmtAn+i7QdgFfT/B1xabbcOXwBtYZJtMZx4cHnDt7ntsu3MbtF25j7+o1Pvnxj3HxxeeZTD2333aO8xcuUDcNh0fHHNw4YL1ac/XaVZw1rA6PePjeB2i7FU89+STrwxUS01fs3TjCecfWbIqrGy5ducF8a8bt9zzC5mjNxcvXsdZx1yNv4MIDr+HchfO89rWPsHdwHefgoE10y0O2ts/w4IOvZ39/j1euHLG/v49zDXfedTtbu6eopjO+4v4H+dKTT7J/9SrPvfAS25OGrjVMm22smbJ/fUllDwmtZTrdISTHbLHD2bOCT1+7doOtxQK3fSd33PEA7UGLi7A+3HBgD6gmDfWkoakb1l3HxRdfop5OWG9a2lXLfDJlMdth7/IexwdLDuuGG3sHXHzpIhjoNolnLr7MbDZjd+cUcx2+sX/jiOPZIXv1hIO9faIJrF56hWXfU7mGxWzCqXNbXGsnvPDkp3no/jtYbyIHz12heXiLxIbr1w8JGO45dzur42OuX3+R61euszleM59NOHv2dnoLe9f3qCrP4dGGJ558gUlT88jDj9AHR+iB1NB1lnUb2XSGPnk2MbLuHcE1LIPl6Reu8tQzL1JNZtxYXmJv/wa+qX6jt9WJo8TUWoOOUbAJEyKGoIMCHNhAFrMWu2vyC5w4DIPverUjY1rJqLSQDiwChnomkl+U6LPYxwE6/lU+DGOsOHMPpG4rMVPSD5CxcqtiVrkJ0Tn7ZcLhhQNSPrvNH1Y8ujg/MIJXyO/GF2bA8oRkBtFaETA3EitKo5vwrLLYRs6B4viapIi2jg+oksZMJdcxI9wvX5pfo240HjKYnztEXlEjlfLhNeYYMigwpQSdr40x0Bn41PGEl1vHt+4eMrN5eF/+X+agD/cYhI+anMVUnpRFax1UOiTRWbmXjIT8Qwww8oK32pEHi8U+ERLSc+AUsMhCC8h1u+fRd2ONIagYTUjS/GeUnGGjcGVsjmGcHUIC8tbUf8RU7p3s6MzPz3w2zdkF6BRuiPM4K4NOvA90nZEHgTxMhpiwyYJz2mRpIEVMCsRemqMD0mMR9Vx6q6+PHQlTifBW6HtSHyDqoBFc4Y84nzEIbR7U5v5aOZuyfuUzlzqbtaVZ0Rkj1y9FbWsL2oxtZe30RoeXV2ASVoegkUQ8/lpqOJVWmmdmIbXcQC3Dm53zOF/jq55ExGsN31pLjIm+bVmiHzsEZosFdd2QjGXaNJw9fYqYZHjG/v6BDJ9Zb3jl+//v3P7H/zZ7P/CnOb29zalTu5w6tcvZ06e4bavhjQePUu/u0m8mZThh10cOl2vhI3c9KSX6lCBI/S7GCCEWTkntvQzQqbzWxyVvPv/5nxLB3KqSuluyiAi+PnSI461yODuyTSnb3HHuMuBHpuyVzKUfsJyyluBkjg+ljqlJVvl5FsobdUQWexYxGfaVX0TBX2IRUM6+0BbJvizwlmspSWuiKYnIVLSaH0RT8gUlw5XasXyozBdRnE15VApVgE0nzjr7gSyoWwYSa92wN1LPliZjI3vIDHng0ChuRl8HsQE3EnsbD7odHrbs5weOn+Guvqcb16rGeWwWkNLXjTYRlUsxdBdnURvNs5XXkbNg6YOSATfOWIy3VCHif/rv0s7ndG1L6xx92xFcjzHIMNOqpm4kxq3qSrBSkgi7Bamxb+anuPSO3878g/+AuH+g2JEKZ2esMaE1gCy0hMQC1ha/fGsev4qvNZT+sVw7inmFpZRnqUgjtxn2WBr9fV7HZUiKriERCsobmGHfknP4IDYNWf/JmJEoFKV3q9hvfaucmxONDHAYZdQpD91Kgx0hr3FGa9wanMtrnQEzN4OAVB6umYVJh/PS2C2XEdP4GqSS8ufBnEk/61D4M+NvycKfyQp+GU0iGamDRCP7NcYoHI0iolLSgBP3axC3HAlNDQCX4KuWInRitFZttJ/bmiw0RRF3csaoUJTauyyYon0VRTMP9LknuYtlYPB4GY5woaEIOnpCtvNmfG9Oxvm3yuF8HvChg369p/JOhtUlqQm1EWyM2BBwlaHy2aKl0jeZ7WhKZhhQEiPVi5/j1MufZ62xfEiJvg9sul56XXSYbJ8SdRSsOFqHb2r8RK+ZszgdIFlVFa6q5BpbK7axFj5H5pA660XIw3iSTWyaKdVmn7rxbM1nnD21y85iQWXgaDIl9YF2tSZ0HaHtRFwjJo6nZ/nkW/4I3/LsT7DjWqqqwdWeqm5EyKlpWCy22Nnaoakbog6nb9sNZqXc4SCDGLyu2VR8lcVXFW3Xy3CYZNQ/yblbL0M0jZFcFa3lCZdIcPtSk8w14ZSUGw21s9RWBxUChL70jIVNS+haiD0hdDpUTTj5pCCRe4lLB6EWsWfSR+c0XhYuUwVY+q6i3zhCvyaFXngZKoiU7e5JPsiwDrPIHWR4VqxisJ6Nm1OtDhiEaJPWV0Q4xHkD0VBZ7Vm8tUrRgNZ1isxA5pdKrAaUa5Hx6IJImIGX47IgkXcjMSPHMGhUjU62ySOuzPgYaqUU8cKCgetD/JYdfFAUL5s5sUXzgpGvGNWvQXkDuZ/UWeFVYDHJSY+yGc7HKL6Bzdz8/N6p2NixUOo49zQas54QGS2Yy/Dz3MtorAr9eLmWJRZ0oxgox3+Ktxh1lsXujXH8MnhyNCzCWaKzoIJdA59W7pFws4dBS0W8qAhNJZI1RLXJ1DWGRO0doQuErqdrW7q2Kz7MWeGxTiYN00nDbDph0kwK/3hZzajbjQicKv5kQPrpQiL00Ou68kauiXd50SbtP4y6Dv5dd8K/v+PmSlFMefBWXkPDujmRjxX/rCGh5gwx4w4MOzImZCibzT33BtNLbl5im5IXphJzC89miE1cFhZzdrQfc8w3jhdQG6w1oZgkJ0slaAONf5IdPkvpj9EBRrbkO260f/N5Kr9Te38KJyREQj/qZyMV+y15ra5VfZmBw6fnqvmh9AYZKCLew36OJuJMwqvZClnTOO87xQStRorSQ05Ou2XPjcTkrFUEMQZSLzWYhIpX9sJp6ZU/HqUYjHAO1A5l0SqbhyrJevFO9io5vsymQW1EEZrSczN6Nwd0Og/iKRl7eU6xYVnoFr4M6/61jl+30JTk6EZkMoyhcnYg5FjL/Zc/y/N3vZ07ly9x1/FLQlLWKUdRwXODEBWTTZpM6CJwamBzw/jYyejNzIExJxIV1ICLgyGpO4qJSCAmQ4p6o6GADAbLKB4Aa7GuIuU7gyw0CSZUyGpAItTpZSmjsr315cYvDLkgGqMoB5ZNUK7qSA0z6GuWLEtfx1oFoNNooYmTRZsXhMyUgVEH1hWhA/KmNcPaePwIjnrZPJ/dhzfPDH2CTehZtR3rtpcJkCY7lxqQZK6fnuH6XV/L2RuPc/WB38oDL/5c+eQmiUDNvtvmpYe/i7NPv5/J5S8S+hZ6FbNJ0MXIpuuZNDUxNXhnqaloXKPFBUQUx7kREGLoo5rC1PMtl36Sf3PmG3n7F9/Dy3o1JVANA0nDmgLiphQYGqnHhNRb47CV3LfkpKCQrJB2U17nDOSGm4+cVFpGTxgZgmzwUvm5OfEU+VEanmNSUc8ev19SpwLZDI1epTzRnPhqcgRvxs/PZ5yBwTR6vizUlDepOoOc7MNITZRMUMnGMDsWmz21nokp35fg1oxMbf67mx5luxr4zx+u+f88seG/eMTTOISQYPQ8iqxkYhMSj7Vznm+3eWs4kgkcMraPFAzJOr5j8ykiiR5tJBkJ9yVjManmrQcfl71sjE7VCxzT8Ozp17K9vMz55YsYnYDaazMTKSnQ74oiZUqJdtNCH8AHTAjQB5KvNPFxYqdRENg7+qST/WKQZgZNyhNw6vhFLqwvYZtGE7SkBYfczZsBkoF0fyseJp2grzPKpErglYXzcnBnVDhBCDGx+DaZbm8VLBSidO4KtxF8EnJhmeKbCWQjUk0JhIzhhHEaJSmD4xv9jiGhSTkrNHBy2s7oGG3XL/v8SjQyo4Sp/Gx0viZm//e/c41136Wsc28s6+TYpIoz2a1y0p+b0b0wRoZI/aUHl6xWoggdTdbMN0QSR1S8cO6thOUBW8cfh76lT4ku9Gw2G6Y//le4+u1/nupH/xzXraOqPE3VU1c9qT7N8da9LPZe4uKZ13P7xUdxtZeCkjVsloesVitiCEwnDSEYjKvAdKQkarR9Hwh1pOsDVS8AENZRG8dHzB281uzx8f4sZ8wBi5SkiQno2pbV6pjl8oi2XUOKOlEqgQqd5fsS1Xd5k9XnB/t9i/GhABTkNgwocfY9J0GWvAatGf5trNo7sfiY/ApSDYVoMC5hjcejDWUJyJNLbVZtFT+RxTJC3zFuYvBIQdg6K5OvojTJujGRIMdZqvCWkpHGTl2rrgioqaBn3tvWlYexXsQjnZefOcdzacb9ptd94cQPGi02GC/Ek1FVwJRic8QasTvkRv8URFAqgnUBYztEFDRovJswfhBLMsZQafO/tU4K/QpMOF/hGo+hkvtkI6FvSUkIabnIRhIQ1VmrQoqJuq4AEetIah9CH1QoSJqDCbEkyblZxFqDrSxmPpVp0slAiBzsH9J3vU7B0YQoRkLqxT8nAYiGAkwml8ayd277R3+KV/7Af88d/+j/SmgqXPTiB/uECZE+RHJIWASCQiYZ6uRqa+U58dbaaTeuXaOqG5r5gkpjx8pI8232H9P5FilKonrbHbdx9913ceH8Oc6fP8srL77IlUsvcbB3jeWm5eD4mMlkggGZSONFvDZ6md4XY6TtO0JKpRnWWEPXB2In00r6thNf1e9x50f+CZff8h3c/vM/RLvYpnv4a7AGZi9+HueFLHP5m/8TTn3ug1x587dw5oP/C33oaX76/8v6O/5z7D/+r2Ra1mSKPXsXk/5IgalaJxBYudc6ra/vW3QkKcTExa/5w9z/6I/w4lf9ft7wke+nVx8ZQeMk9akplTDF2DwRqBKxKT88ZCq0KyIYGfgZHwXwSEn3xUD8P+EtNRfc6fb5phd/VpoqzUmRqfFjfJQcWY95XPOuZ35MxNfKc4aCUQFXsisnjRz/TTGvlUam8vcGzaFMAcIEzFJQR2MWsU/ZDueckQJM3hxX56Lx8HUAXG+lwzk7ul5GcvEMUuUplCnxzI/9IA999x/n0gfew+qV5zV1l3zEWYetrBTWrZCCROBoSty9gDtzO03qebqf8Ig5YLNesVotuZEqLj3wNsL+EvPyU+Aix8dHXL12jV+573VcePIXefr2t3H8kQ8CgcXTn8JOZ/jpHPP4L9GSOD465vZP/FM+/9Xfx7ccfRzbWELvRZDGBWIAg07R24i4Qdu24i/DkC8PRCJPSj2QitAUxvCan/9fCHkNZ2GZyZTJbEpVeSARMgEuiSjhfD5jsVgwX8yZqGBtCIG63/Bd/iU+3N7Jf3x7K00ZSkjdns+I587xzZde5v1v+EpOP/YhDhrLNe84unGgwoSwmM1omqZkmhJ35xgzT5qpaBotiGFoNxuOl0sODw44ONgnhIhznulsxs7WFtvb22wttpg0jTRfG6MYqhRAKyV71V4KiqSh8T1PFRVhhTylMBCtTPqyeVpI0gK2MYWAZtJQCLel+UsiI5N0D46si4VhWhECOGYIy6Zx3n5rHDF0IlapJP8REl5ivwgiMpmvYxx8fAZQsz0XnkTUQo7DWU5c17Pv/B2Ei0+yeNPXEpb7+KM9ad63lvDuv8nO7/0vWf3UPxTiWwg4E3Fn78A++Fbii49j3vBb6D76EyWWMs7iWykG5SmsdSNra9I2TIKICBiDAPcG3rLV8YZJT98OMO+4CT4fGaHYm5zh0VNv5Y3PfYjF0RWSHZptk4pNFWj41G3Yr/tuqs98mPqlx6l8xdb2Dju7p9nZ3SWcuYvbppbZYsFkMiOEwLqVte9WNzhY77M8tSsTV4xgSt5ZJr/3T3Hjvf8z93zfn+fS3/vTheDRtRspCutETynuiqDKpK6ZTibMZzO25jO2thZsb28xn02ZTafUSkqSh07QdU5zJPE5MaUivm+dxSZHJMhlCmi+nYvNWQhZCsAvbj3AlfkdvOHSx5hsDgskJNd1jCUPUz+clUkb0VmI4yJBbjTNOHK+cZql5Tx+ANn+wzxuhvNGR4HyyHYk53jD36YTz8vWavj7fM0z0c6r0FjtVYRH181ExZhqbTZ0SjhPyRJtlEm/UaetZDFrm8kNKpTU97StCChuNq2KJia93yIwl4srfdfRdi3tesNmvaHbbCjtT0nxu7zLzOiz3FwsNsPPxUe6YYJXnvg4mZTPNo4xvV6DSkVeQPJSSrPsTUXpUgtQbLjEs0NsUo6YMSZ0j4ookVeho7btWC6X7O8fqKjwGIOSwrdJFpccJgRi14ot1n2XUi/kbyONs4VUZ4zgmJqnySSZxNa9j/Da3/en+NI//dusX3keUGKCF38cQ6RtW9arFav1mvVIgKjXglx0t9Y+y2IneRJ6GE3bEdtoaZoGts7gZzNdBxIvJM0Z+l5wq81mQ4pJBG+tx7uKqq7l2kTBect0IkSMqplMWU1WIjS13tC2HYMXgb7rqC+/SGM+yt6dj3Dv5z7Ci3VdsJIL7eM8cf872P3YT7Peu8ZmvSGGgPeWSXK0P/K32FosmE5qptMJW4sFW1tztpcvsR/OcGpquD/uM5nPS2yVyQJ5PaaYCEkaIfLn7boh9sz398hNePz8G9m9+hynrj6DsdokatDal4p2GysTpXXyvHW5RiSCog+8/CWeuesN3Pnyk8xqC2fOktVvk7FSMwqB7tMfZHP6DOv1mkN7SIg9m/WGUE+p3/q1pKN9Dj/+c4TjI/ExCvfEuiLbBGtlynjlDNEZovMECy4Z3SNmwDxH/yVNsYYCjxnIGUiNgJTlsylNmsFaUt9j+h7b93jNN4XoMvgso2SfABJnjnJAk4kb3uOrSoXvKjYbsbm32pFJrq/yi1GDT/bzQsi1ei2cSQUvjTGof2gBic266Rw72abql4RWyG4pJrYf+xmuv+5dnH385zCmxcxnuNgRf8ef5ujH/x6nvvfPEP/pX8EvTpG+9neRHvsQs9/yPaQP/BCQMJ/+GcxX/Q7Skx+Flx8v8WrUeDVbMZnsVVM5mXxZOU/tapyrca7B+VrqNYh4gQjPO1IK2NgTgvyuMh5rKpxrsLYC6+icoe8s1nYFi0zGSANKEWCUPRQTuCg4bh/BmIirXBFxSqGT+o61GBOwyQsGhCnin3gjfiD2JF1jtVfxAF8zm8zYnm0xbWZMmobKVzhk0plxeeiOkyYkO0xILDGYHeEbhhO+rtTvNLY7IYw9Fr4pBLHh3zENpKuUCYwMOfBJwceBWJ2CDm3Jg0qiFxK9V+J1isR1y3q5ol2ucK5i9/RpqmaGr+t/5/3w7+OIIWjupUbNaSxihBwfjKFHHsF6eiNNW2FcxzG59kOpU0Wt3ARkWiII0QrAOxl0EBWjCwz3N+Pj41wpaXPHOKaUfGh4zoB7iX2+Um3xwe3X8a7DL3I+HmstwZ54XRhqKgZZGxEh2sY8liXm6gRA4jBZPlWf48HNVT5/7iG+2VxltrWgmc1wlecPO4Ov72Rre5vZ9hZu4nGVELme3t/wwLajX00wk5ob1YI7d+ZMdubUiwnuYs3B3g369YbUybRCkxxdBOcr7r3nbt7+db+ZP/SOe/nLH36Zv/3bXqNnlVi3Pb/w7D5PXDnmux/Z5WzT8EvXHQ9tOb54Y8rXLI74xfAQN/z9fO2NL/Lozmt4/+RevjVe4ie68/zh+hp/sNkbxZwOo/UcEkqJiRhfqQADEp9HGebw6vil0boKQ+6UcfscNaYxlCudBbkJMDfJGisiJd5apt4zsTWdqWiTpe6h8pa1syw3LasQoLq1mpr7fjyJEZIzpCh8jy4muhBYb1oqb5lUFZOmZlpXVE6aHyscRBUaxGAR0cBEKM3KGXcWgq+sZWPg3L/5AS5/wx/jzM/+j6R+LdffJFLs2HnvXx/Dw7iXH8dc/KLg/hmLyi/0v/0dQozFJhprqX74z7H53r/M9D3/NXHU4JTzqJgMMVmCitWyew7/zt9H99jPE57/HC72GCvE9BCiTnjs6YOK+8eo100GH1XbZ7Cpx2yO8efuYvqt/xfiJ96HvfgF7Hf8Cap//f1s/sDfZPqDf4KqX1P9wj/m2u/6iywufp7p+gB/5SnC4jRnn/+Eise7gt9ZxW9zw5fTuiJ6XQcBI2RNY8bGaPhZTor1sAm+6bPvQfB3hIjJgBmOxYWzf8tkesHe5cjV1cKvU2OYJ1NmbCTpZ7n5MDfZ1HyvbBr4dCOAg1wvAIYm+FE9+lY8BoJlHhZk2b5xnXOf/mUsWtPUqyATlDP3ISgWmT1hLPeKFDHWCDfEyCMa2WfGIv4yyRAWi9aFkgpFZWE5GAnOaqM1lNqBDJcc4NAYh5b6PARN5o2p4LSzJOsL1uusNMtO6oqmknjSACH2dPo6kieAcw1VNaVp5jTNnMlE8HNv5frEIPU1qY8ZiFInir3WQaKRTuqcLkQD0Sn91pCSI6W+iMFGtXsC1+n1NVJnDCEiwlcNdTWnbzq6vqUPPYmEjZYQKxItwknUaMH0RWNNGibFTwh/R0i7KSaiFYFhl1zBWAQvFyyIGAp+NRDqLJgouWYvw5Fkgq/HMMHYCd4vqJstmnpbvjYLJpMtuaazHaxrcLbCOYnNjfGQnNT1rYNkCcnQpwAxCBRuHMkkrlQdu5ukvJxICN2/l73y73qU+DqOOAtkjEw4FEbzsFKTkb8c8lCTeR56/zCj1xjnyzfFlvn9GeKN3BCovywxYFKhgaT/M8p1MrkB25w8N4vFkTj7Mz9Qar6lmRLhQhsoAk0imjnkHmMYWEyJ4driPF+48Hre+sKjbK33x1eRVTXDxUDVrykJv/pmsnhaflG1L9FonF5+l4o9Y3yd9YgJBiJ9xmhzQ2oauIo599E4T8S1M/8j6TBF/fsC8Mr3r+JpTnxX7hUpazWOznFcB9FzYizhVbweJdHPC+jE12w7E4Re9nWU+y1yySJYIViIDOgkxtL8PK7D3ArH6dOnRQwvJtquw29aVm2k7SLrvqcjEbxjDZiYqL2lMlKbPHXhAgY4OlrhbAXWslltMBhm2wtmswn1tKbrWg4Pb1A1MxbbO9zYP+TlSy9z8eWLPH5tjT14gde+7gFmkxneTIirFfPZFpt1x4/96I/y6Ec/ypnTO0waxxd/5ZOcu3COC3fexXrV8YXPf4FLly7TdT333H0X8/mE3d0tTm+d4/DMmourSyyXa/oYmS3OcOr8nAu338Hd992LqSuOQiLEhhevHHDp5WPmW1tcXl2li4Gt6ysee+EyfQrMplNOnzpFjaFJls6d5frxMTduLJlNb2exu0tvLWlyhsWZ87R2m7sefAu3373B9C2mrrj74a/AVGd58vHHWYeeyfaMyc5t3Hb7lGoyoVrMefDCg8QUuXblMo9d6vjX7T1822vexRvnt/PZj32MG1dXvPW+N2KcZbqY0xnYPrfF13z9Hay6loODQxrl3951/yO0Hbx0+QbV9BRnz55nvpPYPXOK6XzG2s1p+w7clJ0zZzh/4YDjo2c5XhnuqHeZL2aEFDi1NWfd9yyXa2I0HM3Os/zGb6VZ/326uE/HnGZrl+R2mC5mvPat5+j6wHQ+x+7doJ4fcnRwQGt2mdgZqT7L1nzGdPdOQh+49sTj7B3B7YszrMOMxmzTTGccHB5gJ6dptj3rNOGFV464duOAvVWidwteeOWI/cMjjo4jbtXSXn6F4+URk/niN3pbnThSHOJvO6rdCx9P4xYTkHhlwJky9mCtUTFtOSKM8KKcv1JsZNJaocn1TvlnsbE3HzfzY8yvaaKyLxBmd6lhpVzPSidsv7B0DVlgPDdDGo2JB1ucSNEQTcLl89RYKyUdEvtlOc/gFHJtzGgDozGGGB0peawZhC9yc7lcsyH2SdkP6uB5aznh73LuJOmK+be243JLRnyt8d8bGP1GP4/iU+WPTfm8+Z4aAy9tPM+vK85VPZ88mvCbt47KNc1/FfUexShCyin2kmsY4alSmtUo/VIFhUrCEw4xENNYxOrW8mMgqU7U65OHv4mCjPZwGYkLpPXL6LUxBMR3F76D5sMhRmw0isdyIgYpeboxWAcoluisK7lZKLySIW7MWK/3UFe11qoCfdfTdnkoUa8DNhPERFQho4jkFBiI1kg6xCA0ZXLTLsOgI6e+Wjhj0odRuaoIqsmwDB0qpGFPbuauvHAnyPEpA6YWoyUY7SeKARNDqYcUgQoYNSXnQXgFnCvx9PNxi/eZR/iu9AUupKPR3lfcwDjBS4zFGYs3lmTBGysDZyoRxw8xEUNPu15yrOcZpjPqSUPlDVvzGYmzNHXD6d1jjo6XHBwdc7Q8Jv6L/4Zzp06xvb3g/NmzbG9vsbWYM5/O5PolIFnFbWTQTeUc3hiJkfqOLvUk53WtRMEunWDQrmqoKyeDruqGSVVjnVF7rfgXvQh1qvhBSj0p77lb5sg8BaN1Ukp+zCg/yhF1wfDGeZAZ2fF8m83J5+jLiZi0iYIDaD4kPWz5jTUHNIgdVy2h7F+MkXwsBlkPzmm/pTbXl68q/tj3UcSIrcF7EY52KRF90n08Hv5myskbxSQttghNYTLMkxRDVZus/q8MOEGxnCCig5mvVoZBW1v2X26oHoR3BqH6jEk5awtHxDs/4rtUOrjZ67AVy4BSDesw6gDp0PeEbvRQfoRgdLZoLojFgRQigU5xWblHCSMc4oRygAUfCSpOaVIULpjWg4wkhSLwEAKhFZHbGHpC1w7iEinR9z2X3/57mX3kn3Pwjt9J+NG/Rd+2I7Ep6bEyzhWehPSwSR/xySFqt86RaxhA2R8ncQjFbDW+yrXF/O/CzQTAEk/dgd17kSIYoSQAo+uzxGNOerHLgsixaD6xlGso2q+VHUZGUG6KTQy6ZmPmxEUp5lFcQMEGYpJhaMPABVlTZVCjsyO8XPyACFvo76wIzWR9iEFwanT+5WcMglOa7iuJdbjo4z7DYt/kxpgRXjJcKsVsVMBEfLUOjrEDdhRhhCvJe32Z0NRooA5Gsd/M1TJGr/uAj8eYdPjDiFeovtKNamIGiScGHFP9PSdFpsaYWLlZN8V7Be/KVs3c9JRRncEoD+lWOkRGQDBei/Q/WSOYW4qRnoQxPV30eBzReqKzBBTfiwEfHSFFGezSG+nzicJd8yRMHHgLMiBR7q+rKlxVA8JBMNZhvZOh7tk+uyyuU+Fr4fn5upI1lFR4yXk209NUy+si3pZyL3xkubjAs7d/Bfe/+AvM19cwWLw5InaR2lna5YYQwVcN09mcWPc0vqJuJjz6lu/h6579GT50z7fw3S+9T4b4hQB9h3WOWNWEKMIVtuvo+o7j42MODg64sXeD/Rs3OD46om03wtPL/sg5GVoYosS6fZAQ3cogurqpqeqKuhZuvwwNjKVWa7TX06AiKprsynwO7V0LPbHbSEzWyWCT0IuoVwo9qc88Cs2DYii5rC04o6z8PJTTqnhJNRLqaSpPXTc44+grz5qeNvU68FDsswx0FL8XlKdf8mQYjKQxRVcokQjWceX0Q1y68HoeePwDTNfX5fnqn0Po6TrN2ZyVOMVY3C029AjUnqt9wUj9KNlhUIrzTsRhrNM4Z+BDF1tvs2CMK7ZtjFkUDN4MQ2zGOMqXcbtSwmrN2EbhFVjncHm95X6rqLWdnIugffM6PUbWh8RC2TdrRFhiUgNYE7NXLFyy3FOar8vgsMcZJuV1Y1RcQuNvxp/nxGce/vbm3qgiSOOGfw84k+I6ORfRXuGYxYLyeaT8u0ASSWUwsfSge+fAeywigp1j5nxfcr5g1QdZxWDQ4YQkiRdsjHiDimFXVNYSq6TCUNLrIr0C+jeaxyYSfRD+nbWW1fwsTz749Zz/9Ptwx49Te0/wnlB5HWqWN55wRIxRfWrtyc917qjnnhxkzsitcoyRNpKR9GGEOZRgj2Juyn0vaxWJtaxKXEhZRgVwzSBgZYOKTfUWa6XXVezWEP/lPC73vpZ9YbS3VvnlwLA20mjNjv7eRNmnsuVOXvdBGFjj+xHvP/dW+iwy5RxWh0tGZM0UrOdVxKbCaM2Psbm8v/O52syVt7kKOdQCo/p9zLjOJOs7568pi8OZfA2NaHWo8FPhaeiNs4rHGDMICpvS75gwKZBCJKo4cgrxRH0KY0jOIq4iqXCUrgWrsWA+T4tgHFlkXZ+fy9cFwmU4z5wL5quVc3iT8SuGvvyE2tL873/LffXrFpoqCraj5gnvddq7JhCvvfJZ6srj61pJqYPQVB+Daic5IVXLVjsJamelPFXkkoBlhHKMkikhcKTyHDX1kJCpA1EunilBfr7pklgDRYdDCNlOgA9z4kNTmnSVKFVU89FFbbI8i7z/sNCLGyVF2UBFbTv/JjvWAl4Nk6picc56PW4CP7NqowD2Ki6l5HkhbMjDGjeIHyhREuDNOzKlNKTEV+xA18lGEyXXjnXfcXjqfhY3npHG/+K4Er6/yvknfoa9O9/OQ89+gOCG4KLyQtZ4+o7fyp17n+WVh7+Fu5cvk44P6PtOyKh9D32PtY4+RZI1VEHuj6sqTbA1mbaioCrkakPbCahrnSPEwDtfeh/X4yjR1GQhK+cNP07FaGVDmieS3CqHrTwYIVcna2XCJYwAwFHiLGg844wxx0DAzQtZV26GDEy5XgVEMKOVa8avebKsUpySOh0xdWb0dvmcRueeTDFY5YySkif09b7seJXnl7878fwohPcTCpZmtG8pwMpgJWMhN2QRkQF0yftreB1Dtn+JP/FwzU2zxSkoiNrIg1hzMUw461Y8G87wGndI1OnmNtu0XF1ICW8dtUdANe+55M/zgr+dB9dPcToeyjUPMoXh6vRutvpDDhd3cN4umfUyYT1os06fkySDNkkiyTZBEu2U6BK4KIEILmqgJqhPMlanXfXE0CtQGSFJoGoAN1IS9VaAI6PTIKKR5CwL490MetxKx696ZpoMFdG6qB47nSRlBv19CIGgwURW488kwcEGmRJgGWuLkr2iEULaIRVweryzT4g+aNCQIefxNpFgYhRRIOs5E+7LGi/eUs+xYHTiv/JWSRnPy98U8DSV5VveJ5/A+JxyM1fZW7Ayjs+ELa7HCb/ZLznvcxSUfZY9eXPM8PmL39OvISQ2m469nQeIXUuanSKdvY/m6lPEzUYmsrU9fR+pfuyvMZnPqKqaTF/r+ki6/Bym/SD7t72W3c//DAfNhGlTU1uwzmN9Ba6l73qW67U2DvbMphO66YRpLw2FbdtRNzV1LwUo4wSE+tbqOd6X7udd9nlOxzWdsVR1je/XLFfHHB0ecnSwz2a9ApKqFw826IS91XjEKtE8FTtyCx7FzaSTi9TCsl7QuZpT4aCs66QBtNWmeUwGDZTMXJKdmBFgseNBKyjZJ2JGoMBQ5Oi7ToiqOZFyeeIAmCS+VhSqBUwcwFmJ+oxRwqycjP5yAB9z4oGxBKNNNxj53mr85zzJe74Y5/z4+iy/09zgDVVHtA7j1NMao5qpGfRERX2iimtJI4GLIloSUyQF3WdOimyuirgQFTgQUJUk29G53BBpMEaJhKGXgh8W7yKNlakkzksC3wcvAI/N15qSPDlrVVlYyLkxDGCPM1amwzqwfaRTIISoTZoKxJfCnLP42YTYzug3G7r1mn7T0ocMDLlhLUVRGs72TRJCWRODUJ2QNm77Z39apmtYh02GYKzGwRFLJJgE0RJMjpSi+upEVjvvY9Tm2FvnOLixz3SxoJnOMRrnC/1yJNXn0OZ1z3wxZ/fUKWbzGbu7Ozy/vcN00vBM6Dncu87xquXg6JjaOywNE68AujFU6u+aGDDW4UNPJtS6rsOYrjQNB22caZbXufuX302qPO2FB0izHVzfEu96mOaZX6E/dxfV/itcfucf5N5/9ddI3Zru9kdI7/hO7C/8iBDdq5r0wFewfuQr2X3uYyzCIfPZlOlkSl1V3PALmvaIdHyD5fGxNN3GSG8tr/vQ3+fp3/LHeNvH/gGmaaQwE4VQGlXUrxTLxiITNzX++zJZzxb/lIA+BJamYuMmnOr2EcJUBqp7+r4rE89G7qzkbrlwKlqig4/LAGIIw3orOUAJck/a/RIj3PTv8kBy4AyvFBKJnlQpPiqYMRZXzoSwLKA1gLsqIG2yeKb41RKDqO/OE5yKmHTJ+QexKRERGUCtW+WwTgCWEkNZq0BMVLs8HM++9/upRoJhRm2graz6tkjnDJNJTVNXVN5zpt+nvvEizfm7eK09EJGntqVrW65deB3+iU/Qvf7rSC88genX7O/vE/uOnWd/mOfe9C6OfuRvcXR8yGw6wXvP7IXP4Jyld57QCxGqbzve+vzPUt9xB7GaFoCuMz3BBEyCrlNBjrYrIlM3N9hmYam8RvPULaN+Lxd7fFVRNQ3T6YymmWCMoQ/ig0MvPliaYESMx3uHIdF1G2LsCaFnbuF3L65C2sU5mb4A6Od0VN7y269c4eV7b+PlKjF76SKVc3Tthj70TCYNVVPLBJggBSoDWC8C6XXdUNUighBDYH285Oj4iIODA46Ojjg6PqauaqbTGYvZjO3tbXZ3dtjZ3tEJDFqwUOzBWnndSoWmvLMaM0cFE9Uu5FjEZTKIwfQQgxEiq+JBCZnSWCbuIQRzGK1Fo29RTegmW1Q3LpEzA2uUNJKbGHMBR5LZ/1P2zq/3KOsiCKlScnkpJjqjHMQkRWNiKI9Mfol3vA77/OdyekQmRBiEuOfmO6TpDptLz2GMZ/mhf8mZ7/g++JUPMFnfYLbYwvlKMaXE+qPvY/5bv5f2F3+S9MITWAJ27xXSp/8N5q7XED78Xol1TCLs3k4MK4mB+kDXikjIK9UZ5t2Kru9K0VJi91FBbWQ+TjTI6M+Kr3CWz+y8hTdc+SxP3flVfMVTP6N/r7heRp61OMBbvgH37GPYt349s/UNpgR2dk9x6tRpujsf5qU738Dt/RXOTi3T6Yyu71mv18Tpgn0WHB0dM0+fEQJQ6ElBRFLW7/lbnP7u/4KjH/qv2ZrPAClOrFeW1sp1dyPRtcl0wmw2Yz6fsbWYF5Gp7Z1t5tMJ0+mEuvIFhC/T/TLGmyCGKI3MGaS3FmOjxOw6sU2Q06iEqKjFwsSy2uLy4k52V1d4YfdBHn7lU3qxKfm2XOcB5xkIYDLNJSk2Mp44WAYijHyx3LeMQ96iuMeveUrmy/71ap64oPFJsY2b8PIvf+bwWuOHVd/ondjMpqlpJg2NijA1k4lMR6zqIf7S9SH2NjcvRvIUVes8zlWSt+t+iLlRWX1bCEHqrbkonnMobd5p242IUq3WIrKjYmq5iAtD/jR+GDvUKpLmHsZaIQ42NY2KZjXNhMmkoWkanbTlC9kwP0SwsC4FOFf5Ye2ZocEhkxbl7WLuSdNboTYwaROasRjvScnQBcOLa3hkW4p5TUx0s575YsF8a4vF1haL7W2Wmw2briMB1UZEi0KMhBSxXSe5b9/Rx3xtNL5M2kCKCv/avN80PtQaxSO/+z/j6Z/4Rzzw2/9jvvCDf73EF97LxDSMIfSBrutoNy0bfbRtJz/rO7jF4sUx2aAPoYjNJjRGqCri4gyvnHsTsU6cnxxTVVLQzcSUvg8quNQLdq7N7c6L+G+OszBGmuMw5bUnkw3r6ZT1asNytaLddKUoW5oGY8Bffp7m2kvse1mDCsLQ9T07H/1JFXsKGCK1t+BrmtoSggci06lMo1osFiy2FmwvFtwVr7GIc2bzKZORyJTE9EowUUJEUvJqzhmFLBv0mon4yMWd+9g6vMy10/eyOLpCvdqXaoNRP2BkuEpMQm7tjGPTzFisDtRPqPijr3jj3rOYmcfv3IH3tfh7L/ZC6pHw9HHHbUfXuXFjj2qvgpRoNxviHQ/QbtYw2yLunuX48stAUkzBipCOZt1Czkh4m/BKvLQm0ZtM3FGiohlw2OxLrM0VHqtDGiik2yJqnAaioxSnA9gwCJcGJT+TbYQMm5FBNBKzFBEdtVSZYGiV2JvFpryXututRjwEwFBITBlDHKbeU/qislBEsiIU430ltjD0kKSw3vc9BmibKf7219Hf8TDuuUdJx9eAVOK3rU++l+QcMUUqC/NJTfyJv4X91v8bkx/777BbM0hrwoffTfvWb8N/6IeJtRuEAD/9PkiRUNfE0Os5S3O9c2Kbx80k3nq89dq84fGuxlUTuZcYUq9xcvKAEPLoRTTLpIhxHusTGKkNd5WlaytiL5Mj+7Zj06zpNi3tZoNzlUwsbltIIo5mo2CDKUHfRazrhYwqYJ9grL2RiekqsC8EXiWihx6nk8zrpqGZTphOpjTNlGk1ZVoLjiNEEy8+Oe/vLDLlhNz55QWH/I3RpoSTRxw9/2Z8ZCygXAgqeV/khpt0Ux2Twe8OxBW9DqHXZnO1431PZ6QuVlUeZwz0geP9fQ72D0hYFlsN1ngqX8vwilvpiIIzJ427pCFK66ZJSO4dlh5LFy1dhDYmev2d5CZoXkIRvjFGUzyEnJpFJ7Mvy4OMon6f62AJFHcZyE4Ss9uSW6UMn8csHGBPBLEpwi9sPczXHj7JRxYP8LsOHtO/02aM/Dz9GtJAzEqI/cgYfYw6ydzKVPuaJV8bLvLc+Qf53VtLdk49yHxnm3rSyDq0hmoyoZ5N+dJ+x8Mzh6scn31lxT///AG/7zULHtmqeGxV8+EbiW8+Yzl9myV5RzWdsnflKkf7h7THa66xzU6/Ycs5ts6d4+G3vZWHX/96mq05f/PbHyEQsVHu4Sv7Kx6/fMzd2zWPvnTMd9y7xffet+Cffann288lPnh5zndvvUwI13jP7kN8T/sElW14r7+H329fISZbxLwiiWCkQT8Y7SfS63HFzdlNCQfEvtd7nSuON9fs9WdROT8YHRBxc30xaJlHG5ZGGIi1uUsp4bXRLjlHbSw1DtcnbJfwOjArhkTqbi0/Nr4kCWm+a4Pg5wDe5gnOjq6uNUZqmNW1CJo7qVOZmLBWJo+TEtFmnpKQ2Ib3KOgvicSZD/7PpBQJ8KrJXkoyGVOatQb2SPl9HCxsGjYffUrYf/ZX2OT9j9R3h+mdSu6OiT4mqjd8A5svPYp/3dexeeEJ+s2R+BWE0xpjJCSLu+N+Vs99qYhzkaDevcD213w7Zn1I97kPM/vq7yR+4Rfx7/g2uPIc5j1/je5P/hBgSHe+huras+AMWy99gfnlJzh+8Ks4/4UPYK+Ykn/kAYqQpy/n5s68ngWPy7VEm7FzrTmWGoHi4Wlk+272J+Uw2uA1woDGvsZgyroo96DEPrnJWetkScU0dVJq1EaciE6OLvihrBexrfqS5MxdcapSVx3hh3puQcX2RDTTfvlnukUOU3LnnH+WTHT0PUrS1a8p7xcjU8e120nMVSBaJLdD+IY9Elvna5sfuRErJmk2TkHuQm7OskkJoZI4k/IE1uL7JGeS5iRtxhsN2xTRuRpXeVxd4SqHcbkWo+GTVZ+ceRzRiGC08dr45aj8lLqeUlUNla/xXqaAO+PUMyZS6IjBEnuIzpACInzSBULbk2rl7lkwvaUPgac3Sx5IC3REKSZfsSR4uCzNLIqrQuKhl1jY1jgiTd3Th1Z4nc7Qh4YYN8TUklKPcDBbDC3SoBZJBIg9hkBKHdkHGRMktsncueQKvcWoyIHYp+y5rIpMoINcLNY3mFjLv02N93O8X8ij3mYy2WE6PcV0us1kuk3TzPBNI3iJEsxTMCWuTjqUzxiD6GZHjEl0xhCS4eU68PPzNW84Mjx0qChLboC5RY5QGnPUJlrBK5xOK/bOkYIj2CEWMMh9yI10eaiB4LO6zsnk7oy7Klft1zjy/Sy47CimyDlvirl2kzl5KtU0wm9z7TKcv4/J9YvS0K8TmKvS3C+NN8U3pCR2Vz7ggKOqaQzG8fj51/LglSd44sJr+Yrnflk+I4mjesbT5x6m6dbcc+0p6m6TA1+Jd/U6xfH1K95A93whrQz5zWDVsykf8aXjwGUcNzKrM8ozfk/it2bIp0qzgf7V2AMUzM+YEz8f3jrqvhv+NjH8wBjlv0DWyD9xMYe8Te3lOGHIv0/qA/u+cAOcsj8qa4QHlCS+MClonC/70d5iuIevlMcxn3CbO0cbIl3ydKnHTSJbZ8+wff4szc42zWSb9WZDVU+4/d478VNDM50wP30G6xroLXt7Nwhdx3R7Ttces9y/IZfeGkLYcP3aZX7lVx7jqSef5lp1mi/N3sDZ1VXqxz/Hqe0d5s0Wn/3EL9P4Ge068vMf+DcsZhPe/Po3AB2f+tSj/PKHf4l6vmC22GZv74Dr1/fpusDxssN6y9lzZzh//hzHxz3z3dvp3THHNw7x1RZMdrl6DFe+eJGLL7/Ctet7rNcty+MN1ni2t7ex3km85h19DGW4JCkxcRVhuS74+Ga9Yb6Ys72zw8HRIW3oqaZTmvmEnd0d7rv7Dmbe4frAwd51Ll18ifVyxW3ntzhIBxwsL7G3PGK6mLO1s8Wma1keH3PllVcIX/nd3Fv9Ev/47Ou563NPs//SkrvuupPPPrfPYnvBeT/huYsvcG3/CS7ccTv33Hcvu3feRWo7wmaD2645TC9xEDsu7UNoDGfvezPzrQX1pOYN976Gq9evUJua+WyL248rjtYT4SO6U9BsiS9vJmxteTr2eeXKVZ7cfTM7X/w52q/6g7z4M3+fa0d7NHXDU68cYmuYLXaYzbdIrHj22ed59umX2JrP2cQNfXtI+5mXMPUErGW1XHFwcMB6PeOcP88TLxxz9PlLxJjo+o5mOiWaGXsv7LN/eJFNG4jG4qoat9qAaVhHWO9vpGG1OUvX3Vp+LGnTYhZxsCYKz4z8CCL+mPnmxqpQtRnEY4rNVQxh/PqQZZolorbyqmUUg8YDkM255anW83DTj3o/Bmv6qwtNZZ/XD7gW42E8KmhUvk8jwUVKfDngqQN2b3PnPzlXGGWGpXeHkTNI5bOVp6F4dxKMJnmPTYloY8Hm0PxDuIcak0Vtpku5MSq/5OiamOEeFM+Tr5nGAOUa6tdSo1B/Mxb6OpG36Qcbeq5GvQMa+p8UeUzlr+5vOkKCi63jN28daxw0+NnszQU/DMIT6fqSL2dOsNQbpd4cojTHysQlXWvWYJPUNU9m7LfO4b32K+XYb8QHM2bAGgQqHHFaci5VVp36+JSFqVIZPFq47AnhUeR8TOssaC01GuEeBGOV968xQM7hbBaY8cQqEupAo3yP0OcaXyJ0gXaz1kEqIiSQ15o1klc6PefMZdCEE2OMCM1ordto7VoGD0NMQTlYFmdc4SA4Fdnxzg4iQrqmRBQkEghYn0Q32RpMGHHyyELRVoegDfkwQbhLmeOUErzfPsg3xGf4kHmA/4jPkvvNotUaha+ofK2C3VJDiikO+IlB62JWBwckQmhpN0sVKQGrzcrzSY13O2wtFrRdy/FyxfHxEkg0kwmL7S12lcPaVBWVdYSupw+Bvm3pVdDBWct8MiHMW0iBdZK6piMOIkDWCH/Le61HWBWaEn5avp45aUsjsfOUZO9Zbi1fBmjupLUKxi20GbND6076fFJ5RsFvi5MZ7KkxlP00uCNdc+ovSCLE7YyBZCEPx1OBNVKUmH3wfohYoVG8Q3sZrfQcWeewVvIrgvjGlCz4pO1XtnDdMmyVUu4gyP4Acq4kAt3ZVuQkR3nkxJLs2IIbgQjSGuWaZx8xNGfLdRlqfnnN5/3mrPZvFM5HbriWmmtT18L9qCrBdLwnaQ9NiStGOGHIPNwQbnqo4EgEFNewScUfMCKomyAJGUaHghtSNEVsNw/QHvjCUcWmomiiG8R2pUQKvXARQiA6Q+/scP2VC9H86H/L8bf9ceK/+G91UFjm+w1+1hmxR15F4qxydIRfczL2uTWOcc6ZRmtv+C/qf1Z7ME/+N3yeeOdriG/4evyv/Gvc5afkRXMMZq0KbojoRyqJcxyFPgNuCAwbAG2I1dPVZw45e471yFsgDcLZKZ9GrsnIABHBR6zW10X0KItXCKZoC5/PO6OcXU/lHVWVe8fzfsjiSflCMIhL5VAzT91i/DVzKu1NdswUfzXAJxqDvkpIJH5T13++dxlDIOMM+VLIi+Yhy2l0TXXzj+oAJ/8NFFo9ZN6YxRszYOg5HkRO3Nik11vOZiw0Ne6fyfc6jT5csJ5rk9PsHl/JlnW0bNPNl2E451vscAYsAVInWG4UrnCMnYgzpEgsnASp25CvjbNYr5h4FlsTgyzPSSqGB7LYHMJLtA7rpf/PZ06hc0TlJfhKBxRbS1A7HPSC9saQYqLrerpO4rZ4+i5eOvV6TscnsBe/SOqlemqM5eV7v5HTz3yUp868nvPPvZfKO/bqhsW0wWyfwYYOf7QkGUsznVNZQ6OY6jc89m5+4XXfw7u+9CMcGiv32Bh85ZlMpmw2G+nJ6iLeebq+48aNPa5dv8b1vevs7+9zdHzEerPBOulNnCieUmtfW63Cqn0fMM5RV43yMz2+Eg5miH0RmiomB63Fawycd5GJkdT39GYj/Thdi7Hi83sd0CikLuVbptyrlYqghzMqnDmUOgg2ybDFWvorrHJKai81VGckfuido7fSp5dikiGF1pRcg+LaU3Hxg3832aCQEmz8hEsXXsepq0/y8p1v4f6nfk7z9qTcIu1fVDvnK09luCUH+HkrsZYXFTfhPicPCbxFODojzNs5EZLN9t/l+EZjG4wZamppuCaCoQyDoQccmWKDyr8Ldj+IguXeo9xXkfGaLDhDUjGfMpgqP4Zh3qVWimz7sbjTkAOlssay6FLx9yeOcUw21IY5YY1P/lHxKCqoyMg0jR8n//IkjyJfE7kGfRHOGwa/jsSnTgiiiqgxassM0o8p+3dUf7Zam4kqwlY+Sr6+sr9RgRyfkDwSQ7SQHFBViqnFgqnlQZgxBNpNS+wD1hiefvitXHjiw1x63Tdy28uP472jrj0x1oTQiYC41fuC+IUsbpkvUlIBJvHojlfxcr+xh8k6LU4edqRLY3RgEDJA5GB2lkV/zCy1BVsaByY5hstdfbb4NSu+SLkXCYO1kQw3SJxoi+6OcGkyJ3e4XmNh1xP7LgNv+uolOBqePPo+5mVOruUNIlNea2iZ359zPKcitWCixLiDPU4iChWVSxJGe3p8mfNXvSRCI1Rx8VF/vYaKwjkefZRi9wMYEwlasxdcR+L2hNG8yQ5+AdWZsVnkSftaXMZXcqqQSl4lWijZfjoVzDNEl8XxUgl7bY7x89vpYjBQxMZLmEPOrIdelxI+m5P3BCBEiWVM5usnOT/NMkrcGrI/5Kb7/mscv36hKSUFJqwW3DOJ1w7qhiYbav0bgyZa+f+SaEUFtPM0r/w78s+1UVWAb1s+iym3VxcfDE2t0s1QAIt8M5Le7HJpzJCMSNAvyUC+iONDAM8MRAihhBSLr5Hfj5uLwBBHYj/6uayVAFi6wPW5ZhhQFMFYVekrBNd8DqY4w0EEJ6tOZpU1EZRKxvK5lef1s6RqtzkKUzGgbJoMWCxfsZOJK8hz9TkhJPZPP8zVc29g7abML36KlII6LDHydvkUW1ee5ZoXMKSqvTTU1NKE+fCLP8tTd38Lb7n0AdjdYdlUrNdr+r5j027oux5jAsFANJZJ7YlGhBlqHwrA4K0rSsjg8MliRMJPJjfo5IcYRxMc1HhkpUBdtZwspN96CZVI96rgD2ihQIytMXmZjaKPggPkX8rvJA4eXQgMpFA+cUm68/uaVw+JimpdYkiqs8Mpr5FGkRGjvab7L5lftRhmyGS98b1IpFd5vilozigZ1s+WHcPw++HfpoCCo2Ak5XUh529SKjiMKLnnhEI/b0YTjOz5AjnEKAlvVmXXxwXf8VXTnqfXjrdV19hEIWAFbRiW8whkuX2LTHzw1pFsxcv+Nm4P17hc38GF9klISRrCMdx3/BTPzh/i4c1znHYdvplBgq7rWK1WpPWaLnTELosgGbxN0nxpLTYG2hCxIQig6ALeeawXUBFr6bXpru9bCfCCNH/HMrHZMEwz088UE0kVGlMMpNi9OqpzKx15SY2O8RoPqporE40K4qV+P6mIRE8fOilWRIuLEiCVZlkzUu900jBYmowyEpa/J5GL2bKUxXYPu3zYS9k36ZIvO8gaM3wkY8hFrLyBJUDJK1+ODECl8QXJk6JHl8igAQgU31UKD+UtDcSo5sAM9kBtxGHyXE01O7bnuX7ChUlHnjQ6Ji7lcykBU7meSmKzjhAS7aZn95Uvkm57E02/z063x3o6p+2k+YpkqOuJiEBNJviqEvFFpAiywbMxDvcrP8V+jBwdL5nUFbPaM/WWzblHmF5/jqo6ptusWXct3UFPmwVVojSyet8yi6IaKw1NUixI1vEt5mlpjDYG6z3NZMKqW9EftBwfH3B0eMhmvaGprBS5Kmm+rXyFc64kaikJ4c7ppPfIKGC+xQ7RtcwrJ5Vg/Kje4nPbr6V1NW84epwz3Y2yT3Iib9WA55U1AD6xxE8miNBAlr8rXkffJ5ITgkwXRia6Du6prPqY91FKJ9drQgpZSYrb6HlmIm/S6y/F7zRsWaAH2ijTPixazPUOW3k+eHiab5gd8P71Dq/b3pdGKmf1c1nx3yGqAr98ZmOcEoYTlkCkk2JnyqCNxXqDtRXWeLyv2fglbbum6zpC38nHcwbQqVdtr8mIxIvOWWyMxK6lj47kRc0/78liCxMqmOckX44JFxEh0T6rY2n8or9rjKfyVtfxAHxEpFnNGvBq36aV49TWjNR1eGNZLle0nTRNSFwoSbq1XhL0GItwlNhbJKZPSYQCg4DAJomQp9eiMiScHTVFR0PXyfRbEZtKWBvBBpJRRfBb6GjXa2oVchHSziAVGBXUizFqQ1CUxH4y4dSF80wmtTZUGI6ODum7FqylC4G2D3R9xFuKaJt1nv2tOzBun9l6v5BEMdC2Hd6LHbfWsmk7+hh0Wp00gu1cfoJoDBss02c/AQZW97yR6aXHsQRMt6GuPPbt38Li8V9k8zXfxdbP/SCmmbJ8+O3Mrj7L+q43MLn0KRGvmM1ZLs7xyuxu5t0Rd1z9YgGd2rom9D3OGt7x6R/BTScYDC1gUqC30kDjnGGzfYFgDM1mb9TMr15P44C+H4DM53fu4p7j57DGcEzFl2Z3cOxmvHa15nS7B8ArkwtsdXs0YT1qWOQkqGqtNpmeBFsFSNFpximLzKh91Lz7ZH6oN2F0fJnIVI5nixCAFNNPxNlDeC3/i5orK2gsYkEioBXVLuUGXGB0bjmUSZorOyXVmEKuyYV2axmBXaYQXW6lozQxF/BV4idjDTYNtAwRCZD4yBpLslGaNZxTn+4IdU2Kgel0SlPXkCJt23Jne53buorQzXEGZpOa7fmch17+FE/c/0bcR/4VofE4hCzSbjZ0qyX+Z/8B89mMpqlYzKbs7GwxaWqBG0JDIjJpanZ2dphOpjirrxATqQ8EehHXi9B3PV3XDyJTY/DOmJHAuNfm+jgSXsni1vJcEdcQwRCvkwBD34uvUtQxJZnEtdlscMslbbuRSebGUFUVm3ZdiBRd19NMG6yViXjeORbTKebMaWrv2J4v2NlacPbULkdHRyyXx7RdS9939ECwVqcwicCVt04aIruediV50/HREcfLJev1ij4EKuuZTWdsL7bYXmwxn82YTac0TSPiWFpIIWVxAXuiIc0picsAuFiaj3uNT6wx9ECvUUgwgRRMER13oE4pZV30UiDJGA4pEeopR3e9iXZ+hsVzn6Leu6jxssY3NgsxMt6c/2dsnV/3IZMhWyGfRPFWmcgioGkkqrB8FpzKQGh/79voHvlaTD3DfuHDEsuQioion+9Qv+WbsLvnOX70/cTLL1I1E+zHf5LpfIv5YovZbKECNY4QIrzt64mPP4p929eTrryAST0mBuKVFwkvP42tKnn/2+6FN7+TsNzDvvAZyduAvTMPcnj2tVTtZXbiYcFK8iHEyCzUd3IKybDlhv0WY8O33fg4HzrzFt558cN0dQMJgos41w9CO8bjXGT6sZ9k/Zu+i+ZjP8EkdjSzOc2koaprnj33IPcfX+LxrQs8wPUiHp9S4sBN6TpwdUO7OE21f5W6qmhqT0oeqIjv/btMaw+4LNdPZQ2ts2ojspBbzXQ6YTGfsbO9zc7ODru7u+zsbLOzs810MmHaNFTVQEDMbldILUnFwmLu69REEFkUEQpZJ+UCmcaWCLlna32NRy5/iktb9/Day58sWI/J+0DxlxOkYvJ0ipMCU86MAPzc6FcyCPV1SVDiW21/vdrx6l72y9HRV3te9nnjrwU2OIGxvvo75Fw/F6SrKgswTZlOJ0ynIiQqgkxC6PDO67SOTJhK5epbm4tVkvc4V4mv09gzhFD82xBP2SJqkYu1bdeJ0MZmw3qyYaPC0jFIvpSLPlkwToiCGgvYHJfl+E3843Q2ZTqbUavQlIhNnRSZyrWTLKZVqdBL3v9ZgOrmiY7jgrw0zgWSGXKUXEh3GsOnaGkDPLoX+OIqEV3k9ds1ToUXp7MZi8UWO7u7HC+XBMVC66ZhtVyxXm9EtCv0+LaV6ZNtS9t3dCHoHsyrQDGycpfyWhkIg7/y9/4cr/sjf5bHfuCvlrzOKeZhlYjRh0DbdazbltV6LY/VmvVmow1Fv8Zi+w04MtkgF2WD5rsGg/OWuvast+9gyyeOqwVh6qjcBgOEEFXwsy1rNWNVMjVPRLisc+TkK6/nIjTVtLSTGevJmul0xma9oesDfStDCIQYrw21oadPkdB35J0egsT1qBCvy9PLnOLqBKwTwc/ZbMJ8MWc+X7CYzyVGmqmQWi2xr7WDPS+4uU7aijFPJspkfRHHzgNBHrj8eZ448zruffkzTLtjcH5oCtWYEx2M0Ca4vH0HR/PTnO8DO8d7uKqiric0TcNkOmU6nTOZTmkmU+pmKmKjzQTrHJ8+7tn0jvm1F7ltclHyna7leHnM3uc/SXrg9exffonrn/0EKQUMSW2ACI1AbgQVIo234J1FlrGUWWVqJdpoPiril3qDEA6xCZOEdJjjAMFIYV1vsfJTpvsvFR+Z8vXr83RYyVFk0pzaDucFd9YJ6cXvgbyvHU3WVUGzTIRO6aTd+Y0+xO4NIsVFBIg0+BdG5FUrYkUGS3QG5zwueg0rjA7W6FhHi9+9k+ryc+xNzzF58YlCPHLG0KXEMkUZwBEE4/bWsvXT/6OICZNIIeGW16g+8m6ik3aGjGuebPTXz0ASgl/2B7nx33kqW+HwOOPxtsL7Bu8bGX5gDDiZCi7rrydqjTkh68B6iZNyjlaHir5v6NpO1kwfqCdT+k2rYlNr1qsNm82adl3hMyEwSFyekuTrOeYSIDAVP+SM0aFHmYzpZSrmRESQq8mUZjph0kxo6imNr2l8TeXks/tCMjGF2ZWUIJrM4DeMGQsu5rV5s28Ek4osETDUdvK6iaNan7VW9k5+btLmpThgHGMBcLGRst8lJJU6Y65TFAJcsKTYE3vD8uiIg+vXOTo6ZjKbK/4zYCK30pFjimgSySoWneNs4+mSpUuWTYR1n9gESxsNXTRU1kpDiMbrknqnE3VZyXkkZ4gpCektnaxCDzXn8r8T7t5orhCV+C4Y6PD3pe6ldjQZw++89ig/c+rNfNf1XwHnBgKT1kdLTSznE1p/EJdky0RqrOT/bd9irGe2vcUdF3b46gue02fuY7pY4CeNEJFDTzLgm4ZPX2v5uWf2ubya8s77FvzUUwd820Pb/NcfucIP/7YLPHo18rYLDZ89MPzmU3C88Nyz2OL0mfMc7h/x5I1Iv/Mg6/3LvPWs58677+S2B+5nfma3oNMylD2QQuLeueNb79vii5eXfPu9C9Kmgz7yPXdP2Kzg7qrn4KBmv1/w3YcXiVUFxvG700ukVMnn7eX8jROxlJCi4IcahryU5nzJ73DBNDxkrmJ1j4xp72MMNEERKbLoNPWUyv4aN5rqX6tYpx3iy6REe291QJOQyRNW1p8TURGJmR0hekIcr57f+CMTb4MOkQoGgkmsddK7IeGNo3aOrm5pm5quaQnTCYvpFFtX2qCK1mstyYRSTytxRRqi8Fx7ESzTQLK4lOhTLNCvPlVsvXJtsKaIfcRoClmUEWZBroPpcIU8ZIFkSMYLd1yJF1mILsTE+mf/CdNv+o84+JkfIh7sUQq9WlvDeaav/2qaB95MdBOWT366kOGm9zyCCR1u+yz2zB3EJz5B/cZ3Ep/4OC72uYwH1nLwLX+CM//qL1HRsfXF93Pjvndw+5d+Dlt5ic/daMhEwfHMKEcDUhw+P1mYWqOOEc5ePkOiNCDoJSrxScHxKLzNk3j9KL4xxozE+vJzKO+rt2zIs9ROhUweTdpErnSCpH7r5gw/oyAZX8zrNN/nsrayrU4DDpPP7VY7XB7skYcvnrgDVmNug8kirAYlWUqDKcYBKnxvwZhATJboekIwxB6C7YlxaEyIyRQb5az49uRSGfqTjbUt8YuS8HXfoQK1kk/onVXMIzdvyeTxBqdCU16FpnDD/TNGyNgmRmIvOEgfAn2ClAzOeiw13k3wdoozDYYKRJqqxEbeSv4pzcnyOWIwxGgFW2k7qk4miZOgi4lfXN7gc8sD3mkiD6UpuvFP+IKQhMNn0jBwJBmk4RGDNQ7va5p6RkySu/ShIsQNIXak1CN13xZj1qgcItARYweplVKWDTibd4hwOCUHThSOjAoZWet0XSv8rmIIJEjGY8wc7ATwODelrreo622aZpdmustseorp7BTNZJu6ngkmVVmiiTLlOYhAfsrCcUGbabTW7xS3EVFg+MJkw4NrzxdmLfcdWarCU7h1DmddwXqc81SV5vihIoZaOEEkemtHDdux2BiDNLhk7of8TOtOKkBm7ElBuy8XrzRgVLYjDbG9sRabpKZgtDHWosJv2aaROSQSwzsjw026u19PeODN1M8/xuzKM9IwqU1elXK6Kq9DF42VHMhQzt+axIs7d3HX/ouQwKfE1zz7ET5z59v4qhc+Rmb/J+BgcY4qBTbNnPVkm2m4KusUvSQZH9f7n20xOYcxpeJUrmk+mVEoJbacAfMeyOwZocsYrc06scoB0MEdThqOMi7p/YBNDn/LiX+TzzWfRpS8YhQ6DKdH3qVynhlXLJxWkxtCRxdGr0fZpykRje5fg/CknUXlOKVRRZuqgjH0VrjIuRnfJnOi6eJWOEKIzGYzptMpzld0IbLsDK0JuEnirV/5Fl73pjcyme8wmWyxf2MfYk8zn2Hqnk0KOBwuRprJjJ1zZ7j47NO88LknqT2cOrVQAf9I3xmeffoFPvWpzxLawP6bvorm+Y9z7bY38MTnfoDbzp4mJsfTTz3Hlcv7hN5xeNBx7ux9rNsNx8t9okn46YT94yVX94+oqgnT7V2qAMF73GTCtWVk74XLVL6iXa145ZWrtH1gujIcv3CD6/tHtAFCcrSdNGQsJlsspgsON5aaijZ51kctWE8MFcul2Niqqoid4Ga1a7CVoesdN65BGxbiJ1eWtIm8uLfHpT0Z4Bc2G9rlMU1Vk8KUF5+6xnSywjjHJkW4fkDdrOj7jq5vib2D9/9Lwjf/AcJP/DDX1sKneer6cxwdHbK1s82ps6d56dIlVu2aye6L3PbIMbPldRmIuV7TrWWwXmg7nnzxGYx7ljNnz3LuwnlOnTnNdLdh3a1pjzdcffka+9du0K07DvYPeObSIfWkYbVZkSx0oedouWbVtvTpY1z4rj/J8z/0V0nrlsY2NFXDdFZzuNlnve7xzZS6mbFedrSbir1l4OWr16icI5jEhhVt30sNxtb0wfO5Z/aovKfbRPquB2vwq073rCExo409XYhM3JSaWvjFVQ1do+KxHlFEvnWOFKIMfLKBaK00vWrIkLTBCSwuGWKOFUgiLoHaKJtzF7Fz4xA71zmTkdzLgg6dzc17SbnUYgV/Zdnw6baht2vePBWcvsT95aRf9ZOo/x3qnUPzYVCOdtDmxFDqpoKVaHNl5uhkzntMYKL2AeXqjkFixbF9T6OvOU8Y+SWT1O3lZlBLlRzRGMkd+2GIXc5ZpclwGPIziK3mzoAxzjfgAwMumLHugVc65E8SU0MW/0yjrycQqXITh3uQb6h+fnWrCcGe7fjmY3l42vHwpP2yW5b54IIHCDcmdHkYmQ6q0ntT/JveM8n5h9o3o8/1ZSHSLXJ4JWlmXKJg9SaVAX7i+wEjYlBJmzKTPgaJTI3lYxYCZsizR7GRzUKlJteytNZvpffJ2YxBDQ2NOaM2yJ4gOZL3xDqVfij5CqHv2axrbaZNMtASPXc9p1RwzbwuBly78hW+qvA2C1sN/JD8SfMwzCyO5DPObsf4hApEmUAIgInKSZP3ywJTZnyNbB6upTg+6YRwTQoBXM8fah/lvdUb+f3xs7JnMt7tPJWPVD7ifUfttd5ddaTYqYgG5AnvOZ5Hm5lD19HZlTSExkA0BpMitTU0kwamExbTGevFAmOgbhrmiwWTuqFyWk2LgRA6gvKJUt9jDdR1xWI2gdRhUsCbRAi9NitbjJMm+qbyWqOvaLynqSvqqsJao9ehL5hw4VEl6dtD7dGtdJSYPNu8wXyRa2U2i7SW5xlKp2Aa+i8kB1Ao0A6iZkP+MeRjiTz0ymKjDCERsZQof5cs0UaIFmuUC5Vk4GUsdU+1iaP3dEKyGLXAKb4RrdbZYfQxR3nCyChkK675g8liBPkC6dNisuWVCv6SNFdKMuBQckU9HxVwMjYPyss8oiw2ZQYRBuX+5gFj3vvC+Rg/XC3cj5AMIYIMXxw4HwoJkY3L8AmH78f8ptxXi8khiX7eTIDP18eK4KP0UgTFswYOYwzSu2Z1LYnxgxQjvemhH2IB+duMRQbMe/+2cmTFBxgEYyufy1mpzyoHxOqgv5Lb3WJH4T1nGz1aXOPPPvRA527UVO5FXuThka/GPfko4eGvFKEpM8QXxhpSchonGEhOJpFmFp7WNYERDj1csqErLMdPeu8y5mLG62fIg8s6SakINiUouKJwXgdhqSxEUnknYty6vutqsKdDf5PyDewgnJixiRQHjLucqykLntwI55wB40ccSsUW9JwlZo+DuS5GYhAiycKUQ0w44mYMt7NskYx2y7+V8WbzxdPXyIZTN5uxOR8w5YUKtwDlaqjtLfct98DbvH8ZCU1B5oSUaClBJksGHM9u38cr8wvci+H00aUSjWeRkPJJil84WZO4VQ5vE94lnJXeJ5NEdIrYaTyRb5BgjtleOidYeHroK7Evfa6ITRlnhCuLJ/dnZhF7a6Wf3WnvkwzJkj6jZCw9kIwKtBipA3Vdx2rTsjI1bbNFeuV5MLDZbOi6Hu8r2nNvpbn4BS6eugd35RdJXVt44vWHfpirb/9Oph/+p+yliLeGVV1xcPo21ufvpSJy/mjJzPQi0uYk/utDoF2veNsnfohrZlhP1jmqui5CmxZHDFD5itD3rFYr2raVXFb3hPSxMuJkVlRVjXWOrg8y4LGToWOCgUqfldFc0oSISQFb8h/5xirA6q0t9hAdnBFSxISe5PwwPCAmTAzFb9mSj9oi9uNs5tyb3C6vNSlwvqKpJzLg2uqQAyN9c1k8Pu+ZzNWTGqot677k6HnzS3JX8k3JQRIpJqrVPvc//n5evuOt3PfEB4SrkvPW8aAXA9YbQqg1r721OFUgMbC1YJ1BAA8vnHvkXtd5AGGlnNTcG5ZjHCBj0bn+jBnysxCS8EIAa2PJxbBG999QAyrYfRLfVUScUsaD4wkBo3HPSsw+IIESouRI+XXyIlVbaxJFeEfvfQxSn8mDj3O+NRxDHUv/SR6ClXP04nTy2xd8PntYFaXKwcKQzaof0vPVwSxSttIYO6UTnz1zkkRwqi8c5Bi1HzPXgFGRJlXQMt6Jf4qSp8aYiv+U5S8YktXrbkIgWRF0FS24qG3+YktskvjE5pw3GRFKNYKz577coNyAkDo69WN3fPSfcfErfg93/sI/JJLw3pKoMAb6YGVIMMhAYT8Ig1mH3jTJXGQA6C0oMgVY47WvwAt/WgeBDn1x0i93Y3aOF868jp3NHvff+BKT1JYBfRLy6/rRdWysCpYBYFRILEnNOen6NkhMP9pfWQBJ7NUwjFZexmgMNYi4lZxCv5b6EqM9VfbfWNhtyE2ccu9zL5ZXkWrrcq+gfB1ilBxLa4l0tMdjGnokh1hmqGFloTjvTNGRcU6En6yVeEe00pQroT19uf/SGYONgWAtzkofcUy5y2MQmsr4UyLhNE5NJlNPtV9AyNCKZ+pwHsWQjMbOebCriCiPeNOj61fCy5Jvy76urC2xgd7+ks+Xm5qGXTG2RnK7xS6ZKK9ttYZmVCxyyKXz+/76Q8Vft9DU+Mggry0BwGjTjxxN/hQ5xcrkFyvRjzhrgwKHUHpISqJuCtAwHHkxG73EATMS45AXUFJNtvhGJHKz8c7nlYvNKAgX5c3L+yWSaotoYphkuhU54NBPVp6tTiH/hixwox+inPbIAEoxHSGHW4UL8q4iX9+bQdIB6JbTEwLNJ5cVT28c+zHxdbvjd8jXFUYow+h+ZgDElQlUy1MPUl95ksOzD2Kf+aiQDbM6HWD6PHm3x3qHbR1+1dLffg/T9XUm4Yj7X/hZ/HSGX2zjJzMmXct6s4blmmuz+5lf/DjdqmXdB7ZmE9oYmcRIU4Wi8I21SKuFrjdnRw5bpmF3bUvfdTpVi7IDcrEgA1ZDmnVrHr6q0E46yEaMIWcdDEZOVlVICRh5h5IQF0eg4FyZ4kaJsQYAPDdu5YuT5I2TPif/rhT7x8/V7zOJdNiz8lxrbn7h/MZj58Do379aiJA35snXyAZ+WOv5/8NVG94gIeSyfI5CWk+j5xdwp1ztwZ6Y8tHHwVhxO1iTsN5xvwvcVS3p2gmVd3RNo8JokS/2u9wVr1PFDhMjk8rTowGUgd/UP8mX/N18xebJQoZJSF0cZ3lN+yxNVWuzjExC7nohVUYifZImgth3cr+sKNLGGIk2EZ0QWnPgJ87EkT9w6Hv6rhVxkqiTUlRVWEAZ/ZxGV2pKGCOVWKOPIZC/9YK9/72j3NmUk0UBzoMzuJjKfpCiYKDrexEAUjtajZIm5xyuNO94sgjI2BTnnZCBkhSRKCFZ5ayWzAVGqzKf7dj3ie/88iS2bMF0805MZS0X2o/aiVKizXvhRF6V/drw+kZtzTBxUEsWJaIxnLcdb3eHvGJmvGOyBOohVhi/LmkwfHkDJDTplebUuqrZ+ApS5La9J3G+IrkKa3rAioDCg1/D7KXPMp02kuD0Cd8IEJPqKcdnX49xU3os/XOfJfRr1ivDuvJUD7yN7vRDLLZu4+yLj0ogvHH0rTQ7hl6aIKdNzaRpMNaJKmoy+GqDr2oSVpq2/JAg1SnhraVvW1bHx6yWR8TQUU2mTCe1KnJLU6p3nhDyVCenSbnVIt9YGOXWOsanVJaNgWM/ZW1rfIrcqLY40+8VW2tGf5iL9nktyHRxO3q1VESnMrFA/jCMTiITiCVYLQG6GXxmBJ0yREloUuG+DMGnCBZqIK7JhYhryJlHbazIRVtVBiUZVAIpPwx/7NRV3n1whj9+do9QxF8EOItYITHr1KaoTX5WHbE0HupkJBOwxhKNJP82WmzKjQbaiOc83m/oij3vEWZ0gCRigzapf8s2KIqUlVyhLKolTQfZdsWYBLBVgdicfRky7UTvksbXeYpUMkI0lXxAiwNGfFBAAK1UV5jZlNhJ8dEmw9K0tG1Q8MkMxSeNFQR0zMI9Cs5EFT1URU6LAW3kq/Uss5hgTAKARAdVktfuo9yxFDuxhbcYNigCHR2x74l9IKRYhNcico3quiKlQLdpSbHFJI+rKmanTnFms2azXPLSxRc5PtwXUNEL6GGc0aZB8SavNGd4bnondr7mgRuPM20Pi/q5lFjl4jhn8XVH33dF5ESEmnpmL3wG37UyFc9Yznz6Jzh423dy4VM/hu2XNLM5Dz/24zz7+m/j7k/+S8zuDtYYzj39IY4e+E3c//Inmc2mMsGqrrhcbzOjY+lnpHrCbDLBEum8I2g8VGlBQEMnvKeAkseLc9y47Y2kGPGvfJa63QcFLvoQePr067hv70tYOjCGp8+9iX13hn3f89DhkxzWOxy5CXW/5rrfZnd9jZemt/PC7B4m9Vlec/BFmn71q0xGPUliAgqwMG6+flWRKpPj3qivM/zt+Lk3f58n058oypkcTchdFDuo8W8Bo5wW0tNQmE/phKSGpMNDnJJJYhEz8lnDFKc8pSgTTlxpZLq1NplzVosjdrguaVCPzw2UpEjsI72C7k6J6M5ZmqZiNpkWYkHlHHVd44wltC3r5Yr1asmkrmmamq3FXOwehurK57l67hSH+47V8ZLY97RtT4q9PN97jIW6kklskEoDbe1rphMR7ah9pcIacsNDEEG9XJjNQhx53UmuMoCEMMSzQp7IgKXiP84W4nlVN9QTIRpZJ8CZUSGEmJIWXQ0pBTabtawSa0v+bq3l6PiI5XLJ/v4+88Wcumnw3jOZTJjNZkCi7ztpNmsathcLunZD5R219xwdHXAc+tLAGkIQ4ckYi80MoWe9XnN8fMzx8RFd1xFjEqLRfML21g472zssFlssZnMmOsUlq/Dn2KtM8sCUGJiUtCmCEkMkBSuTtSTnsDHiUp4QkGQYT4wylQERBkkmagxtND5Q4DCDjL6mm53CbQ5pt89R713UlTvgHiXuyX/3qvboN+7oVBQsaEO7yRPTrBIeTNKJYPmR5GuKhDteg7v4ecLdb8B84eexRv62slJScVu7VGduIywP2br7YfrDq9STKc3Db2PRHbMwkdlsjvcV1jr6EGk+8VNcf9M3UP/i/0Y3mZBCR6wndKdvwz3zGRWjBnP7fZh2hdk5j7u2hW+PsNZwdPpeTh++xOVTd5K6AyBf9liKJXmP9ToRMwttpDQIhxhjqNQyO+v45qPP0k1n0pwWIfQR3/ciUOArfCVTRTAB/8mfxliPm0x1DxpCjLzx2Y/xpTvexDuvf5GjyZS2FdysbTdsr1acYsrR8RHTg0scGYP3lrp2pOgheVK0iqEoWZBE7R1904hggveyfxoVmprN2NpesLOzze7ODtvbW2xtbTGZ6LRIm3HZ7MM0ZkuR0CcFJyiTwE7iVUpCznlzimUYgNU9tXP8CjvHr0g8noWl4vAgSINXbsYc742xv80Tx4aJxeLfhmJIKvdulDb8B3uMEYZf7RCXn/O0IRpIo9+/2nHbO7+TvY/+TGnWapqa2XTKXAVE5/M5s/mM6WzGZDKhrmudpnRSaApQcTMVovKVCDy7qoivDTFVIHR9iXuK38IUEl3XB/q6o2saphMRnQph8ImSS0izrnMW56VYZrIITwwy2Sz0hCBF6sV8wWw+w9dCIh4ERdyA7Y98ayF5eCnoj4WmyhSsHLuRCdFjobqBcFamao4ETfs28uwmcs/E8ORRz2vmbogX6pqtrS36vscYw2yu098PDjg8POLw6IjVasVyvWa1Wsnn9x7XtdhOhYwysWJU6xm1ysr/87mGnsd+8G+UfDxRFQwgJcnNur5jvdmwXK04Wi45Ojri8PBQxMim02JPb5VjLJiQJ91KjUanOlYVF7qXucEu91QHnPdIcVFtfwhB4xDJkcb3PpMv8zpIJKpQSS5urExvq2q6uldBzDWbSUvbdrStTMfOU5jzmhk3YySQorJOaAZFw0uB1uC8oaock2mjYlMzZvM5s+kgDFdXlTYiip3Ma/UT7RZv9TcEpx7lLDeLLOaJZBjD/a88Jvm5daN9q7UwYRiICKypWM52qFf7HNQLpnuX8CninIeUJOevKyaNnPNkOqOZzmiaKa6q2Qsr7g8bLu2e5/b+mOVyycHBAXVVY63h6id+gcOjA/oYkObmhEsiTp1x/2HqfcQ7S+WlUUeabD3egDPalKTxmBCv5bNa9YVSIB4VyzVfWtZbXD73RjpXsYNltn9R4/dhslsuTGecy45IzVlYSdbpTQvXMsTw3pb3HOePt8pRGkdOnJvYFZMyFpTJT0lJLxacNPbbBDY5rZlIvB5SIl2/xOGHf5TpQ19B+uwH2SghofIyFVFi8qACmJRGi8p5JdgkUgwl3zcmk7FHeFhSsQcdHmON2oVGm0x8ReU8tRd82znHMRP22Oa11mB1uibWlppUjIMPTupXssiISUYJ246+94TeU9WCF8U+ECcqQrdp6dqW2XTDZi0ii6ltRYy33dD3PYmgYjwapxqFWJ1VrEjImVbF8KqqxtU109kU5zymqqnqmrpq5LO6apha7FwR8MfLIAWcI6nIFEoKketuR00UJ9fmQLDOOCDDYh9hJL/WUexREQm/2U6NxMPJmLLuVTvEjE5J2DFEVt2S1f4N2vVK8thmUhq0nc+DBm6dwxpLGInghihCOBEBtC2JLkKrjy5BSEaaqgqJ24wujhly1hxqm+wbIGP8Jo1tThY0GXzD2B5lrEz6z0p7TME0UDLjiSJVSnzr9U/reSYV5ch7JZ0QPRLYI6lpyQS8LEIFQTmM29vb3H7f3Zy78wJb2ztM5lPZo+r/nHVghQz2hUsHPHy64XOvHPG1d9T8P37TKX7Hv3iRb71/yi+9vOE/edMWP/nUMd/54Iz3PwdHoabeWnDPqXO0m44rh3Ps0Yru9rfwuoe2OHd6CzufgbOEFMTmpAghyECu2PPQluOh2ZyguAdB4jNrDc47qsmESR9IydJ1kdAluk6mY9pkCCS6GOTeeCvE99wsagxXmXE6bLhezcHcwKeACEmaIScaHYZhCAhRSLt5nWWCJECZpp6UtTGaWGUsEpdUXuurIoaJFVtvnQgkWQUS+ujYdLcW7tErga8LUeJmNJ/qIHSSB/cEOmtpN4HVqmM96Qm9gSjCiXVllQCbND/pgYAzMpwq58UZnh0hvBQyMFb2bCbuMdg2qzGWprll+EaZXjxqyowpEnppks0PiSUzGqV+yWqtxhoVg0jsf+DdelXknLSnlIQIelZ3P0L/yrNM736Y9ZOflj1rDe2XPk5T18TVPlx6BvebvpN05QXcbQ9hn/kkLhn84x+hfc07WTz7canDVxW2PeLCEx8qDQM2x0rOyUAY56mcCkxbsYcSX4iI3hA/DzXrQrAGWXu5/q32o9Szc73EGJ478yD3XHmi/CpjqsYONjDfjOzpxjywAWgYbGuf8Q2tRefzKUMbtWEvZ05SR8uYxqhWwGCzUSyR0d8YJbtKr0eUc77VimSASx5vKiGzWo+1FcZ4bBbxxGEUZ03WisBAghQSUu9Ve6di9xiLTdJ44o0Vv2gRocokJNgQxA/lQR3OGJJPxOgGrAn0smaSvuKKlrL+S7yj/zAGFYO1VK6i8vWAEXjBIkRsWh6Zk5lioos9mA7oJVYxlYhymyneLfBmC2u2cGaBYUpKNejEd6OT4a02B+cYMEQZgNenjj56HDXWQEfgqf6Qu92Ep8MNHjSWZAPYoL4QtQMaE0vBQz47mewr98S6hrpZaI7k6cOavt/Qh7aIT0FLMhu1fx0pbbCpJSFfoZNrknpIMjQ1yJto3GaRWcxaI5FJWbrvDTE5UjQk57F+gTENxtZU1YymEaGpyWSH6fQUk8kOk+kudT3H2kb2REraiCM4WaQnc0QjocQ4EmfI8rAp4WLiW25M+dnFId922eO7XmKxW8uVjcyH5l7KJ/XeU/uKVAXQBqJBkFzXtJrGk/LLcmQ+bEpgYiKqkPo4jh8slORxIcWC2/VhhK+neAJ3GAWfct7kUHVoEm5vu4/F1edZnb2H01efLUiJOfGAkaU+kRM8f/ZhLje7dPWcBy5/EQCbAuePLxccPXMg77r+LHH3HqbdktPHV+QajTHpsS1OYqsTih/YEWJgxmdyEoc1CN+CmwePjK9Jxlbz35vh/pjs5276zOVunfBTA6OyXJeRP0t54rgZ7qNmWwhjW08HI3yRkT/Ml+bVPmNmj5qMP6akfBlDpoqL4JgIkFmXGzqN5JvWYJNyw2+h4+DgkNNndpnMplT1hMPlGofl7B3nOXfbDg88fA9nT+9gXY2vLG53zrWrV9nbu8Z824u97o7ZWZziqD3g2Sef5NJLz/Pcs08wqeHuu++gCx1Xrt3g0qVrPPfsyxzsH/Pgg4/w9s0n+MJrvwb76D/iypXLdEfHrNvI3o0jbuwfgqk4ff4ssfI89eKLJNOTpjPmZx3LvSMO9g7pgqWpG5zztCGyPO45OF6xbNcYHHGTWK42gCUd7NP1hi5VpOTw9YzpfCq15aqSepcX8fRNH3H1QvZ66mlm2xgjzabTrRprHbGPeCcxZ9t2pL4TgVFrMB66bsO1wwRdpLIzfL1ApugBlWGFAeMIJgqWEg2+trgq4qTrhcsf+Ali10t92jR0bU+sa66tE3uXjun6Cc3uBbbe8jUspztcvfFp+hefJPU97WYt/FHjCH2kbddcOniZnb0V1r1Ay4bJpGF5sOT4YEllK4iwXK6wNzbUTUXXd1hvRQArBFxdg614/l99P31n6fuK3lraZFjGHuoFnetYr8H1EaiJrsZazyYm2pAwlad3BmMT9USG2varJTfWkabyVNUMUwvOFp3g9UG5isH0BAIhVXShIvWJPliMnRBiTwiWSd38Bu+qm46M+4Qo+ZOV5jsXkjZhCtfQOcEWMhZVHopVAQVXGIJ78YvDz3ONBlAeYBbWyRbtqb7hkUnH013DW+e9nuSIh/5rFOpiVBykNH3poDgVjikDkqOyxjSnB6NrcTg/eSRAm7E0t0DxMFUHlXhRPglibFXEouAwoxyepGLHYCovA7mCwRDoe0q9bcw0knRVYoyC25jiRcc3kuIhzdhrMGCEr/pVMNUSHiQK3pe5ikWsI7ujEScqO7GMQ9sTzalyTURoc+w9RxhjjKUGk/sFMve+XLfM1dQFkPLfm5E/B12f3HRdbpEjIfkOGieMmiQzZhTLupN4fNyULPGD4JG5AyySShOiCNdS9qjLNSO9fym/r82v7TB+CLHyEBRpCtT4E41fcrySBlEqEhBqps2k8GRjxkWgiNFgBmH1HILlvN/lIQ0AUYekJkbDwIa6g7eOSjlfdSUDKkyOe7ueSNCBLUmE/o0pWIcra2S8Z0b7Mq/tFElR8KZea9zeR34PnyZZGXmbcQpnPZUH53qM1i3ruqGuO7pOMSgjdXM1TJqDinhKDB2bjQhFOe37CppPeC81D58Sjb5fY4VH70JPiio6FgN9aOnblr7dELoOZwzTuobYk0IHocemJIMMg3ClvbU0VcWkqZnpoKtcx3TW6FCOnhCdDJ1Sw+DJ2InEmScb0X/jD6P1L1m3ytlhyLeyBcqCQdntFMs0+r7kAAWXYgQ9ZVuLSumoPYyJ3NQpAufym2AofWtDP1k+QygbrLy3rjE9iZTfWz9IilHX9Oiv9APkOnJ5j2S0bUBz0JitJ/J/o0MUcs9TzheLjc49TiMRDNnWglW8qtAUwlPJtigLxbncc6m8Dx3wkwUdROREGn+TicLvV86KLdnYWDZdRxjpOUWMDlvJ9ygIbmwiqpqHSVmwTw1qUvxI7WWu22R7lvpeROdMfme1MaSiV5XKz/I9gHwFSVHFQuT1s2CZ0zqfHfEcjIpMDQvt1jtKrp3XWMnLU/nMmWOd8vN0PTAW1DDgf+GHie/4Lqpf+udiVxMF69VGZQ01BuHB7DbTaN/J8h++J2MCJ/yd+bJH/jwm5aFYJ3s3U8YO9Ly8tYKRu7FomjyqPLBBhbkr75SjrD/LIlN6v4tfzhes9HAP8U5eBcFYnt66n/v2v1Ti6Tw4KPveEDOWpn489woNN6L8h+6dk/HkOD6jxBvZ/pSf5ds+wmfzn5643zlis6bsi1J30PhlOBt9hkWa/LOtSmmElY2WHTlu0eeZRLCOa5PT7Kz2uDY5ze6BcEWinmsyWseMkfGw0YxF3UqHST3OQlM5am/xDrwRP5JnABgSKfb0fWKz6XE4DBXVW76RdM/raHfOUD/1i+AkDsrr1HtP5bxwiYxw5az3gos7EQMBYfWEBP2mo40diZ4QI23fsd6sOcazuesNbEwF+4f0Lz1B23ekmJhMpjSf+ElWb/1W4i/9r6wPj4S3lhLeeSrX4n/hn9MZ6VGxyRAjbOptEpbgPN1kB9ojIomuj6y7lnazot3IMMy6rmgmDbPplLpqmEwbprMpk+kE5x0hBmyUYQDGWepmwkJjykikDz1d14ktdlY5vA1VVRNipK4r2k1LCJIfeSdD8yR/lMFrEMnCupIaJsWCpQc2pUTUWmfuyxc+dyjCaeK4hqTFZdEMkweZgTWRIoqpfciZF5qHltbNRDeHrASjeVTse1CeVIpJazxqp60O0Sixexzx4HQra76qmbD0Cxxf454n3i9xRcy5+RBDlDi2szpMWeq+t9rR1BW59JG7yKTmJQK0lfMiHGidCsUM0QfAxQtv4u5rXxgwj3ykIdOQ2r74n2wfS+31pv6SE/FnfiFyPBaLAE6MUo8WjINBLEkM7gkcunB3xtg3A1/OaG4WesFHMifOak1jeH8Gu8yYdztEPV+eW+Uo2RZbW4RktMZY8t1E4fSFoJ8+ORjFpHH02UMMhCIwJY8Upb8zcwBycptj1uRyjAc2IoNQsnByykLfiPib4jjRRFLIlY9UQhFDkpZ1zBCTGKNcAklyrRXMHZcQIR31O5lXbeD2j79HfL2zKhQn/Li+d6Ufzlqr3GhXhIOA0m9jTPmot95h68Iz8K4Wvrry/vLgQbAcTM4y6Y45bHboTEUdNrJGUhbxjZCxAvX5I2hCrjeScySXYwlTepOz2JRzVkW/dW/edN1ikvVF35d9k/JzyeGlvGvmO8jPjeZ7psQ+Yq8Z5SkqtJU5gMYp59SSA80saBYU1xnaNHI+oecZx7GLvpsKLDv1Hc4YvEWHh6lwnNqhECSuzNhmtJK/WgM2Su9MMNILKALiyp0x8plDlGFtomkkazlZNM8zJefDSJ4UjIrEJxWRTxETtZ9c8SSTBvuQ8+Cc242j1yy+Kp9xGHyZY8typJLFkv8s37/ka47veCOLZz9BtDpQUflAQQVPY44voym5QErDALRf6/i3EpoycAJ8zoF1LizfnLjYnDyYwTFbUiEbFSVDvQlj4nDJLxWEHMy2YZS26sKKugmTqI2CJMwI0CEiAYlUKAz5FmXRAL1p5XuGZM0MN8YaAdnJn5+UP1FJtrMTKeeoGyOqs03j3cHIMRndmPlHZiDUZgGTUsgoiycVZ22sYT9YdnziRm+kcErxX+Uz5dK2Qc4rOzbnXGmEqeuKC0/8ay7e9TXsfPI9xWHnIooxtjSZeG1CTsD+qYc5ntyOn97G1osfZ9XuM5/3zBbSyOfqKZNqwgsXXk/tao7qObNnf4HjTUc0GzYhsukj0yYxaQwTK6rNRkmQLgu4ONnFIUY2rTShrFcrbQwamrPzNS7AfFZDTmOLfOsc3mRSnzxiXiu5+J+SrmuKMQLDv97zfP1uotGqk9Vq+piXkD/3OGFNaoiFlMvgtEbrazjMqLCfRSlGT9f3yEGSKT9Mo+9PHjlYu/mHJRB8lecP/0jD15gBl7wfckCHFl9u/nvL+6873nUmlueNzLYcMQ3BFAOQqldCmztOFu5yY5FV5DY5h6kraTaPFSFGPtPucOBqvhC3eXN4gUkKOB/oIwr+QZV63to9LWTcpNMpggB8JsmUe2kEodw0Q+KpxSOcX35SCTWRPD3RSGeFAsVeJpgigiC9XsOUHCY6krFs+pb1ZiP7qZPp1yn0ErxbQ0qijGe0wbNMutHPj6oco4Dsf3jHiTtd1PjBiEAXGrBpINCHgLO9JkwCulGmvQnglu13HyRwM3YIiiX+yA2vPdFkP2nVZA3vJQVhO9ofOTCRIm9xD+nkHjaGgaetvzLqpzKx+IQadfFfUhTK/y5BXvZxKYtm6T7KPjwhzT3ld8Pv73Qdd/slUBVQL+/CND5nRnZEq3LWGCpt1FgstrEJNps1fRfoOxFb6WUEGptHvh7mp1jvnGf+/C8RNi2QpJkHg/U1ZrLAbda0ky2i3sssrLWiYrI6ZN86tkNi0jRUdc1m5UUg6vCQzWZNN59LnOFabbRMeF9jnScCdZ1oTINxQxNUjJHNes16taTrNjhraFSwKjeaVr7COidCMjEJkTQXbtRnO022brVjvCZyrpkSXFhfIRrL0s+4f/28umJT4q0Sh5U/LxCFxnOj5HzkKwYrM/re2KFYorFk2Rbm/0fdfwdZk2bnfeDvNZn33qr6TPvpnjbT44DBGJiBIQgQAggQhiRAigBNiG4pUSYUq1BopV2tNqRVxO4fWu2GpAgpxOWKMpQELiUSAAkCEACScAPDwRhgbI/raTfd0/azZe69mfm+Z/8457yZ9XUDHGolopQz1VVf1TV5M9/3mOc85znnV1w7T8Q2gj6mCUzZ5K0G0pu4ZzA122DK6J5EeiOxkxZclMejz79w160GgJx7f3OoOq1AfXnzPWKJS/AtHgihWNNM1feWOAM3ScU9prFnHPeUaaSWESkjMqnytZRCqKWliA1wwcSurKjkpJJ2qs4hcf8qGnm0VDMwn3d086QCCdUECsSbTBY2SgLQd6SghOxAsPA+QtmdAyk96W5CAGkmnUy1YPDIHHM7uBmikc40wZyAqVQkmNJ3tgkbU2ScFLSBubntohxnJ6fkrmfY7wmpo6AkeYlJJ3mmQNd3lBLYmTCelMJ6pSS91XrD4dERB4dH9OsNUkYF1nMkdR39uqcPAaRS+gMF9/s1abWhk5011Rdy1sZnfb/MepoM+FLBpv1OJ7TnFKAmpAH9HZc//0tIDJRVJndacHr0iZ9j6DpySvRdx8E68fCNT3Nw9SoHmw2bzZpV1/HucI3PSeCxs1c5rFuGnJXIGCNlMtDcBeaALgVqn1t+EC7fy63Vmpgid8mD3LXNzWd/4uidxCv38/n1Zb7p9LNAINz1Jg5PbhHvehOH9UUOZeB0us4zB4/y+157ArqOuj6iD4W6OiD1K7owNVDbCzp+3CkO5b+bG4Znf7oks+WcG9AoIuxJfP7orbzr5mde93rL91LCtQKIcy5qttcatGRpSz1PF4XrBQVZYhJilWbT9PVhjhw4l1OrSnlU8DDZNBDP+RdCgM1OX6AjJW1MdgKTD6j0KUDtExvoXESaPabLpBDou471es1mpeJLmFCN1MJuu+Xk9i1ur3v6nEjxEutVz6WjA1JQgdg+B66lxLVS2G1VKCDnxKo7sLzd8r1aKEXXW86JvutVkDZ35JTxpksRBeYmA7l0UlU91xymX94oVprt12l4arfdY3sze3aiRG+xy2K9rkC/r0b242gFF42rh2GAEBZFg8Lp6Qm3b93SCXPrtRKpQmC93nB4eKgxj1ZVqSIcH9/m9PiYcdhb8cviaZtEV0xEa5pXKKVM7Pd7hv2eOhVSMFGwA7WLly5f5tKlyxweHrLZHLBZrVh1vU3+cDxmnuYUrUhRrYjoAofnG5QXJIEl9rPYrx73zr7YaSRh9qno63anN7n61IfY3v0wR899fEGiUXvjJAaP/wMmBHKBjmka27oTE74E0IlO1hQrSiZKVBLaopBEOPq1/56Tb/ph1r/wXzBJJQeohg8REuH4VcInf4n0wOPUJz/E+mBDevs30D/+biQlVl/+DJuIkdk6SinceOv7eeBTv8KwXjFEGNMhp2/7BiUB5kz37KcU1H3u05Svej8Hrz3Jejhtk+je8tQHeO2rv5P3X/st4pUrLSapZSE0NU0m/DGqYGRryhTD5dRudmhs43lk140WE+kEhqkKfRFWU7Vmz0AIkxItgpIvhmHk7GyLSGAYJh49+yAvrdd0/Yrc9UaqnBingX4YOBr27IcBalX7lTP0HcGKe4hhCcnIX5u1+tec6VdaoF6vVmw2axWbOjzg6NIRly4dcXR0wOHhhr7vWXXZ8ExpBacqUIs2tmvTMAsyhy4LJ2k28pMspsYt9toskB0Un6hz8a4V6bxIWZ1QKtYIiMa0YTk84fy61b24fE9xd/pGcNf/po6vxA3LnY86Dxe+4fHwH/pTHFy9l833/zlu/OLfVp/QdbZeNhxsNhxsDvT7em1kh64VFWdil++RsBCZsq/UKUYWFoXhKtRuJg+670Johf8uFUrOlL6nrAtTmahlYnJSfi16z6Ou/ewTF219NlGqqs8JIXC4OWB9cNBIVzFnJRTHGQ9ZYiOtjrIQrLjzbxhG40QqYNGoXxuWggkghhjsPSMHXeVPPhz45VdH/vB9fXseQYWmjo6OiDGyXq+5dPkyV++6yq1bt7l16xY3b93i5OSUk9MTTk5POT09o9uesdvv6YY9w6Sf2xvoixgRINCKci0xhIYlaUOp7U2x2JLCNOln3O62nJ2dcnJywu3jY27dvs3m4IDDw0PD5S7OcQ4b06TYMB+d1Ok1lneG17gULhGjTuhtdqxq7BVCbGIsXbcQZLH7CLTBIF2exQlTyvRdaYJmfa9CU/v9QFmKTLU8esa9RZb2cQYLvSm46xJdn1itdL+uN7pn15u1YWMdXU6NmOHXA4Tf2F3hrAZ+bbiLb8uvLWzpGxtKxyBiiDoZyNTAm4C2NQcQdFrdukw8+uJnePXKQ9zz4uc095+K+dmRZ/MlHimRfjS/2xfyVKhdJdXCn3jgkJ98bssfWI28nLtzgrgx+OQ2GolBsOlGZUE2Xnzvu0TfKRkniIpjZvu7FoIda7Ema73STQjJsRjloxoZs1tBtyKVidpv5utrxBq/r+2+tbxRvysxZDbM5/LPxeN92pSLAV80oamUfPRMOOd7U4ObFz7bfLjEpIV7+644lJFUFzhcuf4i2w//T0q+qJFUIxmfRauxSo5m+wNQVfxUDVgxIXeZiUmLmAVTYl8KW6QYreba03Uz/tB3HV3OnMUVHw/3QO3JJfA1MULMml8njYubboEtmJiT4oGo7Y/Vc2wVhcpd1b0xGml8tUY2Kjg1DgP73Z5hu2M42zLtB2LqGMa9Tp1udXlxF6N+OSZyvyJ3K1LuiDalOfU6EIUYCcknhWYllwS1Ew0fiDM2EFJEUlQCfwpNfNfFfFVILC6u7XzMNQitg99pYZbrfrl+nFy4FL5rL91wFbNBLgoHdk3mXDglJWFnEyqRWtjvtozjQN93bDZHbI4u0/VdWyNfiQDWP80jGdkEUPF6a6SQGhinQgiJqQqlRiYiowQmH45gwXOLVxqu4/diYeAMQ7GwpgksthoqtHvTSDiLw+Mf9QuCRGk2UIiEUNu9EavhncPIJCgmZTauMt8L0W4NzadduEUdOlOZKBK4+757efytb+PuB+9jc2lD6hJSR6YyWagjfPTViTdfSjx0mPiRt6748c/d5s9/1SGy3zGK8MfftuZolXj59p503wF3bxKFxERms0qwPuTyXSoW/Ecf7vjAK4VveeiIey6tCdYsXdFaawpOCrTBYEY4rLVSRMUWVLa5UqLmyqHPdJsVhEQ/CtNQ2e9GxknRkgrELtOtelYbbWKvtVDGkXG/5/37m3x8vMy3lJdZhYLkSJZIrTpJV4Uww7l9N8eAc01xOZ0TIMTa6idz/DjHAGrT1FakrF/BOqkkoOsxwFQDqz5iM5kuzDHWSinCWIUy1cWAAWt0LhpDTgHGOJFioUyBIImAkr1zWtF1iSCVOiqJmViN/6OiU9u7H4WU2Vx7qnF1nFsSrEaWJTBRTYSMFhumlNq/VTjWMAYCvONb4UtPIMc37PwL4Zv/CMOv/BjjOFFDZPXNf5TTX/1JSgUI5AcfJd39ANsv/LaR/l24RnP9ECCkRSAlQpl23PyH/x0HX/c9nPzqj2lFTLQWnGOkfP7DTQSnfOinid/4ffAbP0bGCPgf/FsMZcfdn/mHSO5azYgW41jjVzQxnaRChzGlZhfE43jM9cV5HS9xOrc8uj6jCdVYs2iLvfRvn3ngPUwx8+R97+Ltr35mwaE7L/DpPBTtAfd8cf5a1twny7va32K2qMXRCpo9Po+V+EuH9rm8tzmQmDk1M36qDzXRoXO/u2CHiYqoiJBNkCURiaSQSSHa3yMSI8WuU44qCqPDiyxOF9szPhkzRsUcY0TSZPGDihDWIhCEHMXyIasVL2IYvaLBGtOtgSLOU9Zj9NrmXC9Jjfyu+X0KLoYFBBPCDaWty9nuFlKuEANZIoFMDD2JA1I8IsYjcrpEikckNiAdVSLBp70WjXVTVNGZiopvSRCqqMhHDR2kwIrIn7nnIT5w/TrfH+5n2I9UNLZKohyiWnVwXbQqt3KgDTev6qU0J+nooi7QEDPTtGFMO1IZqFVFfwkFYaTKgMiAsAMGAgOVAWFAykQpo9a9DZ+PseKDQXS/Kdk4oPmlSITQkYIJlMWOmDeE2BPzipUJTXXdkQlMXaLvDxVbNaHEUgoyTtrA2fbb1ERrxZtB8dzS9mZRwUiZJv6Za0mHapZCkaKiYRfo2G63cxxtnDjFz3zgkzVEjBOT8TS9gcERiND22OKFz+Gvbg9Z1B7nmqP7qMka7icbArgc2tNiO5hjycV7RKzJ0nK8zW/8HU6/9ru558M/wy4nSkqUGCk5UVOi5kzJSX1xnHGCaPWb6yWyGU65XhMPbbfUmPjiI1/DIIHd1bfwyEufsVqRns99L34WAbb2ebyu+OxjX8cjz32cYBgkWEjtPsmvz6JepP8Pc1ciEDw2dgGL1lAt7XfO8Z4Fm7Eal33OnKkpN+5RKan5Ag/1FcuYa+8w/+x+MsCM79uHcqaZ4/m1NdbMOW7zs8t4crE2/Jp5s4xz9HTYTKUWHyZVtTZof5umUeuExl+YMbCLcWy3O6ZJSP0B+eCQdV7z8EMP8DXv+SruueeIOp1QT27Sb1ZMu5t84XNP8sUnn+Hhxx7h8pWN8cx6Xto9x0tffoUXX3iBB+6/l01KnNy8zievvarCTVV4/suv8dyLr3BwdDdD7Die4NHXfoNrR5fYXH0Txze37E4K+/2Kg8MNh5cvcenqVdaXLyOrnoKwnSIv3DrllesjJ7cLYRqI9ZQyVSqB3SScjgXJWUUb84qQj4ihBzpS6kmhJ5DJuadfrVmtesQIUMXveQ50qxWME6lT7l0tKuCack9OiSmV1qcQGQmyg6DxwDRWqB1FjGOXVWz0yjd8I8cf+yjR6mhTndTHFeWFpZi13u51ZjaEDiT2MBXWBx0SAxMFAvQhElZrQn+Fuh9J/T2M5QWEAjFTg5D6jISBGHu6PjFK5PTWKWOpdH1gdzYi0lFjxzCNjKFT/x/XTClTp0qghyhMo+6fruu1oTNOpJwpArvdRBc2QEeVSQfNWi/DhPpzgCRCnQIhJIZBRba61QFFRnYFxqBcA5GiWEsNiCTKBFMBkcg0oVhI0ka5Ys2mpATyP2vW+f+6h9vCqagQblSBwxgqMem5h5jnGN8xLLNNyy5w5/7iPTKWc7jd9sdJ4ynqbz3W/1P3nPEzN1b88N1bWk8Lc87MG9gob2KsZdSBwXUy7H/UHNHXrHEkQDGClscEbcLyHpzofTruh5nPU9/QrpkPf6+WPBgu9pGzI756vecoLZrTPF+wz+n+ZhKMX6S9NovISPMMEyvR5iyNpZzjeWfq0fIvZgfTrtYSA1pctzc6Gu4UFtmPLHpoWPQR3OnQ7vi8S7yx1e+kIGXmvkxWt6iT9RQghhdbw3Xz5y666Scic3oo4XXvfZGOhsv6pfVc0uOzMA+NmGVzl1+LuI9FAyIaGwYRFQO292vo/TL+0yIAREjJRAYck7Qapot+TcVrKzM2DKYp57Fj0rwBETsf4xTYCtGl4ZjmUjpsfg2PkySIDh8IHvsseBdBOfBdp7XzLmcVaqmVaQyMxjWcqg5haZiFwSrK1rSVITJzaFEPEJj7abBr6cO4VDxIMPWbts4i0Rplte6uAxUzfc7sU6aKCjr1OVGqYxORkGjx2ThWprCHGFqDqQ4o7EkpI8A4TkBgyh1lu9UhGoYXh4D15IyUaTS+s9q2SDU+XaRL2pvjmE6/GJxzuDlgs/HhVjqMdppGphiIU6SESPDhtFUHlkYRreMYD/aiHFpaCHpPHaeiydG2vAtmeMftMfYYAozv/yOsfutnFo92W0b7Xu0NdM8KNWg9uiBgAmmBSKXaYOe4cHe6r7xHb/ZDS5TL/kZotiLh+8OaXduw6TmjvBMv073n+cNsh9RjGY6wHF7XeK6WD1jOqZ9JBWzVf4fm7wIOX3peyUIOys4kuC1XboaLN2QT5ek67e2IMatvCIFcdbBGiklFq7wuzew/W/02KD6jgrourhBUUcAEI732AkFryMvU22Ib950tdy42nDrMYhBaV17kYp6w2SryZeMN0hIhig4+qlbXmzx+SvEOkSl9DReIvmhH4zkQrJ+B9nmXN3vJg05p2SNi+J6Fjd1Hf1JroJiQWbPf1kRR7bvbZnt3Fm/rh7ScfIENeKzUMGbayfq+i4SGhzvPtvHi0Psdg+Ij2XqAPb7PaRaacmGprvP1rDWanJeD02LDQTFbIG4TvF+3NTALEgOfvPweBhLj1XfxjptPGO9WP3BtGIjWQGrDUGx9Lwao6dr0fiq3Dou/htnWtE0bwh331+IFV0xbfvkL+/2wdTL7TLdxi7pCe6o0vm4bVNH88evjujkmCbbN97z7hY/w9D1v520vf6rFTQWLQYIJJnjdbSHactH2WZ0GchA2fWbdZ1ZZBaeo0TiblWCx81BGEokp99SQCVfuI5zcIN71Jrq+p+uSDXrqWfU9XdfpuqnVeGswDRMhVmIsxNwRoomDhsh+HNmNE1OpDOPIdr/nbHfGNm2o9xeQkf0ojKdnbWBjSJ3iEme3rcewst8P1FJJaWrDkdc5KVcuai598OXPQxX6BOnky+yCkIMgZWJ/dsru7IT9fgdSOTzUYcyrzYrDS4ccHR1xeHDIZrUhx56A+QQpfOHgEe6uX+Ygau2mokI1+/0WHfg8UqsOfcy2p1XoKTJOijunZHx3tO+tmEicDqbXvVCr2pA23MX6v3StmcBGmDlWXsPC6lczz8Ni0+j7UVezxizVYhp9fmcD2lZ+Xx0edI7vOBCqNHE31bQL815vMY20Ws458RT/7jaFpQyyxcoECPPeAq3/TFM6N/jgoh1dNqGpIIpJkYlBDOtivk9+JYSWhT338PsZ+kO++NA38c5XfosZ4L3jTcLCjDaM2YYhpjsGyC3sqOLJ88vogBvRfV8rNVXDNNzOA35fF/et3S0fOizz3Vv2Y5YQKDFo3S3FFu/MvFt9pTs/o99+og4rmM93zjvv9NMai6kAl3sJwYSkyqR7y/xZqMaHQFpdpRQXpJoHVvvfjPRuJ1bneCIod1/F1dqOQkK14U+h9YnMcf5cVxZ03zSuosWO3j/mfSiOpbW+2eQ+NxEjJhA2C0m2DMNrhEl5JFNWkV/nAeWcTGwqNl64SLI+kVkg7oK5MsUNY1QdhtQrH86GR4ZgGKzAw68+wfP3vJNHrn2O9XBbh9AHWi5lo8PmONxjm+hXX58QTD9GB07atW+xn/bMxqTPfyOeZ5RIDY7t6iBLgVZX9rW0BGNKmDmxJi2C65do/uaCuYscJirvzxEIjflV7Eh55NoTcuvoAU7WsHnpcyaE5Mtsrgcu46co0bCgajbfh9TPdl/MXgcLzTw/rCFoib8KU7G8VmZBtfNCUybKF4RovcsippPjQ6Wj7u9aA1PV+F57djV3VrhHHNWj5cRICztbbQ5p9mqOIU1kChcZ47zNNMDJ7Yc/T2Li2ld/JzWtOM4rrj79myasJVYv9Dqh2dGoebPHp/EN1s2dx1eM8p9L/hfx9jJxbkC0/X1xFVToKSopoSVfC7EpFzDygGHZbHEeBXGrV+yyBrus2CQv8EKju5ZZKECaEJUSCKq9BqhoQLC3Ce3tZH4VtM1NFrmDtPOZCwBmXKkNANZv+u9lk9+ci4T2PQptdSjgP09E8ybP9u4O1kZdZt9zdeQDtzv+0JVJr6NUVcQNcu55BK+FhPnqxWgTt7Ma8C5x5TM/p42ZIZCyFlakP+Dkbd/GPU9/gK7ryZ2qwZZa2JuxHMYdJ2c7humU4+3A+nTLZq0qo7nv4ShBzBxdvsLq0lXOTk/ZjXuGaccwFSYBCYmQMiFqk78Q6IMW91JM1KITVT9/3zfTPfNjnG237BdCU4JOo0luiDXF0i9fR0155WIcZ8fHzbRUiY0MqMFNdQvR1hQCv7i9wtn2jL95esAPHR4rOcqgZE++RSNCc97S9oegexIDBuclcj45dvW+5kvqwq80Y+vBoT83th8D6ujOH68ngOs5m0M7/0v7vIvnLCMIm8ji5zsf599TTULgH2yvkPan/PhwwB86OG4GbW5im3+uwVOJhd0zEacyDZRxYBoH6jQowaZOGpwjlDK1xN2DsHHoKKlD9lv205bUnCjUEPnkwTt49/FnmCxwnErRBnD72ZvId9ZIFKI65Cevfi23Xn2R147ew+Xnf84Uk9X5ZSo5VLoY6GNmnTtW9tXlTLYGJkmaUJ/ttpzstuzGie2wZzcMSjqWSkyRvlsxrNYM/Y5V35FTIAQlNVcjb1QT3rrQQlO/y6m5D8CSymrFlknpiaTFSwy554VHvpW3v/CPyDVRRW2PK/TGmCzxnonEEchoc0wKauEoRkYja0AdNfAklIWfbZtK/ZKL5jkQKYs9OLunZi/u2Fh6f/zLExIHpqtYganOjZbiKrl1BpeDB3fnhVj0GkZ8mtHcdOD7bf5MLqAklqk5WQuC5Uq6thDIqWOzPiBfjRys1pzcvs3xyQnb/YBOm4903Ur/FjOdKuLQ5x4XHyqlEk9vcfjsh7iW7yI+8xEV0bDJJn1K1Kd+k/1j38D6S5/gVqyEK5c52GzoVhu2ux27QYUZQox0q14DzkmToZR2hDgroMaciDUTiIzjwG635ezshHG3I9TKuu85WK9Zr3q8POog9GT2MCrD08Ds0BrQtPHqYh2LEhZ3+pMHdi9bvGfFl+Cgq4EYYf7y15Ao55J1/cF9mcd7s1/T4qmC2NL28rkTXL6S7oNAA3XVXtu5iyfXniRbrGZKfwrs6mNa0Shok1Gw11ZSxwwSNxmpoN8dDvEELAV9nRCVwBFow9e1YNOuhxjgpxPNo8zK4KlLlNJRSs809iZYNmkhdtRCrAoY6nRVndLiArHzhDW/fg2wCYFoTZ4eH/v0LI3DmWNwi1sqM2CuYVdtk52cJOH2KaENZwerNdRAHSt1EqZxYj9MTC7K5wmuvbGvGTWJyUQqUjN+FTQeTrimo94/myBQgzYRphRJJRJQwGaaqtmri+XLbty8TkiJ3XZL7FaQOlg0R7T8i6h8okoDkTBiQMyZ1GW6Tgl8fZ9ZbzasDzZsVisyIGXibeU6MUQ2wzGX2VOyTonCgMLczV08DnQN08R+2JPTtjXglVKIMdL3fSNhlVoZSiX0K3KXmQRIkT53rFY9hweHHB4dcGgCBKtVTwoqgva23ZfZDVsKShKEjpiCiY0sxFwQbWqhsz0UOKq32EyvkEPiTd2euL7LxAMS9xxe5npM3HXlMle7q0TgDwxP8lfu+17+rZOfJ959N6/JihvpQe5l4MtX38bbhxd5d32ZL8ae+8drXOpBugNqrfzywfv41lsfBWumVxJ7ONfY6EcI2qSoxA2MuBEbqSLEmZAzEvmtq19LP+741NX38DXXP2H7jdm8BW32GqfJikmy+FMwXxKRNP+2FbaYRZUSmU489NbflWmaBT/8WttejFjD+SK+ngWzfErAXOB8IzGP3+ujM1GvYgUSytx07I2Kd5LHzCsYEUUBLm/AzzFa01Fl2O84vn2LLgaoE3UaGLZbLl06IsWI1Ik+R442G6ajQ8pux2mEYb9v59b3KuwkUk2wZwSpdF1i3a9Yr7XwkqKJGJsNrlWbnr1B3QWlXAzn3FetDbeIIaovXgCTS5+9nHjmtl0FMbPFQyp8sx8GhmHQa2pgUQiBSRRY3O/HVozxaUXjOJpY1aqBy2pD1Aaebc9QIE8n1g37HdNkBHKbENlAOxNrzSmxWW+UrJUSXWdT7Q4OODo64ujwkIODQ9abDZtehaZSSi01CMEhXfB42nEjF84RmRstWn67zItsr93pXVpszIxFvS6OAbqTa+Tja+dy5HMTLLgznrpYx1QmJYVVbb7RhlkMqhGQQrSvRCWFSkKbnqpUDj74PzCJClBJCISs+yzGTIgZTl5FTq8T1ytS7gl9hpTIwZrJkPb15Xd8K93ZbW6++9u58slfhpohJnIMlKjCh6vVhmRCM92LnyN3ibxaKX7W9/R9x1e9+nHylSvNxwXHT0RYNtROU1n8rCQ6EebJLknJ8DVJi/XFuUJBG/z9K+We3A3sx5FxsslBVoQYpwm2O6ZS2e335LMt2QRMHF/S9ep2q5BioO8yQXpSRIUixdZ4nCc1ONlkvVqxWq9Yr1ds1ms26/X874M1BwcmErlaqwiHEfmQagXZMNfbzIH5zrD5D1YW98Y2vf9zA7X5LGue8RwVwzBrnWOTurB3tZQmNuWFOp+q6kewWOrcFhLPV62oZzgbb5RvXIAj/K7/ev0Jv9Hv9FhkYg4s3Inz/E6hcimElKGWGdvOXRPbWPUmUrZas15rY0k22+wTSMDii2SxpwtNJZtEFlPLozwvsGVh69zwnGKFo6AF7xqDNU3YpxNRnM8bAk3UgGi5efJaha7P80JT2gDZd6tG1khGZI4hnCvMEuafW7OerUURE2zwzxzn+ojHZTEELYzbXW3YzRLXaQUZOMyR73+gt0Kd7psYVGgqpcRqvVJhuCuXuXp6ldu3j7l58yaXb97i+PiE2ye3uX18wu3btzk+OeVst2W737EfR21+MXs21tKEp3TPLiYAV7OFVjwW0YbMWgoTEAqLzxk5WZ2yMZGpw6MjDo8OuXzpUpusc1GO5T31+5VSsvpKbhMcmwiHWy2ZiS2ADfFw8bRMcj9i0UBbD0GbZMUK8DFEpORGWu1zZp8HupTwSV+z3UJfyzFC0frULERljzDYI3eJfpVt2l1Hv+pZrVZG2MpGjDXc/w7AMUmlSGYT5gLp73Q0wn1wXGFBATxHTDJsMWpOn0phfeNZSt+bSEqklsLzB/ewq5Gb4ZB3Hd/kym7H6mzLarVhtV6rH8yZr687bty6ycnJCdtWT5o0hg3Rpg9mSrD+HKk88sf+Ei/+3N/QxtYpUrI2Xk7TyDgNDGMkBo1n1F/qVKValGQbGlFK/YjdEv2drSFvLL8y3oZrn+E4H3B082mGGAyy9b2++Lnlvcx1TeG8/zq3apc5WDBSrOduX9HS/6d2RBM/bjUsMVFVGyikMF2Y4/OQiFGUPAPaI2GNVP56ycVt0MlQSpiNjUzb505xeqmkFFVsNmD5HVYjcGKOKMkoBAXtsMboqnstS6C6iFmMNikwm//Sr+z/NiGEGrRBwjF0sWtAUpEEIYJobSJ3K/Dai0I9REzcOGcQdDJ3GilT0f3fFWq/ok6F1XpgOhjZrk4ZdgNhe0rYbTW3DNWacnSTx2TXL2VS15Nyr7YqZasP98TUITESc2d/U5umWkLzdXCBj5Cifj778kY3JY7N4mdOdllkR+eOGYt8/RpqRK3mc6vGlHVUv6jq9gS/d/6CJjIVQ1QBJjGc2Ann3pRn9x0Tc0Yq680Bm6PMwcER680hKamYujaZjf9/7or/ZQ9hkd8v9r+4mJSGT0wCY0XFctySGRbUysFhfk2PSd4oF3Ucv4giLI6vhxgJdUG/cd9SPd5RHKOE2n7WwQtLP0vrQ/ngXe/iW64/oa/bsG09tMFJB8GIRGs49VxahdgLgsTM1buu8vhbH+fNjzwMXWAa9+z3W8stdO99/Fbk2ZPCEy8n/uCDmfvXQYnGZ2eQNa4rVYhl5Ace2/C3PnfKYYbfekX47kc3vHQmfO39GyodEhOp7/j+ezQvJMyNDaFWslRCMXKhrk4qE4WieVMolGgZlFRKUpsYJdOzpusCQSJ1hGmc2O0HtvuBEiqbSwdcufsuNodrCJVpGNhtzzg7PmZ7eso3bk8Yd4qVC0VtQlYsH1Hez1LUtBE2S2niAneKv6GrQO/LIt51u85ir8UcydmaU4AJIVfogFwD3Rjo8vn65O/1oQLTOuRimqoKHEwFnyRYq6eTSpQrFdjtUXIXdF2k6wI59XQxaPxF0QbVsRCB6d7H2D74XhybWr32tBHBZVHX8a/QSGPSYrBkKURleuBxJiI8+ymmd34L5eAueN/3MP3mT1O2N0jf8WcYT27Sf89fZPzZ/4bD7/0LyNltjv7gn+bkF3+MeO9DbL7uOxVnQNg9+du28SI1aG7gwhbY+eANEMMxt3/tJ8ghL7DkQA6BZBW05Gvkt3+elA2TsSaYg0/+PKnrLC8MrS7vYo8qLKL+PlrT19w87uQ+XXfq32l1whZj2c+LaTb+G13HDedWu5ZDYAyKLcU4x/TnRFUsJheReYLp8hCZp0fjPBy3eTNesawxePPNfMJ6btWMq4gnp/5uC/JmQ2RosUhY5JoXrUkF3KbbR7a8oQnWRl3jSZRIKl5jCYEikVJHhBFLWOe4nIw2MwUkaVOFWBOYmHDchMYUycRbEomQPX9R/CtHFatywXUChql5o+FSLHaukQiKI6swT7W8zaaLG6Hc18Uc5xhnIEdCyCA9QVYEenLsVNwir+i7NV23IqcegopyaXvywlJ4bms+dJmDREBi5Eq34oeuPIDsXMQd4wMVqHrdik1C9/VZbDI1AePNCPsEHzoIfPvx2s6/J00d0zSaIIaoPZMJkZFaVViKMBLDRIyFKgNl2jNOe8ZxsGEQRbHkODcM1pb3GmVXEjF0pLQipxUxrehWh8TUk/OKvt+w6g/p+kO6/oi+39DlnhSMg+fNKrXQOIjiPBofzKd4jTZyq0CZCCaWNCnOWU3ISwq1jpqXXqDj9vFtYM4/g7jQhQ5SGMaRYdiz3+0YdnumcWyNEA0PEx9o4oAEM34XnEptQwYWvDq1XbZ+pM7cuWk6JzSFzMglLGzt4ucY1C7nFOms6bf/9Z/k2DC8lTWFeUPwKme6rI9NwQeO0HgUj33+13nqze/j8ec/zokIEhO7kxPk4BJnx7c5PTlpcfGNex+DWrny2rP28XVNfOmrvp3pbMsTj30zj33yH5yzsedydrf52EXBr93i8Q0nWGLkzvdyvDEshtvODac5+vDE1Ooa2iwaWpzvPJbg/wvLf9tZ+ePcx7U7Lk3oteGFjuubeXGuyQwvWd25Obo5lnThsSqGzdZ5YntrsPQa5zQxFhUhH8dJ15BcrGawcRxMBH5i3O+45957eOc7H+e++65y++bLnB5fI4WJKpWXX3mVJ574PAeHV1l1K1780pd44fkvcXh4hVdfvsFTX3yWt7/17dx19R4wYbYXn36Sk91A7Dbs9ol+fTcPPPQ27n3T42zHgbOzE052ketnwu3bwnCakXCJzcEBg2RefG3H6gw2R0fsp4GXX32VL7/4GidnIzIVwlRIImr7UYHiGDMSV0hMFDKBjpBWpLgmxRUp9XRJcYRkQx0KWpPGcsSYElOZFMeLGREVq0miw/KK5XOTifYpn1a58TVWrZ3Fzl4vEGLivu/8LqbjY65+63dw/dd/1daNCS5K1cbB3YC3/CjcpPniMIwwKfZdkVa7K1MhnJ1SPvwB+vvfzPETHzPBs0lzpgDbndbxQxR2g9XiEEqB3U5FEIZh4JQtOXd4bLYbBvWlFrct8d3BhRUFxrHYXo2Mo15D5YXPcfeSryzTSEyRFDPjMCIIKXczV0ACU00mbiCtXuG5eykmBIQJfcZAoZKzDhkt5YLFi9X49s77Dspdl4g24aEDDJWnu7C76kTO+ZgQArnL1kRFa6ZquKodGm4Yb8vFCl1oNES+93BgGFk0nM9x3Z1CU2K2vYratDIOiKhoUWlDkQ0jsAEIHj9pv5Pvgejwm2GonnrLLDaPn4/n6jMWp7+u/ObpJY5L4JeGQ7778jGbWHl9/cGtPw0zisn4loINqp/3gu43xWKCRET8ui4G0WC4ZJy5sS1eWK7vf0y+0proWn7m/sZEPBq41ZLW5unERNX8xrw6Rp4ZOr5+daw8zOoD0UobjlZqpRpPy/1bE0G23DiGGSvTmk4lUAihmtiJfnYXBnrjTovf28MbS2cMf75+uL8Hv/nGo+Z1Q/+08c+4Afa7YPFnqWrbVehcxVrmjNb3nVi/xtxr5QPjPH6Ypok4jnpvbFAjnN//KmAY2/lG+0yeTxTBmAtimJ02gCoW5vvWbA8ophXODzd1HCIZTtG1WFS5xrVO2ngdJxuWLMqBVbV3iFH5FZbDevDsO8StdKsyLpfN4rp6z0DrHfDIzvaDnreJjqSOnAdqpQ3ji61OqAJ8LthUZWKaNJedWlNxpNjAZREYB+PXx8S+n7kB6qOi5oE+AN72WDFRfCkToRYSQhcxXk+k7zsOVisOVis26xUH67UN9wmt7n/tnsco48ilV5/UtVl1WIfaUq0fdd3FUrJ3LE8bau3+aZSif4e5FusiTsx4VggwftufJm5vM/z+P8n6gz/WMJ4GD2k413CvGDQiisy+Yf4vM9AeZlu/LAWE5Q8uNONfhiNrDuD17tDEIhbPhvmTzF9h/llX7cIeuI+RgEjRWmGFGkzEpMbFZzn/yhHvEGOuuS2uYTurlnudx8q8zqv9nmHGfGz/Z7OWNQo5VUpKTDYMyHNOt105ap5WUkaKxrcUE2wU4x6G2vKoc/66zp+uNV+3bFLjA8cNo+FlnpeJfV43GdI+uH4X+6DLgdtqxwMhB0JVxxV9GK0rxwUab/+iCf8CeN/SQsmt4RW+5ppgivUWxDYgXvt6U4yNQ9oEpnBOIibGvrS5s0j0vOoXObAdjo0s8ZNZaMqx4UW8tMDVo51XiiacaOvGhRBiDI3XlFOic6EpG6jnGEFn/1b+VpyHdy37fziPUcz7/c6Lrf/R/RaJUhc7+DzyseTJzC8pbf36utfrNsejfg9C46Ubn8Xj/NaTHmgFgXNfMucC9oIzvgGysFPNhrjJkPnfntdFH3pPbUIB/jf/KN5b7nGUhSDkesZbX/yE1akF75KVoPW0itYeGx/SOZEXDMOv46A9IzmwzolNn9n1GcTqZUWRoxD8mmW6vmO92XD0xN+n/+Yf4uqTv0h3dNhsa4oaTwzD2DAhEWyQPYSQlNtQ9WpXhLFUTnfGrzUe7el2x3a3ZTdcQ05+gXjPm9l+8WMI6OCVGMndwPrr/hBT7Anv+x6mX/3xNtQ5i/aj5PUh9X3/DOmTv6C9M8OAlJHu6U+wT4HrSfkffQKoDKdn7HdbyrQnElhvFEftclbef28DkU0k253Wp9MDXJeOLx+9nffWz7Nej5R6aIOfJ4ZhYHt6qtjzODIOo/b4W8CYDCTw4RaCgPFnNKyNbXVL9oFbmdQrny2ZWM8y2dP6gcVUthZnG+UxJe0cUFRlEXtqnVh5Po67698izH2qUmc7u9hz+O+YnXXwZMJev+Uc1XHTBb647KeJVv+w/eh+V/vICsOog7YXDWgX5lDOOYToXIuiV9DrTMw583KgaQzANCGrSCj78wbPbaHbUhdvstqrijgtuHx2D8rCt4VoPzXVFKvJyuxzCSDGG5fqz5nroO2EHBsLYj50/tsiXCGSZ3+VzvONnGvi62q27dLObe4P9YxuESOa73URUns2lmThQqAqHqV/+1B8hHeV17gUBnON0nL/agMVqig+OA+RWGb+7SxVgAe0NwDFc2LABsIKNViPksw6Eh7jVfHMF8PITOYteK/oHN8qBWaO3z3OdWHNWoL2nMkspOP1CfVDlVq1Ry7FSM0ucqRCd8l4sdnjRQxzsWvTYu0LdASS7QPVTYkxG5dHs7Li+KMUHnrl0+QIJQYbzmPX066tDslLzZC5jfN3ctuq3AKT1nNugNvesHiKP7PVkha5SorEmkii/eyO2XkO1S6zhMVKt18J5kEtx1nGxManC1YHVzxE63ylSuPGTKVyc3MPL15+nGkc2e33bF78vNkiabWs0OpB0AIh7ynxBRyanLadbzDswpCPqPlLEhWqioucszS8ycWF9ZqKCFNNlM6H2uj7NRtnNX8Q29eRkgqly7MNsR497Q+0WLHeuXdCi3Pmr/P/VozQ+xpoWI9E28fWqtLC/6j87BojXVScZr5xipvp9ZlzW73zd+gK/S7HVy40hQPJkXPvt3yMf6jlL5gX7gzIgwNsyxdyzYz2dM+dFEloyer8BE8SHPQzsY3ghRb7tzudFqQEBWVntM1Pqm0cP3/dRNKCkEb1CQ6OzkmR2ObXRR9t81nBYpHjNOMXaO/Wvi9EppZTb+eJS2YA7Izr4rkQ+I7LTkBwkNkmekZp1zFYoogv2hCMSK8qgV1n09dTVAXFoNc2dGtufu0fZ338Ije/+vt44OlfMUOpRvPw5rMaoN74MmV3wrZWduOW0+1A12/pem0munT2Qc7e9G7edPYM49V7ibnn9q1r7IcdhZEaom46e11CUoXZqiRngjakfvSe34+8+Fle+qofYPrF/5pxHC32vBMwWyaYfvWW0dDFOF5+8aWFQ49z0d0CiCYAI9LW2jhc5+WDh7h68zleXJ2SUaGpBvo0fSpLQh3gEg8UFEwTF5tqx7zO9K3i/LOR6M0EGinRn2JXfvFa5woy/7hDZhXq9v7+87IwtLifgTvv7+Ll7jwvoIy3uHb5Tdz18nO80O8XjtXP3RxwwIqLSoZy8yW1ID41YRiYpr1OiSmTPs6cnjqcunB8cKVUXpO7eWB8letlsOsaqBJ54s3fweqlZ/jNq+/grV/6NROXmhgmJRzdvPsdMG45ePWZFiwUqUzTxIsHe9Jj7+P2pz/MjReea8BBpJBCoQuVPkbWuWOdVfF3lTu6mBvor345cP34FrdPTxhKZfD3r65knFitVmz6DZvVmr7L5Bg0kBCfEKZTc0JTUv3fztGSDbe3QRv4pIoKuSDaaGTOuOSeZ9/5/Vw6eYknH/sDfPULv0GVTCO/mI+pVQxcKNRixXhaLwVtCnGNMAHZBAJtaojmH+bTXCZU3OdhIHBYmLTFz75lcJGXsNhfTsrx5rLa/q1Nudp0rMVQnWqpkx5swov74EDzqXW+kkbgs3AoeFHD4wC/Pm5P9JxnADTMwj/F1aEDOWZW/Yo+dWz6tTZwpo5ut2UYtNmx61f0r32Wm/d/NesvfxIxZXIlNQOiZNC6vUF/9jxnAikn+r7n6PCQddcxbc+Iz3yEYbfjlp1PKUULhDGSug6kMEwTp2dnOqlrtYIQyHmvCYQRYdbrtYEUE7vdju3ZKdvTY6ZxTwzCwbpns16psEUd1Z6INQeJaOHfmguwa+jFtQspNNXO05rsbT9VmOtHWMTVFMW9uDKDuZ4cRQN5gXkdzdjBuaTSGxdCk/wwX+eFXC+A2TrXF/GkXJhdTJjDOzFf5+cdlmU5wZV5lXCTTCTG4jXHD/ziiCcEKtg0v5Zej+jXISSI1kSHFYIbQDKLnYgF/CkkKtWEaKwBrWaqZGrfm/BhoU6jkhmmkTrpBCCPYZuXDDRyVSOTLKZkecM07fNpUbgldC3xtTjUixVmHXwCjTdcI6IiPFXFX0UiOQTWXUc5OKBOWtiNQQXeKos4xpKnUrRAoPFIVJsQo5FzJ53gUCE24b5AFCvshEqKgjAT0AVhmhTsb378Ah23b98kr3pOz05Jm42SXWMg5GTgQaSUQCkBbE3GnAip04JJMqCm6+jXK/q84mjTc+noiIP1mj4nbagomVgm3lZuMoXC1PcK6tZMyUYUDnNCjejU0P04sNvv6bISBfvVCqmijZtGEgAVwdgNA3Q9eXOgBZBS9XFdx8FmxWbVs1519J02Zui6KiZoWW0yUCanoOBU0Sbj4qrutl9m0o5+PSS3yCURu+6c8vTXDc/y2dUjfNX+BZ3qEgI/f/C1fM/4OX5h8x5+oH6eA4lcCnBKz10irMIKgJPuiPvjlnWnYNnPrt7Hm8otfum+f4bvv/2PDCBUEopP/LXqxgJcp8WhLi4VY2x7yRvGqYVLu1u8trqbh28/Y1Pwzk9yAShijfznJg+ZjTXhKhVRXu7pmYzgqv4BrPCp1nUCploa2OM+3e1DznMhPC4E+FxgL7Yz8dz2K8wT/ikdq66z5odJMaqgQEwIqAie2zWzkW/5w3+eV3/z5xmuv8Kw23MmgYPVmnpYqHHUAXohErsEtTJst9yoE8PujO3pCTcvXefgcEOXu5msURV76buM2L5ENIbsOi2qaQFobYKglRg1Vu87bVhGUFJME/teFnhQ0uhUbfJlmUWR/MsqlHM8t8AdbP0UKxAJKsoVpkiyhuPOJsQRO7q+oxs79vuszXZleQ0TIrldz2lS4neZlAQ+7HfstmctbIwmKjKOA+O4b9MHx3FgGseGBWD3zQVCNP4Ozaa7aFXX96xXK/pVz+HREUdHl1iv1yog1PVGQJobvpz4GKAVHtrfTKgV5nvomIT3iUdECXD+u0gTZRaxYkoNza/6P9X+1Uaab4Ut8eKWnUOLecBz2ItW42qTOHztouQ//cBKmkUKgUIMlRR1umwy4m+RSvTmpBSQpHF+yj0xZQgJcZA9ZtJLX6B2mc3umFBGpn6NlEJME/nGi5ze8yjrV57WAhtCHnccfvG3me5+E+uXniKttYHRp3M1UYIusupXrFYqmNObAEcjw7UL7/mVfmZvilFhNYtMDJAX1D4nmaNN1mtyTORefepqvWa93rDbDWx3A/v9yG4cGYaJqeqkpgaGTwqClyKMw9R8TLhjkmCKkdhlUhS6HClTZpo6XcNBZqJJzvSdimut1xsVlNpsOFhvWK9VOLLrTRBvpdejN3ulJJ06F6holwccN71TYko0//TctBgxQlog6HjrQhwoYIRkab9bNpm011qITMk5P8n5pGW+i4v41R/n/7hYfuz1x/nz+53O+HeLeOWNHrQMLd7gOS/80k/w5m/7AU5+61dYr7pZZGJJlsuJzsSnuq47R1RaitA4IV7JTJ09xhtF41yYmdFgI1/bVG0KFNECdYtG9MTTotBWG4jqQlNeKKPl5yI6pUsbmoriZSJWUE+LzziLH8xEw1mA03/vAkqlFP2drVkXm0smiOpFuliril+USX052rTnryM4SXu+K43UHMIsWB1gLWuqCJuDDQcHB2w2GzbrNYcHG45PT7lycpmbt26xOVizvnXM2XarZJtRRekHE8YfppFh1AauUrVYOFnzZK16/2oNdOsNb/vBv8SzP/1fU6s3G854bwS2/YqzzYbTk2NOj4/Znp6x2+2I4YI5swV2fU5oSqSJTLkIDrhADudsTQwqSrXqV01IU5tU7N4tcL0l0T2AkgeiWD6kgrUuOqX5vRP7Fq91bgDFEn+fMbwQIOVA6pTgnnutE83+zWIii1cb0dRuz7esbvPx4Yj35dsaDjGTiO78THrt7LPFSJyjNMO8UhN7IQRiVUJYSpks3lhYjUQH4fQ2+80V6s1r3Dh9jaHLdP1Km6n7npgSH7v6KO++9hwnpyqgdvPmDU5Pjhn2O1ZvfRdHZ2cMH/8NqD1TCZQCD//wX2b38nO89c/9mzz3N/4jlvWZWi2WzpOKSZjIcqlRi8zRyb4+CEYW/6MJcwezcTknqgiXx5tstq+xi5FoQ2TE8dz29bsv0SUO1WpJ7Y/h/Jf/7oIdYnFICHEWj0IUh3aSaFScKlt9QzH4woiYKKlYXiCaL5mwc3Y/ZD5HRaASXahEUYGqznyExABFBwEkw0FcbKg6uA9ah7MYIgTI2QhWEbooZLwRI5FiT0o9kLkchPenE252l3hHDgRRgmUkNqJDyJ0SIovGiymkFv/oThNIkS5kWyJCjYWJzBR9KIhO3ZQqxH5FKYW8WjEMA/lsRd6eMQx7EyDFbLdKC8U0D9QILtTRfFQGFOdMIRND1vqkzOIJMQVIAUkBcoAUNYaPNNJ5iLHVET0GeKOwo/1bZt9GlBaj+WtIWew2owkIhcJgzc20vLZORq3yRRUShcBU0AExAlPs+PS97+frbn6YEjVHq0Gb3mMVcoysLl9lsz5gtd7QpUwoAIG6H3UdXaBjGkcjMRkebaK+gUBOmWB56CTVhKYSBZ34rvPjC8uPdE57BRTrBc1LAkbbmGOiagQbr22EZuIWAWYjmisOE6sLfmoe5Y9fCk194P6v503ba/zqPe/lO65/Sm2fCXEK3vxgnAnEmssmfZeoJO5hHFhf6nn0LQ/z4EP3IzJwevuY3f4UqZ7/K7a9OgucbTdcSUI4hr/53Ip7uspf/2ziz75F+BvPRt5xqfL0SWbanXF3qrywjbzlEB46iLz5cgd5jaS1NqNmxfiL5/JWf1CnqnHqdqr8jU9c459/7xXNj+1/NVQV4wqi4iiWD+fQK4+Djj73BEmUUiyPHAhd5tJdlzm6eoWUAtOwZRpHFYFNOpzsLCV+dn83X5+ep/OKRFXOhqTzInxzfGd5mN3OWVRFfaU3SLX8yghjLVdV9RabyqjCxzGpP0gSSEnlUXIKGrt8xWynfzrHMIxM00ymK8VEooBZ0idYXR1AqHUCKaQo9D1s+sCmS3S9NV1FJywqqbqb9iTLseP+hDbRe8l5MIxM0yD/HdSDK5y9/dvYfOLnKPc9zvjQ11CnCRkHyo1XkLsfodx4ifBtP0z9hR9FXnmG+Jb3Up55QuPBGy8RH3o78alPsFr1WmMpI6w2TLtTFdOHlqMEe3ud3Do3QyoGptciR6MDOr6cNMbtYtT7byRWb8Lsctf8d05aOzjXoJXOi005Ru1Db2aUM7Sc1gnvbq/0dyrWdA4ycOKif5BgOLfFI++69jmevfwID19/qk2WXXLlZuy1Nq7kuUMszvYGrHbrZkHi+aGLGtxCfFv96fnHeF3NrCYw+0+tkC2C9EWNYYEIX6jD95HGIZZTxEgILlHmsQiQpNWfI0nFKmpARYw0ltLahrafBJLVckLDC6VWSphIMlGqi87MpE8XbY9doE95rptZrO+NxC2vijNPLwTdL8VI6CosNYHo9xkzC4ZzeINesEYMFeMOsUOKisiH0JFTT05rVv2a1XpD32+IcYVItmukQyS9Lj1jLF6r1npzsHwyYT4/J8iBnKU19KQatA4SrWZMQKoK7gm14dNCYI/wc5dGHhgjv3xZ+IMnG2LqibEjpclqTqL3ARMjkBGYiEmn0udYqTIyjXuGcceYBkoZERkJDISwwEp0DK7hSAlCJobeGqZNaKo/UKGprqfPa7p+Q05rUuhUlKKIxj9YjUtAgjfHqBAjMlmMbphj0Zpp+6o0we4q7vGLfg4ZFSe5QMfp2WkLwlsDRSlUa6jS+s3IuB8YdjuG/dCGEXrzT7XPujSiTcDP8AQRrWW6+J6I5nw6cMCmH/twxt9BaMqxhSbavvAnni92KXLlT/yrnP7Mf8WQM701U5auo3QdOUemlKg5M+XElOJ5oamFbX3wyQ+yXQg+PPCFD3L9/rdyz4ufZ2u/vXXvW7h1eD8C7M9OOXr1WcDipZefY/vmr2Lz8tOcnZ2aGArN1s91Y7fALQK9I9nX45lv/CEe+9DfRepEDYHn3/+DPPzBnyDYIJZovtAbbRx7dR862eCYWWQqtGvq8Pe568r8t+ZN7fqrXxGDIgzpt+/F7y8Ln2R+eYl5zJCmeyxZ+DtdE7XtpcXfZB4sMRnH0oWmxqp1pYt0xJQQCqcnN7l05TKXjzIHm8CtW6/wzFNf4Pata6QYuHXrFk998Rn2o/AHv+ebONhc4RPP/xYvPP8yq9UpZ6cjhZ6jKw9Q4yH7epvu8H4u3TOwv36bV1475vrNgbFmXnxly2u3nuR0d8bJ6TE3rl/nxo3rxNoR65EJPp2ppG2dCBFWmxUEYT8M7PaFqSRiyKSgQjExJxD1v13KjAQImSIdIXRIWBHzhq5fk1PfhCQU79daNRNm69W3VbTBVNCGPj2vaIIBtdWXQ7BcsdVwPX7Ta6zfK7tXX+bgzY9w+szTTNPY6k7B+JBKiZw0bhCtsdVqfL0i1GmAoBhJDZByZBpHYgzsT25Sv/yc8q+s66NUFbn2TjnlQRVby5UQO4Z9sUEYHjOLDW+rDIPH0KnhuR5HvvWH/xLP/tT/F6bRfh9JSYWLz4kDsLgQYM2ElTpVStC9F3NWYRuppODNZJ0O0opdux/BGlFjqIRgIpWOi5uIEtzJOf+9P1S8COPr6f+iYyBNfDbOg5edV2i+pQ0xMbs+1Wm2i55zLb63xWcNS8T5/UJ0jp09bE6dW82pcXCXtq9az8CSu2uiRrUW5SJYvdz5CzEEQnI7bqeE59qOMSw6tuz5LPEHZh+n9jpwVxz58tBzbx4IMuEhVqt9OQZdNe/zeE55Jlo3qe2zVsTi7Oh1r5iIsepAJua6n3Jb5FycpDVi/9nf3P69aBZeHv4RG3ylF0t/afzQxsnyPLVhHXPPxrUp8mtnKw4Z+M1dx3vzsdkvrVU7kOj4SFsvi/4fr8N4HdLr4hLMtiFt3UbPN+OixnKBDhVkufO8pP232SSBW2/7Di6/9nny2auN37L83hq+xRoBq4o6aW1A1+y5sgbOEaY1tnru7T1X+t6iPQxZ6wKpVGpyvoC09TSLdiz2qKfIhiEHE4UT23EpBh18aU90YfFq18X5cq0RG5pAR7a4rHPxjmBL0oR+gu1PKdX2fzWbLdpXtbjsbQuH5e1wrtJCTMptmugelKBie8sB8uJBKZYTpqTxYzDFBsMoo3FmkhYSqDXYOautGkshllHPm6A17aDDUqdpUvsWEjLuqV73T4matJ7S+lCqDnqvVO3NqRPBejhy1H2SU6TLGtvn5MIIGv/aWXHj6mPcOHxY79E4cPDqF+16ogpiosNJwgUDGFvuRFjo4Lig1IIVEZh/xgXH9Jnx+gvUh99F9/wTC0FAY3GL5VK27iQEE5kSwy21RrdccMtc641KjfYgvJnW4x/tQ6H5SH1VFdwXCedtxuK/s2/UT+brvXFZF0bBc45aTVDNH+9ON8y2qTa/6R9P5vdt+c98OL/WA54QmIUA31AscvZVmpPqsMFSitXzMzlmUppMYCrRpUTJmey5Tqpkfw9VHW9CRUFiu/fzlabFMcv1sMSEY4zN14X5spy7kcHWwjKw9jyvLGx1E61rbxEW9T59rXqHDXpjL/17d8y1Jdsxoc4YbhNs8mFRhu1lF2dKJujsSLGtKVxoyveirVXDH/G4xmIb1ztaJjEelc0Ygf3dhZPOYQP6YD9Xz/+9F0eq1scVptdY10WzdBjTXC9vAlPGE1FBLesxXHCH/TCkcvYvJvTTej714vrVJknlvbc/zdOrh3n09pMtXmr7yDbo/E4zDhOENxg85PGqy2dozJD8OU4Js1iK6DEmi0FcHjCHtlXcVizfRffXoodIP1yL7bFzdJs5N/LbvyNNQGeuoc2xp4Dlk97pziIu4pzQlATta3ShKeVRlsYnvkhHGQdqVL58lwKbVWbYdMDEgDCJ8s5z0DV3uFlzdHjA0eEhm82Go6d+3USZZ97nUPaLQY4+/C/Nli8YxlgnxmlkP0wqLLXfM0wTpQrDOCrfbRx1ONLNV5luvUYE4zNPUAPDfs/ulS9x8I73s3vxKYbdTjEF8zMp96y+/Yfpbr4I3/iH6T72cwTzecM0MiEMQegSFrcIddhTpkHjkEX/n/pi8+6i5+E5oqTApTjwpXjEYTmmj5C7nvVqYlivOT3N1HLGfjcwDHvFadd71psNfa814hBmXDBQqSmSBaul6OG2PixtiYjVYr2/ymswWn9p4qJToXgBICw30WJNBs1w9A2T+eF5gDmGjyyvg1TvATKc2UWXnR8ZXbdh5girKGNosYxzA0qtbV+pyI/vUN3N3rfvz9He6NBwxmEYzLBcrMO0elRglUBSEsti3swci9UWR2pI8/ALH+HlB9/Lw9e/AF3GGH6A5aPBavTOrWoiUy5sONc3ZxGbOWprA1qtztowLqkmkhSU2+oBbOtQsldq+ctcb8ZtscXGjlPrUwKp1QVjw9araCWmqYksYrdl7VZ9Kbjlb3EMdm5h/kw6xMjxe/dbfq3hI/1bkRr4lfQWvrM+xaHszUcuerbbsB/NsxovfXnIkuvnmBTKJUOXpHJybICOx1uVlpt67be217C40deCLISI7OIGwRrU7doKBKrW/0Bj0WDX3j6PcrT0GR6TuDMOAV07KRGz1/BDGw6XZK41XjBXNsfSi+hOcWr1xVCa31HentUQl/GdHR4nCYaLBSwnMx5koMUrhJkvi9nOtn7tNeYwcdHntYjXHfdo4drrzoUWK7VevhAsNg5I0D7pHHP7is4bjPN+9T1Zqlg/l9bzZDqFg4EiEM5uz/0ajdMALZ6azwzP2JSDiWG2Tvuar8mdMR4BYhWrUwsUFZmqVYxnvRDIAuMeW65q2GAwu6f1csczC7UmEy2vi7xL8x0Vj2OB7S7toceFiwsutNwhYPmG97l6novHM6KCsXVRswvCm576VW4/+B4uP/9J9b8CEqvh+y3FbZhXO5vzS/J3PP4JhKYMYKiV2kSUFn9c/tMNLncUIQ04JdAM7/lmRkvfg5txu5gLIM8T4XkRGWg/wxsY25gGjIssznEB9uNFFksSRRfkrPRs77C4mu08wtz510ytLM5sWaQUT0K9kQyWDYmtCGvNYD6lGhbqb8FlE0I7V1l8gtBWgv/GU7jZYc2n7O/X8iNC0Maxvuvo+xWr1Yp+vSKEwDQquJcCHN14htP7v5q7n/8oSKRMooCeKIk7v/KkkuVChqQCGanrmKSy3+4pJ1sO9hOXyicZr1wmrw7YhMAwjVRgKiPbYSSkvU66zx0xVVKdvyowDiNXjj/Hs1ffRv3oT7Ef9hpALApBeqGV4PH6/TBv4ItybG26lUijhzNPGK8WKFgxRgAJvJ1junHgUY4ZB5iCEqTwEKAFDPa6Hmx4Yoo2Uglzwd7NWkuOwYDl2XkEaFe14sHoHKTNr0MDo79Cm+SbvCUs8/nPRT0PGkFaoPq6l/FzERbnF3hH2PGlW4VHym1OR/tIhHP7XsVRsKvjBC4Ff6ROKtQx7injQJkGap2QUtoVk1qZyqjJjDkBb8a+Or7KXrThM8SkSYgEDuUTvHzfu3nwxU8wbE8p1qwyTSPX73qck3RE7a6yPz1mde1pbZwoE2MpdC+/zOnt64TnPsbJMDAOo06gLiM5FLpYWaXEJves+xWrrmeVO7I15ulaEyQIL732Gtdu3qQIjLUyWoCR7n0zR9/0g9z6tf+Wg/VahaZy1iZ3EaT61BwTmrqDNHRRjiX53NeXW02x4MCDLgLWDGbJhfspC7yYRi5f+wK3Hng3D7/wIXXmQWzSbrTg15Pb0kh/QRxU1J3mMm4KnJVGJhK82CyACu4FldzE97gTc1kWfew/LZFafPal2dN9ZSS4GtReik0YqT4Baf5y4SkXQJhfQxXT50QtWdEHI4cbqNCAOkscTGhthuU1sF7+pr2V2F+jNuIRBYmJw6o+u1+tmtDUMA7shoHDky8xHR4x1cp+2DMWneA+dmuuvf07Ofytn6AWVczNmzUHmwMuHV1i3XdMfacNEaWy3W65dXzCMA5sVitiqHSrHpkmShHOtjsL8iJTp9M258blRSGaym635eT4Nie3bwLCa9/97/HQJ//f9F3GJ3QQZjKUwKIA2lJva4y6eIAF0OKruYrkYbBRFVysJIRGEEhoMK6iUg5M29+sqdbjN5+G00Lvhf339ejht4sStSZ1s1Xz7/ze3Jk9ebAPPplIFkH28khB74WKTMUZGCFocxpBGycWe7GV+2Ykp2VsAb3nYjCACjmxSMT9nM/Hp9GuhUjSSSiWfNdcySUrSJQ73csOuPl+NtsQ8GRybrhfEjGWiYeqlDCDQ+Hczm2N3U72qkHJWVMISkQ10xaq2Y9GCgsoES1ysF7haF5KkXS2Zz9NTEUBdD2NOhfygjac4I3nUiklqXibNw75+hAaaUrdv1jjk+hUxAypBlWarouY/gIcu/0pp6e3uX7rGvQdhzGy8s8cOwhZm2InUMI4BEmEGqCINftlE4/suOvKIZcOVqy7TDLbnEIk5g4sdhmnkTiOTHEiIQ00TtYIHVzARYTVONDv9lpoypmUlYiWc2a1WjWhqWEYCXlvgivoa/QdXROwWLFedQpSIwrgixbbYgr0q64l3wo6ZCXuubCjNV06SK6FsGzTy6PtyYWYrwEH7xqeR4sTuq7fNnyZz6wf4xuGpxhl5HZYcSOvuVzPeCVd5iG5wYe7txFD4EPdO/j28Qtcrae8i1f5cP8WvnZ4ln61UiGAUUzgNZ6Pd8Nc5PckLXpxMFihyIAVqYVYKu+8+Tkure7jTSfPt0aSKi6oYfmfrZnIHAu772iUy1Kb3W7FSGj3V6JP2MFslE3qrrHZj2DVOQeQnbTRBCVCnG0h4OOwNIW/eKSoVe6Y0HWkxAYHuhWH8KG3UiuP/+BfpJzc5q3/7L/EU3/rrzDevoZUYb/bMux3RDSHXq9U6LUaEWh3NjLudwy7Hbdv3VRxjaSyFzmpMEudKuNeJ9pGu4ltvZdCTCooFbrc4lPFEWyiJhajCwSJDmwAwo7Erx68lW+99nETmZrjFvDc6PVfflTPJWtFxlGLPGUipEgygU+d3BJIOWlzo4lZ67TrqRX9aqn0fdcaBaZp1Mmc00IUxnNgx39AG1rQiXKllIZvZCt0N8J8VnJWtMmFKrKh0xF6E5rq+p7cZTabDQebA3Lft2lNnQsGNTClNh+3bKK0VWGxNcxZ9RIwxH5nQGZY4DvGdl3iNPM1n+PJNp15iaP5GxHa3hd7Tli8x0U5mgCmT3g3ZEEBdCVUBCmNJJaC8XJdpEH0fvuESGImRhVQzLmHYIRzMdA7CPnFzyOpY8y9CjInXZcHX/wo0/F1Dl56qgmugdANp6xeeZpo63YmUXhjWCB3hp91PX3f0zehnDyL4BhRxw26MBMkixVGGpE5QGwFXMtQY2S1VjG0lYmwDYOJS+0HdvtRBaf2e3Z7nSQ/jsXsf7QpGhpLe5GK4GKGJnbghGOSYr0lU0tmKj0x6PVPKdoe7gwz7DkwYZqDgwMONhtWK51CrcUg3XNOTFE/M5NKXMizYTv+NxZbykJ0f7z7OG+wbtiLC354c4GgguEVy2tN4LHME5Ra0bkuCJqW93ux2mNe/d4AKnxvt9t6wfbXfPhKeuPzez1SI+d+788z6NEe8gZ5Eyxs2+uP137z77PuuoUv8QeHOUZIOgkrJ52Kl5ITro1I3ohQ0abo5RZjYM1InovEhvejTaHWtD2vPQ+15twyW/zi8rLnqIx+zsFfR9dcqZFaE6UWupqNsKMPVCJWbvtgSQIleLFdP7c3GbtPbM3GVSeBd53g4lBtgleshOAF9Okc7lBrNdxFKVROcmgELL9OyQWLAgQVtvwfXw38wOXMvV1ms1lxabtlu91xdHjAatWxXvWcnp1xuj1lu3OhqZFxKuzHkf2oRJzRmv7248g4hIarhJx51//u3+GV3/oV3vEj/yrP/p3/j4puiOOllRQCu+2W7dkpu9NT/b7bqghKvljkXhaitomZZIhIE1x1e1Klmn+ZCQs+SbLPmVXfk1M2Ye04i0q4j/eYWzQur1Yjwsk8QetHKlylE5dDTDMBx/Lctg9qtbiSlgeFuGjCjmqZQ9DGqZRdQNbsguFbtWGoFumYrf/6/sTMpr2H77ulbV3gfE3wefE6KiqfFns9ME3qL1JWopGICi2MU2E/jBwdv0oZ9nTbE05rYd/1pJyJqSPlzGfe9o1cefKTfOCBt/Dg5z7DydkZN2/e4Patm0z3P0K89yEOxoEy7bn96Q+TJihROH3iI9zzHX+UGx/6BeICz41+H6qoL0lOeqgN06tGYqpgWLD5Lvtvw4aDY54ZEGIoJkAlNjzGbHRYPnvGkTxG9Z+bnTu3Zg33cXyqxffLr4tzhCCt0aPZMGtCXAo0tNg+RXKI1nxoREyJ9Klrw1aCQArWZJu0npQCdI0QDEEsPhUTLAyxkQV9Dav4FI0sXS1PjL7fEM2L4mx7k4mk5JSbf7O7TgiJK6Fyd9ghdaXiTtXWRUzNZ6JojJa+S7GfVayFUHWtBKtF2JqJYuJYTlR0HLTLpFLJq55uHMmbNf3+gGGvBMlguVct2sQSjNSwJBKnNH+OWWAxNZECH2zkcXSIyTDfREjZCBwBscdrEWH2p37cGaGw+Iss9pSumzD/y/dLmJ+uz9Cmfn8fjc+rPwGfbOk1CZGAxMxH7v/9PLp9jt++9/fzLccfsWYIE1YIgdVqxeGlK6w2R/S5IwvIoI34ui8vGI4vgVgDpKQ9QtozpwIwAjEo/jZKYFuF0ylwNkUGyawpFEakTtrYZNR59wNE0TWM+Z+G58fWMOXnIA4Q13A+GQgBxIb0mG8s5n+cbyhBh8N4LJGC8PjpC3zm0lv4muOntbFXjNDW/JW9tQh1sn0RIlMQhMIkhbiO3P/wPdz/5qtIPOPGjWvszo6RaU9Cc6kkWqt4iwT6sOLuPnNpSHxN6vil25f5hkt72FfedxD4tWsHfOf9p4Qp8QfuSTxzGnn31cg4TjNu1q1w8pNjB7bCtB5gDZrjVPhPPvgq3/bQAX/1t6/zL773kl2TqnhjNO9ihGTPlcMKclLMNeWOECJn2y1HKZJXHf16Te47tXcBQkhMU6VbKen6772y4tHLI7908y38wfAc1D2kbLlZJQYhormVC5I3HMRBDhyWUj/vtZEqonRizweD7TvUD8asuXfKll8XFDsxQaqIkBqj4uIcwzAxVsWCiw1FELfdBGaZwFbkaEOd8h7OzgLbdeZwvaLPueFZcwVV6I9f5eozH6YA6fbLjbPRVtAiD9EwTvdgWR9y/A1/nO6lJzn72h+g/9yvEaYd5R3fBsfX4bf/PjLuie/7buS5T9P/kX8ZyT3yiV8kvue74NO/Ck/8Kml7k+mLn6DvO9gdEz7zj2BzRHztS3QpMRr2A+ozqREotM44EaLFJDEEes8PzVY07CXPDYI62Tk1352jf8Um9prMJ6WYzuWWLkQUQsBr7LNbmfNILNcKLV7WWFTtmWEBhHnP1sbUYm6GhsduPat1D78vbR84lvdGa9a9XjhXA5xxpflY4rQzPu/n5zF7WLzmubd4w8NbcljkmAFa/HXxjuQBEyFYHtRyoGQYm3ngINp0YDGHLsMKNjVdY/DaxEljqEiNSFVxz+C5OpGJQK3e3Dhj5ikIKVRyiOQopCQtvwrJ6iY5qEBemtef23qt/0yGgalgEqFiesYtziuT1dtDAlQIIsWOGE3QI2YCK2Lo6fKKLq9IqdcrIREp0YSpNY6NKInQh5q5+IJPa41orTsYPS004v88PCrGQA0uwA0pViZm7E9TkdrWKKXyyKnw5CF882kG9H7pPtb6k+aBHZAsn56IUUgJclZRMJGJMu0Zxr1xM0ZEBmBHLXumMi4GA2J2wYRRQ2/1gk7XS9Kmm5w6UuqJYUWgQwpMUqhhNHJxoTUzhALBa5FFOWNFByDVSTkJdRIVBrOvqdq06mBYgejAv6mOTBdMaGoYx+bPfZhPkLmG1LDbaiLvNuhKTEg9iFCsPn/uMHvlsbsuidqI797AKyiGPtWyqB3dITTVXtLPMc2YH7QBODVFrv6Ff5vTj32Awx/515n+1n+sw1RTYkJbm4JEoggTEKUSavKihFEQHHvULeDCqQCMI1ef+xRtJKwI+cbL1KsPaiP+jVcYh8FwHuHK0x+D3SmXXnyS0YTYz2U8Cxy1RVWtQxK+/HXfy71Pfpj+5AbPfNuf4srTH+Nz3/ZneMsv/Dc8/V1/kauf/xBP/b4f5pFf/lFAcaoaTey3Jk10UmzNIz49ukoi1jvqgu28bL+373PcOt+D1wtNuchUa27Am0Vk8QqON/l/sJj/Dt9pvJViQyRKqef+pnuq2J4z3mKdEBM84ILxPVabNWMZyRKpdSCnysnxdb704gsM+z1C5oXnX2K3G3nzo19NtzqgyJovPPkCv/nRz3N46RL3H93Nl6+/wNPPvMbz1z7EweETnJ0dE7tAFa1FnxwP3D7ZsR8q8uUdp/tBBSGoOgy4REoRYtVOoGiYh1QoZYTTPSlhWHZG0MeLKDO5qqOjEImx1+bIvAZWEDIx96RuQ+7XhnFrLF9DQbCm2Kr3DYoJPGmt0zn0tVSLnXWgl1TjZJoPznluQnPf5H+PwPETn6ScnnDyxS+0oY/q3ytRlOeqeYV+cBHlpDj3opY9AKXakIUUdG0Zb6PhgY5RtD1VLBoTizfAsZau17hV47ys522gqWKBugdEYouf3/an/yVOn/487/wL/zpf+O//U8WKQ6QG5ZapUOTMh21xJAGRoENRpWo9psukqDV2LF5WYRTn7kUP2QEbuhg1VwthFv0K/hmYuTYX6fB01LF4FzRKyYXUs+0Hz0UX9iYuavGGw6pomB5LAbDWqG4Yt+hm0jjKcpC5TsSCbysN02i8g8Xrt5oP1XjFZa4VUFWrw0Scm4iBh5muHuHxaMtG7TFBMZaRzI/vHuWfO1COlONjS4EAqfC2/oxE5U3dSGe2XOoib3GfUr0RUxZ70bhR3ghvvR/iQlMhEqL9XAuxxHPXTb/SuWvzO+Und+ZaLR87l//ZNbCHadnZ7m+ZG/HEfo/v6aocyUuTcF16Hgu3GMoeHKenNtGNEFxkbG7I1t/5tbc+ozsJXbJEN5q80p3p4AU6zF69QeNG2ysBjt/5HYQA197+neQv/gIHuxsz30jmOCEu66QxaaPsMg7wHFcW7xDijCn5c19nB7HarPYzVcl2T6XdW10Dcx7usa6d5Lx3Io3Hq2Xq0D5/lKChFgv8y0SanDeS4hxbpzA3ZysnstrwWO1DqZP6yFoKMlnMGG0nJ8cw2n9aVDXvd0/GFtwKq320va5dyYj7k/ZwwSuWXgurLVZT/kg2zpUKcQVd2zZQTh9cCZi4UDVMrOowAd+dsVgNwgZTSFK/pybDPr/1NogUsJ4UnWGh+yxlFeoKCoboPS1Fa6nmzA52N0lHbybWwuFwrD6gVnzIUaj2ehds4HOwJT/f29Ds/CKKZs4a3PcZzhWg+9xvUIdT+mc+bmt7kcfccXg8Ltawrvmf+v92bUWvl/jJec1J5p/bijRfo+IsKuYdoihG2MyG72VHsWxtL8oEizO844TtfO2iVKqtNa/z6YJe9qL63vBSV0ix+dF5QFM9tzdF7nhTBwiXn9tqk1Jnn1HFuE0mOukiDU3UxwWmYqKkREmZLtug0Kw9PFJE+zDt3efehNh4MeIxc7OXoeGDrRZptkKhH2l9AbrAZpvZYux2gcxkSODm9/3LHP7sXzFfV2l0FV8Lhh+6oEQbIO4xMudjnYtwBOudCwHzxbTYYykkkYIKBOpXUFzaBkMnz93tmkdmkam0wBCC+36pSAmGG3tcpj80PAD/g56nLO6R/tA+QNsWytnGzim2tSIuKOs2Es0hkolMx6WAln0p59YFfJzTNAu2lCo0skerSixzc+MV+zZcNPgkqTx++rTmdxLaUFzE6oriPmVeS6ENG9LXLyHy2+/6Id7/6b9r68t6TjDhDcdYPDdSYod+lhTPr/VmVBff7bktlvG9435T7LXNlzbeS/C4eL7nLXTxhSbncQyPXavb29linRfDsVinBs83XGSqUuukQxLLdPGEpvYDNWl/fxfhYNVTyhooRCnsjbfS58xmtTKRqQMbbhIYhpFxVKyx9X1Vix2AnDty7iwXjbb2AqWq/uswaC/hdj+w3e+YauXwR/4tzn7s/4WA8fSTDWaK2pNLZRwL01TYixCe+CAH3/4nOful/5Gy3xJEY6BVTqxSoHv5C/DY+zh66iOkvjeuSQRJBIrm4MH7tCyHi3pNXIDUj7rguKoQTyKZIOdbOCbVwtF4gz4JNXTU2rNardis1wzDlv1+h4wjYANlrbY2D/xU2xVCUt69zMMhl4cLP7WBFHHOz87lt6IRSAqRkPxz2Vpt/WPO9wHcfy1fz57fbE/UegRitdVRh19OdWK/27Mf9oo3i/ZJuMivc/LE7HjbQ9V5H8v8XvcaZhctSZv3YnXSxCIdqJVxnJAw/K+4Y/5nHsFEsUOcbY+4GHK1vjjlFRlryh0PCDz08qeUu6PREG7BlDPunKrQhHHbF9r/HB0TwH2a2/CZ9xsX9lZEiKJ4VzWxZYme46klX/Z5Iyi+VrG+mdBsosc6Sz5yhLbG8L/XgoSiQveYJoOLPXn8aq+hfCeNl5KtHcDWsV5nzZFsgAtRRZfEfbK+9kPjNT6+epxHyy160aqBi6G3PuwqrgZlHJ1ZcKfOH3++NO5ULF4WvCdILVrjIzaMkvYCjge1Kyea12psX60X3cSN0XssXgvE8wT9W+Mbmr9uvP0mpOkCSN5DRuOkqg3UmMWHFrqPLQEK4Y3M0u/p0TIIuxF6vmqri+8rqxEqLpvQtNI444vreC5m8lzK8qaGN3j8Pj8BLJ5Te6Q9LoLzevT6Vh/IKK5BMbVh6HUqi/xqtuHe40sTfpJG49CbqPv4i498Iw+dvcL9++vKefQ+9jBfD49NdAhbYZwm8u6Eu08/xtlYSTde0IHF5U59F8US3Cw1E4XlEeJC2X49ZI7bkg2JsT7WEGMTHSYoh6qY8JQE5yrOfekV78dKLc4L0esLzikRajVeW/IY0/j+1X2L5812fpoEzTm7+N70oE6f7yLzKc1CUynOzELnHVMjEh1rtDUShHte+jTFP3MMTQh1Dj5rsyP/pMdXzNIvKOEnOtnBLpDfrGfuegd91/FVx1+kRc42cVZv/vxFsIJDUGNd3SlFTzoaLGjJfWykBU+Am8GUhclz3yf+PHSB4Jp90k55Xpj6+3l6jQtUhfY/NwiLJxm+G9r7emtcaMs+tg3jTmw5TTwsjGdLiAjNUXnDhxdsaa/ePq2/0vxV50XZOoIbOGibDAU1aa9II1d1WUWm1usNm80Bm/WWHBNjGhmHQp87jm4+xd1hz2r3CqXvGUvRSVVTYRi1yWSqFWKgX204ODzk6NIRwzRxcrrlxo2bnJ5ugUjOHZvNhhgzh0eXIFTOTk+YxpFhPzF0E9NKqAVKhBEBm5c6DCOXX/scB889yfGXPmWFTEw9PzU1XxETcfEE7itZ7L9Hx8G6b47SC+4i0QIIFomlPsgLHu/jDOja3oquICgzKdoD46a2ipwPPnBDHBeCU3IuaW1G0QEkbE3a7zwwnwOKFlLRwA/OmQ1/YDsfmAMoWfxcmQs79hQ931C1MTLimfgikJqbVBYhLDFm3skIbNpjPYFRW+WPFSXoomrIBCHUipRECYFJqk5QQ5RslqR9MFVO7pqicPCiU5goEqgltCCuVKEQePD2M1ySgavbVwi9ijvUvjKVzKbe5rnVI6Sy595wCocbpqkylYlhmhinyPrGF9mtVuxEGKQyUvX6iJAR1jGwzpFNzvRdpjOiZcCnPuke3p2csj0+UeE3galCuHQfh9/5z7P7/K9z8O1/nvjhv0mooyZoFrjXosGIKjlrY/6s4nqxjnNN2f4dm2YpHhAYKDXpdObOkmpfg1OZSOOOu178OAcnr3Dp7GXqeg3BCbDWlI41EVfRpD/NQQe1anCeNIhuIkPVgOJW2HFbHjUg0pGQ+jcTaFyKqS1jBDwh8XthG99CB/Mm7lMs0DcRmrIsWtVZhEBTk0WQKQuwz5uV2wYP8/ShpI0kMczTtGa7sBSkmIOqZu9wpWAlQjk4mLue1VoJDF3XsSqVcZrYFG3CHq3Z8cY0MgwDNa946T0/xOrJf8T19/4g3W/8DVJOHB4dcfnyZW4/9vvop9tcvvYUiBLj98PAfhzY//F/h/LT/yHrVaZL2gxTx4lhP7LudZZztfsdAtYE64Q2NTG77Rm3b93k5s3rvPrH/iMee/LH+dzv+z/yLZ/5q4hMNvEg2xqzKXAxmpiRFRuTNeeAomEX7DjfODMnR3MKa4QKzgPywQN4y5Q8IQ9RJ79qs/ziyx4jDW2fA/QqTtJfEnS1iFRDhAbm1UZ4wM7DaygEE5QzOdx5G3nSp/tNCcEKzCf7nEhoa7YVXZdicIIRoCwSM9CivUlzJ8H8/Rz0+76ZCdMoIISSf2pQEpRjFkG735CaqMnEMYqr73qBywOC5Tn4dZPze9XBN5+QxnJ/ZrsVDhJ6M3+lxMQ0RUIoxDhRihYQJQQtooSIoEU2u2rELhMO1mgBXvf/2XZgO4xMpVIEiw9MUCcGJGqjL0HB35f/2L/PvT/+7xmR0MSmFkWWZAQfjTCrrVAlb3ddJLTJwBfn2O239LszTk9PWB+d0m02xNwrgdyr52J4jURb21n3lCjZO3faXLRer9gcbNhseiXCCwb+xEXzeWzNdTazWIsv3jjhsVTQKxlrJaaJ6MIfSUlqXdex6tfkLlshKTJOhcnWf4yQo4Lw676n73WirE4zt/UvSj7MSd9PQRBt2sPs5U++6fv4wVf/AbUmlIQYiDHRd4mu02nnKUaoXgycwW+3IS6CUkrhrbsXWI/HPDhd5wzo48Bd/RHX8mXeevY0O9nz5vFZPnr4NTy0e4k03mZP4eHwAiHteLhcbz5Ooib8c9zqS3H2d2LgukmoAUYoEWnxWi0aP7xp/6UZAHfhDQftHMC1+6MNFYt82XZ1yyTbfbR4OYSWFUesmTZFgmRijuRGRkHXS3CgJiwA5fPEOU8gXPxGm+nlnGDgRThyUiA7x2g+I5yLpUKMRGsaf/Ujv8zjf/Qvcu1jv8Z0dmyhVGUcB/a7LV0MSKdTjLqcqAHKJEyjEld3Ioz7nTVbaiFMJ9eZiIaYuEQ2AQECkrMWkxBCZw2+eBwVVDk+ZVL0pgkXp9TPsa/wc+uv5qtOnuUDV97DN730kRb3+r3xqQ7AeRwHvX8xzM3L/juxQrILQnlDSM46DVnQ2GgcR7ppolSfKq5fSgyf2r6uxeNPsYbx5qBBMDK5C+9oYbGU0YrdKoYbF4VvbSj37yo817kwkIkDdS5gshAKSnG2hwbvWo4IunfnGPt1PzcQcQEO+/WS+XEtlm5/088q8zvSCI6L/X6OhOGXRuZnsXjPi3QUm2yu5+qi1y7M4H9zn7wUYZhbMtVkadyoa6xT0bBOhaa0aCxM1QqHZbT1NBGHoTW5EwLdM59kkBk/SjHpFMasQmmdCRX6pGUVClAxj77v9KuJTHVNEMbJs63pHy3HFVEAu7QYq0J1EqKB5p7QBVSA0UQbdXp7YRwn9uPEbqeCU9vdnu1uYL/fMwyjDV60GNU+5zSNTFOx93ASo8ayMQbbv9OcD9ain9Wuse+X1GX6rlsITW3YtClIGOCj5x4tsVsWslphosW37eENPPfIU0SQorGrCkK5z5P5GtV5T9w4fBMv3f1Ovua5D8x7pi7zASNalIKUSb8WIlMedzciiDALSyz2lp76Mie4iMcyzvjdj7bk3vDx8oY/whLXtqii2oPueIqTjXzqzEwKcuJSNkFQ3Us+naM1CaeZdOdTf2cha/0Elr7N7yt2A6Pe02gxcmwxLW2NZsMrlrbTfc7C083b0uPrJMSaZlvcrsfsd17XRLDwqUsivCAt75pTMscWKzFWoCwKWC4yOk+gcTxT95H5ZP+cKdCmCRGsTy60f/+Xzw980z0r/ubL8C88cJmD9Yph2LMfBjarjhR1Mmyfg+YMUXknY81UUeximCYGE5za7wd2uz3bFBvhYD9OvPaPfpYH/8AP8czf+6+Z9vtzU3yTCFImxv2O3dkZZ9szttszdtsz9rutitxfoKOa/QiG/7SmS5jXruMai6k3c2NibESeLmVSzm3vRLebVsdxgQnHAZLADLvYvU1CCNnWc7TCrreXePHRbGpbL+Hc/opGiBdUuMMFflthGmi2RZh/H+YyVAgoTmBruC3qWs/ZU8+7XXxJtcY9nl0SF428aHEYUTTPtAEttQoxFbMzlaPtDR2+gE5IdlJQCJHDz/4mX37rN3DXp3+DG9df5Wy75ez0hGF3yvjS04Qrd+v5vPY86z5TkjBNMD71aW6Me7bPfY5V19GZH+y7ji5lI5PGRjBN7cubB4x0Y2iYE7bcwlRESZMhQkxtXyoDppho5kJQzgnKPimdssC4VDxH28s0h6shUr22eodYqtcd3VZdrCNAIx0vGreC2kyf0Im4qJH+LQWQGAidinfmtBB705DM9p821UYqOQg5QGwiU0ZUwGE5af4uLjDPGDVHngx71KbLpEJReBMmgKiQbZ/pesWKlfg2v05YxkzL3DMsrocJqAarN2iTrDcHR4IRiFRASAUHE5qcx0W+J7VCtFrWFOliIuaOfrVmGPeUUQWEqmhdQMlEHqPOeYvuRZtY5gK/2UXiUsvLcp5FpRzvjdaIKv6zrdHo72PHuTx86TeXvtrq+nNqtIgXaQ+bMRJUkJHFnx0H8RdqeyNEQkrUUHnHyZN87sq7eP/2M6z7lTYsVN1zXbdivTlifXhIt9ro/q9Qg9kh4cI1qaiPiJpv2/UKQCjo50oBkuo/TQL7UtlPkWEKFLOtMQVKMdHcO7AmCR6L2lqPwdYptEBMaPep1pm8541dIu7upIWZbg+0rlpYNnYWKTx88iJ9Gbh/d01rctgeNnKRv4xyNVTRrQRhQqyBpnD1rrt4+NEHSXni+muvcPv2DcK4I9bJzkGHB2nMlXgodeTQU0rHO3OmO9jz8Cohu8DXrGF998i7LkWomZ7Kuy51lHGkEsirFX3K+FAWvWK69oRJcfIqiNmnGCrf95YDfurJE/7sVx8YsXppK/VaBxJBEgET1kuR3HUmwJghBjYrEwk2sXBvIEm1RyqkbiJ3PV0pfNsDkZ/+cuIbrxzTn3Zsx8H8lp96IgSNVSOhCfL4YaWGNm3QItJWbxBv2xEQ8bmaivMuG8iXEAgYpUj8FS4W9uGYt+dBS3FYrWlIq2243ZccScXI7/vIdr9jnA4QWcRFKSE5m3CC0J9c01wiJUSi4gxWX9MQNDQb7lc8lpHD5z/F8SPvY/OJnyWe3SBOe9KLn0PuegB5/L3EZz9Jvf8vIfc/RvzgjxOGLdPv+2HSP/oJ8rrXWsFzn1afptEMnN6knt4gB22UKVZJ8An3qtaiZGas9pAMt08h0MXYYqdoolLZ4qxZkNjwmJTJlmckw/ezYZDug7I1xChxnVYHcMy7kZ29AbzFu95VBDNWbr+u0mydE7dnAvQbHEu76Ljfwj+FqAINv9sxY/yxBQYzdrh4qzuwW3+T2f8BIbReuPPPtc/qz/HY2+qsS8zgIh0hZmJ026b75PTK3bzw8Ft5zxe+aDULE8oMAqHOWETQPEqiipBoE6HmuikJMQhU5buImEhJKRQbLlRLmXGvdp21xqVNiJNxgQqRBFHUUgkzHqhMbcO9tTlGHJsKVpvWT8oiAZxrd6EjBRNFMrGpEDpEMjGsyfGQFA8JoSeEjEhgHApVRmvG0Kwh5sh6s1I7kdOcr4Zsghtqwym4lrWea4SUM7mgzT4pal04YTFgpUigyXpHFZqLxl1650nlyr7y4CTso/qzlCJdv255KtLhgyYCEKKo2FzOTWiq2iDAGCqlTkzTlmk6pVQdFFjFBhFZrTDEQAo9BBWAdWHLaNgtBK2nSKcfEs2jKoaZhnm6eoii17OO5pMX/JqiDdXaHCQmWgBjmZhqbSLC3ihTamGYLlijSljgSJ6PxajiZ7U2W6vDOjI1JajFmnP1nqX4Bh560bAKM1+JJtQszGnRzGNo/tRwYEPa9P9hJn63YSN4o6Xi29tf/ykOv+/PMf7yjxl2smjyb0Ruq8M1zpLVPJlxkXkbyOsNKrTf9ac3uPeLHwWpdGe3mz1+5lv/JA999Ge4/OXPN/K+iFBT5tnv+os8/g//q3OgiyD22fT5L3zt97K59SrPf9338chHfob7PvPrPP9138uDH/8HIMK9n/4VXn7vd/PgR37akh27nb7CF1jO+dPWPLhyp1jMjKM67uMYfvMf7hstLmv4quFBsrCTOG65vI7tssl502cF7eB48wIf8M/E4suxEL1Rur9DSq32cNGwxaO77uLk5CbbumN1ac3J9pTti4XXrh/zwANvIncbnnz2Bq9cP2UfKrkb+e3PfJDPf/5JvvTaqzzylkN2feC5m4FnrkF57Tpdd8J+GhAmYoTxbE8oASQQYkYCDKWDAGMV9lNiqsrJjkx0qxU5Ba3XThOpU5GP/TTANKLbvEOKxnfZ7HUImZA6BK3PifSk7oBuvaHvVnS5p+s6YoIQteGoimheJCo4ZWCi1YxhHMeGcRICUguTDxOpxu0MjsUb/1As1zP8UaDVffaf/bS+V5msQaMQZDRsxQbekBsua9JDSKhMFOM+2QCd4oLVjs8pzudCI5paqWCT1zprjbi4pRBbrAoeS9By4pBtdddoQgy6L2/+1q/x0Pf+MC//6s/R5U6RMxNQ80gu567tERfACiGSs2KPsapNKVNA4aGIilXOg7ClqhBZ46Mtdm0Ise3XYDayes36n8K++Sc5Zi7iXKuJJgoQTQQ9pkyIadGstLAqVntxHLeUcn4I1AyEKAZo2JdXt90/NbEhoAj8zf3D/Ln+Sw07F7wxLFrOLOfyx4DnMuaIRAhJiOJNpC6EAW4Ll7gZwT/VbM+xe10J/De7t/Ndq1f50e2j/Lmj5+0xxk+GWTwCeKzf4rm7HmbjbQvPdYDaeEJPjEfcKB2/f3PT/Fq0xytm4/1DoDxP6hvV1TQf/p2OO3Ht5Wr03O2NHzuLC4nn7i40VWoT23HxOIAolXfJjlMS97Jv5xejChv4/ZhjicX72/0TsVo9Vp+v51s+3ekuehHVRvyOV+D38rAzF+3dEA82UMvhFmr90mc4/qrv5vD6U8TdSattzjWPpSilLGrynkfNe3EZR7Y7bbVTsXun5ySvu/cxnc+bHSvXgZaFGm2QlSxfnBbLeH48v65h0xKaTcwxmeh+aHibDlvqGu/Va0bBz8EGZE3TyDgMjMPANNiA86KNx23jOchmUanzhj3nb+ZsETuxtAmOTbTrb5xoj3LrggfmMbYjtHYezl33z6J4rwlFdYlaE3VSMWKL7s1Ho/XNFsmrCkQpQglayy5W+xBcsNSzBfW5ZdLabMT7LUysJ+fmx3A7WivYQKij8YTHXvu0xjfTKUNKjFNp3IJoMUWIv7Ot+b04wuI/7pGdudZidO74cpPT8qRA9+wnzK/7Eef8YPEcP9zX1wohqD2s87InBOvnQvsmQzBUI3hIZ2tGPN+ZxaaUF9U+WPMBNMzYT1HjkPPcIV/JxquwDnyPsAQVJqt+dss8ssx8Ic8ndUit4oUSZ/zWef9+zaSd3+JeNPBbBSH9/ZrIlHGStN8h8Hx3D1/s7uJbymfIKVFiVJGplJnSRE6ZkpRf3+XcuCAad7esyHDP5VC2oPuvQjUBKbevjRe8TACDcmKqcfSX3GIPNdontUUmwLU/9m9y+OGf5OQH/w0u/dR/rHbD4ma9TuqoYlt3fo9nHPSN8Mzf88P3RXDxs9DiJL3P2vsX7SshhkkHsuEHPhwhmLVsPSTBxDn8TjjPumr/ikhqUXYI/tb+/v6znqZjtbPYhT/HcU6Lec7l/XZvEq0XwJvgfcf49xAjMSflynZW101aw61oi1IIAkVF+Kvv6aT9yM2OiFgM5aLruhfKVI0XLOdckn4FZuUEmnhFtL0joEKUEcP34Nff92d4x7O/wYff+yN84yd/rMV+QYph9QFRKeQ5Fo+BaMPMQlrUncJ8KhaZ6+vdGT+6jVq4CV0j9vMdfjeKzKIdfs09vnGxqebvlgNng1+K+Xd+fg7IEGw/mYCrCW2rAP/F2mPTOKBgsdZv1n2m1BW1jMg0GjcDVn1ms+rYbFas1ytSsr6QabQ1tRCyb9cahnEixUF5sSY0VYowFWEYC8MwshuUwzaOe6785f+Ak1/8UY7+5L/N8OP/T62B9jq8Th5+F/tL97L7yP9EGQcYJ8I0cfkH/1XOfvl/4PL3/wvsf/qvkKn0Xc+6X7Fe9ayvPc0qF1bblwmXDpCmg2AcL5mQYtjxNFEG1SyQooJVTThQUC7XVKmxElIl99oXmYzP+Eg5ZcpQY9cwhmEcODg8YJr2TNOA98s45yUGWu0s+9CwiFosiXPeucRD4yw0pYcaqSXWAIYjLnJXwHpbF7fKcoJWFY4u+mx8uTjz5pLXqqtQbUC1x8bDNLHdnbKbBkBaX4BU82nWEwdaW67VY2bPu+2c3N7GYHXLhS1wP+65n8XzxECpwjhOTBeslwyAMM3xgFSKjIxlREygNVKVQ+W+Pjhbp/qdxSu6ihLob6Mw2zK1xooTSNQYG40oY1zoUeD+0LpEXajFHR3qT8Ri9pl7ZaItpSDQejyiPa9an4jXXRSH8jhW4w3vVUmLdeyxcC2VVCaGOFL2e0SEqQwU68tqvsdqyo0/acH2Mr7C3tNFpqJEhVBEFPRJEYnw0HSLVXiWe+PAKkIIGe1LVcxtkolaRmvW15iv9ZTYIcx6VH4uLffFcCtcxwR3xq0fx4XYlnVij22DvVc0PCSaKHi0+LAixvuf94eK6sx8wzn6sL1uft/dezIRIBV+n3lggWIxE2TDUrX1SFQgk4u2z7R26ENGlePhwzC09zSI+qoUtAYhxi0nRovlZ2Elva9i5RPX5VnW4iohWu+jZ8PGnXJ8skwquOfCVG3Ypa3XMpnGyziavoMN4fC1Hp2bU81eSsuRwNab9b48/fD76WPgi296DwfXP8N95Xbj8IPZTmiD17330vtc0u5V+t2ecZoaLq8QwsxT9VqT26hZTMm1SsyOW05BAJL3FJn/suGXLgBPKGr3qnJGCfr3aPzFCnpNgqiQk4Hzcx59Pjdq9yjQBi+MpRhnzXUR5rh4/jkscBjLUe272D1JMdjQNRsqbHlWE0a3vdzqtPY1VdVjWsaki1XWcLQ5j57xx3/c8RULTeWus2mElalWplLUWAAv3PV2Tg/uIQJPXXqMt50+QzASgSqy2eJFgQIJ0oJtLw4TgpJJA6bwVzXRMdChlrkI3fCmMF/8EIMqJFvwH2R2fe3hzOI8zbgFNUoxq5jWElC7c1JAu6SLZA7RxRdlNsaeLPim8fONwYV4rMjawDh9QBMKCaha8Z2foTmG86s2ALG2MI6QTCyoBXji2ZcurjS/Xpu6O1WqBLpuzaWjK+zv2hODNoIO+z2np2fmOCOcvkzBmjub4SmEAGdf98fon/8461vPc9fVK1y6cpX1es3pbqek+VLZbXdsT86QCleuXCa86W3cvO8R7nv655l2O/bjxDQW9tuRbR7IsadLGfKKKpFhnHjt+jHXbtxmeu019qNQ8aBAi6NuIJYw0lJsaqlUeVGOy5c2Fswa8C3muCW0ppRz5OqlMZDY9kQMqQUPbfqXmS41GZ6cAhJY0tiWhQuHx8/n9aHV9n2NLdWy/Wf8+RJm0K+dny1fT/Zk0TAo0ibiySKD16R5dkRu7AhFFdujnemCBAQRiSawoWdIY762XbcEUD14tscGM6wumocQZKKMI2XYM+bINEamMVmwGgzYCNbMqoUIMZXHUC1ZnAbqOFDKwFgqeyOcxhi5Mr5GXHWzGFHw6wj3jc9AnUiXVkwHHdNYmtDUMI3sdju2ux1nObMfe6ZpItRCKHuijCrcsF6zWW20gTqkFsSXaWK7E3ZbJcrFauUDQftVjq8zfeRnOfiWP8z6g3+dw3XPemUq0DXoNI2qoaIECDma4MrFOpYgioM3i7/OIHlba2Y7hBbc+jOKAcJBJg6OX6CmPPsocXVkb/CxNzSfgWgQh60NTFgqJNsziCbwmPMPmtyTlEhQjVR8jogVaGtfxJqUoAUgLVOWOWku/nmCTvRrBTwD16urmFrA14owMPuvlly735x9nz6sRVQaLC+B69/haI1k3nxlAJoWWVXES6zInqtQaw9owSfXStdlpqmQQ2Bv53nl0mX6fsUwjtz31G/w0lu/lcMP/2261ZqDgwMuX73MrUe/icuHlzjuHqKnsBkG9Venp5z88L9P+sW/xu0f/r+T/s6/SyC14kNAG5aXAgFO2gBPeJWQs9tt2Z6dMOy2PPSRv8qXvv3f4Bs+99dbU55OEwjND7SGrxgXe9Zjh68s0PunfbRkdvlvswYzzUU/j2qPq0J6+0whnvucMboAlX33wl50MSoDEtp70faUbgyTSgku8OdNir4/a1N5DSHODZEaWejrNR/sm+1Ov2eAUgjNZvjfXayjBfFV2p7V1xa8QOVeKfleDlbMlfnKhTA3PIV2KqElHx5/qiXRxyPa+NFELuqdQMIsXNGmpIuY6N0dKsbVG54tnsdjKp9Gbh/L7EiJlRqLijnEBGEkTgpE1jJSi8VsJgZRjMwhodDFTOw7uqDTdP0qiVR2FtMXC4vapNOiiWGKkS//qf+Ae3/xr/LKn/oPued//D81u9vEh6yQIASK+W2frpQC9F0iJqHUi9UMtt/v2O93bHdb9vs906jE8FBKq+zqBCDA7GYjN4XaxP/6vmezWbPqexXQQMgCqYa2BwF+OT3Kg3KTx7n2uti5ESpEtFhjsSso6JZzh/S6gHSChArg1CjkqsV+KRNFaGKCOSX6nOliVtAPCGJ21sUiRMXjpBQoVZd4CPzYPX+I7779EX7igT/Cn7r284AVw2Kkt4ZgJaFHqDahJcygIuj6mqbUBG+maeTB8TpT9QbLkbcNX+RhEutyypkIaznjvduPsJE9A4XJ3vO+8CKjk5GbbfEc1AMLL6LNPri2/SjnvuZJaucblJofFo9ZtHjZmruXU1QaMVfXBw0Umf3KuaYU0eemECCq4FGWmVjnBJloeWV0u2NH8PzX4wQDvDzGVdLRxfJnfcoggSkZKG2kVm+az0ZEDCJsX3qOp/7Of8l46zXwRgARxnFku91yuFmz7nuODg+4dOlI10Et7Pc7JbH4BASEOk028ViLgVIKRXT6aBJrqApRp7NFtXPeWDE3YiVyl1n1PX3Xk2NuwrIef4Zx4uvHp/jQ5nG+6eXfmmO8FseA2w6gkekd72rr7Y773KZ1tnxSCMEnpKjvVrGazFTn92wFZp9aW03o1KbR+HQRZR3quQVCa7Ifx4lpHJlsOs/cbEP72X1xmw5mglI5Z7q+t2npsxCqNhRb4SHM02NEQssT/Hq2iTmGByHz1wz02bSGc/u14gKL876eY0gXe8SukZOR3Wc7VjCX/y1caaIUtscu4DGJEsAq1dxWhTppQ7sJ/S1zsVl0yhENuPnn/zMu/7f/GilrUXVzcEDfr+j6XvNbgVIq+1FFmcZJm3ZqKVRGQkiGJ8aW1xB8Sk6k64OKM/e9ikn0PSknE9OzJpScWK1686NdKzJJhVoq01QJUadOfvq054unPd9cbzGMOm27YnlPjITsILbTTERJViKkLpI7L56pIHWpME4qwL7bj+y2JjQ1DOwHFYKfytygLSKMEabozcvqH3MTzUpNLDhgAgvW4JWT7lsX1ApZC7z9SgUrV6uebpVJObbdr//1fTD7E1/P7q+ieMyrwroVnaismhkyC0wVi1lNIKO6WJmJXFMKx5t7ePKhb+aem8/wmTf/ft7x7K+eJ4qBxoHTSJlGpmGkjKM1FMi5x0VmQgy2z+uieqA2T4XHZhGJi3UskI/f/fyEN7QUcudP5rv18HjBY4jg5nn29/7sRQxTalUhAxwj0Ce5fe5yR9/1Rh7QyWEuAJhNrKI9NfjeDbO9OFcgleaHgjeJySwK5d9jdKGd2LC3pa2eyT6LDxXmtvhkohGtSTmc/7fjetHIaXNzxvlrhOhjtCgU25eLXTaBFPu81esyRe2J++UWzRle5Ncq2IVrhbkWk2o59E+8ecVfe3rLjzy84Z51pU4rJTSPIzlAnfZIGaFO1GkE0SnvBRWxrcBUK/txZLffs9vtOOsSXQp0KdLlQN7tOPvCx3n25ec5ffFZKpCrkSGTxRwilEnFOvfbM3Znp2xNcOqi7bMyjU3sBxFrhNecokuJLx8+zu2jy7wn3SCnTGfiu5UKEWrUyUaaAwVyWy+Ohft0wtoaDzWdCzax2O2W1zxsQmW0Rk9rVnLiWzGx2prUtmJYUzJReMetQrS4VCKlqqiNY1sNfozeeBxaU1ew/S/V8QbNnWSySctFhTJ0iI1j7BrzBmwybIrkLuvUweTNIxonFqkqLGm4fnD8P2ojWE+nJP4cGbukftbiSq+NHNw85f4nbhNvvMp22DENO6TuSWEi73aMn/o16jTR7Y+Jq0yZoKZI7RLllee4tNmQbJJn32X6vme96tmsViaUnFj1HZtO/70yMaocIzlgPrYYwaAYNqH3WqdFZ6rVdOZqVmyEzSqKRU9F6wEqIDlqba5OxBoaZhWtnpRCghSQSTT+KkooqFPRHK9NXM3UVF+/0H8vj5Y/L+xpw7ftKonHh4rfRRQSacTeGMnJyFDieFWg3vso01d/J5tf++8IIZKjkLChGcFQy2BDJMw2JxOniqhgi5O0RbcJVRaCUTmpGU4+CVdU7HvVqRhTmnM6J2F745ueoX0FXw2WY+sv9a/RxJmgraMAKvzieYAEa7YIuBi8i1t4o655M1Y1U1crumllor8akyuJb2r5C2VS3AwXmkoqWhPm/CraJMycukYMcuzW8f2Ggfpk2nN+1s7L6wvi5zz7b/21kj5kEX+c8/MyUyTmXM1r9EsyihMyYiOlNTGSGJEEOVQe2L/G0e2Pc1/a0+UOEcVtUwrk1Zp+vSZ1PdjUU3ECW4wau140R2a8AG+ms9ZeSpiJY06WmmplqsEEW/Xaa0NUmmvF0OIWDzPOQz1+70KL1e5sBFw2aekjF/jD4kjJ6t/eUGs+rYqSru7fXZtxM3w9BHwojmDkLcPe9bMLoUscbHoefOBe7r58iZPb17n28ouMw5ZcJ3ItZsldvE8xgpQ6un5F7Dpi7nhz3lO2K0qK1Bx566ogk9avJAQmGSkRQu7IKeuU0KB7Wu+Cx6Va01CsHgPBK++7p+O+7ogHj0IT8A7tetEw7xyy7VPNXVPXQc4tpu/XK+/8sByzomGK2twcVWwYER45rPyzDxZWe7g9dux2KiaSu0xFY/w6mVh71NcRu67i68zxilrOxcrBmK3z0IzzuFQ8t07E4gDHVRekxAtWjNYU1jkGWGyeWn2iilr4Nj82qL7bJJWhCLtpUEH1yW2u5sxSM5KFSUQHauC4XUQMQyyOC7EQ6/T8Fgi1sHnxCbj2LOH4VSTA+umPIO86ou7OyDefZ/+9/xLdR3+K6Q/8WfL1F4int8i/9jfh2vNIn7UpxBqta/KmftR2BxWpJUeSJKrAlX/u3+X2T/5n1OOb+nlQkUclt2dr7A8q8hNjI7qnqAJUOUW61sRo0ylxn3ke80tNgF9/9smogdBEjVsTVPPBodmshotbfbYdZjfm34QWr57LoD2F9thYEzCDRDR3O58vzryb9hpvsKY0z1tg9su/2T72fLG9v/vQljv7C8nyVe0nt72LnMTiLd7AFl+EY6rCZLgyBLaXLvPqO9/N/a+8wufe8U7e/eQzVntuUaA1/8cWVoWYIPUEawyMWKzORKQjxgx0eu/CaJwtjAZdzfY4Xut4Ba32EYx9GMXycANwxWp3ZiQRmSxn1/P0Jkw9zCdIALGoN3ak0JPSipxWpNQTYk8ggWRi6EnxgBDWiGS9/xVGmZiGyjAK06Qn3K17Yo70q97WLdTWyBiVq1mUhGun03A9X0rL/aSCcOpykokyhQCFEWHG/5MUHthWxjA1wS4C5MVLxxRU9MM4AjFqk3aXMzmGFqPqewtVCqXsGcvWhKZGw5md7FvsdfQ1kWBUHbuHRbErRAW4XBQvgL4WzJxXqZRpotRR/bHletXq6mLDCKUKMlnzdFXy+STFGgRm3m1FGMv+f9U98096uOifNoy4QJtlEFbfrV1H6XpqbxwzoISx4RpvpG53jhML2nQVAqaF07D1Bka+QczYarq+b7yJ5A7bntqaDMgLTzL+3F8nXXuR1OWGiXuen6zpLWXNBV3IO3mO6PWJMMdcrzfY0hplAPqzW/ZbffzT3/oj3PX0x3jmO/4sj//SXyfut7rvQuCLf/h/z4Mf/Ame+t5/kbf+/b+mz7O889rb309MmXu/+FHuf/LDfOnrv597n/5tuuGMfnuLs3sf5ejVZwHh6NVneebeRzh47TmGK/fx8vu/n8c/8KMzX6XFUv59efriN+gc5rtEM5vIePObtL82v7Osg/kFcHux+K+/pT+nPc5fe35XXPqwMgtMt0FxLZ4KVBNh1tgqU3wN1NQEeS7Kcenu+5EucvP4GjfOznhkvSGuLhN6eP6VHS+98iJPP3fM8cnEp576Aq++9ho3rt9gux+pm0Ne/fyrxCdvMuwDff8AMXdsy8Ru3Ko9kYLUwDrEJphSTdANAl/zr/xf+dR/959QTm6r3U567QoFiZXUJWICJFILjNNEqpnESu9NhBIDEhNd7iH2gAr3pLxmdXiZ9eqAfrXSOnVA0WQRHeYzqc2cJhPSsBwgUJkmjZ0c29QmesVGqwiEMjdZiWZROSrzrDZkjYYfObekeg3S6ksRFdpGhBqUP5Yira4rtfL2f+X/wmf/2v+DaRooVouWUqkyKTyT5phumaNitrOt8aCDSfVPmRBye1w1cWERjy/t9DHwSAJTFW4880V2f/dHGa690naHl9tmwYZ5gxrDEvWxolydmJEaGKdJxS8lkWOH42/Or5Y6KTJ5LrF3m2EMwGQT00N4vTm8AIeLMnjNb8kHb01LRiFvNhGzLx53Q8Onpmk8J4zjf4/ul5S8oSvQMXPc3upj//NbD/Injm7w358+xl8+eslqPTNW1xorRZrNCiJNEBV8kGZtGEe0xyggOA8oYP4Ei5/nGlIIkEPgj6y/zN/bP8yfOXih1bNCwATEw1yuOPc63FFLw8EWi22Vx/+FYcPnxgOupMJv7i7zTevb2qEQlBWZHC80O34ul5IlbiSE8JWtst8Za2q/MV++EIoTtHG0VAvPnaPhOJfHJRoLHEThKBZiVAE9jZMW9eWwEOlc5HDze77ulO7gknmXx3w9Zqz8oh3ug6viNU6xBRYOne7kNa5+7h/QjWeEMlBTpPFumFOM9jnb/faa5+vvoyFhi3jF8/BC9fjENVgWMaLbXl0HYo8VUtZ+j6nq0MAaZF4PbR3o68UWo+q+Ey1KKA6REyF7fctiZxMQcN5RG+AkJg4xqn/SRlAdqlzasH/wU+cAAQAASURBVCxp74u4PTtv8ed1Hs6teQ+vICwEMDC7NtfA1ZipLSQsRD3bOvZXnHnJbU/IHF/pECmNpWtOhJqRFFgKuSnEYHya6gIZWtuoxXICbI8aahYarqL3N4CJS+mQtC5nctcZR86Gw3nty3DkGCOH0ynTNDGAYlpW+0CkYd1y0QBGsw8zDmaYloQ3sIuL9a1PbQ3cLgLga2Gu0CzEptpq8c2I1gfq7BOTxZISYhPgUV6RCY0tFFfmvhJ7VanUqj7Tee3nbbTld8sv38TYerYm/mLrpokD+pdUjTcXa7RxVdy3LrEyFxDAAiqRxks+O7yPpx//Lt7zqb/d+LEIc84Z533dYowlJlelCU29kq7w0e5RHhyv85ubd/AN+yfUFiQXnvPBXV67VyxUYtaBMbbvhNAGvERrRHbOjPNJvB9gHqrs+9nvrmLVkUCVYAM5aPe42YnqnB5dB5c+8KPc/u6/zOE//Gvt+mmUGXWoJOGczWjxsL3PbLUv1qF8A7ENE/XzL2JBx+1CVdH05F8WR7lYtdeP3d43YUFsrfkCtn4xqbMgrWe0TfjI/URcxEmGITWftPRttmYCYvwD4+qiWBnoPQwxKKa/EEnxEavYekw2SDZmE/tF6xxtb6A9XZJo9YAUQ7tkiq3ZGiy6T4sNKa/Wf34OU/Qe7RrOuRe3dc34icduWgd839O/zMfe9j183Wd/ahGnWkwi3v8x+3siKi6VXIQgtmss4pGXYqJzxNcSudleNRxo8Tsx3BeP2ewVrK/Me+bneKcxYdEamotM1YWolOa11TnBYV6TAYvTxfHoiSKKT07TOJ/3BTli0XpRjJUUhC5F1l1CNj05CWXqiSHSdx2rrmO93tB3HVKxQcXqr32QG8x1IREoMmnOF1WvwIWmxqmwHwrDqANZq3FLt3/vr3D4I/8H4s/9Va4cbFhtNqzWa8qb3sbZo1/H+vg1uvd/L91H/z77biCESPfxnyd911/g4Ilf4u67r7LuO1b9ilXX29DzRF9vEy4f4pWeECpBlCtey0iZBuo0Mg2BoU6EmiBoLSxHG2AoqKBPEcPihUQwoeSMLFanDlcICB3rVc94sKaWQ4SigiK1Nv5aToFsvL0UfaiN55+Ki3t+P3PqUxPvWnLa22HPc/87H0H9h9kPCUH7TQKEYENhUmxDQ6IJfvh5paC9ckI1brBQpqr90uPIOCoeExImJKd7XIdYW58HYuIld+yF4GbB7Ir1OJ1cfYTrD30tj3/2Z/Aant7D0ETqQlBBrdF4bxfuCJNd+mj3xIdvTKpvgd5z50+lqD2KamIXrBmx/jO3OUHrzsFjPe9fTmm218ldaGyxQTD/H+74qWFHGjTZuc9xiA8KEZiH2xmuUmsgTmq3q2NtMueC2Jr2gYNtkJXHx2GikgjTpPGt9aMVEycTogpDBhuWa7FW9KsTausb1145tG4m0VxOc2DEKjrMjcj94bYOAiOr5wjgiiWYoOg8fLni5AGNWzknONjiZPx2FQ9fW45FmP8NKDdhwZGZe9YcozAhOFHhX4LxOINhEh7AoZ8xhqpDSx1HQd/3s9/xr/HOX/8rdg+kuXjF6BWnb+FVnHGpiA0SczwuXDztAZhthw+PVBuoIlOTVYv1M84fVPtSlQcdbW15QOypuZy7jkKIlViLxmXVszOLyRe4kK4ZG0xajGOzyElqrUzTpCJ9w8BUJvWleG4Z2h5xOKBtS9+SJmCVIjx280k++8jv4827l7mrnpCzDm7xXE+CLMSlJvNDU+PFIs5Ysdyxzn1gujTFIQlcoEt1AhS0nSW6HOexvRCNZ5V7gsWv3teHiA7BKYlosV5oWgbaA1RU3czy1oq3YQePH8Hid43r8PvMbHcUr8BLak0gy+PE1idgfw8WRDv+Vy02ngdyz7hV6+sOQo11zqEtb8b5piIab0ilSmlf3ke2zLjnvPIff3zFQlObzUaJy1NR9e9o0/BEuOfWU5xtrpBz4oHbTyEZdfItkLVkrNImuzUgXxbBdQMKK+7RHdTyTdLooQvDpTweT3BbftAShHOHv4W/BprAKTHVG/X9oeGOJ3vicR6UC5bvRVGDHttGxhIB/7CzcdGnx8XrQhtF0ID0+Wc7U2bRnMUZtl8szq19zdfKp3ZGM3ItwEJselqkyysONpe4fGkACQzDyDDs6fu1NUFW2/w7S9xU5a7Uyu2v+QFWx6+w/arv5q4v/Tp3rwuXLl/SCSACn3jXn+PtH/ovuFWF4+MTTm8dMxzci9zzHi7ffIqXHvx2rpz8LBPRgBahTEKtRu2pqpC83RVeu3bM9ZsnnJzu2Y9FwYg4k7F1A5a2Dp0htgSPX19M+L09Vl1qG7rWYIRDbYZq089fl5DasRyvYgloQQjBhaYM5ENJEFUWjnkhcIHMhm4h0QW+95aBdhOZCrZ03VH5SUWPw20/eqhor2Z7wSMRMWJucMKdOQ//uRGf29M0Qo1JiNl/a07Fw4+gk7s9tdTPkhZ7aA64/LQ9h9BgVah20QNiogSTAgweFLcGN+8Q0HNoBcGqTjHWEcoIU0ftMmXqKGXiZLdjP01mDCdiKR5dGTlSE6uDsNdifZeZwkSNOjF4yon9FOlESLUSS2WdIrUW/aSlgzKQU6DPHX2KRqhXWxuwkLUKMhWSCJ39PWiuShkn+MIH4fpn6bqJ7uiQrgUI+jq1FnWiYlPTTfTh4h6zb5mN/gwut0KKBBXsaHbaQLAoVEmaHEQtkmIk3rFM7IcRSWIgQLIEWJ/va0LJCT6txwI/C9R1hLJd15B0GntRsEsDnKi/w0/NAlMTqvJJXe57F5upJQZFaCBU9SBdPNhTgtzUmudmIRrQ58XoxFVfB+qPnQzur+2JWlsN5pw9gURmOzQXW+dTrp5AoWBsSBkSzZcug51SC6G6rVmTc2ZdiqleR86kcunW86RP/F0iew7vu5crV65w+cpl3ro64YnNI9y3v869csrxas16tWa9XjP9w/+c7Q/+n+l/4v/Gfj8gxYpwVaecNkE5K6KUScEhbb6pTOPA6ekZN65f4/j2LSgTl28/x4Mf+0+5GrbNZad0XpAkhGhTpq1wEt3e/C+/I/6XOpYFTAgKPFi4M5O1WQgHnQcVloGLit0kJd2YyJQiE4uirIMPdrhvCFGneFUXmaqBQCXZPtGpENU8Q50TsBb9BXv5ufjr4PByerBXpqvHay5QKv7J9Evva2j+JsdZqJGg/i1pJxrEubiqJJHQAOllwj3n/GKNVdp4ovG5NaUgi0YLswuR5qOWwhaEqgKFVQBvqHfStceXAkzqs6M1YLWmjzkOscBTe9/svZzw74yn8P8j78/jbEuO+kD8G5F5zrm3ql6/162tWwvadyEJhFglsdkS+2IWgxljZjCbx2DGbAYBGjCY3cNiwCDAxoMNAvFhMRKrJSSBEEhikXrRgpbW0lLvb6uqe8/JzPj9ERGZeeu9Hsu/+diqmTn9qa56Vfeee06ezMiIb3zjG6LdTUGk4FPRR5ENLKFQEKGE3vUYkZYB83bAHGakZHdklYSuGF6MkCsg3O93fhh3fO534AG/8V1KCJeCQl6AY8TYaIOTBSllePcDL6ihwIhXxAMf3GOeZ2y3W2w3G8zzVknIZoO9AyOzxyyooCyZw6OBacE4Kjg/jSOGMSKiIBStB7ItDa+QG7CShBvjgzBxwYfIhero1aS/i49VYRAgDoyVjGAGlkE77RCzkhINvIpDwFgGUCIsSe30YEJTTghGcWC81GJhF54RKfYcA7yQ/jMuvgYvPvfx+PwLr0B01fwQTNxGxQtijJrIzJpo0KIT67gJXU8xBqQUKgBKxKCUkKDF9ZSPMJaCufoNBaNskQFs6phzTeapej3VvcP3O6Dtn72AVL/v9gJAJ393NTLRTozanIT6C0IXL5lRqcQ5cX9HwVDpzqMkTivoE6nn7knddf/uxBb7e/P5AYgRD6ExXDlda2wMCuakwMglqOhn0f1cE8JR4wAQck6Y735fRSnIYoacErbbLSCCaRywv7+Pc9ec1X0egu3mGGlZqlCFSEHOCcu8WNEd4KKAQ4yYptGKpLh29B7HCdNqUrJMiPUZBGYtZB4GE5e1/olicyhnPCDdi2cd3othuYz5KsJlwG7M7MQrx3/EwQ5YBGbz3RPeHkW2DlhShbBCZESJDayuAoYmLlXFDsV85SZsBos5HUhT26DK9ylrYvBqBMK6Hr2bXSc2FbxLihFivRi1FidUv8RiBrsWF4MquROa6r5qN7Qqkre7Zit5y0mf0vbkHSX60s6l5EMXonIyQQP+isX5XszphZpXWooP7pEssZ/JgNAqrNUBnSb2LKTxuFArIL3ny34GBy/+Dlz4yp/Hdb/w1RjGiL29FabVGtM0gTiggJBSxrCZsdnMwHYLWbwDg+JESk2w4gpYoigSxkmFIiZbY9M4VqGpClSbHzGOKkKlSVa2UK9gScnELAVvPY74i0sjHkjH+NPt/fC09G6bZ7peK9Ad2zq2BatAcADApesMGSAUULJgWTLWS8JmPWFvu2A7L9jOCbMJbGmHJ1sjkTWBbkIElewXg/oBIYBZjGyiX9HE7MZRBTXGcTAyByMOKkAVrRinrn2vCLJkSL8uAJgPWD8CJGwIjQrIZxdaz/Dq3JpIa7ahWIeaDBQlBKwP78KD7rgZd9zvcXjSW3+/2hMRj9EEyBklJZRZiwJKyvXvgKNIRgZyXAhoZBuyeNdI447VnObY7L96uHm74ndXsRxy4geF4OCdfdDZI/1zI+410p8KpCzLgrSoQGAxYVtPmgwm2uYkUBXNUdKci731+1EjKfTTTQmOhRQXFe/EhW5ewvaIYKJMfk/+uCuJXOq9AM132xkyUpEpF2m8Kt5sPnQbpRbX++t9r7pUAl749oznP34wgqK+zsVIXWQqJSdL+EdwxRIpNJFmskKy1961wTsuLfiih+/X/RZScP064GsfvcaZoASqAi18CQTsrUYc7K1xvL/GvF1jWbYAFYTIKCKgYIQdKZiWQQVjTZAuWtfNMUYt9pFDHN3zfkRmLNnJQE1Ey/fPkhPmeYvN8TGODg9xeOlSTXqelqNYlx2xvdntKjPjzmsegWX/frgghHcN1+PJfNmKU9W+CQkyBQSlb3Qpo4YPeMFsFZ6E+0D9XG9z0eMeF8eJcWgd3wBwJhTOSrpljQmCzQ0OTaTTL0FFZIPuy8XL+Rq2z6TCwoHa9RdpIpoQNB8mWdflLBU3dl9KMQyLFU0oahhU/JCZLV9lhBZmgCKAnT5q1R5P44CcJ1sbugcuSfNWy5KQsyDM57GNwBCAMQJSGCQRjAHzdouYFwyrATkzSg5wsVOBEr1CDErIGiLiELG3mlRoahowDAHTELGaJkyTikyN0fx38zpEdM8S88ndR1SQJ6DAmw5YHtQJwlBCIXext3dtk5L0XMxAseoo22uDkQkSZbNxHUlFTNjOyZSnjEAvkEZIYi0sLDkD1IhuIXIteA42RdhtuBHzgKxColZUkK55EC4+8wtx8LbXYH7OP8S1f/Fr+lkAAnvbDEFg9XOURKf4RwhBX5cJKSdUO04BxRSnyAqTEcgakugFhdH8PSYrWA6t0UjNT/iat73VYmXy/VWqXAi8+E+dqoZbAjD/GXV/VP8lgAsbmUPtBxMh2ecV1rwFDwE8jCAnIqRciSelZLDoV8sDMGANMpQMacTAoGtaSdoM79lLxGCKes0CtSw1gah+L0tp9lAcmOheU+NQMbyZrtijW3zWzSmPSw3Dbbkf7LzHu7YpnkpgYUAiCmVcM18Er1cqsMT67IcYMIwrUBwhMaKEABEyEovdq3eJOkVHsvlkjHjD3xRvo6jFkYUKUi6Y54xcWPP0uYuLi88/tR8Cj91hXJCWuxEpCMb7aHiR4W3ECMEIWeYXBlZh4NLF0/YWSCrVJ9Tzqd1nHiAugq9XYz6i4sDFY2RxgraC7EU0Lh2IcfbMHs7u7+P44nncfcdt2Fy6AJaMnOYWM3i8UhTTYg4owxY8jOAQwcMAjGvIOIBWUfN5MQCktnpeEjAFrKcVhmmluQBogR1AKN6JCai7XUuUaVxzwz7DxS4tPemQidp/ZoQYzX9WHwHcxS0iKorm/rrtnZIFlFUcrUgBh4BhHCEl48FM2BwmzJsVjjcbxUSTwOF9RAKJ7is554r/i2MUjreUAhc0hxdywJMdOpNqmsViSs2DmA2BiQecCGKET9ciE6D6yJV4Cgtru/ilD8gSBFISyiIYNgWbZQWB1MYMXIBCCdni28jK4L398Z8EPjyPa97xuib2JGL5WfVDAvcFnALOC1abe1VUsxTQfBl7N/0hSk6QtEF4/W/i6BP/MVb/5WcR5sugQCjnb4OH6s59YqD5kqCaH6ek2EJGwN4Xfiu2f/7buO5LvwuX/8N3gJdjBAoVRw0oGIhb00IGvItzZP0aAnWF1cDAUYWKx0FFwmNEoAAWMiEgJaVH8yMCt8ItF6ZTfFsaNu45v4plco1TBD4PDZsXWAE1dnyVHutceIU/fuwn4Hlv+wN9xqx4iePjlQgI2Gf6fACaEei4TPcBPPR47g7uWPFb7MSMxYUXTXC5nQPma8B4CdTFJYLTpkkK6HpacmuUNV6+hAe86+2492GPxofe/GbDp1zQHXD6J5M9O5gAO7vQmGJMuWindRUGNU9cCoQiBNpEKaVF9xnrHK/zALVIqRLZyfO5RoUV0SJkAlA5UY6HoxK0cxWaIuWEuD9FASpMMSHwhMBrDHGF4GJTxBCJgEQQDZASUYSxLBmXxoQ/esg1+Ky3HiIlwZI0d86ZK/8KFo+ozTKRbV/4ZNicJ6EBFfYODIlcA1UpGcNg68pyQESMAi18Skn9aBHCdnuMlBcsaYaUjDgywBkDVOCLKAAha2EBWwMrjiBWH0vPrcIjgCCggHgAh5UKgpTF8osLKCvmrKJDg9kCICd9joSMQjOkCDIRonj8C4vNF/MZjP9Eos0vTMwKJlbmzTTEC15zRlqkNnPNhnXnIiogXFSwESCUsvwPWDkf+NHnhdjzJGRCXJZ3LSbCLFmFtpgJiZ3nWGrc74fbQP/SaNdtIQxL0Jg3dwUfJwWCdvJWno+llnfdEchiL9gl4M73agETdbnbGr903ztebYNKqPv8uozb4fvsCdywj1Ee/PqX4h3P/gd48OteAp47YbFS8LA//iXc+klfhkf+/s/snOP8I5+G7dkHgiC45+FPxXW3vgFptY/x6CI4Z9z4aV+LJ73kx3DT53wznvzr34dbPueb8JiX/Dhu/qLvwnTpbjzoDX+EW5/9JXjsn70IxIR3P/HjsZ4P8ZB3/017Js7pFntu6uraXVPFvOp/NtZkg+HFDlWABWIFmp6rkg7rODHP/BP8D+JhruIoVaDDnwAZJ1sNgF6r476iQuZFAKagfDYCgrA2L8TpOo6WAhn38OBH3Q/XnD3AeOY6ZNrDHefvxcte8Wd43+3nEcYDHG2S2mzZh6wCwpDB4wqFBizCKAG4vA2QjYnWbdWP4UgQFmyyFjAFaAzPAJ74Vd+Gd/7er+LD/+m/xOt/9NswH19GynMnwKFYft4sCJEhEsAYIYWR4Ri2chclBJRgsUeYMMYJ47TGaqU5tSEozlJyRipmm2VBzspzyUu2gkUyu644jIjUBgstwkPFBCp/w/ZSP4eL16ufJkAhbcZsfMvKrRb1DDLaOkglI2XLVZaCJ/6vL8Dbf/3n8eT/7Xvx+h/45zsiQ+JYH4w7zKSpPHG7Eup4Vp9MCVaG1Yf6e8UMXVTLRLnEraTyM9zczHffoeNj/662MLTyj5ab0EIZAFZsp89JBCgsygnjJnhcgPp6iOxcB+BcRsVLNTddqs9Yg/9TdKiPpvEYl9IiGFJenJBycpULL8aFMZvXx6iknFji6NOvWjNCt19YjFuqA8jNXpqt/F/GS/i5u+6Pr7nfPVjRVCEvt3SltOKsir0JwFTA5Fi6VJtLPb4sdi/dTruTP2iwSit8YsKH0AZfGm7F2ZDrNe/EITYB+8d7RYqsJeb6G8LD4zHuLBPulRHP2r+ISFqYqnCeYZswvgOan+Cf6yIV+nLa+dyTsU99l4dZcl9Tshsba/DhjeA1v2ffW9DejamOXWCPA1XAwUNJR8iuKFU6EbO1OihdR00gxWI4E/Px9eV1SVcO/Af/kH6aGIeiF9t3XFuoIBzdoxg/tPi28mC6uenfvXxMRSag929cJOx8BtnvAR/TbPij+yzKw9WXGjJZfRhjiug5UMBiQh0BoCwo1sizlKI8EL+xjrQr5rdw0GZmcYwqNmUT0VNiuuN4kTYqvzUvizYXtbx5SjNyWix/ZHGGL5fi62vnTjSXwGq99AXKrRZm5ZR47km4NqVmaDopMJRfzc0W6TxnK0ZXfIe9NgIJJc9Khw8A2PktNixChhEOGAIZV8rutQqNCFJyLlXW95n9cp6JiDV3d4SXHcfQz4tRmy9O04RxUoEpbQ5nnB00zqYIaiNEb+S0TQs2aca2LMiUNZ9TBAWnKxet25CYbdE5q1iC/Z3613U/19/5Wmjxbf0OoIrpAtWGez5Y43uBkHHvLZepa5psT2KN9yRAkwG2NIrmwipGaYJshTRP4gLGRO2K3Ya0rz7vZeeC7u/ePF15UMWKmrXRoTj5XG9iN04zAL3izBYX+t5BAKQIjsYDvOkJn4dHvefP8KYP/Xw85ZbfrO/XMWz8Q238S80nste5sBaQcO32PB5Jt+GdwwPwnItvsLFu8VUfawXynKfumZEZ4rUEtMtx5hDhYsJSBIW0+VLORWve6l7Yx272nIM32aQWs3lMbjkeFcfRtRnufi/OvPTHQYfnARiORjCss2FY3qTWfSoBdsa3D6FPw+HinOL37bEsifGCvYmWVTuRcZp2vqw5Vxzx3md/BR71qp+tvPdQn63GJZr79/1D956KkpDnnMl8i7bPSF03KlAlgG2B5CWLmrdild41Sh8C9zWYUEMtVO+1fx4Nm25ftYaz6M6TIbg3XoO/OfMkPPfia/V9xXFVwBuNqLBUqmu1+FdxHqFUTnTJWsDf+4AM2L24Y2fWSdQG3H++Gx/z1t/BtFxEHmLLS7pNYRN3khZHqvBFZWDsGk20tVCbh+z4Xc2vaD6qzpnKr68vd5+4/stO4bmI9qGOv/Zea7XE0nxqIve5pK6t5tM20Qbp8ven5RjCgGz+LhsTZhgYIa5xzTUHyiUbRoyDig1JgTaT3bb504Q3PQ6CzSOf2wzhUtdPyYK0FKQloSSdc4G0kUm8970Yf+tfY5WPsXewr01tVyuEfBEXt/fg8jXX4fp3vQ7b+98POWUQM4YBmG75PayRsH7w9VhZE9yBo/FHVXyFIYZPCFASSl6QlhlpyViEkAqMz0IQy8s4J1LF/dG+Cqw5apt7ahO02ZkUQi5qf7XZ/BqlaB3yvJ1VdKwIhhArn0u5MJa3ACAK+JvGXlv3Or/N6pHHSWZryGrvOpEp8bjFYmPFvIvl+Ww/58YH8BjZffoipLpa0GZYDKuhN5tElo8JIWAalJ9NLpxlzeGSFCj90Hc9XStaK217kAAugkmGZRyfuR63PeYTcN37b8Ktj3seHvamlyr3RUrFvfrG1e7PnLZD1z4q/lHERTf13gORCY5ZswViRADsfg0MTyjKJ6x4ACkPCMa/JW5cpTbSjgujxmwEfW31X8lqxgzHrfYXuz9rozPNe3OgqgsBKM5rH6m8pm5Pdj8XQMVHXCisnhuKyeVqLxtuUrHuwNq0PI54yf2fjecc3ozrlovq05GPE6qZL14sbX/zvSAD4CCWpw5A7PxtkMW6oiL2qTVk97jp7fsPx13DWXzoXX+pPGugEzritsdYPYXycwx38HpxW4/N7/c4gOt9eE1XLnZ/2UTO/XGSi7Zxnf+FgExAplI5B2981tfhMX/zq7j5k74ZT335D1Q/o4hUPg+ZmLHGjF1tnf3NHxIDtb7wVB1mFokJHNSgiCiPikT5fx4XKF4eUIiUz1EEwR0z2wPgfhBQMWbA/TONkQnqlxCczwOrsRUVvLM60Lrtk2mFiOKKVcR6u8WyLFqvhybGVpsmVhDNb9RiJRYEFoQIrHCEj7jrtVgHwiqSNZ8kEzFVjnCSbLneBSnPqjuUveZO4BpdAOAcXE/5FbNFhVQEL4hpcVDU73brwWuxg2HrIYBiBA1Drb3hwDUeQ4i2Rs0+VJ/SlklxESnSpr+lwCAIvdZat6Xfyc/FzfcN5JoscBe0xebdz81OcV2PQKsJJRi/l02bxOdGrRtrDQnqMAIAZUcWkWVBKgnJGvJW197wA+prbz6Aaf8BC02N4wgZBngRe7SgVQCENOPRt78eY2TEAAAjAKkGSJUxCwprAZET3wAxZVU1NlRMBke0+J5887GuHrWI34ADDSJYBXVEjJqvI0JetlkL/c3RclEdAiCupqydXKpojtvfeve7xkrAu4AlzIuv0ZgHYJUit4v11gBe/9rHN9q9sYknAEYqR/einVM1x9Q7P1ZHzzZ5d87qOd0B2LkYnZTDMGG12sN6vUVaCmLYYhgGTNOIlBctgF0WI3wpWSSlBJKCc2/+I9zzYV+A6++5BQ8KG5w7uA7r1QpCjD966Ofgw9/8Yrzuo78GD/svPwIiwrw5hrzvbQjTn+DSYz4CD3rLb2PJ1t2MUcEQYhWYWqxA7tKly7j33vO4cOEyjo+3mlSF0pV9bjhYIyhVBKk+Mdodw9Ny1ASJiGHkep3BwbPqmTmo6v9uR0+IFinNAFp4vDMZLVPjzp7auOa8d39pcxLda2wtt4Fthtcvi90Z8efSrrRL2Ij7WfUE7Wc7uVAtzNf5XT9AMWtYFGBCU05/UsJm7ZXun4y6zncj/OpMqUormR0qNXAnV+6tn2kbvxeosoH0Ng6K4SsJjQpps78AFOsIVXJAlgJm1CIR7+AAgQoJxQiyImgHgohFhyYG5EIYFiBIRpSMSAU5RzBE1SJLVoEryXBFTN0bpQaHaoYVdCWow+MEaxOrBJUEPj4Pnq5pBBsLyitJuEk5+kw5pYdc9V8+Hdo68g1eA2UXxS5SUDIpUcz2MSEx0b6MJWlXS+EMMVGkEBn9HlGLzosSuIs5B9KqWdWRyhktK6ndH1xJE8yd8Bug81rXroK40PVUGcTS/gajvFG3B3mCzwDnlLUw2cVD9CUefDZnUpezEcCL3YPtz3W/JQvHqud00jnVowFy9kwMUHQnyhWtawDoYKpY4aqBSsykCufTCJACJIQCWbZIIYDmDXiacDCtsD9NWA8Rgyx42qWbtKAxLyCIkl/GAePFC8i/+nzg+CIyAUvSGgwHX8ic/yGyKbVCEz3mNC7zFpcu3It777kTR4eXMMSA1RhxTb4IHgYFw4hrNwMf0+DOsBeIkv/byPin8AgEnWOmJOuJYoDwxmseh7una/FJ975eHWEvyoAKdJH7b14oRNpN1I2JcYBQrfWOv2S/FoDZldKL+qrCYHbhCvMzxYvrWpGLg9iVVNDtO/UDzNnvgS9xL4M6QmP9orpOUICMAjZSeU0yAUoaqvsszL6aoBMKFDCzz7ZEcvMm7Zo9CdA2OJxcYTWRY+/XsMx8STZCbSlADmDOu5s60ArAiG38dK4bpAd3TvR8KnrHoklnKcES8aoYzCLm42f1U6gYFdeuv5QaaA2BsbcaAdJOUuHwGEfbGcezJtytt7eJ8WmimC/ehfu/6Pmg7SWzP4zIEdq5mGviUz2kot0ajayVigZeXiRwmg7vQpdyQi6p2kdPPhbSOeEk2siEgdUfKGnBvN3geKOCseMQMYwDpiFiUA43yFXSS8HH5NvxUnoYHi3n8SF0iMixrrdS2MQCrHt50nU3jCOmOGG9hortzLMSI1xBHTpnYoxYEYHmGSJzJQCXlLBs50rWUHJdqTbeyX0CVPJwLlbQXC7jMy78BkRmHJILaETkYbBuD4ISc00UMzVQQSqgQFVgRqxDC1tBT84RG5ioYbcP1u7SYkkpB+FyxgJ1UVXGJIJrMbm/H/CVelLkp50f1Ub511Hcw8se9Rn49De/qL6O3OOnVthCzJ0d6AhY3WtgcUbvqrMV4jab10dT3e+6r3q9XIz0gjoWrYC287uu4oufhmOwfXfhgEQFiQAiT64whmEAQ5BDwDIDi8U1igHqTZWckOetFn6FgNU4Yn9vjWkcEIiwnUbkZUHvxmlR/GKgFAwgKohxwLSaVHiDvMsdYxxGTKsVxmHQZ4UGPFVigQOC6McbICnYy0snlmZfRXbmIdA9624uKbjXEpvkn8Nc17LHFjkn5Bzqa7h7DaBjlpIK5CWL5wZrd+FjcLXrcV+9CqS66Ayw83oADZzuhKb64u62Dou939eU33C3/vyaivuepSbDq0iGGMbVXX8/tnXa74z9rsBc3/nF31/FqMSxtnY+L97M0gtNEU4b7g40e+baQc7Fg9ckOa7QYVdOeEVgnHvRN+Kef/Rvcc2/+xrrdKOCD6vVhL29A8QYK34Uhy1CPAYCgbcGbhfARdidQMQcrEAmYr1eY71eYzWtsVpNGMcRwzhWm+j+JoDaySdYbJKLCrPTVl9YpOB62eCRIePWbcTH4Ha7b134V8A6fs/QQIOgQlwpKYotIggwsh+r2BOxdt0axwmr5MXgyUQ2TGTKRDaWJcE7tGpyRrvhqdAUNxKKpjIQYsAYBwxDxDgNGMZg84pOdHxX+9TmMsFFB5vNl4r1KFgvNXmnS0Z92J6s03xj+88GqwfSJWuCBZJw/ztuwnV3vBkhz7oWKnGxkQerTRGNFfwz1R63oiQvSLpyi/I4xL+akMv/Y4+rXT7d958rpGgP8/9qF9cQSOAd2HLOWJYF87KYeOqMxfxECEwMJNaOp7WDFwcT5rACFkjz//w6u73B14vGIK2QuN/jWnK57QPurlR6Tr8nShd31bFofpt32epvfmd0RKo4bLte1H3I48tjYfzQOwu+8uEDfuBvZ3zb49f1Kfje2s9rMWIx1/nre3IAmS9AgfHG8wted8+MR50Z8J9vO8JnP2S9U4Rwbmh7iXLMNPiOgU2gdoX1eoX97QoiKn6XpUALRoEsgnHMVYBuCFb8PY2YNhslfNhaBxFku7VBkrqHksWyJWekecbm+AiHly7h4oWLWObTVXDpRLkqACmOegDXb96H967PYX//DB4pd4Fo2gEeSYwgGqKSW7xJAaH589WfsPHpNwuP6Y0MqPhgMHKp2uRohJdKevE4HVLFy6gmKa+A5rq9zjCQPk5AI72yrRvH68Si64qiVHHAskMkr1hMdVD9+hT3cRxWzx20WyZCh/k3XJHQRLIcB805Y7Ec1rzVLk1L0qT2EBlDUPxunhmbmTHGgDkGLMuCJS9ayGadg3wYQmAMUTshD6OKMK7GEavViGkYMA4uztgEDyoxDDDfUIV+JJcaM4nhqUJci9uMBl19IY3XGn6k1yXwwnYVZw11vnjg3XncMKMEqX/zPCmjj+dOy7EbD9v1u4m1/ExkRmTrDBsEAVB72OFxKLqPDFF9ldXR3YhvfjkuPfbZeNBr/k/wEKsN8jhFIDu4HhEhZ9QCawoBXIKRIsUwas3VUFBB81ZMqz5diKyFjd1cN/dX10JR4XMUgjae8eeY0T14+12pPjKYa27N8Qjv3Fxjed9DjMBaiKqNoRA1US9tHRORkldKAXEB5YjCWtjBkkBVDMHwwQ5DUYKijrX6Vi44TCZK1cZYCqw4BWYDSXMYZN0KyWWyPV+R615KUH9eCsHoVXX/V9yjAzg6H5Sg4vY682t6suES7gOYsC+5jSMCI1hOMIChfAUKrKLQwwoUB3AYwXEEYA0+BKAYMYx8RYz6wT5KKUbCUc+/kCCTdisMZP+GIJWCZKTcnETZY1ZFIBa8eaGS2x4xDknHjgDQ/Ka+UEHtj/6+Cr/43mP+eC6dzyUEoQzJNv+Jal6SSEVrf+URn4UvfPtvNT/R4mKdR4r36t8Uny+l6DqlAWMkzMeXcNfFO3Hpwt1A2qJIAuYNNEqyNeWQuZAW6g4JHGbFkeOAsC9grBAG0s6DaUEWQUZGkoApDJhWe+BhgoDbdO097wJd71nFKpQ0lhsB332QmjsTy2n7bavgGUeue0k9/GeLy4rv1alAUramc9aMAUCMg4rNxYBxWmFaTdoBUTLERKmEAB6U4CsLoaQEOLG9+jCoz5olVN9aG8G162yk6ZZPrD4zGgm53tLpWl4AgG1KVSRWLBYyM6OlhYS232uArPMZbEVRFot0K8lttJLrdG3d8aiPQ6GA7f0fCZpnnHnvGxXLdkxILFcg1HC8ooXVXqMpTIgIKHlWfI0Y5fgSrvnDnwbSBrrHEdi/MyGCkEntsNi1AVDrKio4oK8TlJf8JPa++Dux/a0fxbAcm8g1qygU0GI/cjEQJx0ryTQERjTshqDcoZGtU3QMKmobown0a/F84FgLr5h67EfnUqBgmKZjAc0X8s6YtdOj9P6I3qXvG6WUiskC7XWFGL//+E/Bc97xx/iDRz8Xz3v7H6DfBhyG1O+9I3v1Q+x62mf77zv/7mrv81xnd20E2iEq7n5Ku4+dv4hL952ygzq8oRQgJZy7/X140D2XMMgA0IjqcalDbsNMFneoKKyS66F+T8kQWSBlAYtxCK2hFKzhiWKIA7who+boClzwyMVQqRaeG47nppi6CE2kcoNAjgEDuRBAEdqNPSJyBPMIJv3qhaZiWCOECTGMELBSwzJBdEgwLzMulIyXPuYGPPud9+I/P+ocPu2tRyrWRAFxGFWo2LCY1riGbU0DJev9WZBXjZjy3xvfqAoSFwIFJ04zOADCI7IkDCUjjgOGaUA8DthsD3F0NGMpW6StQDAjy4CCCRRUFIOtOYCK/lDlFxBgvqdaV6KAQANEVggh27NJJjg1Qyy37sXJJQsSFTBr8U9xjMaLaM3n1T13qfua2lXR8+aMnBcbF81hZuf+ZMtrmh+VpajAX4D5Iwm5SMUwk5yuouZ2ULUdprSlPCjD0sswKJ9JdHyVU2VFhCmhdrz3DQ1uvwTecCMXE+Iy3MAbnfZiU7lrulSvzOM4L0CE40uoWAV5UN81A6vxsMcJffGWXST117zzuVePnTcH1+JtH/HZeOLLfwH3PvjxuPjAR2I8vACUhAe++TUAgGFzGY96+S+C5g0IXuII3PzF34Un/KfvxKNe8hMI83EP/+Cad92I+eA6vP/pz8WHvPa38faP+Txcf+MrcetHfCYe+apfxuN+/2dx82d9PZ7w2/8HkDMe+zs/jrd+xj/D4379+7GcfSDe95Gfgce9/BcAJrzvMR8NhAEXrnsYxrLgQe9/kz6PCiWYX57VX3DfiwDzBRT38SYAhdqYaR4/o8dP+9xVhcXcV60j58IuXdxgz6SCAPYshVr+QO22Y6uwnJme1UJc5W0W6nDhqz66D9rxsle9GquDEU9/5tNw5gErbCmiYI23vuse3H4+Y8vnMG8CsuxBApDyVpv2UgKK+oPLLGBEFfXfLtosqyRAtHGWBIDHCMpWWCgaV7zp3/0wPvTrvgdv+nc/grI5Agsw8qgxcxZsTcCdOQKsfhZFQslATqgFTAwrho8R670DrNcHGKKKH+qYz1jmBAiriLUklLLY/rlAcrJcaO+zeN2ACk0BWqicPeZgx2/YmrOmOqaK9c/wuePYBUEbhBZrOKc5sgTYtTingamxikkEb/n5H8CTvv5f4caf/V6dlzEiEAFB9wgh5f6KFVySEB76yZ+HdOk87nrtKyAgtYGGXwYe4MV64jUGVTARDTsRv3aLEamzS0BtziR+zydkbXby/mYD9dEvSDLb2JrQNHTfV0FLt5DewKqJFYtAc/kkNY8RQjAMze3A6VpkupX3efzc2XluBWy+aYhglxuvP4v9OTifrzrzHX+Cm8hExXTt34wWa1w/AP/8hotYEwEYdmIRElQBlJKcD2X2jvT6YQLyEDG/1eyrN8Uy0R6pmIx9Sdvf2ibpcTdwlrOJQqCNBzkP8sS4okd6bKD7z0KbqxEFH7m6AGHGZOJbbLxHGG/DsXARnNjnr8y/in1evb+KkTvO1Lj87e+ouY26G4kKGQuFdvn1ObX1tnv3eufKAe7yWVXURE9UmyBULMz3IJ+LGl8oDmK/t6+WV9dzuf+tBefmm56yQwJViDiYu6UhhMU8jl8V50aoDS/SFdSJ1X6Qsle5CvPqvM7CUOEkPXfDme35MHQsoX46WXV+bbzsYh3QZ6qCIHb9XcO3yhEWqChagArssN5HN4O0wN9/VsBGuUiREKs4us0BUsZvzWuVbMKJxURytJFxzgvmZYtl3kKsQWw9Dwk4KF4rhtWSz3cOut/DmhgDlkezeDJEbSjAjIVU7opNhCQwAVG/51IgaYucNecxxoAUGIGBGATTgDpfDVYFk2IywxAAkPLdTOgkDAMkhtqEqpSAkFvzveg+fwq236PuL6CGZ7Q4QAULND83YBqUvzJNE1arFVarCdMYa52L10ZUEcFEyCkZVjpAQsBCGRssmDljCYvmFFPzK07DQY5bmc/b8oS7AjEnk7zux+vPvtfVWejLqf7cv5vQ8UodmTS7W1xcwfa7XN8vALxxuucsCcJe7Gw8vEb2Mf/B85OOK6LGbf5aj1NcpCxbc5SUcm24V0pBFhN9diGZavydn2cZbDJR+qD1N8GE4oLlzkWAiC0+9D2vxC0PfRY+6k0v1tqOLv/qYkqej3eOSOOX2ByGid+VGY++fCsejncjlmQNmEs9n59bjEDn5ccMFzXiWpPWC1E5fhMoqK0hBpcCRkZChucN6x7XgenKbaaaKxFx4eDd+M3vh4gQL59XLM5waYavV33usBxr38C7wHNs7i+fLn9xV2jKfmlCJ7pVc60l9JrBQCbaQSY0xdqw9p2f/M/wyFf/It75nK/C4//sF6yxqeeBddWqcBOpva5FMTYHbDF6GbDXBnn1Z4GK/xXbJ6vL5t6t/xz0mh1r76auvqHG0dTwkxPj4nF271eKCC7wHv703IfjaZfehD868wx88sXXGQ9CfEB1HVaBqV5oqhP3EJ3rxfJbkLZXV7Fz87PdjnueREVkGaFskIcBbHFjt/PW+efvEXhuWUAWE0h79c68l95/EWnjAbueKlRj0wVU/b/eNp+MjWoKoFuHFa+n5q+6n918TapzYuf+qF69rV/nLJ2uNaYxI4GRQCIm2BoRpxEHB/s4c+YM9vf2MMYBTITDw2NcPH8Jl+lQhaaWZCKQOm+KlCruDwFCGA0/Vx9CcztWGG15/kBBm86GiGkKWOdD7O0fYLW/h/VqhWEaEQbG/j1vwZIFeTUijdcB5jcOgwpbTtM1WK1WmAbF0VX8IwPI4EAIphIlokKi81awKTOWWbnzJSeIZPVDWW0BW72g23bfs9Vf5Z0cjv5euUfCDC2HS9p8PQ3IK+XxMRGWWRu49fxFtxnB4r6c/fdcBQIBp2yoffKGbMEbg3p8ZrFbMR/Om09TDFiWhM28WLzpJGTP51Jnb5vYXCbNS0ZS5JEsriUKCHHQaymMMA3IyDX2III25rOGVL6CCnQNsWEWks3/hfszDJBg7/BOPOg9r8NdNzwNj77x16tP4oKS0UVjqj1GW6yn6Oj5F6XGNhqBMLlA8ok8KVANoHOwkQTFBcbIdEJYzxssbvc9o4CQoc0ORQQIAWznEQ5AcPvlYr4uut7tONWQ7ljU3T1QLKau8QerwE31gzrxNJGdOjW4bRdt5LwsCcucMC8Jy5KNi6/X4XsOBcZLr/sYPH1zK3737Efgsy78Oc6kQ3v4pe7JID+315rs5mIDgBx8p6Hdeyer4Tbfy3pfQgR4z/5DcOveQ3BuPo+br30Knnj3G3WPJbG8JNcpmA2LSkRAgtV6l+ZzOZ+SXMjUMD5p154LgTIh23oqxXg3pHiFNw4TQPkLpSB4XYsoF+7pf/Xv8bqP/qf4sL/4WQxDrLyHiu8w1etxATf3YX0cG85jHK6TjskH+WhafL4Ti+25QBE2EaTmBfSYrPofel+1UaT7Vubf2afsvFdfVHyr77603hqmE1JfWv9s4s7JamtN8EkFhIHGiwAat9fjBdRFrlxE90mBsWy1/pYGVN9VVKi5FPX5tFZlttyeNgHSJj/q64SogtBEYSfuqPGa3X8uAspqzT3+vHDDk3DphifiEX/zm2DRc8Wgc9svUnEQRiVYs+yKQ/nzga5m5PYsNd/Fyl80H8L9NtWJAABbR/6fibH53uDczL4ebaf2kjxa5OrLh8Bm27rX2dEE6WnHxrjPWkisfte/Gn9d0JBKfQ9abOiT8L9yfMBCUwAsKNbESYAVWjLAVBCREaQAiDsLg+tCaRfjxpEAI6z6wyjQRIU9KJ+d5sA0OijtAB82t/WBu0NfQRZztuvAczWg+lYD+YtUZ2Z33K4Mo0otlvKJGdprCTXibAagBVo1drcHROTfqXPUCN6V5MrPp51LZA804YEmo7JV2DZmF0OwTaoqaOvdqMExh3AcB+yt90zNFNhuN5iXLVKekdJWO3MNCtatxxGDdSqf5xkMwrVv+z2cOdjHuXNnceZgH3EYkXLBJ7/7t/EHT/hiPO0vX4jzzBrcpYScFqze8XqcOf9mzEEgJSsQEiPGYcI0ThiGARBgO8+4fPky7rnnHpy/cB6Hh0dYlkUXN9/XouQK8LfZd4oPgYHYqAG0d1yFzWvHFPTlvjP0O0QvMlWaoBN5cNwZwGoo9PzF552NV/0c8qDWnLfSB6tkp6T6u+pHi2+utHOtgtZlxddwBdqKdLdEgDgM4YJxLl5D9RLYCnKkuyQ9LbU1B9/AbY0ZOFfduG4JBSLU+IyoKV6LWAKHLEhxwRv7bsIVxYMhoK4vYgHlCECUKsoAJ8IaGTHAAFBgSaUCoKUAWbSDIgVT+jdnA/b5IRAiBbAMiCSYooMPhCEGEAokJ6RlUfXTYl3zcq5TIMEDDBOaCgG5KJBmfoIVCjgw5sU8FpRXh8l3oVPm4Z04mg3uvvd/7DZRMbe1ga365iKoyT6u86moGF+adTujAgQBD4zCFuDDHUsjm1kXSE8w130FgFjnVZvluhdmA45daMj3jc75BFCDKg8Idu8JlsRSYEWDlFa0DulUaktuQk/VhgAQ62xVETAjKfBusITqHKF5m1cljaNzonwvpfaszEYE9uShvjbWqSbIJSElvRYygm+M2oE+QBBJBdlQNBmfS4YsMzaHlyB5RogDBMBiwijb7QY5qQgEB0Y8PkLqvHG2gqYxWvdy+6zVasQ0jZisuIwJmOcNLp6/B5cvXkBOC84c7GO9mrSDW8koeQFT3BFf6MfRu09csZ/T6Vtr3mXO7bUaU8GbDh6BW/ceivstF/Dqc0/Hsy7ciJqcKmJ7XTZBFq6ulXbcMADfjV/1AJvf1BJjpIGFg+Jm28UISUJGgDfVblU/12tUF06sGPIqN9fZt/pcfA+A+pHMwb7a8/IwrPrHRpiiChD260ULeewDbf/xYL8nCTnB1ZM/PVjs+359Kt3zQbUXxFyBaPZ7twI3ogSI7llqR4wAwQIqDC673dH0tBaGVZuj4Lw1w9P3WiBGxcbGiEvqF6gdDOiDG73PyMBqjK3TMillY06LgbAAQgRTrGNZBMDmcvOZ2Yuv3UNvRUwCIASCsCYSJWmCo3ZaOUVHLRYuDRBIeUEsCbD7V3/GEouBAQbynDBvjnF0eBlHly9Dcq5F+0OMGAODg0CWrBC4FERJ+FR5OyBSwTS337UzLBQkKSJgE5oaTZBDRDCZkIB29/XC+IKcEgSoydZSBMu8mNDU1rqhd2r27msYqbgShkpBKi0xBQIWEwOaxlEB99gA0ZwSYMleoCOwlH7RewIGuv9Y8g/MiLkJg+orPcYzv7ITMgC6fVUIoJag1IfZPVc0Al6fzAKrXfD8oggwxwkvffwX4BPe/jv4vcd9Pp73lhfX87nvWcwGqF/cww+Aq8aLf5Z4t48T8yy0hIW4l0LNBl7t5533d/uYF4p6K5c+QXja3MYIqIiKJ3Ns/gez+0OMSrbJ2cZYxUcbEUBj0xDUL1iv1livVypcM46IJgCXYuyhDp3LKVlBq56XAU0IjaMJ2bQ9Y7RE1hC1A3cyoap2Du3oQfaefmNzn3EHo3Hymt9Hd/TPGrBCtG4/rKI9bIKg9vxzzpjnBYDGU1WUx9TjW9LU43gd6zEOKvZ2FWGQiuPY73rxmCtU223f7oWmXGSKuVtz0nxdHy8CWUzr+5m9RgQuo8C2Wj1CaMhtJwLl19mBeNQQovYaF2JwO2LfG+mwxfaVGFv9AP3YKuTSPPZKZj1Nhxeo1aS+xfHS/86/CDa/WgIkLEe47he+HLLM4HFCiNoZclqtsHewj3EcATKhqXFAiFYIFthEdL3IiWshvPtuIUYcHOxjf28fq9Ua06R7WrQ12Pw5nXu9eJoSnLImcACACUUiSs54ohzhkZiRSsZivlu1xeKFp0U7Evn7bWKVUlTQTgQI6ksGK67yuRzjABkB7/SjwnXta1mSimzMnlArtrerXxUHEwcwsVx/Ai4WE4eIcYqIQ6j4DpvQVLBO72oLixZvZNRi1l4szu2L7plKLHRbpGSAtm86cuOULFv55qs6gcAIKVbMpO+bkbw7isXntXC6FOsAWipRC6LEX7djLqrdMMaT64c6XLXr7vH/8qO3vfVooTEAuTKfLjhh51TMep5nbDcbHB0f4/j4CJvNBtt5i5T31Dc0odAYPMndxlnF5ULzY2yu9HTKnb2tt8Ol89Hs2tRn9gQOXXHtV/zbvnsxRz2P+dw7xbon77/72Y82f9pedRAZX/9Ixk/euuC7n7jeuQ/vyOlfJzED7kQm1W8s1v1L8MRrAu4+HvC2iwv+0SP2zF/IO+sSLuBmmewi6usE1g5XQ9S8wapMIMdKHQcVYClZY4FpwjRtsVrNWM9rbLZbDKMW+ZZuPlQx0m6eqc8iWOYZR0dHuHz5Mi5cOI/tdvsBzdX/UYeUgh3Clhix23JlT1zejTPLGQxxb9fPF0DtSEAIrShfihYgVzgM6Gxf56Zb7N7HZIpnANEK6vs1071NheZFbd9JX14/YycKufp993EPtGNVFXsQ6a67JUBF3M+U5m9W7KLU93QDVAkvirdbkaBEFTOBrXniJh4QuO6LgQJKcaGpWYWmNjO2yxbzMmM2EcXVOGAzR0zbAdthi+04YFm0w58Kuen1uB8S46DiaUPEMCh5frUasZom/Z11tBtchJF9f+zvPyjZiXwvCvCiEmLFrO44eAhuvfaxeMrb/qDiasS7CenmjxhumzMk2Pr1F/RjWk3WbtBXn5XZkNN0KElNrCjZCg0YAKwbr/vHJmhDYkIUJhbu625g3VOYQyXOn73zrbj2nneCJIFi2BkDL1Rt+LfarCFGvzDNG8WoNsyEQTS20Q8oBEBy3SuIbU7b+Ot+ZB67F4rZQxIpKioKqPDefcRAO2NlVkPnBfrN+Qob69+dvBtZkG38/FwKyXMlnRViCEclZMoCSKr+U7sW84ss9GAFrcxXApgdXLEvi9NQYJibBwTZHEC2upg64Wu85M+Baqdk2RGe9KOSUoo00ahqYaWet9pZ8Y+mitdKt968u1uwojgY7rRa72G1mjReGCbwMNR1jyLadS2EK2LVD/YhhrOVklUASZTHAKaGS0vRogEKSIsgJYFIAGNAoAKmBTCqvCDAMQeN49yfFxMnbXubvkZ2bJWOfxM+8bmlc7AbO6r/U6FS/zVpV8Bfeezn4/Pf9lt40aM+G3/vLb+uf2Oua9pj0eyiIUaYU/bJhLTZ4NI9d4MkoWw3SNsjlGWDkJLZYiMLmcAGUwDioHOMFvVdo3bP48DgKYJFhbFSVlHyMB1gNFEPqQXBNYKvIl2lZEhOoJyBpAQtytb4RqwAsyPn7xaLdEfoBeiheQECkHKLy5J1zcxia0tFXcXGmIyo+T1/O+CfP/IA19qed/HCJczzDO3aaJ0JRbSIKLIJZHmWHrWY0POA7vV4R0cY3oWK4bgwENA6o5vvvuO673jup+JYUtrBOOA2yZ9T9b8AF0UQrzqBFmKBWn5Uc0MAOIA4ABQgyHjA21+D2578KVhdeB/Ove8mUNDiPunOnW0/yWL+vmNT4nurOpgFKhxChZCpQJZj2xP0npxPEAwzjoaRpCS7D8QwmGKfI3lG+U8vQJi3KhIVVAzB9+vBi7JIMcFYc2tU99hgnTG9GYTnY8cQjac0IAbd7wMr0Z857gjM+06nsVfLr/ge6ravYqN5dw+GvX93Gza/wfKRuu8QUASf/JY/xMse93fx6W99SX3tySXqtlBNm6+JWpLcxZLomiXK7hl29vzmL+wIbaP5/459AKjCmH1igPxSqivk/shpW2WwVKbxNYzYTLkgYNFOpdTF4FrJW+czQwWt2cj1IXhxYYFggOQZkpUISxRMY1ExRTCBYrC5EkB5QbF9JbjQVHBiqAkBkgk1+WFxr8YIufksYnkgy7qRRAQeMQxrxDgh8hohrBBoBaIJgVb67zCCKKKINnQQE+2Zl4TNJiGkhOfc8l68+gkPwxe9Y4Nhfw2iASAtstUcg66hGKIKuJl4sV9nzs1Hh/mSJQMlu6Cmo3i+J1kgZz8HGxMgWoPLEeM4YDhmEBXgKGFejrCdE4osEMlVSCQG0m6rGFDL64gRgmJHPqROWM/Z1rqRi4kIhQOAYn4pG5YjYNbEG0EQS4FEgUgCiGosooKwCajFE5ajLFpAi9pMcFECdycMLrnoOBUXkwKSEBKK2eeMF3344/Hpf36zfs5pO7rYqNoZM6rMVBs3yDBArGMfAyjMyExIzlsU9Q+rCyidrTKMK9XvaVdoysWoXETjhF2rPwOozSv9977siuCaf/Gz2Pzo12kM0OF6ykvxwlEyASrqyOSoxbCOQoJaDAUIlmkfb3rWl+BRf/GbeO3nvwDnbnsTrrn97bj1GZ8BAOB5g/MPfRIeeMursH/HOzvfhXDTl3wPHv+i/x1v+pJ/iSf+x+/oxl7XFecFJAU33PgyHN7voTj37pvx/id+LB76F7+N4fI9gBQ86cXfD17UJwuXL+Bxv/qvwGnGuLwLj/3DFyIgg0LADW9/Hd711Ofi4NKdeOD73tLtHbqfleK5Px0Y9dm6Ygj2oiwyIYeWT2t5rIbZVlGGfu8ijzl1/JjE+M32585z1Tya+bJdzsILw4gtjrC91OMO3+fU19WcSeMxnp7jPbe/H3xhwPlli/i6iKc97Rl44PVPwNE8AOFARX5jQFqKCqPPBSkJAjEunT+Pg4MDxDBBcsZmc4iyaIfwABWNTjljyYIFpRYuAsqRS4cb/OUPfmO1m4EIgWItSGMMCBy0IbUYt6qgdsOmEDBOE/b211jvrbDeP8DB3jWIw4R5Tli2CaUkzNtkcRt1vonZeSTjS4qdW70xkgUhDDXf6Xwy5SYC7g8lSeBieXCi1ghJXPQFdZ2XkrGZe+xFILKglI3mi9AK8BQP0MLOPB/jph/7NpSSEeKAjGR5pVR9N1bQB8yMB3/s88AccPAhj0XZbnHvG19r/p/jv2YDGVfYM8AKOu132TnZDIh3Iq/4chNsUL85KFZTfUXflwkVU3OOVtBzJRftEEakCYyMUhyPDRAMhkE21Mmfg2NWyEAYmu9+6nAP5xnaeFHI0IaU6v3rawBAx0G4cXPFealV8K7jZ9avE7+DCekYllznK3p/X7AXBZATvBv7HxMjWrzlTal0H6V6OWT35voEBPeHYa/3/cp5XQJvbqqgnXI4hbQxLSrHQ++jOBaHbi51gI7PB4X3CF7No3Nb909xDMjySs6r9LHS+MYE1yxecwEH/WQdv/qbLn5Gt8/YP3fwqD5s6RjO9fcebfVVSP4XFzrp3+/v9depG+S/10JTlBanFSnVX9W0dd8EyYRsYUIoWRsPtC/DqvzaCBpD5GRCGKdrjQGtOJZEc15EjelRxMTeu4ciVcBtd08m8+Gao4gdzm97f/eIHUOi9m8/b7E8Flso2L3E7Cwh9HmTIhZvGIZMQRHAAK194/4EXfh+4lrYnhl5pTCck2r2AaT+jU5ia9DihZ8aW9TicOfhShOc6pve1No70bWi60ybsYEZHKKKC5tHRXaNCq2ZLQi+BtUWCJOZCLISNG3opLRnqdfEkkGiUumBoY1PmSGBkBhIrPtYEd3fc62DKTt4Rc6Dfk++xzV76ranvt6KpuMQMQ4DxjEqNj8aP38alIMPVPxXALV3IAQu1qinVByJYkSeBQurv5JFRSBO02Fm3OIP/cV9CvV0tlrf3P2TUP32K2wfbF2Qn6Zmd+sr3cdXXMVFIhzDsP2WfUFJneONp4HmJ1geTBsXs/FzDGcXACjmv+/iWzlJbUDZvixfKAW5pJq3r/bSau18PYrhFbHiE/pvzedaQzG75gcd344H/O1vgklQ4gBveE3i/EbqCuX7Og6qGE+x9V5KQUEGQ1GF7HhBxaycv3JiDNH4SkRU7aHPAc2nNDEhFQu3+ApS/YIra58Abd1Tau1QgZhoSdvHW9NE8stRCFFHEp5dY2a4oan7veVkqHhejur9nKZjl79Rf7mzc0EUP/Iv58kzLPdruP1jXvUzeNuzvwpP+pOfsUZ61ojY/WnDF8T3OnaORycOZIXsO7kPG3f2k3TF7jvrmqzuES4o4fPcMWB9jz9PguUCPKYW6HMs0BqworgmTJhARLBfLuEj7v5L/PW1T8Nz73oVMkptTqhzrpjIVDKsJ9ke4Lw+s861dtUPj8O4CgGQc59C1ySc1N/lksE5g1ltAKh08UqPQbT60Tq3xfw1aX6pnVpndPVFOqzWTCQXaFMpcizRPq87hwANcypSx6b5oju3rXtusf0YjWsjAC7uPxC3PPw5eMbNluukbtjqPTlnycX2TtdBBMsFDVCPP0MCY7Ve4czBAa49dxZnzhxgjAMghCGMKEmQU8G83YJngDNw+St+Dnv/9su1ybjhrp738by+itpSE4cz/ybEgGmI2FsF7E0R69WI9f4+ptUKcRiMzyOAZAwsKNOoeyETKChn1jn6q3HEELUhNIkKWggxYoDybVnn1xwEObPOTRPgKI5r7vj67pZRzVM4n9kFEXUgYZgHABO4SlkQigqDxzhgHEYgZ23sSjDxcMfsGsexeaRc5yAqvtdq3phaE2dv8OI1ccCVuISKeQaEmLRJB5kWgrQ8lOaePcZty0PXWEHysSlayyMCuMg1ma9QSGMqvYgCKV3ja/a61nad1T5BbbX7lLp3Cc7d9RZcc9dbwSXZ70MVL/K6aY85Wqx8uo6eF1tFdA3/rrVk9qy5ziNYDULLZGs1dGl7uTkDFJxnqDXDle9JVDFXEWn1GBCoUDABxbAo6eLvzqZj599WE9wZylbDJTUub4JFHT8WML6Hrjf1nVWYLkvBsiRstwvmecEya32Nz1+vR/S5/6lHf4XfOPds/N3DN+BM2VjzJ8/vKw5SeUi+X5zE+Igqrqn7P7X8BfWohPta+puHHN2Gy7zGnfEsnnHXa/X19jz8fmv9TvVB7UyptL2m47NXfhN3gyvKr6Kcka2mjezaq56J5eybjgsqTlV5vwAGSnjW638KLEntp3iNve+hpY6vN07t78Pr12sNDPkOe7qO3jcUExyvTQT8+YvgDU/4HDz8/X+N+19+d8UgdRyozuH63Hd8TrRaJfuM6gSCDF9yJz1XTYjSxRI9Pz6lpNyfZI1Q3edlxQJ3NGjMn3Rco+1PXRwCnPDjDZ8oVp9hujD+XfN7ufI6vUFlMF5lzhlLKifWjp/Xm08DRILDBzwKdz38I3Hm/bfg1id9Ch5y4+9igObhVbPD/FsfHlDVFHFxRsdDfGqxmH6G+Whq7uyHYo6x+8BgE720OhZSPoHiXzZukLaXeszTrfm6/jvMwzmJjcnVxreUprHSuMFtvAqAQsXiysbDLih1DTbT2Xzgq8Y+93F8wEJTx8fHGIeIvXEExwHRSNljUCV2lgXBCH+e6GVi9Zy6G3fQwGnkSohXhdnIqiDG9t07lcDUJ51EUwe4Rjd6foFUxTiuus4EIiUbkLlGLeFZzInxYj+daO1owXALI6gSVvTXRn4gI1RWw4ha4FcdJH9Y1QjYKZww7sGIPVw9PHprzgnZjk+Emlr1GLJWqlrRE4iVkObFeUa2ZgMT2vUUhBAxDBPW6z0trhfGOAw4PmYcbwqkLJCg6svrcYCsV9ibJhyu19huNjqhhgEHBwe45uAA0zRBSDvehLzg4278BVxejkFFQZOBWZXEly02lwQyate4IY5YjRP29tbY39vDNE5IS8Lh0WXcdddduOuuuzuRKamOjxseLTRyMZxG1SRqMNhpPMS7vnnyp7jRLIbxkIEvvsjtNU6esgkmAhVwc2KSF2+YERNzHqW0kNSp1m1t0Y6wQoX4CdBWDw7GoXPwdhMuLYC2ZFxXXOuOOwF13vtRcmfMfA3a+oIlPxldh0gPxgm2Fs2RM/tQoU+xFd18pJ3iMD+8EzU7udPsTt18xAuMbZw8OrRxE7cF3T0RmuCXWoRopAnBKkwYB0ZOC+aFsSyEhQXLool6KpqEX9JSCTueLNdCdgtmJrXHaYyAQB3DaLYhJyzbWRVZU0LKGSFlJANaZwJQMiSpamR08LFusppbiEYeDWTpPGnJDJ9rOlBcZ9RpOnYKDjvwxuejUHvdTuGGOxfMmgyyM3hSTKywIVvhZKhiQFpMkDki54zAjaRDOWuXN42Km8iUd4UiB/KKjSR3ZFUoCZ58TRiJjjuxqZ4w028+0tKSwgFFYCR3Jyfo50k/DpUQ0Jwcqo58/U2/qwEgLGD80NEj8e1n3g1Psldnqe5j7jxRDQ58rcK2eK4j4AFLc6NjDKoaHUkDuVKwLRmpaPczyQCYcGZvD3vTiGlgDCHgAhMuH13Gst1gc3xol6x7cQGw5IJ5WTDPWyzLXPeawIQAQWBuHXOHiHEIiANjHALWqxF76wn76xVW0wCSgvn4CJcuXcC8OcYYAq49dwZ7qxFMgrRoUpiik1VbgkUgXXGtCa7sJCj+by6K/w5HW/ltXyEAT7h8K47iHu6arsNz735t2zr69wqBwFVwaLeIu6lqNwIHdk5SwXObU+LiooDaKCpWmOiOtoNJlqQ6eTO2TXpgd/W79Q7Su7+vb/Q9iMiSr6SEII8V+udIpN28LdAjEz4QggkP2AWZs1+6oqpa8FlV5hQ0YA4t2djv80YsEVGeWjOA6tNKW2ioAaH7E1xQJNSiKSdsKQETJ2wO2XUICuueJSKAFYgzFYCjJihMjErtVA+cE7yZRxBgiAHracSSdG/cLjNK0u40omxn83d99pk3YslJv0hyn0mMYAQlE4gQQtRgWiDN5zklRwjBxlpQlgXLvFVgPU5K1mbtYBIIiNEKMSBIy4zN8SEOL1/C8eFlSE7asZm1GHMIWsiXBJrcEQXZYKTBQpYA6/dEGL3KCUjQWGAYonVu0H+P02idhBLmtGDebrEVQTFBHAi0i0lRoTMFFvQzBhOGMWdYwXcpSJ5AdgEre2+IEYMJggRiDGHAOEwYrNhXk69SQRkn5pWd/U4PojZ/tKCHVAAXLQlerONcKUWB7AoO6c+lFN3LTZm/Bu6+IftxVSNjQb37ogAKCWLe4rlvfTH+y6M/F595yy9Vck5PMGw+T6l7q91Vew1QvfXqnvsnn0AS1JxRNy67r22vb35+S9LtesUar5n77GD8KTo0Eayd6gJr1zztrli0Y0gtdrMkfVZSgxOWiAhD0IKJ9d4e9vb3sLe3h731GtM4IJKWJqbgYK4BWkbsRI1l1ccZrKjd41xAn8EwjJjGSdcHAMxzFW1xH8rxkBbIoQKOOzBlQ5JO+MBdPEj9s2p7Vy3K1htpxUoGIFYXl0yAIShJ0gF/wIFvS/YxY+WiPtL2tXZJLbbz4vqcG5jmyYM+cVz9CBOD7KecE+A9/uZ+3ffTGhZLWgzL1Ihp9XTicZGSv7zgs4J8DR2qvkgDk0u1vZVoVQTS2RgXn9pe/xhcevyzcM0f/WwF2dV3FCQpjTgFu9BTFpU1go9ifv2868k0J+N0j8mItMACQZOrGgtEJbbv7WFarcAhIKWMYZgQwqA+VghIWYmdHFTwLHAwYRYtLgsx4GD/APv7+1ivVhjHEcMwIg6x+jCOd+biPhdptxTo88pFIMkE9cXFexegLPV5VhJgASgLrP4JLAVBzOe3OcL2TLM4amNJOBYr3A9gjkq+siR2zkpOTNYNMqWM7XZW4UcnpBb3jxTE16I6K+4AACrmJwTEIWAYI8IQavKLA1vxnBP49fmojrIVFbmIzMn9SXT/zUuqvy+5I5hIt4foC3Zi05ITyuKklATJCS420cfCLjDVJy9qcqr6qzq5arcbEzLqO7u0iVgNH1z89/8rQlNAb3/tecLsJJnPfwIR8O/U7T8pqdDU8fEGx0dHODw8wuHhIY4PDjDv7aHkPUDEyArB9uT2LGoyBi3ms39c1dKd9I12bLJ029x9vP/EySpOUptqlLb3e3e9+tpuSHrybH/4GumJDwTgQSPw3Y8bESH1NSJNaMrP4/Fyn0R3LFdzL6SxjPEsPvos4aPODEjzFiituAa2t9WO7rlYYV/DRIqTEQwfDMFiA8NEhYAgA2LOGEcVyVyWBZt5wXY7qw9dULsVlqyxgYuD9OvI58pms8Hh4SEuXbxkwpWn56j7spM/zTcKVmQ5RouvOmFN37DJ/B2gfT95tHnOylrrxBfaWmjvJQCB48568d8DLXkKj9l3/DrHF0ot6mo4gH+Vum/AsLfgRSnM+PGjh+J/Xr8P1/R2oAPge/+mT366La7xUXdDTlRiw3aKWKdr0RnridjAhBBdUDQiRsXFi2Qsy4B5GLCJEXEbMCzaYTmNCcsyYZpHbLdbbKct5s0W87JgSXPdiyCwfcF88mHEOAwYxkFF16YRq2nU+NcxQyccAZVIqB39Eko2AhNxKx4wwSEiwfnV/fG3D3gaHnr3LbjlQ56Dx779ZajdagnmZ1N9NqX4uLbxBVMtWvhADo/zTtteJp3NBdReixV7aHt0VDxKxyioUIXHIwITUooYQjQcxeL6YNhAGOs+5SQcj9ZLN28FwDB4oSqqLxRJU+uar7GiOlE7DWGQZNtrqBbhiQlk5qy2tmIC0uyxYpcqQGpKA0beb2uy3wvdI+1jmBoLXmELFBMtIMXfovqfLRep5wjk+IVYN2RoUbEQCCZKX5of7zEsg1TE27u5Od4q5mOKickA8Ly6N9moPh+LPWtD9LrPqAU2IDuPfV21mNGusZRd0WBpOViCCaYIalxF0CZbgVgJctTiYx2VABV1ZozjCuu9M5jWK4QhgmIEBRUvA5tPTATkcurWmMfueVmwlIxsAkmOzwUJKAVIpSBHxpJEC5sLFMelDIGJ/FcZN8CFgDqZFONSaABdST0VCyqNa9EWRP2dS8AQm83LBRxaXAY0n5BB+Pxbfhm/9sR/gM9/03+qyHKxfFcRQS7ZXi9VxF4MF5ecsd0coiyHCChAPkaetyjzMTgXIyHtfhUAkhlUtihFRelGWiEtM2RmxKx2BpXQxZj2CFNkLRSct5onANl+YSuaNb8vuSh2mlxkSn2QxYoRYX5pHT0S8BA03soFw1408E3qM6oxEwHIKjAlKVWcvxSL7SwGBYDAwAveMONfPHWN7/wr4HuePGK1t8Z6fx9Hh4c4PjzG5vhYxWMXI2jOirPoWjC7TcrbsOqVnXJDFcAjw7Mj4qhdahtpWedNsfhNfS6Al4RTWdTc2RaUUnElndHGJ2Cnjmk8JW6hqeFkHmd4A0BVr2HVOiMAJePBb3yJcR2seBjNpkndB6gCWLpKtWpEcXmdf2Q2OqDtF0DbiwtQi1gAtrmr1+B7keq36HNzUp/iXRnFRCQGE4b0WK/xDsyv44bhwwn2ZrNcQF5FsVWgajDhqsDeZVibJp4UAva8Vc0ZSRNQks73rYR7Qd2HqgWv+6+PA+pTRS3G0rhplTb4tJv/szb2qPuiPW40LE/3/nbuOiXQOCwesQna+/uDLI9VY++OVOrxFtu+zsYxEMgObukxoeKzhvuK79lXfuZpONKyRRmixq4AvFEG5wKmZPMQVspHIGFwJoAUGxZigHVf98phF1cowhAJABaQrUtBggSBUAAkg0wwNOaIXGZAsubngtX0mW+pjzfoEySPw+0ZCMDQQhoVazc/AgFMIziMGMI+pniAIe4h8BoxrsFhAnO0ezGSOBPY9pFlTjjaJhxvMpYUEHiFG+gA/+h9wN656zCMKzCxcc8t/xYIFKCYI1lTKCFQ1j18J48dBvuH5nUZOl85KjaXXDBJTKC6Woli/ldAiBMiCBFsPiZw+bBgycdIZQalDNqyim2BUIZs9mHQNc4BoAGFovFjFKMQERWpDGh7nrCJpFIrtoD5av2/DZ/RBlUqBKUF/0mby2FBlqTC91bsIoadKM9GcUoXThJx3pvF29BimizuIxX82oc9Gc973RvwGx/7dHzay/78v8NK+f//8Efu188FNqa+x6BuCRQAigGhRI3ni60330M8V+JFeig7dsq7HmcrRKw4QRWqkoqBAc0maexWgKL+u3LYGkHbl+K13/IzOPzxb8DBt7wQ+MGvrnHiFANGjhgoIoIQEKrooqZlW3xYWVK9W29hCh8d4rGv+mW87WM+H4995S/hzZ/4ZbjnYU+uo/jOj/0CPPIVv4T3ftin4vABD8cTf+P7MFw+D0Dw5F/+dtz4Jd+Hp/zSv6i8kc21N+C9H/U5eMzv/hQgwINu+mPc9oxPx/6dt+LcO/4a597xN/aM1JazbBpOBUEos+6fQghZc2YkBC6CR7/xvxivltE4jvV2kGsBre0tdsOFHAJWvgoTmaiXvtHKrmtc52PT+0ANqWhzQ8jjYL0GdtydfKy9gZPGg/aPKhap1l8s3sSJ5mEa95ZCp1CaA3jmR38YZNrH4XZBWoA3/PU7weE87r284Pb334nL2xlhGME8KJ8sF0QwSsk4u74GUgQ5b1FyAUoCsRVhmFhsiCNGBrLZ9FyUA0JhAmhCqkWviqtlFGQUlKiFelq6qOt3mReEELDavwbT6gDjtMLe3grr9QrDOIKZsKSEy4f3mE0sKElQsgsCLDU3I5LQmiiUhuH4hAGwzBs4H4yNwxcr5umvUz6M5xgJKnTCVFoahw2TZYJYPrr6PmXQ+Ic7UY8uKVxgUMPm2OLniBgZqRCEBsWFONY1wmDc/WevwIOf+/dw/P734vxNfw0YbuRuVD17dauo/d79S49vo8nfkeIL7GPmuE2jTOuSov6MLS/eN4lExaMLApe6l7lv7Fw9NmGAjFSNPYEQh1H/ZrY8S0aZc+MJnDbcwxxuzcfagJEKsWnhpMVpRYBOchBAFfJX/00FALQmxI1TdYzg0YJYTOd+jcdg6gFJxWBrPA7341ExKztls4NouZ2aCzA7rctXapyguc9mKp1b6/iPN7MtRK3I0WtL2Aqv6tBV411n6b+/9yH4+L178IjxqE1mvfGdQa88FPI4xm6Z+ARc7VFRGxMVwWFcbSbJyd/WWNf8cxj2anFMFwnr++nKpxaoP9VVPlV29647U8B/uOMsvuGGO/WuLGdWbYdoTK/j53yQYv+pwJTulgWA4Tola2zh3BITqoLtr0ICSQukLCfG+nQcVdyYOqMkqHiANoHVX+t8b7xcn2ct3qWaE1B992bfT/JITkwl2GpF5cWJxjCFoGVn3PDDumaKOzBeL2Zr14r8+9GuBYmke8tO0yHn/tTnQ43m4jkc9Puc3/RuzsybzDWuTJejqmPQpkHRzmp6R5bzoKDCUlVoKgRbf2giy+R+MzfuGzMgAcxADl0RMzcuhNt5Kbt5PojW2TiPMkZtwrakjNl4IAgwPILrOJH5fCKCGH0N0c40r6I9ZheY9fzjZKLFg+b7xmHAEPX6+/HMojbS00r2yQC1xk2wZ6OiX2WnscFpOBwuIjNi5DZHTrwGxiOS5t5T9zevvfBJVGcrNT+k2siq3tp89voo4F5B42g0Dv/V7ahy3ajmyksxbpVoLomZQVG5XI6PZ2tQl3NGTgUpGefKGsvlYpyhXqwJek4paBxaSF2LFV0jUn+gCELxW3QuIbdFJiq9idDqLatwg93uSZEp5xW1vLrH/uqL+2DWpiqeY+vsnHOZ2j7pz7n5DKVkUAlgsbol2GeT8seq7WCgCNm1tk2vWiPhuiey2+RurfT7eLHpk0XF9FpDTOWn66AYFut1q/ByVlHfxvypU3V0z7v/wce62m7bjxxjMBdLcXuzo7EsePIrf9qa2oYmNGVrRwxsdp8R9fzGjXXsrDofbQawX6otRk+3VHcPqFhIIGiOk1vVBIvj07wzs/x9ZCpYKjYltnc6DuOTQuOs+x3dib9z/DKAtOakuN9TmpB4ySY0kDOKc/W8MaTlSgA0Xgvb3hsAiM0U0lyHi9t4vCRSwDkodlkyQFov0EQvGn/CH6bvn1JaDlraoAL1//q9uN2odsbcVe7XW+d7XGVeUWl56c75ueJoPGT3iPRlx6tzeMNjnofH3/pK/M3jPxNPe8tv7/jD4v8Vt7MuOHW6/MUiMJF6BkkCF4IwrKkTaVlOFggXy9sLxsgYojZxJhFc/sqfx/qF/xhHX/3zGH/qy6poGwDzvRWDZdMJYAgCiQrWBK3pW60izu6tcLCesLfWxonBGkRDksVQzXbpumGwCCKAAYxBIqJkRAkIwuA+3ikqusYEkGSgJM0BLwtKWiD5hN9va73WyFHLyTjvsDbqgu/lzp+ye5dsnOeIGEfNn68UAyCKWGi22JEVFzBKLaTFj9pgI1SeiwtMxRAQotcAaXMb3QtdSKjVztQ5Z2swxIiBguHq9jm2d+fcNZIuxrNkr0c2SpxxO8QbG/l/ZLGRaE6m7onmI9e9GlbDYM/Ga4RI/DPty37Ptk6dW8MI1oycbJ62477Cxg/6UW1Ni8cbvCXV76h+PJGJF+q///gTn49nv+x7ESQBsKbszBpnUxtbb8Ss3kPD+Kn0PCadowUEykVxF8uJOc7szWDdoaqiqjuDa+e3PIw2/Wg4td6a1HjL+bRaU5jguQTl+Bdstxtst1ssszaqVOxUwMFyh11tapCCL7jwJ4BIa4BRsnJmfP5Kv0t3h+3LatoEyTgdlFJd6875dZtdY0b796PufTMentu85278g/ml/TNpuVyp49L/PTifuEd8RCC5xWfiTQONUqLTqHSi5HZ7FLQW1Oea2V0QgHHwMNfq65s/78/er8f1THRsUWv31C3nauNPy3HFs3Zf3uajGM52y5M+HQ+88xa89UM+DuM7X4ZzR3fqXlHcDzOMwutxne/WB2TFcKSd+IKq0FQxW5pLNpvqc6g0fyBn5GTNXLILUbaYW7VIdnEQuwI4t3EHL7DvdOKa9HxSx6MY70jFptrn9w1kWg7W6zwaPqBjTUb9Mx6LAMNtb8ZBWOPwQ56Gh/z5f0KyeRkKax6yBPUJmaqQKFls0msX9Hkw/UxWLiS3vKU/D/eJdcvxdS9tjBiGzWaIZFTNEvdt9QPq9zbCnc9JLjLZ2bViXMYOnzjZkLquL4LWzonbFN0PnV/nLqh/L/4lV7VeVxwfsNDU5cuXMI2qdrmaCkJYIwTCNI2YhoBIGZIWlJzqZO2dVhFNHqUkCCFAjERUiMxxVMBKlUvDDnCsqUFfjFQ3LRCUBFI3mzrqQFUOJDM4rsrYQA5flJ4sgQXV7rr7CZvQjJ4ve+Bv6sCg0haxvcexSLGNxB+M/s2uoltj/vT0sdkWbGBXfYE5kZ4883PkLrjcERvUW++C92CqivZviOFOYlGTkjPGYYWyNqJHsEARCYQEKq4EC3CMwHoFImCMKjjAIWCIDJGMvGw14EoZyAuQZiDpOUYm5DEqaREFabsBSgCvJgxTwN56hTP7+9hfa0f7o3nG+QsXccfdd+GeC+cxp6U+92BjUjpysUCqWncdv+YxnspDsiexzEgIVE0zuMxTH/ECXuSRi+BrN0/BD8absJJFHYGiwTMVO0cVnrD79+ySkAba5BuFrRmmth6IIMI7zk9Fy3rD1t/Lzqf14HsDmZtT0wANCEw10W/TiFU9cExBBXbMOWIrWtakAFdBtf46tB7HPFH7ILFg3gWgfOl4oEnQsSdbr2InoiImfiM7YGt1eEMEYrTf21lLhpQAZFLhG2eBCoMLgQoj54BpiVhSRFoGzObsVsDFQRZWoa9SVHSMWFWAh8igYTRwwp4mEyCCkgNmAZhMrGphA2szkiiJqqSEZZ5RSqpPjmDjChWZGjhaN1EyMkLbND1oI3Exr9O71oATwa39jk78vYHMqGvDASxiQZ6uwY2f+J146iu/G1wyclmQCyPlDKaEJECkjMwJOQdkU4d2R0SLiRhB2JJrpB2G3RGzRHZdGwCQoR2ByUV0bC+sIjx2ngpQSbUr9WdRYmWijKUIkjvyAvQBCLEKYtwar8Nfxgfjc+eb4Z1derVbT/RVp4jUTnzf8aPwjfvvwQ9dfij+xbk7WkBxYrT7Qrn6TKT9TQHZaIhphlALqIJ11RwG7VoZiXDEwPZQCxNzmrFNMyLvYQgBZ/b2MXDAwf4ejjfHODo6xOHRIY6Oj7DZzlhyxpwTjucZS1JSYHYhKDTxCS3qNpA4ODCrAEYgYIzaLVdKxtF2gwsX7sX58/cg54RpGnH2zAFCcIEvDSA9ANQnJVVcilzMglvCv5GsThn4Di1292IQf8pM6h894+Jb7B4MfGqvsPlOdZx9XgSfa1as50GzBmb+qVL3KP9g9h/Mz3GlWSYxwEnqZ7ScQUv47roLnnD2j9M90j7ZXsFogqjupHfJZPNZC5lwYncIdcE+6QTTwiS7KulE/apIpFpeqVGAEhJaiZl+sfu4cNu8uw6FXPTVTYanRPwaBQ2AcmCjVB8E4uCdkyzdv9Dfe9cnFiCIq+TanRlYQdYBqbD7bUkV6T3QMWVgQ4RBQ6zbq0BJc3S8xfGsa1UKI4qBpBwsAcemWelz00SBiotJqZ/AokVmJZMFVKWS8U/LEYKCuyAg5YTj40NQHFEoYJoE48iWZNFCICWaCnKaMW82mI83WOatAgCjJtxD0MAXWbso5KKilN5BthJJmc3HqKEoiIDAAdM4gk1AzIE7JyhNgxLXSynYzlscMiOlBDnWuRKZtatvmrHMixWzi8U2XM8D0YSpgiTa+coF0IhVsHaPGWOMWE/a+WJvfx+r1aoCHaW0blmtU9YumAGgA+c6cpzZasAJCtmKsGxe2Tjpd7NCpAk8ESOV57ametEBqRs93D2uRyVb1xhAsN5cwmfc9IuWsGuv8/OItN83gJVQLwq9DfUYs72GwpWEwBbXX/27v7ulm7tb6l5zuj3EtiMFUuJqIBWYzKKCZ27fAVF7ERglE3rC+2oaccbEl8+eOcD+eq24SVCCC4p2VIvBxZJ1fufsxRaajGYjuYQQTL3fih5AiHFAjLEC0D2xynGQ/hmenPO7xf7Nl2+g7S583wOFde7Ya7yThQuvVJshAsoFmTM4MUp0wh12wG8vEiuD3k+04m/IlbOl+kq2z/RJqN29vffwqbv+tr+1QkSNclUUgNve6n57F/T140A7Y2zrrxLBrNtCL6ZQTvy7s5c1qS4OxrfkRP/a7bUPxcWnPhfrW16Fix/3xdh75S/BiWWlsxXaEaMRAk7X0T1Xd/8hVvhrtlUc1PSYzF5cYQG1s+4vhxAwjAOm1YT1eo0QI0oRhDiCQkCGmNCUjlV0UUIXHmD1TZkJ+3t72FvvYZomDMOAYdC1BqAmj4hJC31b0GJFllLnpu43VOP4usdIK/rQe3MRVMXThLPeFwyWqfaU6jNWYXHDMZxbXBMxATGqTxuzCtilpEKMcRisK0uqBA4igAPpfkeN7AOU6nfH2k3E8RYVVPAkovrJ/xXr3v3Zk4FLSnDhEiee3JcQSSNyWOczF6kpC0pe4N09K8wkZvdcaMrEwWqiDhVlMzyp2duaZNOsgBWTtTmr8E+LS+5LKOb/Tcd/S5GAQfL6PUR85L/5Q/zNN34mACW+LsuC7XaLo6MjXL58CZcu7eFgbw/79rWaRj0Pe8xrUUZvE+xBOzndn8mV19nNH/vqiaMnXK4dX+jkcdJ3A2AYhb3H/UDoPnxyD3V70RfB16Rt54P6ZzAVJNn1x1zwhFiLsX0P7kmMUoqKsKIrMPD9x0WqLL7kWqRjW50UpCUhLQvmeYN5nnHp0mUcXr6Mo8NDbI6PMW9npJQhJdt9ct3XByLdz8uAcVR7uVoS5nnBMCi5mM4+ANd83Bfg1p/8ZmyOj7Ckpdu/21jlnLHMs4pNHR1iXk6X0FR/1OdApPtLjHXvCNyKmNyeQZTQqcWxu8lYtzs1BofFrG7rqeFxTKGK/Tqm1lNdKkbXX6uRPOu8qntvgWSAyImvqP5Q27/UYSwoGpfr6fHCzUPw96fb8W+PHoyvXb0bqx2Dv4uNNKJEL5iNHeKLF/8QrIlIiIqlCOm+arjCSTBXsSTr1klU7btft2N5Q4w1IbtdBszziHkzYjtNWJYZy7IY3o0ah4YQTEBtwjiM5h9ErKYB0zgiDi5ipLEQOY7S722kObxsgideoqRQh2Is11y+HY+6/a/w7vs9AU/929/H0uGvgU7aRPM3i/scltx28Qp7QL6uKu5qf6vmjgzx+m+w8/8jjpNzptqIDo91AY7IShJkAthwKGZCHCIgASEMCDEg2v17d2LHIImcmKd4AyCI1GyoiOjrqSEhIMUfNDHZ5jmEVPwzt3kNUhIvFYFk9cNcYFPjN6pxdEUVDfvoyQwwXMHXUCVDdBhfQ/zs/7YQ/FWaYyuVAEZRiQrZfU5p7yb/TDKoUFhFlsT90w4v9GsXJ+PpuBQQcsnm01qMKr5vRb13y7GTYxlZ9DNbDbHPih5gUBJOhTj6+A9X2JlKTtqJL53sQbXwwPNpjZilK1WFpVTQLyJUgoo3bhqHFSgGbfiEziepw1Qs3jg9h5P4NL5v8Xt7prA1AORCEAooYKRcMKeCHMWEboPGMxQACooXEls8gRabAhCUug53j93nsvucmh/KDJOn2P29E9HUZy/4vJv+TyPYoCueRI3P9T2w/cGavAiQ8oK0MCgLkiRQmlHSBmVJYPN7AmmRlhbDWKd2w8JFtEFCxdSpxT0ogpK0oQjlgrTZIofLyMMM4REsoWGBQRSTs/PmRcnIVAqYUGOad18q+MU3b/HtTxtMGMgK6VOGMGMa9EYrAbDDHF18TT9C41PyuPtEWOdE3x/46HP4+j89jx/9uHOYoPvo2bNnsdlusDk8xtHmWHNsxxscXbqMy5cu4ejyIebNonl1bqJyNjt86KwwgupskH7v2rFzcAelPkdmv8fTtY9xiGqrC1CclQlbV/AciRjPQddMABBJMDAwTiOGccQQY+cf7n5GbeIl7fn1jxpw/4i15rMWdSmHx/Hoah+L2mL3OSpGaJ8txisSY/16UYwEJY0XUX+HYGJ91QajilQRtIN1DFzx1wjCQCp8HYKLdhr2AFKBKfYuzrEKjqtAFbWiBIGKCwhrw4DK+YKTRLQehpwIbeIJ5eSI6Xd3pxomhbYpuV/lz7HGqu186mM0P9rfuuMTty3ezsl1LvcFpr7TSvd+vYzmw/W4zA4+Y75DEhdls3ycTh4joRb4KhQBxEW6iNTvLycLaU/HkfOMlAfDuaE+f9GYhiSDJJnvZiKRQpYvpZqDhQSIBPOxyHy3qHw7a75oxB5kAFIShNXn1vWVVEStEAgZRAIOWsxiS0a5PBDUgjGVaIeIqbUVhuQAkQFME4jUdw1xAMc1VtMZjOMBxuEMmFcADWCOyuHwpjosIC6YU0aGoFDAJm1xtMkIYcKZg2tx7tz9cXDmHNbrNWIcAAjmlJCTzheF4rWJV06EbdZ8M5u/7Z28iRiFGW/MG7xkcx7/fP0QEzJTAnAyErPu2WzmPiAvCYIEBqPwgEgRjIApTpDpwIo9Mi5vM1I5Ri4L0rLBIhFbCEbRsZY4gKIKrxTJKBhAJQJQDiSxGI/Eyvyt2M0LcmD2QnY4a0W5daRfFgkAcD5KtuemvnwuJnifxYrlElJe0Bd2ZW+I5jixibtmk1nMIJQs+OzXvB4v/tiPwKe+8jVVHOa0HDtogpywLR5Qmq9BgRFKgMTigQcKkxbAQ7TBisccZvzcftachmG+tdN3aUULAtlpWuM2F+5y23uci+SEeLL7uPgD/wRnv+Pnkb7/qzESEMCIFLTZCwXbSzo70boT1s213b/5pnB+id7P+uJdeORf/Bbe9WHPw2P+9EW4eP2jMR6eh5SEB77p1Xj7s78Yhw98BB73kh/D25771XjsS34cYTnGjf/ge/Gh//FbNR5kwnxwLd797C/Gg//it/DOT/oyPOrlv4g7nvwJiPMx7v/WP69YjefMhUh9TQBVmNcI6o7be0T47sc9CzROeNSb/6TtZSC44KU/6/oDW9zoUAJB7Q20uMH3Stgz6LuZ1/GrMa20aeP7lT+/CmV03BT/7jEfbB74/ds69RlBdp0VB6P28do0Rrrzno7jAQ+8Hu+55wJueNgjcMMND8eNf/1m/M1fvgUXD2dstwtKSlaUmWvxD0FFYo+PZt2jyYumGp8jBN3D6x5fx1Zfb7VU6u9BIELIRZAALIv6iH1Tg/U44kyMmKYJ+/sHGFd7CFHFJFKacXh4WTHltGCeZ8zWsIBNwNYbz0jlORjPyIr7vGgkm2Bfv9R03pnXyIRaIOIz23lXAn321Dh3FAKe+Z0/gtf9y29CXmYAnhegOm/EGyKUovu04U8+11TAxvw7an+PQ1S7QYyDhz8WD3rOp+It//7HABG8+6W/YWvD45gr45STbtXJfHPLgzf3M8QBH/oN34M3//y/xvbeu9sfgCb85wNn30+ez4NO91mrawstGN3BmWTH6kMgWJbF4sNQBcDcJ24+5Wk6BF2XxO7LKzjcwBv22L9G2s9S9wLZeZwnY69u6K92JfWHo0L4ofeexQsedr6KS0nNbe768b7/VI+/Ns/091kMIm0/rHLOtlF6OKoYg++Oel42XoeLUbVbaHl5AvCi89fjmasL+L3LD8DnnHk/rg+bGpP0+Jv+wnLGti84/qCNqRtuD8FVxqoCfQ2bEr9aH5du7l/xdvfnr7LurvKuOpb2GTtLxZ+9GkxcygE/c/s5/E/3vxc/fft1+OoH3mnX1XzKWh1k72t/86ruAotC0cQ73R/1B97VWtn+pg0sEujUrbGW42wFx3aIT0r1GXxzVrzU43f36boY2V7K0LlFbG46URWer/kCs/0+fA6b9L4PiFxb20phes8BzSxYw2+2uhQXLQbc/7H9iLnWUcD8VYHUvKsLqlO3Jnxptzzbrs/vJtx5XsTum3XvK76XdngesuYcKGhbCILhlC4OZTyGEEBBhX2iYUzMhCOa8HPx4/GN5Y9Ry6uC8qT6omTl5CtfZplnzM7jyLs8S+d4uS3ilHS8l7bvOq/L93IXTaT6HKXmBPqcKYeotQOBLU+nzU6HoA2imwhC44SkpOvG9/mUVBg/La0Wx68bIMPApYkBnZKjQGnOu7uymznq7Lb7Tc3/P+mJ3NfPMHyo7jV+MtvpTn6GyzLW9/sirBxy7KzVK4w1ddssWv6giGLFKSWkXLAsyglOS0JKreGOnrf5g25b9GrZCii52WA0UXl0wpFFenkXv1/LmehChvsNJ/NPV3AGzR+SIijIZgMCvKG0imu0cS3mO/X1tf78EAL+4rO+Cx/269+mAg0soNCJ1fhz3tnq1EdpzT1ciMRtEbVHav5tNdOwnGZ9OF2UZfuUltipaDZKi8mK+U9s+CGqSIP66HrLmkNh8vE4XYuMXLB4x8fzGbHrH9Z4ltrz8rjbeXORUYWnlPOLeq4m8kTV/5TqPwAQb/wgJti545jYtaEWo9cciq2B2qzCvnyd+mdaTxCwifr5vG3iUkUL7UlRq1J0vyil5Z31vkv15+rTFK03KDkjuchU/5VNlN32S8cTvFmsx55cBBJtz6ViYhY+hu5H2jplqTm6IjsIFmrcg1b3KVYzpNh9ATIh+Ln8HdL8EJFmR+v6r/Gs255+1thP1YcVoOalm39YY43eEF7xnAV7m3vxtLf9Pm56+CfgmTf/6pUxAHq80bBIyVVM/7QcR2mLQCrwPkwRJQk22xnHR+cxH25wdOkQq9VKce5cIDlVPmEpCzgABy/8Mlz+in+P+G++RHk2gcDGw4rDiBi0MSsJ6XyjBZEz4sSYxgmracJ6PeK6M3vYW42am2ICkfptWRLE8HFQw7+JAwICBgQMJBiQEDO00diiDRwKDNsIjEwFxyUj5Vkbx2+OIXNCKCpUtYhiwbYJgKAC0iGwNt8ZtKGe1juhzlWCNe2qIkmAxnmMQBFjHBEpYOAB83aLSBPGsGAZFsVY4DG/1v0sSwZYc5gQmLhjUc5DdN7DgBgHhDDs8NlApkkAFaZeiiClWXPMgRAwQISRBUhFjK+cMC+zCaibMLphTjEOluczTjIASVkbGklBSnb9/lyM40Jo9Tuqt6ACN8TZhEY9NrZ8bOmaXlnO22v2fCkGabxJCCBJkJFVNJoaLt0LgpyWo7+ieo0136i/1/SHNwWyXxbBnzznm/Gxf/yDeOUnfyee87IXmKRAw1Z97ux8dX5iMbEdvwa2uuPGnS9wILKI4XKlNAyi96VsF3QXrDi/viaZ601WU6q5h1YPsywJy6x18ETGg/LfL4s2nlw0t0Pq2EJcdpF030hFgJLqOVPOrclWboIuBOyMS8XjAWRR3i6nBJqV48g253Ly/VL3xZT1tR4rVf4meU7fOE0s1Q/YeRYikJihjUIsF+Y5dV9r3ER2nVfoXgl7famYj1DUdxUhq5XWta91KBbrdc+iNXLWGLp0YnYah6Xm71qeX5ORHpMr7p2Lrd168tN2NLQB8L0YFqcrZ+JxN/9n3PK0L8Sjb30VDi69D8Ks0918uwKv1/UaW/cH2vndJrlQb//xpWjM2mo7C4qvbW/AXVxoKtf56t6gx2GOYbi9kK7eyzEJn2Ox1tZcRWCXOnvh8YFjBSkjp8WaiHvjHjnx1dV7wfAYu9leUFhEsPeO1+Lg1r9CsdrqbPUwHFSzYSc2Y8WuXfzWjXuNt4CKe2h9cmnPgZr/h2yYT9Yx7eNBNt2AnGeDX22OV20HG88Tz9C/97NJ7BfiMaLV+7gPnVLeqfkTESzjCjc+91/gyS99Qau1EeflddwSaXOqPiZqdfP/V8cHLDS1zFt1ym1CR2bkGIBJC5SnOEAiIyd3ZgiRm2iCGnvUBREGQhYLeiyLoi4A6gannRcKBAkibMFFkyIgIwBrvLOzTcKDXg8WqOg5hcj4G7uvt+mpRova+wRsAZz9TrhuVgo4lPp57dnbPfehpn1eAuO3Ds/gCeOCJ0+LFXH55G27uRT/zF2wvIpMGBE0C/Bzdwz49GsTHr7WWdByUgaqkEtX7ToTjoRWarsFj4EjhjiiDKoGygSMkXE0BBwFxmZzjGQiOCUpkB2DGhlmQkkLDi8uYAoQ0gB13m6Rlxlp3qLkBEhRxW8LlAmCIMDAEdM4Yb1aYxxVNOf4+Bjnz5/H3XffhfOHx4hf/fPY/sSXg8tSx8eLUGpQ75u/g7DY+d+pPDxY9YNFQ1ad750QEuldkxmCb90+Ad893IxvXJ6Mn6C/tEC81C+IqNgUNMhVY96DT84C8BCZak7Ni5Tbd5tL5jzW36NbUiLoi1mdRO6f75aJOqvV9khSUYoKOhqGoYvIRNLcKVFgPFiBNkAG5rvZNZEe8hEEQOyxfgd+7AIxDrL5plfJc+J4qN+Hv77BMYBYwYNdqylYo5CpUUbdSMzpZSEEAVgYQ4koQ6lOVcq6xlJS59Y3Bw9SStabYGbt2BmDjYPUiUTim03RbukmuiekwU+WDFky0ryosMO8RUm5Ar8ErZfgAAyRMQ4RY4yIpIXfkpKS91y4rDgsZUUSp2y5iV3XSbL6fb22JQOhwSVc9IiBIeLWT/0uPPY1P4qbP/ob8JRX/yBSZgTOiFAyt4Dr5p1zRlYJYASyOcHqWOZIqqgpqqzpBWroiRHiga+BvRbQwBw1gSZUtKuKBVGQiuY1spw6B0mAuQCpEJKdmyxB5CImzIz30T5eQx+Cp+fb8UfT4/Apy9/C4bQGTrdiSU+8BSY8f3oHfuToEfi2s7cBNNSx7QsIHcX2Nd0eTUu6eeGkOty6ATMzULuCqqrwOE7gAyUqb0LEvNkgzVtVRZ0XFNI9Y281YX+9gtBZzMuCo6NDXLp8CZcPj7DZbnG03eLi8bESLIs623nZIs0bSFp0z2NgCgHjoMVmq9UKYxwr6SaGgEBAWhZcunAe99x1F87ffQ9KSRjHEdM0IC3HyFZUOa0mTMOofpBlrTioiFwIoQmtdEWBvWL5aTpcIbkmdgRw8hIESs7rbbVtfkTtdwS1j2yBgxcK1i4XJ7w+8f/5RlpaYh5wD61PTBmBSU68zuYvqOwIsOjeQd2HtL3PP9tfr0Q+S4ILXDMfDMICxv92x/X4iRvuQqi7RtuPDAWAK4USiVfRAOiSnGL+qN+wyFVngibnjahgfrX7zUS+bznRg2oRmXfvafuJXqmLS/kYoirEd1GIRzvmixCpb63XLAj2e0iAMLQAhsQKtlALaLWDl/b28v2WYUWjgcBhMiK1FfoRI+MY26SAc6nCB0GBEHJSMGpAV4n8toe7Fod4QsEJHqcLf9eCZQvcS8mYt1vwcAyKI4Zh1CSdPWO9B41XVJRhASQjMCGuJwQJGEdNbJVSkBcjAc5aYLssC5KYmB7tghd9EK/FHxHMhJx1feWioi2BIogCQmT1H6hgWQaM44hhtIJzAUphZGLtPp2L2m7rXAv4VNwVMyaYzWEFnKdhxGpcYTWtsbfaw3paY7JCYO+u6vC5n6/eS03iwn7n6s8ErqLCfvi9o8aErSCzAQ7tm9ozQ+PquBE8lrQ9vicOdUBJ/VTpf3d1X0Z93u49dp/urzbCZfce8ncC2Pm/fy6g1qx/9v04NH9ebfTOEHSvRbWPhOpOV7X203IEi04DtaRwK+gWFThjd7AKOA6QeVbRO1FR7dVqjbNnz2Bvb21iUFDhBwg4KzZCDMQYlNBjvnUJufqatdOKiYkWIuTc5hWDKnCkwJyKFRF54XVX3Giki9yrnDv4nV3YZ3e+1T25kgGa6JrtCqjAGp0ItesE6oEr2xsNTCyhVMIyO7gXNRHUj3k9nfsJnQ3ScezsQpH2d9vDpLuS6h8Du+uLAC/sIxaLabAzt+vh674mwL3DQBMTqveYrTNTFc3p/n4fX5VI1xFl2nsL4l234uCvfheXH/+xOPijFzaAsKAV9vnvCNgVmDwdR32eLfi+YlwUByitQBj+7KgZF3t/7aQYggoFDbrHCEhFoImQS0GIETlrRKj++KRCUxys6FV9wWmcME2eOG17rl9nWxvt2ndsxYmvfj57MqyS6uGJPEEJBRwyCmtcH7yDrBVOUrf+igiQM1w3O7MgFAGHARwE1CXBOIQqeAgo0b6UUEmPRLA12EQ4yNYrkQtP2b2WtmacJKzFqNTmaunI+fXnlhyAJQGzJYcr0aLaKRNe6NZW6deOJUpyMsEpA9Wl5OqrNndUKtEx5U7A2/3wbsNS8axgX9G+G+56Ys9tiYmWMPz/wrHrC538o/6PIFWwlwB81A//Fv7yWz4XH/6Dv4lbvuXvwZNVS1qw2W5wdHSMo6MjHB4e4vjoCNuDAyzrtSX5++SUxpJe1NEiGfskws6664+r+S39707e39Xus98zGgm2+TjU/rGj7XeSeNiTkHyf8bl98voLoGQqj9sE1ZawCw0FriKoIrKDJbrtdLG5ZEQujdEUNxljVJGc0Dq9pmXGdrPB8eYIm+NjXLp4CZcuXcSlS5dwdHSEebPBUoqSeDioGL9VK7CtC4qMwT5/ss61zIwUJlx+2mejvPyX8bD/+Tvwnn/33aANIeXUQkpRe5GcRLTZ4PjoCMuQ7nv+fTAPv2cAkUMVMhyGoWJrXvQFwGJb9a9cyN/3iZ2uwL2PTVRJYd6NXkWqAvpEbs1X+aX5l5/b502frysFZNgziyah9UOb/6Y4DuqJdZ1T7Sz2FdN78NPbh+GrVu/BinLX6QfdBUm1y+jOVT+rWMK0KJkilkZODUFjTRVmZGT3aS2hK6Uo8cBJeh77qPOuxM7AkEExeR1LxelXadT4d5owb2csacGSFksS67iGoLHsMIwYh1H9g2HAECOmacDUkdjbPqTCbrkoFpyXrGRCwzY1rtW9h/yyoX7c/S68C/e78C4VaiDthugFG62wtu27TkLhksGlWMMYgRdo7ibUm0BkhZTJn+npism8gKKIR6o64ZQ442vLfJgQVMAX2Yh5gkARgRXLq/PfYhrFWaliTY63qsiH53Ycbyrm/5CKdhIZQU0QhwgJRpLJ5oeg4UwMWE5YVCBUWgFGycl83t3iIoKtLcul6+HBFq6I2QDfawiajTaMDzpuTLSz3FhqdkRfQ2L5CsWO1BbzFXCDwwk15qvbmWFC5DZH7HPtc0SgUbDte1kFQEARLEApLsRsn2PnLXR1IM4/2se4ELV48z6wkybChkq49XHztYT65Jo9DpYjyTmrLw4ghoho8YW+ywp43devmEm7n5wSSKB42Ck6qAhQSWjmn+cMQnH9NHiOVQlKygOcl4J5KEhBrAuyv9Kx8zYGGrcoPqixjKLhfXwqJyfbiWNHINTsu+eHqE7IZjN8khQ41kaGTaMKThCpIJQXg7Fh7zktWBYGRUDSDElbSFogedH5CkKIBYHMhrhYsRTLhwUgRBRrRIQwoHBAsrgm54IYI2SZsRxeRkkZKUYIdV0kicFDAMdoJF8jfaasPheAQoK75oKfuXmDL3lkwE/ctODrnxAUWC+Co+0WL3zrIT7lCSs840CHSHyoSmnru9+vpdvv0UyO7x8hDgiR8dN/93rNfRe3exnrZY3lzD62JhC6OT7G0eEhLt67h3vvuhsX7slYtjNAQOqKZ2tsDH02VHP/XSwdmtAx1csW8zXsSsn5MqcLwK/EuMDa1Z2l3Sv0nsTukYP6hFNkjIGxDoyD1Yi9/X3trGykuWJCKEqsRX2wakbteZbG9/BYSfFni+1hHAEjbhqjQIXUuBVaeqbfErAVTnZBUhfALWCMkZFsrWcnX1ArLNZmYmxCL8DAKuzhZf5avKg+X/C93XwUZjKRfl0Tjs+EaDnYELs5oxdfMTp4kVTvfHrTOiflJb1mXBkPVmK7EGrht0ehAlRnWKiK/VR/F/XjVEDRhIX6+VGKoCf96fxv+JO/rpIBoZFnxdf9I7r41XFEdH8jcj9bnxlbt2YKZHlXv1C/P+WfWLNim8fhVBLoSymYU8KcsxKxSzHqv+YVixQtkqo2lmw6e+451D3CRU7U31SxWyJWAnBJENFCwUItu+T8IsXOBMqbUH88dKIGxL5mGZCwcz1MAYW0QWfAGjGuMMQRHCeEYcI0rjFNBxjHMxjHfRCN6mXavC+SUSSZDSxIi3ZMJwAlK0awXo04e805nDt7HQ7OnMMwjiAiE2/foGCGSIKkggJCIi1kjVHURyC1ISgGEgJ4R5rxq/kQn0Qr/Nzxu/CPh+sABOQMpKTE/SJeVAB4QxdA9PdUwFEwhIhhCAg8IcYDgBKybHC42WphUd5AUoaULXLRAhfBCA5rkIwgDChFQJShBSYBgD47gtvM5jew+dWliOGIjleaT27PteIwcD6BQKVJff9BxS60qZx15a7+ZxOVreJTTvQtKgaW4c1NCz79j1+NpQiWdLr2sg427f5h38RjTN3rOAeUIAjFcutWqBqHCEA3oWT6MTVqEtJl4XlC/zKfzdE/xyYap6ReBNwXqOwSE4StMZTHfEI4+p6vxBgDaBz91VWkkMQYyCZG53uU4nCdk2QH+988FrO/n7lwBx520ytx+2OegbN3vAPH+9dCeA9/8wXfgUf82YtR4oS//ZR/gif89g9jSMd44xe8AE/5tRfgxi/6l3jqL387CMB0eB4P/5Nfxns/4rPw2D/4Gdz96I9AWu2DRHDnYz4Klx78ONz/La/Bez7ys/DoV/wS3vSp/yue8Gv/Cjf//W/HE3/x+XrtecGu1Sbc+fCnY96/FiEvuO2Rz8DD3vnX8ExHa6TmmI3Ux73bw0TXQMWb0F6LnWeGjqdqttD3rg60avkeexZkxpjai/qP77cs6j+a2rd+uyKbEjU3eMq2snvvuYBHP+YJePLTn4mXv/zVuOmWt+GeC4fYblMtuMlLqvknkYLNPGO73RpmYTFnLUTKWvyDQfcX7WAJtr2n5ows26ECgWICb7rqQghYr9fY29vDer3Ger3GNE3wTuOKMStem5YFc1IuXq42T1CKXrOkni8gtgdbAZo3hiNtpFQgAJeai5LS1l21v0oAtwfJFpdXqRC42pJz7T7yW38Yr/3eb8Yzv+OH8GfP/ycAgJIBHgbkeYZIBkPxO+ddNK0z2YmjBC70UhCGCbIsyEQ4uP5huOG5n4v3veJ38YjP+0d426/8POCyhhXvPZmvaALI9TcdhqGv0GvoX/bUr/0O3PKLP4EnfeU3469/+NuRt8fdGaXmG/2odQXo/EXDMnohv5M4dIWf0K0x+4uLJZQiEFJOBFOodvoD4eH+jzzEsC7HbGsMia7Iyp612pQOVwJ27JtUEVtzHJ3/CBvDOsTkLucVBwFIAL7/vefwz264gB++7Sy++cHnmy9q19NspfsjzXT6Z/p+uZPrape7uzZAV3mewCwBaztl46P6eWjn/V907nb84r034NMO7sQNcVtjIy/YrXNI/FzOs9+9xvsKKdochW8u9nb/3o/B/92jzfLKWTJfsY2R5xD0cxmCg1DwVQ+6C//xzuvwddffjsonr9hK+w4Yf74WxnoRIWz6+bNuDIjel3ROiHMxS0oQq7U5bUeM0WyJ4n5tg7aJLT0OqBszWRFmG267b1PA8GZqqE3G7XylIPoCq2G57LhpylWzmB72/LjZZMdi9GM9x6UYeiTNncGLLK0oUf0Pv0cyvrP7qLaHkGKR4oRXE6aCYYYoWe/Lmq+TY0ao25fNH72WTIqyVyzbORbNYQZs/TFn4yNlUAkak9q+z0zaoCMo94QDgwIjEeNnpk/Al8+vxk8NH4uvTa+uhc81XobyU6ZhRB4T0rQo977mN5TnkeOAtCQMMQKsWI3CSYp39f6Dfs9XYBeOpSivw5+lY/ReE6P5V+fcT8bjGaLWDTFrM+gUtHgcAEq3HjMIb33IRyFtt3jwu16tQge51HyZ5xHyKRP/9YJrkMcouzuCxiwGd3hcxI2b5MtP4ghJW8PauJlbs399yKdva9WGVkEJxxoJihmQ4fEOp3guW3KGuDgNk762+kWO9aI1DuDGf8o2V2YTCViWJjSldgLV3jRxHxMktfXt0aSvn+wCBOK8ewAULWbVvLMIq8iY7+HSxkP95capVBvHiNFXClU/QhtOEIQyiItx0DxvwtVnKpYT93Wvzy0gxII//zvfhI/6vR/AX3zu9+Dpv/58iH1KgebbyIUZWBsLkNXOtFoMBkcT0qr7szRb6w/Z6aRE1syw2WoXwfK8kIQISovWe5L54paT95hSy1iayJSLXSnXH8gkYA7NTp6SI+xMfvUK/A40+yM7XyzOX9C8qDfAquJO/Zdh3J3XqF+9f+MxR11xegg1lra+zvxN8d0NdT9js92BlGtrlRLVZhTbN5zHxVAqAwCFE7OYwFRGoWQYoNQ8uduTbPaGq7/b4fFFhaZ8Dee0VIG/7LWPxk/2eVg4YkAyPo3mC4LtG86DFOh9F3GhW11H2ZpUu6h784UJbcrrTRYRbeTpxrLbZ4p9d7xTZ7dNCrLcImqxaRVZ6w+PG6j/jQZddiGlrj/fk5qv5H9vHJd6DgKuufx+fNRNv6zib0Tt1AB6AcqGPebG6Twlx5yz4uQs4Oj2QuP2Sxcv4eLFi9W1EQGGqCKSTIp1OH9l/MkvwSJJ10kBRDISFqScNHfPEYECUJTrEQZdB6sxYDUErAMhQhAkIxRrMAbHG10q1Oa1KD7M0Lp2khmSigpScTS/gWpMXUTrn7y1QLGmBCUtmli39ReoxT3SCYKyCYJyoLqfVeOxc/jT9/mqjQkDBYAJQwRU9Ff3N4DAuRMf82BPAMnAYj4PV44ym/DTCOYIIJj2hlidtjVuNY5Ozib2lDOWvKCkbLK6Jgdl3LkYI8ZhqHYA0LqI2P09mJ0puWAhFS8nE1PXpa05YB97n/u5415rjlnXmZjty0U5ZaXDQPS1OkqFW26oFAFlMl+goImjN8N5ams2BfCuJwQBhWC23HA2j3qLoFBB8TonETzrj78fr/rEb8Wz//B/t1M0G8LoxKW8aW8VgK+wHbypufMQW31JxyWHNDFeA2xZpHLhXaCKun3RC/p0vzHftPruBGRpYkZZ959lSdWfJ/NNc1ZfLuWOZ4jm0wp0Ty3ESEWQ5xlZjH+7LJiXuQpVpUXjIYhYrlrn92gc0UgqvIuiom4iC3IRROPMEqjy4zU2KlhSVoHVnKr4lFiu35tDo5u7FZ8z/CUwI3NA4IzCjAIXvQyVU8xd7YN2yNS8tuc5iQKCON+ngJIgJeUWk8XTGrOSzR+/HhWMJBPaKhXFsvr4nCumrL+2mBvWCFAH33gnjUdxMhdzOo4uaPKNiwQuMuWCPk95w4sQApuOgPn+RNZQ3Pfztuc3PFZPrAJ6pHYINo/dTokgi1QBtFzFeK0ezDiI2mi27KznyhrpcOBSSq1ZJluARIoDuEhZb/tPik35+ag7v99TrfkorV6txw+rAFkdFqr2AGjXuIOXS+PXu5jVwgknI9kYVWy7CuDWgLe7Svu3DnvwKV25NMykuF7W2hNJGS6MDEDz/pKhe6XtFeRxNNVzV/vrRkdg9lB9OUcfGq9RkFOrdSlJcz69yLdwwI3P+zY87g9/GG/65G/Co3//e5HFuCCy89j13N1X/d19AbTd8QELTYlogmkxlfFAhIEJQ2CMgRBpQCBW8oMDAyY24eBEfS5XXJg5ur4Xg7pONGSJfnPcaxcFAhWthKoBS+0shDZfGpJi/wauXo7v4Zy+1sJBwIRq/N9V3qAzCFUEpzOOcBXICjrqJH3F8R4eMWa8cZ5w7QA8Ysr1c/uH578RNAPi91AT3wT86l0RH39Nxm/cHfGl18+43wC0hJuNLWDiMvomccfLCAC9+I4m7HSzj3HU4k0STGPAEIEhEAZWsantdotEsEJYJQn4prwsGYssFvAJ0rwgz1vtvJkTIkOBSynIoqSwaRywnlbYW62xnlZgYmw2G9xzzz248847cfc994L+4f+Be378y3Ht1/wUNj/1FdVWF5v+vQtXBbD9scIfL+GqU+CDfPhz9UBVyAo3YDPKknYEVJEpSMEPjTfiG7ZPwY/xXyEW7SpPxYJj+zoJ4kPcYSNYez+bX20Epa6d3Z+9S1BVygTa4HaRbKXgiMfwVK/D5ybElc1RnQUVRIBh4lKVeZ04hdo9ghTcR6xAVZv5FuR319rWtJhQFhzl7N7VhsLXo0Mzeo0tuCcn5VZnxkJNB/fbhDMgwhQ0hKGdMNAUsM1h9rEvRUylNFehhVoUaQ5mSRkCBaxijEqqZCc8+nVCwQNkBJB+iYHQOdfiziomsVgxjT2jYM88HFyDiWZMoxbSBFJxC8mtW4AXhOoGGyqAfaoOcYtY/1ltCKErRKKdtwBw82uKxcxgyXj0730n3vlJ34InveJ7tCsfCoSzqrqTUaBEgeosC3IWePQvrJ38GAALI4jtL6IBNqwATOCBrFQyvJo2qufR6ySIF8MaMF3Xoju09jsBYSmC7VKQxIshGMMwqIMYNPhhDniIbPGJchteHx+Izyl/CwnuNniBjjo6Ow6j2ZKBBN928G5oT1rU9WsjuvNVhYjgl+1OlY4Hc1FAUzQIUlVyL86yESDCMEzgfS2Y3A4D5u2IZd4iLwu8K70QVH17HLFerbC3XmF/f42j4w222xlH84wzR0fYLguWnJDmGct2g3lzjDRvgJzAKBiYMQTGahpw5swZrMYBq3HCahgxjaq0nZYFx4eXcenieRweXsIwEGj/WgRmzCmjLEkDzaiBpu+h7kO5EmxNAvWGCp1/cIqOEDSRLNlEU2DkJ6hSeX3mvuuZQSahbs/zvU4Dee5+tnQqnN3u9so7K6utNgAWgPuYACzJ7M6+dcqxfanyhrgnBZrtrkahJ+MQYETZ0ixFPY9qyeuaZQt0vvWuB+L7H3gXvvH998dPPvR8B2zrder7One2239JGhCu67qzZmbIrigGAZpoUt10XGxKhaTIRtTPD7jYHbf9ve7dBGGxzhZG3nIWaPXB7CJKaYFI0OsIrImJEooGSUyWSNI4jcU7v9v91/uUOu3Zxp+JQGFUv1aoqjRn2WDJ2UTcdH+ten0eaPhaqg5iq2qrnR6kQKzj7Eli1gf78MCdgwbTy7IgzFuMaVaRm64YAzZ+JSdIzoAUIxNEjMwYWEl0VBbkRQUnt/MWy7wgzQmbArx8eiweKpfwoXIHuLSk+m7hnhPlAFef1tcAO0QYqC2LMWCcBqzTCiSCbdnoPhoCCjMyM7Jff86dyjJ07RpQtxonjOOIOESM46Q2fW8P+wf72N/fx3pS4doxDnWf4hIQHLzgjEQONBCQGxESMIAgN5ACsHnoe6+0ZFVLLjF6cANuI6Ql8skDE4IKTFITDOpBnP48zLyz1/rn13Nd7SBU9XhqG0j3ZzLetdkXmB1156jzm8R9e2ljcTUwR8/rBX9XOaQ7BwHW6v5UHZqvMTCYGUS5Ou3eldVdxjCt8SFf+q14z+/8IjZv+isFBAMwrSacveYsVtNUn++yLCikyWiRYokXrsAuRFNOzNZNzvc12468y577eB4XeEe2lFR8RZM/Jp4DHevaMdvFJhZTPE8aO1ZRmN7e1ViqV6K3P9n/G/iPSmrWB0wVZO6hGCnFYpwEWvSXMQQQBRO5sA5NFVwGrhDv8fVXLFZmARXtbOTCbTUWtY2zjhnaz32xFkBVsBgmYuJHJQWKXZcGp62wsmSNqyxJoQQS68BddgFcAK2wxJICtdNFt+Z3/l0BVie/FMT33oKDd9+sexSkkYKd8OExg80dKqdrkbmNYYvTnUapFB8vsvPUX0PZfDLV5MX6LFgWTWZZtyIOATEGLZpiBocBIO2WFofR9nTWvWEatVjREl0+naOLxgYHxwFAKllfO9IbCaJdViMzVfEXE8QmgIvGWDnrHq3hi0U94iQRBiE0WMQJOnZ91C0m3WsFQpampWTJ30XjuDCASQurVL+UEKIR+zKjFK7rQwUqdQ0oIaYjHEE6m+5entT4VKhUyE0Mw/CxqWJRXtDYffVdLquwhUhNLDfsw0kVu6JVxcU7auJkqUS2QhG8bJofaeSvnEudW9XUVaNGrZtLGBBMxFsJp2prOmsB92cqKe604R7/nQ9POnW/aVhajS70da/9hs/CM3/4t/DGb/ps9cf8FUUF1rfbLY6PVWzq+PgYm80G8zyb7VSRkN57ERfCcbypi4/7Z3L1691NROn5dkUKTvpa/po+WdUKybq14a8xkY8TF1Dn2smx20mCOQ7gORTyYhnyULGeI0TtIOtCGKUUbOcZKSUcb45xdHxcE4wpJWznGYv9XUpGNIGp/dVah29UmyGlIKcF2+0GR4eHuHTpIi5evIgL5y/i8uEhtvMW86JYvxbGqw+sUbMVbpotHoLGld6BiUDI+SLyG1+K9330Z2Lz4n+Ng4MDEBE2m41eG5zspXtpSgmziRbE09ZGFqjznFnFsWOItbNvjBEhNmJmLaYQXSdM+uw0xnWyocVUoObzQX2HXhCx7jMcdsRFhdB8n/767LOqcIoT9EU7qLqYcCXHi+yI/Pl8dJEHF6wK1Egi/3Tvtk74QKoAaPVjipPcpBZWoFuHgPmJ2cQ6PUHr4xsDFEsP2tGLMzgXZLMn/n5BQkmoohR6/RojI4Zq9pm1sceSByxpQpoXzLOSHpe0GHnfnlXUcRuGQYWm4qBisUOsorGOxxcnUZekWGtWHAosSiQo9mx3bJU7yr1van+x2JMd5+2IO7viiwklDorPepwFt8t2DvaYvU/816Dv1OGL7hs2vEyvtxevVP83A5JRROdkCCpcwQQVXhed2wYFtbHoRH96nImjEaKtWUQujAQVA45sDQFE1D8IjGKdIwMFSCYTv2z2iqQYVqcEEgCdz54g7gGTEtb0uxaUit8HdC5mCw6pjobvu6j7keOPted6nQ7SxtLGBCLmx6k4fmNS2Xwo0GYBvk8yIOJNItQHrfdp5/F7BalgSSF9Rk1cWnMfkgoKBxAHSPE7tK7GcJ+/4YIVx+vxcA/RqLOx9ike91UbBMOmiuM6ZHuvj1PDr+HjTqQEex5QaNa4PUZQ4GqnyWJhWBEsuQ23WAdSIBlKQD1lRSr1YQNWwGR+kYjl+83Phc7ZZc5YFkYuiu8vRbRKF56HJXjTFCGqXUk9nq5+mwAq7c3Nz/Gjm27NGEqHZ9lr2hZSY0vNHuuMLgC2YcKYNxUP8ahStxb7VPF8rp4rpYIlJyMzZrRCVJtTxAAHFRuPg/JGBMhCKj7FA2QYITGChhE0jkCISvhKGVhUjKJgi6UQyjYhD1HJ8YDVSzM4RtAwaCzL2oBNcQgbERacjQVf9fiAX3lbxjc8HhZXFQgYv/7OgmfcsI/fecvdeMDZNR55v5WtpWxQh6310kSLPEjyWKetKbWXbPnCEBXDEsDEtRct9BoHDHsrTMsaq+M9rPb2sJpWivcAuHTveWy2266AxuxLfc7UYjIXxXQSJLlI4tUPx6dOWy4656z2ghkI3Gy6WEEHERD0eYdBiaLTELGKjFVk7K1G7O2vMUwRHIxOWNTHcPtrEQ4AXRcljoAUK4Qhe6zUip794kQsnaOGM/TEvaJ4QxYXxOLdsWWxOKM1TwgxgLIV4Dge5/4KVIwKLD6FEQNVQTuICvIQE2LoBP8ZJq7K5m95Z/PBxKes27mLttr9kUCLWsyQcDUsFtcTUIRUuNownlI0N6B7Q7PlGEfD+1uu4OThGIljBqX6LPq3OYwY03H3rBqxuie3F9s7mboCl/5DpIt/O7yvmwj6ownoaSzpb23n0i64VtRQuHYp1RHssFDzuUJPnD9lawxQ05jNds8lY5GsRR2ktj9JNl/JYmwrCHbOnuOtOevcYFbRPvUZWecmMhDUf/H8dBTbJ6DFO1QyivElVCgWIGt8UzEvE4KSHWJ8NIGpASGMiLyPcdzHOEyIwwphnDAOK0zjAYZxjRBGEEV9pgQABaksVVS/Ys9Z920qAXvrA1xzzVmcOXMW+/tnsJpWIGLD0qwweDlGkQVstmUMLrgDkBfHlKx+q9nxB5Lgsxl4BSf8E54AuQBBtKA0o5QFKYkJT5m8SbRCUApgRCQeMA4ThjioOBe0wdcUBswSsOQFuWxReAPIMVLWeFtkBaYtCCsAEyAJTAOIBzCiFQMF83FVQKrOZIJhiql2oBXRIiCRBBbLbUo2oRS1uUrc92eeu7ivz6mIPeOEUhbd80tf4JoNA+4aK4j5qMaTzeV0CWx3cNlV/+jdjiUEINr8A1RUzHIkbDFYzhmcGAsljYmzm6/W8bt9NVyx5x2pvfL124qkiHbJ2/V7/ZFA+weg7fGOeDO5/9Dtk9TvKfWrd05p99qAKi7s5vjc3e/GuXveDTDhtsd8JKRkPPM3/hX+9iP/Hh5y4x9h785bdS8mxlNf/F144+d9B576K9/ZfFQAe+dvx2P/8GcBANe97XW48wkfBxBjc+2DcPbWN+C2pz8Xx9c9GDd+7jcDAG78h9+LJ/2H5+Omf/wjGA4v4Ikv/n7EZbuDkz7wnW/A7dMeMK7w4Lf/pYpg988afpvSfOQitUGY4qDUxpUsTvMTCJogKMQqkj2HLibc6nZY2sbNZHEneShZxRd2aup8vO01XnJRQ9DqFdpzIuleq0KApw1ZXI17eNazPwEzrfHWd7wPb3vXbYiyQlkEGTMKAUUylnlreQtYXJmxlFy3bsfNQuBubyvwRl1EsfPzAeZoY6NrKu4fQOYjULAGLeOIYRyr6Pnlw0MTJyxVVKLlgDRvWUquvlRtqlXF83z9GN4HL/DHzjMEfG4RKDTj49geIUAoVpekuiYeX1D3fgCv+55vxDOe/8P4i+/8p6adSljf70F43P/0NXjDT30f8vFlBBAwTgAT8rxB7/dV7N8hShDGM+fwzG/6Ibz+B74Zsj3C5o734T0veREe9Kzn4W//40/XYqmd3BHvzGQAVuzdzcjenjgWKwBitPJwKbjpJ78XH/r1L8CN/+Z7UOZNtx4td3UfuN4Oj5M171+oCWy5/5CtiJND6GJ8v5Jm54DODRUxkbGG3ZymQzF1FYfWvR4m0skg4zbrYfYHoWLr1OWTQEDjObmchr2zG1/gahHD7jGQ4PkPPY8fve0afOtDLnSYbJ+XtcPndvd/F3WoOPJ9fHWA4BUHgXCIiB+9/BR8w9m34qDVU3VQTPe87Txfeu62ihXUy6s/d7gjdvdwqmsCmIUxkItRoJtn2Jk//bn+a2N6xf19oPNQ+rvux92fd3smhRRPvh/P+LoHvb9iKP1zqOKk9rcqgGy4lOe52/sah073RZsH8Fy7+quKLarQFP03j8Z//yO4javiD6g8WY+9HLf2/+rhY6XfKtbABMO4SxW8ZVJue65rTapQqMu81BoWMV/E9zoTu3HcsnKPDXsguPj1oA0GvCjU5qf7fnVd2PmlqqX27apo9ydikDW19Dr14oIDdu6dRoEmauhciZzUVs9xjSkdVZ9XoLxnhtrvbMLLVLwYVWPgQFRziD3eG4vgnx29Ei9cfzS+bvMqFCYI63U2zJVqXmy1WiHnXBul19xlLliWhDjPGIcBJZSag2QOiMOge4WI1r+40FTHAe2xyOLC6t3nq9C4cueHMWIcB4zWCEbvjUwoRlASqv+ZS0Y0QkEogtse8BTMElFWI+584JNx5l2vs3lh09HxmXLKPEaf19U70O8tVpG6snZDobYvy/oM7v3C78Z1v/rt4PnwxOmpnsM/Bd15rhYb+ee2NWyVe4Urzqx7hO+v3Z7gtaTO3TZyc5GiRbQ5Y140X7vMKjblPEivKwuM2iyOqOHIVUiOYbY0QygBon5z33xWMgAScBZwVoY/1JS3+wPgtQU5LzX2JwDBye1R94ciAi5Fc4C2yZEU5azbTFe74Xhty5lXjrrZmI/9wx/An/6db8JH/PYLsKDtUmJ7u4+j85iE2u9bWKx55SJuq6TiOZ5q8OcPIhWssrhaAICKCmZBUIY93PoZ34KH/s4PIhxfshpGfb7iNoOu3K/df3YxZ5fLug+X9YN2hOrW+XPTnxgAG3+uxrD9M/C7Mr+mCk/B/s0w4SfUPUAY8HoLSF0idX74KpR6NeYZkNcm72IY9artV4Go1giqoJTzjMRTmK2m1j+cdA0XNjxdAARBiCaKUPHOLqZw++A+l8AwsIySkgpMLYsJdMzIqQlNZRONOzr3YNz6zL+PJ7zyZzGkbeV6Bg6IQ8GQBXkoJiJTEKLnApRPqfmLbLWLtn+g2XJ/XLpfad2M5+h7T1HjY6pi6v53bsGl1qh6bhku6NLsINkY1BN2MSXMR/Tvuz579+/SXbeftPdVyb3E9lkVTyx9XH6C930KDhpUBEk9XuXQThMj5YLjzSVcunQJx8cbbapGhL31hGsO9rFerxHDgBhHhFQAJHtOqPFZTgVpTlhI82uRXQgnYKSgTeOGiHFgbXQQrBGy9e3hoPVTwRuN2BgTtQY4TAAV43TkAsHicBe8KbLjvKTJg2o3WIDAAUMclP3LhBxIbXtR8ZUhaoM75fmyCmNo2F79FF+2oLbmAejcFLZmLIaSkQoCkQlVkTehNhEMx+x0HZW6poPxrp2TpvUFbX7px+k4h6h2IaUF87zFZrtBzoppcwwYVmuMq7U27huUV0UwURATbXShqcrXEYFkq+PJrI38mLSuTJoP4snOIlLrqmsYTTZmxeyec88sF2cP16Q0jetjMYjzjpw/Q+SWWd9DHkr08etpOmzZM3PLQUdSDQGI8W4JbbDssHjkOS//PsV/2f2rJg7qPPjQNfVr9r+dyzE05yX2tSbVTkrjxyqfRKq4TcWdq4+i/1Nskprv2d+2SG1UnHKy5qvKKfa92pukiXj+2yBru90sBC4CygKhjK1kLNbcdVlmzPOC7XaL2b+WBTmZ8HpkjHEwsf49rFYTVtOEIUYURF33KeGYBqxyUrvDZNuCcnlzTpiTfp7vnS7mD2gsly0e8nr9cRBAYjfO6g8zu+hw8/GcIxpje30pBZmTchmZINkazcBqSzscjINeg4us7fIZueKIXmPkfqt7ozkEhNzXxVg8W9xDZrDVS3i04zoSp/Go8VDnB9Q9u2I9gDe/wf+PvD8PtyzL7sLA39rDufe9FxEZkWPlVHNlzRKqUkktFULCSEgCZIEMDZjBlrF7MIMNNp8a+GzTBgHN4AbTWKgbm4ZmMAaDJFqSQagQGoxqUI2qOWvMqhxjyIh47917z9l7r/5jDXvfF5lUibak932c/G6+F/fd4Zx99l57rd/6rd+CiU2JX25NUrrvIBdqvr7FWmwCt/7R7JiJ5MW1/mtoPtHrLbr/73FYsLx199967KtrZfD1QtyvfTExQqsRBRkmAlhj8FFIvceS1OMQrRfxmqlhf4naOGzPv9SB4b3nzM+SfGupBF4G06Zc5haiCEXCmqzt227nKhGwX9ep4m2kQlMEjbeqZJrb/nuN/+tChwS40JR94HAd3H+BYfle26K1QMKVHzAhu7eeiwZQKl7/g/8lPv5t34PX/PD/FYV6zdhZPgsPD/1Wjzq+1PFlC035pGoVZWHsAmEbgwoPMUIrmHJytXDrDNuhDhoEqKwQZxCcsZPXYF4KCyS4QpUIRwIucYyk8KInjUfQvi858o3m7HiMDre9n0exKXVqmaJ02pOtVoO2KE6vKuixqX+hGz1YkGWdWCBG9tsubPDDJxfw9gsLXrUWooOfN5+ZfIBs+Bhvt1AwLQj8XfdV/L+fjfit9864EoVIaJv1AFHsTRLrFuSbqH6uL3g2J0GLD1KS76RDxBCku5gK28xz1GL+4bsaY0rNQR9RxGsgboho0imKAKhCaW0VIRJW64zDAxGayimjlorj27dx/do1XL16Fbdu3cLyF383Lv/ev4bNX/k9IsaCfZ/NgjwnhLnHgTvmwLk7ZJp3p5jtf7z/Ig0bHLzghr8Q3yddEVsDKcGeuCFYIawZIrA6zF3pt897YM+okYHm+q1m84IULEKf84c68U7ehhIOLXi1+wJbnbJoWDeQ7gOaE0VKVmQ8Hw9wqc7yvYFghfykNqNoUgFBnM5gl0IAE+F5TrioxH9uBHsBsSQBh62j/+5gAbp4B0NEvMzAY4hQmEHByLnVvFwfp2aRRoj6WohzOgAE7vCxFKHnZsGobYpWdGNFmyIEJ+9hAKpkqkr8BAlem256iSIqqhdt1UUd06VIUUpVRWsdqxAJ9JJXg77zDyP98PdiijNyyl1oyopES/FOVfBE+RBMnJNDhtkcr55YArSfKPfb1h0pdaYYWqRhgC8Qdxu89h1/EpXkXrYooFsLBZWCNRFGbYxYG2qoXuht7jGq2OEW5HcgILSApl0sCTJfxD6zn0sjAw/U6QaBOSK0Hnw7TmWOhTsjwNwatnNDCwSKGTlPEhSm3jGZQgQ14GW8xaP8WSBkd+IsKcXcVG2RFFczwooFfLaOrJuE/j3EPbDfjTQN98jvm36GqdEgeKdfL0DWV4cIdfC00HyaUJc1tptTzPMOtS5ClWyieJ2TCE6FGLFeHWJpFXOpuGtZsJ1nDQ43mLdbzLstFhWb4qUgEiOlgPVqwuULl7BeZ6zzhMP1GquYgAYsuy1Obt/C6clttDID974UP/9Nfxz3fuz7EG49D25Cds4xImtH9KUuABESkSuBh6DCmmTOfQUFnMtgKsckQJ4mB7gBAVGLL1ixnsGHG/cfKHDLUNsoJN2ukySdTrwdCoC+c9CwhQ0APwQUYs0GBWbsp3mtrAsuLOi0J3GW4Piz2/s+V1tjNI0yhJzT9zoA/tkE4M/f9wz+6NUH8Jceuia+pAsdMvqZ75+DPddsTFonGzAD13iFe7DR17HsazxcvyW6SDczYnCwYtGgY97HXz7orNOksJlsov1vo49i30mk4E/w8RZwMIIDo4WEGC3oJXAUsThiDegCus9CAAe5BvtWkVyQ78whgKeMdgQBd5aCpVTUMkuCuzFiY1CMQgaP0ASWEFXhsZ3Y0MoiKiT7rYA4dRQuOSeHJdQl3tKLUFJRiECKQbZiS0q0BmpFfUNGjgGYMg4yIVNFK1uUHaOVBcsyY5l3mGcRoPm5/ApcqSf4TLyMu7HFy/nYz2MM9InISYa2f47CSLVVtEUQOiuuyznj6OgIqA3zZisEgBiQcwKz7EkpBAc/3M7rPjPljEuXLuHChQtS9DtN2BxcxgO5Yb1eY7VSEaozRd4ACzHTxXnksSyLinsKgaNWIWeYiI+JXlgxMQXCWQEcSQh2UpCPUdNkc0iyD3p4Ql4ALWcmP8cCxH3ybh9bEfjgvec9GSlv9P2U+jLFuLZ9nzXQd3hdj2t7orsNser4cz9HZQAU+7hg/896Ih38OncxGrGKJKkAi6AAsC7Yla3wHHjou/5jXP3pf4xHvuO7cfz0EyjXnwWBMGUBkdfrA6zyJOQXx0akgDURuaBNIFLRraGoSqMmBnrSf4zruEjB5yLdGFqt6m9Nfu4WXLIWR/Q5v+zP9TPJRoulrdOqkQr2CjzPzAUvWARc4UzcVC0UtHlaK8oMsHW7SwlTywhTF1gw8UgZi564GEmJHLQwi5oUEIWGxqYsCCdkNFG+7oIHPmf7+qFgiSRdv4BfW/e/B5X9ZoSv5uSvVpV1Yt/d9h/WvWN8rmqcZ8lHF2AYYncHFe2coDkxmJjU+NMKUzR+tD2Zz9cis0ICIi1G0URVJ1L0h8eU2rHHkrn14v24/h1/HA/92J9FSnAMMqqYRsoJMSbEpMnhQJhWE1j9gDTJvuGkaZCPu0UmUtzYE4pCoCsdxG0NREFF40iLHcm7gSQTKyKAW0CrArq3QJK4svurY9IffYwsuTAuvQaG1HaZ6JX6wBQQQ0ZMGSlVxDTJ/meFulELoGOQtWJYBGFIJqits+SH4k0wsEoPGxM0eJEIt+b2pKnAmpFoeVwHmuQbxdTcZ61ayGWvVb9XglpJTHQhky5YVWpFY8LNh78CNx96Mx58999D2NzWc5V1Z52MGOQiHwp+qu1VkT4X9FRCGnQvH9ahxcTmB+yBkv8GHTY3LRHliSKSPcESzh/4o78ZqySiSCknLXwRMoEJTs2LJGd32x3mecZSCqZcwfBWjHvrwE5gvyBsIACduSfip7H/NNzSCpf0RT0yHXIMlvQaa0IYEuecjRJelLhz9nn1CeyrRwKr+bqjL332WjyZr1hB1SKfzWaD28e3cfPWLezmGfMyY6ed7ud5RqtScr1erXB0dIhy8aJqqawBLR7dbbfYbk5xfHwbt27exK1bt5TgsxGfmJuQVkKCMjOdbMgaLwaCELNzQmIgKeZbSkW9dRv1Pf8Q+fJlGW+1N6eKd0oRW7cbRW0vn7O9DIDYjqCxWRCy0jRlIK1Q4mrA5gb/w4S2qYuKCdxFHl9ITG2QmmF+crigoTZ3iYbBAYJ7NMXQFGMwfMxtm77fk8Y2iXVfu1EjLrTFOyBDSUw9mSqkH8v7BaIuIsVAVZs5CgJ6QUW1IuXuo42+FhEpybCg1eSCz0ZaopBciD6EgBoaKg37ieLgrHPSYBaJw4KPcyARBQshorYspJNVFYy8FOm4p9i/ESOixoA5ZSW1UyejBRMgCFpIrHt10OcMBx3FW20KofsAfk+GfcWL0ig4JjP6k3UYZ4ubRdhIcpJSmEl7JCCZa/skoJ45PD+HtAog1yUO6i82LEqWLABWQMyoCCgVSFkJhME6zWoRJTcVoBG7H5hA0wo1ZuT5tO/n3BA0luWmODcBOQbEnJVUDCHEkYjLF26+4pRmh0AiWCNNfoITr5kZIa/QQsTSGipXLFSxAeGeWEDRBB+s6ULcQ03j4I8JEVARR2afNowKpkUGAEPBpv7iRH/zQhlKGpGrsJjNijrI4noACAHWSRZqz8RXstNiwBrXB0aF+G9e/KpxFwGCXVYGanPxa/kKKR6Vm4XeA8DXBQ8xF6NwQYWKglieXTYXNEgRS6sqmKJ4iNlf2VcWlLrACtWbVrw3VIRYpdEVBbSYwCmh5oTn0xoX6k7zigyuC9oMpJyBANQgfhA3gEpDrgAqYznd/GuthV+sI6ALbQWdWi66Bvu3xJOtMUphLKWh1CBi/yx7dqKBnKPFqNS62AU8xhv8LxhxnvZ9bPXrDOMf/Sd316BCxXf4VhZfAif5En7m5d+Ct3/6R7Geb3vsIsLePRdMinFxsO+WMSlV5wsFIEYwCZ7KIYKmBOQMzllsFMv1MgUgZtCUgZjQkhCDJdfTUJcFvFSEyuClIM0FLe1Qc5Z1o2LXtzHhYBJBUEoToOLBpLkUQAtvqOK+qeI/eayhVfa13AD81pdN+DtPbPHbvvJhvOLyWsfe/CwhGweNhYwr0O8C7vS3NVgkAm5sG+67ayX+DzO4JhH14YbUmthKi6UA2dPnBU0FHVtb+v7OwdelrXGJ4SVeCO63mI3uc2EIAYAXmg/n4Egp9WqSACxoKGDpCJwiVFZPG9lMOFhPiDEgRcLhOuGuowNcODxEXiUwwQsOvcFYkDyAEaTbwUV88Su/E1ee/RjuevKjQCmOKooNNN8CcO+jsWIoOsdIsTbACaZBhcXGnG2A/K0yBG8sC4Q5BeRAwt0hwcaqdnhkYmGkEWBlBb25TlM/LSJqFihqoWc2vhlIG9I0FVuFi0wpXISo/rQUCIkIAws5Q69BZ00wEicLBqE+KsCISRoyxRhRyqwTTWNdE6Aye8NSKGl+vvhs2iUzBNxcXcK7Hv06fN1n/jkOl1OYQRTejPq/kOKB4FOYVHylj7fP/cAeOzlkBECK3uR62nBue4Xm6tNaTl1wF3iBTTRBN/cPaXRu5DPPm14i5BQrA6U19QmaPmTeS+Kxyr1jxSkoKs4j+SxqHc8T38CI8yoyJVZT/EDIc6TYEjVpllLBCE12KArK25FWExITSFLFBcWIImLIIMoAJxCtkeIaq3gJeXWEaVojpQPEvEJOkzTYitLos88MRuPi/m7zeBoAE+btDjEmXLl8Hy7ddQ8ODw4xabOxoiT5Zd5hmTdYlhNw24FUgKFoDBEmAgURjWpFbbjFdKh4OAC/K0ScphWIJjSOWBbGZlNwulmwLIRStfMxAmKakGNGjiIuNcUVWlmj5QywEGmXZYfQgEQRpRFq2YFph9YCwgKEOWKpK5R2iIN2ASlNmNIRYlghhBVinBC5gijJ3qj7nBVtBtJitFp03duSqiASEQqQrJGy7FDbAqBKgZAKTXlX+lZhRafykL+VMqOUHlMb6dn4XoUZlZQD1xpqYe+kfR6LmocfshUY9qeAcmDxl4y7yoGAptym1sRWx4hainMoOBJQ5CECgEBK3Z+hGlA1t4FCEHvO7mt2C2hi7+Tx9oif2MmGu+7F0e/6z7H8w+8HbjzdbZ3h7n651K8N/W86Crol7MfqJjpgRUq9uFd+PvLp94jYQgx49Xv+kcyHGITbpHzIN/39P9HDcepj3OO5hvs++tPqHjM+//W/BcvRXdLcdXuM5eASEAIe/01/CGDGq//xX8bjv+H34U0/+N/sFQARAQ8//m7EGEXMlMd7O/hSZ+CBEbNhQH1fs2caSHiMyJ4HgxLvrcDJWZnm1495aQaUjLc37oY5++ssTNDPYgouBuP5cH0F6f5tvksTCe8Xne6/HMfDDz6KT3zsM/ipd38QH/n4JzHXILZjnrHUooOgCRhEMEOKadFQq87DwVfzuTyIiIpXlRwTAnVsMaWEw3sewMt++3+IZ37ob2N741kAsqfM8+wFTtD5bYXCXAsEB4OI7xkvlQSTY5bcZ/BbrIX7lncaedyAC03YQYCLM9k1ydUl2dfdDliRm8ah5s9yF+372T/+B/xDYp7w2O/8P+GTf/+v47W/4/+In//+P4swZTzwNd+I6fI9+MI/+wGU7Yl/4+quuzEfPy+2XAYWb/2Dfwof+r4/ga/4vf8FPvDf/BEwM25+5pO48amPAxA/gyj6mrECrrNHs+Ibwp5NCoMfZ74lNO4EgA//5T+5n883mEQx6vHY8wXtuVrhVRoD7rrnP7YGcr+o506YgVZlPgTlekoxarbl7zblvBytidhybRK3E8mSao3g/eN0/OUaeoMesMTRFosyABGwI7dFnSvXL/xLjQGDcBAYf+SRm/YOt+/jIV9re4/sMm7voGutDY1+hkJ1/dgznzdwmgLh+09fj//44ifwV269Gt9zz6fG9K+e553v3/+77gshSHxKtPfavX1S/3TaAn7k1l14xUHBVx1tkKiHaPv5OP0O7uPy5RZB/YIO21DueGp8sm+KPrS+ptnPkYc5A8OWXUy09fultTOjuADOPMx3rFp0ilrAvCiec772MaDPeQomNKW4usiPAsR9P1hfAsoG3Bb5N6z2Sricxgll4IytIpTGiNS8RiVUBlWbexEmaCVTTn1CIonTYlAMilScSl7jOyVFFVSakHJGSFIr5dabZV6Yz8+DHTaRF4bl/3hvHo8T2uor2hleZa0Vy9AsqBk3sUhj1M3BZfyvX/Xd+JUf/Bu4uLslfi9rgwcdaSk4bSo+FfzeEGBkY4z2igGsMeP3n/ykjDdBal6C1Y/1PSKl5Oc5W0OjYY+pVtQ9CFDJe8nnBQC0lLwpou9lfHb/G+whqdBUTJKTCxEpByQVLIial9OBFz5YM6GNBc5vgeROXn79Izi96w0o8w4PXvsoTqwJIgseLE3hpabiPB0xJqV6mx/V/d0XP9hjHQC4+Zv+KC7/4J/C89/5R3Dv3/9j9jF9wXmM1+cNUa+oojMfvfcPw45If9o9tM8dcO0xZoPjT3LUJhjisoig2WLNgRYTDGAEiP/hoZPvNfa5wXFsWZeQNUmMylXubxUcnKr+3gQ3KLFpI8KiY3HGLiv3yQYvxQhOPYjLCUAIWndg0bHFqt2X6mNo4jiGSzaUUoXzXhve+sPfK4ID1TjMveGvK2UOcShr3NDz0PI9wcIkF1no9817QPRbIvGdFVurJf78t/w+PPpjfxlf+PY/iJf9w/96TwxYeFdyLs0ny7CTmq1svd7qvOH4KUb/3XOI3BDASKR8F6JBxEnSrwL76932+EZFW6A1viQ5V5u1ditsidj/fUUPa8L+Yrxwt+Lkt9POWiMjfTAkBw7NhQNgVt6oFbFYUzBI7UYLwuFrsSLEiCUUWLNOizPIsGOtX+qcLOi6b9qgVTnJy+L4WFkKWi1S91gqlrzGZ976v8cD7/lH+ORbfjNe/lP/g3OjYhCxm5yk6bQ0eEu9AZ90wevNZWwb6A77sGcrL0AbQHMDODJMeM7+zcp/6U3f+rohSI6ftFETDWPue4zeHLcbg/1w/9D8PuPMmC8IHv6t12PXRfo7hufQza6Je7nIl/kp52yN3f/AA9huN5jnnYjyEck9nibHqbe7HUqpzj1apQkHq0PEHEEcEXiGiw2S5qyIUaFcbZ3XUM5GTAE5BaymhPUqYT1lTDkhR6lPSkmam4QYNMYL7kPYBmncHkDsludTGKhV8zuK9YKk6bpzuCI5t1B4UwtKCag1SnPrBsG6Q8A0qRhTTl3oicg50qyxamPhADVIbvUWJhzRLN/JvWbNOYaqrBpCwFIKoP6n2SBA/LzTfISLVDQmlrVTuLjPtmijCvP/LGcLtL7eNY+Wc8K0XiMkqTNNEZhyxJQzAkg48jWCuSFQQArC8a+qMdB0PRGkUUokwZltvVqNFHPR5oF6TQzABG50LbU61Aiguy+CFcp6MoaPm17qLg2gds4a4kTs2b7zdrBhgqx1FpHEL2kNgVlzqRolqJ1xXHzgTbBuJlbn4T+J3FewAeu2ptsc57KSYZAE4+QD5nj07KfjXw4oWa4VMB/qTs4lu+2UJuGSf1pU1Fa46RAxfm0YppMEjIDaoPlZqTNpKpDTWgGKiEyd7rbCsV1m5zFvN1uxZcuMuoitjSliPU24cOEiLl7Y4ejoCKVWHKwPMU2EwIyTsMJP3fN2fPXzH8T98zXJX7P4ZBJDSSPMZZH6tVIWb5RE0NxlSoixIueKNMRcUbU8iAgxRLSYJN80jK1geGGPLyqckaB1QwEtRp8XFOzeiNNgDaG8Mbztbep9UOj2kkhiK9mOTdQKSFGa0xo/tDWgBhV8pQipUbKQdR+ROW+HcwSYXfyQzHfuTonHRDJeQTlZARgwRY/pyOZnH2PhXg0xt2nV6OdWbdxbq9ZDmFh1Ux0I6HqMxi1XoSm9DsOkbM0xd0tpWLs0oZNHiCRcBkvPmf/SWs+1qr/T4woCp4wS1sByXTbQZv6i8PdqswYBY4QBP38RVOzj2r+7oVWJRZr5t4D6kwkhsfuHPSru1+73CwSr35atl9T3Dy7cB9LcPnde7x5moXpBDBPYUvFe85WZlcM1zA+dI2CoCOPAsy4izFqHGNDrz0Y7WE/xmh/8r4SjQBBepDc4u+Nr1JfocciXs85+QUJTvfgIXgyyLAtuLweYU8DltkOAkLeTdUoO40bTlSflCgbQFOMkFSIuo4EaFBJTxV9W8A8RQdOBY9J4L0ky/HZ2O9tzptUZqX5qQRdoBMcMhASVbRZnhKWIiVUxj+3GqNq6GGUpLAtkCoAyeWIgfNflnYBdlkyHLVh4vNPPtweL+i8NRg2SAL77gUUBA9vIx4kvKVsLXliFdZjs78PGHpQ0qWGnFAFlBDU+KSaE9RopSBH4arUS4Y1lNwChFZZQWC0Zc5bNbzcnV6wvVZzroAnsxrbhkhSGpwzUipOTE1x77iquXr0mIlPLDGbg1l/5j5DzBANujABt1zwWONndp+GeOynxnPl7lrRDa0pSssR7Xx92HSY2IR0s5WEGGPo3amqwLXjkti/eYePBTef7sGbEe1RD14eqBYBaE+IspG7D3tdAvsGb6m0DoxUt6DPSn4fbg7FtPcYGLBAmNA54Nl3CDx29Gb/h+KN4kDfe+SyEANbO0ZUrApMo4wdWwESW7HOc8A9OL+HbDk7xsrCo6JNdZvB14AED9+lhzbPuvFkYNi724LJvSjaGEEINqygAogpbEKJQJUE1AEpitJ56bB+gS9e2zwCWAi0vxtFCfohARC0LUGYtqJF1EImBEMEUwagoev6yWRcFQouqX47BEKPlCfwd/xnST/51zN/8e5F/6i97hwswi0KzksosickkiQtTFz1XB2Eo5hawVZw8mYCVgOTJTtLXi5BZbdKx0MBRBtRRazChYlN3L1QQmEEcQVxBVBFCQaipOw8NgO5f0uVe7C5DipCAgEoJUMqxfq2sKw2qBaANvjGXuiBQRErWaVW6ebZiCqVAqxL8z7VhbgzkCTlFxERIOYl4BoXeZZ2UKM9Rck+kHdFsjhQRYpH1o6qlKQkJH9DlYUVwwcmsISSQKReHBC9aIWhxnDrHo4MMqeiJBJ/TQTtDELjP6VJke8iEKWZg3YTkNmfUsjhA35g1Gakk9ihFkCswDomw3e2w226x7NbS1bMsWLZb7DanWLYbEFfkELBeZVw8PMLR4Rrr1YRJxRm32w1u3biB569dxe7kNqbI+OI3/kF8xfu/H//rV/4efMOzf0ScURmhXjzDgKm7jo66kdIbVwGcqLotPk9HSkmTokpYZpkbQnSyAIgc3ALcakL/IWusMUBN14fLJilYroJKpCQ2AODuawG2hIegDbp+zK4H+bvzAEgIntKB1jod6Pn51qr7JjRJQFqosleop0JqMQKq1Dyu0z99/3MQIhTtCSr4vmFb0vA3AbFs39fkBAOfqwf466cP4z9cfxoP0zGgoD21pgVP+0JALu6meyWRsvt7yOrr1sCkvZNSonWnA0oQJeNkQgD7EYoABs3FIUKQZH6zvSRAuxJG/ew+FxoANO06zOrl6d7b9AtSIKymjKODNealYlbl3rKbRTipVJAoUMjnhKg4rAAn7q1wA7cFUtusCue1oJ65pPNwtFoRA+HC4SHWFy6AYgalDECA6VpnJVjKudeqpOhlB+IqQlTThMCLd55c5h3m3Yx5K8rrZalolfGW5ZN45+FjeN3yJB7kG6ha3EFEA/DUwTvvdhhM+NaKLmoPhAfiRc4Z64MD1FJF0C/svIt6jBE1573kjxEZpmnCer3GhQtHODg4RM4Z1/Jd+NFLb8FvKh/HXXGHnO1cg9pVBTaaCFKUUlBacZEKKwqWuC1p0b4m1oZzqFUAa/NFveAJcN+sDsG/+UfEjBZYgBjo2rDCFkAAJEsUNLt/ljIyAK4TBRtF3J4u4fJ80+fGCKJC4wquZwrG0JNP3fDoKei/RwEDvy7I3iTDsL8o9oqUuQOOL3iQWZwei543eJDUrwiBEaghUEWkhqz7Ble9K8z4/N/5C3j0d/xhfOr/8+ewXH8WKRByDMhDpxTDQgjQIn0tUFZRnLBHcFaoifse5kkQ6y6iCUgTQZtnibfBLAVDrIUsFqMMRsyJ365i3lBb8S53JnwEZq1Nbq5oP4pOOZbSNw09N4nrpMuDxuoR3jXJrg3VrkNwlUp9jGIIEqvqRsih70QjKVEo0iqig4aG4MI3YCFcS4zZ/LxsWERzuJPs7bsbVBleYx3HEzTu6R0Fi3dcEqB2iGuZ9bkzj9YJhUaU6eJ22mGg2lo7kxzppy6iWmAlj4m4lBXNSplPdbFPAEALDlyel4Ns/UvIKiKTLnygPiL0fiuYrDkNKZBsEc9/6/fgnh//i3juV/9+PPzuv4o8KfkvJxE2ySKkyyCknEEpYloWHRfZS2JOOp/h+4Ql96HF5n399Xvv3ZuZkZKcryVWUjQRnaSYaJSOBqF3eKhNhIUT856IhgvHKEHCfgfQu/DIwLhfWurgsxIhRkZkwRWyinTHYIuI3LWLHAQwYfNrB99Z/cAuoWNSrGI7LGkyCuKZ785Vi6fsp4HclsTVv5nwCA3guxMobO/k7lt2m6MCoPZ96vu2UrG59ABuPPIrcPT0x/Dca34V7n3fD8EwGtsb3dKaLTGRl0AgJRKYUJh0QiSPgXuq0/aw4ed5FMD5RT4Mc/V1qmMqhHch6gdNWkUVpUlJ8IbVNIkYqPpqzCJAtCwL5nkWoal5QckTcmqykeh3ddxSxt6J6jSeG+399OcxYn26x7wA5rdHitf3cNAChGHfaCFoV12z/x2zcS9nbw/uRH5zxEYfanzd2OXJbBArBr53cpD5XUrBdrvF8fExnn/+eVy/cQO3bt/G7ePb2Gw32GlxELF0kLp4dIhLly4BtWKKUXDj1YTWKjbbU5yenuD4+Da+MAfQ7ds4PTnGdru1m45AWeJhu0bzERuhNSGHECVEFR+OgcAT43Ate511KzR/tZYiQlimpN1YNMb191przymdk2Ms+jGB8JwzWlrj8fgSFLqAt+I6LqhAqRBQDazwoVT/UEmH43wkw5j350iP66kXDAKDXbMT1NjBhNiDiR/S3rwyYadaK55aIv7H7RV8Z3wKV+oGrUmHqoDotjHnjBxN3FG+uypBnql5fmwU8m1nkp9N4yMPSixWQ0Ulct/IOnwH9NyiJtdk3EnwU+v4aoVrdv1nRXmJuu+Yo3QFjE2IXy1V1JRln2+TYFpQPNO7NCluGCIo4kwc2Dxv00IAWLtec9/bTVzTO4CidgeP4YVBsHgaNNxzsSruJ7ovqQ9LMteKkFLHwnS+mZhrCMHJBE421gE7b8RDrZFXcynYucRREpswDFpXXDkEANGvK8DukQr7quhJCATOE64/+EbcuusRPPqpn8BqdxteCNSaNtoRXC/EoDiB5I4tRiAizz8BFoMDgBa7kpB0ZK+SNDCTUJAlR0MoAD5Dl/B+vAzfwU/hXhUHQ5BibWlWMnxnHxkV1JcIpheKMEALQKoEoctMXDjuxFmztQSABBdruiYdw6cAjuzEGJ3pQvIz3CAAgMSGIqYVxX6rnCq0IC8ywKWhkXUIhYeQhNoFP2C5kbMbc7/fvfhP/UaSRgw0dobe6wrdPThWJ4AQtOZLYqYB9YR5wYCJuIiNgOIcT8aLeH96Kd4+fxwXtzcwhYZ1bIjThFYyUDMqkTSqqQCKkCK5ETab7S9oDfxiH4ECTCRc9jN4SwgXSdaxqmjgRKhgzLVgVxqWJDkVHvJoMjUUv1I/mwFAYykR9Q4e24P5hWNV9v912zT4PeNe1pEU+zvwL1/6b+EtT/wLvOfRb8LbH/+h/j57nZyAPq/CE0EU6iozqFQkJc8brt9ACCmjxYwWRUSeSXgqFGXuUp5AeQKniEqCgyxojrtiLuA2o8UFJc3gGFGDYfQNN2mNH729xusvVXzVXSeY8gzEhBASQBkhmACrCE2RFZho3q9WiQMPD47we992H+LBgVywxWlVOASB5N5anGXr33MBZ7YDwfMjnjpp+KsfuI7vfst9eM09B4MQnNrXSCo8JjeilQWHhweoly9huznFyWaD00VzRb6r6T1RwnOIhJBG0ttIQmVdswOhFegixOdsHws5OmewghFSxLSepItySsiBkCCNNA5WGev1pM0NCAerjAvrFdaH0tAmMiGUitCa8HB0Pnu8EAhPveZX4uL1z+H6Q2/G+uazOLj1HIyrQ5q/6ngwI3FEyCsAfU3ZYfGIc2lsbuh3+joUxRbxewDA74vaFbUtLXRce7n7QeSbT/n3jPwxmxVaIiX3ORheod9PgisGxREjdcH+oO8lqRgH+94A/YvYYysoZ5bcuWB8RTBTNoxWfEXfAdn2Gr1Q99P6PZfz1WUUCO955GvxK55+L973yNfg6z/9z/1zOvYha18aUOGOz5Z/EXppnx57mKy5CoKPeFGX2cgxXqVh/WD/fp899orD7eLO2RoD9DqIULhhqSKKvLSGEiqSFh4xowsLwKxJQwjirwQo9tPEd5NOCsrNY/NABl8LWuSg9j+wNEtpLanvI4IgZELpkJx0C0BUTDLGCSmuEeIKgVaI4QBpOsIqX8SUD5HyGiFOiGGFlDJyynotXbiI0Yt7wULmFSJ6RVmEVD/lI1y6eBEXjg6RAlDKToq8asW8zJh3W2y3t7Ast1DLBowFOTKWhbDKQM4yR4kX1FrATRtdcEXhBUwscWaawJywFGC7rTg9XbDZVSwLo1RSLCXBBLbW0wFW0xrrtMY6a5OOkGA4N3FDpIhbKQFzQ8as/oAKQ7UMYAdCQU5rtLwgpUOkqFyl0LSRGrltsgYSsv5qj9/InEFB1pmlkJ95QePFC5SZGsAFMEEpFtvRhabkM6VztuRoBcvVgi/uvJTKjMISW9QKEeOqjMqdg3BeDrcV7nCZE292Q0TYCKSST8LVk/hDixGS8IZKLaBZ1g2VqILOCbEUxFSRUsaSF8RaNTevhbZhQWkVtbKfipg07hgLQwuvggN/xn0EgKPv/A8w/+jfwvo3/kfgv/Gndb/qfLD9fZD8/4TRbva/kNpZIlNFMs+mfw4F4/tpkRQJhtgEaNbz7SR1D5AwxifmD/ehB4BHf+bvIwD4zK/593Hfx38WT37Vt6LmFV76E38Ln/vG34HP/ZrfjTf8oz8vPJXhWst0iDKtcLDrQjpu2u/AJj289TMaz2nfNxs+a9ijxtnM6Ne1P8IdF7JbZn7G3vkM99P+3fNm+jm0fwep/wNAz3Ccp+O+ex7AD/zoj+FnP/wJ3DxZ0DiilhmtzCBilCKiyCFEtFCsH6OMe8ywQeti0E0aek0r5DxpzmqFVTrw3JMUBtm9b3j4O34LnvjBv42Hvv3fwYe/70+pSINxZ7Q4TzGPqrxkGuyocdrkng1CN8yQLLPhAxpn+0zod+MFEV/en3FQjAFUezyp3EoTz7aGSRInGj8q+FwodcH7/tIfxxv+vT+AD37fnwIBuPDo63Bw/4OYbz6Pe77ibXj6neKzHdz7AF71Xd+NL/6L/y9uPP5h4dKi4V3f+wfwVf/p9+K9f/57fL6Ce9xqnFKzFT282kcemhWhn7FBo4iUrIUKm8jG2RiblZlP/kJz22LmvefQOW0mCNILyIN/zwu5fsEEZWHFq8LBaf3D4dW05+RoXKTmpJk/IvFEa1X4aiYOb3aWm8cQZr8BHtJ/Zq87f6ebGQ+QX/R8LNbZ8/cNm9C4rQ/7gNsGEhfVTKwuKROW8fwn77172K/28wdEhD986SP4i7dfj++58kkAEU+XCQ/F4lfkNpv6J7qd1le1oLxKjYN6biy84Ci8++QQD+SCT24mvCQXvHRdMASRX+LYH7ez4/cLO/TeMcG5psOnOwdyXAQ26MDe85a/gIlJcYMo9A7cSS22g/6tN1eSv1lNlNX4CG+xet6G6wLmIs0l/jWu9hf7GMfN4jMRNiEE0usB0A6v4NZXfDsOn/4YLj75Qbhv71cuOLvqTnrDc4nw+5qUOddERErjZYA1t0aIUQ2vikrZTzJOFoeObaPnzyT3MyHmLCLqU/LdyvJZtVagEBoKoLyN0WsEsI9N2RoFd+Eo55lUt7O1FhQT1SkL6jLkx8B4z5t+K776Q/8j3vWmfxe/5r3/L80xE0DV97imfuZebZT6m2bvOUZh5WoFPen+GRTMGLkho5hWVBGWnDOmPCHn3JuQmieoPsO4jxFIcmnqf7AKX+dUtfiROu6nNtjq8PwOWVG05jctT2mc0taqiChqvFfqgrosGk9owavlItHwymfei6UUzGRNEkkL1IFq6aFz5jAGFWyzPWL0px3xUns/LMg9e3H57/5R3PzN/yXu/p/+mPv0xvo++9rx/b6XAN0xGFwa8//FDWURbBltpO5VXXxU6j8Ccy9phIy7FNgrf3kpWJQDWRbDvwX/jGRCMN2nsTlmzle3H9brRGpPltL2GuguIagwQUWKiwqYKdfFh0JxZy+ellivRWuAZN+VkBNAQetldG4bT98qqVjtHJq4TZbn9z23bzf6/XoPzDCOjQH3b5muGeMc2Ac2iJCmYl3q8xBJHoFB4meQ7YmDH6Q38ZU//H/DZ77tP8PL/9Gf8C8LgNQCNje5Z86IYV6BYaGWAz9vGH5OwcNJGR/zEwaRqSDCUvJTmx4IAqFF+7JbKSoiPGOo2BRrfasKm3jtooexuir3fBr7I/fZ6H4dfO3w8GqC1ku2Xn1htaLyU/KWxsWD1vA2lrnTQoXV91jtCyBrzXgF1iTWsHrH7M2P1txFKcvwKC6a0Yxju93iJf/kL+O5t/8OvOSf/D9wQn0tB7KmnrNwPlNCnhJySr5fkyol2JrxFTDEVcaDkWtg2Yes5jKIHQqNEVpECCwlPhob2f5A+pk8ThDA/cJezSR3wwQyum+oi904k86D1Lyc+35WG8eev/HfCQP2AfeZxJacETUd4vTzdLzyNa/Gs88+g+eefQbLvKAti3A1IA27U56wWlWkpPUViGiNjLKhYwcQBySKmCbxR6RJd/OaaxNQCwByiJhSxDonrHPEOkdMOSIFIHi+Cc7NYgjvwlmhBMWMK1hFaZqLS0HridhvfyARU7Km8WFPaKqiFlmXBZB67RzQKhCMe6VCUxRCPykinwuylza0Jvnha2GNH+CX4hvDM3gl33TfFiYKh4hICanPMvmconZeCBc4zhfxM/d+Lb7q+ON4dH5O1ikBYON69Ucpi+6fcl1EOnebNJoxP425oSwzdtuN4OxVOFiBoPuArBFp0is1xt4QSWvgTaQvBZLGOJVRWep1mopg+cN5lGL5RHClag4DHgsHvWyAh6Usa7GEjO36APn4uoy55gzE7JrdM59oXPfn55C4QfmFjgGoaCtk/qlVVxvRHcARK0CAN6HcE6BqzWspgspxGTZvFtP+736ixofukzjAfqfzaTiip+KI7JaC9l4vvg0Y4GraHdrEo0hdh8Qjsu8Gq+9kyb/MS1VNi1mxNfKGSxQCmIC5FGxmEZlamoifLvOCuSzY1YJZ/dRapcHNZt5haYy5Nvl7rSgMrNsaMQW89/6vw2PXP4x33/1mfOPTP4lVneUSWlPBtAXLTr7D/615PjALT1H3P6mFiFivVlhKFaE6bXrWtCbOauOkya3srYnFvlhTYACIraLW6I0tLQjyui+usj/a+Az7q2ueQGM5bdJ0Y3UPruxuWIQCkNUcBYTAg+hrA1XhuBGpsLHGpKhV6wL+/1oS/9sfNoV9fZh9Ued6/Glxjl5GY7kXJkxo/pyOqPzf7PjwbON9zYPaLE4HSm0urGZ4hedAAa/ZN46v3IPh+4aayc4dFX+vpQmnh3fhbj4Z/qaIvmFcgObstA7ThKdHXDtNuPHAa3Ht7lfigQ/+Y4RbVx3TZt0TXEMkjPvvvoEINMS9Oi9aY1RqIC4IlvcFPP4ikrp8uS1Bx5z9c8y1c1+WRKA1UkCkiKTrTgNd1UgRzipXxfsg51+11g1gt702YdjuOTfHu15warufaOtrX1TKBEkNb2lNdSQ0rqiKCVV/PQafsvuPdfj9yzm+bKEpcYzViVeSFxGwi2s8effrwOsLeOz6zwObjYCdqxXWqwlptZLub6o82bRgPJAS35oScWEEWUCqCYfL4IqgxNzA3CmnLSBo8boRBcW4+T7jQDZ0AnnBLstrWSdVCSQTvjGadqCkmBDSGnGaENIEF95hCEjlQBekmH1ZUGpFgKoH0kqS5CROlRWWpsBQ7mG/gQZeQQKWpmwgprM305IB0IUqhE6KYY98DQwBJARsEuETJWidAZ9CkCS/Ka+RTr7IohpY0STAakCY5PrW6xWW+QDzbitiHNudqs6Ksux0kHC4XoOZsJSKpRTsloKlCIDZC5hZFO+9Kw9hc3qK61ev4amnnsKNGzcw72ZEVVrsIJSdfXcGMSwqwIS5JI4wP6VP6fO1C7EJQw2gb4CJH6mrzyxCT9rxt1UBTHX3kNf57ywiN2iAJiF6t2N4IAwODrB57A0ocjI8QUCoEDSCyOdaD0REXd5AocrNVfFkpqrDYBurB8e6SbDF4qRdiwJCTHjH0WP4lpNP4MeOHsO/d/IBKcwOMucLdBMlAw/kBjcV2AIYPzYf4u2rU/zTzSF+5+ENJLff7oX2+SILUH1oTX4oSNC3b7tXltLQ4VFjbc6CgbgdSoAWQgdESiBUBDRQTKDGACQoba46yf2DRyAk6PeyAB7ye0OLBRQXUMiotKCVAmjCWyjPCtTWBtSqwJF03KzzjFqk81TQqKo1gJYd4t/5w8Bv/L/g8o/+GYSLF8WWtorqYJAkAEKM6kDJ+NS6yOZ8jo471BypOxVW/OBuxLChy6YrKq+kpFkpULf7pI6fGHPd60Qxu8DlowQkaFIQ1kgA49oIoRJi68FKCOLgpJDBlGGMEQMNpGeiHipYSNo1qnJDW5YhcJNZasWHy1xEyRlAXq1AWRyiRKaeb/uuOZ22HvU7LGgO2jUpRhAaWEHEEEXEBZB9jYIRfmEi20OM6AMMA/rteeaurskqrKXws19vSNnFD0hvmIl0NSIwVVkD3LA6JOTVhLrM2vlCRGhqEyGCoIR5S0hl7YqSU0ZZrbSAeUHZzdit15hPT8C1IBAwpYCcJkSKXrwFNCzLTgoyNydgbpimCW/5qT+Jj3zTH8M3/ex/jUayl+achvmpIFYQgYoupNjBC7s/TDh3+xjQhaZKrQhBgveRrGcBpCe6YN4YfCNgA2O1YFWAO1WQr9yV29XBN+SYQLqHsgcU+sHy4N4hipoIMgXzh4aiC1FPtzOTBGdXA5bu9M/Fy3io3uyEGVJifIoIKSE4cGiJ0+GcJXoWIrKvKxsH/ZKghaiDGlVrcB8BDfg7m4fwm1dP4n/aPoL/ZPVh7cC8SCfBVhWoluQyqWiBBIPS7Uc6EslzmuqQXU2BljuG0D3H4UnuoYi4DawFnXY1PQA01I4CIZjYVQSIlbjtToeksyoaoJ1/CRh82CYds0kSiTkEHB6srU81mAIqnWC7W3D64OsRv/hhCMktyfqMBncFUJTvlQDNOtdXLEvDbv7XXAS/yIeRvqaccbBeAymrj6XgbSugNEmM1BpqmVFmIZFzK2LrCSJCuOzEf99uRTx2nqUjUG0O1r/t5GMIIaBE67UOLzaRIJ66P8fclZjd/7ZC5uoq2oD6g1EIAavVJHslSRFfHgSmTNyDmRFjdJGp9XqNlcaZOWf85OGb8Ov4M/hfpsfwe8NHe0GMzs2m5I+i5I25LIPic+nCFT7SanE98MK+D6FdDZn3E1Xc2uBvmG+7709I3NK8yGG/8KV/dU8cDCAHCBwCnrz4UnzirtfhLdffh3u2V+GFWmwxNfs5aUWsLjGNJfnMGjdfBuZT7006va5+/fsiDkNMBmiRb/9+i72dyGYfux95nJvD9aUbEKJ0ychR5mxtQfRc9f7u5orH/4fvBRpLgVgkTEk6QLRiBCD4eFuxXNKESNB9y3DGAN3WzgSvYzdKmdPybyuGkoIoBcjQnLREBLfJ0ORpCCQq80FiuNq0GGcg/wRoLEAVka3DmMVHtI9PDMEOGSbTGFS1WJXlOk1cc4DTXDyZS0UDSUhrIgiwxHRDCyJa6GRoAzD9dQoMEnfGuAofVzaxNz1Hjavu+CxA95bq4KlEpIr/NPZOg0W7h5mgTl/vGid5sb8mMUx0R4tKqopqmLBDadXFqtqZwmgTkWJIDGAJEIlNmgrQmghtk47GrQtNEVuUf34OGn8hLfgfRNlYCyApKPnPMUBIsp8ZD/zQH8XVX/df4OX/7E8j3ne/dC/MSYRrcpbkyjSBQkRqjJASFhWjBUInHFnMZ8W1zGi1gCsUFJZ7YcC4iYwpkuhYmgkh5iRCUybea0WYZ4WkOARUaHwOqMCRivEoYc7Hw8gBTYm7Gt817h3vu+EmIEREK2Li6N+xv8/Q8OMMRqrxmbl+5lM74VCxmL5PaBLPxs+KrqqdNwt+2rrommFT7vvZ3qp7TdPXejfeITEyFiugmbBbRb76BK586Edx+5FfgXve/Q9Qhx1n3I9H4rzfx6A+u4qDye8aZzdAyL+G7VD3l81PP19L7BfluHPv1+hBxcysMNhQRfMHvEhchaamnDGtVlitVpiSrFXx2USsZikiNrWbd5hyFlHsEDWO6WACmTBdsPgS++f2QvfEcGNLFtAL37oXI6eHEHwPsTm0hzEZMQI9Tpd1NPg61Gn2DOztZ+P3j4Kf4z0QcXf266xBfOTNZoPj42Pcvn0bzz9/E9evX8f1Gzdw/fkbOD091Q4yDSkETNMErgUxBqxXEw7XaxAYpcxoteL49m3cvnULny1rvPPoUbzi+vNIp89iWeYuHB7jQJ5T4g4ETWpBOh5xrUBiH/cUA/KUsaprXChCdGq1alfSGZvt1rGDEAJSSF28b0hcn5djX9BZbHeKEc+nSzhNRzjkgs+3C3g9nlcilAnOxB4bg2Ei8To5h29wx8V/EJmw4b7g7Tgn9+YSLMmtolAhqD1svq8ty+KPH9rci2+Nz+GflHvxm+vzMmdgAvG2z2UhSsWEYOdGIngqnezks+0zmyeTm8cUmhHvxtnWDxioFUF9pFIKJl1jvQeLNg0IQuxEkuRuwyheBvePpEBO36ofIvwsNnhCfWjB32IgRO1cJsUmXWhK9uXoAo772me6H5ifSSY0FRGjYsExKGExiCiXxV6wPVTJcOZrm1LBMD+EICDFfcES9oOgV20NoUlxe2ARxnG7pfZYiCg0zB+bb+fr6P6r7b4Gp8luY/42m6KC2VKNWShY7JWU2Ne7r24u3ItbV16Gg9vP4PqDb8IjT7xLbG5r4FKQFHegFNFJ3oTQJDdg5+MugA5f0LxNaxJDNupOggu/EylOGLGjhJ+LD+PN/Bx+tt6Pf5uuq41NCFEbHykm6jipjYnlnoY8+tm1Ivkr+LpQYEShf92nov5Nn2clkJHNOf2ssejdbc6eWe6NcyQU6+JrNob2/Q3DXks04Lfi256NXRwWVXd3xFZgWLliHVUxXH+h2htpGNNMGczzDYIVCt5sBQZ27QRCRAMlyasVZnxoegRv3n0e78G9+NrnP4GpbbCmHcJ6BU4JlLJglQywigaUxigNuHbzFr7yxSb8L8dh+xAL8TbRYJY1vgwQOKkyo4JQmLE0GQsRz4uCQRt2pbgkc9U8E/kcaK1pIRgAirBCDM/1DPd9D5kbQCSbYc1iFZ2L5otVSN78mz7xD/Gzr/x2fMPj/xhNmEoIJoRTzI3XOWH3nGSdMktMLX6OYWQGEklTGFFKzlroI+JPQgBOaPp7A1C5gEoDlRk0b1F3Oyy1gighxezigyDJH76nPIxHp5v48NVDvLzewoOHEZSz4L4hglNWuxQAbe4R1R8VYl7AtD7C+ugIIU+ytgoDrDky66YQBPBqmjdgami94geeoCK5diKJkf7+x5/Hv/Pau/G3PnAN/+XbHxI7B8mZmJB3ogYkBqWEmjPKOmM5nHBwcY318QppO6Pths7wGDAuarK3JgKyEBND6NiQhaySD7fJSl7UQbbhn5NjtZrEphKhEoNzAK0z8pSwThNWMSBrHnI9JaymhNV6wmqVMKWAw5xxMCVkRKTaEBr7mFTFeUj9GGbCSz/+Dnz+9b8WD33yJ3F0/KzypjqDIfiIy/qJKSDFCWfJamOROaBxzZlY2n7XjVmKtgc/VHAxsQ0WQzEY8wOvxO2v/k249IEfweEzH+9xj+KZPPjXQYta5gv3YuKGuJx6rvTFfF/ZBw3LsLjMth/FydjiRcVaWhcVl7moWIfnwQfYk4Euk2b+QPCxg/ooIRCoFnzDp/8Z3vXI1+HrPv0Oxwy5wTEO8X+7LyjXFvz8ul+j9tQ2POrxpJ2HX0trvRgBHafxtQ9zK82TgX9WIyObo2NEZLMH/pnn6hCHD0ut2JYZc1uwKztgvcJ8dIiLJ6cAGEolREHPxZhv1TiIexBJBG6KlP/1BhRKGG1NBS5Jc7qAGCah6lctbjWeBakoYAOrIJW8jkJCSivkdICYDhDDAUI6QMpHKjJ1gBQmKXKOk8TEil/V1kno1gwFkH13mWdsTk8xzws2mxnMDTlHTKuEFAHQgt1uh2UpqFxR6oLTzTE2pzcx725h3t1GqVvkBKxWAdNEmDIjReW3gIVr1oShwiQd3kOUvbAUwmZWkaltwTwDc6loNYJCQkgZIsGYsJknrPMBDvIa27RGihmZspPlGYSrCXjX3Ue4cnOH19zcYsXKSaoLag0AS56z5llw3MRABhAbOFREyga6qHiyiH9U5VZSFLF+KWTR7udDYz5CFeEJd/bN/1Cg1EQOW/H1J+cmj8Z9nBoXGLNHchWMWq3gVYSmaiPURnvw0bk4Opjq/+ymYMDYgsTUzqmzHBEkn1NjRCzaVCFGxFKQNB8lOVsRUF6KNgmqxTt5x3npHcmr5kS4Cc/NwGvDaeW0+ukrdnDyt/8CLvy7fwjz3/wzmFi4Avt43MiqUiwF5HjB4I76v+3VXeSoY5GOX9Jgacebqy7Q3v47jvXQBXsvzzt8IBPwinf8TXzmV/9uvPrH/hriboOPf/v/Ga/7n/+s+LBB7KNdY10f4dlXvAXl6BIeefzdONjc7uI+ezHZMIh3mH13yvee8lDxS85fGj6zjxF83pCPjX0bcc8BWqxv65I5avHEnV/sMWK/RP3o87WXfeHzT+KZp55FmQtymrCZZ3CdgVAEQ2jQxkDK2Rh876SlYkSEnBJSkqYOOUWklDFNK8mVhQSu6IKE86KYpsTDH/3v/xxe/Tt/Pz7w3/5XqIvuM9zFa0zkrLHmc6yAFexzVFvj+LhbDAhboz6X1YYC6ILZL3y8oD0k8gZeJrzdBiFQQi8c0ZcDTN5wAgCWk5v4wH8nRfIMwrWPfRCICeu778UXf+bHlYtLeOhXfTueftdP4KFv+HY8/7lPom6OIR5Sxc/9he8BuDeJ8UYA6l9KFE0GUwzzWvYV4Z3xGTtkl2i2pedi9vMyuPP16pc3PlNZQIN4LFnWZgz5eixt/rM/16BFffZeWazWwDqo4BRAEquaCGyMOE+HiHRKMyMRowQaEwILRhFI524cYwh7jJVhQbk3QecXD3sk4CrM7obbPeLh927yxoPGV525t/6TASPV666wt4cYF4eHfcNjiWGe+UOLDf/Q5U8CIeHx5Qg/ubkH307X8fLVfIe573Ouc5ZErlUEfyQPPswnFtu144ibLeMlaQFA+IajW/jnJ5fxtRdO8eg0d/xuGK0zQ/aix9l1MPyjc3P+lUe/f90TACxveNY8NQa+MK/wsmnrY+zzZBDeszlkYlLsc8VsQ3UfwEWm9O9uJ5sITVUTmzLuJ6tPfs4OEwoAJC61BsU0DGnlhpOXvQWr609g8+AbcPT8Ewin18XjIuO0W82FHSoCIL/BOYmjP4T+d7DtEZrHbZbDEXEpaQYelEuluANJ/ke48FGxe+H75tVK7WVvRsaQmjIpZq7eYMVEaHrzO9amlFViAxOg1X9XbQZatIlIqZrbqVYYb/k0Of9f+Z6/hne+9T/AN3/grwtPngARl0wwcaaqdTqJSBpr5ahChMKVak3ETmpj37dENFiuPcYIDvpaloqEGCKIgVKrNxRLUYQUnjl8EPfcfELnwNhATRstum9sheCyi4pwS0QKJK9V4RAoVmKxgRXLG64k4mXqeXPDsljeUcaVmzU+lZjOC6bZ7qGJK+rWxuyi5wxgKTL+TAEx51+s5fKvdfR5DsWdRubovsEcscK9TYcZV/7BH7/DvrJ5xzzuGebLjbHP+KbBDu35Of3n3v5kwgS1+/eehwnGeWqY5wWzikyVUlCWgmXW++KhuciYGv8kKO/e9jUZH60lQ1OBqaaF2A2LNUhy8QlgTgl51prYGBDDYHW82RN7npsgc76mXhdnNooAkIoWGWuGvVlFcH+MFKuIDLSmjaJclEpxxdb37MCh1zZgxCn27/7+vq/zg+ULWd0abk04auar2kSxxTG4N/JVEqu+/Ef+nO7v42wTfzE01dA/48Cbb2Xc1sYmbHTOMPxkajDmcqk/1aAiU6SNIpWfQVYDZbU8hoF0XPr2hZfgysnTMu40zA+P/wEHrYF+C4bzcuEp9S2FMqBiDnrbfE4oH1ZErgCHs1RkBoyBd8cizqENlCWvNMwoIsDq6fTfVle1x00ZOSoQ28zKAzROpeB4wvlorQ57HAO3r+HeH/1LmEFoLOKjI+Yf4+KNDHOOgo/GiDjWiwWAEDyPEEJAWV9ESyscnF53ny2EIHiDgSA+KPZvuReeayD7qXZ1HJs9P5A1xNV7yYDV7bovyOrbmfgDcxeDsP/GPAbY74f8Dd5oXPpnsMdz/rnC0PJTOl+oB/DwSx9F5Yrbx7ek8WRZACjWEQPWB4dIeUKtjHm3E24PgKU0hFD9nqymFUIIODpcY32wxpQziIFaFqkDXIr+XiTnHSV3GNHkYc0l9B5IbkYI5k39n8aGa5AWPQsGY7zcpvVFMl+1yRkRUso4WE1IKblwM2kD6NKqioNLHTcxS51hGpr85aQialZTx8NcULup3A5mwk/wfXgrPYefrPfjIdzEyuaQPiiK78vIgtawiVUpJqH54J+/8ka87uQz+MDF1+KB6zew5qJzFXtxpTffU7yAtEGtiNApDqK+WpkXcGMs84yYhVsm42J+OpSTpfWRlgNGvz7U6rXvxu/gpiKiqC6wMfLqDR9sKpIuIkC9/lJEajVW1XEFMxZKeObe1+P5iw/joc/+DFbHVoMjiy+oBQ+GZWlu4bwdXJVjprhOtFpkjXlMe6MjFYqr78XS0hw8RBMdtNy8+nOANk7o90z2AMldOXahNtFwex7iuu6M6xdyn2vwHK7aXgYoRvVXqYffDM+FttK0iWVD1YantfV9LUD4dSY4upSC3Vyw3c2iZWHYAZleB2NpBXMpoikCjc+g2GJIQGxoQXlqpaK0BoSdNMgkSA1ziCiNkVLCGz/zz/DBl30z3vrET6C1DXZQnYBasSyz+L87qWk2gcZ5J815GSb0ZPXMIr44a6OZVV1hNUmjMuFpiviQif5Ig6/k9XpkWiEEMAeEGkBFmmW70JTHcCIQF+Ow33ts1fQ2s/sMz6wewLvv+Rq85frP4aHNUz2GJ82zBIi4lNZoNp07Iv4XdFMXrkut5dwJk8qc1zh34FkS9RgTgGNCosiusRvJXhJCHxP2oKB/A7slhAtJm6/W6+llbVXNZY91is38ErPber9Tzkgxqt+ke0JQ1qNiJqRrn/OEp+59DFfvfiXefO39uLfekpgIIuItvoqKXZWqOdGhVkp5wARgPriMG/e/FhevfRbPv+xtuOfn/xeJ2SzWt4s17PlFcHIGenmG7sUmwMVoWtPXPG7koVl4VVFpq5Xr9xL6nUEE9oY4WjQPAlKMas8Cqqo2tCK4suclVLcgoA3nPe5qqlEyuJ0Y9q87H82vz2pkmj1vuixWUyt3ApUkFqv62moxqsapDYzK1P0YdIbWlzp+AUJTUljTdLOw4p+T1V3YTRcwlRlX1/fj4vGnYZ3MnYxHBKSkGxc0MUuAFiyOYgnMDdXsdlB4r1ZwE/JZowAUkQgmCh5QdTKN/nSEpTsEJq/De7cKXpguwIIQPxECEDNilrqIyNpJkaXYIeaEykBZCtpSUJYFtWhxfwjKDiCgaAAXkxsUIfRVKZqzc4VFPjpRYw/k+w0V4ico7HfMIEth92S2G7CgOiRBg03X1jGngT1QDURADFr8TxJcQQnZcY1aCGWBFkFWECJSmhApIMeMkldYllnGwUACHfO1ntsIexuYUErBdrPBvMyotWA3L1h2MzYnJ9icnGLe7VBrQ9grxtA5QkaxGqaqO7hf9uw+H0cztSUrQFfelyWDWBIHraqYlAK5WrGiIjb279GjquC2iACFbiimAinkWTihFW7Y0AfQQQmIuJqB/OIlij1QEMidt0GB3DZFQPZNX33qUHa/UhxzAmmBrdiO33Hz3fgHl78a//7xeyU4IwFEJCgQ8KvZJmNCHoDPtO86eB4/sL2C33p4A6Cmwj9B57xen8f9Mm6kTg2IEEZMwQP7/tBh2CO7d+BA36e7ce86r44RN4SYHVxgvbdtMOay6Rt4ocANrHBA5wtLdz8ooYAhiTwp3FEnDfBi7u7IS5Hzskig3Rq7WJSdfNgd4/Affy/C0aHYCEuGlIKmzmgzx0SLCz1oO2eOXi98VcfKhBDs3HW9AXb1fePmxmjE0rXQrA5DyYUBbpSH4MgDGmlqAuvuHZrMWdWaccEpGsC4QBE1NFTSKg8YaKC0D98roopMsRd5lboArAWfIalDV7DbzZh3ixQexQCVsNJOERKcB2ZEmDCBUiJZVoU5Wi6cBQYCEBFlTwZ8D+uCbUCUGelih+T2zNaejot6cRZgyvib6nr1YJRUICGqgI+JVzG1vkXYwmwEtIqcIpgntCoB2ZJnLPNOBFWadNQW512B0ZSEgBWCgFKaoGrzgt2UscsTatmBWkMKwJS1e4qCqrVUbLc7HJ8cY7PdAmCsD9ZYr1d4+3v/72hlQaCAlIKqkQsB27qAG1A6CiDoVcI9Hh69mfNzUDQ1WIBCBVmRgNrIq/kimALuK7dhK42IpcDDAijANh1NcgQA0YHygNYNOGCwhZ0BHKj144wz3sQP827XknntnRO0GNGCAUZAU9JPBeFj60fxqcOX4Ku2T+Bl5UZX8Lai2yRFYRSziAmGqM6Y/gwJrPPXjYDaHws6rV+Q6uy6L+jXQ4z//PBT+P7No/gDq4+rmEURYZO6gIskUKGii0b8iZYkjhExJC9wY8j5SUCY1aYZVGZfa/uenpcB47A9xfRuLUqRPQrMnsQI+gnWnYMCQJE0b6mvoAim6gk3tCD7jH5X0E+pCj8mBKxIinMKS+fXUituv/xt2L3xm5Dff4T4+DvRiNFkKrmgH/xqCJUJpRHmwtgtwHanp3PO/EkTXQLkOlKSQibECBNoS1G6qlQVH6vLDtV89FrQlgVt2aHsdlh2G8y7LeZ5h1IKBpXF7isMxcGtRTQv+u+xSycvWTEvKxBk+6UFv7KnylJVYSxipBQRaEKbJp1rhC0lPINDvGT7HFqrCEEA9vV6jWmafF6nlPF7+KP4u+kN+H3xE4ghud00H9PWdVNldCuudkGMZsRIGWdmRmUhd7jolcUYHrcKCOTAALPHnVbEMRL4LFlruacuTnNGCNPeBxH1su+3/aAg4vGLr8Kjtz+DT154BS6fPCPnpYC+HRSCFIiQnS8wRk1nKbgjWNtBwRGwYOzb1jPv1U+LwRIJL/AeHteUXP85W2Lq6whQmlPEesWIlRR0rijQ4gMmtEBoUYlPum7asEalMxD2E4sNosLOpPdekhikiUaZtwrEq6/Z/VdgLISy5wHbP/q+an7U/qPu/VsqlwdSjScJuoCc38MGrzgyn09+9DtoHXF7d7ngYL/M4eD4g+1vQmzQGAiACUQRhtiHhCQi7Z6EAOV7p8eqrNvP4O83K77rce34bxckoJ78lpfdSeTtn9vF0k0cqgN9g72wRx1jZCOV1V5E4YI8LFsmTHRYBaS4yWua/OwPnQNqqwRArf49troDWyR4fg7zaDSiEr8nUMcOSReUFRKEAOusZiQBIsJLfuzPgA6PlFAgZLSURJgkqWhTiAmRBQ+LNem6s+XILjQq5rH7PEYIhN/36uvHMYBAIhwXg5AbUkBSkalOqO70RxFUZCVcG8lSY9HQ44hOUDHbzTqXDQ8UB8r3JAf0RMzHxgj6+cwVtXYbb8ESqY0wf81FQAa8QzAp6rihYhrRP19e2rzzKO50A/XhGJHZLe4vZDbBKCOfCAFFupuVgbBpZEYlDbJ24dTPXz39KeSnPimYsu+lA8aFjhv1xME+CZKiiT8Hn4vUjGx152Fx2b8Jxx5JHXCRZe9gZ3FAg6+RQEYGUiG1nDFNE6Zpwkp/Fx9QCnRFHHuRxOk0oywmaNPJvyMZ3lUuXsCZ2COYv9Df2CPrF3/N8Hv38/q/ezG1kOo7IXzYY0b/DtAAyOxf30v99xcZ+2Z4MJv4XXUf/OTkBCcnJ7h9+zZu3ryJmzefx40b13Hjxg1sNhsYgXbK4mfP6xXmecYyz9jtNogBqEtCKYsLTb3v8A14+KkP4dOXX4OXfvpDqK0hpYxMkkAOGrMClsQTrKdRQAsBHCWZbZ3jiUiErnJGOzgAM0u3qN2M7WaD45xRlwIGIcaEKSdMJkhmZONzdJRSAKALEKlI3YN0jNSuY5cO8WrcQK3BfYhgtnNIkNLom9h01liBSP3IYd6H2OOwXlxvAlSyDwBQnx4wUWnHO9UnKSrALkLDQlj43emL+HvlJfjt9DlUEmHooP5cCkLiS77XRiVmNBHKGIgqe/OZOtkEGC3yftwlwmN9r0opIi9J8m6loqUmBcJaMGC2PFrAThaHyp4g/lXp/lflvvdzE80NI7NSxyoEahDirt4ZF/eiQNpMxj4HwzX130kTDoZbMEdEx5YDuEVwkUY1VjxhOY6mSfVgH2ZCDxYTMDuhjWpFHEjXderdQD3HGISQAWKFnrrdtpjNdsrzVqiiiL26Lv08GYItVBV0tW6FcCFom1riD9n+42LZIeCu7TWkp9+Pm5dfikc+/7PSZCiQkHFzcuFPCoqLNy2aAnQODE4QUf9O21u47wcSH8h8ihBx/ilJt83D0PCtyyfw/sNX4zump0HhACFmhJhBIUvezrBC9AIT2WiluI0InXgF81MZ10rErgbcR1vNBcnneGcwHdleUKjzQLEbkOSGiU2USfe1sL93+ToeSIeACoLpmAmhTfK6Ns+9EEBfP44pS09PG2GDh2BxMnu3MfGNuQ6TAw1o5nkr1qJ+oV0oBxMcsUVsRf37cS2YERSRJqrIxPh1uw/hHfwo3vqFH8fNW7cQyikyz2gHa7XBSURXAMyFsdnNOJkLrt66hc88+RR+/Zc5/39JDup+UCTJNwrRpBOcQdocAZYDhuRPYhQRGypCVlHnTwirJigr8IHlCJjMJsrXj9hXCJ2zsRerA3v53r7GNTbR/YZV8BJa3EUA3v6pH7EvAlf4fmvxEIUh1jE8RIfG550NFZPwJkJEoIhAGTFkBEoe7RGEq1LlDQjUXGiaygIsO7TdKcq8Q0NwkqfYfAJCxDfSMd4xvxLfFJ/ElVsFZV6DVhNoWgE5g6aMyBPAUfgAgdBaxLxU1AasDi/iwl13YXV0ASEkpQd0HIKr4PatCU/HOx4rLmRLzZYDBSmMMaHK//RtD+C/e99z+GNf/7CL0TQVyiAZIiGQFckD5BjUn8s4OJpwcLTG6njGsrMCSb3PJPyCiCaTJpFOHvFjgt4D4ceY2WHH2uQ+AswV5+nIq0lwihxBKYATgSfJBa5zxiqKoNSUIlY5YZoiVqsJqykhR1IhqiidyK1gQDEJETLintvSXfLRj/5TGG+qP2+TmX2fsrke9N52mzj4N19mQoTVVzW73nMDJPcnWG674fT134SLn/gpnLzh1+DCs5/UXHjw3Dxpc4SghSHLXQ/gxiu+BlOZcf8XP4hpd/KvOA85ccPP7dz2HlbDC/Jz7XuXjVXHxGsz8UPDqfRVw9g44U/3GcN5AQCl4Gs+9Q5Y+RTrHrvXoAIdb5Rxx57Ql90tzyWYtRwAdWtOILmLpjZP4g4ezo3848wP8NHzy2/qVjf1HYyMajH/eTzE9jLmumCzbLE6uoibL30Z6OJlPPzE53Hh+HhvzzO8t0HyqIQACgxuBKKISIuKxAKRpHFkCMYFMrxavtviOEZU3pLGyJpbDYpnMkUAGURJxKPSGjkfIuZDxLRGCGvEdICUDpDzWvO2GSFIgYn4gzaTFM9vFaCKxgvmZYvt9gQnx8fY7RYhznJEDAxuO9R6gqWcYl5mbLdbLHWHedlisznB6elN7HbHWOZT1LZDiozVKmA1BUyZkLI0/wtBbJFg2JL3F4UuYYwsBdgtFdtdxW5umEvDUgmNA6hFyfE2GZdEEVNcYR1XmNKEHFaIlBHjhBxXCDHho/cc4cIx4+rFS3jZZoP1fApwAbcZdS7Y4hTcGnLeYjUVtDUAJlAiULJ7JXkKbqT2ssrSCbrWoZxXqGCXFf+jAlbMYgJRzQTiqq83KyiX/V7ynNbQRjD6GcwqNGWv46ZiScI5qE15Pw1oHMDnrIGf41joVmNgDHTDwsZZsqJaiy+VO9EqQpQii5AiYrV8hxXuD7GditDv5hm73YyYZsR5xjz3YnxuVdawFXcB4DP22vLWhpnv/t5/ixyCi3Z6ASOR84wE54L7ht40ZfATzQaMxYcNjKGSU+wCDUO0Z3M1+mbDygUrsGYhQYu827TG5vJLcPT0p/pe1YNd/+RX/sTf8ut/7Ee+T3xuJaCNHZy3F+/FfOEy8rzBrXsewcEXPubnYvDM/t5vdq9fOe/9tHPa31VGGv34PuqbkNWx+z1yHLX1v7kGEXVbO94H+VxWTKX5uezjM/Z97Y67cF6OD37wQ/jCE1/AUgMoJeH1UgFzQausQolyJQ0EqNB9iAl5OkTOE9ba0CHGjJSC+3elFOy2C2rdgYdi36oNdCTXJbbp/X/1T4BYu8k3KMfXimDtbJX7yQx07wbGS2ELzBU0ltoCQ3LMBxv8UgBeUPMCN+dsYYmeAZiLrUz4HJZ3DLjBgHngjN3aOwIIEdc+/F7/CHkD45P/4L/Hq7/ru/Hxv/t9WE6P3Ydi0F4dkOOdZnOg4zP4eX46vm5MlKfzK8drPpuTIAAXX/EYts89hXJ63B3D4TV7br+N1xBz9zHU1T3kNgxfHkVc5dz3Ft1gXnuhOYNAIUkT73C+9jCgj4EJX1MjhKA4fWAtJLY8qfgp1gRAxtl4egMWway+hM394b7tYVuAOuT62/7esDTg07uM1x0s/t4RV9u7d8McOsvdGPkQe++HxMvGf7Die8uFWn6NKeGdu7vxtsPbeNfmLrzy4BoA4PkScLtGPJx3Z0a1TzbWvYvB+PB8EW/Mt2UPa4xNI3ywXMQzdYW3HdzGI3kGiPCrL9yU/LmLwO3tKv7pZ82C58HH514kZj3Ll3qBV+jruO85sHjO4mK91xCL98HNET60OcTXHhIeW51iP7e+H3Q6l8D4XzD+j5U0N39u/3Pq3r/BZquFe0QuU3zODq3zMFE/Mj8pQHI5upfd9bF34PYbvhlXPvETWJ1c9+JMqK/F8lH6IMfmGuDbyxjbo9Mg5DsVX/AG0TAOiNhl9xXjme2nCVbMILCph9ia5qGoz7k9UiNWVKym1YF7NXAha9OGc/o65qKYafWGdMtSUTS/M2LVpIIYRJIPTDHimz7ydxHTIIDEFSlPHp8Afa91H470ym2dEXddPFIsE0FE89W3DQSwNoII6kfTIKhFRHj67tfg8/e8Ee3pD+Lh658AEYl/Yr71gB+w+w2+yXquwPg0ZhPENtOZNdz9QDu63ZNxg3NGGlpZnItVagEDWnRe0UpRjkkXBusTDyq4RWrjz88h61/bBr+YEfA9aAxcCGe2cmDA/fRFPgR3fNywr/fdbXyX+kS9Y528Rm1pY2mKYznQxk3CbQ2+CD70aKz8kKW4CHExoQCWb5SmQEnEyaKIWceYfW+T61VMjyXHUZvUodbGKK1haQ2LFuBLDoGxPPImHH7xw4iYna9mg2R5dyK/MMftSonK9ROOuuSmMxoIGRLbt8iI1CSuJGATj3CSD3Hv9prje85TMX/OExVij0gNozXRGHktPU832F4Ytjr4mQxp9KjuTtAxd9s93OBehar3eW+PG2eOfqfHbFZLIGNllbry1uZ1hVYgfZ6OtTeIV/+qao4DDTFAmsjSIDIVWHl8krf1KJgFF7h+32O4cd9rwM98GPfe+rzkgtjWh5Hnum2Wz+lOYscdfVN1bMP4uMaPMr/QBNFF0E2EBS1Wh/mN5i+qcHqtTYW+jeM6NHjRuWFnGELfj3rsMMYutmd2/r3xFaqK/3VczdFttdEVRXPQOqN1T19E4Cvt7xdR4w7nqIXoTbba4V24ev/rUfIBHnzygzg8uQbLY5OP2WjL5BpbQ+cih4BGXZSRh/VlQmE9rhs+0dYIdw6m1yi1UWjKROr0Yb69n5Ou89Eu29/ta2m0H9zjDQ8Lz5fHGHPG+vAQhxeOcHJ6irYsqE0xWiKs12sQBdTacEyEeTujVmC3kxrIlOS+r1YJ62mFo8MDHByouAoBZbdDWWaURXlP8w5cpEFB5AK0AFah0IAANELT72tN526rqFafCPQ11uDiHpIuEf8pJsFfUsyI2qhv7Q02FafkpgKeOg9q83XgAiAx6vWpD+I0L8vR93kkpyr24De0x/HD8VX4TfwJZBTlKeohxl/q2IgRkbUUiMGBEGrP4X3j8+/FT195K775+ffgAFXqyLR+rLWIGBkpiV8VY5Qmg03iGtkPJYauVWowjXsWTKzIG+DJOk0h6b+DikxJrjxa7S6g+55x86toMrQGatXXknOllXdN1Tg5xstpGqsyumUZ1j655cYyHeHWpYdxeHwVz9/7atx/ctV9RNnNCEFFzt3y8jDe5+RwbioUs4FeY+h8RDnO2IcxNiBy3MD4eGDLFcr4Bt0fxNfoGJL8FHyiFIlhZR6ID2KxteureygkAAEAAElEQVR5D5E/NynUsTymB4CQNRcoOn5s99j2r1qrCokW+VlU0BCyZkOD53rnuWC3W7DZSaOWuSz+WosYa2taJy5YCqLkEnISW5ZWFXmeEXMWTvOyuA1fasV2LgibLUARc2mYpoycM173qX+CFjNO1ba0InukNOGVdTPPszYtr5jnHZbdDG7sdTMxBuVbi9DUUirWpWC1moTXBtKxKY79xiDNRE3XwXzqGMn5a6zuBpP5ugxQROI8cMLJXRPzGc7OuY9cfiPefPuj+PDlN+OR3dMey/veDniNdtW4UbRKdG2SNINrkfbq3c7L0ZsbmKiy8YtC9xOGVwNiQ/z6NEZiItG8sD2c7PqVB+exlOraDLmz1kREqIGHxvfdzkH31RC1Fl7raVJOXo8Oy12S8uOaxvBa+1ymQzx3+eW45/QZPHnpFbjvxofcflhegFliOxe7UjFGVvkSbhK/HJ5cw6Of+Sk8e/er8eBH/imWoEI2IaiWgGBGQbUOrLGB12uQRyTmasK4Mg3FBbXBAEpFjOJTltLzjDlXlFxgTbK9jkFtHQeprYoWexEQYr+fxpXSi9b1wXpeysXVsd+/++qnuW8oPrgJ2o547vjwuq/GHjfZfFAGan+wCJAVMCpJkzp52OzS/BlrU0kT6fLI7Uv7i1+20FStRoAWslxqFVwjLtx4Aikl4OgyHr75OJCTOt+ixFlKRc4mbiMbSyQpnvLiysZaKKSbvURrgKpXUquS1AKDqKkx0UVli1Edhx7ssN9X+VcXPeoOtRJt1FixBdoudzuo1VMUFVEVDGAEsAZAtSyo8w5Fi7cpJjnXMhBwAkBNuqAJYB56QaMZGi/WVnKhLxALHg04syxrT0SwBfoeuEHz2UrmMnCswZV8oV3QCRAdE01mhSgdlxkyoQMl7R6vIENVsRA0pJhAeQJWogpfi4Cp4lAKQUCKRMQAxTzBxKFaY+1QvWC3XmOZd9hsN1iWW9httzi5fYzTkxMs8yzK3tRT056kscz/6AXqHTeDed6I8i92yCbco3wCS+K7WUJBCJgCUJcuKlWbiqA0J9Pa55h6vwhNGDnGxkOcXwuAbI6NwTSADuTbXFQHcpCacMVbU9KzjU6c6m6ILI3fu0r2tduVfjWxigCV8sVvO/2QrJdgpFH24txFz88cUQNTXMAjBvzGo1tQ+wwCFAxgFcuCb0AeexNrisY2BCvGZ1iBBkicULKNQJ1x9qRPG8baQCAJrECWcCMXDLKEfYM6qqGPiYluuaMFUsGNMflkn18xCk6RoSF7wJ/ODS/gLNoNriEkUhsl9iEOjkZUARnL3DCMRGUX2bcdTzqco2PcnO3fgNpJkqQy1z533bFT55gC4yzJyxKDzQryfe+RtVGbqGWWKgRzZniBsQlNibo/eSJNnPKKGhiFNHimvjZlWgTtginFS3INUZzQaoCkBIytNSzLIgTCuWhx2gSw2A7UIicRIygsDsYJaGjpTsNPGFqRBbMUREq2IhOo6ouJuOmjSiKsUQfgm3weg130pQtPagJOE6qtVbf75ECh/NsKAizYI44inmUIpDmGADgmIdrkCXmaNGkn+5UIpJk9lIKilAiIScXdGJy0s31MKMsOaAUBDVlJp1aEVGrFZrvDyckpllJAIWK9Xkuij8T5X+eoneUyQKKoCkIvks/JVc+HGbe/ls/hUdU/kwSP+HUxyvx9Nl/E+49eBoDwlSefxb3llr6rlx4Smjjjmuxlhsyb0BCs2EU3JnagQ/waVuVz38UcmB2Kqhw8F3KnBRSdxMja1cQSKlF8SA6oABaK+OzqHjy4u4bPpLvxyHLd159c84SUJ8Q8IaZJCjtCAockwnAxAiGCKUEk2wCwFd+yz2nY3qYBgTrR4h4bcM0N/4fVp2XfJVJCqgWRBVxFsZ+4FxW2ENBSBCcRu4ocZY4HVWBCBFqWdW4d2yGii44WMKSIWJMEXUBF748lwfUhSvzsRZsIpKBthQCPDRwawAWcGphYA7cAtCSuS6taIGOBUlcvIwTEAExEOGDGUhuWugBv/HqsP/VuLI+9DdMn/yVKa+DKEAyZpKOKKkeLYm/CwhlzzdgsFSfzsL+do2NeZizLjNIWEBgpCUGXFQgQRW8RDhSSg4DptSwSb9WCpgSIZbfFooB7q9X9BfPyzOY0NHDRwNx8yyjdiL3Q3zpZKXCikw7WXVJRBJ8rpl7t4G4gJBVDCxSxxAkfyY/gZjzAdHKIR+dnARCyduLMOSsoGZFzwjRN+D3pcwhhGsDF5nt4rb3I2NbJ58JlXKzHOKonGrM0N7O29rrAlJJksO9L0FmhSW7w5YIOxAaL72z9ovvLZx/j++wYCVGZC/53T/4kPnzfW/C2Z352b37sCRaABmJft7J2NF1PVgTD7sP379wrSNkDh/fPcdySTDhT9lUrBIXvy2Oj0jERfl6OGAULSABAhJgSis6ZeVmwRU8yRxWa6ST3Prd9fNSX9LiHoUGJ7C0mvLa/v2uZJ6uyuhWWt+4f1Wrz0ISiBsDfkzB9ngkYxfjU0SN4ePv4cK/JXx+CxBSMjiX0BCfU3su4GGlAh0k/x4A462akwtpNRGQIVUNOSQT4wXb98HUnL9MC5aCdVaJ+lv7b559jIn19joVUwUC/waUa8SP46+9MBp39zA70jQJEPcllSat9tf4uQmWiUQ4QanG8h5CwtSn33N7v4lSleveV1iwxuS9IZSCjJcvpnIHv5rUL3mGxGBTf6tGkqmv4Y59oPSTEAklcFFVoyUQ/oiRmjRwYYpRtrnW8sg1rxKA063DD+uLx/nVcU4UnVGgqxaido5XIoAIrrTXc4oiny4RHcUNDE8UrfO1R7w5BlvBjL9CGwwrcx0YntMTrkNgwdCGF4IlvFeZulr6hHlOZ72akhlYHMrIkhs0fi6G/92yc38ZTM8PSBntnf/a/NfcVxz3VxdRq1eTZog/tclard6K0LqEmurMHdTT0sbMR0/ll8wVs4tpyhDiQcnQ+WbcoHsfszJ61X5j6b9YhuIUJDOo89rUkYxWoY+LRiRJJO89l786VhkIEKyibNZG6ZOn8FUMU39PWy2AXdCuT/VZ/H1N4L3TuGF5ne84LvubM7whANDIfs593aw21QPaxAW96UR8PcJKmEX4Nl2L0zyCivT1g0WS37LGLf+7p6SlOT09xcnKC09MTHB+fYJkXAIwcpXAghoBptcLheo2DtZBvohYBliLxwbzb4eT4GCfHt/HGz/8o3veSt+HBd/497Er1c4zatcW8SiOFtcoqBlnAKTphxmM29SVjCKD1EU4P7sXBdouD9Rqr1Uq6mUXpbh1TwpQzDqYJ62nClDNi+PJ7pfxSHMuyKIluXyCciPAwbiLxCZoTdeD7h+0DPquo+2E2BwB1WQwz1PyYCUnFqDmqQXzDfMBoglw232BkJlb/sWJZOtFnUZGp2kSc4bfEJ9Egn52QZI0mEfs1gamo+5Xh3JaITSGgxoSWJPcQAMn7SECPOhS0CPGkOcTw3IUHcXRyDatlg9oq4mzijRnTNCOayJnucZ08GFX4Wy+7WaxXUCppp0xC46qEYvG5Clddh3399djMyEeQ/VX9eFIDw4MIS8f64TbI9hwRRmW1X4ZDRXCNqEbQsfe1/gCkWFKbdom9sX3TYg0CqBBKlG5lo98ZanWShvkXinSqvx/8HgYKjk+fMwgfPcdgc1yf93DE5rb5dgAHEbbYh+57vNR9t4R7d1dx7zNXgdXU7XxgJBqK4ywHgi5cYV3jqua0A4mQWOXiJ2gNOoqSO2IAkERAapomrFYrTKsJKWUcxYZvT0+C4hqSi04IIQMxAxQcQ4AWFlmhUeMCUPNUkxATZJ5eLxk/tz3C0oCviBUP0KlgNY7DGNJPYNJC6xBVHK3qd0TJx/odMJxH8Ur18/b8IBsvlji/teY3jmnAfc0GMg+Cv57lhxvL4TBfuL8Gvibs/loRkTmFkttGPyeCkjcGTgH6Pd6ba2x2NUm80BoCAavQ8LXPvRufe+45PH/tKk5OLmIpMy4eHiLGpIuMsLSGk+2M67du4eqt2/ji1Wv4/DPPvchk/+U53PvRm2x7kA6T70NmO6SL4HBjCJCqMfJ4xfY6C6xkfKHxQw/Jx4LJF/KnX6y4ktBzluNrbF4NUFP/u9l0Jzz2PCDAqstn/j4cQ+jXSPbNil+pPVGfhiFNk3pBrokKNmkSxSzNenazEJ63G9kP7ZytSZCSp94ePoIQI7ZlBexm0JSRDw8RD9YIZgdKALSY99qu4XOnGW+6knB06QrWFy+D8kr4J0roasz4ySdO8DUvWasEdYXSbPTvw5rz2Ird7o03/Q+87SG5Jo3FoPlH2cuwx08IRMgxYjVNOFgf4OjwAOvVBqckOIeRBmtjUakiuJ9j/r6T6oC+xvfOaPj9nO1jq8MV8pSRp4y0ykAmtERIKWCVEqaYMOWAVY5YTQkpB6xXWTqSBsIUAlYgpKWAqpLHWhdTg/kszfyPoPs6hnxGB8JG+9mPfVSWh0Xga6m/ee8dxgkBoL5dXwdByatN861iZwn3//TfxLWv++144F/8P31lEeDiGjEl8ZW1iGR71wNI3FBWR1jWF7GaT14w/h79bcdh7Wvdx9PtjTvPSNazFdULp2IkzTbFNmDx22DHzJ54Lty5HPA8gmHB5LjHmb3Tt63h38P1mO2xfddJz0Ncafl0wyg9L+PnBL9f1Cx+7XeX2a6rc1YA6HcB5h2cLTo8L4fx6hpMaGqHdUqoh0dY77a4ffEiDo9vKZ9GYgJBvCD/pwaQFJFUBmqTQkEKEYkACiyiLyC3MQKZ9X1DZlsQzhEUa6Oqt1cb/oUMogkhTshpjTwdIOVDxHyAENcIYQWKE1JcIeasooYa45DSRrmAMYOxACggFyKZscxbbDfHODkRoalACavVIYgq5t0xSt1hu93hdHOCzfYES93Kc/MpttsTLGUHcAOhYK4Vc2VsdxChqaQNs2KQxnysOeExh4+AhoBSGXNt2NWC7VKwWyrmUrHdLdjNC1pjECVMMeNgWuNwOsQ6H2AV1khxhUQ6BmnCK49v4WMP34uvfOYUV5YAhLXqLFaUskXZbLHbzUhpwsG6KTE+iQ/bgEbCYYwUB5Fh5aFWne+sxOxWtTi5dGxfeSl7zTusWU2T/HvTOLpygfFY2sDpE9Gppf/NhAJY8x9jMwTW83kBfOqX9WD2vUHcIhosyJmDALBw4Mxomk0nbbaHWBBqRGpNmLvqpzTNHVUlpc/LjLTdIaYdQtiBEMEcAF7Eb2E7AwsO9QQGvA96vkTA9IavAX3qQ6Ba7hDI7vhif8/4d8NvvJjaNgRSITO3D4Sey+jeo/nCfUgHcrjlnJQHHUh4VG21wo1XvRXz0d1oFHD0xY/DNrb98Iv6dfbThwtMGVYFwqXrTwIxYb5wBfc98REYiGL7tPjSvcB1zC/6/93ffZE5YM/beJx5gbvWfs7742Kcy/190MafbGj330M0bFIvfEbk/s2XEh75pT+eeOpZ3D45xYwEJKhd2YG5IoQkTX9DlmL6mBBXK6SV7BVTXiufQrEfKCewLCiziLUJ96Mop6cX/bI34xNxPDALZ3DwVUyc3fFqc2zcHgAeixODqvwEAGmaArDxm9x/6fGUvHC8H3f6+sxn8AGGiOeSChw5pqqzyRs065m7fzqsU/S1Qwgg6niz+Fkaz1DD4//wr+vrZU9mHm2C+ZxyjRZDEVXsFdajCyTA8AoEgBLAxhPTM2a7Bj33ION+6ZWvw91vfivmG9fw7Lt+Cm172mNvFrH9/bht/9iLrwHFI4WfKb7gC713zMFoiSJJk2op7o4+tiDLU8a9dX0ejqb3klpDpSrF98FEZ5sWizf9PbivzWw81yB+ZJT739BEOEenZmNGUK62joYKOkOHpo+P7ahgQmHgnccrPDVHFAbedLD462y9ncVK9uwfjPvU+QZ9jckr7BwMe/DGA5ZD9xxowO++8ix+6NY9+G13i8jUzRrx7tMLOG1SqPSoik0xMz6yO8JL0ykOUL054nt2V/DpZY1NC/iqfB2tMU5LwLMl41KY8cUl46G4Vb+YPVSxHLHxUuRCLSbZX697+/y/6hhipS91uMuia7+PnXGjlCPMwCe2a7xq2uATuxUem2477sHD2I8CU4TeuMqadZqwgtdxqC2WAWnO4bfaELQhkMX+fDhXh6cAR/9KxtU48XZc+fg7kIZ1Ya+1+2u1VFJLAZ8JzFLnQSy81QYgNJbajwZvlAd9rfOZ0DRWkRonaa7OPv/cb7ICPsDnWSkqIFuliLeUBctOeJrLPKMuWsBbVSRKlBpduNkbz6nQVG0FjYvv12d5RLaektpZ0to6532ouIfjr6y4ZOsCeYaH2J6PwCBYI4jo/Afhw0dIA1hpMw0bN5trbOPZ15QVnT9z96vx4POfxnP3vxYvu/XpF5+b3H+RXKqoyps4yf5LJbFBes3ONRhex7aOhvooVv+FmbUGpvbczLKASUWGlMtXjGultTLSwASaB4hAjojnbC+r1XKZ+sRweh2f6k+McRuNftTeMfoGQwxla/lFEoYujOO+l3xHQNi7X2K6JL6VPcsN7iCQYr6X3H8T4fVCapm4WvMRVJwsI2bJq6WUxSdRf3CsY6vMKJU1JyzYd4NKSbPUNTAztq96G5ZH34h5fQlHH/0Xulr6vA9BGmg5zgZ4PLmkgFwjamXlkjJKA1Ys35kYSI0RGxAiY5cP8amjl2MTVlgq456TZ0ToR/l+wvnrxcNDJsLHwWIsou6jn71NND7OxKUWOjOMD37n9LBYNehP45P5TfPPcNff9ypm9joH3V3lnuyJTDWPM87LsTKhqao8CmK0GtEgjYdMYKqPbfcRFIDScF0aZt+461FcvPEEblx6CHdf/zSsMVQAug0Dd5LduARZcIWRiyvx07BvqrAik62fjjMYyCQ2sePRJkTgYt+6Ps0mFtuzWpNLwt4tF18/GQ8xqM0cMRVoqGPcvdFHle82jsVI0pPfRExTCuqhm758c20NUc8zaBM2F5qK5tt2Eard0YRtWCGVGcfry1gfXxUhizN+eaA79yGo3WrcVGyqDddnE8DiOQwxXI912c5/vB9tX2SKx9oJnPksAiz3cjaGGwasL+Yzz4upcMm3c3PcuHkdc5mRpgkhipCXCJyJKGCIwkMKpYFC6E13q4hFrFYrHKwmrPKE1foAJ6/8alx89qNIQXJhebUC54haIkoKWCJQFqnvDwCSprGjisSJmTJfXteuClZKE0XSdW0c/c75p5CQIiHniGlaySNnEZwKSev+5fObOrOVxJbUABdWkc+yZmnDeoLtk6xYAveYSX00m46/jh8HIKVPHWtDX5OkO3SMiEn2lkSEFkP3lZnxbx1/UOLDvPI8WaDk9qOqQGPOGbvdTrll2lyhAdbEiLnz2822if8SXOxG+IBSExkVF5RcuzTxkLfRYG97fE0Qvk2t7PWzwdYnJFbnVrqQG2xp9X+fPYgIh5sbePSJn8W1K6/ES77wLtSwv+bM13JTd76WVz9qMycQNMDzASSaHWRcdCAwdyGqIY4LinUb1gYykZIGbqTxlMRswnsXTZDqDYIt30hgVlvNVrfI4NCbgrijEkhiFlZunemGgNT9YI31jC/AWJaK3SJ88qVWr39flgVLKY4lhthAIfq+t51nbOYFp9sdTreq+QGgHN2NcngZ8ZnHMZciPJQkOepAwlkMSWKEyIyQJyBmxCzNMaxB6cIAzwsKM3ZLw2o1Y7VaYTVNyDm7DgdD9+haXWTKfjbFBJZlQV0Wx1fbS9+E9PzTmE5uIy9JhFNrxbwsWO20uW8IEgu6PWOpZ8gLplJc+M7mSVDMkShAcqUylRwLjK035AgaV7Dl1HtcZmvi2679BN5x96/Er3/ux6WWFfKxModq50My69oXgTGBPQhMTeYKROSTzluebLROFi/t6yHt/X713sdw+eYTmMqmxxjul3ebbu6RV2syVGRK9qZSG4rnzawxqYqiVcMfLYdijUZ1HceIkJKII2bBGJgbUAUPDomBSsonl7qao7rBG59+F56697V487UPqCbOwKVtZhPknIbLGWUF/HoObz6NR649gdmwPgsiIbhzgNb36DoLukfYYJINLHRcVAeFmzTxqUX8CQAIoXjcb6JNkwpNxRS9biGo2GGMUYVGASIGReEuOsYSo7vq9uj7scWyGgc1hucG9Ri5Kyb0anVdVbHEPWyomdDU+Ls2GBs+zz7T84uAxpMqjsmmgSL3wfRTlE7q2NeXw/v4BQlN0TBYjQg1CvBy143P4eDkSfDUldON6FmrGG+532pgIsQZiREivAQBXHWgRG2dRQAAQGIhckbd9OWGwJOUY6DUbOHpDbQgmd1x6cEWoJMjaCdmJrQUkKCgWsygvBIF7KQJvCCFakboQlORn1bRlgWtzEAsiJwFoEtBxMqWAg6ihGrgKNCdOlKCvHWxbP634IsJRO4YGRBkmzaIxQFV18CD+SZOg4BqqmjCQh6mMFo2uNhJCzJGIvph4j1AiBkpNTATQglKsGVEBwgYOAOUOvigQR2lBOukZ6IOrRSspxXm3Q5g4AbfxG67w2azwTzPAlo48V+PQP5cNzp9AZHCJPtrYP9f5w2El03RgkgDFFjXQ9FkgjgXXE2dVcWnesUkbI14wkEJ6OACSWjY5iSOF7HOSTfwOrd8Y9OPGiAmMzyWZG57BothiSDf9PQaOyG+B1/jXXPSFcuEDDF12GwgAzduKJVFHEkNPSnIpRJVoiSrt9wMosVHRqVjdKKyngJGMoLcCXtlB/H2XmHGiC3ZOghvQED7oJ8dYAU10NGUKJahxfjBQAOzacP2ZCAtDBgV5X81+3o2DaxkG2ZxtFut4KVIkqNoR2G1X7WJk13q4orMQp4UgMUIoSnnLnqDft8NtDfi6p5JeSFA5pf5GAuG+nPozh7IJQkByJgPc2KIr+FRlz/f539T1Ur5zwJzGdcYqcdHZMWZ4rSbXbNinxZIAmoPzLrzJMnfLE6gkUtSUmdObkQMoi5deYfdsmC726GWimm1kuK+xkAtIDS88+Lr8fXbT8ucZwBNADqoIKOcgzhBRnySdWkAiAWZ0CQ8ASwClYHtUcU29yjeC7ak84Ylv8wGNhgBz8Q/QoCSLF3zTvcriMgKIM4CR52rpACQfqee7xQTcp7USesdZ5ZSFFxMiAGSyGQRyQkAKIq/MKWMVnYi0sUFxBVoBYAEcNud7GHbeQYDKmy1AkPBDmaQFjfFFH1+ApqoSF2t3IjN5pRyEyGesTvieToqyAPMmISgE2NCY8YuZE8qbGIASvH3eXCjNo8p6B7BDlrY6mSEwc/TcSOCtB+K+/NsKGaHJS6aiISKirV2wVRbVpoklRpEvEcuJrgqfOCCb7jxPnzw0mP42psfAecJQiQOiEHWoazJrCJTKiwVIlhFp2QtR99LCZbkkz2EVKlZ2qBrUhoVDOmf2nQvJW4ivAElUul3GYmwsfharIJEBAFuYgzI2ZSKI8BR17B01mXKAAqA1P1Qtet2tsxCTicFDAz7aczeBch2eHMTo9+/4T+qABUh6QTpwksw1fuggiIRqEIArq2p4m6fJw0k+6eunfV6haN6gFf97N/AZ978G3H5Hd+PTQQqVxUZCmhV91S9Nw32YBQuWFrFrlbMS0M9Xw3Rsd1uVThwAaMhpoCQsno/LKKv8wxGEEGqMqPWBeBm0jUANyEs6oObAENiZFkLjgjghs+kB3ChnuDuclt8UojQV2UWsn2MIBbxWCFsKbDkQlPBwWD3v9Rn7H6EdPER9XXpRFHjhO10iKNWMB9cwopuCsDh5DV4sshEC1LK/rdaRSjMuouZKI+Jy3023I1Ph7sQ6DLeUD+HIz7pgIjalaYOpAOqMYBrc+IfA9oFrb+PuQsjjoRk8bV7bDJ+1wsV1o0+VIxx72/MjAMUvPXZd/rrXugnQYljIP9v3DgaBqHY2sVzLEnhHSDUXxH/52w3gn5Oeub9G2i4Rrto2CQwT/t8xWMAsMoZlYHYhHzApISDWrHb7RBAqLUpyRMorWHeScHGvFvUL1ZSpfuK+4ldaLwEfx6+T4kvBZigopMqrMCcewK4NfP7JNnTRWZUdPbMZ3zw6JU45YDTy6/BS5/5eQDktj2EIKGk+ndkivFG1PUby376/dgnMphf7TFD7bElAKSUYIQkSWol8U3DviCDFYv6GLaGplVzjXvhsp5VH8/hCKEXcdphiSXDK8bifRNwNn93JGueFY4yslJPkA+CUprM8PcO3fT2yGPawdsCVo/quAOG4+utA5+fBzMqVHxsEJryW8VdCOXcHA48DOuh/9F9PovCh8i9iz/7MdgjR+z3P6UnKGQzGsWlpKjIio8l0m4aI7PeF+9UP/icRsgd96DeRUv899YIt1vCe3YXMdeGmSteiutSZK2f0UlAA/nKyKboSTiAcAsrPIMLeC3dgpXqU7T3alcHFbqy2Ec6/EghnQlyKNijt0Lnfy1KMFEcyUTptZAMShAL6mNakS8r2GNdQcfEELjHehJS9/2BbB40aIFWE/Eo7ShZy4JSVPxE11Ep2tWzVF9/JnBjtvUFCdhkfiMGTAWO/ZDGuhjnkF0nAV6FvbePj/vf/t76b8ph40BnnyHDYjtRZ1yb9kopHlYyga4fAnpixfIC9pm2Zs6ul72Ton/lnSB9TX+5JU4N73lxn8TJRzbXsO/HCbFLMRb920jyH8m443f2NSHz6J/dCPi2+7hfP/PenmLr1ISoLDm23W6w2+2U/Cx2f7WaAFwAH8q/c844OFjj8OAAFy8e4eKFIxyuD5BTAreGuSx4L9+DB7fPYLfdYd5u8ZL3/iCWeRY/noIquTQn6to9kgReEz8RhiVmtFQRESAc5oAYGJwSnjl6GDMHYF4w3bqFaZowTZPkABojhoCcMlbTyh8xni+hqVILQguDIA325pKL6XJfGxK692RoJ21gj9RGw//Mp4+Bho5vIsxLZ/Z3K/Jn2TzU/nLfy2rTTrDSIMRFpqpgxURCTk/BOhbRsNdF5JikuxyFjrnotaUQwDGBs+TwcowoKWOedyDMADNq1LkTTAhBru3Zux7BtfU9uH5wDx565iOY5g1SDJijzIN5ngVTywkpDgUxIbpQneGRJjZYakAsYoMKFxGdZilQsH2HmRFiH2MdKjjJ00FfvSFsWKX9blhV8PtuTrLdYxObEsyloVHsthH94y0O26YD3LzyUjxw9eM2uN3eDCRQrgRQRUjF/cKxuAitAa2iNcWTzQZB5lskFcy0+QfgnHmLKpQx+F6koAIMP7QcEtB99oDaGClFQyb9vpgQ6EjaA7C/r6j9NOFEO6ISG8XfkLkvu5YxtSxmkXyN2cmmokYUE1JeY5oOsMorIUPmCVnFFIkiQCIag5gkJx2z4HuK4qBp85gmqGsn5+tcVX8RTNhxQOEAQsVpkznIWhhTLK8I27tEFD9wEzyVrPhEP17tkBHaPTdm+KDF9dR/d1IF4HOvDcAakeTW90i6sC+14mbNHWLYc+Xm9/Ng8/W1iAfshbH+3a3Pf0BthItl2csYQFThIcDJVBSAlARLUlvewDieG7549Qae+PwXcOnoEM/euI1Lly5ivVqDwVhaw2aecfP4GM9dfx5Xb93CzZMNNsv5IkQVnQd2dKJ6EB6GFtHCMWhoNLZP7okpgRHRli4EikigRn7fbKzP7n8A/F6+UAGRvct9J+pzshdq9s8c122jgM/e+wa8/JkPwbLTsrXa94jgIZ+Jw3qhNvt7pLGIikqEKHGiFkDJnqjC3WqmmBu4VJmrxKjzgmW3w+50g7rbur1V1E7+H2MvkElJsO+lAGVBBSExEGtDqgykCZQjTmfgp58/QMGEdT3Er7p0D+LqCIyIWiFid8z48c/ewjPHC549WfDrX3lBvpxZ1+xQBAs7f3bf0/LDZj9/5FPP49e+/K5OoB/WG0MxG43roL5FTknFptY4XE+4nQJa6YI5Dax4UNSCAW18FqKSo+TEyBykF2E+nbdc9IW7LiJNEdOUkaaEOEVgkv0nh4ApBUw5YqWvyVPAasqYUkIKhAxgakDYBbkfQcU4apWcLvPe2rIYu7WGZ1/21bjy1EcR5w06r8O2MfbnGligyaC4otnWAZdrA2YzrlGKivc3Rkyp+xpEsE7ijbvPZfjP/e/8ezAfyiJp3VGl6+qAt9x79ZO4mRNW8wYXbj9zRww2xllmJ+4kkss3sNo1i98b2z6ELk4P1lSY7akGfXQbZdkNn48IXm8l49f9ebdteu2CPQ7jSACa5sB0De1jRH0+eVzIXUhgzDd4/vNsrOy3U86wtaa8GY0RbL+1fKQJNFhsEwgcoL1aXjxe/uU6KCYpQOGGXVmwmXe4cuM5HD3+EcS7H8CVp55EjQkBIpzcSOIBoGkMZrms/UJx4ZF0oTtWvJYYKsRp3e3Jx0wYQLZeOndC/LwVKKwQ1R+cpkOkfIAY10DIQMggF23A4ONVndPSVKi2GdJAaUYrM2qdsZQddvMGm+0pNpsTzLuClFbI0wpl2eL2sRQsbranOD05wenuNpayRcWMpWwxL1uw2uFgQgyQOcCFUBohVhEVFs6JbnY0xL3EIvjKhMoNc11w6/QYN4+PcXKywe2TU+lY36RYa4orHB0c4cqFy7h84QouHlzEejpEpBXCskMIK0zTIV735HUcrA8R8xoxAzFmEInvv5srap2l2VWLIMogjqhLw5RmTHEFTCsAki9s6lOa2Jgdhr9DGzcZQbrVLjxlRGHhw5nwvRSLS8G45QVMYEqFqlykyuaUkYK7LbG4//Ovei1e8unH5fvO0SF2BWdiYvndrmTPNNCIFJKGS2ozXdy/i9f0eBeen6y1Ic0LKCQIj0JivFIbSrHy4L5MeiPL/rWAu6uYfsWvQrr/YYR7HwTe9WPwPejMPjRyVPae89+DX5lhNd0nthcFv6deHAobPxNptAKKnufzRjQ6TBwCloNLiLsTzEeXcaQ+5Qhb3uH12N7A4z7Sz3Nz4R6U6QD3f+5DAHVr1aVPBL9it2l3lh6bz2i/37ErDHOF1MfwPw0vdn7H4L/4njvu234m1O8H+YcgIEj8jaGQsk9RwPZFux7uQlrn5fjizRM0SqhLAdeNYDMpIEwrTPkAKR0gqFBhzBl5NSFOYgtrWVBrwVwEQw5aoF9KQVl2KEu3YUGxJMGPpDGBwIaseIP5DWQuAsZ8StOfgKxppiGWtDEP+2MrEPnAA/M/3zmRyfAewxfQ8aARK5XGTQBDYi3hT1oeWXFB5d+6AJX6bxLravxlotqk9Qoa9zJrA5pQNW7UlUI+NF6MJ7GPrXPzS+2aum9p57M3T0H6vd2u9PyHFvuEjjkf3HMf6vYU+dJd0vh7B1g8ri7rXr5hPO58TvwLO9/GjFYE/21sHD+NVLUpN6g3ApcmhRFNxzQpT9UxIjpf6GKr5pf1R6uMSiKaySTNZgHAoiQe7z0YY/c0blUatXKPS5viCI0JxOSFe8ZvIP9svVkke8H1EnBXbLi+BOBA7+Fw7md57AQh6njjBj08HsKZ96PvtXfsC7oPoTEQGiIB33XpOS34JOwqsGlAAuN2CWhR/JkP7i7g87uMz9MlfP3qGiZITuGZJeHesMOzS0ILEvPcFRZ83XQVn2sX8ZbpJkYloD4eLOvgBXAgnH3ufwPzffZ7iIJzLW3f8/zf8DMA+I2XnsU/v30Xft3FZ33vdmE6x1ZMZEr5nZZjsBoJDLUd9nDldvUbofVHXCE2tMLqPF7oGs7TQYDncKHriQIjsllN43jzC3DXCMZLZVBvMEfkD5sEDX06WJMOP3SNQW0WsRRS05mHQvw6BdkxLhN4qa1g2S1orA2AZmnuuewWzMsORQubmzb3NqF5D8AZcN5QMS5R0U/HPi9CH50vLrnVELQpuAmyU89BCRc3IIKFL0sSQxgmUrki6J4pOT6Sprgh6k/NR6jYVLP6q1Y8BupFwHCx/RglH/f2p34K777/a/D1n38HaozwxtF2fo6hiB0yXg0N611+GF+ryLA5HtWb8975uc15BFasiUEU2Dg+xuESTrbl60UYzGoZF60TqCrAIt+rglPn6RhiCrpDgEYPi0vEwXlRk2n+v/l7/rq9GKr7Xu6jjS8C+soli5NMjHOMHYY8uX5m01oaqzFz1pf5GdD4joJwkVWcLGrD2pQmpJwRtV4mDPwe29akeJbQXGSNFXNOiLEhRs0VI6BdeQjx1lUsdz2A0qAi5fBaqEBAMfxuuOYQAlIJWFLFUhmrxlgqY2qMpTGmysi1aSO1ihACTuqEWwXItMW1BTjYbsV31/k4ew2DPMpYcFz3OYAEGhoZwfcrbqxxo9634YedPw/vsWcI3U5D7aYJ1neYS797iAPZnh/i2x5jGgbT8RAX8R4D23NwrHMGwGhBi/apopJwML0+yfY1qwnUa0ELihcyQA2hVTz64R/Bs6/4OrzsE+9AC1qvS4ZNm48g3212UjgX1KPkcekBGufrXose7powU+fnNeGwV83TqM9ijZmrP7S5aZPmnDbnihbrW9G64wYhoH7Fr8fB+/8JrPGwC1sbNmK+9Bk/yvBky8mJLxB8zcfQgCB4pPOqWn9/aSLsGgILv6Ty0JCMdF3L/pSuPoELDPCFK7jr6uPgpHUvNNQvjE1zPW4cJgTDa/+MHykOBfX7pkbUsy62ffnMlwcrn8vXkPMax/ur8QpsWXajzwB2+QKuXnkF7n/2Q92/sXlhc8gfBCuLP0/H8eltzMsOICCtMsImuO1rtSHEBGscbv7YvMzAbofdPGNdFoCPkKcJm9d+A8LBRTyT13jkqfdLnV2MSDkCOaGmiF0gzESopSAQY5oyVqsJ05TdX7M6X4vNrE7XIi27xwGSFxFurzSnmvIKebXCar2W33NGCiIkbfO2mf/OrmEhD7K7rfVb2nwxxyR1ouYL6XxhMtEme8D3cObqe7/NYRHE19eoAJQ1dfG5Wfs+jsYiQqT1/QA6TgI5jRgZMdZBlEZOolT2WChQALQZr/Mkjc8LeU9KCTUJ3yvGqPoG7DFECCqGRNbUep9PJWui9bjX8vgk9Xeow3cr51/KCjT35rmefTtFIFw4vYqDk+dQZOfCaKRNeMnHnq129pwd7kNDa7Cs4WDn5QVAm/5g7wHA7Xm3MD1gkvlmcS8JDhdEINjstuVTQDIfhIcXEBsjRBbbG6UZxWi4yDQMQgD71tDPTLY2WUhWezGXBbt55xzyWiuWWjHPC+ZS4HhwJYl1NP7blS7as9QmQqFHd+PkFW8Dx4RYGfyFj6JB9voIQqIm/queGzNQEcAhgUNT/h9rs+QKWhrCbkFOC6bdjPVqwWq1QkqpC0FxU20I1phkxjwLbxN6f2xtgYHl0TehPfx64IFX4+jjP4m2nILCDJDkTJZSRQMl6v1THEJ8xeiCkkUbfPgeB/PfbMxlDvUmqcHtVY8dbJ5IPlC0BpRn0hi/5upP+3ss9u51T5YHAYxPSTpf2zAHzRac5cL+ch97eX15woWAx6cB4Ln7X4/jSw/j+NKDePTz/xK5bFUIkjTGUD9N1xeIHCtojEEQVEVBVW/FhWmZhQ6q94+or/8I5W4E04qJIjatPikp19FKo+G1uhKDMQVcWG7jDc+9H4iiSdBURMnjDRMYI8OBm88lO78+t2xL269FlCaYAKJwMWPKiCmpVk/AiGWCOl7HrHOrNoAkX1vV5yUCYmkusFpbQ50kporaVDcl8RnZGsWGiBgaOASwdjM1/qw0DhSreIfYfxOfvtdb2phY/qnz1sb6AYvpzHaeFZoyf932Mqtp6mNqMRcP7oKKj4E9HrY8xnhPPDcJ89q/9PFls/RLKUBknYQqNFULagFKJNQY0GocQB8Z1FKKOxbcxNlASgg0IZJ1H9YQKMUOwikpWgwNHLtnWKBm/tQLDRr3m6Pnb/GzbJYq8qTS+aSBTyATBBAhALLusVES2YAKt1gwrerwOQWUWQquaykoZUGoC2ZURDSQtTUn6PdYkKWkeiXwI8p3M8RSNFskVqit4Ck5qKoK/iEhpCy3k/RvCoRaXMq6LzMNY+MAngZL6s0Sy+U6bMRWpBAQ0wSiiBaTECo1OUkmwpEyJjCw3p/Q0M/iAdzhDCcelpgQAJwcE8qyYLvZqPCUkFumX/XbUd/7I+BlB0AD1bDfVVcuqk97I7tQj/H0Jd1Qna+jmlcEVz9mFvES71ihxHIFSqHd1H4wPYZfP38MiauLPsDIK23oeDHonovqrt5bE9KBFb6wrzemblCYdD7o+wx4GA2QQUYAtDOAKOTJeyxhwsNN6QleRkVTsh+FhJgqHHzWe46gCWQNBgzY9DSsmSB1UIIjrPuJNTuYuRf0cAAsOFPHW0zPYKQBJVlooqhVcaxYSWRmldHPzZwgK9YW4RhzCxQiisEy7vK+YXxsjEivT86t6v1AP1cVl5JppE68Cb8tixdp9mLo2tWY0RCi3jM2e0WIOSJPJrYXtRtHBzCbRaYgX39Ggjx/a6zvG/K7bSw8AHo2nOR2uovy+eSSdRAnXHvdt+C+j/5oDyJrQ+EitlkJeTUICa9G7RqvhIcQSJI6IWiRFA1CUwASe0EeQtCEj742ispoGJ0r9VpDyD7Xaq1ouy2WsmApi5gX6IooC9ACfubKV2MqBT9++Hp868mHxQErCUgqWqMOZqsaSrfq68EcTCvU4agEjaDdnBRw7YDJCHapk0kM4op/ejXg7VcaDqiJcBOL7bPOj8HvUYSVclmB1piMIgiZgZusaes+xK0BtWpDRRVAJCDzhDpVlGVGXBbUJsIpDKDVAEvcBgAhMFKIQIrgmsU+14JadmhlRqsLtvMOJ6cbnG63oqgfRawNQYK2gNrBSgUizIcx0TEpgBL1fZDa4qbzNDS/JitaPE9HiFHEndweQFWyCS9drqGq2Xp0vjqAq8AIX5CCFKMt8bSyRKXAAPoQRP1dRLiqAl7QgHwoVjanXH21eZl1bVRd90ESTkRgLQAkdYhUcwcEwooL3nbzo0r+Je/45aIyoT/cz/R5Kn4amV9o4LkJYShK2TiCA4s4FbMWhKmj30hI6Cwz00hNRIwYWQhjDFBjVBLSmHS/EjE0Iim8yzlhmjLalLowSaggBynF/w3qv1li0PZFVuFX98uJ4IQKTzx3WgureKb5MsRV9lzJ8ItwlSKspL4QEwsYA004uuovadKt9gBIifl5SljXNUppeOn7/mccTxMKV8zL0G02iCiLg1Pu+EaAlNxN0lVqqecLHNxuRGhqt9tKEBwD8pQBilJE1Arm3QYBAXVZNLEvtppiRFFgmpW0ADYhvYgGAjU48frT6SV4Nl3Bk3wf3rj5HK7UExmnJuBtbQbmkQPEUBBIhKYigio9mx8TiSSZ1prHOtYBkiHqymgVE7Z42/xZfJYu4w3lKTSNJ1tjFIV285SRowhrjCK65iNa0rWYSrUKurRawcYP8P1+L4zw7R6Ag9rdx5Tk85gkM9/Kix11XRvqR7buPYgdvx8erL6QXQ9RFLUtujUgxv0Yi9p0PttPI30YgGwESjtMaKpWWfdUxY5YshetOclG1omd8mjTul9lviBzc1HF3t3DfFxyoBJ2PV9q0v8SHwcHB2gMLFWTpwr01da0EDhoYYTYzcaMzWaDGE6AdooyC+YRVSF+z+9kS3xg/z7KoPRJaPOqduxhjK1H4Qq7FybSZh17jIQ6fj/r3POkMhvg2BNCNqOiJlg9aQL0zzkTYO/fRYuZbI8gEDU4GBf6zxgj8iDS4+cRjDDZQeReKNWLqNyHGjGAYX6O7/ViVLUNe0IdzG7DSMHApiCtiTBYcqKLTnURqK7WX13s6WwnQusY4R0MR/DROwwEJ9VYgsR+jsJVo/CVrOOhA5jNDYLPv8bna5XxUMAF6wSvPpuRIMaCCzeZZGCzdeWOePaN/zYeuPau7n8p3mS+wvittr7OYkOswCxVsdMjgc6Os3MpBE222ty0821NbYb6pRxgXVusw6m4egNgq89ZF0Aa5rihCse0wvvD/YiNwQh4Ld3s/qUWe4koSBJf3IRqNVaXtR/gHRRsHJj9Wke/nHwvuXMIubGWajOs2Mo1OfYHd88Pb36v7T0M62Dmr1M82ETYHHeoFZ08WD1J5+C927eeqBi2R5hoJGyfRJ9T0DEM6guPYmEyWxV75IjIQXkoI2nm/B//KsLWl4vZ2N7jtnSAoiRh04vhgnVEMnFQFqx8BknnHSXNxhhF1Nz2AFWSDkSIMSHnjPV6jfV67XsFCN5gQgQl7Br2bX+/ybpHvcgQ2Hq2azy7p4zXb3skiDzW2XsMe8toq89i0P45ikOZMMcPXIs4isAPPsv4zvsFAxnFqmz8rZurfc88S+KZmRFTxIWjIxCRE2WJROBxtVqJwNTRBVy8eIRP8kVMoeKAN9huTvGu8BKcnm7w7F2vxatuvksuvEkSLKjIUQhyP9tSsOgaa5A4rDJLvkBtVwgRKQhOJZiViGAWJXsttUmhqhJo1us1lmXBdjv7eKecMU0TVqtzKDS1FPVlgvtXbnL0/ohttyS5CG2dPUixV3JxWLhtsc8zIsgoaGgddm2qizkzoUEtyDKbOMyXUhaU2cT8FmlIMMz5QFIklFQUwcUVg+GZ5Jj1O48jXjoBD0TpMIgkxW4xBrSU0IqICRtRoqXmGA3HLtIZrbCKGa1UEYFX/DSnHaYpo64mgFdCrFdR9lF4y2Iq21+seEgGowEt6khFwbybJOghnPwX8Neh4Y/ahNa8FtgMjPvE4L39gBwBkXtJ6AQy82Z9Px38+jmt8IUHvwqhLnj6/tfjgec+Bivf3d8DB6Hvmu5ISpstgu2RJP6HnUekIU4keCz+AtPzl/UIioVCz9UKJcy3lS6KRlZT3yJYM4zo68PWadROWFHFL4AhbtC4zXzI0ZcOQdYfq7C2EwRJhLoYStiCiFZII6UFrJ3Znn3s1+LBpz6AnFc4ODjCelp75zopGhGiq5DdM0LImpvOmu+FxOYm9md7Xqy6brRYXucmUcBDqaCuTnFaGl4RtuAmIkqtyVyqrXgxc6QGqobdJCHvk8oJBVkzRjMZDyebdTVxAD0XtueH851R/4gPSCGVxJ+SizQRXnu7FR6YF6eFe4azeDit96fqugGDR7EjEDhSt40DHm2YqqzPblmZImY0IGaNTxpOOeDGpuDJGyd49uYGX7h2jAP1VxoxdqVgs5txut3gdDNjV6rkGtLqF7oMflGP2uqeIDHBSJu9A3hgLcii5vtAjEGIODEgESMTUHlBDeSYPwDFjff9c8vtnOV0ELr42Bj7AwB5bhfDc5bLHeYSCUZnRNqPPvQ2THXB4y/5FXjVU+/FyEfj4d4rjKX2El6k4edHmv8ibRhDVhgHzwN4dCVBoOxDtUECTAbPBctuh3mzQ513HveZAEkIEYm7aFVrBVyE1ERVckqsY4cQEVhyBXOtaJWQ1hMu3nUP4uoCGhJqk0YaRXkdVU/NurbrBevC6Zi3kXatQL3W6gVuKSX8wCdvoDLwtz/8HH7bay/DCh9oLGRoVUS2tAkFMRApYIoJq5xwsJqwXmWUZUYtmt9X+wMS0bKBdg1mgpbLIVr4pfwBHmabWsYvd/r/khwXrhwhJSGLpykiThFxlRACREgqRaxyxDQlTFNEzIQpZ0w5IlHAxEAqmgeMEZUAaLEqK2bhth/yE2h4+mVfh2V1hCdf84145OP/HKHOOs8HTA0irlLGWCWYLew4pnO10LEYtxtOpvYFDiLC5t5XgPMKF57+mHO7pEmJLjbqBWaWa7Jcec65k8oV17zv2qdgBCdbB7buzsZujpmaLwfaf/D4OlvHIshIhjcpkNK4QVW4oAOgW13zfZcZaFz6/FO/0OZpoYDPPvQVeNXnfw5uIzDYGPm4/esgdU51ZEMHdtyu9teaDXuBcUCPSfbspL9e759iJHt4GSlmRb2IlzBgLefo4MgoUfz+XVlwOm9xWmYcPP8cDm/fQkmTnL/5xaGhmk3VhldBu+WiVTQK4DpJ40gmUIRgQu6CyT5JGhsLLjeOvc0zww8jAjKIVghxjRTXyHGNFFZINCGS2D5fExCOF6iCtVGRYIkFXGdwm8FtQa0ziopEbben2G5PsN2dYrvssOj+sbQZpztG24rvt9ltcLI5xsn2BJv5BLt5g9PtCTbbU9RWpIHPKuPgIOPoYIVDyuCYkYPgYIvme4wQLQ2fkhaKSs661IrTecbNk2M8d/0qnrn6HG7duo2TzRbzMkuXegApZByuDnF66TI2jxCuvuHNePnnPoZVPkTAIUJjRF6DQwblA6SDNaYpgakhl4ugdAHt5Bbq5hi1NcwLQCcnaMuCZbqN1XSAOh2i1UNMdSViriaoanhR05hO8Uqw4JGoHYd0LFMLCBtXaWbEFZWlC3RvBCmfAa6QdlwFBPUD3BdVG8wMqEgKCPjUY29GaYzPvOHNeOh97/8lWz9fzuHYFaBuk+616sP53wffOqh/Zda3N1E1XmznyY7FhSI0JblKhKD5f8ZSGmJeQPMCCot+P8k91DhAcJceb/sJj96BxX5DzEL+GvvP4vb+b/GRuze6h9aocxiG77A/i4/bPKZF6/6LxCk972FCdvb+NG/wwMd+Grde8mpc+fT7xDb5Z32Jm0ZnfyFsj67gmVd+FYgrKATc++QnhpEaYh+wj5jFXqPpH6xdDwHtGY3LGP3n+EcP79S1b4DrEtkOZL4CD/vlHuY73E8ZLolXmp0AWxObPmd9w9+71vNz3N41zE2awa3Xa6zWk4hJrSaktEYIK7Qm3A3ZXkiLzgu4LJ3/xIwIsdPC4Z+FF9qKamOrj2Kx11DgbcXeMpNjdwtof0XZIXh8u+MvL5hj+IW653u3yM6P3Y2y3VL/IK8YuCbyigquQeLZYDlmndFN1zUxTHjYMFvBAszvjRC/u3afk7of7Xk89VGN/yKNXPtFC5eZVeRSVpR+AwhxmNE9rrUu7KMP9+zP/Qzu+cq34eanPo7drecdN79j+L6cPI8XX5htlgA3qgBJDB29rFUcoBA60kkgb4BqPrvxQZibir+dn6OpgSXFigPBi9yaVNq4L00WI7+QrdA5AIz23fw+vbMqjOG5qOEjSDdG+RshEeNbLp3ivScrfP3FneMk9u1n76W7odRrLuS0eA8Xge5zEqeIjTQBnTGfBOjeSUG1D7SIS7/7ChW8daq4WhIeS8eoRd5fS9VxVduj8cm3rp7CT8334VtWTw3XS7ibFtydbsDFpMbLYu7Pn73m4Rr95b8Ag3I2Hzf+vvfcsNub8TNbM44bMyNywzcfXXVupNVv7OUUWeILhvmE3IWrDKs3f/Gs4AYzmguWFn2+c88sH/0LNau/VIePogyePmsiRQAFq5vgwW/b967cu2TBr9ycmp31D7vTK+Om9icA1KQ40uN8x4zg98LFLUm/ma1R9wIQUCqhqKhs1ZqLRYWmyjJjKbMISJlIlMWbxgPR74LF5K1pM2H9UxMuSivSIJMVExShjKwCU9bkVgTZR06U5Hu0Ka0XPYvPY+uyjlh9VA5JilJnELKu+yA4nL4P1ZqXs5+/ePGaT7J8SIj4mmfehRajVvrIhUXd3bpkmNU/kOIvMt4AufAAVyls7TbV7g3pJ6k/oGPrHDTnjMva2svLW6G3ueasnq7tVepLmdBUWZQHpsJcZ+3PL/dh+bu9vGN3jPywvcb2i7OXMb7Fft//GMIdH4oX2JOIukiBllkFDNwMx/+hIhn2jcZDlvlpv9ttD0N8SEQQvS/BVaI2JkhWIxOSChx0/KyNDyK1AwRirc3JUigrAgkiFHfxA/8UJ2/61Th89w8CJIJBwjsi5d5ZS2jd5nWERPCmYWkBhYHKpFi8NEwoTUSnovIgQiDQdocHd+/H8dE9uOfmZ7DR+KvWpnULBXNZMC/agO//x92fR1uXHPWB6C8yc+9z7vANNalKQ6lUGtE8goQQk5gFNGIygwBhG9MG1jIe2u613H7uNm23G3s9dy83Btq4TTMYmlkIxCAkkJAQaJ5nqVTzXN987zln78yI90dEZOa531dC5vHQfezS0b3fuWfYe2dmZMQvfvELLzZ2sQxpd6vhCnpPSYIJIAHBa0UDtBGIzZ22wDpBmxofGMZvvorWxdrzPtZoPjngJsJ9nra+BMHqU1nrL6QvrPZ6s+PlLy4GnRmFGIV1v8pgK8QXzZaJNgNHrYkoENZaZ8/bigkmhlxww8f+CCVq3jVu5UvFeK7ocqx14aJiy6Ba7+x+iY9V/QNsoTnvomiuHMzWILITmqpiUwWZXWxKkJnbo+jPUljXqHMViVC+5BWQ9QHy878O49t+s9a3UWg+JMjnWr1UVLNgja8otCYTjg2FwoilK6p3fpVdl901FNb7wFS0TpO1zoq9pFaAJILxgdswnLsbZTEikX2P1bVF41U6F9Drt/04KhYuImBijfHYr9HjAcfj3X+R6rfBc2X6IdvgSf2C9jgaffh9nNMObn3MCxF4xj3XPxvX3/feI690u+S+El1ms4/DccMjr8fZM2cwTRvsn9jDZrPCwcElrK3uxbn3amM0JsvMWt9VlGedYsQyLwDRGpeUEoYYkQIhRdImekGbhnGctS4oBsQALEbNS2qTxrb7ETWxhxKt2WklvsJeo/Nc58xgfPwBaRi0mVgc9bkQlI9gAm7snKxiPuTcmqyKMIYh1cciDsqDEejajWZngtT6HE9OVN+mYgyeW0ONoWqjgy4mquJqZLWrFVPQ+vxkDTCqXfc70H1nznmL66n+rOX1IyEitnunCk/IIjX+VPuk6zqltF1HWopyIENAcpDV8b56Lqgi/FWMv+4xZWuP4W5fqhwDbhjTUV5oIMd6uL5PLyOoLSVf1oySJxy3RhEADGFSuxZNHMXRndYoDtUmGZRRvUuB4CM3fymeetsbPKzVeed7ju/7RKAKndg+JqjzrpSidcoQBA6QCEQBJOr7675Ra1FU9E1/a4fiFwCR1XWyi0RlTPOMeTb7UHR/YIshWWD1YbYJBatlgwrJURwQhwXSWCA5QtKoHAzoPi5QLRDJrPWGLAgzI240TmTWxp4uEDXPWocqxokArH4xDRiLIDNhKoJkfMbKmbc1VLp6FG0S5I1BtT6cAMhyB3OIoCSgNIJ4BlPELAIUBpM23QzZ16sJ7ljNj98f3dt17wfZvNjan8hgEYsnjYPndqDleLqogaB+M1pO2gV3qv/n5aLiWJxFNVI9zLolVoTGQ/VjePS2o+29jWOw9Vpu9UdCBAZXe9N4Urr3MZS3of6ZCU3lgpnZ4gLp7Jt7CopBCjdfHsRINFhzS9UAYOj4B88FgACKWv/gNTwVN1S/0XFU5xPdcfIm7M6HuHb1IGC6CkHU7yfzHb1Os5hfJyy6Ros2LuYiELZmZSnW+0DRmt6lwRrRmfWqe57zWkxTQYCQBOvHPhdy/+2gB27Xe+h7Os8m2MWWcwSGkYFhcAhIxyZbrb5x2oWVX1qAqlvkc73VthStP5amw1GxCtu4XLTyiryNfuy7OeDqLlU0Slyjxb5HPJ/ocwB1EYqt6yKovoCvLYbyxIp9JjNajvwzWGWfMUu/5AxiRhZV6VNhKSUP5hhQUlIHunNK/MYULsgzFOQKvuMKEicMiUGDqoQFikAMYA4VCCJm05rIqMWQ6AIZD2q6gPpKbrlPNO0KYkBb1H/Di81DQvCOsVEJvUIBQpq8YyN3sBFFQggY06DCW3NGmQJWQnjT/lPxRWfeCZk3kGmDYTClTxeQCNECrVhVGmNM4GSJGyK4oIQX0G2Bxg7wiQIjcRgxYEc7bVQBpmDIBtVkrt4ZHxcYWSUCgSvoqEr9BrI52d5w0GAiPykmMCdVec8qXkDm4BMpYV0J4N0YiFSFPU+aw4SixDswQtUZDw+0q9o8TQgUMHzp9wCr80hf9n04/P2fBKTreOsjbGPfT3nfbNThPzorjuOhcJd3zqswWJdo6IEZB3Z/OT4V15aL+Lnx2fie9dsRPVAVVepjqNK2UDVDzWAZwbySDLu5Ul9jjoD/jqBkY3UKrfBV+gJodOCHCU2hEySy1zSQylQSTdUyFy3IDFGBRwXTrROOdS8rJIgCRBbdWIYFQhwQQ4JOWg0MiKT+VPi5hiY1AezLwoNuWwzoYTYB8Pr5FD5XJuxC6g6ihR4ZhIBIEWArxrbP9VAomO1xtV3vwt3RkFGLH33pok93eIpL7KvZgFo7SxPeCOZ7KalCE4el39zYuzgYYGSOtyesKdq0siEMVsCjG7g6uq5k7muZqhJ+5zzaP45ZwyIA245cv1G74iYbMUKnuo3XFYpJOUQ8+PzvwM75O3H/M1+OR37gN+t+lEXvPUT7I3AgSAiAREiMCOwkAwfIUcefXNwmRhWxGXReayFVMuJ11M4MwQSmrKDYZ0pMCoqBAEwTCKEGCsJKKix5VjsSAk4fPIg7Tz4Wjzm4D3mzQpnnVqg8aBdlIkL2IigHIhz0JALHgFfvPAMvmz5qwM2AITECZw3GOkhfhaCkBQYEvOahhIFm/Nq9Ed9yXcYg2UBZ7yKZwaRibhwDIMVCv65jNAi1asA3APcLRJNtKqKioA4BSgAjFXuMMSEOrtiv+xVA1nW9I91HBUcQA8ABUsx+BUKelYh/uDrEarUCMyMlL2JShz+FghRdPBKt+J/QipyjFzvbPumiJsEK1sG2tx+/RUYeA4rUcWAxWkkAbpofhBdquGeihxsfXYF9sb0n/rwrBPzjHfgQDdQYSqINpPeHpSV0vWNNzgbkdcH+XIoRTTzpHNQ9ihGBxIqeQw1qHb7XuRMuE+OoQqI2OZ1gpNfLDSYzh13JTLoZWbmb+noEE9chKEGOIBLtruicgvi6suJnIkggUFBQLVJGgXWhyCpYRWDkkJGHoh3EvZNKFGvk4Il6hneqCyFYDWYTzqmDZ+AAGDWAqgICaOOoRXdWDCEuVGqbGfvt2La1ftfqf+KJSKpCQtkEOtjIKClFLBYL5MwomZHBmMBYmeAWl4JCue7LFGxM2YJwIwKFjkx1nI7Neo3NeoP1eq3F49Du8CEOoHlGzoxp2iCYLxQB9aE0QtbCFNZxgCW9SEMIm7OhEjdOBsZdIWFXZuylgIFSDVYhUgFyJwE4IOi+UC3u65JEdY0YoaSQ7ok9SFWYEahgLDOejEvI8D0bgBSUrP5KHFJNunnxA+q8cDVvT4bZ2FsS4rH8EBALTuRL2Oe1rkzqA3zZmuaA+qSsvBQLZy0cF1t/TZXJ4lQnBdYyHkCaeI6aSCcx+lfa+ztQSoUY0uUgQ/eaRkCjHmepa+qKZCr7e/CqYtH9RpckVbGfLpru7oZA+pvTnzM34pOrr/dHDwpeHrl/9o8TJ06Y4r92LzCaigJuTlZg0W5ZJhI9vPibIG96FfJ0F6QU9fX9flzhJ9D5ob7ndeOpE8x3Dj22CEQ+3j6WRFviAy7adPR42vlP4OOL6/HIhz7e9ZK9HMDqJ5H7t9sCHi620Xw5qU90MaFdi3SFZH6+WrCowiFeTFavh4+slQ5Bdkzo6Hlfdr3k+Euon03UumnUkjhPVpeidqxYvFTYfIZsYr25I41xe21pKvJefNJ3IPREuAtRSeebeMLfBYV8Xam/bZ/FveCOxXNXPRL8mKeD3/maSnJhe28dBzH/Yis9d0wOsw1SCnjO4OwdBJs6/5bQlDmIRGoPNVaNeOCFfxOnLt2FTzz+a3DdwbvrGIfQ2z2q+GFmVu4n0OYMdbbaxoh9L5OGHmwnV7woWO+tFEYJBTTpfEreXQHAnsx4XpxwTwl4LM6BeZso4N24IKHhqe7PUUdAlBlDXGMVdrAsa3Dg6mtWjMEIEiHFeu0AbdmM6rPZQWbjq9gOhWqfQdq9CGZ76tpzYXDzzd2ukfmnBCUzgWEJdBWqdl8cvma6tVHFedhIlZ6EY6ldTqjiYV70dbRbhJhb3OwPedVKB6LrH/TuOHhOJuSc0oDBuiGqb8KQAkSOFe9UnCTU7ilH58Zfh+Oy5Fc/h+pzqH6LirBTxaTUVSfbt3R9PeJbfwgP/OqPYZ406esifbVgOVojiqA/k+FQaXAxQhW8YcfC3c/wWCpsn7f7Q0ePo9fRfDLaKoT4dONaiazS8hFbXUWOPGA2pX6fiYA6nuLPXz8Ct6yBp+yKkaK2RRE/sopgCnjW/nbBsGNYMUYsF0uEELBYLKpwaAihCjnt7+9hf28PHy272GCBj8+MND+APVrhRF7hgbSDq1ZnMaRUCQiOT5LlKkpmCM+gXNy7hXu7FDx5HlGGjDzPSClBkhKXAwg7UvC4g7txP+1gOLgPZ9KAcRixHBdYpzUmUtEsAipWk1JCOmZCU5vNpvpcPka9z60+sf4MNd5HNy91HFMMraMY3Da176Hu0R+BmgAO+VwyUasiGuO5+E4TmcqYpxnT5IQmtaHuzwkEpdh1FAJl3Y/YO/gYAQ9R8LbDBc7kgFs3AV+6D1wXMiRwLdryayegCovWMSWYoJyu98cc3ofABeO5e4HpUOO4acYEwpAGzIvZ9hLrHkYq6JpSIz6BGl7A1O5ZJIIkpdbESEgcUUpEibbfeI5EFL9oWYC6i9rewxbXsdkgsZKi0DYH22tqEwoPCIE6DlwUgyklVwFkFUNXcbm4uohp7zSGi3d3+Jgn9AvynDHnAooFLIoFe1OJlsBWfwSlgEPUdWn4Wd3H6jiYiEx3rsflqOQ0s/Hu6IoAnFnn8jBhHgdwSmqDLO/b4hKqQoXut1G3Bq90qC2j7s8eOzcBnOCEP/fri2IrIhlcZnBW+3fPU14GWh/i9id/Ja657x3Y3z+Fnd1djONCBd0Miw7WUZlCMgFty4EFbSqk3XALELIWVLMo6cnmpvfF0IIdzTvfOGaUmCGcwOS2WUChQJCRWcVDiky6roekBLra0ZzgTWp0MXjDn0Z+QScaGowE5o5u3ZObw2BArmEB0u64x0JFBBRSs4HuvtK2fd0iCMJjBWmEEfs8/bfv25Y5lghKPj+2Y2pYw4xKZyOppAsX3ChMWGfBYQEOCyGvZ8jhBJIDLW6IQBYVxRfAmk/sIrCOzXE62nWbTYAvM41vbNitkEiF2tKQMKRk6ypiCEoE59ByHIUZKNYz3PBh+0aNs2wOqI/IPfxbMY/+/Lbj/aO43fZ7iUg7boNwYr6Es8trcd3FO7awBu9oZ9NRYxubbFqDauQpsT3C1080+xkAJT0KYB1j/XP1dhICExAHizcFMhfwlFEmbwRhSyUEUNQ46qM7N+NkyHjs9AAKz8gCUEwqNBySvTYh5QIEFWZcAvjCqwSr06fxuY88CUFCyVbgAuC3P/4gXvioE/jSm07gLXdcwOfdsAuRXDEMCtKJDOpeD5AR/XR/jDFiXC4R0oAb9ke8594D3LQfwVxs3vj67uyCxY0kaMVoIWIIEYshYTEmrAJhYkZBRIojmKIW5RRRMVKWWv9cx1h0/zfuYfenI2v5mBw7+wsMKapw1JgQBxOaIiBFwpACFmPEMEQMozZqSDGof0OEJIREAEeghCovAMBinRqj6Z7gl79YncXhqRuwc+lBkOSaY/N8iubZCLjC/doSeRcBc6iYcd3/bJ3W+00eExJW19yES495Gog1n7p390d0bUrjNukWY+hBh/lRoNrVtReach+330pazlTqmvZz7vE+P293qpRX1WMkViwiAHUuXcO8W1Gj/2w4JOpaaby4ZucLCB+5+cXYu3gfPnLjC/DET/0pKh+mOxo3p+HBQg2DZXJ8j7ZiQwBbmIQTKJ2U4c/5Hktm+MiL37sra9ug1AyGwHEeaPGOXHHKfPaPAHAkQBhTKVjNE1ZlxlpmJCbEDOW9kfrEHAsgUTuRgyGRkSyP5XatRMfCoFpA0YRkAgDjDFLlVZlwK+wGSbAmIgRBUr+DBgR/YAAhgSSon0VWrAZYTtvmKgO6kwblSUoGygzIrGJTZYM8rbFaXcSlg4u4ePECDlYHyJJV/DcGFZeaJvzpEz8Hz/ngOzHlDQ6nAxysLuLspXM4e/Eczpw/gwuXLmAuG6QYsbezxOlTJ3DtVSdx1cl9nNzfx15YakGyGBmVNWYEBcRBsTI232e1mXD+0kWcPX8O5y+cx8VLF3GwuqTFBaT7pwhjLgWXVjNoZ4n5eS/G7sGD4JufiJtv+SDGxFpIHSPGxR6Wuyex3NvBYrm0dVAwLK4CjecQ0nlwXgGsoluc1+AcwGUJ4TWY18i8g5hGhDAixBEULL8elGehTR6yPvIMqnyqxilQkSk2PNI4JJKVf8dWYGi+qUgGJNvkMayyWiVfX4r5w8Q9lwfn8eA1j8LumTMayx+j46hf1j/nXnPNe9lzLsZCMD+jAh1QvgTClt10u8jWmZyCduOOKVdh+kBH8hs1dG/+ofPo9KAau8zv+xPEp78Q8sn3YyhZ+Vdo8V7/ub2Zo6NPdP9Ut5QM+wxVjL++jqoEiZ4o1VOt97ASx2s8Q/W1AGHYHOKaW9/bmjiR74Med13h5Oxj/PWe+4icEec18mIPw/oAf97hGB/qFdTRxZHRh2PDqFfReMzt8ntxHcuvA8Y56V4qUu/a9oX5OHdjRZ8OwvCbsf2cS2kdpyMtT+DE4iTSMGKxs1ChfcM3FBu2mS1sYvEqepHzXPM67oMXaU05uOZfdG8pPVbZHVscg8/07jzMfX+4GO0z+sjO1tDDnKt94lbMeDQvXP2nzwjeqkagrmnq5pvOXPO5ifD4b3olPvmqn1dOjX9EsSaS1CxQz/91ibiOWVVfddTAXInDUQWBiPDAu98KH++Hu69Xev7y++g+fOPrEAWUwiog3NllQawNCCh4Q1T110Wka4zEivubD3+cDm/Uq7gVwKQNG10nyH16Iiv4N0EBmF+toYHZPsca7ThqaTyO6MEszfl2v6PhDyMJXrS/ahimtLnTPrPuPA1Is323/t3tPaj6kuSgi3+exQbEKsxWtxwSBO3SiorX2XdeEwquHqSK4ADAM4bziGA8Nh5giVLjDCLgi5cPotWj6DpsdS5kV7HNVmiX1/kZV1gL7f7/xY6HtUSON9XJIPVeNd/uCMfH3tfmhXRj0mo6nMN5OXfKfUf7veKrpfIY24MbvuLxxjE+mr/i8bSxakna+qjj2PwIf2g82yyxQEUpQM6Z0PdR93Y3qWz31ZYbJMD88FhFhd39K8yWFNE4T7FtgGfdS0PeAABymcHwscgqRjRl5Dwhe5G9CXowa7Pb2pjTuCBE7hcJQlKhpzZHmh9NIGu6orUBzvuIQfMHRJ1D7b6eBKCUmvORruE1QvMFKZrQwhAxjAukcYGYRgCx8zcEwhkQqvwYa/VUMYjK/7Vri8FtZBNOrJys+kzDT4hNbAudCFGdN9RdY3ufHg1DcYT/6GvUR3aecmt85oLqzsJ66NRNuCgDrr77PVVsKueMPGveLYv5qeF47WXR6kGC15AdMaTbXDradjP6oMZjEZDG5nAfSJ8FzJzRdozUvqvZccX0oHM9aO2Gn4sfDlm2T9/aJVF9rfo3F6whIOpP91Oq4JrVzWjtWmh8P7G8hAAsajNq/VUQzX+FACsEAFleNZSCkx95M0pU/1u46LqH8QC7M6zhlpsvE71RLC0ra78KFAQwgta2Bal1Yml+EFcfPIgpBLNJmkuZc8GctXZh7htbdvuQdHfO48nap9kGjqI1yZGgD+dtU7c3ud1prrDeJ6vjYQtJlTOs13/PC/8Grn/rr6hwMdy/PBoj2hqEfg2TVvV4w6kijU953JpkjoMK3DAVlELKo5ViOVLlQemYF60T4gLmoHYE0DoTInjhg3iAwQEIbHuYrx7FahVi1H0oItjfg9ry3ssksrVk/ilsLtr+4hylvompCk41m93+7rWCJjYlXPOf/sjiReilFrELCOWhu0CPfgry7R/UvYcVy6ctfkw9ZTj3ikibkATjmNR6uODNzVRkHCYCW7I3bW2iG61BqDQcgQUcIw6/4Dtw6s2/WPesetsCYxBojBKj5eK7hm5ev03UuN2A7dHdTzuYW0nalkXrY3KX2dgSm+p9xiPv9/t1xD0ikAl5C4IwFtMlHC6vwqnNHWjrrvsAoPJuPHY7bvzFm5/wOOzv7yHFgGEI2KxXOH/+HDLPWG82gGiNFpE2Tp3KjCzFmhto/eFq3mBvmnD1B/8Q9NQX45EPfVzr/4URSHmEcH6AaGyXQsAwRIxpxJAGpDhgHIZalyxmt3RtKG+nn2sa3xpfcRiR4qCNFUV5teqvDdVXK7kgGyehcME0T5imDaZpUjyHtUlZiNpwZTSBKbULOu8DNAehugXZnFr1Z6vgYTC+YTfm3hCDxXNWjsQZYmd2vzYAAFpOLniD3WD3r/l/2pSo1ObMbPdKRadUHLfiBdR8QYkRAvXFwNhq1DzHjGFISCEh1bVoe0uIQAQC81bsWG2MuYsiUAzMbJpzzb3ewWOn5nNa0CAtrHacptZLQ9dStHmny1mbIIjo/RbDP/iY4fcAjDOofI5QaxfNVzE+YItfUfF7DckEH3zSy3D64F6894kvw7M/+Zrq09XorAuFObgIjXkK7HENap2m+gsRfe2LiAndBP1M50c6P16oodEVVRfjnQiqiE3Ozj9XbpA4thUiKNjeB/s7F7uWYD5iAGIE4qDb9sE5LG95B6blCdC9n8AkWnOfhSFFgEwg0vq8xgtutSS51kKKh2p65kWAwqBSwDkj2tpSYanWpLnu3Wa3U4gYnDM9JBAB4z0fBQiIZ+8BrQ9QgtrKMhdkVmFT5/5Z+IwYAsYhInIyAa5gOI1iPLWJn4+ycd98b/PceylNxB+kDcHMgHS7EFW/Ubr3CzMkM5rYu603hiEFAT7iPt7UP44Z/rEV5wD1PoBaPszv6jX3fhCUZ5w8extoOtSGcCR1jxc4T6HdNxcY2hIALU0Q1MWHfC35GGi9q55XIOUHFVjOlgWhFGAmBGsi5PwS9V8A50zouKk/S0WM+61Ce3edehzODFchL68HmHHNdLbaHBAwhwIYtpALI9u45+LaMd34V62EJlbqegVkeWFqTpfffLvxFrCHgIPHPQ/zzjXI19yEsbwRdOYu/QLb/YqIihiWgpi1iXAJjECqCyCOExdCCQGJGZK0xjb4/O33InEehgvEdzVgPXZo49OhFnDsR3kb2/UExWxm6WxC9voZ4S7f02JCEeCBL/xeXP2mn4Z7LfrZOjE1NHTRZIuP7d5rjjJsYa+f7vivE5oyYk/hAjFxhUKmzA4vilIDF0jB6Go83TE3x6gU7eLkSr8YBgwpIgbtXN6EdEzlkLletLvlpSpzmfpuLZoSC6Zsftn/UQiWuCTE7q8u6FKhEIrQbq1khtUWtlvVPtC2AGgcEqaU8Hunn4cnXLodrz/9XLz0/j9DXq+UGFYFS0J17MyzMsK03TcH3ULX1SlEU2hru0A1DkRIQ9Z7HCw5Ho2QnGTr+hEC7t0Ab78IfP310ql69hl+vzAYYuAbcAfdSSuAIxAkZLgQUuvoRPX+qMNmgKE5o2zF/B4cgYE8zVgdHODi+fO4dOEipmnSze/OD4Ge8xWYPvpWNJEp2H3oI7rL520LvLvrO7aHdrRAJxyh68fkHN3h49bdAsx4Kt+HN8Wb8Pz5dl0v9n4FarIas7YV6X/iYIIlWlknuDrOUo2O7SGeT7HNUcU2igVECgZJBYH0NTaJDDw5eudrkq5LEvj/uzAFkXVRHwYMw0K7mgbtaKrAbkChiDAukRYqNIWo67Y6/0K1E0ur/XePFzqX0YKERpkPVbCgCPC69QmcoA1+L1+Pl8ltWPh9MgJSQFDOUIgQCTav2+fXRdURIsnOoToc9qw7zm0RNpC2+iXsa1LBLGK71/3XECDBBEc8AVftqTq60zyrumvJ2s2iRmZoxX4p1WJVdTwKctFiayVCNaDIL9zx6ysCz5/Foy/is2ds82yOmgOgLgyoQjMmDOWEWBAgjJ17P4TDG5+Lq275E51OrMnpRiRATar7vXQBDi2kDIhJu0DHZA8DtAJ5t+CFAhZWXOmgOcWg4oghgkj/7ZNJlbP133MoliBTW1yEMc0zIgQDtADwqWc+gkXZ4IkHd2CDZomIAuJoHamSugu1Q1JfwE2EV598AR53eBd+cfl0fOvh25HiAAwFMQ2QMgM8IvII8ABJA4IU3f/BABKeMDDedGmBz9nZIHK2mzlDeIaUGcwZRISCCMoAp6GJRdn+RtSBILa/6rQ22xkAhWcJqiwjzVSBNGEXYwXxiQsKyAp2GhFAEyZd0CCixQMhAJJRmLFarbDeqNBUCIRbnv0K3Pzx38aQzwEBSCkauGME4IAO+DH1cPOpAC9WUJsdjIx5XPc1IQHFlgisZT+2KMgNZG37tX0N+jJpttL3emFUw0xeACPt/aLfBhO1cqfcHX4vcHehqTlntWXs5FBVtwbpWo0xmZvWCu8BNPFO0nWdQgOjQwdEk00zXzIuUKjn6ErcBN8lPckOSCeo5detgHigQT1YYnudJcyFAWLzc8kSNkpOTlHACZAiCsJmFRcsJCqiZhsGJ0JMKjgTEgyABIIXlVpSr4ZOfVbQxoxLLy7TgH4fZp0HSsiFnbO+F3XvODqle+JG/Wx48oAVFBJRXx0MgoK3MQRV/l8kLGWBiQsOpjUmVhBJsr43ESOQFhVobaAJD4rNhdB1yzomxzxNmDYbbFZr5GmCiBYop1G7rHBRcgOzgk/BQGGAwNliK25kFfUxufrRtSsxgMfwBaQC7PKEfZohIUKYNLVq0T9LqYULEIAiEBscC0GwZCaq2FTtBGBxkMAVpEtNFhUpNXYkaiIxakuarwjA9nC24k5pHX560RIPzLukwmPmh9AKULYnoIsIHLVRsNd6cswTSl5YIkf3B9jfgLqu63WFJs7crk8uewSzMf3n9eIGV0oSKZ7U/HmWitPi4YiIfl7MrL4ttcRkwxLbmm7ruwNJbK168uzoOVaf1vdqdP7nMTlOnTqFUhibKWPKWsxdTGDNi7AFwGBCU5ee+ZVYnLkXJ1/2t7H+pf8N8zQB0nXN6IWFAlWAzxP6PgddCf1KkavvnZ9u3I4WYvXFX40Ix7jpwm2YrnDd/XgRSEFOUYJoX9xZiYGhAYZ9PEA1aqknaAmqVkRQ/d0jIlCe9IwxVhKLrzXHlUJgCFM952BAxVECsp9HIyhtr01NsHtnOyNfVxKYdRHMpRbvezK7iVG5f9EKUHqlevG5rwytBi46cspSBfqYBd7Nra6j+rn9g8EnrwM/92uAh+4EPferIO98zdZu7CRgvW/NrzxWh+07lfReetDU76XtIpbAdB/Si1SJAk7e/0FcvOnzcfOFj6rv6TPPb4g0QmgTI+owB/dX1Lh1wGyPT0j9vJqUrHMd+J3wJHw1bkVyn1S6/cC++wRmLGnWLluOmbpfREYmqfucJSh9bxLttjKUFZ6c78aFuItH0Ao5RhUYTwnBhV18fdV90wnhRhIU2TYslnjQc+kwDDT/1YliZE/q/SVLMLVYulp3orb23A0Uu9/M2w+7/219lPqo86C+1vcSRtuQGkaWd07joWd+Fa55089tTTWpYyUuy1qTkw27oBqfe9yrog8qkhoARCMkAhZWW6KeqNmcvy7HZ5Ks86Im3cu6BdHAvfo6FsbNr/xnOPeOP8IN3/Xf49KrfsxIFbOKnhdDH7r9wUUIo4kd9YRyTRZzw29INGaRYDF/s3cV/+kEBPpilK1r2rakf65v0kgaXRKo82P7ZDC6Pa4Xk65ryo6XnBacuER49r6Tl9p9+dgq4JNTQCQgHQqeutOdLykG9NtyLb52eQ+GYdC5a6Spw7DAO8ppvPyaGTvLJRbjiCeUiPvOE07QGiesi9OTy0MIZQ/Xru7GnAYV8CGqHa7YxMG4SBfkaoQLE2YOEUrC5Wbbc86I86RFHCqBiyVnPLKcxYVhwGIcsRxHjMOAIWpnx9L5XIRGjjpOx3q9rmKZbHkxH2sAzcYJLJ/T4aTU+82+N3Q2uNt7OsB1Kz7w2x5jV/TPoukZYSW/52LjYMTBedbuWpupkoE8CQ2g+qxTDIhz7EjtVNfmECNSGvAICD6Vd/CIJNiBxW85I0/W1dk6AbvvRKSEBsQEGgQUrDuQYSiPXj+INTIOQ0DOSibMpALhJavYp8Z6Gk95N69o2KpA9/ACAOIWX3GNhIhIASJBMYTCRozweDGjZEZBATPV2x7qniY1DvL8iOPHThw1xe4a5/pgiu2BzNL8HRfXNF/ThUxpWuPaO9+N9anrcergXm2CYx9SOzKbgBGVaD5z0u6HPpY+P5hRAMRYtFucoN0TW0+eDaR6osdrP+NSmsCE+YYw31+gc3q2ecz19BtpTCwADibAS7ZxeXz8cBalNhABwcUrmVthgovuAEpcF9ZiPL23rm8pYM4Y7/0wzj/+i3DtmduxGEfs753A/v4+Fgu1HUMaEYdRO4lbl3IXm0JIVuAXdQ6GALJuuhAnRXmxOsz+BAv6tTECBSVMEWkBQoAgiDb84TwrabHMAAWQDAhJgCSIweZ9kA7L9Pvb7ZhODDf2+RE3oMW0Nnb6nrYfbxeMmc2kYmnQbp+LHnf6+Hrcxf7uahuL550VzbGwS+oVgAEq1GLUI7Gsn5ufP3FBRNaYGASWjDnPmAojC2ECqX67QIsys/kUJh4Ge6hNOV4xWbTciN/76tGLgDPXAggKghCAIUYslyN2dhYYx6B9ukigGLcHD7bfeYdfdHOg2kVGKdtoR9+07Cg25hhBKUaKPWKrfLx0ndpzLHjsQx/CuPco3HDhzi0sJRqJuOIM8HhAm82IlPq9JLrmU1QRIAJUIJlmBM/LwfIVlXgKJQGXYoQvLQqvmDlLywFFjdk+vvc4PDSexj1xAc4zHrG+F3PRwtaQM5YUQCkhLixGmjMKEYbliGuvOoETVy+sa2dBFgFTwG994kEsYsSvf/RB/I3POYnPf+SOnUeu2JAmDwKYi+bLRLvdlaz3eRxH7O3vIS1GEIDPf9Q+Ihc885qF5acsr2Xrso6PxWgVd4bonp+iiSupCEoW27dBIAlgCQgSkCQgMwGWtgioVBWjTlh2wlT2nEDZ+/PH4dg9scRyTBgX2pk4DgmUgoplxoBxULGpNGjjoCpmRsBAhMSkTSSiEcUN7CCg5pqcEhPqHCdcff9HEaXgxNk7tQmQv8s2S1/tbPi0dDGt/xWOU0FqHAw4yt85rbbWyQDntDoPmteQOGC49FDFDIliFbzaKnzo8H7HH3oMr3LKXLhHmp3Q01RfzGGj6iu7Hbf9utkUVJ+pbzjFlvprIY779anaBMfu2ve0sVYSviDUpn76OPXQ7XjwupvxqHs+1LCnLi6tBeFXiHN6QSnlcFkuTCyL4QUBaLiHndwVV4LfF+nH2f/Wv5C2nxMo3bfg+OXIACBRcM42GIJclP+wmWYMkZCiCQUGK3CWCBdA1JJEtYUhEFR6OtZcsSeChQGJATGScoDIPTC1Q2L2h7pYwOM+F9QBUOevFFEyPjFYMogECYMSXL2oV0TnHmzOSwYwQ2QCJINQwDzXDvAHh5ewmdYQGJ8jqhDvHz3lGXjkHbfgT5/+XDzrnX+MnCdM8wrrzSEODi/g/IWzOHdwAVOZAALGiwEXLp3HenM15vlqFexkAkGLP4IEzTPPSqQdOCOkaHt7sbzlGmWekQKwv7fEOJBxPHUtMgQ8M3guSJiAOz6K6QnPBH3yPVhvDkFYIi4EaRyws7uLvb0T2NnZw7hcIsZg+9MeQlpgTAtsNhexOTyHzXpSXgeV2njCLAQGFMQkiCQISBY7G2+BAW/Sp7Oowx/hXL2uuQRzxaT6PBi7CJX/7gVRXmDWrX/4J5tduf7OW1A2E07efS/WuW8NchwOm+u4cvzU5+thr7QoucYC4pWq1PhuEPOf+8CM0P1DtuJU50R6C+6eG1LD8bqXNBvrfI3ykXdgcA5z8Lx/e0TDI4/uQY7je6xXv4+oCnTK1nm3u1ZfLG3/qnnqWmDl+IQK3TGiEXK3bor9dAFzY78aIbwXhOqxOt83iQjj5hDX3/Z+TDsnceLs3e090p2mNF+ijW93PQZTuc1rcaj9Xx2Pvlx8G/f0+8KgJubi+yK8YMc5M5pfYaJaaH55HN8V8V7WdLa7J9ujcqyO6x7xGMOym0/AhkHkbEUFVrxQyozCufI78pzb7WcGl7mNqXHtaz6y898ePpdBeO4P/DO8+yf+5ac/6Rro/9cfsjWptj+zz2cD2CqQbRj75e+9rEmSvvsK69meO/K3YDyVq575PBABZ97/zm5WqtDE47/97+D8Rz6Ap3/vD+PjP/eTIJgvGJQ72ESbXUyl+apNaK2tH/1sPjKfUa/beRpzzlsxMgD81zZYDmEbh1D8Gqg8BahP4sJ/PY/WbWb9flGsjtFsRoxROUhm49H7sMfgaPl2dal1nLaxQxW3KSCLdZzDHqioOKmJRug1/3n3v9m1Nn8NW8HDLR37S782zeDVHIBjYdw1NiHUfLDHb+Q4D0xspgaP0NeI8xB9z7aYz+14H5dYXH/0Xj4lnq+nWK+gzk/9ydz2Y+njx3q925cKm+f+u5/HFjaIy+sOHu44Gl/Vz+0+U9cmK05auQGN19HzavoYS/wedvdky3c0/mbzI9vfXbS0TsCK5/e589ZoyX1PEb7iPTlOh8f2DVtovE6iFlf2QsvuT1fcXY4II4hAm/DaLUPDwXv+m3pJir+JCebp3hA8mAOijVHQzwgpIiCCatVFgWQBz/bVEIjMNndUtKMw1+YSmvfKrclpKSiTYW5cdAcJ3rBWgR7Pr+n2ofPci271uluhbdu3HBFrfo3iJkFRnboHak6AAiEkzRe7sBXFCEoRabHAcmcXy91dDOMOgIjMgmnOmDazXjtnXWtuluw7j3IBnRtaRdn8DO21bHFv5RpGxbf6XIDaiCZSVe98xVs03iZqAPNlcZX7D1tzpp0j2P0KwUP7j8Y9+48H5Q3ma5+K/Tve3eaWeAEsW43g8YrJlFMgIAZ6C3DUj2i5Dv2rx0bu9tPWG1uMd5m3bM6/UD86VLeU/n36b2/wQv3H62e460dt5Po6MrUPPr9trlP7PF0H3vjZOeuw+cn1gz0GZQEc7atxmp1j8P3drsbXEkjrQ6pptnNlb1KCrRALqL6dmG+kIo5MBRIYEth+D0iiQlfBMUeogIivdobmPOZZm7RNc8ZsQnZeX+mDcjSv2Y+BkDs6rLk0Me68iaPrafvd7+ZMnQeCYPWxwf1YUvz2zhd/J07c9SHc9SV/G4/5o5+qe2DzWzxmt7Vn8lT6bVIxFK4C3pfndz7bx2BxB0swXjsDMYDYG0VaPYdjQqWAiVDIvBPyxss+srZ3WU2lg84BUB9MxATwtdYBIpUfGARg970D1O4TmU+mY8y2h/g9rr6N7RF9ex62cjIWchQUBb2olAlOQax8VGsNlefvXEsA73sDZHURdMu7kf26C1DXmMdXAdWfDuZHg7ymkaq4ltdc6xq35c+iAiDBwNxga9PXQlcbDgSc/6q/i51PvgvnvuSVuObNv1D3zVqrF1S0QOvoImJy0TqvzTObZTHR1pymznDaQ1+j13tZptf3qOrfeO17Wx8eCYJabFDjdGm/Op5GRBh4wmPuex8u7D0Cp87fpnOufv92rOv41mfC9furPq65+iosxwH7uwvs7++ApWC1WWG1WaNwwWaaUcps3B1GLqJiQ1HFVGbJWE8rHG5G7G2WuO6OdyEvliCrR4l2XzibDc2adYwxYRwGLBYLLBZLFXdKWlfpqBabiEMx3o14ZRRpPKw1nYM2T44DGrvG55rOJwhhXdYAgMIF8zxjs1ljvV5hnmfLAWh+2jl4PS/8DTe+HC+94zVgBEhWkSlBgESrFSerOSPUvc+bPCrnxy26+0AWO/YClVa70mOmgYLyMd32i+ZXOCtvzEV95nmu+Sr130utH9Z8uo5XPy/bmtd8eS4ZMqnvGkNUbmBSsa1o2AynhCSMFGK9InTnLCIokWz/1NogLprLUW6G4YdMFtNRxVJ9oXXeiv3WROJIVKzd5L9UnEvcshMkaoO4IMdLlBRQYbW+fiTY/Oh9aEZ3LXC/TG3bdQ99Anc96jl49H3v03tXfShCq5u2fcLcDtXydSdP6ndJYUO8CGQijhUns+8j0VoPAdoeQd5YOjVswZw8ASrnsZROuAYAXKw0QLkc9qGcVcBTz6tUDkU2fzGLaEOs8w9Czt6PORcT9tE9kiEmKKrX55iB1/xq/QFpHTeoXoOLwSEmICZISMgAWAqmXDB3XGnnP5NxMpkCcN3jQI99GsKH36h7VRCEuz8GFsYkooKPxbmQtn6ITMBR/bdhULGeEWQ5BKsdFL2PakOo6pQoZ8hGiJWrZcvCynWVLyT9yqxQj/mgaCtta//zPdF4dxWXMx+qVs/Wrbj5vcfp8PVF1OIS9w9872b3t0Vw+v4PAyyV+yxo+SWtFXHuqc41b0hShaaY63xtCBO1NWNj0RqgqEPFpHzrqTBonvX3XCrHsYrQUYsHxWyfBAExobCAis73QsDy4Aym5XVYzisM0yG8MUYIAX/0qJfghbf9ISBRYykXl/Kf4ufd9ETY8vkUSLUPKABkAlO90FTFwWwQCkPsGuOF+8FX3Yh44QzivLK1xu21ofmgLu5UCqMKyJomj8Z9rY7FheiT/9v2WMdUPVesOWLNWXKdvOKmsMXBXZykeR7j0jPXf/ciU6X7W7a/uS/s/z3w5X8Pux//Ezzw0h/AVa/7D238Ydouxkerc4YIQKz26Uq6Lg93fMZCUwL94lAKOMV6IkGMIFAToVp0wCjNyeYCkQCyjheRgolgmLJXZhQSBEogRCOzogIdYkry4uJVzDbplJTowb1TSxU46BMYutE5UJBIFXKDRBC0YJoFKloNIAgDsejkItE+DHUSN+ATJLboNdgbYsALpjvxlr2b8HkPvRslzyjzBjkAY4oIsXOiHPS0SeVGm6DFTcM4IkRCCBbsmNiLFqVQByaGOmEpJu0gEgeEISFwQkiDkpNjxEPTgFc/tMBTdmf89v0J33A9m/FvXUnIDJzefwtqAmGIqRp9F/xA0HPVGxUBKehNuzZzc/GPgBRQifygVlTI5vBtphkHhytcuHQJB4crzFMGpQS5/X3gMmO+6yMaWMdk98pEPzqkS+wa2jPuPteZcGwPclEJ351dMKorUu0LVJ1U/fRyD8ayxuPLA/U5kVKDEFfNUyPXFMI9ocYcANaEfu2cJWjFW6h7PixcMXvgyno9mcCcJQM01HmL1v2vu/s2IM1t141CnNznSclBg71xMdY1aFRGpBAwQhCHASmNKsBjTkcxoREYUFg3GzMsPcgCUZPpm6diNFRnEwN42rDCG1Z7eDqdQQQbAGOFHrm04s6Y4G5D7aosbpVgzpCTGm0MQjc//ZxMdKGnpPn9Ikbbcsk6Rpu8qEAl8nwdMtSxL4YaKik7Y85Zi/vmSTvZ56w2s7O9NAxY/40fxd7v/ogVJqijW7IS6gtnnR1mt9rubO9vp32sjj7o9Dvvm3xw8b3utaEGLwFtpHSN7t/xTixWZ7D70C3VCfJgWQP4qErcScUIVZBGPy+ZWnpIESlpQikOalOjB3ohIdKgINcw1C7nFpmDKBrSZsltWLE96d+ElJAOA8+0Q6NgmidEKRiGQYsuS8bNZz+BTVGl6fU0Yc6z7SsKhgyLBXb29jCMdj5OVrS58cyLH8KbTzwXL7z4QczzgQbVJSOmESnNQDHRKB4ReITIiCAFQRKYE54wEMLuhMcsBbHY+uNs75khRUnRJEG7ZOdZuzlHB+hi6ypig+jBrtozHVuiaElDDR6rTSVYpxdNxssQEEpEoIJCpMlAEUQCIlhFVETDb2YDXSKBS4IwYzNtsNlMKKXgtuf/TVz14Efxkef8TTz1nT+ORdggpWjnxtYZPQKeHIkBFBW4dZK2BtiAkxrFGHj/tWSSv4rDO9xQACJp8TuziyKxFf6J7jsAgGaPdYz9Fxs8seQQK6VZwakaoh5xeC24YQUBK/GzHBWaytahQYmfOo4qNEUBFTCMQdepgtsRVKj6mpooiCaGqIW4Q4xaHBu1aDJEAw4i1aAFsILQoH6pBvlUBY2CoIGD0oQl9Ra5CJlePDGDKBvAxZaQHkCyMRdCkJISX6SoinWhYv63BqIEJTuUgZCi3ts4qNhUjEUB0RAh0RNvDZhsyTQrauV8BCRwH9cDKKnBWPMmdM/0/3DZo4e1zHNm95/F7mdoyW6xOMSCvJQSxnGBZWEsxhUmLgoQcQHPpPZSIoQEOYt2oZqtUE58bX/G4dJfyTHPM6bNBqvDQ6xXK+SsjAcVbtFiMOYCFGiXL4OTuVjx76yK6swuRGpk6GKQh4l0itme6+dzQDfmTl7VoW1CIR7QBO9KC+jYFyXFw4HMjrAbnPZBVptii1p1JJykoGT/APuZNKKLMVpRlp4zs4BhQmolW9DticsWodTdv9vwPfEi7nZZ5wFxAHT75VtHCARhE7qxz2pCa/r+LRBNg74tEKEn6vXFMn1C0H+KCHIc8dqrPh9f88Abtj5nm3DV/GxBE4TorWbdLR2wF1Whh/nBJE6wI6Bwi1vt/PxT/D7V5x/uZnXf2U7j+O1jp0+fQs6M9WaD1XqDw9UGc8l6WQnAAgAR0jAoceqej+Dck74AeN+bkMBKqhRBnmYT93PRFCsyB5sohieOLG7y6QELBaG3khoye9k82SLDdkmDK80jP/68xH0lvQtXYNE/s3aQjrrXt87TwPmdq3Hv6cfiaQ+8vxZ01HPsCFQuMnV0vm+JHYQuCUq+L7tt2L5+Fe1u98WFE/zv/XVp4UsTvqhdV3LrENl3jHTSv3dm7QVFKohX/QwjCcr2a9q18db7+cjfHPTzGPPy77LPODgHuftjwCOfCH7rq+p6cyGvLTsQmqj5cTpqLFyJJQ3j8HWCalc8Kjfvg0yMIwScuud92KOC68IF0NXXts/eItH3SR5N9Kh72TCRBngAniATsridG46ih8814DWLz8HTcQa/is/Bd4VPVgJJX0R+RVverWld9D2lyd8HLawtKrYx54KEgmtojTlGcEyQ5H4QQYKeZ00k13E3UlCQet/bhuh2R7ovbXuZ/oTnRvzM7d9Ux8Z9BH9FS0ZYYgEdIcK/yr/PHz4+hg9Wko4XZ4mP5xH7JUBZ7uO+l7wS+x//Mzz4ku/G1W/62S0M0L9PRLoECwyzoEpmCeZXBBOBJtLkpmM/xGbTAir+suUP/zU5+oKOT/s6+J7v2xd1sUH7LGHgvjf8Oh71slfivtf8LAbzY7V711xtNgGIMbTYatDuX5oEt/nW+Tu9QL5F5eprdjawvxaPp31+H7noihlqIk661bh9b+rPLuap59QJT/W2eLvphHd0xWU2G4CJTG3bDSLCo3cCbptUBPLG5VHsjfBLq2vxebuH+JXDx+B7TzykMWaK2MQBv3PhBF5wTcDrN4Rvv0axkBtCxuctNyjlArA5xGqaISx47HwGOQZgGDAmJXc4GUfcFhYX+oIZBI2Lg/UGCNSICwGkCePSkQvJxH8oYRxHLBdLLBcqgDUMA0KIVbTEp5PbluN0lKzC562j4hGC5FF3S8NLOxpg6r6A7z+E7TWoGC01m4Vmo48eYjmXPM/WHa8vXFT8mo/4M17kqEVs2pAAEBVwNP8txojBRLUWacAwjjgdE54nK5wWAg4LLjFjnibMk67vPM+Yp9n2c65235OvuuZTExiwv7sIUzB8msRIPN11tr1IbyyhxR81KW44i+MnEpSwGVjJFCxAihG5ZORCCFQ0HmVC3001GMlxe0iPxFbizynRU/HFzt+pPy2hW3S/89xO9YVEEOZD7J+5HTIM4MAal5tv08ZMQCigYp0FWbb8RRQlMROaX1T3LEeuSeoa1VyIXE6M/Cwfyj1r60Sfs8FgarU73fWLBPO5NV8dheyekYqeBVY83QobHjh1Mw53r8HN97+rfi8z11xSFQa0+0ikndRVuEzAZA2MfFJ6LGf2cnnvhxFZ8KgEnLjxJuzu7WN3dxfRulWmYUAaR8S0QEgDQu3KbAaVktpYFzoQAShbE4gA7ZqpvwdLERDb/hIY4ACq2LfmBxK0E9+cM8REdrNMuvZSwTAsISOsnFIAy9k786WIE9EIVLFKy8Xbem3ALjqxhOYrHqUG9f92/KaP5yioH1a/qyNciImQ+55cjJ/gDWeqMKR9O5zoHBoZCHAgCBBrWAPSTMtABYwMzTcCxAXgGSRFczxsnbONTIbCCBWv0oYjOm6iRJljdATxwgHzfTwuEAKbRXAGgor5RxVIG5LWQlecTe83eU4jKKHMUVwB2p5e8bXtYmC1s9s721EcTNME277Xtm9wxPvnGTdcuE2tmxz9zqN3w+w6QTVHRPkngdrsJAMr1eZEKxxruZlg96E2GRPWztFWSCis4o++r1fx0RDxiOlB3Lu8DovpIvbWZ5Qca/OYveGP34siyLwBImExjliMI5gFm82EP73/IjYc8JIbT+PZ1+3iNZ88g2ddt4PdCOXolAwpGZUhCEIpGVyyiqfEAGZgnhUH3N3bw2KxqNhgyRnPvnYBL/pis7u+53ku3P8r0vxiz+eEIWmjBArIAswsyBlIMSGKPjJHZOMsCBNSAIrZWOc5eOGEQBDgWMjxKmreP7WDxRiwWAwYxqGOeYpRBXASqWBb0v5ZIWnMQ1DoMRUVheYUUIIRoi32cX8HhjF78YbYRD794CeBuutD1yR7CGPrMMDWa2eDj8Q45Yh/q/uLGN7ndlSqFzEcnsOpW94OCRHjwZmG2UFqh9RgYjPeVdcFPJrDJVdc6zVas9e959nfgmd/4FUIzO26/GHzA8GtELV565hRhzeBRfNsFVsU5aNl3XOr2HGFhVrs6FwSgnGfuuOaBz6BxfoiTl+8t/rCW5gdUTeWdsj2vugxN6BdmsVjBf+sIwZtKw/h51rj2Db+lwUTnb9bIaPu55XkPY7DkRw7AwCE2jhinWakgTBIwEDZ8siMxGx2GgB5QT40ZgjuzrEJTSlHUFO7mjgOUAxJ7ZEJ9QVnpan4KcSKM0LR3Jc4c8SxDMW7RFy0UHlaLEBk7fYt5sSItwWTAogKTQkyctlgzofYbA6xWh1imiZ9fxqxWOxgOS4QU8DT7rkL77zpCXjKR94HLhlcZuQyg8sE4RmEgkBci5+LCA6nDc5euGjYZjL+X8JiIAyGk+XZUaCsXZmFkbPGgpIzhkg4ub+Lvf0FQMBtL30lbvzjn0MMjBASpADTaoPpcI38iXcD5+4Fzj2AS7tXgWQXyyWws7ODvb0T2N05ieVyD8O4VNsTBSllIGgDkHE9IgbS+zIJhAoY2iiHeAMqABXzTwJDSoKLBAvEeAHZ9mkVN3Y+QSUMO35szn6LOaHPea5bPDegvAN4nKffpGvbcEntQOxNHQWn774Nc3k42ZHP3uEuWvWherjjCMbaWwp3K5s9sp3CQBEGECwfTWbnNbYrVZS55mvybPkaFVgGWyAIeBqp+qxeGlUL7CzHtHz59wOv+2WE9WHDrHwvsvxWLWwyf46OfEYTB++vqsKD1fetYAE53iPWmdgE2eaMO1/0zTj9Z68Grc+hCk6QFpOwiAmKmK3ndt+UI9LvG1QbBHoerQdnpZ4vYVwfYLE+wJZ/UI2/76/de+tYS92bfOf0vaL3vj3f4ePu3yL+N3+9wKJJZyA0nCKQ+SJFMSSPs5NfH8NidbRYhEhHv+dLbW1Z3bUSX65H9Vk+xuUJgIAsjDzr/FDuveFjXMAya34kZ5Qy275uuIX56ZyVGwzzmbioWEnNkbnPRcpH8prXftw/9x/8KD7x27+IF/yDf4W3/7t/unWe23lmx5Uu90Ee7tjC1K/4Av3R54u3OJ3VsDz85xMp/qNchwIv3/cCUeXYAdqkT3n3gN6/009/FnYffRMggtM54+yH3oPHfcN34p43vw6bhx7AfX/6Bjz2q78Rd7z+d+D+qPpjvPX9Lg5b7y1pvlq5LN2O4ZVavkqprRHPx3v+gbmoD2I5Xhf1OLpbuK/5540B2/0chhHDMNbvcltWumI1FxU2rxcwW01QfkRKSc+LjRfNjDIfr5iMTeSaghYh2unaQ/0tKranCCDIAASREliUm+2AKYuxmligTbZtXlOLoYBunntB6/aGeIUcRzNaD5dbEIjmUPtmAzYXQ21UJ1v7o5+bmK/BEIQ6f7TxToAWb1c++xY+Y9cKuz6WrnhKX+LzAp5Pq7BXx++w2OxKuR3fP32tNyuzPZc15vqLHb3d2bZBgmC+W+ji3joGvgZF8FNnH4u/c+pW9ALbirn3OSH19UjBEptQbW5UXrIH5sxH/l6qHymdwKlzJgUNezluR6CI1kQLmqvtfGd0e77ev66QFG3eV1zS1k1wn0q7eFmBrEGwQM3jEgOxw6LF3itSQKIxTgQjSACKOo8BGuep+JUXQ3o9jeWvtDijYttaD9cV/llTkDJbw5c8W5NPsZxaQExqKykGDIsRaRiAYPtVnCASUAoUBxQt7A9BAKuh2eI5uSfq+zlgtSDBwhvlmYdo4h2WY9DmFiOGYYnF7i72T5zCcrkHChFTZqzWGxCtMAkjz6hxjOf0BNKER0IAYmhNl6zOyPe9IILZ7pP6Cso9DGy8sRpLoeJJek20NX7OE1IuhucO/VzEbI7bS8M4K7do+wHR+qadgzNYLG7AIY245uL9YCSIzGjMZd0DIfn4xWSOiVL/XHONpIsPGs7kL6zvwPmv+8c49ZofrfezftBWDOH+Plntl8Yl7jLqD89lo+Wjev/IP7/7Vez8WxzRCc/4pxEZnufFxj6/m+Cjc0OKqBCIOU/2Pfp+RivGhu0fHAARF7BRfEeMiyDemLh7b1nsYvUl343l7/1EqzsjjWG4m2AsGueyNUtAEYTCWuScGUUIIajfHqPmrMWbyZgfmnNRwbfJGkVNU80NAMADL/uHuO53/t1W/qRFes1v86anJLpOq5dvXGuPwoLZUanjqVsWEWquk+zVEQGP+MSf4s5nfg2u++DrKj6rc6hbc2i23O2Gin5JV+N4ZJ89RkcEALsv7ov73GNo/sd10JgLckaVmiHRWlYYnuy8VvKYVcQqDamuIf06slw/1N8KBPIxdK6sqn3ZerB9jeqJbq1dr3FB8tpEqDCFABKC1nJDzL8AMlzAQLOfDKjIs9lqC84Bx8QFCLe8G2w582LzHzc+BXTDEyDveI3Wm5g/EP2zDG/0Gi73KV1gQTxf635jIAR48U7E+c/9Bux98I2I5++D8xzVdxXsffjNOHjWl+PUu39Xa6aT1rOllCxWGbQOLw6ISWv4gnFeUjRRMK4ztoVStidt2b16n1HXgR/qumh8t8VVFd+bOv+5fgVt/QRaHbnnJEmHEAve4OoLd4BDqLXqzmSrdY3dw+3BcTr2dkfsLE5jf2+JxXJQntgQsbe/izNnzuLipQMcHq5weHiIg8OV5p9Yay9KVg73zBM28wbraY1p3iAPEZGSRv1c1O57Y2ERBIpaszkuMI4Li38TvJ7F771y2gJSiB762j11wdBYcUMKCVXQDMF8WvMji4pcrTdrrNdrHBxcwuHqAJvNGswFMQLjOFgTw6Q4NAQkEW942vfg2fe8Ba993Dfi6+98jebkxbYrUr+MQhPAiqSCMoNx8ENKVqOmTd7J4xSYX+U/RZSfZHuIclwK2HIeLKLc+MxQiNxFppRX7/Z7Nh7aNE0QYeX/B2AIzYaqcF+s16JxeUFmAecZRIRpmjEkW5MhIcWIcWBwGsAJW4Io6gdaHhAq7lhzl3D/x2JYxz5Y7bdIqHuo/qC6JgW2B9YNTT3DYPeo6l3U2ggyH/J47WMAVJyL+poR6uKrFter++QOOdROkeC6Bz6KlNe45sLtJrbp+5azvvXw/UXrifzvnY30z65vgPkLYvx70wGxcyOLGYkKqqcZDOODm9GWr3YekWklwVFlr5Vn4/goByFjmnIVcin23s2csZkLNuaDFfO7SrF8DQigVokfvvq/RXnd/w3ZHFbMJBCA2O0L7tOaXQ7Gr1wsFtpsXZybJciUMQshc8tVUxAECQjXPAbyjC/FfO5e4KlfhPjBN9pe3DQhpMMSfB9IIegj6gNEWC5I9UGCC/dYvG57n+c9ouVFPEZgyoBkEEVo8tXWC5uoUXBf0MbdYngXK21D3/5zGlUvSCE+vmhj7VzNvtbv2ByGSXh9jqUqrBa9F6K1BwvI/AD3t8V8LjVDslUjWdDEj11gKrMLB1W3DK5DK9Riwj5CKwLkwhCalS85z1Y/pPo5kbSu2f0hCtHsoI5fEfOPimLSgQS7+QxuKh/GAhmjTGAT7Hzdo78YTzn/SfzhzS/D53/g1/S7O5GpKlgK92edNw5ADJOJUXmSMRmOoaRHcltldp1Lu0eZBeHsPdjZvAVycAHYHKgfi9jFwWS+u72nmB8tAojOeRdWVl/Cm7eivk65TV2z2R7fs7pz6eIdtxnSBe7Om2oCrqbl0olMOV+7t1XZc4rOA+7iqL33/i4ufO43Yf9tv4rMisv4nq/3h02AUe0iQkSIqPUxYv70Z7LGPuPKaXNTIKSTdmYGMQMFmIsW7JeshcslqiPlxCYhQLIzNBg0JMSuO18ggCRrAbSJSLRYyJzgFABJGigUNtETQQHXJLwvVF1oBaBoxcxJiQvWSZRjQklK3EWICkaWAEKCSARLADg0RV84MAUlk/o9yRrYEAuAjDEFPK1cwun549iXi9hQxDxPmHkGRye+HykqtMEsTlooQEoJy93dFvwMI4ZxVNBxHPG+nceDYsQL8p0QCghzQpxWCClVkDKWATENiHGAJCW2nqKE5y8XePfBHr7l2gugOWm3WhoASRWY0jwCub6BLbimNhgoQKIFpeYUKtCt4l/egQvUJfV95ZIqL5IjSFboV4SwmgsuHK5xsJ4wFVYH1hxzuedjCvIrZANCA4wayO9afTY+5ElqVGek7WPHcBOqbo8ZH9YEcE/GRCeM4oWwwgWPl/vNgHElw7BkKzZwIQFA3Dg5IFUALgHETQCpN2SespDqlMHEqHzD64Je6tarAX7aLWGogIce1D7Mr9yMHDlaBQuG0qBBXkpgBLB1rnSCc4yCGAI8BCQKVsToYgEBQLRAA+aQqVFioAb1JFCiefDgUeAgfQFwfZzxJcMZnMqXELK5A+yAX65J48gZDuO5ojZMjAl2OtVtt/HS+9c2e/emGpBqf3GGvAiEC8CaaIIU7WbIShJWVV2uQh5O4hTffIp20Z0nD/i0uE8A3aRFnfTyt34Ku3/473Hu5f8aJ17/rwBRu+r2PjNXh4VEujvmF3PlZOFxOPpEpFhGmUJ73oNTLlwdQhFBitpxVvxFXLC4/+NawBM9mGwkWyUNJ6Sk4oqqlB4QU1DQICqxOlrRfUgWlFo34xgS4pFO5kL6aNbVi7LIhJ+CWkgiECJSGjAuFhh3FkjrAdO8QZkzZmFo+dgMMJvYnwoqrFYrrDdrTPOkeykEaRxx4tRJLHd2sFwusbu3i+XODtK4QEgR160P8JL1JTyCL6JQgMQInmeM4w7ComgykbVjOuUZMc8I44gQI9gUcx9NBF4BUzJSFwFDJGRi8DQpYDoMiMOAwBnIs647dzbMA49QskW1V8LWqdTSQ4IKgnYoYQUmWKCKvyEgkRWnMWtmgFkJntz2mxAIhTT5W0rGNE0m4pKR84yrPvCbuPdF34ebP/UHWBAjpqDWkwxQtUAzxoBxTNjZWWC5XCLFgFJmCDRoS2mAVXKo3SGAwvHbyXLJIFaiQu3QHYDigaYIhAOEnGBpCw5oP9UrV5tiUabaTC+y60DmrVsgEBQwZxTJJvZgYhGZTVDChaZakZ5pClmRua7RIUUMQ8I4uJBhRImWDLEoLcSEcYiqdm+icQpOW+LYbIOPszruKmoXwCpiRNZJlYzUDAO56nNKRCB4gtZJkKjFVgSByjACQQoKBRQQZhHMhc0PHhDTAjEXK26cIUUwixJn85ztfAkpzUhjtmAyglMy4NRBET0cwHQSErN3RUcXVHW/+2bMDhJ1RZFHBDjEw7BKxG0BV6l+SPM7IpRjoN02ihHv1YanIWEpI3bnXcwQ8GbGPDsBmjUGgWAzMzabuXU3EPUn4jHbyxywXa1XWK/XKmZTWvczMbI6FbGEjYFgs5K9c56Q82zAuu4XGvAasEGxBcTcbKT7eb42Cf6VUhM6aK+2temJVgtOo/7uxWf1M7hskZN031W/Rwt92UAEtZUUohYhmeDhT+Qn4XvTLVigCcN49y+pJ+RA5pHxtGS1CiyhFpX5hUinStHIdmK22/yzAO3oTKREL7JC/M6kUe/82vu3T6MDtOH3Wo++4yRTxG9c+2V4yYX34DXXvRRf9+AfVQB7m3wmFQSq/pkLmRLqT/fXaiGKuHQlarzKzMggSFFSTU8orfej+/5ge1UD73nr720Mjt8eBgD7+/souSAlLTwohSGzzuEen4gxgVmQzt6F8Z2vwebuW5FIMKQIEtaOdla0V7LOywAgJlFiEwjRYmwlX3EFX+E/7fA4XfcAE6vy0a3jbHiNh8YitZjdBcFbgZIT+0KLq7vY2ovWIU7o1WLJwkWTaeJEXD23i4ur8IlHPAPXXboHH33EM/G0Mx+ufwu+t1rS1kWmgPZd9RptLyZ4tyEjGLr/IF1SVi+jJktjiCqO283DCuR7fGuk64pbWcGC2PVuERy6/eko8cH3tEosczDfY2g+8ujWEkvb+9r+J5UY5VhK6d7f/y7zAfgjb4bc+h7IufvQVpWOk7hj5ImMTnjsuBytANViZTn6kGYeZOuN1fdwm3nizC2ga66119bJ38QWRPeXUjzRaFiAjUXtBuqOhX13E4hA7RzqhjMYke7FfAd+Pz0ZX5XuwWD7UorevYKQ56yi+rP6nvo5WyBInWt9oTWgdnM2YVQtDHDPiBBcpMKSw0QBMdp986LN0Islu/vViku37m3nu9ltbjtHg2ea/0f9+6QRJCxGAre9oe7D/et637DObe801IlMle4539uLF2o7UCkImwOc/sDrcPbpX45r3vSzbbr4vk/dNBKNFnx9mIqFxdvqs5MnUoLax0gWYTB1uKIXu3uy4K//cUUiOGycQc3P33qdzoWLH38fbv/lH8PmrltwYn8f680Gm80G8zzVtQEAIUQj/yTtXpWSdr7q9oxK0PGEDWB2I2yLUlDn33Tn5PPxSs/pm9v8v+xiadvnabhen0zq1lh3Lk1kSrHOyz+++XD+uYDhk4FwVQr44qsJLIw9AnJuezUR4atPrPArF07gm69e4cS4b8L9A8Iw4Cv3BrzxLPDKxy2xCCpCNK9m7E+XcHF1CRcPDjFtNlV0NsaEcRSM4wKLxaJ26y11TVqBnPsqIWiRfIgqrhGCkkFCRKKIUAUeACeAxKg412IYsVwssFwssBgXJuBsHYd9HAhNfPIYHYULiKnb79Wm3U2ncH84jeeW26/o6h6NRjQpakQM8rDFPDPD0t1XVLPVpej7fU+UxJStW58KTWUTmtq2uX4iKsBZMM+KDa/XSn4qnkcgzVENyUTBxgUW44hxHDHEAbshIBPhXGElUE0TZlvb2oF1btfdrUslV9iaSBGjBYVcCqZpQopzux8+9uL3xa5e+rXbbnTwZKMXYIphTyLa8dfsQgTgxCIl5usnc3+PunP3sTILUPfK9s2KV/m59EINbX5ILUDZFhQ98hrS58nYvr1gJldbE0DifmIXA5cMLkp80dDdfSv1h72Ys4rHEBBhpLQ/d9b/1R4pWUMR89uUKKuFDEojCFZkxbXIQ1jzgcXyrSww0Qe12VGCxQ6Mh049Dvde/STsThdw+yOejZseeC8gttZCqGQYFcLUnACAiovBitWiK8Fz0Ry1iXs7BL1/4U6cuPGJOHXqJPb29zEsooloR8SYkNKgubMYTWkkatFGza8B1RCY4JRjkh6nIYjhi0B1r3ssXLJ2CzTsJxmppOQMFiDPGSIZcyx1XxEAZEI3IVAVxfciE22MYPsuxMiJnq/tVkZdo756lALL3Pbiun8HqoRH3wc93mVwJdf38Zjaq/Yce0EQO2GDam4VIFAUQGVp9H1X3F9shRMjBQIT6z1nQeCseLfbAarGSIsOCUhkhehe+BL0ukM6XvgHsZJjKuZp9qWAVAQereA7RTLBQcW9vemO4nkaYHjML1GLpPrcp2P/BKkEej8c7+9t/lEf7kpFzG4XNO7354tNP1uAhmFyabhGvwsrtqfXobbC56/tzYGVeAO3vcVEEixrLkVzHDDBf6Iaj7Ow4hq+VRuu4fnGtk8ULDfn8DkPvQcRjFRmZCL8/qO+El945m3YxxoM4KeGz8c/CB+GCGMuGSta4JceOIV/fD1jzhPe+eAGHzsviIHwltsZn3fDLr7hpj1ctQwYRMWqNH9czD4wAkVwyQiiBWBSMnIWFBB2909gubenBRWGneSsHdV9bCqubGsAvi6lkQAZUrtiC8EK3jTPmSVgZlhjj4SEBOKIWIBQoByU4vkgAJYv2dqvqJtPx2uJYffEiGGMWCQllIaohM4hJowpICYBgoAi10bd7pMkEFIRBAZyompHtAlLEyyrMbr9n+Il7ne77aXqC1RcG/1rWozjR89h8jF3Ql00LFB9UttbpOHKaXUBdTDc90Pj6kQifPAr/j6e+Yc/hojOvwsNlul9KPsYOJmZiPCu534bHv+pP8Hbnv9d+Ly3/RwgfNk16IV5bKVxjjgeSkfsQLtT6CIz5b35fuH7Uu+nw3c4sXNoX+3fceLCvS2O9PtfX0jVfrVzugKG52MLqmOh+Qcox6q/Dmn3/ko3RNqFXvGol9AUVZpdO26LDMBQL0aFROdcsNpscBgSBgEWi4SB1WfM8EaYEaMV+EHY9Eu1gCkgIHNWn1KhP1AkFCawaNM5igOitXwD0N1T22fYhSyDFWowxHQttRlTgXYl9zcLqAiyEEq0NQzjdon6sYQMwQyINrWYNitsNgeY5jVysaKOEDEMI8bFDnZ29zAMEY+9dB70yY9g9+JZrCz34Fy6IQbsLBfgwCgxYLGzxJgGpEBYjiP2l7tI4wgGYZq1WGcjoh1tS4FCoybwVDIYBXPegMBYLrSgeRgjPvAFr8CzbvszfPjl/xDPe+vPKG6KiM3hBofnL+Hw0gHy2bsB41TmnDGkAfv7+9jf38fOzj4W4z7SMJpYFBBCgSAiBiXrD2NEjMDqcACXFQCLg3lCETH6CGtzsaC5ft3HnGisuKRWh5rAC5vYiwOpZly3Gkw4BtatFeekiPsJ9b9mL/oco/Py9Dyo+rvH5XDb7gWT238EmkFpmJocfa6+yuMRvaVsOIDplyqPzZuDGLbhOZycLXYx0jVY1JeRFttCVKhZm3zZeifCzjf9Xcj7/wzpm38Q9Ks/hsClClF5bOdcFqp+vPum3RW6a6nhSd2z2PLJdU/dmg/Kv8q5KM6fZ9z5om/G+LF34N4v/W5c8zs/CZom3WlC0PUogrJzAve+8OV4/Bv/Sx0HgPDQM74Qw8E5nLr1/SoQ58Ld/cN2zP65g9M34J7HPxdPetfvdWMLVGmwbmi76Y7mTXQ/pc1lNAgE5qrV++PYF4nRt1DDWbNDsOa3rSRIPBdoeBSxYTQ9jk/UmubCcRmB5r4bj/toHEE2X2vu7Jgcm3lTRZJLYWQptRmaNpOdIZIhnC32KC0n5APAzUepGGHR2B5HY+gOQ3N/3o8P/9JP4ll/65/gvf/Xv73yyXbjfcU/X8H3OPodf6GDoDyMP+e7/NBYJdbckPPNXZiDELv3Kw/r4q0fw94jb0SIEYd33IKbv+E7cemOT+Hmb3gFbv2Nn8fqzltx62/9Mi7dc6cWeMEK+kupDZZOPP7JOPGkp+Ke174agM7dYhxcNjFSz3OzsK3T5u8KDNcZhppDn+cZNR9qQpdVzLu7D36Hw5GcQ4ut7RvMZsI5+B1mCaiIlJpqbcAYjMsTqtiD5UZNhGqaJgDAEGyPZC+xOj6HnlPjQhQiEFhxnsAai5qxJxIEieYfkDU/UZvk3XQ0vay1EaQKFgCa7a/rUCcuLC1SDwIuX0dEuGUa8MHDEV938sJlfr3bOSme8+b2IT4uhllqqpubvWYr4hLFp0LQpqwRAUEIIQjIi608NvE4U5xTezQH1kKNrbw2aTE86v2sOwGqOkPdR11MRL/I9xa/Js81CnV23u7GZbevjsKnOUTqPXH/W/26rLz+TjTO4zbHgf73MzfjW/fvwn84dzN+8MTHUHOAaDh/w7+k4i0kFaDdfmj15OXP+9fWCktpDgf+Emzp/w8P02PS30MtBQSsokS3YNu7SUwg20U79Gew3ISK4vsjIBbFQwD1rYrXcfVOB5RXG4M2FlEBqZZT9HlGUhSbkKB8cK//qrbU/B3hOrG0Xqa0vIzxM0oumKeCPGseQLkRBBEtbExxQBgWSOOIFJPGInGBMA66FAojMhBSAaXUsAKEKgwVo8ZUats9U+F4hN7YOA76S0DFZzhoASwkaDFwIcQSAEqIcYlxsYfd3X3ElJCLIMU1ZGbkzcowPGuqJ+ZLCEyIq52ji/RAoDlgE1Z38eKSs+a2Y0AoWmCrc0NaPo5Ea34SQ6ACA3VXsziNJcP3FcfBChWddH1sZkK1OWsdI4kJ6RFhLgXrKYPni3jE4XswIYFWBzjghPVMWG0KNlO2YlhtWBJkW0T8s31UbEyav40uNqkHuZ+u/+jdpQvf9M+x98c/jfMv/+c4/aofabbe32iH1J/G/ehtvn+ufXa18t38qw+g2kr/XH8wqPq/+pHdfoHms7nYFINqYbYVNaKPOHpcUaA4dYZYDk1tjniukLVgO4sWKGer2SxWgMwMlJCw+vofRnjLr2H1sh/C4nd+vIoKuT2u+XYR3U9FRQkkqEDoYHhQZmu8QEBi52/pNXvt35wzps2EzWbCbMIdxfyzi6/411i+9v/EvV/3T3DqV38EmiOlxt+XxvEVImhDK8sBk/EERe9L6PZ4bWIo5lu2GNLdF5DmjIUIJx66DTe+81UYzt2NAtv7xfd58f+18fU9kvrn3b7678drT4t1TRGIBCWQ4nhBOb39DIXt+SpOTmDWON4ntNto6vbtfj2BurXpez9Z05MQaq1uxRHZHSz9dPfpesCi58SFECAB4Ajl7B2515VvS5oDZFZfmEOwcRNUwaSKmTa2u9tpFoHc8HiEp30RygO3Izzvq1He8/uX2YL11/wDLN/wH0HTytYgIwoQRff0aEJTsSm7Gm8XOPt5L8d4/204/6Jvwak//SXES2f1/puvsXPvJzFOh1hcuE/rqwflswwpYRgHpGFEjIOK8CQVmUrWIEjrXLgKXuk6YU9523X43mPPudsBtIZjPsPtd6+7hfnh1c+z1zW73NlgxyzatKhzSOxL2xBLy034va52WWOeaON5nI5cNggUsVgMOH3VKbAwdvaWeMT11+Hc+Qs4d+48HjpzFg8+9BAeOnMWFy4eYr2eME8qdsKsXPo5T1jPaxxuDrFIEWmp9ZnkoZdzx2MCQarQmNd0eg6riOOAAILOP/KaEYLGwN2jsYKcXaC1ySUXrF0kcJ4wl4zNtMHh4SEODy5hvVkh58nOa0QI2swppQjOXmMleN6tr8Xbnvjf4KV3/YGJxUQMISK6vRXlPYOUEx8pYBEHLIYFhsWIOKjQFABkLm09iRiO1LjRc9YahhpritZhB6snKVZjVwogVmvc6nC09mAyXtk8z3A+fUxBm3OFlsPTtRYBa+bFMAzVGiXmXDBPWgcUo67dnAvGoWBIyhmMJvABIpiSLAACh5YPDLZfsdnTnrvpfDHFtxvnTG+P1Py93osmMlX9HKsprpuYNc2RT4NJfbaOdCRvq2GS83oURxf4/ULzxWosKrjq3G2GbRzdp6t3qf8yfQgmE8G3DHCP1dU4zPf+ikkaRiOsvBoWILRcCTOq9ojnbfRvXPlfhZWH0GPURbROcs4FU56xmWasVmscrtfm6xWjUAVt2pkzplwwl4JSmiAOg6AiU3oX41d/P+QDb0T6hn+I8qp/B5S57Q+LPYSv/NuQ1/wYauZEoPWXg2p+DIslYoyKrUwTQmZQdoVSwolX/E84/zP/TPNeMUAOzoPvuwV0w+OR3/37KIYPsGPktiZh9cye0xhiwJiS3g8izZsGFx+OAKJxpnRFRtEYMsaAQKpVEm3MSlE7xzmDrRbB8/uKM6GbJ62OEAB+4dHfiO+461XK4xDxzoYVj2Fq+6RnnFnQ7IMoBU+bCB4vf7FVjBvWalfteQ/1A8y2MJufrUbG47iq4WZ2ScMbEx6y+MR/ZtHfC0wIVy4ru2g+IfRHsqdmZpRZMFWGg3LPU4hIweujB+X9ptBySaYi5gJYWuesvsdydVbncozqQwrwnPvfiz951IvxnNv+uPEznaPHWjOuVpXVoIZ28ipaZo0bY1JcpHbWVDs1pwU++cxvxOPf/vO2b+ganzNjLgycvVeb1bDfWKA3YQxS3fKsfMmGgzOS7/N274I53wFN9Nx5Mb63OT+xcVIaJiGWd1fbux1f1xyx2znHlpwnbM+x2bLiWIf9rO+x39PdH8L+my4gPnhHFccTccE2abpEgNbEUKt5VMxV/d6+Ae/DHZ+x0FSv+ldEkF3sR6Dqtqas5d0ZPWoignaCY4YYsRcBRpwKpq7pznGp6u61gNMKBrUwwUiDxKCig1gVvMSS8DCjQ6rUSWlEjCNCGhHDaAQCm5BWOE8CDZ69g5W2KtLibPNCdeCdNKB3xIVbSFRQISVCogVuog3Wu3t6zTxj3myQNxsIT9aB0oWCdMDdacqzEvYoBoyLJUJSkD+NCwyLBcblArde8zQ8NCRQFrCcwtOmOxBiMpAy1Q7TqWhXXA5WnJMSYgh4dkh48v55nOYITCOER4iMoDiqgIloxwrJUrnogBJaYnC1VnUMhAKKF6vVjZ5MoEiTY+KCQz6LbJPRQNgNZ0BBwDozDjeqFKngi4mAGYAUY0Rx49u8PVSSR7ep1MRqnb9WCGZGpOoZHavDbowXGfsCNuJRVZplhhQ20RN1GMR3775Qz3+X4jJTZnQKChxsFZQZkEIVvHBjxCbi5mTfumkb6aJ2TyZNJsbgnVhN/dKUG0NKQKS6mcKBE9/wWPCOE09D4hlPO/thiJACzAauxaDdJfT63DkkRAYGZoTMCCiIMlaF8CLW9c0AE3c6WYA46GtgGzJVhEbndXV8yBwA2+yvodm3Ww8nKggpAoSga5lQAATtEBsm/Xy/T6LiDZZiAjMjwoIgvz/udXkLXQBOSoZI7Twb4EXRWQlumaFSwm2OcBFTTGbkIrrJzlmdaReMsiRJgNpk7dABxFf9j1h964/i2t/7Fzo7a8GnkUvZB9GmrzSSiSc5jtsa2yKD2u9Sn6e6kdZCB+noUKKkhGCK7b5HkbAVzSctvDfHnUwFXQnEJoAmXRc6mFAfefdztXVsha5aKKKiUhSidlKgaEGMp9ao/U7BwHWzjuwd2APSMGKx3MFyRwVGZhOgm+bJ1qXUYk1Ewhu+8n/Ai3/7f4AUA0HyBBwSpvUBxsUCy90d7J84gf2TJ7C7t49hsUCIhKvmezGDkK3Yf4gjIgElMAIYzBEoCaHMEM6IMqPEQfdcitWBCZxAg+1bUhClQHjSopUAUMkAz5BiAj7BQViBdqDQDjTSJSOkgg2oc1XnrzvZbW4EAqKYAylQVLMUSCEwMoQtyhap80hJbAV5njBNG+R5NqIPY3nxHjzhXf8JV4UJMbaCHQd7veA0RBXEGcYBw6hdz4t1rlE/dahzUbjofTtesRQAYM6TgncCDDEhGlGlih0wq88Fqj4GgLrnSf9/BJ3TrJu2iCZbJDiCSqBqitzZLigy2yNXQny2Yi8VmnIRmooQqp9hRGMHnVVoSgMZQdAiK9sTQRqIp6DFXM69Dh5seMBhhVbiaLSIdlAVMqVoDeQr6UnDZ3Xu/aFRp4JZIagoHek8J7YkLClRn7ggQLTIbU4asBVNWlAwwTJW269iU4ySWX1xS3DNQ8JQMoaUUFJEKmbfOiCa4Ekw69QOMnKL1PFjj2jFbYwRn2qA4sk3J2HY7+KCHWzkFyNi6CjXwKqOXfDA2fzDbvOJUf36ASN293YxEyHLIUrZNIER0b1vngvmeVbhJkskRApqdo/RkbMWDm/WG0wbLeLlklHVI5jVV8gGxhBBuCBPK0ybFaZpbSJ2JkZhyVnf1qs/yB6c6vf6a92vr+k0cbAEnr6wf1Svr61r+6WufUJdnw5izpLwi6e+AN919o981dT36ryzPdeIdv9nfgq+Jt6Jfz8/BX8vfADBhSiqD4s6D2GnJRVV6MAFgQq3BRj5QM+T4II7+uYWX6u/AydZKwJkuLZ0yTd/Q+dnenId7TWaEOwJwe3ogdgIwVecfxtee/pF+LqH3tj8FgeP/P47tGXn3XcXaLGZFy/Y9RvTtyZ9RQlmIFJ/1QGyI8XXfdhFZPHikdf113kZl/eY7WV7O7vIWUkAhQXzNNcCbxdvgYn+zawdlcPFexGlIMWAISUQAaXMtQNzSSpuFAAUCGCFIypcAhsTvz+i2Ef1TbxXhq+61n0C9vwH9h+PE1Hw1PyArt+ie48LFBUXquF+eui80L3ZkR6qE8A7vegcU2JNlOgavlvzdbm+gEee/RTuO/1YPOOed2lCNrS57sVoDr75HHcAr85/ABStQMDIILpG2/zx13uxmp6KYUe1cyeqGn/o485i8Uw2MWfDnvokml9X/elIRr9Wt/7dCUzgcvGAVpjXxL4qCGiYUO2OXuN1bmDi0YcweHMIWR9cbjsCwRNGR4sMjtfREnOOfzTfGlvxZT3cb+5+b3sRGunS8AztNqL4I8MSouy+fxMGqYIP0pIjcI/FsAoHdx1A9qD9WprwTfFWXDtAi7GiYm5OqmXi+hmcVYSjiiAaIOKiE97ts4K6Ik0MzfxdvUWazA2kPjFIMdOSmkC5YxneVcH3Y0/K1IRhtd2+kXdFGm7Tga39HJBKZrebXdeQlHY/qyBcxbDsNdzmvROw2IiZTRy2FRI1calcca7W+c7WTslY3vEBXHf/rYgHZ3WP90xAN/cbVmG2hdyPbB1c+kc0oLqSXQvVT4H56MzQ4ue/+GL4/8ujJ495wl6F/pw57/F5u//ru28BEYGLCR1N9rCCdfcZgs3paMSBy4uAm5G40n1vblr7a0/C3raHhCt/yvbc97ncdwjpX7ltb6tLWL/L/xa8MOPIeTixQc9f6im1z9O/7UdLxhWu6x3Qtf7IUfDKa1a4ZiQMaaENKKLmFJ6+iHj8iYirk2CzmbFZrXFwcICDSwc4PDzEar2B5GJCEkpeRhpw8sRJFbcdRiU4zrMm3WctblI/wbwJcgxowJBGLMYFFsMC4+DkFhXNzibMEki76g4pYbQ8xjgMGJN2KyulK/xrUcexOvokZDFRvPuwh1vD9biOL+C94TF4VrlD92XxebRtixqOdSU7ooRGxQ3Q3QP7BFHxRBcjBKBra54xTRtM08biRNmaY4CR98VI51BB7s1mg4ODA1y6dAnzPFXfZBg1wbwYF9gsl1iMC4zjaKR9DcRL0ZzWPG0wbTYqNpV1vlT/LqgQd7Lx1s8dMAyDzh8TI3U/se7D3bqrids2CO1u2TpruK/5DSIaD0sTxbhiYcaR54++psZvVTTFz61ZESL3pbvzZiOuZCuUdQFaE5PMWQXrm1CUFZMr29iwDqlCSorJs/ms9jkmLpbzjDJnFGu6QyE0toFdo9U41WKLCEIiQiKgHC/eoU16UYzXxGRzyUApiB53MyvJxXz7ORclBQ5Rc4sUMc0FyfA/ibauwDhx/m5cWl6L1e7VuOnu9+r2HgxcYqn7mJOeiAK0K4/mwDgwgAxAEKM2PtJcasQ0CeZZyYo7e3vYO72HuAxAzNCOUVHz1h5rBDLsH+AoQGJIKgDNSKz4oYhvump3x2EB5gDJureCiuF+lp8xYRay+C5BC0qCRMQxqQhbZmxojVw2Kj4fxZg8hHEHSIPm+kQYmQ0vgGL8xG2YwKLERC6KgAYr5vR14C+2FczmK3gjGMBjNf9AqZ+t+bMWI6F+Uvtb7eTFvOVrN9JFh0WUGRQzJKnQDUsEkuOdQZuJwBFIxX6ZBr23CaBMRkrROeIxWykCoqBiOjEgBltvwhijNoNaDMNf9ir5/+rw9U9wbF0LMITFiKitAGgcIoYhWDOV6FqtIIm1ayhwxL/pHm6HmJVHoU/J1uuV7At7HXd2V8yvarbZ99/e1/I9wkUtAWCTlnjb474GX/DRX7fmSIbndJ/Ldl6KnLeuwEWs93n3eph4FGosny2GC7Y+RElYrEXiIoLYE1sBFIsjAFZSWFaMaFEuASBkBLz+hq/C0y9+BL93/Uvx9Wf+CL9w9Vfju+gD+Dfr5+G/23kvDiXgvxw+Dt96w0X8u48k/OBTDvHE/SVuv5QxF8JT9xk8rXDdABDPig9LqYWOJMYrgCBI1vHPsxKEs2DYO4UTJ09qDsEJyPOEH/mz+/ADTz+JU4uWI2jSr/pguJy0dPCSrcVA2kQgRmhGnzAhqC0oBI4RYALNAomi3eRZG9EgkqYPAWuw0yICtTHsQ3Vsjp29BVIiDNGLgJQ0rc1NojU8KCoWGASUDDuDCk1FEiCKEXU7PKzmX2obMP1CQcOF7d/v+dIfxjP/+CdAvMFRUS4GmX09ItLUYdb6T6rzl8UIkr72Qqh+rth7SZy03ZDwht8AH/iqf4Qn/+nP4z1f/U/wgt//t4pdGK5OgSzvB1uTvg/bXmzY9tM+9Dt493O+Fc96/6ug+BJt5a0Yne8t/dV4oXzz1VoFSZtAFZcpRmY9iqlRu2YiMkjL8UrHKL3LpXaIV6K6j1jzy10EywbQzids2Te/bm+R5udeSjG+VvOB23nZN/UxrY+syGXBVYuy2z2ggLZPw2m/x+vYHRe4OBv2x4JcGJtpxjrNWMQBKWxAXFBCxGDdWgcwXGJVu27r3l+KXWXUxlKRBRyNG2likkGkFmt4PEbkvpcYtpcQkADJxv1IgBTF3cUIrQwEYxYLCzJmbQ6c1ZYFF/QkbS4jmCEyA2y5Bl6DeQZINA5PIxAXGBZ7GBd7GMc9LEb1IR9z8QwOdnYxi2KSeZ4gnDGkiJ0XfhnSqdNYvuf12D95AidP7GO5WGAMETFEvO8LvhsvesdvIkwCmQV5FsxTxryZAJlAVKrVJxJIYFAQxEiICUhJ8IwP/jbe98JX4Bnv/GWEMlt4EhBEMA4J2FmipIRACWPawWKxxDguMQ5LjIsdDMNSeZ5BmxoK1GdYLCwXkBLCYDm6GDCtLwG8gsgGzDM4F4Am41lofty5p3XtiBVbuJgCseJc5B6n1L81DIC7dS+oolIWv5BARVSlkYKLKDatBF/SZpBi/kD9pmN2dNtKdci6P13pd8DfQ/V3F+vYMnfdx2rzJG6NwmYVZVLxMcUWSvE8uHImnSJD1gxASe/BRKb0ESigvO5XMH7zD4Be/ysIOWvBu+0b0exC9RN98+p/difraECLRdgY013OCFCRKagobi4Z0zxXMe79t/wGHnjp92DvTb+K+eCi8qgJ2lSTBXlc4u4v/R7c8J7X4pYv+g487o3/BQLBQ095ITiNuPSoJyGUGSfv+lgtu9d9N9Rr0FPXa1qduBafeuZL8Yjb3o9PPucr8YT3vPbycet/oSZK07IBvr80r89zCUeni2+b7pYQzJ32l3K7T96sqjXPNEHWoDxQYgKx8mIqd1a8AY9e+bZwVDexqGHTZGOihdfH65jnle0z2m06m0hCEQF5KYl3BzZxWC1GADJn+xT1eQhixUdc4+AmenPEFwAu8wUu3nUL3v3jP4LDB++7/EQJKvZk9/HTYep/0aPPY24Vp8HFxOx75fL3HX3/ZYbm6Ou6NU8EyOYQ97/19QiUgHnCA2/+A9z4Da/AA3/2RtB6jWFYoJx9EDs7y4aBMINiQgiEvUffhGtf9EU4+NTH8cgv+1o88MbfA7PfI1H81HxQtxdk+0oIuqd4kUpxUSobv5u/9ltxeOdtOPvh9+g4EFXh16PHUSyz/zy/duUEofqt0fjdKaaGI5kv6wW2sDnKuZiAo/4tGY7vazR0uOyxOcTjdAZQIEVteSHLc6aCiAhBRPSAkwiqVGKfQQLyYscghocJwM4BNy5kZIuHTEQpiMa3VRQQ6oMeIcncOSX88cUdPGWxwe9e2MdX7l+oeIXGC7a+XfxGerxFaqSkOH8wX8sLkbahYeWfmJCKxaFC5bL8lt66Lp8rzRcCfO3YOoqhcmeUnxvgpC+yud/2qdieqwS8dj/E7n/dZ/y5+ipb2/3yFtuZpctvb30qAHC7ERXMd/RC6lzZyhvY9X/P/m34Txceh+/b/wS8Kbjnp715uHNF9EYXQLKJTenz5HNRGKHjQwCa+2Jh5QsV0nnFSeNqKyoFG38ETRTrWB3F41orCEQT4NThaqMHAmpzcGpiUIDuM8RWrgUyTinrGvN9gF1IqdlYQF+vNkzXQaRQmwtscWUcT7J8dMUz0e0j9tEFpfKsuDSezrYQqjdtsKZ7BBAFbag+LpAWo8YeUlSkz/BWpur5mOiOiSRErZMqgM0Bxxj8LNvMJmtm2AR7DIuRgEQJCJqXDXEA0QggIVJCgNr9EEcMgbGKwI9d2sH3j4eY1xGZCAVevM3Nt7P7B/i0ND/DikNDTGBo02TFrYoKqAfUXK+Ov8XCXivIhqsYNlIxJqtHq6orZDFfaL6pYpzS5Uxg/l5reFqYwAXIhUDzGlGADQNTAeYCzBmYrFA1s9vU47WXlVIMX3MsvZsH6OYtqvnV39HCt73X/Tguvewf4eRr/o29zz+A6mvZ5pHW+3XCMtTmYA2T+thO/G9H9hG0sdKf/rmaq+N6En5d7Vx6f797ma1dl1JSKxpMdMOLAQu8SbHG5/7dWj9lIgRFBYHn7LnZlnvlUoDX/Qzyl78S4dX/hzZ39iJku575Jd8Kue2DwC3vUd+MTNgKuWLeBdZEl6z+TUtyar5f7UnBPE1YrzfYrNfYuNCU8TT5//kRHLzif0b8hf8Jlw5XCIEwpIhxGDHEJoAeGYq7QzGqEIBo+1T9Qr+nFODJPbL7Smh/Bym/0sV+AxF2L9yDDDR8t/KS+6xAs/5SkSL3fWGv7eLJY3REQK+bBEzN5tWwx+5QpZ/Z+7ym0HNrDxtrSvPZqj2X+gcINKdUMV2zhd1t/nPjWF+TBN1ngwRwaNzs6n4KA6z5GWLRfIt0HElmcAi671GoTXjYfVFuGCjuvxXxjg8hPPIJyG/5VY0zgsYREgI2L/v7GN71W1i97B9j8ep/jVIyPD8fKSCQ/YTmQwJQ5woA7L7ntTj/Bd+OvQ+9AWF9SQvlYf4CaR5lPHhIa6ude1KFphLiMKrIVPScvHICg9W/qM8g1vzLfAnPZde9t7eXLZ4Ww/lQfUPp9q+OzyJeW7Ydi+v+vY1PbOEb1RnuVotPIJ8X3eepD4DWSOuYxWTztDFXWMd/f38Xw5Bw+vRpHKxWOH/hIh588CHcc999OHH/g7jv/gfx4ENncXi4wgQT8mfBxDMOVgcYzus1EjPizg6GMCBR0BxzGtTnEG2OJFD+RjZxIxVy0gS3NnVrYw0fR6ttY+J6zwUBFBiBlC/CLJimjNV6jfV6gynPYOLaOH4zTSgl6zwdByyWCyx3tMljjNrID6xYwdUH9+Oln/gNXCNr0GKJwAJi90hIhTdFtKY6GaeBqDYLTClpHqeLPcibu1ceG1ujtBlznqzGS2eZ1t9Y3M9Fa45Zc9WveuzL8PUff5U1yC32ecpNylk5MkRke6nt48zG7dH7b+3xNBc5mH89TfXc5gwEyphixJxmTKmt5WT8sRRVMI60S6yuP7OnLiipgrCtbr7nll6JM994ZYJzp27E3Y98Fj7nw79W90L3eDxOLMxAkVZjdcyOFFqzcADVLilvpsBlcdjshJhNqTa9xsluffqLVP+r9/H8zyye50LNveIyW9j77/Ul1QY2f1M3Mg8BXLjGczAuMpXZBUK5+huFVUhtvZmw3qjA1MHhCgdVaEpUeCkEa6yakQsjC+pnaLMSHffgYp1/8uvAV38f8MZf1IayNOp5pgHy8n8EetMvAV/79yCv+Q+1aUmkCIoRsRceFm2kEEoBZfXtT37vj+LSb/7vOP23/ldc+oV/oWsxEOT2D4Dv+RiwuqhjFNQvKKKiOcV56gxEMtEogsngWSwcIhATQAmqwKC6CplhDaCanC8Fbejiwm4BESQBHAs4NqyjimubCBSRjb39/n8/6hvxDQ/8Ef7zjd+Gv3PHL1leQO9nracxH9FrpJQ/gqrFwNwL7fylLI2/tEPrfgK80aEg1FjcBd5dTEoqngG4F0jifCxsTX4XkOp/+u9s89Oyyw3F8jUFxzJ0/NkWqVJOvS5G6ywCkQpNmX1dLAghJMQgEKLOz1V9DD8Htx3B1zPB/sDYPXwIL7rl9UgHZ7ApyulRGxnqmtLFHq3MkkDETaw/JNz6ku/DTe/7LcRJeVJsTk6mhI+94Htww3tfjY8//ztxwx//X62ZS9GcW8mlNttwGxIMDXA7IsQN22RGiYwSS9U58Hx8Ci40ZbbI/DrnLwMtN1jrnMh8wlLA4qJeXRTrg9PZwxovUTd4FnfU0icXS3Y7jvZe/50evB3ZcV/1rhvkye2zwBobuLfv89H1Yf684zMXmhJ1uMAqsRLFTtY2mjtufCFO7Ozicx58T9sc4AGmJQilE3ERVCX6iEYME3ALQrmRZ7ygMhgukJCqwyB18KwwJUQMaYGQBsQ0IMYFQjTBKVMGRWhF/cReyA8zyqhiOho4SncfOtBWUZy2uTIBiIhDwrAcsSy7IAI2QTCvM3LWOD1AN+sQTGQhkCIJooTEUhjr1YEmb2JESGuEYUAaEk4fvB33PfrzkcYFrr/4PhzEiGEcVVyKE6QMQBkgnCB5gMQEjgkxRbARmffCgCILUM6gNIPzDIozJAxgSmasW+DjAagaOd2IpAMggolMkYG2hL4YxJUxPdZq0bbOC3dmXEmyYDLwztPEIkbCg3ZNke79HpAdhSAERwp14AkYP4XQRQjH4yA2x9sSFmRKX0G0a50nKmAiU2Sv0TyWVAEvt0CeCGQzMmyFeJmLOfsFeWLkDQNFEztViAtA04PcjpzJukV5ly8K6hSFGE2IQrvBwbskDKqU7eCUOt/ucQret/NEHIYdTHQSHz3xeDxu8xEd25KRNwfYHAhC3th6re672o4i4ImAoKJylAZL6CpZlV28h9RIEhGoDNoZmn2iQ4XSVJpD7Uk7vSqcESmAEVEkoGSCIEFooZ2QpagDVxgBWd2iUkCUAVfmpQhQAnWCIoFsXXATnyGBdt9wgmEtVHEng1UlUgxEVg9SN8u5gOcCmRmS9fnChJkD1hnYFGAWwlSA9SZjtZm0CIMIyQIx5SQI0rm7sPfr/xCLMCMudyxJ4QKDLamom2EjisYYsBhHDCm2jsjH8LgseLTsjDsbTeShgTpaKNHEVWJwYZqkStjuaFNLviPouGpA1TZrdwJNCF7tK7qkaggq/mdzWIHfCK6/B3t9rP9mBy/tcoLtazENWO7saHGzMNZEKOuVFp1BtNN2DBjjiF/5wn+Kr33nT+D3/5v/BV/62v8R681aC9SyiphMmxUKzyh5riSv3b09DOOoolqwxZ4SEgm4EEqG7rGsgB1LBiODsUBIs6mQ+sPcmGA7e8mgkhGse2coQYWm8qTeRNCIhyAQsta/5qtpcUBb+07E9TXlRchOdOoBwhii7V1SbQSM7NWUjdxhZFvzSrqf1mvM0wYu0BhjwM50Dml3pwHO9qWOSVAkxGTKwNEEzcxoarGDFp0FkSqgJdWvOl4HiyCCaqGgg0ks5mv5PmP34LJ9/KjzSm3PUIEnqkAHqBUKKllCxRWLzMgy1eRvFZrKGTmrCJ9+hIsj6loDAmLSYsda7DoOug6h/iKzqL8W1GYGKBgDJqAQxB+ex5IIWMcbAfBDd12P//Do+9R/DgESTTkaEVFMUVys6MMIyGSFXDFoAVtKQLKunHBfmlRoCgy8e7OPt08n8DfwScw8I5fZRAw0kSXJhUVRC2Ok6PgICZIo+Vk4IfGgvxuo2Pwot4NRCwCAWuBKXaJQQXX3w9yr0EmgY9Y6QLkYpvsrxX0f8fCoBd8WMdTfQWS5ZbIObFQB4yCCFAbsBN2hpzljnm0uGJhWmFDmDJ5VUFG/ygRR/vKWx1/KMZWCTZ6x3mwwTRPYOjNFto7nAsg0oUwTphi1h2fJmNeHmA8PMK9XKJs1iGctLNKMriVBLLSpCUG1Ma/ZfzaeubkDj81nupoVAsWEIYQqiiIicMI3A4iueG7JGnIbLyaEybl2dkAIkDjgP1/zUnzbpbfiv1z1UnzvhTcrGExa8OUEE7L4q+SCb8OH8FPybLwivx8sK+SORNmLTdWkDrjaXjH/GO7XeCjv+7j5akzN72mLQAN8FwzQZwWA7seo5KIWO4ZaiNDbLamdd2MINYmp+1LzRNQ/1/dcPZ3Fyx94PRZlY39H3fcIjSSpn+Memq/JBlxUH44cIBETA+FmU33tEWp3peB7j7Rz6klvMagsVSnF7ggaWGyvURC4vfc4HctxxBwzChfM04DFOBjozAilIBo4DyIlEXGGiBaCaPfwVBMSnIuRjExYhQqK2VABWQzijki7Fyp2WhebjVN1cNrzIHzixE0occB9ccQyAE8qZ6xbx+WFD54s0o+0BKwliF0MsiYd7Bt8jEIIrZiTyFBJPSKAa8/ehmsu3IUkBcUSWfpRJtZC1ESm/DPQ5kbFjxyFNRyiL5ZqxRsWO9lajR0W4ETbSviwtY+ONCbd59b3wdecFYkGbt2S6/1qQWK1KfXhglGt+K9PYLl4Hx95vpI16063PV5Xej2OfHdby10QC7Md/fPH5IhBu2SwxU3SB/ndrtsT4Z2I6nx2MrG3NsaGlbDGxSrUoJZTYUwXStYvUkK+g+p+Xx3XQp0j/cPPKcaIYRgxjiP2R2CxWNQkZ78nNNe2m7smmCRe0OkCViSg6BiB3YMQQZEsHqRKeBIrXPaODMHi0ZwSUh4gyZiYfg8d1zTSRTUt/X5+ZIzoCr+TtDXbz/uWtHWBLyNdmkC1/65iW6UmMlTsrVsreZugmV2AyN8jbN2TyuVromTEg7M+cWoCss90VqgMYv6IC6aqiGvoyPMujqd7n36Gi1y0T1EshLfaLv71PI4WeVQ71HnnYI35A6g+50PQezMionN51s6M8zwjl9yE0ohMdD5UoZV+O3QfTENJqdh0Peqe0j3VPUEehwvZXt0S4jj6Hp84wGW2wI/gAltQu6QURt/nP/39fLjjygUyaGuut//d/npdNNHkYVBCCZHZSuBUVOH5aTPhcLXS7k2HK6xXE8psRXpJSRpjUpEv70J2MC6wOlhhvVphHSYQNiCZAMe0KCCSvndIAxbDiMWwULGpURsChJQs4alJfIJiaSlE7ZRjMXhK2sUtZ+tQZpiO/3ecji07aHv5VeUipvwg7k9X43PzLf2r63scY9LDfS7ZMiN9HKD/3p7jKmpuJALi6neqyNRkDxWOYcsgtk47Giv/crkRnx/uw9VBmyrknDFNE9brNTabNXJR/3YcR8zjjLIolUifp6mSK5i5CVxtNoqHzRPyPBvBSI8QApKR/JbLJZY7S4gsa8zV+2cqPCco5EIe5WH9IuDyteI+ayDda4moEt9d1M7jlr4j4ZavuzXWfl5Sz4/rv32Q1BZQU4bUayoFZdZkt4tC5dL+7c8VE0sqhQ2rMlvCEcVyDHofzMex+1WLcF3Ab561Mz0RYgjVP3IsRz1dxY8SwXBtfaRj5i+WYucdPD5S58UkuPQelObLFeusHaMSFzIzNjkblm++CulriBkpT3jUfe9DSAkDZyCi+kn6lRYrwcSQxLCTjjCjxc2l4sJ6KL4vQhgXS+zt7WOxWCJEMmI7W9GQxtqlth+zPJU1m1FPxfJWRcDecAbNN3G/VvGN0J6L0H2ZAQqsPlwgBA42B3QtjMMGE4JiM14YI8Bsgo+KYFhuw8K3YOJaQOerixhuYvszA4D5b3ZDKxnCroy6HImvI4Wm2t4GcjIZ1wJ998LcD1EiidsnXSN9fOmi9wTFCDWOKibArOOp+flQQ20hMlzTVo1hwpkifml8Lp6NT5n/YfFIMFJWtE7tKSCZeBVBSZrjkLAYx7+cxfGXdIwxKu9CdA7q9NZxCY6LkWBIGu8sFguMo4pZhgAwSs01i/v+Yvnkzg/3wqCGGXWhH1DtMgAVNut9ws4nEl/33Ya5ha2xCvb43+cw4k1P+ma84LY/wFue/I14ySdfveXLVr8ukIoCiglKhKCxSsmQKEghWBEmO6KncX2ZNQvM0Nx4sKKyaHGrOOaoInlzVoHVYPfGm9PUa0ETh/vih96E37nha/Al59+KnVDwXeu34D/vvRR/b3gvppKxCAHfvH8bfu3+m/GDNz6A1eFJYBS8+KoEQsDAE2QO5lPrOhFbk9qkqICYUXgGRMU9y5wxTxPCuIO9/V0M4wjOs4rEThP+1Vvvx7c8fhf/yzvP4J+/4GrsL6ju317ySJCG76MR21GsMMO7Z1o+swhhLnqfpk3BiIJMGTMDGQQGY0yApIAAxZarmtQVtqwYP2O601/JsVwOiAFIwYholquIo4q2qdCU7fsBoEhNXFS0KQ0CG4aIbq16wYPAWHpAUIvaolXg3V/yw3jK238R7/ry/w7P/f3/VQWi/LDPrLa196nQXFVyoVxqDc+qvyZW9GgxHlGPQTUyXoMddNCe+safxPu/4h/i2a//976L1fEM0fPDV46ZPPpcrC/gee/8BYx5XbGiHm/M7DlVbjWJfn3U5q5idFQ/11+5FctRF4fYj5Y7AgIpea9irnCsgVXQENBmL8yX+Z3b1tAPL871e0Ct+aVh8t70UQeju6Z+7OQKH23jd0WX78jrNbdgRbBo437cjp3FAgfzoe73UV2qmQvW84xFnDGEgERWrGy+jJKWxVwm49/AuESi2FkMML/Naam6XxATOBQlcovHGI5TwnxXTRVLEcO4Jy3KEkaKI1gGJW6LNcwkLwIw7DCoD6JFMWw+6IzCGzBnE3wuIBLEQEjjAogBYVhisXMaOzunsVzsYBgIMY41p7FarwEBctE83vyk54BvejKGi2cRP+8rsH/rO3Bid4G9nV0shgF/9vxvx/Pf//v40y/6Lrzo9T8NFsHM2bo9byC8AVHBpRufjIObnowb3/bb8IZaFHTWlCwIFx7EM/74pzDMhyrASxrjgDXvtlwsIMMCiQbEuI9xXCKEAYIESHKvpIbRYjicUESMO9YAUf0AgXaL5nwIni6hzGvzI32sGMwZQNE9XawwhcV8FS3kVp/T7eJRLKaJC6iva8KUgAnZoGKOgkYyLzXv7eR5qk1U3ccF6d53nA6CxUZKcursxFF70Pn16lBbjCKdDQ31QxvR3riM7I1ZTUg5T5jLhJwVWyjzZCJTGSQF0bgM6jvp+lEeEJrIFFRYOVw6D/zqjyNMaxOfcrF0w3/D9h5CbpoNU29d6jsf1B5FpM6XFuuY3WRBlqI+oGM184x86SJ2f+Pfg9cHmIx3FCmCjAMybFa44S2/ins//5vx+Nf/dP2u0594F+5/zpdjefZe7N9zi91zj5uclau2u2KFRNg5PIdHf/xtuOcJz8NT3vbqrVHzUlgfttZ4Quoc7l/bMUevsCe0f6tNpPqUW1rixmMDWj4GndAUyPLoRCrQwgHRudzW9CHU8WnnpqdjxAETfNOTaVxluWzefvaPUry4TozDy5hZbYdyhExsitm42IY5i4+B4cP1Ij1fCIvnQoW3XVTjcj9avT8iwuqh+6+MW9sk8TVOf8Fb+ZnkKZufJlvPNb+JLnv90Z/F5hYRjHOoo//iH/lJ/Nk//yFwbn6bCiMmlEsFzhvLZ8/gE7/4n8CzNo9CIPXVCbq2rUHMYhzBzLh0161IH3gnTjzp6bj9N38BMs/q6wUAZucVWXLcweJt6D0NgdQnFekKNoEbv+zrkQ8u4epnvQDz+hDnP/FhHY4r5Cg+3f3sc/MglzAlxJiQ0qCYbRy38E82nNnzC+4/hBgRhtg1DNB4mvTElLN0nA4xTAyke5MBTVK0qAZkcVkQreSyRrMkpBx6E5wia7BGEkDOrYIY5hZNZMC5vmaLdXB1L/TC+Dp9/ZyAR8YJz10e4gPrJb7x5PmtmM7HhGwhE+rbVNRQT1M5ISDjEgO1ybKC9/AiKG1agSp6Wgu8zI9tjYsaBu78qD8IN+OJchY34xzIcOdgDrZi7hH/9vDJ+O/3P+lelMUTwXzk1vDH9y21K17k78N0xH47jrP1fy3X7SGx37VmE+1jfKwELaZ1GwGGEwLYhKhqVG2/X0Ub/N29j2CPcruXXGqxnrAWlHnRpYoDaaMWVBxM2pyxf9YoU8R4pur2o+j+JyUqfpPVjy08gyVjq2bpmBxFq/cQWBAotBqr3ly3ABt3vej78IgP/R52Lj6gf5J2zytfzSa7NptqGGEt+OvmhZDxZMnWuXgdQ3B3Thu2HsUEuxi+952IAhiMXGZkVo69NxZszbK08YoII4aIFKOJ8ycVgRlH5Y4Mg+5LHHSY7Rrd8yniDz2HDz7hK/Doi3fgURfvgrOGQuhq2mBzxxr7KnfR7zcBxDoGrPbKxaHcd8suMLCZABZc4oB/efsSrzx1Fv/xzI347nhe12hWv0EFjtRullKQWX3bzbzBPKt4wiBqP0BWOGw5RIgKarnwumKEZKJ90GYPFBGKrQz3qdkfyoF1QERrFE0UpXL2CcKaj9Atl+oaE7bmFCYeVEpBLoxZBHOxuLZkTMUbYmXLF2gh9HE7GqbV4h/dDxrezkAtMQomsOSS7eHigzj5m/8ScX1BbZ7ZI2/iXbG5uue1BexxDshjAvVlnK/uDdHVf7V9IWydef0sr2FrsSN5lXvzbcjmta3h1gy326PsswUCKoIMtr3QirGFUFTNTteB+TfFmjLPbIJTXqycc8vBFgbfcxvkl/4NaDpUDK9W6grw+d8AnH8AePoXAdMGuOtjKMxaQyOCVArSnDCkGSGGGqsOkaBaocaLzwV5Ll0DqUnPZZpqYw+57w6E//j3EVaXlEscAzJHvZaUag2T+i/aEtvriapfJ+KFSTVmBrbjtTbY/h5UDhv3OR3PB1r8UAExQM8BBLLmMs4hL8yWw+Mm3nfM8MWhNtSA5cjE7KeOX+NX+4ymK0Qlfkh3j9A7MPZvuvyN4s6dfq/YnuCW3+0afM1079/mzrT153W5zU0yf5KjcoJTy6M0QRuGIGiuj6iKGVTco2IedqNKQf7QmxE+/jZQ2QAx1XpfCBD/8D9h+rp/jPgHP641AT7uojgR7V+N8tK/g93f+n+3WmP7AiKA8jnsveFnEb2RtmHprX4vIAVCMl5USoPWXg1JRelTUv6l+aAIcQsgrvj/VhOHzvZtjZPbHUHN5RuW4U1BHFP0ted41fanbj93xZXQuVGXxd1H39j5V33cd9ww/J2dUYX0NlpAnxJBMCg3bTliXC4wLkakxYCd3T0MyyXiYsT58xdwcP4ipsOEMk9AFqzXK5zLGcgZmDOCMILsgIZBheSJdLyNG19YMM8ZYn5qGBI8k0ZWuMnQGqUtDneXB/M9S2ObCFthVaCwlOb3O387poQ0BAxDws5yid2dBZaLESmp7NIMbSLmnMf99VmUOCDTrOEJMwJpnTE4QmvVIpgHUADSEJFmrcNhEyHPXDCXjM00YT1tsJk2mOYJRbjWz9XGdV3jacUKdN/QZrCCzIRXPf0V+OIP/hp+40lfjy96+88ors+O3U7IOSMEYIQgZq0PoqAL2Gv8XJClCIz3rGuRQzROARnPO4OoYI4ZMUzKeYwqILcYRywWUEGxZI1YAKizYXuN8bFK1lpBSPOdt2wyOXbU9raL+4/ELTd/MR5573vx8ad8PZ70UcNOicyLorqmVQSm44cdo8MFyft4t9UAKaJbBVRwZC+rr0fzy+C+j3NhzU92IMu+q2+0WsVYbC3F6NUc5n8YBi9AFd1pMZj5NBXHdK6/5VZYY5HMpXKDavN1Ub9umrWe7mC1wqXDQ+XFrje2j2l9bkiDfV7L6hSRKj5VrLF7jBrH4cJZ4NU/DppWFTcBCCgCet3PQL78lZBX/x+KtYj5X0yYMiPMBavP+zrs3fUBhAdvRy4AM4FJm0Ye/Nq/xYlv+6e49Mv/CnGxVJwtJYQgiDwhLBY2LsrBQcxAjEDOqhdQtJlsIEJIquGgdQcRAm0CO+WC9TQjxqRxogjGpKotRpuqfkifW3C8UCpX07hV/lNUcYFD3Ubx7ff+Hn76US/HK+/6ja3YVSVZzObaRu8xjHJMjCpn/oaVfhw7f1G5i6X6sjUeMd+tgVPdri9Qeyim9VAdKTvIBNV8TrKKnxURzwigsZP8o6V9j8dJtnYcG3RsN8/aEJU5g2B1bSljHLTJYggJMH5FJIJE53sYBlPdfBOiBUGg9YAsyi8Mea05L6/FNSwGBByevB53fc5L8dg3/wyYTUALrRHlHV/4t3D9R/8In3zRd+Fxb/7PiPMayGTjv8F1f/rzuOvzvhNXv+7HcOlwpbon3dqXzt4TqM7FanOg88rtdikFKRZwDDU/GINiFmLNNz23wmxNqszvbEMnza+2h+JKhgnqHasYvEEdZtNMHM/nutf2mW0rzol0YSxp9aw1r4xurXTPuSfPOmAWG8K0KJzvaveBfc39+fP+M2ZesSU6kQklBnAKda4/dOMLEPeuwQUIbnvEM/Gksx+BMFlxkw4G1QSn3+MueVgDoB5kBUDmSIBNH82Eoay4PlLEQIOSnWJUp00AigkxLUzgJSHGASGNSGmpv4cEV5IjD96CVFCGvZbFBBFcS8oBjpqEJB0IPXUGm+IuYkIalyAkDIsBi0XE6hAo84AyzxV8ZLOGXgDqTuc8Zw2uYPabC/KmIM8Emta4ef16LJYLzMsRYbE0AjJXggm4gCWpcUgq/BOiiVfEBIpZFRHjDMQBFCdQHEBhgMQBTLGFxuzjM8DcDFsAsAUR2gJF0ESEaPdgT2IGM57VIWGpQjUQFTjIPbm+lKo2qQCHJjxqB4xuvmxb3O7fNUNzpZD+4Qhcn+VD1JArXuYJEDWpbERQYhefMK8VQLRfNeSHAfeArieGMFXDlKVgtoBhmjPKXJBnAXEjt3lxum9KlVThQbYnfihqMBNN+TmkKjLlZFEOgMSGh1Tp/C6p/4zVbXjL/tNxIh/gyYd3YA4RgQUyT1hfEsi0Rk4KxqcQEINPARvrog5aGUYgjaA0AiGBQ4SQ/tRODarGraTIUDcXQQfWuDFHEwMSI/hrYiKa6l8EMJq+j4B5A/FiT8oAZihtf4Mog62vBIQBxAkUBlX9JHfuUdeLmRnULcmmtZ9nsKHwfKeeqBVpFobkJjQlTBCOKBIxc8DMAUUichHt6riekHNBHCNirMitFlyEiMV0EePeLiJJC2Crw6POa4DPCZ0nMQQsxkFFUI6Zo3elw3kJfqa+X3VZXntdA6mCmBhEjKqGHZ2EpK+tQZbPK9iSNRumO4XZIReO6taVA1sqkqZ/a4kzB4Vje707iJYEC4TqiDlwsbO7Y0tYEEmwEsaUZ7XH0PUUU8R3fOAn8Yuf+0P4znf9b5DrrsU0rQ3MnrDZbLDZKBFqtbqEXFQcpBebSmlEjGT8RwJn7f4JFFBIBuQURNGEa+ABRPa8JZI0YT8CiKCSQVwQrVAkSAY4A9nWDrl98QVhNqu6ie5ANue0gYXBVrvvBu7629CIj6UBhOAqAKi2tQClgKx7InNB3mwwTWvM8wbgrMVbkTBEINqQO6EVbg6DFd2Zwni0ueQERDayQglWaLY1P4/fGgshYBgG7IwjEikAPc+z7mFGwvndvWfj6vk8nn/4cU06VeewJeykshrsbzC7Lw5GdYCeBQ1FCgoKZpmQZdaCPE/8WoAh4oQJ9YlS0uJXQAOUGCNSUpuYUkCy4ioNzRjFZkzwLgzC4DzDC8tKUFIG2Xxx0TmG4Afueyz+zbW34vvveBx+/PpPQTvEBRVJ5GSdE8zrZAZxBvEMkoxgxT1xEAwDbC8koFgwDu1A9uHNgNcdjHjmeBG/cvEGfGV+ALnMCnEGICT114IEBCYrujL1fwsSS9HtUgvwBKHYNQVdWy7AoFKxbDYJDaRygM6BjmoLfb46sCSAlI5c6+I2jVzrvkgVu6mpwS5wazRFEyZVUOQ3v/Bf4GVv+H9px0sJWKaIWRjD4RohbECkBXJcfXGdJyiKmlEIOj69aMRxOEwJWRWZGVaXAsnadomnGfNqhXm9BlJChO7r82aNabNGXq9QphVQzJ4WAxRKAYQQYzGAQ8f0D/afgcdO9+NPdp6EdPGDeEQ+D3Rj2eK3Bkb6eLjvpwRwnR9aeOGiG1yFMgBCguCV5/8EP3v6JfjBS2/GkAb7DA2CPdnJJtwDIiwo4/vntyGCkTvAvxeb0o84Yi9rYqAvqmlJcp2ngCCo7bcYtNbz2MeU3g7bd1RysW8o0uLM+tL+VOrYWiGJSE14tz/1/ipj5NWRHcA2LgeRApmP4EQu3fl6MNm/k1wszs6bpYmidKcGkAsOS/V1dO2TFRj56w1gNzCnJ+mgu47jeiwXI2KOBrhlbDaDCRYWlEBWRKDjXAVGDQwchgThBUIgIxrNJpiSwSmDjTDqxQSBtMM3YoKTwCFObLIYOHqxlc7JIJ1YE4AnXLoD77/qKbhKNrhp8wCQYh27VnS5LdC0VYCVsxEktoWVmj3Xw2Pz/vrddiqptCDGjBLV10MGAC0uQfe9Mfpe1+0b/r0x2JyxAmGbdx4j9YcXsnnHAEITvqpxrZ5B/X4A1WdgMr/c5mUltViRchPE4TZnbZyl+7cc/VmJJlR9UO9G5DGfcBPnAVA5GAK3W61gxQUFuBRN3FmCWt9nhUfUpF1CcD+R6rj1/tVxOAxR0iSCH3XT13H1cKq+nlxA1gja6IvzAM88uKAC52IIlHagaqQVtYlOjpXu0Wxs9+V1U/D5q8mUxThiuVhisVhguVyo8HAIVn5mxAFb08yiQnMes+vOY8QrGzfSriIheFxOCKQdkWDC2RDtoJmt8IaC+24BKSaUNICHDC5Ju5P4vK+JwhbnwLfeK4lP+euw/W8nM1eSXyesVjs/dCJTXLzovBObKjanOVeiYJ3fRtSsQhzWDdTtgSb7eqJXqUkDoO2xXmDj1113d9m6pGoDQ4yaVDPB32gxWUraUUNYP4sNQ4LhbCwM7WpWLFb8633UtYbmU0m9p7bvE2sXWi8+83tMFpOL3nfh1ilyNgJdnmcjLpQqMLAlAqBfpOfiAomG5x+Bbmz/oFZA0/5QCcheRO3n2Pa+dk2XX+/2z6MCCDm0ucpbcW3Yvg47+iLn+hxQ/dKj4jn9eus/w8Wdgwmfb51rsWIAyzdsNjOmaVaR/BCxGEYbFyDFgCFGjCkhhQg+oaTkMS0wpgMMacQwrjEMA1brDcJmUxOFMQ0Y0oAhdj/t4d1siwg4KDH7XNrD+08+Di9+8P3NP7Du6So2xZ0A98OLdn02j+rW1pMTBGHcxA/g5nwW0RXNfU55fLAVF1/pc9ucJFx5DojtLQFcvR9mrmRU9z2zd+9BP1eBX5tvwPPjBbxWHo2XpYxlmjGMQxUpyznByaTVp/I4rDAyMghUhZKmacK03mCaNthsVHg9G5mn7nOGeQ3DgNnWu651FWcvpahQ1aQidO4P5HHeyhnlnBU3M7LM5cX6LZ/ExCq2Q+oPiNkg942KXNnWNAKZ+32df1YExZO74nRs8zid8N/FveKi5/NsNi9Xmzd3z2lSPFuBtBdXiuYcoOSwXnTLzy/PsX3WNGGaZitYD5AYjOyhYk1kRHvvZhZctDOQ/TxmuAcU+xMFAuyZqMXr5g8XEWRWoZuZC1LRog4lFCn1YrlYAOhcO/PVSylINIEkQwz3ozqWVPeWVsTSYQ0Wq4WgYhYuZsRGKC9cEChgb3cfe7snMcQBECUd1j4L3lDEc6CFgSiW+2MjVwmcqCqcAbZuxCEa6Q7WgUrlsPo4zpkUZHLXxBqTBNF8tNraAaBGsmdWxDPOE6YQkARIAv2/MCCECKcz9PiGC9vX7wa27V2Hz6hrbWNbI5htsTnf23QpcSXY9J/pnzebcJvHpVvFQjZWBCgxKxp2yYoLF5Em9B2Tu8b2k4wTYMR8CvgZej6+Ud6NX77564C3v73ajOAkkzRgGFPFvmOMNX80xHTs1lhKSee8CQ85NpTEfJMAhFAwJsLOOGJ3scRyHDEkAqggMwO5VL9Y41Yn9HT5ZbOjHse6sIMA1QfwvxOHGmcQBVhIY/7ekdjbDveLio21frwglgkvuuXVeOvNX48v+eiv6Gu794vjfJYPEGWIah4hZ6DMIBGUkFAsmE/R6OeiRYUFGRQixrjAuFhiWIxIgzYdmie2WGiCTMEEp4o2EDJ8J5gPJ0byKUXPbSEFX3//azEGQlwusJsEPxz+DP8f8v473pbsKO+Hv7VW997n3DBJI42EkJBAKAcQIEAggjHBJhmDDSZn2ViYDAZswJgoggEjbDBgog0ITDIghBACCQFCQgLliCQUJ8/ce8/Zu3utVe8fVbW6950R4f29Nvfze3s+e865++zQ3StU1VNPPbVV8esUbpA7+ZfXvZY8HTGLwFwAy4OX2cj0OgxohirF10/r5ENtntdV8+PLtEcQzp07x9nz572grDDvTcDyix95nm9+/m18yaOu4ij7WgUrbmW17sF4MhGTOXlfJDmBzRr2kDKlJeaqzM5tmVNhEGGs6vkXRbYmmlpzYJCBffpEAsIOj1eY0NQwJMZBydnzSBlIDckFHSqa6QWDruLR85rSIDXjQjRJRlQo1uk010aOImnPKUMIYdijqfKIZz+FF/3Dr+ERz/w+tBWi0ZblWfC1ECK5rGyfCzlYy0vHY8zemGC3Y1NJvLGEs1F7oYyYzRMlBBIlcjaSSNNFHvX07yTVyuzfGQVyI/GZuYsqBo72F4/6BO7/xudzzR1vBmAz7x1zWfPP7Lu1hfC4fc5SdLPsEoeHvTbuoGGDNm+H+DfqOJJ6gbJ/kjgmEeIZgotzDTz/gz6f93rWf7GVkS0H2iTWii4xqY/Z2v+I52DBM42E2IhulqtNNjbVxRdtLnTiIUk0V8Qx0hUwYr+v75NgjXqk9bh+AZOurGMzZMSLCZAMWZhr5WS/t/0kC5shs1Hz4RNG2CXiAC9etL2sOj69rBURI0ubLlWiYvuoiIkXeQrGhJu92N4Ix7P5P+I8mlbJdaYOs+F3eWRgw8C4EnQLIaRKU+tCnUiYYP2e2iZqnR0btjU7DlvOnjkGOWLcnmN7fB2b46vZjltShnm46PiIMk17Lp29wPnplJyFoxvfyO3X34ty/mquf9HT2G4zzHtmKm0aeMxzf4Lnf/ATeeQzf5hpvwPNVmiWZzTPKDMn974/tz38vTj/llfztvf9KN7lJb/rhZPNGswUK76WaWJO0C2GVlIbSJJN4EJGhrwlyTE5b0BHVI2LZZlaRVPzsVGfwgkkowyQjxjHc2yPlSFvqPMxJY2UdIlS9og024N6UbI1o4La8WErLALVZe+Jn1GQcbgGtK9XXa1bW2L2HcWbk1Rd+ajqJO8GpakL40XBLdQrrKi5756XA29+HBQaCj0fGluLo8kOO4ejTdyq1Qex5GzcV2leNNFaUOrdJkXoHz8CuxYTVHZJC3/Y7/n0pAtiZBaxqc6LPAAXZZ1a6V+0thz9mvt8DKHNw/y05RRbxwHmEAafL/RJliVBhqwxv5Wj297Kuz7jv5HX4t115l5/9nTblt2P7acnl2FJ7mOD7U/X3vh6rr7pDSRvzNF9aVFWBmWVHrD/6+oLdPXX5e6vsdPD++NZnOWJy23v5f8MHlYSs6lJO1+26lIkmw7GQvt/hxWYizjJenn256+gY3d6J5FfXzaTyHEVTHWkOZ8vITJ0IuCQrADC5qNhCE3XIlPLnI77GH6FXjZ+/RBWfpOfjfsokY/tU+H/wXF3e8rlOPtdcPR+gnf/3oOfrDAgNRzlCd/1U/zxN/1r3u+bn8Jz/90T46+0FjjQ+ryUurMiMk0DojBNe2tGJcJ2HNmcOWLOGx7xeV/Gq57ybVx65Yu59KqXIo5R3Pdj/jknb3wtt730z3jIE7+G1z31x9jfdrNjydKb9uWULRZO4rmz1rH+tz3nd3jAx34Kd7zqpVz4y1fdJVdw+fGOcg/r3LzKUnCkquz3E6iQ0kxwl+OzxJtaBD+11Gqf53hWLZWKMoogNIzTf2XhHmbDxXN8zZsniuMWbbE/1eOpZjk/DZvecWUhBBpsfrlgsKbD3GBsVB5ZSDMQRFpzA6a9oU/Ylgw8crvnYds9uduVy9Yha3fcz20BLi2ebGI1mRoix1gT0xCKuCznVte8ARFOSPxcfjif1/5idf9sTv1+uj/3apd4YbqBsVXupxf5r/JoPkdfyVkXGfrW3cP4irOv5TsvPoivPvdabM91e+y1BU+7cDX33CiPO3e6rGXRg+tVhG98/fX8hwfevHqN3YTl1q03opVVXmH7izMXQgBLTnsRpfeHrvN52sWpUCvTOiuRx3CMVsNHMTwteJZ0LrHt3Utd1IFVdVxM6PhUXTgj2tREbWvzxgCGi+7nidrmHsNfScdc7Z4lElmwdRZuX9QcASC89X0+k3u8/rm89bGfzP2e/z9Jp7ctzQl6rBycGhOODh+y8188Rg0YImJhxOI5bZaTSi2aSgrNc6fJ96/Aqzt27cPfG5G5L1+9IXDUMrUuNlVdhMkzCs4riIa22401KzN8270V95WNziI9Hpi9UPp1D/oHnL94I6+9/hHkOnOPS2+jtGb1OAfWeeHallYcv/X9PiVSbQy5gFojDBMyXPCb2pSTkxM2mw0iwhecy/zIrdfzRfJya1xTV/zqWoni8tKs1mg/z+yniXmakZx6LJN9j4nGUnFvKnizxkTK0TDWGqi2qjRRkhjWATiPVHsOp3MaYyMQgeQc/ma4kxjZmO6bN19DJa6lUaoVoJfWmGcTYjCBIecAOq/Z9vYrC/sI22P1uo5Nx6Rd7S+qxj1sixlaGv4B6fQCcY9wP0TS2m++3B8KN94KnZOvzy7Hvfqc2Iqbj9EifpsWP9xj6+CHh62NDcPZkSyc1wZifkjnNrKcXxTZsrJzVZWqJi2tIV67whebF/DOrTHVxrTiqkQ9Z3BUmGezpw6NNfU1/9xfY/iIz4ZX/xm87S9tNJoaVlRqz20Nw+A8XGvSMg6JIQvagkMaee/aG+2N//IpnP7YV1Iv3trXQLr9ZpIYfyzXxOgYQqmNIWfGnEhDxnqiCSGKgdp5CZYL02hm3fkHyyj3sQzRsLbw6NechrC4q7Cl7/HRBDQaNIXYW+wlkcNbNzy4Uo7NMAJug6VZfSIwAaWZsEBTi6XDJh265OE3hAWD6fgqXvf4z+Hhv/t9q9f5m5YkJIsPY0ZC4gbr8rHxDT0f2zGViH0ivgtHyWp4V8CM1Uar5aWWHHRCWgJNUOxDm5qQaVRmOGPBRTo89vR8EoDohNRija+c29AwHzRdugD/61so837xwdT3qqNzpH/8ZfD0H+bSP/pixl/7Xqs91nCnbf9I9SLkbPkzTHA/4l1EDKfURZDCztUsV/b75mw+53SHj7jkmw8alPb5udx4WY8xi1/J2vdr4fOtKvc9H7pkwf1TY+wuMzWLr3iwwOi2jfUjzk/9ntnazykzpOGAp3YlHJszoxU5p8Y8WRyiYn6W0hg2mTNXneVaUeRog24H8tGGs7fdzsXzd3Jy553sT07ZXzxhvnTK6aVLyNnr2H/015F/8zvQ1pg3W8Yhm9iULsITWRtjzdRsf0t4jJQSYolfqzercxfVDDtQY88CWye+zpIMzhu2n+N2RAV2ZfK5J7TRuExH2w1nzmw5OhoZB4vzrQ5cqSKdR1zqqn6qNRcTNN9Nm+0PKWWaDogYVxgKc9nxH48+gK/e/RFSZxPTnGd288Q0mxhUcDEsxdg6J6l6I1k3ATSv8ZvnQpkrj/39H+KZH/BEHvlb38Wb96fMZbbz9VkoKbHZjJyRRNqo6QSI2b7alDrbGrDvbMylWU5YMzMDsyhVSs8v09Rq5TCR2DFntrVSEXTIoBlDdX0fMMfBxXkrWoo3KbDPs/y34fminof1HCDqugaauOriTbzLG5/Hm+77HjzyJb9guBvY+0JEiSW8jK++0o7g1XR+NRFPreyuSN9npf/Pj3hNA00arjXJ6/I0Gd9suQ3hG4jn2KKGA2qrHdfzFiur95nPIIH1Ko4xLflJlciXtC6+WX3uHnCMvQGa+fkmsna633Hx5ISLJyec7vbs9nvMGxIGHRllqWNb7EY0yzXenpAYR0wfAUHKRcsfpOSyKB6v3nEz+svfj857VM0OOvOCeW7o+380R299NRcf9HjG00u0W97MXNVEXiShu0tc/LlvIbWZtNlYXjxnb2q2cH/pvPqBlAs5z52HLyjZYy3JIeRmnJSpFHb7/eIhuL2TzYZEonnjwm7Xw0i5RkjOAzo0qggUqyXVldhi2PuogT5uO77gr57KoGVlsBYfSde/t0WckbBxHa9amesr6CjF9qfS63dcayXqmQmfbMUV7784zt2W67S/2zyM5llVlaLuu4iYQF/33yNWtffJKuYKsbb4Tm218yhnjzlQJafKXLI1E1CQZNcweDOBqsJoCW+bN+GXJRPpbx5f1Gb51jKvBLmjTtibLOzPXcvr3/PjueElz+D17/sp3PDsn3KBKHeBRbj+D36KN3/kF3PDc36a6cLt3VY1t8H1wgXO/NqTubQ/sZipc2UxOy8hbJ26jgXxM+5xjdoWryJqlVrwGp3EkKxOPASfqte+DLUaftExqGUurH3D5c8Rxy6YZVxnxOy2p+lBPXtt1TGhsohLuaZQ0SV2Uta5x/BkV76uGmchNnjp5x5iaBpL1wS/Vv78X3f8HZhXy+K1C8x2QalxzRv/lDvOXM25ozO801tfRNtuqSkSfS7j0E82EarsqW8Sa+PDcgN8B2m+EI1gLSFYCLgKY0rkYePiMGEEUo/FWjPsQTVIjsm6zMUXZnogvYDyPgGI32NmuACAqv0eG6EDzE3FWgJLZsgjAyOvOnd/XlmP+bhLf+pd2+de0B2FVrWYomZ0XzUHzwH+amTp6s6klAlmjDCeCy0lZlFyzVY0Xme0jrScKTlbZ7TsZFoX35JkKsKkEdKADBvSOCJ528VANGW/HxmtpnCofSx9IvpmYnclAk6xbpi++6uaY2xITnNRnGrguxOlaxj+uykssi7UFlCbwrB4KUWM4N8w04VeQL0uZrzSQIshgkqfhrEOqvok1tqD04VLaVtF8oBZPBEd1xZOUPUgxIZAOzkbcZXOEITLAfTZvdI+znRHqQvduKCUCWMcikwJlqQkOaEwLQauo+e+1SaBD7jwMi/4TWgaoJnTP9VC3St7GoOYQ5SSMogXq4mYYy8DkgcTTksD5MxPXPsEPmh6Aw/UO5HxCBlHU+PWrQUesfOLzeAADtCEtAgSxIqDPIATNedJNkIrE3NrzMVIlzlVZDsgVLQ62b9mLw4NkRq7YNEVoBodtVT7XhOgdXc3Ahvo+3Akmap1zGnRUdSKXgLt0ZZomkwcS0wJuCimyj+7eJlEUGXfGB2LhyROyFH/7KU7U3S4zn0MnFCHgTRRdN8d3SvkWFuaNdFgAWbwKSEH77LkuxfupWzX6EmY5CRACya94Mg/Mpzf6I7SajWnWwyQ1BCZcmBdxXMfzS1ZsiSAqvQCIAtSbD/Gncgg0gYQZUkkgBD+sy5U9rwFaBlln0Crdd4Rd/jHtuezX/wDDGNCxnM0PeZN5+7PX9zjPfngl/40l05OuHTpIqf7HaqNMu+ZdiYCF7ZAGGgCpUNblabFxHzygLRCbTNSC2kezS4Ng+8jiSQb/6ABaiW1Rvby/6Ri4lNhf3KClgwRdKctqXeIEu0EawPJLflhJKVQt44CAYdU+rhFkrl5wUVBazyiQ5GJtKjOJCf81LKnTDtamdBWjSzuIXAO87niV9he66IL2RJrISJjjqsVYorfxxBfSmL+0JVG1gA4Oj6mlsKFixfNCZdM1epRR+b3jh/GRguv397AkU48cvd640nhtLOIHiXGxJPEUf8P9NWskWS0IpDaCpVCS0qTSqH0zjQBjEkXiBttP08D0U3LSDYb8jgyDE6cwcWiRBglk5PbBPf/hsHWYlOllUKXDBDzYJsneRHhB697NZ9/44P57/d5nXXOTM2FA2co5s/FHt+LCL1oJ+RdUwTr4gVBYtdfvFjkAcw8/uiI559s+bTxNeyPMpK2JGlun4Q8QRYlJ6VkyBVaFWoEK21mP1WGWqjDgG4aqnZPTMna1p/xbzxAEul2KbqbLf6ZdzVbzZMInHoiqQsWuKSUVk/yuQpxLQ5yNnMloe+dqQvweXEQyi99wL/nY57zzfzah34rH/6MrzG/SKyb1PGZI6ZiO9Ru32jFbNqQsnVKb8J+bpRp9mK0/5Mr5u9+pEic+KJIJCtg3U1WXHy6Yzo5YdrtYDOyceHHOk+0eaLME2Wa0DJ73LCI34YtNDtjc/FD73wxv371e/PYC6/k2tObmTn0oS8ntoVARhxNlTrPK7/eQafV54gYQSKTuYqZf3PxOSZYmcYlURzJHV3I3/37YQmkWQFPq73iMNbU/pnmNzd+5poP5WPv+CPOt1NP1dj/LBYUTyKbsEHr5++fpct3szqHjmqrx0qyJBbXxMc18VcdiOvdZdS7QUUXnbXAgJ/kggf7WIgBsEmxQlxwDoj/XdtqhJZ7EmDQ5SJTy2Avvxy+30jDzW7WAWntbj/rsnG60o6joyMGJ3HXUtjvt9RavVikUqslRbSaAMOQo3CpWeLK1c5rdZGpaaaMM3Uz0tSKmKujZoL5eOMoLmxnjVdqmax4ieR+p/mg4PNoteYSymMvvMbEAcaxEy3uUizf15ssnSyaEykdc1jPoaWIGn9fgpAzaIrK8vqcM8M4MOroANPynSKCjn6udyM0FcVUyUV6wPAmxYtdfa9fxxwSvp2DcTHPxEm42e+V+GcG6Clx7k1p2UVvOLwHZZocq2mXiU3pKim8Wvc9aayd8GFhsK1b268BaX0f09XnCJbK0gAW+2c7TlSLA5mOB4U/INEB1PbcKHex+2t7uAmZFyeCXTlHFAnEdXaxJydT0g737Ni77JoDi7DrH3KmDMf85oM+nU+79TfdRjioXU1sqjWfIwBdHN0xlur+ftP1t4HjDeqouWRLzG/Gke1my9H2iDPHZzjaHrHZGlnQBIvDj/POLQp1aNSh0kpDXVigSUPTsk4GJxzlZOA9ErhrcxxHmbHkbp0r82Sdu2o1253zwDBurEPeONJS7QXLshKUDruxjoQPf6PbvuX1cvC3iJFaiHq1pcNCrJm6ej4E06o/X71bRhC/aifyLSIi0RG01uLJaiOULp1Sal9LaxsYe0YI83pobT5TYCms9pAQj86Dje2RiYdtthuGHPtUQ4p1HA1SsmqlqXX/Rddpov93H++4sMz8MMMlVz6Rvyf1ZhFGcg8xiFIK8+SFVi640pNyIaricy0EUugEuIVOuU6Am88vyz4Tz9lvfU6v/bDYry9/bfz6jnyVXrTVz+muNpe7e04WMuT6nsbvKfbH+Ntl9nj9/WFn4z6H/a41iquln0Otlf1uT5msM2tOA2kDYx4sEhdLQI/ZhKaOtseG+5FIalIl1kHJCgNySszFilyzi0sNebAcRDJbnCUKxU0pIolyMh7x/GsezHucvJE/uvohPPrSn1mx35AZR9vDSqm9qMbv7BXnMy6F7bGj+jhgsbbIgtH1Q5f5wOp6hPVorb9j9dbL5hRqGH/4I601F5kyUaNaQ/ADzzHY61JK/LPjW/iJ0xv46O2t3LvASdlQSmU6MoF5UEqxZGqQ48dxtGLn8BFrXYokd3v2ux373Y5p2jPPU0+OXu5/juNICA7HTpGSfdd+v2fa7VdCU8I8TYvIlJM7hqEyDK1/bvLEd6xBwyaWNdPUYhXj91nsH4X36/W5xKqRH1g977avd0arrfuwSPjeEoCivTeEFP38jZg1L/auWgfo+HdvSqP4WgbJdFJZFJxZp2ojeKbqnzkZ8WueJsZxoOWMtgGtlQXQMKy0dzYTIYvtzVmE4QoT2B7Stt/OIN5KgkS1NAsmbjjT2LXCWAsbzVQyAzjeFJ3LV8UWaYkjDsZeG0lDGEeNaiYdffSiTKA1Zm2eN1MfI8PFGjamApw/d47rrr6Gc2fOMOYNg2ZyS0hVzwE4HaCZyJSmitSKlOaE9OLNGkzdoHcM0yXnbtg3vYgtumwRMYcagcuutTm5G0/NrfDyvOxBrc20miiz4ZMiQlYs4ZPbkseSg22s7zmJJe4SSTQthhM6VmdIYdg/8YIA+wwNSCrR7V7sN5ZzcRwxfjali/K25doBK/wJLEIEV20xoQ+MoNFBpSSk1jyPpb5m4v54bKfKZ+oL+Yn0aN7v9f+T53ocg6rHJcn9+MHyoKqIJsbBu9fDFYfhV7XcggqoJar8L5mhCbXu2Ujl3Dhw1TZx1XbLkYxWy5OUQoU0WNfGUpCmjClRJZl9arFPO/FOE6qVAj2mR7z4H4tvF9Fmm0PhzuQkndgjoh4DY/c/GXbfXKHB8iU2hmemS3zQK37e5qDbiZhDhimPTlgqgJCrx/eT0lqhNJi1kRk53mSOJdG0Ms0nKJU8DmzOnOH4/D04PncN4/Gx558rYym0aU/ZnYIou/0peXdC3e8st1QqOY3kcaSmxBR8lGYIwTaPZt/GrQmAtYla1IXChUJjM80wjEi+aHmONCJ5Qx6PkM0WHY9oOdFSAaluA6I5hpLINBVO9zNzS5y/+jrOXX0dkgamuTDNe8o8o9oYUuMb3uu8kUJbhaQkGa1IRSyn01qzfKCaNE+rZmuTwkBi8HxeypmcjkhS2JfKTjJ1O3CpQGozR6LU6nMLw3U2g/Q1P3auhxfPCGYwubJwj82YTTw1NSQbMKypIYMRvKx/kB7kCp2/58Rnx9Aw3C+piVCA5afFN80wk6pmW4yebzyixzz9W/H0Wo8/IArClEEXYtpBXOJbZ/hFsODR3beLJhVeQCgii4i8LJ6tu8QgGFdEEqnOtMDCZYEdDl3k5f0vffhH805vfzmvffcP4WGv+l3OXbzJ7pfjYSa8sI7xLG8mafmcOA5iw46TrzFHj58IfhgLNtJAAoPo92GFC0IXVf/jD3sSj3vWj/CCD/5CHvus/7rkNTXIjM05LnYPLAfs3dsjDHRuStj7HmXbwuByJMJyCUv8p547UvHCuCiuO4jr1zHL8vf410JiPYxdr5hDluJG8zuglMbUJsp7vh/1fg9g90e/a2tmGHxuOj6YhTQEfr4SDVKP7bLlg4hH/L1jasvrIfIpdk4xqSu2X2ZVaxhJozCSaYg0YPbcXvIYpYIa3l7bgGrCmkvOtDqZn9acsC4DR0dHbDgmj+fYbM+zObqWYbyKnEegkJtQjwxDm6cd03yKUjneH1F0z7VvfRXytsJw/izD6A0fscIMyo7H/NaTaXNhTqM18tyObMZMPhpps3J08laGN7+UC/d7KA/5i98kn9siArUWmE3I1IZHDYPIsvDEcDEgMQ5BlhGTm7MmZOiAEqLa1QSsTY/LxBmbeJ4u0RiQ4YgNJhDZ8sAoiVlGSj5FdSKlAhhPweQM545HB1SkKn0fWu9H4cHqCiON4u4mjoOh5vdqpXqjtVqN39GbivmqbWgnTKsGqX4l4nIFHZev/YUEf/eP/jpiX7l8xdD3HIkXxjt7bLYITrVWoRXHrJSc6PmjeH/gIyLal2sXpYp9FbroVOCAqe910j9MV+d8+TWtj4hp4l/LnFnsahTTlrlS5sLNH/IvSC//U3jFnzLvJxvvlNAQHl1/nyppJTIl4oKE1Z7Tu9uTV3FvFwsHTq6+J6967D/iMc/8yX7ufYw8Rrs8l2jvXdno9Zdcdif0Hf1LMVvfZ4I/ufyj4ych3gHq9irmwlI31rDxUzksTuprdT2XRFajs5z7OxrPv8/jwh23Ov8P4hxrYuEarvwiu6YC7vckbaRoCoXNycCKTVjC7pz5aUrKdE4OwOI3Lc6o6sFM9L8v+2D4lXd7M1f3vX+e4xXLTIjvWPwOYCl0W70mXY5RXeZjHjwf39efS46hBNYHz/7qz+CDnvzTPOdrPtNtXvDAEkMeV+vA1sBDvvAredNv/Dynb3sTINZYcrBmCtNc0Dzy3v/ueyEl3v2JX8Vf/vj3Gu+Syv3+8T+h3HEz1z3mfXjgv/hCXv4j38mDP+dLeMWPfTfl0p2gyuiAX23VGgMq3kRqyVFoLbzhV3/G/G21GdJ92ctwYgXDkFZH+O7LvFjtbxpC/clFH3P3rVtzoZBaLB7P5t9mx56SY6uG/wuSmxfgBVv4yjkiN75w4K2eQbrNj1y8kKrQkvtoIo49QmyGJg7awPl8JtzeDFpoCw8o1igiaPLPEV/hsYdFjMEimTSEr3GwVa7XVXdYlgv0Pb8149H3WC1EZnWxl4f5WsO48bz5pMKPD4/hU+YX8xPjI/ms+uJ+3wA+mLfwm/mBPFpv4X7phP8uj+ZT5NX8F30EX8rLSApfc/QKvuPSQ/n3Z1/V0+0JbA9IwrMunWOb4XX7geN8xKPP7Pte901vup6vfedb2KB87evvyTc94Gb+w+uv5xsfeEu/9IOf/f7RjYSuN003DiEYFTltXTU1wv235TWtf0Hq97t1Hn6ISpnwuAuLN/P54nVWN1T9u9vy3f5xPd5ALDZYxZKXr+2lSWbxhvUzpezvEgNeCUdpIQapBgDpgj3Y5PP7mhLv/Gc/xxve/wu574t/hc3u9p7/81Hw0HvlUcQ4IVSPmYmYS5b9rCvVNxOOa02x5rARczjHJHIiqwhYnNu2bvpWqRStNC5rlnV5kzrx4kEvbIzmwpKM3Rs212KA1PfgpRGr5fjm2njnVzyD1zz647nXW/6c7S2v45IY3yFyVr152nJzLNYMkathsPqflBlTZtxUxlLZbDZ9jpUyszs5tfP0nNoIfGF5A/syMU+nzGVyfsYikBFpr2ji50p2NJS5VbTMiDe9qc19OqzmBHx/zImhJciCNOmF3VHnZ+K8+Bf5ftjWfh4gilRdhN7qen1inB9vgGYchMglRJOExuwNS0prXmAZfr1LksSYXmFHw/NDplR3l79HCuTunu++ojdzjtd1/C6AO7eTyrL/H36kXPbrsg8fxAEHvln4HhELH/r38WGxNrrPHvGIr9XW1Iyt+5s9nm4Ltz7q4axsKsUFdQwsfJ/S+SmT762xtiPHtKwzaRinSw2TBsN3ytN+zPeTJXdrTS3sjM98xU9y+j2fA+K5cFWG5Pvkw5+AXn8/pt/5UVqp3niice5f/mfu/Nlv4vy//mFu/57PhOnEc5pem5ezrfGcTUjAa2ZJ1sRe1/siET/ZXpMQc8wj7xzj1v2O+LuPm9BziIe4CCxLUnpcYHuxC/74axuHe13gLVfisR2c4doamhq1hgAGSAGhUGrr5Y7r1bHYEvqSKJtjXvUhT+Ld/vDHecWH/Gse9ntPIeZjvKOPw+qzWN2nhW/gr+hjId286uEZ0MXbBDR5/U2sd42YzPKWoibcL62BRtMf7U0SGovIVK8/7Xv8coQAbcOEYVoVsjZSMwyHcuL2vfU1qKrIdCvyS9/O0cd9OdPP/HvHDlJf9dagTklqtjNpyMPoIvDRH2aPqipJXfRb49yjltzsbXBE1zzNNfcialeW/S14+235Ro3nbb9Y+IMQFfwhZHr5thzcIaDj7weAtHbJnWVvXS+0UMSMFelzIvBV429lkl5ZuejbL91KcxH2VptzKxRaoVApCdLxwHE+xzzANVTSJnHdPa9lf+mU0zsvcOG227nlrTdx29tu4oJskE9/Mic/94381T/5Cu7569/B8dGWcRgYXVDKxsC8r1Gs2eKYB8p2y5ST88bdJ6jFhKZ8nloZkvlh2ZuWjuORNWUcR8bxiM24YRgGIn6utTLmgTkNzHmgNRNg224GjoYNY8q+F9vcON6MlCyUuTDNZs9qbSgFxETUUhYG9bUkiiahktnXmbafKHrKfz77MXzurc/gm677CL7k7b9CKSa2s58Lc3DFJVlNtTgfa27sJ3+d85emaWba79mf7pi9ceW8nzjzoi/iVdO+axuklNgcbTk6OmJ7fMSRZJgaOjUmKaQ5cF38mhYBjdp9L6HqQAWqJFqqZmtbQYvVQwswNuVIhCkl5ixMNDZ15ni7ZRyCi29CsubFKRmv6XEfdogGtWr7k2qx/VXsfiSPCu5z25u41+1/RSV3IUsRr2HwJRhrOudVzfcVdOScPVaQvk91HMjjNXU/cmHbLseC+asJH/d/u+DRQZ2WLLF3itoXcaffYm/E6xii6cHqe2SFS0pr/qgm5B2YVIN5XgRhSzERtf08s9vtbI7WSlHjjsw+90/2e/b7idlFqazOwoSmNAk6i2E6BGxgvmLYurlU46HIQEoWf1rNdTIb05LzVBzFlNrtkXg+X7EYWf/wl+DDP5vxZX/AfPObmcvMvsxMtfSxyfMeGTJRyVVsudvOnpK7DuLYsft+OSHVaiJMOFJ7fj4E5XZtMqGa/cy8nSjTTJsLWs+YTU1W71SHgVIbIhUaVhvbcQzBavqcc0CM5RLrR6xh9MVGxkSfm/vOi4Dx0pw6RPya49dm3mSZE0kXfZkr6Ki1WmO0LqpUHV9cPLLuVwPBT3vJR3wtD/ndH2DYXYR1bB+ct6ZLHAOL/5ISmj0X4ntZrFnD2qI24vA81eOh2tSE/ppSSu382SEl5+ab6FMpjWEwGxk4QfI4x3JpiZxs/0+tmY0VWxchiNRrBf3ftVXSHTdxnxf8Gm955Edww2//EKfzdCjgmASZJq7+5e9gp41Tv/bg5pqIXOuxWo1YzS84RTM0j41CzyF3kXFcF6GBYxXGWXSBOY8YTU/ErUj4T6o0raQWTVtjPDnEJvzp5JgzvabUzrPve31NGD5hWjkL99jGo3Q/pFZdrZHw+bTHWRFr2WpdYgF8Z7c8uglQm0lYxYi6/uy/ed7/rYWmUnREiUldLSlqxl64z6ufyfntMfX4mDIM5CRmlHRJZC6HTygMCKkBhuC4X4Col+ETjWqbSWW5QAfWgihsl5Ss6EehOvGqNeO/tQTiG6H0hRfvXSUYezZLWcSJxJ31GCIWALo6GBj4y5BgUF7XruPP23U8eLyNZ+b34iOml7GZrHNz78gUgEcpaG3eiXjqgVXT6l2OZ4p3AEyKdR2arVC+tWrCUyWjw0CbJ3dyDUSMn5JCkCfa52YT+Ri35PGIYZzI49ZFqIzChozugiWUJRGjK8GveA43quZYSA+eDDUwo5bUt0H1wMyd9VLmrshmcy5IqC4QoaY8h643Rl093tERnh622fqrrzSyRhTdc+Do3eVVl/08fEtFesHeuhiiE7BDPCU+QYQ8JDLDodCUC9LExtifS0uHSFIGCXEpIzVFMjaSZ0G0YQVSWYAchcTJuy82d7QGNDXb2JslT0stlFbY1dnIJFpdcMOLkrPNaXtsSMPIr9/3w3nE7a/gEkSwNQABAABJREFUN65+BB9z8cXce74DGTYwjgwb6+5tolbueNlOj1TvZNHVDb1joAMeCUvYp9EFsWZBtJhQg3qySD1BJQ5USCO52A/JCDGkjKZm/66x8cexIpNIYAOy2iOdWOHJKokEoIPokTSjgzQWnEdn0TIXdrsd+zm6LkVNXSSTrTtvBMmWeDYBvHmeKNW6pNj7QugId2bpxjqStVfUsQLf4nA4uQudLaJ5PipCn/NhZ4LsKe6oSB68u5B2oRZ1wp+pqlvhsaoB26M79pLMwZHkyRDUktfNyEV5gCxDn+9gQksHxSDiXRjcoQMHOuIamikER5H0sBk5PntMznD27BFtnqnz7IVoRoIziN+u8Zbjd+LP3umDeOTNL+CPHvyJPO4VPw+cYbMZURGGYWTcbElDorXKNE2kMtOGATkaaZhy69BqX6eIKedKnpFhJOWBYdgwjhsYBrOnrhieqoH0Azb3U2ukViwhX4HqBfYxpOLqyUR3LXWhQnOhss+D3lWRfmt9Pngyd52oq5YwDkE33IYFwGfJ5UKbZ8o80eoMLfpjKCavWRCqkS2SkJL26qA0WHcJycmBT1PZrs1FJxVSFIjHfixLl5Ar7ZjrbMmQUiyYyc0LuWy//wf7l/FrR+/BA+abePT0xtVedzl1z35agZ/9O7rxxd97oXtXeC1G4kyNJtYptHhw0NdMiCO68CarNdRFrbCAJ6XCXDJfdeYf8T3z0+1VfssNL6p0b7ypiUq1hGhBa/YO5fbnJELKiR+79s9hypATmsRskYfhAF1JfC1cwRIkVE1oM+VpkEWwogX5svCodhsPzxO1FYbRCFL2LQ1qomSog1BKopZELQNl3lNKsk4t1XzU0gJ8C/KFFSzGkcQUfVUNdAvAfenysARSJriwAhkIe+afHx/qAZe6UJ49bG+Ke7Gsd+35RTfjoSPAJ/7JN/PUJ/wHPvqZX8VMEHSVlIRxzGw3GwOj2kzVaonupOQMw2Aq0VW1x4dX0jGkwVTIMQGvISVaqZy2E/a7PaeXLjHtrCC3JqGG0En1ZHt02zI1GyTmEE7SqGG/3UK2xj++5Y+8c8O6qMTWVRdd9EA9DhF6oqgLT0SCdXWYMnTuoo2ikFoz25ozrxnuwQvSvfnU9koraI7i3FXhMsQ2EUTelS1fuczr5Gd/TpWnXvsEPuKO5/OL13wQn3LL73LcpvgjsfckXd4XSTbcv166r+hq7gco6nFTrBG0Az+XF7Gszyl+WkycOiil6vFMi+54cZ5x38XjY1AXNTLCxmIr4+Xqe+tSNLSI2ahqtz13J4JwcH7ho6QAjXS1D+jBOMUX36VY/go6jo6OmJ3IHeShnBKnDkZPOrlIipHHQpzB1kAI+SWyF0qGUGstFQafT6uxt+1pwRtMjGnwDuDitiT1e9qFWHxdZU+UDXnplJdT7n6EfYpDSSIHY9OV0NU+J3yfUDS3U1twD5Hc58a6UDbOZZ5mUkqMm5Fxs+mduoYysmnjXebqWjhD+3d4YWgH6WQhusBBQjbiWivQsjleqT3BZcnUIKCYvxDkkbiHJfbEVl0AZ7knqof718F+1vfDdpe1oJfF49rxDO3z/3Dem0/Z1klrXDw2GeEqyMDx97W4Raz5EMZ0mhBw5RU0wwpDC2JnOyTntS6QYj8k5V60njx+CpFJxi3PfswT+cg3/jK/+ICP4XP2f+TiR05IY00Y9o+VdDg23r2g78v9u9OKcI53nxvZjBs2my3bzZbt1h5hBy2mjjjCukEkF10Z8gCqvahzPZ45mdBU7yysjldSu92unuDd7/fs93sUZWzK713/OB7H23m3efZumg3Nbu+TRJ2CC2q9AxKq25I1zBaEGHU8R9fz+zJBwTXBsgvqd1JG3BNbY52s5d2ZqsdQpczU2YREaohNrRJs4fcTfsgK91js6UqATQzHoVlDgIWo68Mr0v3zNGTGccPR9tiFpkYXzvTCOME6WkWxkwLN7LokvSJjsv+Tx7oAaX001UXgTVaCDeEvujCsQvfp9tPEbj8tAjXTfvH1/BF+7yKmtPI3gQg61mTs8Pi6z8bysws6hYinyCLwGZ/H2s9Z+yqHONddCpL1ULBz2adXcbwsRV+HBdFLAYByaEfis9dFY73gpvt32v0E1SgMp895EwYq1GIJ8WEYDY9S7eJtqCX/5mI5n1JsPIdx5OjoyL5Ow6dIDJ4UFhdsM0Eplji9qRVjr+r+z9c97337q3jRVQ/kA298ESdqeOU4DIzjhs0wUodyF2HKK81fjJxL7rYpHcRFITZ4+RH+Ts99LVOLxVBZhYpq8pjCnj+YDy3saCTpWxdjKt41CLcl67kWYliff+YmRKCmjdkmsT0vJ2G3P2KaJlqrnRw/uACZCLTaKFr63I1uYpFzALqAW8QbYV1NMHFm2i++5Fpo6vTkhN3pDkTJOTFOownRzbP9nGaGcWSjG9uLJbnQlPmcJk5YQ4ueTrqLBLy2nuuw2y+XPfw5XXInYW6qRk506Z5mGBOopu5L2ItDLG9NoCir7kS15wabx+mn5+7JG9/3k3m3Z/zAqiBQlq7eMVlijTluVeIz3W5Wj196N3RtaLPdN2kUV+AiU0b4z+Kdjq+gYxi2Lu6lK1wQ1MXgccJMacpUrAvx3BpDa4xq8ZOktCTgw29JqcfkQZiufo8QMNHt1v0fNHJCjvs3pyOJJekRRQYlSyaXgTwMbDVxzdVXc9X5qxhSRkvtLHotzcWX4HYZ+JHd/fiac29mIAGzdSYTrAOymLCfEeVsTqhWKp7o1gpSfe9YcBp1HwxtPc9Vm82JqpVvvOnefOn5N1lDhJRJeWDcbpY8rjbLX9UEpaJS6NLxkt3mcmAP17bK8ktLjrJpo3bL7FkHiWKgVVEQgmSzg1EMuM5tBoEkunt1Ek74oq2yJgX3mDA56UsgqxXghJ6RVsPcW6tuT7Nhp92FcXsObLTwGeVPeGX4nim5jpt43OD7mt+qcRi7wLOIOOn0yjlmSxp5l8Nh8WFqFFtZMf/RmDi7HTges9kBAJoR80S9A7Jjzt2v8RisaQ8/bP0YuBa+BIqLlidydXKhYvO+4wHaSUoQTVkCWzOSrWpQERSpdPzerqm6f2VzoMf6Ip4vd6y6GfaRfbctpTr7XKyTXc3WYEYKaRDOnD/DmauvZXv+nmzP3ZPN2WsZj84aiZ8ZykTbnzLvLtoaLDPUmZM7bN+VBq1UhASDIEP4uRkRa6ZkHXFDeFNp80yb935+hWEzWcdyuWi5tjTCsEU3Z9DtWco4IUNGh+r3yopmk8/rgnC6r0wtc3z+Os5edR1pe8RcK1M1kll1kezW+tR20aMIFheM3wp83KfNJjZFzahmI2EiLqwkqGRqzdSWqcOGPZlaLV2OJLYpMeXEXJMTgNfFKG3B0sy62X6p7yDW/Xs6tpuRJJUhNxMltE0XydbBPiV1Xbtg6BrxLDk5Ool2YUVrHARD2K5mczOi9Oq/NV0K4kyAQL3QyBuHEbkZ6XauC/hdXiiSUhfvXYtMddwZWzO1LXFPksytD/1g2pmrueElv2W50JV4fLxOUgiJL8/Foaq87Z4P4bbr35WHveJpCPDIl/8WL3r0P+Uhr38uV+9uNcGgOE+xLGl8jirWGCaQ0BXIsY4NqwsOXh6LvaNY926P1fzvOJfft/f/3R/kTz70X/G4Z/znXphjVnCJZZsXocV1C2IYvhf+rIl+7lrb74jbp8viA/rHHcYZB0bb7e0aZ43fBRcvWXzg/lmXjdOVcgw5sznasqmZAoRo6+bh78nxAx/MpZtvJL/H+zO88LkMrZFzFP67wKEXUzW1604K0Jz/hN/nIHcaVzKETlaLDcPKLEeABArfesyuWtyXURMbpKAUmmak4mvBREsVy0NkNiTNhkNRaM3yEbU1lEzKG8bxmLS5ijyeY9ycZ9icJw1nyZKBmaTKXPa0NrHdnmG7PcOZ47PkAapuqDqBTgwykVIzm9uKFVWrMqDUodGYvIhZGJxbmDhiyJl7zW9heOONpOvOWdHmPMNeaTpYg67iNgJlcD5msBsSoxd8h782MA4bhmFLkqHjboqJsBoWFHMVEwNridSy8cMEshgxvzYQTeQ00PQU1R2qe1rbozqBi6GGfxBNDVA56HJr7nFgK4sQleEtHvOp+fe1eWzmee3SrIlU4EwRzy1iF6v5E/HIFYZ7dJxqNeX7Ga6wjMtqIAH3x/xNEW9fXsSyROC+z4n7GL3JQO3vTgJDXhV+d+wp/HXzl6IgdKHhCO0Lvwl+4QdJl+50kdN1ftY/TlfX4fZTl6/y+7HstP11/SZ4EW0zf7NWby5bC7e+38cib3g5+0c/AW6/hfk1fwEYXTe4q0uuUPp3+B/8BN7x3OjYRZ9TduzPXM3L3/cTePc/+y1e9oGfzCOe/fMLrhC/rWxjnIf2j5GD4kdZvw/FyPeHdqjbs8VU9fHpQAyLnQrbbIIQ9PdFw4E+r3wexmSxvdvPP87d/yfr+yAd/Lkij9NLd1qX+uCrSjLOd7cz5genNBzMWX+p19sf5gPjMBGq5TkhRMT83wcBvXsIsrpRsoyX9MLzVY7tsu/r71l/6GoYwndfvjcEnjEe+eXndODHxVyQy75jee3qwpHm98RxQFWllZk/+MpPBWB7z/vwqC/4t/zZk7/KsFHqAbb/kM/617z5d3+NB3zS5/Da//Ff2N96I1Oxgs9UCtvNyDguRT4pCdtRGIcNu9PCW5/2C9z34z+L217yp7zqZ36Qhz/pG3jlT34f+ztupXpOv6CwLmr2BamtHUzXy3MTd/FThdj9DkT310d8R/fjXZjZuNaBbw/+Wu22bbnxNughRJXC/3Z7mKTCMJrNvbJCMuYyoYzL/tJ/WsylLXnjK5+v1WMUwZr4uQ/QMKHmvi4ixknJMJHkMZrnAzq3vumydwXGFLYfVmtp2ZNDfEmIuGRlgPubbP8Vx/NDSyCOaFgqhLCiUFX5/ksP4NM3b+Cc7vju6RF8xfDniFaywufxEn5mfDhfyIuRYfD4PXX/+RN5i106R/xLXsP3zQ/jSeOr2Hjx4yDKvzvzClunK7EKEP745CwXGUlVecC28Kjjfed8fuub78FXvtOtfPMbr+eb3+Umvv2BN/H1f3k93/bAm4lcYr/+y36X7l+FQcF8u8A2F0PXP2mdWw4uAevPAb7jwsP4N+deyTHRQN18Olo0U3cOQitEzriL0au6+FS3zv0+wGqfiz2nexJ35YyFfQxhhxrfc4Ud1e22w9NdyMlshvkx4VckhXf9ox+F1bV6xGUYr89te/XdWhqiiLb7hCJWzurYRepeZ7gN0WjDOEPZ+QNJnG/tIlPW5GTyGhVrattwPp7XyfXY2D93GAZvBDgwbEZkyJBstlXnBqHKrGqFzc2EO+pc2ZfK3KwItDRlmifu/Sc/j0ji1sDNWzMh5dkaNkVBonoMM2xGtlvnrGw3bDYbxmHkaGP53KOjhQNTqjUx28lpP/fsRaSGrc+UOlGrCc6bP7zsRVH4Ss7IMFrarVWKKjsZ+L1HfQYf9qc/YqLFYNw156kmAa1WFJ2aeANedQFz8evxejRkJQYYfkL8xbErXRpPrPnV0cg3mhHXag0PIr9UWddQYf6Wc0SkaofnDsW5//4Puz+Lv33Iq8dnfNiL1WaplznkcIAZhmHUlVjC+lOWJbbyw8OYrmMyImQ59FGWmGERmDIm+PLvte/e87MSgjmGHdg9iNhLPe7ynJPnxWuJhnfqwjIu7LaO9XThLpdyWb42Gpn4ml1iiMV2NLU9IONxptv6aMpn2AVc+/U/y+1P/iyu+Yof5/bv/HRaswZ8CWXz4PdhvM9DKW97Lfre/4SLz/zZjutd+v4ncq+v+mlu/v4vQHennUctXpckQya7oFzUMIkLTRlgGNe8zJDlETk4G7pwTxa/Ynks0V4Utbf+OQFH9xmod/M9kSNQ7bdQ12DC4fS9Io7NMHjNhzUeTrRu77UlVMWF9nyPYomRDw+bo8N0wrs/6wd53Qd+AQ//7e/qazQsyDo/eoCQyIJTLD7iZdZQ1r8crt34qf5Z/XZ3fCOCyPUjQ0et6XhX3ysv/z04r34KIuK+j413amo5aZGVcLCdybKG/enbbmT3k/+WLIka9Zl+d8OVM9qRNUOK84s9JSvePErQ2F2S12wmseY4YlV3WRNNMylZrbuI+e4HjTWduxgcre5fxjWsngsPpudFdXk+BIJDiqPXGYpzZ8InWvt9gvuTycej78C2jzWLV8y9Xe22q/jAhCBMOOQKgxa5tDuhTDNaK+M4stlurQ3DHnZlZr+fmRvMraFZ2J475uos1P3EfHzE/mjD8WZkKJBnRd72duaf+AqGT/0W2n/7Yu442nK6t6ZPm2FgyKnnMJPCRhJjSmxSYsojYxLygWi3bYopCcPgon5DYhw3jBv/3PGIYdhYraT/HIbBfLtqgjbzPBuvWQVzh2xezdNMa5XsNbpV24H9qdXmrbiIWnGblVqhNqtJFhopez0BhaKFqQ187pufyn+576fwBW/6BXatMDdlrtX8UISWnA9RG6UWTnc7Lp2ccHK649LJjgunp+y9md20n5n3O6Zpou5NfKsVr0lGGfPA5mhLUqGmAYYNmjfMMkJVdrsZ1anz1NTFTUo1jNzy62mp1xag12aD6uBTuiHamGuhTEoBiihFG9vmAkZ1sDx7N2bOHZBkeVUXnD20aoavEU1q8D1QxMURvdnsWvBmGCyuUe1in93+XmGHcb3cJ1zFqL3RhgAhonJo+hcborU7douwrtnHoNmFJxpHYA54TjN4+KouyGkJbRfXoAthgvsUTZZHNXtkQrzKNBfmqXidRzVu8bRnt9uzmyafW60Lmu32E7tpYu+8wlLseYsDjAFWVY3TmhaBcOP75M41F708NteFd+5iS/bWFIGhvTb1SWm2pVR41s+g42jxlNfU1lIcg/BGXs32/sCCrGZxaZRhBtfwpxSRtoug9/rlpj3+DCxr2k/sczZRrrk49m52YhhHxtFxhlq9rqBRU1p01PSQa4rHafgeZY6l20xfi+oGvPV9zrgmpXMaVzUEQEhDw4KViN/fK0vGPoSmpHMxa8umwRBesNtkr+YH4OUf+iU86Dk/xss+8qt5+K9/C1J2Fq+0JS6pzquukVsSoUUjARHIsuyb/pwGfpRTj9ejkWrzmKg27SJTU6nWTECVGSHnRJkrtSjzXBlHa849DoPx20QWIadknOicG6kt1RFRa988Fo/vNmHfYrV3b3kt93j9f+YkagBaDRamgwSHwkcmAqX9eiyn7uJVnmcNvv2QMyK+lrOL8nq9Xug8pMAIRIzzqN60udUuNAXab23Oi2xTNCntTUzTymt3XFeIMMzuy1JDto5fzc9orfXa2+pYRdNmAnfzbPVrwddRemx5dzF23MOeJ9HwOs0flDhFwTnAZv9MV6mxxkT+puNvzW4chsGLtWxZh7JXbUKtmVIa81CZS2UohSELteXlZoX73G+gd5my/bc730aGirDKDivukoPFsA5iFAfpJSOpkXIm5dEMmCZzwCW6LruxcyRLEE8U5FUc64BBB/mXG24+Q7NBcXK6+s6g2cEOD6AEeNd0iV3LvKac4xOGV9B0i0qGoZJqpSiMtUC14lNtlTxNNvOakYdbqww5McypF1WLeKfPWmJXcgfB7onUiqZESyGOkrsh9FaJTjAzMGIYt4zbCY6OES2kYfTXDjRRKtmMWgTLK8EmFV0FverBkYsruIGlVldAbl1BERflabUy7/dM+4niyqcyjJz5pH9Lfd6v0N70sh7AtVY59NHkLjgZl/0Z1glPe3JZ4lfOYcrnboibrzH1hMV6u7ibSFCBicyXXffP+K6bf85VIeO22HV2lUPwDgP2XVlNTCmlRMoBREmf7xKggDv5OeWVCJlv1DGnMBLOQbish5SI+Fd0mTS/w4ooRTDxp2GEKkTH8Ah2aplpZUKrJ3PAnLvBgOxh2DJstnzkG36LX33gx/JBtzyPq+db2Q0byCOaB8bttMzvlbr7WkwrDcmESNIAaUCc0C8OrGQRSNAybJIwCYhalz+V4sG99Hlr9Q2ygHtau6K3Sh/Zw43fn7ApvHjzsQcm9SCuF1tG8ioEOpRIiIWxatrYzxOnux3T3oSQJLsTqJZkVrw4vgvVGcBvwgOlF2CzbI/gHYySxF4cTu7/42Xx/+Nj2Qh6EKALnNeBsF4IDrhDFgIa1k08oD5hPn8Dr36vz+I9n/dDSC2IQJmmrsBKbbTcGNzxM3Eud/qzi7v5vEjaTEWzeWLY54j0ooseb/m5W3BInM3qb+r/s9qk5kCoOf7jZmvJs7alFheamib7vcyoiwIKjfvMN/F+Nz2XF13zaD7s1T/PfshsNiPJO17nPFpBVwTUAbKz2K9SMk0b0gaoJk6nkpBcyK2Sh42RvmKf8/th9sMER7LPZdFmHfvE95I6W9IjAplqdo0UatyxplhEOvrvK7DIPzuSEt1ZaLUT2mitK53Hf81f02qhlD1l2lOmyZLKKZGyksV3QzFhhpwFsGKXvEoEpGyBZ3F7GYkMkei9GPMx9mRMsOoKO3a7nRWrDR7Uqrp4n4PlKB97+me+3yyjYAHwkhgCCyIskagHY9MJaAQBoFgBn0byqJjQBE7i7jYsBPQGsx0ScmCLj2rt0hPohDblG89/HN9456/zlVd9DN956dfDCyKMpOrsfqUVg7Ui1MkDDFcwT0ms21tOPgeyCTZFEBJr3IulzMeGGG8c3++RyWz3OoRfI1DrvlCICbVKyoIM2V3FZh3VstIGYaghNJWZJpDJx2Dye6iNViIItLWc8tJ1cMiZkjND9SLg1bj0c1H3PcSEuIJEgCyejXqw1mdzJ3C78nOQN0Rx/TgrcvM1Hn4wop3sJgL/9Dlfx5Rk6RzidimnxDhkNuNIqUuSqyZ6smMY1nHAlWXMxpysC1XOjDkx5EQrM7tp5uTiJXYnJ4gqmzQw4MXjuhSwLsTb5ZDV/80WRqHFYlWseMS7tPkajeJgQd2PzBaor2xsEB2AZfxZ7HDyBFd18RcDAzJDGfir7XU8Z3wnHltv5NfSA/lofTVgxVC9014kKYmtI3yf+D1sos9PsSI2iy3t/f/0pt/j5+75D/mnNz2TsZyshN+WvcfsGr2wxvxTWxtdyLUnjzzJ6EBbkIPW5JPLk44HZN74+yqRGInGOY/81Dt9PJ/5xqeStLBaOTFU/bqjQNm4bStBn9U9Qxdy6bpLSxT9mHnX5fpY1rhZs8vWfFyDrH9fxvzyAtQrTTQA4PjoiGGeCbJKdcFCxfbWOqeu0Z+wZIWRZTKMIzrtzcevlTrP7Pc7tuNI2YzUcUB16GOrvraMuJnIbq9yNpgmhLFjPG0vDvJDiPFYDJNzckLTxsjJ1TbHAK6imHYhrto6N2HF1jGDlhRJVtSCejHoapi6wEXOnni1uWHCFvbC0swej+MIwDCMlLJxUuahUEafA+HrEQD8ZYA8rOag/T/eagr0vr6af3aQxDqIH2Lp8yJi46J71bGYnjxuAWzfVUSn/4zXr9aH7RFL4mR5/6HgzrIGD5PUsb+GvGSIqmgO0r4nZuxKe9KD1X6juoiliMiBUMeVc2jfN3s3gzWRpxpgJ338vTC8C3gEriWMKP/gpT/Gsx7xmXzazb8N584bkbA29zW8KDVmVzdrPgZdJFP7XDERDuldKGPODtG9YRi7qNs4jozDaDF1t2+tf87r5i2/euFqPnv7JvJg8WBedxb2OZyz21AfxxCIaaKUeWJ/uuPkZMfppRNOdzv2+z0CvOA+78u7XXojz736QVwjb+VMW+ZSxwWb+TNdnHRxuHwvWs2bjj8ssNOyTUdCMApnlsRHEPpCYEojOVRXohxleW1/TykuMjVRpqmLz8++RrtoyToGWN88AYYNMk9EYVqKmF1kSVB0AH7BXnyQ+v45bjdsj7Zsj7Ye79rYp7rsbbRGw8QizM4n86/XRRj/Lz/+Wrtt4TtVldy8gN/Fzvpehw1njeTSPDFNe3Z7Swjv95MnOmcTHRsLtXjhoQiQvVDGp4Ws5/TdnWvkIA5fdOCXHdiWv/EO2DpZOTqXk7/v7kir+Xkozn6YpF7/vvaV7uKLXfY9lhBrhtk17UIbta5809aMGDIXBMghnO7XXlbrVGtlv9/b60tFkC5oGfZOSOS5MLuAQ0pegKAcJBSbC7IpdBt/3XzCh976UqaI0VLqpOxxHJlLIQcBrW8BVxaJPuyriW8uHZEPhMA04no7Yi4ePBqLom2Hgl1kyuMPjW6F/kNVPa5b76uL0JT5KisUSVZJT/UwN5k9SqOdd8sD/218FJ+f/5Sj/WkXfMs5W9civyYjtxtZvMdu4XN5o5MAIw/nLJjIhYlP1VKZ9lM/v9aaC8/t2NVK1kZrQnFh/CBozWVmEx2VwTCVnvty1EO9oEQCgVp8xojvO/Z+Nw+N14UdZCFJLoTKIPQnz7TYQFv4pWYvmtu5Wq1roP8eXbvC52mtMm3O8vrHfwbv9Cc/zxs+8HN5wHN+3PDf5sTgwHti/KEXtfQOzdWFVB23j5hVXdglLsggpsBG6Ph9Wu1lV8KRxQQDjAwFQahPQifqaLJCqblVZrWijU0zO4TnKAwjdKGm8M2b5Xa0E9V1tT6bx96+B0U+0wUAbB5EXznp+1vyWGyz2TAMwtHRkUlHTTND2lG3O6oIdRyhZUoVnjK8G5+TXscPXnoXvlje1qEtbQ3JM5oGNI8uaKl2L7TStGAKflGAEQLujmQ0NSxbAU00TYZvq/JdN9+TJ117E9996zvzZfkOK6aI2FMt3o2jr5bWQKrN92gqtYo9EBeMc8zRbpvnRKgrQv8KhwghQVZ7I5D9vre2zFl7nboPugi42efVjiXNLkpXa+17MWp2bnVZLtyz4ETq+ererheiu4D7yJ4zbHR/PwgsTd2XxvzJyI3lIbMdN6SUbK/Mme1m+3dZAv/HD7sv1Tu7WXOIWpuJIjTDHdM2MRxvGY+25HEwjDnZXKtthjZbebDGvfHOw2Jzp/vwBEHd5kV8P75HN5pzDOh5EMN9MaJus2Y5OceajbjZ5oDNI/E8iq8hWRfaWqMHCcxdlVYalYmgqmnz/Kc0J1+Z1poipAZjE2QY2Ryf4cxVR1x7r3ty/tp7MZ65B8P2Woajq0mbjTXnajPME3UcjZyVBpIWRhG2wxZcIDhiMxOzk+4v2hpTssCAMGBkqDJXyn6CUmh5QMeJIYXfMRiJdtgyHs2MR5U87mEYkG1CMmgWi1XFiFqFxOmkDNtjzpy/huHMGYrCfpo74U8VSoMnv/AOPuNBZ7jfuWzNeiR7l0+ldMEj9dy3c3FoVJEumIgk8rBl3FYXVzYcahhG9s26B5ZqhOspG0mvVWiaFiw7cNIYWYmcaHi0V84xpAGjINi6MbJZttRlz5GsuDVBYHazveD5xfgQWokCsdaiH/dS5NLCD/XfF9zRMd809oZZqILHAqr0TfLQR20dU4q/LeIGsVd7sWu111564HswXXUDeXeBWx70gVz/mucYwY8FI2HYmA0TmzUiyWxdM//ytmvfhRvv/TCuveUNvOaBH8iDXvdsRJT3ftmvLo2b1lmNNb5BzJFDYqrZbyEEQu5aLLLCG8MnWPHD/rpj3SxmfQ+lzLzv7/yA+5ULzrKkWvzz/X21VHoX3AiDHLOyPE3q719yEIFvLB+8bnJOYISRewmb5lhbv0eOK/afiOXjYv5Yqj2ozlfUcXw0cHYaaHvl1AsLRROnL3sxF89exbn7vDMXf/9pyGYkIyZelMUZSZZjwuNXwwytQ2/2qjtjBSmhVZu0MiT3ph2zJcZC3SdLJiIoyfwRlWoobzURKdFM0uI57ezjHWhVg6QmxkchtYwV9Zn/F02VUhKGLF7UbLyoYdyQ84YkW3IyHgZDZdxsqG1ksx3Ybgc2k2GqVQdqq0D2omvMx6xm4xU1uy+J0jDbr7PZnZw52gxsNl5YPQyIWm6g6WzCqi5ySraCahrGWXR+SCKjMoCMkI5IwzmGdJ4hnyPnIyQNKMrcJrv/zYQoqwpzE1rzQspezxWJ4mRE+1zIYzMzX5rlAXRyvLXZvkqz5g5i+zS9A7UXljWbKOrCQbHaoqNua8WbrdkeXb2pUeQ/lGSuZfhCvjatI7H/Xq0wviRrAHIoL/L3f6zzksBdfrrHF78eHBEld9iuJyziBYcxqujqObXYRzBR0cHzI+YzihcE2muiCM+Zhz2mClK/fuZXMf7Kj7L/tC9n+5PfSWqz+Vy4CKYE//Uul0BDV88veRzLN7DgBG0pzGieRzd82+KT42f9Arf/g09Fnv8M2utftjRquwxbDD5mz83rcrdte/bXu6DnIgS2whZXF3J0cgcP++Nf5jWP/Sge/Xs/tWBKC9hx12vWyxi0EsO2sjNoH1f1wV3yzXSsNuiNDXEhvyUnHSfQ85aqvRa+iS5FR/6dnQsWjz7z+gmuznn9uvVxZa0vgDKdUp071BtftsGF0peZbFuccWSSZB9mi1NR7bjRgXBoV56JREbuWNn6zuh6jvmxueoaHvfV38Nzv+lfGjeXmD5619u6Og6FopQACDo/OOZ2X6X+vpTpeWEgOn/f/fGOc52SB97r33wzr/ylH+fiW97AE77lR3nuN/9r6uklwHzXzbmreP9v+q8APPqL/wMv+v5voNXIxdpnv+Invp+HP/FreN0v/Xfe/bO+hJf9128j7U6pZbL4bhAu3vgWXv3dX8F7fPE38ZhbX8o7P/FzySnx1hvfxote9Oe89lm/yG233ca0n3jJ938tpQoFq32otTEA4nvH+lgKtPwurXK74a+ux/kgtyCH98Y4vstrW2t+r218DDssCNLFwW09C1myiaY4b3gp/Fp2WhPiL4gLPdTUrGDvCjrmec8iZ2HrIYvhBkbJbdCSz23xgi57qaYQLHJsDDzOgqVhufp99599Dz4s4FTfkgxqijoT/JwWfKwh/M7JVZyVyvsdnSyrQC/7MCImc4+9r73Fxz9siCH8yB335tOvvoWfuPOB3FkHvvb8a/mOC+/Bvzt+OarKEfDF+lreovfg98oNfPrRX7HJK4yCZQ7ODYYKjFtyKgdxlZ9Arzt46XSGp164BwAfe80F3u/c6YE/8fX3vYX/8Kbr+cb73RToDN/+wJuXGIrws/E83soGqCP/kQvw/HjnArvtCQHliI6XuPdQJAqUHzx9KF9w5lV878WH8tXHLyJp8SLbcAoXXn4v4O3NAW0UdX0Ol9vxy2xWxGbS65fsvq1j2eDnHxj5K+hoYruC+X3qIkGra4i8Bi6Ati6SZLkl7S4h+NqvWe91K7wjvgKltGbYS0sdJ+o7lnO2I5NjPowVc1KbNfqaJ8OW62xxlzSLK1bQQfhqQzYRgnEYGDcm9DRsRvJgHDCLIVs/z6pYzQsw10qZrdizuChOVZhLM6GFMndeUanNCv+nick5FLUYbplEGDYj49ZEpo62W7abDdvNhrNHx5w/VzhXG+3Y/ISxZmoyThsCw5y60JS2Ztddi9mF3kgYWivMLlJl98g4Vb2ZimSe/djP4n3+7Kd51qM/ncf90Y8gWO5xTNl5dKDJ8n3Zm+s1XZrCNR8znyWeC1keHU+JmNsb59bgNRJcHzu3UlzQoK2KMB3/at5czBNiXmM4mDBgf/WVxatKOfZ7j1NXFsQ8qpWn1oV+6fV8d3GV8bkcsVD/PTAi+hqKd/Tf+hJc72cL88aW+iLCEs2ewxJXtYcVUdtLuhaW+zImcGTfuwjLBtdxyc8W5/dF0X40TLB43ePuiFmizrRFg6C2YJptEYVjdS/tEoKPsgiDNlEy3og0/i5LjH/Ld3w69/jqn+TW7/xMmkKplnNBK6cveQ7Hw4bhhgdy+//+oZ4Xi3F465M/w+uTrHm1pIE0WnObYYymULkL+vXCZx+YHqdigppNF/97lWLu17X4531mLGOVMi/58C/hgX/wYwwXbrbnJcbBXyf2CB+mxdjqkkuvkdPTZZ5cabZsTAOIc0NF7FpqpqVMS42slbryFxceuB/r2FhsTMdLt/HQpz15WRsdp7/7q1+gWffl7hI7rX2Aw0+IHWGxiVEfSl9/urafXegl9ecur+1eCtCj0dhSs73GE8xU26C3pp1LcsibgYVLt3aCINw327/iI4Mn6fQZBc0us6p0kZKmSlbpc9mcbboYZdjsBmQyg6r743ZOIa6rbeE5RvPow9yBX7PS/TtfVQjtLiNjDb/66YBot2vq+23f89YOrzgTOPZxES4e34M/e8hH874v/Emos9+n8KvsTAINS5i4Qr7C4jGAad7RZsOJhzTAEI3VjXs7FMsRz85tSWJN5DMbBhIbSWwlM0wgRdFp5o7b7uDkKV8A1fK6cykLnykJA9a0ZcyZNo5WWzyOtuf7fc/Jm5Jmy+kP4+BNlS2vOwwjuXOCtwzDxupZol5SrJFeKRVEqK0iLqxpgsaGR5dWSMVqx1KONYc1LBHLv2nUBvQ9SJFquQJRi2GTiuUbtSBVoVjS5jNe99PMklBJVFX2pXTdxKIwz5Xdfs+lkxMuXLjAHXde4MLFUy6ennLp1MR6WmtUMm13YvFNdTsniTxak1ZJGcaNYZJ5oKbEjFKnidMyd7w8+PfF+VxzLS6goV4z6oIgg4v6+D4iwR8w1SeKQkmFubpgSmkcTTNalboZrGZqWGqUO6YjIDgPxPnStakJGWmyfHzyfNtlsYfoEmesa35Qy40t3OUrL09mfdzUOXoes7oGhfbdQld7V+xkEE3XrH5uw3M/9N/y+N/9FpJORMIxOJ9rv9DehIErPXeiPYCP/dRqAM0XETVRqYaV+DaRLvRo9Z7Gcd3Plf1cumDUNBf2e+MVn+537Hf7LjRVWqPMxUWmpi7UPAf3XNX90Ga1yH0Omm+VWGJUu4e4YF3UasSwLzViZrDCb7Y4PkmyhnoucpPxBnhek5BrRUqFMvt9FFjjSu5P1pQQrdZcq9fm0R25JMn8Tg2MRpb6nWa8Lm3G+U0J9qUwtwYuMGWNexobtQaOKQS+pJFaNKo0bl3E+XEO4n6CtGX5CHR+GCuspYWf3utumguDRfMs6TY7/BYiJllM3RVztNpoqZlkQ4ValZr9WtEDyezk+8jDnvWfeek/+DIe9tvfhZSJWrVze6OZbG0mNlQijhFBk4J6Xb43KQt9Gswy2J7XPD7yuLhpNAcvzp0rTGWJm1o1HCslYcoz81zZ7ye2G2u6vt1sGMdimjXejH3IoIMC2fPJdCysub0ILkPU/czFmk5P82yCccGTbUs8a7mMBZdZeVy+L9nPWM/hg5rgouVzo3ngwRF7t2NrOQmpOt7rbpfhNYuv26rl8EVckLRW56k5HtH9t/hdF3/OfVLRQ35/5Lt6fZQuImBNG+smcIttoQcV/VeWtaB5ROu87K2YXWt+wyJEh4OPYr2a1K8/4rS/6fg7Ck0ZuSS8Y2VdXNQ6cXr0ToRdIMYNh7IEIdGBsBNimt/sPtB+0atiMvDkR5ABQ42wWbLeSHKVYYRxEwI4RnoLQQHxwFkgog56ByoW6EP7uSyOfQC8qGAq1dJPVS2rR7SO6eQiGg9Pt/PI8SZaHdC8kFX2OfHft+/LP929kHvNdxiB2AU0aneaxIA237ijsFE9SFH1HVdASUas8IIe6WDCIjYlyRzKIDNY19qRtp1MYEosOE5ttE6mMqJJqQw0MtmvOaGIJtvMLot+BetcaIvHihtwwyXNCMtaTdyklsq8n5j2O/b7HdM80Wpl+1FfSHnx7zI+4VOYn/7D1Fvf5HPInecO6q0nua7mjo/V+u8H8eo6xLsyDksOyCI0Fc4eh8JBfeVHwOHX9fXXfDzfetsv83XXfxLfedP/BFVX12wmWNMcMk8ZQb3GwMbRCkIc1M/RSVIXADF5JzcXJjNFVvu3dgWMBBodljxoXyeIAdaOOEZOjyScijlXhrtndsMxm3QJBCesVqRVZvGgxEFrFaBmsis3k4AsfPwb/zcyjLTsInky0SRR5r0JTeWBNIyknFFX4RQvSsxDIg9G5pc0gAyuxNkCfUFUGbNwfLRB2t66xu/3pFSRZG6Dou7QiRF5NSNa7LpZEh9r/FXjPi13zQ5famaUQ21We6FACI108yLurOtiYGtrTNPM6W7Pfp6pTRm9qEg9GIivzjn1DlohZNJK7UbNZwgBWZiO1gpI8+u6ko4wmJ10c/gHsyssxKBwVnrHH0/CiovhlPGY173P5/DQl/8yL3/sZ/Eef/5TgCnPtmn27hizCXe5Lct5MKKY2xNNtmZGYMCSTsmDjzD0lcWBCGddpGNZECCYX06INfYLIIBk7/g3DmgWw588cTKMA60UWp2NvNxMMI1WeOD8Ft7lbW9k2oy+p5uDuM8bczqbgSUmdm9CSklwoqRiqjjixKcQOszkYcNmUxm3Jj64l4GzMjNm61ScxIl8Ie7kpBILgnyPqdmV8JciRCSh2b9H6WJceGAWYgTSk70BErYe6BBopmpPDsvCWLTP8IihNbtvZZqY9qfM046ZzOvf9wu4140v5F43Pp8xJy/kDEBDvFB96XCTUiaEGmI+qqoBNX08IxSJ9XWlhVNQWyXngXE7wlzQYsKXNjaLG5swkDCJ0rrAlP1N1/93X6p3ooliEs8oqRNWWzPVWntU89PcLzNi70DKdp/TWjCxI+22EdeqWGcqpeTKV7/tf/DtN3wK//7tP8uJryc5WFsGjuc8EF2YmxodtIuLDYlhzC44CEM2cbHYJEWDAGbgZ6s29zthK4l1ix1zBwlqbVxsA+N84uvMCvGyC6vGfZYQLSCSiMm6DIkyhE5khuodVqUWE8hq5os0bUzFBN7Wnc+AXnQ6jKMJ8UFPdFwuNBiBVYh/hLJ7+DauURnwldmkSAZHgRy4Mjfd9zBVYukkevsO8yti7040UlNXNW4Y7pnZlKEXzpRkHceMuCqMXjBcHay8ko5RMpthYDsMjHkgK8z7PZcuXOLinXcyzzNHmw2bYSQLLmY7U+eJVkoXqVw0EaL4Vt02hkdCt+X9AX2EbC3Znm/ilMkL9lbCUgmSCpC9iGhluPxYOkyZ4AAOfORh4Jr9xHtXePmZ+/MJu5dTUHYNfuPoETxQ38y7nb7FiiEj3iTcZO2PhjBJZqwzqFIk88KrH8wg8JiLrzbhzqb8s7c8jabWT1oiRg3j6+dt4aquRKYWAlKogi9hxqIsH2vmMHka26IugGOMiL8+BEeSkzCaKj91n4/nk9/2W/zCfT+Wf/GmX7kLGLAMndmx6MTXO3gqfR+Nw0Sd6f5dJNcs8Rd+0RLPL4RqFsLQylfx27QktVdjgtKBphrVnlfWEuP4aMuQLUaJotXiYihzTqZTW2xcc/J9cBjIx+fYfeLXk37uW2kXb2Nqjd3pKTknNsPAZjOy3YwmguOiz6oGiBVXvZe8AqU8jlfoBQ21hpBEI0ha4nthiOSa4JvZuNa88KsOnihpfT3HZAny+rqD+JAH0pZ+7UuXvphg0t8TgGUXXwpb7PdOVUlDZtyMbOtRn3sppU6IDSK6xM/Iuq7iCnuhh2LqxC6U1uj2Z4EBnDzmP+M7LJllIgxlXsSmuuhNJNDaCtC9rJNZ/OwdywPM1PBVtdv0w9cvcdR6PRzgZP73SFDFvbDCpdT9+ZWVjyt2f0fiNvX70AUfrqAjCAU9mIkEV99TteMdHvwscZCs4k2/rE3Z8XF/+XNw/mo6mF1dxDr8NVjEZvsNDCzS7ZALYKzdQw7ucXdW+n4Xw+i4/oLPKNxcB37pji0fduZOfunSDXzS8GYQNf+0x5ru24sT59z+dIx1Lux3O04unXJy6SInJyfsdjumeSalxKNe/2z+4kEfxgfs/pLrjypJzhGJTkuSQxTcqDZaXeZC+GzCcj8v/xlxZFys0pbCmbZeG6s1tBKTWpLIIX4R4tUm+FbmQikTtTiBsxyuywNCrt/6iJdTStQz1/H6f/zV3P8Xv4Gx7LoInglN2WA0YoDsOhb3RzrOJS6Okofck4opicceqe+Tq0iMIPiIr8//tx9rwRhg8Rl1/RpfA01pYqRRaUvCpuVEPjpL21205NI0s99PJjC1M0w4xI3meTVnUu2YoXlnS2MDVV/bf5tz/muubbksucvvd/cZ6+eW39f2e/HlsneGHaJDeM6XvW45TwUXnfT3u+BZXgkz9i1ohWOFDYpOnPNczJZVw5mNLKzMk4n2JKAlMWIx0Ip3651n6jS7CJCNR3SrUve5jUg90EZAEql6rBY+r0oXTq5NLYez3NVuq+jXY77uOG7YbIysM0yTYWUaiTebT1fSkbzQ5kA47KCAIy32jJX/vJqXUUgX4WbEBUa0tqRV8teLdypYj/eaDBtj34U/I7aL+dTnswuQQSf5jePID5zejy8dX88PXvXePGn/5yYyViuSMyUNHDvhpLl/l7PFLkaYs7HfjCO1bFwwMsQ17yqWJo4LoEqdC4FXz/PEXkZe+xFP5F2e/dMc7W43UbriQqEhzBSk1L7p3P3aXR9hWyPGi/usqgdjGM/dXdFWH7Me0+Bk7XAK/LtqdV+krIjOh50JayldEK7VRpru4F1+/8d40/v+cx7wzB8yDM0Fotbr/eB60F6UFv76ItpZO6EAzwmE6ItBTAuBPPXHlXWIz62q0ome0JBs60YCG0vWyXBXJoaaGGoiF+251BkT1JJmHSxbaZRm835EDRADz50EfgYm3sRCMm3qPkIyOwSGnSGAdTlUhHHcMAwbxjww7fbkoSHbYyN07CemuZgY/TDxxM0L+enNI/kiXsL+dMuolYQV+pEMx5Q8OvnU5lkSBbEu44ZdmvD+UjSnaLC7BcPGU+r+2Zeffz3feev9+cqzr2WcGjsxWyAMDFnQWpCi3UdSpYtyGgHycJxCdL6JEbMk0UXweqa/YwTaCTMmxjSAJKJrLGLniVyG6fh872RH3/tKKX29lTJ3YToTUhYkinsqoC4q69hTGtISL4oh1Kj7dcKCn6K92CuIIGsbbWNhPIFxK6Q8kEfD+jebjcWvDXIe2G6P/08tl/+vjtwbTUkntVTV7relIcEo3uBnwV6bVkqb0HlHrSdsa+1adoEniVjhkvWKN38tCjNjO3PXoXvnlk0129AbUTTtBa/m4wu1lWWPlmU/9MnaRXcslLHilFvO3YfX3/s9eczrnk5qe4Jj0PdG3FcliFwNHUZUahfi3Bxvue4eN3CPe13DmauOOHv1VZw5fx1pPA/5HGlzFnLGRGkdha+QG8gxHJdCJnFme4b59IT9yYk3K1FqahSq7c9WYtZxvFSFVBOpqREQJ2vaVfUUxpGUrBmDSEJTJg9HjFNlM1eGzREyDgx1sPEcLNZtKEUS+wabM1dz9pp7MJw9z6TCvJ8pNfALu/c/8pI7+fgHHPPjr7zElz3mKq49sn1FMXm71o2xPUwzxX1cH2FNlq9L44ZhLJYX8dRISsnJvkKtwqBQ2ppYFjPmrpaq49VJ7mIr/76PxSfE9u5kueCe/1AWBQ7ovlrHGRTzo0sxPL8Vmxui9NJ7z31o7NmONUb33iCUT8MRL/wHX85jnv49pOmE4GRJFse1nLfVQuR0KaAKvDiO+DvQfataja90/NrnUccjOHsN51/6TObtMW9+v0/nnq/5Q87f/Dp0OOIV//DLedgf/BCb3QUkCdPRVbz88Z/Po579Qwytcs2tr6eNR9x2jwfw7q94ut0zYgasYgl/bgk0YrZ5+agsc+KucZOuiswWWRdZva4J1qjs73joCtPppxd15pcn9bUtf3R+kLZqxawxF2LuJyuU6/mPVZxBYGysit/B51rcPycZBqTlg6sEshhRpj8XBGb/PBNM+jvfjv/jx9VnNuzLnqbWMGpqgK+9Cy94Hrv0ArZDdrJug7xFxtFiqxBuQ8lVGLwBBGo8u6aJNHjJkJi4k2iIO5hf2AU2l82KptXWvIImE+OzJndCVcPyUsu0nKhtKYDp+FJVtwkhgu9YnFaiLCB5jlnGDWnckNJIkgHRkaRbJ8Eu+2ajkgYlb5RhsHmUVKE0WptBJjR5wx+ZSaMypoTkwQoTa2OalVqL4QGjiSJN02T7gRgGW5lpTKjMNGZIlkPM7lP25qAIxXGKNGwZx7NIPkdOV5HlHKSRUiv7+ZSZHakKR1oZR0EZqW3omKVT9rGGYVaokKTBUNCkrh9RQWakTljX0AxtoLWyFIlVpclsfI8iJq7aXMiquh9riD0qNh5FZ7QVajOidGD8VkgpiIygzYsxlzh20sZMY67KXJX9MPKKj/xkHvDb/4t0cvp/cwn9jcdaZMq2iAXf6aLOrPbjjsX7PFui5Y7fHWzegfv2HMHq92b5+iwwZIEhWeFJdd+vGQ91wZYSSY3jaPGtren8k99F/dyv4+zPfA9p2pHGcZW3XQSn0oGFEdZXqhFbEXhA5MR0lX9rvTNzrZW5mcjUNBupfvj1HzFB77yh6M4E+vteGwWYVvDZtmfI857AGZa8nKLDhjc94Z9z3eteyDVvfU33sWO8lj3djjN33sSjn/XTl13TMg4H43vwa4yD2YSwG73ocfXqKEa1IV1sU+S3VtNn5VNoh1GiIENUabLY/fUD4qtX+Rm/glVWcPmxwsEQ8Xkm/TyvnKN4gVXkGxKUQggaivNxSQ3yiMQ/o3iJxXqDCZu28DHBp03w45dYdzliHJYbk8aR9/2a7+WFP/hNvM9Xfid/8h1fvvAHzAHlYMKsjrvicbJ63ud4jGF/LLHi8v4Vx3gFIx+W8cbzy7k88rO+lL/87afysE/5l5y54b788bd9KY//hqfw7K/7XLqouCrzyUWGo2Pq7pRouGWnGPG+8rIf/nYe+aRv4CU/8u3s77gNlcwwJLRMTKXyqIe+K5/yiZ/ABzzyPPf9h18ACuM4cGk/84Y3vYlXvuxl/PHz/pTnv+hFvP3m27ikXqSSvRm3i9SshcxjHFIekZxp07IPrK/17vMSOPft8N7cBU90QbwoqowGtGZPnRMryWNve0+tgTdhhZzZcO88JK8hKd1nvAto9Pd8lDIReNkaf0gimLu+NHeKLvc1GZbhDPhegmmC7wlJvi/CIkZKQlNbehj6mlTnbEdq2fxsWCe0NPBH4Hn7s4g2bmqZl+43PGI8JfZ/6ftrcJFW62u198ZzqTfJyOSU+JJ73sp/uvl6vuT6W7hKCt9w4wP51uvfCO24z5Nb28gzLt2LDz17O78x359PPXcL0WgY6Pn7H77tBj77qhv50TvfhSeeexPnZRGbsuIs45pLToya2IgVdI9pOd9u2QS+8X4338WfiNsYq75f4hIR+evdd2iKk2lYcHAbpM5xijjXa1gsBuvOHqjypO1L+IGTR/Jl2xcidXbM0vhreKG3cRlK5xGvGyaJLq9bHymEg91D6kcfOscnpfVcxJpr0q3zlWfIzCdyPk74fACqPtZ9TO/GXutiCew9C44U3NuD3Iwsk0P7cz78NK/FsJqi5GuuF2SKEE1LlJgy1WvPXEzJuUFNG82b/oYATPBwhpx7w5xhjOZkA3kcF95U90/d/8AE7aemTLP7jKVRGjQSjUzRxL41TnZ79vs9zTlhc6ldvLRtjqnTnTZdEaQU8n5mM45sNjs248jRdsvpmdkxtbC/2XzoITFky5tET4YmJnxdquXfVNTsVTKR82me2e32nOx27HZ75mIiTzE/ReE9/uAHeMH7fh7v+QdPYafq90nRrAyOU7UEQ9TA5Yaqi4grmNCUjW3yWLgLcMYM8UbdwSdqpfXzkIi3gr/lDRGtvTa0lLj5hodx01X35V4v/S1acT88O3c6ZUSKV2ddaZYMx2dW+xiL74T4WutqTWvf+B1+Ip3j0h/92W6z8Jjb39Jfc+iPr6MCVr9H8Od7BFbeGEXUHoWvzgi6o+vvCbvQdOEHVscuizfeKiEy1fOv3kBCvaa1/1yaTAbX9yB/T9jqQ760mRFrkByF1a35LiOJ7KBQ7E3h897y3Z8NyZrgFL/m1iraCqfPe9pim/zIWG4ii8CqpkEGr20bR7LvM4OLhnoayx6pX4BZQPVi9FW0GFmQwK+622Ybbn9dUxurVzzhc7n/836B137IF/Kuv/W96HTSM5Bt9Xm2B+tBwXJzUY8afEqi2Nrm65VmygYAESss77WxIfnrUVqKfJMs66Dfc9y3cWxd0sp3CV7k4ZJajlixkaVfyWDr6jsiHP9rwFlti23sfmaPHyL2ZoGmWcSjmvMrOz+2Cwo6FzYUxPoZL77smtscvycXPDKskwWrWPkD3deLRR6nhX2V+Il3zCjqhMTlHNa+cTIfTJp4vZtYLk1m42fXRIn6mRS+5dKgd+H+X86H605N/75FbCpa2y/zJJZUExPbdlcIxUUB/eOS26cV4kZvRGpXyX44w/Mf+vE84jW/zQsf/ok85sU/18X2w16tx3N936+4ozbj1A9WQwk2N3NObDcbSAO5VNpuz243ebPSmTZXqIbdbsYN586fpZxeTTnZUedKmWb2pzvAcLlZWxcSq4DmgdHrmo6Ojjh7fMwmDYxiIpipcx9MaCoPmc1mZNiOjMNgOQbJvb4v58HzfdGYpbmgRmE/T8xlxStvylyrx8pKHoSRgVFG8pBJQ/ijNuiLbaKLXgQfLNHMZWnJ8s3JfR+pNgPFG4rlTFOYazMRUxcsvXS648KlS9xx4U7uvOMCd9x5J5dOduxKoVTMxz06x1X/6vu49ONfR7pwGxl6E8qNcx2N9wFst9Sc2NfGbrf3fb+5YIXZ7xIiW11XwrB01HDPNBjfJqfsNZXJrhHt3DNRteXcKuhs9RLFchCtDWzHgS0D42DxLtkwsd6ERpXJNSYs7HPvwjl8SdVj60UELnne2/ADzwXh/peLZbVaQkH6ijpSUlJTkgTHwARke6zr9f240JOmsC1eyy4Wfz3ng7+a93vO9/KnH/TlPP73vwPb7wyjV22He/gKh1bF+Ogi5MHFk12zovNLsL26RdMTCV5GhQJSK1WFWmE/V3b7idP9nmk/sZ9CFLiwi3+7kE3MMxOecmGj4BOhvS7R1lxzLQBBtNLUa26yMJIR2YJ6w0KPOdZ1IlGvImKintGQ0+rmlj0liQsTj/bZmoQimbENHDF27pkVaBpGl3wsEmqCT1U8vqXf826WajSCtnhWPYY1H8/2kqouWFcbqVaGMjOUiTztkTkjE6YPIo0tvhajTglDCS2HWJBq+h8Sa6efT+RU1ON/H1j/qU3QKp4TjMnKSoDRNSfCTyUEY5dcw5VyRI1jNNuNptuqVgMdvqGFBYFbCQ//ne+xJuy6CHjWiFfddy7NhLOrml6AXXt1iE+QwT0P8dWoyxo0W+TzvXNEl0aNpRrWETxSjXFMiSlXNvPIVEa2G2syfNQq4zCYKFlgKe7QmP+kqOt3tOpxucfgs9eGTNPEfjIR7bkLAvse6p+BsPgyEtZjwW4iLxn8leo12TmwN3wPCcEmfy651wVA9n3I9ypREz2WHotVs9dejWVonu0Vpo6SbJ2HMHz4ucnz7+HaebzT9TpUWfSStNfvBN61sDrtWGNe4Vf6rOu+f9scc+GTn8yZX/p3cOnW7rM2xcUq/d3a39m/Qw++L97n2OjfcPydhaZqtTsdpAfEil5rWxOmfdLmJTAPF8LGd/kZgcqiEdGWgCKCkBQgKh4ZO4lJoRZXuGuuvKhCyo1x08jDhmEwJy13oRh8YH1KqBFJpcVEXU3YCMx6ABYAepy//+5Du3QYaKsNxUC4/jGSyGlAc+V/yaP4R/W1/OLxe/F5/DFbTqzroCp5qCAmNnBIo/LA3J3L6NraanVANBJ0y3kHMTjl7Pc09easIpk8bhC1TpFjEIalgmageFPPLUo2NTfBTIgXORzMagnIwjeCZhuKFhMsoVV0tmL3Ms1MpbDf7dntTtlNO+Z5T22F6beewvhxXwbP/hnk9rdaooe2LB5ZTfslo7AcHcyK81tIVD34/ttO/v9bh0fzfX205RrV/7ZOwHdw3h/fefv/4uuu+Sd89y2/YI5YNjHLnEAbJsTkRRCqavMFKw4PYNy6a4o7wr7Gk4HOIvZhJljmAlOR3I7tWdPq3IRY2N2gdRAE6A59jMQiCnEyjjz1nu/PR779T7jh4lvdUR1NoZNGJlFTpmkxWk8SZBBSUkQqtBlatvmXXJzOA7xSJyO1DgM5j6TBr8cLDFMWpFjgpXmA5KJUkrtDVpslikcRzm23SN1xWk8p046clGEQLyBNaHaD1MRbhSfIFXHysMS+foDzLPetA6uOOkgIt7Gozop3T1ntRm7U3Ch5knqeZ3a7Hbv9jrlYEBsiU33eXX0vZH+rj4XNi2oT0oV1Ijnna93nziLEtOwBV9waWx3LvRffRroJ7fu3Od3hGHgBPpbQkwZpOuFhz/tv/OV7fhqPe9nPIlvrTD1P1hVxv5tMoAhLNg/DYB1NyugOXGWulU2pbLeNTVM2JGTAydEGghgQ5xBtCxKHrvZBLPDJ1olMqwkVRQI5kjN2Pc2KFLMR8yXhxRWDF2eMaCnUMtnn1GzBXTWBHsSC95O05QUP/iTu/9YXcN/bX8XQ56/Nowvjec7sb6ZUUxQOQUjrwGZrbtxuOTo6y3E9y6WzW379/PvwkfVVPKhc6uQq9xTdsfOUTrNCNOsIka2LYfVrdMeQMtt1J3ei3BYEoLfgdGFDQhigLePuY20q3Q202Ouqqf22UqhzpbaClpl53tv62p3w5od9LFfd8kpuvN8HcE27g6t3b2Icss8lkGQg1GYc2G6s80ROcqhQKouybadQhw/F4ktdacdmO7LJJqjRsIDVM37+ioX8EAnyhfgd/uJK+bkrui6JwRB2WfauReglykSQ7H5qWgXiCfWSDXEEYSElSd+0DCQvBmCI8G9e/985hS4SUWvMCWEYNmzGDZvNhmEYQfCgyOZLdgGSNiQruEKpg3XF0YN935M9HmzU1rwbkRXQGDjYeteFO4er+NEzH8Xn3vlbXFUvkfLAdrNlHLeMw9hFgHrARQD/q3sbQpHJRCSTP/JgQgvVixV7AWuti3ulLIr+664Abg9CIId4PUtA1KSZyKPYHtfHzGfAujNGT0i5/5ZTJMTSQiQIMMiTyyL4OpNOKu2KwTT/u4FayYU1rdOYBbOx9kB6ceyVdAySGFPmaNgwSqaVSil7Ll24wMU770Sbcm67ZTsOqHcFKPt9f7RaLksA2aEe+XZbHvc1OXjknZJas3udQpTBBaZyiDKs9qUQMY3X9vhx5dvM+8K8n9iXCrVRZiNKgBWSXX96yodt3szJZkNKwh+ceTD33t3Ey7b35dx0kRum21CUC/kM5+opfV/3efS2zbX80dWP4sNv/EOOygmvPn8/ComJxGs3N/Cul95ofs1qnwnB4MWv8qRgTDkNf8F9oyUTt9qzIw1Ij8mWvXspTuxJN9VeCBE/1+sJtc/6grf9Kj9zz4/i097yawZ0y/L5cSyF0O7f6FI0sxbJWgRbxIWuBJXs3VMNyEdwgYBVYjTsYw9VlMgMa5Cy+hUvx1LM01yxPsSLrqxjGAZUlaFkF9Gz5GUkkIeUaEN2PpLHmLVx2z/+Vxw/7SmcfvLXIj/61bRpYu978WYY2W42HG021M2GJCM5up470Fegr0GERfDG/cEoRo/5Y9DCImgAjq/U1oUDcs7UsiR04zVR9LQA4RCxX5KEDAMyHIph1Fp9z/R5tP48VnhVUyPNl2Kkp9aMTOjJu7rZMI4jsAho9Gvqwtj0YNf8Nl2+a7VG0cugCLHuXVb0EKkOO8KOdeC0x93a13AUmy3AcDu495eLTHVRpAOc6673NzCypUva8rru/fR/d+TsLp9JynB8Hi7dBgSxDfOpguy52m8C3Lw7wYW/z2OJH2Uhsx2gmh5prsc97gFLzIb6XGzReaGaKHNr5iMk862i4HjZoVdH38sM29IU3+MxYpCd+pgqd5bEUJVNqaS5mMin75sWrpmfeE8pfMa1hV+77YhPP34b0yQd51n2Zx9vaUshhZrw7DSbCM/JpRMuXrzIpUuXODk5YT9bV6FhHDlqjQ98+/O49rrrGM5eQ3ZhwhCVaa06mB3zeu3TrGyApoP7IoHboJ6oijm5wn7bImrRvHtkkFCMiOIifXVeBPvKTCuziwGYmJCJTlkScHaBISukdRFg6Put9kciDYk3fPRXc79nPIW3fPRX8sBf+7almDc7rUNbF2kObCXiSLt+TxquihwUFtKHBvC/xBrx38GMurKW2P+RY22vD/aUHmDH65b1UkVMaAqMRHr9Ddzv87+RN//w11Mv3WEJrTJ7ksk6sk4hElGKiZL5HDsUmqLjWDG4ujYGd3POB+feMf5lzImYlMCAOPDX1p93+ecuSWC63YwjxIiMPOMdkdb7cp9jyw1U6GLBEUUbMcj3jJQcHtTlXFQ9mWyCPPNUFtI8YvZDXfhmNvH+JmJ4cUqdsFMmawoxzzN7JzRrC8KAk9obSBCVBruntjaWfETsdeJE49iCl7W4rCEj8ThJZ3AR7pxXxe6H+/+VcnRxqRVxToAqmSYjx9HGSQ7nTvgvdzc/Yy4ahky3SQv2s/jblrhe5+KWNbPEGTZO3UbBIo4rRhQfhgER4RuvuZH/ePv9+bqj11PyGTabDXOpvDWd5dn5PnyC/hVnMXGkUgpDHhjEfOXR53YIK+nKx18Td1t0ZuqiQX7d3SbCGx//KbzTH/8ib/ygz+Shz/rhJV4/8InoflrvpNkMY7i7Y52HXPudJuilyximZASJwKo4HLu2/n7/TkQWIfIe66xEF93m1ejSVBcRveZkzbgnw4WbuP/v/GdaErQFiVWWvc9tuZ2PXbesSQLxcPLn0qTC6YruXwsrkSlx8UbW+Zkr45inyYgVpThOk5b9xjF7I7cACXJrbJrh7LMkyuB2Qw9jHg+/PJYS2ubIMMP5lNaKNQrIh4R2wEhOYth7GJzWYk/2HDdWXDYPZ5C5sqFaI5N5Yj49Ic0zaTMY3lYnxjbx+fVPmNJAbjPJCetpHF1UZ0TZ29zMnudRw660eWF7LVYQ30o/Z3CcASvGliTUon2+fcn4UnTnOXUSeXOGISfGhOVvJxe5UQfXQoU1Hn+LqWJkvMHPzcj4No70tdqaYg2bHPdtlTBbcePbCiONou3gIpRSTHCnzb7PNJDm+UEwiaLgMFgevWn1AjFrpGMYZwhdCZH8jiIVwP1fI0XG3hVrSNVJK97VbTNuvIN99r3K8jqbccMw/K2pGP9XDhMGS130vQXWI4mahGFIMCZkHKyDdgZJilKodabVCaY9Qymkarmb5Hu5uWi2r1IDM8M3fJunl8eoHS9DneTo917V7p1YN9binfECX4w5YrgWhG8XPvpuexWvvc/7cL+bXsLL3+n9eehfPtN8kuRYX28oZvnc1syWiwjTbMSvzdEZzt9wX+71wHfjuuuvZjxKpDEhmzOQjpF8BMNIEFRbSqgMtFzRYUtGOFbrjt3GI+ZxQ06Z/ekpWgpFZ6TTiqp3gjQfKkkiFcsvMhXuKBuOTm9HtTDNg5V5K8x5i+YNx8nIlmUubLZnONme4eqibMZMGzPkzM1sOCM7Stpy7sx5jq++Dh027KqvS4+HJRmx4Isecy0/8KJbeeIjruLqrRGsFbPx5LQaOxM3T46z11aoXgBFcrJzbUjOjJuBo+3AMMGMF/5octKndQwnipzDiVyQp9WvC7HrSsM9sguPWgPTiFuy25bW8eXYVyO2TFiBUXZ/ULwIXWiG1+eEjl584gC+puQYXVowop7bgL/4oCfxyN//IV7yoU/iMU//LsALEmrreIHha+FzLMUNcQRHK3yg7iNZJXGHcs6+4tmklCg5ccujP4arXv8C3v7gD2G4dBt/9f6fwQOf86O8/An/ikc+/cmg8LL3/zwe9Lyf4RWP+0we88c/ThLhuptexT1ufhXRzdT0uAybDao3hP+4wo5sdyGlhmpUjVyGuXm8ddDrK7ao1fTqTsNfO6/CJuoqVFnhPX6fUQ7IkfFeWX15P7clTFz5rEBLfe7ESXYRKL+M3nwmvkfugoAtsBvLWu9/67+usMTLY/8r7Di/HTndjOx3MxNucqQZzwcTUtxNM9qELMo4GOG7JfvbBmVMA2mwBim1NmasEY9k6XF+yqAaRXp2qCo1hjBe5zfJxKHMZxFNvWgkYpCUbY6mVMkuYpqdy2F7qtnOijcmUuNBkcw/zHlLHrbkwUWm8gbJGxObSmBCmIbBTfPEPE9O6C0ULUsOTI3gO7fZGlQkkDyQXRxP8oCS0BL+l62nWit1rgxeAFINgjW7UM0fHtOGPECSTJKMkKxIeq7W7KnZtTOaH5XH7HkOgdyY6gmXTu9krCO5DaADZTOQJAjZgecZ+Z5WUZ1BZ8sLpEQp1kgIGRjGI1IyrmKtDRUvjq7zqhCmWNFLtUaJotaBPgi7rVWqWDa7Yn64jXMxP9NzaM19RwDEmosGGbqpFU+UZg1FWoPXftjH8oBn/Qav/4hP4F1/7ef/7y2gv8Wx3l8P9gPt/+v/Dp5t/EVktc2sMLvFLWwurL3KmXT8Z8HTdBhAzb+oyYvh1eZraUv8Y/bTfg54523PdW1+6slWvOTFR0tOTRYsOaWeE4+qDe3nGzYk+BWt28poDDNXEwGoXtgy17ljniE2NW/O0P7pF8Ezn4q+8RVw1T1guuRYmvk9+2tv4O1P+GQe8MyfYji5s9uviF/f9l4fwdVvfiW3POR9OT69gzN33rTw9LAbbz8T09FZxpM7CcjiEFbTw38eDjxOSrV/tuZ+oXaMK+zJQoxf5dk08pdRHODYZvf143XB/4liAH/vAd9H/XvcvrIqll7Z8rW9W/jlKzMdcco7vuq/n2M5Qb91xiGll6zaXifZMdbsuQ5rJ363VyP9f/7RfQFq9+cOXt9xS7+vpfBH3/LFvNeXfgvP+44vX3G41h8cYlPrD7v8sw/9ntUC83Nb/R6nq8t77/rc4fN3d7z4x7+bxzzx63jJT30fl976Vzz+G57Cc/795xOcBVWlnFzkT7/tS3jopz2JF//wtwB5iV9lEaBXVf78B76xYwDjuEVKo847HvzuD+ALPuNT+JD3fxznzxwxNBOEmqbE799YKNt78k8+4WP5mI/6MP74ec/jx3/qZ/mLV7ya2y4avnOyK4snqIdrUfLA9Y99POfe6f684WlPpZycHtyDBSc//B0wQbK4S34961yFgHOil2sMEe+ok2zN+eAqjkkdYqql7Mm5WK4jJ9/DC9H8ai7zXztG/7ePUswvCN6zSAgEum4QmfCyNRm+kFrrNs1CHSG1KBhv3S+XFGVI5idKA01tMR6+n2nUmYR9aeCTru+fqMUxjxsu8QfTea5JM4/Ip0tuxw9ZFzL5ufkvd/m3uL1bOP+JL7/hNvveNvAf7/N2tI00Ve6omWuHxr2BT97cydMvXsPnXH87yLZz/mL/bq3xpfe8hf9087343Gtv4Uduf2e+6to3dyGspOr21gTLH7md+Rf5Dm6pIx9y1WmPMS5W4TitWRzLEVvjQSjS97XD/Vw1BAiCTwwEd0ux+Ekjz1T74IddX14b/Cbl32z+HKrXIHmRnnGt7DXWCNWE/ztvNfxJr2mIhdvHJIG04IS1fkHrfMXdrfU1N2Edh19Jh+UsAImm8QpVu/huoHSqeA1UQwbHelJ3u7pVMT9yhfWwDrcvk2VYzQuDB2ziWHmU5+5y9savJmpu40mfF9HcpGgUdtLFaUJ2SES8uaxxnDbbDeO4cWzSpJG0NhcG9s/281WEpjBVZSrKFE1/Su0F0VNtFA0ObKaSmFthCqEPVfSae3L0Od/O7se/Fjm50/n75p81YF9h1pmpVHbTbLFfa/5QjjYjm3FgHKyBzFLUb1moFjGPYpieWv7+dL/n0skJl04ucXK6Y5pmm/tuGxJCljt5l//9HdzmQzKkgc04UoaRbU6MycTnWhYGNSHD3HSJr4Wej6ktxCcr5sUsQI000OrNjj0HF/5pF7nxmsXWmo1LStxx1X258R7vypnb3sSND3w/rn7lsywHv+JIIzOqdh+uNO0A6UaadxCHua3wfXO9ltbx2fKBdD+h46nhQK58hrt1u2T1tL8oTik8mrBrcQZRsFtVKRoi6qtoRJ1HoMuzDVa88ZVg0So3XlZNfRaRKWu0FA0Mogh8aQp52V7qcUTnS8lq38awh9IWDhQek+asZDJ13bgmmcCiNWaxW2B5V7cvQZaQapilx0aJsNPeMDvHT2vaoM4fxte8dj4+B/yLwFBjTCKWWPbMta+u/fy0c2Nw3MvO/cHP+m+84kOfyAN/5wdhOu3j2Dy+6P/29y37R9iuEJuKUrNFbOpKOxJ0uyB9XBYhoRTzwgwUh3CpLv9XnGOmq93L/ZGI01fiUXbEmrv8ucsf8R3a4+H+ZHCoXNOy7wluQZfYwd9/4F84byMa2YVwW1mE25ac/NLkNW6CdB/b8tDZ6wOGA8zF/h64db+Vfj6tGMoWef9l34obik2uwCjclzZxKRd0iv2iKdKWpsdNGyVncl2w7sAKOvc4sB5WE3Q15uutsDfIdA5ii1vBIkymOE65vtC4qF67u+w53cz5fhUYyDhd4nEveSp//uCP4rF//j9coOIyrspqHlgNcIggXVkLTbUx5IHNuCETTagyWipDatQsbFQoQ2MzjuxS8sZ3M8wVKVb/O+TM8Zljzp8/x8mlS+xOT41/imGu0Uw7ML/Bfbbtdsv2zDFH2yO2w8goJmokwjI/M732JQdvaIU0LTkxaFJsh9DGPFfD/aaZuSzraJ4LU5kpdQaUoWYqQpPsflFGxWxVVdsvSynMXdTGcTI1nzonXRpaumiGitXAmUCh5V012XNTKcY13p1y58VL3HHhIndeuMDFS5c43e2YWqVKQo5GJA2c+8xvZv/L/4mzn/ttlP/+NRbTJecDJm9oNs8d7zYxassxzCWu1ZsX+dxXxJpUhz3wmEmpSClen2Rr0zgqwpjMbxySGvcfW4tzEyj2/pykWyHJuAh78nGjY6i2MDPW1EV9f/Z90ddZ5FBDo0OaeGMt3+9W2EvPo8bavsKOJN54z4WmTGyqeuyjkOKk7ZpD+FHVfRivj/6QP/g2/vD9v4wPfPaT3Qd1XAMO9ujI3fsd9LGv5GxCvDJkRPLC8ca59H6uzccLbI9oxXJGTYXahP1UuXRyyqWTU05PrWmtaWeYgNo0T14LvzfuXcw9kUXEJ/ZiidgQOjWcsIXVtBZIDKPFeygkbdSiTFrQWqjN61/UeD/Z83ljNj7NOAjDkBmGzDgMdh+8gaFELJxhYsOcYZ6KCfiqi8HjvCT3EUWF1IR1zZewrC2K6XKUuVBn49JFXalk8ztq+LZAVhhqJc8TaTqBnfkNNSlVKk02bEmd9xYOuSpeR16Ras1+wrNM6hQF9TkQJlJx4ceEtswifpxIqbdzNHspIWQU66z2HNqV5jNengMxzq447scBvyBcl4iJwk5VDDMovgdVEYoIBaXgwrwsPooloO2eN9JKZHvBauvKl+sihV4fUp2HOjdrxBQ5OEVJtTK1yr5VJhoz1uCzJtgIbLOgaj6FoF0Lx6t5O3duLks8NvWmK54LC39S10JLfv6rNdvjFYmnIkYVq6fxBn/G7XV+mFh8OTdFalvFl6ZzMGju+HjK2eOdlX8uJoJWXXCpaSVj87Oq5b0H1ISmVKzBjecaVV3vROI7fZzb2k8LH3qpfYn4V8B4U349Zq9scI0DbAupdVxTufRx/44z//s7OfmEb+b4p7/YMSvnoHhDgkUA2H7W1Xxc+B9LDP63WWR/a3ZjFC/axt4WZ7p/V0xMXTDYGA53aLT7/rJKNmsPCiJdCPQArZOXLkMwYuNRta6kpkztQJ8U0r4w5Ilh3DJuKpstJjqVQbK6mlj2QN/C36ZBunYnPvVw3r7bN2L6wPsNTzb5jMzgyc3kIEESBC/214SmQksGPH+WvoKfkIfzOfUvOM5Ka1b4YQIUoxfVRzATBWARMLmKcKs0iin+xfivO/24r2PGY9Vp24mkOQ9Ao2Zoc6KNCR0EZiPcmthDAtkbWOGgRBMlN3dY07JD2nq3c9S6EqZRU5dtc6FMe8q0o8wz+7kw7fbsTk/ZnZ4yTVNP1tXf+AEYss+R1oM8+tURI/MO/baYW3ZePp96bufKskJy8K8lOI4g/9BMBRDQXw3At9z+yz1hL2rgsCYhN0Fbsg6o4j6jOPm6uYiOC0ilnNxBjB07yBVR+D6YA+4iUwGtiAQ4vwBWcdaHom3S/4uNQLXZSSlkSfz2tY/lg+54KU+71+P4F6e/yVD2gM3bgRGGhOqIaTd6N7g+ESpNZ7RCkrGLTWRsH5vrhBax9ZYntGYjuKfkoF2CLEZmFTMbkgxYbtUMys3pPPdrO/I4MmYYRZjUiqqb7xuajRyLk11acscvJ0QzoosYUAgGdVXxNVlwNTtUsYRW84SbNrq10NUDByj9PdUL+ud5Yj/tmSYj4MuYfGtzwOSe78L+E/8j49O+lbS/cbXHHwKtBwk9v6+5g0VhTA9fdyUc6zXfCwHAtSj9uUgwehIxDFDvhGdGw+ZsVYaT23iPF/446fiYnBLV99mqylRn5mmyz8M6m0QB3WazYTM5kLE9Yrvdcnx8zHGtbLdbxh7whuKraZknaQYMiLj6cLb+UqkyOJE4nAORRB7NOVfNFuyoFZ0lGoNYENgtRi20Wag0tCVLrvsgpgiIxoHNdsNrHvAPuf+dr+av7v/+3JDu5Pj0FlpT5rLj1vGe/OG7fhof+NKf4OjONzC5mnBTmIcz1PEsx9OtbLdHzGf2tHniOdd+EI8/eRm/c/YRvHP9M47qvGzurVmhi7IKnMSStykjJaQ8fNLVRFsJc3Qhnd4ZqPmoR5I3HkunIs9ydhGRtS3TaonjUiZq2UOb0WYFndNuR5km7v38n+Stj/s8HvSmZ3DPS29ksxm988Qi6jfmxOiB5ZAMvVoX4Zl9Te5Aq+3ZEeCqdeO50uwYwNGZY1N+dX+wk0NdbMrWXsA1jr3o8jNCkcW1jsDRRJdCCXdJ1tt7erdzxOyUI0C9qIhk9qn6rYwNwP2DNQi0DgYV22NNGMWKBOd5ZqrCpfEq7nHpVo42R5Ttls1mQ8rR5d6JBoOgOVOz3YOmJj6VU+4BZpIQlTFBUFUrANtPE9N+z36e2E87dvOOEJD7hQd/ER/zpqfyP+7zMXzWW3+ezfaIIWU248YAuMHE4cRvrHrBVZDzEWxNSAhGQW7C0DCQpzmhejYCcq3VApkWgVUAGpWSKzklhjx0O9D9TZalbLfaSVqCKyzbPYlg0e596/dwEaDFg760CE1hPsoCRgjdV5JlWMW7DUv1RFCyNZhSuMxecNaK5/dyF74sc2URSbsyjqRecOJF4aeXLjFPEycX7mQ6PbWOAimxGQZLroYYiif0jF8RAoYQ19f8eUukx0132+n/vGM4x7l6QtbWib7xk0iM+ZxL4l0f3O4N3uGgAwG+1WaZlmQUitZqwMVKRbvWylCs4/377V/CH1z9SN7zwmu41/5Wmiq3jef5zesex0fc9mdc78JTqsqekede/Wgec8fLee61j+FD3vaHvNvtr+HlVz+YLPCAC6+zRHb4Qc3FpupS1K7oGtPocEOcb/hqq4ixP+L+9S6DugadF5E9xZO4K6Ah1svlhVJJK5/+tl9fRDBigXUfbRHwO4ybVmTQSH6truVQiKj113fRrTj3AD7i3yxYwFLAq33OHRQfqXrR9SL40wkEV9Bh+5T0xCZOIhNaJ94M2RMeWOGY1sYNv/MU3v5hX8TR//gGZlpPBE37vflC+8nFMyrjMC7xEE5KN4qFFZO58G+KpHtP8i5CU4j0NbiIHSyPSDJFEf7bdcO5+bZl3l32CJ8eAI3E2no+Sb8/ds6xdyydOzz6psyli9yuhaaOj4/Zur082A/sg22PT+LgMX2ahp9u4Y/eZf4llnNVwQvlbf0GcHuXOXowr+nrqM/zeLTYH1r/G/01q7UQn9O0+44hurP4k3qZ0A997a6ilMvOz+2hJHjnR5De++Noz/hh5M6b6aIITpSjj63v57FPhxD5FXJY8RTklKlpOBDHlCSWcAgb1MfRHqkpKtXjMaxoaC6UaXbA3OJjDZFeAJMY9b3aOuB0QL//9Ne2EK/Ru+xhFbg9JZ7FvXiftOMxae69xXLEHoSggTJPE/esE5827jg92bHf7ylO7lsTQ2narz3GvdbKNM3sp4mT01NOTk453Z2ym/YeV2lfQ6kLtGwYBhOAjPUQhfghmLaOHZbk+Po/WG7+6l/d726dvBXCGCFs0kJ0qi1CU7ULTc0uKOViG+5Pz9PchaaKC9TVUkwgo3npiPus4n4fAilZ0uMhv/ofec2HfwkP+NVvPRDeM+EAw5KluUiOiMd8GjdgtWcmG7NaSbUis42nqiVGgkyjB3bOI4/LRDb//+HQ1T0MR6jfA6UXIIo0t2y2J73zZ38db/4f380Nn/qVvO2Hv94Kr+bSu7Ga8Jjf71JpxTug1EYWRaN7jkps/KZ9YSe1sifcrXfRfTlZ0bX6XrPyilb4cd+j72aQ1QvarEDB5mrY5bCdRozwmH9ls4ElwbQSTwSLkULcSVg6Ai2FQUKQ13uXkXWnornS5onIIySBwW1DaoD7YVbID7cPR5wp1Tr7OeZp+6L5P7UYBnJgr9xVsTFInhSkY4FJG8lJVgklqwlbicfW4oChoCQRhiTWUc47bKckJhzo53F3BQdXwnE55Fkk80buwW1czXvzVo6Z+pmvfY7Lr2Zd8HO3MKr7o/1zmvY9t9Sls2SLwgj3D3rHrLQQawymUF+X0udpSomvPfdWSkng4lNT3vIc7svj0208m3fmE4cbrai3VLabDdNmZLvdMu33HB8f2zmUufs6tw5nuXZ/pxNDPK5rJmhyKpmisJ1PPfltolePfsEv8uLH/XMe/cc/y2a74ch9x3G0NSQ59TVeg1BcrEAra+AJdjf14KFd7EpZC4W1bgd6Mb0sIlOWnNd+jvb70tXTBi51nyJ8xuYijNWFV0NMeZpM/GOO58vcRcJMsK1BEyQ1miaLI1c2PUgCtVUvXJAuMBXCIrVYoXP3IdUL2WUpyYz4NakY+ZAVQfQKOVor7n7YfAqyWQMvGmkU0U6y2KiR1GvEyJfnR92nUHXbLcKUttx4w2MhD9z3Lc9jLKeGtzbzy1j5+ubm2+8p/oYXqGkyf7Qou/Ecr3uXD+Uet7+Bd7r11aT9jtNW0TqhR2eQOngBfSKXDamOpGFE2Vq3RlFSM5JlSpaXyjnDmAEr4Kt1tqYHWrzb+OwCSq3jDclF92NXMb/ZCUdesEHK1s3u6JhxGBkTSC1ontFiYjfmVwVxMfcCuV7gwLKH9S9iwf9UIi5jObe0EiVkwUUAWm39s9eEZ9vvyqHQVGDztThOscSI4ddGLg/HpiRw9VrJjpmEzx+lshJzBBun9Tl0kTxZiuxEEpvNlu1myzCOhsfm3Auyx3HD8fFxF1u+Uo5aF//esHTzs4paAb+OYsJom4G8GawILHtXYGmo50PU74u4796bJylevLcUH4VIXj/U/LuI00r4Q2I+vB2Wo5om29uQ8PkCu5AFFAiPYfUdx/s7echf/QFvuNd78LDXPcPzgIsvGI0OVK1BSvOGREUbkxTOXHUN7/Lgh/LgBz2Ma6+5B2loqBR0EIoMGP0wea7BSJCtAU2oLYMM1qH2yNZlda4IKgxpMIHPekqq2LquCt4kQcQKWVMtqCpva2f4X9c+jg+/8L+5x+7t1GHLxc05tvMJr7jmIVzYXsd73/4XnN1foEyFW8+NPE3uz4foW3j3cpFb5qtpOfGTJ/fjn597PQ+4/gzD9ogmiVIaBcO4svuPdnttDTzpUVfbfJGAPVofzya2JmkuDktDmzWyab4+SZmMsBkTR8eV8+fPcs21O050Yp4FmUEYSGkwbCONRpDOK6yAhSu0KoEhcgIdz7pCjizRRdri1yBkszr36F0dAZWIkNU6KmdRGjNJxchtgZdk5zGQuo1r4bsQKL+wNKSD937W9/LCJzyJx/7ef0JzdvtWfXwsVnPgzUU/QFZNjoI0rJjvFQUSZg8gAOiIFhwa4/rnPZWb3v9TueeLfo3hzht54NO/l7/88C/jIb/9ZKrvGw/93e/jNR/weTz0D/4LbbOJUMxW6mq+GVZTyXnJKRzmB+NwpFl09czysz8bwWDYgsvivVV/tL/2MDMnB/j2yfl7cHznzYv/0IMnljjz4IvWtnHBovq9D9K1xwThs9o7w+Y7/ykdYrdhr+K5nkaIW8DCj1gFLva+VTx8EDxfQcc2wRbYqnKUEiSlRDOanChNmb0j8lgS26aMTSEb1y21Rk6OHYs1XUu1UYEiNu+ygDbLJR50o9dl3kTup4m9pgvSJjwHF/feyaFtxaCSRKkFkeb4aNjkpVmB1VMNZBlIsiGlY3vIGZIcI2wR3XhTPReNqDNzm00EiZWfFPGoOK9LMtGUM/zdprEz2XUM4+idy60jOQpJE1kT0pIVhQVuq5kxZcbB4qjWIvLIJGnkZFyLKg10RDWb0GCDRqOlRqOwmy+hJ8JRO8dQj6llzzC5SBeZUpdioCzerVur76tBbK7Uufk+PKBsQDaIBJ17skLyVhBnJVjeuwUKCSEgbRdto+ixVnM+Vo+5wud17kltcU9XjVlVV4VsNg7v/vRf5FX/8JN499/4hUM/6Qo5Opax2u8PX7D6XQ6fl+53ha1bMDzUCPaiMdddtNoLYFIyXlUaB5KT8KsYM1BahbrYPnDujYgLPPpPQmzKCxeuuzfp4q29AUb/mZZOxAdbdBgcAn9zX9aL0JsXss+l9Y7Ns3eJDjw8RPWnudA+4pOof/J08of+M/T3f4n20Z9De9pPILe/zcxEHnj7B/5zbnjBb/Lm9/t47v+7P2X3aTRR0+3+hHd+wdN48+M+lnd6ybM4c8dNByJZEikVES5edx9e+6gP48HP/3WOLtz6DoftLninQgdbvZmL+LztMXLMC5b8VfB4zE7Z5xgfJZrqrmJrH//Iuy0CY+8gF70Yfh+PKDZgZQ+XKSgSxa4+7VQJsT/VK8+WwSp8CUMdI+T4b0U71lRTQXXrNmll9wP3XvnIS3C13CWRJbcbXyqX5Q/r7pTnfcdXcLio7YgC4fAv3jFXTVkEqeLiVjHc+rP/luMSPuLhc4f//osf+Q5UzV/6o//4pO4jnb3P/bj4ljeiqpzeehMv+sFvInhF7vogssT/YDi/XV+j7C5Cqnzg+zyWf/35n8Xj3uORnN+OzKeXaC5M/hd3Ju7YD4xZeOHb7uQDbtjyhMc9lnvf8zp+4Vf+N7/067/F7Sc7K85KI3Ox7xmGbEV5KNe+60O56gEP4uTGt3L9ez6etzznGd3vhgXPXGNVff7n4eCeHIqExdpthrmvnq21QQp81J/txc99UgI2d/b7PdO0d2xMkazkNDqn4MoS2FYMj6jNC4OaXZtqOthvtO9hhr3GXFPUfMGExSNt5RdA971C/EZaQkUtL9IsBugF6eB7ks27WK3dNvoe+IThDhurvkyD+6193eExSMQ8USAbPns0cz8szuo3hWjmg8DbpoH/ecfVfOZ1t3PvsXHfET73zJ1Y83HfY33/h2bj3pQvv9dtfN9N9+Df3utmsmz6hSjGPVw3ynqv8zMwE5j77TXzy7ec4XHn9rz70Y68WsYHccndHla8r2o+uJmGqICMN/t4avPiSBujwKzCHyN4950zbK87sDuOdYSAlK78FY1mGp0b6uMFq7VkcX5rbckLoh2Pb9222bmHSMe6kdn655XWIBMi9sHjH3FfYMH7BCsU14A/wJ7ttloWLh0sn7WOncMnCP9gFZ8qkaOXZe74v0WS1bFgeQOaiUnF91mezXNWuvApagjIYisvuVDYuk6mKi44Orlg5qFNWnwlaCoUYK4wldob9lVvGFLmwtysIVkat4wILU0W6zcrdpTP+A/UX/lPnPmMb2T8+W9hGDZWQBzNTIrlDPalsK+nJurTlGku7EvhzNGW7WZkOwwkr3MZsguxeu694UIHrTHXwm6aODk94cKli9x58SKXLp14MXesCfuMIY0mKoLV/GyGDUebLWePtsjRFhnERcWE6kXtqJDUODtJXciFxVbZv6IJku+Jtf1/yPvzYPuy674P++y9zzn3vvd7v7FHoEc00GgAxAyQAilwFsmiREo0JWqW45RVtlMVVSVKUqlyhkoq5XJKkSuxE0m2HKUix7RMk6JJUVKJFMEJAAkIAIkZjbEbPaDn/g3v996995y998ofa619zv11Q4JjiXxyTtft33v33eGcffZee63v+q7vMr6+iUxZ3OD2rUpV8a5amWplKpUaE+sXH+OOCi9cuIcrj36AEgKxS6S+J46j2aaFYNIZi8kaH/RV/LJbn1n6BQRmTZvFO8rF15COn9vbI2aMjPnxzYahuXGhxQtqd5fYWEMhmsiUikx4/s58lCgNvvPGd84rKdWFo0r72flOpRZy4yMtxMWqNy1xoSMTyvFmeTI3DoPZ/1OxqLjH+SVAFhUU9gYkgnGUaiKJ0Im0eMyL5hvGCogkpESr/YhUieZTeO2LcidY1OXN9ZlWUI3JRdj6Sfjr2+qw/89CDi5aq/ZRUZLor7H9cs8bkbmW17R+qCI89Kt/0wrTvaQ82P2k3adqP6vQlO5jPv5a0jbfjzO2tNqRmu8cLbcxNxVuPIqgBe0eeDde3dLuuyPkWKyt27l3z1xTqfdgsfZuWc1+V1+5Dn2dhb39UHOV9nQM++83P7c1ZTJOvD9KtkbBWcUqSnYhNy+W149y/l3jqL6KeHcTmmp8n1lwao5RzPWxuKvG2rhIDWtt8Zl7EjaXzU9SsyMzd8awhypCJ8r7y6XMeFCaOdVxBijaXt387IYlLB92h+ZNQmMgPzO7l4JY7bh/Yht+E5fSmuvALEQVQouQ9wSkPNpeba7ynk/+V7NwniwE+HztsRgz5sbqZ+mo2Wr8ROj6jlU/QEzUOiF1VA6tYeVD1zGkxC4AtVDyiJjYVK2FGGBY9Qyrnn7VEzeJaVJxzb7vSdbUsO9U9DJ1PaRkMaH56cl4VE0ILbT5pvavaiOFiDZJcP+81SSZj1jFRJayNXjQZmhjzuymia3xgCqVVBKDwK4Kfa30VmNdaiXn2sQ58qRiVd4YSudYVbGptKgH6yIhdAsxwkwICYkqXa484y3HN085vnmT49NTTrZbplypqSN2Ayl2xH6AENn93H/I8FP/Pruf/t9rgyqBjLC1BrHOqxCgK5nU9cQugUjzGcdRG+aKYPoEXbORFVu/UvXfAsrRMgw3BroQGGKkT5EhRVYpqvgiwcsOESp9zqRJOZqx03p3sLwMbmnN1sRISJ1mPcRjceUCSLTcjfMWW/yHNbOdbZaKYqFf4IpOZ+0Q32GknaZKO6if1nL+Zmf9Xng4DKHhF+//7b/eGntp7bTlshdwhN5omGNvNckxmRUUF36JypsgzBW7EmeRUcPaSxWmIky5shsrp7uRk5NTjT82G7a7XeNzuDjiOI6M2QTQfJ8yAfHS4onZO55z3jZWYR6zEEwtxLEXKYhkxRcpxGAxYYh0MSmvKnX0KdH3vf7e6+8qMtU13quOjYqhpi7RSaIToTdOSat/wfU5Zgxj1jDB6lHM/udCzdU778x+RsOcBFKvvnpMlACjCNuS6ceJ1O1IKWiDOa/r7TpIiT6EOQrze2QPDMsPtu/4Duq+xl7zdgFvFCM1NEGcZVzjwkkFF91zP9LrkM7S4deojdZqiYTO7bTPNss168t1XKzWoFTNOxe7x9mvWTTnVWNofnVp88Aw3Bqt1nb28WYx3flRqnHGW/7RnvfPT1F/rspzDVSSZHIJTBmmSVhHYQiVMQqrCFMQeiqpGk+31tYEuZjAYrYmR+M0sZtGrQEouQm+uYnx2mUzteANjxp8GMzezoL9tQZq0If6Uvq+gJCpJNFmle47tZgoKPbbxMxiRDpabXr111p9bQFiFRKVJEKSSK7Kue6ic30ikgSq2tkSfUq7kOLivwXe7OJeumzsDto8EYsdQkjKJRJdk4pZ0j7r6Of+d9z8yf8jhz/9v0BqgEWzNR0jHekqHqvZNTa/cMY7nDP8rQhsf8sofwiqtqe7hyfNjaCd3BmYlbgc9DME3j+lJW0d5Asxzh2HBbwjQMU276QBuGDFQtUH2BTKasSVq3djsaJGIEwKDARVGFytDzlYH7Aa1nS9dhLX4ktTToxBr60FQTpRPUoQC4SpEKoVgNoARwPc3I9oAaEXQRHAEhgQbQPWVfJv8QUquV0vMarzwwqpiZoSJY6ErIujBpuoMVKTFnFlUUBm9IKtXDyW1E3ZHeQYqatDdoe3cfnkJVLXqfhF1IVCzUgeKSOEquNTmaAIgcFCHF24un4FUiQ6KuWBcwVEQUxqoU9JnWsRdtst07hlt90iWQnwu+2Gk+MbXL92jZs3jyl1IqWAUNluRw3CusRqvTKBiWzKu8v5afOJOUzSzcuC6yKk1KsATF0I/JypY5nQ09/1H9+EPcnurw1NXKkJuNm7HERw4TOpgVQcOBIVnrFPctAsxEBMwYSmFqIte0JTSZODwdQZtJUtARMdE3fVZ2AkCBRLFqvjMf8smJdgQnPa5QX+1NWP83OX3sOfee43WYVKSdqVKUQh9YlnDu7knpNvQFT9RpGy6GpsXQJLVUCyBiX6JoWBgmSzNQrgUROUuUOqEzNxsK5GQuy0c1+FZ4c7+I2j1/Mj5UneNJ0gUaDmlmBCqhWGQY2RUCo1CSGKiU1FqNEWtECnzqnYPZ1t5rKUaraj4lLvPl8sAdZETTzx5RuV2etcXD15NNB/XrZeoDb+yP+M9Qf+b2x+6K9y2z/699GPL63oxYtolkVQDhIlA4hcvCNGA0XO0CGl2lAaKcamebQd0/RGLLZQIGwa1clL0cT5oopw5GlSpz1XKzoVQtKi/q7v6fpE7CKSYcrq+I5lMpGhRJ9H+qlnGLcMm1OGYWC7XTMeHHLu4BzrgzXr1ZpQKiEWQqpI0n9jqsTY00XtBOlqmeRsojVeMGKABAGJkRJ61A2qShiPPaFmEFXalSpg9y6lACUosa8WKCq2klJgNXR817P/lN9+7Q/znmc+wMXdi9SIKcXDx9/4U3z7136ejz/8p/iu3/nr5F1hGifG7oDn7nkvpxfv5f4v/zLx9AajQC+VH3nqH/HrD/5x/szxBznXCyGs8e6FcyLPBBBCVEGwEKkl7zmWIUQjmGVNXBpwoQXncfbOsGuW5i7qCvT93hIS1ZJULjTkxZZiRZyh1iaYP55uOD2+SRThYLXiLY/+DIeHK7pVDwg1Z/qk3b1Mz866V0grxGuiVu5VGKgUgpI5Q0jUGphyRhxLOWNHPwyUaWLc7QilatLTRZ9aQKVH27vDrQmFmdChYhOVKkW7CFkH19qS6J6A1r0k+tyOyT4Jc7msGMHH1EihbX/Tj6KREBYnpOdSmj2cSuXx82/gsTvfybse/zXuPHmZmkfK1FvRv+2CQVTYMLppV+XbaKCGI8YpmYp117XzfqkeUvJI2p6y223ZTTumvCVGfd2f/eLf4Jce+Xf5S0/8XbrVgRUwK1CRTBU7hNgCet3fivkIOr7RNwJJhASxg66KFrPVcU5MGZhaSrGAzYoWl8Fq9K7t6g808RNPsNhnOAAhpWgyTZzC7L62NHEBsQnTkgc2bsETa4t9UgRcWMIBHz9v9XuCXiNBbWRysNiAkkZg1QvWsGAOYs/SEcTEpgTqOHFy4wbTOLE7OaVME6uU6IICsBKk2RlP7Ishn0HEyO4WSLvAlik46zKw+1DhxeECHz73Zt68+TpvmJ6ns5hkWTCPBcPeIU99hLkoyI9Gahf9/hQVhCuhY4rWvbkK2ZLCeSr0Q6Hrerou8f6XP63+ms2T37zyVr7r6mf4wIW38yef+/XmNw+y5Qef/TAfvfJ2vvcbH7ZOR8IbX/oCIQbT+14E9g14MQE0twPW7TCYX7ycE+4R+XPtMg3gVoBF7HxrixmXCccWuywBBtkn4Op4yS0P2vNLmzWTBxdJxqVPduuvod28djKzuMotyazFvw0IkVsedXan9g5x/NEARQdObn3dH/BRS6Z44ffk4lBTEwwy825+sPl1/cC6L9zxT/4TNimSVoN2R7b54irx1cA8MPvkJHbm8VS/ROVrQmcw5GKOtiIWw1s8QevCUk3QdBjaOnyKQz588FreI1/kttMXtUh7j0xMw28aKRlp9nz+PsDAf03ElSYaVq3ovnU8KlocrkVo0HUd6/WaYbVitVrpnhfU5jSwMCUlMbn4p8/Vf07crqcb9sak0SoWc9iFEvfWChoHlOUsbHbPX+vkQjHSov+sttX/9c/2/VGFPxY/299f7Ur8PO3rF+cxd5Gqw5rwnh9DPvtrxG//Cfi1v7MourQutEETJkHmGF5FJ89WkkvBUS3yidF8nxgV+ysWnLltY2Hj2pgAVA+JFbCeJsqU2Ra4EQ65o56aSTPcIhq4X6t9/uK+wmz/zIaB2apG3gSJlY+nyzyUrvOxzUXuCde4qxbFB1OaO7tabL3b7NhuTSRqc8pms2G33RmB0IRBrHue7wtub7ULixahlFqYcuGkBm6uLjDsXjAcVbs99YN2zuwHTV4lI5RroqoaoF9usR9YVyuYCeNzoaLjteZOQVtLM7lVz72YmNRSZCo3ktcsLjUyTaOJtmb9dxzJ09h+d0HXYkJciOydXzAsWu9lJIomsd/wj/8axXDl0HzF0LCo4M6kHZ4sXa5FFRJRcmcwvFqTXeb7T3ZeMgvOuVCB+ID+a3h8M0z0VUmUYS6MnE2m+0k2BHMIa7Zc7VEwktCX/qO/wkP/zv+Jr/+t/zVD6jTBu9hH/KHCU6MS90zgKBgpaS/F4KfW/BenW7zy/NsetiAF4fuFJ1aWBHy/vKD2O8aZ4OMho/uhzVaXqmsoxn2sLKa5CGfhYzbyUnUapl1GKzo121BR8QZl5EEpjQDtojZlKtRxoowjeTvy9anjnrohmg3M0Qi3YyY6GbdWXuzW/DNu43Uc83B9Ge9xp2a2Np9ISZSLPcxwNRzTYCbKhVoJJUNOECcd16SE7mCCgOofxSbemZKL18/FYJ40BSGmqDmpM3SI7M9FQbjOAS/Ei1yWLV/lMm8Nz7PXqdBe6U8siWpx+cGv+Nn9D/MXl+J+rVvrLIASMHGD6GObdJ6CYXz6Orfnfi6+B2kOsONSiPyZ8DIfyJf5c4fXSOHA5r7a/m/0R6yGDQfr3WwnixKOnopHfOLiG/mOlz7P3durKjRl/thxDTx+4T52seN1zz3K4XiiOIB1J/yOz/4S4WAgphXDes3B4QGr9QH9MJC6zvKEOkeyJa/V7s/BzK1WwNesk8iixcBuwGRxa3wcfJ15ZyclLJuIou3hDb/XE9L3uqiWkftdZGoaNa6Y8mTiitMsslhVEd33lFAxcR8U2xWMOOONZ2rrrlS6jqnz7xnJZaKWRXGMFcLo3rcUm/J9lpkgeYaO4Hh9iI0YpliD2lkly6rgFrWwyxNT6SgMeIFJrUIJlWykMI9vgu1V1y/cwy6tSCK8fOF+bn/pC4ScqdGwQkKLcbWOqpqQohX2VUx4Kdr+UnnuNe/k8Po3eO7CAxy8+HXyyQt0sWM6PKBOO3LfqZ3rEmkY6NcHdMNArRlt1DNSYyIFxfxDSNTUkTv1X3MZmbI2tSjiHfSskzg0X+4kHpDpuFBOlLxVrKN31rxZjIluWBHSmn59pDliqXS1IN1EnSbrlqV+V0rqt4uCvPtCU/avk55g3tNU/FYFZtzH0vDO4zW/38EKt03oy/7e/M7Fw4Wm1E+wPJn7uIv5oyoJtVndWC2eK5mqvQZp9rWWJvdCQgka+H60JOqU9rMXH3XDwHq9YrVeEZPGNilqXsibjhys1wzD+l/2MvnvdRQjtTgsEEJUvJ2qHIWkDUz6VUfqI6mLbZ8mCjXq/S5Fc7paHOR4yQw6qU+1ILEv7rn6XOqYe1dyxdws9jMhT0pu98KFpoS6eE4/U3Oyi5jdPutoc5W3PP5rrcnYvN8ZkVBohZZaOAETgdX5Czz48Ot55K1v547b7qZMlXE6RULRAirzgygqkgCooIdkSrax8IY1sSd2K1hZcWNRemBJozaHylBKJufKM+ECV/JNVqhwhnIthH989B6++9kP8aG7vpsf/drP8sSFB/jqxUe45+QJXh6ucG484Sur1/Lm4y/x8nCBj6UHedvucX5T7qNU4TfyvXyVK/zbw+f4x7uH+F8dTaTYaxFWyNbASu+JduuOPH0yci4Jq6DFrYFo69zFd6FIRmpRgQ9RcbGaJ+o46XWKFfbFRN8nzh0Ily/vuLnLnJYTTq9Xwq5SJwipt33eCJWijIZ9Yr9aGMc9PVY9axFZlzpCcMEp8VFtsYb7+4LmM9T+qXRZR6SjUFBRMhV0sSsXJznbYxG/KOKPYv/Biz+AILzrg39L96wEiND5WvATFvO/Re+z5odmTE3Mj8A629agcVARJ707hBfUvpRMCYXLH/r/EFMid2oPX/+r/7EKh/qdzCMP/+bfUkzI9m8tGJnvswpDZyPZLfafAC4YMbvQodmSFm/NLuJsL0Sx+tilGW+1nIBIncclRLtPNkiLw2M558QhwvGVe3nyLT/AfZ/7AOdeetJdRczozH7XLRM2GTZcXGzXvy6ovahGlFxi+o4luhA5wWy077H+UvGpsvhbwzLsdTKLIRGw2K9tEIsPOltHVwprKocpIsPAKgmnu4mxGO/OBqwSyAJjrYwirYFzEkjVRYp0L9AGNCpCFWqAmGb/RWbe1VzXVBu2GImtaCgsGIMeNc/YmglOCZTs+ZViWKmJY9ocUc6jcgNC6AlhTWAN7bECBpTuGwhSjdS7s7zyOOMrRoRe3v8YExJ6XbsyafdnNOehxQHQRS0eKRkCmVqELkaG2JEqyKhrzRsqBSNAlOLXBwHFL+uQkBosPoyay2eNSE+t1gAwBKY8UcuGaYIYlPw+rEa6Ya3FSI7RE+iSNhpVwSktwCktT6HkdBf8kjAgFAgT2pcWCNZxWSNps8xQw5LMW5ufVKSSaybXQgizXwjOla0N71pyZ/VzlhZl9kle/8t/3zgMZ2s3mwnSDXaj/eM+XfufPjfHJOztT+3KW8xtsUM1gcpqAsylWBEVdDEgKRHpjScbyCLEpNwpYqFW812Cdq9vIlNBeThd0MYx9bUPcvo9P0738V9j/cKT6lM4DmjFRXtG1gxkEzRoeRrHVYSatfA456Ji0v4osxi04vuGA/zs36D/U/8Txr//N1n9ib9M+NW/R/7hv0T4uf+I8TUPsX7pKe775b/Ns9/9p7nvg/8128t30d28xrU3vId6eIE7vvgRVqfH3P/xf6gxZZwbP8Y27oKkyGPf9r3c/+WP8MRbvodHPvoL857IfE9Z+gG33vu9zdOeqdLwE2HGSZvI1F7uS21vlFlqai+37ZyrRd7HXmTxhPiX0KqdxXJxgXnPci/Ex2CBs7kdFapyAmUpenRGjvrKp2TvSfOZzDeqkpuwTRdEi+bwxi52wW2x2kN8H5oPxwA9nvrnpTbm3OVy7JqkAN8Mi/f5M9+LeZbOE8VeI/uz7VXPw1//LeRhwi3nc/GhN/OGn/g3+cov/F1uPPbFOQ/u1xL8PPVnp7x4ERm1InnL6++/l3/3f/zneesbH0R2J3zmpYk3n9ccfc7w7vM9WynUtOI7L0Pe3iTmiQfuvsJf+qk/QZl2/PTP/YIWJXaJnZ1DSl2zMTcf/yJp6Dm4+z6e/e1fYV7ZM47i5+85NBeyuTWns+SXz9fs6yXgjakdp3f8JhgXXBut+N5kmFy7BbVhCdrkOJzRXLQ0LKeUrHUIElGum89JO0T3FIr5NaICmjALUOZJCF0ikojmLWuTgKrr0fYWHXcX6gaMqe+CN3vneMt+4wV5CDzHiiuxsorGD/e1opus3be5NkfaLfbfo3FkA3WB0+D51hj4+9cv8icun/IL1y/w79153FZ7mM9ujsH8/nbq6f7V1x6jvqhfi1sL47os1qvHHAAfvL7iLesdHzle8Zp+5EIq7f0Bx4ncd/ZTXvwuzLZHaovJgo27z1cvxJzxcbU33uQNlDPwoqw5J1tWMrUr0D2nLnghxid0f7q42FQ1jMTPVZrbf2v+1a9f4wj7OZe9v3tjEW8s4WJEORfDR87YPgZ2X6oWjy6w8mgipctQvFleC4yd0zP7jGqbFomBdt9f4UvbgtA76/FTaLew+ZyenxPnCnmehLbmsvmiXndSxAsFbc/E8jVZxecngThmBJhMgIbF17dzFnB2YBEVp8pV9u9tqY1jUaogMRH6FYlIHzuLBwPhZ/8Dwk/8VQ5+8a/TX7hA3w0QguH9E1O3Ypcr8uI3mKbK6ThSj4UxT+xK5vBgxeFqxXoY6LrIkDqGvtMGZjHhdXFFYKqF3Tix2W04Pj3h+vEx14+POT4+odz5Ok4f+6zWbsXEqh8Y+hVDSqQQ6ELHaoBSIyl2rHvokjZSDTFqrjhCSLrh+qot4rn3xXp2myOKiyx5+8s8u8+HLEUFpoxXM5ZCiZVJYPjGF7jtyc8yhUSNah9d1Ke2++RT5VUctD/Ao/FWpd4Kbe177A338SfD3hojQH7NI2zf9ePET/w8q5ef2IvXbv1s//zFx+v4LPyo5hE6Jr94T/U4Gshmd+02UoMKLDW+XRWIarurQLac0OQ2seT2XMmVIqXF4dJEjZaxyRyvVMP6vUxrGXJL0HiqsnQxZ7uVqzCVuhD9sHxDrKRaGlcvpURXK50Indu9EFrRfBYvBp95SkscLlm9nIjiVG07M46K1m4WZoxcczfmnemYL3yBWaRqcT+XDQY9J05o8ZXf74oXvaMCfLIUtJH2uUuxKW/f7EJi7bG4L3PId7YwD1AePYulI6INMx1f0DoDHW/3wfYWDbQ41gW75v4HukpbPO5FRt/ER8DE+ILsR1rzWtSxbO8PVjwffG+1ar2o+6Xzuavlhl2c0LEXbwCoTYpmsQDF02axhBBUiC1avjM4/8mbyCXl6qVonOUU6WLXBJ72GoQILLlVOWZKnLnUboPF9m4XmW/PISqCVYUctXY7lWL1WNaEzbESw3yWAt1NDNX9RTOkHre2z/B62mXupfmb8xSYozX9qIYGm8/iTQn8dR5XeNh+a+zqn6M+hdkws6HVRfTMVhZcBI5W6zBb67NzjLuJRKLGimnZqv0T0YZt48hUVSBTm0CryGY0wbAyjTBVs4XQ9z3r9QEHhwdsdzumfEKRahhJgLTgT6O58KkUxikzdD2dRG220vIA89wI0ESlAgGJzqtSIWG1r5q/rKKNTHMtTGIiU9PEbpzYjiPbUfkcFSGWxK6KztWpELcZCTqXb1y8n/TiF9mN2rBumnITdQLFulPAmr13dF1P6jsVe4oRiclqgQJFKmOubHYjp9stx6cbNpsNm3Gk1Eq8cLvyPbY3CKlHQlLftBS2P/MfIGLXKShX1jlROeOmJ8So9Tt912oPdtNk+gXGQbF9HcMIfH9pzXht4YWoTQO0OZ7QAX2EVUrkoaMOg8bv3byuxlLosvI3U846BqI1s6ZwwLzMLSaO0vwU9VuM42CN7Zrt9L+bDwMWlzQwUsVKwxkUmhKLYZvAnu9dlpueObL2evMta+uqAlTF0n2Ngm03vrl5nDx/qcVbtb3fuSDuhMxClap3oHITxs0IglBsLWkjh+0uc7IZOd3suHlyysnJhu12w263m+eQ7SHakK40XNPnEma/9QLcP3Z7bnt7w8HsOt0emyPg+7ZjPCkZXyoq92foehXG63r6Xn/u+95EeDtrYL+oByqBjBBqItSOSKCLyh9ptWK1NvEh9aPVAxDPzxp3UTmiJv5WZ/xnzgvrAohxPv+CNuTZTZkUd5qHNP6JiBBqIQwDqe8JVv+gcEttMVgTm3I70fAi9RCfObiDO46fmV/r50KYxVAt1+bzwuPlpZBiE489Y3uZ78nF/KcwJIJEyzvSMAi/jmX+o1aLc0AFn4gqjizKTxN7zkOAavFDri7OVnTf8fnKXBPifAYf97meY67NU6pJ1Di4Kvapf9fVOUlmV3T/2FEYKKworMj0daLP3kTPbEeVxqdodSmWExuzNmAvVLW1Cz/V86HLdI8t2abboznmsBh1jJNpOamAYjxVm2ammvAmCcv/VJxKa7WT24QQqZJaXWOlWBxruiNo/BeqNlPuaqWrkZISXRJ6guFYy7np8WZtvlubDrIvBrbE6fVGzvUt+7GIx+91gW0FDn7u/6Bzy50pe1Ot6oMUERMC9vy/2cMQmHNDum6bANe/4PiWhaZaAqJdmC4OxX08YRDafqIPSzr4IyzdajfeEQ2CdSMOoiC3k4b1gtSgKygpqm6OFUN3CuHHrDMp58rpZmcOZAEJpK5nvV6zXh+wWq3ph74VOK5W2mk0mPplSonUdao8nWzytU7bNmgh0HdLAQMrkvfNts1qCw6CBaQx2YR0d6YiFL0+MSEd36colBp5rL+LB+UJG00LfEKkhGCdmoJ1GFTxoBB1AjvhvBbbcICa1jx9+9s5vnQ/Dz3zz7hz9zylpgakKgie1YCYyqGgYxjjCoi60ccKoQd6tIuFCUj4RiW2gEXmSV8reRq1sG63I08j1ZTrNttTTjenbLcbpknJ8OLeXpt0PnNu2Thkf7H6K0P7yf4SghXhyGLunS3gYk7qgxMWGlFapOEMjkr41Xo+aBabkgYgYI6T/i1Z5xQTagliGNICBFmO3IIoLyFqgYOt17mUSEWmWjfjsBCoMrc9205QvStB+45I8xzsOS9ICyHyk1f/GRIrMvQK0PUBKR1fPHc/n7/8COXF3+N1J1/T4XFATaBlNFExjFqV0Bokm+LqjNlIjVRPri1EEMQCdAW+dAMPMSES+ejd7+Rdx1/mgxdezxt2n0ao5HGDlJFk3Wpq1g1DC6o6BX8CKqpRkz0CSLcYCg/055KyNh+YDat40aXff0+M1VmYo4klWFKkiIKuY1YySykym2TArcTh3/ufs/vT/2eu/P2/Sjg80L/U2Qnw747MILSLEqnQVGhKz3FhM8/OIW3OaQLZycnMzh5+6+bC/4DuczGos9SlpPt3zabuboJEnf297xnWa1amllsQymQFyqKAiEyurpuZ0sg47rQgaByZxh0HuwPG1QHr1Zq+08RM3w+ErhC6Trs2pl5XYKdBkrrWoQFiDbSSQPUkCRrYVcmmjm6BQGG2A1asHpKKooUamp1xwYGeyh9+7p9qUNPF5twG4I9+8T/j117/b/LDn/vbbLuBPlUkwfb83WyvPMjhzRe5efdbufLkh4lSVOyqTPzEix9gtT5AWGsQ0alwZLXgwveaGQqXpmostTTbRsm6xwqGxmv36JZc9+CYgn+BiInEtfVjhaMmHtc6FZX5QbUkjghlnNhuNoy7DTHAqu9ZDSqIEq2wvdZKIJk4i3dT1LXqwj9zInppjxd7g32fJtV4RXL6LBwioorR00QSE+OMZpftGtyX9NfPf3Sgxt192u9FVGyqmE2rHoYugV2DY1V8TBXNddmHRs4QU8imKommBuv4YXOqkWxlPoMQIYjaOqmRbeh56u538NoXvsDjd7yNK1/9FXa1UqeRvku8eOEeLpRjjvJN9Q+DEeYsXPQkd0iacKLrCH1PkY4UEy90l/n44Zvo0k3etPsU/bSlWw+cTysVkep6uq7n337p54kXLtD1a/phzbA6oOsHu/bZb9YkQ2zj78FMxcQoCFRsncReQe+gwZKiEUY26jqkFHIsBEs6OAAoQDBBDYICl038JCYisXUhap25fG+0eTAXm7sIDQb4J2cI4h/i+EkBPNGynDstEjHfJvjehAP4ei+qFGrN+ijqA+sN0jnbhPfO0lFrKzYft1tuXr+uwO5u1GLtqCJSeGE+tXXbC9HgeBuvEGZqHzAru7Mf6IYQePTgfl4/PceXDu7nIblOCpllx2z9APae824PXhCIfa4XSkNQwpYltaSKqXCLFkJOWjg6BZ0XfV+pJhgcQjThOeFHnvp1fuXu9/PjT/0quSWddJ6v6zHf8/SH5g5HHgvEhR+0AOxeLahv7rJG8jY3PeKYCat+tEKPJZjjfvkyBlmMU7jl/bWqUrYLGiDz88t/22Z/y/vn5L5/1SJ5ab/PodvC7tZbAA7znWayadj7nn1l9FtsqBqf9h2emHGRubN67LZbxnFkt92y25l/5mIpk4lPWXKkmr+AVGIK9H1PrVrgMwylAT/JxJR0r5fmUy2Tqu5TqNld3CePkxZApP/Nfpj9s75ntVoxDAOr9VrHG/jdcoX3bp7hM0cP8gM7Lfa/lXi6nFee2PUk7px41e8qDoJmneewENyo816eJysQQIgpsV6vWa1WHKzXdH1Pb9jBsuORzZp5WoclFiM428PT6i0R62CqjVkjFtX969ojtCP7v/v4+rXLPP+/6bF4zSwyVZuoj8dPy7XnF/eK733FR8/nzPYm9Z/8P4jf+VPIB/5zFZa0cVMhAiO6efEhJroT5hj3rBwiyeJs7VzSOlKAG1eyx51hFjVWkZGg4ie+94d5vE+z8LVwJy/X23m3PMNryildCkRXTkELQMSKgKQaURQjFLi9s3tXjMxZjXQRArxn9wU+dv5h3p8eo6/CZhqo06oRKPz+igjbjSVtT045OTnh5PSE09NTttsd0+giFUqg2AeaLSFQtWuLBGHqV7z0mjdzcu427nr6s1wer3Hu6IijCxc4d3SOg3MHDdtMKVnhWKWUqdmwW+33Egry6RfcZrNE1QyLwnw38y1d5KRY8UwtWX304g8Vws/FxTX0UbILbuy0O9VCYKq0Lpg00kgwcFuXmgqDa8I5EZMQYiWW2hJkDZMCvLOee4Zusz3REXMmWWeNnDPjqGI606SEYicN5zy1MXV/IDoJNuwN7Zk8/mXZgIY9sm+vTO+3jYOghL0gnjj2hNvE43/7f0OflMSuofjSDlr3oSkzjiOTiXvHEOktMSvNVwuWCPKTwLAC+/69E7SzWvqtIbT5shcvtBu69H+UXKDYu9nmMtsJF0fzU5ljICNP2Z6mollFfXB8z7IYyYQpZ6KSnbL5ZlIrkl0I09fY7INlE7GZxpEvjAO/W454Zym8vpzoPikgUrlB4lR6rpQdUgpf7o64azrmsXSO+7jKEYbkGnFeBeB22tSj1FYM64V4cW+fMepUVVK5kw0litZypdjwjpzWXB8ucNt4HYnaAcb9IBWXqNSayca47IdE35+tjujAHIeay3ClntCVZ7naX+Zt8QXtxsaygOSVBqP5g2Z5Wfjxs+iZzmqdRyYuVpzck1s3VfW75xg8xaQC9VHJ0hQT+PBYo+wXMsyiTS6Gnbi9C/z5g2O6tKKLStivVXhyB5+say6GDe9Y3WBddk0crtbKZ1Zv4A9tn+Xztz/CQ1c/b4W3+r3XuvPU4RLrMrK98wFuP366+aG5KoHRbXo/DOo/rlesVmsTtNZx8m62usf5erV9Q7ygBRrWJNLWqpg/uRTLdVKKdmCaBbzaw4QtW7fp4k1l1DYE9xmLrx8TVpxMXNGEpjyeKJOLMarQlIbHMseIUQhJCMViahF9fdHXlypIiuQ8kfJIzgM5axF580MF9ELrIgZdAnNubHynPDuHE4BSsHxwmQWSsBjHsehatFnNNiUOu4EpduzCRJKiIvNGoq61mohuJFA4/9znkRCJw5orz39OhchiUDEPkXkuiVhRilBCQETXl5UoaTwXNQ92z9c+yOP3vY/bH/2n1KtPchMY+h7JO/LulKHvdd0PPf1qxTqPdKsV3a5n2K2Y+hVD6kghmXCxzfmgIr/qW+3U/oeMCh+pcIBZDk7jAZ9dvZatdLx18zLnx+vUojbGc3jdsCbGjtW5A1ZHF1j1iVAKnRSYCjntmrBhEPW7QoqtaceyM3MQjfWUTKb+bRD35QWJCUQJ+MtmErPokJNKlLSv+abY7pmvcxdlc4JRNiFEUdUDvRcWS9SixJHYdY1Upz5dIHXJRCK8+Ez3rUBoerSNuLxojOB4SOucnXWddV1ibYU6sesh6r1TQllHiCre15ptnZGjmB/jcz2G0MQl+j6QYqXrYBgSqQt0faKLQsiJGmLDg3MuKsZh/p5FpYSghOxaownzWRc9ma2N+hFi/JJ9PL4VdEmFGhpWIEVtVqgyNwgIs0mbCxeML8GCqr0Q2Vmw/dUvC9FiVGEshfXhAY+85U287Z1v58qVy0y7zLjdkssG4kQpgWEIes9DaXE4onkuyoxVWOBKiAPdyvzfIUOpxJDoaqSXnlIyX5sO+b30AK/ZPMPbpqfoqJQCORf+3DP/mL9/+f38yBd/hpvDAR+65wd5zzMf5uZwgQeufZnrwyVef/WzPHd4Fx+67Q/z0O4ZHu0u82MnH+VXz72b7xqeJJWRD0938+/d/QR9d5/mvqZsHWZr88NCgKdOJ379qRPuXMN7b0sc9AKSWi57xrcmqJNxSwqUiTpl8jhBDYTYE2NP6hIhJg5WlcsXDtll4XSKHE9bXjodqVmIRKRToaJchFwCtXiRs96tJQjrBQ8iZ20XgyiKA0bNdBpO5eJPXnQ0x0ENm0CFpYzjqQT6ijUbUl8yuhiXjYf6k27HAiW4aArmooeFT+SxfdU91Q49j0VRtIQ5Z+mYlQghgYrDSPOFGgupMud2qvlzOdN1HSK9Lr0+NnwhgBW4274qGkEsZXpmMVHbE8jN33Xynftjvr/o9c58oHZPYlyGeovrnn3jdr0h0EYnhIV27CtxVBxfAZ55w/t4zVc+wrMPv483vPyUPevcAOYY1mIqBxT28hAhmIC846NiNi3M3IzlmXjcyjwWy3Wyh+9Y3BWaMKT4C1qM1/ADkXaufl5n7QjjlqFmjrpA3w+MJRBqJW921jQnWQiWqEHICKMUYtX9pwMm58MFjREiilPmuHSR9T6p7znfBy9gnF8xx/pC9Zuue2Bbh05jUv8/xkBslYTql5Ra5hg7JItxeggrYIWwRuoaqQNSO2ro0FhQqGSmvGM3bdnsTjg9vck4nbKddip0Y40wCM6D8n9r4xbq3BT6XhuvpeBYs86zKEKsqMhijU7d0EIsbXNGDB2SojYuqgHoCN05JKyIkphqpWTtUhzpSeEcKR3QpUNiWCFooQu1EJkoWdOdKU9IiOSadd2ESpcCXRfo00LA2fLRhEgpJtoXOgKDjf0EcVRxbIsdxbkouHC6xovFfJ4i2iVXuxZrbhkpVFE8FLAcd23+qhcFLNgG2AQxjNVxSiUBy7dO3f19ObThpdla/d/eftusgix+NrsczHZCaD6ivtbwZdv7sKYFiie4iG5GaiaGqsLjsVMcMUQyQUXiRDm7pWi1bmMUG7bnnLXO/j1913dz9Jnf4ea7vptLH/h7M/5nOPhel+wW588F7FoUYnlrxyOqFj5PVvzszVdmgSltADllz48L48/+TY3vfvqvEf/C/5Kj/+avk9/4LqZ3fi/DFz7CpWe+xH2/9V9z/XXv4PSO+1ldfYZ87iJp3LC5/T4Onvis8i3aPjmvzdYcp0y89Xd+lq+880d488d+caZF2b7l4hp7VdaLXKP4vfVbFryEnOajz7lKQ36rcqJDSu08WmZhLxdG8yGdC+s5PudUtwcmYGM5NuVzzvxj3/+ItPe3ItCFMLK0Uk/2YoCzcbxacVq95WffYcySVCHk2DioIcUW082px+bpfNNvnsWmXilQdOvr9n8XIM6+x2zZbnmj8tY9jg6NY9xe8Ko/ftPzaP//F73Yz2jGVx/84Z/kiQ/8Ivf/4J/gs//Pv7Z3vcOFS6wuXObkG483f9jne84qeFzGHXeeP+C73/ce3vrwQ7z87FM8Fi7y+d0BuUy87TykNJCl8B2XevqVNkyJUpjGDePpKZfPr/jTP/HH+MqXv8SHP/F7TDVAVIEe/x5QX/rlRz8Fj35Kr3ixfnXfC5qLc+eS+R55PLB8ro2fC+sR92aY81na2DW/1i2BXou4XwjWeLZXjFjBb2qtjHUkxf5fcH9+f48qRfmYEmkF7dZcsortU1XjthoshrABqhUkiRXKWuzU90TnQDimFKTldmicjmI4oRBCool1tbkXcM7/0qdvcUUQnpYVH8/nuSdOvL07ZrBGlxJeacqa3baPNmB9zoVF5wm2QKTFkX/l7hv83ReO+HfuPN6bG9dL5KRG7hnKvP7C/nfeejR7b47BSQm8NCXuX+e91/3Y5RP+4dVz/PilYy7EPH+Y59cXl7L87L2YTMBFpjT4dQEa87iMA4CUxlvR5IrvPwK18kxd8YlyG1c45e08z1om+0LD962OxvnEiH92aXUxKv7iQZWdTuCb29aFifZ4rOGfnufby0HUOUI+c/sYeK2GNmrW5g3V8kit6NXWSuNxi89a3buivU59ORd3iK+45776xH+2vydrZDlbQZZB/+wHtRheXyA+9lKbUEDjQLVIWuPzWmCSTMyVEKbZvzdfpp0T+/de3a3YuDBFaPyTKS+4Il7obXGmxmbqg7sYbfjF/yu566yRWKDvOlIU5NwF5P63QeiIn/ktwvNPkHPmdNwxlsxYMofbFQertTZD6BPrfmAYevuMaMWIGgufri9wKonx2vPcOLnJ9eMb3Lh5k3LPm4jv+CGmsOb4U79JlxIHNXIgHbWP6psnFXPLEij2qCg/kKj5hehdmWNofupU8xwjWVztwqPVfcdSrTGGNqFvzQaoLQ4bc2EsmSkXJsN2sjhXwSNu0cLeUlQgtmFbPjXOFvYx28Rb9nb27aT/vOSBti0BIES2b/sh1l/8TTZv/n5Wv/1fzC9YfEDDiXzrt61Dwi1n4A6T2+7QQr1WqyiYSJGga8B+dvY8ZtuXn1vE7k+tTcg32z3NZhPLIp/rcfXSPijOttj63B+NcX+fsev3mke/Ri/ob43VmHORwcRGCtp0I8ZIbPG/Fo97Q+ZS9DpUUM75aQsOZkCx8KDxrdfYNvdMIFS0yUWIhFqJRTHZ6ELJwXX5NCq0XRCxc94XPFr41Gaj21jIfL9cHGsWjVoIAoRZZMrzPOK/M2/LWrPm3Cy8lPaWWXs2js5zkRi/CcgxkWMixUKS2DDnVh9rmN2MAc5+XZt7NriyiEva9md/cbxlPhyD3z/H9rlzkG3z22JFn+e+12INVWxfa2JSTVwqN5GpkkvjQ1YTVdMb5xhnNJGNpOIyqTPBG22C2xmfZPnoXIAqpiY25fsutsd548oudeRkjSyNY++NIOYB2497dJ+uyhsOWpsXQrDvCiYY7OsjNFF8vXVznsTtnTee9uvUJm7G80rJSlVCEyJxeF+Xniw4unqmcf70xpdrtdSyeO8iFtvzt81micyCAY0/KnUh9CbN5s6ibmfPV5x2E0PsqX0hjxMTkRAqecqINU6rJTNNmc12Qx53RDGxKReXpCp3eOiJ5w6ZxtH4EdrEfBwnFZdC59dE0brKYPPeMNpcC1PV2C2KYv3LOld1K+pshwlIcntnjfDwJsCi4oeGDY7TyG4a2Y47Tnc7ttPIVHKL35IEYgFiIddTSqmc3vNWvnHHu7hyMjF+8SPstooj5sb9EroYTBg0aCPafqAb9JFSsrgzUlHhq81uZDdNbLYjm92OMStnv790Fwdv/X66rke+8lHqyTWmbCJRJnAlonoGKpBjXAzjb/kslTwRp0yXO835WgOnEgKSVE+gEJqIjGMOyn/WWluPYBW/NREQb/IrMKZIKSoy5RoF6lILU4WpquBjVwqpFAjiMu3NtVHM1ESXkbY3iQghak4/CpR4yObcHVy68aSub9zmClCoxW2s1+HXsxiS0ZrnhDDXEVTlScwidPMoVbNpUbzuRV8Sk+UI3SrZ88qFn+sosO+ixSrmS4nysVUYRnm9Ph+w5iQuMkVQzkguJga3EEk7Od1wutmw2W3Z7naMo3G47f9SF/lgjzkN+0gx0S0wMff35nq2uQYGCZqLDzL7geK5dhNjT1BNoKqLWrugQlMaS3XrI+pt9zJc/4bti0nfa3ZcquoJJBI1VGvMHtnd920cPv2ojpnxn7C6ZLG9veE51XyxWo2767xHr7eJkKyOG9XgiMnF0HWUci6MiOX0Ci3hViuhFmLVBj2hE+VXFRWNW4pNeSPcpQ8vtfLk+Xv59G1v4o1h4P4Xv4yIYm41BNMwMOEkEbJACVCCzw334WWexzqp/1Utl/+fjlrF5vRcU+TeYKOuy2w/9sRW0X1bYwuLPZLi5NLio2B+d2USFZnK1fNQYn+ffQaFooytaPiTNJ9dx3jpT4rxrGpQvl8tQs465lEqsQayVMZs4lLTSL8zPy/q/G982ErL7yDB9lkV0VZOp+afXAQVu/YWJ4ryAv25UAPJ9vlodjvg32W+TdW5EYNmoCV6bJTRPUa5+kkqWTTLWqqQukRnfmEAq1sMSBcgJl0DJZnYVDVNAl9vC1Esu5EiCYnqQ3gRhTYocrtm423jM+89i1rPMMf2btNmjDi0mLb93J6f/20+I7rmC0K2ca+LmFh1hVx8LzQ3M7LksX/z41vOVjspyJ3qaCS+BNqrwTaMG5cfIDFyINt50i4C9DmoCbdcrH2uKIFXOwepUICEqEptVoSme55efNf1CIVSIikJoMVB168fs9uNeCe31bBmWK0Yhp6u6xhWK9brFQcHBwyrFf2q10DDFT87U21Pqrybul6VPL14DCuWrh4cyBzYtOudE53BkRRzQIMbiqikMUmJWCu1E+1OR+CTw708nS4xEnn49HHcsaohG2k28sTRg1zZvcxhPSWVSjdlui4zlcKjV76Nh577pKrixsh0dBvTHW/g0uZltnc9wuFLpwxDz2pQwa2+61WJWQRqaSAAEqlh45JCCEWNZagEOgjqOIsn5G0sYgv2tKBoGkfGadeKyKZp5HRzyo0bN7hx4zqnpyfaVa2WFtjFiDnz8yL1BfjqnCZ7wSIGd7KWd8RNqbNXnrFNqDhphT3DGPAuGfNrHdBuhwFh7Vgihij5LwiEWCFaUsuMbhGM3KaOiSfUlnuMCqR7pz79g7+HMKt7igW5niyo5ixVgs372Iyk6I65AFnMCBupP4ak4HIKpC4gogUrX7nyMK+7+SRfvvAQ959+rW3M+86rGemSVSWwZFUqDvq5LrjRwEVPpBGsYEcsQFLQTEJESMSY+MEnf4UP3vsD/Omrv0PuVKgtjyNSCynQxGmqETg10SRNcdEFjtQ+FpCl8+wCXjQiqF6bjanQnHXxPUm9BVuzsyhONVEWL5YZ88huVCKZ4DbWHAcbixjh6B/8b4nrFV4kqwGxAkvVHN7mcC9UJFPUjnAunnP2VpgfZp3dgWtmRRqYFKMTkKIVMc2F2tEKtULXaSdGURA7l0JXKsRI3w8cHBy2va9ixdK1tg5zoISzKXsRsxXZjjt22w2n/WBJngPWqwMOVvpvGVb03UDpJvp+aGhsELRgIVk3blq/UWAGRhxE0yDaC2FSG5vmwNFpx0BEyVslUiZNqmrApHtFlWr5WwX7ci1UgT/y5f8K+hV1ACSSup7DfI31c5/g+oV7uf+pj5HWa1bDQN8pICclU/JINkeRomRhty0hhdnEB03mNaKnJZWQbHlkIRSBVLTAoytoJ0yY92kXZ5uVx/VzgCyEUgl232otSM4mMJWh5ubBVKlsNqdsNxtKKQqAGHAaTbRlmVgOITTnW53hSsla4FJrUdDaAtpgydQgtAJ3sLlpj7N23Dy5qcUUIdJFI77L0s0Nbc35MRONhHlFLv9TR7zI7JQ7oSV4kbcXuTbVeA8OXE3GP7t5Bzhp3SrW/Wmc+CtiNk+sQCZ20MFRHnn/k7/CZ+94L9/+lV+2wCuTKTx39ACPXXozR/WEt778SdbTDUS8aH7fd0mk+fMlQlVf5fnhPKmMjMMR+egKt/UjXUr0q4GUemLXEWKngBAJUk9IPSn1ev0VciktaeNiTa3bgsFiIkVDDMlUSVTRjrGESkwdnmolJToPfKvQFS2wnKZJk64WsFYUHNJ9WV+foIHxElSZ3DdgMV9Cl6xQZO4QVX3s0f3FRQXEBTB9NslyPs17z3L/mUMP83Uw212N9Ll4lGo2uhZSqEQrCDtLx1xKUsm7LTcbaSaoyGGXCLVSc0Zy1r2HWeAHK2IV26A8Nosm8hJSApG9wmOA7zn5PB8892Z+6PRzHJBncpIdc8J6X3yqeiGgFR03wZfm62rsU0YVFthut2y321nkUj9cE2ClUEpPStqRoBipO4TA933918gL8uhyHr7igcz1tUu/sc4iTva1i+syOyHuR+iXuF1ekjEd+KpeuGyxb7sHIg282Jufi/NwkmAjuyz8/D0xrCWA2+5D2AMg/PzmcxMfIHMtFdCbi2v8Xu0noeZrxa53/9wdfvDXxSYoNRfFKEgte2N/1o6TmydM02RCyCo6lScVdyhlmgvMxQoBhFa03vcKBs+CYHqLBkvwCLR1QBX1bXiVsVje03/RCS9ARBcr6IwU5AWjfzY9zc+kK/zojc+zgzbPm5J9KY2w5t09peR232ahKSvmqkCUJiy3PPw7QUmxNVc297yJcPoCBzdvcrBesz08pO/7ltRdklnbuvNfluMTgo5btPnUYkx/z3wuM2C3EEQzYY52naU2oY7iwrHt3v3zE7GtSOTVbExbS/NaXV7Pq33WXuC9t+7cJwTZXCf8+t9pSQJPbAcrsJvvhfs1Z89PBCg1UEug1kCpYSaoGMhcgyZRRATXllLhRytoLgswPlQTdKhssvA8R1zaXeep7pA7y/Um+B78XlnxlJNbRKyndpiBYSlWZDWZoIQ9QJhi5J3bzzCsV5ys15T1ik/Wi7yTl7UjSQwN09hsN2xON2xOTzk9OeHk5k2Ob97k9HTLuBuZpjyTitApcP117+bC136v7X1aDB3J/Tk2R7ez2h5TX/MgR9e+xvnz57lw8QJH589zcHhIv15ZEXtkFppSsadxHNucaXPU7NCt83yepktCpsw4EIDovlxzNYGoyfZkEzzIpX13LiPTNDLtTGwqj7eQZcfWNU0MBHGyhycRlhECkhSHaPZBu9jPnqD+zwlfBqvZwxJvpRByJOaJUnoVNkoThMg06Rjo+nYyy5zID3Z+Kc2CQreS+/6HctzqT9/63PJ1i2nTfncbqZG2NNyv2WePfxf+lwuY5ckwqCacqvd8WV4zY48+MUMTlt6LOB1qu/V6DBtxUpa+taXM29VK8BdpgYwt0Pn6zWw7lqTi5F3rfibmV9fiPjt7JCWfR3pKhiG6H2uJ2zppN7fdTsklTgDzsfN9POfMF+ol3pCv85V0nofGG4r5inAcOj7XX2BL5I154nK5wTtvfJ2PH76Wdx9/jUF27FAhmykrZj9ZUVyesolEyDzyYe7i56SEYARwJYQExZuKJefQOKbGjsfO3c3N4RwlBG7bvDTfU5kfOk+8+NYEms/QEYN3fA/ttBG4i1PuJVs+K1CDxdS2x8wdB9X3aNSfMCegxXGTqvhHC9iEhl+5yGJ1UcSiBS8pYNiIdYAzMkUwQeUYDF0RTLRKTNgp4F2PghVDqz9v4ukhaZGxiae+WDou9ZXjdB66wFHdtk6XtRT+Yn2Wnz+4i58anyAfHKqAj9nVB8oE4ZSTLvL66YR64YINUW2ketD1oISpToUUTaBH43kXg8pMk2F8khakEB1HF04VaTRX9ccLEArVBCVrnrSo1T6zLISm5s7h2cRnZ/EpL0xxuxfMB6jWSTpPE8VEpoo1Xak2Rksh+7oQmvKO8oDGg6jIq2LPSqr2TrCQbB/OVBehKnnejyVTRbvVuSBLkmhFYW4GF0W/Z+iQqHNQc/RihWBAcAFfxYuixfYiQpmEPBXGVOhioYtogwPdRei6edyS+Ri3vfAFkvlH1Qh02jnd4nb3+U2ELYZEMTVF7QBowvh1Fqe4+4u/ym5zqsKAQCyFbSnk3ZbtsCJ0iW4aGLLmnoYxk/qOsR8Z+20TKEoxaWEtLtiYKWWiWkMRomIFOU9K8hOoU+W57govnx/pZMMTN3Y8cPNZxTS7AdKg+OH5nu6o5+DcRdL6nMaOSQshiZkudtQ8aQWA4SPKfE9YK1j8RohU62wnumdWw1SrqPBgDXijFKiGkRrG24pxTLwRy4FWtX1SC7lY5zPzOWuZCdF1HDUfYHtwiInYqV1OQUg4uVDtXY3uPSjNptaCKrgYRm92N5gPHhRURX0AXZdKflU73cXEkHpW/cC6U2yWlFRUue91DIJQAxTZL6z7gz6WgvDedRT09vZJGDpY94mDVceqT5q/QbFaJe+KkcEtrrC8h+6H1QocXJxV77/H2eAwl/6tihBTp3dGTAjRcs5RZp/eMV/1DUUFeByvY0m30WMWyNy/9pvn7iTUzMHN542IGMgiTDWQg7A+PODhNz7CO97xTm6/6042p8dsT0+RzZacN4SUIaJ+6hAIKRBib3uACSMUt7HLL4/ENCBd5mY8x1NhxSOrGzxdzlNk4i455pn+tdw1nvLiuXv49Ljm3eNjxClrsVuZ+KHHfomtBJ64+AZuO3mWR29/Bz/+pZ+mSOAKX2cHfPrSW3n28LU8e/ha/vxTP8vj527jx04/yj+q7+LfyB/h6MptHKzu1T0oT8AGYiV2xXwbIcTI49e2XOrhuZOJm0eFdQxaSFwDQrGcQwWZkDwiZYQ8ItNInUbyrhBCIg2HxD7SMWg8mgIH68Tli2tubAsvnwSGlwsdFe2iiIl0CLWkJuRQa6TWBbmSxb2VvYjkTByBDs9URYtVnLyrvzH7/DhWbfhEBcmFMgl10nxlkEhCi/JC6NTHx0ITy/WHmOYiYvueSMD02nSfCpGX7ngjt33jc8uIaQ/L0t+Xz+2LNjmWrBei16giUMUIhvO+SJhFDJZ4hH+QuNB+VH8nCg0L2Cf6q42pzW+ZhZVEMAzecPRbchZ+nmLY7fJvt2Kjy2v07+SWZ328WgDAHAO/4aM/y+Pv/nHe8NGf23ubWydv6NHEjsN8HvpaK7S1+NDvg8bDkRTnHITH2u2eGM4T4iIoXzxkkeOIIS3yCvM9cNxor8HFGfQT2zFtGcgcDR2HXc8kAerANI3cnIqJiBq5PKrwUK1aVNIFLX5NRIIUzTOLNbeMQqhKMg+Ce5wUgVikcRVm7AAIYoVN+msxH8RZDvaiNmOkPR+IUVDytc3tENWHtwLiQCTGHlgBBwTWiAyUYoUWgooFlpEsmSlvGadTTrennG5PKGXH6LlcUd81msCtFjFqnjUa3zMkbzOYTDbKIvYQCVGoSlhQ8YZOuzSnqABuMNcphUDXDXSrNSEkaokQj5BwgNSg3Bg01gmxp+8P6fpzDP0hXXcAoYcalRFdQaqKbucaVDSsalGwoNysfkgMnRa0a6GZkv1jhJrVNnXRG1R1CAPENTFmJWhXjUfbPRIXFihK3Bcl66qtm4nD2jwAYkxW6Kr+RyP1mm3aX0Vqs6MY0XdpE8/YepNX2MFXHjN2vMAOHapTEFlNjWM++DXv5yNdsLLauAcTbUhRBcwIip4kwboKw4R2JhbLoQacX7xojBgVG7n8q3+P4x/4Ke76pz9te6ljhcuCULOHYr4r0rBz0z1rhc3FiomLxfPeLboUK8TKWiQ3WeHmvBe6rU2s/tu/QXdwyPaN7+HcY5/h9HVv58qzX6b2A5vb72V17TkCwoUnPkM9vMSlxz+1WPNW9DLfKbuKyHP3vY27n/wsb/r4LzFbqn3WTbvWV6Kge366T0kv83CiurR7WBef6mL0/mGtmriNITK/XxZqoSHQ7FBrZqXImAoKVNHqJ9u3Wj7e1i8e54UG997ih9ukPHP+ojc39rVfbzlF9xdCs2/+ulIymOyYs59DCNaww+8XDieyt5/bPXKMLeCcAn/B8rWB9cXbWN9xF9e+/Hl/6lu6upbW3buW5UnY6/472L5/3nc3d1VB/vbLp/+z/5A3/8W/wuf+zv9ljysxXLjEXe/9HobzF3kxJY6//hX1NaP6SSVP3PXu7+KFT/wGl48O+LaHHiSOp2yuv8znwnnecnnkk9cTj6xGUpcQsy1azQORREeEcceLzz3H/fc+wA9///v54le/zDPXtLkDJlxuC0RzjEFx2JbjFW8sKM2WBLtgWVy0NgNkuaDncXMBdseE3QZYvL4swtRfks0dafuY8qizYkDuk+K+rfpPZ2sXg2naKb8v6LXGqGmKGANBu70ROgzDilYHAa7MIBIgVmqspFR1/8Ab9mmM5qJqUaTR9lVMRzcax5gIgSou2u43ap63S8m2ADxVVtwWRp4pHW+MQh8UZHAuPsv5ziJ+ERbxUDTB+fiK/JgbzCDCv3XnzfmDgBs58PGTFac1Upm4b12aTyqzYecTN3veeW7UYtwWR2pt0aZEPnay4mqOZOChW8Sm/tilm3ievx17PtOtYI7t1h6fLNZEE+1onDnPnbiPAaoqb/tJnYWivlEvcCQ7XpI1JxIYjNcp4n6g7vOgolL6XQtu/iKe8mC/1Uj4vVnuW/PNmi/J4thizVx3447dTpvh7axhcXXe5h4L/GwcCeV1iAi1qM/hjYhCuJWLbmXNAjfuehuXXvwKSQwDjLMf0PgM1b00n9sLPwJacySd7XNjv2CcVeWSeoEvrVAQaHyRYjhzLlpIX6qLBLvgr9nPivEYpr0clntZXtDXbLOvdbORxcRltZg6N6GpyYSm3HZIoH2+fk7c8/RSl+j7zJCzNrQAyuFlprRC8o5y6U7qC09RgKkUdtPELmvB9mrYsB4Ghr5jNQysVgND17VGNbXAdHQbV2+/n92UKU89zY1nX+Bkc8rJbsvRH3ob06MfY/XI+xg/+UGqBFINdKK1bxh/uZAoqEDspJGXCbgEktWYEawexzCnOmWzAVYlEMLe/fNcpjZctSZu1eoDTJSk1sqUJ0YTgm31PrbXBrOPWkNT2O52bHcjY9bmN8txPnPHvG3c4uO6OQ/N9jc/OLQ/4v7W+V/7Tzn9zj/HxQ//v61eZBHDie6VzaQtnldXerbLLZII7Y04N9XjBRcmWopMFYsJLCqkxYYizVUvMgv7ZhMQmUpl9OZ3rXHx7KMsvWmxk/bzFvOrvLZT5gtYjBG4aJD6N3p+oSZi16nHXlRou9n2oNWjtSqWKaANt4r7ctHyWC42pefv4nTB1kMMQnK8zu5UsH2kouMWxQU6bFxKJVCQGOhCoEZ9vTYhtXoJaP6l25bm5u3f4fZ/51ZVC7Gcv1cFE8b2e2rcH1k+FFuykE/vc53fv7ffn7Gjs0YM1epbYtD8a64dXdVi9Vb72/y41g61PXzHEix8BfLqiPHyPVx47is6SxfL91XHxCeo+wjNz9vHgOcYLzSbCvp6qVafIVrHlX3+ZdvrciZPKnRYvbldrW2+qPij+Y5RsxsxJfp+mHPXXlOdtMa6s/o65T7NYlMxpQWfThqUXmqhxEqpkRJUkMobV+w1RhZftzL/LHOM4rz6xoy3nJzW59Ew+Fl0N7hJtM+d+SgxBLumqNeVtJGO14v7e5O/NvhM8Oo2dKxsnak/6CIUOkPUR1kI7C0mwX6Y7LbWBXLmfHoxfr+uSzEfxNfu7OecpWPaTOSYmeIEHUgRYuwoxbFzoBTyuGPabZGSSRG6LlBioKD8gUSgHzpW/QCofc+lcjIcUbsjePrzZKlInpCoc7mL5ufZ2E2lKF4YErEGQg0avi/usTcfbcu+quRgtfpL98183LPVOrmIylTV7o+lMuaqtVJV5ydR8eXNODKOEy89/ACHj/0ujx3dT3nmlxjHSden56rEajW7qE0Wuo5usLXY9YTUWV201lfmWhmnrP7fODHmQkWbhYWjO5A0kENEzt3OdO1ltuNkIj4j05ghiK7hrlPuc4jQBWKypnDut1pupQ/K48Y4s1rvPzcc9f3EuQG6f3huS8c5harrqmpDAm2nIXSl0OVM1+m+atIilCqaH6ixzXsXX3NBt4hu2S0SWexXivWqmPIYe5678y1sDi6TgduuPtb8KudqFtH9NsYEKZCr+iJn7fC8j9dS7IsqyZyTDLMGAOh9ioEmQrOP1THn4t1rdKxY3M2cG5Mq31D5VhYZkVtsrI3AQlC+t9+UYvNqykUFY6eJ3TiyHSd2OTPVQvY4q/lsQTEY9+OEWXPEa2bSjLc27HsxBnNdyux7ua2P5tgFjLKXksIJAbqg+0QfO7rYEfoDNq97D/XiXfSrAy5ee0r5XcYjvXHpXoYbLxBPb6jPlxIhBG6+7h3ku9/A9uA8l578tAn0ZELOuH4HwcR0QvRsFN5YWXUKrGbf9ltJ0URysNJwwyiD+c6lMko1HovWQeu/imtE0b1Lrz2QqpAqs9DUEstf1LOJCF89fy/3Xfs6Xzv/AHc/9ygi2fReZPbtzUaWYAJUQTUmVHRq5pT7cdZ4+NV0IbyWr60j42BGi7+kVmu+U1sO3+CJOQZq9YOdCSlbnYrtJSqIbGK1JjjlY+mxTrS5Hz1nYJ/fbO0eLjH/XTwpVhVlKtUwGttDpqi1FF3aGe/bmmJi7qYFc2LzJIjinkWEo3f9IDc/8aszVhOD+ZPB4DM7r2Yn3K8NpIrlhDxasb+68W44AYiYsD+VIBpfRcOUUi0k85WKqFBSsfqOFGKzRdF1VGJEoooKUpR3LVK12YzjPFIRie2+V5G5YZz7Yi5msAiiZXEf9vkW+1jn3JxgsV/h7/V6pjkGcK+y/R69wHoWyBL7Lu2rHVTTB8uJ+vh+Cz7jf2ehKQimVqlFVK4JD4Hj2x9ic8cjnEZYvfwoq7LVpHp7RBVVauqFfrE+0S3x5RfiSrKi4iw0t1JDad/cuq6j1sgwBPIEXdpQK0yTEsGdBE+olDLqZ59o99Jh6FmvDzg8d9iChNT3prirqrt93zMMa1arNb2R2qu48qUCZckVHNXTtGDGJwR2h+fCJL+3ghpKJa8mDQ1EO+u+0F/kcj7hxeESD28TpLm4JoTI40f38NS5e3mujLzr5hc5LBtyUZXUj1x4C9O52/nq4SXedf0zdH3Per3mrvw1nr7yAG+59hnC7XfSpUjXmcKwkWy8uDmgYLCu9g3BQAdi1USuSmZb0b8mKPTCHOyrYMThbCR3L7YWqezGHTeOb/DS1Zd5+fo1Tk61qLdWJycHC+J0knsx52xuv9lxyyI0x8/BopSSdaIu3+wD/sCOGf5i3oSRWdE4mHEOr+LUBQ1YxQrxNKhx1AFNsCchGIFaghEb1ctSYQELgsQ2HyV0K/ATkxA6D3s9MDYRnpDa8/pV6rTVFL2eaHYoLQD2TUNC0E7iJJ1rKTTQH4I5KJ2RBIQfvfpBfuvonXzf8x8kB3OSUCKhJpNmkSUnKeHq0rbGXQopzFZXAeaqQemzB68lS+Xija+TAUIipJ6uGwgCP/DMbzKuD6EfFAiQYuegIx9QR6qKqMMQiq5fE/zSBjYZiYEw9MTeRbV0PBEWBf9+f2OzPR5kNaEpTyqJ4J0barUuz6LJrs1mw8npCbtxB0E0AGuZTiO3WLG7JrpsU3fivjuvgpI/k6gDYWtUA3Bagqx1QztThzsftLFt4KrN6hYwxEiXErXrZpXZOP89xoSkSs7WXTdXcqfgb9cPHKgKFxXtiLmdJqrOJgXWzLmUOhdU1qxd7ne7HX1KbIeBrYlNjetDxvUhq2FF360MvBtYrSb6aUU/TAyrAzr6JmLo9KKANBKpdompC+eiM4RtkWS29xMDqe+gFmIukEaiK+bWhYK8FexnCrFmlNqnDkvse/oQ6OpAioGj8jL3Xr1KuHCREAK97cMpJQMjMqOM2kE7xZa8i0k7sTR4VlA7JsFsWkQ13IMmdqOKEFA7iJr0DbFYojE25w5bHyzWFRYchVpnVfSqHdJryYSalXhqe7qvr+1ui0gldh1dH4hdh6OK4p58VFurqsQKa7gKv3fQIgYtBHQCnAV8tRS9LdE6AYR05oIpgDFnhpAYVgNJAsnGeCZpatAvAp8Z7uO14wtczMezb2j/hrYyDWpt5mTe99rfgpFcTZxUc7q2dwb/jPnfto/ZPbBeic3uNWBa1F/RlWRE2aCg2FHZ8R3f+E3qqm9FnhLgeH2evu44SWu2ITGIdfMWL36J1AC/d8d38R3XPoqjx2qrCxICbzj5MuUQLrDl/niNdHSkolKxI3QdManIp+69EbHr1q3HA9lg+0e0pFRoHZNj9JotQYqS/6RTgi3WaSEZqb3GSCpzR5VahViT+gwxEq3A2Ytdi93viNAFJ2F7ol/vQiNRWBygCao5Wd4CKw+CG1lpfo++3yPw+XNnP5HmAwkWh1gQla0gyhP3U1bRv9E76Aabr0E04RjP1jobuo5V1zF0HdM4cvPGDbrUcXhwyHB0joPVQJ+izWxRmNWAJ2JUgIbSCtfF9nBxZ9EnP3Oxhd+z7z75wkL8wUlKMxDnhb3NF7glAdSIMl6wO2nRveTKNE5Mu4mdAdj+HvXfuvZe7wYriJEuTATHgGs/b3B/Zj5PEWlFzp5UaofFCfuCG+43zKTV6KBrK1pmIcITFuM2z0UXedsT97DvWo5Ze7+dSytwMaTgc7e9g2976VP7E6KhCOzfi6DktkYsFLep8+v952z7oRMVG3Fl+TosadbEhhyhCta5z7iTVeOKGOc5MJPLZHGO0W/XmTuOb9wg56wEru2WaZxMcHWf8DbfTx3iFNWP7zrDBGAGdpPGImBxcdbEUEpuyxcUwhbnCbcWczkZ3fcjMFDWOq51eaKbur1CURdv+yOnX+bE1tdoAi/TqJ2VfV25sGzOE3kam+1vSeGkxf62oeFdL5qIQdDOMwIk+/7NfW9lvHIf5bZ7OXzxUc5tNhztdqzW6yboCiYgEhRsDXatPo7Bx2U5l6RN0H0XQSyJ6vZnKS5V/PfSYpwmsGV/E7NRTcih2YRlbLPYdxbftdzDXkGQDPtem35msPO/BecI7p67ffDrts8JLobrnZccX/OkiJUyCe08z9JRCtZdw/FnJx4t753GniWE1rlDio9xNWgtIEFJfyVPHG6v86YXPslLl1/HmzdPUoY1xbpYEvfJhO4htKnk/oRI69yVJyNZTLoefE2lFJgsyf3J4U28fFJ5ebjMd54+aeJHwk4in+YKbzh5gdPTU32cnHB685STUxexm5g8AQTcfNv3sVld4uT17+Py53+LkCKp6xhWPRdkx+Hzn2d754M8eONxji5f5oILTR2dZ314QD/0rRjR7ULJs/hMSmlvfup81znv3TnnIpNXOZp7ZQSnOq+bWdjCcIiSqTkzmZjyZCIbedoZeUUFbPI0tYKcudOGz+toAidx7xzmPclsYNREGzKvE8GBdhMjMXKod5PC/OKUUxsbxoALa7diGTxGrA4eqS1E1A8G88n/+6+LM314EN5+D/BqdmXfrXITN1s4mRNatSWtZlvtxVizjZ7ttcwGw0HRhZTeLeUoQaNJL8jdP6T9Pyyf8nDTY5Dlqz3mmOGkeRwaVsdcwJYSsVOsrPmv1gUQkbmozAlYlkx2v3L2n7yLcWbc7dhtd2w2G3Y7802mqWH34mtD4MfkaX6tv4sf3jylwnmiVnabOrZoB5cbJM6bePCbX/wyINwMaNxUtKvh6bhhO+3aWlVC/ez7twFqYxLNX0j0nTb58I5GdZG0kpjYpDXrMnIzrrjS7JKuNd8/PbYL7PvzZ+XouoGUlKAqNaCiCzr3kt1b7aqL5XosqYtQQiEHQKrWzkYVc++MsBbNd1dhd7N6EvbHvVr33lKpk5GNolghtQf8s83WrqjSkrMu6qa4PPM8R8UjJiZijPTDitUw6CdExa5jSvzhC5Hfudnz7V3hrnhIyQM5Zy1gnrQI+CfzS+Ru0O+upfk6SSqvk53+fu4IWHhBYrG47zmGnbq/M/tdmVIiOU+6BmolFRNOXtjlJjhgRaoxBsUwq85pF43K02QCbvZvE5qyf13czYQRm1CUFa0gKsoBem8oKmJVsooslmnUNVsmpBSCkaWswkHjKbG4zQq7Fa/UQnDv3DuVQpbi1Ee1XcUEYr3Des2UqkKPsQaSJLrQtYLxGKFkI0ha59sYtHHEWTq09sp9YyEq/NVihOV/YHmZXBnHzNQVcidMRRiidq2mGFnBYtpqYhZVVYN1vIOQKYYxdi0fB8xxf/JiP/e/wfMyjhdGE92vhruUPPHcG7+fO7/065Arqevp+sJo93RYZfq+J3VjEyhKXdL7JQLi+2NW3Bglszx613t45LmPsdluOD09ZdqNTLsJpq+xvvg8Mhxw9NIXuZECfb+iGw6gW5HW5zk4lxj6Q9arc5Q0WHyBdoyMRcWoyoRkFyD2gqZlB1rfu5wI4vYEtYmWf9TXZUWoDNRXzC00X8sxcRX8Qeez6NrOebL1lHUtmY9QcoZcmr2TGDUN4NiUDpTmHas/ZzgOWmymWKlyB6o1jClmzZN0ihslLWz6bH8/959+he1my5SL8ghS4mC14mBYsR4GhEjoerp+MFNdFHuVQD5rvEPDjJyIp6GmEuiGBBfPrblwuGLV6f4UDDcSd8nEBdmaE6VulIgzRy1Xuy8s6qLl4Ht91VxM0A7g2fJN7mdVqSTBxBicqKhzRnGCfZwpLHHjWw4R4ebhHTx/8XUgldvHzMHpVSqBKRdIHeePjnjdGx/mXe99N+cvnef4xg222xPCdgOnN5GyIaSKpGBFh0Fz7mml318mpE56DjqB8OJgxSSFaznxwe15NqXwJAfsSFQqb08939e9wG/FO7k8jdxYXeKj8Y38Ib4EecLozGTg2vp27rr5NLvhHI9dfCOvvfYVsmiO/PYbj/GN8/dx+/gyj63vYYprrqbzfM+1D5NXayVahkiZRr2PU4U4QTcQUqekqpR4/+2J33pmw9vvgDsHL9rUuVLQfRAqIiosRd5Rpy15u2HabqkZhv6AYO3qQjTeTRRWHZxbBc6tIgdDYt13dKEwiVvXJQ7T7mD7RxqO6qHJLO5yVo5IRwqRFKqd55yvZbG/qNunfq+L0lBVsLLsKnmq1KwFCF1UyZfqHKoFfq3NViISE5a+N6GBoGs9ag7miXvfyzgcUruB25/83Xa+S3wrhIVAtQi1Lopi7ahWIhGiFpfnWhEm9U9DBWrjJlQTdCNoQyIXjhaUxEipQNb8hMdiewGb/zwHpsX29dl/1VgohNCK2vaORY7AMcaWC2gfc4soln3mXBA8j5EXs0UTXmzCWyI88PFf3Cv/dQkO/T6zt9HJ0NHyDI4FWgGP22VcmANLIzpO6sIQ+/dPEKSG5pc23ppjzSLNlu6HtjOmeGvc9YrC6DN0RDJd0D05rhM1drZ9CP1mx8lUKSGQ+sSQIn0MdEH9nUKghE6JtAIh6N1JUTv1hqrNC2PFuhqj2OJiLqpv6eWRy5DKPKPgPzvWja1HvaFiYkSao52bFUGkSk+tihV0dMAAsiJwAKwR6SlFu5WHkMGEEaayY8obxumU7W7LdtwhMqoQrRhXJC7yMqEnRmuKZ0IJIap/kDrtTN6lnhg7pEZKV6hdgeQdj9VXjXUWKY4x0sWeYVix6teE0FFqIudEsWLhGBOsEl23oh8OWa3O0w2HdN2aGAdtTJCFOhXypHmP7LgRlYzyDIto3+O00/gmBYghkdKKqVtpsYtBejlAnxIxDiAFYULCYGMnEEwwgBmfLsX4UchcZEnz/s1+LC26l45F9W1lhrL02C+sDTg+5GTrfyVL5V/5scTXFtO+1Z7cAh5ZGGUvXr7C9o3WFdqwPyfMS7TGW50KTUWCEcHnQW5N3AxTdqwuBLjtt35eG3mFaLGluWuOBYvba7ucPRGLW+IW53c5Bl9n4Wzn2i5dGY07NKb0OCIafnP7r/00x9/zp7jnt39Oz3l3wt2f/lWu3f9Wbvvcb0Ebg7TYGk0IytieiO4tT73xfYyHF3i6X3PvY59oA77MH/nYspi7Hs+15kVhzhMscwZ+n/D7tVgFMw7T0EN/d/uJpY8n9mLm3/1vLszZpo1jhdU3RMNhxAqGFHbUz5OZYbT/GZy9Yw9jd74nr9iLPW8149Vmiar+lEMx/DS2OMpcJP2aNOfB2l+DrSExbEnABTz8K0FYXbjEa77z+0nDipQSL3/x03bqwWD0b+6Eh1f57ZXvkW/91ixsxt7TzU/Zv+cG8yMifOG//L8v8kxqpOLqgHTuAnXcsT5/iRMRqiQkDUiA17zvezn/2ns4d+kytz/1u7zurjsIp9c5zCf8yYMn+ODpg/zJKztKPlBxWMlIt6MOkbBa0acBpsRQAv12Q7c74Tvf9Tb+6ese4OqnvsxuHGE4QHcyIXkdhPHWtBm3icg2gzr7FfsBkI+vrSWkjXMwX1Oa2Jo1unR/XmaBuNYIDRWK0caFtc05sYlVq/pOuuQqKRnmesZEcHa7rfJQJasfFSFm85VtPsWaDBNd2CbcJppdtOeSCZcEUfFNbexghb1Jc/JiIoa6HKON76JJX/MlY/seXYfL+xr4Q+kqH80XeH+6zpHkhb+hh792L2zyNW+4qXN+l0a6vd6fk1euwa0ETmukD8L1ErjPnnc/WET47eMVz42RaznyfRe29gL/rMBI4EaJHEbhao57pngvBnvVY84PzZe2sIMyCwtIdXGEas97I+9ZaErN6yxK4s2rRArvkGf5lNzBG+VZLtabxg2uVMl7QlMuhKkOm2MhMx91WbTaGki82pXJwmdZPKd4kebzx3Fku91xalyCKY8acwQaX+QsHV1QjpggVt+Bzmmr70JUxA1sSdXAjde+m+2F1zAd3sbdT3yU2PJWYe8x2y3MDlok7E/Z/6MY2uI5A9HnZtG4ubBdi9tr4wvMgk+ZXDNSKgHN70VfS2Yfp1yaSFSpVgpr+LY2BpmbiwU87k+GsWAipZWci35fzk34wKdGtbjDuarebM75DmGKpCkzTIXV0JFigG98hTqNlOGQ8tinsHQlWRRXZ6ycxh1dilz47j/J7iO/yND31hjaeWUqhDVe7shHJ5RSuHbtlJMXXmKXM1kK1//bv8XdP/6Xefrn/mNCSNSQVExKVGo90VGDCU0ZFj7lwuhCHVFFg6NY/B0wkR0oYjyPIFaHEq0+MczYUrG8YeN0leavNKGpWplq1sJc4y22wt4Y7D4IU/Yi9h3jOFnRrtvL35el860fCzMeXF1t8bf243KPCeotzOIo9pwUzv/OTzMDAm6PZ65B46XZ/5qPEMLea9v72ynNHr/HzE38QVwEBbJg61iaAD/NpqvgmwrjzD9PLuYr1vRlb7+mrcN2PRa3t+uPgWURdvOb2ntsjISGo+n1G/YXI6VWhtc8BCGweerLCL4X0T7D66B9JFpxfZ3/dZ81ogX2TfQhxvbw5+dx1PHLtRJLIDjfO0atrcEEP5vYl11d9QjM6jUb9ufnOE8CMaq4C4Ld+qioXXmlyJQ0HNZrEVtqCLf7i5CH5X04G0drBtfiW5pgfUqRWL3msbapHuAW0QA9fI0ATMMR117/ndR+BbHj0rNfxJBbe7UvrsXJ2AYiiw+co27Z/y73yxx8sb/VIK0OIzd+XG1CU5NxlZ0f4SJTurbVH03GSY5R9yHlCff0/aCNL40PlFJqwlLOm0/GHdaH/hxTnLEiUIGp6kJThRKjCU9VdrffT9ie0r/0jUWd5Mxj1zovFXBsWL3jqdXxf7Nd0W3hIgZ1v3+BpS+FproukZLWnKcutga/umeF1kQwxdmjN5k6rdMIYSE2Na81fa20ct5gc27/WMyNoHZFbQlNZKrhULb2XMjH6wzqKz7zD/4IEihjZgwj0oGUQEp2DTlTp0n5t+MOStbmRVqQyhQ0DzvudhALqYfVsGa1XnFweEB/+93Ucw8TqlBjpD75GYRAQveLXJSL0eVRm1PFoCJiEpuIQ9BiIcWQQedbrYQgjctbJTabjEQVGpRZ5Ksg+8IpBHIRdjkz1kJGLX8NkVwrJ9sdm92O7S/+Jxx/71/g6s/8NXIuVqvtjVEci9Rtu+uDahr0k9UWphZ7+M8uIJKnqflCISoH6PSJLxD6ga4byE99kSJidVNWO1WUK1vNr40yCxYRO0Ag0rjFBRXt0FoB3Wuq8Z+1dj3MhhIVr4tYEwvj70rRe1SBhNCFoByUrtNrIsz7DCAhWmwmbf938W712cPCpi6tGmiCx9c9hKq59s1wxDCecLq6wG0tttP1l823DyERO21QNuXCbhr/1S+c/47HNOksW24ry1zfnBudN+ElHqiYoMU9JpDtmMNyDFtjCbdjzZex/LQshG4wUU4ipECKSmd0Z0WF2lQcbcyZ3VhUIG0yTpzVIqoPMnMC3JGI/r1+p40nGIPWfus1SsNaWm300n/2f6O+T+t41HmRGJFqmJxhzcn2k2RaCIREXl+k3xwzri4i9UkwYa8btz3IjUv3Ei6+hiuPf5K0OW61NeXKvaxuPI/ccT/r579kcWlHiBkpE1IMm2sivVHXmMU9Ygkmz2VHF7EX3FvBBcerxTme29B9tGhuTyw2w5qYhtRg984ewfAWr7Om/SttX/72x3+TT9zzPt735V9Rbr5xnd2HL8yCcDWoSKrERI3SBFONMTRzzc7YoU1kofSeAwLnPfjcaz6ejXmdvUcgcPzm7+fcF36DEKymUzQvqaLHml+ajHM7ZhXazVlmkUnDGgQXvpwbG891ZN4kpez5OSbwYGdic8fmlQDeLHoslTDBaH5PZH6P5mJwN8o0JBKCcPl7/xTh6DaOvuOP8fKHf8Fq5YOJUwWLNRbYjAgX3/o9HH/198inN4wbUmltVZpvN4e43ozLvSvHCVV3Rv8eS1Qfo2rcX6vQdYKkDknqx2F6OVEEKRp76RgU8w2Mx2sCU80OoPtVl0Sb5Ng89V1KmnmZ/UxwX3aOEcI8oC2Ydjusj9rqOGfuh3+X/bvwa2NULEYFZ1083z4T5TvIfPtb8PKtcD6+ZaGpUophDLog2m4U5xUttuMUUaXQLFbYlBJdKzRWMYBXFvEG4+gqaVHtoi+8iIiJTfh3U1otUQzQdxHWHSF0bHeZg+MTC44yXZc4ODhgvR6IKRjxfcd4esrmFHYHa2rZqoph19Glbt40TN2wHwbWw5phNVhncguUuo7U9apenToDuVgokBmAuEzW+i5rY1YCSEyIVIJ4p9rCD05f5BPxHt67/RI1Jt/JW8FZOjin4lDdIX05YlU7eusWe3jpdvJUOLpyJ5fSHfTDioODNavViof7q9Q77wbRhKNuHNYpqugm1ZLSoRrpq4eaCCUQ3Nob8YXYmciUZ+Q1bKrtc2sr2IqdBt8iwma74dr1a7z44gtcvXaNk9MNcv9bidMWefpRDb6cWBbmBeaTfB7Bbz7R3ZQsg7AQI3kc2e523+r0/305/CyXRW2vvL6lkxOajREW5KYQKUR+uX+EH5k+B/4JUdTYhYTJ46rzHM3ZTir01JxGe1j9sBIx6GiMi5DUV8iWVPSzipEQu0asz+KbfzDxqsh898ScTxNSk2gGVdV4vXhZgTC1BVEC333j40jfqehZybZ5Krj+2KU3s97d4MrxEwqWKM1KA5CUiDHzifv/KO/++j+egws9GaRWnju8h8fPvY5ahbtOT7l4/QlIHamrWiRQtXv0NO6gViseW8xzQ8iqJ5kQiJ3W+4h2qdEYSkU6QhQIVjwQ+na/o/ljFnVpojJEK+YvPllw4kstWkyiIlOlrWkXntqOWmSey6SfZQq0c9H/rY9gn1/sfizn4UwYcf/UYvvWJS58i5vQ7/fhSQYwwRTmDVfMCffkRFx0oHYlWX2fz3cFa0XgZn+eF+94E/e//AUNBobEKgbGXOh3I912y2TiFikl+r4jJesMmjNSWshCFQXMtzsTn5q0kHm33bAa1gzdimEYGPo142pHP6zphoHDw4lhWKtooe1PsdMut0Sa6rBU/TkwdyEPCCFVqCpkI6VHSgZRsSVKIY1aEIUVVKk4iKnbh0qi0Em2TpKVsWa6PhK7XgW4UmpduKLt82mhZk+wQrqihEdKJERN4BG1OCpgMb8RGQIBCd6dXsdP/UwzXAJI0hlrhAFpHcxsI7GCs5a4KEoiVfPk67lqAXPJeLciT42UmtlNW6Y8oTHxDCyIgbfe1SsmFQmK1jlLDKUvCzEDz5Wa9JGNl9onov6sAecSGDk7x/rgkGSJW+18UE2MM1oSQa/zk/0DPB0v8tj6Nv7wyec4LzcBDHhVUYBi4IQCsdphpAH1QWjFqgbNVl/LwYnWTrTD8Qlo/pjtY2HuABQk2D7kcwOQRbC36MBRCUgKlnBwISbhoRuP8lgSbj99jvXuRUZT6I4W2FeE37nnj9LLyO/c9QN814u/geSsc84E6mJMPHz6Zbq+J/QDse8JadCCj9hB7HDxRmxf1YIt3Std1Td6cBgiEhfUHsfVPEg30VS9lECskSQJqYlarKDLu3VZQjt1OqdL1yFVjPSwo0wTOWeGoVPfNog9qo43Qq3ZyMypBY4tiIra7ShEB0kWBEdowY8s5r+4L2vOSwjCp+/9Id765C8DKnqQq8UnAmMWdlNlzNatvgamAmMO5AwhVoYgquydogGXZ+forCA9AnnccXJ8zDAMrPteu/eayJR3fA3MHSAkBAtoZ1/ToYDgz9aFojWvLDCYhU8WIIUF6reKOrmfcavAEF5wacXzdarstlu2pzu22w273U6TVV3HuusYBt2LPYHbxGE8vkiRIIkQtMhkKW7kgJp72sWIyi40tQeguv+9sK1eLKpwt4JdhNC6uvjQeOLMf9YYUMHHlNTmO+FY0J+XAl1NNCYsCjcWft7v3vmH6KXwsdvew3tf/Ph8gmav2hqyInSJKho3kwr95bdsHMKeyNvyNXvF7ItBWeJ5vv5gJnMpbhnbZ+x9niHOqnUaz6SvePPmTUotTLuJyYrNYU4adp0KLQVPylR3y2fg3LvAl6zgIqJjpiC5kpW6nA2gnsVaGzgn6pOqaKwS1AMuCqfJlBv9OV4eLvLQ9jmmkgnjiJN7c8mkmKi1st1um9DNZrPR65rmxyw6NbZ1NVq3xGq+q3cP7Ieebhis+5AmknSKWpGK0PamUioQKASkFHYI2+2O7XZgt9MuLKWvi3VkSfAITnDYi319Li/WBYv5PY+fGK5dmoBUWYpLLcSm8kJIQJN2CzFVcTE5s5cOwC1BPBdnq/Nrlw9fN81nWy6pdo3sX5e+QxMTRuhQYohHYGa7PFnmwRuGw8SZtFoNND1r66yUWUzFTYsLSQgzqCxGBHBymAs97e//WmQ+jRNTN3GwucrrZUNer7WwyJKPIYYmyE0DU71ImvneVlSw2gqJfB5oEkRFkQLCNO0Yx46r62Pi+YGXb2y4trtGCJAl8PFLb2F38zov9/dw341PcLo55eTmCTdPTjk53VgX0olcpK2fTCSUTFyv6VcruqFTHO/cOQ6PDlmtAsP4HIdXrnB0dI6joyOOjo44ODhgtVqZqMuclC32bxu3xTELseVGIPFuGsvCkeWxLPAI1Qu8bV2ZwNS87nRt5UntaB5HpnFHnkYTvpqamEe15IYnMho5w4gpyz38li1a/ZhlkeRiH1MbqqTNYoIqSpzJ+nExkFxgJGcqKkLKwq+cky61CQhpkTTandNjtbOqnPj7dSwdA1isUV+nNJ+mSqVUw5IwUownicssjDaLvrjYy774afNfW9zHImnTrG/7af6/o8SGd+2/bN8PY99OtYsN7tP6v4vHngDgsjixmO+H+qwmVhK72IqASzHhyHEkj1MTuZma0NSWzWbLbrtlHFX8CZnXjQp/aGHnD9TnmAJM7psFOC+nvFGEYxL3bF9WYsukQud1kR9w4a/Nbsd2Ghlr5amHvp27H/3Qgohg4+NGVL0UUqp0CMRoXR5VTCfUSqyajF/VzJuOn+CZgyvcd/IsueWLPAbZt0VLX/ksHZ11cosxzf4fscW5MWoM7kU4jkVWqRTr7IwEFUCJwVgJiWRxfWC21Zo8XRCChRaLiLLL1IZjIs65kGKkhKwxXnHBPRMsGr1IN89iHpZIdl+y2N4xmPii2lRhVYR+6Om7nu88Dyn0iPTIoJ8dxomQRhhHStDSqBQiWFLWBV50XTVaEDo6c4y69L/cA/J9e+7KWG3f8TyDFmBpVzZopBF8HikQUgLm89m+VQvepbz5gk20yUR2mpCTYe3tZ7HiA/1+sJMU7QKGYfVSsv0+i/e7YMfV9/5xLnzk520NGv7vIsEyN4DI2eyCCZR7bF9LZ4VgmofwPJ834fDuvsv414uZoxFlU4p0Z0xpKixPRxwrotn8YFgcjdNS2Y0jQwocDIN2NCyF2kUrAhNC1UR6lRkXqMH3ct2YpGQETZprWGLF8ik1+94EbRYn2nAQ9HxaQQzC02/9YwB8/W1/nNd8+pcIpRBzIk0jU86sc9bGR12n8ZYVeIAWLLmP5nkmEeHz938/9eSYT1z5dl7zmV/g5vEx282WMk3ECsO1qwwpcpx0DXb9SLeqDOcS548G+vUR/eocIXQkOiMABxW4p6INF3okucCadgMLAiFqZzwVwaiIpDluCgElWYSZMBs0RnQR43m8fIzsZ5bzft6P3CdwgbxlkRfmQ+r/xHIqM/7VhNv8NbbPKxlXi89auVutSqS3GLgW9/8iH+0fgWnkU/0DjJtPMk4TIUX6fsXq4IB+NWjDiZDohhUhBHbjaHZN/eau/5apGL8vRwih5btcRKTrEsMqcvFizx2Xz3H5wpqDVaRPVshlxLVq2EcI1lu0alfPSiaJaAagzg0FfCNUF9y6vpot12MmSXmsrHkiCFKNs6aiidGIrLcKTenbZoEYnV/zHgNq+ycnz4sS2muldbi/cvkKr3/kYd70bd/Gbbffzo2T65ycHFPLRDi9STi5htQNkgRS1Di0r0gshP7QcO4CMik+FDUXH2KPSKIK2mRlKoxZbU+Jq0bMTKvzdFL53vgSHw6X2YxCWK3pGJAyEfpIjYEkmbc//Vt84bXvA6lMsaN412eEe659kRiE15SrPH/hfko3cLzZcXLzhHMpUWtht90qTyMVQhoJoUNST+16StdpN9wA335xUj99ojHjRURFD0vWToFlpE5b6rhl2p4wbU6Ytju6ODAQqSEpLyGtiENPF2HoIMVCHytDD6vOypxrg4Tmfcux5uB5IBcfcEylNtt7lo5ETwyFYGKIhIii+WI6JouIxbF1lNgW6kTJUMaqj6K+QQxdKzKMlvtUb3O2pQuoTA81iIRqOfvYEWpBUmdNuWYcWG3BPrZVZRaeWuYH1E+N5m84MOeYaFKNNWvAopiBCSaFyGrFfs7dcmZx6f9Y8WGpy8Z0mjOdBawqHow2Mq2NS11ckx9LUnUb+/mPC2Ke/uv+sB8NY1/EKjEatm37nO8xe+/z/KQ1I1BHX3MpEtLifIKRkBdYIl4w65jV8rNn1lTzHf13f3/wOWK5UsPi27W3NUbbh5fnv5wLyxzKWTlSqGaTK30Pse9IfSINidVm5Prpjs2kDRO7CH0wEYcqSA3UmJikGh6to5eiEIvTgK2DcdTi1wDUGCi+vdicaGIvwXx59LkqwXJ0Dlbo3qXrSdSPqpUQBSHb/RUU+++wEgsIPYSBEFeEsAIGak3kLEo8JxvIIuQ6sZu2jOMpm+0Jm+0pyJZSdyreWR2Q0TsaJRJCr7yGFK2ISs+vxQpme5Ck490L3UFA8sS43TGViUig6zv6rielni6tSd1AImguZDuS8xZhhwqX9vTdIQfrxPpwzblz5+iGQ2JcIaTW4G3cCjsmah0Z60iumUkykxTN28iMZ4YQrBCwo+8mSsl0aaALPdEaJgaEJIkYBmCCkCF43jugDc3EYk9vYFSomFi6iBUTWdGn3zOzvXXxEAn6uraOdN5qgYSLwLi4HNQI1q/ufxBHsxieI2kuebBda99utQGcARTjy7hgsu6hnuuOVsykfKWFzbdYzJv/OBbQBS2YSCHw4nv+CPd85rf20k5NIM5iFse7PAfUcPAFJ7CJ5bcisAV+ucjJuJ3X2KKj73St9CbmlmLkro/9Q0KaG4r0mxvc/oUP25408/KWj/3R1r2y2j5fHUPzNxKghjY2sx/u92E5TxWb0Ge9mdhib/Cxtpvkqa95v1i+cv9oGPHevW6ZeZxXoH6BvUShk4bTu7jI7PDMhfEiQQtd/jWB6veR6/3YZf9YzidwPM12brTh814AvvcNsnj//p3Ha7L0b6IxlIf20nxuTVTG1DXccD6XfwnH75OL4T6Or8nNS8/zjY/+BhfuuItrn/1Yuy6pKG9qWCGlkPqOo/UBF88dMJ3cJJbCSio/urrKNF1EcqBOojhKgjQkyiqy6oPa9Ukb/J3euM6dly/ylje+no99+kvUOpHCIfRr7v+uH+CpX/8FatGCVkJHsbXnQjaA4tANe7nleBU+0+yDzNftDmJbj2jMHajqx/ukSNJibAw50fzM/PX2JwQTZ/ymc/gP5sh5QkSxndolRKwxhhQaR0WEJrbJ0mzeuk8tBK+t4EhxVhOaqkkLp802tajNMcQW186xW/toW2sYfob5Ce8NL6ltF4+Nk5t7zSeIiXSEhaceQrMmt0Cr7V8tMApt+7j1tt3RV957tOPlnHjL4dSsjfuxoEIhXRCyLL7F9iwCXOwq77+w5eu7jncejftjuTy+lSkjvifPeYUWG9V9boeLEYg5ZI4dtj1dQeT2+hgqb6/fMJ69vd9w/1IzNVv+u2RqmWg1AM7Ds1gque1NkTgjjd/CZamPkXNunB1vOOO8nnHaEbuoTU/O4P6WrGCw4YZx9svch5A2j9WAZILli7Rgr00jG8fwKjYu2DxvBePzdGuc6v1Nztf3Iq41rDKXouOdJ0bnTJWsHHhReQLtu+c2UXlH0zSLUtVWD6bFmS46Wkz8yH3QFDWW0sbLLjBVmDzPIyZEW8UKcO1zY7QG4oqHVSlM5hilXICJmDTegEp95ivKtwiGU3TaVFpyJldBSubi9/4Frm22rL7zT/HcP/l/qU/aaw2cVFFK/LMvwdXrbEvh5lc+zVQrNQaCYUgvfeDv0XW9xqiCiSko9kfqCF1P6HokdhSB3ZTNm6wUKXTFhNODrSGLtf2+haA+c2c51uDvLp4r1XycN6ha8iprra0gvaCPGBZiOUWFeqac2e00N65NUCcTadDil1ebf3+QR1ja6VtPLeiaiCYqGPgm3AVmPmIz/4v86fJ4Bb5qG0po/reJHIb9vYUwu+cOlzRBIvZj5flN0l4spagQVRWmomskL0QGiq2V6l8c9EsDmAC47dvVxVe0WXzwBmEL3HDO5dn+MA+m2Zdga0mFZ2rX0d31IAcPvweAm0PP6dNfsRoXaWu++VELLHvvZrWcIuYbaM6RlFozds0nWF2C4Qme38R82VqFYo0i9uzgArtb4rqR2riuBBPdiskD7v1bgY6zFrPPheA69l4ps7ynFkMu/BtH1G6dD+B8wLO1xtznCzYIMcx1PvOamcVH9hfOktnQhlT/EhRDDFRqjHP9xMJLkMUptO9xhYXg4+nx+jJqtM0zyN79c4EYFRhYNmJU7nEpWpNW7LEnVoGJ/BkQHWIkxa41zuv7nq7vVTg7ppmX5JgNPk/9GhV/fPGR7+Kur32M6Pgo+HJQmyUBrU0MjHc+SL7zdVSBFdBdfRZtDD8LTXluN9ag+eJg4sm4KO6iVqjhDaGJOonHP+4bMAtNBdtHuk5ItWj9TJr9+OT15JZ3dxZjan83voGNSTLbS5sWjof5/V/42FUW9tcDrllgp1SZcSjZX5u+xpZx/1k6jg6P9N4XWxdUxZRLZrvbsdltGHfKb9BaRRU5UlxIeWa1TOxytkaold2oNYqteLUWpOsaf8b3gWzCotOUGUNk3c/3vuL/sl/rauuiSkYkWK1abEJ6VcK8zoo0rJiYVBARIYsw1sJmymzGiW3OTKK1S1MVTrc7tuOogjq/+J/q3hhVlD4A/fkrnH/4XVz97X8EJhZYYkRC5Ny7fpjt1z9HvvY8INSstVhVhNj33P0j/yNe+NX/UhvSBLR2NCSqBE4f+5zZ/1kQSCqoYKHtP4Ly582P9px7CFqbJ0H3Jmol5wpk5YuYoIe0XEiwhhCx2VmftwXNU9VoRtP4as4J7LvE0HcMQ8fQD/TDQNcl+lRViMzWtQs2p9jRuZi01X4Ks83RvdnWlQvsI/TjCfc+8WGu3/Z67nn+cxj03Pxzbdox4wMuuvlKBvYf/LHb7ph5H75XLHKebnh9VJb+2GJbFmbMrwZnv1k+eulHtk9d+DzBBNwWvpuY6KvaesM6zKV0IbjdbmQ7TmymzHY3sptGRhNFVF9QH7OfO4ulh3Zes1BtIFjYbji1+4zRJU8W9RrYHLf6gnLvm4m7Y9JLT2rs35o+WI21bbhBgtYZn55w8Nlfp9z7bZx76rOUvlMR5E4xdcXzkp2b1khHhHu/8Bu88Mbv4q4v/hb0vY6fKKctiRCkWKPKQLn/rdRrL1Cfe3IWn0EWPqfXi1rTOELbParMNeMavFmWqwJJ8yyJWbAoEQnm3w4xMgTLby7yJIpDzQKP3nDu7Y9/sOVHqigfJ2f15TOzMKLE2M5Ll39s60pMZP/s7WRW68dc/6dUI5v7XquDxTrCwufTe3Lt7T8KtXD9XT/OhU/+Q8VNJCg+hXN5C+M4sRt1z5vcb6vznq+H1sB05s43fMTisVrrPsc+Ws3notYzmCCbNqGQGUtr2IkwvOZ1DJfv5vhzHwbERMicUx+a/ogIEHskTxC7lrsJBVaX72L9wJu58elft/hG9+FL7/xBukt3ctudD/LCh36Our0JBIKUdj5eTx8s3g0pzOeHUKphIc2XUz5LqpVcoasqONVbDNqhlbRdAnE7Avpdtsd5DrjhxUpWM98EwxuriYzqDanNW4Pm3cnstTdn/daZ7THp4quqcWk89KsuS+KvaxZ4vucxqjYDNSAlYhnsOU67Jeqf84D/4pX2LbMbPWEAqJNuJHd1nrQj2OFzXyaFwIVySlduMq1WdKbsWnKkRBWYKMGAxqpFY/iEYz9AU5XJhIiR9UNPSBYgSWzgpPrVHTEJKfWMY+bk5ARQBfKuT5w/Ose5c4d0XWKctpyenrDZbMh5IkUhxUqfhL4LdJ0p45WJvC2M1rX7pnfm7nu6bqDvehX7GFasVmsT/his+7SXOdKKAOdsi90mZVoRS1SSVxAlu4dAkMi6ZN6Xn6B2PVowbJuObj+8pb7IKq64q9zgfB8hHhkgEfj+6TE+fvB63nX6FeLFK/T9wGo1mLhJAtOKlJpNFGBHrtkKxLTARBUXKxEhSSHKpArNNRKKB6oGHYSEoA6od4GqVYuCmqo8EGKg1MJu2nF8cszVa1d56eWXOT6+QX7tI4T730oXgnZHefZLani9wwbzhr/n3cyRl/7agDD38Nzp01+LEc9PN5tvdfr//hzSqpQX5INXgVYCbS0uk1vuFEoI/Df9O7lbrvMP+rfzY9NnzMGd/67IrDpuIagaeqlQpmJFx9ZlrRiJMUb6bmC1OmDoBxVXS8nAglm1OYRAMMEqj5KjWFLFwINAtSJ43V8dWHInx3BxDTzsvPc2x6jzN1jHXX1vBSJfv/Qmnj98LdN5LbK4dPPJBl6o4iN86MGf5MrpM3zo/h/nfV/7hTmIF/3ONG3aOhvqqBtp39FZN4dV36tBxsiU6Al7UkukIsWTk6azKVqEPgNBokIzEglZzIG3pPBC8Et3VZsBNdqAzcqgvpnjRSSt0MUKSlqSJLPd7tjtRk1+Go6pZJlKSGi3PL+Htm58Y7Jp14APT9K4qFSKoQmLdSky9B0YCfwsHsvNsVaaCrbOvZmQFk1MoOssiK9eyDSHSTF2jOuLPP/AH2adNzx5x9t54OoXTBCwpx+G9qhV7WHqe/qho+s0WSNdQmqnY+zBUC0KqIzaBVlKpuSJabej73SvGYYV425L36/p+oEyTgyrAxVMXHxvN3TErlOJjKhWvTkQUe11DGKOa4VYkE6LhaMYTCKV2GuncMm5CUyRKtIVJFdqrtRek0NjycQ8UUM10ECTYF2KdOh+50QyX8d+X5SoJbrXGJigRXoFSVZQJRUJsdGblvHu7EaZkJ5WXnm01F7phX144OWBZRUoRRvvmgcXLQltvWJ0XRsgO02afLx68T6ev/QI9z77URXxNmEfBeit8LNLVoho+7CDftU72wgppHaW0WwTvicE9aNSiCwiwDN13Dg5JQp0FQ5Sz9ptpmgxuxNMDmXHGDqO6oZk+4PuSZpIrKLJLoMI9MOdH1PV95yRdgcrgimXGwjoAYYJq3WBBli4aBQo+KWCVrb/uKDUQh5ZAwdPiDDPLSKBPO/fIjx49VFUlGD2UytA1aB7uPk8Ny49wJWXv8zNk43upSaGmLqebgi6ZlMidj2xGwjdCtKAxA4J1nHTfSQP4ECvOqQZRMG2kgZ0LJIWNjcJChhQk3ZVc1FRFLyVZKAQAS+0D6J2M6aEi4lOZYIcGrklmNCVdkYRI9Wr8rHWOLiKs+gwVyM3W4ftgJ6bLoHZLyKExfXN5Crv5vexe36MC7vn+fiD/wbv/OrPNIXvKpFcTQm9VMYi5ApFdJ7lqk3cg+BtWpR4+s/pOvYHcSRV6KFaEf407nTNlKkVwZaipJ+arSiwljny1EplA0Hj7L8ZytiEvwRLtLpgELg99qJqB5JVCNj9QQPizZY6KuQJHyWlzUIowfzAkivb3Y7TzZbtdkPX9awPlHi7Xh+wWq8IBMZpYivCl+56G3e+8BXOba8bAdkIwLiwj62IoMXGDbQ2kpB2WF/6PcxAhMyhvycRPfHsRXgOxLiN8fc08ajU2ViLdr1woN3ABu8yEjBhqlpVINIBncXrUoyczzd5cX0Hd2xf3DtfvWYD2RqQGKyLIu18915/C0gwk4LRJRZ9vd/yXqFdtxMyff/KeSFWIm6Sbb/1fwkmeqkJy7YPnjF4cLfdzcBnVaJgipHQ9yaA1psgRm3dp6oVDjiA+9XXfx9vePxDM7ncBTpjtA4mtK5RnpxQMUUniilZsKnLuziarccb3Tm+dO4+VmXkK+s7efD0G62D3jhNdF2nWE2tjLuR3W7LdrNlt92pIM+oQk/jNDKNo71mpz/nzG7csdmckoviA6D3sR96+mHFer1mvV63QuhGfBSNuaaiXU9qheGrnyQCR1efoj9ckWKv1yG2F1dajGoNDRecCwfbfJ4vHg1Hml9bVZod71KpBW2KRTjOUbzIrWhhgIt56Tdo7OSxXcX7QRgRbu+/2p5z51Nsv2/QYPNRaIWQ4PcafTJ4jGxdnFh01lvE/S0uC/M8a4JTluybEyFGaLFv3MuQnIHDyXzNZoEB7q9ii4XFmDvGQ8MNqotdhp11A+9Yim/FGA2TSxCteEywxLKDp4tEGbR7GowgoGLXhpeYONmYYTdGHph+j6/f9iYeOXmcl812j7Vwsj3H9uhO5Nkv8dLVl9hst5yebtmcbrh63zuoV58jfePL5sspMeP2L32I3du+j7u//nnWd9zOar1itV5zcO6Qg0MVkxpWK9YHaw4ODjk40HU4DIPGFzDbYxNQcnC/7U0xNrvmY93s3Z7glO+ptDXYfGLvnNTWWcVFptrPJmCSsxI08ziSxx15mshFRUmri3ZY7K2J41nQv0tzpzOxE/F7/qV3/ARv/NQvmFuo6yDYvtTmjdQmNJdLJk+5iRiBvi+nxDRNtm8W26tLi0c96RgjdF2kl96ESlL7Xhda+P+XI4RbTC9zdL2YLHqI28N5TSsPtFIUhpjJt23OzETdKWcme84FyZbfoeY1eGi3wE7l1jN5xakpnr1Iotubl0W389e59THKghqtRf4itDm8d732ee7nqAilYaZJ8wRVpAm+TdPEuNux3ep+XXLhxRJ4dNfzbm4yjaORXk0YMk+6bkKgho6OaNCiCoCECpKLRoFRE+e3M3KbCFPfqTBATdQclZQri90tiBIGU+Qrb/ge1scv8MSbvofXfuE3bC9a7MGie1cIAakBiZUgmktJJUNJkJOGzyQkwDBtuK98Q/0o25PLUpDC/VmUDOG43Fk6vDA+xs7iomQkUieSRgcXgIUfXs3fCDPWUaIKdZeC4iYhtEnoxLJgjoHP2VrrTK6GeS4b0SxPWcnpWXNaShrM2pVuMqEpUb89WmyWkgk+VyVetT12mthNE6vdqD7gas1qvWa9CsShM5wrELI2I1ESSSS572MEr2DCR7OwseYKWsFisxn+q7T1pLPHyRG20ryoOHrF/ux6OQkUzD5UWrd530t8PbsQScMpvbBIUNzD7mMw4bQ9b0+cVsZiTdSWVwCxzxAjYqufidm0597/5+ie/zpX3/9nuPShn8EpIM2u2me579viSLsufcksMMWe37T0Sk0owo2dxYlePN71iVrPlpibH9JIqYvY1u5HI2j4HlOU1JadIJvUf4voNCxAEiWrx4YHqM8HaulLFaBoiXkw7APDuWz9YoIbGufHhgPsnTeOdgndzZc4vfNhuhceU2yGoOK+seepN/wQD3zpl1Vwo+voS9+aIOlOpXPdxbCC6LrMLz7J9soDxCc/x/H1G0zTBCL0wbF0jXNGjLBOZr2C9fqQg0tXWF+4TFwdQezVjpmwcPQ5EzuIhZoKZMWaaimaJwgqVObFcq0DnlScpCahmqiJxmatUNHwnxmrmAkhui7DXLhdNPfgcbn/26Iyw5+ar+vCfRZnzz/T8EkLPGbMKhbDIp28b3YXKHlUwkmMHOZjXhgu0h0/yWa7ZSoqWhGHnjisoOsRI1wnE3/1fWuqihmnM1YNFgJ0fbJ8ZaVLHQcHK86fX3HlyiGXzg9cPOo57KC3fK6rbKtJ0sEtgnY6LZnIRBcqfZxtjyPnKVrsb/6Upl3M8Ee1cZXa8HEIem8MA9U1XoxQ4yKOtfl/glClmJCe8jOUNzf7ZUFgff1ZLhnRdHX8IsW4G0fnjnjDG9/EO975Ds5dOOLmjRtsNyfUcUuedsTNTTi5Ti1bQhJq1xGnotofvZKVQtcTqJrXE3QdJbH8rgARKZVzFL5rPfGs9LxzPfIUB2QC93Udv3HjNTzcXeMP9yd8vL/E2+Q5SOcIAv0uE4ctddwRysjDz36C5y4+yH03Hqc2hmTkictv4dL4EuvpGg9fu8FXz72ee699ibFm1ucOKeOOzfF1Yj8S0mAF49ZcbRjoVms+tT1knYSH1jtKFVLXESztXzH/rWZCnSDvyNsN4+Ymu5Mb7E5vEiqk9RHSjeQaSCSinEPyjpgKSQqhZELN9NHi+5qNJBmbDV0Wr+jcm23tntWV2dc6K4dyJ8wUidC4GK9ymsHwG++gGGqBHFBtS3E1NNsLkqMo8/uZu9x7fN0alLjtCVos8cBTH+P5O97EHd/4DFY5soi3NUJq3cKBSDKMwGGWMK/Jqp3R66TipjFGUqd4ZrB8ivtyVYRxmgCa/xpD0LllfAQtfgrUqvudWJz13H3v5tz1Zzh3/DzR/D6/3199y4/yhs//sl2HNGwOaDybJc6/7wtBWNjmhp+ZK66Yygypub+9nGvNb5XK19/+I9zzyX8yf1545RhUqY2JXoMKe6kfniykFsvjzXF28zHM12H5uQQshTafY7vOxSpxnCRUmxaem5nPMzBf2yvWk7xqlH0GjgpSKHlLGpWPuO4HJK4JXaciEfc9wu76NcLTj6FNdsAGg1Kr5VV1j4pBn8t+swPK4bOCjIDmARzdjeb/aPzgYgNY/stvlY7z3BxBFOOvlRDmQnWCx0W6X2huRr8XEtQOkY4qSRsO14qETBEvchZiChTJjNOG3bhhs92w222BHTAprsLMf9Hz7UkCXQd978JSi1iiinKOyM2OadGUjn/fBbrUk2Ki7wdS6hEJ1JLZ7QqlwD97w/t4y2d+mzpNNh4R4kDfH5Cn80zThjxu6PpDUndA6leEqNzIroM6qCBlQgVIpYzUOlElN9K0F8B0qaPvBiugKwx9tU61xq4MEDAB2TgQJEOwjt9+zU7Sd6FbnzMeZVXPK6tv0takY15LAnBVf9c5OQJqNwFcsBP3mGb7ePYP2dvPPHcM8z7U8F7Yy1PoGgktP7K0cUtQwG26BVvKtUnRxKIiNURqSppzcw6N+fJuz+c1GSzHG3j+/X+cw2vP8/S3/ygP/t6vYF6kkeQt17P8PFEfs4k4W/GEN5dp0ffCznvhX3jdWwirA/jM77R1F7/vJ+i+8DH63Q26rufG9/9Zjj7yD2xNem54ufE41rHEHxf72S3H/Y9+iGcfejf3fP2TFqvOKMryCMEKH5jtfuNhiNo4QxJwYrrvBMs9YlEvpmOOFx/NcyUsvsftoNxyVlVcsGq5dzvGb/FHqRTnndi6dCmP2v4nDbv24tL5ml99zP51OTyPprfCeG2E1ml+Lp7CQ+/5ne4LLdalH77MXvmLHrvrL/ONj3yAc3fdw7UvfUZf9ipj+Wq++Dcb8z+oe7HkLDiWv3vpOV5+8Wnlu4ruuyVGQko8989+gzvf8V5ufOIDfNs7HiH1iq93qWPcZUqYGCQw5cq4sZxciAwHMKzhYJVYd0KeVLzj5o1jLp+/yJsefpgL536Tl06U2/nQj/9FTp5/htf98E/x7K/+vBZphoT7AzF43mu+lleOd7hFkPSbXLtZ4jmHpn9XXzSRkvsIHTWmGbNB7as3JlTs1fgMyYrSUuKsqby5eLg/lNtmvB8Df5Wzok2Hl6ffYgOw/UCb0AVRX8EbJUG1GA2k+HuNo+cYs3P6mOce2HKTJdq9eLfvAWZbscLifzDdxR8fXnjFLnBrE5YW/1hcJSKzmM+MPH/T466+cPewmFO2T/jx3Rd2fPR44L1H496nuSgMwOW+crkfv+l3LMf41jl9qzlyG+b5lsYzcJ5t48nbvlPNP/C8osc5VRDRxrpY2+pqDSjmz8mNC1zz1ISmtNGz+ovBxrM1LzCfZul3vFr0pD6+XosYtuICU5vNhtOTE07scXp6qtydPLIKgwoW/XPv2h/UoRuRzjFpeH1Y+gCCohZB+UAXH/8oxw+8hysvPAos4vK9/Ws+lvFu9Dzs/jKxeN0964DKvdUZUDLMoeRCzpM24Rkntt6QzwsxAajEXNkXmqraWCtnzT0YwB0Nw88m4FFqMffVMJKoXMUqlTyZWNU0WRMMvNpZq7iq6HmIkDqoKaBM/0gNUJrfhjXUqCTzR53j4c2xqnRIrNRk4uGlMl5/if7uh7j+xBc53o50XaHLZRaaqopB5a99jlwqmYCkjtAlUq/NCFPXKV6SDa8PkYzmOmtUsSlJPTV1TAKbSZu5ZYSxVt1nAqjYr9YqxEAT1YpB7XYlaOvFoH5O87XrLPoqnjuzw5lbVUBCIPbaxFdLBpQ/s8sq+LDZbtlstAFqKRORREizr32WjtrwuVc7NcOw5q2l/dBSIf5UMPvjT+ytt1usrix+WMQkyw1mxsvCIrYILZZTHpblAcTwXbHXhf2PF3ExEM3tTcZ3mpzjU3Qe7RXLLuMNj0WxCNv2i0BcCMMYBz+qfzW8948yfvY3qNubzb92zrOPYYmRHJVDlYK0erEhCHUYNLaPwpXv+7Nc/dAvEOqkjcOB0CUu/8Cf5+l/+J/jAgZEEIk29y0fZ7V3KvDhdQ9OhRRoojKRGrX+tsRIkWg54qDNCWSO/ASs8Y7WfUaxEgeEGrWOL+7d//n2FoGXH3k/wxOfJVx/3gqe56z4chos/cm9eGIxiWZO86uGGmfikFunvwVYPhWU8hGa+Ktfkcng0IBe4/L6FE27G1z6yuEU3M8AAQAASURBVIcZr9zH+WcfpZpPV6PMM9bwDvfRm58wn02L6Z3H2O5yi93n+1FE8bNclo0pa9uflJfjotmicKTonpVc+MzwyGhCU8lrWYyr47UCrV7A/B9XVnCOaxXh6tt+kH5zzDe+7Qe499O/CoadRgmU/pCXHngnV77wQRXpDEI3TYqT10xXq+UJfRxiwwpU4CEa99GFB20XcLxBZDGCNkbGRXKRA6+PaBhSjCRRkaBYI6lGYnEc1GoJY6RUsy3m27uoeY0uRrUwwDLHYlrhOsuANFPodrP5LGHGR1jWls0CcHOO1HEaFozms3V0cbCmTzrPIkHxnSkbj3RUOwvKOQqo/ZJKHjp2na6zaSqM25Ft3DCOhc1uZHfjJumZZ6jdeeoTn2p7YkUoVK0JqoobTyGTV/P9V064olhV7DttrXseplRHyKNV3GspTJY6C00BhEDsrUbKhDdqjBQJ7HLhZDuxKZmpClmwZkTV8GVbUykRu47+6BKXvucnma6/zJXv+0le/p1/aNcVuPDeH6a7dAcX738TNz7yS+QbL0IRyqSckHv/xP+U6aWnueOP/mVe+pX/QvcUszC1Gmaw5FUEjeW7NPvYVbwOwnhkVqboa0C53TLjdOKYnLQYBxetC9FqHXSMVFR13k00mrafRb33CK1eq+8Sq6FnvRpY9x1DEhITfSiL+hrDIqPzdjW7VuuM/XhjToJCFtGMX4iB1XjMa577dNuPtc5sFjP1KNfP2us9ztqx3W5JKTEMg2lEzBiQ7kvLiGrhBvqmZc9XizNmHY9gGFV4BS+64QDB+EJtk4ya92yBmnMpnVcVNObIxeLgHac7FV/bTJndVBacYRfqze07vflqbHmq2ETKYjT9Dt8G3J+yGBx8PzcDLYrzpQj1njfB7fdrMy6gu/qM+ZM+kvgHqnAeFaoQTo5Zf/ljTKkz8V5BOuHc01+i7HYcHL9I3BwvbLbyYW5/9MOmGaJ1czlbPGmcfATy/d9GvnAXcuU+ymZDfe4pu675njXBGKFx/iuCGEnO90QPzRHLZUqd11uIdDGpcCJAhZoSkrSxgcf1wd8v0ur1ZkxGH6XlSFzuBvNjZm6Q+7lNUAir32eupd4DQc/AUUr5/7L333GyZNd9J/i9JiIzy7zu1wZAA2h4whvCEHSgpwRRJEEnOmlIaiSNuNLI7UerlZvRauezonZnZUYjQ2o00kgiRZEURW9EAxCWIAwBwrQB0GiH9v36uapKE3HvPfvHOfdG1OvXFMSlxDezG/3JrldVWZkZEfce8zu/8ztaPzY+og7QAxGnmav14bq6h+qQKovV/OYSww3PoTv/GfUnojXesQquDSq0th1UeG1Ik+Cu5k9Ws6z1ZuMoe9PmqVorUsSE3UCy4XgaBGmPsO0dnA4glGDxm/m+el/6m27lzOd+FTJsiSGyvvO9qv0Bdk4qDh1MWOryu36CM298Mxd/4xcaRhqvfxrXff7Xkk8ucebVX87F3/q1ZkvTySWWt7yA8eLjZnP8tE3Nx9T2eI3Ja216NnQM2npTnq9yB5MIoSgnNBfFWXIpTXCqCESj7WuMVcWpjWtT63Omr4K3WmSL2HX9OjMyhYnnXm/4FPnN8Cw3+2aee5RJ56aJYdYHUHCWW8/ysZbsO1sP2uvcnmsiZuXUG7vJDp1K4J76+KxZ+pMAhE4fJ+tkAlcE7wLZObI49h+7i9h3jIuOkAKdD6TgGK1ByBtIVLyKTDWij13KViT106XVRvNQISSd6uRMjCDYJrXkWAIsF0vOXHcdeBiGLSF49vb32N9f6TStwROCEiZEMou+42B/j0Xf03cLghWlh93Ali27rQKFIlBcYLAL7H3QaUPdgkW/YLHQr/1ioU2YISpJLwZcjK0J0AVrSKrZaAiGBul0MInWdFsSZQzkaNOTK1FdTGNL4KWcx0WP83vaVOcDzith4UvlHFx31gLQ0JQqqRvOgl8XCq74tpBqwloTwhidCY1ka0QZkFSxWFvZoWadwaZwSyu0q+K//nscB9abNZcuX+L8hQucv3CBS5cvsdlsyBcewd/6SigJTi5wqnFyNn3UVdB45kTaedXdZxtRv1SyDHZdp2ny19JRGwKmhzlKN//hFX8zf7j6b8cL5Rwf97fwuny/BrZSU1NDP7ztKZtYJziGlNmst5wcnXB8vGY37Bh2I8Mu4ZwKTS2XS/b29rThv1+wXCzo+/6UGE8IXoHmZMbV9kHNOGoTqYemuD4/OxW+skZhJoLkdKiQCD7oXqjVcw9n0wkPhp5V2nIgAz72hJw0VPbgvOfW43u56/pX8KKLH8PH0Jp+HQq83ZQuES/fQSlwKEe4/QNi1xO7nr5bEbuFTWcI7b5JmQQ+1NBbg3KbrKwBW3XeBFVb9i7gUkYISAm6j9ok4So2NbtvijiaUqkFWMZYUucyTWyooEjKid1ux2a9ZrsbyBlicDYhUa98JWCLK2qbfIU06jq0AN32lTfAU0WmVKXb139HT9fZNPV8bWVUc0JTDdi1zcGc5wxlb0S7YLbTe5vSq01fk5BEwJXM8uQJdmeewQ2P386YC9HuV4gdi8WS1d4eiJDzSIihgdd4cNGIUcECdRHKODBuhDwORoTJiCRSBinahDkMA7tupOt2dF3HMAz0/dKEBZcslivKagVlQdcDMeCtOJPFk3O1qQqqq3ZRgaD+x5VsRR1R1NhnSEmFpsaMjxly0YGPFuW4LGQnDCXR5YFie7MqtgfvCBYBVgVURGy9THZZyXnFuPgKvBSfyMkmw5oNqIBDS3xxMxfgGoQrpczUmfV31fbVJEhEidwigqTcClIuZ22KK6fpWKVoorvd7nisv4m7r3s+fn2BR579+Tz78fdPAgK2jlzUfaYNpRiq5Zpoh4IsMz9cz0kKqvFgavcWP2g94dpKpsAm/ToHPtAve5b9kjTumtifVc55UXqUIIUb0yUOGPU6KQxFa/AVj/ealKloiu3Roo1AiktokjSJevoaUjW7WZMP2nVVm1qFdai/lgq4VjLWJDxgfS0gnugdIh4pnpx3CvRWpV5RD6c2EqoQUhX2g8KrH/8Ad6c1z3viI2TU52lSZJNUpCP4Hu8XRNcTvPochS18O4/6udtqmXKH6autKS10Twm4gi4KeovzSpz0tTqUjQhj18mAOOcn8nQpBZdBXFZATgohRGKnsLVO4+ws5LAmn2ATk6v4qoFMSjLQjdtAOqmfkum86q51MDHonQJTzS4Lzzi+m7vPvoZbz39kto8sAbMGiGSK2VNT80RaLKWoqJ5L9O6zmzj2X/II1gSSxtFEGwZyDEqAaaKE1nSes4pNWbFkHlEpqak0ULDayFZ0cDUncI0QU0HVfx9fzB8K97EMoRF0p0S0NgUWnNNGk7kAEZSWPohoIp9SUrBwt2Oz2bLdbVkuHb2gk1H6BYvlCuwMPnnDS0nbLZ+49Q28+J73shqOgcJvvuLreM3Hfkb9ZIjc/tI385o7f9HyruoRLEYzZ9GAZ2hrpOTciLPOyAx1HT9J5MkmhRapQqqW701JV3uEYESzGquZz5uEnixz8X7a4+h1eunFO7j3zMDzj+45tR7UpU4gz8whtlimvsf8ceXhZve7fm8X7Cn/Tmb7Kuds+bLo5Gt3etr9KeKodw3Qbeb5Gjq0Id8onD4g9b4h9LZmtUA7K9QWFa0DuO05X8bTTh7iUy/9A7z0nl9T4aVxRMZRxW5ixHX6IGg+XgGj4Ir6gSpOZkCU9eu2dbVwiYO84bJfcNPmAtvdBuc8u2Eg7jotGhRda5UwNe7GJjI1DCPjbmC0SW3bzZbNeqviFjYxZr3bMCSd4CeWV/Tdgn7Rc3h4yOHhIfv7+6z29jBORZsAuNvtrNnZseiXHDz6aQ4ODrju8DoO9g9YLpZ0oSe4iM5DCBblKFDnGpY1K4KKYkfOkLNp2dScRWPolE3sWqy4L2bXTNygSCbPvop19HlrMC/Z/EFtXHeTpFSp/4l+bSKKzelWIp3erya8KLT9XQF8h8XPJkbhnSMyET2vJArUPL+tgyo4ab7QS7PeM/DSWd/gtZWTtWJ3jXhrgco140Ul0qpQRC1WumaT6yQcEd2zu7LD2XT6UiaSUW3C9FHQ0fDme6QSB7Ai/fRZtDG5IUvkFIldYBcUl5JB7XeWzJDg1nO3s0H9X86Zcdhx07nHeXT/Wew/9ikuDoNOXRkGLj771Wz3z5LPPou9klhdfJi+V+Govb099i/dzf4zbmZv/4DlasVqpUKL/dIwxqgC2BWDCSEgImZ/J9G/sQrR5Ekorjb5TMWB0kgJOWdyFfOZFU4FK2BVpE2wSZGWX5VaYM4T/leKCedUYaeRlEZySo2EmXNqeFcloOiEhXAaW7IYdC5AcPsbvoObH76N29/wnbzsAz9sa2IS2rLAz2KN0prLWvyX05Tvh2CxoJW3LHZKJbUczXkIwYHrCGHCJKs4R/j/BaEpWwLO1dzI7N5v478tLZpyrNlD5xZoUXEuNNUmEtn0Xn2oIE6btMK0nsE1G1g/U810ptzitzkn8w+nz2XKqWZR8WRFHVSxn3mcXMmngkwEYSYvFmLUIQ61wB1UZGo04dhht2OzVT+sQlNbLpXAe+VGrs9r3u1WvKYca3wagk7/CpXsVcWYbP8EFTVvOEoWqjC8N6GPkDr8GHG7DtcHGxJhwyiKChJJcEjw3Lh9nEfPPpOzD36chJgI5mz/+qnRVFP9wpgTbhw1H/GVWCVt3ysBwynB2Ai+SoSe/L6zgnYd+NH3/X9kof6XPeaTyOdxdM3UT+fjnPpdi39lZl/RoiG1KbIu4OrTLJ3XJ4sWhXNpr9EahZ0CF5VAiOgEu2xTv3Tqcm6/F6n50HyiqzUui5Cyks2TPXItZtdr4APROZxX4dEqlh2K4EuexF6yA8lQtIXDlEabv26XYrZ32jTJYg0clu/XmLCJLpVMKUbqlwnLOdU0X+MyZtfwVH4jtAstU1F48pv1vUqbmFxybg2oOj3eqFAzIgWzv2/NL1U0pxSWD9zB8fNey94d79H3n3/mFtfN8q6Kn9pvlaBQSfUWO83WVPWFjZDhacR8oGFpVeTxWjvaNW8hordhJhU3snzTG6HCaRy4243supHoHFtAolMM2cNYCjJqw1Bnds55oGidW+r1EVFxdO9xQQv43qlwsBfwXTfFsTR4CmguphEAznzynYwnl9i7+/1s+qXWo/olD7/hO9h/5BPc/dI/yHPv+DliUQG42GUeeeYb2B8ucvbSPVq/sHMvKbFdb7jhiV/jkRteztn7P0BybqpDa3Cs4uMi+nljz2LvkIOzN3Hm5mdweMPT6A7P4pcHhG6JC53hHQ2V1WsbRPdtjEhKkBKhqCB9jbVqHd+7oCJaLtv5q6CW/szWtrd6VzNvlSBbG/KN+JnyzC+U03vdYtRmDs3/1um5LihnwHmnohCG4aiwMZqbBcWTsxQkO0QytZdQxGLmIpSxigB4XrK7G9c/g3DuEzy43rAbE8XEqMOiJy61RhrQxhzvHHt7e/q5N2uE0uzrNXO4UeNvB4voOVx1XH9mjzPXH3D92X32lh3L6OkpRMmEknGl+o9MEqulIGRVw6H3SmQZSyZW0XWCNulZ/JQq2bQUYyyagTZj3Uris/yw8RDEbJgNtQrmW8WIMkm0dhO05DbFntkErIyMvjp6TNeRhxAD1990Ey95+St5yctfwf7hAUfHlzm5fBEpO9ywge0JeX2Zsj1BstbqJHT4AVzniEtd9aX0ig+IgESz02JcC90vJYMjcqaH67rI0O3xtBAQ73nbhT2G3vG27R5fdXiZN6x2lHQjabflR8eX8w03fJRl8STxDOtjdnSc37uF5134NM5nihPuv/HlrPtDLuw/nXjpdm4ezvG8C7eThlHjr+2WfHRZ8yR32SZSB7xXQRYWHXf4p3NfyiQ8strxguWoQqk+qBgpKKZSCpJ3pGHNuN6wOTpic/kyeRxY9QskZIbthtgVukVkGC6CaMwqOVO2I2k3MmxH0niCuIy4SKGniGebCic5s0KntNfJ30oYm+f9nBY5uEaOaaq17n2tdVxhB2rMYmWOIOBLUoGpIZF3I2XQUc/O2yTROfDbvjZEQ9dnzZMqLuy0flaKw+fCLY/drnlCjQfsNQDwNjFaLKJwDvwkNCUWo6ogvkD2OuMHI617jw8Fl5L6TowIZz6uik3V5m7vIBJIq0Me+5w38eyP/zzrG57H5vpn8rT73s8Tt76OMS45ftbn8vT7PsDq+Bw1Ybvrtd/KDY/cwZ2f+4289Ld+gmloiedk/ybO3/xCbrnrvS1eFjetGWm5XI3XDaeqtgbDPKDlf2qqJmwFe34R4d7Xfh37j97NPW/8Zp73Gz+ur2vxieIoEx9puu7aXuKr33XmMpmEpvTzmeCe3aUJM3WGMVYsxPgKrUHNNZ+OTFiikwDFNx+utUyoQiKlZLxhTQ27uxY3GQCOOoytDFuSc/jFHn1YsOo8xy99NW7vLN0znkMmweMP6F85FVGrfsRRKII2NIY8+SARKIWcEkEK0TvlwHnwudY0p/sVqNdauQaa9mQIQqx5s1d+jqtYBHUNhlZPaYPnXAQihUjCmw8xjhBJGy1b3U/xqyIDw7BmTGvSbkMaB3ADMEARutARo9NGXgeEiCfifVFfJULOaaqRFZ0WL7nYmrS9I9aw6HVQTBW2T2nQusNYGAfhw6/6fRw88Cne88o38cpf/ylqIyIuElyPC08QwpIY9ojdihBXxLiiW+zZkM8l+EiWjPOZEBOBES8DpJ3WAU3kvpRC8oFSVhTZayKmWm/IiNP6g/IPslYiXE80Tlqp03Lx1Pq/iGuNXElOTw/WZthi2PLMLjvl4eh5lqY1XMW1UxG1j0FO4+FAG7J6jR9XYm01n29eSarYFFNy1LDFieUwY2xQ60INixNptZB6qNiUSVA7h+Rgwx8t7qtdsPVz2FfHVAfef+hujl74Gm64/7ZWW3BmeUUN6pQPzjD0KSeZfm+WGsFRFkvWX/EWwnt/gfTyL0A+8WHkpa/D7zbqv+/4IP4rvoVYRvJXfgvbvQMG77ju3o/zyFd/D8991w9bg2bFFyt/qaZSMwxqflHsTO/8gj/ES9//k3jgmfd8GH6b3KNyIeq9YramS8NLrTFLoNYGK3/nylzQ1VDeB/VJhvWHdvsmEnvFUJroR1skE/ZRpMYiFveVygGBbNzDUsrUoOlkyvls7TmrsU9iU3MM+X+vR7Vp7VsaliW1iaTiU0wbQKb7DNP+5NTr/PbH7sI5hotPTBj4lTbgKV7kyWsVswO/e/fhanyHpzoazxxd1zYSiFLqOjMspxS816v98Pvexkq2OC+M44D0Hf1qwfpoIJEIUdisE9sTq8FTiJvCYk/IBwtKn3AFuq4nuZE8bLn5xus4e3jAfY9cRMaRk/vv4cyLXsq5D7wLUHGnYs0tNm+Qyr15yvN1ymc4/TOLI/VC2flX4SNmGOIcV7Y97WvsL4bFqh3tuqg+UrQJ1wffBkWeEri/Ro6u7+lipOt6YqfcNW/i7lV4tQkW+cn2ty00d3DVdmnnJTht4DlV13YqvC6uUKTWqOzVWiNg9Xd61Dyq4eD6YrO6g3EBxPHj4y28xJ/wI8Mz+M7FI21NP/mqz9kFs89RnzzLLZ7qeLKnmfx/PeXPPxyuePbcTl3t1efGaXbdTl0n/ZDTM6vtMv59fU4RqMICpdjwQ8WZBKAKDtjfiJ3Aw7LHvXLIG+V+RLLl2IrzS60Lt0FmyjfJRWtnTbxkdgbOckQ/E4p1rZv6Kke7hq7xFsc0st1tWW82HJ+ccLI+UQGcYac19ZJZeU/XdVYTvLYO8c4wdAW/xHJR1fe39n1hEgSKOpTvzGc+jOs6CCq+Cm2HaOxW4yzLH1pMweQC507ROWn8jmo3c87WzG4/s9pnSslEn7KKBSYYsyMXZ7WvTHHZhAocFONSVDGpPNWAQ4h6vlXIIxfAEWJt1g3UeDEBW8kk0WykigqANZmWxChepUvEEbPgXcYbNyFTOcmFQYRh54zHLA1DV16+iWO5QAodgg5ju/yRd7A3jhx/5O24vUNtanaOoQipJLII4jWmkxgodNqIGjwSO0rs8FEbSfFe813nEB8ZvSc6RzRxrUELLqQiDKOwK4k42iB0BzjLP3XZ0AUVE+hiIKKcqQ5UCNL6nHSvVnGQOjitWgoV4EgUstN4dFie4fGXfAU33/YLFO/IDoacWe92rDdrtsOOLIUQvfVPlbberqWj+iXmGIL9bl6D1h9cYWNnP68xQc293JVPFzez4nLKWp+K6RXKworEtMHuMm+QrfnVlApWtnL1J8X2St0fOxuSNJZiQz+VM6I16cpdqvE/s/xy4vU3P275RP3qRW1KtP6Y/o1vQY4vsPemb2d4149Qhs2ps60+OInC5cU55NLjlLs+BM4Rj55gtViSc+HgS7+NdO5BnvH138vF//DPdQCFc9z4dX+a9Sd/k2e+5U/x4E/8Y11fM/75aTG6qY90lh1p/5DlXUkKUVT4JgZHR0CKMy6iw4nGNMUJwWyuw85dNFzLYjMxxDgdtSZjy0VwnH/Jm8hSuPjKr+LgQ78ARxemtM14h24eS8xy8Ss5yTV/FKT1NV5bkaIepSqF1tjJutq1NUnFaL2ocP0MnbW/qI7dXqIG0va7sL3I/sOXtGG9YkV1OINtDPHWXD+7F272ei2qczR+Y+1xUBpCaQ3ypUxCUxW/yLOvufL77KE1h2B7w015vsWgVcBAB34G4kzQAJgGds0vqJu4Ef3Dd7N+4WvZf+CTpN3Qeg5z7Hn45V/O8vHPcO6lX8LZj70dJ9BfeETjunFLOLnwpF4vEMQECotTiDatDti8+qvo3/vjFiIaRjSF8LZWTfSiTGJTuXIda53fOVwphJxxoQqXmKgBiul2PhCD12tmPN8QPJ0PBHG4oHvLN5K3P3UKYkGMTB/Mwts6vBokRO597Vt4/gd/ou2/CndpuDsTnGJaFxPv5dpyZNvNSB+i9kzqBzYxFh2qR9G++OAdLmpflhcTdVr0DH1PHyNpq1z3lDK7XWKzGzjZbBgvX6ZsdzTen+Vo1prXRKHSnDsaPKFMHD+1pX42oEK/SpnijizCWISxCX+IDgByDudsOIwDI5jiQlQBTh9UdCo5RhHGAglP9o5MHS6n8bQjUMaR9eMPsXz6czm5+2Nkr7Gm957dhUfZe+7LKJce03hveYDLieJHypg4ufc2zr7qizn62HvAmUhts8t6P+Y5P4j12el6ximPy2fVA1B+ig7ZiirWgBONSREVD/PNsevaq+/psF5kkYYt1Pys5Kz1jVJ0oKzhMYoZOnTYhWIOMQYWfWS1WLDoPZ2MRBLB2YAvcTboQU/OtY5gs2O2FrwTFUtS72jgtGtCp1U0r1SSAtJssTipdwqh0KZoX0PHbhiUTx51IBqGjTbMEGjD4sx3N//vZrfQeBvSddz10q/hFXf+nD4Hmq1suZjFBDU+m7AMcAS9E85DiIrnB+UhCCrWM4wj2+3AerPhZLtlvd2xy4UkOuBsyJkhT8KjTRhRAILaW+8b1zx4r4KfrSg7y92l5pi2TdueEIJ92u7kErsQ6fLIvhT8Ytl4ihhk4dGApokrmfiuEyGPSXmEYyKHRAiexWc+gTjHaJ+j9QnL7No77XtIJjiUKhfQObj8ONz8HMrRJcr6RAUiK45nONGUC1pvSynKx2QKvpoSg9mDZNfHk9g5T3AjMew0Lq3nGCMStQ7jDUucX7+Gv9RrYUUwFf61CKmSiGeuSeyGCMVqctYLjfVyVF7jNZaU1Xppsj73VIU7xda5C7NFNmGMFaQ/uOf9nIw7+vs/TAaGlNvA190wshkGtrudikyNyUSmUK6i8XCdtz4KW+tVUDdYD7WAcnSx3kyP1cpE5aud/p03TYRgsWnLM2frM3jo8oDbPwPjMeHwOttHU7AaTESuWJ/J7qPvYLFYNhFu2W0Zzz9Cd+MzOb7rw2anFek5uevDuJzZPPRpXBqJoQPM3paCymzburPzr/Gob/1ScnpPWY+/86pj4HMdUpQYc0eXC13M9F1vNsM1/q7k2kPsyE4xEGfnSQhgXC5xpr1D7QuX1sNE7fMDs6+VO+BmGJceE0pV+2hlyqvsdHavfwv+U++HCw+3fFqueI0J/WUGqLn2qNa5IK1/reKjn024+J/IINYbooIHAsWTDfApXkH0lAshF2IuSmDPmZiDNvWUgC+OIHqRVa160vatJJ16hVXd0N5AakGl7jsji6KOv04OyqUQ+44z15+BAJt1RKQQOxN6QgsoMUaWyyUhwN7eiuuvO6TrerqoJINxHAnRKFBO6JJOdo0+MAwju+2OMo7sxsRus2aNkrL72Kng1FJFp2LXE/oFoevMUXpCZ0rvrXmqikdEitMirXOeIokce22IrMRLqVMXjNheiiahocfFrpE5xIJl571NltZzKTYlfiLMT43eddHNl2ENnpyTJjZFGVWAoJImfcFJBF/Aq6iAE2t4L8kciRrW3TBwdHzC+YsXuXDpMpePjllvNqrWf/4huO1taqguP26FHdcy59osILNPWgM6XTHzstVkyNo0wNrsY4bOz5O4a+G40inKFNzUjX5lYU6u9nDwuflBDmTLi/JjlPrXlh0oMBFsurER3Yowpsx2N3Lp+ISLFy5yfLRmfbJms95SigqrLRdL9vf22Fvtsbdasb9asVoudc0vevpFpwa46xQM956wWBBiBzHiQ6dT6Lyfit0YybxFYjWQVyKPotgqKCM+mO6R1/uJw/toRHjPTeNlXnnxDkLasJItKfZ4H3UypAWVLz75BPsh88zju5B+YQUJSyosDHo6a73wB4eE2OkjdPjQ21edyAcaPGSXkNpsSTXcpr9pQk2T+p/e5ygFfITkcWQVmioZihF764qukaSrlhJLrswx2QRCDQBLKypUIZ9xHHXyyWbNdhjJAp23zpIGjHkl2RcleMYQ7L5MwPwcnPYWXLQmOe+binD0nth5JClh/1o9JpLS5Csr8cT7YA0KnlJqNiUtIcCmWHiv18nnxE0PfZzx8sPsb86Rekvug05kXayW6qQdDLst3muRaSwq0NLHSN/3rJZLYlCiddoFohMoHYu+Y9EvCF4Vb/OozcTDODKmTD8mUrdgHHITndr1S5a7HeOwIw1LFsslv3nwAp4hA5/DJQ14vMPFgEcV6BWw1NXrvEe8Fl2dEwhCcAVCRkJGvAZWvgi+OKrem7NkJVLoZFShKVeTVV2XrhQk61Qgydn2co1TxYpyup+cNXiU4I08JLisQIwPBqibKrVIVmRctIjsfFbROwmTcWw+pSGy1ITK1YSwKBG6fmbJGbI2TKjSsq6flBPDsGW9PYFLl1jkA9bL6zg490FLHETR+hj0OgevNgyngp2CCk3JDNygktBrUUedtDbJeJvG2RGCJ6Xfhkzye3j0i57gPB0eH3U6zJiTJvsVnEMt3PPT42ZftJjigpw6J4Or9J5U8rNDmxSdCcFYYDw1+HqIRgAVZ8UMey0RK85MgnmuJsai9twVbLqpfQb7RyOct19oY6SCkYBYYuOZifB5K3zW97dpWF3hlet7KctDwyGcNfdFutDTxyWdXxDdguA6vMXAutatSO50zQq04l9NS/zMZmsR2VnhYDohV8G2Bhhla1Z0Jt4VMK1dvDOCmjUxlmJFFtGGBO+xibWd5VWevu/pO00zpmlxCjiO9R7UCdwV6NabMLvwda9OpCdfDERx07lKpRmIJorPuXw7Xd5w08VPMVbbJFqorGI4aTShgzQ1rotoYa0UoYyJIoPawlOFi9/7o4oQFYutG+gqKuwwDDuzV47aoSWzYN8xEx/Sbi3M2rX1KKeufxWZisTQ8aPxxbyhO+Jf5ZfzZ5af0cnzzpHGpJODC011PlmDYCNrGOl7HEbGcWAcEsNuYNjuWG+27HYDKWeNsZzneP9GHnrhl/Km8x9rTRhZhJsvfobbbno51z1xH2xP2KWRD7/uW7nlnvfzG5/7rbzmfT/ERz7323jWve/nQy/7g7zq4z9rKvZ6DWUWZCtRz3KNShCxdWG1cUJW8CAUBSY1r8LcRxUwK1rIkml6SF27UmiktYABAvWrnVcFyaZYS7+2ySZFeO6lT58WXxWoQiHS1rG0fHre2H41fzEXbJg3yMy/r/ujzF6/Pu9KoSmd8iY25cMgFZlIq42Y3QRi5NRrXiuH2hu1hcEHfBeamINU6FU0zh3rVK2sjQVFhOet7+euG1/O88/fQeg68Epi8va6LoQGOuUZcK9hv5s1Uls2EOyXDiOAOA4ofM7wKJclsDdeYrC1yzDi/E7Xj/lADfkLJZXWtEkRSsqMu5HtyZaT4xPWJ2vW6zWb7YbtsGObB1JJ2ghaMxwTeey7ga7bWV6kohbOObOx6m8cnr7r6Bc9e3srDg8Puf666zk8OMPeao++X7SJR66C3wVrtqmAoO1XaA1q4lyzB3plXLtvFaSrDTb1FU4jY0KbEl8FnV1p+9JV8Si9ULZGJ5HF2sBzau262WP2rtOHvNovnhyXzolA8/OvZ+gwHMzXBTIjK0oFB2ECA6vdv7b2WD3nUwItVyA5zkgxVfTCG44xiQPWpnQVVq5/2QQJRLEF7wM4k6z3wfAvs9uV+Fw/h69kgUjoo064dQoqj8NI13f46AlbRxpHLX6i9yhbrDsMAzsTbFucf4LLo00jHQfGlHEP30V+2bPoN5fYG0/YOzhktb/P4cGhCbid4fDwDPsHByz39liuVnRdR9fHho/NRaPqtNNqg6u4VBWNKWUS56hxbBNdq2TZMgn+Vryw2va57a+AdhmLYh9tD1SikApOVSJuNpEDfaRGBqvv2ZonnTZDxqBC/jFGus6moTnNkCYfCc+6/4Pc+6Iv5dZP/FrzMVVoSgHxTDFbIGYPqpBRJQ447/Gtwavgi4mAO1rhrdikWxU3t6I5nFortTG7kjb/j3a4p/j3k374VKFyy8EmsbBqkQtFfUpdg2UWp88Eymq8nq0wVUk5U+6na/uUna3f/27FFzL5In1vMbsxj7XqU03gh9J+5rxX4ozZMhVCKeyGHZvNhs1asdf1Zs1ms2EYBo2PcRzExKOLs7xqfJRd0EmYoY9417X9MQmfBYINmYgh4HuhHzU2cV4Jx96KdrnoNR4GFZxUm6Gk+Srwsdtt2W02PG/zCKuypTt6iF0fGXeZNCqh11t9JXjf7IAOJtEJcAVh4SF7R3TWbCsV5lTS9lSITTod2nBEFWZ32gTS9XRd97tzP383j6vliXVdXOFb5k2B3prOneVRlQzQmvqo+JS0UEVjOLO7VwxuURJ0oBL/5jY8JxVtGZv4X2a06Uel5t5VzNHIgXPh3FAKORqJCk7l4nUyWV/9BSY8jmERMTZ83OFNLFTzsIrRlNl1q7k/GDTAPF8qeNH6QankM+cofhI59kY4uhLDlllMVH9Q8aFTOY1c+bOK6U9E/Sp80wgOVTAFDLNBG1PL6efNH3VyaMmZvU++D7n0BP1nbjeSwIRPzfPF9vmsqaFCnK0OYNfcW85ZbWCpBFOzsVgeIJa36frxJgpxRUPa7/kx4RaFihmVWS4+yzOLxZJOpyGO48h2t1MxgOKAoAzqbP7IZ2tCdubfhfMv/kpWFx/g4NxdNaXQtWpEFp0j4OmiDlNpog1MOXQIgdIm8jnEQ0mFMY8s7vp1dkmHGOA9bjcQ73gXR6/8Sp52568otoNSJh5+xmsYw4pLZ59GSVuuO35QP0su7HY7Tk5OKOOOsw98EOecNs2FaORwgexJWa9Hv1iy3D/k8OzNHNzwNK678Rmsrr+Rfv8M/d4+IS6aSFMlkkx7CJxYPdhnvE/4NEIaDRcUkImA4gy4a6G9voAR2bzaLbSWPeVkrok3FxS3k5SVmNX2m8WoRlJq+8O5Vu9zYZqG6LzFATbsyRwgBCaBdanCGyZ6ly3bqpi8aL6ciugwER951vED3LPecLJZk0rGxZ7Q98RFT79asugXer+3A9GmRu52OxAVM+quOTG3TPSO/UXHdXtLbjg85IbrDjk43GPvYMWi7+icx+eMlwTj1q69Yl84R3HaJKXYmehgBncaR/Uo/izOk8itaZycbU0olq5MFa9TIJ2Ju3hhImKrY3BYIzAo8bb6pJoCo/iZiv8pLqINt66aQMP7CrGP3PiMp/GJZ34BX/7KF7C/v+RofcLR0WWG9ZogO/LuhHR8ibK7jOw2SEmKkQfIyTOO2mTgpRC6XvEK5xAWQEGcTuCtgzJU2zbi+wVutUS6jhJ0uMQLzgrvPDdw62HH3p4HBlwa+GcX9viSs5f54Yufxzed/QDZeYb+DB++/g0888LdfPiZX8yrH3g7LjhuWD/I+b2ncTBeYjUeK1l+SKRhxDkYNxs2ly8gw7aJnzZCWhcJqwU3L7Z8Ot/K0jtuHC8iBCUzh9gIz4LmSml3wrhdsz0+4fjCBTZHJ/Sxg+BIQ0KKNurk1DPuCjLCThy5ePLOk3aJ7Xat4niuIMGRnZBwjHglXqMNeAUdHAfVP1Yfb/nxNTZYzJugSdXaA3MtGA7bYBCrCaKYsssFGQXZJtJ2QMbc/qY4xfeSVCzfNfFJXXsVuyzG6QBprIcJgqr4eJkDkPbhqqint9rAXISpGmDlPVTbr2IpKijhVXiKrPa5FCh1KFVquJpDG0GCnbfsHfLAa97C9Q9+jE9+8Z9kdfwYi5PzPH7r67nuiXt45PlfyN7R43TrSzoEya7xzZ/+DR562VfyzE+83QY2ecblGT75um+mX19i/8KDPPT8N3LLXb+ueBI1vmoop3GlFHOdUMSJI3Uq2rf4dcKxpnjt7P0f4ZEXfzE3ffK9Jkrvml8ExYKdEdAdNV6uTch+EoRwcupd249r3tkamGuu3VYVSJ3iW6m/thYFpP1lACJSf28xzAxZndJo5wCLLalDcK6tw4eOWMWcciFvtwgeFp4gntUTD7I++3SGk2PC+qJietFi3+xV3M3sCKLchmRdkxW9kFJISQjF00Xl8gUwCRZpROsZYoDyFQBsSncxH+Asd6vkr1ZnmTU+UJDiKXQUmwgrIZKdJwm2B0a7/ybET+UEjaS8Jo1bUt4yjFty2oJLBF/ouqhDJLpI8A4V0x2U0J1HxpTI40AaB0pWzECy8TgQPvTF380b3vMvdd/P9sE0IMC4nFlaqfemuz7E3S/7Ip79yQ8yZuUogQpTFgoyjpTdBilHOLegSKSUgHc9fb+kX67olsq17PqAC4EiytfwbsC7EecGcDuK0zgzI3hRbkgujlQER69E+WKN3E5r1tEvqOs7lZE29IOg8as4SlZORzH+S7UQBR1I0noznZvyWudas52rF8N8l+7hgFWLJhgfTKTz2j2aL7jqL/XaXAmTSDW81HOv/6o5tONJ/yls0HARDOefcOSouYQTxBfqlG+tPU6NCPP/1789c9/H6dKO68/dh020nc6u4QBQBdbnTbIV0WznY5gPXc/Rm/8o8aPvZvdl3wyf/jjyuV8CTzxK+MI3q4/6xIcId32U8iVfh7ziC9h/6w9x9FV/hMv71/H0j70d5wN3f+X38IJ3/yj3v/Hree67/o25p4oY1avGzA/pGrrti7+DZ3z6N/nYl34Xr37nD3L6r2a4AtX/ma2ROeZgl9rwBnCtkVFF7ZKud6mvwmTTvNazowhImEQu3Ww9XIG38KRl9ORG9Jo36CBeiz2MQ+a8m+qttja8c3jjlc3FqTTPq3Xza82XTTjYZ/fcyf/HGW7kioreYD5B16ZVBWe1pFO1+Pqz+Vtcsb+v5BbM8acrf3bV51ztcv+Ob4H8jqD+Oafh9OdQLmyZx4MYzmZNLcacIefEWHS4qzvsTbRISEXYbraksdMhEicbxiKwS/RjBtljjAMdGzyZ/f0FZdxysOi4+abriXc/gKSBcx9+L5cevJ/1/Z9iEWrsrWIEWUrjfV0psH/66lxlJZktm3Pu9ceaK082GTCbkFIBEi5kFst9fBXBpPJBqt3w1d0pPuRAk/pra48tVkti6JrQVIi9+ZCASKAUZzXBSeBcBYBgUt9oiZJ+aziE2jpvOZ9ojdE7xdGK4REzQYmKZzS8RCofxMQ4Kh8HQXn8VlPwU5/Ea90TvCs/nS+J56eTrL4P13B7VycNzPa95oz1dPQfFZdvcewsFZm8SL0UikszWzdzn97+ynD/gtAKHfa7dkkt9lZwae5b7GE+feI8lNOPim3XwUk5Mw1lLtPfVE69ObnHZMX73dO4WY54n7uFN6S70cEYk7hqxR8pUw1dJFPx/1O+2FcRWd8a9YzEOT2z+cGWVesOF60jDuPIZrfleLPmeH3M8XbNZrdhyIPmJUGHgsd+Qdctplr4NXRUPELF/avvcLN6FooxFM3IkyiuWLwNafSGM1gtQ2lRDvxUkxerdUxyebaebTF6jFNtw7Wx2M25Yk3Edd9NNZ5sg0nHsTAmYbQmxLEURldITsgYZj0T7JhqSFY/Ex0QUTkrpZigtniKeHxRMecikLMwimckqFCG9wSnAw+zg9F5Fc4V5efmUnBZObGn7Lhd0zEZB7vVjgoeTCwRW8NYE2VH7D3jPR9heeZ6qpsWKTCM5FG5HNkEN/TCqgBT8TpwhuDbdXcuWtzlTUAhkIBdESRnsoPkhFAKwUEsGZ+zxo0CuKyf06hOMXgWMdB3kb4XuuDpotBHRwjOah61idPqexinw2pkVaQ0OyF1ezzwud/EmUdu5+FX/EGu+8jPMObMLo3sxoEhjSZCZtwDBOctT77G+smu9KwtN7gi1hJq3dVN/3azv3KnLXb9Gwea4sx+On+fJ8UcLT2TavZRbgSkXHmUNIxcB0/p6xYbIJCzioKVVCguUcSarXOypm21kakOx2v5h+FoLb5Xc6++0Gx+qfmDiu1LSdZrqXvEdR3l0x8mvvbNlE9/EDfucDmfxpnNnnuZmoV9DPijc/gQWC737FoI/sE7WbzqK8h3/gZ7XaRkrWFvP/Yu9l/31Vx+90+z7BZmd0rDg2s9XzEizammyKOYj578oBMYRHuzOoIOBvO1L0K/piJERIfBWwzpsfpMe7j2/fzO1m3fP/opLr74TcSHP03ZrrUmXeNoMZ6DmNaYFvQa16yeY+V61MFlVazbWaxybUWLNF5KXQTF8gGC4hVBHFGs5iP1eszixOqPfP13FSPU55Wp2EpxlVtBi5d0LVg+V7HYWSCmgspTnlwsXqyiSXOxg5yrAJHWBq7GUVDIQ4NL5xzBxbYeNc5zxjuZkIjgtW86zupxU7w2XQos1hUcxRUW992B221ZnXuAEWk8KQmZvfvu5Oi5L+f629+D2GA1h6jYVMVg5q8PM7+vQ+5yt+LoTd/B4u4Psfvib2Pxnh8BCzEb98ZNvIrqJ1IVkKx8+xqnOYcrWfdmq5vXgXuO6B3ZBzqv/rqK18UStZc9uoaZgp9sVsP17RrVio7dWDFxHe118tz1hf8VN9/1Pu76vG/lee/9scnH5RlXRJhiEiyPvTLnv0aOi+cvs7dYsLdckIL2qRYpyqEdBsZxJJWEOMGJ1vQDQknJ1oZyXnNODLst293IZqvDXtfWZ1J5TA33cdUfqq3Oxbi1KbFLo8WNei2j90hwIMa1sjym9dqI7qsxZ/NVJjTl0JqPcd5LToy5MCYTxhGheIeECDFrHCOZ7NR+ywR+1k5jUi7IyQmb33w73dlnsH7wUyosEjwSAttH7+Pybe/BHV/U3qDYaz4aFQ+7fNtvUDZrNvfcBgiuWPRczVPjKwbznWnCcEB9n9kXL7qfq/+o/YzF6cAvMe6WM+NUcyVHFW7y06BKtD9CTMzXJRWacpareTBRyIKXTBUp8qrZRew8fe9Z9h29D0QTDA7OhKOK7o/GRbTk10nde9N/NZ91zq6Hdzrkzk2xAlKab6bofdN2OdWqqMjptXSMYwLnWODa8AGNk6z/F9sfc+6u+YFqvwHwUHzg9ld/B8988Df5+Mu+kVfd8TNYKYm5JcPWFvUnlgfqdxZ7Gk/HBxW3Ea98oVwywzCy2e5UaGqzZbPbMRRRsVyxQeOG29Wb5pzDzzixMUTlN1TxTjdJubSBBHbPA878mK86Y4DmpH3fs9gd4R/9JAsvLHqP9NdTbCAL9jqt/6z6kdH6EMeRNCYTIiqUlJvwlQ/KwWri9zN8vPrzKgjZeGnOVuz5R2F8H3JyRDm+rHfRTfxTryQAE5kyIUXTFGjhStuHE0ZUuYLO+ia898QhEv3YxBVVDC62Wn71hSpON/Gs2oCKKjRlPrwwYSNMy2QKIaifRf12Nv5+qXjPNebPpMVdRW180gGvMRRCEQhMw1FUWEcVa6nxpbB44KOkorZ+Oww6jHgYVXBqGNmOJjKVs10/E5KqOhaxU154iGb/ph7lChymki1+CSQ/mo6DinLHEPEhcPYb/wLHv/zP8Hlsa3PCAqulTPh7PoRf7rFcX2B1eOa0LXVTTbsKbg/WHxPMD+Zxx/HH3kU4cyO7R+7R+MjXeBN2999OcI7Y9Vo/1wvd+nwrn8R7T4yRvee+nNWtL+Xk/T8/xewUale//j20Bn1XSKnggiemTEyJPiaGMTWhKWfvSZm4wTjlQnmzYc70UMQ7i+ttMITljnU9149wClKmfuPq8te/cxWnkhaLVtFmEdi+9utwm2PGz/sGwnt/HDk6106vXSfs+U7jFN1DlWM52XkzEgi+bj671//x4z+J3dhyRhEbQlya0FQOYoV7SKKTKX0RQsmEXPAp40PS+Dn4pmKpgLs0lEEQmyCFkS5so7lAKV6TITu7mmw3krklzi5EFt2KlegUx5xGnFcRrJwxcQZPjEt+8vnfyB+//FaWhwfEviMGvSRlu1NDWLIqzuJYdD2LbkEaEz+6//l8+cPvpFtfZLfdsdttKZuME9GGyl4Fd3yIxL6nWy4JXadTuDv9nTbh9zZ1wBahs6DVBzJRr6u01KIlO1W8qQkouICESAlRyVxer08IFdB2GhSO4wTotybf3Ix8VWdXEvHUlOZDNzmHUsAlQ4UKSASJOB8hJJzrcEQkD5Q0WhCpjnCzHTh/8TIPP3aeR89d4NLxliE7xJlS5aVzFhAY+bPGB21d101dt5wtdJnCQAzQUKPplMDjwItRfTIE8UR3rZF7mWEQUwBWJxle7ant4WZ/ioJ5LyyPN4CjNvGIGWnnAt6JkW40IHZe8CESYocLPc7vKMUx7BKbzUDJhRBO2Fses1ouWC4WLBe6hhddx3LRs7e3ZG9v1RoiY4zEfkHoe3zsiHFB6HpVTPUR51VZ0KoNRtS3RmJTTiyuV3EW8db45FFOkxplnVYczCc4btgdUSSTfI93BRcKwaPJlE2veN7uARWZKtIMvSZR1ujcyHraGKMTXRVmmxqDLH3yhZI06VIVUdGJHcVUkauBljKRirCE1BXIXlXlg297SbxYM0VFEb01TZRGlgAtbjXDbOumFl/ECqHb3ZaTkxO22y0ppSngBnCO7Tf+d8T3/SD+5GFAbKKGAlYlS2sc0MZ4AwudMyGV6aEiFLXYGSh+avi4Jo8WU9j+sCJQ9F6b8pxrn38usFCvd00AavLU5YH+8qOU4PW6+YI3EuCiX1KnjnrnSeNgghyDLvvViuAD/WJBF6OCJCUTwx6Lzpug2wrnVOjw5HhNOt6Shh0lwwe+8i/xRe/4h5TiyEV0wsOokx6GcWAYdnyifxZ5l/hwd4jkLc+VI8KiJ4jXoo6pr+NgI/ADJ7fyp/Y/1S6Uc+CigBckFCQocdMV8LUxx/yKkisz0fVG6i8qJlUykhOFNN2HWZOJ8xoQNqEp0STdFZ3YnkGDOZ+tWGfBcTHQHPULTqoSc7HnB7ttFbirQKL+7MqpbvpZk+5bK4K16UhAFePKpbAbBzbbDfn4CW449zCHIbDghLyIticUUCIExCbzJFQsp2lwoZ+j4c6o+JdTA4IzoYsQIwuLIZzTCdLpGkumwMAB0cRvZ0TU2mw4exYTqcswM5toUu/QRHqbgALMxlb5CGeJaQO6qZPqqzAAk72DZrvr1IXQhKac7XEz9Y3YYX8n08fWQwyMigQckrtJlA8Is2k7CmAAFBOxsfVviWd9X6yQHrqevl/Q972KldpUNfGeErR420DpumhmQUCVLKvFqFAL+faedclMuaGrV7l2cmrBLXhKpUxLJRHRREaUpOdb8TCEKjRVleR7YgwWrzud5hCjXiNrRHbeN2Kir4U/Vyc0TMlVveT6xhW29O21J+kXXUeuCLdcvptkmZRUMCXr9OE0JkZrYp8mVdQ4W4uflEKQAd91ilheQ0dN7Os9qRMDNWlPjMOAZAVTnfliPwPvtEjucDkroC2K+NZ4iPpV301jRq8ARdf1vDmc48fLc3hLfBhJhZ0Rd3RS8aggX9KEPKWRnBKjASBp1ALBMOjvxjGx22xZn6z1OWkA7+kXC8r1N3HPK9/Mcy/ey3uf9rl8/mMfRoBxHDncHfPiBz6IO74Aw5Ykhefc8Svc+eq38KLf+hnGccezb/9V7n3lm3nRR3+O7TA00qmuG70ud7/oK7jh0j3ceOF+HM7yLBPbaA1vusJ0sgFWUPNNmAsRkgPJ4IsnG2lMnDRQ0mNgm4kAzEH6uX3MeWqYquBo/T7l3GLQug5EpsLGfJJlBS5azOhnBo1KLZjt/lZ4mgCP9myBK8Ws6meaNz1XdNLVV23PA2oZvO7z6l9rk/Q15stCsHjfYsJ+uSBEE622BqCCCksNqTCkxJBUYDvnzNPH8ywu3sb+7gKp68A54ux+OK9/n3Mh+2L5UC04aqyiRRu7dQY0a6pkBV7nOZDCIm0Zus6mEg0mMiNTzGr+VcnVagvHNDKkxG4Y2Gx3nKzXHK9PODk5YbPesN1tWxHPO08XaaKysVcMI8ZoEwz0Pm6vu4GLL/lCbvnNn8d1kWiN8n3fs9xbsb+/z+HBAQeHhxwcHLBYLOmayNS0zqvtJ+haqkLkYnGfeH9KkK0eNXaYx61QCwZQQXMVe52T+yzSkEpIkuZb6jEXmapiizU3aO/vnL32Z7vKpv1Tz2Aejp4+t4bkml1gsg9mnxo2b4WCKkJRwVC56iv/3h01L6o3pi3XCi8JLZbxs2kMjWjjbMqa+axJmEYLUcmmDNx/48tYHlzPy0/u0T0YTGiqiE1+mISmqmAQTqcyxM4b8TjgBPplT7eIxN7TbzrGcSCPI7X5ZBwHGBypZLsvit3Ni17Oexbri/Sfeg+9h73OsX9whv2DQ84cnuHwzBn29w84ODhkb2+PxXLJYrXUqbtdtDTFBJOsaDF9TY28c2qNymTji8V5VagypUQe9VGvoYpDpUaaVCGM0ux3kaLN31VzlDlWNQmzzcU0nixYNUeyXItjVGCqo+tsAoXZxubPnMM54cbz99DdsWHvwgPWvDkTTgXFIcrkd+p9qEW5Kz/PZDdcE5qeCDJmiBsG5JsQS8MLJgP0/z/mh9BIUjKzefWKdzc+g2d/3R/nsR/9e23NVLGh6qdqvJ5y0mJIEVwwnKnaQ2g2cD6Zbjp+m5vjrvZ7ucrPmBnoeQw1i8mqFZfagFXFnWyKa9fRWSwhRRi2a042ay5fusSlCxc5OjpivVbBx7o/vXOcDZc4XDzKohOGxYLlcknsdfp2ZwM1HEyF5DrgIgQWreVVs6p7dp7bt5G33KSxe7bG0XEYTLw2tZ/9r5tn823j7QybDYuTY7rjY47PHFCcsMsjOQljGZXI5awo773lXgIJUraJbt6xDAFxdaIZVfV5RoCrInkWgzuntaMY9Hz77poTmqpC9MW5Kwjmwl1pn5Oy4rXuiVPxv+LMinXHqn0SVKTeXnWKXWBK2sVWZSXnM+0lqm0yu+Wcaz4xpWQCv7aPUh3SIrPPbK9Tg01UECXEjhhVSLpq9RRR8jq7LakUduNIt1nr+g51wIva7TYVsiRyGs13qZjY5FsKOgGehsErviHtvGHKFYpo007JTXv8VMzmvf6sFsNrs1DNPZ5EppRKtiwtR6nfl/nf5NN/V/2wCjdN5CypGN8Vz5umhubpOtTieM70n7mdUkrzeXo75LQtmwMj9RrpIjFcRvGkOtSmCZtZvlqKifoXgUKLIebinNcahh+jEi9K0ca6KR4pFif6Bl9UvCuLYlXJqRjwYCIbIevDN7uv8UsSxWcvPv9L8ALnn/16fB7Zv3g/8whajKTbd92MHFentmp2XetYqcarweGzTqRskY+DIVVBzw3uzl9ncfEh/HCBreWcoQRWD9/G0Yu+ktXRo/iLD7Irg743OniiYlghRqLzTfCvEuoUC3K4GFju7bN35jr2r7uJvTM3sjpzln7/gLjcw8VFI0BOgqa656amYBP+jwHngvl2aX6v2i+RYmhAJc/axvAeJGit2UnLp0Fs07pGfBBEm8PKdK+LCYW22K1iOhjeBTpFN+q6FwcEw36rsI81fYmBu6WUZjc1N1B75L0SF5M1GI7DgB8z4iP0jpQyJ5st22FAnNea/0IHTfkQFWkRWl4xjqOKgpVM7xdEf21hi1307C17zh4ecPP113HTdWe47mCfxbIn9CqqFmuca+uukZVb/DybYeimar1ziieXrN0lwXDtlKy5wCbVailJa0xIwXn1JY0knbOuJxN3E7NjepsdxUNtsLd3PoWNVeGL0ATqtA4uRe3eDTfexCee+fl83Rtewo89VPiWGy8RhxM2J8fkzQmhbEmbI3ZHlyjDCa7skJLxeIoXHbQTp7zCdyO1wUoxwUjwHd4LYjQXcRHfRUK/JCz2kb4j+UASxy194av7ngOXWEqHLwMSR77pGYUffPgG/tANF9g/uokuLui7S7xs9zC33/BCPvf+d5BFRdv2duf5nPMfYiGZrmwppaiI6VYFn3wIOITtZqO8FNsLISqRsksL+rLldX5LFzq6LezGBYVoU3iDNpChMcWwWbM9vszRxcscX7xEHke6/UPyOLLLRXPqEMm7ASmJUYxkSWQnK4ZhYLPZkVFidka0UYYamlzpm6Z4ZyLH6v/9NSbO4U79Zz9z1X4atu+mtavEzIwrUJIo52DMSJZWs6l7w9z5JDLVHld8L7YP/TTZtIlJ2Ce7dPZZPHHTC3jBp99jDvVJ7caznL9iaKC1PbF8XpsZRdChX413UgWaPa54FazOhSSJAWmk1IXA9Xe+hwsvfRPP/K2fYXPDs9lddws3fOoddLsjnn7Xu4njDjdulGxvGc5nXvH7efZv/TT7Fx8iOUfp9rjrNd/ATXd/gHte+w1IzjzjzrdRclZ3ZD6kXsNWC9GbA0y+H2h2e2oi0mOKvafj4In7ueXjGxYXH5nh5HUNT9ddY4TqDwzP4GprfbriNURsldNK/JRJDqk2Ac3vHLPzc+0cUdqJd9a2No94Cji9p2JPdKFDXDBezrUVKwL0ixXZBUoadDKpCDklCAkhEI7Os/r4r8N2S94ct8GMLfaV2fUswimyt33VZiSL97KnhKkWojwf3/AB7efX1633vh5iv6sNaW5WH5ruT607VVECNwlmOrTRsgzkIkAHJp+WS9K8K29J45oiOyAjMgDKkeq6SB9hsejootd6nuGBxUSJh2Grw8vGEcnJoGgdOPaer/peXvVbv8B73/TH+OJ3/2tdD+LbuT3wvFcjeJ5190daqiLiOfPIA7xw+w4OLp0jW7zgcITQ4Zy33NR4ImKfYxRK8jgXdehYF+iWC5arBYvlkthFfERjB1dwXoeeeHRYGAwU2Vqja8KTICZElO+lPLAO7zti1PPICGncKj/EcjqRjEhExRVNqFfK1NhXJkHmOTTY8H4tRqh9j9q450ux9eGV22mx6D1f/c0861d+Wm32NXpIAw7q99O/ay3myZhaQ8vqt8xJOdWuOXzLsZx91T3lmsBvfemKHbR8sHarWz3kylpoq5XM8N/DR+6GaE1Vtt9d9YFXq1U6e0Ijb1I/jL5sTiw/+CucfN6bCR/4VYaXvoHyi/8GedGrKXffBvuHhFe+Ef+p32Lx3l9g+7yXcfLGr+FpP/8DLKSwf+lR7nrLn+PWD/wMd33Fd3PLR9/KvV/6XTz/HT/IKYKKmzDy1nwKPPfjb+dTn/cWXvShXzjtL6hN5g1ouOI+nT7XFkeYzyqCNXmnGZ6Rp79ynBK2L6HQBRNN8NqY2eIgy+/qw7V7MqspU/HV6Xa2xpVZLdkVqw01fH76ty9T/ag2hZ3Cm347nPj36LhyxT1VTDDz6Kdqi1LUHLu2R+Zx6BRTn7r9s/d+ku2afYaKDfyOjqf4sys0NT/74ypbs/3qavv2KZ43P59ak/cWU2lNWkU/FCOxZh6U35QouuadI3aOcbdjNxwzDJFx3JHTDrwOU+miI+eRk+GY3h1zsMh0MTKWgf2F5+azZ9hbRDYlk9LA0T13qX+uYnfeOJazWLx+9jpc5srLU57iMkz8Zo0bms2uNQ1RIU3lsSi26EOkuOnVW/2mqHisMroVexVvkaO7Oq/99/JYrvbaoMcQOx2+ajzvXJRjpuGJYs65ZHDO1oNM9t92VEmi8bvhFhPE5XQzFm+5UEGHKc8OqVG3vt4MWZniThNXnwcWKuKoNvS5HLNwwrPcSOPvmROTWVwrYFzCYsLgdr81uNN3dTU/bG902ia0PNa+VlFHal6j5z0X/sHVtajN19WnKtQvJi5JW76uNvLW2FgEQftu9CkmEoQwCU1N/qQNU7KhsU1oytV426674VmHZeTZbsEDXM8XpU8ieYRiQ5sMs691bbE6+xSEMPMvxvuaCXfXJmXlB0i7FvW6TNfYRIeKDo7apYH1bsvJZs3Jds1mt2WXtBnQReUpxRhZLFf0/YIQrr0+FzHj40MVKabdN42Z0f1m66d4G8xbayfeU7wn1MHBs6Nec/3TaQfZLy3us/3afm8cP4flfjLlHDMhUR1klm1QljYg5qzNrQPCgJApra6WDLOu7904x2JDhww3cHoxKNZ5OI4DY0qN/1JKjX/002bDWrNYnazqxCFkybhcKMVZHmXnbXY8j9PAo4mv7HBO61Zav9IBzXQdvvPEWIeJe6uhZUIYcWFAxoGxcbAx8bDQuGygPQkO6+kJ5jOdDh0YslDKSMpClzydg84JwbcygGF5pdUKnNP6TXSOXQz0KbAYA32MLPqO0msfnhe0R6ZUW1HtTRVVma05JzgZuOmB3+Sx57yRsx//WRWYGgZ2O70fyZqr5zax5iLXWp0M5xp+MBnQ2Wec/XOOZxTTrZkEDtF7KtM1bEiYXPXlZt9VMW1MCMR8RuNEaa9oLtaSiLM44vQAV0H9w1h0oGe2ml4WjHOZrIatdexU7bp9htqT1HC56lREmpiUE8GL+XIBL2W2d2yTPXov5QM/i1w6hxuTNRbPUi/R3hMdiq32JIgNnXbe+KS2h84/gHzkl5FzD7OMHdlZs/X9d7A9uQyP3MveQvtNk7Ncyj5LFSQ3GMnui+g3Tp7UNF3xSRGDioubNBgzJAIdKjQ1CYOY+J2z+yLK1cjVXtl7eKs7+4uPsP/xt8HRBfKwNfzL7oCYXa4+vYo65un6N55aFYBj6nudFuK1tcdyxedE7VMxbvikzCI1dDZfM8vRW62stOy2YnXMYskqzFLMDjpnwjJuvsvqP4QKWdaj7rPaO1w5GMkG4+asA8ZyKtacP+c5zOoBBmBN937imFTubhO3mN2nynWuIt/p+ptYv/JLOfPuHz8VS9ZrU4S27/z9n2RwGlHqYG19j+6ej3H4+IP4y+dMTv80JlGv9XxOxnShbK+ngf073sXJy7+M5Xt/fLJNMz9RfX4dGC0zG9ga+usarZvLFbt1Dl+kcQOL09ynOE/0QvFe+VEy4Q7Ka4YqHFUH80xIzGR9dW0Vi+WztWMXnv7xt/HQa97MrR/4qebj6lCxSTBsEuKrnJJ5vHQtHY8/eo791YqDvaX2KEbdI2NJbMeBbR4YyqiDHL3ZMIE8JrbHG9YnOqxxu9mw3W5Ybwe228HEOVRkqmKBp/Ef4ytRbL/AbhjUM5VOc9yYKSEgxUPQHkZDu9tea0IoWePCccwaL2H11hBNRGpglzLbIbEeRjbDyG4cbSArJBHGYuKmTrUCiHUoc+UWWb/u+oTt+tM4pyJTxICLAWLH7txDKpDhvObiPuKjo3OBkjPHd99mfCCBUixkNsEbrHccpzlQ0nwKkSYcq3Gpxc0OSgy4bPFDMR5HLi1lbYPUmfZ5F/RzV1HeIo5REmROieB5q0UGp9yWznu6oMIpMai4W/CVBSAgWQfYOm8aBxMMXIURvd4+VFCppoaTgE/dgs3SOVqtrdhg+jneKSb+qt7Mq2juNbjPsmifSeVQ1xjQ+RkuDKdydL1ARfOWmubgcGRuvfud3Pc5X8lLP/EL1KfW/twKHsxfd2I4qt1T/KHmTCpaq1wdZ3mOMCYVXt4OI7vdwG4YGUpBfCCDXXdwxoGqwk1djCYS4ydRJMM3Ssk0pkDdB+bXPE7z69qH4LRXoOs61UNYLlkFYblcsFgcUtAem5ITKuhrA+vr9S3CaMOot+sN282WYbfTPv2ae/pgn936zZnbFbVPKurmCb4oV0xgMB+ecoYLj8GYm6+JxgX0PjTforlQmfV2ieWd1DZLFMvRuK313Yre7+ATu5joQjIBL9/6gkIdKuuMi1Yxs5qXySzOkGltVVRz4jJMwjjTV9WeKXa/88zHXWv9ZK3/IOdJeHDMhJgJOYMJFxXrgxbv53+MGE82lcKYMpvtjuP1hp2JSw0pMYw2wBtR0cUQiLGn63tit6DrO+ODRqrSRXDOeizMfpdCFyN9p72ctTexDtM+/IY/R/r4r3HDt/5VNj/9d3CS8SGyeMtfZPyZv3tKYNORcLvLsH84q8OYjWlewBnPPBPHkTAoRy6MNtho2JIf/4z15Ez4dMu/zU8ov8Fia/O3ZfbZV896EWde9/vIj9/P4Ru/lpMP/qL2rlgP0hRH1v1V+2EB5wh+JIyRLoyqbRICsdawHE2c1xveV7Ffgt7LSWRqFrxDw2b0r0uLxaT+0tE0bcQSY0u7pvit5nctLoXuU+9j+3nfhL/3t2B7VFEval6utkR53Lqu9FHmvNqWRjorGkjDck8lGr/N8Z+AQM5e0BIO3fSFLI4RbX71FmSMuutxKYNPTaE6IzqhNxayc0qS8ip4k9GJfTEYGIWy71wISAjk7MhuJirARJwp2UEI+K5HUqKMEJY9PXukYcDlrMBhFkoC7yP/7nO+hW944tf5Z0//Ov4C78Z3HdJrk7zWAVR4KSx6utixt9pjb7nHvxpfyleWB/j5F3w93/rYrxAunWd9JOw2G8qYGbNQNiPbzZpcMt57+tWKbtHTx573PvtLednxo7xkeIRlv2C13GexXNEtFhoQdh30geRhxE0NGBa8OCOt1IdqaWgCIxjZ3oy6BFVSC06QXDepQBKEZISJDJLUWNSikJQJpHK+6QA5U7d0tdDuC/jU7pMK5XRIicgw6gRahRcYxoHjkw2PnbvAZx56jMcfv8B6tyO7DteZo3dtR2HxnS44NwWkuuhnIEbTSqVtgMmA0cQFKuBfSkaKXp9r6XCutn1jN9c1RdUnP/nqP5PZ10p8EguC3czAe+cpzgodAi54+oUmTEU83i9YLvbowgKKI6dLrIctaUhEF+h9ULDfaRKQSmGQTKAQJENKjKEStjw+aDEydio6FbsOb6JTPnaE0OGjCq75GJWMj4LTgaAK4Xh0kl0i2+e3zIPiGvUUSHbOSjDCF3296LVR1Jx3bSQpllR4a2RVMktVJ55ESQr6vLqenYHlHk+QTJFAFnM1zlKb5ggMqDCncNpAJ/BOp+gZscIFkBIMYHcTyoNDRdjUPlEmsEAPA7ykkIo26G3Way4fXWYYBwRpiZXzju3X/zX6T7yDkzf/Ja775e8jnDzeJtkCreAmVhjx+OZEW9Gs2uuaHAYDFKd8/Zo5NJm42gc7TToRC7LLrOmmPpxMiVddH/bNKYCiZCE5K4zgiCGyWq7wODZgjckViJvWjMMTQtQG/LBgb9mzt1yyWu0RY0dOma47ochFtkPmg2/+m7zkHd/Pu77q/8Lr3/o/8dEv+pO89m3/MzF29J0Kwi2WS27afpTbnv1Gblw/wnL9GU76juXeAW4JodheygqA/Z3ti/iu1Wf4/pMX82f2P92Kbc6ar9XuRygKzrviputiAoSOTPSWBkjRCXM5Uax6JCYWpwrFmu64U3aKJkJRSA10q5ikeC0cm94rJQneiwV2CvbjC9p5Zg7Mgrkm92Y+R/Ma1wrxkjNlTDjbL1VpVyTjUMX9MY9stluOjo+5ePkyJ9stsj0hukJadkjK2vDihTIIUSKxREpxRG8FCGtKCtWnV/0KVydw0DDn4D191FgkBhXeiyFCf235McCELTWpGtJIQUWGfPBTw3v11afEpqroQN1OtSClRJUQTJQwT74uZwOHze85A4Fyzkam0Xs+NV36tsYUECzUWcYaG1SV9kraqbDzDCRp9lZfZ9Ev8SZ4qnGjkrF1wk40IT6oJIZs68iBfU4xPEOBi9h1JijQE6wZAw8SHBI91c34ZjegXoCCo5JUW4M8lr03sMw+f61W1PtRs3cTKCl27UuZEg5X7ZwBi4iRZKuwl1gxpKg4Q9cp8cq7KkQ1pR0iYqKMRiARLdYon336nBOpW++HeRj7XRVJkur+7O/dDDAVawrU4n8TUkhGiiylJWf1kS15KxRizrhrjtw7FXS8V1ugatMenfgwaqJsuVSwBrsaOzqbSqDCMyY22/izFfat9lh9UoxKjAuh4xa34w/LvRwMa46GkWHYMQw7dsPIOIykVB/zRlqx5vFEyiPjOP3uN970vbzgJ/82XoQ7vumv8/r/8HdZ9D2dLzzvkY/x4LNewxvufzcneWdYgsY9h+NldpIYnAIkq4uP8OL3/yiLkyfIIuw/cR8v/OCP0a8vsJOp2I3Txv8HX/wVxPUF7nv6ayjbNYeXHqIWChpJBGdTv2dgUVHfUkEB3UpaBPfehIIqkctVGUFd097WtZ8BSa6UU02+VVCnGJDhvW8T9E4RZF3dB5VQdXVwTaSon74C4GgkLZkBLNWXNzuon73+zL6b7AhVXFKUUOD0O1c/11UeVYBgep9r7wixEio9Xa/if7GLbboCPiBo/tOlRBwTYRjxtak/F24sJ5S+a6Ikzjmy9zQlIqGp3AfncT4aMcJiSbuftfdITW8VdNXXDIS2lnLJ3Hb2ZSwuPsTZ8/fYlIQCZQZ+odhLGpVEs92tOdkpcW3dyGu7JpTTmciOD1oEijESYtTGlMWC5VInoJfDGzj3uq/h5vs/wuNv+Fqe8/FfxXn1gcvVkr29ffYP9tnb22O1WmnzYhdNBKDm79M6dDgVMq0+rq7dK2LwOvmM2TKqKNGpo6Lq9S+v3EP2vtMEiunpExCuPryJEtSmk3nRpH1/OlY49QErrHlq6deCx+xUq8l20ys4B1InENTP72hF0okUag+M2HFNbrMJzRKpDd5zIhh2TrM17yZCg8YdpZ1zSkmJYWPC+5FShMef9jLS6mZCKty5upUXre/Xoo29Vy6FJKUB2KEEoDN/KRprBRXPDMGDdPSdiogu+p5xHEhpbAXfYbcjbuMUBxdpZPQK1scigCcysFis2Ns75PDwOg4Oz3B4eGgCU7pXFosl3UJxk4V9rUJxeUZCHQYTmEvjlLvCqf2i32qOhkxCUzllEz9WgcgqBJLMX18pkFHxE425pqIrru7lur6nJvTJh3A6DrV1UG2bkmUDsYsK6Mc42YBZjlirm9cdm8CziflgeYMXwftZebPuh1aYn6afnBab4lQxo72f5Wv1HrZGGTdh0dI+1bV5/JciRF7tXeotFzezpUA8PMtzv+uvcO6tP8Yt3/kXOfnZH2gNS8kEpoZxmio61vVYsoqfO1rd44rwpqGCzQrPcNLTT3bTH13lx7Pd015drny6e4rrW2OzOhBBajyoWMMwjqxP1ly+eIkLFy5w8cIFjo6OlCCz27XX0IkymZUrlLinAph9z3K1YrlQYeIqwlenFVU8LwRtoPQ+goP71on3HmVeeX3grZvCN90STtkCKVq+lZz4f9y74E/cuuH7H/xc/uwN93F8dJm9y0csFiqCUv2Q3tOCeC2XJclQXCv24RxkR8yZLJkkhewjv/X8N/H5975LnysqfqOTg+1emx2rcdiiX7AwXOtaOqrw5ZzQJUW4vxzwiLuOQ5f4WD7Lq/wTKjxu+VdwGgMF6xcOoRLraqFzyj0bGcqWoTbfnkYpcCasNFvk6huNkLEbTIRx5iNwp9Z4qQRQUYwkSsciRsXWogq4uKjF00whjwPbcaBimD5ozhmCxopVIFLF+6qgkfkUKwgrziOamznDe+r51jpGO88pTmzknjy/Una9XLXl077UadJXE4maBKQqGa9eB32fmTDVTHR0LqSYc277u9WpRGtQMvefs/drvvVK/9riNyOdyHQvr8TJKqGTis9X0fIYzIeGdj2hEo2toOycFuZTFXabiZtdgxh+HUQQzAeXlJtYMVLwOuNcYxDnwMjno3MMKdONmT72ZOfJOMYq1mbrT+tOnoN7P8D5V30te0/cw+LiQxrv+PkukSYeHdwUm/pQOyQ0xsyDDpYookJGyWs93AclAFYiUiWh5DQSH/wkl5YL+mFBb7Y9pnPceMcv0XmhlB2Dd5RxxDsV3i6l2GAUrckoGSKq4JLzdEHztW7Zszo4YHl4hsX+9SwPrmd1eMhitUeIC2vKdoZFM/lKW8tal9TGk+i1aVBwZPF4pzFpjf10/wbwYmIjDpGkDXwWA3hvIvNSMdgGUoE4Ez007ATd43XfNzJZJZw4p8+z2AxvDXbO4eJs8pkT+ztnwzDADKcRJk3wuyimkdEah8baIzIkEgkKnIwj682G3ZgR71gsliyXOmyHImRJINAvFiDCyfEx2+3WBlIpnn8tHWf29rjp+uu46bpDbr7hes4eHLBa9MRO8fpgjSda50oka5zNeZzlCUIQjyOC6HTZIkoEVja1YZfTWI3Wv+8tV8omhJdz0caPorFjG7g1J8uZLXOAeE8QTg27qVBw85KuNN9Qj5y1cfTmpz+N17zudXzDq17Cv7xP+LzFRcrJCZthx7A5Ju+OCXlHWh+z2x4j4xYnyXIqyE6Fw7tQmmBNyFmbr1T9AiGCz7ignBeJAeki4Ak+EnxPcZ0RLFWc6+ZgnSF5gNLhJfHcbuR7+8yZtGTjn07f7xF8z+ecO8fZCx8l5C3JBTIZcOylI+WGVL8nOhlxTGPjmvQ5EcfYSGEhBPpFT5cHQtoR+i2EBSehx/sdhaC4VRfBea09jyPDes3x+QtcvnSJPIwsYofLhbQbyW7UksM4sjtZU7zVS0MHPrAdBza7gaGogH/2jmTNstHE67wRu6e8bQac1HzU6z3u+v4/97b5TzocWt9vWIb5quKmnAUsdkHrGYggGa1ljJOvrgN/qM0hszVd48KC5V0zh17rKa3uKRUj0njr+Lqn8eCtr+OGC5/h3hd8Ic+7+zcQqc0w9TVmZLSGOaExE9g+nXLyFrucyrMDMXTobA+Nty790b9H/MG/xGikxcVDt/P0yw/Tby/RHz2GdAviuEacozt5AnCt8QPgzq/8szz3gz/G3V/43bzil/7fODyMW265/a08+LKv4qW/+o/waaDbHiEuzBJFabhQPad6HafaSbUpFXM8ja/UPOA0duBYXXr0FDZQY45cBVZtZTSbpIYNxcZkhutNAvtXilppPUfzh5pf15VQtItc3XntKMTyZouvMyrgR3CnhqTVy+Mcqr7uPMV1FKIORXQR6a6tPQawWh6S/JY0RlIeVUy9aN4tFhu6owu4YQSgyGyAgeXrbaBPmOGr6FrLFueE4jV+c9jgCRvQJkLfodesGFfHeUSgm2HP1qNEFcirPWf61gLeWw3KW+Yz1UCd5XqliNbVMq0+ZeqJNtBlR8onlLwBlwlBdDgkgg8QOhU4FsmWI+5Yr9fstmtyGlqj/jQ0z5t4aQDJvOY3fpIPf/G38wXv/TGcW+BcRCTi8Dx864s4ue4ZOBEefa7jGfd/krrkBWH//AUywWyXsxgsIPgp36IgksiiImgJePCLvpDDT3yS5cMPw5Ej9EEJ//srFstecXIySTIp66BNHxzZhlDCCKWj5IiUJa5bUljo2pZge8jjCIhEYGW6fkYIF10FZmGnZj5q46viVE00cIbNw1QD1CaCeliOZjatINz9+76Fm9//du79uu/g2T/1Q7/7G+V34biS2P/k7yc87fQv9H+1P7Pa4YZeWKwYcBQTBy0+ID4iPs9EptSvTAidohEodEtVutc60yTANPmwCa+umK44z+1f87284pf+l4azXPXjuxp/uPa3XsQGSwAofyg+8En6xx4k9Svk4Hp42jNxz3gOcu4RZSbdeycxRoYv+2bOvPVHOPqa72Fx4VGWaeCu7/grvODX/jX3fvl38fx3/xj3v/HrecE7fnCKFWYYuneTyGr9un/pUV7y3h9ntb44q3nZPZk7Jrv+7dt5PHFFnUtr4TQsZ0zWHJeNU2Cv520YpXOOzoaN6WBf4wpWvEpoAiDKtyunkKnT62fCQxoORG0Ykob7TDZcZk0AVSTA7lWZcBRpie///g+9lRNWNP95a7Sbn6tMscD/t9jPfN287Lv+HPe/9ac4fvC+Jz/xKd7rd/oRrpCtm35+xZqex1RXe257fzGeomgeWn+jQ2ULUlxrcvU+kARr9sH8qrA7OmLIAyVFvBcWSyEREDYMqYqbb4jLEVwmjUJ2idXCcd3hgkUnbDY7yCqCKEVIZQR0cENyCeVIuyfFhFcejUt3lXN2bW+oD1YubxU7nWyKSCEl3XPOZwgFIdRQH+ehjx0ad1Z+tvrFWiP019geWyyXileHjuC7FqdJccYTF/NLDu9mQlHMeIzY2rpy5Ypxh62Hwl6YUjzehFTEg2PCq9qfYjlV/QhcaYcVl6xYvoX54DzP8Bt0SLP+/ITAjw638MeWD1LxriYiUmBSzUDfaJ7u+Sffr+Zrq8lo++b0HhTLzap4UDtcFWVVDL+m8fU8q/iTpkLK41MgSIxDU1oDlFTOv2gsVvmOEzeqIEVFpiYhqtI+oNR8x/piYim8RB7gueUh9vOWUpLymKtg1Vzonpp7WgxA3YcGKRpXp/GAamOcxfciE4d1uuu0+kRK2YYGD+x2O7bbLZvNlt1up4M+RHQ4k/GU+sWSruuVp3SNHb4oX86DDhoVjZEExQhTEc29zABXkRRXtE5RwlSf8DM/DqcjHpn/rPo5Z5wRZmtDJpywCqIIKtpUF6TUAZP1DeqeqTEOmHAOpATjqPWUmmZrPcb45lfsAedr/4TmG0XE8HzNsWrj5pwPLW39Szu1Gve03MLOt9bdBLU/beDDDIfRUypai8uJPIzkrEKB3i3aawTvtdfOqUAoweOSCoyW6j98bPlMHaai/LOAj05F9ZFJHEhgdCNDCPTB0UePzbQ2erPuS/VFKlTusxAdjNkzpkCKgbzQuL0LgRJj893Vfugr2b5C65qVY1QFPQ4v3E04fpR0co6hZEYbaqW1Ur3aIXR0Xa+lJTvHa62puRTFwn31Ha76d6i8ez3mVWIaZqf1mNqHZ7FMe0b9Mo8r51dYX7XFV2DJnz1DxMy2NM7xqSbY2de6ROu9yqWQipBAh8ZYk3UuWUXEcx0iN30OHwLBlyZqXxv9nZ2CNxElDzaUpdZQA0GRWs0bBHji4SagVi1FvRKV20H1N0A16hUTxTe1STj3MEF0mFDwEUHrBnLhEfxiQSnCwIAntZigiuEr30VmuK4KTDkTy5K20tUn47Q3FLH+zpJxxUN27Z53XgehFzDBKbUftdHfoyIu9R5qSlWme335ccWkW5BiK8wEI6sgtKuOrtrWFi3VP2BqkZMr7O41dJxmTkwxwDwaOHUh2jFlNvPnuiY6Vex1NTas97pynKowHrbDJ58nT3oX/ZyWp4uQs6jI1Ey0IKfShpDlMTV/qy/i2tc5v7T2KFW/0ISgrsgyq6BjkUI5OMvR538Dyzvey6Uv+CYO3/3vbW/Ylaqb3daP6EtYvH16cBona7azeOlUS6WbuAv6WcVep14XNTrdQ5/i4PxDcPSE+i5R8YvKK8ky8V/mmN3p49TKNVelHqa4KqphsUgpKhzvBAlaE7dI0QTUC9mryGKFZCwDm2KYaimdGLZZuSp6j1eP38et7/0x+uMLNuDwNM+lYqml9o7a/qLduWtroz322DkO9ldsViu6LhCjxs3FZcaSGXJiKAOpJIpkeh/pvCeNic3xhu3JmmGzY9gN2pcyJHIqqj0gGpcHoV3l2o/pcM1HJXRQynYYZjnDPK9QPr+EYEJFld842c4iNY4fGXLWmNcHCBlBf7YbE+vdwHo3quhUEXa5sB1VgGo7juySriFiJATF3h0eJKO9lpPf9ZX/4HQwRcHZAIpivkJXbQg9PgolJYbtQHGFYn33tT4XTJwKVNhKctZHSY2r7Uw0V/Fxs9sqUAA2rIuczb+qGJQKhRgm4VQMSPlKHhd0v5ciuFQQh4nK2PVH/YIKpXgWMbDoOhZdRx8jXXTovDMboukKJaI6C7gmhjLJ3EvLP53FyglBxHK9Gnc7KE59oas9jEW5O5KzcoOdN7+VrS6j1zo3v3BtHS0adK4NK3UU43bb1a6xclvftm+KRofOKU4SgDMX7uelH/8p9neXbWgNVjOSZvMnLjiW/6F9vmDBZtDc2fal+NZlZG2KlkOkNPX1FY2hMo6sN1L70p0NSIuBzjhRlStUxS6zidJqLOg0tytFceqgwlLRe/quo486KDZ2keViyd5qpf0te3us9las9pYUKfzimVfxhsd/i+XuRP8+aG4U7L132x2b9Yaj7jLH/oi1cwxbHQLm7b06e4SovZNtgEntQZlFGgW4fPNzObnhuax+8xcYLQ+wS6F5pO3lYNe6DtSri9/VVxKZhkhbDNYGTBcxW6hYWDSMYpw9guWCUawHzqsfrHtuEnWr62n+1WJamR65+mRq3uVMW8ZRnEy+Tcq0V6+ho+4ZXbOZYUzshqSDIUMxDFUxx4xrPLx6jzPZasuJ3aB8+O046DAg62PV+rJxY0Ikdp314fbELtLFzkR3gwnr0sTPawwXLVcKIdLFvuGK1afIe3+C1Zv/G9I7/g29U52e/tv/Bvlt/5zFN/0V+Lm/ZyJTFU/Rr+U1v59w6VHig7cZBuNbGqDxpNWr0XwohKjrat4X6SovscagGMbh2lBbJ1qPCik0HodzDnf5HPmhT9Hd8gJO3vMTaqO9KAbrMR6xYSSG6+haUmwkuUIohdGbIJZxnKNpX0Tnmi+KoXV8qgiahVV6h2n5ptpZw2NqFllj36t5Cjflxdhrt31T/6LiqMfn6N7375DtCSWPmsvJ9JkqbplFBenGMrY1NHFbZji01L/0s8D7P77uP2uhqXkSXYEK/blNHXWFMSdkVIeiZffqsQ1RDFbXN5C1Q1RgxQsuqGCFOhEVE1DiaEC818nJ3tS3Gh9HWvJZgqkfBw3uJEPoIr0sVJQhC2kYKWUgi0cyfO3dv8KPf87X890X38ZwxqmIkoFIfuHoCbh+CQ4W/ZIDE5r6Xo74e4+9lO/uPs0ZbuCk88RFx7jeUFLClUIZk079GhK7PDBuEm7j+PgLvpozj9/Pu294EfnCEzz/iUcZVvvs7R+w2t8nLld0qxXRK6FfghpqFwIuaNOxN7BBnJKbRRx5tiCcBUag17rYZEFNVL09aEGyNlXWlBVkFkhTNHAqaVRxJm/JWFDiRV3aztcNow2sYxqgaJBXnGe9Hbh0dMy5c09w7vwFLlw64mgzMOQCMaoq7ITg6msaEbh+thr0avF5emorfVmlw1E9oqvLpCVs+jcaSDyliNM1cNTGbudmn7v+7in+RoO0mVFwnDI+1VE0sMBXUQ+nBp2A9z0uRGK3YrXcI/oOyTDsRoZdYsipgdsxRFaLJavFgr4P9H1k2fcsukhwDsmZPCj5XWry5oNObfNRBaaiCU/1yyZC1S8W+GjEdB9UuCio/4l4cJEc0NRPMkW0aYnitKDmVBVQqUiZ4go+enzUpgsVv7JmVikKHpqj8y40hcQKJHoXWqAmRSfozRRh9GJ7I9r6hEjAlTypsiIUlCjvTWXU2ZSxWhxwGSQUI2/rmsXrNGwlilE5zCqmg5uKXEwFKp2+nsl5JI1KFDs+Oebo6IiUcysA69ry7P3a93PyjX+Tg1//F4TNRSVCm4CUphYT4OTMiU4JmjWx+TBrapjEyzR6uLYCvZZ8GxlXkFZUbyQTkQYIjOMIJVNidZXSgnwVEQzE4E7vLwvWRGxyJjX4K/RdT3BBE/WkAK0WoDpygt1mRDqhi5GuW7C3jKyWPf2iZ7Fa0fdLNP3r2A6F4/XAK97+D/jI7/srvOGd/4j3f/Vf5GXv/ud88Mv/DK/8lX/AIul6SgLdmHjRJ99OFxyXg2dcrNhfD+yt9il7S8rekthHQgz8n+JdfP/mRfylg3voXFCRRkELS173GU4Je3WihyGgNmE34dApkiI6AYiUVaE1W0KKkXlnZMgKpnubBFaQqeHLe0LRbMXZzyWr0KVIwvuChIKWBryRhws4j7jEaQE41/ZwTatEmBqPs6p1e0cr0Gnja2KkkMrIbthw8egST1y8yMXLlxhzNuE8h4tMRWMRdkMiFaErQs7gKXixxp8u4jqvHFZllFuAqzGRLTtNAGLUqRiGmsaup+uvvUJyQuhjYBl7q7qmiXRmDr3FkjO/XO2ps4fQIm4aId8ai+ufOVyb8CNzf1mENJpKayqMgzXRZwXjtKE90nUdi25B13WqOj8q4XhOjHNuIj1OAhJokm2exhFq9K7gllMya0DwUW9u8PrpOnt9BWamZim1ITb1yEUV3sqV8G0XrWT7INN1E2Yhm2hc7sQiI4uLpiK0NaZaPEVWAm8RaQr1pQzktCWnjcZ+ou+pYkYqWKQgkSVItZBtDSzanCJ0naonl5I1vqzPmxcgsdte7QrlCq5LjQOngscMFmuTLE+LCFhxoFQFfXskEzlK6ZT/nA43AV7UhExIOUG+tgTdmjiL/VuFGRSIV3uVVGDWa/OSxhuG6DH7Un2iaKGyJv2e2H5XJxfWyVbOOYZhpN8dc/74hOPjY05OTlivTxr5Jed6nZ8M+MxFWkopfPwP/EVu/eXv5/Zv+ZuI97zyl/4nPvS1f5mvfM8/JS469o4f4uZPPY5LW9YVRK+K9MGanlMwIdzCan3eCrAaE3XHT5BE10KeAXQ4OHPbW3nodd/Emc98BB75NCdyukmkqtY3P4HupdEEEOo1dK6SifIE3IRKLHKnYrSUJmKL3ksr4dsa1qliooUq7xHv+cWXfw+//84fxuf8JAGMRpZ8inCr7n2dTDXLl6ZnUIm983sznZs7ReSpsc78+/p61ZeK2aFa8K8EmqY0PxeaukaPvlvgvAJHoYu6zuqaCyaC7RwU/arymlqEcD7g8zTZ2vkMLmmTu0/aVJ7V7mszgjZWhoA1+er1rJPRdQKvxdS1YcxVArVvpM2P7T+ffrPm/M0vIsjImfMPMOShETE+9EV/nFe/85+Rx8w4DIzDwHa9Y7vbKobjHd2iw0fPUoTYRRbLBV0fCcFz4Tv+Gjf//PcT86Bxf9fRxY5+uaCLwv4DH+bhF7yeV3zi1+jOXq/K+FUMY7m0OLZvE0vqWlM3VXCuNkhVcpl5gOqAFe1uIggye9TC2QQPXLG2rrbUXDOEp3LtRtU4tUafaq2qZTj1Wdr+mmKI+VKve+TKjzIXDOBJXx2uX3DpLX+VMz/5f1fi5+zz1+sztycqJAAq5X7t7TdX8SwmGzEVx/NVhPNkWjPBnbJl9ecpjeh1Vxxsef9HuLh3I/Hweq5/+GOcdIHQ1aJNfUgj/FXfgHeE0ciiThvqHZ0VQwMse2IMlLKYhJ1KYdgN7JZblpsFfafCKOOo+WSbdGkxaNd1LKxIdXCgAlP7+wfs7e+zWCxVZKpTEW6diKcxZ65d2TLZ7krUqAVz7077rEboMCJtE1yya10kt6Jq8wVzwYt5gavZcWdCrxUzOY1RVZxjWqaz+H32u7rmNe6uwpaRLsZWuLXbP/NHtdhQG4NsHzL5J5Fa6D8tFNImfFWyYXvMPjvTe+k6nQr4tbAx97/1tT8b8P3/SIeePzTMssUG7slGrsYGbiK5jMcXefCn/inPesuf4OF/9X0chtrAVJuXkglMjQzjODUzFZ3mE/TNLA5pb9PynKua/fr/en/1RKYXmMU8+oKz9VFjKKZ4Wtr/ptdv+ajQ8iKca6T3kh05JbabDceXj7hw4TwXzl/gwoULHJ+c6LmOo01i8gSiTvhChTS6ruP9ciPPDPt80aFjtViYAKZNbzKMLsRI6GIT9HcCB9cn1t2WDzyx47958RmWQbOdKrymJ6mNXn/rxsJf/FDkf3iVoxufxdGlQ/b2L7Kw96smWkQJ0qdjPZoARM1t655LLvC+F38Vr7rvfbzveW/ijfe9u2FrKpxnE3WSEi1jiGpPF702k65Wn/0i/S9wTE3pp+mGz3QnbMsJa7fi9f0RPmuMU7GcNlnLn26Ec21tzYKA+nNXf+NbDtwiHpnH4WqTtsPIZrtju9my2+4YhrFhACF2xNg14R6aPdOpyUUKsetZrJb0iyUhmi/yWiyuQofJBFZzmgZ7hNCZOHpsf3dquvhssnglr3qLuUsJk6110/W1U2zXvIiiopmpUUobH2dkIj/5JnEWP1byXa5229q3ZwCAM+ykCt3IFb7iSnLEKWMz+/kkbliL5mWKd+pz6pqx85x8mD7HV5xoRniqmHOwVSJOBXKDCTRG86NV7CvMm1xQ3+iKNoPViUYqvD3RXa+lQ++tXssYPCFGpp6JqelDwzcPXvMrKYVhzMQwEkNQ4aboteE8Z8XYgjYHO9FKdL++zE0f+SmC1USLt6qnr8NtTtcPdDqYJ1BrstOaKdbQJCj+UUDFBwzf8yFafcYjWXHK7W7HaP6vlELX94R8HrwnB33fBBqz2bqKi17rsyHgu0iIvYpPiU7P9Isl3d6K5eF1rA7P0K0OWOzt0++t6PqlTth0HiGTMPwSV5k97Vp7rAZkk/0kRNowlewokluzb0P6nNYNnI+21xWfdz4YGVFxKFdz2ir6lMwnzWJcZnvEe510WnERQTQ/N0K/GPYRYitUT36/5VD6EHQCpYF/ZkvFRFysgSEVxmFkJ0IZC5d2O443G4accT7SLZcsV3v0Xa/XKxeN4b1ns9mw2W6BKrzfGYHz2jmeefNN3Hj9Ga4/3Of6wz32Fgv66E0A0bBwKSS01pjHgWQPMfGbkgUI4COSImMZ0En05uPE4SUotowN9PEFP2vGcBhuJdasqoVRg2kt9p997mobJFvd1wRXcG4Se6h/UARQ/1PXTMmFszfcwCtf8Qpe9epXs3e45Dufdp7hZMew2bI9OWLYHMHumJw2pM1l8m6NFKtxWU6UJBNIpGgCikWIqWgN2nf4kgkuQEj4DlL0iiERwCXKmImpIF7IzlFCoLigq9Ml8/8BJwXvC0/3I+MYWPklu9hTimNvyFy33XLSL8i7kWIDl8SpmKcrRe2eFMUyx8SYVPxQ/50m4TznuLe/hftXL+PLLr2D2HeEuMSHnhB7fOjwoccPnixFJ3RuN+yO1pxcPGK32dLFiCNQdoPl7oHsR7YnG4btFhcDcbWgi56hFLa7ge2YqAJ24lBbLUWxXMzuGkakMdCUR7Y1Yd9os/O1c1SiXG1Gdd7VTq6Wx0w5hTVVqrfWpuEilAQkUZGpbLVXkUbQru8jWM6NxXbOhN0snpzCFt9iCg8crM9z8+N38cSNz+eFn/y1ag6n2kjJjcgHs1hnhiML0hpza5yXa66ci4pEZmv8tfrx9k/9AKt/89d44o/9Q57+r/4CPiVwEI/Pk4MjpC2Xb301D736LTzzzl/lprvfO7+y3PFVf47nve+H+fSX/Ale/Gv/pMXPToT9C5/hBe//UfzuZPrcqH92raNJZudjX6Fdm/nfVYzxFNZYMZjZfxVPcmV6ZruOlSPQoorqN6dwci4IO7+3rlhzdY1BvPJYai7O/L0sDtXuVyYfWHNdp0JnSGqfThvpi3Go6kUIFKex0yie7DrC4pB+/wautaNb7pngbQfDBpd3uu7GRHKCZHA548Qm/haHk9ByN71vs8ZE25dFVNReRLH3XHEtAqP37T56AO/owOKW6UrWuS+6tydhIUQawVvfXuu5UhzFT7Vd55QrWZtLiokw5UKbKq5CZiPDuGMct+S8ppQ1MaK8JRLKwRCEQMpqe4ftls36hO1mzbAbbMAJjVgbjXiv56B++fDkMl/0zn/LclwDHZJ7pEQKjps+8yDHqxsRBzd/5iGcLIE5Yd4Irpi1y46SC95j9f1i8WPRBq0gPPzGN9E98gCPv/61nH33Ef25x3AZxrxlzGv6oaNSPcTERX1wOBcVE3eCKwMigZwDTnYEX+ii3d/iGJOn5tmlOIQFiFOSe0ExUxYYyqj5tmgzTCqFlIsKm9l+PJW/CYRoQ2kcTXxVg8Yaj4IU4dZ3/Bx3v/nbuPVXfuqaEyb9nRyNA1BtZU0RwLAM137Q0ESLRYIPiA86fcVbHET1dTSj2bBmBYTtVaxZnTm+V7FxoYhDJ3np39/2jX+Bl7ztX3HbH/heXvUf/ml9NkwWwmyC4dEm3FGFc13R5ogkGlvllCidMP7+P4K862fgc7+Mcu+d+OtvRN7+E3gpjH/ov2Xvjvdx8oV/kBt/+vvxuzV3/1f/N174Cz/Ap9/yZ3jxL/4Ad331f81LfvGfELdH03Vr56xxXj2/j37FH+XF7/8plutLrE4uzC/qFGe0V7ni2s1/Z1xiV6pIK02EO5dyaohXysls0IQJO+PUUCynFHAEvEPFSo2sO2Eptfmlpmi2mb1j4m5Vu1lrG+jndNO60sYW46zNrpF3RW1rMd6iq4LkwhUnf40cv7PCggpom8+gQYezeqMz/o02xzYcfR6o/EeOpxI2cs7x4m//Xh7/yPv4nG/549z5w/+E9eMPX/ms39F5PfXx1B94Xpt9qs/carj6JLPBRZs1pVgUrgMns1jsVRKSE74UhiGxGxNjHhFXcD6R8glj3gAdfRfJCJtN4WRzmew6Yh853I/EvgeXGbYbsi/4ruOTX/bnWb3t3TxxvCVJROha3qD+zcSLjNeq/KvKdbx69cNdxYfMBVK9CWtpfqx8YWmxS5np8ygPWweu1nocGptIIZdEzqn5eN+bvzulbHdtHKGL1oQVcS4035tz0UZR47JXXzTvQdGSez3/iqFDywTmvsZep2JZ2uSuSlD1aafyDKkx5ywXYf48fc3savOeGNYSAW3EQwpDcfyv6dl8c/cI/9v2mfzR5UPU+1CqjfTT6zuA6ZZTjULNQ07nFyogMfPc5iDmedGEbU/rssZN0k621tjEDJGbXYCSTdTTGpiligGZECnVI1jTaPXt1U8JOkSlvQnS3vPv+y/i/1ze2bB6yZlQCntWJ6Y2WEtt2J9Xejhlxrx3xv9y6rLmggzuSjG4SeyqXq8qcJBzVjxmHFVgaqOPjT12O+X2KCdBG/RiVIHy8rtuV393DhWNd4SCDXmtGbBJPDkVcZ0vvVIElwvZZ0oOFJ91WHptTJ7ti6kOp8dV7bwldCLTim5iTqIDqnzRWgkuVw12u3enOciiplfzrgJjhjFBztZjoG/IVAuugknOcnAVbKo8mGx2t3GNBeXe1/O0GukpsYg5t0Gmyo0L3mxa5Vup3WqBca15wYSxVw5g9oqlZh2gUJzgXTSejKOTSArZRJWNw4/G72Lct2yYItqTTBLLX72niopTdKhmKEVzKquhBHEmUiPKvUCsHqFx/FgKMSdSduQcENGa0LL0el/9zOaaLaliLYq7VCFY6w3wyuaOu8ski6HF+/Y3DQDwKgxcxQi0ZnltYfhV6EivnZkVV/m9V/kD1/7XbK/2kZsonNN9kq57Okef923c8Cv/kPZkJjehWEZtqJ2vf5pvkKK5fGsir3v/SrwKWu2sDfIpRQdQSO3TSaQ0NtGyuXiVvo40vKblEpoE4EPkmX/q7/PIP/ozBAf9057HwZd+K+uf+HtNNDTYgOwwq/M5VPSA7/nb8EP/vV6oajtw5OxINfZyls9afY6ZYM7siuv1ddhrg4gje1FBGuu/qXH5ma/+Draf+STrT/4mlQtqZ4n6e3ud01eyxRq5FMZcY3/br8YzjlYvaU2dc/ddxPbBlPd6ux6tTl4b1Z60IKe4ug5fnOrq9V7PVlS7MPqTifNw7RwFmv1sewaLQGqCXK8PNfua9kP19/O1Ol27KUE/dTnlNEcAV3fahKWIYUgav1ZhCpnwqFQHbmeLbY2/YYMmVfOzBaLt0/tZ7U1/NYtrbXNLvVf1jMQwsiJw8RyLD/4Sm9d+FQe/+oPkWk9mqutW0Y9ms81gTXy/03i12Gdsh63PeRw9/bu+14TVyW7dfOYU05lv+Kr/Grnj3cgDdyIidN/zP7L7ob8Ow7bZutnumv5nC6HxWmG2HsRwV3QQpvMEP713Fe3xwilfdWUaN0/Nq9hhyRr/hsvnSAKnB6Glxj2ZhPv1v1qLwjCSa+m4cPmEwUQ5+j6y6AIxqg8uNqyw5JFiQ44kCK7rcUNGdhkZCoyCF4+XSEQH13jniCZY61wVbpussoosCgVPLo6E2vC2OtxsX1pcqOu09qfXWE4Yiz6SwCgwZjGxqWxxrGM7ZjYmJrUdVGhqEGHIwi4VxRNGFXDJLhNEd1pX7xs0+47QPIIU5d+JxZ3ZJRNO1H60ygmK3kOM0NkAIrQeruI4Tq850gYDYvV48Wa3CtT8C5lqsb5A9I6I9SjEaHWEaYB67Sf2xoMLMeCjnpP2YyZcrvUMrdVEu+b6Oiouuuw6Fn3Psu9YdZHeeR3qngvFZzKFUpT33YZxtpyZVi+h5gQzO6Hc6ImjpvoB1hdUbRfZbI1FHYYFCBa3UJDgIHb/eTfN7+Co/Y4w46RR7UytgzLlWSZW6xoO4JqNEgFXCv36vPIXxLU44UlRsrv6v1tOVx9UzpE+qYiKowwmLlVqDDbjZHuhYXXOYb3xxnfzudlwBK3LtpPU+MfjyH/0+4g/8reIqBCn73se+7o/z60//4+1jpozJSXyOJJ2OvwvOME74R3P+Dxe+vgdvPuWz+dNd7+dhSQdquY8sVPup+tR8U7TDgk4tl6HvoYQue8NX8cLzt/D07YX6Puu4UbJxLUqX7byNS8d3sylW1/DjU/cz4XX/wH2PvpW2O1w7BiM2+vMPqQ/+t/T/dD3WbgXcX/4r+D+5d9sLqzWsUoy4Tnq/tBrV/tca9xbtV/GIoy5mLhrUYEwp+dZ3MSxc5ZkfOD1381rPvLj9MPl6Z63GnUV+zH/KCY2J6by4JQjI8yEIZmv3WvrqPdpzJo378ZETIWYCy7LFLe1TKr+TAWPUikqSphGdlmFkKvIs6Z4VXRJed9djISua0LWVZ9glhLo4TBxKrVrznoY50LqYOLVm2Pkl/4ZfndkQ/CAX/zHxK/787if+/szobr60o7y8i/H50R51suhJMKjn271ulJQbYAaJTtPCIkQouZ4dX832+Mmn2u2WmtLocEapRS8C6f6GAOQ7/oQ+Z6Pwm7d4kbFutV/FxF87ZYStR41/wRIORN8JhmeEr1yULsQyV4FpnrnVLiK2eBbqZZIuW/B6X6ptJ9gfDcwP9oWb/3Z6eSn2UfqXj0di7b4ZH3x1PfS9o4w8Y9LGyqvdrTeuKauA3XN2Bqub/TZpGSftdBUTVvnqbGbvUUpxS7oSHWyStatgCttCmb96NpUiKqABY8EsVc1rbuZAasn1Bot68cwIFuXZ2igu3exga4lCzJmRnYqODVq0rMcN3zHvT/HYj+QxiU+OS4MK35y/RL+9P4nWC6XLJcQQtTgZbFk0XUchsDf3LtM2axYxxsJvqdfrSjDqM6qZNK4Y7tes16fsN1sGNKOcbfjhXf+Bz78im/h1ns/QHj0EzweI8fdEavVHqu9fRYHB+ydOcN+KUgXkUWH64QIRBc1sfVWzPBKHC7OkcSp8A5asCglmaF2eCqB3jVyWWoE+4yNI5rI9UUDBlVc1a1SGPFB8Da1JBB0+pKLlmTXBNkxZm1q8F0PvqMIXDo64ZFHH+O+Bx7k4Ucf48LlI7bDQEGbK8RLA0CnXng3gbEzl/FUC/vq8coVSfqp31xbx5PAcHf1nO9qzrMlo7Pvp29O3x/Qgr/TDAHvlITlXNBmaDzBdfRhgSTHuE2sjzfstiOUtQIB2YSmlivOHOyzt1qwXHT0fUcXlGgxppFxGA2oNkM2jozrQs4mFOUjsV8QF0u6xZJusWCxt0fsojZ4x6jiCV2gs+TDewhixcrgbD0Wsou4kAglYeGRCk1RKAEFC6M2XlWH0gQHZCoQOubTMWpR1JTcg+q8V5GpmkiqOHIFQHxLMPR+yUR+FhAnBDdOPcK2N0tRwmgTQAuYEzfQoujcPJ1I4SbBhHq/nSZllegxjCPb3ZaT9TFH62OKZCOXCbiigcS45rqf/ht4GXUiU5w1DtT3bfZV7DPXZksTSbLm3M4UloNrKe5/4g74L3e4FqTYRmkFJq7aXDt/1EC4NkJnV5tOHM7O//T0kSq2ILigRL1lv8KLo+86ctLC52azZdwOdNH8zapn0XWEbsFyb5/lag9wbDY71tuBsQiLvRUHccnX3vavOfPMG3jOg/+Bn/2yP8nXfOzfIrc+G+98m5gtomKLadhxUoTNyYYjLrPoFqz2VhycOeTgzAH7B3ucXRb+cn8HywF89MTYQXC8e3c950rka/ceV7/svdqNKg6QC8ULOenaicFNBV4vFPGIESarWGIFuBFvcXVugWS91gBVcdeJkl91Ik02ATYDWz3QpqFDDdKxJjMsObEoDbFpVIZAmqK9JlPOJi3lpABDKokxDbqnNkccnVzm8vFlTtYnFO/ZOzig6yNdH4mLQOzMjohONM9FxSVEYBwSu/WaPqo4n8iSRR+b0OMoBRFHcAHfVXEXNFi1hKsG2tdagQvgsSfOcbDa4+zhdcRa2SpZVVxroabephmCejWLYaHA1GhujUoNxHcOVxMthwXHk0JszpntZsv6ZMP65IST9ZphpyrsIQQW/YLVco/lcqEERsSIyepzYtDka/LO05qs0IkrAVd8m9xRm0W74Nl1wYTjAl2YyAYxqniPxrau2ZcimVEyDIMVua3w44EIrnOIt/tv0XRBt80kvuFAwhRH1QQBOE2eL0jWhu5UAZOcyHkgpQ1pXFNK0ul0Xacx8Urj4CoSwgzIwZIub9cndj0xBLKOUjEQyHya8wbegdSpHE6THPHVzqK2AgP+DD6txUOx5E9ERedKtkawXGZkkamhIadihW8r+tXP7mvh4spkTdfeWDI5Db+TrfCf7ZgXK6E256rwo9q6ora22oyqvATMfdn0vfkqNB7CVzKMCQOWwm6nU9THceT45ISTkyMuXbrMxYuXWa+PWa9POD5es1lvSFnFvARseoG3aYGxkTSc2exbf/Jvc9e3/w+8+Cf/Fquu4yPf8N/xFe/8x/RLbWp2Dlza8sANL+Txw1t4xV2/RshFp1Y5jZ2m+zbLVFuFSaypCiusJWuQKbhx4Kb3/huQxBppNrUKRYUQlNwgOi2yrpW5oEyb9hU8oU1lrtfXin+INcDNSNWtcI36tmrPW8FA3+MXX/ZdfPEnf4KffeUf5+t/6wfMB15JBP7tDrMtmQauXFm5ajHN7H3rz+eFvRnswJUfYCKPVf9d7Qyn1tvsBczNX5uxYr9YKEAVAyFWgSmbihV1r4ndhwJEga7mAr60yW0aso8g2oicfSCPI5nUrnmeFf8atgG2j+uls6I2YrGPkoPr+ut9x+vSw7zr4AXccvQot8gJw94K5xzDbuB9n/c9vPy9/5IPf8Wf5iU//3cYbWr5YKRwoie6nrjom8jmou9ZLZd0feD+r/lvedH7f5K7v/2v8vJf+ScEydbQrrlfv+jp8hHPe+A3iHsLQtyj73v6vmexWND3nYpxViFb83cUUZEYmQrmYojSrC9H/9GKOlePzdthOW/dq3r1Tq/rdri5f5/s46lcwPIELMfTbTr9TIwg36YfteczxSnVbnCVWKfuB2tUsE8y/T1AiJz/tu/jup//Hzn6xr/BdT/7t9o6kdn7+FnuidOmTFwl5V9je63aFuqtnQDQ+n0l6ta7pHlaJXi5U69TxRz0EtokXQdn7/hV9vYO2Cx60nJB7DoDpr2JEipQLVfswTpttpVSSsFFJXp3IdCF0NZOXSvDYmTYLVj2S/q+Z7VYMlYih037FtH3i13HcrlitbfH3v4++3sHLFcrFsslfbdoAiD4ScS5GCBcm5irgOicJK75zVzIrfqsSpqd75tJbKkJIsjpVTo3SaesfrtOdY1P90TTH98wQu+1Was2DHmnhC2HFZ+cawURjY9NJKeSn2w9+FPlSmnv5Wbic9VOXClclrOSa+aik/PHKZty6h1Q398IxFNzSpsyV9eev8b22H/GozWLPQm+tJjfvj91Le0+Flexr8LRPbfz6R/46/RSyPv7lpNorJbSSDJhzzElLa5dQZqhWNOjpgm//Weun8PNsCCzsU+ePzDDjK/wJU5m9lROf622q/oQC4IoZEZowiDb7ZaTkzUXL17k0sWLrE/W5JQIzlndQWsPy8VCp9L0mocd7O/zUXcT1x+e4eHkuFsWfMFBr5ikreM6CarGs5NIi1By4tXXwcsPehh3bMdCHaWiqZzTJsgQOBsj/+QLbyCWgTRGFcYwvOdcOOBjZ1/Pa+95Kxee8zqOEtz0yXeSxkxRtlMr/tU4txQVdHZuw6vvfCsfe8lX8vl3vVURWxOZGsdRJziPA8kmNocQWC4WrFZ77O/vs1rt/fY3+vfqaKbT8mAKr+4u0/VbQsHyMssfmAg23klL910FPpj83mzB6q2qE+elQNEm3Loe1awrOTclFa3ZbDas1xu22x0p6eS1ruvofLAp2Au6vjslVJmMhBe6zgRHFxYDB6pwn4qBCUNO7HaDiljZGlShIxObMvGjSoCrYofTNC1t2Kn4SBdNnKpO06y5f7XNMpECXXGKKZSpgck5Ry4Onx0++VbjUj80CepWISLFF6d8rD1OiUxd/YZPWMgEPbZ4ZuZrK4miXjt93yqiQ7sOpxuNBEqd40fzcW2fNgKorolYfWgITdwrhtjwAW8NGnVlaW5YfWK2KdPXJoo/v441rvHB8oasDSvTxRCtoXgYbBrYbhwJPrDoBqKPRC9kCoGstTDv8aWQs2OkIJtjjW9i1Ny+ok9+alisa6Le+yauNMvz654qtS7rlYBWxU3xJnzqC3in/mEmxJtyxiUV7M/O4YZitQZvjYauEUm8t2nj3uP7SNf1BLcghAX9smd5cMDyzBmWh4fEfk9FgrvOBgjpkSmGhyueKkWxcQrWRG3ZqAuEoI5XG+8tJpJauxdqrUx97mTDanRQ1zUo3Kk9YjI1D4sRHJMOe6jCqDgjLMaO0JlILGYPZjkXgHiIwVPJ/zj0fGvTELX+Y7G0TH+LiPW1lbanx5zYDZld2XHhZM2loyPGNOqgnqgDDEKI+KwTavsQ2Y4jJycn5JQ0L+56umAiW9fQ8Ywbb+C6w30OVwv2lj198EoWVVhQr31JkEckDZQ8IlnFlqq4JKK12UJEiJQ84FAhbe8gGIZfxXEUcy/kXPNmTyKZTa5EGmtwt/1+NRH7SrpzTrEWL4o7j6VMJCtmQjgp4YO2xsQYefatz+JFL30xq/19ji5fxg3HpN2G3fqEcXvMuDlCdke4tCVtTii7LeJm4ru54LLDE0ghKRexCKErhBjoYiJKBy5CFBPb0kcuASmREAakG3EuIr7isoYrFQ8EE1xA6xy+I7gIfgFWwxiGge74CNZHSN4oy89XDMTEZoowjjZdVxM3iigJrpTShI3P7z2T269/Lc+9cCfvOPx8vvDCOwlxxMcFoet1YFQY8DjGceTk+IiT42OGyxvyLpuv8SQZ2AnkToenZZui3XUdy8M9zaVFOTrDiIp5uKCkf+da7a7V26Hqrl9BC3KzGKrGAem/1Pb5rA7nQot1VITBW/3hCltgOY1ZMTVkxTBvM5xObPBby1v9aVEopwRPfYV6YSpGZP6rQVk67M8BlMKNj3+as+fuxhumctr/yql460rfPMVXaYaL0TBMFdutwz9GHXSSM/Gf/lnWf+6fc/3/8qfJXc+D3/m3efaP/jV8UN959OxX8cDrvw0JHZ951dfjxy1n7/9wvbC8+J3/lNt/31/kJW/7n4m7NdXgp8WKT3zpn+Tlv/IPmm+xD64cJBOpyEUfrVZWY2rHhEVVTM6fFrur16GUwr1f9Id55h1vZ3X5URMqYHbNp+jKuVqvPA1hak46xeLTo/665necep7eTD/ltNMf1Cvfbnwl3OvvDKtOWfFYZ/bF3jcD4oKSx/Fkt0C6ffzyDN2Zp7F/4y1PWue/14eEHqLhZmMCVydwF7JTEQFJOggLNBZJTom6Dl81Z07ZlTrApGK+TaTEmmFHH60Bugqb1BVo+bXTxtrkdfpza6LCcGSH3j+9I4oz1CF6tSddAxgVJkU/jxKOK+9EGzJTTozjjmHckvMW2OL8YAMngy0VfdFxHBjHgWG7YbM5YdhsGcYdUoToIsFPhOXgFW+xjESvb8mE42O9fk4o2SFFbb93juffeZs+PxfGQltXCo/URgXXrq8rIL5YQ3BBI/XJ/j/jN9/JfV/yNVz30Q+yvPAY4tT35zFxktecbBxdF/GdJ3YRHx3edVQuk0hSAUfxIEEJzUSUfKUCh6MNGPIuQvEIvWF+ts8kA1nf2xWNBUQHoBXRYVNZJu7sVLfQ+6gDYJo3g3YdZodzxN2WF/z8v0XGNJG7r+XjqRLHGT5X47R62A6Y/Lqb0Dfl4k21Vh8CIXtrxJ3nW669h9QowTkTEQQoDX+eY9o1h/czOwvwiv/wA9z2B/80r/r5f1gzv/qBTp2L/szR2ONMPrZNXC8mwHT+UeSXfxi+/FsY/7fvg5KREOicI/Q9i1/+Ibbf9uc5fMe/pzv3AETP83787/CpP/I3eNm//3/yiW/6S7ziJ/5fhHFzlQvsmj0Bx21f/t0896O/ym1f9l28+q3/gm7YQL3KfpbjVEyppc4WQ+HaZVXbVSxUtDiSqV7ThA6siTW1xjysEcBsqGjeVq9/EwO3jvgn1fJmF9xV1GIW4KkFsib6hkVLO6fQ9qs+r3EYHThRu+0t3ytyuhH82jn+Y59n/vs5cuOoNWTn9d9TQ6mAKyZMqYI07frOX/KzBIGeSrjpU//+X/DKP/F/5e6f/xE2Tzx6lT+8ciP95z2eZHeuwNrm2EHlBWl85Al4om187zrtMcAh2bghOIYxMQyJNCSyV7+1WHryTn82psJuMzCmSNcdsL+3R9d17C8jjkwuAzGo2PlfvvR6vv7xn+Df/Y0f5aG/8LXkNOL7aAMe0qlrF4InWltHzmWKBa92ba/YX3ObNwnhyGTn0CFQgNZJ0Zf1LjSBcCGT8ggJmHH3NUbylodZM4svuHBt4R5T8/qs8TwLYyrkpDhucY4pLwimUVJ53zaoeAbiV0545VFN+8vsVcWOiyaxlZM65QOVP2NQ9JWfF6h1GzB8EWeDBIpmck7FW6ITvtPfx4+Mz+FPdvcpZ5DKWTQ7n2ni61I/h2EDTmbDB9p7utkakVO2Q5fmDEObfZ3WW554L3aizfxrIDvZH+uvqfiFivFU4SiNEivLgYpX2nvp+9ZYdZ6JqQ/72+HL+PPju/m73ZfyF9Lb9H1LUT6wYfR1QMycR6L3qsYaVut2OuyhDhn07XF6QCB2edq51pCS6dylCkOMiWGX2G1HtttBBae2A8MwGJfV431HF4W+QEqaC/gn+dHf+8MXHQ6kzYN12LeJ0tTmb4/5eQCtl5CNzyH1/uq/XRGkijc0kd9p2UyYb8WF7F60teoaBlPzPC/aD1HEGU5Tex1UdEYhb226T5bPjNkxiDAmIWU3wbqtdqU5jTMhDN1WJmqanPXAzThEJkil/Naad6rYWuO3tnh14rzWnzvAZY8EHXwula/vKwqj619DVqf9eTPhl+CwdZ8Zx0LJnuRGq12g9fkxtVp2xcdLKiZcSRMHqvcyu6wxpVe+dO1rLGACfIr/hTI1v6vd1Pp0sLjNi+DKiJNCBwzeIaXQxcCqX7DI/x/y3jvemqyq8/7uUFXnnHvvkzo3qQk2ElWCioIiilkHFRUZAxgZHdOIjigCAipiHswoCIgBFEQFFQURkJxEopIaGjo/6YZzqmqH94+19q66Tze+Ou+oz2fe6s/p+9xzz6m4915r/dZv/VaU/UfllzFzZ3J5GmodrcV4yZkkIyUEIuBY5qsTPMCG2mRXmumAcZZF29J23b/DTPnf30pz31zXGTlvOw+qalQ6zzHLVjhsxX9PGeLWcc5+1rex84bnc+pzvoPjL/81+SyzaMdMolOA1jPVmajz0ko8n7U4vJ7KjNdTbcGcvyNc7io2pTWMKYQJz8vTeRya70ZGvNVJaa3h1t/3m1z769/Hpf/9lzn13Cdy9Eu+nc2r/oidh3wPw5//qohpu6k5j9U1wlrL+F+fBNsn4Nt+ga3nPkaOpbFSUGHAwukseJM0M4p6N2w9tym+ytPCpc0TrDF462oB/dYDvoJw5ka27vbppP6A9YffXe+vRWpqav1WfcYyz4sdTCmRjIjAhSxcVaz4cabkDsv4JzFhxVnyelNQLvxXjDZ8SDXXPQ+UhVOcag7t0OtQvFeRVhThmrb5sD1PttJjoa4rej+ylUWkchY1n2VIh9zu+rh1rc7zG1te+ZzfQeO5MlAmLm3xQyZ/UX2pJPziqHWYY5jic/mpdRHKUZR0kByv2GNjRMCsCDYfig0Ns/FW3lY7UgQQo/Irrn4vi2s/QIph8pjKWpPKK03nXuL5md9UmutOR5zZcfL8V/3ObP0xcPqRT+HIMx7N1OxsJvSk30+f8w3wkXfBfb8MNvu4L/pvjC/8GbpvfxrrX30UpjTPqyHSNHLl2ZZVULARwXm10Z6Vdc96j0uRlNwt8w/LC50NZZ5ktV7nrI9xJqBa31fRyhima40VlykYgFFeyPk3xwKOgzGRNz1Lm0i2obUWp7GTA5xxeCPRjo8WFzOxz7BJ0GdstPjU0BhDcpYYHMkEIFa7VXyr8ICvx3z0PZj3v0nHtSVS7qnW0oyJZC14hzeG7BxRRXoconWQkTr7IUT6IOIgQ84MGPps2ITMEBOBxJhhHSJ9TCJCpQ08xhgZY2JM0kQPZ6WppgqxkSIpyhXkmKTGThclg4GonGVjlNsj8ZkzIsxknMO5jPGGIh7jNYeRcyTGAdM0+Kahbb02q5ZaRuG/gDEOj4rmFDFeFQ91xkwN74r/7L3yg4u/L3iCVS5GAq2z8MrzgJ1v/Rk+8rPfwmZ9wNj3QKb1DV3j6dqGznsWTcuibem6hsa72mjTZlT4HxXYEn/e2YJvFl9HOSVV0ER4dZoVI4u8TZ3fQ7vD2+79KO7/5l+qWIpTxyOBNseUe2yt+CpDTDTdguXq/GqQCUiNoy118bHy75mtw5PxMpKeYo6jz7BkXfNMogqfZ4yKaaq/cCgGnmEGmInvkHMVGJrHsSlntWNjrXevvCoJAqcLKyF/Fo5bjoGo/DdLEXoRUamp7kKwr/hNT2bxJ7/A5pE/xfFnPxbvPTd81WO47C9+lau/+Du57Ut+hZil8VWfEzkEwrBh7BcMQ889zryc13zCg7n7e/+WcX2a7By5aclti0kZ76Xmt/FSh5oWUd63lpgSH7j753LFcIoP3eG+3Obs+7mEvroE4zhKI9ZYajZlXd/KPex+jA+fuBVXvPtv2dvaQkhVWQSjAvLvRzye9o9+ieFbnkz3zB8jPOKJ+D/4aXjEE8jP+nFSRnhwKu4dkwgaaTUJ3lEbkxZevKA5EHISoSmXxN/ORoQBVd/D5Albeft9v5E7vvPPef19vpH7/P1v0IQ1pUltyRmcaw9TLrPREHW+JSRuS0yxy/m6yVgUrYYhBpoY8DFho+Cih+IzA6Vup4hZh5gYxlHmmHFyn0jil2vC2VinDUZbqWW0wuFLBUOJIlwl2IkV8bsMPmuNGwZjPNndnGOVyeTNPoeylvtnMS94Kib2FN5BcXAzGfvOV5Hu+2W46z+I+dj7al49VwzAVDzEo0KQzkmToUvuiL3L/Rj/5ndq7F4+H1MiJMEUrJ00gERcH9Ry1tyhIZHGjWLZ6uNWYSyLSYloLSYmyEG1G6hCXgA5SoNrmwzZQUbAmezl3ltdr4ziN+qqSZ6pxAhGhf2ymdKF5XxKne6hez73zIrHaaY6KeYvo0goCjCW2CSLvg9TTeEkKjhb2yt2PXGEptphql0QCPj/3WP8NwhN3XzSZr0GZsFycWJFadIQk3QllkklRA5jRiEpWEmMBO9oUqqkqVyPVoIsfSeLgbJmRrSp4HUJpmWw4eUmiSiLiCORENGp0inLGDwy4Q/2ek6NnucfuQtfHt/Db6Y78cjufXTdgkW7oOs6EQVAkgkLb9j4BaYd8avEqm1wGDrvxcmMkaFfsz7YZ2/vLKdPn2T/7Bk2ewd86jtfiFUQuB8ioR9Yb9a0B/ssDvZZHhxwsF5jlwvsosMtOmzXYRvpRm5Lt+K2xWUpWjUGSpcfULAMAeTn3ZnLgzMpSwfEkBXIL8iawvRJAydNftgYaoLDYkjGYmwiJ+l5i5HuLoaooGvAx4aUI/v9wPU33sSHP/oxrr7mGm46fZrNKEQXY50AoOXE9FSmkFqe68dLYP7ftGmvZAqgWob04QWk3ClD6atTIdSCQZyz31s2txMI4lwjJBqALN0QvQdax9bWDsORkfX+hpRgr2nZP7vHZj2yWfRsFr049q2jRYpCukVL46wAgDFgsyEG6ZK6f7DhYL1mHHshuEaD8Q2+WeDbBW3XEQ56ERfwDt86mtbTdi20chwp8FbwBjCuIVtLdFGCdnVBEkm6iGUBr7ECnFEInVWtVtYNAWRtNWCgIGkpApIdkFVwoDh2Icl1ZiVT6upen43mRGoBPzkwJisJh2SquJS1SAFBLKqtVs9LRGck8QDRCoARUyFfibHGGGIuapdBFC/HwEE/sO57mVduNqhQ45vEeRWqqiRQhEyuBUx5EgcsCrZCRdUucpqE8V4SMGoJBAiZ9BzPs21uTOeIWQFtcu1yn0IgOkf0XgpbZhNKlCADpnT21mBaumnLPmNxVILMV+cdy8WSRdeSYqDf9KwPDtgcrBnCgHeOtBRSOtbjmyXWL4g4+n5kb79nHTPt1g5HTlzMzpFj7GwfEbHC5RafwvtZ3/2u9JuNFCxaEctJKTH2PZv1hj+75P7c4yNvxH/sg+wpKXz37FmOHD3CseNH2Tq6Q7dcEBYe3zY0GN4WTvChcckJO/KKzUV87up0qQrjJ264Nd9+4lqO+kGCGXXckk0kXBXaSrULnZAmk3Vgo8zLot6aTL13GS0ayEZEFZKVF+oIElU4zclzqV2LJZkmQIGVIjRxN5W0meu6mY3TeW0OBzMxVvJUSIFh7NkMPZtxQz+MJCyL1RZ+0WEcHDm6zWK5oO0amq6VtcpZyFIcM449Qy8Ffntn9zh5w00iSplhvx8EDGydBHA6/Y0zst45W9e7AsQa64W8YP8Nbtx/0LbebHDWslquMM7hvcUkL50Qi0+n82gOzxpuyX7NiT8omDAROTJZyBHFWdYxNgc/ij8RY6Tf9OztHbBZb8gpY62j9SqGsehYLBY0TUPbCJDlvQgdVqEIJsBFPVJs8ths1UedrHIR6/C+FE6qcI21WmjUVJBe6j7SlBBIqQYNEoGhYlMZPZRcZTbKiZD7UFSd64fK7Tazf6dcC3pjGBm0qDeMIzGMxDQSY09KPcZmvHesVkt2jmxzJO6Qlyu8ivwYtRdSOGHwTUuZXU3T4p123tNCH1WDm2wjM/cTowTo6e9zwGCe+pwnUqrYQpwlKvQ1dc0W0ob8e7L7FfAqRk6D+trByEiHqRDOL+CiEOBqoo4y3m2Nx6bkjSb0jKn3JBeyjc6PCUyEYr+laFBIVjFEWQM3a/Z2Dzhz9gxnzpzmzJmznDlzlnd/8y9y6c9/A5v1RrqsaRdDY6wU3rUNbdvSNI0ISGjRq3MOm3vu9sdPZGshQPHnvvJ/sVCAuywK1x+7LVdfcCeOn/4o77nd/bjyg69RwT0jpBodA6/5/B8iNAs+489+XOahMMrrZ8vYOX3lZzCsjnHizS8khf7QOLPW8qGv+wWu/NPH0aSRd3z5U7jXn/2wJhNkK4m+cg0iYMokFDOzJTElVdefYps52DonuJTirkJwyjnzue94Fn/xyY/iC/7ht7E5Me+KNAdra55yBgxJEnMSEKl/rwms2fXcDFCaAfF6/8p5HvpcjcNn6atsJCmj/vB83Bp5JAJEz/eRz6851nZdLXo3KixinIB41pciD1k7nBGhqSJa41wmxiykFRDXJgnhz9pc4/Kcw1TIPk+wlrtf4+GZyFQFiqIIt1iJpZ21LAx89vgBBjsy7mzRt2LD1t7x6W99Lq9+wLdzt7/5JYYUROjKJIwD21q44h6EKz+N4694rsxZ39B1LcuuxXvPhW9+Hm954Ldy7zf8Ie3WEmOQJFIjc7vtxKZ539ZOYL5taXxD03gVjZMiiaS+Ws5ZhZIn4lNWP1zmk3SmmBABc2jczrcyBqdYOE/HyHlKep+T0D13LpTvHO78Qz0fU0gikxcpJIoSP1SAyjC1dtGZn1FcZQbLlHUbASat+qcZqoh0yYpd8CdP5OR/eSwn/vhxtTi91lDo/SlCPEWAdZrJE7JyvmzWWekmZMv6JTjW5LWJYS6imgWYTiZhrXpIpgDJphKqkiZch5EqMBiHkWGxoOs7mraVAnUvXWwl6TqVvFdssxBTlXCX2ggpCojvvIg5KPkInbdeBahaL35kv1jWLmJRhbczhn84djeWDu41XE3XLVgulywWSxH8aFq1K0LKe/QNl/ALl92gYkki4hhKd6Gc6hDLtnqfdQzP149ckqdmboMsUkAivnUygo8WcrEpmF+Sp5GyncQz0mw/1qrPO4upcyKmsuaL3yG+WRSgXsm5pdikFOmLn9Con1myEko4LevCbNTLOqi4phJxblb8Uopai1CRik45NxfsmnV5KFhAsW/lnuhLK2dmCVFzqPD2fNzOLbL4P7DDW3gP6UB6KMabPl6oa7IU6vPMidCvcU1DLHFQikK2CNrVNwRCHCtJKsaIU5KO2OLih+j/jDl08CoUZZj8pxkWhJkRLg9hQ7MLu4V/ll/n6ZqJAKQYRnk/JsYQ2cRI3/fs7++zp/jL7u4uwziSU6bxDa7xtG3LzvYOO9vbtGqHOxWauuNqmz8/5bjr8RWfc6slFkMIgc3QK6lRfApKDKAF1CElFXCSYw21Yr3EclKg2ZkGY6WoZatxkBxd14ovEyI3Bc8rhi0+w32UP7nHN3DrG97N1rjm9O0/jePvf4MkwfM0DhTWIUUhzoOh4TT3fedLMM6QnFNhJO3gPPRynlHEx+XaRRhdhKa2/sWh+Z+xnVtIAFQ8wp0zaCQELYIqEh2UOIGsuQCKP1PGZT3Q9LaRgpdKaI3TawyBcQis1xvWm55+GBmDJFCL37baWrGzc4TlakW3WEhRrmIsCfHhrXP4tmXtOp5++ijfd+JkJSoOw0jTbmj7nrYbGMdQY2xrZh2VtWtdDCNZu+icKzSVElib6hruYyS6STwRJsIX6jtaoKjMxcghH2B6JSmkM+fgfDOfuzrb82c0HXWKm84hMswJkMmYmVWa4xQTtjwnEDI7ttG5Nxf6mtYTJj+1Ek2BInqqnnEu51Od4OL76TFKoW55GfW/TOmobWoyWb2rjzvW/zO2nMQ3SUAYR3IW0pnz2nlaBYjqfTDTNaN+wBBGhhBpUsBHK7IcpsSfOg5VnDvo/XOl6CAXqzGLHQpRdRYneOeFCJhECBgjguUpSdFd27aECC4nGjqGvhTtyl6MtzRKnHBOm38UcQMlSbnahVDGjndO41PxTYx3ki9uO9pmi0W7YrFasXV0m9X2Ds1iQbvcwrdLnPeIl6hBeYlbDOJfquAqOZNCJocoRbwYojUYX9aKWl0jz4vDWF0ZxxXNy+fMq2ykuG8cNccmvoBU9KW6T+ekmVQR1XLeYpwQ8tG4rTSrqRiJFgVidLWtIVnByZT6bJ36kbleQPEhi/0aQ2DTD+wOI6d2d9nd32MIA3hZp5wVQqd02/SQDf16zTiO9XwWC8EXNpvNv9d0+d/adpYtR1Ydq7Zl1XZ4Izk/gxTtpGEkhg2pX5PCQE6jkl4VU46F9O4IWfM12WGRDnyFcNNocWaucYmKAOZCiNLf42GfWoTlhTh77pZnLxR/sorB1YYvSNxpDMQYCHq+l9/qMq68y5Vsb29z9sxp9g/26dcHbA526Q92GQ52+fXuQTzi9O/DeEDs90mDEF+zETKvyeCyg2xIROI4MiLxp/MNuIixkRwt0Y/khcUmSxxhzAG3Jbg5mw0eJwJLxoAVESZpriB5raQOlTUy/7xrsd6S8ki7tU+zXGGcJyLXX/gcDVL4GuIg/sAY8I3gONlMeGmOQj7eOfthbmtfz9UX3YNPv+qFrBuP8wnrI2wGui6KyFtM9Os1e2dOs7+7T95EGhpM22iTpIS1hpDEn0s50bQNy+WS5WJJBobNyBANmY5krHT+1Wyz0biviFBaSidAeeDzjqfGCC4SdF02c/LpebAZ48TmMBWfYiQHP6EQiB9YwxMHxiHCf2KrE1Z9NREgQ/21OIOachYSZsG/JTRSjEldr1pPXNbEulZrC7vqw8zwNDV2NyMiztb6EuPVOWktZC3G1vF88DWPw774Vxi/5rG4p38ftj9g65e/Gds23PDNv8rlz388H/3qJ3HFi36cjGXnY+/isre9iI/d66u47N0v5djV/1CQPgBsGLjbXz1VSO9qv6NreNfnfR+f8Iqn8+4HfRdX/vXTDp23fKwIwZT7Vq55hv+ZqWAYSlHb5O+X73z4vl/F8X96LVd98pdwm9c9j3b/1DnHm/5difczv3TKrc3iifrwJptajltihpSS4M+K5RzyVI0I+tUdQElSgtNYOCUhSI6xks+F0ChlGQFLzJ7kFpjlUZrti2iPXkx37FL80Uv+dYP/P3DrkxVpCCv8uW5hSLYnpvLsBItLJlcxsFwKOYzkSQ0yf8QX0+7f8/hrhjvGmBijiNpZq5yYlDBJ/52FMDxmyDGTrJk6Aytml1WIqopdAeCYOAoIRmqngsKUI0MMsl6mSEyWIYxs+gP6cU2MPRBwNuDMSEiQg8MpHh+SEJ/79ZqDgwPGfq24opV8uGvx1ivuJj5TKgW8RnhLURv8iE0CayIm2+pT5iD3dWpoIo0ASSVnrQ30dJxnk0gmUT1rk7U7sgo4xcxlL32+5ieFY1q6imcrJdT9YKRZYdvgGkeMDZgObCPPLBksXsZIBmNaUvaC5WEI2WKSxVsnDdei3HuXJQ4jBcgiYIZxIsCWReA41tx8gQplzEhNxM1xgnluoqwpFdc1YMNYifTn8zZfi2/+t6z259y40hwKOYwKWWST6wwoY83a0qTAVnEXo8JIZV0rHJ+aG5nDJ4p5z2iE01nXNViLQscN9/yzXxTRirKjPNmD2U5lF1OVsw5CiV9KB/KoRZ3pg+9mfN8TpRBeDoxppQmLTZEjL3iaNreUOW+GDXf+vSfyrm/4ce7+hz/BO7/iB7nnHz5Rzrvc6hr3l3FluOurnss/PPg7uMurfg/XH0w49oQQ6O+5rmmHMOL5zctTKXgsxp18yG6llAlJeJFF9BWAVOhihqidsmOSQhTBzm09dnVKZuP88BnfMiZRzGOFRowWhhWnxkzP3xa8NxuwBTcpvB378Q7xn7YZ5yFqg8ViJ252PzRGv9m5K7bkDMZGSvOZlA1e8QSDJ4siKTZbjZOKX6p7zwURylW4qx7h4+UUcibFkX98+k9NRS7Fbqm4l1WfsBzj0L7mOOrHzV0UXzTXZ2/NjEeYb/m7NR/wca6j/lsxAKPd5qORtT/lTeUTQsRYGGNiyAHrGzKecRgwMbO98Cw6y5mTu5w9vcd6f6TPDttscPEA6xvWa4tZeNqjK4kFbOQJzav44Vt9FVu/9d2kGEX8xDr6JPk6p40+vXWY7Op539K1Hbpj59xGY+bzRufCrKP5FA+Ue2EO5cexIoA4CVmI/yk8n6bueAx9bTqczrOGLNKwIOncGEkhEUJiHBMxiG/jsATviR1gPSZKQzGTBSPMJRZT/7tiw3YqbCoIokE5enob5phyPafKAyzx1DkPLiPiVIfWfi0q0/VACqllfT9iIt9m/hmXDKk2Z6f6+BY0PkP8rTqPEsWu5LnI1KFzLuyMQ9aF+QVUUYFqY3P1BVH8r+KqGsBWqlrOkoPX/HGq3PuoPmaafIWsQkSHzk/XRw4NZiDz6Ph3/Ez7QH5o8zc1JzHHg+ccqLJulYLU+doyNWK2NU4sdq8I15Q1rdx5S+E8CrJD8f9yhmzJIRNGEfXZ9AObzUjfi5hd30udj7WWnAfIIuzedQbfILzU82zzmsOPSXDkMnYFq5e8fs3tlzU8JeFwanBucqlLEL+xNH4wwCR8h9ifsp+yNhktBpyJaBR8qDxxowWPIMK2SWOONmmMp/VsMQbiGBiDCE0FJC7JhdiqW9IqUaNzVZpVGXJWAQDF26w1lR902Ibp/MtSwC9rTMkHlfJfU8LWqs8mBZFZfZs0+cj6OvGA/4J1jlOv+hMAmT9G1oNSiJ2TNkkP5ZFIgWNMmVBDZaN8PsUg4uSPqZSW2IaMrk0SW1YQ3iCVOymCSUp3Vr9e1xnhieRKhbYpYFJiyAlv5LoXTcOwCIxtICUDIeh1TLPNKO6GkXXROIfxHqxVMe2pekWrhMoVUIW/suRxGt/QNS2tb/93p8O/zza3/QU7qiFKsRPTfZlW7Fy/Xpq2yEqXsXsn2XnVM9j7jK/n+IufOvkL+r08Ow5ZC8uLH0mZWwYRBTQ6RufR4uzLZh6Lze1FUqE1CaxL01Vf/HlT+ExlraUef74Z4Lpf+g4u/d7f4IZf+FZsihy89HfYetDDGZ//VNoiMuVc5ZVZo01GnWdsFnJfm44jO9va3FGONATB1INyjULNi0TFSDL+4Y8lvPjXyWdvmO5N5VRpzlrnVX1GGfZf/SJ2vvAbOXjvm+k/9G6qPdMPWGtmchj14VDqO1H7m1LWZjJBOU0yD2xWTMdqSl3RnoIPZ6YgXYSJ56IOh+PinMvTzMRE5VPFubjPLQpOnfOgztOt8DxLTFn9s4rHm0O2rfBAJn9PQ107caLKXDU17p78urLl+U+dF/JoS06huFsa+6goWwipjkUZnyoylYrQVGnADSI0rbUaxdfRPU/+ma7jRVTrnPiqjOWgNRdQ7FFS0cNyv+TzpvIG7WSjUrmNpopa5CMXsv8l38bR5/1svS+zZazencOnI/fl5Lf9LMef+cOcfuRT2f7tH5i+MA+hAft3zyV90XfCW/4Cc8OHSc/5EZpv+18Mv/39GMWEz33VGHS6AfpD61lMFmtS5mHB+g6N+bISTnkIlQZQgY5MFRpL+RyxrHjIr668RBU5L402CzesrLPTWnl4nJ0P29FjFxLjILnUZInJEFR001llBytmQcqkMbIeBxF0Xo/EIZIGid9SSKRosMbReU/jJ1Z9irD3KV+K3b2JeOfPxIwj7up3UxqzFi5AWQdDVvE2/XvCyZ6y+PBZG2UOIbAZI0PI9CGxCYH1GNiMgSFmxiy5gIOYGVNmjPKSJpsi2CKcPV0/yzNDxpU8S7EpRsWdavwhaWgVeUtVw8QYblajkp3E82EcZZ8p4q1h0TZsrZZ0i46YAs3gCWEUvzeMWAx+JsBaotwcpdbPgvpJ2nzrbp+Bufh25Fc/T+uybZ33MSfGWGo6MzFHth/1y3zsFx7F5d/367z38V8jYqLOs2waVt2CrdWCndWKrmtpvaf1Hu+KxymrlndeztEackyEIZOdiN1LrarmfnLUnOGUwyhCU7Wm2UByHW/89P/Bvd/2m7z2Xt/F/d/6q1X8roRvMj2nJhpG80btYkG3df7xFjF6pcorL+N9qglj+nmOTzXnm5UIex7hFh8gH3pXvT1zePcT97rsR/zKaEpu3NAPoza01Nc4Mo4jY84ackltjtPzVFdfRbE05kMFa0v8OLk1mCyxZvvsx7L5tp/nyHMei8kJlxOXv+hnuebLf4A7vujnxC9E/NA0joSUyXEkxUAMgbd80pdzh3f+NXb3Bg6y8LNG5fSObUfjG/GuUiKO0pwTIwJOjfd80lVv5B/u/mA++cwHuWDcw7SCo9WmmEgTBaOiatk5xpzpnNQFt9ZqDUIgNS20kWSlFtz8/lPYPPJJrJ7zRAAWv/skNl//WNwzf0zXAkskKoZS8JAyDyAlQyQTTBKcz6qPFxLRJoKVGNliNIchfqzDVF0BQ+Zub3w2b/2MR3HPNz4LGzaHvdmcCbO8wmFRnDlaprY1U/9+LkfzfNlk3ZYxHpI0gR3GgPejaNcoNlAF7MvsSSpgRxZ+vM4LY516ZkVUXDEU67VGxVXuIsi6HJnqz8Sn0Pp59SlcmvwBqwZjHkHN76+4qeLn0W/UnyiBoam+Tbr7AzF7J4kX3wFzcBZ3zXsVo9YX03MvuW9rLfbE5aT7fCG853V0D3w46dXPn91L4Rz6yvMofq/ETc4Y3NYRtr72R9h91o/KNRW7V3ygugCVe2exCbI1OKdPTO9F4VdP4wzN3xkwUfwQIwKTPtuKHUx1EDpGjdgeUmk4So1dq1qYUUzocJB9yMesMA7M7p+ZzrkE/PW7ZZ4UUbiiljI1EJjHHRNOWY5n6rNXV+df5S3+f1MouIUjyIWL8/OBz/9B7vDG59AMZwgh6PNMWAPRW0K0kyL1LODMWsRUOj0VgngB5GuBJnq7Z0aiDFCXrTiAiEgLVgR12iZjs1dCKVhvCDGwORjJ69N83sHf8ZIL78fDbnwNZ1crdo442maFMS3etTIInah34iLGj9gu0yxWdI1ntehoGy+k/xAY+w17u6fprl9x6qYle+0pNmcPSJuBPEbCmBjDiI2Rp3/Bj/Ktf/vz9CGwe7CPazv8ckGzWuK7BU3bamGAdJ42XQdtB90C33TQCuHWGPG+Q5rIhTlnIf5HDVQiqm4YISaKNINRokQBPaQrSZ5EOyrBP5LUm8gAQZ+PhYAB6wnAejNw46nTfPS667j62uu47sabOHuwZkwGf/FtaR/6A2x++3/qc1RCXZ3YuUTwTEvQ/8VbRjs0CPhg1GnKRgMXBcwLgCxfqTSjKdK2ZXHRhRMN5nVZngABeUnRpgbyxoOTgMmkSNdltncSJ4aIcx2LdoUzLeOwIVsv3Xu7Ftc2RERgrDMNbuFxyRJGURtusqVLGde1uNbDnqXvpQt6xkIMjPu7jAd7jK0IfVhn8Y0jtg2x9aS2kULm1uNL0bJryI0Bb0UQx3ZgxfjEFBmL04w6oKVTixVnMuY0CXPMgEQMWgyJCqEZ4mxRT+mwxm1RMheimDy0lPRVOgwiybGYM9kEsmmBJJ0CTSPzT1AhAQRAB0KJKsUIpARYR9M1jEG7zwI5C0gejSUYw0GM3HD6NKd29xlCwrdGu55YRBNBxol0xlUA1WiSJ8v1m5Rwas0MYFLEK7jetJ62dThvabwVMaMoasdWnSR/Pnbeq0CeOk869ifASWZM0kKoGAKjtQQngkkSwjq9H5CIIqBrZ2WvZZ8GbJbgOyjoZpKh7TrplmCg9xtcduQRxtTrOJC+WdAwRENaj6T9nmEQgLBdbHHkyHEuuPAijh49zmKxxDnPYrEk58zu9i7rvQMGVX/22l0kjAN/5e/MffY+zGvv+Nk80Dl2bvwoB3v77O/vMYw9fb/maL9m+8g2y60l7aIlDA13bTac5BJO5o4vaK7HBAfe83M33YpvPHYDv3jj5Tz6go+w0MRNdVQyYsetFO5UZU0FXmtywLrqJcZyJ5PaLQM5WrIt9gdJfikQAGhB9FyMwQr4VDtEadF9BQHK8eX9+s0sScKUswIfgX7o2QwbBiX6tasVy2YH4+QzxsLW9pJWyYy+8TSNwzp17pOoDodxFNXhraNsrY5wsL/H5uCAfrPPJgRCDizbBteJwJdvSlckW332pAUZzhop/vPnn9DUYrWkXSx0jZYgxjlRi01aoFRMfHGYS6HXY499DY8//QIW0haNYr1AANFaL6BLSxXMSaXMSztfG3H6G9+QF1BJvOX5xsTBwQGbTc9e3JPzXizY2d6h7VoWXctqsWSxaGmzCGdIYJQqUCtkRVW1L8BxEfHJQgpTCycidN7zzAc9kW991RNZaLFE9dmQMSfChXKeMUso9xd3fRifcs3ruPT0hwhECRZUnZasqSbBAAhREsCkkjw3GLVXWYGjFJMkw4aBcehlfPe9doaR9Kr1Gd8YvIeuazAG2rZl6EbaJmrxqD4DjD4Hh3O+kmqbpqmBVNYEhrUqCsBhwGlKhhYg1UzuX33+89h18pVyaUHEFBNMhZ2lE47EGrmQoWfAku4dqj2g8EmmDna3UNT0n7llo8WWCoKH2biXRI2sdUmft9zaXLuGl0JdW7vx6f3L4kskDUXJUrze9z0HB/ucOXuW06fPcOrUKU6dPsnu3j7XfP8zWTzhq7jmcc9j8bivoBDUjNFkrZe4pVt0dBrH+NLpQMGQ1XLJamtJ40UYpxQnK2zEhac+wtp23LBzKXd590sJWbo1i3iWJC9f+7nfy9gKSe81X/YEHvAXT6z3yzEV/p+5zb1YX3g7mv2TnLz7g9l5+1+S80SK/djDf55bv+DHeM9X/zTZt9ztj36At3zFU7j7C36QGs6rjZflVwSO5zmjOra0uC0COQs5xWmBbyWb53wOMUnWqqjdmnKMfP4b/xeN89i5wJs9PILFpSsEGyaQJ5dimeLEyqsAd2Uv4sPOSRkcmrsiujqRkQvQUITMJlhCfd4Z0ab6ROjPXIAXTTKfh5qky+VKu6q5WnQjonS2kpdjlriq1OtYm3EOXfflPscktsJp4YhBAN9CiJAu2KjIYBQf3XqsmQqOsLmSoihkCowk1wpZ3cqz8dZA46tohDFWC3M3PPAtv8NmuWBjDGEcVWwwsX/0Us7e7UFsf+AtHDzwYVz69r+k8Z5F27JcLGicJGo++21/gOkMdrGFMVLw67yvQlNFIMba0rFLfpYC4Gq/9bokP2Nq0UyZhzEX6tRcTobJNmQRtz53m2yKAo95+nkuuaH6Dud8t3x+/t3pnM8RAshZk/LTnKn7O+ezoHNF8+jzxcJYU4vYy7mUGTU1ujIw9lz0x4/T92fHNIePTdl9wQvKv88vM4Z1So7WYvzDZCEVj9LC2JLGrOtZAdaNwdpcbUaZM1EUpiahoRAZxpF+HOgWS5q2pWs7EXPNXsaMFcKcUfzYmlQLo1UiF5dzJfwZZ3HW4kvMA1KUZB3eihBV27SSJC7ixSnztsVtae2StfF8eNXxKeYUTdvxS+nO/DdzDRdoUX+Ome+58VJ+5sJr+MFrL+GnLviYFM+mVNeLgqMW4sKz8ifw4HwVF6V9ISGoz5pTrGu5zCVzeB7OY2Bd540puKoWgjRmJpYBhcU5L8AUn0IGXEoJGy0BNFkVyclCsuTspPjMTDjE5Bc0NF5xnoJ/JcPL7vH13OefX8z2/o11DJXzLzYlKQkgze/T7DV1RZwEplIhsRXyc0qYFIlZOzBXjHQips7JNeeKl/z/Zft4y4k550P53Pdn61/1M5gRH85Zq6OSZIQYpcWUWbqZOByWaS2GQjK6eSpECF/Tycx9EiHRm0NrZElOzZfrw1c/W6/173UcqP9WbFbW+TCOI5tNz8HBAWd3z7K3u8t6vabfbDDG0DWtFOCvViyXS45sb7O9vU3bdjjvaNtWxMoXC77pAmmCkVTw5+Bgn939Pfq+J46y9rlGfPCYspJfRFh4DCIIJN1PVbDPynrWdQ3LZUe3XPAjHzrCL97d0BrJDozDQAyBi1zgK7dP8+KzF/Oos6/ird2FXDcYrrjxPew7TzSRaSZMMfLQi3iUD5EOo3iRx6AiVCESwkgYp25VVteCrutYLhaslqvzrjNYtT36+zTyarZq+k2Nc43JFRdLGZwtuY+Caen6pjhl8QcqiUJJVrmIDKiQ1zCMtfPVZrNh028YFIMyxuIbT7dcsrW9zdFjx9je2WG1WtGqAEqJ3RPSfXEwnp97v+F/3B5+8+oL+f5biajU0A9suo62H1iO40QszCUWMTX+FGEzid3m92Ii3KnodlKsxVpMKII6iF1RwyOxSvGDpg6xSYuw5j5fjHF6LiVXMluzb3Erk74kVmfrWFm0ytO21YhOzz/PdjSR/w6TaudjwlCIA9M2Fy7NdR0q39N4TUW4VKqoYs91zSoiIxQXS2OZgi1qnkFwnAlLqV84jzaTSndCqHc/J5JxoB3WYtYiPM0/JC0C1DpKBpM4iD12tBhvaHRsDTFiTSZZRCTYGhrttDiGIM/QG2mSkOV9Zy0hZ5rsSMaTreZ8Qimmz1X0XIh3KohFwuLwxpFtJDUiAIhBxdkl7hRfKxLCgKdRsTZD0zj8rCujNUK89Ipxd75ja7mD75a0zYLFcpvlcofVzjbL7S2a1QrXLbDNEtcsMK4BhGSBmQQEarFLQjod50y2UUQ9R8kpS57dCsZf8kWle1cueJvEf2TNJU/eJqBzK6FEfMjZEEaxVzkbshMBKNsYnMa7tTumKeQciRCkOC9VPMTMsJWymFpdX0v3PHAizFHmi64xItinXbPV1x7HQLQwEDmzf5ZTZ05zsH8GEwJd07J0hjYnfIp4PDYmDvo1w2ZDGkd849neXuK8E3GIMPw7z5p/23Z8e4vtRSexv+IIOUdSgDSOMI7kcSSFEVLAZul4mFJQjCuTjSUgIh8JJ40xYsBqwXmTDNnNikJwOCsd9EYVIiyisaBiUZlZzG8O+XKHhR2pmJtRoVupSxEfX+DJXNfBFCOrrS1ufZtbcfHFFwGRzfqA/mCfYb3HuNlj2Ozx9O6zefj1z+O3L3k43/j+p4ESblNOVQiqkoqykPcDI2SwEXLMGJ8wOeKM9IFl6KWQkJHotaFZ01FEpI3i4dnYitkam8F5EfHIkK3B0mjRTcD5Ft9Ic7JsISKdaIW1rrFaktxxyFGwXm1mkqF2hhQDJ5+9+NR7ufT0e0geNilhQ8a2Ge8AesCQh4HNwT7rvX3G9ZrcZ625tZKDyJnsLM5ofmuxoNta0S4XWOcYVfQr5w5TmsOlQM5WhSRKflpe1TdSQ1cKwXR0HBoP7rwTmlJ8zk5r7DSeM5OHMylBCVboyEaKt431JCxjypiQhPCKrKFaEyjP0k74fvUhs5ktyeKPWKxijnr86neUzyQ+cNfPZfumq7ngmncf8t1KbDPhMvpd9UMqQb66trLu7n/5D+Be/mzGr/hBmt/9Ucbv+g0Wv/YoGps4+Z3P4LJnfx/XPuwnufUf/BDBaNmTgWPvezUnPvg6ERxh8nUqIhbjhHuRMWHgzi/9Jf75Qf+Nu/zFzx6K0w01laYk5zzz9YooAlqrNcWLMUqTpNLZFb33OScue93z+MhnPYJL3/Qi3O5NteXWoeMqjjD5oZSz18/Isyh+TEXc1Y6VYudanKz7L8o0WedvuUhpTFQakajHaacxASrcloRgbJPHOEcsuSYMg20ILGi2TtAcv4zFicvwRy4mb59g0x35N82B/4htcA0L39DSSCO7MNCNkscPKXLQ97hhwAwWMwbGnImav8opEfJItqnyYwCMRbB8M+FNpKRC71axfH1eSkFwWaI5shQ7pIwUO2SrTW10xuujzC6LsLtW+8ZacFvwholrRMpEIuOY6UOWgucEYxgZxp4Q1sQ8gPRPJ5pRDhfUIY6GHDNjP9CvNwx9L0UlztE0RdgOLVZK5CS+MEm5g0aKmVOSon/xXUc8AwavfIoi9DiRgk2ehO+yIt5jiNM8tpPQlBTzZOnoYUV4UIpxMn0fpZCorDtW/OugQlbGiO/qGytCq2HFKi5oVFDZuBac8ERiPGDAEJ0KDXnBna1rZMZoFzDjrNw3awTPtA6yRxppOCCSsohOCT/L1DyBKQpHZvJhJBcnwoHZTFhCivOmGOpGn4/JMqgx9/9OkqHmB3VA5LJ0ZS10NRlrHNYksvU4l8gxHJoTcmwpgJB/ajm7MUyzR1obiMZHWRt1cZdoQcNfy8yZA2vZbJ/gA5/2EO768mdQhIYr8frQhagIgI1kW/KGheNxGLPHGPz9vpDmwsswL3ue5hulaKvxwi2x1vC+b/4prnz247jrsx/LO7/+idzzuZIDUlS+Xr+ciuV9n/oQjl/7z1xw9Xv4pL/+DTm1UrhQ88+TkIzwhrOIOJhSFCtWohQyZASnEs1fxVhNrH5AyhoLlt9TImjDKWvAKuclKW5rk604vNW8ZzXmei8PY19QVAbKuedZZ2p9WPVRlDGUUsFFqumsn6+6Dlnx/ZRFuOV8Az6sw6RDyJD+PPe6pTj43OC6FqDOnveEV053xGKKpMyhw0+50OmY5pxbdEuFxsWgVQ5BNXD1W7dwjJL31mdkrRZhTb7X4eNMu53vfrqqXNemWxKb+tdsBc83ppT2a0mUxsaQhSsUI+v1mt39Xca4TTLFHYt4b1ktWzaNZT/29JtI5IDh4Cxd27FadGw1x2isyEvmEFkYeJz7e55+dJuFc4xFhG3GERClIyc4MOfEPre0Fk+ToG5SbB5mH5lysOd+WISZNbdd75/cG+sEpwdq7q3wQMqaUIudz7MtGytQqcahYYgMgwj6BM2leOvomo6YNYbzDT6BdUb5qOKrWQ7nsfP8qZgp/hJc+dznMeUFyliuMQj5nPENRdig5mk1hkPF8nPOk9CyzquUVWAfyxvCUfZp+LzFqWmn1T+ZDxdtFlkPrjGEDrEiUiPx5Wzc1ZzeHAefYf5VWDDVQC7lLPQz/d7kKCbNDUYtdh5qsTXkEg0pLpCn0yynbJQnmmdc4ZyxRP5n+GtM4YEVW6qXVJ7lXMhhZmrqejVNiWmtstoQoPKHZs+ZbFTMBy0AVJ9C63fCGBmGyGYzcrAe2KwHhn5kHKPgo0GEj7LJ0oQnrulDZnsbFoA9ZDPOj82Ve5syIaQpF4FiuMptquImWXhVtYkAis/HRHaJm/lfVI9IVmlT5s0swNY6KaP5znkcDtR43pS5ZR2GkZRFvNyFgOnBkEgxkAKEYIhGeOwmz+MbeSMVP7bsu/DRjWBwxmleIWfNSZgq0oR6sIUnI2upU+6dipcaQ8SIaJnmiOy58UYGwZTg6H0+l3b7GDknTtzn8zj75pcJr1R5w421NFZEDMWMJsxihwu/+Se55pe+C5NEEMprk9mYdc2vMV4GFbMzxefE1hq+isHWZzb9JwWaGt+Wh5aEfyMv8IhoSYyRaDKd8wza/D1GyQGJOCeKb+qeyqKGzGnrpEkFVkXCslHBVBF7kJhXBqOxDqcitYW7mrPkxM+rrYz1sh4zjSIo65Kd1vZcvKUycwR/LNhq0nvnbrqao3/2FCrP9BxP8ZC3UQ6acxWhqk+42jVmzXl04lgzEwlU61f8V+XWowKX1hpabUYnIlBTE1s7G1tk5Yylib9PDNz089+My1rXc80HGP7gJ2mcwzsv4hkV9zEYJ01fvHfsvPDJXP/QJ3CHv/4F2iNH8M7XCHOMUfgVowhODePA0PcMITB87iNJt/8k8u//BM1X/Q/SH/4keb1X46fiGxUM0hinIlblMhJnX/JMot6LacZMa55gfbm4vod9i9qYQX0xtTkhTzxgqWtQ3qpVu4w5BCGXfLd4EOnQkMPMMFP9g9RN5BnvSv3ArGI4xS+YjSsptpYBOkXw588WyxQrRgpqHeDUVNtML8Uy6hWqD1juW5p9um7GcuOdPgfbLrn0/X+rftL0vXLLS8YAU7IiOrdS4SKlygsJQfzZEAIhSTOfKnBejzuPkif/PedMNsLPzUVgqtwDPd/iU8nzNCKAVHZ76NIc/b0fjImR5dtfUX2/Cccoc6BwCi0stzj5ld/LiZc9h92Hfi+XvvSZE8d2djfqXZnHvjnT/e5jueYRP8VFz/ohUttN4ku5CJ6prH3OmL/4Fb3d8nzTb/x3EXMwhQlaON5yXZJ1NucsgnLVBcIoOfX5q8Tgs6jtkL9bufW1a4jO/bnQVJbXoetNU83D4ZeugeocO+cUE7OcZ1OMo6sjpByAgHUilhnDyDgOpDCQ4khOKhAUI6EPhM1AGkXAox9GNv3IejPQj4GQDcY4aeLgGhrfiMBkShx9x19y5lO/mvZDb8Fd+x5pwFbHUNQ5JzFVTImQAmMK+KTz2hRRQFnrhkEEpTZDoB8T65DYhKjvRfoxEoAxZw5iYkgqNhWUn5qV75g1FtCGJ9b6urZMeKvmtUHjDc15zmx3sfUGaXDmNI9qU8RihQcYI87kKoy7bFu2FwsWy4XkBKxjHB0pBna+4fHsv+w5cP2HlQMtvmKjflERcgXxefMV9yDe4ZOxpz4Gn/2VLN77CqnlbhrJx0Spbz348h+n+aMnsN49w+6vfBeX/fen8YHHfxWt9zTWsrVccmRri62tFTtbW2xvbdE1IiZlVXys1OkVHppFeCUxJGLW2lBvtEZCxr21hV8lAZnVwLbyg1UA1qeB+77+F3jLfb6Lz3rjz0l84OT6cwJiqjXigolCRur/SkPh820zuhakHIlxLEvxFP8e9h71O7P1q/hayq2YvMjJ9zy8OsuOc/2LIgxZ/I6YlL+BrL8WQ9BcSt8P4lNp08wi6BkVFzO2INalRkriSWdK2KdjExXQVNNJTjPMIGNTZOu3vh9ntemxMbSh504veiqN9ZMAqClxacAgdfhv/aQv5Tb//Pe89y6fy5VvfAHdZpdgDGG0xHEkjYHgPEVbMYyROAZIEUumcQ3v+oT7c8ezV3PJwbXEtoVhqksftXFF8QHL/Tu5upD3H789l5z6MFfd/tO48N2vwFuDd5bGOeHBqD3b+Z3Hix+dE3nY0D3jscQkknnJlCwWzOuqBdNVSqFJpGSrPQkxak1CIthYaybIVoR7rKAzVn1O4cMl7vX3v4qZe7I1Ds8KDeXKmZx8xOLzmuk7s+8WG34+bc5NeggFGx1DwA5DbYCYTaY1jcQT+nmpmciVo5ALrmgdzYkLOfE1j+HaX/1uzceCtQ5X6iicn3L+mWovUi5iU9oQL2fJS7tYub9Wx41TUew5FpxLk3cEZRmD8IpB6+Ccw1mn60iGt76UdL+vxH70vfDhd8nxcvGgJh6X8Pmkvk5iOke+/BNg2GBe/qyKY051GBL7lSaHshZIbtr4ju1vfDIHz3sKOw9/HHu/90TR+9AYq7pYuYhJWy5/1C9yzbMfBwdnsdbi244rHv0M/uknv6EKLCbdf866XpmIiRViwSVbhaikqYaG1znPRL4Ek826PtVMmzEYpwtvnvncxZ8r873WO+s/S5xfn5GeTJ5iE0D3YaR2QmPiWt1SecRl7glPs6zX5VnOhYz/Ne7iv0mhYApkP97O1ahkuPbB38ulr/893n//b+UTX/XLMPZI4awqfkWPDVJQMAYpOLA2zkBYAcu80QC0qH5V60fNs8mvRjEKDYatkDAEj8iiHGYcje9wZgoMjAUTA3G09GFksTnDg0+9hNPe068jKTqs7XC2w5oW31iya2TiukhuM4+54QqeesnHaDtHs+po2kYWlJxYhJF2Z4VdNDTLBW3XsetPsTm7R1hvSGYk5cgffeGP8VV/+VP81hf9KN/00p8g7Rps0+DahtMnbsNr73Bvvvqql7Lwnq7tWHZSZOIWHW5rG799BLdc4johKuYkAbraPwFkYyRHKVoWayMLS0ksl8SzUbKt+lTy91IDmMXRp6jQpSLOocnmBNmJANF6jJw6e5aPXnc9H7vueq674UbO7O3Tx4zduYD24Y+lf9Ev037dj7D+/SdrfCoFaoYp8JowwfPLaPwf38pqkVMxnUjwUtYKJcvOjGxx34oqdDapEhoqdwLDB+0F/J27kq/fvAajpr5gIylnpETSagcadTJyhoWD7CBbGt/RtUuMcRzs79E1jna5pF0s8a0npSDggwO/aElY2rEXoAAhinbekpQR3w1BOiNHGMfIZr1h6EWdNCpYGL0jNY7YeGLTEFpPUMEp3zbYpsUsEnYBtu0EHPRi3Kw6ii4lVZI2WgSQK7HLkCDFOtgLUIlBRSmiFA0IYlNFvrIuIMYJIFeg8ZTUaMyBoDwt/EkLLYkBTClONzjtREoWclsmTuQ1d7gLSspCnHJNy5gMSdWds5N5G6OhB/aHgRvPnuHs/gGjigQ33tF4Vzu5WSsquyLsIMGpN0JySSljYpKOPVmL0JAi9sZZusbRNBbrSvdMFOAfASuFEO78SnJVu2UKaGoraFqKk6eEooyVMQQRrHFCJG9KYbQW0ItoYarOMyQ+eNl9wHfc8WOv12DbSudIxcid9SzajtY3NLYVgkA0DK6HnGkajzMtw5A4feaAkEWN3lrLYrni2NELuPiyy7n08luxtbWD954YE9Z5Ygh0KROxZC+AQNbFuYCgf3z0vjzy4I3c7qIV++3F+JtOcvLkSfphQ39qzTCu2ax32DmyLXamEcf13otdbNMwDB7bNri25fu3PsRPnbw933/8anYIkjRQZVZKt7hkpYBTgekSuqixruCkUZVPjXkpAHVWZ6mQG6vJT9QApTKQKMCLoSa5yjOlFBwUATgjbpWRFVAIgZPzNobIeuhZb9a1C3O3WNKtFnTLjrO24/fcffnW8W/puiJGIYFAUHVx8Zs93nqcb8kp0S22OHr0BPu7u5w9fYrTp29ic7BPDANjDHRGggzrvJLDoBASMwZUZMo5h2vOP6GpbmvF1tY2x46fYNz09AcHmBCwOeNRtXUFvcRpFxDvJ448hP+5++c87thDeereH2NSAO10eC4fqBSmZ+9lPkcltSHOsLcW0zS4pGKHXsRtFosF26sd9vcO2N/fZ3//gPV6wzAMhDFw6uQpvLNsb+/QXdzRtguO7OzgnDyHYejp+55xHGlaT7PYwoZEGEb6fiOiqlA/j67XNht+70GP52te/mM8/UFP4mEv/l7I0C06nPeAFZHOGFTYRObFK+/8ldzpmjfx2lt9Fp/6TydZnvowJWlexY80iQtWwJchkjFcffvPZHPscu72zpeQwkhMkWEYpOh0s5HgMKjYSIo0XoqLt4/sEG91J95z7//KF77j12m9oes6FouO5XJB13VC0lVRy6yF30V0ERUuLAndpm3lfJVgGaMQViwlEJ3ZVAWCyak0pqrBljr5GKPkitnvE9DVgB3rWhxjIoxJVM+HkRQ1SW0sXsVbqi+ckxABHJgEIUEKWROM55cti8aIWGG3kAUrjGTnGWKWQFWBAye65PiM2qiELYnarImMCgwCWFJyhCidI8YxaFH8Pnv7e+zunuXM6V1OnznNmbOnGcaR7kcfwubJL+DYTz6cZucIzjfkUuzpHL5ppOPAoqNtRYymFGeUed10DW3bKNAghNWQDUQpOks5cel17+LCa/6RZIowRC6cCYwxfOYrnsarH/T9hGbB5/zNU8neE8JcoCCD9Zy45j2wOsJmdZRL3/NywmLFGCQxHMLIxc/+Xj7yyF/lVs/6bjyRdz3i17jy976HYCdA1ZYxHhOZQETubwnac0m4WTMDCiIYlam0JYBVu5gjac4fzxMga52hc7LOx6RkwFSKTM8lL+n3ypyZA3QFvCu2dRZJFBDBlOSFOUeQoSYvZySBPCXuq2BVIbQYLf40BSwrx2QqwJ2BKDUoP4+2xWI5I4ppN50SjynWId3Z5DPOgnOSgLaVFFGSpZahWfE3x+7Ng699JYXoWxXNdeyElLAxEWymcXovFbynJlyL31TGlT47ZbkZtHuAczQwjVctivJeim4K4T2Mka2wT3v1Wzl5xd257T/8OW57RatCU4tuQeu8ilsKVlCOI2QMh29FHKPY2QIIFjJBBUuZxO0qwcyY2iWzEA8kYrPFozs0NGqx18cbMPnwNyrBNcUq9jMnPJ67zRMnlZxcEhCz9+YkqVvarCnAH/U4CaTDfZljs/2eK/BWrvKQ0FQ5B8Ns9qr91C/NCdtz8H2+yp8vm4DvuQrvlblW4qZkUi0y1VoQ4PBzMyiw7ZL4xE4LfdIkODQGEd5ohoExZ97/gEdx239+OcfXN9Ag/kCyRYzJKGieBQh2qIiorPMBmQPRRiXhJUlcV9IAUhjgJcXlTBEhzFVE//7cxKv8bTlhIvfOJ3HW8/R0J/5r81H+18Ft+B/dB1mZgLGWp259gB+98QqecvTD9BsRzy5CuHMxpRQjz+f2fEb8MH9mb8d/Gd/FVhymuCmLIKVNEescN/ojvKK9A19+9k1yrUoQLIJVFWW62Zgv40vnYLZVENcaM4nJoedmyxyQ4qucpDjLZQtZyN3OWek85H1dQ5zz4uMDpMSr7vwVfNKHXs7rPvEhfObbf59us1vncJq/UhERnzpOxTwTm6r3LStpQElees0py5jLydTxI3ixJgLs7DXDZuQa882Dlf9bt38pkVfn6bnr2bkf03UfqljU9CzPFZkSEmnIiaAEnPmrdAAphdJSGXwL6/v8f4abreUFWy1zuQhwyiXngriSS76h7Hf+y8w3KoXkOYvQ69gPHOztcebsLi92t+Wyg/dwYneXFCPtcsWf3Ppz+cb9t3F8Z4vtnW2O7Bxhe2sL30juofGepm35y+sDgxn5ils7xn5gs3/A6TOnOHnqFPv7+/SbDWEYtWOrU6E9Edu7xm7xjuWtuO91byaHQBEGcU7E3hZdx/b2gucu7sV37nyQ7/qH2/HkS66jsSWuleu7jR/55tUuu+OCe5z5KLfeO8XJpqV3PUO1YHpXixiSFqDFlAVHSlEKXslaPBBq0jAGIYE5wDtP23V0iwWL5ZLV+dgZDKqVnTDgmf89+7cU2wiCZetYLJ9nrmdasiGztUV9w2wwJk2+Q5IuSZuhZ+gH+r6fun+NEku5xtM2HdvbOxw7epTjx49x/Phxtre36VZLFYgWe1bIMsY7drznKZ/seNI793nKJ20JsSCI8MowDLzgesuly5FPXo5odTEpZcaQecrp4/zA1g3YHBn6jYzNcdBOr6GK6sZYBEuykC+M2GGjoOBMVkBwFit+bk6OnAQrSuqbJiviUoWwUu6cPWeeTm7F7Nmo3ZgLVUlxaDhHsDrN9q1ZqxJbzZ5zTBOJuBIaZ/sXUS3Hh779l7nd078LOxPiMqmmfmvOptpnXcfK/ZG0QaqJ93Ec6IeBdhjwoaWJrcStyYJDCjvy5G8VP6sIRJxvHqN3VhujyDyp3c8FyNecpTyNkjspzyKq+EQksQk9Ljp8EnH0ZKVII+SMTUV4QkoaUpZuiyYHSKocYMEkI5iuTUQjOEoUQAyg4hZZx4h3TvHJiNQYZxXkMXhvMDhiKbQ3xZeSEe+04KN1Hq+5F2eNkOGi4FZC3DE407BotlgtjkqOrlvRLXfolisWW9s0ixWuW+LaFlxDNp6sQn/YWXFKiXsz9R4al7BZx4/NVZRJOrMXEkSSppRiJBEwI9R4uJCaSwxW5ndZK8FIEaWVRicGw5h6FX03oJgCWiAyt9/WaicyIwJjZRw451REUn1Xg/p1WdcLETsSHEL4B6LxUvyPQA5p6lJtLH2OHKwPONjfJQw9HsuqcWy3ns4aPGCSEF7HfpD8kXeCGzeNiEP0Pf3Y/wfMnH/9dmx7ybJpaJxTvkQmhEAeR/IwkIaeOG6I44YUenIayVnXxVnuJRBVyKGBFAlpFPGoGFUwTToxJi1kkgK0oMVaE65UUjoFbykemBSRFR+cahtzweEKtpQhppKTFcG3nLOSEOV5nzhxnMsvv4y29RzsndUmIPus9/fY7J2h39vl4Zs/4DmXfC1f975fZgwDJgaxt2RMjFXQIKVEHrMULYZE9BHrAs43JO9JCbp2Bc4T+jUh9YymwbaJaBzJWGKKtCng0gjjhto53Bq8d2TfEF3Bj4yQB6HaI+GMJ0IcGIaeZAd5FtZJ7ivlKtSBk9wUzpMU10oYDrrjvOHKr+OB7/xNbIokU0SbAwTw2ZFbRygNeIbAuBkYNz25H8nBkLzGT3YSCcI7uu0V28ePstrexjaekAWrL/keKHl3qy9T+T02idizRztk6oirGA1TLreaBneexWSVb2NKGCIihBScKNfYo1pia8B5bNNguw7bdCRrpfA7RM15QECKVjNqx4ooly3xevEhSrGz3EGZUzP/Pk/kspwyH7nj/eh2b+TUxXfEbvbYufGDKjIohSyhiF3P8JlsBNPMUjUsZEZtupNCpPujp3DwsMfRvOBnGP/rk9n5re/BkXBNx8VP/w6ufeTTuOxZ312xd1uaCOaMS1lzCCWPYOr1ZTLJekyW4xoDbHa58iVP1XoNxcHLapGLb1VI4ro/o+sGBcfVEWakoMwYg89T8WjUNdAYw61e8Qx9lrIVX7AIoVorGbDEOfs3pgoglq65kziV1SWrYDK5PvcqYgOV6CjYmOIzzk4Ysfp3FP+IXEXAbBZGCtmRo5PmZdYRfEduV5jlEZoLL6e78DLckYuIy2NsbMc6nGdzDBiMo20czkFLp3Yl1Bi06df4TY/tB9j0ME7UarLFGl9F6iR3IYUm87mZ9Zlba+ga6b5staAvKTle8A15RtJ0RIpkC45ehKkkV6yepyljVHDw4uvnbCovoICiMUuTonEIKjYVGVMgppFkRowNOJuQaCgSo+ZQA8QRUkgM/cgw9MQxs77NHVjf89O5/Sv/FDKMUeZrCIEURxHJmQlUe1CMX0azM0Iit1lPfBZIGIzipSqWURsEWFptw26suHnJaMFNjgQSUQdurFhCxJpENNUj0GKFIIVAYSQTMc7Q5o6ms6TsCdFAHoXsmyOGSCTR95bUZHyM0BhytuClUYfgm408yBJ7VSxeXwUPLBdgEtbqDNd5OjVDKDb7cJR1S4Ituc7xqfHG/y2bcD5LTinXsVLwNaP+OdbJGLYJnCMqz6hE8EaxlFTW/1xysqWoT9c3UxC8CX9E91BEdgsGWCL7odvin+//NdzhTX/OP93/YVz5mj+sTqnwX3O149kqPxZTxQnLupzThEMnMv7u98Pd5k6k0zfSPODLsG95OXsPeRTH3vH3tNdfhSVx1Tc8niue8+P80zc9iU98xg9z12f9CNlK/GXqmjDhDVfd83PZOflRbrjtPWnGniPXf+hQjHRLIjLl/QSikidv6l/t5LthyBGMkUVwLnxQbGrdV0qEMTDGgDGGliyi+FDvgStF/Npn0JSbWM9sjs9SX7nyxgzz51QI/UbPX/yX2ScUVzNm+rs+fD33Ms/OM+Qj6/isp2XrNU5vGmrznEOnLzkb8dNkrDrUlzDTh8s4zTNhoHmebZ5X/P+S4pivb65tRBT0Fm734QK2f3ndKz7XlKearuvfcj5lX7f0mbadN07Ve2Oy2Ai1gyl5whg4e/Y0MV5EMBGbezbDGmMdYx7olg1HjmyB69n0AZMjloB3LdZESAMWw5g2OGNYdQuOHd2hax1nN0GOnaJ2tZfLlFRHEQuYctcpFXxlsjcF1z38PA1t0064IlKwxMe56zVXomMkjAGrwi8hqK9eOLIaE6csMYh3Dts0E45zvmzWkWJkjFEKkzci7NNvpKFCTtD4ltVSxLOsa3BNh3PCGVM9BgxSsyLNs3TlKaIzJb6CikOY+TjNNxdD08lf8bHCnykYBxrXZ2urj2mNluAVtdIaP0ycBIB3piPcQMu2ibxuOMJndrvTGljOE1T0RfG+Mo7OOUtTg4rCS1H7WM4zHc4t5zI2KZ/LNU+N1u7kIlxciuwBshQQ56B1LalgrKnGzcboCilTtG7JwDMX9+W/bN7BBXlP7lFO03kwxVN29q7BSB1SrR+ahCjLulnw2gJmlnlltSFA8fvq+lIMUxZfpXBTCl9tHAObvmfv4IC9/YPKVd30I8MYtamokVeW3FkIhmHMZOMIGXxzfvEWAZqsWA4AEyec6pfYivXIlmefB3B86Gt+jju94DH4IE37krG3ICZuKKpGNcYuDTeUn1tGYKkB0OErT93ouFd/PmMlzoqJvh9xGgeUvF6pucr1XDNlLkzC0aiYWBJBOuURSM5F+JmaysA5YUAVn+hmeeos+YOjX/k9nH3tixk+9K4q6HhojEHFvgseCjC87e9Y3P/Lsc6x//ZXstW2chznuehRP8PZP3gKZn1GRWUA79n+lp9l7/efxGXf8TPc+Fs/zJAyQYnzhTtiZ8XPkkYwNadglDNcMBzhwXm1E6WgX5/WBJxULMNk8V0smTFF4e4AJolI8ah1hTFGnJXmBa7kUcmarjA1v5KdAedIrkEcWzTfQ42RJW+nMT6mNq7IOYtd6A/7SefDZorNp4ap6kdNvv//G38NBEeqDMXiX8kB6jMp9WdQTMPMFy9blvENasME7aifyfW7s7knD1zPPU/zQouRTc7gxMZaK3k85xzOnyM0pfhlaTacUqwiLEbnbqlt8tZKjsZZrBc+stgD+ZxT39kbwx1e8tMsuo62aWiaRjANDDEmxsYr53xgcJbeWsZ7fxndB9/G2K2IX/sY2j98EiYHcteRc64crhATY4qkBPbWd6a5zxeyfuGvSHOmBJR6S2bQwQxKuMVHamrEMK0JRQwDwYvLXHUmKYYl51Trc3J5xvIgxrs8AFZHWb7lJRids5MrU4JhXXfR+c1UwyjPfZYHL/nAOpxmAmn/irH6H73FYks0DC1zIU+zDk0UV3tWl+Xyykaecwll83wOGc7c9r6ErQuwceSm2346Jz70Og4l6JH7Kf9WPomZ4ZXKwYgxE4NwQ8IYq0BHjEnw+WrDoOIwpszPXL3WGudruXmxywYDztN/wxPpnvcUODhDtp7+O36R5te+F8I42THlbAx3vR+mW4FzhLt8Gqv3vaX6uGXLedaE2VqcTSxe9jvc8Nlfx+1f9kz8zk5ttFXGVB1zs+L82nAzRq74w8cTmobkrPA6bKjjr/IEY1T/WXyzw1th+s+x/fL8cuWHU+eLjgRjlNMzxUdFjKeuzzOfp+RfCs5U/efKX5bribOGmFNeXfMyOUkToBxrg8Ziy8rkqnknXW/Pp81lJ0KCFiASw8AwRNYHI+uDXfr+gBiEb2SA1I/EftT1PjOMkXU/sN4MDEEENaxtsN7jG+ETSs2LPOfulc+p4v6YGe8ThzE6nkxWTkCq/kGZ+5qBIoQkAlfDyP4wshkTQ8wMMbEZE+sh0IdIyIYBOBij+FI5EwpvWWM8LddXCV3hOkvMob6hPrvK39UcBTnhDHjDZPNBWS1i65zRn85gvCd7hyHpum9oncHmiEkBkxPeZKy3dF/23YQ3voSjX/Io4p/9CvnMDRiTaaxl4VtWW0uWWyu6rpVmscaSOc3Z9XVsLr6MC97/t7jLL8G3Ha5xxJTox56rPvnbuPiVT+P6r34iW7/3Q6T1hjM//0i2uhaLYdl17GyvOLK9w9bWitViwbJrpXk7GnvnRAoiVJSQ+RJDJBEx3oB35ODIbQLf4JwKbmaYOzIynTMpgmioJBXvMnTDHp/5uqcKDlvXa1tHgfBGMmMeGVJkzBGnTa3OR5HtwmXOZGIuObB5jK8YPKb6YUUU2M78SZGurF+ZHaD8XnwBzrF1h9d8EVASlxxT8tKGkGEYR4ZxFA5prS8pcViqubOS6xRRqUnw2ZkiNFXDQxE2LXw+je+tET+v8cK7apz4hY2TuvkSFxX7Z4rQmYV7vv0l/MO9v5Ir3/4SFv3Zut6mEBlTIofAaITDBZCiiAaGIFj5P93+3lxwcJIPHr81i7DhkgNprBxCYAij2O0YFVoq9tnQ7O1y+RC4+vhtudU7/5rNOKrmR8nF5foMTAp672bi3+rBFDFfZ0RwKpnZMK8PavIHDnHvi/BUyIJ7JUtSoSunMbZRn7vsp3pMM/s1928qp6D44jM7qYOm/m1u+86nrcSMoE+hiImHWF/eR0L2NRdfcjS55DLUt8jGYJc77PzXJ3Dy+T/NxY/4Ca575o+AjsNSl+W8m3idle8hY9FmKmZR/WvF+OQ8p6btzlqcLToRk7BnVj5QItTYw9hGxHszE0aZMvbVz9c1QvN0qYy2Euwpd1drwzh6IelTH4L9y6eTrryvzk+mlIeReecE9FSBtBkf1DXQLVh+xfdz8MzH1GuuMQWzlSfDpY98Ejc8/6lc/i1P4drf/AHy2HOrH3gmVz/tu7jTDzydD/7CtxOiq80nlSAo550S0lPa4I0hOJnbOWte0xrRecglntX4+1CcVO9qDe7qWJ7jpnUElXM3JcAXn71cmTH1/pbcXNKD1fcLHllAgkNBZfHFJ1ys/lnHzGwWf9zt36xQcG7jhSlYytVJNsZwyUt/keu++Ie4zcufRupPM3hPSkkUL51l9B6jDs7oHM6Nh4Jjo8CeMfogc2IOx5djTgkxPTkkYS3gFcrsgFgXSYO1M9DSQNc2NO2SNgz0/cCm74kx0R8Eds0awx4pOoYh03Ud3UqK7mN2PPbai3ji5ad4zDW34teu3MN0DclPwhl4IQQfax22a3Ftg2sa9tqWYW+fcNAT+4Gve+XP8gdf8IN8/d/8hKqYRnIa2ffHefVt788nv/dvedGt7sPnvecldE1H13Ys2g7XdTRHjtAdX9Ns77BYbcFyiXNyL2xURc+URNxGhWNMmgrP6oQtHY7K4MzT/ZYAtA5N6iBXIxONEqiMiPokEmf39rj2hhv58Ec/xjXXX8/Js2dZj4FsLPngLPvPfTKLL/8uzjzzR3F+IgzOBsEMYNLnPHNG/q/bjKkLRklgzheTqleUZvOufmL+czLCJhuutzv8tbsr9wvv50Xtp/CQzRtR70RdN1tFO6wC/Nkakjeq/OmxWBrf0jULUsy0TSvdebaW+KZVAngAZ/FtCztH+enjX8H/PP1ntAdnGYeRMSSCAds2rJxjlS0mO8Zk2PQDi91dDvbX7O/tM/YDyVqyt+RgSYMjNo7Ye0LjGJsG5z2mbfE7CZ8yNkSaEPBNg/VSkOWNxzXFKxYjFKN0ucvWiqqvTZqwzbXwWeaFFZJYnILySmMthM2kSrl5JsxmpmATpq5hplo1daBzJOaRmOX+lpXcZFddwWzFGJdOZEqjgmwJcSSlACYL2d6JrnwaYQgj677nYLOmH8epuyJpEqgpKqdeBKGcJsO895qkFKc7pcnhc0YKIhovZP5K2MjaXaQ4rEqrK13oz5etzJHivE3gtamiXwYBwYwxGqAGRmD0XkoxlBRnrQQvmTgJCpG57sI7M3Q72BT42MV351bX/aMouVpH6YwhdSoObxtsazFLUcHs254UYg0azp5ds45nCSlinOfIkaPsHN1m++gF7By/kNWRYzTdUhy/JITHBAztkhZDbjwxjqRRBGVeZm7DbYbTbIzFtZ7FcoVrDbaF5DNnTt7E7tmzjKc2rNd7rPe3WS2XtE2DazyLxRLftrhOuhE3iwWu6/ih7p9g8BgvnSCyKtcGhOSVTHGUZyFMnRD6TCrAmA8/LwUNiw3KOcp7qYB8So82UrRcO2FIJFWftbVOPpnEbyjdIyWBmMjalyFnPV8Mm0GSvJthQ7dcsLW9zfaRLVzrGWzD78R78dX5rfxBd38e6d5AthIUxZSxCliW7oTiWIqSeuud2PDliuXWisVqwembbmR/9wzkQQqfmQGWRaW5BMrW4rzHNR7rzj+hqeXWikjmxtOnpIg1RLwBX0HpSmevAWTOmR8980KedPQrefLuH2tnKaaoQAfDPLFijcXZyfHNSX7JRoWenBWhKefxPuG9p21a2mZB1y7oOnmtDzYqvtQz9L12f5AAUPA2p0FW8cEtTbtg/4IreMXtv5iHXvUiONiX4t5+QwoBETkShfY4jqQU+eI//V5e8OW/yJe/4FFsTMY5S+ojJnhuOHEn3nHHz+fT3/Ab2KGXwMl77vW23+W1n/JNfPL7XsLO2Y9JQt17UdhuPN6J2jZZElwH6zX9ZuCjF34iw63vyvHNaT52twdz5w+9hvX6gDCKIm9OGWct3WqLtNxmkQa6tmGx6DAXXMLrP/Vb+MzrXsEbPumbech1f4ZvGtpGj+n9VDydoj5DFU0s9sXZKdGnT3q+FTKUBNS5YFDyt1kwXrYpcV78TirwUP40uo4/u/M385n//Pts7X7sUOeUAgoLX8VU4soUcE7/1+FVz+H8o2qA8Q2+W9BtbQMw9gPZWsZscJEq9mCSxAApiWCkVUKO0bhKCl4lURHr2ugIydEPiYODnr29PXnt71ZxtoODNZuNdHHy3rP909/IcmubdrEQH8zKmuu9xzdeRGjahqZpVSFbwQpd060z2iVFznuz2OLV9/hqPudtz8XHvhaROl2bDUaLznRTAOSBr/5l2Xfjq2p1VEKDsVpAAVxy9VvBZPJiwRgcZrQkvyCv9wlDz8W//Z1EI77wbZ7x7QzW4p0TP7kA/EXXMKGCirl2GYnBgMszeyQ/TYZspRsM5txZMRvn5TmXOVTigumDddzPiSh1H3kiadWEVf3eFL/BOfNsBtxNVJwSQIsatqzDmgiJEwAyzefpK1NcX873MOm+JEe0mvW82rpuqQSxyX9PlE4VyP21Bqv31zkBZV2Wv0vhnIKnxvE3x+7D/U++lb+76NN4wEdfpYlHq4liEcEMMWFMULE+6aqVTa5jvXRNMVWEL8kzKOCanVY0isdltDiRFmstTdtKQZSSLYoIz2q4iYvf/7ewvY2zlqbxdE3Dsm1pVASmAJhlK6JRzivRwztJhGkcJR3/yjjUVJlxglEYOwkmqdhLtSUGJWpO47TEV7dE6snqH07zYhpPhQAltmBK0lbgLk+fPUTG1+RVSkWklUNz51ABCMjn9Vhl4BsEYC7FZYcIPoqbFRcH6pJSY81SqJCZzW+QtQtTbdhhcEzFWOdEzfN0y7P7LgJTrhYhW+vq+ScV9I2YGlfO73+xG9ZamqZRLF1Jm0E6tFhjSTlx04O+gxPv/VuuuvsXs/jHF+LiHkIhkn2lrCTWbInOkqMrCLrEvNlgNAOcxsiYJIFUUp1TJymJAfrsWBIxRkQSSsfHzx6vphB/Qxx4BP/Ib6a7883hnTAE1tqZD2P4kfx2zpyWLovS3Ui6ggvAHerxPifdyJ/vfAoP2H0TcTjLmSoomRn8gj++6IF89XUvY7AtL7/gDtz7zHv5y+7OfNaZ11cxjahiGkk7psy3c8ewNR5rShdBfc9KolXmm5AAoplsQUleWGvI2mnSO6cCOg1N12gxvoyFlKQz/Wf/05/w8js/lM98zwtZhQNNSlDHQhXYULGaWDqsFHLGfC7Ua5jmlTx7JVep4LEQ9Sf7Wsepjk+jvoyIDBsl8p1fuAfwf/ycci5eGLMwvj6Mmb9Rjj/9nPvW9ftZcOM6BpOKg2r3nmEctWtKmBL1s3UgpYwxaeZvCL5TEi5ze3CzrT5be8g2gI5ro7a22LHSWYxpPGRjaydZi3R3NZga+1ssKQbiMLLZP2D39Blebi7l6DXv5b3Hbs8dT93I0WHNK678Yh56+i0898S9+ZGtj3Fs5xir7S1Wqy3xP0Igj4G/u2nk2jU0Fl7yvj0+bTmwv7fHTTed5MabbuD0qdPsnt3lYH0gAvCa1Iwxs9ts8aEr78+Rt7+Kl114Bcff9KcVC2zbhrZt6bqWxaLlfsv38b8+8Sv5qhteyntu8Cy6RvFfLcDNkGNk2GwgSjek1jk65xiNqWJ/OSVxjrLEtdZZiSWtA2Ml5xGkA10/SqeqWlyN+AIivi0xRdOJsOX5tJ1LkLulF7f0+xQBUwrC1MiriLTGPIcwM519RcDBii9RCqiHYWCtgtLr9abOK+eEuLVYLtja3mJ55ChbR49z7JiMs65b4BtfMZVIEZqyuLZh1Xh++TNXgiYriTGlxJ9+ZM2tjyU+chC53XbDXY9IcUsKiR96T88Trsg8+cMX86TLe3oVmhqHnhCEjFtfY88wQAiCmdTui1kFp+Tuyr8NeC92Q0SffBX7MEjBt0EEhIyJk63QorXqz2luqxRfFZy2FH4cemlOLc9sSulAYfKs20+exkAhYNzSaxoLiQ894ue5zTP/Bx95xM9xxTO+D5jESqf08mG/U4dCuZp6PSGKoNw4jtJNdxhohpHQBax3lKZJc/LnFGvqJRgVBT6PtoVvGFOEIGJkVtcErEUrP7BmEogs4rogvmFUv2YckwpLdyQPcLhgvJCUJK+jIrXNAh8HsQXOIh0QxS8sczPlDCpAkZlIoMYamsYRrZCKirxDSg6v49Yl6TJVOidKDFR8YodvPG0rQsFdq8K/ZJIrc0TsjG8WdIsli8U2y+0jLFbbNN2KdrGkXa7wiw7TqMiU9WTTKBauhS3WYbytndAL6VJcQcVttJu6iIZCzLHMILXlEquaW5wDgYyQNVMWAiAq8B5SEtzegvNF/CSDhlSlkQ5Ghdatrb5NedbOWrAoYS5PgmO6PpZCh3nhpUkq2oXkAiOJlMfqD6QUiSkQU6A3ntfe61u546uepvE6LNoW23Qi1te2QJY1LCT6zUhIAWuhU5HnnBNjP7I+OKDvN/8RU+dfvS28Z6F5wJxknoxDTxoH8jgQx54YetLYk0IPcSSFsTY1EVITJOPELpEwURvhKPHbBRGjaGyuFg19Jk6fY8wZF5P4UsZgUlLSbfnJBDIVjKz4hLpelg6LOYvYLyZjouAzQi+JLJcLjh8/zmpri/VmzcH+HsPmgM36gM3+Hv16j2GzR+zXfM37f404DOQUNGMk43M0nkUSMn0OiTiqoJXmcJ3L5JghRKz1RDtKPjpbomnAJUzyxNGR18gciQNuWEPTKH5psY0ndy25aUCJwTlLzg2AFBDBj0gce8ZhzTiuwUfwDSYbFfCn+tfGiLgoCFZqjSH4Ba+789dz7/e/gNde+XA+473Pkd2njHQcdERjGKRCktaIaJgpcz4mnGkmnNcZbOtptxZ0qxWLnW3a1QIax2g0dylAqvrhRs1qkRI0uAQ+gU8GnwrtlakraRYczRwKSmRdPv9y0bXlF5VYlQv6A8USyWWZai8yBuNFaIq2ITnPqNiEU/8o5qRkvpLmmHBoo3ib3FvhfwgJTvk+FWNS8Zs8+UEXv/uVXH2Xz2HnI+9icc37GBVnm+dYxGdTghwiFJPQYocoQu/EILGQEvS3fv/HMRZWz/g+WZNXO5x8xM9z4ncfzUXPEBzeZMHjkooYphxwKWuuyddxVqLK2Cz4wBc+miv+8udxmwNKtthQiG+av8oohq3+2rmxbNmr/r0Ia5WC4ZxFhG+ez6j2L89FD2bY/Dn7rfFwTlROW5rOCSTHMuehTPuZERe1ojLrvsiKoYpDg7fSQbMW1MLkr04DE2ctBk/KljF7BtcQ/BK7fZTm6IXYIxfSnrgEc+Q442KHdfacWUdOHewCF9zygP9P2qLzDAZ8zrTOs2g8EAlRGuzgDNZ5snVI3/SBHKUIWDgsygVRvwao/owzRgTWgohoeu9IuSFH8R+ykaI9Ew3RJo3lcsUmTbZ4I9iYIsUSCWbIyUhHdQtGhc+q68P0eYyp8xcjRTCJgMhQRDABQwSjv+dAykHPOxGHTBgycczEkEnRMl54CWc/+f4c/ad38JF7PZDLX/tS4jiQtBFLDIGcAuSkuJ1gf947iS2cpXGGxoy4rN1TjCG6FpNFmE0KfVVM3nnJrxtPIbpZa8k2ExHBqIHENbe6kusuvxN3fN2LScMgnLIm08XMGDNDENsn+UxDkywxC65rvWOxWtAeOULnS2GfxHPRKEc0G0Y2sgY5g7UtxjTYaLFBRDecYpsiS6XlskZihypXYKw0L7MZi8dapEt4wcVmmGXxW0qeIJM1PqCKc5S5btXu5ngYkz3ftlrce0t/kw/cwruFvF5yGmITZ6mZWl8pf9K8k/J6ZCHPZaGu+xVroPsqIl2zeFoPOjs5tYt29gbQjgd8wt8/nw/d+4u5y6t/75BYRzZ2FveIfYjq644hMagYdxhHxloYqLH/u15P2t6hvfAy/N//OcMXfxNb//wWzt7nwSxf9+e4Ux/jiuc8ng99w49zx9/+YT0OmuvS057F8ga43dv/hg/e50u5+INvY+e6D55zv3W8Vdxb7w1UbKoUpB1+nuc8Mh3IpZFUzEn4lFrwiPoZMRcf0xCjOSTEWIvlZoWkhVeZNXdfl0ZjKEWQORd/bsLD5qc3P/vy/eoNGijE8LJ/dWOqPwBTAen5slnnVWDGKkYIU+khQLFRZS6d+8DkSlOaYVSyymC1yQBQn8vN/RT1R/8PwEHlGH61xf1+7Fd5w098N+P+waFj3ixXWs+B+vu5W61DIHPLn7jFkzm0z38pV1rGsdyfqSh+Oi+JW4axZ3dvT3ANKxjhYtExjBtyDjSNZWu7wzhLu+lJIdE0lmVr8CayN44c92CT4kYOThzdZmvVcdNmIJMJh3DGCR82CD+gFIgI9DUVAtpSfOdkzcrqqxcct+bDgZSKRP+5t8zUcVByL2U5knVRBabsYYylNhLRvGLK4V/7lP5DtpwNMWX6IbLZ9Ozvbzg42LBZq9BUhmWXAY8xAd9EfBNxXsQPW22MZPVajVKn5ZbLWiWYc4nB1NerBm6KK6Zxr3O6ij9pXnKeR1COdvUTVOAqJaN42cRfEFEqqijZ3c1Z+uxYm5bPcKcxSX3QYhqsqZ+fgiNdOc0Uf2OovD1AsEL1UyZeRrHRpa5HDVd5FSw+ZYiCN9acrQ4wg7yHNiiV9xNF7NEoYlBtQLGR+svzu3vy4OG9vGB5T/7r+k1s5U09/mRvTH0WdTN2isGN7riObVuLWItdLc9mnhOfz4XiC05FmipwUMVyAv0wsL+WMXiwv2a96dkMgT4kxmgIyRKTIUQrOWsyIQZsSkRzwCbE8y5HBuALl8mi4kql/sFUU19ELYGJUwaQMx976E9y+fMfw/u/8onc5U8eK6IoGIzWmZX7XMSlpp+ztU3HSsnZ1EJktZOFY1oGkOSaLG3jaRtH2wpXoW08XRSBirFg9zquZZ5K7kBEeY1o62lsjxYiWqaG15MIbWn6PW9gdvMczeLzvoHxPa/j+AO/iuHlA/nGj9X7VvJKpNm1l3lojMRcb/87rLUc394R/m7j8Q/9Qdzf/S4nvvHx2D/6KRgHCs6Q/ugnOfKVP0D4/SdwdGeLzRBYD9IQaFR/L8SCLRncYkkeehHQyuAqz16xIg1q50XuOUfltKF4B/UzVnEzhxHBeVfwQs1H1jVRBLZb5/CawI9JRJarr6yxV2y3ec/9vpsrX/c0clwrvy9X7Dhqk9IcJ3woKpYVw7zBwvmzyRDJM9DA1DooFC+sn62rZfGvi7co41jprbOdU01AiWdn01X2MY+PdC4Uu5dney4zZWrykWs8PIlMTWJl1mqtYDJqWx3GuYojCC9BckDVp9N4QpoEWXnVvHKW5ruIqIArBfFNy/gpX0BOifbtLyfHsa4XUiQvza+s0booJ41grPPEFPHW0FhLb4QDYgH3lj/j5Kc+lK1/fBnty35bbs5qVWOvUBp/RhEjCBfcGu73ENI//B3Lz/96Ni99jpocsaOmXcLQaw6Nw/dOt3kcYwuRRe9J8edljdJWK0aa5lhjiMbORLXNFG2lzHDFPUlHL8Fu9thceT/ad72KahZrPMoshj8HD9DxmINixTmRb45G1tD147j8/6nboJ2BJ1GAKU4KWp+U1CORdaM8jWm2SQ6AKjYlofbkKx798Js43a4wzZITH3pd9ZZK/FprIYr/JI7YJDal/vl8LZMGYUHrW4pwkXy3piIyTPIesjaLX2Wlhk3j8cKBMsD40MfQvOiX2HztY1g857H03/wzLJ71GPpveQrLZ/6w5vW88OidZ/Xhf2B/5wHYMXP0o+/CLBeH4oqyFZtYm+WmDcde+Rya1RLvm6kZ5dwnznmyMak0mY1EKzhEwSPKmE42Ea2I19mxx1lTGyfNGxmWBp8mm1keUuMaZnHQORiECNlJLZi1tuY4Jy6hXqOZ7FLZqh3M01wpz60KZLVLWO/KHMpTg6uUE4lYX0Vabj4bM0kHcbqlcO8/dWtdQxwDIUasA3A4Whq7YLQ9Q+5JcSBFla+IwnHLqQiryXcLdyfmTM5hilWjjvsax+Y6h2FWG2pkFlDHlea8QiA64alWowgMMbIOkfUgYlObMTPETB9hCEl+RhHO6TOMueQfBMPPVkeRkVodo/U7elIUMQ5b56euJ8rfFc3MRFZhnJJFtcZU9Muk4lMlLDomVzvQ70v+OIsQPElmv82RRdPQeEf32j9g+Lxv48hbXoRbOdLiImKMeOfougXbO1tsb2+z3FpqnaIDawj5NHF9knyryzDOkq0l5Mj+ep/QR468/Ke54YGP5ugf/SibTY8NgTYLh6NtG7ZWS47ubLO9tWK5XIjIoyt5k4RRLEPWriIeF8jawLAfE6O1tN6RYktqAt47Eb/TMSfcVn0OWWKymMIkFIdyPxX0z5pvDTr/QxSe9lheMTCSoGlkvbfnmcA24iuL4O3cUk8xvv52aI2ydjaetIuDKbXmasfKMia+hMenUfy6GqPAPJYu8KXBiB9hZ9F5EV/LUf2FDNbgnMElJ8/Nig9nnZ8wr9LUzEqdu7dOOVW6NqtGpgYRVdxXBKsMjXV4KyJTfubPCW5qKv/dWYv1goc3Tcunv/PPhaPfdcSQFBTRa88Zac4n1y9h2sQEvfMHXs97PvGB3O6Gf+bY6Y/QI/ZoGAfGMApGoEJT83g1ZLAnb+LS/FbWKWvuYdQaVI1VKheeKuxbn3rBfcRrwaB5TlPqoq3+3czslqPoHNR1KGcV4tTcluIiUm8tAlaTrSxbLq7tIftfEaIaC8pYKfKSc23EqfYtcd7FZGUyqZkomE+pSwopElIWfKTgDwVco2izUJ3NsN7l5O/+GEe/4tFc+/RH60FmfpLW4TrnxT6p0FS5XzZRhaZQPGrC2cTmSM2kwRtLo0K+XnO8OSfh7CZpkmpcIh+9mPiF34r701/ChqE+vGpb9eApa+NPM9MCqIJ1GSKYm66DV/w+6VO/BP7i6TePH0D4VQ6NyQwei7GZmC3N1z+e/tlPoP3SR8n1ojZfbXXWJlBFe+DaZ/4ol33LT3P9Mx6DCQPGWq79pW/nVo/6Ra751e+lazv8vFmsinaWWpOsmGqw4IPUDqWUsE41QKyt83vu50kcACJylysOWpqNlfkNU7xd/l3eFS648jnjWH3QiWmqfAIjonEFpy+B2mF/dcIvS5BfYg11nOSopghd/svbv1qhQGGCust6cQqEly5OVjumGWO5/K9+FmsguGIpMuAYRod3AlyJarudQBEdSeJEaZdWFXLJZTCec5cPryWVvosxkgS1jdwowaUjKcqXCiDsrGfRLVi2W8Rl6SIw0I/SkXH/7JoYYH0w0Cw7lqsNi+USTObHL17zhGuP80t3WkO7IHqvwUbS6zNY7zF2xSJFtnMC5+mWK8b9NXEzkIdA7Ece9a5nMZ44yjhIF+oYEqv+NPd+6/N5x50/j/u95lmcxtA4VVf0Lda3uO1tmrNnWR49zs4NxRCqAAEAAElEQVTRoxw5coSua/GNq/fd6gAuYlGRfGhAT2iOFH0Y7MwIiPEVJXp77g3XgYw6WoYQIuth4LobT/KRa67lqqs/yvU3nWLvYENAgKFkLOnUdfTPfKyQThVozvNZ9P/HrRihW3y7oHolEi9/NLf42bKrS9IuX5rfwavcHfiazRtmUEdZTCYikCl7yOJmWQOtc9AtcAiQllJi0bWkOGINbPoR0yeMSSxWHt8sedrRL+KHwmv52eNfxhPdn8Nmw8nesIinyVhc52ldS3Qtbz1yZ06Phntf9XpW7VmS84Sh164PWTt1RIYU8SEwNMc5ul7jGo+JAZfBbQZM01QHzzeqouul4FkIeFIMZjWoEIVxJavUAFGMbtI5E5T4lQUhLz5d/UnO5AiTvrwE9WW/tUjEStKvGJVSzBKjFCFYo88AIdnnnBFJBCGjmaSCOHUIJMI4MsRASFNSMKREP6xZb/bZP9hjGHqMibQdOG8r4b6en7UiPOVFAbMoG2ctTAtRgzYjBT2+9XgV+SqqypomKZLL6qxPBe7n05Zn674BJblo4GgM1kmxQQkajJk6i6YYydoVuyYgDRglaUjwkbnsuncSfYdpF9zuhneAdRgHOSZCcbqiBq8mYDC0rsEut+hcR1BC0iaM7B6s2R3WuK5l58g2q+2j7By/gG61Q8Rzdn9DE6BpO5rGM2bDR3rPs65b8j23WXPMavfYIF2Nv3xzmhfuXcSnjddzKQfshRHXGhbHtjnhDLhMSIH9M2c5c+YM/f4+O6stutUWZrHN9t4+vm3wbUezXNAslgL2LZf4xUJejcG2WqSjgaFQ8mDq9liIruoCzYA8cQOKazSBmFMwJWuWJGjlflolpVNwsixVKZL0F8BVihb1c1gdrqpGaZwQM1WAKqTMECN7B/us+w3GWrZ3drjg4gtZ7WxLl8yDfR4RX8fz3afwSN6AsR4jWIoG4HqplNfkP6UE/TDifcORo8dZLZcsFwvOnFywt3uKHEX00huD64x0bjcyf633VWjI+gbjzj/QwjcN/XrNmd19vIHWOjrvZS4wgWO22CCmAPHHzrxAk46FLJOFBF+ESKQWoXaIcBiUTSP70u54BTBPttgyEYtqnKf1HV3T0bYtbdPSNQes2wXLbmA/e8aDXXyOUkA1SgcIsoBMYQSyY2y3+Ps7fhlfsP+P/M1tv4CHXPM3GG9ph46cI9ZAjKEWVYZxgBz5ir/5YcxqKZ3GlIy/vzzOP37il3Hlh17BP37Kw7nX234XY60U+y5XfMlHX4yxlnj0KOMQ6bqOxWLJarmi6xY0TSN+10GP4TSkPe5w9ir8yWNsjl7Kva//B9ZNSwiBtu3oulADxnTsIt7w+T/Eg177q1xgBrquZbXVcen1L+NVl38WX3/mr7BHj6k40CQmQPUdlOQ0ExYqAHoZ9/PkvrwmwKB69JmJPFmAhnMQhtrhTNXHpySLrNMvv+Krue9Vf8or7/R1fM7bfhkTBoIKD4QYJNEsanDqD8s4spkJTDZacFZOrJxGKW4/T7ZmISJT20ePQc7s7++Tg/gDY9Ia/Aw5ZkxMMI4QogjO5ogISQrqkFJkjFLcHWImGU+mZb0OnD27z5kzZzi7u8vBwQH90DOMIykntTsiINW1HU3b0i062q7Fq+iMaxuaxtPouCjFi1Bub4bsiGFkfbAWILdpePXdH8qnvvtPed3dvoIHvuuPqAmfZLGla5XamNqtoSSXjezdWi2gMjp2q3hG1qSK+IPWOdJih5vu+7XsvPXFdB97jwJzShoOUiQvwGcmu6mou4BstijcZynMCTnUhJYrSXKnxS0pkyZTCEzA2hwcG5oVbRqwWjA73w4DcTqbzulEWvxM8uTzTGjd7OctbmbWgepwwvHcZN7houcZMl3Ps/hLBcQqTz5XHK2EoefT1jSt+okGSd6WxUni6WiEgOEzWJuxLsscMw7yqHw6ESt0JvFFp9/Ey47egwde9xopLinCRBrr5CwJYZssNiclD4gdDDFL4UK2tZNEImOykO1EDAmqoot+T/xXufXOWowKBZZHn7JgHk0z0jc9Y5DCQ2cdi7ah9drJwXsRGixiomay2Rnq/MMYJXEJuRFrawI+K9A6jX35blJxtqT7EjJs6YY6tx9gq6Ivh8a4iH8kLWzWv8/GaqqJxFLgX8ZtAZ2YSFxIbGBTUjGbGfk6Hx7/dau2w5Bmc3VOjj73VQqxP14ML7EG9f5Om0waq17yobVg5k/Vc6zn/W+fA//eWyz2HPEfBIyV5IVgRYUokEg2SacEb/AOnS/im0nXroh1IuIag84LFapJKddxdezlv8apL/x+bvWW5+E2J8mK50nxkY4R3XdjHdHKHBAijqexDmcshCx2Mw1yf2+BGHuT2+aPtu7GI/p3cNQEYsxC8NBYFCZxozFEHhpfRbKWs+rnO+/JZPpxYIhB8JCcGUOYXuNIbzzEgAk998pXM+TM9eeszX99t4fxWf/857zwdg/i8/7pBdzj9Bnedtm9+bT3vZTTZYwogD7vcgIcSl5YJ90CvZM4pPFtLfa06niIANYgWAVB35s6MxQHa75fr2uMiN00NNqQIEYgZJI1fM57ni/f955oEgQRk8pK6AwhSAxdC19TfZ6FYCnYsM4em9W3na2ZSYoDS9pMljF785dT/MQpdoA5Z57+X7zNzfrNMgOHfq2bmf2jCgwWv8QUEs+0VicVUwsxMIaxduCrY6jMn5SwVop0izC7Jc8wTT2ouaU18JxUyWwMlCJT8Z3EV465+C2m2gwRmlLbdQ6BEwxOxfxjVmG6zcDB3j5X3vh63njxPbn4PX+PP7iJtFjwJVf9LS++4+fxA+6DbC+OsVosWLQdrfeTYO4wcC8f2U2GIcJ9mp69U2v29vfYPXWKMzee5ORNJzl1+hS7Z8/SjyLelBTT64eReNWHufaen03/ez/PyZSqyFTXtXRdJ/OvcSy6ljtd9Yv883LJ1mrJ1mrFarVk0S3JqyNs5UF8kRAYh1GE0hOYZISEERNZCW02W4zPKljvSVvH8DZhMULMiLKehXGsYmO1GHO+TrQNTdvStO2/cdD++26F5D6R99KhdfTj+Q/Frzao3VZiuBSWZo1vwHDueLYVxywxSTmPGCPjOLBer9nf35ejGCGXN96zWCzwq23e2FzGZe4In7/oaJq2imJKV2ARrRpTxDaeNi1ocsZozOS82kFjeOiVS/7gfWf5tMs8n3rhQuLlKEJT/+uTFnz/28/yS3fpyLFhuVgQt6VoeehF3Ltfr9ls1qzXk3pvr6SpGGMV7y54IYov58YLoNY0lAKZMidLYRiguUTZcs5KHKMknab7roS0FFMl/cbZay5+NReTPFQUrL7WJMAwvUIRQCzddauYVeY2T/9urn7kz3Obp3+3iGGZaY2pOYe6lV/Mobdk7YrEEKWwdRgZhoFhGGhVeMp6EV4v/nYFO4ypZHTpdHQLQgT/yZtvGnKYsOVSnFGSINZKMbZR3yjGUO+fLfhvlphjHAKhHUldo7HLBDFKuCUfzjkRuy1OPvC/c/ytz2N56kM0BByuiq3JfYcYItkmrJNMa8qlGYjgkKjIEiZhnMF3DuMbQjBEE7B4EeMwRoVbJuzXey2ccB6bjbyEIqjz39H4juX2UVZbx1isjrC1fYzF1hFc2+I6bQ7RtOA9xgl+bKwDpdklJI6Tea2jzBTStNhAo0TIrAovyarfq+RISmwYU71/xCRdV5Xwm5HfRRRF/9NGRdnKKxkp6A9acCn23FQ7MCcfl3nilQyTiFJgU4VSZyun4jQVZ1QsIibpzzX5kSM5Q8yBmEdCjgQCb7zHN3H3t/wO/3i/R3Hk6sewtdqiW27hmo7Flog0j/2GMEqxXO1mj1FRBcM49vTDQBiH8w5bXLUtrXcQI6OSNEMYSOOAUcGJVMRiwkCMIj5BTjhnSMlK7tBYyYskbTCFjFki9EYwyOi0kzhSYFieqbeOZAXIT7k0pigFvnKeU2e98tK5CDp2s5LBVcCl4GNkmeBGYp1ji44jx47gvGO9PmB9sEfY7NOv9xk2B4z9AXnsSXFUgZwgDRYMZGM4ubw1/3jpg/iMDz6PxXhQhaZs1nyz5pZyBlLGt5Z+EEETtNmMtQ3kSBzXjDEwDGuGvqPxHdZp3rVpRWAod8ACQwO2qXhnJmFiwORAGjcM/Zpx2BDTKDYyW8mVRcghi+hBzkJEtnbytYyhzQMPeO+zecMdv4oHvPt3NK0rPod1DaZtwXoppEjSAd2kLHZnkG7ZzjcVF7LO4xYt7WrF8sg23dYKvGNASPtS5Kf5OI2jSUaEOjC4bIhAk6DJQgq2dVSU3IF6SCW/O/spGMP5tB0WO5gpHOlmZj81Z6LLRHIO0zS45RLTdeSmUeF4yWgWQdxkagRbx38V7kYIfUbJslIETM2tFiyj+jCaA7/wLX9BJjPWtXPyc8rP6t+ia3iehH1yCMIn0hjKGRFpdio4jTGcfPiTOf6HP8apr30yF/7uD8g1GAPLI7jN7iTQCaR2SbaWJh8ukrjqQd/JbV/+q3zo87+XO/zpT8m9zpprNlWjGEDxVV2jbbG5dWRxblxb54luxf+jXch3x42eo/qd52Dic5wx5VRYJvWeob5jBinChdnnJ2xPRwNCCUaJ9rZiHFnvZ8EDU5KOzEL4nNbN+ZCL6gBJ0YNldC15cQR39EKaE5fQnLgUs3MBaXmEsVmyzp6zm4Gbzm44eebsLYzz/9wtGs+QA3nd453BLxcYsjQASiIe4HxD0yb8MGC3drB7+xCkKCWmkazYH2hsofi40TmEMconEOLqmKIIGRpo7BR/4Jz2wyzjX71vl6s4wJQvlZWhQIkqwSf2U8elFGhLt3Uh00fJQ1j15kSRTa4zDQRGcho0PkiMYyT0ibHPhFHyXClm+OhVLF/zMk7f9ZM58dI/5qYYMHGURjVW4vem9TTarK5rPItWGlK0bcuia+kah3cjDhFYGk3Du6+4Lykb7vL+N9PEgMFjrJfcnPIOYxS/Tc0AITnG6Ng7ehE3XHF3Lr7+Kq655wO54u1/R9tAESQcozTMkA71mWyhX+3Q9bsYk6Dx9JddwXX3/BxOvPlF+OFAu/FGLFKAnE0gm5GUG1IeSKknpYZoLTFJ06oi4JbiSMqjFG9p04eUIdYGZm7K7xmZlznquen8K2WGxmiOSSYqIldUYrBc56ix+rnzXGgKgOJj39L79Z/FHzt3HZLv1tzgzYBEWcCt+hXZCNafTapF/KWQtq5/up5nA6lgArlgAvN1fsaDNOVvMn8X67N84qv/QIs4M8l7ydH1G8ilKFHwfMnDS/HwGAKDxqNBbWlmJrb0tldh2xbXdqz+9nkcfNE3ceKNf0lz6rp6/Ns/+/GaK2KKW/IEw1oD0bdE32JT4Io3vXiK5w/5EuXazKFnUfY1Xe/8Gdm6bpVblTXOs87i8YQUcSnikpOu7JjaiEhwMYjJHhKaKt2xnZuJTTE7D831TVCzqbmwqSTnsG2d/24O/6q/F3xjNu5kp2KvdYycb7ky5zrAklOcYYwDUMSAivU414+ccMFcLjajz8FgSBhVEZC4eJbr/Be3w1j6v+47spW47b4/+HO8+ed+iHs/+qm8/onffWgf5TNzcZZ/aTssFDXz2fLhnze/DF0jzvn7PG9bfi/j9tB5moIslfjU0g8jewf7lMkijZdEbNk14ju0TrD2rUF4Wc54lssFa9fyLO7FN8V3cblZY7B0reXYkS12Vgvc6ZGk9sQ6wV+z8WT1AVy1OQj+oTjZ/LoMMI7jLeax579/vHs2F62qvmwGpzwB570cvorFTeuWtVYw5UGbg55H22aIjH1gvRnZPxjY21tzcLCmH0YpZM6OHHtSlJykQNyZMUSWyyWLrhX+uXfyHFJpXyTxTcHvJ/9fyxmz8BaZ4VnzGEHdAsGty7qqokRRBZYKhiRj08ya3CcRjyrPSxuto3yJnDL38adwzk+CPymzh2NlMzbH6meKeovu2FJ0LUSLYu6SZGr+rSyytZGY4uxRAAVglifRWp8S/5fPSmEktSagYNwwFW2BZeIjFsNo5ksBxhge1r+d5y4+mYf1/8COCRjrCKFEyabmD1CsSXZVOAFlPE8GZpoLhdeh31fswWlOXFyaGV9lNsfKHE0ah4YQ6fuR9WZgfdCz2Qz0Q6DvI+tNYBgSIYiIZT+IMFVKxSeSAsFN3GD7UeqAzrctCeZjyNgM2YE4EwljPIVrVny3SWAIyIbLf//RXPO1P80Vv/9oQuMnDBhd3wqWbwxlSM99zAxajC74R8pzsSkkhmfCBbIW9BqkXq1pPIuuZSssMDnjfINrAnG/x0U0Ry0DOSURbilFfjJWk9QMWGlcJnxxiaucNmv11uKsxxlXhaiMmbCJCim88nk0D/4m7Bv+gm7/NHa1VW9zWTeYremz6aDrgan2ovEN3aKjedWzOf1538bxv/0t2N4i5xXkCUuNf/GLxJ0dxhBZ9yOLQQqfR80vjZqnN6sjXPoNj+H6F/46w/Ufphav5kxOUdaTDJhAtmXeRlKIh0TBiuiYXLervptzjTZIVy6vFWEuZ5wIIDsnnDVrISXGYCQfDTU+z8bw3k//Tu705t/m/ff6Zm73mqepIEvJ2UkOM4es3zUk9amL2FROh4udz4et+MvV563vTg5xnv5x+CfqFulnjDk8dqzeO5MnHG36qpl2MP91fpgslVLZZPVBUT58+WARsizCgVJj44swmzEkK9flfKPcIyd8HKtNoY2p+EoRT8hGi+WdIysOZnM5hsxNZyVHHj7hU7HNgmwt8fb3xL3vTTKPolR7xcESVLigzGNcwueSP5ZmdzkGaTxDwhk48frnk1PGtr7yla0+k9L4IYTIsNhm77Mehn3zXzHe8VNIf/U7wodScRy73GbrS7+F3df/Jf2H3wWrHcLemZqTK+kOe+ihTvd/8vOycEat5taiCuIZI76DFm4bzOxZZ8z73wy+Iy238f/4CmnmBJPoEocPm2fDDyP1AvLcp7qA+hnAzMRyi890vm1jEdI082uecokxaZyqcVWNu0tsIt8WuKv4bbqnudjQiQ/8PdY6GbeHbmRW/Kv4KUzB8iFurYiXV9G8Q3yGVH0ttFZGsIkSK0z/5dn/BWeWOVU82+YPn8z4dY+j+70nYFJg+Vvfz+YRP832c34E37UqBieiHF5F4VYferNgl8vl7AIOb/M8r2Cv8u+mNrxzk8+nQjPFr4pa92GjNh6r2hzF55Pfo23Z3PHejEcuYvnmF2P7A6xN1eaV+rSYxH+OKpxosvAEElmk8sppMPmAxUe1RuqVnNZdHuYTzn3Iw0wfit/L5CdmFQhJOTEujvDhL/o+Ln/xz2B3T0ouvQpNxSkHOptpc0yt7LuMmfNpO7pYcXCwZj0kPA7nGkzbsfIdC9/S+ZaDgzP0/QExDCp4YYgpMMZAGCNxlMYKZPGxCo6UovAGMZPwYMpxGvcGhIesDQZKc/CkNZy1gWPWZtMFF5AawhAzY4QhZIYx0cfMkJCfMTMk+X3AEHDa2Fyu22rMnKTrhIjqRn3++gxtLv5kifWKUFwmK9ciRETQz1mtabUqdiTxjcm6Hwz+6IXsfMOP0T/3yZj1GSDjuwXuzp+Kv+KudG97CUuXWS1XHN3Z4fi1r6G99QnsrS8Q/vIojbmcdSy2OpaLJe2iwzrLgGGTDS6upVGutOIg5EwaAnEc2BzssX/2DM0f/jDDmEjrHhcDCwOma1kul2xvb7GzvWJruaRrpWl9FTLWDIyTCSfPVTIQhJwI2UjTqSS1FckFEdAh46zVnCjAhNFLnD1KfG0teKklFB+lsKMkl5vKz1xs7BS/OONompblYslyufqPnEL/qs36KQ5g5u9N+fQyzgyltr2+quWj/lSXXXwl67jpkrty5oI7cqd/+kua2B9af2o9UI3TUVuUYcZDEnxA1y4jOTPvpWFpMgabRFjN+5lvZXS9NVYFDi1ea0GLsLCIhlFtglNeVcnROSPfsVY5WbJ6SG2+95h2RZdDrYUTrkajfkCsfMKUYhUHrILE9TaIn5sLLm7gHu9/teBlSJ44hMgwDvSD1OmMIdS1vPAQxyjiZtFYknGELLXMMUSi72DcJ8eg/Ewo9TBJnXlrrdS8FCtmsjT9Q6TbSpMHqRFSsWI3cbAkB6IiUxZMkjUsKnSUVHQ91egjM+lVFH5PrvHHFFhNEYSgPbUUeOZN5Rrrnm92DIQbLmcpZ5cStUmVdQ4fvGCj0WGTw+SIzbaERPMdVR867d3Ejb/zQzhf/EZbm6823tM0jcZDsjaVG2NA+EkqNFXEx1Iq9k9iLotoGzROxPmkZlrqwAwQ2k54vOPIaB2nvuBRHH/9Czn44m/n+CufU/mzE2djEj4NKanufAko1e+1Bf8Bs3cD5uXPgiKYXvyrc/B5jOAmjbXELPyz+Nwn0H3VD9I/98fVqy1xT1I/cWp4FpPUq33k1/+H4q8FGwl89GnfJetezrN0WuFqTC/h3ECMhhAC3onYlCscgBJjlV0Ahc8mmETW/GWamtjWiaDrZMmRTTuQR+o6wifcj3jBbWnf8icwbtT+aBygPyPK5cyTEG5h100BInVtyue+jTmExxzKIX6c7V8vNDUjaQsgpwfKSVStlAhbFVpNNR01qK2FIzHSj0G+YyPOBSEZGCHkWRvxLuMj4JRoMZk5MBIKJUrwlg8lUsodcVoIlFU0SbrWZUKKEujr/krH+rZdsGwWLDtH1w5s+oEhjMScCX1gkzcMQ2BzMODafVzjaZctP3phJqSVFFEoul+ekzEClIdhJJLJ3YLFsWN0iy1MiNiYMCERNgPDwZr1wT57+7vsnt2lX69J6w076+u57+t/hz6M0jE8Q2MEhDTWwcEeZn+f1f4+/fqANG7Y2tpisVwIMKHGNJtS2CaF9WqrD8d2s4leb6Um8HOejECdWEYGacyGiBiozRg4eWaX6268kWuuv57rbjzJ2b19elXHw4rgRM7UztLS2eDwmFU8op7DeYfk/Z/eSlIGKGa+uGCmOD3k2efqjJgcO2oqS9+ThebW6RQPi2+qZAtj6pIh1q4uopPJTjlS/HVvpaCjo+P4sWO0TcP6YI9+c0C/2ZBypGmEXOP8gieMr+XJi/vzlPhK0mLFdRzl2cfuzX+5+i85tjmNazpMt+Cq1W045Y+wcANX3eae3PX6d9MsV4ShF8XtYWQcB+mmlyI37FzC33/GN/K5b/xdTmxOy4KdDmAzTN3unccVMSTvZyJTski3iwWubURV1okIlbEWnMVqsqZ2b8mW7KgFGbVji07wnCQYMepQ1Z9lLJvp3wVoEGKuiO8YIiEFVZIVqEIAUXS8u+JnUxyybETsLcVRBDRUkjEnwxAifb9mszmQLrYk2laIwbYxOO/Iq2Mkk3HDno4AVa10hRRduhtNhd9ekytt16mA15TUqYBWngHuGSmAOA/BwbrpWueqKq8WHxlxCIo9czVgsfoy6s9GsUs56XczKlzJ7a59myitNw0lIxsFuZNnP4wMOIhqpzB42+BajzNiG8dkaFzHatmwdewoF1x0ERdedBE7x46TbcPuwYa9YaDtFnSLBYvVkiFbfudjKx5y8cBzr1/xXVcMeBpcaATY9paHuJvoNyND3zAeDCTAtw3tzoqt8aiIKKVIv7fPOA7sDw0fvvgTue6yu/AZV72aI3sHpDaSxkgaInEI+M1IsxpIw0heLrGxJXkldWUI2XI6LThOOLTIV38mJ2xKSoZXgm6ef2qaAwK6WCblZfExUkqg3aML4GK1uEFAo6TFDpCT1a6TJcBNFRyIydCPgTP7+4ScWG6t2NrZ5uiJ4yxWK1LOUhCZAksz8k3mDRjvCDlhkhIKZg5YSVCTJ1KbNRpmJWicZbHc4oILYdE1dJ1j98xJQr+mH3pRa27EgTbWYX0jQnptqyrh5xdZA2AYR9abnrP7ezTGsGgacttifKPE0gJNFMe/hF5T4D0FE7k29KrhY5qcdmOnUBMNUFOM9VwK4GFB7pdzeIcIdVmHMx5vPa3fsHt0xYfv/qUsP/g2jlz1ZhpnCSFzvTnC0b2bMAhYD9AOic9/75/y2jt+Hg+76ZWM1uK6BVuLjq5tWCw7CcTGgfVautbnFMWOG8Mw9PR9TwiBbRv4nI++lHfe6UH8l6v+lHCb22CdZbVasbW1Q9t1pJRZ76/ZPbNP1y5YrbbY2tqWglHvWR9syGmX7Nec/X/I+/Ng27L7vg/7rGHvc8699839ekI3Gg00AKIxEaMoEqTFmRooxVS57JTlOC6n7NhRqmJXKkNVquKyK2XHVY7j2LEju+IolixLokTJokWRsAiREgiCmIh56AYajUbPr9987z1n773W+uWP32+tvc/rB5KRKfEl2l2333v3nrvPPnuv9Ru+v+/v++sC65PrPP7q1zk4/o5OYyuOvltz5kxgszlApNB1kY9+5M/yx77+1/jYD/7P+Z8+/ZdYr3s2mxUPrhxv2/4D3MGhFd/d4h4vGmgtJtEcILRigm6tOcCszZS5kiqoML/t70VMSvu7gU+2OZsS96K5T+NSzQF+7Kn/io8+8S/wI1/6z2E4YcxKwpiyfqU6JamoLbaBwQ1sCr76A5kL+Vix5h5zZevNhoPDQ86eO9emn+1GbcgXASkRlyZ8zkSRZl9LypQ0KdgkxarGBlQJTAWmnBnHLccnO27eus3t49ucblVkSlWoHV2vQm2rVU/fr0z8xkGIbI8ucXB6HYrH5axTGpr6OrofHdQGap20U+XHHK5kfuSzf55Pvfef5Ue/8vMEE3j0to5UPDTgK2hc4+Zqdy15cChw1nk016yNvkXF6HA6hVmA5578Y1x+7jO89sE/xcO/eQtuXdVmw5RaztNIQnXNWgFsgRYCarey2SDnHAQVUPGWJ7c1v8x37oiVtv0ZvvTYT/DY1S/z4K1nW0ZwV5EbMNM5f68CO8UIaMEy3vaS6ny/52FlxQbiixVM7V2+13WYrXbsn79Oaq85+6ymbY6Xu5zrD/gIoatoO5YVaQHIq0kK3kQu0Y/gRcAFcFW0Uj93yRof9pL4yaufJrHI1NzcFF9NXxbLBETa92pzWC0VNv9Zv7cErV2FwWQG8kTXgI+6DtVvKmkxxknJGiEQrTk/hsiq7+hCJHpvQlMKXHYxMk9hVBBbrNgqJSsOIgaKeQeEeb04a54oSlrX3xETixF7vdphnOI/WUq7V3VKas1tl01tmn8s19y8Z6ofmvdPfabtli1iDvveEvxs93v/dTK/WJ/JUjzsbut5Cc5ZTuoW+WXNzH9HAK/urzu+txcyy2wrik3LmBuY7p2jNg3U+9waUxfEguzUN5Si+2i/PmP3ulQA2Wzr64r2YvdEY5f7f/0/o98cwubA8vT951zq5ILQIVEoSchkpjIiWfBusnSkEotUxL42tCoYHPirb/ggP/nab/NXz7+DP3P7t7XxZJyUiOfm9ZRzZpySCb05ExZQsUYBxpwY06QxjTVVjUlJfTvf8603fYT16TUeev5zhEmntC7FTQA+8A/+Uz7+of8JH/zN/4JrzuH9Db7vlWe5tSBEVCB+KSBYn0W0wkVkXp4hBC2uhVlI0gGlZEtNxMRCqgjVjFtVPLKeJ3YqflonZvg6pADzbS3Mf70vbILQe9+roL20z8Xid3EmpmikNRbPo+aP9TtLQnHLRtt7GU5tMe+9Web6/T3ubACpz/L36sPF8Kz5HPMahHkd1rpBLpWEZ+JqJkrknMOLp4gSfZooSz2bm/+lpMnXRWsWfjSjaa+ey0EtS6n+YM/Qfu9P2IRzrWNuub+KCc289Ru/zm63I/Y9XdfRdx3/0smX6c5f0EbIKbE7PmHa7lTMadLiWBHhw0HPP24z0zCQhxFJSuKOztOHyCr2Lc8ZpkxJRYVnX3wW+dbXcKmKkWckTeRxZDzd2T509L0KA202G3YHB+wON2wPDpguv4lvXPo+fuDVz3E0HauQ+pTYbrdsT07YbU+ZhqGJRunmkoajDWfv59sf/BO88xt/j8OyM9FMLQfqVNzcxKaqtqSSvDstdvY9q3tVaMrs0bIpXETYZgfFsSpp3icWtxsSpeehaJOQd4tJsjUhrXhWJZt7y2Wl+c56LSklhmFkt9vhnN47nGIf6/Wa76zu48zhIa9N8Exa8f7g2z4bTJxoSokxJ0LXsc6ZVcnEvif2kdAZ0cemh/0L77qfCvq5JjSl8eF/+oGVTdFMLZ7OOTEOO8bdjtPViu6kU8KliRpM02Ri3yZ0YgKIFTlQcqbZdBFEtKTZfLlzuJxxzpqCXNZKq6CkimYMap2yCkfZuqtTMJfEzOrrF0JTdXpWw6tanCHz6xYF9yYYZ2S15XTdR/7LfwNjebYigrOcqszRocZN1VSxLKLPeGjOWaefTUuhvvqZKpYyL6/mlP1ccbjXjhjCLCBWYz3QZ+11jdfnXwkE9VjuRREV69zuBlZdR2+ikXUyoasCpiZaePKh/zEHX/zbXHvfP8t9v/YfQT5FUPKP95mUhVC0pqONXnMi7L1DlP1GqTXtOslbVKQyOKFkR/GCxBpv1GZ1j3eR2EX6bkUXO6Qo3qwLQ2s7OrjgIgfnLnJ45jyrgzOsNufoV4fQR+JqRdevCYbF+ioy5XXwQs5mfwwvRcSgMq1X5ZJVHKdY842UVksUI0M6V2PtGpebWGCZSbtizT2WodIIsSUvcAV9bt47uhhaczfQyMr6cxOdqrwDy6cbXmzkUM0zxAR1WNRSq0/PiCSSieylNM371cRc678/+Nt/jk+951/mTR/9P3O6WnNwcISPHb7r8KFjysIwVkEiwPmW11abNY47xnGwz3NvgYt9F23MjeU3aVJxqZTwOSt2mCadnGY2spRMFVRw0MhDYsTWGgpV8eQpC3X6qHRG+nNea9Di21TtVkMVwwyhiTM77+7Y05bnOlR8kUrK1s/VzKXVPaUIIUbWmzXr9RopmdNhy267JQ9bpt2WadhSxoGcTaBDioqjScbjGMMBX3zwx3n7ld/gtx/+KT78zF9XwY6UiQT1OaC1ZQEXtcl3IuFDp0JzCFISOQ0kRqYsSPEqgBJX9P0K1gf4zVrx2gDiIZWEl0SJydxuIUgi77ZK2j2+yfb0hDTqNHaZVNRHUqFMwjSZrTJyYbI4MXi1O6u85SPf+As6GEwUn/I+QrChId6jjT9apJ7SxG4YGMexxTM+eFabFd3hhu7wgNVmTVyviKsOZ7kt0MTtCh1SPMWaNJTophhuEegcdM4RcQZd6756XcM0NWa3f99jQlPOWQPo3mUt2gtaLiqLz+K0ftb1dJsN/dER3dExu92WkifyWBQTFxVtK65yBjAOj/IEdCqpR8U3LW8ulVRtzXNSCOZrayzZ4hQ76j0fDy/ib72mjVWy+Llde1oIdopNntamSt+IwMFw8YJw+S/+b3ntn1ORKcX8AtNDb+P0fX+Mc7/xFwkn1xT3XB1x/M6fZjXc5Px3PofPU4vn3vQr/1ee/cn/JW/+pX8fZz4XAQ2trR5bYyjm/FDFBOp36rO6g1Xj5vhb307I3Zrjt/0AEiJnv/EJ3HA6x1PujnPV2nC9h27GMGucXyyOdKjYcrb7WrLieXXhqL8TcN5EJ8EFvy/AaTkJtcZeRW0Wa61ireI9E0bW9CvcwRnWlx5kffmNdBcfQo4uMq3OMIU1OwmcjhPHJ5mTmzu2N09/L0v/H+tx/XTHuS7gE+x2I7IdcVJas8MUHFOAncB05iI33/dTdF/8BN23v4GXgkRPCMpnoWjuFYm4Unl+JggUPDlActYYqY5fm1Cc7rm8aFhSn1ZbtwJShTZtD4hAtKYqnPEbCjYwKeLpKBLVEWA5lxgPJRSKS1AmYMI7PXfOKmY/jRPDbmIYRoYpM02FNBX1W4aXlW9+Hvet3+amd0QHGwdHBxuODg9Y9z2d1eM6D9E5Gyjl6DvHqldecBd7nO8oRfjWfW9F1mdwCFcfeZInXn6G6CNVMrA2AhREhfPHgXFKNsndcfHGdR558Vmu3PcGnvjib+Al4os0/lYJhck7snFDTi/cxzM/9s/xjk/8PEcnVxk3hzz/vp/gTd/5DC+++0d5+5d+iSxet0SuYzK9xS8jnoiTrfX4JIpX0VhPR0rCWO2hZutkFxC/QpwOa5uSNrmJiVg5lB8kiMWaGCRSwFfbUxBMqNZ3OEIj6Gu+q5+N6f8HhKZ+l2OJH+411dX8AbfHO17+XH2h1YBj0AawIojLKkZQahOzNQFajaFqZBTD+1qpeA9bsfeoZttVHHGOI3GQu54rj72bFHrue/pTuN2J1ufExEdK0Tp6KoxTUiJ+Sm3QUcVw5knrc83j0q/9FWLQoa/1DWuDZ8P1jXtYf567NVfe+kGmows8/LWPEyfNLSr+WDmlc41jH3ttNbEFXlp9XX0mypuyoYHt3HqOmpN5y8XqIJpao9NrmfP1WYB0brR0xgtyogNeqNqT9kHm1hRaI3V7bm3dLB5SW0/tZfbMWxsNpTa6twUmi//fO8dqtWGaIiXr0A7ndHyjxnO1ZWAhvmu1D0zIph318Uutoyw+uQjcIYx/53ppeNMdOP/+a+9+LEWanHP81r/zr/Oh/91/yKf+nT9LFR36nc7xO/1sr/FkWeNZ/Pm7/e7d/l2v1VsTNjXuWyxpFQuJ1OEUw7jl2tXrCI5hTBz0+lyKFGIMgEOy+k3vIyVHYtDa2l+O7+VPlq/xF6Z38G92v8U6qJ26/9J5zp07wL94Q3GYgnEYFeKozcW19fHOW1Wx6SpiVBZx+iycNce19unuer+W4lvO9n/ntfGo5GyCivMZar2/SNaannP00foX7qHjdLtj2E2cHp9y+2TL6emO7W5gHJMKjciEc4ndMGnclCGJ5s0VlRZCG2BrXptqX2FujoPFeq75xEJg6s56dH29NAcGEixnKAvbKJrkiInlLOsLMwizzGkMpjRhHCdw0/X8jeEiP9jf5q1hq0J0zhptg/pKWVx7rc/cedTmzTYgstoWw7opymYxVePZ9lRxhPZ7dp52Zns9peVqwZvcgV3IJIFT8ZyRce/inIM/M/72fM8xfFZHlhr3bxarmn2XOhyt/Smne74Fbj6fxQzt3i5yPWAhFKAYaRETDMtJh5rmzJgzQ85tQMxuTOzGxHaaVHBqTOxStsZ1x1Sc0efURjm0oZpU8NO8F++ZI2UTFjJMrAE1lr+20qtrmKF3OrCn2Fjvh/7y/4Zc+YNOcaISI7mUxv2Qyj8KtuPaA6Nhha4IxVudxjnDGV29qPanByQ4IoFV3ytVHatJrnq63YTgmFIhpWIixrXWA6UsxeO0STrEueFZHISLD+NvX6ELkS52xNDhCXY9i8Zut28n+PjP61pbrTS2sRinxVn22Wvj9TJCUpOgeWfXdaw3a1arNZc/9VcoXSCHQ8N9tCaWiq1V71mFSBciq65vQlPjODJN2pty5uf+NW7/6n/Dgz/3r3Hlz//blHGnDc0IoWEetX5Xh+noM3G2//YyHYcOs3DGuXMmzqJbScUXLT8OxlfpowpNidW7svNa28GedYEn//5/wDd+4F/jzZ/4jxmnZENadD82PKz6XAs+xUmjrAYXjNd5Dx2yjAFm/6Cxm9lwhMrH1Ps3c1dqb2BdLcX+7tvfrf5qe7g4habvdAT7sVXlbs31n8aNkJpTOGoPSMtdnDY7i9d+jib35xUjjyHu+05q3mAxbIuFpe2l6itUYKrywGn+YP3tz7LtfwjJif6ZzzXOOjmpzfaeydXarMbNJUYkBMWWknGNp0RJFhOVohwV7/BRxdDq/nfe6RDCojhMyhP9p/8G15/8Udb//f+bqYu4VJof3/zw/4jhK5/k7B/+4xw7OPrRf5Ybf+e/ZHz12YZJUH3YYhUgVeiwGK/eGtasCVOH5WUVtHILG+LmLtwa0/HVj+NQUfrKoWexNlouLUsMe845sSFV7fvMz25+t3lJ3WtiU0OqHG9h3v1z/bL2OsjCv81F+/081WQPqf1KatccIt6+XNPl2/89afZPvzGfX2A/lqqiEtaLseQtaI0WFe1exJ5LP7M37NiJ5mxOn2PlbG5+/t/V9WxDItd/+f9IXK/3RKb2vnzA1V5BmddowxfsGqq4RRMicK751yYqLjXvXfAuSuURpTa0LOdkIgPZBJiE8f7HmC49Qrj9GtNbP8T6ax9H8HtCU96+SlF8t3ENofWg13hlsWobzuSlYrR+Hj7dbNb8H+1M9TlaTH/Hf8V86PM//q/w0K/+Z7z0k3+Wh37h32rc7FpTV7Gp+ln3ZN3MHmcKnlzyPbfHjroVceXoJZo4qOF4fc8qRtYx0AfPiXcMO3R4VcnaCzOO7Lan7HajDtBwHh87Xa/2pTyC2QdWm6h4odo9HzS/yDjFGsHWmLScu/LzRerPnHFJIBVMVEoYMyoylQu7VBiLMKGihdn8qTN/oOuigGjsUahCIBnX6uOuxb9Q9ZU8JVruZEO9pAYEXn2p907FTLvKu42c/ef/9/DLf44z/9z/moNf+r/pMNb7H2N6x4fprr9I/6Gf5oFXvsDZM2e4eP48l87pIMzgAyKF7XbHOIykNBF7G44UAxnHd8t5vh4e4Ptf+yRyeovdOCg3qRSmaeT0+Jjp+ISy2+LHTEgOL0IMHtYrui6yOdhweHjI4WbNeqWDMJ3TZ1ZTSGf3wrug/UJdYBodyQuTE5L1K8cQW++tq8+97oqWOIvy1ya9h878pNZujVdfBZtNdAe05qO+PCufBFGhr9ix6tds1rMY7D1zNFLrQjzLcrA7Mljz5eafMC0Oqv0u9a8tdjw9usy1+9/O2RvP8cKjH+axZ3+dvTObO6wxwvIZ6Lqt76+4PuhzDjEQu0gnAqEOb3Y6oNnPsUsV2glRRd6jj0SvYr5V3M8bDqw22mIRqTFvHehXY2qLV33g2gNv5dZDb+Nt3/wEaxm1f9Az1/iC9RmHgJRgPKg7MZGFyCoaH3aVT295RZZi9VyNmX1I+OBsaEVB5zctfB9C8dpLJCVTNmcYfuBPEr/6ScJ3vtpi4iq6U3EgqPiH5WK1XomJ9Hn2+jOCs0ER5jYa95WCtwEVUnGrukxcfZo1Kqr+fo5uxMxV9YjL1+5Xv2psarfGOeXUNQ937xzOecvLpD0nAXzOhKyc9pgSIUdC1ueLq2JBxmtqcbWukxCD3lPre/duITJlX6EORgdq0cihvJpIUE5E5bRmZ/ic9ll23tmXDrlcx6iDwLtOh1bZeq59lZc+89d54UN/grd9+hdw5y+2QdFLMfWqA5SslyXnYoMkqyD+ArPA7IQs7lkp1mtT7YEJkRqfqIqyTePI+PP/Ln0I5EWfsGBC5xk9r/HXzLJQmtBUXeeKfVYNj7qGvZ2vRXuGbeacSc6RglfuYsUGWk5e82Ba3OANkxIRpA7TLtXSYpiyW9RJ6uPUq873P0568K2EGy8xvfWHCF/9WDMpVcej5gJtmDe03kVZfIaK2dafLVZw+3fF/X8vwyJ+70JTAnVitzOVRkSTWR/EAiO9EY3bYoBMKdqgpWQmA9mcTsJKOTBNCYSmHA5atHFeJxV5QafB+gpEoQEjs5DFnLZVEnZTZ2kJUgiBEhX0SzkzJk1QolfBD6ZCNgKdgG6s9QYXteCbpDBOmXF3yqv9AZfDjoNpRcla4lsX6HOvpFFfjYM6gYKjuIB0PdFHuo2j957eeXwRyjAxbXfsdltOjm9zcPMGr732KuO16ziXCdHhJk863VmTGkSXEBwlTzgpTCWRpoFpd8yZs2c5c+YMh4eHrDaq+gsqHpTTRE4jSKaWWzUB1Qb72uCmH0wdYCUsiWhDqIoT6SfLOJTOMjFJ4sbtU1565VW+8/yLPP/Sy1y9cYNcHF3f40LfivFNvMc5E3aZG/1rnlbBofp0f99yoLsUcf6gj2pYcdb8VicLLcDCanRrgGa5OXPIVs80F8+1qL6EJ+znbjYuCgyJEVqccpcMAyz2bKI4kEg8OiTGiPeQswoc5KxrVIhAh5TIv1U+S3aRyTn+ysEH+Ilrn+KjD/4If/qFX8at17h+zdvLVXb0HBP5QHoZf/Eim7OZNI2kcWTYDQy7rTUt7fjUH/7n+cDn/1s+8Z4/xU/+5v9Lg8IpzZ/ZOROcik0x+tqFhzl7chVnE2hXBwd0q14nrMaO2OtXiBGJAe+1WbI2rYkPWsjVbt0GZFCL8gZkiKmVaoSk99ovgwMzyhU6UIOfSW7EFRBvyaAXJbS5xdO0/4mtjUbUN0XdklUdcjcmdsOWadpR8kTsPKt1R7CJ0HJ0kd17fxaXR+LXfgU3Hjenie07FQPJTVDBB4h9pF9pc1ewQmNBoNiaETGylpEdRAWUYvg9u5h/bEcF/VqC4erk8PrYsoEZCoIFr4320ZuIot0wzQ3UPtV95uszbqJUnkYRErSoVUQLioxQtHGm810TaXSdp4ij6x1HIXL2YMX5y/dx8fJlzp47S79ak4ow7CZSycQ+sRomDnLi6OgMf/ZNib/88pr/xVsKIa6UqN1lQhea6Jp+2ZXnpM0jQH90yBkjAx/j2N0+5trhZb7ylh/m7c//Nl+7/CQfeuGzuGkiOwBTjE8DOQ9IHiGP+LSCVYfrIwJ8czris8MFfjx8h/vF1IxlAZlJLQhICyjRxzQHZjU1qfGHPsUFUO6gqO0q9jwqoQtQcMAJbX6syEKsysiCBVIRdtPA8faEg6Mjzl+8yIX7LhG7wJQT25NThjSSS8Z4Jwh5XkveN/GyKlhXG+l16qi36RtK4k5Fm19Wm0Ni0KaDlDK3p8yQEn4SulWg+A6C+lDiChc6JfzfY1PBAK7euKYigSbUmbNOO/cCIepk6qqAzOL5C42W0YLuGp03IraIxlci80Se+pRFLLYwUK7Ghkb6rTa4FWvFGbE0EEPHs4/8IA8O17jy9j/MKt3m4NarXD/3Br7yfT/L933llzh/5VstmR3CxBle4iem/5arnX6W0/6Q9cEhl44Cly5eYL3uQYTdbsuw25HyZEm94/T0hJOTY8ZpwnvP0dEBP+C/xOod71AXEqNOSdscEHxgGEauX71Bya8RfUffbQh+BURy9kyTsJ3gm0eP8dXLj/D2r/0q95+c4AiI6NSlw/URXd8ZeVmBkP/Zc3+Lv/h9P8u/8uxfJx4c0PeR1WZFjB5Cxpm5qGSkNv3CgChfGxYcxOo/3RyR61TLubGyTrisRCeRWZywive7xd9pwO1cFFGAV1Wza/KazQ//8Jf+iybAMKVJpxrYBN+SpSWIvkjVWGrrwTOD/8ELQWh24V4bItut16w2azZnDhmHEW51jOWYYbdTuxIiTIlQhN45Jb7nRB4n0jRBSYhkaypVwFxFgDPbIXFyOnF8MnBycsput2Ocknq7WmyKEd/3+K7Hx6gFHClMD76Zq+/5cd7whV/m8NbLSCqkTFsTmjQ7E5MItmbqlAAF/kLwBCf8kS//VSWuWo6gILxnFw6QUuiHY2uorVNTncUz1eZbo/Yi1nfO4bOnWJAb7Pxvf+pXePodf4y3ff3v0EchnzunhAlrzq1TDcQAibYfWiFxjvPuPGqMXUkResj+C+44nnng/Tx481s8e9+7ubC9wsF0vFcUvBt50mGff/Gzlhk0JGH/rX+vx1Kw5Hu9//5HcXu+ev6pXUgFj+81NHB5NDTHsnkRxOuUp1CbA9A1pgR3QdtMlOiVfCC5PPsdr3iJtzVTANdImeq4nAHrIlaoyI7oHV0XG8iVaqFYLIYTpxMp7X3E8utcshY2DTjzVazSe2sSVFJ8dB3RJ7puZUKKM7m2i5FV1OlDMfpGJleiAgpiYwKClcDjK+2gIWsNVJO8uG4w7Cg0YfAqVF5XkrM4qja4iYgKGlpj6uwTNPdSsm+TQp/P0Z6BtL2rN1rPmQ3fWhapmZ+MimrLDNLl5V6s56+2cSE+UJbnXKB0PkYTUlyAp4tzlrZH3J79qg0UjcRvV2ihJlDJZHOTrYhog1ol8NxDh7dmVVxt7lhOeXr9dFc95jyhhogtLrDiL7gFocE38ydCE6+pz6M2SvjF+0gpKqbbaSN1GifKVJjchGewe2oCEiamUZu0/CL/+5lb/x2/9uYf5U8++6scd72JfwxNiLD6q1K0IWWaEjfOPsDZW69qM2aI4HXPT5LZjQO7cdIJ6SbE8tJbfoiXH3xSz/fqdzh37etAXceGUxhe8fhH/0OuWVNXtKaQVgNq/mG270v8VBZ7wjtHCVrs1oKGFpV9wxECWncVmxoxtRy3FZ0WOFYIOokjRN/sVfUXjXxswnbLmFDv+ULooy2IeV0sv9rvNPzEdlHt5rLLmok1eiK3uCZdR9IERBJKU66E2H9SjiUZSY8Zp72bnZHFV72Hcsc6qLkeh+eQo3MkE0hJSaeljkZmHceRYRytkOzNjsxr1qDUhqsu33POTvQvUsUuq3C8cwaTvD6eayR05uvW8+zHc44lTjETipZT6+q+6rqO1UongK36ni6o4E5J2YT8hZdyx0OybQMzlve05KKiTsNESVoz0cJgZG3CK955bTz1QvGJ7CMSIi4XUs3JpsI0ZZIbcE7zvi5GxvWacbNj2g3k3Y5hyHz77U/y+HOf47OXHue9z/wDwwAzw25QUVojnShJQxrOFr2nC4Fn3vfTvOWp3+CZJ36Q73/610hVTFDEBHLm5jypz8/r9KrYdfR9R3ePCU3lnNVmyCxMV2OQ4+x5Ss4hRXgnV1mX+hytkC5iNbJMDA5n/Kdggvd6Jm//jg1fkiLklLUJOQRWqxXjMKogBNVmaX7lfSSGKtS14sMHia+RePPZNe9cJ05PVZRqt9ux3e7YDTtrchdC17HaaM7ZrXq61Yp+tWLVrVV8sNNmKe8CdXITqD8PHlykFSe9NeJIKay6jrRasTLhsK4zkUHnVGwrJfLktPialTyn8an6zWlyVtxNxBTI1gBcG8SixQ97uJz5hwbVL9IRqpB1qn7dmkNLbW6xT7bIh/YPJT4sC/p6asshrBBdC/vfK5cSew8tjpdZNMk7YteBc434n4o0cfUqulPz2ppjB8NlBDeLSpgvrGu0kUeqAJEL4O4t4MPhGg6fi9WgRScSBhPCrCTnKkh1d1EwnSY2ThPbYSBGj+91v+njKIYlO6JzbP7ef87pj/6rHH3sP6Xsjpk6B04YU8b5QheVOKFEN49ksQYty3GMoOhjUOw9m6hS0WapQA9RWjNDFVlV3FhxNRX67Om7leJjWYmHSphUPOZgc4bN5pDYrRDnVdAnFZwriM9KmnCZgD7fYAJYQs09LWcTpavXibl1rZWSkKRCU85yLicFrZsUa3Oy+EisLrYgNFWya2EmOtWvUt8TJfZ5D84HrSPInJPpBOsZA9Z6pN/z1cHqeKWUtskrlURjdxM4dx6K3p/ixMi5kxKTSyFNJtQ2mUhbUe//xMf/E25YHB9CRx9VeA/vtfbmUfEJUWKo913DwEqeSGmimNj7PZaS6TMukKeJPE06FTZlyBMiE7kMiEwoh0DpKhXTcGZYdcIrKnDjHMVHJKxU6N4JjgSSlCBVlGgT2iQ7rfOQVbjNu4xDRRaiK0yoUINYTRdoIb+KMXgzz4pBab6vL6w5n+bXnr7r6fs1MQZSmhhOTxm2J8i0JU0DOY26FmQm5+in9CQRwrTl/d/5Bb724I/ywWd/gVSgiO6E7foiGyds0hZxyeLG3Kaix77gS0SSg5IpMurk6SlrA7mP0K9xmyPFpaPDTY4SVDjfSyRIxI8m1JUKoewoJ9eYrr/K9tY1hnHLmAs+Gaatk180ty3ZKpjB/vRcP3qU+7Yv4bEm4ErsDHWSnkdcBInt3noP5EQaR6ZxIKWJ3kdCdFqDXgX6dUfszRct8dgaYzunky9FSN4p8drsUXQTB9ETJBEcRBcJdLgcIdfloqTGKuJeRQgqpu/yvdXULABu0VYgM06mhGb7vuVSUnPQPuKd0OUD1kcjk+HUpRQmOSGVEVeKNW5VHAi9tyyJ7CiPhypgtBCaWmBtlRS4jKs0xtHrGy48xPX3/VGOvvgxuhefnq+7WbVZVCOEoP4MlORu+PycZ2kNuCDc91f/DyrC7hyyOWT7/X+Uw6d/k5P3/AznPvmXAdg+8i7CtGU4vMzp2YfYvPZtxR2d+ubH/+5/jDlgy0mt6aw2L1u+qURZb7ibmI0waqsli/tiDZUDpy/x3rN74HFyfwAlc3r5cQ6+++WWA+zh8RVfWsR2NcQSmWPk+hrFY3OL59TXz9ehH8EvcNYm32xxzPzeBcWAaixS6yXUFjEHxXly6MnxgHBwntW5+9lcfpR44Q3I0SWG7ohT6ZlKx+lYODlO3L41sLu9o5zuvud6/4M6btw+YX3mDCvnGYsOxqpxfHaFMRWm6JgQbrznI2y+81VO3/2H6V9+Hjm+pY0lXrH7ECJg8V3ReN45p0OLEFyoWLsmb45Fe9AibahxfQaUSCEqLOgczhWCxwacoedxzniXYlip5nMu6OBGsSGdkBEySGp+U3zFzguURE4jw7Bjux3Y7QYVmUqFkixntfsWPXRdYLXq2XSRMzFyZrNG7nuYM2VgkycC6ueDqAeJHvrY0cVAFzW29B7Ew5uOX+X20X0InsdvX2HTrfBO88Xg5gGBU54IbUBYwpeMF+H22Ytce+jNXLz5Gq+8+V08/o3PaX3fhgUKRYVYiopqffWH/2ne/fmP8tSH/yQ/+Ft/BQmF93/t7/LUmz/M+7/+35O6jqlkSvYtzvWgjQA5URgR3+NdwrmJUgbSJOCSDZcXw1aV2JylihQb1m7YrEgimOBsxQMaam9YpRRwfolTKp9LxJPV+M/NR9x73MW9YwGufS/b9/pfcPUF+lnxLe+sNY5qygQDphBc8figPOHKtTUT1+oiBUCKNWL5GRp2tIaSxVxVy9+WgPiMVUtrcYbjCw8xro7waeTm/W/izHNfaXWhVMSGW+lAulTFpGXmvELNt8Pr6h3z/dD/KTbhWiymH02WHd+cXnqE4exlut0x19/wdu779uepkiaVs+3bbXZ7X/Uz1vrInt3xvg1QcKjvWIpnzJC5m/3JHY+5TUCvYlS1rlP5O/b31mxar6nuj+XaaD+zr71rWcSVixil4cv1/27++4wDLzBVWXrNe+MI3QoIZG9xGBNesmFK9VWy+FPz+t/tKCYK3xoX78Cj7v73usF/53Pv7/27/8Kn/71/Q9fC73ayf6hjYYx+z8ddsLhWR83z+rPzu5ZrorGCBIYx89q1m4wZjvpu5hnWepJz4LT5WWvmnoKK+f6L+bP8V+H9/KvyW/g0ksRR4innzx9w5mCj+TI2bb7VozTmUB2g0p7hfP81xp33nVPsBhYY5B0xrv6UWYl+77u6zc1WKXdqGeDMRxWLrrVdh2HaMbZI9V45jk9Gtqdbjm+fcnJ6qvzzwbCfZA3mLjMm0cYly5tLrdcTFTP1Ae9FRexqYb4oZu3R73t/RyvcopbWMPIWLyx3tsZUpcy4LU6q9tQipjBerA10k1bLXDxPp+JKZB3Wp81ewq/nM7wn3OYTwxEPdacceatreI0Tq29sfkxPpu9j11F7CQAjZNbBBqVhebruKj6oOJnS7E0YwS51v+fB8kT7iVhOVPmMzgkDnq+7y7zMIT+Qn+e87CoqSd1/uovrXortDrs7/qybW32w/lvc8oks/GnNq5dHqyvXOMaa07PhnVZDnlLSxrspMUx1cOTEbhzZjiPbcWI3VnEpmExgKonXRmazA1UwJJd63+81TwaSk/lvr8JB5qs8gnOivFxXmcCGIBiu7ry0oXxae5+tcRAh5KwDxL037qDXJuIaJ1R7hAlNWe9TdjUPq42OhhOK6TK7Od6oeIw47X3rup4YR5zzTFVgxnpCWm11IfQHJjZhsRAO0qVHWf3Yn2H6jb9Gf+U79CESQk+57zH6qy/Q4jHnTCggNN6qARSNQzRcegP9ay80UQsVM7VhDMsBbM61emsumRC0J613jmBcRSfa5KwDJjIuJ1zOOrhUoPee0DtScEzBsQqeKQa9B3/r/86FP/VnOflr/xcOvFBWPano+abiiFIM6cd8hA6Ncrb/C9LspT48w0ScCvakLDbAQWNT3/cEyye1MVzvVXReh6vXHK92tlch9px4yyf+kzbATfkGyiemFBMhcs16ijVy55xVFMsHunu210WxRX3Wix9a706Lr2Vh+2SOIAVpQx6KxeZzhqKvt0egQm1Lry77f6n/b9wbK8CK033tEGowK1SYxvBD68maiR3e6pyxYWPLDGAeODnHQDjaILzqW6v4cBOZsrdA4PDrH9eczTkVb7eGAgfKe0wTefQmUS243rjQooMmylJkqtbLDAfwUsULxN7X2XrX5emdo7t9lbN//79hpxFeExTxDna/+pdY/cQ/z/FH/yIHP/rPcPvXf55zP/lnuPJf/59astxEd2C/zlZawGr+zDAJL1T3vuTCO6ke2Bt2X2XHdD9W8bGlXy41j5Ta3D03OWdRaZuWD3vfUtvqPiuvtXF67rFYEWDICaCt+SrUUFELsUSyieHZq2c20vJw7asOY5lXpav0JMvRbRGWCmZYjlLPI/P5lf5XuW8zJ7AJYFlMA4tziJgPdA12qM8aZvyi7iPvXePuRuPy1nzeG78pxh7fr8jn7qe/fWXB9V1w/YTGia1xV839K2tLBU60giwZXC57d1KaH5yFpkoVR2wiU9azuahLr158SgdanLufo6d+QwFQtJYn4slAaE36VTRhvmdLnEqaLapYg2v+mZzNf89c56XI3R0rYd7Li//u/Pejf/vf4/mf+l/x8H/7b1v9orSa/Sw2NQtM3XmuIs6EqO69XjI3DaxdIHZrdtuRKSeKK8Tes4o9cXWIl0yQzBaY3MBYRiaBMiWm7cA4DOBN+MgpZqjYufEGUcHJZf+hwk26D32N7ZseTEUbF6INqkWhkYiIDuhyVRjR+ogEwwYLYy6MKWssjzB5KC5AHRJiA5s0zpA2ALDkhJTc1ogKHPkW52h8p700Ujw5aNSiQtYmaO2DCu3EQN9F411FVn/r38f/qX+TBz/5F9k8+jBd3xO7wG77XU4ffAOPXPki6wcvc/bsOS6cO8e5M2fZrNc6IKIUuuNjTk+O2W13zZkKwi2/4ePrdwHw+dUTPPrtv82t27fY7bakrByAlFQYLO4SXXGsfcB1Dkywru8D682azapjHQNdgFB3XIUEzbcHE9FyOJwUIsLkCgFhRHPd4D2hepWy3A/10PgwN56WpVZS4yn9s9TfXaydKWeGNLGbJnY5MYkgXaQbdHDjsrfgnjlE2nAADfy1JlItfcXExWqjQh3kZa8xn1AW8FiN9w5vv8CDz/0WN+97C2965mPUrtx2vxd/vB6HKs3fSVUosrwrxEAsnQq1WO7jvQ5Jr2I1FSfzxnUKwYSmQiQGFUpqAr4oXmNU1BYPezGMq2ErAlnYHp7nxsNv4+zV7/LyI09y5ru/TeW/qHPSrCFUgRgJVC5+E3osGSmW64rlv863wc3e+t7CnUJTlt9WG+/s95MUfJlrveakmJ78QeKzXyE9+QOEK9/F3bpuMZY+Tz1tFcK0YTkWjzrzYb7iPq1WUfmUbRE1zkCxXuzaD49zxtHQV+8OLtEPJ/hp2/wmsFfi2Ivn2fePtc7tFr9X/+1rrn7PHcYNxWq5xtvMSUWJ0jQxxUCYQhMZCy3faGBYw96C94jlPiJi6zi0+msXA10VszWRK8DieYg+0PuoMXpyikl55dMKeh+j5badczrgzTk6HJ3zdDE2kV8xLlEInjd869fwl+/DeW9DW+ee39qvqxo8iq1OOVkP2KI2VMW0bY0WG8qqItDKyUtp0s9jdaUuKslYhxUldsNOB+ZOo4pdWe4RUyKmiXj2En57gty4uoiqar1NqILHImHOT4wzKK4g3isO4tVfVz0IRHmZpfJmgqdkFapbJDjGM9H1UCwHqnF+tQ/1PZuNtVhE6j/NVnZXnsGtNqSLj9J/5VeN6zP3w+dSyKLYSxXArbGsvo/gUW2fKnLV1C0WNbf6b+3TsnX1uxz/XwhNzeHt3vdrqOqWP3PN6TRxgFKTWUdIhRyt8bwo4JrIZthrMXLCmzqkzrzSd3fWJFiD73oV1RnWa6yQkD4MRwggnYfiKUWnWOUsiCSd6jhlpmBK6NEEaLpeVeVjh3hPykqi/aY74POr+3l8us6Tu1Mcp6Sc2e0GJeD3kW6lxPvQOROuCmQrJnmMDB47Qtfx9ZOOd5wb6Q4P6McBf7Amd4HJg1t1HGy3TMPIeHLKib/JcGIkeMESCAfTjrJTIakXzr2BN195hWF3wjSd50w+YnOwwXsjpqeRUhJQ8NZc2RIdEdO5cXuNO1JQ0pdN/M2pkMuk4yVDR8EzTInbpwMvX7nKd154kZdefZXrN2+pWEborMGsFmVQYZv6vg34rwAoapD3l9u8vr7nUdddW4J1ifzOv3YvHu7Oj29GxsA5w8KoRZOmhF1/4NShyFKJXNqZ5i+n0wWCE1Qc0ZqnnYm2ZNdULdXGeGvwrUChZxh2tr4Cu6Gw3WUVRel7hrzlX9p9nL907gP86Vd/jf7MWVYHR3RdD0V453CFPGX8ZqMK72hTSU6J9TAw7Hb0pycMp6f8ic/8Bf7ue/40/9Qn/jy7qhAvQgBODi9QYs/Z21dMGcNz9fLjfOXSu3mjPM3DL3wZJ5mT42NCVGGpbrVitVrTr9f0qxVd3xO6qOBlDIToKF7tmJPaDFQbg61ZpKohlplUD4Vlg0Zr8rYAoRIdM1kNtZ/UlhqG57xXBWaZgwKdnDiDvTiHizp5OOeJlCemNFLyiJQJyHSdJxUPU0EcjA+9XYvDqzPIg28lvPRFm8RQwQkVD1OBmKIiIyHSrXr61YrYdwZU5mbbg7d7Y0ocwQLQLkT6rvtHsjX+YY85f6nkrpm4Ve1fzhpcBAv2uxiIzoSmKgkJ5nqtMxK7c3MTvyX8wQJs51S8SbIqU2dJBjInDec1itAABnCuEEPPmU3P2cuXuP/hhzg8e1YTC0uAUxbGYWBKguDp12tC6Di7WfOvvwVrFLLPGBRJDwhBCkEKnRNCFylTQqaJMiZit2KzOWK9OSJ0awZ3levnHmJME9+99GZ+9It/nV3X0QeQoo2QLg9Mk6NLPeQNPh/gph6f1wR3gLiOLw7neGe4xufTRX5aXtOGhVKbLKQl8M2PB83JrAcEStF7ViwR81HjuZLABxULqoCQBeJVBEKf9hyPFCnUCRKCTp/UPeUpCNtx5HQc8H1kfeaQzbkjVodrxmngdDhle3pMcWIq4CpeJVIscXXYwC58LUZ73buN8O6rmF1QsqijEbRiHzg655mSI0vg9OSY7ALJbZB4hFsdIN2a7Huy67RAfg8KTd24eVOLfF6BmGSFuRkErVOw/OzHgOrYWiuwvM4D6mstESq1+FwJD94TvOikL6eyd5UQqrwLI8bgFBBRNBCPJ4aOD175Ir/98Id5x3c/wwXZwZnzfPHJn+SJb32CZ97x03zotf+nJhoG/p2c7Bhzgc4zHJ7l2+cepz84y5pXOUeAsCIGzyZ2xNVa97/5TRd7XFwxjiPee86cO8vZs2fZHBzo53eqgO68J02J3VTYjZlxEsYyMeyE28e7FugPw8jVyfP0fY9z/yvf5OoTf4g3Pf8pjs4ctWbmzcGaGCPOQREjOYnwL7/8K8iqNwLQLM6gdqOCHzPA76rIlNQGobngIJifREGO1tBYJ0vYtOwKzjkLdBw0walSFo+/9nYa56k2RBTLHVQISqfATOa7xlSbwyYmE3MrizXkqMCSxrtebK6uFfGr4GmEJup491j0D+4IfUe32bA+OsJ1A2G9IuE5HUZ2w8gqBFY+0KGTGFzJSNJpTSVlS6YVfMgijOPIdhjZbgeOTwdOTge2Q2K0hiSch+hbYlt8VJJHKUi26SDece0dH+HSM5/m1Sc+zKOf/htQLbHZZx9URds5CNEr+B27VvDVpngaIa41EFrsdNId8Z2Lb8dJ4bGr32A9HDOlZA0Zsy1VYojGWcViqgCk/oDt6ogzt1/Wa2uFa+HJpz+quePBgRIacm5fKU0m0jtPdq/EkVowWhLE6rEUSVGA2c05arX9dzne8Z1f46tv/CO867lfYzXc0gmvVEKgvkbuXJOWF+AqMcuaXWux3kBcR/W3+0Tw5TXrGyy+7N/t9bL3Cw2MtKSkZeF3Sk3pdVcwdv+830u86g/qkDv+L3b/ncVrSzKUkjFsoriXeUqx5Ut1GoCE0D6rN1C2Ajlixfe6aF3OuAnogk3v0HWKqDZ2BSuVDOIMnCtW2BbNJcQwEOd1ErqBcs4HA7WE7K0QZc3slawI0gRp6sRIcC0PagVsqSIwtqZLMRKLs1gM3YvMxVmNjRyeqEKvtSG+ksNQbCDYFEnv5/1dC9R7z2e5MdrzWwgUInt7UQ83NzdXsadF8/+Mey0wsMU6rfl3WxQ1F282RX+2N8WyvvNdbEQlA81pSj1Hu1wrds7XVm3C6w+38Jv1Gl6P4f1BH847IwIu8B+vzUM+z8CzLFlSArWJuBafZps4i0yEEDSeKREhKcGGCq5q3K5FGxU+7DrdH1IKxXuyy0xTZicDI2Ozn1ogqIVfJYpev/gYZ177Lr4kggtcf+ht3P/as0Qf+MiXfpHjfgUbuBYPObz5GrlYS6xTEpMITCnx6tkH+eblJ3lD8Vx+5elW3MloEWk3DmzHUQmNxRrfX3uBcPs1Qhopt68yDNrw18QVZF7f6OlUOK6Ka7U8uN5DvU8O9ZsxBCSqgEOIsd1s71T4RYVL+kUTib53mDQ2zWlimubCWal4X4vbWTShqJ07jQdMccP53WvUaZq5JMMZql+vAm0zWd5WlS0TaXu6mG3Ld+zx+vpmGxZ7sZJChVnUthYy2mSOkgm1Uc2rkM4/Sced9rSZQ9DcGF4fO5uNq68Vi4Wqj3VnzrN6z48Qjs6SvvUZhmnQyb7TpEJrw47tbscwDFZI1ntf4p0ljfl5wmymZe9SxNjEsxFpMdSd/sLd7TPv+4b5PrjF+p4FXKKJoaxWKzabjRaHx4n1es3h4SGb9UYLZgLTOJJz4St5zWcHx0e6wmOybXunxm8lZxWaGkckJZ0E5jyr0FG6XuMPdCJwdIpndV4n0g5xYBxHUp7IeTJRVS1eZylImJRMW4RQIEhBUubRj/83PP/9P8NbP/03uRVCIwdP08QwDIzDRJ6UROLNhnRRSS19v+KDn/tFvvz9P8P7v/ExSqgTwoRs4i9VSGycRvBaUNd7aflpjMTu3iL3LuOG9j3UTr2ae0b79iul51HZtn2imMYsQuS9J1AndHublIbVx1TUzzs3E+osu/Uu0HVKfK+2OAQV0a5kc7/4AscPHk6s45btaWI3DBwfH3N8fMzJ6Qmnp6c6YRVRO79e02/WOnRgvWaz2rBZ6wTk1WpF3+lQk+h1Wr3zlZljxWvzlXqtuj+6GImuEmiNzl0KL+eOMgmrcWQaRl3rJoSgbT1680rOlBgoJZCzxtb1c/e9CjJ5I2N519DbRaxY8dw5nq1Ticriqw2RWKQ/yz1/5zPfqzfZ71USRsUhy9180R3naYKlRclm3taDDx6yiedYQdwZfuNNDNZHxbBjrHXNaA3sFjPZ+7eGtWU+a80a9yK+GEMgh6ACG1NGfMD3SnyoQo+NeFAKU40Tcra0wykmVLSxYBxHtt4TndMcSaTFRDkXsuFC64/9OQhKClC4QQhB8EYaxI0gaNOBPXMVRNLG9GTiUg6Pi87qJtqM7oNWBObJrb4tpBA6YtS8qOt61qsN0YXWrBR8IMYOQiCEqLhXOSXtMtfkLA8fX8Hb8++73oT6VvTrVRu64mLAh47QadOiCnqmJuCCkRCU+KXCoa4mK0UFgUL14VIJvqVNyc4lK+ZvqEAVhm8TYy0fVA6703ozs53YxxEWgo0L7AXmXEqsYalxEQD1MjYsqSGBFgMY4TibCJROREvmG3P79zBNiMB2l+z7iWG4xcnpKTH0SrrxHmc+XJzl91pEJ6VRBfCnkUxpAqr30jFOU5vEPY0jw6TTR12ecGlHmnYUqzEqZ8CEpopyEiQXnfiLijDoIJuIhI4SegRhsokgUhIktaZah9Y946MnJjcT8hCircPMIt63PVIHSDinPIuGY1TBP2dYRyUPAS44HcBweMiqW1GmzLjbMe5OKWlLngaLi7RW1XBgrwNBxNb/arjJ+579BSX1oHWHk4NLPP/gB9jkHW96+YtspmOCz5TiGC1ejEayzf2Edx0Up/4t6R7BR8W1sSExEbIvBJfw0tPTQ47aBOY8oRTcdJt08xWOX3uJk5s3mMZEFkfJAZk8LoMrovVII9Bq3ddx47638txDHya9+mnuv/2sxh8LAQTBobPgrOaGolYBYZoGdqe32W1PSdNI1zu6GOijJ3rXpkFHe72umYITFW+pMg6JQvKeyUFCwGU6nznoAlFHENJHHUQQMFKoWgqKcyTLB2p+4b0SsOPvne70j+WofI2Kj82hhdsPTRpe5qhNQh6H6zpWBwfkc+dJuej5Qsd0cgKnO2swtbVfkTsLOEXQ54+dH4FionwLVC1ZvlwFHYUqBl7zKs/td3yEM9/6DLff9SNcuvIMZSrWDD9jcloLN2K/6ERlK0nf0ZyjF9dqohX/TwMXP/Ffc+s9P8N5E5kCx8G3Psnp2z7C5rXn6F5+muQc3mpVHq21vg5eN6y1UFoDqvO6RnMj/lozloM6sbE2RYEKW+437jk2L3yD4gIJz+rZLyG+cqjqM1WfU3JNjmfRa7skqpCUJXh6T6Q2uAOeGasxLEKcQ+txNTnV+54ltzWmOYTu4WKLbW7Y9ov39UhcIasL+DOX6c/fz/r8A4Rzl8nrC+zCAaclcpIc23Hk5HTH8e3bnNy8yXB8Qt4O/1B74R/lcXO746jrWa8jPiivJpQqxl/rkAUfHA986WNcee+Pc9+nf5k8HDOgjUGC4pGNf7jwSS5AdB6iYvMz8dpImaLuzZdiGKdY/XqBMYtHvDbPBgdE2yf13+ju0Fq3xeTGx5PFoBgViFQxSGeCU8ikcVxJyvsTFRv1oRCiXl/nPRLRoWpGwO+6yKpXQedNjGxiYLjwAF9630/zyEtP8+Zv/zZ9HjVmdjQB6T5GesNdK/vb47h25n5y6EHgtTOXOXP1RSyFM+wvElwg22DDEECi8sycFC6fHsN3n+KFCw/wrm9/AVkfKHDotU5dyEyT4RdkfuQTv8An/9DP8iOf/hsQe1yAbjrlfV//mAo9oNN6xQnFSw3/rG5SIKj4ik5LFpBEtkGpOVsNpE7JLSamXyYTKVWh0mIiCq1B1kxyy/mp8UnNIWv87Fg2455efpijG1fsAk2w7x49XF339d/fo755t9+rR/VctVegRutAE5YQV3SopAglO2CiCQG4Wn+sTrX6l0KtSyoWWK925kg65jer71l1o7VhV/3T4ZVnSS4wxo4zz39Vm2eLfk2lMFrOkAx3ri1+ek8Ux/K2T2KcB2O2WlDz2gZaOmnNFHXZ5NCxvf9Rzr7yLGdfeQaJHcPRee775udUWKSuNeH1frBeSHsvaTFTjadZ8OMqP3EeAFH9U3uAe29S620aN4YmBF2/5s9bJzXvbYwZD5ZF47pjfn51ndi9mOnC8xqgTjqvT3dhmys23d5S6lUvznMPHd4HJGpe7LMJqsnUsL+GozeVNfkdz1ePmqt7b5+9zOt0/3VLnEuWN/x3OPe83mtz3ry7sZ+5f4R3+ne/B78T5+D1Ilv7GESNnZUvLS2eTwlu39pSEtB5nO+UU1swXLfmidIECqdSGKeJ1arnX3SfIURt8xpTIm9PWfeRc2cO6TvPFDwx9EjRvaWiC4Fgw4JZ1qhbrKdHzhmyNQTKXL9f/s7+Z767ELbySYoJJCg2vbxny6b0xh0rBbxQJptif49hi8cnp5ye7Dg+OWW73TKNasNzEhtmZ9TyIkypsBsmfBgJoSPEgS4qthZCNi5DFSjSZiRnuV5wNTcy23zHDd6rP7rqG6tTUt5DKfOgIpetaag1sFrd0wpsCpvov4M1KHrvCSKtFkvFfp3jZ/yL/NL0AH/CvcTGBn3UWKvtfVvr1SbPdrRGNnMtkIp729AjUz+wngKNW4sk6iAsKZXPMmOhe4PmsYZLE6tvZGyzL7fdmpc5w0XZ8my8xAfKy4t7u+9BnMWnNT+W+lAMr0NMnBgVLGq1h7vFOG6uoc+1v9lP1nhfOZHzoIkk1gSWizahp8Q4JYaUGFLWpvScGXNmyioGkkUbN7U/wdtz1CTR4XAhcndLfg8cUlRgt4gNVFGOqQ/ShozqLXY2BMikkJ0zvjcmNmW1T7unMWeNLURjKxwqjOnnAOjOO1IEUtZ+huKVF6wxj9mvVjcS/XuxoVgS6ItivN6rSFMXA2lSXLi06yuGfQtz86Tm75XrJCLsPvJPk7/8Mfof+jk2v/L/wHvP9Oh7yW/7MO4rH2f9yrfVJixy+bmBVFqd6vblxxie/EH4+qdYP/tlnZDqHcVpXdF3kSpwGrzGSVmEJLrnfBZIymtR/oSKG+RJcdBk/S4Vr6nCV9VedTHQO8jBmkz/zp/jUKBs1hSBqaiIbiKTpJCKDVyveJV4xSsx4V5R3lJmDmuUR6a8cr2PDh9tYFO/oo8d0YWGc4LHZcvrMsqLqwP7Sj1/VqEpGypRUoYiNhwpIEH5wtn47OoPaiO2DYS7h44mlmF5TisvMosCicwiUdVPtDyA/byhWLN/M/32PuXMJcXPbl9RsUnrU5rfbfZ11dG1vtCWP6jYegsH6kDWmqihuAphzkecCyZWU2vZ81vOEWWtAdFcRsUWGybq7uxBND9Qc4daKyUgfo6RKnfz5IG3El77Fjkp90e8Na1Y7auJGc4ZS3uPKqqF+FZ31j6hWdgNKe0cbuEzEeHkl/88qRRu/Px/yLl/+s9y9S/9e0hKZvcVe8hifReVB1b79uqXeTQVKA3tHqhAXcGX0sRYlHLnLOEycUekPV/zmHV1zfGxxZiVe1VlobPh0c4rHlPXpYfmL91yLdxjx5QqKm64HrCfoS4zmzv/Pr++AcD2pOf16/Z+b+ajVl/m2v3Vn7N/3vo7suA2NJBpeTlu7xtzPFPxkLneuvyzfQXf/nSL+LIKTfkQcF3H9pEnOXngCdx3PsfBzZd0Xdi6nvEEu8Yyc6qcXYju/awRzgIj2TM3Mp9DRZY0vz2+/3HWL34D0QaS+XlVPAnh4KVvwEtfBxuIgYgJDFpftNde08rlzfX9mG/pbPvc4gZaXm0CmW1/OTfXt90dn6Xtn8UzNLtZZutpzx8e+uX/oPGMcxWZyvsiU/PQ0X3BqSxZ46SFiPi9ctx89WVCWOPdijxYHOXBSSCIU25UXBHWB6wQdjhOxsQOFQYLRehsvSgPTqD2rxrHokDj+1R+kT6IwPTQk7jXvq19LuYXBO05Sqkwpcw4qdRgtKdXq2jOHIwzgRhx2fqVtH9TYRyN43MRxBcozgR/NL9rQ+ZMIE2sf8qJ2slcnNYggvJuY1Cuv2ZqgSyOeOEB5fqeXGfVd6yiDvVbrVasVz2bfkXXRw4PDjn/9V/k8JGHODjYsFqvVccgBnAvIw/cR4iBw4MDVkcb/KbDrSL4oPnl4BkpnIxbht1AsUHXO3/A0bmXGNbnOLj1CmW7o5xumY6PGXcDtR61dp7gO1Yh0jmtiRS0z0ZryYHO2zPMdfCYmOmoYhm+9XCp4IxHFPJYiDq21LX1M925z2qeW/KMcd544J08cOObipc0OtgsG5hzUZ5I1q9hGDkZBoackS6Qvac/OCD091ZftB41FhATxKy9kiai7XyLpbzoUKjZXzG7qVDr2vP3BDh741nO3Xz2db5m/90xHGP2c+LV4tWTib2XC8bZFwFP+53aex6cr/C28qqcctpiME6cj9rv2ATH5rjMWc/JHLtZDljjUcsrVsNN4jO/xbUH38abvvlJJEbyNKl9DVHjmuoTXfWrGutVmfHiREVrynxXnKs9l3b9DrwoFiQSABXS8smRxVNk5kC1GC3rOYPhMwef+SVOP/jH2Xzib+GOb+q9uuP+3xFVEJ1DfB3mbq9ybm/oSfvtpd92KjSF2LRU50zESvfj9sx9XH/0/WyOX+PSC1+im7bUML0unFkHxL5r+Qz2XGa99FlwqqIf7U7eW66s1Vb0/4aJSiFnR8qJKQf8NOFDxIfJavw1FDGsq90XXesBi1/E+le9t14WFZqKYR4yWrEVxW4dnVchKofh0d5Ez2qO4+bhwMFbT5aofXClEETrvjFGQN8j2gDgECM+hjmvMRxZ0Php2hsmnPGVp1r7QFzlqUrj405pYhxGxt3AbhgYBuUbhBiU09hpv3QVmtruOhObUvy95iBTSgzr+1m97cP0x7fwX/z7pNvXGsej2GasgqF7Q++9iqNnp+LkyaEiXVSRfM3ZJGtNuGQVmZKy1HlwLfeqMZ0Oqagibcq5aVhqdXG07LGVk1tNy3u6l58ivvQNsuX7RbNAxReLDsDJWf9drFZZ+cVIma99ITTVrrdys2t86J316vw+C03VcsOcnFdw2QriGChoTeezDC7zw8uOHHTRJGvSyqG0i/dTYggT3qs6vBQDFLxpT865gV5XM4q0a9PDVBAxAMGLToHrVGhKE3vDnMaJcacTD7wPpPUhN9fneWI6pk4j8CEoGT5GrnT38dh4wisH9/He/DKxQN6NpGFiG04InQpN9asV3SrgOrFplsWCIJ1EJi7ymdsrPnWz45WjyI+cOVV1fClsJMOq4+DCWaZhYHtyzPGNm7jO47rAtN0hUyJPhSwZ8kgeCy8+/CQvHT3Kse/4vqtPkWUEl3TibhfUqCUV+UBsYixz0z1iKmvGoKqTZgQgBHzsUBVPBQgdGuiLOE63I69cvcZ3XniJZ59/gVevXuN0GK2LzNO/+4+w/dKvN8DK+ziDPHdZczXBZfF861Pff52bF0Rzl9IKm3sp/x2FtHvpaFdWN1gdyWn/9M23yv6LZw9db9oCHGM+R/uy7zp1L2pYbIJq0UnjDmsu9BpoOHT6TClzQ/96vVGAMfZalJsmSnYcH+/oulMykZWLDEWn7v3cyWfoz1/kYL3h6PAQ5zzjMDIITHkEEb7TX+J+N3GekU6E7uCA1TSxHo7YnpwQj4/5ya/+Lbb9irTVpDCUwnB4gece+X5K6HnsO5/l7K1XKMCzZx/l0qvf4jvnH+HsNz9NSKPeTFM07noVmlpv1vQrndQeu56u7+j6Dt930HtajCQz+YcFiFgDs4aISXtSBo4wF828h+xb4JBc0nNZIFVEg0dEU0WvYT4VqkxiazsGYvAghTQmxmlgSiPisoqDRCH2EJICYs451s9+kqnv6F3m6NUvE2rzOiAlk52o8ndJ+o7W/N2vVjpF3XuyTeugiK6PoolAyZkYnDamd55133OwWv8+7pD/4YerAmmlaBBRHIR5h4ioeIkUnRakzXGdkulMBE2nZThL5FFgwBLO1lyFLYUaDDq3cOAgqNKlAk6qzozzRvguJCOObzYH3HfxMg/e/xCh69mNA0OaiF1E8AzjpOrMLrDuDwi+Bxf0c9SGdLOAOkUA3c9dJPo1gQN8KTqhPGWCgMuF3blTxEeuS8/1C2/h/mc/S4iBm+PAoRNKBz1oUUoypEIuESlbyKf4seNr3bv4geEmR13gn+mf5mPjw/ysf5ppnHB5hJJMAUQs43FN7VaCQ7yjBGcFr4Rkh6PgvTZRggXNSxGnajsbORgqTI8JK6SSlbBpoe9UrIHAOVJK3B5OGQucv+8yR+fP4jrHdjxlHAemPOAi9METOyssGHmtC6joWgVCF7GPHmLfU1uLi60xDyekaUJEWG16zl6MTBJJXAUpuP6IsD5Hf3QGHyqhPmjifw/6tCzKyKiNtX0IrDYbbcAqC8DAAvvqv5rPt2To9WXyRbgtWDBc9sBRTb50qrmeT9AqFvZ73kRBtEAZA0jvcC4yDon3fvfT5FRwnYoy/dhTv8w/eNtP8aNf+AXc4TlC0MR7GEfEFVIWUsm8dnDIlhX5dODZvufijdsMU6bvosVZoJNuPSKZIQmnQyKlQoiONEW+Uy7x3rQ1QEHI00BOid1u4OT2KbeuH3PreIckUbDHQPhK/O8FPvDKl/mNt/wIP/f1v8XR5Qc4NNEc5yB2AaHoxJ48AUKMXoV+DLiJXaRfRS3Ok8HlPRCuPYma8C7+LUIrUOtDtoazXMi5EusXQN7yyS6SqTkjxYAd+3uW1hypdjJb8igK8E2JMU2WvCYVmcrz/q7gSBN+sy9L3cyOeIJ3ZpM18Cpi1el76YiBuOo5OHuWVSqc346cnGy5fftYyf9FOLs5YB07vIAzn12yAtA1ZilJE/7j04Hj01NOTrdsdxNjKkqsjgHvYnveWNEqA7tcSCSSFAXtnOOBX/8LvPbBP8HDv/nzTKgprhMGtPlTBT26vqPrls2vGJCiCX5t1GAhNIVzHG8uaBxC4HR1js14oqSSBUn3+Ytv5ZFrT+seymJQqWPqDnjl/new25wlXFlx4VgJSBXwgdKAZ+ccfd/PP8+ZUhvx8zy1zBsIE8L+xNa9go0l9pJ0Ao6Km0CL1e9yOAff9+zHcM6R3R3nYwb+ZjJAPdcM/NbnNavXVOJbO81d7ay7ixq8M/J7BciWJbGam1cb0AivzjWwpt7Tej/bJ6lAyx325Z44KoRhxaVSv7ewVc1e2Z/aMF/tiPo/EfC54HIluastrOBVJe5UwaZSBK0zab7hPfSdisLQmvcV1CpoMaQ2ljWBizr9AfaKssEwCO9De02mkJ0nOm9q57RcRqEcR536UcRRvLQCbslF+1mqrdbfok7Nmon9CpxpX+A8AamRpaj+XGy6GQ1Ec94Rmg3Sz1GMsFjy3KwP+1jCXnHdfljJnjRxmhnce53I1F1+tjwqgXZvydxlDS/Jtr/TzzU/lMXCai9YLklmiH+BdzBDbqA2uk6zaGmp3HNebPbLZt+1IKz7R3wlEmXEz0RaMXujn6tFDe2YhaZmm6w2qzRspMhcpPTe8cp97+Dx7XOWU9sWMzGC3W5QkQwj4OVpnpBVsnDjobdx5dybOS9r7n/281x/7D28duEtnBTPG178BiEEtsXz7ENP8O0Lj/OuWx/l7GvfAXQfaCFXcbWXL76Ji69+k5cvv4XTLDz4wpcA26NS2I0W3xgYLQgH3/4s93lPv7vN5upzLQet5L/rD7+Hs8/9drNVpfozRBt3yuw7MFvccF5RMrJIFTOxRnCvRbu+61it+iZuEoL68mKNdaVkptjNfhFmjMvV81Ufqq/Zdod8+9xbmfyKN+XM0fZlcjIBHBMqqc+5LPCY/WyrkkFU5CCZ3675fdmLZeslzVjNnsAl0oprWMpVhT9I6FQpU1nIsrdd/wk67tiH9s/6vKvPhIXVslihEtRUmEDw5y7j1wc66eTMJcbXnjXhoYHdTkWmtrsd2+3WhG5VVKTZaKFhAC1jrFiyLK5vcdRii/rQO8RC25/urt+v/rh9381+WGpcWuPfrmO92XDmzBlEYL1ek1Oi73rWmzXr1ZoQAqVkhiGTZeTzcsib3TFfHjvewK0mqFDFnVJKTMNIGkbKlJQgizZ+5q7X3EYgukgfhHXXM/Y942pkHEfGYWCc7GscGceBnPRZOCssknUyZ5kyyU1w6wYPfuKvcdIaqtXnpJRI00RKmvNpXUVzzL5TQbp+tWK16vnQN/8+2QqDmtMpyXccR4ZhYBhVYCzEaLaOPV9xr260FjfkOh038XC8gbgAIjxSbrY82FnmqbHWLKI5Nx2icQszWaqS+HT0qdanfCkq0C7siZr1Xc96nQETghZhGEaOj4/puo5SCn2/wvvAbtjx9alnc+0Kw+0bHB+fqHhzTvoMVz1d39OvV/SrNZvNms36gPVa123fr3Q6Xuxb0bjGnXWaeSlFxaW6SDRBZ2/Yq+RM8J4r/oCnuyP8YccbU2KdJtI0NrHfKSnpHYT1eo1zK8V9gm/3UN8/mqCiNTYu8g91F3M0VOPZmt8t477aJDPHk/VBz89b/1ljN31NJdgu/0SW55DF9bw+fr0btqenULF2rUFoDC2dkTpjIHTmb4On67tWhF+t1qzXG2v2VKy6Xpt+TrRu6lRsyMdAuMdysuBVoCbYVMZizf0NX6+4nygRr8YWKkrvFJtEfyeLkv6mlO0rKR7mHZ33EJz2xJjfKGjNwNU+J1HCYAyKRXmSxldR8NERXcThtRG9OMPmUdEyx4wbOBXE8iYYoTm2+UZBY09xOGuuunXxYc6nHZvhhM4r0cJ7JWqfnJxQtjty6PjO5Xfy0rjm+rTl0vVnCc7ThXk9dP2Kbt0T+55uvVIhufVK1wdKdhJvIgtBfZkWzjOutn7Yfa+11mRirvNa14Yb3IIeW4sjrsba9jmL5os4j/cVtVEb6Bfmfl8IdP97ze9aXOHcIiercd7iPyV5sBDCs+FXKRkRRqebD2Nq5JZxytQGT+8D05AYtifAFoLSGV0I+C7igg6DKEGHyqScGSYVdqxgTB3Scq8c22kkjSqqPo0j0zSQ0oBPAy4NZnuLcQZEY/PaXLXImaXmWWJQg/OID4gEPYflV1oCMuzDi/oFZlFJxHounOZvwQL2vMBM9CRBCT9W/6qNi4jDhUilRdbmbERF4Q4PD+liZNjtGLZbpmGHpC05jSosn3SKbG3wcFIbDMqcz0DLRR2OkzMPEkrmJGy46db44SpdULJjsutKSf2yiBB8RkmxgmS9YUo8RslMvhjxNhHcipAGyCsVLp8yAYgCeXudq6+8wisvvcyN6zfYpZHsHVVJI0RtlitZGobugz6/Fy89ycNXv8KLF9/JpRvfMoH00GIuh4qKYDGhd8rJj94xTCOnJ7fZnR7jSgY6FTP1QYfFCQRsGiKOKK6JiCMoWdQrNl8nb4sppQevz7rv1K+veh0C5YKKIahVlOp6TSRI/YQSR7XOem8dVgtye3TNBR4K2oxr+GqBOhiiZAEi0m+IZzxrF8lxjayOCOtjSnfMtNtRUjZ7SmtExHD21khocUgj0TpMuMWal72HLjSS4iJsAeDy53+J177/j3L5N/+qCl3SWZyXjcSm8a36aJknzAKgGF7FBkHfuwkHtsQc4vYmFz75l6nNNlisdfiNf4BznmJDncQVFRFS4HIxiGZuBdK14FpdqcFI1Fqx/mzJ+2jxm1OeW/CgXb4WMwHr73zVsKdgPtw30bNKMNZp8rrvVUwrUExxq2GTFmsitSrlKFm/74PMOIRX7AE3i3ZpM/QsjKXiIIqrBsN16mvazQ2B2PfEfoXbXIQLjyEX38R05hJuc4T0G7JfMdGxTcLpbsvtRa1pe3ybtNvBOP4P3xa/z8cogVtjYt15Ytez6qIOp5OMN/UY5wrJq2DUo1/7+2RJbDcr5SilAlkoZG1wcPXZGO+nCK54QiWCW7yYF8KcoVh+UwLeGy5LmQfGifI+lIftNBYsygNypRjJ16sP82qPxexwKcWI3SpwJDIBEyKJUkZyHlQUMiccCdXi9ng61n2A4vAEI9fXCbaeruvoQtB4GIgifP0tH+DGxYe5cfFhHnzpGxweb3Uyule+2KrW92IkOEcq2cpAjsevvUCWSM7w6KvPMRUb7haN91JEydYCYxZyhiQOJdZ7nBMu37zKpZvXkG6ttt+pL8+inI6u7wgSVeAJ4SOf+yUTSKgYhfEl0YEcKgAlFAfFFYrT+qh3lTWSgYRIHQBXczWrdVccMJeFUPdkWKlhqPa+FPTZUbFJs40OKlnX1fd1alMKcPzgY9x69C1MNy5y8dmnjDNzbwl03HnMjc13zx2/ZzNbC6bEoihp/mYPtjM8DVGOGgiFYE24xqNzWquak/SCE2dNtQ6MA1RzLVe5y7Ttuair6kU0ITK7kIOXnmZdtEF9e/ENcOsa7uQ6KZcmGjElbayvAqcq3qT1txijDbM1nCLW+rH6IJG5afXOOyY+cuOJD7C7/AgSey689DQXXnxKxSeqSLHQ4osaZrXzNLzfBrYs4pAGzDf8W9ebt7Wqwoa6J/ef84xnUD9rUD5FNCGA2MWG88/Tq+u1LJ+X4WOWB9frqmVN3X/mxYpxz5fPCoub3F2aoaB9b778Oa7YZ5XfG0fl+ngXKb7gfaFI1BxEmJ+D6G7Yu/y6ZBsYb/cwF3JR++ZkgqC8EO7yTJf3x4KevZ/amfePFqstuUJu/7R2v+9mK9YXL9MdneX4u8/ccS2ve6Pv8fc7rv+uv/69zjljhe07NS6tP6s/r2vUq2fN4rl6/Sa7cYKjFeO4RYqKotdeBi3lO0qwVuaiOcyUJhxFm2itAXoYBrzfcPnSec4drri60zpFrZdoXFprYYrL3M3G6oAoa9BcACrVpjaARfafqqvqElT7KFQcp9jrK/YpNdl3GN5aY+9qgeYc516D72/ePGF7OnB6umO3Gw33dUhxFOsZKeLIxTjVPuHHidiNdMNE10/0XTKhKRWEFmvCD6Kxn3fz+nfmaJx3r9s7tQ5ea+LN51d7ZvdWf1Yw5XvaMDvR2mvbqrbF8sLuLnlKdW0Hiy9/wj2HxzFZ7JStyeqL/jzv5Ub7nYpXNuu9sKV1GdVBVyK130AW+yabCGqmuELte3C2fpzXAWlVaKrWoaviyRe4j/dyZW99PSBbPuhe4Xl3lg/xqoIU7b4KbjEEGuqgBbtgsSb0ArV5Waw6qTbMhg8tagftHtY94va/vzzacCSrVeYihkMXxpIZ88QwjeymkSFNDDkxlsRkjWJTsbhChIQK5ybDT+vCUnGl2th27x0Vk6l9Yu3fxb4sj5odm+WtJnRWP1Za3MeKOUYRG6isWIb3XjH76vsMqK4RdLVfYPG8q71t0vgPmFCV2i3dSN5pk2WJaqODD/SdJ6fQcFA9p+K7ejn6XBr6vIh9ymd+nusf/mc48/G/AOsVuMD1t7yPzQvfIL/pPaxee972p2+4qDZK22C0rCIEt9/6Pg6e+xr57R9g9fxTivkUW9fOBgk6r7ih1cv0g2cVLxX9+8kbn1Tx7DS2QZspTTYcQhZ9fl7n9WI9Sve/iXB6k3DrNUqpzbTWyArEkkkC8sT7GJ7+lNYXuyNWlx7h9NkvgaA4RcH47bR4pdIYzUIYPuKIIbJa9RweHHF0cMhmvSYEfe+ci4rYGX9HbEB95fQJlr+JNqBOUyInrQU4XHuuwRWSU86Nt/6RJMp57UNnzbb30FFjL8uJ5vULoM+k5pnLmE8FjeZovMVrtkzq3nOAnL2P9MQPgA+sn/ktwq1XFuLxdhkLu9xixopxLiJKj+gbeLHn49pPnYnsBlfzjir87VtDcm2kxjH7I3HaC2XiJLNDkjY0cLZF0nyOII0HHGp+7vV8rcbrHCePf4DxsXcTDs+weemrxnN24CPFe4oPOhDQJ7L3TRxPqv2xISMm5dA4SpMJFE/WC1Sy8bXO36++9KVntYm51EEtwrWf/4+o7dyK3VaBYxWbas3eLVazyFxkxlql8leVB5pKIVTfXR+oGmKcDVWl8gztnHVP1QBAfZwK6tehBYqPycw/8xUPrs3Ndn3Gb3OLR3cvHanU7Kbm6ez5K72t+7HdHBIsc567OOo6cICF0FZVSqsnWuazLZ7aP3flGtR4TPZe4/aux0GbbbqspS5jxfanq4Og7XVVgKpOkNCFZFilkIPn5L7HWF17ntsXH6W79hwzn8q+Fhe5rIPcecuq/W8CIMv7VtcdFWMr3HrkHdx+8K0cdCuOnvnsfPvcHfegXsZePlMsAqx1Jju/0HrixXzbbNHm/LBdVinaby6zLWs8rhbjzx9CZMYgliJTdSmUhQ3VzzrXQtsQp2Iil1VYSkTjb2TPFriW19x7AeMrL3yb4DZEv8G7nhCUWySDJ0cBP5EZkDwQUkJ2A9PJCXm7xU8TPVr7xXDYMo4kkvYFOk/oe4rTISNLgVA8yOPvZ3riD1HOPQDf/MQiT9acJpfMOI4m7GR1f+toFwFxlYMcCRF8AR2lU2vWGJcr4LOuD2exT31eWbLV0lS0SXNFHUThbF1Gp+m8DnxwDY/3HtzFRzl41w8TvCN/81Osx9scHhxyeHDA0eEhB5sNhyYotVmvONwccHCknK7VamXCpMq3nyYVA3YxkBEmyXgpRLTuNpbE7e0Jr1y9ys1rVxl3OyRnOhd4/OyrnN7/dt509avImXMchZ6TsOLE32YaBrzAyZvey6VXv0UvGnvVgZeC4KMOxwyG7xXrUZ4HC9cBg9hwJDfHtvpE0Lhda5t+sdSXeVrtTZPZUOLwXHvsg9x+w3vg4AwPvfJlw0F03ziUSyQpMYyj1jNEffduNyifIjiGnHFd1AFK99hRb0Fptk+5ZZoPWQ2j9k9XgTYnJgCM2eU5alweGi4t/aOrIdQckmHRp+EEdVjE/kXqswro4KgiaJ9piQ0H897roBPzC86ZuLtxraL1nMQQW2+28mMdtabn7Jk6W1u++ho7n9N0CimZ/vQaF5/5pMaIUih50pzWgXPB1pCzurfeo7q0itP6XjFB5Tl2EuO5i9aQvUUYxbQaquhQjdetnywERyyernjt0zE7U3G4w0/+og2YqrVht/CDIN5gJsvtnLce4wKIazy4+sj9wmXV664ru+6fvfjHYu7Tsw8Rd7fZHt7H1G3opm19vIs1ZH9ztcfG1Xe5o+bg6okt5p+v7V7bZnvc8ZrbmgBs5ZyFEJimUfsDPco1CCZUWLFejKJgpPkavofqby69gdCvibev6JC3OrwSjGul6z165To6ESQYFyXM1+qdCVnpNxQLyRlxjuI8Gf25iIWrQUXbovetz7M9pdY/4Xihu8DZ8SZH45YxZaZUCF0kxk7FsWJseV3tvUw2EHTY7jgNQQeViUZg3nj1Xa9CU4JiM46Cd0LwjnHyFNFhn8F73ANvZIewOncR/8AbSGVn7VLScpViuc8sMqXYKAI5BHL2xOSZmEyoW4UiEdH9vBxUm7M9KD+X3hYmsUhufLglf07tjWspVsvJ29q2HMr2TOOrMPN6s+n1pFwWw+NkHsZYFJfV6zfeTo1Ba2xvXHOoecFiQMzvcvyekZEspWJtc9Dt6sesK6l+qUXVCystuQENzJMpk4UUldhb1ahFmGRu0AxeZ3CHoBO4CFVRi1YQnt+yvok9BldNthiQAt4LLqLW1DKh7DypgDhVMD+Rnq8fPsjk1pQgvPXkBrnrbNJrR+x6fsZf5dcO7+dPu5us4priUJAqZ8YxMQwj29syJ1tRCL1jve44PFizXq/pQo/H8e0Tzxv6zDduFT6wmug80Pf0Z8/QnTlAJJHGkZPbt+g2K4gO10VOb95ke/uYYdyRUgICQSKvHVzi7I3neeHwAg8fXyd0wnodWa0COJ0mlrN2hTonTUnaO3CigIYY+6qC/C0Z8wHno71eoXdCR8ZxMoxcuX6D5154ieeef4FXrrzG7e1Op8fFjvUf+pOES4+yXh1y8qn/Tp1yfUYiNpVt9lo16VKAoTqqu3gNt/fHHYfMCToGKt1rla3lsShAVYChNnzL4v/Loo5thUp3pbatLO9Ui++qw6ivmSMCkIxkR3GTJTOmKFgb/WvynhUsA1Fn4APBRWJcMQyqYLvbZW7e2pJ95MAFBi9kH3Grjn6zYX14xOrgAAFy2OKmhGThWc7ynfUDfNfDD/prXPBZBUNyIqeJ7vgEv1pD1yMxULzH+R2+TOQz55DVAaFkxrOXcKevQc68/Uu/xNef/Em+7zN/DYZTEko0KW7SJHNUhcRhGIjdKSHqPu/7XkWn1h1x06vA2wJQUYBAk/bKVmzBnxiEVsmTFlyqYJ6CpOI8bUaoKBCo9UKHL1qoVhfe5IyoQVaNKhRsKIxp5PjkmO2wZcrJor+ED0KMjq4PCJ2+B7B69hN03TzxY7m6RLDEVqOX4I1w1nW4qETJyRo+HULnYwsEStYJczFE+hhY9ys2m83/0F3xj+ZwDp2aUAuy0kjz886CSvT0zhq3mJthW5BIaXtpti9VMCBr07T3xC6qrS4Z5yDl0RqmMjEE1n5t16MBpwuR9WbD0dER635NiB3O6VS4ggYe69Ua5z2r1RrnvAoAptTIuh5nxbhMKplcBHygW621UOZUPMsLNv0jU4YR5wJnL93HG4aBfO1rPHP0AJe//HcZYiSWgk+JVCa8K3TR0XeRIondLjGMJ3ztDT/EtXFN6g/4QfkuBzHzs+Gb5KyBn+Yuaqn0Ps3TH4TSwPcK8um6n8FckTJPMtdvaJBm+0nVwzXZ0oROad0VgJimQk6jJp9R17A2sA5kCkdnz3DxvgvE9Yoiwm4ckZKtsNcBGREtuAWbwOltLzmZi5Q1WVIbUMGPAKYEKqYqGqLXqfJoQB66Nd3qkG61I00jrlvTbw7p1wcGhJa5QHoPIvCx69RWlML6YM3RwQGbrqcTcGOa/bI3pMEt9hx1H2kA/Rurt/NPTU+1pKPSw2qALFVo0ZmPs/2mOh1z8WhpSh2+JcEhoIKmBKR48iQWHzm60BMC/JFv/j3YHOBw1gRciHHUIo4TRlQc1JXMfcMNLt54kdeODjk+2dF3SrzVBMqeeU7cvHmLGzdvgRNKf8jThw+zvdFzvCm8Nb1KEVXlHaeq4juxO96y3Y5KbHZqu7zzhOjpuh5ZbXjl3Ft4U77Nqw8/yYPlJrHTxDVnbZjRZt6RnEebBLSm6wKrviPEqMTizkMtStsUr6p8Oye7Mj8n0XWs93SxHiWb0viirLgXgllEYgCFkp2XyJO0P8WKVRVY1MZk3YOpFCUpWxPqOE06TbRkCnODspfqU5Us5A1wnBNwEyDzTqcTWFJZqsLMPXQU53Bdx/rwiC52FOeZUmY7jGzHiZObtxiG23Te05mITHDonmliSRPTNDJOo66zlEkuwioSe88qaMOqs30qtWCZs/7eOCgAkITNRhsU07jjwid+ntEbwdQaXmMf6buOPkZiZ0rbwZvdtGKq7bs9kQenDbTVtz50+qI2k+bEfccvGZgf2lStb136Po43lxj7A97yyhfbunPOQbdi2pxlnQfS0SX68dq8lkoyQsjCdtu5tRgAII0kNI6jiqsWu2ZnIncLEm3bL7kqlytI6IM3s/e9E/VZ9AKcNdjdCYjLcq/4WfRm/7VaBGjx6AJA3xe9kbv8bf5Ga6a+w98siWrzawApNlV3bqLff4NqS2h/3mNbbEHe0mN5T++Wdera1cg9xkqMUVBmmrS8kGUWmKoK6Zpbm8hZsfhIpOEuyYAiG17XXFlBGzRU1KC15RpIV4F2NxMBZgdoVtD2GK7FqQFTM7f8vML9Ti9e4zOUxKiN+YYbVMEXAFeaTnLVn9KGY3DO460xOuBxxelUwt1Esob+Chr3XeRgvTbxAhUOcN43X5RyUuHbUgsCetRcv8aWe038zoBVXNv7Vayq3LG2l8JTy2e8FI5a/r2+952vu9txJx5R93sVXMGuEQe33/aDHD31mxb/qs/1zvKX6lcbyC+tAaY0QmfdZ3e9lD/QQ5vrbL1WgZdWfF8U4VncS2mfes/+3Pl352ZSnqbipfmU5U5++eH3k8+9kW8fXeS9u28CNJGK4USnJ6RhIo2JNE5GRquNlHC1O09/81VuHFzifBaunXmQs9de5LXDB7hv/ArBF067wBfe+CEAnn7De3jyhactdgtEtGHGeceTz3ycp574CGdvv8r44JtYX3tahZ+tyNQ5pyLT1bfY5z17RQWtwtmzzX+KFF548N10F9/A6dmLPPDsby32Qi1SfW+/oripUwwgKpmv7/e/FAdaEpe9iSjK/qTy6j/b+1ZBPvPf1mTjnGP0PaPv8WXilluxzkn3etZ7Xo9iTaq1KD+TUyrxYp4OUafpVWLWcv3tkdXcfuzR2Gt7h71vsWnOzlGKx7vC9/IN//9+LLam3reW18n817scimPp8/Bmk0+e+TJ933N07gLp+a8Tj44Yx5HdMLAddvq127Ld7RSX6Tq63NObDXeCNoWyJOUvLnIPUdVVOZcQ5gLn79wQN/9l72wtZjP8XJM0cDZ1ddVzIAcUEVbrNeOoRN5g5JDa0J9FSJP6t5/yL/DJcJkfl1dUqMEDto5zSkzTxDSOjMNItkmstWmgC7E1q/dR16ZOY1urmMY4mojXjmHcsdvt2G23TGkk5wnnoHzop1h97RMqEBSixh85MzXhP8yPzkI9FTuLoWuCm7HvVNTExG+IoZEgs2FX46SCYsMwMAwjU04IzqbzWe4nc0HuXjpaLIDej9QI2or9PeKuKY9WpIkYKjY8N6DURsPl+hOpGLLlQ64KMRa8zLYXgewr4WYWmkq94rNFCmlKbE9Pm1jz9nTbsPxnugs8vRtZlbOcf+WbbG/dYBhHhjRqihECIUb69YpVv1JhtPWG9XrDcOFhNl3Hpbxl1enzjSEaRlebdBRHUAH/OGMj5l9C8FAK10bHSgqn3Qa/2rBerZnGUUWmBs8kKpwgpZDCxBQ01vXOUbqFaIFhoHffy/txnchCWKrGg2UhOCULkWxrltHEqJ1OCXtm75Z4SW2ymRtuaky2wFNk3ybV66c+b2uUdc5KRGZUvXfgdE+GLlid0rCcLnJwoGSyzcGB/rnZzLbJptbpfqqkZ7WbOpnU48u91dQcYwSzlyEEyNnwITEmvKhZNjxqKSZe84qCkanRZzulzDAOdFEbYsOqQ4Int5xfhd2D4UG1xyiIkL0K6uWcSbbOpajIVOw8+Kh67a4QgiOjcZnGQIYJeyURYUN8SlbyhTasgIGbiIPhwTdyvX+Yw43jsdOvcjCcEoPnuUfexwPP/pZOknSO5CPfPfsOjrZX+PY0Is8/h6/19VDxFxMT6yOx71kfHnBw5ohnH3w37z79rk5FW60InU4nc11QAljD5ixfteaVXP1+jc0tTmoyMI4WszayU41ExVljuNkyaiOz5Z9Yw8Eir5rj3P3vL8lJ4t2enxAqCcwIH7YnMYGfklXIJafCOCXGqbAbJk5Pt5xudwyDYmXOR7puhXfB7Izlflm5AMWByzbVDUeMHSF01AUkRUmU2fC0e+k4GQYoJvyYB1KZTGijEGzx660T83Eqpqj+bM47nZGpZzGdxXO2P0vRnDeI04YwUCIjWocOPuKC7lURdKqwaHNXtlparWfnlBGnbRulkXU1BlXuiLOawJxDdzGw7tdILuyGE8ZhS55GqAJT9atOF69/Sp5F6etnY/bTD139BnLR0R9f4/D6c0xkzRFK4NlH/xCPPv9pRBRH1RAxEb0O4lBRQ9tibsLlCZERkYGc14S8put70i4wAIhOn8y7kVvXXuWVF7/LCy++zK3dCdJH3bdFSNnhs+IfedCmqmtv+jD3vfoFViXz5Df+Ot984o/z7m/9TcMUMZsEVTje4+e9b5+7IEzDlmF3Ss4jvffacABKbFTVL234KaKDbUJWnkETIXLq14tOF87FYkrJOtDKOfAaK/RdwEcgOiQI2RWKeLI4fKmYvmjhryhx+57LyVzFRu0+GUwnJmRTFtioq5rYTusXxXnFTEIgbnpWvqfENX59SDo4Ia1usb19zDgMDeNiGhETAhKXyWJDD5q9NvaI5e+V++OjxhPOK2k220CPnBTLdiLc/5X/XsWowroRJ6+/8X2c/cYnlCQvtDx9ibuIVIEIMNCARgVy1RYscbX59/ditxp8iQkWOo8n4Vw00uwsvI0z4lw27KwCqU4qI8MwSlqzWx2AYWALBE9ZbTh57EmOvv2Fdj175HXD7hS3sqs0jLTGD96E0oorM+m3dQcvMTDfAkOZ38DE+/SzZwkEI521SNLXlFefSc7GqSEiBDKeJMoN67uzrM5fpr/0COHiWxjOPELqzzChcjtYU/MuDZxsTzg+vsXx8W2OT44ZdlvKmGqh7N46NkdsKdxOwqoLWieVguRJmySKIGXS2CJGutgjUegIBL/j9ulASmITki3+dnPTpq4f0cZU80UVA6qeUimvjiSi9mmRN1Teg8NyBhx4jxfBt/za0QWvvAGvApeK8WYET3FCKoliQlOC/VkGSh6QMoEUgivETvkarKKuc4JOSy6OktROB8A7IfqizSvO4Uvhwde+zfXLb+TCzZc5zGOLwevEW2eif7no5HZd577x+x6/+l1yRmNgaP4ScVbHEMZSGFMyUqyhhQ6wukFwen9wKhqbkzZTlcpnDPqZ9hqpnDVLmECOp5it0B3vUTH9TGlDLpxkdLDiqFO1ncZr0FOYrzdnEwvI+vr2fq0x1RrXG76N5SFLnt7M6qvYUd3gw/lL9Cc32Z65QELzwHsRx7/z0FCrGs3l991d/y7N9s14q7DMJ2TOfZ0zno1vQnp6W2uNWuYVZgUoNfG1kcTb79S7vhC48ILLdgk2WRzb1/NQA/1ZbaI9vfRGjh94HC7tWD31acruOpM16qZKWC9zzcJ7w/27qDiJceyiCUAHmzJd88Q775dDwHt25x9gdesqu/MPwItP3xHiLO4td/zoLt+suFX73TvyKS2dzI3d2rBlDRD1eZlBXNbAYtAhGjEGxf0Wn7FOe681guq35ubYfZ+//FlB2vBVe3KLtTYLUt2J+1QXXq93sRqZ31H23vVeOFwpVDSj3ncXeqg5Tr33bv67HlJbH9UeOaiDlnUJFCBVg9V49pY9Nz9X9yDt74v3qNiVn5t+xf7XvKH9YKYHVQe4jxnUY3XhPu5//w/hux7nPbeffXr/95bHwka0N77b9d7td3+HY7lO6t2SvWu12M4ZHxjds0U8N06OubG9ycPxInK6xeeBLgnO1QYyzZe/6y8RysDlcg0HTEUoyTijXnldU87E1YaLhwccdYFrt0bEg/e9CpiDCYMvcA0W9rA+n8XfFx9s798q8Dtb4P17WuPhZewNahws2mnYosX89RTNNpttkQJu+v/qefyjPm7ePGG3Gxh2Y+NrOCpOakK2gg3QyDiX8H4ixokujnTdwMoG7njnVEA06EBgiSi+bR2HTkSH+JSi/qjIrH5TD8O49MHOQlNzjKn/FlcwkBHQuEsQ42XYmiz7dnm/7mnv5bzxqHyLZZ2vOaHj84eP8soEJ/053j++1OKUZU6nR8W0a1q24Cgs8G4HFAqpJBUAdRYtubl2731RYT3nrYlKxZK9g890D/NqCez8A3yYl+3j6/p6mC0Pux2OMG9kgMqlquva2Y/tOrF6VPVHGn9apPo6f7F8VEvLV/3hvpNt+9DuxSwMUJiyDskcxpHdsGM7jmyHgXFMKjxSCkmEyepuKYsNOdUvo83oflOVnu+90P+Ajzr31ZkPX/rhOTOo3FOLmyom4Gcb5LxXzrpx8EQ0Lmru0GsPA5Z/1740Ac2xqmiYxXZVxkqbq3V9NP6QrXWpGKKo0EpwWEOoDf7BI6pgqw3ChVZfcdThCDXW1z1XcaAzX/xF8qqj5EAuwurTf5Nr7/pxLn/+V3AxtLpfCForbsO50CF8rzz4Nh7/1qe48n0/yP1f+hhcvMCUMmVKewNU6lAXFfZxVBF6sc97+43vYnvmAU4fP+Doyx+nTIP2KqRkwhWGXVhzat1D6YG3kN/4JJJG+qc+Rbh9reFaWXSdegrh+38cOXORVb+ifOO36J78YUq/JouwfepzuKTL15el7Zh5b8pX00Ed6y5wsFpx9mDDucMjzhwdsdmsCZIhqVhgEmtWLbqPisi8RqwO27hkU71HWk+MMajQvRe808G1TgqhC8rJc6jYcri3hOyXXMxWr8FEFqyRvwkzNRy71lrmL0PO5hO3OB3K+gwldDgR0vos7uYrtptqLC5zPtBiCKg9hssoourKAdThAUsLVocEO+OUNu5kw83MPuwhMNWHSYuJK9dcfZR9dpk/q1tcc/OBNa7yjqV6X77/MdZXv8t48VH8y1+l7mwVMIgUN3ODb156I+xO6G++Yn0qtGuqjcHZ+Pk5lcV+tUd34QF44v24UnAp4V5+Vq+t+dj6wvm+V6GmNiCjfr8uh8U90P1QtIG8ZHIJhKLDBqIYn3C9wT32Lvy3Ptc0j5x19C9jzVkceOHjcla8Zk9oChUMp9oQRWlKy/sxPHkZh947R7Z7uFxvy2v0brl/7sR89mOJFrs0zzjLV7XM1n759iPv4uDqs7jtrb2zySKmgXk5tJh9UbOp/kdfb/lLxcerr3X7IlPLmuuSizK/fj83AOV8UBxue8KZL/wyx296P+e/+vcYqTHTfvS4feSdrF55Br872fvM+/cLyuqA6f63cPjcV++CbTQLhYhwcuYyq2svcHr+IQ5S1ni5fVyzGc5VA9BsprYW+ZYNQ93++/bpTqGplhYv/ifO4Yv6ESfaN1bFpvziflLvoatx0YLPaByNuQ+m2P6aeY+6d1XYvJTaw1N5HWbbFtio9lEJLs853L103LjyApIiknsdsON75YE7QXyiuJHCiKADFk5Pjzm+dYvdTmNnssZ1xXnF4IHigw79C5E8TioKCOYHDLcvUC4+Srz+EtOFR+hEe4KcDxaPFoqrcU3W3ttlPOfqYPWOvvckPJNMhFSsxlX9ixAoRGf7XEobMg3az+grDmj+qAud9exLwzRVnLMQxNMHb8NfI/39b8AfHOB9oH/wETbHr3L2zBnOnz3LmaMzHB0ecGBCUyrE49hsNqxWK2Ls1Bc7HSD5it8wTROXphOwHrtUBO8deUpcv36dK6+9xiuvvsKNa9cYT7dISqxC5P4x8WZGzp85y6brycPIrf6Am75nd3zCK4+8k3j5cW5feANvfOZTeIQUNC8s9tl1WCDznqLuiWQ+1+Pj3F9Q7bHz4IMjdkFFVu/Ig+vfQf1ZyRqz+xCagNjpfY9zeP05bp1/Iw+8bEJTLOpApXIxtfYxIUxJuUW7cWSSwpAzftXvCR/fK4c3YVYMM6g3zyFNBMm1/8/YeT3meufrj4ol1Xx6tpzLv3+PXzSh66pF0Ho5veZ/wURiq4/zztE57T3TX19qijj70+/V86rIscYus1+TbNwhqb1p3uaWeFx0IEHxtyJzPFXExKB8ixUdnm9eeitvu/GM1p4sYSpONN5y6ICxIu1zFMmUVPDB6SAFnOUpKvibKkcRvbYUIlceeAfnn/28fU4Ion2CZemzrP/aWmDVL1VBFa8DBYlas8uAF8GVhMuZZD3PdX3MUUqNnmevWJ95i0Xt7yLC+e/+Njff8F7OvfR1+pOri3VjcVB7BnsLaI5lWLj4O14y//17LMY/6MOWvIVahlto3p1TZvKTaa9UWKAgor0hWn9UbMd5R3NadT868BcfIjzxIR1K9N0vE26/Osehtt5n4bRlrlSxvhljWPbXi/XoSy5oBD+RRZikUNI0cwmdJ3s3MxFabKOaIi+u7+OV/gJXu7O8WZ6jY8C50upgdfhK438U3SMqzFvITUROeZQ55zYMMNtAXLCeuVEHBTZxaeuhQQr+ua8QH86kk5t0154nrFbUu1lybsKTORvvyfr0vHFAg1fhtSRF7QRVRNRiKKmcX+M/ieVhbXXqn96p/ag8wCZE33h2DleKciurj1JwgmqLBYGiLIPaE5jbACTledcemNpL2Aal1+uSojWmMveKivm+OtBYl5Cz+MZyBf+784N/70JTObf82ptiWG2Cq5vnzuQEk8x2XsnjToSr7/1Z7v/S3yYZWWn0iVAl1AI4bKrslIgxEaM1LiQj9tl/ntByMnUUFQyeE3upD1rmNMF5IUToUBXREiC7QpTEuE2MeWIqCaaBm9tbHJ9c1YazfkW/2rDaHBAQfspfwXURQsSFAN6TUILpbtLGtN12xzAN7NKO4jKbgzXnzp5Bzh5RNhu6EPip1ZaP3lrzc+dOITuKjockBq8TG72QxkEn65rDx3uSZG6fHnM87Zi2O5xzrFYr3vSFn+f5d/1xvu9Lf420XjOOW3bDCbuhB28BbgVQnNYWPeqUpKBEQBQFbmIlXqeeVaKMOIeLkeADI46T0x2vXL3Gc8+/wLPPfZeXX32Nk91O1Z6d1wa69REynMBqY0GKCvJoEiq6BmYpvRncscV1Z/JKM4C/+9qtTmmuv8rrvdQ9crzuquoax/ZbC5AxooX+fBabmjdkLZW3ZFfmU34rPkjPjkfyFRMbc82QC1rU8UEBMy2YKbm0ZE/KC8AP6Ps1PnT0qw3jMDBNid1uQm5tGSWQ156y8tB5so+UECmx12vpBb+e+C7n+K47p0Wu9YZuXViHTHRqO/I0qshU30Pf4/qeuNqQdltCHrkoO85tn2fq1jwwXmE6e5ZhHGAcePtTf5eUM8SKIuhtzCVTJrEJw5MV2rWoGLtOJ7dvelZHa7p1xEedpqqEEFMLRjSZT4mcRkpONAGqKkJlUZk6zqo+p8Zbc/yMc14DSzyZjCcqGOlm21UBDt9FxCnJasoTJ9tTrt28xm7YUShsNmtEMs5DiCpw1/VRyaEmMicFJVWZ49KJiUGD2mRLxWtjXIjRnrUjl6TE8pwI3tE5WrInWfUtg6/J9Yr1av37szF+n44KbC0LfmKgaAW6db/IvHGcktdijETntagQI5IzVaiqAtEVhMslaRNU1njg2fveyYUrTxGGgeI1MVeFzomcE5v1Gu8NTJJESiMx+DYdsvqwLkZCjGQ00CyIknViZBxGfHBkycS+o+sDVRW/Emi/crvjQh9446EWvaMLRFclzTySJlI34pznIsJ61XOweZVLLz3P1fMX2J0cczoO5DIpaTE41quo11DBLwofvfgRfuj2b/PaMZzGU21+ss+xZ8MsyZsTEQuiFva5Ehe8w4oMFazVPVUfUym275wmT2JFay0cOkpKWriOGjuINSlTdJLJdrdjmhKbg0MuXLzAmbNnmEqx74/8hn8zfyQ+R+e9keCTFTtVQIi2oti7Rl8/gwXvzkfwEeeCDqEqhegiITiLZxxdv2KzOWCz2bI1C9D6qFrAWWHre8+XhRi0eXW34+zRIZvDQ6IAKc2TSlxtArYUeDENvH66v3Pw/QQpfHT9bn5690UDsvU9SgNgMT/p2vpw3uuEr6I+MHhV2lWClQIA0tgFSqzyXnAuEnzUaWap0qvRBJx5j3scdB0ueHzfc3V9llcvvoVN8HTTDSiB7fHA7mTEO1F7GCPaF6cq+Ccnx5yebgkhkNeBG4cTceX47vXrnBmvkEUYx5FxSpScNcbNgHj6bsWq64lBSXsxRvrVClkfsDm6wDBNlLhiPB4ZxkJKIyDEzso4XonTKioVtJjaqYCooAlJI06h26o29dujowqZYLd/2VTZilqGDOgzcy22W6p+Kbm0NMKBSIX2a/N3+4H6rkbW3xcRmEyMYMpJ/VSpE11EG7PrXrTptNr7XTOZYl+VPOBo/ZXiyEGv6146EkqOdjFycPYsoV8j1oSCj7zEi1y/8hrTdiBiYlPeFOlzIZm4VClKfAt9T3/mgMPVWhvoYk/fG9gs1kResk7SSZnbt25y/dpVTk9uM2xPVcjZFLKj00Q8dJHVqtOvvqO3KclhOQkFXT8ZaYSRucF6tm1tCYnjoePnVZjK9nATRQVyXNOVkRRXtl/1HKUIh3nLm179CjeOLvPwtW81e+sWj7baFOdKAy28qeEHi4dFVGi1igTsiYouikaV/FKsCKD/3s9nKmHm9tGD7PojLl99mrsddxMDWcYxrhSKr5OB7LzL11cHIhXwY8/PLsH3u/qUVj2bfVzb/8trK8uGbCrChTaJLkGJahsWReo7lZ3+gI8mSFKBVVd9NIu8TI8KtFf/HMVoGwbKlKLFmjvXRxV40qKGxS5I82mCik6MSSd7BPsdqHZ5XrPVrtUCZXsN2WJ6IIBkgSAKNbYYyshTBprP2G/dH4tCZxFySWYPKpnAJt0xk7w1sqblORpLm1i1R5u9JDNNE6fbU7a7HcMwkCadVnKwWXPh/HnOHB2yXq/o+54gwcQaVbA8TamtXe9cE5xT8ZfSbEp9Ssu1LYv1V9remI+7NTEvfzY3NNfz7RN57/Z79XXLcy+/5yyuE68kkpvv+nHEeW6996c5+4VfocZI885ffKq6j2pOVr9ev7TvmWMR+TNvLv13a7TD41xZ+GBnqdk89bU+Q+8DzuUWv1Q8MgRpe1MbHObnUvoNXRlxmyMOvBZlV6uJYTdxM99it52YcmEYE+NuZBhG8pRM9Mhx9nN/lxvv+qe4/yufJJF59LO/xIvv/jHe/PmPknxQYsDpMQ898zluPPA497/4dcUarHgmTkUdur4j9pH3v/YFnnnsw7z5hc/CpfOknBnTxJgTuWBEgrq7rHiwmHI5T4MoHF9+kNvjyOb+h7h0++K8RiuYvLDrFR+rxTVQDKhOXF+tVqxWq1lkqouA02kcTvehCifQRI9T0qbUSnIsVhR09hyC90SLYaOJjZwfb/D4jac4Dgc8cPNZpjploWhTGfMlWxNPJV/MMegyNsxWlMsyv3/N7St5dSlq5izRKOajalNSW7PV3kqD+dufLbH9J/RoNrHlV+zlbebWXnfUPE5QH3PyrS8i6w2HBwcqpGRfwziqGNJux3a7pe86UlpZc3pZiPdYLWZhKxZXqddWQeRaPxBXue77Mc3dP+nvdBN0TQVtaCtuJnL5LtL7DWe6yMHRoQoA2/pEqrjUxDRqo0NB8CXxg+UlktVegmjuVUohVSHiYeQrm/u5f3iRzjD+GAJ0XROxQhyCCaCWvu3RKU2M447dsGXbr9h2HdM4kvLI8Qd+koOjI4b7fo4LX/xVVn0Hjna/lRxZBaYS2cRavQ9Er0LNPmieGWJU0ZIQcDFoU5PhNlKKigOniWlUweBk5/ahCkyVJjCczbbcS0dYEEiK3ZtpmhirqIvT++/QOFmHNli+6zUfVxtuuDvOJqoL2FTXOeam2a8q1odAsbwl+sBXLz3JE7vP451j9JEX7nuCB77zebanO3w45vat2xpTBRWa+vZmIB2e5+bxMcOrV9jevM4wjOzGnYqAGmbcmf1f9StWqzU8/BZOZCJG4cHbr3J0cl3teYhqN8XtPT8tfDv6PrJe60CCo4MDDg4OWPUdj3WRbTngLemEQ5/ZrlaUfKBFXBFiCIxjICVtVJpMGMWJEIMnxY7cT1Z8zpTskeBnw7PY0HPzpmuToUupk4gW4lOVsLcQ71zWVBQDsXO3mLIWmqX5qfr96q9KK+oyG0nm2HEpulyxM2dxksY+mnNj8UO3WtOteiOa9RyePeLw6AyHZ444ODpitTkwG4vhplXQozbDog0Zfs5L7rnDYuW235ySI7z3e76l5pR7fy7yV3CtFjSMKgS1WvWsfW/3ulj+pkX3ptdr2KISybXRIBet3ugacDr1sYAv+oyci4gN8MHXZkMlK0sR0piayIoKB5rtM4ID1nR/vNPhQ9dLYX3tBkfjMa+968e4fWvLKw99iIuf/gVdVzjuu/43efWxD3LfNz/BtanAVKxBxoTq0HhNp04E+oM1tz/8p7j19W/w6oNv4B3f/hSbo0P6zZpu3dOt14Q+zrGS3WdvTWFU0SXznw6ZBxsx339d924m0eMsxq9b1Fm8X3GJAkVt/Qz3ur09Auz9XcDIJSi5quIbFV12s5BVqWJZRspIWQmC45jY7gZOTrYcn5yy3Q1Mk3IXcBN9L6z6vq0/o/CaPr2YHVGjLZOuwRDq+xZSmkzc/N4i+OacrbaZTChG16tzy3tcyMmEpopig018z1ZGa0j3DkfA5YALESkJcREhgmTGUvAFVOZaRctccHhr2HJkRBLeK6EWUQK7PmodhJTyUhTaL0xpxf9ywyIqaTd4z8FmQxcD427H7uSEabejTCO+TEhOkJOuvWIT30S5C6Hs2+1Uik25BIqy+B545SsUmwIrOZNIPPe2n2CH5/jxH+NtT3/U8ImBUmDVrXQfFGe2WUlOYeooZUtKJ4SxJ+5WdKsVLngVOBFwIhzfuMWVV17hypVXuXbrJhNClBU+i3JIvFAmJV3lceLaEz/M2K95+S0/wRu/8zHiNPLE079Ics7sfhXPESUdOt3r+rmLkWuF3bhjd3ILyROxikf2Koiarf6ohEglZZMz3nyr1l0Mha+iDCKaU1rzl9ARYocPOgijivPhUZEVKSSBVGgEUqzxzxtP4l4TDgg2K3I5pFyYcTxYxhNUgGcOXYyrELyndw7nA33XkdcrplVPd3jAMOw0Tp4SftgxjkMbdEJOjfchFXtHa3ddH/ExErqefrWmW63w3pOmzPZky8nJqQ4WS7YvSsGViBe10y898RFCydx6949z4Su/qufPtNrN8tC8z8Spq0+xgKqKds77bP691+VnlkBqE6EK9kjOCnnWxmnnjCwj7T0Ao2RoktqwtUUa76icMovDYset7/sRKIXjt36Io299xsjGS6ytxuvObJFhBa7Woyq+YAKfjha/NPGNvc87X1MdrOiKu2O9eIp4zV99bVDI+GK1LRweFd/KLiK+p4QDZH0OOX8/7oE30l9+I3JwP2M8i/hemzNzpiTFoI5PTrh9+xYnJ8dst6eM48A0TYiUPaGte+Xoz5zHpYnRJ0bvmUKENNJJYuWixhkuq6BSiPT9ClegKx6yZzfmRqRtWHlrdnbMJQ0jqXtnzQxQh2zo+FWHeKNmO7GmZGnDKExiSv2TNY8vhaa8V2GCUNEmqULLWc/rMrgJ5xKOhPMJHzKx1JY+MdxdtG6N4oQqHBh4+rE/zFue+kQTbvUUm5CrE2qDi7zl1afog+e+6y9wlE5xUQnQ4o2Y7nQ9pjSTZH3db3a/MjT/XlxgcsplqmKAo2jLUPKOXJvCnZs1+Tw2OEWsvlsaF+CpN76LN7/wFH1JOBfwgWY/5uZ2439QKExUEbaC7r9i160F6WTaabpGKq5cig5wy6nWRGrNxoSqRFh8bDrf7+H8+uxoOMBiBSHiTChC78elp77A1Tc/yeWnvwzjqPdPfndy7x/MsV9fcc2Y3+WVNe+21zTIsL5+adewmM1iUP095TZ5b5OY3f57t4HRzE30ArM4kdjXMolv+gzVP1i27bS21/xX9U+GRw84rYvjtTneCN1ZSpXYpRrvOl264t0qNjWLLwUfGn+6laSq3a/eSRw+jTz4uV/h1hPv44Gvf3Kf8G3Xu4zD5w+5cHyiXqny4lpdcfGMak2qAbcV2ywe52dR2YZrlJlz7Z0Hw/S7Li6GU3SGc8W9xtX27Gho+usOxS4MM1u85Hutn1beaD8Tw4PntfX696gt9/fOocu7YgnOmucjwWVb51ijgMUEDhMQqKuvjqM1I+ra6jBeuOF71Zax/xzu/LPdnWX9s5R5Hbbvu0X8uhfBqj9t9ck7cmDnwAc7Z6SKRe8NsmuXUE++rL/K3s9exyH/XY/X27E767h343o473G5Y5gSt09vQzhPiGhyYqK7GW1Mfc5d4ml/GXHC2/KW+8arGi4EbYSTGHHiGmfxcLPhsO+IjBQXyL7DWw2qiUSYHVzux737vn97Xn8PmfGVGo/POEzdc7NdqffEN/uoDc5Ue9X8XrXBNX+kGtt75jg+PSVN2oOSzXlXQRPvY8vXYOYaFhGmlBjGkW4Y6LtuXgsIfdcBUbn03s32CGtMAmsmbjIX3PEkFvfRGU3S9qy3mo4DpeiLDlh1xgEwrkaxRqNiguZ7XAN7xnVwaxPlX77Ovq6kE/r1mis3Trk1XJ8xQAfXujPcjAe8+fSV9rv7Bng+Z/2Gs1g4lUzGRMMt0GucLlexOj2V8uUdPjiuri+yWq+4NSaSm6yOa2F39aNgNrNeRBXRWso4AIbJ6XQBa+zcew71NXePaGZOx+LDMnPLZuzT9hMzN0y5LIlhnNgOA6fDwHYY2I0Tu2lkTHkWrhQhWwyT7asASSzeNKy7CP8QNu8fzxFcVBzCYmFxGfEZHzR/dagQThEVfxUKeFrzuFj+5XOexaZEMVxva7zY6wjehEXvtGmCkC2Hc9QBpLCICcF8yiyKU7ltUoRQrEfDGzZQQEJsawFb3yIyN+rVeGcRh7XX+oAEb7ZbU7HNV3+VElk0Kzq8DbUKLhIR+tjzyhvfSzw4w9X7HuLJF75Ad/GcCgDlTB5T6/8YhrHxMlLONaom1DpQyRTncdOASIDdiEwjbprw2QZk4AgWPzdcUcCbnw6xY9P1uBhszWp+J05zthwiDFtdy9OocWKa6EJkLJm6VQUVPS4yRx81NPdA3/Uc9p5zm47zRxvOHa7YdJHO4mcx0ZwiKsCRKExORW6q/c1S1yFWp5uHmXmvgaI07QiPzxCKIwsEa0SVkirD7p45rD9W17KTpiHiXI0N6+qbrZx3871txZg7YhyFysxvXXlWxUV9wL30FFWftwZ8YvhWFXOS9l4LWZY6PATm9FHQG27NtFWczTkT2q5+UWi1ZJxrPXHqU5uhnYdX2r7FfHOF/Vos3OyzXl91D61XoO1XcC5w6TN/k1vf/0d58PO/iOs6q/ckEG2qNrYFp5ce5fTimyginHXQ33pVz2N8tlxF3oLn2jt/ijOf/xV0IEegcYy6jmL+sF+vcX2HLxmfnfGcbGAQYkJWxq+qv4+0/LUK1LQemIWLbrXSmssZJi9hBe/+CcUsn/hD+G98Eur9dubnzPepeE1RninSHqlgebnM/9b695yTYGtM3ML/1udxr+0x5py8WvQWKtSovA5Cr4eb/9hncs44w/IXam5X5Y5uP/L9jOceYHf+DZx/6tdhe1tfb77hTpf/ve5Yy5Vd3WbOht7ui0nNf5996Izd7PPlaoyjnHhpfjBnQ9Wm6/x/yPvTaFmy674P/J0hIjLzDm+qETUAVQAKY4GYQcqESJGmSHAAKUpUi5Rbsltu2XK3pLbUq9url794ddst9Qe1u20vL0ttmbIsURIEmZQ4QSRECvMMVGEoFGoAanxVb37vDpkRcYb+sPc5EfmqIIJeauG2FFX57pB5MyNOnLPP3v/93/+9+PKH2cDWe5Sjv+8dDMszrO9/N6tHPoIZNtXez0cldUuOXv0ecoqMd72BxRNfeMlr9JXknNn7zK9y/cEfZP+TH2QssUm5Fqt8SQu28EtzuSNlrOx0W6pdtNtzuc7pvPW78kMqMbuOY6mBKDUF1W6VE5jlEgrWW4QLSk62/K6IT0VFQ1OOxBwnvmOuZ8bc9hZbQEaw1hPW8AggrK8QB08aHDk2pGCJQXhrMQ8kM4Ji3dYl5c712vioCCpAyIaAIVqD8Q2m6QBLjAPJWvG9Csis/rX59K8Q3vETtJ/8ADENuEYbqRrxLWROGPUvEi5JE3FjtHYWh/UN+AhuJGDpQ2Izjjik5kW4Edpoqe6Q5V7J/lHmGRovOgyuTMOU6ntYBKtfNC07yyWL5ZJmfQl38DzOWdrxGrtnzrC/t8+ZU6fY391jZ7Wk61oRZNW1K80kDZR8bEq8mBY8OayIMbIejzl945I2oDHEENlsNhzeOODo4IAcMzuLFQvrScOISQlvpd504Tt22gUxW2LTEZsFTZM4WJ7iOIy4dgePhTSqzTPTustMc1YXi6bKZU07K8KFWhtrsqyFjOQ8vPFgtrlYWzGSKTXZ4hNSYjpjuPuhX+b8G3+Ue7/yj4neV945BsGNTbGpcaqRCIlQHjliXag81pN2WOs0Bxw1dhcnsXo9FQcunPwZdlDjGcqrX3IUfFb2sslLNDe9vthkydXKw2lDAhG2lVpOnzM+WuXC67op68MYre8rTTm3RaYK/6n6fCmDqcU0cn3ZII1GgjTLijKHk4rKOj3Hohtc+WVILCSaCUDKPHLn95Cajodue5C3X3pYmqU4TTElcIWnlIRXEZNwjISLqNgiwsuRxqWjfK+80Og8z7zqe8kpcvFVb+fMk5/FORGfF3qt1DMKLaUAJCW3riiI8pWttVtCU2NO2Ch71RDRxhllDyl+s8YEugasQfMceoH6mqyaMJA5/cwXSmkYk1QnU54vT75L2U+rF6h7Y5z9PsGs7mhb9OqkHBUL1ZGTuEb5L1nFkEf1pW2m6NtDFiG4goHrP/NYqxzWNhPOoQ1LpAq+xD1mC/8yOdUGL5bCJZ6ErFFfvtrDUk+VRbQpDlkEH73DRcdgABWfCqPXgNJI41PvOWTAuMAmRIahx449Y0xaPxaJ0RODYoEFy9JmhuMwMGzWDP2GoV/Tb9aMw0iKoofgvKuYYczSKDHEKELtUX0i5TPEmIhPfFH3EjNxL4zoBdhSi0qgOIwyt8Uumii/SxRMeJ41yvU+zX26+n3Jy5Q5noU/n0NpZJNeMnPFB5wjltuxQhKCDTGL+GUsPPmoDY+1cVMsmPA89itYzvZkrV+q/28nf7/UzXwbc791/C8SmgK08H4qkqsBeh2UAuJOJ33xXT9Pd/AiF97xc9z++Q8wjgFvR/w8qDG2Om1lgvgQcVZFprTDUDFGZXDKDcxlYErVeipJ5mkxGpfxhfDrHdl4Ghp8Drj1hgcvfpnzy9u49/JTrI3HWk/TLsjjiEkREwOMI8Y3uLbFtx1OiyBtZxnTgmExst6sOe7XHBzB9YPrHK9vEG4cc9hcYdG1LLqOxaLlPYuOeNwyLhohqbaqyOmtZsUTrmtpd1bsJAGkDw4PeOGV38vR5vO4G1+XhU0Am7j30V/DtB3GJlIe6cc1x5uGbJIIWDlL43xFlayOpyGDiqAUMN2WTd95MpaQQNqdiVO+Xm+4cOUqTz17nqeffY4XLlzkxtGx8rCFymFiJHz077F4509w+Ol/gpndrZq4zzPhAf1nmlvVx5ym03cwZ28G/LcKr3WOnqQjv+SrAmPcTLKT8SsAR3muXptR8uIM4JDRllc/1tzKU+YcwYMjcfdwSeSPilNm1Ukrm5PJIkzhDE3jiLkhjLEW5hpjaJuGtlnQ+E660A8D/SawjgeknQYbW5pVR4iGmGUeZSBisb5jZ9lhYseqdbx3b+D2thNykxPBkBwCNA3RWaKVBKzvFsRhg0+RFrjdZgxrwh13sOk3HK+P8f2GJgyq6ixzYhhHIc5lo0GokITjELl++k4O9u7g9Nc/CdbgO0+309IuG9quoVt0LLXY0jfSqcaCBv3S9VbGL6sTaqbPqYTspE63OLrW6sbtwDgjiqJWSZYpY52Sfa14HamAI1iO10dcu3GdCxcvEGLANw5rhUhqVAjIOU/KYjuHXjZeKfZRopmzErTKheg5GXLWboXeYQyEEOh76Wwhi8tqtw5xVJx1eOe1U73Yw0YFxf7/41D7M8eaoIrtee9prFOhKSfNck2GpI6ZlyJfjCT8JCjIPH3bWwi+44m73829x7+DCSPWGxgSMY4CzKUApnQUCcQ00phWAI0U6TcbmpTxXUvXShGMazyubcjWMMbIUb8m5sgwjrTLji51NJ1XpWL4ynXH02t48tjRNpl796x0i0bsg7NeirEwpBhpvGdvd5ed1Q6r1YKm8Tz/zDNsDg/IY6T1RhJJObMZRyQONHzy3h/lvec/zEfv/GH+46f/O26sVnQLATNK4vdpc5YbtuF16WlNWkyPBDUBC5JcwKqDZyehNrHhRSRBgExpSpgVBLTMK/PGccTYhDcW47RLSUr0w8DxZiNEgbZj79Qp9vdPYYyphY8fzq9mPw38enyAn/GPqThmmrpqWCHlC+AzGd1JOECI+/LwGNtgjCeOowTICnQWPKVpGhbLJcvVSosp5VykI604085Wd/PEHW3bYK10YfXOMgwb1n2PT4alE1ArZAgx4ozBK0FAii8DOUsnor10zAV3mrvDJQ2yFH4zVAJf1kC13PsJCJfksTQzsRUcLjtbslOvAmySwL+RLpPWGYZexKZi0CL3DEbfxyjQ4YzDG8tp37DvG3rrucUt2DErTQwLcGGDFIBmMiEGwhhxoWFlpEjGbjIPPvdVLu7fxasPniZYCdBsgjY5RADL4VqPX3gWXUfXtjS+wfnS2QUg8wcOv8XX85JXX3uKzTiQs7QHct5A9jhvaRqrXTUtbWtxPoEJSlbT4uYCoOSpEGpODq3fV79Ev1HAJRWRxbKWcy7DIa8u3UuzEOZNTpAiaNBZOqHnCgrOikCTFkHFkTFGIWKEkRCDWBArSbZUEqxGrkc+QhJgOUvxEgSMiTib8DbR5AmAsVhskkS6PWH1ljElhhjZDCO7xrCzv88drqFZrFgu91iudnm66bh68TLD8Yajvmfsx6pMLcJ3De1yxWK5ZO/UPvun9tk/dZrdvT0Wq12WyxW+acgxEkMp3B2J48gL55/nqW8+yfPPPsvB0SEuBMwwsGwbfNfiGk/TtYRzr+D41ldyz4Wv4rXYGjRGzNN6dZVUNCuu1dfFFOtzEyBlsDMienntAy9+icfOvp77Lz2iqtASJAtmklj1N1isrxFq8rKA13PwhwrWlM+vXrc+77R43BhTyQn55vcrYKcVMUhjrAiTpjAJ4BjD0fIWzt/6RqwWZd5y+fGapKuFk7N4pZKW5IdpUqSkogazXUHBTuK0Huex0UsLf7Z/nt+H6Q2pwfYEnDCJv8WkHSFKPCcJV2uma0YFknTbnAq4T9CR67/zpKPuVZqUqJ2pyuaNVbBuorKljBSnSgt6jWkNN5o9Li12uPvgGRF6hUloSgPfrImsQYns0glHgZ9M7faNK0V18v4pZrHFKUvCP48EI0T2MndFaMpOF2uo66AgyBV8UwJp1AL8OCsuzZlS7kEh6OUZcpWRvzcWjJd9tBRkpJiI/Uh/uObo8JDj42P6fiCT6FdLvJH4pGAFTWoAiEHBx1nSZm5DgArMVtKj3MHZ7/Js7U9HTXYgMEmKkwBeWY+lCHRue+SuzciI83VYn8v1+4qD3PTaOZ7lNocMZ16Bv/7ibPMso4puoYVEk3S+5aqKX0XfmBIhJ+mo5JhZkkaOyYeb+3TlqWpXtXBDMB6DtRFrXSU7wGRHrTKTrILopWD1/hc+y9VXv5e3rp9kubND23akmBlXkTBm1kcj/SaSTWRMhs0YGXspEjeAc5mdh36XwTfktiVhufPL/5zRexzgsLjQc9/XP8rxlae4/cpT2N3dSj421uBbz2K5YLlasFgtuIvzcPcryElENPu+px8HFbmVRGgVhkDGwzmn1yk/55Q4c/g43zz7Ou698FXy2bOzOT8lWvP8dwpQF58Npr2uaRvapq1i28ZYQgysN2sR8S1jagQXGMeRvt+w6TcMw8AYJHlW9jYRmfI0jQh4N01Tl8GZ/jL78YJ0jMiFPpXqfIeZyFR55FS7eRVidVRh7Kmb57TXT0lN7VbINjFY1r3YMmvtTbZivpLMZP9nNuFf96OKN5S9UJOIhXgkT1KTzPPDmMnObf2+7JlJyaGhiJuLAMfQ9/Sbno2KEg7joIJEk+DRxKQULA4VLCjnykusYJ7+ppzF3I+q66P4hdO53nwUW5OdE2xD/ZxQskqKa/pOsTEl9YUQRDRqMzD0G41pBQuMWug7FvuOFjJGSUiHEPjK8jYOE7x45j7eNH6DJqUqQFRJg1mJbxmMyVxf7HFldZp7X3hChaYWLLs160XHoEJTXee4sdzjzHDI7s4OTeOJSXCmPI4EJnGUEMZaoCECU3lKYHsR+S44iCSpdL2ZiawTgq7XMK3Xer+0S0uML937T8IxF77JaEcZFfJqRi/2zorAQEmeijdUsFarRAjFuzRvkWMSvKKQ1muMSs3T5JL0NNLZ7eO7D7C3uc6X73w79z35aZ68+3twB1d5+q4HOfP1T5JiknthHdZJIc3x/bdzfPkiO49/nqMb11iv12z6gWHoGcIoAvo5S3Gkb0RAu2nJoye3Z7EGwlOPs1zfEHzB2jrfhIBYhKZE7KZtG5bLBfaWO8n3vo7XXHyKndWK5bLjNi/YZJ8iYRzJSQnuKpqWvGPe0UgwTMM4OMZGxMpCOxIbSYKLqMXUxQzMTGzSkJMW4SjmkGf7St0fS+XnzHjMfTB5A8U/5vtSJQTOCE4qqHHtXT/Nzud/g7w+rH9f73tWYVnntjCvItKcixiUNoRoFy3tYkm37FgsFiwWS3b2dtnZ22Oxs6JbLnFtS4zbRaHysXPy4ZR3Omn+ohAIBWdtSgMDg2K6spdntbUldp/v/eWY8GUZ8jFE+l5ERJddq2swS35am+3I+CjpohSf50RvLN56jDcqhGOk096oQnJG97Qoc9gaJwUQSbuYjSPHR2spvknaGTEmUogaJQjGZ63DPvkQ4bjHX32RK4dXuG7gxt4TuHtfx/DC03D5KikFMBbrr9Nd/DWuxwRDgFG6mHsr+F/WGCZbVDTfc/3rX8bd90ae/8oX6C5+nXaxwHcdy90lO/v7dDsrmkbFppD3apqGR3dfwz3mkHO2xysuApB0bW75VTkjxfIF2xBs1lY/ouCDKCECxW5TxdONKQThaV+fyH8zp8NqzC0fRNnbrZlKb9H8XBEvHEdpAtL3I+v1hvVmYAwJjKzDkEb1YUeclXy6tZZxFFsv0g7STCQaKT71LoHPpCSiZGEUIcVib07SYaKQiNI4ksMIMWJyAJ2zcwNYOlbXBgPlRhuqjcEIkdE0LSaLHUPx/lDEKVMkmUhjM7kB23jZKxW7FUGipA/BBKQQo4iLZpyhCvCqJ1rj8BBCLVyQ6aT5AQyh7znMgbA5IoWBFHps6iFrTlcJgJCqkLqZ2ftCwio4lsklO0+1oxKPBNKNS4y33Ic7uMA4DqQoxOlxGKUA3zqcESJr2W+cBbfx2MZjuwbbtbi2EQJmhjhGNv2a61euc+nKdQ4O1/TjAN6JGL8NEvcqcSzFSBoDm8sXSPe+Hn94iXHTM6RE9tIdp1ExAIs0ohG3OWGMljampDhQYH10RBh6utbTVlFisRu2W+CWHbZryI12O3SG7IpwYsHIin+g+FWW/GgIIxmDdwucVzG3nMBYojEEMiFnxpTxEWzOJLXdOWdCyMSYyTT/ClbOd34YzCQyVcOOwoNJ01rKVoWTJgysvl7noLWOpkEaxjWermvpdnfoh4EwjozjQNeLIJDsOSNJRQzLOGXdU70KQnRdx2LR0agwRErQb3oObxziWs/6eM04DOQxiH1ICZMCRMsibjhenKI7vCJChlkEWKaaJsU2sco1mAWIRhFXxdOKEA954pSZ+T8FFzIFFy+FiSIeI5lZjckseEqjRCbsjlk+Sx9TtnF+0yZclM0RcecMrn+xFjNu4QMZsCJyVULLbAAneYukt6/uh3o/sy28q+l9IhlvJoIoZGxiwt+BVKsRUIG1hM0Ba/QhowBWGgYGZ0l+B7d/O+7cPXS33EU8ewfrnbNs7IJe12BCsGfh1Kw5ODzk8PBQ8ahRi1Wz8slOHu6xOHUON/S4NJBcYjRgU8KnILym7DBZqJDeelotZrTeMbbg7TEbRopHnOa4Y1mr82JJvc+CgavvZ2zFxQvQXsTLk5EmUqXYqew0MWVCVD8zm2p3jZGcubHTWhK7ICJIxiZMDtgUxD91qTYkdcbiHMqP1PmeDV95/Q9zan2Dx9/4g7z58Y/Jei3FK9bgrRN+SErc8+I3ZA9x4mtH6UgoPrLV8k0tnJTTS5J6SlDKO40pIgCaF0gjhVWdjJDio0E7MetVGohpkP1VF6m42rJmHrnvezAh8PBr3s73PPpZGiPClSUPUQnWRbRAxzWrt1Z8++LdyPosQpsJ65LaSkNMpvJ7pLhf/FeZ/nIvhMAsTXB840VEs+Q7shZ01VgPbdihQqcpkcy01536xsNiJybK+Ik8Jr/993+Gc5ed8g5lmhawA8XcKtyq4t3a3KD4/jXHaCzGimh0yTcWDoJkhmf44025ldkT9YWCQ9fsHKWo0j3zdew44q69SD68qoTuIiKH8HWckzuXZQ4K3uO3xKXm2GKZj1mxvoI2Gmt54T3v565P/Apu2HDLI58AYydcqJy3vtfN4jjlA/LWT+V1s3tX9xZT8awyDoVkbpT/J+T9oF8nXEEwIG2E1opf0TSCG3kveJjT11hrVBxg667UWK0U22S9P0kv4uUk1wwi1la6fmdb7neerrHwY7dyf1Wu52WQ3e/+UXlNRgXWsOTs8YitTFF4Egm0vkflSLYgq7kXJWtE8rNZmmfe9Jk38w5mP7zsOc7xJDlnXSspv2Qubhcbb9/J44sv8OLnPkK7f5brT3xt/gm/52ducRVyicHK2vu97+w8r/Evev3886YCDPGxxjCy3vRTGsSIiHKIiTFJUzxLT24zJgbMOBCGIGvAOXAOhyW7hO86xpzY2VmxXC7JHEqMFKPCkWJvrBZ7zc9v8mt19hf78m0uayqGkn+3b3PBy7YFiMRPEGGUSWgu67q1N2GMCB6Qy1o8OccQRsFG1Y5axBc02iyscE/FVyvPOXIyDGNkve5x1ul2pSLugHUGl60Iv2pQkwUUkfHLVnI6OTMxYa02TJ371absAtMYGqNiG4KpFfu4tU/pb2qMRK6+R7XvSeZSJIvIYZxyxPJxhrccfoWv7N3Lm298ixszo3Jjsc83Tp/GrQeO4g73Xn+mnuk8RgGm/bX+OIljyOcUIagJP/nG2ddy++EL7G2uy9yzYL3je5oDvrp3H+/gBfq2pWm06S3SPN0qqfYlfKiyvVc/QvY3W64fnd/Z1VEsHEir28dLRaWmb6sfU16TqaKR5VG4QDkh4mZDYOgHaVLf92w2A30/MoyjFMoFKRRLiMhNyFk4tCAF9Ii/UXyOWvb2bez0d/NojMc4qVMYQhQc1miBnxNMLuNIRrEem2vzrDqn7MTrKPiF4P1J/MGEBBHRYrzD4yZ7bgykgq1LoK4tAtTPplLH5TZO+Z+suZzynIOKMYss0k3+eS57EEyxH/LXNzlhJT4pAU6IUqQeFcOKihWbBCI5HElZcgkcXmHcPcPi+AaeyMJbWt8gnEMtro+RMErutu97+sLJUC5XCCKAeHWxw3LsOf21T4gHYR3ZG3CimVw4ZEZxPBF7z9xYrDDWEpuW1XKFDyvGGBhiYIgRo/nO+Nl/Qnrj95M+/yEpcXv4w7hXvIbhic+xap2AuDqRt/KdlKJZscSrhWVn6dlfNZxetex0nsYizo/J2pA9a64liiC9yVVIICW56zGlm/CbmRCRVSFhk5Q/BCaCjYLz5iAxW+TkiXRU259kP5vm3fTzPMwREQDxJS3qc+vDzPah+fy2L36T6o9DpVDUmstceGqzHWkmHGSMxPCGNG2xeiIiZjv5qXNfRq9kClf0M6aLV0OrhjdrQyvSjMvJbAxqXipN5wlU8ERzZTPEDbCc+fKHyN4To8FEzUG5XEVLUkrYcZCVnyI2ha3zLueZU+bS29+Pu/oC19/5U+x+5ldqDtIYsJefl2bZgL/0jPCJo+ayUsIoBlkwO4tl+0qma6u535ngRtnztuysrjvhkEbS5hC3d460PkQab8icqOKUJXzUH2TuTMM4L8XWM6pDMOfeTGAAGs/P7vEJOmLxCSjrRX5fZmfB/GrDgVkMUnadmRNCLv61zrPqX+SyvgwMx0TX4jYH0mSkxKumeEzovq8rbLY3iu+tmGQp8NA1ODWW2m64OBWX2+rTmPlV1t9NsQH6udLEelpt384VKeM2Hl4j7d9OPr7OOAyYME5/PfvbZCxpfUBenWI8vIYd+um9pk/T72Rur774IUK5VvXPrBWfXPD57Rrh2dnJe1U8hTon5775lq9d/DzKHibzIzmNclPW3IuOuX7/clBNyWkIFqhNKYq4lHrOMcfK9y38xyo+pTaNXJDl4s9OOQdd5N8+KPwuHssmko0DYwh90hx7woSAJ0rdLFY5RWDaFrxjUOHWzRhYq1hMEV9MMZNCItmRZC3JOYm5rZOmCSheZCz2879JcJbsi5AFgBNumyzi2dwQ/9V7h/MNxnp8Nhgv4p1DTBxvLI01eJuVZxvF00gy06ZmHWXO6T1XgTH5fYIkOQRSrli9wUgzCmNonBfBqdUu7fqycAG7HRa+49qdb2V/8wJ5GBmNhTEUTX2ZJ2NgtIJXxiwctsPg2fhb6PsBc/Ep1umItluQs9RWjmEkx0jjHLeePsuiaYS7vN7QHx3TYCTnfHRMXg/EvmdzdEwaIhbD3Y9/gefueTPnvvUQKfQkm4kkovoHEy4od6fksowzGBppzuglB1EaGhaBIFJSLqVVbWbhC5TG2bJ/2brGilCH3E+nnw13PvpbROc0l1d8gcKbEs2KYQz0YaQPgeP1mn6zkfoh7+i6Bbu7u+zt7f0rXEHf2eFMqV0WHwnUbzCZbBU7qPYvU5seGjvF7Lrfv5QzVib1lNMtH1BEGrestdrhIhwq+gQaxzvNgWRI1qrvXnK+ufpz5XzK3uXMJOxX73Yu56Tccs27J81fRRX0mwTUJS8WcyIXrnu5tmKndSFNtWeGJhxzfbHP6fFQ/NqKmwkft/IBlWdiouGZ06+k6Y+49fCFaUyKVoc1IiRaRzrhw5pNt88yXcB7FRs3kkt2xhCt1KvnZGacxukOWWdxys81TnLlERHBKjVH1hjGGETgWvcbdKyLuJR1UvvknGAw3krTGpOrN6TzpjqK+tWSje5QRvepEi6Qqw2QvdDW2oeofntS/5Kiq/B7YLff9UP9DzODAVJKEEK9z1NDdPClCd8WNj2LhcravPIMfKvBtQvstedkT9MxNMUvNBMHQvRCppMw+t5OH9PaLPhXeU6bIYDsTUFEqAISKwy9zNNYsFRtJn76+nU2e6/gls0V+uGYMUbGkLQJcaP+kKs+ycavuHD6Xl7xwsOEMTD0Peu1NDs7Pj5kGEZCEA6CMxacYf3eP87iYx+g5E9j1ubsadLgiCX2MVn2BeVBo74YBVdSf6DaqhrHphrHlt+XsTOIAJ1zFutkTRRu4laOIoNJU82N1OaW+VGZjvp6ydHY4qslveFSNFj9vQQE1TQJMTJqPrn8LqYS56L+XlmHJca3szDOaG5f4/Cbxab4ztbYdyw0lbTAoTpTGEXYcg3QS/AaVTq7qJGVTWN56UmO7n4Le888JEY8CuDlrZDdJdmYcVpsMA4BZ0Ya1+CdpNhLt+acpaiSuj7m6fcJFDYmU2UD50CHFafUqgyejxaXPI4Gs96wc+ObhCzq1Ml4IplRThpCxMSEcZ44DKR2pIkRmxa4xYLGNyx9y263YAy7HC5X7PiOo+ND+s2a44MDDlPEN57lomO1s6RbdbTLBtNYmmXDan9Fu/AYZwjjwDAGWbBWlAafPvdmDq4cc/D6H2JnOKa7+E0VKBlIyWFsi2ss1kPKkXEctDBMukKKWl4JoKYFgtGuwCXo0gDUOS+Kt1ncghAi67Hn0pVrPPv8Czzz3PO8eOmydASJkWydFnuByRbnYf25X6vIkGpuV4dAV1YNYCvQoc72FnlBQYyyT5mbgqPtolGzbWRP8DF3zgrgKR1P5s9MIX4xBJMLp8Yiy/e2ADu6OYtmWeZsHnjSOpY5sG+iOImaGTHGzjboTM5RQF/EWHosTZIuqqmS90Vox1nHovU46+mN53jo2WxGopHAZ/QLPuZezc/FS8RoNYCy4BvudYHO9pxZeG5ZihBMtmr0mwxRCjZ9SvgowlLGNxBXXHW7PNLewg+FZzBkxnHAHR/BUYvtN7RpAoBTShwfrwlROt6FGBkH6Vx8dXGW5+55B+bGFa7e+Ub8Fz6MsQnXObplw2LZsVotWC4XLBcLFZ1qWXQtvnFSWIVim+qM16L0LIRqKYjTAMZ7TYZpgGzBNw3eN6IumwXIcoBxDmu9JlLE4bTWcbRec+XqVS5duUzbenbciqQEOu9LBx0jis62bI5CRnDG0ngnwXOWORfGAZDOjplcu65B1qLRXjpWOCH5l0DNWxWX8i2tb1ksFjRNOxVenaBjbh+2ApLqUpWQnbomnJNCHm8s3nkRmlIrlg04b3HeCBFa7WYJTHaOL/D8rW/i1PoyniBkV2fk9Q5EYCqSclCBhgBE1OchxcDYb8TJKF3vGk9jOhZkcax6KQQbxsAYAmMsxW2NiI85w74zjMmzaixLr6G6dxQioHUGYxw2tyIa4hKuFVEgo8H7MI5cuWhI40DTWNrGkuLI4WaDd4bVasG9+QqPre7nh575JxweHtMlVOgMvPecd2f5mr2T1g5gX8EDPMVnFm/m/uFpbgmXxY+IUe1L2Zsmpf0CyIpdnwiNwrM1NVlhmEWcVhK6KYlonW9F9GqMieO1FEI737C/f4r9U6fw3rPZbKSYMsM99pCvcStvcFfVibRVOdYYsavOGhWcqlsUJUw2xm4JTVnnsbbRwtF5Ekf25cY5IXp3HX3XaRA3A4AxVQjhJB6LRUfjd1h0DcO65/qNaxwfHLJwLbeePodvfIlbhHDXNpiUiIMUEVsAa/n+46/yUHcfb+ufpGi8lpgoKdCbS2eBSrwFk8Q/tEXYIzET8GACWDUpRLHXgLOZBgvGMfYCMkiXEpQgYtW/N5gg+/QprvOW9C2O/Yo7++sYOm3IosFgnvyZZDLZTd0FY4wcmIbP3/Iafui5h7B2iTce7zyu81oE6mpBoQhhyZoWXDARUmQcBsbQY4aB14wDIY2YHGUPU3tjXcS5zG+ffgc/OHydlR2xPksRjy2pQj3PVEdKzrRM6vKKuvC2QaWpKDNRCi5LshgKaK7ASUkEJqSIKQbtCqMCAZoAjmmm0Jui/Kw2bhhHhjBKwlzvqfMW44CohclJ9uaYENEkEokIJmJMwNmId5FG9zN1ixXo1HjjhC22kKU4ct33DDGxWDXsnVnQLnfoFit29k5x+vQtXHjhRa5cvMS1y1e5fvU6KSacgeVqxe7uDnv7++yfPsXps6fZP3Wa/VOnOHX6FKdOnWG5s6tCU4EUAjkGwjgwbjZ888nHMday6XsuX7uC8Y5shSBnnJDPN7u3cONV72I1HvL8HQ/yivMPE9SnlWZjWlitc7ttWuZJxoyKTBVSvCkiVHYKenU+VdGJnHnVha8Q83ZsAeV1KqShYk9ljhc/oPi/JQYpgFwsSbM8kffcvKCyEiImIKEk38q+lYwlJUMcpNsGCozazSFuOCb4Je3xtUmESs/XaJFlufZ6XVkJa/XHvPV1uugCTuTZkp4DjTcDw9NRui5O4hzU8Zofc8GSVGIXXUflFkwfl6tNmBM8bhb8+a4f9XTmgEyu9kvhj9k4moqRyHyS++Wso3bME2UoDtwO3+zuoAsbntm9m1ccPCPkKQVY1VunfIiQRYRolqx0dTBZY7YiUpkNJkkxQxqlk10MIlJBylgjnbactaperx3Ni68yA+anBLKcSUl0hRiJQRXokwq/YAQIplyiFmVDRUBzzhhnsI0QsqQgxuCiCDHaCC4aeWhRChHiGKQIs5FYpAg9lULt0rEVmMWx5iXzqZArJSk0zdP6Or1v5RAfxJCyrf0R5M7l6T6a6duSYBGimhA9xEOlgrowYXtT3M58W9UZVuwM7D7xGY7ufQvLb31pAplB7V6e5mER/LpZQAioSZCKgZ2cIymptXSBqQAshkq6U9KOkD/Lc/JwzqkxkniqiC0xE1CbC4QZJVNUUSb1q1978Cj+1GkReV0swFhSgMODDd1izXozYvpItgMhG/qYpfNC1g6HCSkEshFjpUM5Tcdjb/8xHnzkd+laFavOB3R33VVFiUW4IOK8ZbFcsNpdsrOzw87uDlKzJYnezSAE1FGJbVLQMflXVQitJiCmQu83rZ8m76xma2LaJ6oIxgzwjinVLqGgCSTrtve7JEJSYQx6b4rIVCniT8QQGMaezWbN0PeM40CMWi6l906EphqaRuJqOS9JHk67djnMS849xklQqohKFXGXMQQRv1GxojS7pmInsNsEj/K+02vme6qsyZStEuWZ5qVe/3Se/3ofN+/VJT4otrfEswrh1j1yG/Od/71h3u1VCHG5+mtT84nAMA4Mw6ACZsupQ2sIBOeki60BY5L6iK7a9+LH3PTp3/6nfDNZ76UvmoS25OKKiIF04DQVyyiG31mJ40ohP1nwtXEYRMhUxfB8iITQsDleswmh+m/WSEIqx0IqypwKx7zQnePMcMjCW7zp6rmjPlyKEtcZDAeLHZ4790r24sDFxYL7L32Lftiw2agw3NhLQfqFx7ixWnD6uUdwp/axzjGOA7YXcpcUR9ra4cVoQtg6wRZd01RhIqd44xde8/285/nPaaFFxmRJ5k3dZmItxpwTXEWMQNb0qPf7JB3e+5kPLnZVBMQcow9YaTOFoxSqTkJTBsjJbzV8MABRkoN4IeIXASQDU1yE3FOlfOCs5ZVmzdfaM9x+7WlMTqxuXOTqzq0sn3yYo4ND+mHQZL34hf1bf4Bw9Rrp3J2YfiSuNyqyHScnN2gXo5TJYyK5QLAD9vBR0sEBNifG65e5PvMfidQCWxEq1e523tG2De1tdxJfdz/Nixc53jnDPU8/xkq77HnvMcaoWJCsjzCMLxENzJrbCDPxUXnI9947fONm8aOObZ7mV4qmxiVbIowzMcNtT06Peail934uMBXVby77a9lfUs5cefcfwV59kas/8O+w/1v/PSYML93zCgZtsxDiyLrXSPc+473YkrahWyzoVkuWyyWrnRWrnR12dnfZ2dulXS4xziOK2YUAanTvFxGX4iPe7EOeqCNJQZDzgo0VLChlQwpR8jAaf5T4c+4fifCNCtJaiauj3tshRI7Wa5y37LCga2T+ecVai7iMwdD/0H/Izu/+DVKSHNLoEs5lIbYxEoLkuHJymkMpNgFKl+A0RikuGgYOD3syRv0qwfCl2EswrJwN3kuuPF/9HJtRhH+ctfjP/hbH166x/9RDHPUbYhwpxfyZjLW+lnF65zFNg3VORP1TFpKHlz3y1Nc+ztE4sv+tL3ApR+nc6T3NomO5s8NiZ8l426voz97FnU9/hq7xvPDK95DiVZ5f3cpbN49yzgWc99KtT/NZxkyEDZgI6GUjrYJvdT6W34MQOw2V7GKFwGFUiKj4G4UQSCqdXJVqr82TJH8tRTtBG3rEOJDTQEqBkCJDEqLgZhzZjAObMRAA1y2lEM32+IzE1NmImFgykAvhzTAMgZgTY5CusoJJNpITa8THjWnaz1OcY6/f/aNJ0o0zjoHcD+Q44MThoCBOiUxIcYvcTAavwUfhhIjNdRSamW080Grso7bWWIbQE8eRxiSSigG0FiWpSaMx6z0eQ86C9VoE77DGCDkuptrJXIZd40dryWGc9maMNBuwlrHfcHTjOrlrMHGANBLHAZsGRNyjlEAnfX+9RucgZWIWEXpvHbkxJBWfyKnEEnlL7PbWb34CEzace/5hNggGHkJitA3PvflneM3nfwlrPc5I8b1JUpicN4B32EbwVeOFEEiGYdNzdHzE4cEhR+vIMMIYIykEhnGU1+o+Allion7Ef/V3yemY01e/QWocfRxJ3uN8gyNjs1f+gOKxORIIErOGQFShtNCv8dbSLXZqLLdYruiW+/jFLk3X4dsW0zb4tsW1reTvfSN5lpQZQ2DdjwzZkZwnp0wIA2McGRPYpsOZRjJq1oIVfH5IYIN0/iVnsvc4LVxKMTMOgTFmxniyctHFZytb/YTsTLhNzZUUNC1v/z3GzIT4DMZ5wTcah+kaXCjx8Eg3jkpm0wKQXMTTARJEiW2dE+HntmmEH+CkmDqljG8byUEtWlbrDf3xmmG9JsURMwZiGMjDyB3PPcSlc/exevoLRCv7tfRkKjGQmXBBqMS/sj8kjSUrrpghE5kX01RhDMV5pnGSI8kbS547R7zX8TIF65uNpTFKojb1HCaIfcIUy/MmRfae/AzrW+9n8dw3JKdXcOGte1zwBTO7bMVINEeWsohGJbUVUryQpOEYCBEyJ4qoiiHVIljJcZYTLWRA2YtyipACmEAycVa07hhtS2r3sft30N5+P+0dr8aeeQV9s8vGeCloloCEmCL9MHB4dMTB4QGHR0eCQ2lxQRHcL0UzJ+3wqz2s95jRS4MPkzAu4xK41EvxnxYb+OzxUYqFweGNq5hq8f5FNNlTCqlqbtCKINwkmj/Nb4yZ8tYZvZ+CqwkxVIqdHFnxJou1WYv+IduknWQTNmVwWYoOjdH9NwhvxCTB1VMkMwIDEHEqmOqdwTvHF1/zIzz4xO9iR/E5b7lxnhfPvZq7Lz0hufk8kWih5NqRXLuSnEruHWtr3q9yB1Mh2qv/qmRfKMWiSX1bKZo32jxL/ITCD8yVcF7Wdsxit2rwVpttWfavX+S5O+7n7KXnJVfpPWh+0RgobInKbQMhYWOoUgf6XCBL7jgHiQuNFiHoUYSmYpJrwLiaH5amgyqmb5GGIwkt+FIcrDQEUaG9gn1PnWYn/6qI/5fcg7F2KtQ4gccc6/v9//HE0Cg+R8GBRSaviEhSRdyElF7mlebYtNFcMmPNH5TC2oLhpTzFc/UoW6xChLlsBNVvlBdktfclvo8xYZ95dHYf5bPiH/5T8KH/UdasYhlkhFNbRKbcVLAipkHnflLBMt0LS47j2T/0J9l/5hGe/YE/zj0f/ftiU8q465Y4PaZNbp7bkqEtExbFFAp2WyOy2b959rYlP5jU/1CMK4baDC9qUyOrovpd20hjtLalaT3eObVHtl6/xeiYl0IUxRNn39f7kEvxehGfuklgx4j9zWqnTMFBCyZdr2Z7jCpeCrP49GQcBRfHTJJMybjarKv4S8aE4jkJhyfXGbL9MKbuUTrwtVHNtgCUHC8RkLrp/F6CE1W/dvKKptRLOY88+/rS4+jF5zi+8PzLjsX9P/2nePq3/hHh+PBlz2/uDf4vxbDmQk3TeW8/Xx4VW1SxxRCFL5mM5Nkb7xnHhHCO5HW3jVfJxxkzbtjvrypOr40HjDQC9b4RsY8YWK2WLJcLYg7kFEjGgXE131f8y3KIPzblfsswp2JfX2ZcJzsww1VeMrZsXTeUfStvzQ/53FRfL3hAruu8iqmekCMkxedqzsHqXiLGtdpNY7HaQigbR0yGcYxkegwTEdE5r0J7Dt8IxzHLXyEFPfJf1PgoM+W3E+Lfp2xUeEfWqNjKkg+X9WPJ2GxrvYCIhQjnFKt+UjIoqU/nia1iIhKH5sq9jTmQsjTZjFF5Uup03H/jqxzdhA+vfU8yp+i7FfnCeQ43B8qZlmv8/N3v4HsufI1F7LWod5oDmcyx63jo1jfwzvNfkBHJ03x59NYH6I97Xth5Ja+79kWWmxtahOdwXcMDw9foV0vx2LUoqoysrbk4qOsAihOmYyErDq1JKb/LSD1SyY+XKtuyHf+eR6lPSpJDqMI2RegyodhQnproDCObfmSzGRiGkWEIjGNkHKM2YMlSNEcpJsuMSbiAxUOtJl/n14nD76E26nVYTIoQA2lExtULljflUacdpOZudf8v/I2cM2mxy8Fbf4JTn/2AvK7woEreP06Yv4FaMGgwlMYVNfDPpqy4alsFmMi1eV2tN9M5IZi0nz+jr5tPlpKr2i703doOmXwZZ+UfZzMp+epX5qomJnFUH0b2n3qYPGy49eBFeu+w3QLTdfimqY2woSF3mS5Euq5lGCSGL807Yk48fv+7OJdGLi3PsHfqDG7siyHfyi8KxyYTcmTMwqntTODiaofluOFUYzHLJUMMNGHEhxHnjPh83jE+/imavT0EUQ7kF77OYn9PFkYUeyP8Mq3dy7nmRqXQFbquZdF27K4WrBYdi8bjvfDhhJom/wUV0ooqzfH82/4Itzz8q+SwmbgFKtRjrcSvUr8pfDvZCURsyphSzG5orCPbTAo94wnLRZeIV/YzZoENdc6W5ypHM08iU2UXr2tPn6/xyE2zvERI86Nwc6fAt7xJnt45F/9evcFim8vrbzZfWd9YLcOMaVg/T2DGXB85icHNRehx/sZlv58JuGxfRP24KS7MkHMUvCVmYtk3Rtm7pJmS4M0pJbqrz7E/DjBuaA6vTBykXKi5kituX3yS47veQPetL8kYqZ0ror7u8vOIaH/hSen5GaNcReXR5YKiMN2XGu5N9bqF0zlv8lq4B1b9AxSnjMMG8+WPwCtei3nma/qWpjgTGKZ9tsSUFROt/lSZO3reTDFrFaTSC8tqKzVw04YFJysoC2kmNGWUfzGL10WKzNTrKXPaaLxd4vaiVTN3LupqKX+jseniua+Sw0h3/Tz0x1uxsi1+U1bRyVSagRSu7rRvGiOC7nJbNFb3biY0NTudWSxev27dR/VHZ7+WXPfko07+V66NdeZcRADzrYdg7HGXniUOawruPo2fvm4c8F/7OOPZuzHPPsow83GmYZz2bzRvYPWizNZ8lOuf3r/4gPPnJp+j+OhZOV71HKGKr8i1zWxmRnLQ1pCd1pPo2Yqow8R7K3tsWVpySmnKJ+bMlQffx+43Poo9vkqm5A6E+xI1J1s4JsV/nRrGz7MkOmZ6jqX51kk6VguIm0AM4jd6Z2gbo7nDBuMy2QQSAzH1NN7gFx0heTbe0fYjjXUMKTPETJ8zm5hZDwNDGqVhnfVkK2JTgmVLjGfExSGkJLx0ba5Q+Me2rh+ddYba3NE79V+zpc3QekvrLZ23dI1lDE7mfxSurayJme9okNwRYBVDlz0qQsilrE3sQtb8Z7vk9Pv+DMcf+h9YG4tJCW+s6hxkMIYbb34n+dJlHrvzAW5//GN0cZAGzTlJM9nG02rtrrVlX87cWN3GxvUiOjUY7I3rsIo0bcvCeVZtg3eWrm1ZdAsWbUscR9bumKNsCJuezbon96Pw+8dA6gdSjJgsecxbHvs8fb+WZiyNJduqEjD5zeIwqA11Nb52vmAvGsfHSA6KnRchLjW2pmw4ai8lB5G2fXN0jbvSAG2yVan4FKiIaRAB13Hdc3y0ZjMM9GHkeOgZxoBrHN3ODqfPnuWO2+/k1jtv+1e4gr6zw2YHKmaiZR3Vmcopk608UmncUfKolqnhoTNapzmrydB/xYybOrbbz+t9NmxhSGQRr8EmjHKuTUaFYNSDNFb8NiaB8CLmVPbGLV68mWpsJv9TI2cjOaeccsWwjZG6FYyrudaUo2ggKJe2+j56jdiSw7KknLj30qOcJ/Kqw+dIzpKKCLYMZPVJRTgOnjt9Lze6s4x7d9BYOHN0Qf1XgzcWjK/cENnXI6947gtcPf1KTl98jNg4WpN0j894Z0nRkrxVjD6o/2dU5HXG11UfIGsM5azUCzr1U1zOjDkRNHdXxlga0hhpluos3lsab2gqh0cGSM2QXq+pe/E8fz7xdMrA6N8akMZbcp+ScmMlt6Y+itZ2OM2Xn7Rjyikh9j0XjDbXfZwIJlhcCDhviVEbcs1jHUrNga2+idPG5fbKsxjfyH6m8UDxzwrOWBr+ZOMo2GIuqEdOYNzMl9JU63x/804byU5+ek7CC5I6C6lrGfV7qfGU3M/q6lU2OWvTBRFCss4r10TrYlJi8AteeO2DuMvnOdi/jzPf+BRhHOk3PevNmvXxsQplT7Z5+LH/DeabX6V/78+z+O2/SWnQmhLCwcpxhlWX2FjH1TbqiwuGIJeetUlSrri91HgBVhojTTUvGjcZVNRO67iLWBPUPafEX5TYtACDxQ8sPqraLSz1Wox1hB/8M7S/+9/XeSUcvCKSKE2qQslPKt80lwU7i6MMk69vyVW4qswyEXieNVtQXI7fx9r6fQlNSXMY3YgojrKCm0k6EcZYugLbOqnLsfutz9MMa3bOP0JJXsQQGe0oHYqdJzkZIGMi1gSMGWialjZFknFbDnOu1IHpqEWaOU+biibUCkAnnb/k9Vb0BKCxOFoaayh+5oZMGLME9nEQNfR+ox0+g5BcXYNtWpr1mmG1pFvu0C0WNF1L1zQsFi2rdsn+Yofj4yMODg44OLjO0dER4zBw3B+zOd5gG4dtDThoVi07p3dZ7izwnRPgP/QiwrA+5sbhEc3lywzLB+guPcNO7vHLlRZvSUcL66SQxbetEIitbH7GiSqrFIQV8a06eCLm4SwpW+FWFFXubIhYElLcftRvuHJwyDPnL/DUs8/x3PkXuXrjBv0YSKaIgeiGkXPt6AQC/mYlixgFEKbkWHEGTH0eJsypnmyxgNvx0rf75cv+6sQdNViFyWze9BKmNWWY2wsze5Tn9OcivqL72235iHeFZ/Fp5FTa1G4SU/J3fhS4SsNiIwUJ1THLkZw0UeYMxjZ457GdFdJjHDk2kXGE3z79Nh68/gIfcPfyC8Nl2oV0IMnWEmLgTtPjCYx5KUY9ixPhdC4EZ0mNx3QNPi8xbcNVOj7n7uFVfuCTaZcfcRcY+oHYNvQWmrbB54RxunGNIwsvKqjWOCnYHCP9Rgom9/vrvNgsyY89xMH166QcsQ58a1gsPIuldPnsupblcsHOasne7g47OwuWy07F3BCboQ5t1o7asodYvGumjcgZvNTFkciyKTmHMZ6cJaFovZcCERV2MroDHm82XL12nSvXrrPZDCxXC3Z3V+yd2iWmQD/COEqxgg0wGC1QU9td7mHW5FchyDTeVzJ8uZ4JrNielUX9Xq6lqEI6KSpzXkhAJ+h4+aSbqYGrvqquB6uOnACvIrjnVZkzW0MKRgCQIpahpLaUimOYOHfwDK1J7PVXGRkIFhECayxNK6RGY6V7b0yJTMBaEX/xqsArCaWRMA6EMEqhdOMlkd01uMYzxsh62DCqIMY4SALJeovzlrOt4+2nYH/RcLpzYKyS/8T0JKMKnBhc12GCdGv3wE5O3Kpg5WLRcnR4gxwGwrDh4PCAG9eu0DSOU2GXO89/iaPuArcdfovjtiNZKVRxTopIdvMNVu40a9Nye7zKJ9s3YEPPpxYP8n0Hn2F3vETU4mC0KNkVganyyFThheI3ZQ1kxEaaErrWo2lbYkIcU6Rorx+kANn5RgRWzpzG+4ZNP9CHQDaGpml4i73GnoH7zVVxtp3TuT1LRM865syJOqK2rh2wnBAqMRK5ee/JGuSVJKp0OLR4L8U6TdNgrdGvnlKcQcw1eD5pR84iUrez2iGOUsAjXZhgyJnWCvmstY5l27FoGwiB/tgyjAM5BHH8U+atmyeqI5wKQKAAiICBShCViLcivLYSNIAaSJX9NdcAQ9a7ONhCrMkYB9ar+EUSRC8HGfdfffCP8VNf+vuSIMojyYy47NiP19k3hxjrqvCiBLyTbajBA+CVmHuYDL989gEePLrIx1/1Hn7qwterwJ/XwEyUdiXQTk5FlzRJPI4jm3HDOA6E0KtCfhY/1ovAlG88vhE191/ffwf3muv8yt67+YXxs6xsLHV35e7Vf+c5t8lH0+fz9JM8I2SNidxgBRTdOgokk6b3KEFXjCICVR5qb0IRmdJC85AiIQvx4lu3voPQH3Hr85/RxF/xHwWANVmVtLMSwRBBLWOTiNrajHdC2nAx46yQsjX2l/03ZxHPnQczJ+BICNHbavFoQEAo3y04e8vtrHb2ufXWOzm8fsCN69c5uHqdg+sHjIMUXC0WHcvlkt1Tu+zu7bGzv8dqZ8VisWSxWNApScGqgr9iPPTHxxxevUy3s8NidxfXdaJ83nYsVisWi5auEQKkG9Z0BxfpT9/OLc8+ThgDKYpid+Mcrm3IWYi6WKNduzUhM0uUIEudUqxoivILZc0W4cH5Hq/gE9uk4DQr/C3EqkyuCVZXQNOZsJ818vsisCm+jvhhpbA5jFQAb74PlERZFbiKUqBYgMYMdP0hdzz/ENEv2D2+RBEoKh0hjfofleym+4pRu7Xlt28laQspJde6gSl+mG8cZZzKuE7fl6QVGquJHZtAB4ViVLRHvEtrhdxbCkynrCUVFMqawJ4Xcp88UlS5Rhm4ebJYhldtXdlYbLk2lNwwxyMmIqpJlmUK7Mc1192C29cXlD1Pnaspi80xCZIC3XNrW4BFY6S4w+SswnqZMEjSY9j0hGEkBwG0CrFwojjq9yXRWeaczn0LOndDJSVETV5/6l0/xrs+8+vT2WgSp8yLifRe8IAkgY5P2AAuoUICFp8tO36BX1lWzULiJZPxnWe5FPFuZyeRmyJKIslxPyN/ze5csQnlfilJbBKaK50qqodQQfOt+59zDa23wPC6D24D5DPro3hTqgDxHGsp7ko5KvBZffKJ7FtEprbXxwQUVOGsGqfp5+sam4TgZ0I7J+SQ4seZaFiGUpC0nSTSwTLl/k/FbTJv5bqq7b7pc+p7qeCrU9Eyq8BuJdpYK4JmzkNr6ZZL2uWSZj3g+4j1A9iGbMbaSUoobIYcIyYlGgw0DY/8Wz/HfS88ytfe8ZP88Itf5NT+LqudHZarheBsKRHCyBB6INMtWpY7CxWIWKnQVCSMI+thoO+VgNqLKHEp6njE3YrNideGi9RizDyzqylSOnHCbE3M5k25D5Pv5aZGASXbAFNhiYqkFNGEOsYoEE0hP4wMY88wbBjDKN195uvXufooQk0pKhY2R8FmoNh03nL9QYueq8DUOG6JjYjAd0muzWzFLNFVPmRaRyqyqGvfqi8h63KyQ8VPsJqJmYp3/804Jps0Ya/F51EQdzaH1JSaYlLnf0MluBWzKyKzScVlpWh6nIlMbbQr6zCOOidHoncYtPjCGky66R6biUQsF4CaUlPPl5m9ET9oZphrRKn/zfak8tUUkoqEREDWbjTy9laYaUJisEoItxO+YawltJ4UUi3mH8dRREzKtWQpvXN4DIZXxg1dvMp+OKRZdEBX52LpOKk5aYwx7LUtR63lgtnnbWbDzrlzDENP32/YDD1jEKwppcCtRy/AubNoUMQw9Li1n+zozKYmFdbwvqVrRZC/7TqatsG1DZ97w7/Na649ycfv+36+/9lPa1FssSsiJDYWYbic6vjnLKQOEeQaGfq+CriclKOcT8mHle+LvXTWYbPc32JzyUYbqEwiaEVUXfBj8VFsmjCKrAJRBhSutDgD2YpolPcND44HtGlgtb7IVWu589KT+GuXMBe+yWGIDBsRpw9BCp/yI18kvP2HaJ/5BvHoAAM0ukc2vqGLgTiOxBQmf1HXTHz1W6BdYr7yCSHdapGFQYUQUpJO8TGI/+gcKTgRM7x8kfTUY4S77mf99c9xYTxiuexou5bWN4J9KKYugoKjinYIrlT8bVuIwiltxROynI0KrLopfpntgdTCGbb8qepz5SK2O93rlys6K1+rmNTNjzydV86Z5Te/yLW3/AjLr3+SHEP9gLnvKvGkCryU/dVZzfE1+FYfXau5x46u6+i6RY3j21aIY0U0pO5XWQgl1s7ma1ln2gjopIm5lW5TVdQgx9m9ShKrew/O03jxfZ3apAodWiFYCGFMfCNU0GIMkfWmrzi/dO3S2C5qcdCP/Xns1z/K+if+Tyz+8V8BLSoseYKcrRK/gxSIxKY25ghjEBxESQbjMAoxbQjkLDn0wbWsf+TP4H75vwZQPy+Lj+QEWyGM5BDEhzIGHvoY60YEWmLItI3BW8nBtG2LaxshBS6XtG1LRvLv5EzXdjjv+Orb3s/dn/wgu88/SmpaNsOGcRgZ+4FwcIS9dh1z5330991Hc/ECN1b3cce3PkFcRy6//ofYv/FVjjZPYRYdi26Bcy1tt8C7VkQETMEHXM1jzTfi+framqdKv63rQ0X8i69AodSXNZOTEMYK9pO10EsxkZAjIQdiHElxgDiQ4qjNOkY2Q6/NO4S4e/Q9P0X31Bfh6gvSEYzinyQCiOCA2rjSYTGETBwFc8o5E21k9GFLLLl2644ny2G0MUAIuBDwMUouprZWkdymiP+Vfbo0RSokTCUPzbAFWUMWY700d4CKzcYMOQTGVPoayX6IQ8mFsYqsgdh6EwU7skaKl2JGmlwpVuVUkGEuEphn+LTgzZZ+veb46BAXWzwJkwM5BBIJ1fykCEaRlUphnYrZFXG+IlIB0kBJC2/VVyxd9ITMZLnluS9qcVMSkqpxfPO9/ztueeLjPPrOP8mrP/O3aqGHzRmS4CEkiwlS+Foaa6SUGIaB9WbDZr1hjJaQneDkUXJY1holLRuGd74f88Lj2G8+jPeG5ZOfIa8WJNMRc64dcYdNInuxD9mLAGaKA2Fck1TMlyQkxraRPNViuZR9u2tpFwvsYhfT7uAXIi7lmkYevpViQmzNyfWjNMoJIAS1EBjGjfj0uQiLh5p3yxgGJVcVfDOFTGpK903ICUJUgnk8YftYLbmdiM11nqqPNxd8JFNFKIpFBJ0DTL5L+R1eyKguWfAW1zT1vQpqywzPBI3BSsygcyaKYhPGWvyiZafxtIuOoe/pj5cM6zVh6En9hrHviZuBwa659fLjDF0jAnUxkA0c3PIa1vt3cPrRfz5hhPLJEz5m7IzsZiqOJRcaZ7ii2BaYwrMinFAK6TNgoxYQJ4nJikhLgXULdFnEpspHQbkHeYofjUasOZPHDd3zXxfxV8XcSwiplwRANFqqOMOtim8c1b8TgR7URsygDis2MhsRVcsz3JbS7Tcb6W6bC78jEImEnIjWkE0DbkF2DcktsIt97OoWutN30Z67F3/uHvLpOxm602ysp88GoUxKrL3ebDg8OuTw8JCDoyPW67XiKVq8ZMAUwZRCnj5BR7QO41vJZYwiWotJOJuxOeFNrDiiw2GizvkxC/dc/c3azEi364RwJmJOIn5Y5pCKCpUiEQn2p/09GxGjdBTsSAt8ku6tiB9rUO6M5gVMljjApYTVpnbkQiYNBALijSQgQg4YtNEQQgJvveMLD7yPe64/xefe9NO858u/jI2Ju88/QrdZc9u1Z2WHNAgOQdk1wZDIVkTnyCUXL/6OwzKahM1GsFwVnBERUBXFj7nIhBJLLXEqQlyCt3rnJI+bdRw0wC3rUStIKbzOmpuj4baLz+DGkTNXL9RiP2PED5iVApS7QOWK6j3J6qNkk/EYcJlcbInIPpG0G3SIljFEUsxMIqglBznLFet5hDA1y9HbVs8PZJ8qOYnSLCkl7RodJU9hsvJO1Jc9yUeF/77tC27+xcTlQXMXmCl3YrRoUERbsgicGaQZpXMSb1GzWRTOjXRpj0LkSOpc2qQqD9MeAWUP0RlvylkZapVxrrOwnmdCseASh2SJpXN29O/7UzTf+DzDz/55ml/+bwTnilO+yc+KOiRuFG5lmUfKttahmrDLU499lqtvei+3PvzPlHhuMBZixbL11cUhMNPML78v4jDTbZi95ub810031qBDorwMEf+XR8G5CsbhrAjstE0RmhL+XOHFOGvxVHmwepSi4jmHaxqHXH/6dmI5cl9lvxShMlPn5FyU6WUmYr3HJ+2Q+RkwxmtOPSt32pOzq36P5N3lb4wx5GgwFN+3XK+tKDZsmaYtDGr61XbucWuGGBXvfrlD7fW0xnTOGVvvZJnv5mVGPYM2U5ruW0qZ1/6xf58b33yUB/7En+ORv/3/IvUbfX1+6Rv8SzheKrw15XjmBfpGhQ2j5qWvXbuOtSI+kjJgJU4Vv0+wpFvGS8p/EXzDzRubesFvhjCSnRRxLZcLib3HgeQcxsn8ziapTzDhhnMuShmPVP3sb79+ylejRXzz6wQqdlOw6SKKN/2d5lR5uc+YcOuTdphsq5CGUS5LwkJ2Eq8Ziy1FN8Im021F8oohjkxek4i6WxVWcU0A49WGKk5YX61ClGnan6SgWTvY12Y4EucWv0hiABG9siaLME1GsAIVAU154tiAiiJY5SdWIU6juKHY76Hv5R4plpiC8JZyUvHxm/BxS89dwyOM7ZK99VWCMeAzBsfn7n0Ptx9f4WN3v5sfeu4ztHlknjfbuIaP3/EuXnXjWT575zv53vNf0DkVySFw7vIzPHrHGzl19Tzm8Dpj2ICVJrmehLHQNA2plXyRp+AzU26/+GOCT01Tb2tvLYUXs6P4adN+Q/VHgK28uDyft15LnGL4pKJAOclXER8vjTHkMWhTtWEIIgI0Rslfx6QNWLSwUl2ZoF+zYpspow3hNYTOL7GIJ+LwOqYOwWqi4mDZAN4JX7w03DFme/8w0x1xzgn20yy4/t5/l+U3P8eN7/t5Tn3y75GJwtmtvj34DNYL9myS+FYJ9YeS+peUrJbEN7XxJFBEj6oXUs9FYw1fRIpn0cbM/0L/rvCQsjqSNWdU5koRsKWINwvn8HDvdi7f+lrufexjUkdVatqUR3fq/DcYree4aeo6btoiGqBND43Xczf41mO8xae27p2vHq/yjdvfwH1Xn+GWM6dwaWqyWhp3CAYi+awhDPRhEKGp9VWa84/gxg1uOGY0RqnV2thcz8NnT9S4MusgVvwnKTabRNg/p0kux1nx6b2TnIdvPK33LLuW1XIhOWblnhTB31jybvoez73959h98es8/57/NXd88m/WhmpFSMBaFRZU3pRBi2wTGneIKLSxBovHWeG/DMP4L2Np/Es7MpMdSNW/Kv9uQ1XMvq/xDVShnJt/91JfLW/bzlmstP1U3hJ6qj7gzG6WF5vZ2pifm1ERWfN7fV4BBbWQl4qtTueRS3yU87cV35zGx0zjUz6v8oSomL/geSW/NfGY3aVnyDkzIpgi9fQmrHfxxOdIh1dpn3u0igVVH1gHxcgpC2blFN/VLS5lEb1KBU+eYSdbRf0358krh2t6nVNuVuX6ZkjDBvP0V6v/VmjYBSOt8ylvz6OC1YrYj95XjfFLZqaObVmpFdCW192cbz8JR1Aw2ZktubOJC8Y2XlDncUbitOp62DpW1VPJ00+Fg1Byou35b8h9nMclZUOi2OhS35vr+sBMmGNGUtrFr6xcPK+i3Wa27oqfM7sF27vaTUfxDWevLr7r9h73MpzvJx8iVX4Jde7laWHL1/Uarl+hz0xwm55nqYOf8sSmCpNULN5Or5ng/W3uXt76bron2ZTq8yLNYHSOT/FhxZCy/pM1/51UGCJP77tdL0Ad/zKBCgaZcuLKW96Hvf4iV97xRzj96b8PmxuShy75xOJLoH9nSuODTDmV2SwT3EDHcG6GT8rhbBDxEGvAq7ivs5ikgiMID2gMSeryde43Foxz+IWja0WQdUiZTcocDgH6kTQGhpiJKRCN+hs2YRpfRXJzMqpxEBnGAMbhLcpf1doHNB+eLDFFXIwka7EqQWjJeAutsywXDYkl1jnaYWQzRIYg5x8qf6DkenQuqEhZSoI3ynvKcc+//3/n2b/xf8E1DXf+wn/C8UO/y877/rcc/upfZ9z0hM3IcrGoNiRtPoJ/9/vgS59kfPZRPFJnajA0bcNSOUOlYVDbtTRtw2K8THN6nxQje0fXWOBZ2ZbdxS6r1YpOOSUVYYqQYpZGUMlgkjSNXscEIWFTwqqgaE6ZFCOj5nOtCjwLh7Lk5WQVxJwgWozNWhtqsI3E2cCEV1B2mVx9njJmda0Vgf+y19Y8nnCsjHX6ECGuKuCYdXfN2hSuHxn7kWHdc3x8zDCOjFm4H855utWK/TNnuO2223jFK17BHXff+a9i6fy+Dm8dEUO0CVd4hhlgiolKgwypOZHnts13jYzqT/DSOBnk/Z99zQ9x9sKj7Nx4fub+be95ZI0HCrZtVOCt3E1TrLAIMGejTXKK/YQKz8+bMAsEXuxs8fkzOVu1A0bstDb+KBSj2sis+HBbly7vl7VBT4oZizRPuf3SNxitI2qu1BUhTzO9b+Hb7x1d4sXuHN14zKo/qLHWlCNH95tpyG0cOXvxsarNkg14a6SlpIFsLcmBdRBDJiZbMSFJcU5NH8qaw2TJQhY83hrJuWTdw1QfxDhTxYxFYMrSOEPjLI3Wgom/PX3etM9pbrXef40Hb8IuSk5y4l6ZSVibgvPLWKQkc+Tbe/PfnWMSsTXVZy8iwMVegeCJJkVsCLggjdFNra2i6qnM14hBdQhMafi9HdMJwKE+pGKbRutfJX+msV2CZA0xGuFraYAjujmT3XSqX6GQCLXuSGu3x1i43FPNR/ExrRXupQilS37Y6O8LByPFQMCQ3FfZvOI17H7tExxev0GMkXEc2Gx6NpsNpf5Tlm+Gr3yM8K734b/wIeUqFzwAlMCp45UrtiQx1hTXlrnpCke2rFHF+CehKUe2IuYYNGbKKU/aHlaEEK3xaDuAitNJ0+dcEuE1NtrimtipeVhd69Yw/Phfwn3tn9H/yH9E8+H/FshEig+ozQ1VxF7410x9o2qTo/K1yI5N++O08gp/T4sZ7MxZhkLz/j2P3zdLXzbkAoyJwp6Qn6yCXdrVy0xEqHLCkFmdf2R6r0rIDLWLtYuOZCS5HkzAGBjDwBiFcO4wJCwmRzGuauiUkj8LqrIG4xPJINmibCbnUp0O6zCNgNPeuhrYYCD0kRQSKQZSGAhjJMeeHNYY02Bcg/ENtulojhd0iyMWO7ssV7ssVivaxYKubWl3O1arPXZ3T/Px3Vdy5+Elbj+6zNH6iH4UknEYhNxojgauHfQslh1NJ1dMiqQ40B8fce3KdcKFC5wZnsceX6PD4nfO4cg47+i6htXOHovlDm6xwz++52f5+Wu/gfUO1zpcK0nKnArUZ6T7RVlIUCeWGHBLjEKuCclw1A9cunaD5y9c5JvPnefZ8xe4fPUGh8Mg6UynrrVxsnpd6Tal08BMojWSDBDwrnQmnAdcsuOY+rW4jKbO8N97K5mM7c2vPVmkqHkBGwrQaiQos/smNW/DNE/rUbyQAjgUY1ICdWMwJnNrPFLGnSitGX0OU8yN2RqvzCQYYW3CuoyziWiKoqSsE2cj1jc0XjqXLqyBzTHHKfDG5x/hobse5A9dfoKj/YYYIraxhBwlSeokwZCdpsVTUuMt6zsYiNYSvccsLJ0xGHZ5qL+VRXPA+3dv0HKG3G9wJmHCgPXSac47yzgOjOu1ANTG0jYtZMMNOj6y/1be8vl/wO6jH+fKxRtcf+ZJ+s2IdRmvUzOMiYt/4v/KLb/5/yQdH5HjSE6Rh3/4/8x7P/v/xtoMtLpZiVUXzFvBKFe6g8p9EWcg0zSG0jnFWqeJaYvFkvBYL11EYzJCavOOoR+4fPUaz79wgUtXrjHGxGq14uy5c5w5u884brg67PPwvT/Pg1/8a/QpKPCUJHVqtQNfkgKGQsA3WCUOS+fYnDNxVFJhTDjrNeEoc9WWjdTaWmxWlVHdRAw/0YcGVGXvyOqwisOtwgAVpJU9xXsvzrazRGdomiIMI9cr1y4FCClHTh08h+xJIgCDkvV9o/uTzcQ0KpAYsU4cu4wIPJbkSYoj47ABMi41mEZEprz17KxWNIuWMQYpEtJCwRADNhpS8pxdGBbWkJKIVPTjoCIaFkIQ4DSK02OswWYL3tMsl+ydOU3OiaZ1XL54gSsXLnDl4CKXLlzk2tXLtI3jYH3E4WaNS89x2XtWu3sSwBuxYSkGGj/yZvcY0TpO5SNeHwc+0j7Ivf0zrMYbQrwP0o3ZVGE1IdRsd6+dVpocYvcq4Z8JlyRNomlhHAl9rwTNjPWO5XLF/qlTdIslMWf6YQDrRPjNC5HwNfmGOmnzApg6hWrh9LbYlOyFxUHVDVCC4pRxTYM1sl5iFFBKfifvl9Ggwsu6ylAFH2yyqip7wpBB4MaNQ2IUkAXjOX36Fu6+awdvPSkmvCq9WmuwTYNrWkyMJJPpYiANAyZqp6OUNIAyqvoqSVWZoxmyxWnBXCGXkY0qBc9pHzdLj8nvK2kglyAjy7boLSRfSpzINvF33/An+INPfJj/+W2/wM989heJEXIaSAmcH7HWY612bFSiEE2D8R6DV3tZkscCjSzIfN/R83xq/x5+6tKjLDqv9tPinEGaOynVNY5s+l6Su2NP3/f0gzxSCkK0aESVvmnl4VtP23pcIyq9781P86vdg/xb8UmWNql9Ky7DBHznrIDNtzsKwGEnEm9OSMdgDRYrqS9PiSKxs5NXJh1dsgReMWvRViZpUV/KUpAbUpRASgtMv3XubVxtzxEWt8O44dyFLyoRfAKqJAbIM4QRJGmVcc6QcDQoYdJGtLZCYipxjTGA10a6J+4wRsTrjK0kE2MsfuHZbRfs7p7mllulqHjc9Aybn1kwUAABAABJREFUQYuxsgJDDb5raDopVnVanGKMAFQ5JWzx063s99kaQs5iH5cL/GJBs1iIqG3jMV4F9XLCpZ5bXnwEe/AsO5tr4ISoZY3ukU66vJbisG2hlnqJW502Yirq6KXIK89s683H1N2lFEZMhWfq36SpA3ERlCprt8zZVMgWGUnu3uTbSNdhK7HlzP6X/SAXAeY8K1zB1iR6zplucwAc1MIESV5tF3SXdVm+n77Or3iKgece/Eu/QwG9WYxUgNPqD1GBEWMyqSo6Zi3CmMDWAtLXs7E3xeR6r7aS9FVZ/F+c5P9uHbWorbIa9D6Wf8qjfBHgA+o1T9dmjIpIasKiy4FXjpdYZ0uX1wRrMYKQ18RVIb9k47DZCc6hcZqxZS0J6F9IOeMYGDYDm+M1/fGasR+gJHwwShYqQFPBrizH++d45v4HedOXP8YkJIB2XAmVTJpy5rM/+Me4//Mf5SPveT/v+ae/hDrGGj6qIJQCo0Z9siStKEgukPpA6kcaLTw01tHiaNsltCsB+W0mezCNUZFqWcOlSLfMOQmRJ6GgLWKtrtm5qFwKScf2peJmZX2Z2fsBM8xrUqKv8xYmsLd8ts719C+a41tx+3x9lKe3CXbbZO6CTutji3CWpiSzEmDLHhpPsNBUEZgsgC6mgOa2+tZJyYGoTTS2iLgaTS7kSpzdsot6nyZRIFuJNGXuyOeHeh6Dbfi7/av5yfYa3XLFcicSomGMMMQsIo9+QxhFIKKIxCQM2Tls0/Dqpx/iyQe+j++7/Ainzp3l3Jkz7O3vstxZichsVtB8WBNTwDeOtpVCTt+1ZBIhCM5qk8Nlj1fg2JiIwfCEP8s1syJhWHjD/eFyNVBlHES4MUrMOhsPoAqeGGNIKkJjaxIqb83J0hUthrEmZoXwuL3blFiZLGM6hrGKLOaUJFklryRby++85o/xo0/9sgpyq/CVxoHzosZUEm55LuRRCIVy38IYGIZBSbuDCNOEIN1567qVz55NEB0W7WRjoiayLYUQZXMRB0i4NBGDZJue5ttEiPnX93j5AgUoY1p87+Lnz5ei0Z/L3kNWAVgzdSBGiTbFRkclWocgBOy+l9hns9nQ9z3DONCPI+0YaHysn2mcrWIGtuwPW/8o7qnFLFPnz62rfencnt3jmjBV76cQQ0qnGsHRVaxf110ygqeXYbFGigh9J3PJOUcTmiq+FFTQIYZCXKHU8NQ9IKXE/SmRu91aTV1I0lWUIxtIkzD8rTZxbAKnmgXjUoWmBhHvGsMgQhwpEnMRK5R9sx96mq6j7db0fU/bL+j7njGMFFFSEcnuaFsRmvJth2saXn/ha3z5nnfyzstfFbEBFQgKmkAcBxESG4vIjTFCsA+yrvu+F5GxzUY6dp+go2kaQHJaxpjabS7q3HXO4a007Pji8tXcEZ7hzHgDgyFqArPkrYREPwmVTHs91V8ocbdBkoBCBIDGt9DCa8Mxl7sFXdsx9iNnDy9y4L3gGSkR+pF+HGRvfPYJbN9jh2PBJr3HN173WaMiT9KtCCZfpb/rtfR3PYAbNvDm78M/8vnJh1G/T8gfiWhMLax32ikuLvcJd72G5lO/QX90nSuKVwjRqakChLawvZNQu6IKDNUOXPlm0oueg7UVj2m8EJKkg94kUCTNXFIVcpjEHabYhRonGY2b8rTP6bG9L91M5s0v8QXbF55gf32MvfSs7M+z9yn7SVTBtRpXqjid9562bWkXIsrlu07j+K6OXaNC0cXHSZpzLbhGEfHJztWitJS109Q40vfDievUbBWjSDkz9INgX+p/lVjDlIKGpiHkXEXIrNHObNaTsVU0KM6K6UKIbDY93jnapqVtWsFgAbK+9nO/QvyBP037iV/SArFEH0IVqyZ7ESSIart8knxOzGLDNtrJ0RhiiGx6sXk5G6LzHP/0X8J+8lcIP/0X6H71v5HctEdsqhbhmBCI40DOQmRMUe6f95LbWnYdOyoc3viGZrkQP3a5xFrLOIpP1nhP2zZ8+nU/wutefJSv/eE/yxs+8rcY19cJJhKBGBMGadDUHl2GK88Qz93F6Sd+F4xhcfA8tzz2W+y4kaGxHAwLhm7JotuRa2oy3jZkK92xcAVHn+GCefIrah66CDIZUwE4wdLV51Ic1ajy+FacVfflcmw/nxV3zOQqBjgM2i3teM3meMMQEodv/gnMtQscvelHaT77y4w3bjD0I8SIhdqtTJrWFDZHIS/ORKOxWPVvje7HrnEYDCmeLHAxDhtSCJACRoBYcgwkLbLJRnz5EGLFKQqOFVJQMYZM5xvFgjVzb6zceyXvZZfJNpIYGbMlF5EPA9aK/+c1ByYFkgZwkFSsPUHjG6zzDDFihxFpYiWMEIMQhMcYMc6rfS/kIsEDxn7g+OgYnwKtBZcjhoC1KkplqD5o8dMouXfF6awxWs+Sq51PMSqZSIQ00SIpYw3DOJKy2Fi594FbvvyrXPyen+aez/2SYvkyP03OXHjDj9AcX+bss18ExUNLwzcRrIoMcVSMBcE8zt7B8bt/luWv/ZfEmCHA8I6fxAHhDT/AIo50l5/AWZXzSSrGp2uBLATP+hWIYUPfH6pYfqJxHtcshGjcdTSLBcvVknbZYZsWs1hhuhVN22oe20uDHCt+UtZxHaOIxMo1oWtRRE/HMZCsJ8WRlFqdT4YQNWduhLQVDQRr6AfJF3n1G2KCMWWGeLIKwcRGTC78vBN9Kd6eijFS9fGzMKBm0OOEMYkvHUk5anhT8tmFIEf9Kwmx5P3lbArnRlfHlv9TYganOT2rnUM9XdcShg1h0zKu1/Ruo8sjibiuAUbD4blXcuPet9MeXOL6A9/Pqcc+rvjyRJ4t+7e1dsrWlXNWwV7qXj1hdHLGuuI17hQvcfLjjIpiFCEZM/tMieEkFpQCvakTJJqvuvCH/wK3/9Z/LZ+VkhSXm3Iftx3PORZQbHvBnXKa8MXSTMVqQZeEZ3lS3piRpYvQXRHOyIjPKz8Jj8CmCEbsTbSG0XakbgGLXVjsQbeP3b2F5vTtrM7eRXPqDtLqDBu3Ym0cwUqO0FlHHCNDCBwdH3N4dMjR8TGbzYah79UnlfOx2ljHe19x2pN0jBgRHU0QIwxxoM+W1nga19FYgyPgnMRdhcuYcgQsxrVYGxBxeaOChsLVS4qv4izeTsJokqPW/S7nCoAIri5EX2nqKLmwlKKSeXWvTFDKi7JzmndJYIMI4KdAYVKHHIlpJBEQoSppEOYoey4qMiUE8DdefIjP3/MDvOm5T+Ot2s6cOHvpSRHlKmJhNe+UqxmQEzMVT04xa2yWsdFhjMzncQjEMEIOpBykiGYMarOnuRsVy5Rb1GhjpdJghVqUKC1+tbGGFo95a3BIDlGafHluvXZBz8fjXIOhISvQUoTACtYEkHJpXmH0M2yNs5qcMSr2Uwo+cxYfL0Qj+ZYodkMKUcQnsBnlqVLjxmqXZGAFn8/CZU01r625bxCBP93jY5oEyos9P2mHTJmyf8j3N5/oVupjlp6hNIujFJ5POcPCzyjppHlRQmloGitGa6QAzVisSWTrcTZinIqexYhRflNOsfo25cQ0jVKxvpuH2VDyPxlTu/ZoPJ6dCkzJw9mE/8rHOfjen2D/s7+JW6wgT80eJNeshfNaRGetkdi0vHeWhp4GeO4n/zx3/+Zfx6bA7rNfw20OWF56lmikqLIIL5e4SYTqZvvnzB8u071ml8zsdTmrqMkcz6bOYzM5KxWTC9rIIVS8XrGUDMZLc8a2aWi9p7ES73hjRHSg5CBTns4HJhxYc+Ti/mQKL3JrUlX7qvNIMbSs1tBk4TXa7CrtpOya06Kcf/8yEPAJOIxFOlKbpNw8VPgPsctG96uKI2aKMD2p8I2KLSoDYeqEmI/N/Hgpb3p2TiVfqvveVrw9H9q6+AuDO0/zSt8/3hwDlz2TqRmxfB48+9Hf4DU/86d59p//GnEYXubMvvM7+HLcAzP7/Jufn3gX2/hCrpcq+0FMmUuXL2Otp207Yhi57vb5je5BfmrzKd1nk4pXSI7fGbRRgDaJbpp6j6SISx5lHedSQWKMCNmVpk555m/q+c/vq6RX7cteX5zhu7NhmOxinmonMJOogaY6tnOvW+NampSVH/NNz5+AI2/JzJCzFNVlY8EV/p5T/Eb/RPfoWCoRk/BcU4rC93bq61nlNzUZjMcmxQ2SodRhgBGhUyS3a2acf7O1Zosvo8Xzs3ttjPzOIsVqMVltZCHPOyNxnPhaHq9CnCklkveEcRQOHFJEFtU3DVkELouNnZ+XNYad0GPToE1YhUfureNNV5/gM3e+jbdce5KFkYLWOtxk2hx5841v8eXT9/OeC1/WhghJRb8sZzbXeP3zD9NuDnEpkL2T/c7ZKjxTQ6US687Ga/5v8YfrYr359ufZ15umZqlJrXmBejte5h7ptc0bXky5gFxz7mNQYal+oB9GyVvXhwhNyZ6apCAvqZh9VBFS9Z9TLl/LetZ48WVi05NwGB1ga6DRhlvScBJyGMlBGpDXdVPibKaQuOQ0rfOYnDn92Me59ro/yKnP/ENyTqSQpa6k4Cr61WdtjMNLd39DrvtgeT4b4QVCnjjClGVYuOnlymTMZzNiay6Wv82FFzjDo+ecRBkPtQcWjHH0e7dy/tV/gNPXnuX8A+/lld/8VMUbS/MKyTVKzjaEkdE1+GFQrqU0eOh8J0I4uq8Ih2bCe/auX+CBMLKzvo63Fus0Lw+1UDWpcHCcc6h0fNur54kpsYmhCsiPKYiIgJAGJUZz4qtgnfDrCo9Y8caCoVLFZlGRKcmhOmto2pbWi9hU13otDBXMNYZRxqA0Q9Ad7OwTH+OFB3+Ks4/8FiRp4FJWiDEiiJV1T1Vii2AuipOarE3ttHENRnC1OJ4sDL8s+8S0Zra9XLFRkzlUgZb6nLyJhLWmFrAze35r2jM3nlQjmikxa77p9Wb6nfrrYl/NdOKWKghVLHjFBWVxynvXAAaNt/XzM1UYoIKtzPcw9Wmqj7N9TLUcUw1jyfBUu56FW5lS4ZBJ46YqNDVb4zXOrb/TnMHsNe7pRwg6ZoLz2+nUmdkea0TY2xjIFpulPsyU96+jX/a9qYGuvK9yA2Oa2ZyssaGpIpS2FhpPt9XkUnejY2ykIUbdXykhYzk/JAY1Rd43S5monqHRWL/cl0ya4lHdd+dhy0k56hqbhz2Km5V1tfV65qzOWcxAWQnbz9Y5WnCf4svXBVD2kdnnYyaMUX2zpHPFUeKDXD+/nHOxyc7Z2fuz9TrM7Ps8xXFZ50ExA/PzKZw64XJt73dxhofMP6T6bhWbm/mcOg43+3pbXCcVqLRYxTO0Gl1FNIpfUfj+8/hyzv3dGqeXmXvVps6+mdvTYj/BkPWeoL+fsDxTcRszmxHls5NiSoX7uHzi01x7y4+zfPLT5OFIsNhc6hxUcBRT117Sr7nKwm3PP2Amsm9e7jK/q0fOAw6tTSlz31jxd5PkeLyFpnEk31G4m86LqkrEMmQYE/QJ2pQxfsQ4D/0AQ6gNRWqeHql1sV6EgUuTyBADZkySw/aCZZW9x2RBpip90QC+fG/w1tK2jh06msazXCzYjCPrPtAPI/2gYrPKeU1ZazCd1WZ707xwRtbo2X/vP2fz4f+JV/3F/4qD/+E/hS/9Fvvv/kmG3/7bNADjyHh0jBlGXa9gv/c9jI98DvOmP0D/za+SNkfkgrtj6TpLmy0NltY4Fq5l0SwwJtNef5rNeoPNmabdYWk7dm3HioaGhmEcCNqMMII0yRwCJiScCvKHFIRLkKR5Yo6JMI6kGICMWyzAiHDGVHerfkguMoTSPKPgwpMYbJZxStR6yRQNpdm6uhRgsjxf7Nl8DwYVuLUV3xDhHsVrdByLS5FS4S6O9IPwUEOUfIW3Dtd4dpZLTu/scmZvnzP7e5zeP/WvbP18p0cR4/POiV+Vyo5c7OfUxmE6ih0r+5P89qX79JZXSc6Z5+7/QXx/xHP3vZe7H/9nrI4uynMaHxtjROy1vEOMKgwTiztR91pMwUE0fzqdSoFLaj6prMdqsrOI+NTzF8eLnNIkspMyOep+cFP9B+oPzUZEnosRSJgcCVF8qbGI/VoRyq0599l7ZDLNZs0r+zU2BlxYMxbbrnnnuUBo2T+rGFW9F0bvK9VHEL0NcFZyTSm56tDNG8wbQ82zyFuJv+atIau+h7HqmyKCp9Y7fCOc0dZZWhWZcgbZ92b799a9IE/zpazhcuN0fHM2df3LuitxRbmLMk8lDM2UXMtL241/dw+xC6WJbI1EZl66HIUzPI4ac2TBGIvGgHdexbgdo7F1rm41Xi8YmWIdOQOasyVr3QSZaEscJmMZcyCHRIyhCiyXzHbBPn22SHuhMvaFQ6L2QEUEfQKyxZMhGcXoMtYkwSGzIYdM6APJJrLR+g89vxgji+OHaM4/TXPjEskKNyPH6XqzoYoMWsA9/yjx0z3mxW9VgUJhzRTfeZ5rkslYhUhzJqVQY9CC1c2DD6OYgM3gjQFr8dbikVpBrOD/TvEBEZlykJ1ivSVWlCYFUmgrYrU6iHJd1qrY4VxoTHy15uFfY3znH8V+8u8QjLxfqY+O6hfFUj+dVN9D76/FUITFir9OrkgVOZsan9Z1aSdfuyypYle/k+M7Fpqa9x9JSfpmSbCNEuiA7PRkbF1IRgseZAKmWqiUohaMWUuwEEYhuTgjAHk2jSiJZkM/bKSDV1NAZSuiVHha22nh4QxwyCXFWIItOX9jhKiQC5AkVfEarjkySQQ4fKZbgneO0A6EfmDsN/T9gGGAOBKHAWM9OTQwtpi+JfQLQt+TxkgeE6oPhRsT2VtoPB9K+9yyA1/1O5w+dYa7Y8+o4gHHmw1H6yM2w5r+cOTo2poYByyJxhtMjmyOD7h+/YijG4F2OMZbz6I9x6rp2Fmt2N3bYW9vhe8sOPjFO36SH7v6Ef7eLe/nT6//Kc+5M3zRP8Aft58nDNId2iPk35yFPCGGSIpYi2BUdg0JRx8jVw97nnnhEk8+/SzPvniRKzcO2YQMtsUYSyATRoWltNPXGCLWRCCAEgeMSRSlamleMBN90M0450REN9Eks1tUIItnMFe/rktn9n2uwV95WSpJ+JOGWmxFrVkBmrJB1534pQBG3vrjrbebv2RKvIjjjhpJYx1FPMWURCU13NX1VN5UhC8abyBZSbBpIiSGkWhHfGrxDTTe0TQNq9SRR8fd6+ucee4hTrmR62PHwQ1HdmC8YbG7ZP/0Pt1yifWW0gUdI3ZYCrMM0UJykly4wYIP9XfyC2cPeHi94JbVMTmvxIPpN7BYYJ0QGry35MEL2cQYGu/Z29unNx0fWryDt5z/HJ98/U+w/4/+GofnL3F0PGKNYdF6Fp2lW3hu/MJ/xp1f/U3O/4m/wht+8/9GZyIP/8xf5Z0P/SIf+76/zI9/7b8ThwvEUVfwrSR05yI0lNtMQmJZcUiNcRgcCenSZoyTgFiJuckEhpC4cXTMCy9e5PyL17lxsGG5gsVqyf6pU+zt73I4LPnUbf8Ob/zWP+TLb/2PeeCTf4UchRxvsqiUeoAsapJkuf++cTTe0TUNGRgGCRzHIJtv3Yx0Ayvr1Dsn4mKNiKQI0OpOXCFYBa6KAzsHN0vkCHUdWhW42VpXphQqO0x20IhQUNu2NE0jNiuWLkGFkCoFepmM8waIGKOdKY1BOsoLEdrYrMJTAzEOGBKttzoPDKRADNqZMwawBtc0NN7T2IZAYjMM0CvJPgTiUDojik1MKQkQYzKN92SHdBTe9MRhpPUNrXO0opYl/lPbsnv6NMZZ+nHg+fPPc/7Fi7xw/gXWx4cqNHXMtesHNK1nudphTHBMy5df97P8+NMfIISWRdvSNAMLb0nGcJoDfnD9BZrxCJMCY54Rp0GdZiEUWk2Kl/tUi4vKTVOEJxUrmbJ2dzLSlQlJGvW9FCJb59jd22d3/xTdcodspAAnY2i8gFuYklSQ8n2jaGsBmURZVoApZoXs03wrHQLk+6y+SoyJrm3xrXa7R26vb1tMlgA7FOKhMXWelqKHMifLZ52kY3fvNI33xIR0Z+oH1sPIarXD3v4pmm4hBTo5k52oPFtrMF2LXXQCBodIHIAxUEUoy75Q/MoE1pUEoJmNUzkTpXDollc0oYtHoHlJKdQqSRD1F0sglZwne08aAz/9zIf5hw+8j5/62geFCKfCDZthjRkHrPGVeO1mNrFpVHzR+dpdKKrAKmTuObjCqWvPsR/X9NZiQxE8nUD5kBJjGtiEgZC0eD6NBAU9rDU4b2k7S9t52q4RoanG4VtJIGDg9nTAz/Zf4jRrjM2zsZp8hGoGZz7SS8lYU6QxJ8Fsv6oELAZu+nshEOaarCsCKpiSdEoTuJK0+5cKCqSUuOXil7l81x+iGw649cbjOO/JKiYbUxJwpPqAeQLBsir4OoPHkKL6n3ab1JptNSc03lbf9KQdGfGPcqYmNYritWscZmFYrXZlv0vzPa7YSkQcOAtIV4RJKniBkdVgDS5HYgiSdG48i9WKnf099k6dxqvPmrKQkhr1J13oaY8jOIvz0gVKihlmCVy1YaVAWxCOQuAopFMqGSIXkak0AU7T3M1br42aRJjEKsoYKCFhDFI4ECOYrAmBtvrDMkyZSPEFSnew6R6UeKKIodTfK4ghKvDSNSYax6fe9qd5z6f/ui7xm9fFhLFJAtYwLZ9S3HzT+Myef8nk0DPkZb7VkayiBRWMmflG5Tp021MyU5reWj83lbBi66OTajPNwGimpOnNp3vSDomBM9hUIUFMmhIaTGRNg5nU6Wdid8WGGxUoLfLOicwyBJo8EFSdPrkoYlNJoL1Y7kcSkp/LCglaJVipMHAOEh+HMTL0A5vNhvVahaY2AybKPbXZTN1/cvFjYNg9zROvew+3P/lVHn7g3bz2c78r9zHD42//g9z69Dc4ff4pSnL0Nb/zq3zlD/9R3vRbH2Q43FQfRSADJSZodaiMi6l+WLA9o/NsGodvGtq2U6HWBt84nG8FOLRij2KKEoOkETNYpu5820lhdA/JpnRmmO5NIfbFoParFP8W9UAzRdaVAMaMKDgjkZT3KsSMknQoxxaBLBXQ9GU6N83C+go351wJgtINfopNXo4MvV04PRM22Hq/CbSN2uHvJB0xJXK5NylpzGxq8Y6dkV1K4VZJLknReSEIlCT0nDQgnzHZKvHxrJ1EAA0K5JdurkOPbTp+Mb6Vn2yf4YPd9/CHV59FmtJ7svr53jes1y1D39cu3jhPMlrw4j1n1ld4z/kvccfCsNw9w3Jvj539fXb3dmi6FkiEMLIZjglhEN/DgbGWZCDEkSEMjGEkJBGcSMqoLdvkK9NVLvklNifuSTcUNIcinlOSTFmx0fmRyRgtxDJRX68ittVOQ+3KF6MINkkiTYkiCmTP53hJDkMmqxBUXS95irlTznz4TX+a7336Q/zmfT/Ljz35QY2f49Z6LeNbiJUTYTfX954nfIdBH+MoY6e+tqyNOZ5WpwWlI6FJgguX5Ewuq8npfp6mrmGYCROp71Vizn/Djrlbqd9RNpuXo69MiQrxccrfFNGmlKcE21xErAig9LrP9X1fcSoRipMEWTRgoyNbLcCY2veVs1NHi+rbzK6G8ht1FW+yweZlEy1ifqbGF6XlhylCyeoPFMwikabCKWe1yFL2uBS8CisGFsuVzPUQqw1TD3AiRGcm8U713YugRU1Aava4CO0V/zNGzzj2DENLM3S0Y6/x5VD3jRCjEEhixDZeMKe2ZdP3tH1PP4o4VNlfjJGidOnMLoLo1jtOb67yrhe+wOm8IWpBZUiJIYjo0WYQISkRuwrqVwQGJXJs+r52szlp+KKIB8q4xxiVMB0pZLsUI8klvrh6NXvjAd/Yew1vuPEo++FoawKasj9lZD/RfFnpzihZMCV+lL0uAw5IWXCRDlJMLBcLloslQRsGDH0vAkXa9bgUsmIt7cFl2sWCxWLBcrmcOtvpdcUYSCFQSIMxRMbNDa7mkaFbsHvpWfLOrsQuUNdbSszsdqo2Ne2f4eiHf47lI5+mf9sP0n3kHxHGDEns/jiOQnZVMuC3fvTP8srf/v9gwqiRy+QrNK0npYi1hq7rFBOxKpjV0M06O5OzdvWKWz5SKv7cXCSq5C3rzSnXxksNwOzY9s1yFZKY9kFZq82lZ3RMXuY95I3IUfIIxgsWKiJIDcvlgsVqRbdY0Cw6XOOk0Ufb0LZNbWwhPq90uy3xgykxtrVVhE+KCKSL+jAMbNSunqQjG6E1FIGVqPcpZomRfJLO6E3bonViQjBNGp9rAr/s8Ulj0ZJrLIJq1hjarhWRPO+QhixS4MnlZ+Gf/Q3sjRd17clYRoUWYs6YmBSXSOozJGKYRBPHMUhRWhJxYNlbDD4ndj7xAdbv/Xlu/Z1fxOzvS77cWpaLJcvlisY3mBikyFLPfxgGYgx0jazZxaJjZ7li0S0kJ+M9vpHrMcYQwghIk4yUEu944WE+ef97edvjH8d2HWuzJPqMaztWThqJLFZLVjsrOncFtzmmO7tLPNUSYk9ko8UstuLbUcWIYCQ7gynNBSrzZdoPYcJCZFtWYopiP8WelCK/uX8PBTcpuIjikErutdaKKIGVxlXyB/IlRRHWiWMk9COb457NUU+/GUQs6esf4fAdfwz/2KcxB1eRfi0inGAM2mglVx+7kJ8KeTchzZqcdsZMOscAXHa1APAkHf24IY1SLJnVp4pJxDVEQFztswrzVpGcLPngrIVSk79ffC+nvlZS8UFPNJ6AJ2aHyEpFiBnGQIqJxmU6b4glD2czyRlMtnROcm4YSx5Gse8xEqIUNeUsPBTntGNlwf+1QCWlSN9vWB9amrSE1tFasHYS2TVobBMz2U5YWykuKN6YqZV+8vtK1rGWpmlIzlKaQeSCAtlS0GY4deUxdj77iyyPLmGcEduQEy++9gcYmyWHd74ZwsD+818RPwLBRx79mb/Cfb/8nyD6bZYUDePeWQ5/+D9i9aVfY/Pjf4Gd3/yvyDlhHvkI/ff/AstLT7J79CLdaol3Ce9ESC8nEQ/IMWKdJebMkDNj3yNioD0hbEScznfqWyxYLXfwXUu7XNDurGiXC6QRwQrXLUVM3Anxu4jR5JghJPEnQpQ9TpuDiFiJFIqFEIluxIYNLrRAzXyRbMF6pRHVaOQ+OGslF+2sjHTKjHkScjwJx1zcsBBES9nbFu5TRaSm2CMDQf/GVJI0FNGpIhJtqo1Vd0Wn582YlQzoPDLOgr+lYmel6DeWT3cObxc435DahjQ2xK5lbFu8b8BCJEoDMiTfsnt8ic3BeY52buXWpz4HzomoHIrVK6ZjnVP7bfU5LToSY0vJY8QiwgVQCkl0X4gUcp38TkRfhPybtIxbiOpazFr28FziMimiLLjmi+/7S5z7xN/h+R//P3LHr/4/puL6b3Pk2Z5WhrPgceX5+deUUxXXqIX4AkpUZzPFqOZF7oW8vwhmWgzWZPWrITpPbBek5R5p7xx2/1bc/m3YnXM0u7dgVmcYV6cI7S7BtgwYAoIrOStiA5thYN1v5KFxdhxGFdgRH9kqobLxXvLlze+7d+X/z4/ROdFosiLo5WhZR4NLoxSzZ8ciRzCTeAxO7HQcLSE6+iC8p+QgexnnqLlIkyLWelKeSN1F3JocZQ05hzNi92pMrsJUUed+JmugVAie6vPXQEPwapOC7l0Zg9O5mCBHIGJyxOWsgkoonmBorBDMzxxf4N1P/Ta7/SGxMfqRKnhBJGc4XN3CY696N2/7yofks3MRmS7+reSjU9L8lMsiDmAMY0wiFD30xLQmhp5hiIxjIkWKQ04VkcmSd3VeGyQ1Ld42eG/wFsbFDt96z8/yho/8jxXvyFb2OYfHmKxFIcqXsg5jGqABWipSYhRxyVHH1pBtg2BNQe2FNl4qa8GUQkm1JymTQ8Jmq/ZD3pMUJD7HadpDi7qywSRLNNTcLGRSsmobxdUJGQZd28UAREpO1ta5UAS6buo5+V0/5oWBWxiw2j35+ea/muNxuu9pzgNTeDuTna3FwNWvhgLc1dyb8hfxYpuwDmMjxiaSmwozUsFmZoUZttriyYfTDaD+IIL1aSpe1r1NwTfZY0iCIR9eZvHZX8ddv0haLoTkbx1X3vdnOf3L/yWQtbFVEfcrRVBI3tfIGn7+/f8Hbv3UP+KpP/KXuf8f/VUgsbj0NMmUghAtwiDjFJwwmiPZgmIVsJzDFjPUVb+56e+2rh4tvCnCFio2EBJxnHD6GCUWMEbE7Bsv+0PbeMUjZF1ZZhjwln+jU6PchnnLb73FZR1Nr8/qIhgmX8jo9BBPono321/0/bdHJLP99ifhMGU/UM6GdYZcig+S+DLWSgGISbli71IpIiMgxyQkqOA0k42E7XHVLzPs25itGVFO7tuMV549MX1fxE3nR0rfZsCNFEZM3FnD0fln+MYH/gb9tctQitJQO1DP6zu7gVvCSDeffb7ZZ5P3rjgD1M+zWgSDEX8sxsT1GwcYa/BNwzVW/EPewh/wT/Ebq+/l/eELjG4kjMI9MRicMZoPb0SITbGBxlly09B2khs3Rhpn1v3CUP3Ysl5KDFGv46bbknLcusbCX5kXXJd7Ju/jXganKHul0YLulx+/UsgOUnhWuLAvNw++q0eCshbEnKvgrXNgPMZ6ERY0VPtfcvZFnLRgxtKUtZHGdNbSuCLWIFy9MMO1rEfm+exUtJJmtrdqvoZEKn4Q05qc8x2yQfFNjZHULm5xhygFulqro/dcRKgacqP7HTBah1NheqfxuXxYufUqSmHF17R2Ek+8NR7zAxceYj9upGlmsbEa25IT9xxf4Gw4ZjcckZ2rBe/Wilj/ubgmOQNe6gOMFl877/BtQ6vYfhGdou5icr1V2G4a3K2v0zp/Kc9ifj/0krfeIs/dGCb7uIX9v4zIVAjSCGkzSC6z3+jXvuSuhesfYhQR0pj0kaU5dCxrnEn9JMsJ5QJGctOCPCGHVSFcj6GzrvIOc87koI1mjYpAGC+N53Tfm89VaQhqsSnhLjxOd3ABbrzIiGIEOUqD7op3yExwWYr1p9ky+ag1/tb90GZDtlnHtUZqwh22ma3GxjO/kII3Fr/lpnlx8zFfw/I6pd6njLWZ9vga5y58g6u3vpbXPvkRaQKjvOgwBsZemvwkrecAxZiiNAoSfochhoQ1bsoBGTmnmKf5aY6PODaCkVgj4ktFbEpqxMSHjjkwxpGQAjFPHN0xBAb1B0MMhJy4+Mf/U05/8L/QOi8pyyyCwtjS0Fsz584oz9tUjMcg88EVfrUxtI029XViDVMMsxzWKI8YpZk94iv7q89y2+f/AfbwkuS4c9Q4tthYi8uCI9YC6YwUmBvxuUzWfILxWBtw2pT6JB1pNu/szFWrh07RKW9SvRuNanQfnFZH/QqTQNV0qC8w88HmVjcrjpCpHujsXIqtnt6rPnLZs8rvX+a4yQhPl3vzOssv85rpsGa6Rtkqy7ycvXJm1ycunTRAdlYE3QxWY9FikifOa+HYJv3dt2tEWaNLo7jAzNc2M9tE1jqKDAbNL1V/LxcPDnRvN8ZMAlY2iQ17GX5i5Y3M/MIqOGcQLASU9zvdcYnH5+GcnqsxVPUwpN7CYlTcZXbVJeaYgo8SnXDSjtq0s2IQE9du25cr/ypeNhPDqNpDlLea/zD5JdP3apuM1TyVomK6fIqwlzFoTKICU3oKxmZeQgE1c6Gp+TjP78fNq6cG6Pr/zB9h+ir+zqzRYxH1mXMsXoZDOx+5rZEsH5KpQmhWOSLOqF9Y8EBQTHAS0ap+qp35qRo/FR7/t1+POoam2AfquBd8ZWum6unWr7oWpkiy/DP5CyJmM9V7Fa5NEZpy119g73MfxBxflwYDykesAnj6KAKB9SRn93p2QnJtBefk5GGLMaswBRFvguCulLxyIpkodszLfc5Eco5S++IbsnWEbFjHzCZm2gSu8fjWYxsH6x6GUf0Z5V8Xu4qR+aO3Vvwo8Z+ES19uZpqwe10PVfzISl7TGVg0IlQccpbmN2OkHwPDENhs+f5DFd62XupLzSw2b6w0JvG/8z/R/PT/nuWv/7fsnT6Du/o89hMfJG5uwP4p4YJpfAYaa37pw6z/0C+w+5WP0qWRdrGgUSH45XLF/mpPalnbRn/f4k0j/tc40sdEcAtcNrRjwhz1jH0kmCMGbQ6ZUpQ4zRgaMtZ6cusINtBHue4Qx9o8M6VJHMy3Xn3JQTFgyYpGxQysEezeWalhdoBLaRLJLP8YI1ztrHUten9KFjjrRiU8c82XykJWAVRpHhXRRnU1phSbYrPmYAIwJsYQ2ISRIYnQa2MdnfMsmob9tuF003C6cexYS8fJykWD4M8mGcHMnTSITCbVDapy7Gei2LLXqf9gFcN7mXJU2SaKDyS/u/XZz/L0697HmRe/Snt8RVOd277Q3BbDtC8YtcG25EGN3BtrhOMm/gVlGsheabaxLavvZ5B1XBED9dNKLI2KoaVYvk5886w56EIGyXpymSLkKVPLYAhM+JiBKto1/52ch/xgN8eAoS/+IspRZ+LRF7HGOKszKT5JKuCwUf0WAzlbSaFnPwlUZ8296LmbmR9el4Y2fZATlfp0l63uM+o7eKnn8d7TOENjDV7jaZMzB7e+nuP9e7jjGx/S6y2fVe4d9d7WeVPy8XXbz3pLcr1FdUNFfZAoDa7kVF8aZ383j7Ln5+ozTb+fGS+5Rq05MtZgRiP+jJkaioiQVKaBylk1UP11a031dWz9HBVOTiUqSMK3qtZNOHcpq8hfRvYQiv8uuHHKjphiFeAGak4sqy9si9+FgezqmpI5L9dS8laxKMliSZr3jPp+dgz4a5dUDFRWTbaZ5BON7gno+xQflAtPKecj1fcrkRA6J2tsZYr/rDVqs3lW/4YpIiWbmivETPiI6NU4chZOv4yN1DDVvK3aTMGkrNqPWq4j3DqD1ivoiTozfV+W4MUnsB/7m6SrL2gT6FQbAVSxUb3PqVxCpnJcasBR4oBiTxS3LnutKRhQkvqJMv5bzu93cHzHyIiZTSj0u6r0SK4GoW7W019SAfkSfeaprGQqxJw606ckQlLWWEw0hGAZkydmAYWcXPps05gF4egYlG7iuTyjySgT62vL4pbx9mSTyA6s9xiTlJiSsFaI1jlpAjkPUjyAA9NAGsGO2mFZktA5ScdPv1nTLJc0qxWOBT/YGf7BcctbF4nXNrtY9kjAGEb6fuR4fczh4SEHB9c5OrzB8Tqy2Qysc4AciCHw3F3vJt0x8sqnv0jXNCy7JavFkv2dFbu7O+zsL3FNJjPy7w5f4Bdv+SH+veMPc709y2+3b+U95ik+mL6H99vPyDogTwU9MWISQuBwDRkLxpFtw9Fxz6VrBzz13At885nneOb8i1y+fsgmSAI9O5Vv1ftZJkIVKM+JSU1OAQdjQLs2TTNrupvFoSgda7dBJxAm+XwzeenGUpZDDaDS5DidqKMs3mIL5l7Z7LgZwFDXawqSmUaxgIbz5VvFdlSV31qvwMX22G6nZsr3BuvA60nGaAg2Y5J03yBbUgjYhHa8dCxsS24arIksx4EUEkf9DdZhYEgjrvOcve0cq91dnJIUM6FuBMW5D0aKx6IV0Z3TjePfXq7554e7/Jnbjom0pBwJLpCaFtrFjLxkyWuL6weSNTRtx2p/n5waXmhvZ33qTdz+T/4az168wsHBhpwzi2XH/t6S1cqz2um4+wu/xDd+5C/x7q9+gP3bb6Fxhtse+dv8s3f9OX768V9kd2eFdwqMV5VuJZNYW7tWVlA3JVIOGBPVHywq+Lo5yc6jdsYLeTNH1us1Fy9d4fyLl7h8eU0IsLsr4ggl4day5vue+/t8/JU/x1s//1cZVEWYFIV4b0TYLWeqQqO3ltZLcOStq8qp0lllFAEVL1tGKbCWKWRx3tN2nRS3WCG/YahKkyflKHO/xhGFlCseRN0Z5oXKtaChAJ4FoHKS9LC0NK2QydvGE1NgHK1+TiZE6Q6cUqAp46OdR43JOFeAx6iJXhE9SXkkhh5yoGksTSugiXHSASTmyNgHjNNgvm2E1ICl8Y6QPDF6YhwZtWBXOtCNDG2DbxqaTkSOcsocHx1x49p11sdrXLvgb12/l//knmuYlLFZVMPbtmVnf59utct6DFy4co0LV25ACiw6xxBGDg6P2N/bI2GIruOxH/xzvOVrf5dff8Mf5Uef+nukOLJILSY3ogpuDKc4IhKQ0pfSxUZJwF5UoZ33lUhRAq+59YMCrpWiAvR1sg7HTa9gnAgfjjHSNS3dcslytYN1nlFFVHzT0HUtKWctphBpTRGkseqsI8Iptgg1FqGiOVFjFqQXZ1ZD9aTFY+JvGEm+WotrGkm25kLuzBSxLWMtJFETFtDUYe3JSnAB7Oye1s7YIyEZhgBHB9dZDZF2f5+2bUSYK2eiEdKFBZJz0DYYwLk5EVDJHOo6GEXKp6LLXIWCyr5RAFdTgocCUqgvWrbYKZWmApgaiZTuctgsxFZruT0c8ief/BUW8YDQlnGXAtycAzGPGkQYbBSSsg+OcfQ4J0nRIoIhRWex+jqdgcP5/quBZtKOPGMMRBLRSoCoAvEYK+Bc2ziarqFTgSnXOJw3QvxQv8KoQ3wmHYGhkmclcKX6CnVV6enMQZ8SKn/bowRpBbTVv5+emwt4zDp+6T2K2SA95RFAVguHShK7EHnadMQDz/xTALwJ0Dbix2bpccoMtKEUDWQVdNTfW5NxtswdFJQV8NJYKqTm3cnzF0uJecqmdncwSQoFjBGC1DBGEZgx0q1ASGoyLtL7WHyKqGBsSVBatBC9BO9JALYxJIahZwwR4xzL1Q57+6c5c+4c43pNHPoKkuCl21OMmYAIXApoPpEWRKwyU7r9jeOo4KBRIsTMX5rPnTJfspCVghbSlkMwQn1dVCCu/p2CmGSZFzEJ6B0CFiXw5eIDWAU4khLldOzVvhfhZDX8W7a/AprWVoApAf/87f8B7374l/jUe/4Dvu8zf33yFet7SzxtSuhM1oIfuevFl881HnoZUmERa6TE2NN51zHKJW7PFQguSfD6/pT9WAsEZ+NXyYvlc8trZ3GffKuF7Hk7opgFKjp2J8tXBPFtiyhvoVGUrsqA2JhcMLQp3gIwJikwI7RAa7OQ+EpRZkokJ50Cpo5acq9TylLUkmLJX1XBjYQQ8bClWEPuSwylQFw6JEqxh/ruQX11Pd/aDUhtpL92lTu//CnOv/7tvPajv87QbwB4+h1/kMWlF3jqgbfC8TF7F88DhuXVyzz4j/8O7fHB1OUS5I2t+DmFyFRxru2gviZ/fRFjbBsVpGiwTooIs4fsM9FJh5OMiAeIeIWfOvUpqcOrwF5R/hfgTHw1KSjWxFaOdb0IXqTxcLmtUG1NFb2ZCU3Nk+MvlyA31lSRqa1i2/ncummubSW36zrN8xdMP81sQ/kv6Wco9Kp7oQoEqShP1MdJOqpIUMpEJfq6Mr+zAysihUQFX7X47mXz52Sx1SZhTdbCr7JACxioe701M/BY9rcwjozDgPcb3t9+mf85P8j/iq/idnextsU3S5p2Qdt0LLolR0dHHB8fs1GxGwHBjYiDGMAZdsIRxp1iTInjfkMzdPjQ8ZF1yzGeHz+b8aYDb8haTDZGWbf/2Yv38heXD4kogN5D+ar7G4k2J94+Pg1AR5IOujpAORuMFn2XZGo5qkvmEjZako2kJKT+OqWLXdKkWgiWYEdCEDwmh0wyBqviaHMRR9kQSsQl96F0tCMlsjXkHPner/8DPvnGn+cPff3v0odNnQ9FaGpK7GW9hBILlAfV55AC1FQ7q4+lw3ohR6qAb3FydTpUoSxJbiRpcoBOwYJsZ3mhLUB+3Q/KPyXBuDXM/wYdxcuZW7aSvi0OyDSxMlRcpfz13BeRW5Eqlh5DJLzvP2T8zK8wjmv6vq8iU2M/EMNYO0mnZPSRJnHVOjdNOYXpay57/PT7ydpOpD3Is+TlFE+W5LskZzQxp4+YmYRJ1WaXt65+WyU/WZKxZGuJhaiYM91ygXNWuk8W3A3Zb9xcxGpGZM+zBGEVlsoGkyQ+cLYUcouwihscptHHaHEhkFIjROE4YmMgjA4TRiH6N56ma/FdSzd09EHFj2PpXEj166xzEg9Y8Z12hgNy2xLJBBJjDPQhsB76+tj0PcM41K63gwqMbTbyXN/3FY88KYdz89hBiEnC+87kXPyHzBs3z/DZ1Wu59+hZ9uIaKLNMJobV+yoxrArQMxOaqg9bCaGof4fNWC9/nxfQdSIcJUWAkWEYufqqu7hx5h52f/cDgFGCiKXrOpYLEZPZ3d1ld3eXxWLBouswIGssSGFUHFXUbxw59eLjDGMgdS3Je4nr7Mynn4mOpJwJ40AII3Hs8Q9/lMO3vJfTH/4lsRVaIFBizmgMxsLzP/MXueV3/i6P//hf4O4P/OeQIsk1nP+Zv8TtH/wv6NqWGBZYa1ksFvU+eCcNL9q2xet8qZiDkvJrd9dZjFj9vHhTfKb/1MT8y+ACLykwKXvWzGecihJeelSqYp5icq/r3KnIZdu1LJZLdnd36ZZL2mUn68xazXsIxpazCDhnkyidLp33ggdoh6p5YVlSEZ1+GOgHsa8n6bDOVWEu5x0ue3KIpBBEeGoQUaY8E5uFCVOwSjbFOCKSb07RTDFqFpJDP4wcHq7xXjBy12hxuZK1uX6RhIi7ZIv83nkyiZBAsso1o0BSYmEMpfO4dnLM4o82TSMYoff44wu4T/xtOjuS9vYY+gFrLXv7p9jf3cU7Lx3zQpRYyDk2mw2bfsPnf+Iv82Of+ls0voGMdqi1EgNoLN91HTG2FWMIMfLZV7+Xdz/3RT72hh/mvceXaWLLMu5iraXRhgjL5ZLlakHbNXgLOS8Z+p6+P2YYN5TuX8Z5nX9W14D6f0X8p/jndpsLkDVeK/azEHLmBexzke9CmJmLwAuWZEnVm5hw3YJoZLXJMUbdV3oheW5G1ke95FWylUK99QHdJ36JuF4rB0DxESMdpJO0DpNzzrYSvRPSSZgkgGI22jSn4LopY0I8kY0i/r/c/XmgbdtV14l/xpxzrb3PObd5XfoGkgBB2ohIW8SikaIREETBaAGKhYoWPyyxEMGqQjpRhEKwQOtHgdIJKF1AOukRQiAQeggkpH95/bvNOXvvtWbz+2OMMdfa975AqIbcX61kv3PuPrtZa645xxzjO77jO86nc1o236tWWs3GedBguhoRNGcnkCtZqVoBXWuNIFH9kNasCNWxKzEMxR4hQRoJwwZqps2V3CYOJgaQTchDipCss6LEwBgHNlGb2eRSkXk2/FbnVyuFUhUvGFKkNCG7/+Veaa0c9jvOY2WUysCWYUxGMm1QTNDe/b4KuTTDh1d7wsqf86LaYPhHFF0DOR/YH7T4yrGLlJaisCBCmK8jm1HtUK3EKDz19b/I6975ozl5/I1ceuB3uq9Iq/zWx/xTnvsTX8krPuFf8Y7f+RmKEU2FYbrBvb/0nTz2Hn+ee3/4K5GTUe3NdIPNS76FzRDZBGEzJrajiqkfFZoYrlqp1Gmy858pdSbGymazYXuy5fTk1MTvThhPThhPtqTTE81FxqhYTtACUI1FGy6GVHKhzf7IkAtOjO/d4bOKqszTAeKGEPcdG2m1aEFa0zxBaMJkRdYiQpgyIQaa+eNvroD0rXX46XQsG46xVYsNOinR8Z5VjO15+AVDbj2f780DACMBAm3NtTmCvNa9ONDAAyRZPOfieXZ/QtQizSbKxQoxEr0xTwgU60hcmxLqa54JOXPv63+FqwQoB2oaaLXypvd+EZd/68cZHn19/2q370vjAseyHWv1Uwz9Ob12xXWqxWI9qWNDUWqzwgW1zzE0LHvYx6cPmwhWv8OTf+rreNOf/e95yo98dcf6Q+MY77jtBivA0HUx+k1fokkVzTHfy+PDfs89yNPnNfYDF/KXlGgyIARqgVoyQ0ikcSScXSFevZd411Nodz8NueuphMtPpp3cQxsvMYWBAwONaHlSQw3LTC6V3X7H+fkFF7sdh92eYgLHIWhTMc/fiIiJKKlNGu6wYkuAavOhhEAJgSxCidrhfCoKL+q+XUii4zC1xj4Xbs4Tr//Evwn/25cQa4EkBAbiaMXPvm5LpUjpJOC44gRgcXmzQlXQDsBJoq3rpqIP1TgCxmxQe+A+jvlVpSAhw6wf64VmXmkujpEj1kBQuSXBgpZWK43A5d01vGO3dk5FMcsKNzeX+dXnfxDPfc3L+JU/8cG826/9ML2op9E5M6Vq3lCXTdEceWvMuTLPE/M8keeJOR8sH1GpVRBzhlyIRnFY9RHLHKhtpqURCJTTU37vv34Rb/Oy7+Z3Xvgi3vm//FtEIjFokVkM1fhT2cYOvJARQ8MJJnLYPM/cuh0UF8eQgHIJ+1ADagKii7Q0xagdZ3b+lNsN5ZhiHBEMczWbLtbQxwUFVzmE4jZyhZeICKFC0aoAyyOFxZbdWVtZP27dY2/NeTzh66VnmekiGR2rX712ZcddtGtdTN3A+xMhEgEtsNRi4UbsvDwvlM+2HpZcsgpJrfaY5cv6FTkG6CKOYpzfVaZLZ2JrhPkCTk+pVX3R13/kp3Pfj38Tj37sZ3Lfi78KadUKJOnCSzR48IV/hau/8ZNsHvh9nvajX8frP+ozeeYPfS0+OW8tBnRhJy/jXeyz2WjbSByv8H8dY6GNWwe955RxM7YqaKkmyuyCAhYLeMFDDFoQN6bEmLSBZTRBACsXWEXH/Qu777KeOdJfpTnrW+dGf007Fnhsdk11dU805pVVDu0WzPpOq7S0o5qwo56es9/EloogMZBaUv48KP5dChJb11BkPeJu99zhkjX3B3vd4osuT65XtUfUT3RP2upnO3ruLfHF+7c0TFpH90exfXP38AP6zbd8r4gwXLrCu37aP+QXv+yz//DvcSzuls/wvXz524oTqi/yD7AhXBps00pXLBFRTO7uEf5ceh0/cHgbPunkN9iiAuKtLM3PpIniQMExXd1rU6zMEtlsRrbbDSJYAU1VfUk079nEsw52DVG5nbceIsqrXHNG1mPh2CW01WUurznmx4Yeh9yKha4FCP3nwiu5Aw/hiM+hz/mYqtg8/RqMp+NxmtnHUiqzZEIQDocDQ0rskzZrEC8ASyaIaV8bi94/oI9tlUo18U4v8nQcHbvXTVof/8418vghKHe8h37red6q4Z4aKwbohbiCYs2k1LEuteeBkot6qFYELXWZC724LS65JbFG4lfni2VuyPE8088pXJpu9u/HfMMWFD9IqfX3psGKrmNQjuOQtHA8WSNaX4N6oZaHWmzJMc5Bn4hrTP7N26f1XnH7fonbY1le20OAuqyrnDUP47msi92e3f7Afj9zMJGpnFfCUrVaDtuEHat/Hj0G0W+UfpaN47O9kw6PEj0eUk4TVBQ/VDTRCloDhDjg+dked4oWwbWgc7eUiuweX5r2GdelFo3pQ8jkGBdBiUi34T49tCnksqd0Xnl37ZZ9rK+pqkXN2mzAYzChc07tkLYgGX3e+54S9O8SAqEunE5KRXvRVsgH7n7Tb3PXI79PKjNY42WNyRPjOHaeg/M14BZMqTTmKesouoPY8Qfj1bfa56o0iGKFlF3ErXWbp7wd5dKXavmXowYEeicf/kv/mPt+5N/w4Iu+iGd8x/9MTJGQVmJXYbV/mpAT6J6yGsHOvw+iwvjqyypPnqaNQpoLuc2Z2XJCtbUuzIqAXH+A7EXaXcgK464FQjNP2u7v4opo/BgkogIUinlsxs0d5zdW8/dCW07tqP9Zt1GrJxpd5G9tPTq3scNUsrJ+bvDsi1a/toUoefTf5b3+9x64rb5X6CTS9gR/u+VY+/5vyZ1YuyrK+bffZHnBIq5kBcANzOEyXl1ZQXpCDgXJxln2GKPH7CvfCrMbncdk9s7PRRbhFy0+FtrxCZvtOG4SZDsOofvoa24mPdek9SaN1gJNqnFJF/PmpqHbp1vHoheq09eoYrXL/r0Mo/TBtm+x9/qZBZDaY7/VS1ie0N/lLbqzf3xHqSoQS5OlIU7Qwuy2VPcfeQq+N4NNbWxdHvnZ7l82HLeix2Hm66ExntduLGvEffZFlL173KKiZCGsx3U5bxcH9RN3cTj8jNoKp+lGceWErO+b3862CHy3ldimY4hPxKVd3K/FZ+wru++dQEvqljfQui964zHNSTgXOGkzlRQVN3QxVJGl0YQs92hdl+LHeh11cZNV4b3YXnq7TW3LVG66ppZc9xPM7+aiUXrPF7xleXDjYUN6a+f9NpsCDbfPfkGrczqy06vvFkFrTe+0FQYMg8EdlVAnQimE4jw2FLpNQAKJyt0oJjwUUyIMgRoSqVSGApsWGBsMU0aGSA2NEir5oD55ztBaJraZ0kbCMBKtQVatmSKB+VP+NfHf/R1qU37/EsdUFT5C65SjYY+OeCUBSUJqwthgTJGzzUjOjekwcZhX3H3LoxO0+crScFdIQf+d9o+TfvB/Ix1ukC5d0lq4skeu3NUb0EDDG58q5l4JL/te4nwgnJ12kUzlSG3ZhEgiMFYhzo1WZuZ97rFTrBXmhtQCoZJ3M9nmmtsFQWt9hnFg3AzE8YQHT+/m16++LS/4zR+hzRPTIXOYD5RS1cdMCVKgJCgINcXeGLm1ovdfhJhUvD5GIYo2lgvFxDB8HbrvYett8VkWoZ4e5zUdHzEbqg0ohN99r0/lab/+PaSbD2vdtI199DVfG21u1H2h7DLzfmI/H5jqjNTCII1tTFwdEnePA/cMkbuHyOXQ2OQ7i1Plh2/V0d2vZVNavYh1wIkpKdGqqC9xix8sIqv3L/tH2t/g2b/5YkLR8XKrvsThGL4ht9hJ81+CxlleXw++BdqdXrmKt9ppRT3V5utfQp8nHafoc8PiOVpn+QZzkLoQ19rJ7p+x8O3X9r7zmI7iSVa5brq/tR7z1j/R/ud4QqtW1+EC5/6xKnrf/fajz1xizsUXs/EXu0+iQqYSopZcVBu/gMWoGvfqfms2KmkjsWRCcIqaNW7e83Zce9oLOLn+Bh56uw/kya/8iT4ffNz1upfrb46rggmp2pxQ8v2x3+H+kotndc7t8bx5ax+9lpFjn9D+Cqs74a9zfogLjWvOdxGq09o82wgxHlEMPbZewW7mv7SeIm2oL+bugK4Nr+HzwV/cCI1/qzUcXsRng8UpS32Z9LiiVY+h2xFvHatRHZPQJGHFzPb5Vutbcq9jVO1eUawlKv4nIZCLNctVRNymg45w5/L6qIrbONeesdgKr0dwvjK2W6zWtN7A5ZkmlgdUW6KCUyoqpYMtXWiuVS1fMpdObSWr1yLaXDCYFxY0L1/7OS7+bzURqPL4m7RJc1nl45pxBnzOwGIP1sKY0Avk3QzV0ixPWWgU86X1HqXYiL7OVjbExbH+sOOPJDTV2rLDdBJ1kMX4tVXxb/NlZFcpaiywQFUL8YxQsSo49yIJl45qpl6Z8qgd7OwCxQKEPlnwhJsdVkTGysECJxFJH1zxgQs+YQJNIpSkDlksBEnQBiAjoVBzoVbt6oyD/s2KYepMrQfyvOOwv0kYNgynJ2wuX2Y4OSGNGz4ujgw1MpSBmEbiMNLGRN5uODsZuefKJVp7CtevX+P69ce4ce1xDvtzcp541V3PIJ1cgdYo997Dc87fQDKCz8l2w+nplu3pSEgNmNmWPf9DfQnDRiBOfGB7BT/bnsd/G19CbNE2G1ZFiE6QTNQQyRUOpXC+n7n/4Ud53RvfxCtf/Vpef/8DPPz4dQ65UGO0ZEelNOGuF/1PXPvxb2W6//f0HvZIerUp+HxvzQCc1u8JLGvBJ7Te81s7v97m8fwBE3gx43eaYMCthwf0S2TLMo6+Pa02jyDitZfmnNnW3VYBMAuRXprddN9drDusf26T9Yepa75sj/qtEpqqKaZGjpVZCq3NlFlJhc2KK4bSSJszLsWRMUBumUOeuLHfc37zOjd354SNIgWnl8/YnG5Im8HOYQkaaq1MtTAbYNyCdmh+u03juZcuGIFD1fmRQ6ING4azM0KrjENUASiJbOfCMM9sx5Fwcsa/Orw7L3rjf+Lbh3fhsde/hmvXbkCFs5ORu6+ecdfdVzg9GTi7tOHySeI5v/UtXN4GNlefYoqRwie/4Vs5OQnEdBmRRinaibW2aiIPLkyUzCEWSzxZkUM9qKpkUKcOot6PpgQ5JWWbEmKpPPbYNe5/00M89NCjnF8cVORoMyKiAn37/Y7DfsfZxUP8V7/xZUz7axyKAvGCglDaC0nXXMALcrTrTkqqelrmQpmtM2EuECGFqJtrBcuLavCVEpvthmFMhCRWnEMHMO+UI9rG2YJYgr9SZ91vYoAhqiCMF4zleQaR7syN44ZxHO1+mmBGqwzDQgAoUwa0cKQ17+SYewLUg/8QAikJwzCyGTdsxwGRaM5koLTAnCfOL65zcnZqIlWBSiGaynYTaGWmlsBAotl93aRIlA1jDGxSYn/YsT/sLbm5p7VKGhKXLl9i3m9ArCtKrkxz4X+/9ixetH0lX/Ka5/BZT32I0+2WFCPzpJ2+Lw4TUy5kKuFvfDnz9/yvtOtvQFIiBJhqYyqVSy3zLj//1fz6+/xdPvDX/jW7kCnzRM1bAieEsFH7VTPT4cBspHYR7SavIIiqgIP0xGFuKgY1DIMmjEpdCnzd6V47RKiAZJ4zNy8uaDTOLp1x1z1P4spddzFsNuSsog4hKOji3VWSaCf0EDGRIMwuNkoDxMm39CQmWAh1pELbvRqE0IkHtTaQ1pXFiYHdxQW7i512vRfp4glOzlz7dnfiftaasNvPnN+8wenpGVeunhE3WogQxhPtuAswZw6tsQnCKFY4tt0SYiKU0olsJWekeidJwGKl0JZgVpoq3yOBGoyYwTqMXgUbrKaKeYReQNzWwa8BxxrsKuHkrnlHHiJULdCQAMGc/Ubunntt0LJQayAXJWEEiV2ZVxXYXZiw9U4Piy/cbI9wIYaCpIBsogZZKZBSZBiEYYyMBuqlwcR8IloMI9X8YQ9qWH6u3KcFZHb/oi1DZoH/baCPB6s+dkciHA6sVJ8US6LNi0irKYX35EProMlcqopM5aqCAbVYkGUiYyGwlWzBtHYLLq0SihVbeIxgoESuTYvzLFEonqEQIwlTiWL10E3rw5Zg7c4D4FU8KhKs2KK2asQfFZwSNBFai81nDzIdRxPdB0Gfa8FmvtmwYEl8StEQPmth5H5SQLyJMGw2XLl6lSc/+alcf/xRzm9cYxBhTIHRACfx+9oqRYTffLsP5J4b9/OUB3+bWoqRk3Qt5ZIXqEU8+NdzdKGXnA1YWKYn85x7QbDHEk7urfZaPxy8gdoxFw+wAdK8dFrWY6NFm3YuvgZ8Hq+84uU71u+3fcGFz1748m/gp/7kX+MDXvqvWUjAx+cnt/wGCrA1E6Hy43bhqNXD1+8ynMue2OOs1semv1RkFR8o+KKAwwrAw5eVoxg+p1iuu9HBeT+B9ZWKZ1nv4EOMGL3YRzHw2+6OD5oBOfhrQMUKo8ZmaaUinuIyd6KRehahw2iCVI1q4HdpQCvM84RYx+xoySYXy6nNuwapKKYLp81GAJdcCBUTZVQ/NHiM2ATKxOXXvZJLb3gNYZpUPKo1nvKSH+PVf+bP8eTf+TVOH7xffRUj5qQb10xkallzgNpnn/MroEyvsPE7H/FXeObP/hDbRx/UMbakcBoG9aOiJumrNNogyEaTgXNVEVAJookx67jiJMMYE+Ooz49jRbuZG4mjNiPstd61Zk3skNXvzTCs0o6Fptb41DoxfkSaXM19XytOJqGt1gZowdibm3h9XFfr2sZP/+w/WZINTYtWfIeszUlg6h/P1UDJOwx8964CDccxFr9ZybSR3pncuyCIdBD5mGBk8K1Yojlo0qw4BN1Y4mC/X7VRZo0/Dvs9gyWWr8pN/lr4NYYYqCenpLhhGLYMw8iQhl58n8aBdLHjYnfRhW1qgLlVdvPEcNgTdolDmbh5uOBi3vPSXeBNm5FLsfIDDwsvvJwtAaqEvcO85wsefA5/ffgVvvjmC/j0+hM9AeDYQLfCAiOl46oO/nuA2LSFsL3n1sFvtBoIUahFTGhqRe7zxEhVQryYmKsEkKxhlotcuriPE5ZdYLAJRsR0ATHDmZoWso8Xj/DCX/06Qj5waG1Za8XXWus5JbOiHSvst7ALqVVKNqGpLlBqn9OqxWuGi5koByEYqO/FpvqZ2tlj2R+jOQtaXOd2zRMV66W/Jkf+v/N4ouRva+4brcl6brN6xLV2aVY1fa37ZbVpx3tZYV5zzgwf/Xepv/AD7D7wkzn9qW9UQus0MU+TYgeHibyZqWMGi5E94nbxMKT181m5Rvaa0JOmRyG1WCxpIk3a3db2fulegb1WJ4+jXtocMNhKNT9ivQU0TMDAxM6bGNk5QGqIDEYkDtRxsP1XH14wFlj5pL5ualkKTOy1Gi/o2UZ7Dw1yzdQMkKFpvFqbJrlqNeBDrJNYqyiNxnOVjdQsjRQV4yylkuuS8G4+piGqmF4Uii3kXLWlQJbG3ApTU5x3Mrx3nwsilRpmhnniMGsH6N1+z/nu4ph8eQccvg/1IqViHfeaFqDUqHHxps28183foeXJq807RuQiUsfYgNtUWe6lEZlcbAowcTF9TQyRISVOT7bM01k3mtfO7uWhe96e+97wCh574cdx189/v+67Fs+dnJxydumMy5cuc+XKFU5PTjg9PdXi/FmFplSwPlsHbhMFO0zMKfWulV580skODTCsoGQXhCvUw3Xqy36QdnpCO9mg4upWENrjrMJTvu9reONf+Czu+w//nP3Fjkrjob/++dz1bV/M/R/7D3nad30JcYhdvLsLjg5a5OOFKKBLra67Q3nRdW0mUphvExf1+CWsyIS3CQv7c9wejzn+sT7erCcmy1xaf+6S79R9KYTIkAYVCDs51eIxEUJScaBxGLUzXXNidLWcgtlhwzjX8azH2N5xfZ7n/1vWxv9dx6XLl7rIYKMhOR/5LK2tmubYfekFWAINLfAKormMGgLVRO+x+EIESmnsDwfOz/ekOJAQRhev8pjGEm8xeBFaULE/6zC1kEDECowy02HqQirTPOu6GwbGYUNKWjAyxJHUZtJ2SyuNi7d5d/ZPeR5P+Z0f53SzRQvRAiGp+NNms+FwOPDi9/5kPvjnv4kf+jN/ixf92new3++78I/HM7VWa1ig+2qtlRAjH/jqn+YH3uG/4c+84ke4dHZKjQM1FBWaO9kaGTExbhMpKZ7ZKEzTgcPulMP+gsNhr5h1TMQwrHyzivS9UeMRQnNuzHLvVjYvGMFecQQWP785QutxkK6iBWYwG4xYxr9SC72opDgxo1RyVlG1abJOovvMYT9RK6Q4IpYHaxc3NQeG9FjOw2ePqbRzcDTfQwkxLQjNu63r5NRrEiXXt9b6PbiTjovDuboypRk+Uc23qdR5ptWsDUzmiZInmon3ux/emt7bXKq2BTPo2UXzJEbb9mqP/WvbULGGXYb3YphvCNp4YySy2SRiHDS3FbSD3GwCo9i8iU3zKlUWuxbiYF7oklfGUIB5zhymmTEEpBWGpjmftSh9dLvfWofI9JlVRQHWadqI7L4XAyYAqL7SMCY80PCGC7SqohZ9vzCcpTae/VvfT84zIk0bk0Rt5vMuP/GlvPzDvpB3/9HPp21PdC7JjGQ4ufZqrv7M/4akQjs7ZZ5mDtKQsmdMI0PakFIgDYOehzWb8vvkMaSus9r3pBCUTDgMA5vNlpPTM8bNCcPJCePZKTIkFS8Zksbxdi3icVwIWkSXM23S/Gs9ZEqu1BgpoVKb9KYSGgNkZD4wpw0xqoBeEyjViqVr1TSH2wWMXBZab1Zw1Kj7DjhcoJ1qnK+mGPlRnsTwCaoywrpAur+3NeMiHRNYYxNcHOUIm7LPX/srPeA1/7D7JEEst7CgYzofVKTRRfi12CkhSddyExX5m6t2a+Ywkb0dTK2EVrTTsFQeeM+P5+x1v8Jjf+rPc98v/keG6w+u+Lom4mFgWpM1pu54j/lCHYdvUBchDrH/KOyz+JMBFdapepnLCnasTtR/9LUb9zd42g9+OTLv1b/CtgDjpD1h51SzEUdHa7cV/h81H8P8xlr0ursfKCSi+ikSKSFRiYQwEMKAeBOqszPS5SukK/cS73kK3PVUypUnkc/upWyuUoZT5XVlyLNOkYg2UqEV5rxnmvecn19wfqF8gaKVF1o8HhMR9WVCwzgrQRsFbDZsNps3P+HfSkcNiqHnIMwhEGlMLRJFi0K6CJMkzYHVwsU8cW1/4Dc/+lOYvu5fIJ/5P3P9n/9D4hDYhlO2Q9I8fI0WtzdqLrTgnWaT+n4+N+2+NxpY0a6LUqj9Cuofed6Fxedx4WZtw7rgv7XWzlWhaiGGz3e100lxUDy/4DBDXflIMEqkRO1OnGvl8v467/J7P81vPed9ea9f+l7Nu+OnVRVLrRr/5VLUdhk3L7dKnosJTmtOLZdGKepPN8tPdufJcowhKFk5RhA5IMwEGYh55nkv+UZ+/31exLv99NcQh0pKgTFaUZxosYlaUOXdNJTrpSJqKqarz6lAf3GiiIlGWYiKo0UaDy2iD0F0L5Eq2nTNx6LpLuNk4KXyyQxKNSy+Ca0pgXotYOyFAR6X5WqN5jxuDqKYVYiG/1s++1YQ6Q47jorz/pDzPMYRff77H/U/S7QNnnhzLKG5I7DKJXqM4AJTKjzLsgfi/n/sscaat7zGlR3XFT89WcUZK4Ep36fETtEg7i5uVEqmlpnn/PQ38+oP+iSe8f1fTRtHqIXds96JG09/Hvf9/PcgrfHQ+388Z6/7DR55r4/mSf/lO9g8dj9v8z1fRpwPPkq3ja+I79M2cBZjdNGy4A2T1g872QW9RFePigGvx6NC56fkWpTcv3pkw4OqC01ZTJxS7NhLTEnxf8u9SP++1f3H98w1OnvLNduY9teIr1o3xa1/qnje1WwphimLrd/bUtCNP3TOvrUObb4c1eZULbZY512DRBgiUrJecvHJakIMK1BefEzw5bPEMAunYD0OKw5F5xA4Bi0rMde37FqWMTZvvTkn4/i4ndu2zIt+H1m4SQBh3PCnPutL+bV/8095j7/3JfzSV3zOH3out3+1idAfYQo6/72wxJ27ZQ2ab2ljUkslDAmisBlPkCC8Y5l49vAKRoEmW8VFfCUY38s+DAneSFKxgotcOD0JXLp0xpAiM5BSoFYXHLIu8sjRHJZwe64GdD45R+QIp+SW/AdHt3z13BO/qPuyqzjDv7/W1hv9iTzR/X3rHpsxaqPIghYDOe/LfbGqGatw5CNgPgPdBteq2MdhmtTuuRCS5UhiqsRYqcGbhCw+3a1CUx279I2oaTyuTbyO7aQfHfekdSEKmvKcfEdttVIoPebzPc73U+U4R1KttKj4aJPam3r5xtjvd1U5vybKQ3BxLPUdrRiNtjZDPVpX0cLcP8/PMQqINxMR9X9SUj6SNi2MhCEiKSousuZUrGLibjO4/bnl5Uth2hONqZ/zyhvp59VueYnbM38U9/dMZGrO2shht99zsdtzcb7jYj+x208cDhPzbHlr461Ue5S6NHFZn6ZNi+5zFP9d6I3/7qQjsawrx3OLqIh7Nmy20RRHi4o3aZOaJe4PFkdBj3xoJFq0HHKtlGKC8ZaTarVizp7+ew3d4f7ecT7nzfnbvmZbl7Fcze2jeaZHXeUobs0bLZ9pBZpWiBitQVjPAdYC84HZmgs7tzxEa6CRdL4cYUjG3XAOZpsb2fJaitNaA1LDO5pxifKcLZTxZr4sjX3db7TGXS34OCmnVKrx1A1cefYPfRWv/vOfy9t+35eSxkSIyfhhy0ozuW99RBfUXDgZ0l25hT+tcZROo4rX1FgOy7njzQUYFxxLGb/OBTAbFpzn6Bwb9emDLDxU/d5qYmTauCnFyHaz7RzRO+WoLGtFfaXFTh1bhNX86+tosSf+X5/OVdavvOXw/cl+5r/yzwnf/nnItDe+hOhkkequ++qN/rCA3B+sfrrv+gRX0c+2G0OfMG0F8Hm85ljx4qN0soj7OshqL7I5Zo2sa1McIRfPzdt2aL6a+6XrsVTb4muyHWFCHtP07+s5Is3Pmraqvk76XbUGmeaPiJdGy+o7Wz8H9/n9Xmou1O6yb/63+HfDp/2v5H/z93q8GPpAOr9jEe0AjgrJXQRvEfMWKsH8poYLELmNaWiDkM5J1Zf0uWYW54lm3VvtcMFNQujzJBAUR1ztKeumD2BrUdZrbMWSsvh3zRlwX7Nj/EgXl1b/EJ0r4lLTy/6qptma88hahOz40M/y3NhqBvncxnOYy3u6/3kEmPgfbe7VVbV9K/Y643fcUve9jkfsrI7O7+h8/ZyxPHE3HSq04D73MAwMSevIkglhuNBUsLkp4rbA1mjR+pQ1j95d4+VcDLd3+9HBoVvskhvDLnyjQ1F7BeY6/jTswgVD3DfuvK7am8c2HLu6RWzqeIRW5yRm/+S2U9Rv9v3xzjrCOGpNjyjuzDxTJ61zjCsBJmxNSasqFFmbYdfanGiMiqkOMTEQCZsCUZha5tAysxRmCnmu5JrJuVEEYq2ENFi9L4yf8S3Ur/909p/yNWy//m/T0FyIgAqfWhyoWG8xSN+avK2FHlga6g6bwGY44SxvyNuZw6yNZrM3akIstlli80ggBiHtrjOICajpJmOcQp0RIWANmSMpDQxpIEUhDKc9F6VYnTU6a2L1bLnrHGj61/DnRm9mgzTLeSzxYkyROETSODCOA8OQuHZ6F7907zvyzo++kpe//QfwDr/y/XThuVZsf9f1L1Ub1WRvf2IcS+dBxhCJxiVWfLXS5llzziHShVPxmvdVbFdXXp+4nVmtP3vfK9/zk3nqq3+G177nf8vTX/K/M+yvm3kJgOaa25TJu5np4sBht2eaDuR8oJZMAsYonKbEpTFxZRy5Oo5c2Y5c2iTOxjuvIYvPKytVwrn0K4Sx20HHTdVtkL5HNdu7103jb80HrB9xutDnOcaJ1vUSgvlV/TwXPpfrgPSmloLNl7YSmlr5VHRLaA/pa8qRg+5feh4Bei2/+AwQQdzPW+173fVk4cf6jFtjPI6lr+M0256PrrP/lCWn3X/a+0pdckguNIVfiTRcOFYb/IWjbSq4+PEqrtZ9rkdGKprXlPfoQsihOrdKLAcs2nzW7LHWXQixaRRy+bFXk7dXuHn1WTzjN1/cx9X3XT/fW2YkjnD5XMTt2uJQ2xz0sawmmLMITN9Jh8dg3e70UZYuBrg+FLpohv0LpchRHidF5RrRlFvhYlHahGclNtXoejuPf8z/wpUXfzHUPaC8OFOaQPVvhCZWr9xROyyX6bnKBrXQitZuRhHbA1fxmduAsLp3Pt/9+gBiJIWkvLkQe9xSqzZALpY/d/58aRVq0P6NTfcI9Yl8epi/1GqvF3Z773wsF6T3c3RBJl8YHkO6/+fxS+f2ItRV02z3nVsLt3H5fM1TvP56xcfpE2PhfS/x6noPMxWW6pii+oK5LLiiN7P1huue63aZIiUkmg9CU3qQf3Zb6rGP61cM57A8olUOWDzxBL7umzn+SLvdrUWt+lMncAvHG0jfXPpOT4fjQggEgl2OTjqfHKVoV7AighRT1YqBoeROOmt2YxYAYnVeeqJ9Y+qdTsVLWsQKrn2Q2io6LuD5OAv0tetYZGgRSIRQ+bdv+0n82Vd9H/fsHjZSvN6oVjONiVoPlHlHOIxIGgj7DenicdLmhHGzZdhsmYeRYdyy2Z4wbk8JKRFDZAyNdLLh7OyUuy6fcPPqJc7vvspud5Np2vMsKj+/PQWBDzg8Dif3mSMtDENiGBV4DxZwDjJwuTZa3CKh8k7xGu/Ey7SIirgAD/Y/CQ2JA00iGbg5TTx+84IHH7vO69/0IK99w/287o1v4tHHb3IxzYh1Ka+owbrrL34211/6/dz9UZ/Oo9/1L8iPvKEH0n2B9TthjsISbT/RrLt9Dj5xnPQHHmsH4I49jtbO8lPWNsnB79W/NRlmBvC2sZHVayxgEQUhW2hWp7iQOT7v8gfzj89/gi0zC2pw7BAp4I1t8lUDmaTdIasogDDPuumXUtkyEobEIIFIIiRoYyFvTpWQL4XDxZ6H3vQAU544vXrGuN0SRyUnVJoVPWRL9JkzbET0iDA33ThKg0IkpA0nl64SqCRptDITU+bk9AxaJUkg5Jm//OiP8/WX34vnfsv/yAP7PSdjYntly5Wzy1y5fIlLl065dHXLpctbLl064exsy2YzkpIDFI0gRUmJtpyqqeLG5gUNthnHaOQz2xCLktFnJqjSVUGRBNVd2kRrwjxXDoeZx6/d4IGHHuGhRx7n5nmmAeNGO1TXWji/OOcwwTxdcDhcUGcVvaKaiIaRbsJq0/SO1ylGUojWjVG02GbORrBfByLaATFELzgLXRF5GFW8risd3oFJLj/cJvge5ICQWOHWkuy0ANqS/n0fbLLsR000CAkQkxa611rJZYIJJdgF766ceqG6OygxigrEWKFeo3I4FOZpx8XN6+zPzthsRoawUXtbNHkiEjT5VDM1z1bRq0DbGBVcG1NkOyT248DhcNBOk048yZUssxWeNKLo+z558wr+7f7t+fSz3+X6zYH9fk9ojWm3Y3d+k0evXydut/CXv5Czn/hmLv7qF1C/5R8x3XiQQSKhmjhMyZzuHuWFL/tKTk82jMOGIVmwVlTITKIGP8s68QI6WcYcjWyXQsuiRO1SbL+PRFEHEHOUe4DZRFXOm4rX1KZzNw4bhnEkmGJv73bbGt96eHveRx7jefIoWjxghERZ9iBktY5CWGmq+Zw330QUAHFCcUOvS9JAiMmctoUok6eJ84tzLvY7GqgI2fZEu8WKaAcfS7SFFRn6Tjqu39zx+GOP89BDD/J2z3sez33us7jr3nsJ48D5tONi2nN+fpObjz8GeeZkGLjr9JSr2xNOLl0mlQLzRD7sOZy3Dp6FBq/ZPI0fu/QCPu3h/9T9CC2w1D1BkE5k6/ivg0l263yf7EGsBcRORFe30HxF5xtJ7fddohCGoIJvoRGt2N6TSLXVnoCq9jegAzAikGIihWTqwMW6ERUrmNEXqVp3JI3qi8YxEbcJSVpMGFckvmEwom6s6sv6fm92Rzuwr8WmzJeSVbLNfwJqC1c+29r/B/UJum9QLSi2YOVIbMoTSws44kTbUiolW/dyA2C8uHM2oZR59u5Itd+DnsiKBn5iMUlRYDKgwgAtNGpoClRb4RKt9nVcsSROU2J/9IIooBHIDcQLlu6wZZZC0v3aCsh9fEsxAjVuD4/FTmgrGwYsHXP6TugzR4Frnfw0lJw2z7MKO9VGiJGzS2fcc+895HnPtDsnGcgRh0gEWpu1qA947du9H2e7x7n/3rejnl/n6gO/q9eSouKYFkB7p6DGYhd1TszMk3bdbrDaj+36WRIzpVqRsIeARspwoKca4S1ipKtaoGpXrFKyAv1GmD85OSUmE1tqGqfCMp+PDgNS2tqWIB3w28w7PvgXvlYFIvsaXPn4qzFfPrItfzv6qlUiTBflbTF4s+RSiFaMvvqQRnd7VuAGdvePz8Nf29bn2v++JMsdVLWpdQSM6X2Q5a2ra3rCsXxrH9F3GBZfr5/wCmhxV7fZmmtYUXsDScTUOBwmTdhIMJ9DFCiaZ6ZpUoJVU/8zhRGhMFUoNTPlmXnecYjCNA7k7QnttLAZRgYrtmxeDNrvbyWXmWk6IKUSm/A7n/yPefdv/RfEpkI8xiDX06wQTOjNk0DMB57zn7+TFCIZB7DMrtu3rPcOnciG0/ietyrM/r0P+wSe8os/xe9/0Mfy3O//FoYbj9PItAaT7PqabzSKVFoKhE2iRsitWCGeYkIxJi1wGgfG7ch2e8Lp2SmnZycEIjEuRXalNktGq6+oN3QRHxKaNdVyIHQRulnvWfVIFHLdianaMK5eW0v/W+9EtDp0uR0TzfzQ96nwaU8mr9e2/291faVZ5z6bmlkaBytmn8uieH+HrTBi2oBkiLOKq0nrop61Be1uI0GLE6Pu/7U1plKIJZPKzEDUWDwUgmhyOQUVfKoRJWkWK7JsQROltUDJ5GliLxqPSBOiRIY4cLKBy+NAa4nSAkESImlFulv7IZpgna3oAuD8cMFuPvDYjWudZJyGyF13X+Gee9/IdO/zuXH1Xt6zPcJDRYVBNVGSmaY9nyov5asO782nzj/O1ApD1G7OrVVNAAgqEh49+bwmTaz29xXRwRM3vlf6vhFqpCWhuNCU7yX+2oqSCUULRCVCSEIsS8eKWpZ5rsRGLYytFZLtgbou6cIpihXNSJ7NbjaLm1XQXxPtaGwtwQQdnLikpIxipO55LkxzZs7aYVMFphQ3Lq3RPWIRLQRM9ohKUHYiawFK9TjCR6FRJRpWGZGQrMjTRPbRc1h2yjvvuNXO/J/da5dCgv5M/+kxFqzcmCNEstn9dPLYQm/R+EGJqyklE89R8dH5IDz2LV/KfZ/2JQw/+u9o03Xq2RllnsmHiflwYNrvmbdbSt7AOFh3PhSPwos4BAm1i4P56emcwApE1XnucZG/qNlSqi42sdo7bL35lqoxRiMRiLIk6TwhRF8PVgjQGpg4u5P6FHMKDEOilrSQ2jDMdgnTdC3V28WJq+1VGs+q8EkUWYSJWkNyo0mhFGEOMMfGnBtZLDcVoCbDVFpAiLrHV7XDvXtgA1JApCC25tRnlEXQLQZKMAyDSqaSBWZ/YI/WONTG3vz8GmaGaeJgj91ei6GfqFv7W/O4rbDGBae6D+E+rjBIpcagBS21dfEocVFyX0dGkPf1thbPCeZLejGB5FUitQEpsd1sKWe1z5On3bjJ4drr+P2nPpe3/6UfYL7rLsMiA8O4YXuy5ezsEleuXuXK5StcvnSJS2enRBFqztSse+ZsHbm1G/eew37PNGusp0IVK4H1W4knhjvomBRLKvsjk/Ok697w62lq1MOeJ3/j55MPO3KeySWz/Zq/z2N/859z9rV/j+lkZDOOOHk+xmBEw0VkyoWmnKR5RIgV0Zgxa3G9ii0tQlPrZPLalIoliIMsMd76Wo8eLOSCt3Q+9XseFl/RO0QFgZAi4ziyPdkSU9KinhgYxoE0DFYYWgxb0uIV/zykop0al+JnJekr7jIZ4e2OOqrmxFJQRfAZoZlvN0TF1mvO5IMh+IZHNCBJogQV0pr2e/XlmjCEQCGiBbbqRzdptLkgu72Gx60RTk+JNBOCgChGdEST/rRsJLhgfj9McyEXFUysqO8xTXsudjtqrqSUeOgz/g+e8rWfRhxGXvWJ/4x3+I7P0V2lRW4+7e25+TYv4Oyh1/DAO38wV1/9UoYUKaJ+bSBy+ewKZ6eNj3zpt/Di9//rfPTPfgOHIZJL4zDNtKb7Ca1x2O107gzqr7ZmuFfe8yG/8T2aJ9oMjGcnSNK5l1Jgt7nEd11+Lz5l+jkz50oOHzajEoyix/kHSlvF+6wzjGhsbIQnLXajF4hFEWovrKPzATqpF9bAbf/HrdhBXy+W3wymDlAL5Jx7LFRKUdGy/YH9bmZ3mClV/WwJCYru4zElaoNpzj3GqhLwrtbZyE9BKtJjBYs1kU5aVjHoRQCtFxz8P71m/ojHYXddr8HLMZr6wK1k2nygNbWTrVSDHAzX7lVH5puv4IiFyNfUdzd2bpNAC4kQR1LckFPlkCuzEZoCuXeAq9Ys4MrJhpPtCVIqF+fnzHOhVeOWFM111hhUXK1ByY3YiuZUOyatvkmNMAfhQicHcxS2NTE6t8SJizRCq4SighKaJ22rvc33BXuPxTlNAhJFxeM2A6AYd/NCLy+Ac6EpmhKKSgGBGAWplUmENo6EpGJmEYhSeK+f/HwkZvLJQNk3NiKcJCMGBZDtxprXNBVTaQ1CI4TKOGpcKmD3u2neoZmwqK3TWDTnWzKMY2BjPJa4PSGdXCKenSKbkTZskTGZiK+uEQRaLUZqFFpW0dcya8yW58Jc4FDUI5xbYCoqNFWK/p22oVVt8JbzhMSmufOi61Fq67MrrsTHtCA3dEL6nXRkF0dqC3ls8Q8XrkUnqtE0v9EWzInuWxhrrDuJ+rkBf3qF/9ufvX+1vtRwOzsf0K+LbbHdXoCJaDMsF28hKq7QxTZqJWwz4XCgjTtySkga9FtLWfxZhCf/8nfzhvf9JO7+tR9kvPlQT0/puWo5oIo4KZm/wpEviTQj54YFb+x/WyJxF86vjjtAFyuXtviFa9IvIotfLYLM+/57/wrxWM6GrPvoLHtU9RfYXtWvX/PHzcZP80vL54kuU71HISgvi0iWyEwgE2kS2Z5c4tLVu9hcvpeT+55OuvIk6qUrtLOr5O0VDuMZ+7Bllg1zjZQMJQuhKry9SdCi8lEupgPnN8/Z7/fMk/r5JWcjsXqsqnZerHHOkAbGzaiNkjbjWzb5/xiPEgRB9+/ZinVbgyqRlvQ2VRKVyr7O5DJzYz/z+O4C+bp/hvytz+VVn/c3SQLDqB2p42YghFF5Pwip2Dy0ZSjeuNKwoeprlQpFXBZeuTcIUZJ2NEVcDQpYMi+tmRBHqYgsuafuDDXN1UZZ1oDGJLFjLD739OWWawiLOEU1HmRtwpOvvYn7Xv7dSKu0qMJxuRWL+wu1zpq/yoWXf/z/xPP/wxfAfNCmXyb4vmCCTfdmgRYauxd+HPLYA2x+9adVMAUgCmnYsN0mNlEYEgxDYBwCsT7KU37+a0ibSgiD5j2j4kPSgvGkDHtCc/aCHBecmP1q0qiS8Hxv8/VFQ+nGVjjpC7iqHVLOqJVDhurpA12gVd/bmhZHq9Wy5gZVRROrDF3st+cRbK/VOEH3OgyXevhPvg/x2iNsX/mbXYBFUF9GfabbcwZv3WMF/PkzR/jikhOENYao7+uFDT70HL92QRiX/7qtPBaocZFus6GeG2YtoBMIoSn20vfQZZ9U2sZSrLv4ryz8H9oioNn01cH2jYUnZD6vYfp5jsQ883b/+f+rOeaYuHjqc7l4u/fg5P5X8th7fBj3/tIP8uSXfCdv/MBP4Z6X/zDj4w/o9U/7ZWBuGZ+eBxK7Bg16+0k4tuE4xZKLtZkvhm3ahVb771KchWldOrdz1jx8tvy4YUKtZJrZCC0KExX6tuLO4Lj9Og/mA2zYlI91x0na6oJ9T12DzLctA+lraPkOLchuyxeufvaMiL+0n86ddszzwXBhbTgpiHEbpM83aOpPtEb23CD0/cavzJfFQtG0Ij+gl0j14mY/AxvBJordwSJOu8I8bztczaPf31tfZ/i5CQUuh2Oefr/dD500PpcBLYNSYaDOoTsc+OWv+Fxe8N9/Pr/wRZ9p+wG4Fbn1PCNieP8xT8HztcfYgixTsrFgrWs/ESBn3vsrf4j2vZ9NGIM2WCCRamAbdC+qrWCdT/r5SQ2aP4yDYQxiDSYbNauDsRkTmySUNhFIFIkUgs3x6r0R+9EFRY7OcbFhvXhd6Fyq2+6Dj74vO9Hn126urHzo/s5bc95BjNtscfMdto2dbAdttpobLZvP0ABRvlDLTZvzWUwCek3elM+fDaIxx8VuAkLHwgmitR7DQEpNc76ySFXDMt9uLbq89Vh4Nsev74IiFic6Lh3sBqqeqfkelqdZ75cehughfb4Iy/rwIVA/qPbXupiO7zXR5pPnv/Rv7XgfElZCwdJ9AG0UFRbc3jA9baK5EpmKVly8Em5ttVKD9ELKxXat1/Jy3reO85szZT4GPba85XVt9QGlGZesqYhosbzcXJTPc5gn9ocDF7sd5xd7dgf992HKJgRkvI7iXBRryumOyWpv7GuzgTTFbzTttsSwd9IxCmTkKBYvBDKBuWVKVs5ljYGWEi2lXm8Axpl322vPttaM85nAsDflIhgnploOpBQTxG4Wmh97lf4d2mjYP9wf6/zNwv/X/LLFEysb6T6ln18vjl4lbxfMYM3j0I3ZBTFKqYZbm6iNieU6T0h54KHPTfcJ1NcNivc1xVCKVCXFGDfCjLddnl5fbY4zgTeB82bn+nfDMjAxXRbhJhFtPB6WQaPVmed99z+hldkKXzWmam0R/nFReiF0UYXldtggVWdjlN44w64WDENzv7WYTWmINox07qeP+eI09ZxrW2HyPS7A7nsPEiy+tvOLMbINxznBO+GoPbKVPrnXQlLL6VoMtvqnrkn1CBfXx+b3ao53n1oW99znffnLX0z43i+hftJXEL7+v4eSldclRiYSv3f6XzkSklr2HOT4OdbxiyyfcLSCZZkyBEyQyeaXx2mwfOqRMvB6fBZnStdHsYYAK/HAsghNuXi1zy23Fd1OtIWf3LHb1V3wpmFg2GpommOUanUft1+n//JE02/xz47HSO9RWwR61rixHelvfiXt6/5H0t/6l7R/85n9ztAWW+b8x/W6kBC0UVwXwIu96WgxwaFmAnFY01YhdEFMxbqAWrG+G4vPcuxOvtWPnIvtu2a30PHWnnaWywG/ccteZb+vNLXUfuFcKB/TW3F++/uaH2L3IQRQboK/ZvGldI5rnfDqdh0dPm3Daqp4U2Oxte81Bd39sGuo/rzh4b5vLNe87N0i1uioVESsCaSsmkHdEm/p99+yN0KvpRvSYE3Fov0cGFciU6NhEMnq4W4VmQpHI6EnX/xflndZ7/PYtfbtY/Xz6Cb74KyaB/jfJUBwzvAtf+48kf5Td1jn/3ZRqX4P1ycS1E6bwIjjnnX1BeurdXPidudOrCWTITKGyDZFZMgQM+wyUpS7QlQcouRCyRqTds4AWh+stfwCMVLTQAqR0KClwL5lcmxwEakiZA6UeeFzlACSdc4OQ6R91X/L6f/nW2j/6pOYqSp4gdqxgokQNsizvl9EG+Rq40bDh5vW/hLcPg5sNyOyFUrZsM2542w5Gx+lseCmRQWsYvN7WMH1EVrVPKEl3x9/x/eHu5/MM17+Q2xS1DrSlIDQa7Wkaa1PRBuBSbV413nTQJBIGrTmSHMGxuMIWkMcY9Tmz+PIuNEG0Pp8YGx73u/x3+PnLj2T9/qN/8Q15827JbEmGx67FVER5GbjKsHEU2I0sSkxMX9dH8V8Sc1pxkWwpNuT2uOvRVx2bWOP/fDn/vI38zvv+7d5+sv/PWl/Dd2qvK4BraveT0wXO3bnFxx2O6Z5T2MmhcbJOHJpe8KVszOunF3i0tkZZycnnGxOtGZjcHt45xwpKJ8FUYkvzWnUnjNS7vfip6kTIVZL6TUyofsHt0dVa5zd9zz9i/sjR2JTi3fZ+eLKman9fjWLgZ2b55tYx8BWRrqfyfp+t+WbqjVg6ThoW7125UM7DuFNQRsrv6Tb5CXfvnqbCVQpL+M2X6Z6DuTWndmeW8UrRy6gOdwqUhNWc1mOhx+bvCsfsDekFrcty3vcL2lomitUIYRGaUK1RhS1fxBduMdgLsS9Atvk7nnDL3HX639J6zD9LNZBR/+58I38vnkcfWQz/IdPpOa59aWZy53WVN3vVavN1hh9KakdP/bjmzWrKaJ531CC1risOKsxJv1MsVyUrHEzE+K08X3sI/8Rl3/4K7n28V/E1X//DzVnU2sffjEhec0jhwUXb4obZlzEUGs8GoWEuTmGY7oQtfhcqs0aOC36Pc3XlkATa844JGIyHCOI8oKtWVFpi3AUpVAzSC09rtCYYanJKr02a8mz4uPrnOke8wOlUkyIpuOdssy5W2sXq+EWPk91GVljG8IR5lNrNS2jJdO8zG86Vhokml0xrg/Sl2xr6BgKK5Ep5R369XauUHFxMptnvuz9J8o574vb9kf/HJ2Si42TEFW/IFjzrOBBQlgCmD/keIuFphw8uPW4jUi9AmS60TTjsIRdXvRqExafJA4QFRtjcxxiNMK3kRaQXjSIyFGCVcQHJ/TF66p+oJOgOtFQIi1WIy6rY9akWnfv1ms2ZRBCiyQGvuWZf54PfuAn+d53+It8wu99M2e76+qQlkxdqjIoIdJqouUBpsRhNxCGkWHcMIxb0rhh3J4wbc/YnpySxi0SBw00N1vKAGOAq2dbTsfANJ8wzwdqzXx0059lPCPPE4IWaktQsokuyoJQCdJU9U4GYoQQFZjMs3YS9+BJBb2wHSIyVzgcJh65foM3PvQwr37d/dz/0MM89OhjPHbjBodStIvEOECI5KZKcw9+25fw5L/2T3n8B/41+ZE3Hu11Diqycg76pF55HT5v+oa/moP++uNw6Q+bvEDzZOhb/rY/7kP9ucUJarZ5duIMtgafaF33DcrWRAfIVk6WB6GAi065fKk04Z+cfQD/YPezfN6lD+FLb/4QsRkIrQgabplqU7Kg4oSVGBtDhDIoKlSmSi0zc2mUuRHkhHETkaQCTSEkGLbUs0oYAvtyoNC4eeMmU5053Z9xcvmMzemWOA6UWjnMGnAJWkARh5HUGqEqnBqaGutcYC7QQmIcEiKFNh84HPbkXCAIkUQthevXbnDxxtfwXq/8CV57foMhJe69+yqXzy5z+ewypyennJyNXL37EpeunHByqp3DUwwGSFoKfx0kmaFOlhQR5ChZ5kIjSlLSexJapElZCknsdYFIa5FSG/tpz7VrN3jwoYd4+OFHuHb9JlOuDANst4FhGMilcH5+TgyVXA7keU+ZZ7MbWhiRgt75ICbcItoZJgQFbLz7GE2sc31R52WlHC123imqeI53jtfNO6oIi4kdPXHi+q131JXoyUJCWjqUru1DFxAy4kywPUULBizQFzGADxra7Xcz6jjVVtgfdniheLKkT0pKavzO9/xHfMxLvtACabQ4aEikpHMp50LOe87Pr3PjxgnjZiSERhhHSjOxOFGQomRb0UHUKUiRNIwMKbKJG2pKnGxGpu2sxZklk1sh19odqyYBQoI4QDjwt4bfIu8L1853tFKoOXPYq9DUYX/B6aXLvNfrfoSXfNjf5O4f+JfsDtcpWq2pnU9TUtBhGNikwHY7sh0H24+wPbdQ0T0qpUCKgzleWlTc71E1IR8aEiuhmnhUqaqgnZRwYm6fDejK9pXG/nzPfpq0kHUYicMAwYoRinVmEeH72tvz/OFxfvTwFIbhwDPl+lHy0OeFgM31hcgFi4+jDys0lLCsawlITIRBFcQ7iCrCPM/sdjvOb95kt9sjwPZky3a7IQZXS9VrinERr7rTjnvuewpIYrefaUSu3dzT4k02ZyfUpOPSrEC85coYVA1bJPau32WC/WHi/LBjDJEUhAeHe/jeK+/Hnz1/Od9074fwVx/7MRVNAxXTqMHQt6D+XQ+eF+GpHtL2vW0JFsIRCLKoTqsIhReoVFuvdn9DJPT5SVeTVVKAAyL+wUZewroL1bmrrGNzO0ZNWoQQiCkyxERMAyEJMgoy6L4tybujJeY48qXP+Gt87v1fp/sRDSQSYiJGTVgrEUiMiGj2YgUu9MDQD/dBEG6bYubf92IIF4mqaid60OP21l/rQGI1BV0jULh/X0zEp5rQVM4mQOVF3yGaMF9cgfv6ucUYka2qQnNAOxloIsQBj2JzQUD0d+1A48r/+lCYRBDT/Ep3oOM4xsQQkyZPrLtSn89adUVMkVYj3qm7taWwNqQAUUwRujGXzFwKdc4qBBgiCkfrPtcJNrb/aTdG2Gw2XL58mccfHReAy2xxNXCxVk2sPPMVP81r3vW/4cobfpPt63+LG/sDrVXtfmX+wlxm5jz1hL93Fi/VxMfmmZx1HcWoRbab7QlpGBDoBcuSzSO2c/LOaAuRUIsstdCrQNYxyPPM4XBgt9upAFDOeLHlmCIlBFrLT5yY6UDKIirgM2dNLtGu7ov6tZqGtgL83vxxGyC7/tnBuOPnHQwVsQRHs/0XljjLDaT5Q24jgOOuKYYxsIpL/LqaxdG1I4DCutv7rXulGdpj7OBOOmJYAZlOTUCvbYWJdBuP2zn6XPBRCpZMpQlJhCEW5jAQw4yIdT9vjV++79142rXXcOXGAxwOE4fDjmnaMeUdIo3DELX4u1baySkMG+tS1Oi0H7OXMYoS8kR4xSf8j7zrd34VL/+kz+F9v/WfEVt3XI2AYeFet81Kllz6I9o+4cX2NkRrwmBHTZeR6nO6Cbz9D30Hv/Uxn8xzf/x7ONnd1MSf7X/V9xITVaroXlDmiWy4hpsXFQrNlDyo6GoD0P1wGAZSmolDwglbXc5kjRshC+DZ5yF9DalInXeR9C7YXpBvSSsXlbwF/1p3alo/WI1Zq83E9Rbc4+H3fRHb338Zm9f/Vp9TS7ciTzfTn3Msq7amhS3ihC/IrTHXwlQKsyUrnZh+Jx1hGBSETcnmg4J5C3jMIjZlGIbv5y5SUUPTRLKgMVL0vVyIBeICPupMcKC4qhgRk1BKI8aBcbNhu53Mj9DPjAhVhBgqv3n2TB6LE+88v4JxM2rRRcnaBWlfKVTmOXM4V7EM7zSi8zZw991XuO/GNZ50fp17772XB69e4uRkwzCknqCZ5wN5nvjv6o/RWlE77Usw+HWopV6TXztRWG63zYtReoL9wtaAVKyou9lL7W++XpKo+H5o3QdullmvsXaRhypNu4nWQMFIOAbq1yZWrOa+oPrv1dZeKcVEPjxZoEnuENSaaiGx+yGt+48uStp9SfsO3Yd9O9IB1MJN9Y9DTF1kqqGCw1h86v6O4maVGB2nk2VMkF4o7vflTjzWfsU6ebJ+7i157+rZ1Zvd7i++n7gvxBJjWXSuGFT/CJ+zLHkLf9Tl3Fqe2f+7/4Xx0mXq2SUVg5kz8zQxTSrWOHsnsJzIWcnJzTCOLqjpv8hy7u6laQGNOqxNnFQvy8sd4+tBIvRErf0z0Ci9ANqe88vneF36Z1IrLWhXGuR4PQO9U5C/62hl2zquNVgnN7GcRlW/QA2pXYP5vnZuum9AkdYfWap2dmuFUrMJ1OSe9KtVcSMXB661LIWT6/1F1kRsP1dL0lnyba6VQ84ccmbyR8lKzDeiPg1yq52wryI4E9M0qXjKHXWY79MTk2r3Ks0Shkv+KmDCRea1Odm5Fyeb2ESxIoWj9ekVYreIuCJeFmS+Z4hstipA1BOrCG9z/THufe3rOFy+xDRt7LOFYRzZbDaKfW+2nGxO2G62bDcninubQEYeZ+bDRAxJcYagQvxpmnqsqZ2toomwL3GX5zjU31rEO3sHo1LIxYoZJ73Ph0kx/DQdmATmORLmidQK23/zWYQxsd1u2W5POOmPU+003HE27QTRE9Ee05hPC/q3qQsV+tirj6Vk9mDERL+/9Pt9VKgmfgduOfoW3HouZ20d/UObPbp6ve01pTZqLsy1wBTZzpnTbF2f1PlRcldK2lFwGJXYkbMWG2b1rNsT+azua638Vy0av8NistYYUjK73EgxMgwDodZenOe4HbkaWcIeDSu60u6U6uO1Hp8pCTAYyU7/fphmRISNkVo3m0EF5gUjoiq5sGWooRKjMAahUiynHEgRjZdjUBFOxwWCcP0zvoG7v/Zv8sDf+XqkVZ71zZ/F7378F/D23/G5hNi48sZXUMczLp78PMrhnNe/zXvwDm/8dcZxIGcVcKlFcxTf935/jQ/64a/mez707/IRP/Y13QYjXgTWmOZMaZmhjIq12rnWovc5bjaM2w3jdlCyXyncrMKLL78vH3HzpXzL2Xvyifuf1QGNgkTtXlnywDhuACEbHqqQXLXaYiVrqg+I4RFNkbaVP7IumPOjmn/lMbTnYXzVPJF/0qxIaxEbWvzKeT4wHXZMh4lpyhymzP4wq8BoGHqHNI05FDdzAmmBTsKqFSYrAtLzUMFbEbMXSF/rXejX7oVt9Ygs+/GdcuTDOYGo10OiY8B11ocJ9bai2IALV9q/OvbTWqASdI7iGLzZyKaiYgQn/kRiHCmxQDT/3XOOtSFVCYTbmGjAVDJ1KlaYp3NjCJEWnQoPLTbrvqePwFIsJQb4tyDk1tjnQg2ZHAM1FrLhx4766O9asOWkKgI0Sr+/He2zAgoXAg5mhDrGfjiov+fgqOOzRYU8ggTGzUBrUFohtMIwqH2XMSGicVXo35VAGmOxxk9N8STHF0rJNBKVgdZU6CwmYRgCIWmzkyBWcGP7czRlhSBCa4UwQ5lhTJFxM5LGDWHYwrBBhlMYB1oakcH8bisoELPFnWRXoBUlhk+5kEujSKLGwNyU8OUFMEs8mQi10qzL7kylSaQg5Ky+kRceNlb+RPNiapTfcgcdU1kV1j8BfuSxRlv/9MIeVrG7Y0uOaeA+YA+elt97vOVFlq0/vcxd/RHRZS6sYjLHZaraxOXFipNWBTkI44bh9IxxfyDvdmo4TbTImzdIyYSSefrPfINhHHpdtTVe/fFfyrO/4x9AzQvIKmpb/Iw7JdjWYvelPR5q6DiV2wUDPC6tRWMR58804OKD/ju2v/WTyIOvZC0kcPQ7HskZsCTd5OnZeUBLs0JuL0xRId7S74sOsnZ11jUbgxBqVMK/OglQ1UZmiVQTmcoykLaXGO++l8tPeyYnT3omcu/bMl96CtNwSkmJfYjsWmBfYCqNUmfKpMTSUbQZSCMwl8b+MHF9P3Fzd2DeH2hzpsyzPbQJB8ViStCmVIPiZZvtljSOd5yYGwASKFLJISAxaMMpGlmEGlSk4XzeU3fnHC5usrt5g/Ob17k4v8H1ixs88A8/hRvnNxnHDZsckXHgZD7TRkExaeFDg1AMM4POJRQTohIMyy2NXOnrWJLmZ5Wq4L5+xEUcHFMCOsZSazMfw0isYn6U3Zc1rwVRrg+GrYHvhVX90RYJlu+ERkQ4uoW+r7dq/prDPJEgjV/6mM/m3X/gX/BLf/kLePdv+WxCaSogiei8ysmKQHS9Pf7uH8QJmflt35HEgcuv+RXNq40Dm5ONNvGTxhgbwxBJg+V7QyBZ4bdIJEiCGqxwVQtftLp8RBj0Z9gQGIEEkhZhIElge2ewHAmi4lmlZGiz5lNB49NSlJgrJtbYvChhwbJU4sPEt0GL5FsjU1RLROnYOgdoHVsSIFfDd83uX3vXP0U67Dg85ZmU/Y7Na1+p80q0a7DalDur4tLzJ8u/2xP8naO/r/OhHTBcxdbAytbavx3B8intIp32WoX31B8NrHCYI8RM/b5oAOO6aKU1IXZRohXEZ5/QRWWcC9KqFc3bfMKhGXF4BmiUPBOCMAeBNkHS4oDTB19L256xf+pzefJLvtPOt/H0H/s/LGkezHfqiMMTDL7+pzUV33RcdcGT5LaHY4zOEV8wGfpabSYYV1ozTovOz2memOZZH3ki51lz6daoSVojBemcLhXM1/1aqgv+0/fcfg39JiygSOOWeXTbtdtnrIqM/HVuc5dc+Wp+0vr6pv+d1fW/mbF+Kx7zPKvIVLR5LSoybeF99zlqqcZb1NxqiIlY2moMWr9+PdbyA7qXNPNZNE7Cnr9lDbHyc95M/Oq3VOfn8txtr6Pd8vkeP/qdXFmBjq1VmgmMiiz7LDQO1x7lF77wMwzfWc5Xf9Pf3+Vv/SNe95+/m2u/95t4vlzPb8EU+u92sbLi263Pd/2cAO/zFd/By/7BR/HeX/mDpPR7pFSQNhKq7le1ZqTNVOcige3rMKQNQlzFAnYPmn93Q5sQZUqbyazsVC8CWY61T9bnuZhQxuoan6gZUl+ItxwiodvgJzr+gFSS8Qd87txZ/uJ2G5Cp9ryIjr/5AWabSl7muwAxadG/rwXHhWiNmmfdB4LGDjFG0jCQ0qDYmwSGhAkAuP11PFYxEI1plwHVIifb+1aNIP294Oa0WfGiVwMsuaz+PfrLsut6TNj8d7vOVS5Mc+FBa2VW39nPoWK1KNIb9azrgqB2YYEgQgs6l5a92s7VOOTOnxfRf3uDzZiU5+yFT12wwYv4qjfX9BHhaIz9+VvHvf+lHb/XT66vQcdynsDXWbiOS27dOSU5F23icJg4HCb2h4nd4cB+mjnkohh/UV+kFsNQLeXYhQUb9hDE1Eeln+kSIfd7focdg8XsyttsikFLJIdKLoHSNN/Y5pkyzSomJgGsEVDAOeLBsKrQ74M3/QCvWmnqY68LUEux5srQvQXxWrLVPZNlT+k7Qd8TFgzEuUSllNVesEyNW/ltS/5rGZMQjvcXxzv8c0KI3S7UVqiz5mCn2YTUo3LgF8Ep5YQun2cYblCBgCEMeGPd0u2bvTQE4pDctTzyuXuzZ4FGJbemeeKjfJrPSFHsqmbaPOEc1GpCU+K+crP3mO0IbZnN6/FzTpbnDPvR9247R1vHLsgiMWnxKu2oaD3EYLd/EUl0PtptubG68FHU/y9USwbEpAInd9Sx5mQ053uv/rwavmN/0JZFBYLXGyw8Tnf5lpis2b/XnlZD/v0/on7SVyDf+PdR3rX+VVpAcz7rqE5PTuN5MWGo5dyPTvzWWM7f2890dS7S7Hss/rAY0wuio593/yoTy+mbpF3hKkb0OtVjvHYVKa7jGli91nHTtUDTYllcRErP1JQIKrSSbb8Pt9X0rjIOfieWYbF42BfvEv+FJS4CujPWz0dfX/71ZxI//atp/+rv9m9qZv+cp7lci/lCYliNNXgaBvVztJEfzKUwq9I9JdPvh16xx2rOY6ndh5FqQs5rUs0dcBTD8CVGi0Zs2YhQqbd7t+sQZhV1NVnmm/JolofOkwWn8Hc5vtH9d+C1n/AVvM23/Q9Ha7PZ9A4sAlHdV/LDtkDFLpZzcSvsUYqfa48Yxf7m9tYnXHchj+M6FQpRDDPY7zGELtp2q3/mWObSrDj050WEYRiM75tMhCbqvLNaRv1dayS0vixaA8J1TYuN87LBre4F/Xw6d2d5Fve8fJ9cGl/Agg7Sfy44zmqtteWz+nzAscKquXnfg/AsyXJfukULdgN6na+erzMcPPxfW4zgttb5RHdgPdlE4WSzYbM9Ydw0hlMIc4O5UHJmLjOHeU+2xmg09W+aCDEX4lwIYyaLaO3GkKhpUD5va1w53RCGSBoPtCjk2ih1omavcxHNXwWPjQ+cf9knMFrDH6I2FtNpH3pd4lSVFxxD0GamYvyS2rR+s2ksXEIkJBcPiSamG9XBNwEXF4v2+C0XbZtaKbRWYFbejli+zvn85897Dw5PejbpxiM8+E4v5Bm//XO0WCy7UGi5LntX1VUeTBg5Ws3iECJRUl9rwzD0GKg246V5PDcmwqB5lkpVEfqpMuWZzf5+/vTu5dy8OOcwHSjVxLsMI3Q8sq74SbpvOaSxYMH6nK5hb7qn9sdXhOfoZXHxa+s+bm/qgq9t28PEVnOrPP+lX6ucYlM71P3b4ocpM13s2N+8yf7mBdNhr5yaUdgMI1e3p9xzeom7zy5x5fSE03EkpUhtmTlP7Pf7P5a180c5UopaSxEwq6G1jvjYtEYL0ezXameTSrNakmrzTvms0v1sP26Ng9bPd38Et6nHr6uArPwmnweyNl9uYO2JjnW71bU55XUTS8ijltybKfl3+LzyVyCioULT/EKzgtFm9VB9Z3QsTaymFGgrceRWqo7bStQWv961/V351cs10V9TdVIq/tGa+ejmq3LrJu8fqdca+riJ5QpWfnZ3B5svHV1PrRGbikI7VtL6jVjOy+srep7E1mjngqze0r/weENcTr0/tzyW+8PqPrnPtPiOt86zt/Yh0H3m2mrnVcRVrgZW+79dS6063oohKh8r2n7hjdXq2mERUYEgH2TTzrn64i/msY/7J1z+D59HK7PmqVfkM0H9u2q4YjA/rUdQAaSqaFIrxokrjRxcoCravFrNYcfAatN6f/83ZpbRWsjYGgkYkvQ1UwSKaDNx31fnnDUHZU2HJ2s6u64jW8dny3ryOJblYfonYHZLFlxc56itqyO/Tw+dysscUwFt6T4a6N5URZlvgXJk4+w26b97xw9no9L3o+b+YTVBbxOachF6rS/y5tKtP1xoqnlpSrcJBS+06CKC9q0xBOtRI6oLEqMKRtrvIS5kWq+XeUuaPb/FQlMaQC/A2G1FKiwbdm2uTmyvN6Pjw41o8qNaMcfN+57LtXf7CN7uJV9PqAWpy6YgNEJJ5FK1uKE1U5dcpG/6AJr1khi64dR1tgSoZp67QWq48avqWEo1tT79PDHlLhkCURKf8tj386+f/rH8pTd+F/fIOXmwheLXXgWISIuoBHXSQu8cqHOiHQZyHInDyDxumUxsKo0bQtroghsGDucnjJuNiurEyJgCUQbrjKuk8VYNiE+BcTMChVpmStFuY7RCCoUhamG+/oTWAq0UClknW1smT21KzLzYTTx27TpveuhhXnf/A/zu617HYzducr7bc6iFlrQzh8SghSpV74EE4eFv+sf0jtyy2kC6EVySa8dBGn3TXaauB2jqBPSb+EfdPxZbs3JX77SjHRkvB1mQW891ccf0x+ri1tfV/ymrMbvls9wJE+F/2v0XPu/khXzhxY8RvMPY2s1yAM4VtlGnKwYhDYGxaBXeVCp1qpQykVsjyjmtBIYNJAbiGNimkZCEcZu4yAfO68RL7ntXLk+P8JxHX8t+OnAynTFsR6Zc2O335FIZ0sjZ5TPGYcswFERyF/yJEpnmwjRlgjQ2wwgIh/mCmzfOydOBgUYKgXm/5/GHH+GRhx7mxrXrhCZcvXyF080pV84uc3JyxmazYbsduHrljLPLW8aNqmbr5l0sQGvmaNeufq0FRPq6RTnbRaYMtMQBXFU0bi3ZZ/k9NSXBGpjmws2b5zz48CO88Y0P8Mgjj7HfH2g0hg1stoEYtehgt9sRQ6W2mZon5mkiHybyPNNatc7OCiYJzRKgiWEYSR5IpmQbVUE7dwtDXLqSJftdH6ErhYvNtWBgj4vo3ElHMSK2Lwvr5Qu43fGgs7pJWgBaEy5q1bo7SoWoIl3NkLsYEtEC55wnE5wyUqER5iQI3/uCf8BH/eI/5Xvf+/P4C7/0xcSoQhbDkLoNKKUyTZnzi+vExyNpTIQknCYvwoZGJATtnpjnScGVqEVGoUESDXAlDWxSogyjCohVLaaac+nJ6lKKiqzESg1GZDhkDvu9Cm7ME3k6cDjsiAJ3330PT3nKU7j64I/y6rs3vO7GfezOb5JiZDMmrt51mSc96T6225GTzahgoHe4C1hXq8XdTGGdVPbCSjFgRteMdnmw9WTrTYIlIT04NcRUQlRdZitCvtjt2M8zadzoGA0bkKgYEihBOkT+nLya7yzP54XDG3lGuNH3JlmRBbpvES35bf6GzxmvbtJ9UH9v2O9RuzCpIFiyIEOoNXOYZs7Pb3JxccGUZ7bDqGszJZuiCyCykN7+WJfQW3Tcdfc9bDZbLl++yqWzS5yenpJz4eKxx8g1E4fAGBNPuudJDALbGNlGDd4vdnvKfsd8fs61mzfZ7/aw3RKHgae063zMxS/wo6fvyqdd+xFqDORue01Z3gJaLwgUg9UccO/HKqh1914EWhTd4qR1oob3xsHnX7MkpehTrS3dfmsTfvxZH8p9N9/An3jwlzXoreBAtgcODpZFozz2hJf9rrGHiQJFkNiwFsdIDIQopKFBFL7sGZ/K33vwG/nyp/5VPuvhb7acfCAmMREfWbAhB2A65OAF8/rNCyLtvherec3y3pWf0gsTS+kk6uWxEP09ceLFES7ckXvR8vrfxQQanKiv15IGXYP6vaV/jxc/UQveXTsaeKnzQoN2D4J1PhiYhsZ6KbgpESVIg9nvO89jjCFpca+44NxKCMfAYt9LPAhVYof5Jfa/KtI7r2m3npX4ERjwnQgyUEtWUcmoDmUpxfa9wDzP3Lh5gwgkCQzROtvUooXltRID3PMz30YtmUdnLSRutZk4iJKIclahKQfATrZbi4VGhnEkZxOIEhW43G63nJ1dYrPd9rgy58xkRcreHc674KWYekFSLZl5PzEd9uwPe2rNTIdDF5fSORdVYDRFkhNbzG4vhSeWvArLuiAkfuTdP5UP+t3/yMl0s4+pH09ELJMmvSvMrYeDscfEQVufS2C+/AF/yqNee64u8ZV/d5BugWy9L7ZoTbZY1ppONVnZEu9URBAFsGhdgG49lt2fgn6dnni/nej4Vj7Can9tTpyDxT6uxqa6fXc/EouvlwSHCk1VaFqEP8TEOI7q30zwa3e/HffduJ9XX30uT338UdLNR9gfbjLNe+a8AyohCnmeO/EjijBIXDBXw6xiDIzjSDQy2gu+56v45b/w93n/7/pKhnEkmPcr2LZmWE2rjWKdimeZjdhor/RqPQfj/6Bxe4JDgvCC//TNWkg4jv2er3+WWilBiKUw1azX3ho16LirIB1dOd9tn0H/ncyX52JkRLWLnfjEautfz2lYEShqJ3q6uMZ6j1uLRx2tj9v2vkVl3+dFJxZLNaxLbemjL/goxvt/h5vP/69gd87w0Ku7+LRRn+zczSfpYgnVEtLNerLrWs8uzGGP4kKYd9hOFpJ27w0xIVELYXN1H2EBTjvZB+uP1ZMbrfvn7pelGKhOTnWb2ZrGR2EN6OsyVjFLI4FOmdkKzzfThBcm5Qy/wRUeyIExJH5j+3SefeN3+jyZc2Z32HPz4lxjjf2ew3RQYZSiYgVxiBzyjkJRAgGVqRy4fOlU97khkZLu2zEGRBJFNF4PVigXmuIGbrEXnFMWe2wB7nKnj326ntzyBEBrHWqqPRyuvZtC9W8T7ZimCQWhFrHuWY1QLfkgjSwgwcHuyM889y/wzq//Ke66+QYlmgiIdemTijURqFqAbEKR2sXV7nn0LaeqEJbZi5z1Xk2TiUzNKhDSQXdDWpwQQxdy0etxCIfaukBFNQxgLRji3nF0gL+5iAIdaPdE3yqsuGMP+cPs91v0GT6dfP+nY7iO6zZznBcssXVL7MQsj828aPjIOq2w3tYsUVWUYFKsEHae5mOxqWlmHgeGQX3VFqN1EloKNVYnRc8w4bHKOnlkxKbuDHkMvpD3l9hoKdiR7igs3xO6T3VcONCPFe7t+8RRcVgfd7nlbXq+UlVkSoKYwFRYrXO7F558cr+FRjaycEbXbUZ/n1thLjMlF6oJADWL72q1dVZyL/Y72vf83MT2oya85J3+PO/5ez/EUOd+7nMpJjQ1c8gzU5mNjKj5nl5UwXEjktxFQzJ30uHX3ROt7hvjBfqrNRNCb7ARqBq/hQAhWi2wJRRd9KgTuc3BW9gV3e93UWWNCxRb3gwDJzb/WxexUvs2jhvmSX08gGj+6ObkjO1Gxe0348hm3DCk2IkCeZqY4wBo4TuGc6U0KIkCege6GJUEGEI0kmJbzRnzXSx2aK3qflkLL33Wn+LeN72Se970SsbDjmFI7PeKK6eUSGmg1NwxuJOTU07Pzjg9vcTpyRknJydsthvGcdPJrr1zT/ViIidLKBJQfH4V7xhUTAixEW5Z5axusfRYaHFLunPhD+hick54cX99aQyke1QVxw8Xskwzg1tLoeZKi5ETK1A5KSqqkYIKh6RBMf1hM0IuNAnkXrDmIhZrH9W1WFrHW3Us7jyhqTLNhKQEC837KBlOsXYl8ZVWkaJEvBCb5oNNRCXURlKVTErNStATJdg1J6iF2JP5zBlpwrnsGa17ahxHy+tYt8pwwv5FX8zpN/w9pFZqEPPf3FcxwoaRvIsJVIUgXPnqv85j/59/x11f/iLSOPD6T/tanvUNn0EeRk0xSODJr/t1Ht5eoZxe5m1e9RLC9lTXkxXtHfYHRISPf8m/49s/9O/wAd/7z7kBpCGZGF8jRW+K0ZjnmUplEzZWxGM4dkyMJwPDdiDEQK2FOc+0w+N80O7F/Odnfiif+MgPMyd9T4smtG9YvRZbCORKybqX1hZsDak4QWvWNTxnjeWa9H3WD/88N6PVCpiJhq6HlX/B8Z7Yide2DzXz0Uptfc84HA7szvfkec88F+Z55nDITLlRg1Br1IK5qA5qEVTs2GIszXlXppKZc1GCK4KI2nHPqYagvjoSDFdT+52L+q/RuAp31gqD/e6CEAa0uFVtdxAhUAlVo0wX+W1tEYN336m5MEVw87cInoELw0CKglShIAQZEKkMFh21UKll0leHDAJp0PV3mDPTbqJOmVqyFSHoeI8pUqIgLnqRtRlQrY3QUF+QvmX2fF41UUGaYsVlUFJ6ikEL44KTVlWQ0yOwYL6JC8poIVwgJenrSg/fpxvU5JEJ1Nh9ynk/aUwShGGTEGDOogXlQQVHGRItKGa7nv9Otg8FjcVWvmwuogVcEYp2UmMcE8MYicOo9zdGzaC5P2kU9X7uTZs3jIMKGA5JO+OmIRKiCgDrOSRd1y4GaJWS0oz0JI6tmKC5c0dEOunZi+Y0xisUKUgqvUiwlqoErhB7Y4rq+KLnJlZ7e2vtDitphtyFpmxO3IJHOaaoghbdjaf114pRmdR56JgjziyruJPSZeFNHKUiq8KxRnc97HV6RkZEs6YtOge0QYz6TdrN3Yv1WgtkCbSUSBI4AeUdzJlSrTi57cF82dIxZfeH9OdrP/YLefZ3fi6v/YtfxrO+9TM7RlnReV6RXtBIM78rhb63UlwE3knJCmx4qO+ihv7d4C8Rpg/4KwyvfCkX7/7f0H7+PxIffSPJGpsEK4jW9Wx9fcVjaR1ej3yW/UiJh+4LiwhaI2DFaeLwQ9P1ZQIpMUrHbfUUrQCtCaUFJG04uXwXp096Mnc/7Znc9dRnIvc+kxsnT+f6eDdTGigBpqYCU3PNylOzHMxAYAgQWmWaC/t54mK/48ZuZj9X6lRo00TLMzUXKJVIsDyQnktKic04Mp5sNc6GOy4e00Nx6xYgJxOdjpFDrZQycz5P1N3ExWPXuf7oQ9x4/BFuXHuMeb9jbgcu8jmHfCC1mbNwyjZPTLkgIRLjQMhqK6MRyXVuBnLFuvce4x66bBXjm2ul2BKLoRF7rjNaiOfqeJbXZplbS4GE7bteZYIAmgfT77PC646TGvfC7Yz5os0FrPDu0KHP09q8W7iQUmQcIrUmPuQn/iU/8pGfxQt/4IvgdKBUE0uLCYmJXCPFuqc2Kk99w8t47bv8Wbbnb+LJu9cSnnIP42ZgHEcrpC4EqaTQOscoWa4tinFtaqDlRtVSUe20KiMiUfdSBpAtwgaRAZGRhvqgKqum1xlEuy+LNBPJOVDajpwbcynQitlInT9BlC4bJFPJkKvhhxorauMIxbJLrcxVMQy1z5kmVnDZ92ZAlg7djm2cvfznufE+f4Z4/2vZvO73NR5sLkCpvljOC4by/8ZDp/FCcL81Y7GCBRdHDo/BfT3IsgP2fOOxp91wnuoaLV/Qdf/snj0KJjDquc62PHyf8lPqsExT7L56k7lbMM6z1/w6l179q0cXJqvfO4a0gh1uhW4dX11fA42Vmv8aK9Ifa5Gp9ec0sw3F4tTesMGaN+ScVQQ8zyr0n2fyPFOLSt4EUexnSJEhxt5YMHQ76H4Hyz05wkrEaGFLpkrFefVdnfdt99ud+WXLPfb0Ohbp3yP+2WZ4Vz6A/6zHM+yOOHLJlJKp1ZsTai5Gf/qrmolMiXVXUT4hUcdeizHUljTDHkEx42WtaaGqf96bO25dk08MadvMbLf++9YXt2V+r7gIhGVNLw87Z0kafbWAVnrBInqwYG5PdDz/r/5d3vRzP8pzPupFvOLbvpbzN772tnMLaaCWeXke+rj4HhyiJaYMNwJdVz/79z6e9//KF3P3d30W8XP+jor/DhBrVI5HQ0XX3JdHsbm12IfbihiS8nZDYlvUD63F8icpEFukifONe+blaGhvzUn7/bvtmp9AKPSJOLx/UO7ozd9j+7sLMlcMTblzjjQq5htKJZq/rVxvq+1oQin6M9iYo5qdLOKfms8UUXxjd/BIv3VehHLcMmenp5ydnqjYaAvaLImFDxNaMD/FRJmwucMirPREOSK3ndFiehVfEqtPcQ7PYov9R3VVI88JF83Jrrl7/fUauLC2BMHmYLRCfudRNxM37StJMG6fxqFiDdgQExHC+R3hmHMbFm/AeYRIMNEt6dy9YEKhnlNT7hTHcx83EX5dDRcKWO8ZjiV0DF/Uv8bfwyJ+gPnkLhQl7qMK1lhUKLlw2E/sdgcuLnZcXOzY7fbMRc81hIEYq+VRlgYQzUUVOw6wCKBUGtUxtkbPK9HjgzvrGIy/rXmGijQVTk+gTfhEyA2N5eeJEoPauAFkUEEfv79a4xuQpMIBtWoTm4b606XEnjdzv0LndgHpnp7OjxpMAF5xgrb6e/9O9wUtDna7C1CM57Hsycdjb1NEhd9X9nipFQmr9wbjFtsaEf9OcF6R8y9ZiWGLaKPnX/zQv897/dhXk2ruOSRBvOZ3iTnWc9z34CDEYVQ/sBRtjlHd522G2etrqzRKUFE0z+8tY1b75/r6E9E4WYJ0sQCk68VZ3Itx7xzToucoj/JW+Pa52CHdQp33ITz6Jz+W7Y37ufS6X1z86bBevywcjsWz7C63N2Ds9qQ1baaZKznr6we0zuJOOrSoVPewW7nvOlzL2LrN8xpPcbwAORJFXpfJ+ppRn0tY+/XdwH7DZy62VL01Xz09AFljjh6Y6FqVLvRmEJ7hd/pZXvvQ+af+fv0yOzebX76G7BoC1iRenDulp1P7dddlj+v2tq2fWq7LBqLR+jrDbICvhcaCoxxzJOyn0OPVsP4u57QjaJXPE7nZ/i0+BPZ75wf4/QxIvIVL0ug4qp9P5zDVSv2Xf3v1LatvvIWX5/fBOb7jOLLZjIybDeM4Wj1OYJ9nwnSAedIcWukrtY8DjgU79u1CUwt54o45jnKNKzvqY9LaMrf6wrhlLernwHLXoRPv1n5X97+Mc+ffbx/2+k/4cp757Z/Fa//iP+PZ3/4P6HfsliHrt78t1q6f09FN9vW8rGBsTTVfYLdHG7ionX9cayrqL451VRP68PVQW88HHd3eW+I+z5/78yGIibaq4H80fv+Q0iJ0Zvihil4rfz94rCvgAl4upoLtKVLrUu/XjaQsPuAqTltZgoW/D8uaXNnYlTFZ3V8XtlrxQbC1L5i1KqsPsheJG9l+RxaxqeZiU+Z/t5VYHm43FecIbhG95vQOcxevTzukaix1ddhyujnhVAZCbcyHAxcX55Sb2ZrCF2IcGOJGdQhCIoWBmAZigBoDjAnGgZIimwpjrYxzIYyJ0hrTXJiz+o6tivrVKLd1zurvVGmE2L17td1B89i5ALVoY6IQaAmGoHFKkKD9ELrgoHLqSrZmScaT8g1UeahNmyEYOqPTVpQDZP5uq0XFsBqdExND4PKrXgbbM/Lle7jy0hczjRtopcdTtTTN00ukbgTqDkohpAFJA0MaCTGYcNuoDd2MrzCVwrSfyVVFJCVAqolp1rVYMS7XPHOYDkyzP2ZKqbouRWtaJTgvJqtuTrNcCqB5Qbpd1bUnvR4TtHbS/cbg4wzGM17mkog10uu2cbHTS0wsTlrUmCNIz1W3Umk5Mx/27Hc32V3cZN7vqLM2EjiVkUtp4O7tlrvOTri83bBJEWmF6bDn/MYN5gRx2v1xLZ+3+NgMI1lmaglqr8EYUa3vM+KOpBmbrgcrNohVVT4IQfftBZRF5/MfvIW7D9gsD3WEV63tkivF4L6N8+QWP4Rb943m0YhmBapbTd9TgW5j6/K9/cyCxVb2nh5Lspjy7jt1x0pP3GtSvR5Ije8iCKhjd+t30vfbte/gPl1D6xq1MeLaZ2x9Pvd57Ze22sqOYk7Dl/w7+xblGKX7LQ23eMtr+uvd99EBqZYXaVRtFNdWeJN9kccPbt38RPsp95+LL+Rj6d/T/ZZO5m99qDrv4Q451n59cbspxu1kFb6YKHYXGDQOUUqLlkCwevoYU+dheS0rjpXZGlCfpNBa5fK3fQ7N/K/uubSGN1avNEQqLRr26GuI3lari1cW4zXq6yIhVJJxMY9xutZrfR1HqM2Fk3RWpFYZqMylkJLW9xYTUMqmWVCK5pt689lpb7XCzuWwPdHmgdsfOZphqznhKoQ2kZc4l27nlrr+5XrWi8nXmfqKHD1fxXhw/my/z56vkv75vjr8swiB8HGfQ/3xr6c+9nqrZ8HqyTw3V3szmGqiU851rF1oyteKTy6Pv939VFsbO89FkBi6P+0+SYi6FyLHYlj1aE0/8fEWC0250M+tm7YP6xJg+e92eIBkw7gmOLTW2F9+Mg+/4GO4+7d/nNe84C/w3Jf/hxVgq054Svm2oj4PEGqtq8Kx4+5zC/H7GIj3VKVPGAcasnVFULfeDVbTrghuEILwaQ9/J0Vm6iZ1BU7vYOmFsrrhCEKhtUitQstCJZhyf2JOI3HYsB82hGFDiCOEQBw3bE5PGTdbhs2GNAw0INfMlE1ICg2ExCZHHAO7KgRm65hboWbrhqnERyWXeaAboEUtfLAChNwq+1y4ebHn4cce500PPsgb7n+ANz7wEA889ii7aWYuqjKnRkyBhuzBWU8IRDd3LKi9Lb5qiUJLkPrk904Cx5NLujPxf/XQzVo8Lrsjj3VRUE9ANi3cCxxBSRwF+K3hHUCPt+2V8MBapOvoO5dNDipfsP8xvFOJ1fX2QLV/soO0dgLBRHLaEKhZKLkxk01trxD3N8w/aoSwJcWBEIQhgAQVnvq1S+/I1XnPo2fP4PWHc5598zGiJOrc2M8zFxc7Naibypg25KFQY6HmjLRKkEqVQN7tmfY7oikFt5LZ3Zi4/tgFdd4zpkSojf35TR558HFuXLugTIWTzSmn45ZLJ2eMJ6e87h1fyGa75d3u/2WGYTDjqpuBGGjmypKeaWytUJt2o01e5LoqarVbZYWS7kSLOm5igH9V0Zxmxrw0OMwT12/e5KGHH+WBBx/m5sW5Er8SDJvEMCba9lSLXedMjRWadqie55l5OlCmbE6iJfGq8hASgTGpWnEaNqRRu+1M2WxuaxAhDpHBCCNDFO02KJEADAJDAFVKVEG+cRwJcaDJH0HL8I/psLjCAhBzAYwQ2Ky4RItV1clZkzBA39uqJchE2Ei05JCS3lJMqu4ZB73PRhRVgY5Iq42PfOkX8/1/+nP4qJ//fNLJSSfQNys4G4aBs7MAsme3P3D9+iMqRjUEJaBbV+dqAEMzQl9rkGOk5Fk7AeeRcRhIw0AIkWQIUw2RTUqEU93DcqnM08QuRDXZpVDnTJaZFCMtDVqcM244OTlhTJGrVy5xerrh6uXLjENiu9ly7dpj5Dxzuhm47+67eNYznkIrKnqGER+jaDGANoIyt1WwAvHUk20at7rDXTURa06YBBU406DUwAMXBwuxA5LznNkfJs53e26cn1MaXNqcEJMKq0kMvXBPnSl1rj+xvUrJONUFgRaH24OzEATSora/cicBF7tcC02ZMHrzeFGvI6REAHWeLfk854qERBwGkKBkfHO0adbBB46CxzvpuHT5Cqdnl7j77nt9c2e3u+BwfuDmxQ2GIXD1ymXuuetutkMi1Yq0QjscmKaZ8xvn3HjsUa5fv8682zEOA8OQqFSeUR7gU88fog6RItoZOrdKCIHN6MrxmrSO7k1bwN58Q3Nf1c5XJBBlAQxaoNv7VuuqeFO6+Mi6o3NA8KTeS5/8flzJj/OGu5/L5XKDt3n8d2nNyfjLzfJAeElOBUocGNvcbXX3WQUTWXM/SwhJTNSu8XkPfR1f/qS/ymc/8u9UjCAEogcLMXSCS1efNn9odfY2LA4kLcF6dwJWQMQSsknv9pNztkT07fOhJ2FWYh3FAsRcrGi4i01ZIYnZ1ygRCYE6btmGTEq69kopzLMGWU78bCvCp4gGwt4NJdCwxioAJl63DpvXwsLqo9Zg4lMEVWi/kw5b+z1XYUCLhMVX1DnkvrcFomCE2UhogRb12iSI7ulBCFXBIQ+iBRWQ9C7OnsxJKbE92UK5pH4SaLe2nHFts2BFRtr5VR8Y6BR0O6IMW6TOHayiQUyRcRi4dOkSZ2dnjNsNwbo7aJdH7Zyz2WzYnpyaGJT6G7kUdoc9u/MLDoeJw6QEkJQSwzgyDloMVeaZ3fkF50EoJXMIsYPwIYT+ma1pkeI0T8sySGnx70SQusSeAD/7ri/ifX73e/nR5/8lPuI3v5GYp3Wuqse4a9EaJ66JyC2g7nIcE/8WUM7+dfS6I5IkS2zeE5d2HsXAzwWYPSZ0FVu7x8DvCsaT5d89+dnEEopLHO5Ek062Xp/7H4RAv5UOJ7Z2khcLSaDHXpYMX3cnWPCPYP6D+m5SIRe0eEc0JvJHo/L8B3+NX73vXbjvdS8nPPZGLvY79tOeaT6Q84HWCpgwaEoDm3FL2cKQtGMPQ6UOhTZU2gakCSUkJDdChff//q9hiCaGKsFIfcsDDLDKKtwSkiaFWtV9xwmP68LgnmTve+0KbxErFgxWQOXgnyxJhLXAYK2VfHaVV3z4J/InvvvrCNMFtMTu+e/BdM993PuyH2UIMIwDwziQ+k8tqt+ebNhs9TFsRnrSn2UPOgI7u7BUo4sF27+74I2J1mhxXD3qLuTX7onz3uVr/TwLvqHzpi2K+rbXNhpXX/ZdPPLen8Dpb/4E6aFXKVjIMtf0Wqp9r+2j/pPaC6u10KWRSybXTG1aAOCJ8wXQvzOONIwIQh5G0jBRykxpYvWpx2CpY7CsdjgXaFAXxWLuGAmxaMFrDIQi1Bb6611UQgm41TrfiBWNF6Y5s58mNodJhQoE5rny7P39PBbv4/HDzHMf+h3OdzsudjvOdztuXlxw4/yc6zeuc35xwW6/Y384kMtMLoVhTIybgc124PzigpPzm5ycbBiGQAxuBzZIGLVYI2pH1uDFW1bQrx2HdL12P+xWjPOWn1gSYvF/9TlpC6lZquKbYkJOrQrNuq4AC8ZkWKeLdrXawArna1CSrQiUot//80//IN7xkV/mV9/mQ3ivV72Yk/1jdp+0W1Qn6BcVRvM1V6qLY9r5VsgBgs31UgrTNHM4TCYqqV3W55yZ1/5kx5vF8fUjsNx9exVtc2HRdrTyfK8qcRHB6ms+2OueKFH4/0fH2l+49fk/+Gj+QhxgXROgbh3L9fvUNno8cvRpqxNYfq1NCcLqi83sp4n9dGC333N6OHA4HJimA8Mh9sJ7EdF9B8WrnISwfJeed7cvbRE9DL6frazm2gda3r2cqOeh1klsLBcRLI661U9YE477IyxjIn6OHPtJvp6Xz3PfbDVohnvL+jUr4UM8JjQxFs+bNNpRrFZL7sXpCIaDRjyTFmyvFeiJZT9e9o4fzru94j/zC+/wYbznb38vUjOtFC3GLEt+pxZPgK6vUf9TTShknmfraHMwQYI75xiGjU1zL+A1EkAxglJR8T0X71kTU5sooWWeM0UqsxXAVkBSVBJUyYQ8qwBKUDEHCWbDqnVhD04OVmxLRfGakm5CIKSBYdwwzsVyeqELPKSUCJtTfvht348Pv/5KLjcxwfuZWjTXFsA6DKGNUWJiHEZoQkmjxXZKsjoS4xUXQ7BrtzXSZTSb+4CFl97zPJ56/ihveMY7cpIPnD7yOkRUdCelRMkb66LcICp2eHbpEleuXObq1atcvqzNIgYTk68N5qKJaBdT0rnnJK/CYZ5033CBaz1L85t07MQEB2TVEXPhCZpwluHGbS3MVgq5NR5+tw+nnV/j0q//GN7VqnbRhT4VLNeoYrQSgonT6L5WWlXMcwqk3Y5w8wayGZHNyCWBk3CCpKhFGtNs8X6wjkSRUKt2KzLxGPeJS1FxoFJ9P9RHucO0f8uk+FiKkU0YKKnQclFBmaa7dXUxPXQso4tnWsGTAClEmpG3nexRq1jjj4pQVBSjwlwyF4c9mwsXTQsq4mXNCS5e9CVs/8M/Yf+Xv5DL3/55gMZXMcry2dDtboiRNA4qMi/C3V/9KbRayIfCPV/zN9QXDoFaYWoqmP7U3/s5hjhQBhXbHrAGHyGQ55li8/lDfvBfMgc5igeUtGXiVtEEMlumNJXXSiExbCLjZmOdzAvzrN0ya8kqZJWv8cE3v4nrG+1SHMdEGAYkJJBAcvfQETjzxamLr6VHo5SMNCPih3C0VwTRbpihF0m7X79g7wua67vvar/w/dufsNhL49rGPM1KJp1nJvMdc85W9KQ4bJMlpptqYSpZxY3yzJS1U+mUC1MuzK1oh9JazYdXwo5jQsH0A3UZBSMJAbXomtcF+n/nEvm/fOz3e4ah0poiAy4YqEJTs+5v5QlElc1+ux/geYpOzHZ81W6ZxsBaME1QclMbB8TufygBaTNDHNiOGg8d5pk6T7R5ItaqXcmD9Hg6BNE55535guPUyl1wm+cYVS6TzdhGy4XY1JfJRYvlx5SQMXayVfUgoqk/Gr3ADxDRBiIC2kxEbvWf7eKTACaM04V9G22Mhm8b+Q+ULA+asA2iRV2yiK2pxVMeSBLFmIKR+DEfLhSxZhVQimIyXtuZUiREawyE+75FcR+7j37/gu2/Tt4PQaNQzXkny3FqzB3DQqKySaBFrCvbEGKEovtvbsql8YYJ1bChYvdq2adU1K2a+BZtEQ6qWQVRgaPcewPCnbaR1dvB3XV9if4idMDCY4nqySkTjKxi+SXBY/xWKktB/iLSpJhyM/8UPJfjAjPdqUGsAYXnD7xAzOMkj3h03RVbAyo6OmjRJ4HNWaNMld1uR50PFKmUVmgt02pWgnwrR4Wxb/MfP5fXfNwX8exv+yyUomaFtiLUtKHN1g14hWO4gNbyh2b7w1FkdkQnahKoIdKmvcOWpJ/8RqYP/hukX3gx+f5X06Kgxlrvg0Q6FgrGHesY+4KttD5eGGa6EHkdY+/OHgFtSGhFpgGCNPU/eiOmpgLjTYgyErdXObnrGVx+6nO49LRnE+69j+n0XvbxEpNE7d5N600Aaw20oiUrmyEyEAkVFbGdZub9gcNuTzlol9NSTUS8RSU8CiqslGLn26Vk+/+QqEIXW7/zDsN5JFAlQSgUCZRgwqxojnc+OeNaeYj7H79JvjgwxEgLkRojkKjAYTpwfvOcG5ubbNOGuI2MRpSNIWoTqerdZZujIXYedh/LUkwYLccpQJBCDI3R7GuMJi5QNUZyD0Ltgz4/z5mcJyOJCnFYxC3FX+z4ymqN9U7IuN/ixWN+vrWfr8f2qTt4YjnHRo2BP/fTX049ibA9M2HoatyHRIgnYAJStSnH5qlv+i86r++7AmB5xUGF62lIXbCThiAtESSR4kgMAyFqEUxrQQvDa0BkIMgAw0iQgSBbJGxBRjwGL57HN76JWAVxQxvzSR6h6b1u84Emjncs/B8RGzsTFvGGfYgVLtRKRShVekxXm/utyleR7gstcSV27ao9J9z9Sz9HDaKcVJtHpTZym5FSDHe5g4/bt7Y/+OUL1LUcfe4udrX7Uva0CN3Oirj4nywfuhrnxTavfhePIWRZJyu73POhhk92DM95k8b5oHZ2Sd93+tfDcc5wdX2tLXuSn9cyDqtB7J/VUcjjoXqCMW2r9956bc1Orq1eu4qgjNC+yjMZlq6i5yp4pEVk1oAwT1BLn+cpBYaUNC8ZRH10Ob5A97nx8XHHp5mQgZ9Nv9eyeoJl0qx8FsdMl6fEh5o+YZpfsbij1a+82pjciTC+4MKrM9BIMtBcyZflmjVWjnhBQa0gqRmfpmheBstV9vetOGzmJ3qx15s/Hz3+oJyHmN++zv2/+df784t/JGtxthU2rXtm7H5v65OkHn9WO/5cf/J3vumreKdP/Qe86ru/kYv7X3ecOwtCOrnEe37uV/HSz//bzLvz/lHVfXAgDiPv8Bf/Bo+94td46OUvYQECobXCz/6dD+JjPvJ9TGi/dTFksdxTMGBAc236RsHmYK1dZFGbKDUtnB5ZCVM7ltqNo+0/x3HOrfkKjwliCN1n1Xkgx53o/Ttqve2era3Frd+1/nn7IT4p9BP+0NzSH+8xDJW5VKIJTZVSkBZ7bU51/4dFvEPjqKY0z+Z2TddYLjoOec4cDjPDcDD/2Tl6HksrH/ZWNeT1OHo83+0f7WiNLlyfJTbD91XDC3qTk7oUt6+/q7WmTeJcCOAWboYWuQXCeu/o9ueYP7Ta/ewcVnZ6lefqexP9z6vnjw+Llli/oxdU2l4eRHlHwQXdbM85zpvR185blLP1622ej15siuDnu1yyBPXP/WWd25Iz0zQvxdfTpPme2gxDNDy+aYG7iiqL8aChmsiZNGu2hWj+p2m87ltoRcXVQ3iiNf3WPwZr+hFbIzaNoYvAKEIOgYKOQymVMk0qRE8gouJpfqGtqFhZEBP9s6Jw3WcqOSZSLJSQlAdjGJLUorPShX1p/R72nH4QgljjiR4DWAxnDVs6vmRzYhHqMW9NOJ7rYNdFz7n4HPTG5SJ1EfxrmG+5rF8RwBtyudh/lo44NAn89kd8Nu/4g1/Bz3/oZ/Lu3/dFq/Wk/pnzmpeiTNtvfY+18W+lUqypT13xewPK/SBGrj3zT/D409+Bp7zsu8CagOqSc05U6XtjsKa30fDBteiH20SiEOJS39Q4FsNqrPhVfkf8b+7bmZm8/ic+hHD+GOf3PBfZX2P74CsWsbrua/p7V7lJ9wX0HxYjurtoudbSmGfl8cUYgDsLX9T5ufjb3czZ2KyxsI5RrF1qs8vruet3pO9xPq2sNnTZ+45tzhIHrew1sghcIYs/7qIFYvfG9hK15ct9aatf+v7SViexOmT1OhcyFPMv11uQitbpPtILiOtqoIJo3r02xfmD2gKC7rqO2/tnt9bIVZvsWisjKxdbYpjF/2Z1dTo+HcUsebUeVvFM/69/xrKn9hyUqC+v9L91vNOW+ewfesvj6LtWw7AurtacluJfgzX+PTk50cfZKcM4dv99PBzYTYm4tyY5B8jNW7fQOWaC8UeMUyVFxQPvyMDs1qNhVmqZhLKsAP2XXaPnL/t8bqAT5JZ74X+S5Ut8bvh9efq3fAZv+MQv55n//n/oHqB/y3Ifl1xVO76hy3e0lc9mi8aWeLcZ0u+TvcqnM6vFhN7P1tQPiTkYt+D2x9KIldvsTt8bxHkXhsvE0IUWojWeSmkRp09J8+P6nNZkRhcK95Fpvg/S14EgSBQv6zzah9b8FR02w2ZdNK/jC8udX4+2UwU7V9D4x33OrHzIFoQbz3oBF/c8m7t+6bsVyBdBmuVLfUaJNQIwQaTqSeWVYessm+7H6nUG1G90djaSbrOdb+1j3zJDndnKxHYYOR0FUiKUhrQZDlClaNOwkolhZBi3tKoN0tN2ZNgOWtOVhLBJyHYDKXEA4mEiJOXYTIfM+cWBi2FinlVcuBIoTX1So4dDbcSijUGkgUTzvYPOkSLCEIQB9etKqQxWM6i1oZrbzLmSayZXqIcKxi1R3mJY/D5ZYdCA1Gh8sqrcMrcgVq8o0pCo0+DSb/w4ZS7sEeacGaaD5vK9MQsCm1N+42M/lz/5H/45Z2VHbZWNrf3E0PeUal7mLIGffof35amv+hXue/i1ep5RxzumSEwaZ7oovXKrlGdRW9H8sEgXPlzz76uJxIbOV9dprMLDaK4jmM8PJmJo0VBYhGE9XpOVDaVphrTYiOmbdN05X6bv0VkVK0qtzDlrM6M50+bMtNtx2O+Z9wdaLiSETQpcSomrm5Gr2w2Xh4FtDIRWFSPdVXKEGCoyHf6fXzh/xGNIyuXMWXlLzfjgpgdNt4TumxmziKaxnB6i+WlUWO2JfLEnOtYcCRGhjlvCtMe1QI6P9oTv644tzXK0iz/V8cOqbP8uyNc/be21HmOfS22vO2geO5j9t/2j9j2k9VimNo9QfD80A2xj2gLL5cit10Nf9/re5XWrydvj+yME3zDFujrP9Tj6nhq7r7r4yMe+5VKr518bbZ9yDEzpCba3VPAm7RgfUrqYo37iEhOz/I5h9/11y3ksMUNb+ap2vbf6qO6vrD73Tjp6LcsKG2q37dXGuyzKBW6tEqruT0Mbu72LQyINA8MwkLNqwjQTG/Scch9b9wWb3h/HvgSB4Dlm1RNo9r7aQhdpc0wvtEpojWRzK4g2dlPcrxrntxBCXL6z8oRYotcNe0PTVDNDGcxXi73p61KHZc0Ai3L/53limg+LTkUPBHVgew7Bx8Hq3QTRGhfQ+hbo83PNQ1xwVdZuXH9uPS+XpnDLfPXXVYtnQzv2E30NuJyKYhxLzJc+/NOZf+bbSR/yaeTv+TLqxeM49lG62FTrfGbFD32c16LG6/XRr8rmHqaZ32jGNQ5JdRCi84WNY4pIr9VoTX0BFW38w48/kgrIExWc+FPVHVn7n9M813BRf53dmFIK4ZHXcfXnvpUb7/ZhPPvn/i3ZglKaKRgHsW5R1avD6OzMXiQYumFxIYh1sYaYc7cmuy/W3ScleOe+Zl2jWky0OkOZaEGfJ8xK4RAVVIIZkUiNmZr0BjtD21XgQZXzS4VshQYVsc9LSBqRMEAy4vIwEIcNISWI+hp3hEotSg4cEycnJ5yenTBsIo/XwNfsnsWL0it5UjhoA8JVoFmyCpKUwEJEadrtoip9lCkXrp3veeDhR3jDmx7gdfffz/1veohHr11nlwsZJThqQ75GzYVKNXAgaGdSKYTQzNDYHIEFyPDAWJa/hdV9OD6OnzsC/57w9W/BIf0/d9zhhBXt7IZlVExd0MFQOV5RroJ3/DkczfD+5PEd6UZZlZO9CHEhGHmRX/eDLMGhKQ5V4625qipuUxB5GCOtJkqeNYgqE7t9YcoXpPkG23zKpp0xypYwjmyiKg7/mcMb+fGz5/D8+RrPihNNLhPqgBwCVFPRFYgk4oWQ64HdeWNOiU1MNALT4cDNmzc5HA6EEDicbKFVdhcX7B7fMx8OSL0AGoeLC248vkNK5MrZXYx3JU7HkW1KvO4Z74ycXWYG3vjMd+KdL36fOCYt7onqfBNCH/keJFEWK2hASDA2bzPj755ZlIRYZ9eYohYKzwcVlJGAxMScG9fPL7j/gQd5/RvfxBvf9DCP3dwx5UaKsN0ELl0+Zfvkp/P7f+6f8vY/9QW08weIUbtWqmAQlKx2J6LiXikEEoEkkYSQCqQKJzFxdvkyEiPXLy7Y58JUCzHBMASGqB13xigkUYdjSJGzMbBNgrSC1EhATEws4emwO/fwfWpx8tzx6Ir6GGF8VejgCRcndQTfD8TEhXBATx2cZMVYKSVojVrgw1/yRcRBRbnGQfe9edYOWjEmNpvRRKAy+/2Ox689wrgd2Zxu2Z6egiR14GZAvOuBqCBRzrR5puwPzCtRECcvKlCXSBvtspgkkIZAbEKqgViF1CJjHKxrio5MCJokSknnQwzCyXbL6ekJV6/ezaOPPMi1xx8nBbhyuuXypSuUeU/NA7VkhqQiU2MU580jBoJrhwndp7XAXImwc67k0rpglwu9abdxmE14BOgCcE2EnDPn5xdcv3mTazduUBuMmxPttrDVTgvRha28EMvJ6VWTY5qAtORYF5hSER8taNfgc5lFFrBG67QZVDDLi7fcrscQiWkkxERtjWmeuXl+zvWbN7jYa4B9enLCyclGO8u30gNad+wXwYY/vtXylh7BxIHCENnvDszThEhgO47kQ6JM2kV2e1dgqMK8P+iukjWxud/vuXHjJrv9gWp2KFkBS4qBOoxsxhFSpNTMVIsKHp5sELQYTYv+loS8/l9Yd3JpFmxphx1TVS8GzQcPpNW/VADRwgCz4+7WBN8PGrzfIz/HTz7lv+Z5N17Bc85fRYvBIvDFzbcz6orLVQKvu/y2vOxp789Hvuo/clL2xwGzP6IQBiEMUUFUA9YHqXzu499EM4DSFWi9ULE2TzeE7mfoSbgImngDG5tjnuh2f2AZK3cIFnJF6wFOq9U1rXCAx33QtUrzsYhHVZViK5ZzkosEK1ZNieuXn8HPPO8v8TGv/rds6q778Fo0s+zBghajIqJrhsVfFBY7A0IpjozU/rclXlU0KIlAVHHFdoftZdmKakrOlGxCkjGqXUzLPe72QQxkQHlGNTdoSt/QOSMQA6lFpFTIs67HVilVCye101VkGEe22y01Z7bjyNnJCXfffTeXLl1md37OZEIAlKIiX62CgcjSGkNSW3BysoWzK7zuw/8uz/rJr+P08JiCsmVms9lwsj3hnnvu4epdV9menJBSYp5ncjal7+DrQEGXcRiRoODwZndhZL6LnuAShBQTm82WzTiocF+tTNO+ixeO44ZhUAGrzWbTuzjQtEN7EC3qAt//LYKJgVAMYKyV9//Vb+S/vOBT+NDf/vekmg3AAQfPFCBw8MSK8zxGdWDNsFy9j61/75pU1pNk+sTyXrjltbZXrcCHI6KiISptpYTu7++JQAdTUMEPXHjIp5jHggGaFRbUVi3vtZBMOxBm7zxS1L+DDgdfDb5e/rAMoKnrWyR2BOYGOntApAuHlaoFvKVkZise7yrthwPP+r2fYbe/YLffc5gmLcIrmSlXalXgMcbEfj9x2MxMcyZJYhAFIENUgcrWElKEWPbMw4a423WRqBiTispJYN6csp0PJpZoNjomQszEnKi1cUgjYy0kWHVBWM2PDmq1JU63WPUQAr//J/40Z+fXeOZrfofYhZ002SbrfUACv/0RL+L5P/ViXvlhn8g7/NA3c+PpzyE//W3Y3HyMw7u/P3e96pdJ48C4GYnDQBosuTWmRVzE/DjfF7z4/+ixEpO9VWSq9bXpoKiL3ii6tRbX8uSzg4BPlEjvSXSfPo6D9Omkf7/r575VcR5MRMomn0+rigsTmN0wsanSz0VF0nPxLgCzgv69e+ATsFnfysc4jJQQKPNEGTZM80QVWRKE67UGrMGjZqCnYyH+dxEThUhJccSiHZxrdSK3FZ63omKHJsY+l8qUC/tc2JqQTTQx2f0hc/Nix1POf5uzmzd59OKcCxeaurjgxs2bXL9xg+s3rnNxccHFfsc0TR0XlXjCRjY4CdeLBubpwDwN5DFRxqT+SDD8wEhJ6p9o7BMlqPjmOvm8ste3/gQWtLwtdsxJI6FqsqyGagXIRiqWamJT60IBNWk1VC0Mr7pHtdC6cFu1GDHnTAiBFz7wE/zE0/4s733/j3GlXVCHQddWkf5dAFnyUUKiWUFcM/+uSiVU23nMf+wiU/5z1ocLhpQu5rGsoU4eWe2rDTou7QJufj3QehIsxkDJxRL8hVaUMKWkytq/5M7byY6PJyJXvznC9dqmv9mjJ3jWcw4Wq7T4Gd0SCou4Cr6WcV1ibv1EJ+PmogWth3kmmrjUfr/vj8N2QxqSChCmaNihdWPRBbMq1rBTsbyAj0Ht2I+uv15s9kTjdnTV7ehzmv2126XVnrkkTpfP9KLPEAJrX6m/ZrWPrIs63pzP14lPfoJBkFbVvjp+INAsL+DYhgtJtqbCXtX2aCV7mM8bTZQ8CK0EE+dxa6c+sI/Xn/rN7+MX3/mj+ZO/8T3Uova9AbPlEW7vkLnaH9vig7q43DzNHA4H28/unGMznnTforUMLaBd8dTelmoEo6L7ehRlGuzjyAkq7jDNk8alUnqX3xAVI55KRnKAFE3oFksUV2orZJoJImtnZprGebVUcm00w7niODLkrElCiWq7gJQGfvrZ78kHPP77/OA978BfPn8VaS7Q9lY4mAgi5LmQixZElDhQxsAmxC5K2DFGcdOwrIubIXG5FYvT6Zi5xkVq1/+rG6/lJ+9+Hs9/5DXcl2+y354goDhqHk3A02yLADFw6fIZV65e4crVq1y6coWT01MVsRQX+/J4pPUk7VyURDTPE4dpYi6zFSTXnoR1XM/xQcVVHAfR/c4m6SK0Ukv3KZuJtF17znupj3PlSZw/610Yf+8XbxMudVKA3sJg4iIJRJhy5mJW0coQhCwCF+e0FMEK/lsQZEjIkMizFiV7IZMmjQOhxkWAHCMZ1Lp0nGom7NCUbOQ1SXfKEZo+UoikcaNkmdooZUerS/c0BbLU9gbb7HOtS3GKFX4D9johiPr94vhetfwpMNWZm3Kh52DNRAbD9s6+9XO4+LjP49K3/2PN9bZGrosAzELiaSDBMAYVZ3OE7HBxrmJ+dj9ybZRxQ9rfhKoCBTJWAo0JaKOQ0ghSjHCgfv52u2Vso+5bIRCSke/qTGvWpKhh2LUKkxOMmBgaTSq5KFMrRl1zMQTmXDjkiZonJQimRBxG4jCqeJ0Jy7VGFyf2WKw5jmF4dTV8PUo6Lg4HCBCqdHEUF6yLq5iu1KVAR4Tl81mKulybRbkGViRtcXaeVdxmmib2e+2KpvHCliIJ9jfJtXCY1c/Y2+sOhlPmUpiLifHUdvTdPQ/TQIuGas8r+M9hGCglaCOYeV7m4R1yTJ0IqdScWiIlZMV8qnIgNO43cXQTl60rY7Fcr4uxt97prtvG5pEbuPdQRCAlFSpqiUhlGxsxFOZ5x8V+oh4OhJrZSDOCpKgo6IpoG6SRxOKnYGRcacc2DuVGuKkvAeYw655boxKYRIhFRa4imqOysgj1RxFC073c9wjchhs+DmusrTEMERdWbBaM1NoYxtSxRi/OSpKQEGlBBdg8NxFSVB+6qrBZAlpMUCvBCexAa5WchZyEEBs5a07RtxglCJvAPiAlmx/m52F7enC6If2/YjkV9Qmt+GyVI7BhWnw6H4dGL2qrreke3KANSnnPpTLnYh0TA7PeOrIJ2XiupnbRH7oQgvvQUitx5TvXUP5Pr4f/R44egIJnHNxodcGpPjMNZ7R0zBIP9DtBr4wwTKTDuvoCejQia/IZJujnrFxZ3tOMJIeTt49LZ/SFulcFe04bS1k8HTbEEzgtlXJxnTzttCjCBJRCND+RBFXjjFa1Sd1zv/N/pjHqnNdlzXTP03j8T30kV37y65DpwgbCCOIlm5CN2qEgaPFAW8VHle5pVgL5Ge9Mfrs/Tfjxb6Tubi5z9Pv+Fdmwbs0HaOaLpAUefc4HMRXOtoS3qzjMl0AwJuFamE/dVv9fJDBSW1RcpFVKsP28um0K5FIgjAzbK2zvejpnT30eZ099O8J9z2C3vcI+bigkEoIYkXUulTabz1NBJJJaQiqUKZOnmTz//8j702BZtuy+D/vtIbOqznDvfbff63lCY2g0Go0mAYI0QBkSRAqkgiJIi7Idkh364CFshRweFHI4JCtsKWRbtmWFLH5ihMKDJIIiKZoKUhZBkQREESBADMTYA3ruRr9+/cY7n1NVmXvv5Q9rrZ1Z590HAiDBviHnjbp1Tp2qrMw9rOG/1vqvCZkLqVSyxdIbgZZGtQs8ry4ny0fTuwvDQIuB4w0f8Vk7ooCub6FFjeN1mzto3DPHSBaIF/coceDozW1kokW0a+yshJOH6cjV/pqzYcsYNH8vh0hBbUaC00iZ/L2J9WKYiug+9L2VZNlHwTrE6q/NPt8ZCdVfNt8phCWBtZgdkSx3zM++7FeTKd0WVT3VkCW53rEBr50VjW24v2Yca6Y/FZsM0V0lx1k0byYli8WaH+EYQUzBCL+dJKQRrNgppoFGNrITiDFrvpRkkowEBpBMQPMlCbp/UtwS0kCMW2IcCXEDYdD5xnE9o1+LdEeiSVXbOO6JFg+tLdJagVBsroLp/obIDERtmkOyhGZP9tW9UxqUpoRToDFnj4f0x3qvOCZp/xrqPxRbO0uMRec1P2ME216w1N0pgsUtVjjUWxyOvZ0kdvt5HbzSpdr3Sz9n8JzEBWvw7w52PbI+qTlivgd9PFcoI/0s6pgomU+PcTr+ZslLYtsz+l5e8LmGLjGNNcjKv27d3+/Y6A176QQEtevvuSu89Vja4Bsu4hmKb37/Aicu6OxKpeMrsZN93sjbKLUquXFVortWlKyVqH75kJSgdczWoDIqxYkbneL2bcf51jp0Zd/4mnL/ua8Sl1P02Ee0+epLbXXbfVY8DhIiN264+4saT2pPg3q/oYfmFVTUBNYu50ESwYqXVi4wXlSh2LVAVP3fzDcKwe0U37c2ql1Ordfkakz9kFOX1WMEN2MI63yGp/29n4zQ/1dyBMvX7360gdT9epY4pv7dlFJY21+CB7kcJ/CfAT75//i/nvzec/8Evudf+Xf5xX/nf8Pv/pf/L/zsv/k/W1338vy+P/DDPH7xSzz/se/leP91Hn7x033PuU+Ukze8EKQYJiinduB6HHzvwTJWIsJcC40FQ0gpEKrFt7tclL5P3jS8LHLRG2O6rHSJ4v78yUdlvU5OrvRN37POF/mNDiVyj3hB3rN0jJtk2J3jBTafnWxCycFosZOcBIsvBrHiVyefxGV+1Xi9NFrQ5svVmxmY3FJC62S2kB2u92ujhNKbpgRlzu77vsdz+wJfThGC2i0ShdY03ioW/zn5Hta5CpValvin2/ZrkhliXBUYuT/j+315mRtLZ+2tej7ZoqfoRF22VNVMw4h+PAbXdYB9jbiu8g+aXjC/qxfvv2lj/L3Xaj+/uHVmu/N0+Oxr3WZe2XkBqmgDpanM7I8Hrg97nvTcgQP7w0SZG5W4EOh4LKypPvK4tKova4QoGk90MqpOTCICIan9ihdsP1uHogR27SFQgnKvZyJjTBRpVCkLwaUYaX3KuhZTpgXPhwaxHO5kNGTN5GSOkbA548l3/zHiK19g98Wf1Xgj9DinGF4A6gdFDMd0eyNYfqy9L6D+jXQMKhCj5+4tMnrBfFOPrbo+rNYsaZ0H64fHOvUCmhJLGMHUmjy9SYPqNkvDS7+lNb75L/0f+MwP/6t8y1/43/HEcg/1CGhG9EpR2I2FGGF7TqqVYPlFUs23L4VWrehYsKbLkcML7+Peez/K2Suf49UP/6Pc+ZUfNXvKcqma/2ykzskb4Coxcm+YtrLjMMzYvecqdcFt3G8Xt9eW1/uzLFb8+af/Bo++64+we+VTbF75zEq42ES25RwO/3S/wuwVr0l3nWnOm+rN0AjBsNz6bJFs97HxovuAxsXcZ7IhcNmoP0uX49JJ00IncBAjoHbfaqmRVrvJc0GfYoLjX7V+qM16+pk+ef1Zbpzphp2jG9KmdtFFy0fctl38w66r4kpnhcVfdN8H0y3Bc1hF4wAharOYaDiOf0GMQXOw3XZoaCy4Ko6nl1fpOXhhscvW99hdHtfN63Gz//w6++iEuPrsegCXH9WvObXT1rkonii14Mu86TjJNem+VyTlxDAMbLZbdufnnJ2fc35xzrjd9qLvtL8mHDISIsV8S6k2TivbNPpa7ZvSAkzPmFO2tmfe/Dr4AMpqPnrdYFj9jPjELpO8srtPqzwdLVnlAqHj9e4/+y/1uKmvBN3e3cq/ga/Y1a1k5uqdJ/ez+N32mtljvnd8LXj9m284JSSI1FiX/J71vfgt+/jYta/rXjzfOHp9na+TVTF8iuvm6vbIiWx1ailYnY/fubQuWlonnFKieN3nnvPFiR3rY73q2cEphrQ+Ttdr9/nW8U85HRMx/3v//Ie4fse3Md7/Go8+/ANcfPKvaw2ufW+fGF9TwWW31yAKEFdkCsEIGdb3ovMlRLMr85t9/W/wUYdAiTAlYZ8qIzOhRQaBSqXEBhnSEBlaJghMh5lahTRUBq/NjUBGa1TbjAyZGgIRYYyRTYbtmNgNUesTg2FWK1tDSXU0PjlRtUYxRlqKDONIG7bIfA3mCoQgmieK4utDgJQ15yGmQDAy2SBiNX5Wjy+N7PVbfSstwHvOgRZSz91rMaDlFhYxFAGxnGfNJqc0gVaYm+XJGxm5AF/65/73fNN//H/kl//b/2u++y/8W5pDLpVcS99LOQ3ajCgEfuXbvo+7X/sMX/rgdxGv7nPx+A1iiyQaSaISowC1FYrn4oqRYLtKClienPR89k4aElZ6IBhZfQxKXO8kpX3zWV5BtyEVxxAJJ7nEptVpUmkiKxmph/pRojZvq7YPK6VpU7I6F/Udppn5sGc6HqhlJgdhkxKX48jtzYY744bbw8h5zuSgpMe1CdICVarm8tzAWZ6FI+eASCSnSImaP9hC02YnXeDcEIYAaJ64km2aXeMNhLvv+RS9fUPOuF8zby74xD/yv+Ajf+vfI13fxzF7fY/b5yz7woxYWzbdPkKC+YVqo3U7tuvZqBwi/WLcMgQxQu5FB5lM7XaayYVmZHRNieRbQ/PP7LviysbyYXO8Yj2W+l1yMkxhdd+86afTwbsps9V+17w3Md4Bx3j8771p/EonOq7Xa1vkdL6DOdyBhWTK9WDP/rXPlPGcYf9QcT6x63Yb3PzH/v2nW7GPmQgqE2/qSJ/i1dj2e+v394wpMqDPtzsaAGbJ2SrA89uK4YRuNcYYGYaBcdyw2+04PztX7oCcmaYjU9D6xNbajc0R1DdY16N53kjU/IMQgukeer2eWMNEX/v6cyMGYY6VVLO9vuAcKcQV9hF1j4ks+d1eR2W2j5Im6etlFmZpfT00izPVZvUWPnZijVtbtSa61oxOxPQF9No73E5dqMJ1iQtUOSEShSVOAZysNzfL+xQ+ZV7XDcpPMHm3kU+29+onI8Rf3C89x+Ev/0k2f/xfYv+f/Unq4/t2na3Xp3gcsTom0qTnyvTz+L2urzSsJR1dnJ3uwdVYWfK68y8IQHAk4Dd3/JaIpoAOvvjPPnqLT7gA1m9SMaIXV1sj2iaqtZFf/Twv/M0/RRtHLSBybRFViq1Z4JaENZ+ZhoS6ACcxrvbYAvzhSiasGf5Fne6gYH8KGc22zUgakTwjdaKVTJsTYh1UJEWCFCMXycRYkKxgPD2xvNFmfaapgI7iBW/NeAeU4EnKEeKgjzTQjlG7r2FdCmKCFAlZu4qOm5Fho8+78x3jduA/PL6Lf3rzIn/m+CH+58MnGZNoN9VWiVIJVlDv4HWwhBt3QKrAfqo8eLLnlXuPeOn1e7z06uu8ev+KJ9eVOKpiqcGY19JI2N2mPH69b2IPSqSUGMaFWZTVWtClav+ElYMr3XjwteILfVk+64KnUyX8Gx5icnXlbD+rh9oxVmgEBiAL5urcME8ManDBePrf6t3hzXftezcICpo2Sw7y/WWCNpiYMsnppRBiCbu1oUrDLl6JMCAPkaGqEJznA2U+cqhXTHXHtp6xaxdszi8Ywxl5UFKiHzq8SIuBen5H2YMxZkflmloEWwG5KsyxaqJYzkRpXF1dKdHUYSLGxDxuIGg3mfm6ME++N2fKXIht5GJ3h3QubMakHZlb4Ztf/TW+tNkxbrd85OHnyOdbTbIz4hHWS9B/jKErVYePPGCg+YK697ScVTtkRhJLR6pKCBsDOiNlhidXe157/R4vff1lvv7Kq9x7eMWhaDe+YZM4uxi5uHXOaz/0r/LhX/hTfP4H/lU+8qP/K5M5SgTVViTwASESGEJkjOpoJiJJYBsyZ5stt88uOLRi5B+qyHNMpCExDomByBCCdhIW2KbM2ZjYWVdL76CiPmCgPbtbbWWYGsQVsER4VnOI6R39jDun0ZwO642AM65HD3SparLPaMLdMGwYh6xFJEOBoF2qxnG0zlULqaKD4JtxYLMZjYTgmkeP7rM523Bb7jJudsrk3IKSFuK6TawTSaGFiZoSNWVKSgt4YcZgOcymF80QlUaSwJgG2mBOpsjS6STCZqOso63M1DozjpmLiwvOz8+5vLjgle3L1OOeHBrHaWKIQQk74o4cUSJCozf0Tpw5GdDXnQpOnYugyE0IRoqStHi0G67o3MU8EFJkngpX+z0PHz3i4ePHPLm+5vLyNruzM7a7HeNmQx5GA07s3qHLXE6IxNSIDtaNxbv2pazZlcsSXwzVGBWciTEZEY4Gy4IVI+Q8MGy31FKYpon99RWPnzzh6vqaUgrjOLA727HbbHStteoelBW7RZToUuX3s3a88cbr3R7UQo7AnVvn3Dl/G++48xxBKkOOnG03zMcj+6MWh0+Hax7dv8/+SonBLm7dJifdjcfWNBARI3XI5MsLhmEkHw88evyI/f7Ak3lmTJm8GZkOB+Q4MQas64EVcYRI8j16YvAvtmt/ebXvLb9D93jQ4LKIsoDnrIUt0hQs/IP3f0qBw+3Gzumgsmti/1mPq/E2P/eeH+Djb/wiP/n+f4I//LUfxR0UT7IgAAktIPXO6TERYl72MN79L62SONyRxbr3LPd083A97rLvJFVx5bQ4gOeJAOvkqdJWbPEsr3fnsrUbgfaGk9IE70wdAylr8ErGc37ym/87/P6X/yo/9p4/zj/1lT+tCXdmS4Nu35RUDvt+60FkkyeEaEl3WmDYaNQae5FMjLI0xIkOFK8tzWdrn5VStGBuninTTMiNJIMGDlpDijnqdVnPKaW+FtTJVsJfMQJbXxJJILRKK7MC5U2Bb2kVooLqZxcXjMOoBWEID+8/4LA/8vDePR4/fMD++or5cIBSaLUgtUApBIRxu+Hy8pK7z93hM9/33+N3feW/4tM/9C/w+z/xZ6jTNWVWoqntdsfdtz3H7dt32GyUpONwPHI4HpmmWQFjX7AW5NUEzEg6JgKROlemw4FWRWUnav+QsibroEk7kdAJGS8uzjk/P2e72RBDYJqmTga1lg/dHHTnfb2nAvzgp36E0ciTT3LIDEyqnnzcnFxtHVyzDe+7zsCEEFo/x1Mf9l7osJZdTli5znL6Mw7K+Hd4INwTELywcNHJHQQMoe8VPYfZR6a2erciu35wWyt0AM3Bwb8nocU/9MOvd0nGXPymRTb6ZWsxHniirOoblcGl1Q4IlVo5zjN7I8nY98ee68O1rm8n3lPHCsESyiQwF+E4Fa4PE+P1HpowxqzENASm8YzPv/+7uPz6F9m98RJf+Ngf4IO/+re48+A1st9TTDy+8zw/+Xv+MH/oZ/5zLvdXINKJU1PMDIOwHzZ87ru+j/e9+EXe/fpLZIzwLLh+sc1wc20EBb6+9v5v40wqV8+/i6v5wPOvfa2vf++A53bTgPDdf/VH+OQ/9sf5rh/785Rh4LlXv0zbbjjevss7P/ez5M1IHgeSEUzFtCL8tPPGOhPKknykyZ3FMKflWfEQS6rqZGqrROC1/uo6TtfFb5SkeJKM8RutrpvvMVGmbPHVAjwGQIOBixos84TV4kRTItrlpglzqeq/WSe0ELOOU8w8c8m9445WZ9qmaMeY6aDE7qanK3QMjw4aL/Ktg6uWad8wez4mQhIIFS0uM7INEVqoRCIxiwWU1e+uEigCU20c5kqeJi0yDo2r6yMPHz3mwcNHPHj4gCdPnnB92LPf7zmM5zx5+JCrRw95cnVlxeg69k6EeHlxwe07l9y5c5vLW5dcXJyx227V/xuMBMJ8aO/aowZnsKtT+ehgfsfR1oD66ueTw/E0lvXbweagZBmheXKdPrcQjGxK96YW8NrQtqB2lOOyQRayiqCFZX4drQV+8OW/odiuJ0vbdLb+nXLaICB4ksepTV6tmNbtx+NRCUL0ceQ4KxHAVIt2xFiTTIUFX1sNjI6J1bxoUNhtW7VPQSwhUmglGTFONZItffRONSv87f/fjptrTjqWuOCQJ4aTv9RfsM+JY33rBMRg+s+JegrzPDOlpHN/PHKcJp37aWa0Zye6yGDdc3WeQpRu3PeEgxY789U6ies3Ota3cBo+XqwuG5yT/elr2gk8/bXf8LtO9Ova3pNux63Pc3M+elJYin2gPWE4BY0tDMNIqZUhV0ouzGkm5EREC3WSdUEiJlqsSHYyHfXza9EkSpGiwyuesC387k/8JazMkwrWN2SlJ4WTMVl8ZlYkU0r4cb2/5ur6utuTz8pxfn5Ba41pmgjHI/M0KwYUaneuxUglalWZuU8bfvrs2/iew5d5ZzuQaiNEI0kwWJlgTT6kUaSRmgZas2GFwhL4k+CYpGrJKrpfivsZAY2LpUzOYra9wQsp84de+QR/7d0f54ff+DViEA5zYE5Klj/kgZS0IL7WxtSET413eDVu+H1XX2fbjMAiLEmIPckA4V4a+Yt3vpV/5sHneVubAC3MpYvPiEStZ/+Be59jmieOG8XxQ4yGGZRld0Z9PeTI+cU5l5eXXJxfstudMW62GlvoxKNLInqFkwJKJ3PtgW3fV7Y/nPRam0dYMmUQpK0SF7uV5j+z/C7Cxa/9BNNHfpDw4GU2X/i7VDwQ7EkaiySJTRvtRGC2IP3+cOR6f1SSkBQYWmUWYRYlZ6khMLfGLI2zabJrTUq6lzMiKIlns0YwsQGx78XeLEhcF0p/PEuHyizIKbHbbkk5M5fC/nhkrmsiEveTXRcZtssqjhg1aXXBvdQQUCy6Gi6lidAVOE6FmCbG4chm2BC3SoKSauHsL/zrKMmU2kGhaTws2EVYWQ0pNSP3CBqDCcn+PlNna2IRA/t3fDOPv/uP8PyP/7+I+0ckhCAFKIhUSmvENPbr16TakSEPiv3ZIyQrEqhQiiW9eTw8WxEaldpm5iokkjVKSUAmJsjjQK6jdlaOpoePM0yVYajkoSLDQIpaQtQaah9agYzKsIbEqs+10SQiogRBbs12VzLo6ykm61wZfIJWcLf0bnDNuncuOtjjk3q/Wug9UcuRVmbKdFT7YZ6Z5spcoeUNh3d9J0/e9k2c/8qPUqY3OM4Th6OSlx5ntS/mshRALTFYuk2jjXtOSU5aawxDNpJyJyPXAkSXN8/SMU8Hsw+WxikIhNZAKimd+hzDMACGoepfejERLAVaofta6qu6/eUkRmJE+QOj6qNgbbDqxP7qMWU/U6dKnSqpFCSrPpUm9l5rWIKuITd1kkRKRJuwzMs1aJ6K5Yw4NjPrnk+mK0JIxGDJWzkSohJX4ETQrXUC79YLoJ0iyH2uFUZCI40DIpVgxHetihbK5YVgNFp+RiASQ9Y1pRkj6i/moRevYnktYRBCLYgVGdqXkmuilkTKMM+BeVayr5yjNSdIhBw1sZoAVsQobTHUQ4hI6KmkPcfG9aETbInIQuYXlBQYaUr40qQT6dXSdA9OE3MRJGmjnkZgKpWpFMUWc1b7shaYdQzVrtdYaq06D0667eNMFVaiopO8PiuHY7VhhSc7jqFywwUKeNHeSVEQ/tQj2OZUa/LfiR/q9gzgXU67P0zo6+zEoQkgVtRKP9tJipraLk1Wv4UF+0RITZBhJA07SCPVCXlI1gxFU3qpQqEq3uCmslK76HrbnfHo9/wwl5/8Ma6+95/h9k/9CGIJ+W17DnVGpgPg8TK9onrrecKjV8ETFUXxinrn7czf9n2EL/wi08f+Cep/9We7v9HtVstjKMxKRl4FBtBGYap3utheYzAsGIv+71h7TwggZSeK0awMJaCtSpbVGiFWS0YXAokWM3OIhN0527e9wNk738Xu7e9kuP08srsDwzlEbQSm+HJjmitTVbI2vFhVImUSJfefZiU+LfNSSKpsQGo35tgLgzRfQLvH56RyXgm0DC+pa+LAZ+sI0AmRtfBG9U4TFMMx3ZO351zcfYFbz9/jXp05Hq9pUrSIRWkIe/fe6Tjx5MkThpBJF5GYN7QY8FJTLYpKK59duo+lifuhF9KiV2XEhGGxGURWWzEB1WI4VmDdwRHp8qI2c25E46H6phWpikuBIEhs5leudzRe3d9tmoXIR+3mFHV/OMG/2jRLwrilbWLuEwuh4pKI2wuRMSLblghxIKYIMhLZ9ph9SgMhZAKJGDco0dSGEDfEOBLDQAobUtgY0dRICAMSBkSSyQmhSKFIoaG5N0RBkiBoThhxUOw4ZSRmapmos3Ys1+KUYCS2KtvEiU9Mr0lr5kO51xctp24pmhaPRZj9CDcwD7Diy8LcoGDFlwQtwF4hYs/ecQLoAXRs962OjlevPhdgkatrFdbP7ridfXK1ftfaKZx+fCWNbcoWd+NpMKSubf/JzSJWPn2/Frf0LEfzxjXDOhn8Zrdh0+W2LwILSbLbBa6dF5Kp1Th3u7pHA1iSFBcEov+8CvKfjEf/z7CATixVqHXuGMlcClPRbtKlzJQydzJENY+9GCIzjpnBSLn7sIpfufnZ/V5ZXc16IpbYNGE98nYf0ddCtPwwTg+fY5HTWRNxh7Hfvz7/xuv1G314DkJM0Fq0QkS9yVZVnixxFCV4jjFrYXyMikuEQGsJEcufseT5dROrHqNZjMTTQ3yfGtFz95Vujp3bqU6esez5ZZyDFoO5H2bX7sRS0WwPJeww3yoE04nQrEma50r7HrMq/xu4+Ol3+yWEEPs9QOOn/7X/Id/7r/x7/Oy/+S/29whiaYL6wpf/iz/HN//Rf56v/8yP8eBLn+y+LKLNpHIIPPfcXW2oPUTydsPh8Z5aq9b82N70eVtLLK+TqbWSUra5L2y3l5yfn3N2tuPho8nIipbRjn0sVj5nXHAIdVebjzpr3zSA6t+nTfZTXnqrOMP6Pb5+lvdoTkAMWhRuQNgzc4y7DXOLDKVobrtY/BnwqiSVNdF+N5Ipt8EMs49mN4ksud/uv7Ui1igPI1EPjENmtPhvIPSiercXgnEke/FtJPaCsshCwO6HmIG4bt6mvIiRFjTuI/4+Fh1E1ViOOMFUL9R1O3U5PL/FzxHW3w30YnpYyDjQoVsth66/cAIBLA97FS/z97q927/Hzt/EY7DRCBww+87fbnLKBT7ut95Yw2vdvdbReI7KTRtnHddbsHM/am2UonGr/f7A9fU1T5484cmTK66urtjv90xTZW5GqGz4SatGNNqwnremu1FfoK9BrxOy/ehRB6JQisrA9Fb78xt4RCCHoEX6lrdREQaghsBojVVKsQL0CSQPxDxTc6aGSBAlqAZraGASrUvToERSV9/2A6SHrzC9+yPkR68yvvp5TaeOrTegkBBZQviLXdDMzAiG14vv/5O16TjAYvutc5pCsH2+amTseYalFGucWfo+64Ri6AUouYTVgIWw7MeVXnNbTuWr2pvv/4v/BpNjRqv7KmVlo1o+dYgRLm7z4Dv/EOdf/zRnL36KNh8VsmjWRKuubTXFSdqLn2MDXH3go9z6u3+Jo+cLLitRaa38O4LbWRYjCL7/sHxHUZzQ7NSOh/X8DL2MTgrq5xK6jS12QrUnIpef+FEV13GRzb6f+7/+M9209H3dEI3lqKHTcY4YIA2aTxUTlDr9tvfD78xhusmwhsXqDx0TOZEMssyFUat1ketY1GIwgadQYOs8rr7HP88NbKGTAdoR3H/B95P9JrYEzGbr+ZdK32vXYfJQQn8prAic3P4IfS06tufXxuph+bYec3efzPSKrBZcjzEFb2Lt16ixtnXOZ2uNWLXScvEzXI/4GPQFd7Kng+0FvwMxsoAmCza8zFHoMslrXjUGuBC2dj9BPB+XlfPjOo5+38tM3dAffq2LM6fxg2Egbbbk3Y7N+Tlnl5ecX16w2W6Xe8yJmiIzwmDNw+sMtUiXk4uN4wZU84E+Va7PwJHMfk3WADJ2m2sZH52fm9ftf5fVX6Q3rfXfWX12WR6n89F1QVAf6NQWXPn/IidX4fkiKg5X6/HmTQqLweb2Kas96wRQ0ddePFnTItKJuBeLy063sk16jQueXxG6jemNsH1v+fkF9HvjQnDgeRo5+WeUYKqTGgKOxYvdW5Cm+qHZ/AmQ5cT+9efgMsF93j4wiz3wZiACjX0h3S9139TP4/PkuNbZa19E8ob9nfdw5xN/VW2eoFkiwXRln2VbHLr0rA6oS+NoMqu5KayfkWBkOj6bTun6jB27gdICe9G8btqBEipbIjk0wpjYnO9IQ6QdK+UI0yFoXndptFhoE5Cs/qBBqJk2RGqKkAZSyAwI2uIAzXEXI4/xHLbgTZI0H2QWjdvWGGibLXzoe+GbvovwU3+OcHis+7Vqk6tSC0PTeMCIkLI19YkQG4p/WFPXjv8byY/XdLk/paTHHtsOSFCcuYZg9lpd7CtEDZ4hIhYDq7Fpk5esn0fgAz/yv+XX/9l/gw/96X+N42akVJipxDYRitaMDpYfGFPiWz71X/LJ7/hB3v+Zv83u8WuaQyRCLU05AWOg0nqeWLPYlmLkGguorVJawZurAF1vdTLsCDkGctZ41JCSNW1QXgXfAZbxZvvLdLTQSU3WjtmJHrYl5vq8iTaDNEosbfhgNZplmpG5IHOlThN1nqBVckhsh8z5MHB7HLk9DFzkxDYpJjmL+hExRfIwkDcDabf5h7BxfquH2NgrNtNaJDXFGTyzDdxcWnRb/7TY+AfXeDr2nhdwKhIDK+G5ejXwa7/3f8S3/8y/z2e+/3/KR3/s/4zaJeFN73uKplpwvaayUH063VdraNLrk5bPOJFO6K8t/lvo/nZYXToiS70gzZrd2WsxkKMShzfbj+v4qHg8f+3L+cJk8T1OZ0fXkf98MpRd9Sw6yC3vaDYtsujb5b7MErHvXXRd1xaL73jjWLAQPYnn3BACx4t38bWP/Qne93P/AePV6+tLpdvKJw9YmgKcTOjJd9/E5pehW/smYdGRz5a52O2NGIM1MKHbPCLSSaeL55fZ+OQhs9ls2J3tuLg45/LyFpeXl2xGbSJ6OAxmMx0o86RLe2WDhab7ulnutjcnUrw4ITVQCXBxF+6/0vG0vtet7kKPguYklZWtF61u7JRoqueUuCxeYWqdvNHeUBqEeanB8vhSbZoQEqI3mwSC1h0SY49VYWeKRMM6V5ZqWO9t3X99TtDx13208n3MDhQU113ev7Jig9lQYjgEnoct3TbuNZ2svt9+cFtd/TrdAr0JTROe/IV/e8Eo0OteSKZWTWpFlr4t6yY1vqdWfn8/AtaEy/fwUuMZmjUjcBlqcW91v3Xcl5n7ex+/aaKp5kX+Zvgv1yqL32k31MwYT3hxbegFSVX5OxWUaM2MOO+cY0WCTrTBCigXoZaZWmZEqnZ1kEZrWrhsWEN3INQztcKoVbIUNtyafO6LUEk6Umy0tGUYZi18qzOtHDUZJx1p8xHSRCszbZ6gzEicianQ6kwsFWqlxUoMVYsLjHyKpgVtATUea4UiUESZRpW5bkLiQIsKHheghggxk8aBIW4ZtiO7sw0XF2ecnW3ZbLRr+7+w+Qp/6sn7+Bd3v8ZYrZNBMPCuKQqjeUQe6Fa5UQgcSuHR/sCrDx7w0muv8/Lr97j/+JrDDJIzcWNJYBK0MCSPnH3k93P24e/n3o//B5T7L6swixr6iyH0AMDiyJpy69vfNrGo49W6slk6Aeh0ngqnPofB7ZllffhmUZ9reb8qTmPExgH7Z0wDgQk1cOfQwZxFGNvhznj/mP29s1ayItZaC0VOhEOHn4OJxxuMmra7l4vzOVtdq8ueZmB0E00WjAMMkiFCjIXjVJimI9fzNcfDY46HK3bHPbvzWwzbHXHcQhqIWRkbiYnmhr/YFjJh3FqjNHidLe8sT2hGAlD3e9r1ETnOVCNr0m7KjVgjYxh57dYL3H7wCilFzm6fkROkoEnoZbqmVlWeH3n1U+zOdgznW2LOp8acmEZwx95YIaM76zaGmuheF6IiURi0hUYkmmEeOU6TFg8NI2mI1Np4/Pgxr7z2Oi++9DKvvHqPh4/2THMjBjg7T9y+veP25QW3b13ynr/zf+PT3/8v8z0/8a/TNiN1FlqplDojVROTQ9TATgqBbIHNZPMZQ+T8bMedywvOd1uuHz1kv98rAQjqDOdRDZ1NiCrn5pkhBnZDZjcObDfadb2lrB2LUAe91mdrn2lnBgd8TP6smMAX0gOXG57EXLu+SrbP3LZtHQzXAKASi0mfdyUW0uBSygO9iDFo8cEwDD2ZLK06BYmok7bdDsx14LA/cnX9iPi6FjHcuv0cu7NztwQMa1yS36SZK10bLVVCTJSYzIAwwMQmOAQlMvTuwIiQiEjUtR87gC4MgxJNuWmXUmC7GRmMLEukcfXoPocnj7h68oSL3cj2bMtus1FwRCpIIdDIEWWoTpFaiq7Z1nS/d1IKTWS0ftI6xjY/tS2FUMF0eimVq+tr7j94yKPHjzkcJ0IIbHc7zs4v2Gw25CFTU+ZBuODt8YCDlrICE6MIRCUQS3EpMHNDOsWkpMhu4Tm4z2Inua3UxAIzUcGaPI6kcdDuRk+ecH31hOPxiIgm0Y/jyGbcMI6j3udsSUQ5nXR35xlN7t3tNgQbt+PhSJ0rOVgX0FqI0pBSuNofqHUmlKrJtgLSqq773U5JAKIW5+QUGceB7XbL7vKCW29/gfHsjGl/JLz6CvXV13jy+IpDUXKzLUGJcKA7Pg4Q+KGzYwZsDFoEETzp08ERfb92LQKJWmyxFFA2lP2w2Kk0MTs0RRHFk57aGuyQTqoWEC6nR/zBl/4aP//C7+MPf+2v4F2rHLyPZvTHHImjEmzknJVww8l1us0Q6B0BQzQnyRS2O/Y9QS/0xIzVpS0OhqywCztOkxCrEtpZAlwTJXPUQNliY3RiKivS8uC6O9bSqnWCo3eF13tM5NT4p3/9T/PX3/3D/FNf+dOW9Fg6gEOw+SUTLCNHyatUhjSXwyEQ46D6nECTQgxFE6UDzhNprMhqg3nOtZNePluH+j9lnijTkdAyiBaDt1iQpoWF6vS6z7YkHtDJyfR1MCc9GRO7BS8kRCQmWlBCl5AacRiVjCpqMumQE9/6ke/ghbe/nUf3H3D/3j3eeO0V7r/xOk8ePeRwfUWdJ1or5Bg42225feuSu3fv8Ifu/x1+4iM/yD/z6KcZv/m9HPfX7K+vSFlJGM8vL9lcbFXeCkQyOTRqEOo0W2G8zWu0DgKlLkRcU2E6TpTJuoPXQG6B3CDlSCax2+wIl1DOz4khst1u2GxGkiVSSRMNKorod8UluavWynXeUYnkco2ImMzKpitTJ1EsrTHbmq9GBlOKFktBUB0hECRQm8mcNRDAKqlIhDX5TQ+agRptK/BtATeWYutFDK5Dhzd8ADHAxoJ0SoC7CIiAJsL0RI3VucMNcHh9eGD8FJgKbxY23+BDgXPU1seGtZnUD+qTrHeQBwl7AXwMOIllaUoeVMXY2GtRwoxmz3WmtLIQDGUjAyApwWBQYrwqDWLiOFceX11RSuXJMLLNA5s0MITMr7/jO7h4/Br33/EhvvqB38V7PvGTfPk7fj8f/am/TKrG/J4CP/b9fxyA//J7/gn+6N/+SzgUnHK0QhX47Ld8nPfce5WvffDDjOPIe+69rFS5nT4+sqgYt3sX8qMPf/1LfOb9387b7r3MOx++QU2DkjxZkua6Qx1Anid+19/4T5AUtbxGIne/9ll4ORDyaWJqDwBXWcC9AhrAFwMCWTojevLkKomyeaGUdRvxwhif1ZNCEGkshTM3gNNVQHpJYvTNdGpL3LwHf+7vNgjAPmrXAdqRzApfqPrPwMdqhKtVGlOZmebCXDRIlJKGUrRY6NkiTNxud9QyaLHbPNOOB1oekHmiBO2sgrQOzAcr5Ql9btQPiEFB1kagxYR3rBfH00QJpLR0T0hByA0lXgnq+9QYKRKYauUwF+JhUlIaEo8eP+H1e/d549493njjHo+ePGK/31NuPY989z/J9c//DR6+9NMc9tdax5Qjw3Zku91wttvx3N073L17hzt3bnHr9iW3Li+4vDjn/GzLdjuyGQeGnIxkKuplkRbZE7yIMi7ko04s6pjQKpDUDwF8zjsgtxDBSwhLxxd1KTowryO9FGA6GC7eGcb8NC0QdVwXJVGxc9bq14RzDnZkKWDYtSVippwWHeL53IajeJJAaxr8nYvq9aM/5kmJpooVWK5kCnrLPV/J9YxDa45be2DaiaxKUSxVE4mgWkOBVqoG7qUhEk+6773FNv+v7fE0ld3xkTeFIt4Cew3d+lh2d1+rq/OKJW/XxlwKadJC9WmauTfe4tY0Mc+zPSYjIkxW2LkELWOMtu/dtjGCjybOE3ByxW957/1+u5mw+OPmmyzjdBrwch1zE9t+2vvXyWdN5E24+Eli4M0JuTHkjk0sOs6TO5RsKueBPBRy0WToWqvK2go5Kll5SKLr33Hfol23XUaU1noxV9dvPj54vKd1khuddwtwu05efU6LpzXh43BUcr/r6/0zRzR1cXFJa439fo8I5ONkGJARE6HysVUBqbTQ+MWzb+HDV1/hF3bv5w8cP0NKlWy2lSbR0WsHO6FCs45HtZ4EK8X8+dj9BU06L8WIKcUx3agFTBliSKiZu2BWf+T1TxMIFLNdJxFyzsxD0U546Ly8nHa8lHc8Vyc+t73Lxw+vd08iBH9eEnz/81vfxB998hX+yuUH+Ocff26B0pfNoz5a1MK3nHO340JUgqvmXZ4CkPR9cUjaQdU6qW62SiY/GBmp4hyCdxtvzcfROtaV2cimnMBaA8b6HXGlk81fCUZkFMzmXW2wIGHpmgaskwrPf/m/oFQLFvc9jCX8Lc8ViE3JiWotzKWyPxy4PhyUaCoG4jwzzDOHeWYWoYgwt8LUKueHIzlbJ8JB97RjkTEauYglbSq2Icv+lAUzeRaJpmorBLFO5ENmzIl8GMjjwCwNQiMExewBGo1SjSxTak9kK1K1MQpJCz26T6DdOSKiRRJBrDBuQIjMM1zvj6R4RW1bLs52SBRNgLN4q35nIIZMak68V4lRr02aEvFtxjNyjtTSiHFHswYRdTzn4ff+Ue782t/iye/7Yc5+4j9iqkfasVBkJteJlAsxD4qTbDbkIUEWGDymZ0R+xWVwM6L63IkWW9C1+Wh4GxflCZs2adFOSoQWqdU6qW0zMV9QrbNjmbVjKK0S6qxBugI1YUk0gSiNwkxIUUkeQkBkUr0ehcZAa6UTW3W7qeleCylbsrn6d6Flwzfc70x46bHGOlrXLeLz3hxjFKRq46hajhwP11xfXXM8qr04V2G+uMXj57+Z8f5XefK+30X+1b9GbYV5PjIdj5S59GZSmA72ZCyVWazQACWyV+wXCHpPm+1ISkltluNB7ctw00b6xh/VCKBTb0CicR2NC0GtpzEO73oqcCJn4iphfF3w4FhP88KkEEg5K9lRir3bIa0ideZ4VThMjXnWdVBrYq6zQpSmFzNC9o7mhi2JY/YEJR4SJcpo3kUOJawDlESrCa00ZqmUHgMopoeXJh/dsjX7I6M+Zm2K0zj5gUjrRZZrs8wLNL04NaSo7mqMWlgaLQEMoNKxfS8sD0MipowWo1g8IhitVQpG1uOrUZCsJFZacL74VSEbpmu5PR0v7Li9Nb7BoR7vNm5rvmOHeJbuamygUS1JqeENlzRxt3AwovTDVGgkMFudFI2AzfZEwDCXCi0QWzGbQnWwEkwJNTgGZPOztids/p+lw3W//uJ28RqfXRWe2O/iuNLKNu4nUWd+BR6tMaz+U/9+33eOMGN2SF+mbmRJOJXPb3KIvABTHQ3vcJkSBBkIw4Zxd0naXsNwUHJaZrt47Z5JbIRUEZqtlRXuTWCY9rzwU3+eNz7+Q9z5qR+x/Su03R0OH/kBwtUDxs//DBz3VJMp7fn38+T3/gnOfu4/ha9/vpO7ttaYX/512t/+i9Rv/X1Mf+M/pNViNrDeR4pKrGrU1swCXvUYzG+JzWIANpjrwlNsDk8Tl/WvTkrX4weixOfNMJUEDIbPNAm0mGlp4Bg3bG7dYXzHO9m9+72ML7wdbt2iDUrg1TzrGS0mneaimKAX56B7fq6NMFdkNoIpK+bF8NMYQy8ijEl9iWREsylFd5tptdCK2gKtqif3lqQDz8zhfpH5HFSwPJyUM7tbt7j9wgs8efyAJ8drYCn4bwRrvAXXhz2tFEIIbMaRzbDR5MsQzJ8Rihfad0xoKb70/R5XcENowtwERAnqswjZEmtd/i7ryHWKFROZjOjSWNb7p7+9D4FlhS97eYXfu071wlFBmyi5DxRjJJm/JiGuiAfVmfMwjhIVNvt87faZx4maTYLGiRKZgRy3EC6BnZKLpJEhbxiGHSlvGfKOnLbkvCPnrZJKkYmMRJRoKhBpkqktUFtgruonF9H4ihJNNVoUJCr1dW2zNWeKpHkgxoE6H5jCwMSRNs8ImqMQWqCRLe9Nm3RW0fxIL3lBPHrsBaeiuXGi8cK5FCMq1akr6pR3H78VSzyO2lAshGC2pE5krSfI5jNzrIsz1r//RscpyYNjXYvOszet3q/vc7z7Tdw2tqi7au1AovTzixWE9Ou+8VlThou+NN264Jlut67J4Jb95nrZ3700MLAYUlvpZNf15uvoC1bM3odF+jfQf/ei6o644PLNr8G9E6OwWm52MfXo9pphSE6IVZvmY82W56GY+6yxpTIzl5lalFovBkxnJoaclTglZ3Ly2KBhJP0+5eQK/SpXps1bHC6zfP7N7o2eP3yKybpuXtvay/z4+OtcN/vyXtT0jOmyEII2yykzITrZal3Nt6xWiD6HGHurKi2uqLZE1L6WKqYHdM7Vh0j9+24S2CwX86Zd1vXT6aGeuJ9veXltidrK7roj9ofnJsaQtbGz4ajqR0azsfzc8WRNdx+A9XUtz4toWTWFWo3dz/9b/0u0NqA95fN6fOE/+w+Wse44rN7fMA7cuXObzThS617xvKB4pTeeXMug9fCsC2QwuyOlTB43PPfcHc7OzpAHR6J27lzN/NM2jyyNUZ8arFl8pTcb978Nn8lF7fql1VrqK0KEZywUDaz1CyjZLYvvI47lR1NRXoBp+W5imJDAOkdcRLQWZHZdYPswKQHLmDM5GFnaRrF2otoVIWgTAYFe0C9x2fOyWueng/9mrQZeeKi1HI5jIUtuoixvpBP9YvlvwYjNRPFOLxZbtp1j2k66uEzwSXGjXVC3fQ0DcT/FSQGW0y5FWYjHzjSXu+PXPfFevyCuSObWssljk4sMWMap68G3VEI6Jov9vbZ1MJxCi7xLcaxjZr8/cnV1zePHVzx+fMXV1TX7/ZHjNFMKRh+uOdnVchZrXfJU1sVvikEZ0TaW7+B50N0ZBSUmdwKfZ+tIdqlKNhXQVmAaY08hkptijykEQtVGCDLNkAyfDupbxJ6/uPK1Q+i4bIqJ53/tb/Lad/wBxi/+LOMrX6AGbjST40QfLZQ2Wlyn+8WLjJfvc92jP+i6KUVjDmtc9HQtmd4Oq2LuFBFjRPN4Zm+y0wJKEq0/u/3SnGB9XbxsNt1COrb88yXRxAjbsXO1YCuv8eSbv5fhlc/z+F0fgVe+Qt5f4XZ4x5scz7QvqkHgq59g/NonmZJio8kxQlur3jQtrK6pSUWqaAG+WMxAIrE3gIq91sfze7xphC9z5f1b4ldeK+SWspMfuV0oyEmJkxdVnuYuqv13Yg/IEpdWO3hGGiQ0PzmmRBNhLvNvbzP8jh2WX4DmVCzewMqXolsvi9gw358ALQScq89FC643oOuMENS2jiuc3+tF/XDrovtEeSTceoFw76Vu57CSp50Iy0gClmtdEWWK7vfQ+acWS2j9f/+pM1gt51vsx5Ue89eMPEFi9MQoUguKV1pMQFbfFRxcd91ieKxEw+QDBr47KcySu8UKf+8Oit2P+yTCaj66uDedKKs4i06iEbgudiR2l0tNGrqfn3sHPL4P09HiW6cL5LQ5pencjn2a7h4ybAbiVsmm8tkZ49k5427XYzBZhKE1cqkMcyGXSiGQzS+Pa9nhRPsxLO7ib8ce/R08XLf2POZeeE8XnU93I091gtg8OPbhK/HmR5f8vv7JfjoxhXQz71pWO6e/Fvz1xS46fceNbxbXIeaZhPVas/xtj491322J8613r7++EFMt69P9PzcSuzxZ5Yj3c4bQi/KBHsOKcSGYip24dB1NYFn7BG0gb8UfLp9SEkDryWJT+yqEheTxZt7VCQoUTu91cTTFJ2rR7yx10k+b5/OXP83u65+idrs5vGk2T8uZT4m+JEScnE9ufIu3d+r+jM3lmxbdN/iQMTHNQCn0RKgQCElzH7ZjJu5GmGdkbkxXletUmZI2ag5Bfa8YrUVta9TpSC1QUiBuzogJUoEBYZcju2HgKmuMEqsdz9Gar6LySPNLRcm73/YC2w9+nPmlzxO+/QcIv/j/7fvQ7bLQGqFo7lKqxYgNlXRQ17ngdd9djQRdKxqeEY3Fymo9ByFEjSGB57YXi45IgtEAAQAASURBVJ+h85oialibDI8J0cJL1PoDWuN9f+HfoOXIHLR5UQ1FiVilEFpioDJGSIbDfMsn/joBqFHHoFns1/HD0jTHf7GvLBdD2oJ/LBtRsZEcyTH3fZ5zZMiZYVCiqaw7dkUs7HvabFJX7IIbwvZ9rW/6GNTfaCJIrdThnLbZkq/u6z4WtTfnVhBBfbjjxHQ8IlPROZwmpDWN1aXILkfOh8RFTpznyC5CQutYQ4SUB9J2ZDzbMJ6fEc92/3A2z2/lMLHquXdqewdi1XyJ/jbTA3Ii1xc75hSDU9kZo8eI7YuedghIED72E/93Pvn9/yIf+5v/9sIfAos9GVjJX8/B9veFtWFk55UTm3URzY7FuU18GrdYxzLcrusom/kOzk9iEWfTNboe3UdtzbhOzMYJXc6qPfk0bHHt76/9O8x8vTFs2A5gNfh9/PVvax202L/+vhC83trGlGW81vppmT/DyVfKtGOIIfDSR/8Yb//UX+Hl7/xjvP9n/5+n17VSjfh8spqjvpVtTQldXwrSiYf9e23mVIXJQnglC7vuM3P4+oopoYaH3Xtw3Kd1fDAEbeA3bkbOz864vH2Lt919jrt3n+PWrVtc3rqltfMhcHX1xGwvOGB6ArPNQkASiCRtngfd1tHa10BLCXn+Q5Rv/0eJf/vPwxsvAmadeO5OM5yt+jlWuT+G1S9kU4kT3h3beG+y3rtdA4jun2a1WqXMlHlWvx0svyyRvHHm4pzQF4qvp5WNSFhYZ7pRbmOwlgdqO7PoEdy2o69rf58+BG/mKcGbmq9sd7eH16Rbfq7V1xLCss9EsUDNc6bXxfUaM+QGwVTrzx179To0We3J9ZCvfwr9DulXsZJHmm+kdXrG0I03BPFc5d/M8ZsmmvJgbQhK0tQBYksUcke0CYQmxNAsccYF/yKMlOUynIJkfaBNgNviFjPUlZ10RkpBSoWUtFt2NYNjodJWAzoJYoGnpQlBXN5kAxZTMtddOykrm/pIa4VWCzVtSHmi5gkZZqTOtPlImQ7IPNHKRJtmQpkgzEgoxNggViXMapXQKg/jGccWuHP9Brk2aguUJsxViFXZ3CpAEGo0YCUpi2gcNgzbDduzc3YXF5xdnLM9O2OzHTXpMTRECv/j3We146zUZdHYmHqRZa2emKdq8VAK9x8/4eU33uCl117n6/fu8fDqmuvjTBy2nF1k0rZymGYmH/uLu5x9++/n8JVPcOvjf5CHP/FnTwhK1MhrvYDN4pg25ovzuLA/LwFC1WNvVvhPD3aunbjQn9aO/RI8pzvIz+pRu4BDn4MqixOQRRGbLlf9rWJSKuAGiQ+67Tv//+T+F2NmXV3VzQs3BGT9blkUf2hIUPZXoXaWPRAtsgyaoEYDMWbhaS5M80yZZg77A0+2jxl2Z4ybHWmzI2+2DJstIWXc2wqmvJIV7LQEXx6e4xPDXX7f/uu8f36ExEAYRuJWOAbt3p3yQAgJIbDNwotnz/G5d30r3/Lip/ngk1cZhkSQSqsTxz20OCO5MUTYbEbtiJ4HFNBwZwUVEirouvPva9nDY9KE2jRhzMEPZXeMSAs9mbQFtLhFBElCmWeu9te88uqrfPXFr/HVl17lwcMjx1KICc52A3eeu+Duc7e5feuCi7MNmyHxe37xTyIpUlpCpqYdx6YDSCUGtNgkBpLAkBLbzYhUrMAhcHZ+xuXtS8bdhum1A1ePH0Kr5BQYhsRus+Hy/JxNjMzX2pUpx8Rmt2GzGRhHJQlrMYGx9g7jQBqHf7Cb5O/zWLPNi9RF6ds8Bk+ytE3VmhIBljkzTxMlZyWPqZVIoCZoZewORjyRW6oXU0yWoOdGWGC7jYYBLImBMSa2m83y+VaR2BiGyMX5DpHG/nDgjTdeg6DsyGfnZygGLkr2YqzbDsioUeCJjg2p1uHbljASe3IzIRC9MDN6N2WBFI1kQh0uVecaDNeO1RoMysPArctLIsK9CPfLxMOrR9TNgHd51OKtsBoXBQ5qs455vdgH7aYc6EYrRvsiwsqgMxPSEo1arVxf77l//wGv37vHXCp5HLm4vMP55S22O93TJWQ+Jy/wxfYC359e4d3h2gCkxThbnCsz2FnAVe9+EUKwuEfrhQFy4uDZ+6KC0WkYGbc78jggIlxfX/Po8WOOh2tSTGy3WyKcFMitFMBS7GYKwOf9WTt22113QiMBGZqy75qjrP2HNBCfgJwz03Rgno+UMjOMA+dnZxynI/M0MZWZKom02ZA2O3a37jA+9zzj+QXpeOSiCVOFmjdM19eU41GdpLjSazdshfXh/nJAO1OoXnNnxpNF9L0LAVXodlargdZ0L0hciMpElIHe9fNimdt+bV4kAm9vT/gjr/44cbPrgYte2Ggge8yJNGQN6OakxTneKak7ciaDgsofEVSW2O8nAYCVrdUvznT+05yIdbDVC/H1PtZEHAKtmYO0IvQwcqpiJEDVEoDdSYp+f0nJi2LWIHwIidz2/PBX/wylM4Av16Td2ZRFIASTZdWJ4/yWLGkmaAGbCBQrCIpogsOp32qAABr4chKPZ+toSCvUeaLMR5JoMnwLiRZn6xyvflAwT8+HTqDLM4GewBCjJoqqw69JpKItCswXA1KGlAkZYqjqD+bMO979Xt797vewv77m0YP7fP3FF3n5pRd57bVXePzwAdN0QFphSIHtduTCbI6L8x1/Qj7J5vlLxjGyv37C48cDun0jcZOoUaiiXb9mCjOVWSr7cqRMhY1ooNuJIubjxPWTaw7Xe6bDkXqsSLFunnOlHgtTnBgG7ZBwtt2pTbTWJz7GwDgMwGDgtyUYWAHCVdryxTvfRqmV902/wmaeidELfK1z2TwjYIQwdVXk3CyJwpIsPeEIw8kbeCdpnyvttLgmv1lWphf26eHAykIy0lWJm/jdb1LfOHTgYS0DdFN48sH63H4+twm6jOz+Csv1iPS9tfYDbyagPlPHKlEO3D/FfK2FTG8BaVCZigM3YfHJWBLwQliAqBCtEDcGSGaDiRKbBfOzyIEwKBlnbRVqY65CudpzdXXNEBK7YeR8u+Nyd877vvarfPXd38X7Xvwkm9e+xuc++o/xoZ/6y8h8pMasRBCt8bbXv8b9u+/kbfdfXcB60xOug777K5/mFz70nbz33it8+d3fxDuePGAokxHVeRDY55hOsBusIDfGwEdf+oK+HqMm3AtGlmDrX3zn+TUsQeMcMjEKEoPqhJw7uaIToHrSx2LH62maeKKS6Zq+96zLSjM724uCvBCgJ0oaftLt0tN9d7Pb0c0OoIAFF1jGF7dFTt/T19jKxlwY8s3nplFpnVyqg41+TwilNqZ55jgXIxoMxCakZuQFPaH62Tg2446aZi1iH2fKMFJSpiXtwKA2tNpkRCdy9j1n/kDTIvcUAhKSJh0ZNtFEyaNKg9kxRTR5XcmtR+IwElKmxcQscCgVDgcmifr5Kjx48JjXX3+D19+4x7033uDRk8ccjgd2v+sPMf/STzJ+9B/h+pd/hnkqDKOSDO7OtlxeXnB5ec5zz93hznO3ee7OLW7fvuTy4oKL8zO22w3jkOyRGXIiRw02e/GFY1cuO5FVQoPJ2CWhyEWurbWVPF+hzND3mx66h1V/iCcbRYfzGkSIYoFpNySCUAm8FC54D/cMhhWixN4h24wG/cnW+ZICp2sxRbVl82BnMF2ndXS+tyq1iBE0aifQ6agkQ9NsBEOlMBVhrguBDXZbi40XTodDZKW/lj1ei5JBugCvyQmv6gLgi/TuOYjhts+YCvudORa/6MaiWsmy3+xArAJWKwNi7cssASOdVw1ENeZYmefCg7vv5+rdH2f3+MtczMdOZOuEZMR1sDUQXX9bYlSj6dqWRhANpHh/t2j+f7DPPj0xq999HwNZmT9hpc9uYtAnCUsdj3JNuNhIS1L06ed6UByWgvAuBxy/1YXpy7a1dhIYW+5JvytZknTOWZPdQ0BiJBuW5cXhYiSNLXgXtUYobqsu9uBqqvv1e5JYFbp+LlVt4tlIkRwnLa0RS+E4zxyORyPduabdsM++0cft27eNnA7meTZSClt7Ak6YUGsxvAB+9+u/wi8891F+7/1fRoZIyyNI7glz67im+gVCqVWTNFN5kw3d16vHzkQ76rXazObXuR2GQbtuWRKdd0ZfB4dbL4pUoi9BqFF7vIcAL9TCt4nwRt7xXcfXu24Q/bDtAemP//4bn+I/ufOt/HP3P03tGFbr+HqXwbaW/H5SSgyASFLbzLDakKL6WZuB3XbLbrdju9kq9pxSx1xV3i82mxNWOen1XErXIaWUbud7J03dD3HVtVTzz7xgSmxuFx3i32E4h9ufqxhcD5V1e5eOF2I4hhThOM8cp4n94cD+eGQuxbCcQEyR8XBUshwjWJxqY3+YSEMiJ0/SUoL7cRzZbEZizsSUl8R+QpcNaxnRg9XP0mEiba4qD2KKxJzVfqiVFnU9OZ7fbQ5bN16csJa1Yb0WrYBlGBIpuc8WO8FabY3DcQKEaToy5AyD6RGfx2AFEE0706fktgadkGq912IMRGsqQBsRaex+7j/m9e/8w7zvZ/4s4WxnBR6KSExlJqdEtkKYRmGuQpWZKoMStVTphMYioqQRyTtpavOGEOHJxTv54ts+xjuefJV33f8cY1Q8tkklj4nNuGUYMylHKpmpVcos0Iom6omSTIgEskDIgxbJtUoIlUiiNfPJnGADwUlF+vrHUjGclAornvJYcrC1Gq0gNi52nH6/7vFOai9LwVYtTe3FaeZwmDhcH9nvj8xzYZoqVYRw/2W2n/mb7N/+YfKv/Cj744HDQR/TPGuyMUr2g2DENpzIXozAsTVLaDQZMo4ju90Zm3HQOE4pzHNxgOd3dLv8dg4x8uvqmJDhyJ7EFaoncivBVDFiKscBPB9EcY5oHYVjFy4dfzbcNxjeG7PKbBGhFl3TZRamIlQZkDDq/o1CiDC1ghT1eTNN127SLqi9GYcJ85wTLQiNSEiD6VEjhZam5DWY/94xASWFbK11h0IkMeTY9Qo+PkQrdAodNxZpvZBqKXqKXcbqICkGFFGZn4aBpdgaJaFqCaxgS5JhsWnB8Q29U9y2NSR5HKsZiXCEIRl5seERtdKCNVwLiizoOFgs3xO9mpKMqO2n8x3Xa777QYrxe7yr8xwZrlJLZZqOHPcT++PEfiocp0YlkgZtFBDygMSMMPdCulqhtkAICz6jjHkrDCdgESWVKzTH37r798zpMed5PcmBcnu+mV1uf+nY6ptwo5t+yMru73k1C+AbVuc8+YzZHksMSV8PnbgKTohpOlLnuMO64DMqKUBAC+HHM7aXz3E2VaYCkjaU4wGZZ8RILKAikkCU8CiGZnBqwBu05KtH3P2pP0vp9glM7/hmwnykXj5PufVO4itf7GN4/R1/gPEXfpRH3/lD5C9+glrU9pLWqHOhPf416hc+2fG6iMqhFNTPGZLajgHLYyqFauMdJUA2rNaaRJ3G0ha9ELtOOPVVel6WiCa+h8gQIgORQQK0xtygkihxA7fukt/xbsb3vo/0rnfRbt2ljDtKyB3bqk2YqlCK2d7RGiIRlBi4VmQuMBekFNpctGGM2amOa7hYi1YQm5PdpxVt1FapxYiqDFeNYI2Wnq1D4uJ/2Sv9fyVRL0AjpUbcDWxvn7G53PH4eqDOiSgJaiGkTIqBGiP7MjEfJ9J14uzsjM1WG9KloPEkqZU6z7TaSCmarb3ojI4zN72+kIKRz1rH79g67qX5G6pbg+heASf5U39kIYEKC+YgnjhrPiSaK9mkIqiP6oR9uuek74PU17F6KBEUhzed3Xq8ii4THEPrHwtaqG27YMGwxciWJamfG0Zi3BLDQGtbcn6OFC9JaUcatozjBePmgs3mks32nGHYMAwjQxoWfKMOiGwIQbtIVy/0r41QCjUVYiukNlNtviVUghFNzS1ZHN5ibEGTr0NKSAzUpJ2pNZ8qgJRuI81Nffnu4zclEBvM6y2ivS+c5LmiBM7F9n8ISZsopEwIq0YVDZIkUsy0BETdq7TG0o7uWT7MztAfT46n4YZuDwYz6t8UQ2Glf1bLU05/pb/yFHUviGHLnhciJzqt+9/0tHRfypwQJLkzZ9fS16GTAnSEe9HjTsixFA37GRa8xfGaDg7Aia0l7q7fPBwfDfo92hAigFhziBuD4b6SX1NPYDcsRondnXhbczZmw1NLmZnLxFxnJW42PT+kxDhmNmNmyJmco8UwfN/rfS309sv4+TzKjd+X993ATDG36cQmWZ11BcILN8c6LO8Tt4qW75P1eZ6hQ7DYQ6vUGi2WqUTFwcjinaxkwZvpeWmtNQLRJL8AGSVrNb3vYxMcE3Gs+umyRvXMUjyl/t9pbHEpqD0l1yVaMzM/V/T4k5NdKuFVCKk/ax6gOhZLYbIVFK1mUNe0rrewIony6/Sf9Rk7j2HoK10WHMt500I4lUv0cbC9afs7pcTF5aU2tdxXQl0K+JUYZiGiXMIeFv/q56KPXWhaiHn37l0ub13SvnafFLw5aeRmTPl0HlZj3WMLq7sJb5a5Nz/3mz06mUdYrv30XHp/TVDGmWfouN4f2R8q09QoJdJKQprVkaC5Bl6gLRGV92ZjdUIy0aIjjS+Fbn8h0GpjNtkeY9T8oJTY5kSOaCNObA0n0Vq0lS0mwfVgNA22xG/CesH4J1Zr/uYROm4tbrzR83JSIlpBjJPaxFCRqmT9HmeKKOGEf5f9cPo7nMS+XCdEw4RaoJPbqxRaxbDs+pTUvbl46ranCNaQ2jCAEyaZ1bWs/u/XZgrgNIfqNB7m124/mZqN1nyqv8HOuYodGzGjNkHSeNXV1RWPHz/WxrLX1xynychGvQlq6H5trWK4k/F+dMIjJ7cZiDEjIVrDFvXtOje3E1Ou3Pdn6hAvdIza9AsnTG/aACwFsgTDDUFqpUyTxiCd3DYP2vTGCH5bbX1xuFmQYmRImec/9WNad5IUN4L1mgpdlzlsFRx3oBmpm9mNjkGLfkdrjn+47LWYVfRmPhWRzKKfFNtcCKicfDACyWJ+TjBmmWXr9dyW4kKP+cZohZTBdHy3TYXTJgaq04dx0PvrjQL1HZe/8td4/PE/zO5X/hpy/2uGs7hssOq5lU0aktmcEc1b83ysEPqpo+37lLxpq5jdthRGOnd6MLtabVjFY71RrDeU9nouGzmEaKSxmm/cuq24ypUJAaEa0dVK97Mq1lxZ6rW2E7tGYwhL47EyKwFBSEDIOt5NqM8Y0ZQ3FJQTV0j91LUF4CQXTmJy4tgHem4wLLaQy89uTQu2NyIxrWTmSgD1OkwRJI/Ih74HPvBdxF/564TXvrK+8pWcPyWZcp1jV7HSeaYI/Dv7kg+rJzE8c0HLg+N7tqaakxaY/exkOIqlBW0eLZXQdP2HGjnNc9DcJa2padSgsrlJ09iDuZ0nBAYnNqbZCz5Hshprk23r7FJ9iHPg93FZsXTpnQXbd3a3S1xXCM+/l/i7/gDytc/RPvvztONe878CZg9oATshLLVDQVEoNX2U0CbFRE2ZljNtGJBhRMYRGcZlaocNMc/koTCMM2NpGo+xphGOU2msUxF9X2cmOHiWDrdt10THCIS2LNqlXuTNx4LfS9+Xb2Vyn57DP7hae1ZrvZAe3fzwylfuZMpvdWdr6qT1/+uLC7ZP/MclHuX5t8FeTzFpHWdaiJA898qbLpx8fuXfuR/Wm6E41gELGaGt1eU7Xa71KQGkYyFrm3f9kIDisUTNu2/QYoDWlBekqu/W839XclDFRuhjtRqY5RqaINQelznxH980xzdWewhrIXo6M7Lc46Ibw+rn5ZnAEtfp9QKuncNbL4lv0HEUzVWfq+2lmMghM6aBTYoqe1ogehP01rQOvkE77qnzBBIYQyZHxeGrClZiC0TRhgQFYZsSF9stt3aV/dQ4To02Aya7ixVrNWtmg62B+etf5uqn/jK7b/sejn/7LyKDkXV74kfQfJDSGq1YLnaXGWbHmE0ZQlh07spmCSdrddkPaqsEU38aP3DdKFFtoyq2jtFnjy8kFez6msmsNkCIgkRRGd8UR9HmkJCqYU3K8NnruDR+RM+r0oZ9DaITDVmjZ4/xJbMLvcbNfte8w0TMSi41DgNDzmjvYI0zx7oQtPn6f/Pesf3V8/pt7Gzqaq3Macfj93w39ewut7/00wyPX1eZUps2Z6yNucwcDxNlmmAuxFIJtRrJVGI3DJxvNtzabbi923C5yWyy8kmUKOScYJPJZyObix3D+Y54/iwSTQXLC9J5qDUsBEvdX17qdprJ507+RlgIDLsfqs9r3HrtT9tfcXIjJ0j7yE/+yf5ej5n5GolW09lapZQFd+z5koSe97fOsTqJv4aw1PNGz9H0a5Uex1zsNMce9fC8pH5TUcw29I2h8TmN5WjuZYtKdtdao8UGSZlker2I1a4teMTKdu22n72w0rdqg7HUpdg9rPUBfr4+D4uftAyJfkLjjJit1/q4rN/rdqdTIqzrUEQaH/w7/z5f+/h/lw/8/P9b5+smruiXRFNfWpZrV30aVve5zEurXs9j+KGtWbfilZpB/UXPd36mDpvD5Pk+7oNa/U6pxdap1tdvNhvOzs+5c+c2z919jueff57nn7/LrVu3uXXrEhfEKSe8OUitGpvXJeN5wGgNVUqd9MeWlMZ6Q6Z85AcYvvBzzB/7QeLf+hE8j0ZEY5elOq5lOd8iS18UIFiz9hhzx+rdv9IvPCUK7cSgfS0D6By7v625Iao/hgjKoWF5LFYDdYJxruzDG8t7dddyuh5tK3Q/U9YvPnUK9fsM23XdrtVZZs9ZPV9wUnjM1ur70Pza7Tnp7juQ176KZ12o76iNAPzZbU1v3ORcK1UWPMhlzzoP+QTH7Hve4zrdaLQ36J4JHXM2uenfLZHgnCdxGe/fzBb7LRFN9YBRcNCYTiSlApB+g14M6+BFN5LswtXgUMGyXmguJKsLcUte085rSv4kterDwDylRdduh8pCH0GadkBGgITVqOnARDGjSjeKd25YhFsihkwIlZgGWt2Qh4JUZTet04GYD9T5SJ0OhHBEwgFhIoRZnRJTIkEqj9KWX734Vo4kvuveJ3n+cM8WEJSqZFO1QUWVegtaFNfGLb9+6wN8e3uDcXfG9vyczdkZ43ZLHkfraiBIKzQmgnXcwtnjLWnBE1iKaEFnFTV491Ph/qPHfO2VV/nySy/x0quvce/xEwqBOIykccNm2KpBVQqHaeJwPDJdP+Th3/wznH/nD/Dwb/1ZvQ6fezMUQgcFBEe/XbDBAsRG80hbW62xtRC4YZwsQbLfigZZXM3l92fNnVqFc90YEIObZAk8Ln6mJr/396/MinXHjT4Ha7Aw+EvB8IbI0gNCXU1VHoKEyK/md/Kx6ddXdqFBsu6nRpu/YKLWmP68UGtIgTZEIpkUYJ4rUzlyPR1pjx8S8sCw2THuzhm2O9Kw0aStNJCGgTzYz0m7uLac+fTwXr5tfsAXhtt86/yYkAa224FdGpk2hdY0wE5w8pfAT7/wTXz8cJ/Pv//b+d0vFWqdOO6vKXOjViGGTB6DFnyOA3nQhHnx5C9UyGptho/vksTVZ0FkASujk1BpwNyTlls1dsIQISakaXHI46sr7j94wMsvv8Jrr9/n4cM90ySkDGdnA7dunXP71gWXF+dcnJ+xyZFApc0zVE0erNPMdJiYpyNDgmGMWsCaIrGKdh0bshawi5BzZLfbsNtuqcDhsOf66opAU1KqceRst+V8t2UIgXY4WHAwMo7KKh1TIo8DLUTCoB22N7stw7j9B7pH/n4PsVgU5iB5Ml5IatwuyXmoc1qLEiDFQEmJKUYkZ0v0ssBTM93g3a41wxx1ylyXBAucKHCdU1JgBNONTQ3BIWsyn0hlrkVBgxQYQ2KzyRymA8fjnsdP7rM733F+65ztNhBitqBwxQ2JSFxwJHs0K1ZvumHJw6g6thgBYdF9GtDOwiEkQoKYzAHNSYPdQYtRYkjUOmuQRbSg4s6d2yAFqTPT4RpS4FgawkROkSFFhmEgZA0SzbVQZ2EuQq1YwFUnQe9BH5o0tRBzECAndS4lKPP09f7A6/ce8Mb9B1xdXTNuzzi7uOTucy8wbrcQBoTMJJkv8TbeE57weXmOd4e9ibdFVylzWDQin7yQGcQEMffAOF6gHa3XhIBEBcCCFaWEADFm0jiQdiMCXF9d9aCztMLuYsN2s1G4z43ppsn/2g6jEsUDJObsiyaAPYuHFx6kFMnDSBBNksopMpjtqGaCUMvE/Qf3uffGaxz2V+pQvf0Fnlw94erJE8qsBBuHaUYeP6GlTNuecxEywzhy8fZ3kS5u8+UXD9x5/CLTKy9SpiNTU32UrLjypAgT26YiHTzGkkmwhF3dJj6n4J6vyxB3jmIKiAy4Yx9cf3Zdbq7LyrapTbv6BAwUX4ElqRd1aAAn2trDCOuWtbgQy3QsyP8PKtNcj0s3IsKi+2+ic3YixZTEvS5gTTKlRf7+ECMU8c9Gt+ONcEQ/U2m1nBBMiRUygijpftLEmyGrzveipe4vNCUGDKZ7gssBFsdIZCHbEbefiISQiZ4kELLB8MUSoQ3Miq2fy51jZ8kOcGKWPgtHa07S1cASEJUspSkbkQVp1a1wgjGTK7Y29DwWng+BkLSjGFjHhv4wQmE08E5IxAysAkWCgt1pGNien3F55zaH6UCjMW5GpuM1rc6kCJtxYLsdGbcbQkrqoxC1cHgcGbdbPssLfGj+Gk2aFf8Gamscp4nrayXYub7aK7FHvmYzbNgMGyWAnCr76z3XV9fMx5kggd2o8nW72TEOo+7R2khDJMWMhGR7du2gR3KOC7GNF3+5Lm2NJ9u71JAgRq52b2N7fLz4vXaWBVSx8er7hZNiXk0UWcDRGLUQORgRgn9oHexagwnrz7/573H1LKutv/gX+hz95e5GqL+8lhXLeU+TNum6W5Oj4uKmPGUDPe0enqXDSfA8fy2CzlkTZXY/AXZ8DITQVoDWqnNBCIGUE4MMjOaTT60y1EKuhdwqWUSJHUqFVmkoGJhSoiYjzxANfEzHA/PxSGjCJmZun1/QbjXCxSXf9PVPkgTKxTnf9qs/zrFOWjSBEFolzhPf+7N/lU9/9Pv5nk/9DMXINNZkNU748vEvfoJf+qaP8t2f+yWGaY/1xLO1Jkhb1uaaTA0RAx0DjUZpatdOZWaqVuQkTgljwJ6TbkVNXhqGhKSgHDhWVJ5zIg0avA7JdSHkIZGHpCSMQ6LOM6VoQrxek+qh1tSeEAP3m1SQdrIeOymBAXydMNEBvxX452DxUqRKtxPcJ/TjTfvm5t/VoTebF8RBxbZ6yCm7fWkGBDclHDjOSuo8Fy3sIVZirMSUTwImz8IxjltqTdRxpo4T8zAy50yNiRoiLUQiTYtxPNFWzEY2vePkUeIAthEiNaqSTAFFgpVoBWpI5Jghj4Rhg6RMS4lCoJXKfJg4VEiHmWkWDseZBw8f88Yb97h/7x737t/n6upKySn+3J/knX/8f8KXf+TfZX54jwAMMZLHge3ZGReXF9y+c4tbt29x69Ytbt265PatW9y6vOD8bMdmM2hiZYzkFJVkKri4FQjVcJ9VYM/snWDAq/sEcGP/Gs7jRulToLUFpEcLQ2hCC2Kky9rFKRqYTtCxdYFYBT4V3slXucNM4gPympKsWrH4TZ3ghFMdvxK1r737Zx6U2LsXzFShFrdTpBe9TJOSgkyzkkxN88xcKqU2SoVSzQZd1YKLybMORNpQ+vX1hGYjV1ES34UkzkksxQk87WdzIlbB2BOz+b/Gx2IPvFUy+1M/tcQoTh4WQHDE8uR7xPc5wfyBRgmVVApzqVy95yO84+XP8uV3fBPve/xrzPPINM+kIZNKtmL6dWC5L4FOoOY2le2s7pfF1T7rh88z7i+cHifmjH/v6tHHbPXaOunoKUPczytrXbOynYRVUZoZdCd2lekSacvnT3Sa4bodt0xG/lab4hlN7d8UDCOzeQn2fd7J0O/l4fnzpOvH5Pm639cSxNNxkeaBxbYUta1IHX1LNTQmpIRAheM8cTxOrNNOn4Xj8vKCeVb/+Pr6aiGeNz/VGxCUGqzhub7+sVd/gZATNW4pJTJklZMpLXaVPzuuspBftl7Esawpw/dZ1ozPrRa4WPDTIoDRfGBfyes1psSm9po0k4nuzwTeMz/mvfNji1U4OYzZxg2CRas9RvHHXvskxchB1ZbW5CMvcvTvFy/cCUKMkJWpxi7Y12hkGEeGzcB2t2Oz2TCMmpiUenH8qghY1kH92oml5smJCmdq1WLiaN3mvdDeCd67X+dkCGubcbWnai1KDOvPRXVX9b3rwOxaNgE9MdBwqcljb9ORwzwxz8Vip+YjHibm0ijNEsNCYCrViI4HtSlyYrvdcXFxrrGV2kitQVhicH7onmv9fp4132zc7SCqP3Gcj2zShnEzst1uNHmsFiUasTkU0aLZnmwGSj5UPblcrGOXFS1awp+u3aAkAdawxAkCShWmCUQqjx8/Jt65ZJs36leUosUwyWxQ0SKHGBRLUX6khXCp++JB49BYbmIs17zvl/8iebcl972pe+vRc+8nTlfksidmtXPrXNTPudbvLNUS3EVjAp7U54Ut3n38pRfexcXDr/Hy+Tu5OH6aM5kscaUwzNkIg0cSscfipeqj1QrisidRoxaohRYtdhaoFtlsRhoaYtQiFZzcRvBu2G7Txo7GW0KbKN2B+99dMYTTXzUJyZoqtUaZq8njwv76yPX1gf31gcNhZp6NeERs3IH0xlcZvv5FjtPEdJyYp9lIy7BCr9AxlpyyJemsZGyjGxZeFBuDkrenGJgnLTybDke1NVS5LUTNz8zRjKDMfzfiY1HCktD1SEaaNhzRYt1g79W4Ygh0bDeKNRdrVsolSsKRY1KZPSrZby2N4+HAcWocD4VWBGkZ4kDMOwgD2vXNCKhaJYkwBEGSrrOWhCErOZJ4EXHSBhdZtGlIEyFGkwPNCTg01quxsMbUqhLUFMW5aymUOXO2GxlHTaiKlnCk9c6LbamqK5iI170WVuo8kA3XT/a60OamOEdMHbONErUBmlZjQ1JicokYARtLTEiEKKMlgKn8VtljSLgE3cNVc3QIHh9wUggxvMESvUoBEXIYSCEYPq9kU+5XrnWrr2mR0DHOZkWC83HieDiwPxw5HGclA46ZPGSGzYa42dByZhaYTI6rfwdz7eqWFIM2sTOMv3t4toU67tS6Z2yxnGeLnKOPW7ftlntZXvPXu5t5cgZOXlr8+HWTMZWpK4cF6ViXv7QQXIbltRO4d8EcrORwde60+pvYmjT7jkjMG9L2gs1l5VwiYTjjeH3F8fqK+bCnMaP0K5UQGsmIpXAMrlZEisUetAjXfYT42Z+nfPPvgUefoX7tsxrvc9v1L/1JHv/B/wH1z/yfuKoztehngjR6q0Rx8kAjX026tv3RmyGwxOpDbbRQNF/LHEiXh2uMfO2XOZEc0Ili3VauaEI6IdAkIZKgJagJIdLSlra7w9m7P8jZ+z9Efs/7qXffznG4YGojtSm5TmvCsQhHI+tlhQmtx7LNRUm+Zs2pq3U2XLEYkbZ1zTYcSqHX1uMltWi8X6rGnqIREQWa4d7P1qH5TtJ3Fpic6/+a4oQ0UhLydmA42xE3A6VGalM5F80WqSKEYeD8Qx/lyWd/lYdPHrHd7Eh5YOPBz9osF26J73rOm0ZzDJcVwYmXNFvcMGVF6RlSsG9Vsr8YlCJHe+6FvtwEX3upF/qKx2h6Z3W3Ne19pnNOcurMTo0eC5CKZWEQJBNaND+wml4LOLeIrAwyl19OhqXiefFhQ4ikkAlhJIYtIeyIYQQ2jPk5NuNdNrtb7M5usdncJm8uGIZzhnFLTsNyj1J1TYaEtBHHFIMIITaCVGvGaWROhl+qTay7WhrUGqBGpATqDPMklArTDKUG5up2aCIaeWNtQhFtGlpl8dkW3NPzcFT3FLOP1MrQuB4kizu6/F383tCU9JyU9fVgcQWR3gToWTzeyl9Un3mFffnrZke0p31urR99eS2qB8yuWRdX+g4Pyy8r/8oKrYPrqjfrXtdlHSu28621bcTP1y+DXhAJYLkuPUbknp4sD/z5aeO0uhelogAkdn3Ur7Nfw3KtrvW9qDIgq591BBoLnnMz3tUbIZkPVUXjdqWoPTbPs9mFbWmgFwPjMLDdbNhsNozD0Illm8XZnODhJC7W53h98y4pTJb43nKZZvfq7wn4mlvknBdnn9hWXVCt7az1WIf1YnnzxHyDj5zzKp+7Ms/HVZMfn11BSQN0PBz/CnFQOVkrIdIbPesj9uIW92M7qSThTeRRy7FMnODr/8bqlQDN7NHm+ke6+eg5SbqULToXvEglGWFptp/XBWGOmWP+t8bhFzxbGVoW80dOntc/e+OQEFq//h43s/vQ77m5WWX1d1nibPoK4zjw3HN3yHngYASf0YSXk4RJb9KHXYt+eQhex6Z+sqBYYALu3LnN3TvPkeKLxJBQkmMt1lqua+0sLHYCLLk83RKyfRJO7tkm6GYM4bd4RMNMVfa1njukMVtsPJ6d4+qxEk0dj1BrRiTRmpKeKcmU2dqdzG0lawSgdeIUMB6tLpeN4KE2RGZCjOT9QQvKhsyYo2EleVlLicUHCYqrNBFbE0ZyEdZyzo8lJuXXtz4WPeTXv9TwBGskEsxultZIoWkzTbTxrvhJ3L4R39/a2Ao5JS6JHlMKkawGseJ9wdq8W1OIU20s/WJFDYReiB2MBCgELf+R9Y2ZJHe735vVh5P9a3aW/9ZkGcMb+7wXZVnu1xKc9xwqy7XCTX/pjXCmUjhOM4fDgev9gau9Ph+OE3PxPBFvdrOQlii5jXSM2nWSxsmzNuSMueusVn0NumFxokWfuaNQNbcazTGIBFJTsqkkwoCwNby1isZ7abNpOJP3m2r5Gxbf9XhTJ/Q1ay8KWZLuJYmUqrZLrZpHE4Li9MnxNrB1ozY4VddPIxBD7c0k1KQ0+8uLdM3MkBaRKJCgGrUjousspdTt1yCBhGKIOea+H6s3Y0VWtVF2Erd4bU+5z933RmxL6q75kmubR5unx74wWt//wsUv/hXLZ1K92OO1/bttXCOqmxOEZORxhpeksOzfEDBsU5tDqP/rOTwLOaKEoCQ8Qd/bmlAlWBNCJ+sxv0kw+1W/yLPHFgtO8YhEIFns0L6Frsvtd//Z7Wex+4bQ5Xhroo3NSrEcK7cbFCN3LC08Y+S/wRyTFjA/J5z4O04u1bDicpsH4AT7az6PN9VIYDV++oULie8qL52VfyLod4xbeN9HCa9+kfr+jxHe+Go/eddD9nM8McdlOZ/93rE5OgVk/2sX1/6egN33au8iTzl/H6Wuv3StNoz90fZB7HuzW1/d9wiaX67BI6t3WOXWGk7qvsyJnpbV/TXXX2sb2z07J2o7tUW7CWJ63F/z+J/XvyIQ3vftyBsvEt79zYSvfBKO1zQa4Qam4fHKJpaLF5VwxesIZoSpNQ61si+FXCbyPFOtEXYMUePTKZPGkbGdaW5ZSkwpG6Yh4LZ707x2gpIyRHm29hfQfaOef2F+Qp8O10ErG3yxVWxucFm90t/rnRaW1e7ncKxuEc/r31ebN4BsLyl338Pw8md7POrkDW9xrPdQd437HYTV78sOPH3NxihYU/RkORmuB5LXsqRe/7Jgkaub9bFbEU35LToBYVtbwAHF/zr+LssYuVD3ugl/34l/aHaTxy+M/LeJ1dOpUjCZv1zLeiQXjGY1Iu4HuQ1zc7z9I6t1EsIig7p/Zk7veh25CFikgEvB0H/v1+NrwPJpQpfVcfXeZ+e4rto0PUtAZAYCoVrzIhH1gUUYpJFMlisPlDZhn+YDYQZkIDASw6D54zHSstYGzahs2qXA+QiXu8p+0jxqCYVja8yhkrwOcEU05fJ5fvHztJe+oPXOJqsCShqRWHSg5psIjmZI0Mr9SlabxGozXe+krr9WsQSz/5b4VOpk+IodGJ4ToEhjltYxv0hSXC80clASb8xGUF4hbRzpxJxaKwpJtFGDEmZAK435aA2BqtVHY76Q4VQhKJYUczT1r/V4MUQjkspGnJtW9V+55/HHGMleFxd033rDuBB8Ka/xDavEPpGjgpOpu29WjfRq3t1i3t0lHa/Y33oP8cGrlhukNbFTmXtuGKUaJt9IIowxGDHZhlu7Hc+dn/Hc+YbzUUmyao7MKZE2A+Fix3jrgu2dS4Zbl6Tzs39Y2+e3dHjOVMcam5DSqtZBVrj4Ijb7ccNzXj248Xwqb9f4haw/fYJ9LDlyOqeKg5pKMNs99HqTuHqoDlnl2Pq92tryxAw9R1tkenCuk8hJMyXDPrBcoOj+meMPhqd0fDVVWtUYc8+BqZYvKJ5Tfko8tTQs7xdjoXfHdGO33wXNoe95vCefX0bWzyemXGKP65+uAVCbRhpLTmZYztH1Tf/ZdKpNYCwT7/v5/0hlJYt9on+22kxfQ7gq9jWhOFePbIRFd2pj2mUt6gXr/GkjA7WlQtTc/WftcLvG63bFbF0lx2qWj2YyMyU22y0Xl5c899xzvPD8C7zw9rfzwgtv4/Lyklu3Li0fSRsaTZPmRE/Huctg33/B/Q/PrFvJzQhILVz+7J/jyUf+IJuf/nPUFDsu7H53lcbUCZeXhqmlNIMCo+UyWYPXaPwBhL5/gsfAe76y2zhLDqTXVVSrpQqYnpNAaMrEoVhP7eTOC6nc2kfSY+3PLRNhPlX/1Wwst2VdxrGWVsuJpPt/p+tzGVzbn8ke7pnKsn/CZsf40e8jPf9eyq/9DO2Vr/RvW9c6tL6fpf/uDyWhMp0orIjq1LZ1+drxKpbcgOWWXEZHIxU+JX5dcBLDSxvGuRTfZMO+1fGbJppaH5qomkzoy1Lg7I6vJ9V3EC50w18NL2HGiJjAkYAusGrT5Aa3i1st2j2tTtZFbUZyUMIoNElPqgPwwYimEkEcusXyD8xJAWMAjMRu+rMsFB/oFIFMTOqUCI3QKiVvCGlDmY+EtKHGPZIGyEeYJ6QVLfQWff/18BzTeEZuhavLF3hXPuLJWtrNW2iiBXXBiKZmifzs5Ye5vnier0z3+J54j2G7ZdiOxCETc6BnqVKJ0jSZMKrkVn4KDRA36w5epFENDLjaH7j/6DFff+U1vvTi1/j1l77Oa/cfcHWctIvYThhbJOWBkLOy4KeBlEeGPDJd3ePJT/55EKHO8zLPbvzCSrFw8twTFGWV9iOCPKVo5KbQWCdO/VbX7DoRwIXDs3S0lTQLKyEoYkpB/K+nSQ+6T1p3JoMjGP4eR51NaAQJ7ivYOwIKyxphRFj270/GD/JaOGc/RH7v9CW7Tt0LuPOfgiWXonuyA1OYowGbHJCQySlwjAGYKAdVinMTYh7I445hsyWkTMyDdq0bN+Q8qjMSYi9++scf3Ofn3vat/ND+s9Q0kNOGIWuByRiTJlYES9Szsf0TT77Kj16+j3/2yVc5jiOPH19z2O85HK4RqfrZYcM4eNeQgAYOvdMjpijVEIpRTHR5kF5liRck4sCAKVmXj2ooafeRFlRgl1q5/+gRr73+Oq+9do97D+5zfX0gBGEcA+Mmc3mx4/JcuyKrcVCZqsnFea9KuBw5HvaU40QtjTEGMoEhwZgiIQjZimfEjO9hGNluR1IO7PcHTcbfT8QgbMbI2WbD2WbDZhy1K5PLTCMeijlZAXgygyMw5Mxm3Ci5zzN0tLktc4gXIpkKMv0Rg+0RdCuUeWYOUIbMUSoMA9sxW/JoJoRGqxPzfNAu6EMyshgLCqYMIVBroKZI7LBDICdP5tQg26FFfn33Xj56/DJp0CT5IlqINW4SF7Ij5shUDrx+7zVaEN72wru4uLjNsBmoBTU+0ECJhNZjTF3LRQONBVqYkaR7NYHtaYEkRjCFdSqxfR7daBFanWmafWo+V8FT6C4uzpH2PLUVnlw94uqw53pqnO02XIwjOQ/MaNdkDZJaEF+z8vACs+bEHuaMVrwDSWOIkSFnmgjTVLh6/JhXX3udV994wFSFze6M5972PBe3bzNudhCiFkqEyFmEfzx+hU+ld/OPjl8/DbqvQJxonZZi1o7u0cDRGFNPXNLgPyZzDehKSRMEvahVglVc6J1c7/e89vIrPH70mFJntuOGcRwZh4y0QmgqN1NQWRKdL7Up+ViMmc24Y5on9vP0D3sb/T2PUqZOejPutqQUuXr0CJkmdinTrMhJZ7Wxn4+8+vqrvPLy1wkIt+7cVhKa6ytCjFzeukVrjavra/bHI9NrbzBNlat7DxkvLxlu3eLz4R18dRd5cTrjY3cmxkf34HC9AM5Nc56id5two94SfEXoiXOEuDisqoC7/ei6VWW7gX8p3yhgPn1fdzBXY7RO8Ag48WZYCKdCtC61BsybDRv6bnAnXQwMcFDNwRQxUEIsSUa6AxXgJKjYk5TEz7w+nwMmrZNMTdPMPE/ayb4tRFPR7GYRT7aolDL3ohXvmuwJZsmuL6eliCUPiZxS9yWkVS1qs0KRFCIhOZnAkqQl4ne9Atld/0YrwjbiCiVmwrJUVA8mJ891KEtWtqLJ02fpaM1skgAnXUGgy6/mK8YAxJA0MNhsnbgTqwmIS+D0pDA+RmNc07URQtDu87qZTJvRfbgOmARIWckjxnEANgSUVMPJPIdhsKLHQLAk8Rgivzp8iDfalqNkvmN+UYlAY6LWwvXVnocPH/HgwUOePL6ilspuu+Xi7IJ0HhkHtReHPJBTVlLDFjjbbjnfnbPdbMhpoNQZoSq4njDHWWgtaHG1CCllhkGZxdMw8pmLD/IdV1+ktkqZC3OZeceTl4w0uPDC469qIgoL+LDolbCaF3fuF1DQj6f5POtuoMEAqnWC8PpwG/9mcmWwAOjTPvO0403nfdpnZEk6Wz+Ly7UQVBfeAD59bAILOdazVtAMUOvswITKahO6SjLlLP4LeLQG9jQhwQBFA2ViTqQAQwwMTUilKmGlA6myPKo05laZ68zxPR9jePGXqZboPR2PTPsjh+trjvtr2jSTCRyu99RZg0QpRM62W8btSJ03GgwqFe/QNjVN6PqOX/5bTFGJd7zLQwsqG6IswaPv/NwvQRAj62FJ5O2FuusxadatERI6v6VW5jJp8KbOzKVYUg+8/OHfzbs//8v05KkYjFhK7U6yFlaGFElpIQFY2NftkkzvhBagCNX0VbOghJIcavF/B/ztmruM60nL3m1gIXRy4NU0o1kvp+Cf/+2pGIWBt/on6b+v/rwgUiEgLdCqaIJTqZRWqUbKUEXB3mLkUrORrsylMs2FqTTmYvs2CjFWUlsH5Z6NYxg3xBIp48Q4jEx5IFlXBAU+vYPQAkrj42sdV7CE6xCSEscgyFypEihYIDdEmjk1kpKSlUYtjoegGGKbESkIB7Q4KXA4TFzvJx4/ecKDh494/Pgxj6+uOB6PRvYhfOUv/ClguZyUA8OYGbcDm+2G7W7H7mzH+fkZ5+fnXFycc3F5zsXZGZsxd2615KA7q7W47sZDUPDesq88oaEnaPjk9t9t/m2fcrLWPJizgovwwjEdb81HEiXNtYSLtRErRF7hFs+3K15Lt/lgeV0L0tECaXydk06+2wNy+GUBqaVly4ja61KgZiuAKSorFiIPJzEtPehRfRubrS+s8oJXNo29oCspSLc1PQlgCfbp58UArkV/Lt2L8aYFdOjsmT/+getbV+b4mnurL2bxgzoY651PWBai44kE6yhr8+XzEzTJs4RAKTPP/fT/h0e/95/iu774kxxv32KYJoZ5JM8DORcN9liAS3WadlQPbkM9hbjzdC8tgeqn4sZvuun1Juk3s4y578/+8fDU87ot1ZxcaEVk8zS78SZRKbifqdfRautEA82ICZsVFzuJYQ+ERU0OYzAyoFp7cgzVOlD1PWF+l22HNy5e4OWzdxDPjrzj9S8w1IPhac2ISJaintb9xIU86WZOYVjdS61KAlFKJaXKs3TsdmekNBmRk/rVTgoVAI2XRGaTi62eEsOmNJNzotTCKMlUnPv8bRGWcLJuwTEHWQ+Wvm7xOl+7MXoyiRPlYfbbEmPAz410Qs6FZHO1P0y/uO2vn3OdtRQYihXn+rlzToZBG4l0VRJQl6urEpDFh+p4hiWd3CDm9qLnZem7feaJMr53Ks3I8UuZmaapP8qsGEWwLkQpBHJKnWjK57AHcv1eW+t7qtWqWMc0U+aJMs2UabYCfdvDOoAamPf5D2nxCm1MqxGMllaZm5KJlqaE/G5rhtqIuZAORzbHid1xJg8zpQm5KglZTFrIMm42bJvbn5Yw5/owWKJ4WLAlH8dn6YhZY0AESDmqnbUZaLUwT0f12SwZMMSomBMWd7FE0ybCVFx92/w1OE2Q19lIRoaCRAvkt36OUiqPr56QN5ow553NU9K5pSmZksq62AvUtXTNOnb3Akfp/yIBLMkuaIvovk4eP/dNPHrnh9mXic1Lv0w8PjaCrZlSC/Os+Pi9b/p+7nz+JwwfUgILLdzU2HeqkRYD7/7C3+RrH/h+3v+5v0GYHjOlSJgDKUEMjZoiBdG1IQKtqi0oFTFfhAohKC5egiVei+l1URxKO8hjOjgRoscsm8bBjEgnNIXlFizObTV9v9ukC6mF22+6V2bvsNmEeW5MU2WaZg77mf31sZNMaSFnJqdExeWVkwWrAsoxInmghKid3FYJpMlid9KvwXx4zzVAffAQIkkC5TgxTUcOh6OSI1kTC13Uz5ZT5j6wF0YI1hynNupsOGzShNWWtaOeiGjBYPDEokWvtVJ7PsjSdVLjtUPO5KwEyKU06jQzHwvlaBgtiZRGatYCBwlF9ZR1NW1tRmoAKUQFqyEEJRqKdJ3pSV0a+4sWJ6PfX4woqYhCwvYdYh38NOFJrJViNtK2bISQujqDrWYIxqObMH/bkyRtXdemBW4xRMQT7ANkxIimVkn3EjrRVEgRybpPWjQMzdX+2q7WBJeOb0RzqIJATQNzmKlY8pbphxhUHqld17ot5qQeKSW7b0sea3TSXf8uaaKklNheR4mmpuPEdDhwPB6ZJ00OG4aBOG5J9iCPTCHqnjUS4WMtTLMwFW0IEFNS4io0PqZNI3SejbfFEtFOLHBf1P/gNsg/gMOJNZbLEiyF3BcuXffa7y5jFu0Ep3cqhsP7IoY1yZS6X2Kkis0IxjzvZjljv6RuH/gJrIisnzDY+l0SdYOtaYJieGTIu8g2JMK4Yzi75nj1hCcPH3K4ekKdjrT5iEyzEsOIlaqJILVS5xkR1F6ba18b1ckjf+m/UpLaWQmTAhaDKIXy5/8dTRq3xHtNtLOE+kAn/0lRbbycszV20VhQtLgQmB1t8ehoDmqz4lbv2hrXmLtjfbWeyMJ1ErBgGGfUruxqZwdqjdAyMuwIu9vkO+9g964PMrzrA9S77+C4u2TfRqYZQhOS9iHiMBWOpVIRarTr8D3t4Ijn+bDgGF4AILZ+kjWKC6LFXu5minVLbZ7giZB8+Vke4LN7LAh99ylEFEtrwfydwDBu2Z6dM252lMMVlsqDiFCq5iq96/f/k+zuvsD15owHn/olchyJMRPOA0M0O94S2IVAESW+i6yy3Dw2aTFQRPGrYv64iCA5Gkmg0KLOy5BWcYUOM6vcjTEsMkJMJ4meP3ijko4PLLlifk2nhFgARsJBIJBRFlRRAioRPEHfc0Gx8zkgpPstOISCZ7VJixBGYtwS444QtqSwJcUd2+0LnO+e5/zWXc4v7jBsLolpC2EEzF8Ss1Fa1aKYECAmWrO8F/Mbu8gyD7chPbStBdiaL1Oak1jPRgxwZCpHjuXIXCZKnbT4kkZsMwElCSlNyV2blbp5LEBWOKkEI0e3WLXijJi969eryfe6RSNNmuUJKbGFiCbO11qROpOewaJLP9ZxSj/WidyqNlxz2XqwnCtwj399Qp7+uv/NCSCWt/ZfVlewwshFv89eX6TCcp2sPre8R07PF7F849a/yOpAFjysOlEAfU86btYbDMnJFay+f8FamiyEbmuffRlj3/NuNSzFjCbpNT8ab1tkuRWOt3Tsc93MxDC+psQ46luqj+lEc0ogC0NKbMaRzWbDZjP2/PCuf1Z4/yIjbk5lWMFbqxwOWcmNlT/oBk1bveICUXeHlZ8KvfioX4X4OjW/W26em6de4zfyyDkDwoTGMOe5EZPaK71RZtDZ1TWlToj7Gcb9TDI7s4VGDQV91eQ5jm/AsntOx6EXH6xek9X/q3ciROPela4WpDeLcV3sn17ynzQeoCR8Sx6v2VAWS7KdobK3FfXfq+cj2XX9Jm1+3QeLj6av3bh3ocuobkuEZW3r+ItpmkoeR+7cvm0YsEDVRpHq1BZos/lMdB/Vzx9Y6FwV8ND4m9TCxW7DncsLJWhpUXEpGkLRXSOeIWZXFV02+P4KuidbXY3Pkr/QsSj5jcfvJF4RljGh2wJ0vb9sfbMLbD+mmP5eU/MP9XjypCix8ezFusVcn4Y3jK3NiLJO9oUJZ7s/z61T2SSLDWXjGRGohXg8EsymG8wHz3nUvOGoBJOhNUKtau+hay400Tzd4Hs2LORQIRo5xyrGJ/0/eo6FBEKz3CLzm1w0L6Ev13+Bar4ehKWgCZCmDXaVQMtu2uPWLNOv+wNrEL9gRISl4LPLEfug26fqm9j9uy/n9m9wm+K0QEovfdE7rmvVll9RE8hiKKz1sR/qRseTcfH6Bsxu0xej7vUGpaivUIpwOMxcXR94fHXgej9znBqlBhqp+9MSI1K1tsL1bzP/Un/WeqgcghE25H7/rvNcZgjqp7GyS561o1DVV4maO5QEUhVigSyNSCCHyGAEZCkIB4I2ATkebb1V2qYRGbHlDiGfkJZp3CmQ0UaRSSKhBWotHGuhRDSHURJDDgwOm0Q1LLyIV9pSu0bf/YsF6VhBjgFJVuwsivNJjZovlhstJSRlwmA1dBhGQjTSQI3hzm2mSOsxtHVjSd8vvu8hGGGh7begjSRCQHF5i9FiS1ux+NrtvyUvT/o4pi6blxh5twasnmhJJ3ECqYa3w0jxtNA7+ucIi/5f6Vr3m5BKLV54q3BFnwPxzJjQ87IIiz0tw4b5XR9h9+t/lxSFHIVktQ4V6fbs+tDmEVYFaMIrRm1i4PHOWhtTqRxnbd5B0MLyVgulFcRIyTf5t1VO+Tt2hLDYZWJ2l//B52Llpnadpf6Lfm75f/GEFguFDg1229NlOi6b6THltb6U457ws/8p8m3fB7/0V1ibWmH1DbYNjdh37TeubAs4Ifq9SSxF/4zrCX9d+s++lvvnur+BkQrY98Ro5JhrggHXKYu/VVvX/EQ05zMYDtCxgZX/duqD9VHSKzGhvs7ttg91K0+v3a/F4/GsbAAPhiyTGWyA5Zd/nPDxH0R+/keR6weLj2TnWZNILn4hSMjmf2k9m5QC05Gwv4akxC2lCtud5kPknDX+LUJIiWHc9DGIIWr9UPNNX5dnyx0Ivcbh2Tm8QUxY7RVfLt38sHmzH0+Pt7qdFXvRIndXn3f/1X/uz6f2S9tccPzWf4S2u0TiwPjSp/qF+D69aSOsU0jewgNcnsUffvO+NvXv6uf5+lydISi+7EXtXu+y1glvGh4jGhW7QLFBUQtiIdxAXJfYupUFB/C8jVMcnKVGSJbMfP+viT9WOb429s1lKzcP8wMXMbvYniwWhMbUAw++5fu584WfMrljuTj9Hl13GhHpilZrwXlcD66vxe9kbbu6Je72cuyxSbHHM2cyDoPWh9RAmWFfGqEclZS0CUMeSCFqQ4wY0MbODUIFqtqJtTJJhVpoZSCPI3EctMFkJ3KG0IQhRLZD5mwzsNtk5qrNjlpoiBSkmZJZ7XP/QdDmq1QhlkoMqE0oQXPY3TcDw/YMMw5Qg+/nZrWbSgMmweukzG+zNb/Wk8F8s5ii4jtO3BKw2LH6bM0IO6X6SsqdmFSAWFuvGfIb6vleWL7Q6vU2Ky7tOTG9saJdmNcID4OTaDlumBjHzDiODIPG/1NKXU/kIZFzXMmN1ol4CNrQXnFf1+GLHsVwTHdGxT6rflWliPS8qvTGr3PWIuXWO9l95e9aHY+Sp5TaqLM2mnLbIIourURgCJHdkLnYbLi123K53XA+DmwSKkRjo+VE2g6Mty44e9tddi88z3jnDuls9zu3X/6+jmBEuEHHpyrRVLM4/4mccX3jMss3gj0vfnjsc7TYlgA3cOGwvgr6Oj+9utX77RzceK3r3ri+htDXi0AnaItGgukRsCaOK3gsNCy27SpHx+vD24po1A+PDdNrgxqtJfO5jJTNdZDVloiRTmn+kfn9ln/Rhxi10U+a5gYnjrlpQ0rPE/acTcU46fiu659A6IRQi12vPoJCt6HrVccEa7c13W86MVnMWFmsyKeZOY7dBHH/zmxj0Rh450IOLneMY8b1sH1pFGxMHDc2uzw9W7Yi0HVtjJb3U8XMFCO3a1aLnzOb3a6TTL3t+ed54e1v5+1vfztve/6u1o9cnFNLtWaI2oR7miam41F9U1t/bnv0it4QjNg6mZw02T3vOfuF/5SSrPFNq3jjmyrSzbwqwly1Flhruvy6nUzKiAOtTj54PXX3L9XOi75GVn53WusPk+MhaK6kyx3N30L3Fywk9jEse39tR/r65NSe7TWILht6zsqyv9xmX+q66ARPnfQsaL4ilkdACMu5+rzrfzGwxMM2W9Ldd9Ie3yfcfRf15S/hDcMUd1j0VPP9LOuHyRZ8fy8xPLofYJmILmLDzZHARLb5mYaX+jCs50Es/TwAsS3j85s5fmvISFg2iQYJIkRBiixJUz4ZBlwvi0sThwIBz9wIKCDlXq9gYFCzgg6E1z7we3nXgy9BK0iZkXlScoqixoanVUhKfTBCjJAGHAB0IFpMOYgEY3S2oFprNIpdxyqxyq3zoAH/gCizclCDLs9KwhSHgThvqPNRr2+ekDLTqiYjvEueINPX2ZP41voajDs8CTqhIJgXpWrRaWSWCJd3OGszZXtGag8gCk20y2irvoGFQCFJUVfLgMN51sKNUmt3jkprlNa4mo68cu8eX3/lNb760iu8+PIrvH7/IdfHQpWkCQ37meMspGEgDQPjdkOMgTGPDGlgM8wcpyPHw4FpmpRZ0uZb1+rKiWMpdl8X7/RAe184p8vWgfSbBT5/P46Q/GZ3xjfgUMVJByUQLPDYrQx9Ev/Rd5s5k6iiDislv6xl6QKlO+n6BhbEONo+MSecwJOw5VwmnsSti6zu2PZLiqgC1exASyj3xD4t4ndHRgjIECEM6gRFOM6FqRbm6YoyH5AQSWkgDaMmo1oRiYglQuXEdrPhd997mYebLTGODMOW7fbMSH2iKdOMxIjlwVLnyA/NX+BQC9f7a548fsx+f02pM+OYGcaRcZOsO6/dU8KS85V4J+WgIHpS578DTA7wyWJ4LclgQbvAiIL7zv2rBFjCYZp58PgJX3/lFV5+5TXu3XvANE8Ijd0u6wy/76OEW7fg9c9SjjN7aUg5EqTSykQrB6XUqoX5eEBKIQNjjOQIOcCYlTwlYYRTQyJtNpydnbPZjrRaefLkMfvrI3UWxl1ktxk53+7YbTakmCjTRCka9ExGMBWSJgCHGLVwyoIhIQYj63t2Dsdc1RE2owB6kNa5J6MZNylE1wyq1GuhRaFVoClpibRCs4QzoRGCJn+krCQXXgwY40DOI+NmZEiRnCM5WdcNGhORn999mBASnwiRj81foAUFWGMUxjER05Y0ZJ5cH5nnA/fuvU7IA8TI7TvPKemXoOvNCXWiGYkrp867lYLec0ihs3QSQi/w1yRYN+R0oIIX3SraYIZqQ6gdqIs5cXZxzl15O/VVYT/NTIcDMTeGKsQmzE1Zo4No4r7IgCe9WBZ7l26CmJEjhBRIorJDpHDYH3j06Amv37vP/fsPmOfC7uySu88/z523vcC42VEFLZaOiRiV/OtWFv6bw6uEEFVeGeCkdkMgBe9sm219W4F3NAYuK9rRMVRD241xogGfgjH3G/uwVPb7ax49fMgb9+4RRDufnZ+faYKWcbqEGLTISBqlziDeCWdxQktVQoHD9OwRTQULkmIFHDlrKUapM0epNDHwjKCkMJuBs8szLg+XBHOAX79/j5e+9iIP7j/gbXffxsXFBZvtlm3QQODV1RWvv36P68ORkDKf23yA7fs/gsQd733/h8j3zjg+uIfME3WemOdixAw6XoHQScNCTOTgymx1H+YQuSXDyn6xH0yWONGBf2YBcE9Ak5Uz3m2ifqbV773j15JUKAb0BUsC9uJJ3YcVBW48SWxx8t07iCuySb+URus6S1jYtXFwwsGPupBM9eeqHZDx95vT5QV51YipihFMuRxcAguhF4fmGIzR3olKXZ968rr0JM5grAwRIbZ4cg9LIMCnK5rcUpAXLGjQOs6DDnfs3ah8+JoBM1FAopMDPTtHs6JHX2+erKPEgCZzmhI+xRjJKRtBniacOUnDsSpJiZjjHKOSfsUYGYbhpJBISQCVM0+DgdW6NzfzARfZpOfXAuKGWKFSZjNmBZmHzGYcGMfMZkiaFCCqbfds2LaJ+wd4crgC9JpqrTx5fMWjh494cP8hV0+uVTYSYHtBzgNnuzOGNDDGEWnCIe2Z88R2s+Vst2M7bskpM9dEqTNNZmCx30DXQ4jBSKZGtrsdf/fOR4k586lxy8cefUbXiPmy73zyIqVMCwmP6VsH/LzYpYOS9nDgz23GWutyAjs88UGD2+a/3gD5/FgXuJy+bvbLqjB9/dk3EZWsz/eU1/0K5cb73kxitQTM1sEAT1xZv/NZJJoqpXRZ2Akwm1iMciEWwiwHXIZLOCHAAfPvUHwiiPr5DSUoO05H9gd9HOeJ4zwz1ZnjPHH44O/haqps3/d7uP65/5wyTczTTJmOHPd7jtd7yvFIqMLVk2vm46QFlQZC78YNccgMm4ECfPVD38O7PvHTViRhayIPgK170cwG11Gu9nqwAFgmVfp6XHdHBpvnoMXyBL3PqUxMpkOqkUy99J3fhwwDX/3Yf4MPfubn6cn+5ldGJ+hMoZMLLEzyNvZiyVjFQyFKaDHNkxFN1RXRlCZqK/ZjIBrtRI+J2Z4e8NNBkNWzveZj4dH5YHuNt17PbTxj/76Ps/vc337z/l09NwnUqgmLc1Fiu9JMnhrQWEy2TLPagk40Vap2ZK+mnqNhW1r8/WzpsZw2BCJDnijDhpwHcieb0sLWnqjr689lZlTLQAuQE+I2OkAstKjJ6q0/9P3ByEVbaZRQNMDYRAsWa6VWLQYqIlzvJyNg3vPkes/hsOdwPKgfvLhUuLnWyQ+2G8bv+2+x/crf4exMCaY6ydSFkkydn+0YcwZDBIL7U4LZPpZodyKrWWFpS1KC/u0pctr2qrAE0fw4hZxPzxODJYJKMLIp6FLfsNQxNH6wfZFfDu/ke8pXFG9BlmAbWIKbYFTGppsSoS57BiCvxhJsH1V60l+sVYP3qyLsru/WetUvMyxzEj0Q0ROcFxGmIt3B9Nb318ne7DpbTuWEJbL0Nz17Kuypxz8wXXu6gFYvrp/9OHF+zP+KrDsVnXS5YRlyxw6bYEQdik8GjGRvnnnhkz/O8fZtDtPEOE1M08wwFIaxkqogXtMg3fvCwVDHR9yPCO7X9TVl9hGn+yfYnnGftQNMq/vA1pfu7diH4OYcPNUGW9l56yCykwuv9e3NzvMndp7Q/TipS9d3Pe9iky32npIcM4ykEDvRlCaw+/ezsn9WcxygxIEojZYGiIloATixhC1VoQthXJmViLhU1dP9rOan+hgjrHzRQgjPFvbhPkqAbm/MRrIcgib7FOg+bavNcHC1uUpJzPPMOCiJR2oN7wR0QhQoJoPWo296ASeUNX/GO5SpH2EEY8XJxuS0QKSfK2ijhQBJvasV8eZKNq6KFTv+HVTmqxozbNDsQ2zuO0k00gmoa13kridFOwGHL4S40n0u090e7PLdbEMzFLp+WEim6oowW8lfnACjFCO0tmJxJSEwwu/guIvhDT6Wlsjm562ldkLYeXaCKXvd43EAMdLLrJx0BOidBEUD/Eo0Zd34RHvYVFnwiwCUhiVQqd3YzMap/d69k58tHQv+4yQRXqDefVIbu2dQoR2OR7YxsNmMDGMmZyWKON9tub7KHI/uvytZebXYUbOxEyweamRd6zjkQha/dLKL2RoLYPFu8VinQBAO88yDBw+ptXB+vmO70biw3H4n0+13Mn75FxTHN2XpxPUBTdrQFgvBvBaxhEDI1qhAopa4iyVTls2GIJWSMyUKUWbmWpnK1IlPX/noH0ZC4LUP/2O8/bM/prKzOVaJ+l69KCby7i/+hMW8NPGSAFEUz67zpFcXY8fJPEbme1rjsxoDEiOOCjmTQupxhtZcl6HypZcI20qL9vcQ1GdsupeTZRy1ICiDj54jEJDqck56IuFcq3WEr9bl7chhf+Tq6ponV3um42wJOJY0GXQOGkrIP+RsuHSmjJXr/Z52OOCyRCOtRjxf3Q5hWTck9VcNhAxBSUjm49zxhIgW8uQhP5O7TAw/SBa/U0xPiV7qbLho1MKvNg6EgDUGGoh56H5Esyr7JtjYWjMgI4NPlgdQSqFOhTI3pqlQ5oI0IaENO5pEUlL5FXIkma3eAlB1JdWqHfc6NlBU53gzGWleIK9zvuQl6L4Xw5XVlVdSuCaNVmekCmUqJKCmyDxnUiqICNlinzWofl432gpBFD8W3cOxqR0rTX2rmAJINNtRdXUHuh1raAChE6UGYzP2hEP9q9tJhjuRUOIXLdhQUdWIRNrQmHNREoQQIauMCzphfd5q1bUaojYFcfOyY5pm3zSzJ2P3obqBb3WwWqwWgu6pQCTkgTTsCMMIaaCSmNGY2WxxrdIWu6LWqv58y0oGJpEWIznLEmcxOyEYdhTaCqqBZ26TWT3ucggE1n7nSjaCYWKGzfl7bhbfGCbQY01uPvXTGa4Xq9qVSD+nG9qhn0f3AWEdpzIirH7K2F9bMAnXdBpniClrkUsaSZszxt0Fx7Nzht05x6sryvFAORwoh2ukFmKtpKCECFJnJc+/uqIaaed0PHKcjsyzFeqLyyeN7+FYpPlI4AQ6yew4JcZI1gzKi1w8p23tj8b+2dhjLOs8JjFcXkLoScU3IZi3JF6xKbHmkIQoNnOR2hKlZWraEc/vsnn+vWzf/gHk1tvZDxfsZeC6BErV4oCxBmQWptmaCwaoluemxTAauwlVi9ZDaD2WJoYzOl6r861NGNtcabXYzAe06Gtd+GVxH8et2jO2yVjcAMxmiGFJwgY6Sa3LrpwHNrul6V2oZiv3/B3I5xeU6yvC7pyr/Z4UHzKMG1LK7MaNUjIZ1lR87EFJA9BmOd6t20kFdfwLghIOKemUks9jBeyS3BdJ3UeQ1szWDwiFJpEhBpJyUJjsX8gH1I5JJ3DMknCejCTGijxsXoNECFltPARJavekFJeEcGQlg/VZque+eDK7kQmkBIykeGZEUzvG4Zzt5ha77fPsdnc5O3+OzfaClLZIzIgkh97MXw2IRJCMEuRY086q/o7mXFlprH13IIH4fjW93IzAt5bTZg3FyA7nibnM1KYtC4JM+myZXGaBIkE8C2aBxSx3wPNCPLMOyyEVInXccXjXe9h+/ks6H7a/xKitogTdWs0IO2thvIH1PCvHCba8knkdizKb62lxRcfeTl6w95xibgsG0Jf0046+vv0a/LX1B1TvyQnG91aH/8U/43iM5ytoFlSU5V5uXHW/juZrxkBrz48MYSGuWIof/aOWnSRrkiwfY32TBC8FXx6djCD0q19iXKYr6wr/O+2a7EnuWkysTTdbx5pCsEaWWcmYkxXuuA5drJcFz/MJ6xBDH6Lghs5qrM2ONJtCmzRZrnRc4UMdJ/IVtsyXFlD6PdPjBE5I1/NqWX9lXF3Ds3IoyUgeMk0UM5umIzEkRscrPH/Hcl2CLUbNLfb9FInR7zaDKImuYm+6XjQ+chorPMWnDXu0ce3FQm+65MBCY/jmEV0KAx0/cBINb8bpBRsBwprU2e9Hiz+bFCVO8sJ0e1//jtXzUy6x/12vYy1bb3xGwqm8kUXOE5yoQ69rMw7cvnXJ8binSSM0p8rWAljPke8EewaOOO60zg3LKVOlIK2w2w7cuthZowz3IQRCXQsLeoEYoY/heo3H6Hjf8pk3j9FbjdmbZvJkLNeyzmWT+7AEb9YZ3xSz+EYf+72RVTYvU7EcxhTIqXUxE6xBYScZWvlPhGRzupBPitvIJq8TRlo/TZRWcQoVaiUEJ/SMjKOOW0Pjoyk5yZXahSJWa2OX0ZujGhk0sqxrxFzIoMWkKUYkJryJSfNmGD2c6XGaJU9SECW7XhU21VYJtdG8kSSCNK3P8fyoAFbUHclOVmz+h2sJ/Sb7v6uvBbN0O8puCqlGWmNYSLJ88+A2aVCfKrDou7bCFFaWiuG+JtfWdki3Z4Pp5tbHe8EcHNcMtBYoVThOhXmuTJPw5OrAg4fXPHx0zWE/0WpAGGBVJSHCknvQWtfRpVSO84QQjWBq0AaKw0AIgWkutlCb9bHVGM9shDh+nc/aoffXujwPQZt2Z5v3hlZc5TQQN4GcKqMIswRqQONn89xtruq6DbQWzFnmV/Oky2khdRfzFZBICJqv6iT5fragIHdfL8HIAbqOEfDivBiCYmkscR0lnFr235uIOYLbp3pN0TAexSqSNuyUxcfobzVsVpvh2l4T32jquzWEUW4WG6vPVIVOXFtZkQW4zRroRFOup5YCZTe3ovEOp04w5XiJV8zF4HnemP8pSyy3F24vxZBid6qNwyzVbjHR9N3BX1v0uuSR/bf/4xACx5S4/MrPq0xd4RRdR+FWou95z1EMdt9WUyhmYdt4n+C60gg250OKjOPAOI6/7f3wO3n4uPbDZBru8/vzic6m378b6jZ9i2Xe/a+4+rzpRf9eWcicbmp6uX4Iv/RXlxOK74WV38fiFizfy7IPVq/3u7QPLbHj9ZtWH6Zbkiu/46aNat9svqyuW42JS/K8IZb79XXTtPk6LZnOhRbiki8RfPz1s90+9H1quYZLymE4uZWnZM92vdZvyTeVvbVZrPFNdxgEfvnHcRmz+KWalRaD1fO1JV5aW6UVtY6K4YZhnpnm6f9H3Z/H2vZt+V3YZ8w519p7n+be3/11r39lu9xhF9gubLDLXRmwHQMWQnIUHCVAiCAiQolRpETiHxIlfwSFJEqEFOSAQkSIgpLQxcgNVW4wYBuXq3O57HLVq/fqdb/u/m53ztnNWrPJH2OMudY+9/6eX3V+l/XT/p1z99nNWnPNOccY3/Ed32GCxBPH44n9/o7NdsdgzYb7PHG/H90j0zBQdWM3rrkWwgS05kWRklf7ot/JY7EUa1/XZ42JICB91Ht0uhLVdvRgafK12he763x+9z2O9TjIBRrur/WKUIcN5Iky7EynJdh3+t533z94eZz9epZzWK13/3cvfpL7U1NtqAkDeo2oz8/1auw2Ffo8PIOUpafD+hrC6q7o66/SG3TWxXb1InyvZVglX3xf93NYcww7b8BtkcXTy7+Xe+H+ICsxOnG8pvvMmMCU5k0e/8Z/hBYiH//6f5i3/tafAzTX38Oy1lhmmv+/dheiCZxjNus9333XsJybX3HfH9e7qJzZ2tfhePjWm4QWCBny7Yl6N3E8FWKZGAdhGwKbaPnb6nMgMyTYbhNRNpSsuaIyzZQ5M24qKUPcRErKzA1m49eAaL1sFDZJSBFCLQTTF1jydtL9tzVe0sDEZiunBiVazZH5o9H4Nj7sxvyl4TkkUMymdaEpbzJkehV0wSeMj1WX2Ma5K36L9Xw0tqRzXgole+xonlufNIYdodcYzLuTbrMUlwkSCSmaIkXtNtJQSkSEYYhsNiPjOCKWd9E8cGAc9fnxvtDU4M2qlB/XrNGJChyuMF+hc71FOMOS/HdcMLRWEzn0Js1mKyuMj3+O8fHXFJuvbcXpcoElz32pb5+kqhhZCFyMI5ebkcvNwG6MjAES1eqAhJCEuBu5uL7kwVsPuXrnTTaPHhEvL/6urJ2fz1Gbexah43C9jsywRXcvltoX2yxMPNYtAziG5UKC601ldY98F/PlIMv9XOONy97lPuri7ziqpmcQV+9ZOBIuOtV9wyC9liS44J5eBs5vaK11P9Ljwn7Y5QQ/rZUd7fXR1Wui7fcabT6t6oj8u1z43f5ejH/h+ewzs2r7ds+1yxI3dX+0WoPQIloDSIPivp355TTz76TXhbhJ1a3F8sCy5h6vGrAbD7LbpO7kC+64nNWp+d6EpYllGe9uQx2nCvRmtCK2P4ruo6W1zmt0pyng52q5gdU9ep2O0toyl1frp9lmHWIgpsTuYsf19QMVmXrrLd56+23eevttHr35iDfeeMTFpTYtL1m5UqVmcp44HY8cDwfmeSJna75g9Vk6l3TuBZSzRNXnq/vwIRCSCk2LAnhgdWqxJkKtkNV+Vct3at4THBMRw8GaCNET0O6P2b1ebGcDNN8Z45IP9/2i5xaa1+OqVkAyHkcwDpk3ADuL7l55/82/k2W9uu6Ocz9daMrukokl6z5TjFOSq/7uwrtKSTI7CmA5J++FGbCaWYLKCbVGO9xw/KE/Q/zCr+f0E/8ViFBFer1L/2wXmLKfpdVV3feCPS645eJ/d6/uzE9Zcqex5+lCF+/CvJH1+5vHpj5jg2Jmq+T/tzy+baGpdWF4J9p4oOz/bmtX2M9w+Ve1zc12wpWC7eqmNr15LQSefffvgN1Dvvbm7+H6G3/JNutMKxOlKPEtSDUCqu9cYqQI/ZviegvxgSC6oaMOo45V03NRz8WIV6uEbQi9yEoIMCRCFEJKhCGSNiO1bLoIlnbom8iTCk61PPP5eqsO07izDfx+gGcbZdSiuaHB75t+hh/dfIHfWr6BDIM3P8BMipF8K6FmpM26qXQBilkVOZuSCUtrTLlwmGaevHjB1z74gK994z2+8f5HPH7yguOcQRIpDVp0lys1z8TcCHNhmrI6gWPqRNExDezGLXOemKdJOwqWYoULBuxZcNm71KwK4j0wVAN0vxvFEvgA3Ccb/LwPW5AuXrUsytfnKMUWtzssQDBjrwVKdQVquYO2cm6k63LaJ7r4lIYsAbpTsnyDb+jnc1E3K+EP5r/FX4pf5LdPX+rB/KKnbGqxZmya+uK0oA673teKJHXoK9r5jdiU6DdGNruR45w5nqbeMcALdFqdqdk6w1sAJqJdtOZhw2kcGYYNkIhpZLu5IKbRhOaC/p4SoCQszz5NWYmK02mikRk3ke12ZLSiBU16CDEJIVkRhgQkNk3muKiWCdW5evbiTC1zWfezpom85uOsSf1pLhznmcdPnvHBx094/6MPefLkBXd3eySqAEuKifzpX035tb+DvYC0ysUHf5M2B/IBApXQMjTtBqrCD4UUYEiRcYiMUTuDbIZBi8eq2tJhSFxeXvPgjTdI48D+eODJ0485HQ+kIGw3A1e7C64ur9htdtCqFW1X0pAYt1viOBJSQlLUn9pWkZC0SOJ1E+dwMKlVA3ucyBAsTOrOtiV7YmKIiWSJHxFz4osGrQLMeSLlxDwPzPOEiDqUzYrEYhqIMbDZbNjutux2G+vk7EJTFVohVNilyE2LxFo7+KCChGqNos/rkLjbnzjs9zz9+GOEyDBsuLy4IqaBNs/awUzo3Yod6BJQpWnfg0W6o+tqKyqqFLTgKoQ+Lgbj6L7ie9AqkbNOTAzjyBuP3uQ0TRwnLfg/zZmwP1CyztFAJQYX0cHsb+vNmvy7PJAF7bSuBMPK8XDi8ePHfPjhxzx7/oLjXNheqArsu+++y8X1Q3KF27sDcQVoxLiyQ1I9rurkLsFIPWkgxoEQ0ioZHfpjbcND8L2C7hhKgGRzoLXGNE/c7e949uQZ+9s7rq8uudztuL68IoamRQ2tdsJzLVr8rvc+dcXwICqgl0thnru8yWtzDEO0Qp8MrRDDyG63gTGySVFV3i2YHoaBFC/4bPk8V9dXWuxXMk+ePuGjx4959uyZKk+nyPWQoDZOp4nj4cTt7Z4XL265ub1lG77Mex98wO/53CWBR0itjMOoSehSyaLiV2qbDB+TlfNs1rM4iryKusX3B7eXiy8PgJZwBIdprJDPfWR/z2J1Gxbs9OqN+36z955UO+xiqSEoSWUpOhXzryx14KBEt/vLeu3gofgqtu818K0XeZqAUStOQNEiSReZKvZvLyJyIF9Bk8ZkxZraFd3IJ168ZnYxhmBkF0tGByGEpfN6K67UW/U5cZtLB08FLGni6611orECwbqXiAixRbteoQvF2MNBVLXt5jPVpmQj8USHdLXl1+VYBLwUvAjWWUmJ80unEELsBbkppb5HOVg4TRO3+z05ZyQIu92Oi4sdu50mCCWa7ShFic4e5xlBtZZCy0XvnzQtoE3anau0Rew2xshmM7DdDgwx2B6sPs52u6XVWYvxpsJvO/4Uf+nwJt/14Y/w0azzabMZCRK02/BpVpA4DsQQ2QxbxjSyGTZshi3bcUOSRKuNMQwchxNDiKv9PyJhJASYZutMbICckzg0OTpqQeswsAtwK4kHofWCci/eXifqdWwULMg5E0LogmtayOzdxAxkM2AB6J8XwtJFvBM774crDux/m3HMuivaWlRg+Q6QV8zx+0Uy/jqHiXvcf+8n0F9z/r3+F1nZ9dfzmKap+/Yq0qBgsNzfr7udMNDaxzPIAtA2xUBOOXPMMy/u7njx4oanz5/x9Plzbu7uOBxPWuBgj+M0cfjoA4a3Pss3v/oV9t98j5xnXYd5psyzir+eJmquHA8HLQxuzXJZjXb1gCSBtBn40q/+B0mHG77yW76fz/+1/0yLDVmshRYGh1U8Qy/iD1ZsqHuuddcxkLxY8qp3YLDDrY8qtGdynpmzk+lMrb5MnC6u2BxfIGlJTjRpkFRY2JxF9dODEgmb2TFYRDcqFcmF0iKhiAoJzLMKwa6EpjwZ3a+TVSa5n7sbm/O4PITQ17eaJnnpAa/GF9qw5eZ7/gDheMP+1/5udj/1n/eEydoHKLUxV+0cMJfGnLXLytJtuvXfcy5Ms3bcm+fCvCZpVbo/H8KAdD/29TliVAJKiirEO6SRIQ3MQ6JMAzVm9VlsH9IYrPai2IYmyYpojN8TuSmpCG/KSMy0WLVLQIU8FaROyFRATkzVBWuyFrkWXa+5Ng7HSf3NSYUpXLC0WZ2849IiBnxvEsNmw/Uf+B9wKRPz9/5hrj/+UR48uOLBgyuur6+4urzgcrc1AWcVK9bk04KFdjLIPazQk17LPmN7j73kvHhnQZxdQG4RCbE5v4p7+3cETS6Epj6ydg4SluRI647sVgr/QP06LVg8DZb6w5J0+hXNcIdW/AqjffUi6qOn43iyErmNgm0FL/o5LpIZo3UqrYGCF1RblBZQofCI4rUrkboF91rEU0pdusgsSfvVRG1W4Gs2uxUX3wy2D9X1sPw37vgkX+KTiMr92Q4ort57ZiBllfHAfHnpfrdiLe7j+Byz7Ri6yLyTTktdUCVposJ6Fmsep4ntcWLazBavFCPrelzkXW+Wn3hixqCM1s/TrQsaR9jcXkbDr8vWT2v2UZqEWRfXYbY/qOpf94U68dCX6b2xPvOp1j4Ua18KuH+PLH7tr1+Lo9m5i8WfnQbXPEL0WGEgxkiNUQXWc6EG/VnEkvt2m7tIuSWuPnXzHrUWNvvnbPKhi5Sor2wkKSN1ZIst5zn3+1VXWBV230C6Tz3PM6fT6bXD8DURfy5k5IJDYnEuWIcr8ynXpPEcJnIQ5hSYh0gMIJJ6nOtFyf1+3/PjwXyutsydGCNx4+LPGq/lmClzIaOCDrUsndv0/kuPk7woxfGv1ujFKWuRJSc8NUsyE4Rag+Wl7HkXaaKZmOMiTFyt45evuu5PrURFRQLROkZrDk7JSdHElbsoVFh8sdbvi3+XipTN8yIy1RummJCa2vVzsozg9sJthT9UKG3Oiwj3UQbe+w2/n4c/9B/1sVmEhlvfMhe00fxZ3+esUHouKjKlxA4VjrIytV6zEKL6HWnYkIYtw7hl2Gy1MCUtBJKYRkJMS1LdC8oNWOmElbY8XtpXXoPjeDyQYmAzJqLlvFIQZBy52GyZjifF/EQbfCiWGwkdr2iWD9JxCa1a7q3ZvFqw4WUOSW/6IkFI0enBum5uDweKJVbiEEnXb1F/7e9ApiMn+V42P/fDrAn5takwyxIr1IV8Y5/cmhXQGCk3oIn96w9/klIzF3cfEY9Pya0ZfpG7HxLmPfPFW4yHp5jay0JWb9Co1CoESXiO0O91sJhVqtq0WhtlzrSgmIj7XCFGghVGVarGWMXylCKEVqEltUOgtl005m9W5N/J8MGxyQVzbWjhq7rZglDNciz2Wi+nddKHd4abc2Y2f/14PHK333N3d8fpeDRijdta6esj+L1NKqLTatNYwOxTLY3itqupSG0v2BbMp/C8H51T0KCvf8EExFAfO5oP/3pZMQyDCn3fzHm2RzHsV/fIUjOtaUOtti1KpjGFi1aLuSFaJDcMA+MwKHdgHBGEMut9Oh6P1LlAFSv+oou9N1HBlIY19whCHNDv14SwCk1VxY2DAFZEFUtV+6BP4snPjo+KZsabNFrUOeBkH6m6RnKrlJpVlDiof5LnQjafpgW6L1TFXF/xNWzPVY2hOhrfrElJ05ntgmkSdZ/xRhVg27PnlS2WJ4Yl8IQ+h7XwLKAz1f6mmX/7XCEaBlpj0hyTzdlAUyJuyZRZxRGDBNO9EvNXlu6uJc+0MtNK7oJWnvPUWEj30BYicUhsRBjHjUaGMRHSBuJArkKd1S5PFY4nLVKZ5mzr0IreLP8srSFDInaMahFeEIzIDRqzwioOeb1WmeO7fjQNEhYMqS0ETEtZ0YvCBA1WJFoh3fIp6ry86hs9PlH8MthzHdeyWNyd7iXfteJP9YcfC2/Kye+an/EiMeVT1Qoi1rQnDcTNhnF3SXlwMr7UTJ1O1HxC5pkkQqQwnw68ePaM0zxTbm+UYzRN5NOJPM2L72uxebT8lay+2/Nsiz8rpGg5Efcx7Xo9Z6LPLWOzYBnSMQukdUHEBkhQS9WFqQxr6BBM/6wF62ut0aQgK2HVGiIlJKY4wvaa3RufYvPOF4kPP8VxfMi+DNwW4ZRF11gT7bjtuJTjJbhQiPrnWEG45Kwk3gqtC/AbmbGbXyvIaVnzO80tb7MinbIIO1TlnS25/9fzWM9cjbntZC1eaDVosZsEwjAShxGJ3kAo6j5cK3ma+OoP/Ad86jd9H4//8p8jiKjY6M0LGsLV7pLLzYbNMBKijokWG4VedFyDMAh4sZGObERkMK4lKMFXbH+zeLjpft2QLjbbtMqYEMyvqo0ahSEFBgnUXga82ACJi7hV94EIhg+rQGirQDDhEv/bqlA7mFCbChs7AdWKMrodVHsRTWjKSYx63QMh7AiyI4YLtpuHXOwesdm8QRqugIFSIqU2OiHEMQfbEP16tUlA7b5dKS6Og4njFBqF3DK5ZBXNLBOtHSl15jgfOc4nTvaY8qT5l3nicDpxOunrWsuMsSDB/IxghbRmi2tDC+GbjadEs/kmEOE+gM2ptrlg/+u/B04Th1/zaxl+6ku0EFaFQ4UooecqouFWm9Qlil/r4ywX2L51vlLMr+/7or5J/9Zt1DrP4jbqE77bPvXl79H/OxLmwvMdy+tcyCUW6Z8o0t/vTy08KIyLDE7oX4t8rOOV1T/7NTseIP23Zcx8KOrqqvzhEH4fQ3/YPuEx/RqSdX9iKUxsPae1nHft9qO00uOrJpgPrc3whhAY06A8HsNiep6m+VjrhTp25fd4fUfsFasrwwTw1ldsPrfnPnoKRMyGru+39MHtcRpNiyBWxfD+ub1YSs7P4XU5xOZoDAMxFOYyk6fMiSNa1Dcq5924wmd5IB9PWufrB61+17Fri1BstU7m/n2L/7esQywuUKjsPlb77V+P42nNxFsWkSV3YB0zWXLqfkX9nvZcrDb6NIPbcQ6/bv//S0dzXp/9c7XmXnqpJf3Ox9ZDNcuvVbUNj954g4cPrruAj1ENO27/8tmcz9+lIGTJv5da2Y4jD6+v2I2JY1tf94Lh2ZJAzBfEBVGt6WBrDUd+/Lt+cVj6J919y+nY2vdGnyLxtROZApjzoNgFnM8lG6u1QKsF/vQNvB/upziGZTlTwySxZVcaTLXQ5srd/kACpDQaoee5djttQDq2ERmU91Bbs+bk1dafuGmiIqTm/zYcgeX+rueU2HmJSM+b+vU6H8mvz7dJQdQnXgk4UQMiRTFpGzefV56HELCiNXrhWKye4RbFkAxTWtcWYd+rs9diV3vOBbm1aDSeNXTVvaLiYmsvFbb2oMzPc8H11nmyNTvpfEtQ+1D7elZcObtI6Vw4Hidu7w7c3R3Z70+cTjPzXLrd8aJJjQGdQ+MDLZ3bkaeMpIGUhHEcuLi4YLPZIBKY5pkYIqfT1LESbWZROk05fMJe9p08BHSq1YYEFSVqEqjBm+k2yyFFbTw2VlIunJqKyc/NMElrClVqJTaIRjJQH0VxQdWEM18oNOUp2B7ozaEpsWNgQtSYsMdlK5ypNdeVsudtVjYTmBcIlj/y+xhWtTVn/g+rl/l/ls9wrEIFDlqPAdXPsXy5+4U0y5/VXkDtuTqx6yxdbAoagVa02YQ2ZDAeacndb8VsDl7g2OMRExTwm7gS5fYlGcGKP/WaPEezuNPSf+pWJYTWqC6UuPJH9XxXvtjZVF7lPlsjlBN1e02s2bBQ2yPr8l5fzb4VdLkOF3fFsWHP0enajJikut33ICZEMSS224HNuCENwy9mSfySH0uun9W4Kb6s88x9K87+3/d83yZbR61X3BofyaVW0v19za3Y7ulz28Xblmm78uvP86E2c+07Vw5NP1bnyiq0WoVz32rH89dXFtu0DM+SM6Z55KJ5NzcrwXD4Zt+1zpe6PxuqkAWk0Otma2g9b9Jjor4+Ud/C+CceMooPip9j87+35ecr/LZXeXIe74nVrFUnu3Rbu9hJo7ap2DxdHlzvVFPewpSz5h5dMDBow588azOA4+HI3d2GcbPpXOpkzYaT5VlFZBFfD4aFeVzXtKIiNCtLev3MWPeTlt3DD61naE25ooiXwvorW98Tl7sl/RPWlyp0F7S7Lvpw22STEDlb802Awx3D3/jzlE99N8PP/ahx9NarfqkMUdtFv/fLq7j3f29ksfYlVz/FfnZ3VzACH8vqM4cztCURYvbA93/Frxe+E+t3m93AxPzbyqau57GLeig3peCN02luu1c22NeZyCo33/qe1uyuuR/asTzWNbGrwxZyH8MuIiTd/jRA5oly+Yiwv6FUH4PWYanarLEYfo1uadv6a0ygoHVBh75XiHGpl2lie7qfp45zlL/z3vmdOC4fPNTq5blxZM+coZQTc25MrTLVyhwqhcBgOFAITe3yEKm7Yg1KZuZ5UsGNIoQaiC0iLTHXClnFAVMMbKKwtQboQ4JYGlIboSl/bUne6RxstvacM1v6vKmUqhi8998ZPMfWwDm8QujzrBrRUYUBjZcRzPcMAYkqSKLC1XWp1/I4U5ynb833zE8VgQydD6lF2TYPquBNW7BzceGWRbgYW9O6xmPSmtO1gr37m44/jePAdrths9mQUux5rhCFYdCmU4P7ulF5cCklszEZmglMrTBJuBeL9cXkmL+LS+nvmHiP8su89kbXrzjftHnewHj23pA6Z8t5F0JVfnGUwGaIXAwDDy52PLi44Gq342JMbIKuI0IjRoEopCGStgNpu2HY6SPutr+sa+YXclTzI9zlcN0MF2RS16XaPF3qRhpYIynbmZrfn5etiPt65y6LnPlWa5u4zkeDzq27i3fYP/oin/nwR3ERnf4Q1Tpo/b973x8WPGThF4aOk7gPB4ttD6scwMu6HX4Fjlv6GvA1aXyoalhl35tbjyf7nm11cp77KSWd4fHr8V4fbn9cX0XF8HT/CeK5pmp5w5X/gMU3DYLhOf1au0silrusLE/a+dhYffgb/lu8/VM/gNSMG3D1J/xeq2FprOqmNDmIG6kzEaKG6rKI72HmI/u8q1of09YD0MTyjkvjHrHzf52O43QkSCSmiJhovO7XkTQqb2CzGbm+uuaNN97gjUePePjoEdcPHnJ5dcXF5SW7iwsuLy65uNgxTSdEJjabLdvdJdvdBZvtjvF4VK5E87mo33/ugTnGZbkPqyMOndOhj0YltEhIlVASMRW1nTWqcFYDF+3sq87i7orunQ3OsDKgxx1RDBtHBbNjwPCL1Unj2IH5jUIXj1swTYuq3LaCb0HdY+pzSpQX0nMhxolV/5geAzZax+icU5ENb8p1qcdSkW/pqYTaz5fuWHoli8e2lUZ98Zjpr/9F3cdE10oXDHWBKfcLHBdzv66L1bK6Zhs3j79tLYZ+3Us8KrLKpxK6D6+ibdL1Ytbi0n32LODAtzXvf35CU6vuWz35eTYL/ITaUgfvzzWbhI1F4RVzZhwcbktgATDefMTdW9/FG8enpFZUha1WWsnUHKgBE7ixnalFAxGreubdzNgtrjoRJJjzIRWkEGK0Dlu6UdEWcRmsqLBnNIPdzABEIaYAbUDKCEU7jtRJyVN5mqjziZpz7/ZQvVC13ze/YXbDY+zFqaPAP9i+gQwqaOXCVlgRmIL8FWqmlRlq7qT3XLIpTWtHteNceH53x7ObWz54/ISf+8Y3eO+Dxzx+dsPtaaI1vZYoCQeWagUpCsZOU1ZH8BTZWPH1ZjNysRsQtsxG6D0dj2RmPa1W1fD7PXVHxueP3fPuDsjLG4cPlBshETeQP4+jrYAsO49PAmi+k0euPj4mHNBnbzCgzoOXlxd4D+jFwFMTdlhGq6lBcQNy5r0tgAP+OTbW0uB35C93QA0wBV50HM2BKg4MiFCDmLrf4sS0UKnBOpbjHVKCNiieA0RBZu0CkruSbFbhFXfOMKJfg6nNlByZQqTViMSB47DTritB11Eat6RRi2uVu6yGZbaizhCFzRAZNwPDEEmDd24VE0EQQmwdvEdq75CyDvJX/tcyrk6EaI3avDsrQKBVOJxO3Nzuefrihm+89wEffvyUF3e3HI8zuVZS0P0KBO6ewXykpYH6/EMl9tVKnrPWX4emYj2lQi1EaYwpsR0jY4oaFI0Dl7sdMUbKXKgFhnHk6sEVj958g6lUbu5uefz4Y6bpwDgGLnY7ri4veXB1xW63YzKSvoTAuNlycX3FsN2qmFdKxHEkxkqIA7vLS5J1hHy9jrqAMGJAXQz0IohVQOFCUzUNmuyKgwFQNh9r612znWRbWyOmqEnkWTsiSgwM48j24oKLiwu2uy3DEBmSzTep1JIJ+cRvzV/jK7zBryrv0cJACCrIWDNa7EElhYHL3QVCopRbjoc9z558rM7S23BxdW1FDNLBAgD3HLTrkSejlsSsiFhRupLD9d/n41ItUmkW1Nz3YD14AQ0a05h48PCRkgWB2xfPubnbczoeudxu2G21yLwWBW+6trecJ0jXSeJmju08TdzcvODx44/56PFjTtPMdnfJw4cPefPNRzx4cE1II2WaqbUwhsAQE0MyMZYQuj1Zgh37R3BC/qBdaYKTNRdHXcctmHfBvaDGi+GU4BwkMM0Th8ORm+c3HA8HhpTYbbdcbLeMQ6LkWYv/ciEkc1oRRGIHgfSctHinVO/E+foJTV1fXTLPA6cUGFIAsgr5pMTVxZYh6fXe7feaDB8CDx89ZLMbydPMzYsbXjx7xu7qkhAjDx5qoLXb7jgdjtQ5EwWuL7ZE4Pb5U977xgecfvqn+RvvvsvpV3wXb19dcjlExIsg0FuUkgl2iZIUGpCbKph3cEQ0NAkOgnTmvvTgpSMyOLFcxXW8iOWM1LEOfsDeuMyps0PcRwqr9zvgIpZ87RCPmprmSt4OMrjPZeKOfa2u/IZVzIAFgQ7IVxN1raVQ5twLKHM2sK4ZraT73vodtWbyPFtRlQuA6LhqQKnFttGEhrq9teKUP/nOH+L3vf8nieXUPRcPDJ0c4OcpzYvQxa5jBbLbQAZPcLJat60owaF6EkDPKdn5CI3i7dAd+LjnMr0Ohwt/Va3iIJpoU4ypx2cuEuhjlnPWQnfQAry7O54+fcqz58/ZHw/U2thuNzx4oGraFxcXDCnpVC+VmvW+h6CFZB7b1Dyr0rSDxeOg9siAwxCEIUU2mw2bcaA1Ld47HY9Mp0QtGsNMxzuO+z2H/R2fffIVnjx7xjRNtNq4uLhgHEc+fvBFjrvE2/Wn4EJI0YVvR6iNkjOzaNe9MY60jSl4N7VJGjatUkOCxTvFzjWqsNR2w2a7VbEtEb738GV+evMpfu3xGzQHx+U8HvajNXrBPBQTmTKhtlxUCGYlbLGORzrpz/7dus+hJ+tftSaP+XubfznLa34xR1udw9/pdffPofsC7d7fPf4X8MxWt6ev2bE/HHGCT7PYWsXvlv2dvldr8kfick+aFT5UUF+xZJ7f3vL89panz1/w7PkLnt/ecHN7x93xqN2zS2HOmSnPHE5Hjt/407QvfA9Pf/wvMp1O5HkGE+Az1MJA7Mxxyjy/qdplLQXGFBlC4MHlJeN24M38nPcefpqHj38OSaJdFOdCqZFccheXcHi+AcFAXLdWTl9Xcp6RFooW56ptMFyoWVF+tsJdIzjoNHbybOAzX/4xPv6Vv5HPfP1vIymYv6XAm0RU7DfSKcO1VS3MbIW1PW4uxFwabdbnXNxNBQ+zCU6ZoJytf2mr3/E42kUVXr2Wlrm+2KOzogIwMuq999EYbx8zPfwM2yc/tsyT6p+hy3cqhSlXAzVNYIeIQz6lZGYjNk45M03Wib00coHsGkJBiFbAJDKgNLDXi+ArMakwWkyEkIhpIA0qOJWHgVS1CFWTpWI+jhM2F2ynVMHZG9ptcUBSRYYCqdDmQm46XqVN1ONEMWD3lDOneVbRwawYRMPIwC4+lWsn9HWsnAVhEUFjvSGx2W7Z3n1I/eL38HZ+zMOHD7i+ulIBx+2WzTiShmSCGG0pBmy1i90GRAVaaLSw+J8SouELTiZcYlZYhSEW4wJ4gnZ9tI4LOf5G/zzvPCQCP1C+yG+Xb7CTk15p65bTXm8OkiUHNH5zwe7Q9/fznlz97eq7ADQhttUfBvXBO1nYA8yV0FQuhZgToVTtehW0YCKAYb2sRPIW0RAdE8dQdf/SDkbVBAV9AS2ufncg7T30dasCm72c5lubytf2+CQb/60KL85fuOCzQN+al397QnmJaZZkr+Bd4F71/U4aqiIUVWqyh4rUZCPMTvPMaZqY5myChouo51lieT0X3Bnp8VBb/Cosv1Chynnxjq+Xe0/0mKV1n01HoNaq+YOVmFwnPfW5sxrrexh1CC/3dHRc9FXY+fq1fl/0M/z7rPDV/lZrpQaVTEaSYp+tUVOl5kgNmZwDuU1aWOy+D4phnXXBipF3bz+ktEqJUbsR+Yl4rNmUAD1bJ8xpnhZxsFrXmo9gr825IKJCBIfDgfKaYR/zdGKetJHB6XQyoamJOc8m4KL5pCKl+w0q6BEJwHTS+ZOikIZghCEIMnSMbsm9reC3tuyPPrbNlGtceKm5eIZPhoqKS+GCTxlA1wWKXaXBBUJGxZ4MF1RCziKsVFwUoue4FhyhFqGKYs5aD+ZrUosYc862TlcNSlD/KYiTGtWmhPUcS0pKSkOy7ngDwziQhkS0gkdW/pnbDBcAu/+Y86z2d7U/rTsfrT+nzNpJKltHqWxiYvM8carwc3/fH2Z8/2d4/Fv+CR785f83vLRy6feQJRLFu+3lWrVgJWfmXE1wVEWn8mKakKg4ZRoG0rhl2OwYtjvGzU7vV1o66g6bDWm4JzYlSu714uyeOD8rOH29DFqeMvNwIk+ad5AxkURFxy4vd+SsgoO5NgiRRqainm9pgdIylIaESArRXRpzYVSM2lI3fQ/WPJYl54N2eSt1puQKIah/uC9IEmQIpOlAOr5Atg8J+ydG3o1KQrMGFc0ISOrL6vkEiUtc3GwNmX+le6h6bdcf/CRI49TXucZJTnJ850t/nuef//t5+NW/qnO5qQBML6Grht0V24ds3YUWYUiGy2ks1gWTmnp3Pm5biYRh0PWftWCn1hmRqkVDVLV1c9acXEh4PlNdKKdOGdJql14dqw1KPKE5TleMqN1YkyxUZMjXedNOoqeZeToxTSeOxwOHwx2n6WgxYLP4M5rgpZJAhcBAMuHemUIlSmEcBtrugpRcTK7ovmAiYx4Dex7AC5HcoVAxhEokWFMNF2VY/JCX6WPf2UP93WpxfbaOsCrWUNFmM9RGbgFqgjIRZWYTG6SGpEZqICEyjond7tLEpbyoVwVCJyMAT1Oh5opI1M7fQf2EYlhdriqUJzEaYTyZ7wFSk823wDxHIFMohDaTTBBxaALkTjDCifBGfvcIo0pzLqKRkNQXkqJC2dpkRgUtpikb9hxhpFdDLOGX/WZrTYW1dUxCdI5JH21bp4q34EIVju8LRjKOENW3XBpVeKGH5vi1+7f+rYoVhXYFVVv3ok2TwhAtz6TGueQJTieYZ2JrRGmWR4zmFzSEorU3NUA50eYBckKKIAVb50ucJVG0IdHQbDz1HjcCpTQT/VBh/dMs3B0n9scTJ2telmdAEs0ap5UAkMyfKuoftKaFus2QnS74gIngOVnyNTrWMZWBCEtW5366wZ6R9d+cVKaAvvsSQvsEiGcFDPjgrMQZ2vpL/d61sIpz3BdbzdhVjjkEzUG1tvxdX6z55l60a2JTadzArkDJSC1IK7R5RsqkglF5Yv/iOYfTiZbi0rypVkJVUanqtkE0v6RVq7Hz1XSP0GsMMZKGpHmeFPu+DZoXiDFYZ8x1/EXnxKq/Kt0PaCGouGPTwu9gHIIQAtHwFAlqk5eb6far9YESFP9o1lzm1GAOkTJesnn0NuM7n2Xz1mcpw0OOdctxTkwtkKuSA9XuFcNY+6n34ptSGzVnWp6hFEIuiLJ1VXTWcI+mCRLUP1CeHZbrqyUzG+GeWtWfcDDSxKaoCwbyOh1y5r/qmPdmAU0J0wUx3ytSWoCgzetiHCh4niWQBhUByscT7/+VP8dgPIJcKy/u9sxFG5e06we0ODAYHplCVPGm1lBulu5/1TomKBc1IFH5SqrJJN2Z0LVTzVeI1OZNBFUkEawgqUKbK7k0StG4kqbiR95Ab0gDQxgIkii16PebuFQMgwn/e6ManZfSXJRb48MYtdDExSh7AUhoKoykjpyesxW5aNhpxVo1QIsIA0FGUtoS04Zg1w+BuRTy6QgSIQ76NwkmUormVgyvy9Uwg1qMXG1Nunxd0IBMaZk5n5imI7kcaO1EKROn6cThuGd/vGM/HZjzibnMnPLEcTqq71gzIpWYnKSMbaWLgEMVJSLX5oW8mqGpotiW+9pFpwAUiIcj08Ul8b3HKiRcvVGdrr1SzH9Hm7INMXExjn8XVs7P/7iPO90/lsLwV7zRflkXYqzeuMq1WVEBdB/wld9hn2sI2erfLrBy751nVXYvW+Dl6oT7V9pxvrZ6dnUJ6zj/7O/2y7Jvyurngjvo6Z3/u1+Zx4tLYth+X30GLHhaa73u0+dj51X0hwlM2frRuGnJVXscnFJkTAObpCKyKSWzvcvY1fW1Nfp59vo0d9WsqQQuiIzYNXs2Un2Nthb/drGRHnh1C8sS2C+8ECfsr8fD0VIxX6WLGr12+Wjl/ogIMY4qfGx4lvJpozYF03JHHXXnOcgyF/BYAgwDKtaERH2cUpZ5tl4l6zyTfpwXealt6R+u7773b1b/doxb1G7UQnEBRPMlZX2+nE/tjnWagHbDhARNdMmPRfDG1+Un7UztbKtZ8ype+erm08P3KqCFJV9QK5sh8ZlPvcv11QVjatQQGJLGMNl9tp5HCt2HdbzTr74XfQRtfFtaIcbIwweXXF1uOd0svlsz0MoL2/38F1sVliktQs3zWb3FL55/cf5+xaNlyb0E5SiFuAhWdkGj1+TIJfX17zun8/EbgdYSSEQkYoHzKk5otKh3b5kXGp8J0Kt2LICqPQRrHE8npGphay6G/c4z1w8Kl/USTKzbSldUnMHut88dj+9rqyZIahiBXdvZ+jVbJ8HKyiJd0NLzBK0ottX9rWZraZVjArUD1cVtgiAZagi6j4h0rMj3VJNqM791iYeqFWHZSdroL/irr2axmKljsXFpDtD3lapYjtoYt7LL/3W41vZ7LTTFyk4v/1+NJGvbXI27UXIx0fQTx+ORm9s7bl7ccnt3x/F00gZVdWnQUv29aG7RxQwqS67L81ubceTq+gFvPnqTd975FNvtlhAip2ni9vaW29s7Docj0zQz5wzBivzkk/ex7+QRhCUud1sVnFcfVfC8WbO8EAmSQAqhZhX7mS0P07S5fTBeRqmjFiu2BmlQ0VbUd1I93kYRKFY35vN6//3/Qy7//L+tdrA1rQdzkTYP2cx3vO/39aVOI5pTUYqJ7DQXSINmuRb1PZoKO4oYzbSdrc8QVAy7MnQcw/74ci2eCRDWzo8Ray6tr/F8ztJgIVgYvzTeqx7Hr21koxfna+2aN2CoJm6udkVZYFieyWsaghU0LgIxfq5u2ruQBsZv8rFaCwuczZpzf6DnZwApJy6+9F+Q3/01XHzzb5zl7JrluNfsNWlLMyMV36H7SAHRpiG2N5897A6mCOMg7HaJi61yeV67owv3+cj5/zuy3EWd+siaDTnjUq+e60WnjV4S6fdITbmuBB9pWPxFr+dQn925F/diGZtLwWKaxXd9+ejevs2bIHrJQRbRmdWMOZtLus8Yx3DVSG8ROF2N18rfC56Djiq8gQnJ+z6isVMw+6zrIdeCN9mqqwJ5n9/NRDmy2bQqrY+gvdBuQev/9ufO4ksbs2VMVwMgwIO34bt/G+VH/vSy5vHhXTgjdfV5nVJnLxTzu6s1h5pbVbxFQGqgyiLsk3PmeDqRUmRIyusbh8SQRs3bJ63FGWLSRlZ2rj0OQKOYICby9vqZsW6f3R/pkasItUkXlu+pB/HozIrRuzu47O99q+eeR93cH8LEkvXN/nMd46znhuxvSF/5UeN9yNl+IP5/6ey1dbSNM/p6DsB9P/FXLTuJ5q+k7xHdz2xoIq8LM7kf2ayru696XqrxqMZ/Xd5lP90Wu3j9GvMQ9yndPytdvKNzU87iHvr1LPcRRKpvffpdzWIAj/O4d16O07xqvfrPaie/WmQPfuq/4MV3/Rauv/zDZOh4bm/8hYscGGbRY2Mbx+pzwsdsef3ZnofHZPRz9dWt6GIlviTW/Z0/crH6ray+m4wDoUCIjVYVJ56bMIfI2ILW9W4S0cuecmVOtl8brhpJRAZSGGhhINMYQ1ZhoHEgiJCTcFcm9uXAqc0Y7d789GolTxrPhKA1eiDojuCxh66r9Dv/KPnH/zScntucUZERM4U0WWNydt4mDl0QQoVi2gXioipBVti73s8Q4moZiAmHNGjBRECFGlxoyuNS9W+XxsmaTxRC58N4TYAemg9Ow8AwbjSeD6vmbFieToSUtLn8ZrNhHIaeswUUD4jRYtS2TLumPmDtfuvS0NB9T68/Pa/nX7hL3mTC/95jtOL5Af0+Hbpq4jUo1ypr/cVszRdL0dxkKGqVkwS248DVbsuDyyseXF5ytduwTUJi0lxeEHLQe1akKe+8zpwsDxfzxNUv24r5hR3LXteWeNiFe2K08mFtwuU+iDcsEMHEgXRfD/geY+vAeTurfVIPtycLT9v37uUVvq/C8fJtPvj8P8A4veD9T/1mPvvRjylu3Kr9tLnTPEcpXRCwX6S4lWMxFysb/Cq+27kdXnzSHrOB8RXts9o6Jy8qcFxDj3EFs/0+d2ulFt1D1mJT7qMpL9AFQpcxrHYf3N92IfkF/leRqaWetKnuyZlbfb7ft3vPttVz7t37v9//e/9xxpuP+OZv/iN85kf+/Q6quzlWu9m6DbWwwV628luaxQ/Nh9fi59CoTboAX2mYILfOPXFlzADVRTzdX1/HNa/JoTUugTgMxJSUMxFCj91Timy3W66vr3j4xhtcXT9QrCcFSqvMs/vUiZCiNYFqhBQZx5HtdsvuYsfxeGCeZnUPStY9d+U3NFxHhC4upevY50vrvl4X8fwN30/9ub9Bee/LdEH0ECBkKzjy3IrYbW1WJ7zCu1b3vYsfxcAQtWHsMGhtfozGJTFgQNC4IBoukizH1DGG7g+t77+doqjdWzepCaY7BOjeFhMS4uJ/utu64ufXpo3FSi3MVnvvDcorTTVPfJuxiec1a6b+hq8q5Uf7Om99PCtLbqC639vxEJaFeBbZGqewEw99leo60hTZaqxEurBXf949fuO3BNuPG/TmY840ExrecP3cw/zk4+clNCWrm3NWgNojGrvsJWZa4Qg+UKtBCOsAgQ5ugE7Sq49+hm2Ed+fnjAMELsC6n1AKLdsiEDSIisuorDv/6BZsg2s7mhaN6PeHamRJPxcXmLICAEzhXixQ6+pvAFHpBCFFQhuQVqhjos4DaZqoeUOZtQu4Fhm7Qmaza1kMTwyqdEcQBUrdUFjhhiQV5OmBlEeqzZICJWs3yqyAdjEDd5xnnt3u+eaHH+njg4/44PFTbu4OTKWYOrd2T2vF0wCBKPDWP/2v8uG/87+kUsilIbOQp5k867VtNxuGpAXuu+2WISayFVYUK64uee5gzFLAJj0p4EGpJ0XO7N9ZUGQJnW930q6PFWi5Tl68Tkc2nQvfOPXyA826ouEBjiuIswT0/g91YBpdqd8CY4AlUNZ/2Pa9OE1d3RUcZNeTaMv2FRqtOliOERKs0xUasKpAm79ZOye0CG0wQSms42JT2nKRCkMghYEwDgyl9UKW6smW6po35mDViVpgqiBEYhqpZaI2Bd0JgXGzIW23xKRkMY0LNZAcNxu2WytMSUGd41h6YU1KCrHUlomRLljRUFGN2ryo2hSFaX2Oe+AXY1TnqDZycfChkHPl+e0tH37wEd98/wPe++gFL+722hEzBMY4KMhhRdrhyTcYf+I/Y9hs2N5+wPZyyxCgkBmCaDF5EjKVmisxwGZMbDeJGNAuKLsdlxcXxJiYppnjcSKOA9vLCy6urzk+e86L2z0fP71lysVE5C64urrm6uqai4sL3bckEIaB7eUlF9cPGDcbCJEaB2TYMA7CuN1y9fANiCP1F7ZafxmP0udz9UI7C7rdu3CASp2bQAxJi3mSCk1FaYQg3YlyUFXJaOrQ5dZ6UnGz3RGGkXG7Y3NxwbjdMqRAcsIaBckzTYSNTPzq/JQ67JCWCRSETAoarFYjxo+bhBAppXG7P7Lf72kffkQMAw1hd3HBaCCAF9EimICaggZNxLqfCN6RVtTDwJPtSzOW1ue2a+uK2/IOfDcjevv4auJte3HJI1XDoZTC86faJTKIqj6HIarIRysGLDe8c6wnJzS4KpRsxMKS2e8PPH/+nLu7O0qtXFxe8fa7n+LdT32GB288IqWB/3D7vfxD8w8xbkaGIZGMHBlEegc3dSJrD/j0q5sVTroq+DKPF/fqZYEpF1kI1kE3RE3lTKcT+8OB25sbDvsDgvDGg2uuLi4YhkGDdlcad5IkRQvwQ0RVZ6OSMCVRamV/mJhmV01+vY5nTx6z22559PAhtRTm+UQrKkA0zw2a2rRhVNGE06TFKzEKLQUePLjm6lJFw07HI61UptORw80tYxrYDolDnih5IpQjG8nEfOTFhx9Qb55Rnn/M14eRXUxshsTF5QXXD6+5uL7k4upCBfCiCnY6ADXXihAZ0qhrwUo2aKLN0AWa1B7AgBXUWxATHECmdJBRO8cuJIj+Xpt7tawADxu7xXPVudBE8FwCKGl4QRP819BfsC4Q1CVqhLB7//nRE/2t0UqzgtBi4hwzpWRyVZJuw2yeE7vcH1GkklozpU4LwQ1NFokFOTEEUgjE2AixLqSyJvyJT/+T/Mqbn+I/+tx/h3/ya/8esRNPPHDFBCM96StK3haQVhYkvmF/88/Wa9PQohJaJRioPgT1g0IMJBOXVBCy0URWjXTlbJ2/DsdapEhEBS7Un9FYxtWPay1MNdPq0XIdGjDv93c8f/6C997/gMcfP+bFzQ1zmdmMG66vr3nrrbd48OABu+1WE4FmF4eU2IyjPgd4BbGERJKEw3jigmIm2Ni72gyJ6aj79+3NC1opbMZEKzPz6ch0UsHau9tbDnd7atPYqAyVJ298jmePfhWpFvbDls/fft3iBp0L82mm5sYxnHTmFI1dx81GRU3NVnVRHKy4GkAaf/0Lv4u/59nf4kEqbLZb68SQaE1t1689fmMV6ztxwh1vW38Wm4kn1mrrRc7FRUzsuU8u5l0Sf2D+yCpO1q83IKitxKZe8VkO5IosofqrjjXRZf0d31ax8frv9+K1+qprtHXpy1NW4O3rdOwP+x6b0poWlrbKOilpKLmK5ISIC1MpUVtjmblW7vZ7bvcHHj99wuMnT/n46TOevnjO3f7A/njkOE8qjmGAVi51ESx4/weZZhWZKln9gigw2L4l0hRsLZUpz9wd9jy7ec52MzBEAQpXuwveev9vwRu3PPzwy5SLkTxlJRC1Ci33GB2kix+JQFjhlGrHQk/u9ARn9ThwSfIuCSMHjkMXCoidIBj5zPs/jQwmMBUMClUHXAutoQsoGlPR8A9fe4AYQOfxPetElWIRtS5db8Xi7GZOv2NFnuz3mBvO18QKy8MT4mcJFDEEZS1O6nhZzVx85YdIb3yO4cMvdUX9/rFmpzRuNPJhE425q4oP1wI5N+bZEmKzdtGcZy3I1TTeQsCMMRHCgBDNt3y91pkmsoIWO1mclYaRNGwYhknxPjHCKuj+EmysrFjQchk27wRpgSoJbXOZqWGmEJkrHOfCac6LiEMunOaZ0zwzZy3Sqh4SYoU/1QgPHh/Sp5yhLEZyipGURra7Dbuv/xiP3rjks/KMh2+/xdXVJbvdlnEcrLuP7hHNsI5WMjTtxxJDQDUQtIOR2qdg46DCyAroe/GXYWnrWyvL/F2jZuZZnjUD8L/4+73bw5+cv8i7csd/Wn4Vfzj8NCOzv9L2bLP2/lm2P3h3keoCNE3T3Hr7fBDD+QksgdUZkaUTzhpKDquy2m9a378qUNrcCUouNKXDtiQ09fzXRH+3m0baXxFR7q+UxV7X3h2t1UoLq5M/ixZfz+NsP/sl+0xWcYz5L8Krx0LW90Ts9W3Zzz1p7FhCVfFXJ/F78lpEhSVmE5mau3CMikzM85ZcMj867Xg47PhNm/LS+azvlgrk2jk1Fc6n0vMer7iMM79FLCmnZOHQRa7OPn/1+m/lW3lM5l+h6yzwqlM5H0sb33b++T0GbM3mq35+9DFuuiaiiGKRZiNpjRqidhsGzb2Y0KrHWw0lINTYiDERU1Psz7LH2k3JMSMbi6a+0TTPnI4uymQNOe6Nm/rRFXKmAaeTkvlfN6Gp4/HYG24cj0cTBp00B+I5pbCax83E+GrtWGRrlZCEv/LOb+UfPv2kFvWGuMRbdngc38WqVsRpF3iWJtZlJy542poUFHyBNiW4NSd9qIjTZrNha3HQOI6kNBJj7AJLXaTJrrGsclzeJblkyDTDCLzQVolDWiCvRYx9rto+YhKLOm8Mm9RcmAoFaEe9xLgd1a5uNmw2I8MwEAclP1Urgq+1kLMJQZ10bzhNy+/TfLJxXJLQnnDVGJdOVPTivnmeydNEnvz3mfk0kefCxVd/gudf+Ht58ON/hl4ga6IDSmw/j5ecKJOrxodzqV3g8jSrEMs0F6aMdb/F4utEHEaGccO42aqY1GbLMG6JQ9KHkf+3m9GIYQMhJESiYUsmMFUys4tnmYjjmuzy2hy1kk8TUwxMQUkK1QhR23Fkvtjq9UyzYXae8BdCTCQJStgLg2L7htH2NWHYSe37kCbrY1w1J2iZMhXrZ1RtL2vsDyeG8cDuxcdc/cxfJly+QXjyDc2JSVz8JLv9tTVaUdHgZNGIBI8ZUMJ6XOIDanWjo7GREZCiF5rWSpGAtMrDr/6Q+U767sXKOlkAFaAQL7w2wQyBOA72rkBrXtAStdg/DaQYGbcwlmLr6EjLcydOugiOoOLz0iJYxzS7EDz/2OOfaiJ4KB5Qgl6HF+ppsf2Sn+nuG+rzq+BU7QJGp+OR42nPfn/H4bAn5xlovPfb/xk+91f/n7oligWS5rt6zi6IigOkqFhXSolNKRyOGo/XGBlCo6RiwojaQMr9cS3OU+xHQ3NhGJJdvyGjhh+1PilenyMGsXi5UupELSbQ3IoSkYLu5U72VJxZRZ5CKwzSGJL0fTpG82GqiixMcybPKnI9z5VcOue8L4+FOG2rNyUC0ZqSRCPDAK3S4kAmkJtAnYFMIlAxAcSmmEmKJtZhPqS+fSm4kODrStdeDVZcE5rFEvq3ORfNUZfW4zIZl6y9i89qtkz9LWEhPHW/eBUz6Tmo3xsaZ10ddVFGT4Kv7tQ5oh+kWlGUQ5L+RRoTNwrYvYhRBS1bBC8ekZwhz0ieia2q+Ig1pVHsBpJoE4lAVdy9TLT5SIl2XdIIogVyLQktLrwhF1hpxfCLWZsw0QqlwOHUDA9T0dF5mjmdChIHCNEiyAFDdwhifiGVKEn3tFY7/6eKFRq0SnyF2PJ39FjfR/fXVzHqOqLEciQdi+zYVIN+XY5KwFmx0dnRA+zFl5T186vnmnSOlIZm4Wye9oDPcYieg/LMz+rvK5vmRkJsToc6EKlE0DmHCk4d7l6QJTA1oUggpMQ4DoSaiTRytAZFZ2OqZHsVSlzwhtawYv2kOdkoZN1kADT/44R6u97almJDMN/ZhbNFb1gXF2hWKrOKt9bCKMtot/5/x6sESA1qgIwwSeCUBuT6ms1bbxPf+jTy4G2OsmPKA0WSXqhhy7kuRE+xlpoNqFjHTSPMt1nXdigFKcoZq7momH2DGq3fZkAF5/Kse2Ap1gRp7mLooVkRcFPhL49fvmWC4Tt1+ED3XXK1r3Y/wso+RMWfJKpwa0wjIlGxorUwtW1n1s+SUgu5Qm0HkEgaNsTNTgXVBiUUS4NWqt0j+y6rtrXyV5DYxefxnzR9j1TruBo1Hd2UwwK+bGsnYUtVvoTihdjna5xYiRADY1JcWEUMRmtIEEEGAskaxWhjAjEwx3NNKSVSVH/WGxu2Vi2+FCPMzwiFINn26wWnRVTYy31u7dFku3rLzOVIq7OJqwYTxtXmNZrooAvC16oNAOZauogMGPeqFOaa7d5n5jIzTUem6UDOB1qbqFWFrvfzgf1Jhaa0OWDW2LRlLaCUZgKR0Qoqq+3bWriNQGvWvZ5AJSFFs9haQKaTsYl3VwfKRPqZn6VcXCEfPKZg+dlaQKzwSxoqhdYYRBhDZPwEPOo7fnwbrmx71QvW5udbYGKLT7PCuj7hC+WT/rEowfY/vBKjfOVfVsbZfra+vyyhGSYWCustUXrMsxRreFR2Zr3N7no8seB30n/KKy5QfGMz+7RuqtBoqyLkXsy5+uknWnGMZhHnXhq2FLpgQAzEZCLfw6AFw9HEku26F3jdI3DlXfU75/GbjY3bw2WszHZ2IH/hqXW80y/dhsFjWf+w1jFjWQa5+Q/7DhurYJ/f+d6v0RFC0vGqxeprEwTlEuR5Zg4RBtDrUXxWQjif6iLd9ul0sCI/LxDCRYnucYj8/WeTzmQKxFe04nT3D3npt9b9z9oCUSIhGKdnlQ/o7/Il1+eqCUuVakKfRc+h6e5pL9bfzUdevK6Xj16ovfr3fQ7E6tV2Pj5vYr/uYLFho7AdE9/1+c+yGxNDKtQUiEWLobQpgwoQrusnvGBkabxNx3ZrMxwoZ6RVri83XF9s+Pj5LRLGZT9sGu/oudnacl+9YQ2AdXUFVZE822t/oTmh9duW4rsFVwIINifDqvns67bGchm6QIsLyq6nYyUgsohRrQI0muF3/RnL1XoeU87sjh4NXXpegFpzoWbli2sBEyBakOvFZVIDvQYlnK0qfN9sK9yvh4TI2c8GHfMIEvvJ1FoJpVBE1N/HsK3WqRewEpMBnTc1VWKJlJxoXTRr7jlVmvPCjIfse27ffy2/IUv80qyIq+d6ewFiIKLCVsH2E98oaq1qNqvX6ZzHvLpMXDJobcj7rVzGdGVWO9Zia3K9Z9TamOaZw/HI3d2e29tbbm5uef7ihtu7O07TbHxwt3XdEQZ0/EuriivnYo2tinLCtzvefPMt3nnnXT796c/w7qc+zXazBQmcTieePn3Kx0+e8uzZM/Z3e8I0E0tgrnPfy163I+LrSu99RQvo1a+AuaoPrJhvUbzZ4+8gC283G3+pqE8tNRvvvMBQkJR63g0RiugcqsbvFBEO/+j/lOEn/iy3f+Bf4vpP/Z9x1SNt8mWrpXldFH2e6f1zyRAsj9L6bRWFrq1ORnps4jm7avOxGW6y3ntDEFLSOLS24TyHtOJQhRi7uMDar3YRKmSpT8hFMUvBcoXFGzEthcfaCNbXtVizGBWVKeb/eeGqpvOa5tVK6d5acB8DL7y2fcdtlC2dht4H3VdMoMZFr1lwncVP9jz1Ym+q+wwIIc/s3vubPe8Azs0yGxg07lZBIgEr9HSBCPH5pR9sMWw1cQOtTUg2X8fY2AyBy93A1cWGGJWT/7odvvLD6pn+X7N74s97HNNjGn/YYLcFS/NPamJcgnXcdwYD2X5ton8LfugNHe690c6movhS+51/lPpjf4Z498zuvt1Zj7FWW5s/vzLJ+Obd10bfxx3LsCfNTxTzBaW/yudy62JH2hhZus9lZXP6eavcbmixW1pBa+OK1P5aH95qcy80Lxh27oz5gGLxU1tuh96mFZ7ir2d9/otN5OpNwm/9x6kffBl+8x+g/NU/0WttnRfV9yYT4fPB1fpay5WACTcs+432iDOfqYtqauzYaqXkQLb9ak6DCk0NiXEYKONAG8YuQuJTwusFAp6DX8+T1/2wvdN8sFp1rrflL/gVSf/pxfLSP8FfCT4X7bm2PLv+uQg3vwphkR7/LXWf/vzyve7fOdNEfUSfBytOXj/X+w/OblMDrUetFYpyiluMS9zRIt5A1P0+b0hb24rj1xwbbH0/741ggsfsq/3bv7+tuMnGN3GezDmPvnUhAjwmXk25Zp/Vc7e+Bu+t5ft8q7MFaoCIqEPQF3NrjYsv/TC5l/HbHe9r0tYl3QPtdWYunL0W1vE9up+XP7f6LOViQaPa98TlNF8zd/HuuGeeCmWuDE0bKA+7DWGulKlyypVDmRlqJYWBTYoMIoRi4lRWM0lr2oS4Vv1p+LFEndExKCY+brcMQ6RNgX05cZgPnHKmUKkz5FKNW2d2rhgf1xpXge69mg8Str/vv0d++j7D7/tnyT/4f4X5DlA8LkaQFs0+Kq/e75C+Rn8vzXaDZqszFK03w/YQr1WMoS9r+2MX6ksEFdDs+/aKn17pefAgip2r/5Ysf6Fr3pvsSgjENBCHaDmOgcEeQcRqwao2nR8Sm3FgHAdiCFpXZqKmYjO7VK3fKoZ1tFZpVvvtjaJrKSuxz9WatHHSdb40qXSxtYLWzP3c7/2XePcH/4/UZo0c3GGoxi/NWt9R5kyZ3c9t6sfb+EdMaCpGLoaBy83AbkxskpCkIS7OLFCrUGqmlZnDfEJORzjuGfcDgcbbv0zr5Rd7qN2yusUYCQ0SGntQbd2I1pprI/XW62bdF3BFbBFVAdKf0Of22d5r9ZM2h8+bIq/9TUinO7a3H3K8fpe3n/zUSk9C14GWhBRqXeIfrZ+wGn7xfc8O0b0+yL290h4dBxTLqfV1Zda8/xT9e5Aee+g5y5kfiX1et5i+T0vQ1SmB0DQ2VP5w7eehjqDFplZ384q710fZ40X398P6POsi6t1DtHu46zlqavuOuQvBatsevP+3ePyrficPvvbDZ1hmXeUo+lrt4+HZSFn9TVb5At3nVCRHH1oTRbdz1XR7xDVQqt+fplwdq1d6zUwZ1w8eEGNk3Iwka94q1vQohMAwDGy2Gy4uL7i8umS72yExcJpmXtzeUGvlOJ24u7vl4uKCzWZkHLSB4ziObHc7Li4uOB4OzKeT8baKxROw/KKHzkv1nZqJ4YrzI537WSv51/9eQhPG7/2D1L/6nyIffV2bW8RISNqcUflajoHU1Sqwe9GsoTgL1zKGwDgkNsNAGiLjoDmkGBRXVzGmBsb9C0EF8ZMs/OXQ4zabSY4zAshaqNabhHltsPG2XF8nqPij15BVqztyP8wbI+di+eZSyLWav8pqIenRgEd/+F/i2Z/649Q8Gz9C/7DUjiwi213Qy17Xz2O9J9n4dSe0R3q2di2+FVrfj53DLLKMQbTfVdDX6xv1I4MErQFAzeNaLNy/V6i4FtK3kzL4toWmlkIGB8UWJ5u2XJh7OWdY3DrwcSfcN7meWFqcYBt1AB48/TmG3RYZL5Z7uBr4WpW4sS4Mau7AUzQxQNGih4aB0kFV/cQ3f+tMZ7+LqczhP2tQVp6JBvTz1Es1EEtAtBOXEigGJG6opRCMeC85E2ZV4G9rsalWO8CX4kL+96JD/zYFNJZCTvHrrY0yZ1rJzMUK6Kowt0qm8Px2z4dPnvJzX/smP/vVb/DNDz/mOFeCk9SHSM66eFqdLVEcePtf+N/y5E/9O3zqX/zXee//8sfsuwpTKeQ8cTocGMeBzTiw2WzZbEcuLy+pbct0OmmH8tOJaRJyzn3xugMQ7nvEcg6CraZLD9gED3zN6GID439cf94qRGsGFLuhfx2Pu+OkcyDpRltFi2wjECpLIQkgGBi8SrCcKd/JssaoXmzi69GJDu4YyL3oUoOdbqiDAg/VnR1pSLCOorPtARHthNcTTFMXsanNgtmkip2lVCWZWueWnAu5Nko1B6Is4k0EU/oNWIIZMPkiJbOLObcZX/z6OhX7oVQKSUUjUmLYjGx3gXEbGcdAGnSJizRCElKCOLReaBXRwitww+DFMU4JggVkCbRWtKugJUpaWzqFz3PmcDzw4sUdH334mA8+/JgPPnzGYZqprRBFCd6Gw+DKsUGE8fZDdnnDbrfhYqOBSq6zvkfQwDoKlUgMjY11GksRNsPIZrNld3GBiJBrQ1JBUuSUMx89fcp773/E+x895uYwE2NjGwPDMBLTQG3CixcqSnGzPyiBIQ3IMBI2WxqBMG4Yr66pDe2aPm5Jm62SIV6rYwm0sRDAO6c062ayJDbBoUAlEiRdiyY0tRQkKTkQQTux1EYuSt70zvFxGIjjQBw3DJsNUW+2nYaJoDUHJxMSK1JnKEeolSEm2ti0W6YFDSkKu+2GOReOp5nDfs/z50+JKZJSYLMd9Xt8LokWQscYFpAkoMHREkEsAYfb8JXNqT5+/QN0f+0FB/oGc4H0PTEmNrsLHtRHTNNEzZn97XOmeebu0KCObIZogGSB0HqiLIgR74G5VPKshW2naeLm5pYXNzfkUri8vOTRW+/w2c99gTfefIc0bPj3x9/G95y+wn949Tv5I+EvMcREiioG4V0vsGRST4az0JvO9tdPilj69ms2DfUHYozEpHN/zpm7uztubm+5u7sj58x2HHlw/YDtODCYGrqgYxVFu6bWbB6oBGJSYYYmkdKEXBqnqQCRcXPxS7Q2fumOzWDdK2IkV10LY0q0NjFNB47H2fwe6/hZtRd3Lpm7uz2CsBm3XF5dkmLkvW98g5vnLwjAu2+9zdX1BVInTjUTN5G337gk7685vnjCfNjz+IOJ2zCQJEBujNuR64dXvPmpt3jr3be5fHDF9mJHSAks0Kum9KwFCaGHxLDy98DACgsarKJDyXMa/XagxJx3q/G0PUJW208zEYUVkuITzQIcUIV8w78NQABPcukyFQMrLYDvQPo5cLJ0qqx97S7ug11PMTC2FEqZyfmkhNuygH1qn70zxOpnq1TrgtzXkQcqlpwLoRFDI0i1JH4w9e/A3//xf8kPvvuH+L6P/gKpF73qnug+v6MRPUmAnAVwC6ASrJDIglXc126mdF4VGBQrhLGHiLtEsnR4W67ml3iV/OKOnL0wVMfbA/QgQi6VKWdOU+E4zRznE8fTxHSayKUwlZnb21ueP3/ON997nw8/+pDnL14wzRPjOHB5ecWjN97gwfUDLi4ulBiE3o+L3QUPHlyz3WzYjKPe39a43G3ZbUZolTJNel4hksYREdhtRy6vLtltBk7DQM4zz58/Y393y4vnM2U6MR+1MDvPkxEghO2wYbPZcLG95IGcmKnUccuvPJ3Y7C5t7260Cn/u87+H7/vaf8VQjhpA2z7uomPPtg/4G298N//A1/5rSplNLFJ9rJ/4wu/mnekpP/y57+MfevrDXAXvCKhzLeCdhhXow/ZswbYBM41SvfhE+hpXIeBlDq/Fefq87jH2Ehvfn3OfKEpwDyB9+TCr9glT+EykoH/38n3rz3wVCfPbiqg8JFt/Lr7tvZ5x2TRNuGjEmehWWwHmIkjQYkql8QASFIyyotfjPPPx02c8efKUDx4/5sPHj/n4yVOePn/BfjpymCbmnJVsJmLwqnSBpJxnass9ee9inD3+cNMSoFGZ8on94ZZnL5TEW8rEdHXFbtzwxpMvE7eJYZPIkwoG1Lmwv3iTj37V9/Kr/vqfsyKNSp4zmghu5+E1NueqJxoW8sEatL75wt9DvrjirZ/+a1o4EwMS01KAGmIf28XmeZxrBZNG2l+AtpcT6WoCViJTnqxa/xsnMDnpXT+rYw39/42ecnfAbTVvz8SVV3ZoMd2rdSzSE3j9tXli/OhnXynA1oFGNL5wDMg7tJdc+p6fu8CUihcXL9YNWtQc02DFQtqFtaGxnxNMXp9DRYjSMMLmgry5YN7sKPNJE3VoIqbl2QSfisbUBby4UYmEkUZibgK5sT9lDscTd/sTd4cTt8cTN4cj+8OR42k2sali4lKVXFUYzpMYC+ZmPPyzebL6XRRDSCmoqPPFlqvLSx48uObd0wc8fPcd3nj4gOvLC64udmxHJdXUohgItZjIVOkxRwh0wp8+5TGZ9KJsx2Lv793g9kA33JcI87KQW5zQp39r/Vm3Rb91eMKfOn6Gvz99yBZUwMvnrNs7Vn5pc/sgiz1rSi4OCCpaoPiKFjks9JoQoMXlOmqwxEKMKsaLEnJjSIu/FqKOQ4xIPFFPKsCdW+nno80kGq1l9dMtvvSYtt27qU6+W4PriscoYXM2QZHJOmukoHM4hgUJ+m/a8So778d9USrd62yuSA9HXoqT+7xg2VXXY7MmwtQq/V2++xbDLAhoMWsrtNCIEhRvNDHgWqva2NOJzTgwbE6Mh4MWQw4DX9m+y3Ec+WgPY0x8T8x4UYZ3ixWBVvQ7g4mjSlyStLI6Z78ejQrcx/RCel+PUWMNaS8lhNtiTF6yY2vb0dervc59RX//ffGrc7/x3mAHT+ouPqfba09Iq+BKItRKsfXTTyGomIvGeIVYGi2pGJCuMY2Zf3bzLi/myq989hX93FodaSagtiwbsbc1yEU79Nzt90zz3HG3Hl77mPm41QpGxD9NM6+Yrt/RY78/cDqZ2NTppAJEeekeClhxu/uSVedzDYaNZ+Yc+dFf/fv5DU/+Jv/ZW38vf2j+SS0ykeDu5pLULWURa0afX3fK6YJG672sYwgYQcni36r3MgbDm1K0NZQYRhUxHtJATCYQGgW8ZjoKZRZyUNuVZ/PHelMKtdu5ZLJhCSrOsm7WsJzqGfTmGgZBFrGpFLS5y6CFjpvtxsTkh0VMAJ2XOWcVljJxstPpoCJ0p6kXT1bL9gYJpBg7vqv2y8heRrbPJiqlDVdcdEp/TtPEfJq4/PJfI3z8VdIHX6Y0J23ZWNfaiZLIgjJpx6TGbGI5cylM2cWmsuKfVbvvacLd445ESAOSkgnRa2GFhEgI1jl20I5XMY1WmKDkOI9Ds8UpKhw2M82zXqcJh71Oh9RGniZONIYQGIJAzeo/SrDGN0aKqYtdE1Cx66D5zRAHRGIPS4Nop2K38wBiQpkxRFKI3RbOczWc34kcmsDPtbA/Hrk7HNjEJ8TjC5oRGJrdL6wARYBas2JU0hRTQ0yIgO47rdd3jzYENFet8VEDiiXQiolveFwTDBMKGJm9YbbN9lRxIpSSvJSUWzXpmCsiKuKijZAGfRi+HWmQBiRGmCeoNm5BO8JrgY36BZ6vXwKlgNUkK2Zk4kwhBmhiBS5o99GgYiOxObFWbVjpgpSYAFDmcDpxOJ04Hu84Hu60u9t8orXG17/vX+DdL/05vv67/nm+66/8W3jhqnc1X0hvkSSak6/o/jWYkFQngJVmQkkqNKfC4Y6/LoV1TqoZxtQFZtf3s9LO06+vwVFKtjxqtZjeu00G89Vd/EvHbNyMSp4ysRYX6qu1UmcVeA5hQieCkppbMXtl9zS3aqZRfbNq+65/v5J4jShklQ8SBZoW7hbLu7UaaCaq3CqUoms22lwsFS2OsYlTvXjeHyFoXqzIUoAdFLNwIiuz+pClVl0HKRFtDin/ZsEwmhHhggcVZsdpzeKiulp/i88VHFuCM3zMO/Yt+NPL96/1oMbHT4fei/lCVLBIVsJVrdXe2KnUYiJTRiYLVtQZQu/mLrZ41f+eKEYA091V53SUoRfHIdaZsuheNVtDNM1ZwDTP7A+Zu/2B03Qi2z58PJ4IQ1XRl6B+dakFKQVTb7G4M5hvtDS5+Dvjot/B4x7e2lrrBR73YwMNMaMJLEAPShF3jnuU0v36lw6fXI4H3Pubv8dPQcS/eckLi/RxdieyF10vm/nyORYTNqO4+xd7Tr37V5aHVcxjYC6FUy7cnib200yVwLgZCdstLQh1HNX29sLEhf/VhSj8TAyb1NPX/Tw7NujYyvr6LK4K1cd+WYPLaLXuM/T1wzLfXAC3tdb3Q7/PfRh6/Gx8J6tqziGSxy3DwzeIb75Ne/CIebjg1AZqGRQDaaL+dJ6Y84Q0epMDFznMTUVcS5lVUDJnpGRaKchsQq9GlsxB73epRsbOM1Jmw6YKtao9qDWrj9GKYimt2U8XuHvN1tj66LGQrp118Y2wLqLXIophu2PcXjDfDRSJKtzVzE90MZWqdqsZSFia0A4Hkom/xjQQhhFJyQoaZiVFB+UnScnQ6EV2ivuhXMOmRRKh4wyhF060Xijrvq1eib7WOE1m73JdcKkkYj6Z2kgJydbhqKIILSKMBBm7EGsQa0zmvgBiIiaGN1DBBA41nlFuUsnSJZfU6fWdSfEjXQoBkROVRJUTlRNz3dPqDARKa4pZh2CdZ63oumLFMRrvzqUyl7L4DwguZD178UdToanTfGA6HZnnA7UcVVSqZI7TieO85zQfDN/XHHgVFX2SZOR/ibRm3W7NZ/CuttrETZuB1RbU/2jQQlIfWQApNFF/sTaQfKLd7NWUB7GGqTpcwbFSF+ILMARtAvp6Hp+cY1zs72KDzv8OBlBgAcPqY30Gu81Z9s+1A9RW/tAnfdv901tjTK88qVdc0Pl7Wn+pXsLf6fX+jLx8YuZP+z7U7o9BF3Ncf4zHE+6/SudPdZEZWZ2D+9af4Bt5nFaKCgw4ZpMNqxGxguIg1lhDY0L/Xt8DvBhmzUntokZ235q7MQskavux21Xf0fz6ghM2l+vyP9M/tn+fD7oWGQmERnf9G+d5CtGYVVY2/XU6dJ+OmD4QQRJBChWNSaZ5opofkJIgshSxuD/o49rM72jOgZHW51DssfoyUH1+9CmrnJ1lwBf/6pXn/vLFAMp37S5p9bakfjNXnB9WGDjOwZ2VR09FxARxpFghmZ+znL3/ledy5gXYM+3VAi0LLrnyX23cgtnDWmaudxs+/5lPE6RR5hPSlOfcigq4aWGRNY+2QkftTg+5zjjfNMWIDJE5T5CE1jLSAhfbxNVuVLylVYS03OHekOC8cEU5zMu68Tngx7JWz3fC+77vtz5We1pfV201Xufid6+bCE5loBG0MU6zxoOdO698JJFFjFbnnr9b54GaDI8PFqFAR3v64ZwKVPhkrhVpM3CiBReVjlbQlYgx0SQwDo0BbSYoRfHw/pE90NfzK6123pbbgPU99nsrIWikVxuhBmoQxMSmiogK07qPL4bBh7A0c7TPTXXQWMEbVebBxGlKX8si2kjpJeFimzvr2h5t1lateFixFIlCxISJzJYFf0+zAqimfqkKBixiNB5v6YV3g91v33o2mptp9qX1PWUZP8WXqtUxHKeJu/2BFy9uuLl5wYsXt9ze7Tkcj0zTbI2qfJ8Qrauwxh4tRMSKnb3Zg4pMbbm+fsBnP/d5vvD5L/C5z32Ot995l2EYqbVyd7dnGEcqrPAUCEVoczN7/XqtMVDB9e6vyGI/ggiRRKiN2cQuQbGwoe9bokUPRetjppops84V5yOFUpFNIYwjpNQFpwqVLBbH2Jzf/LU/wfH7/ik2f/Hf0z3abEXzYkZMWsPO777/pc0YdG0XbyhuhcnihZtVBZlDr3+qFGxOBhWxaW3ZEwPKaen5aRN6d3wyiFhTNs3/ODbqIh16rlZAWpv6cZaLLLlSKIrLN3OnCMSojRWGFEn2WPuC3kimi05lb+CSeo6o65u3Ff5m4+R7EOZv1O7i157LLMUauhlFWQUDDE9H/dna9Jq8wZw4Puy+rwhq60ycw/1NP4du9dzTtHts68SLa1uxZrpF+cIxNM2LSmAzNq4uIm9cb3lwfcmQxvMc72twrPfWZuN+FiuAuT4rL8B8p+4SrXzzs999r5blucb91xkmJ2oPXdtGDLt3AexXO2YNftcfpb33Jerv+u8if/7/TjjdGmbnxf/n56PzTJbr5N71ri6ynX3h4hs3w1DcG9StvxlH3RuM+rfJ+SnT0VKda1qYpuKeK5Ff55apEImX3S/fu76OJnSRxx6zsP65fg/dT+v/94s+3dG+9pPIF34D81/9/+k+YYjXmoO13PJVPGiYTWdQavBBktTdfxf7CRJXa9BOtNfYuF3Wb/JGITFozi1F3a/W3Ek/vFnE63bI2U/n47H42DaMKtyCipWL1nuFswksZ2WsZx64DfIaO5CVEJguxUVAQ1xM2l7tYpnr9d/cZxOvl/D7st4Zl5Vh36qCYqIzdnn9+rEcvvbdrrlobqiVVqP+bEV5J35ecFansghN1W4HGoLSxVyAPiKhQQ1Wt+n+KPTmke5PVucGs8qnqfOxSgGYa9/OrqWP6X3shLZ8nq/HVdwsNudFFW60xmZFclo+w7Odq/vGsiYtY2G1gue/d8Hw1Tn6eXcu6/1zs/u/Xu/3tPtei+NQJ6Y8k0tmE0cYRmteJJyoGgOXhnbMAcJIDKOJu6lAVSlVm23UrDFDOXE8FaY6EXcXzFHrrZuoHzTEyBgTF3HkMo6ckjaCrdklNCq5qfhJa2aTiFSC+Sh630OD/Y//51z9vn+K+W/8BeR0B2TIPmfQxvAhaV6ASCCYgCNWT6Z1l7mp9oByDwJBmtYLGx4Xgte50NcdqH8aRIhh0NpK6HUxwbDGVu1/Ho80QDQXF4ZofFlWQm+Gx6ekzf42I+Nmq4KBEs7ycqHH/ZpPNpdD+S7N69JsFtZqIqAuDGc8/o5JrHZGe85xi1qdP6V1Opor0SYPP/MP/c94+CP/Ad/4/f9zHv2pf41Sm9qrKuqPFEFyRWZBZoEMkhd7LjRiawwBtgkuR+FqFC4G2IXM2BqpVUItNLL6rdIoOVDnGU4TcjjS7g6MaSSebfCvx1G7H2j7YYh6nsl5S0o8b1KpFKTY+DcXFlp2r2B+e2haE9190f4/32vlpYfGMb5/+dkZnjLf8dZ7P0x5es3u+IQa1Y44fdiyrATRnFSTYvOtdYFM8JbHy7l0Yc32Ms+2X6QsAmc+Tm1ltKsYJuH+LpjHtOz16711laE2f1EzfM34X66VsebqLthIW+3jK4zd3WmLhTQstHpqFzlsjd5cbzUM3bb5wDcf9cXPwMWmAoRWufr4y0iZGJ99Y4Wpd2vSY7I+YuZ7LMiX23wW218tZlg5IXX1KLbOVdxnaevSxHLSsmiMvG7HZz77WUJULsMwjqqxEBMuiOy1DuPWuKwxMs2Zedba8RebF2zGDbvdlt1ux6M33uDhg2ukqcZEiJFhlXsW56+xYFZiazsYX8DradWN1/oOqfXsdz782xx+3fcj7/8sm7wnbDeEmIk5EuZMDB67K8ZRm+vkWM7G/UPXTYjKs00psh1HtqM2ZBqMP5aC2QmvMy5eC6+8V2+eqtiRxudmxAAPtVY1yOavKpziIvkWkAYTmTI1WO8H0MxP14xDoziHuRbmkpmtFqn6uN4Tn3/rn/hj3PzYD/LmH/lf8NH/639jmj9Ac4Gp2vPXutwWv9V/rsXJfT3q+ma1ftd7q50L4tRswzYcwxLjZymfwO1/jwFEuv8g4rxlTAPFV/XKI23L93+r49tWAclFDS1SibGtJo8WgEirJja/BJm9nt1J5K2ZITClupCs8NCeLVmJLH04I0jsBfYa7CpZrfjmbZMwSjGA35OdviEXqGJqd9WUl6MRtCNdMbktG7+YeBU1647qm6N4xzdLtEbvgKvE7ioC1u0iRCEmIQm0WpnzCckzIc/ErJ2yWi02SMoqEFHnKIgG37U2QrMCG1YBhRGKvVCh5Mw8WXe62pgLTLWxn2ZeHI68/9ETvvb+B/zcNz7g/Y+ec7PPhGGkEikFKqZG54FMVZLU4//vv867//T/mg//H/8qIoWGERMt8JtLIZ8yU56ZS6bULWWz0Q1jOzJsR/J2y3w6cjhq52glnAbrhiaqiFmKOegBBroDXJuKbRRTkFUwIiEiRvAGnwbnAb5HS/rH/rQp2lcLNF+tCPmdO17c3qqhSSqIkkIgRWEItvZWG4sHw6rmZ083J1h6ch6grcgGujZ7oNp9nIWk2I2zbbTiyWTbnCtFg3kJBEm05oRjSx7VqjJQ1nY7BE1a1Tz37vVza8w0Mo0ShJpSB427sm5rRNswtWjGge5ia1qTD9HIrylCSpjIkxq0YSMMm4AkRbTiENlsB8ZtYhgEiYUQm4nvCCFBiBVi1lGUBT7pxcpm+PrNWDnEXVm66u8UXa+5FI6nEze3dzx98pSPHn/M48dPePbswM3tTEyNYYCQNMgNIXQAHQsmhyhshsB2DAzRArGAEfx0TUYRVRCOMKTEOCTGMXGx3bDbbElpUGGvqkHysWTq7R35xS0fPf6Ym8OBcbdltx15+OCS64dvsLu4JqWRm9sX7I8TU25cjCMtjsxEIqpoHLY7hosrU2KN1DhAHAlp+OVZLL/QQ1b3DlDChJPotFghQFecVAVVsQA89GSTF7nGKGw2I2nUwosmQs6FYLY4JO0qn4akYlNDUnGbqIQZ9TtMETupfcFEzkJNtFOBmrvoV0xaZKcOihbAbDcbIDCVwnF/x4uU2Jgjq4kqtGMkSzeU7nhGd8ilA1s6Tq07/utgpsNerafjVvuOrhHpYIQ6MLM5ssNmy5uP3iKJ8CTCi2dP2N8dkFIYry8N4KgLwCceNmrAVktWW7Lfc3c48PzFLXf7PTENXD94g099+jO88+677HbXTLnwe48/wX+8/a38wfknudxu9f4FF5TRT9WEla1rijlj3s1q8WXWyZqXCkGR7nfoUC5JwZwzh/2e25sb7u7umKaZFAObceBiu2GISRPatajIoAvFzCem00QpzQp8tIjDIlJiCmy3kNLGCjdfr+Ptd97RBPw80WolhkQcNRmuxT975nleAv8Q2YxbamkcjntaFaZpZjtuTLlWg7PL7Zbrqws2m4F8SrSsINHFbsOD6x3XlwNPj3tu747kuCW0yGF/oonwzT/yf+A3/3/+GG89f85b77zFozcfcfXgms12RwyRYcC6iWlBugZiTjxjsZFVhTcQJQogzZSsrStYByiE87YEy3zx6FkWB8bAvVXY4DbY/lbFkQoPSDwhE1CSle9l3qHS7ZY9zI42B++cJNOJ1+qLtZqpVTsYz/lErjO15N7R6OxzLAHkYlNKRFkl5oMQV8kkTS55NEffRwT49Omb/KH3/xMenp7gxckKpiz7VT/3lbBJq2tRq2D8txUoIyug0gI9aVXJuqoSsCJOG1mlBiMY6d5Y2+q2vibHaTpxOk3M80kLQm1sctGi0f3hyM3dgZu7O272KnR3c3PLaZo4zZMCFy9e8I1vvsdHjz9aCU2NXFxc8PD6AQ8ePGC33fZCiRgCV1dXvPXmW1xfXrLbbUlRC4wuL3ZcbEdN3NTCPJ2Yc6bhHflGdrsd11cX7HZbWi3c3txw3O85nu6YTxNtMgLDXJX0sBnYbXdstzu22y3bGHhz+iaJLRebRIkXKvwwZ37g87+L73n8k/zgr/hH+IM/+2egWBEzGsTvN1f85Xf/Pr77yZf4y5/9Xr73K/8ltRUkaMeZ3/jkJ/mhz30f3/PiZ9jVE60map4JGAEVWypFi7FqLrqGV0iZVFF/zI6OfbgoRxNbbou4oQNzK2vyShtjn2hA3Hlw74m0MxLZ6jU9ebbeD14xob8dUtLPmyAoC6lhncBWf4EOpr6Wh5OardDOEPQlaYnOiYD635KCKaMHFZethcM8cbff8/TZMz746DHvffAB73/4IY+fPOXZixccrCNcNWIMIprEcbCtFRVEayZOjROJtGDQ6iL1fdXmF5njdOD5TaOWmTxrYcUbD94gpGvtPpIGwhAIp8Dt1Y6v/rrv5+1v/E2+9D2/hy/8+J8lN03EtVp8GzyzVYuwsfuCcgbi3X32V3P72V9JmvY8+3Xfy9tf/etatLh6rEnjzT5fl9JSLBhWArA+Z3zBeBK9Y0SGTTRLTLtdK833AlunL03flQ221yCrpBsL/tI7LK3XkAN0ayfabbd9bvH13q+hdSDRT6EXp7pvag/vKO0kxHnOzFkFp0pZCV6J+q9D1C4zPhdrFRVnysU6/Lw+h5L9tYhdNlvG7Y75tKPkE6VqkXJuOh6lzOQKpQqlOWgduxBKQXpnmhe3B27ubrnd77k7HNnvD9ze7bk7njicJk5Tsc6xC3Tq98q37D5UHStZ5o67Y0FcZCqy2224vr7kwfUVD66v7XHF9eUl15cXXF7sCAJ/+7jj69PA92++aQT7ind/XGKP0JNFPQHHAnHpSdy3E/Q4bUnWLQkyJ8OrPTCRLp/z/f1+rcJn4pE/vPk61xyRqiS/UAPetaevRz98vbjBcd+5LeeuXWssASHNikJNuMTsXG3NoFf9e0paEBeDCaglxW81sPXkFb0wLZRC729t1c1imKqEprizCU74eGjctxqHqtis23DtelSYp4nTMTLEwBgDOYoRrKKt+Z+Hbfy7eNyfI/ft7ifZ4PXzSgZympHv+e4m9+BF32evO/8ObE/2PVt6ktq+oU9uX4u1WtJeLKEQ/DwAArUqOVvFhybG04m9EWWHceDtzYd8KV3x8PKCT5cD8zRAayQjHy9Ch+bXtEYYPDW1QMk+pe+PWYtKEVwT533OV919V2tkWS9ny+bMV1vWwZJL+WTfbn3cf345H/ULqjoOGif2AuxgomrJLrLQqt5fCeZPiHZZKrUQY6GlhlSoYra5Nr4cH/F+u2CIM1+5/jxfvPm6Foi2SjHbHmolFC9G0+5wp+nE4XhgmmcT5z/3EtdHa95VRgUXXze38Xg8cDqpqNE8qZBRrS5kovFr8fvomLLlj0rJXUjgu372L/ATv+Yf4bc//RHyrlHKoKKcLfb9upZKloIXd3lBkWPofn9VqXo5x+6vBXoXvNgC1Spqorh/pnvykhJolFZUIKQpIV+xRRX+aE0LdGoLSBHF7Lq41Mw0TyqaOs+dRNgM9Pe9QuEtWYolo/vdq79FsS5EQUWUxpFx1MR8Gpx0r5janCem6cjpeOBwOnI8HLsQ2DxrB3m3jxJUYC7FqLmM4NdNJz5lE5XJ06TEffv3PM1M08w8ZRXTr4X04VcWUUaz4RI8t9UWQy5qD93fKE2L1+dSmHNmsgYyc63kRschQ4jWAEcfTQJFtIBdi5YswR4DaRhJw2BFCS4FojYtz5lpnjlNE8fTieNJRdKmlZjW63RM00QULS7K48CcEjQVmUlJiW6b7YYCzK0SSqPJzFwqadwwjBskRmLY6FibcGsIQorWc0siMFPFmwBFE3pTEZbZ5vM0zeqjmG3QgnUdx8M4EEJgJFqcq8UVEfN7aCDqS4UYdJ3WQhMltIcYiSnY1Hcynh6NoI0IBAhB9xnHIzA/FSNzxESMgWjiBGJ5IhHrUEnFNQtrLQthwvYD9aEgNyhNiIiKZ1kON3l8HAPkSUm0wXIatZlYkxGmshGBLUcPBTyfblfmeGuphZab+biRQDUhWP1ZTHStNW3m4qLOh+OJw2nP6Xhgno7kMoE1B/n83/oTfPU3/1G+8GP/vmK4rZlAqImjosIgA2khc4F9byNIZIhJi65zJQ+ZeIqEKMxzphbHBtQuimjDFo23I8OQbB3qPJtzxjunvU5HqVPft6JxHbpVbmu/SMdlHEdijFQap3miNBUSqm3u+F+MgxalByVXLRwS52pUE4g1rM39ScfL3Lc2O6CdZI2knkbiUEm1IjlBnchZP15SJciA1CNg3U6LFyVqfrVTLFvTAiPLiiMo8RctjmpNC4KrsZGCBCPDV3KrKry58l+9Qzq2TrwYo2TlewTLu5n+lGLT5hu1EIjN0HEHmgxDc/xnCUbdvgR1mKmLnbfzFnEMXf26dtbUTMhz4TRP5lepeFhMA8nEPWJIhCTdzXe/o1ZtolRkpsVEDSr0R9a2kirSpY0fSmm9qZnmIyPFRENPp5k5Z+asBXG9sVYt5GlSEas2WOFbRSnEcxdOxIpSa9F9sdpd6Ln7X84F8ws5zta85xA1F31ekCwqOqYvY0GV/DVe8O+wWFsFF+vcoLCQRdaxgs3R+6cH9BzsvbxnF7lWA/QSBtE/zyZLs7JK1tgGhpU73mLNmWiNUykcpsx+mjhMk3aUro0hBuI4wBBpbdT31LLyJXV9VBNbFQFJZrvRfWRqRblqwTo32qNJw8pZFFdKVkDq3Ki6uge+Rv26e55usRnrwkMvsrkf56mQvt0miyVJiXB5wfjmWwxvvg2X15wkgWygJGgKQ4cmiFHIqhR1DCu0bMXPdbLc3UwrM1Jnggm0taodm2vRK65V+VZTU0EpKbPZ8qxdv5uLSFmeMBfwPGnTjsDRrud1O8zMuyPvwEPH+8BwPtdCEvWXN9stm+2W0ziSp0DvPiptdS+9s7DO51Irx3niZn9HCNpk6UEptMtLxmCdwhs9Hqyzxh8uKh9sX8biM7EZKWihKyKEYifdNH4uuaiXJpAEK+LXeKzaXAEtFhBJQKR6nGaD0ILG87qPWgGXJERGew80sg2SlkVWEwNtPr4rGzrnQp4ygUyKyumUUA3TE80bSyZYbkMbbOiD+URDi+ezies2AYIWtqh4Q+jrplY1NblWcnGc3nzCVff02jK5zpymI9N0ZJ6PlHyk1kyuiqlPeWIuk+4pWPOBlqnooBdAmndMj10gr5SFKJ5SIjBQmzZHK6UpDlKMf9caSr1VjCXX0oXptDhcYU0tuteRV1mwRgpaBDV0Ub/X8/iW+UGLfc9QHguHe8WI+03LJ9q6tccKIzv/Yjirfsat2xkAYu9vL70Vj6/Pnl0/cW+Da5xtJKvdvcf2Hhvyko18+eTdt9I2Z9YA0ezsWU7YcbyVPfafUaKR6OX8gWM/euLrIsnlUtQvVhHDbP5YZi6li6kpZWzhkrkQqfvrmruqPRfX7aB/T6jLa00o2MFe560qHCt9rxGnzPv1exeIM3u6+ho7D+XtNRONcE7J+aOP+HpsoRfjvi7HWuBTbUUjxNwbWOWclUo+bvo8U241hvmqPZFqedqV+GWMcYUtL00SGgv2DGvsO575hss5/vzGzEWRHLPrNhrPKVebJys+T6vUlo17lNW3bM5Jygtm3s9ZP3idq10fa9vlOZFX/XzV9Z0LJ4WOu+52Gz79qbc1JimFTQrUWXNSJasofW2VWBrk1kXdqt1LIZIGr5eYjcPt2A1cX+1469E1Ud7TOBbRJhmiRTi+6zkvQIcgLFtnW/zTl+/t+dGWQfqWh/LBz98oFltrQ4PoZ9RzlK/bUczOCEJsQmzBcpV0uxKa2ZO25PKXoj/FvZu9RsTf5td6b+5h+xRCJVCaMJfKcZoJ+yPOJcX219IadbvFC8jdLHrNROfpttbxivU321JY7rnbj2AxXVC/VIrusS14DO8FZK0LSfh7ugA46Guq0Fok1kiJ0QSnigmx157PFnEPyOwAGp85J7dYU+fOhzAnIXgTmBDORS36MLceQ0trxu9aFbvZ93vY292Be8dSdL80i3Fh11b1jpVamaeJw2ni7u7Aze0tL17c8Pz5c25u9xwOR20+YSL0WrxHPxcfw4KYH6tNH2jCZrPh8uqad995h8997vN88YvfxWc/91kePHiIhKDYcwjc7fdstzvG0TD+eaYJpFq0YcxrePQ54BwEXwUhaPxCw2ujqtVbRPF9RLHxlpI2Ni2ZqRaKiQAUNJ4LnM/vLlyIC/2p3eeDn4Uf/LeQj7/RRQQcww4hdF9K06Zrv0M0ZvFYsmkM3Yt7iwvTaLOGIBVBiw2Ti0KHprVcItAUS9TrX60x46aKNbR2Py+loHhy0rytNzqgWewQTYRK1IbncWCeZ477I7lprZjm9JTPHFpQMaWgoi/bUWs3qgm9lRwocyTnGavFpxYVvpVh0H3FhTxq67jowuRaxq9a7Kxr1USBLa9bmha9a1OA1r0BTLLYC60rLsqF1ee5z4tJzC3CJRjW1OecSBfsbEHj7xj0PFqd+9zDOCCBRhKxnCPstsLVbuD6csuD6x27za77Q6/Lkbyu0nzal/1ZD0zWHDR3jPV5j23EX284V1hhgF491t2rl8y63Pvp33X2zS8d5Uf+NOn3/vfhx3+AdrzT2IRmRf/9VuPN+NTPOY8RlnpUvwKPK9fxZVv+/9I5dRaL2lRbqypA2DqHpdn7HF9X3FDzC8oT87ycWzzdn6qNlz7WgaQaJWkqqnMWrTbO7PpZXsbdaFlyJQ2BMlO/8iO09/427flj8w36Le3Xvxaz8XN27FxQDqPzF0QsTrU9Scfao+3VWKzGMyBk20tLhhy83qpQrXFfM15oDJobKY7f19fPlnVcQZYYfZnmK26d4QrKwWkmGr8IYHoTtmB7l/sdK/Bg9bk2xsLZTP0WJ3n2y31X/vb7/zl2f+0/Jt4+6WjHsmI91yed5+w1yl0vGuCedJY3Q/GCf+cKe9ORaDygUGWFHagfsHBsvf6uLn6gzXvf04LzGawJx5kjZ2vyXGhqxVluyzh67O8NA9vyATZm53vkgp2s/P/ue/teoK81d0BD2arxnu+z/hqPA9ZRUTtbl/73ZQy8Ec8izOXnwksc5S5Y0PqVLde1/v52dlNfiyNulJfTss65E9rsotVGTYU6FLqclgk0j0SGkJBWkGg5ZVHeg87dRi4TpzKpWPcwkGOCDG1KGnvMmVga2xa5IHWR0hIW37RVKERaDfb84nuAxu/1o6/DD/67pMPHJMlEUcy7Vs1p675mfoZo8zNEuYPOa1cE27ygBtRKdExHrOmcuNifoWjdNil6HM2XVaEOE5ww20O0uk2fy1HM/x2wAi7ldJif1QCCaG1rGlRsaoikZHnBFgzHEBPwVKGpRly4JliZOC6Ga1fo89ltLrY+Q7D6mXM8yh8FyE35T7miNeZWg/Hgr/y7fPR9/zzXf/7f4Fh1Mw4NYrVy2yKQRfekEog5QHFepI7nCGyjcDkGrjZRf6bKVmbGlomtIkWbhZcAJTRqS8aBK4Q5I6eJcpyIryF+X9ymixjnU6xGI5ovHEFc/FlooZp4UzHfyWN0vzfue/s9XOL+4NhBx6/Xm47FVq32z1ntWITpjpQPVLMbFXW93eVSLKz0edoaJmy7GL7WWufgtIbl2ORsPmmM6OK+Yow5xwj7J9ln+BwWm9+tP5rn4OuK42jXufaMfZ4v39G63WpmuxZ7WM/sxnroxIALby5Yg96HYP6Y2yfxwcHXfe2+a7dD67H3exTF6ozU3l88/6b6aDau3e6gY7x4vO79ylLXyrKvaRWExXXdPddf3McuTUWmcqkmNAVSC9KEUFuvuw7frm/0d/l497OfIgbjhI0j47ghxaTYb1vmlzZbRHmzp4lpUu6s1kJENpsN2+2Ww+FAzplxSGprau2i1ATTy6lW49Ks4sNwMxfRbqgItn05QjMNitaFpuT0AvmbP0je3xCkEkblcOWcCSEwh9ybtQf3s9yTdKFB5xobLpFMpHA3jmw3m65ZEWJSoanWjKewEqpHs0G9nhidt1Tn8VbWk9fCwi64RP/3eSOWtfBqg2W9NY13iu3hsz1yF51Sv6vHmrgdgyf/+b/HO//Y/4THf/qPM8/zErf5Oqur9WaYojt9Pt/7sZrPfdneP4QeA679+P4wm3+WSyTgglJLLC3dRru/sV5PapdX4/wq8PTe8W0LTa0TcMXULxvNihCL+iJtEatYJ3bXY+KXZDCwPVjEKfqgKEC8Prxmt7RGMAehBiGYuEx3zEvTpKK1rqlFle6qVHWeWkFaRFtya3F+9c42tjBY3Ygmy81riAVLSQ1vTB0xaMYWrKJdr/R1ApZYlZgIcYA0m1p6ZikeddEpdZqr2JxrotfmgVIpVnRoi69U8jRRpglQhdW5BW6PR548v+H9x0/42nsf8N5HH/P4+S3HGSSOEJJtQnTnTm+cO3uV+fFX+ODf/pfJzz/WQM4cV1drrOpJUOukRMtaOc0z45BIKbDZbBjGgXEcSOPI6TQyTyfWCbxmwZxvBrHRldiwmCeYcE+lkZtubDpZvIhpDRytVkifPuedZxwQfN2Km+8OB0QiUZwgHk1gSH+maMq1ZoCVbGlhjTtvgV6oQQdVQ99Q63pdrjZjH8K102JwEe4ZScPIBUqY+uHNr+BuCPz2/d80Yo4GRiGNGuQBiJDGgXw6sL+94zhnLVyIgbDdMsTB1BVVyVCMrCx16fJQS6ZM86pT/IH5eGKaZ6QWLTDZWCfd1ohEJCY2uy2bix3jZgMhGllJSAkkKumJ2JDUrHAF3XPECqvd4UW6YcDGeghR57ytx7WyoQZJOr9yKRwOR56/eMHjj5/w0UePefzxE17cnjgd1VmKdu+GFElDUrJZ1W4draFiY4OQQlPlxpqRWgitKAVasPusyZghqZDNbrthHAcuLi7Y7i4oBQ7HibvDieM8c2xCnLWTdJbA1Rtv8MZbievrh7zx4CEPHz5kd3GhHd7ThkoiDBvG7Ya0uyRL5FAamzGxHS6ocSRaQUsYd2QC01zY/bKvnG//8O7h4DbKAgGb+815iE0TMN2haEoyDKt1JQHikBi3GwZTfe6KrEELfWLSTvLb7ZaLiwuGzQYGtTtLF5JoRRoRQlKCbGtQI7EVQoAkSpoNsULQgkqaJkguNlti1ATjnCuH/R3Pnj/tHRS32y0h6e/Vgh63Ya0nC/RwGMrB5WUbNRbm/SL1DtgZ+Lz6HA8wlDReSSFycXVNjEIpmdPxwN10YpompmlgM3jn17qcQ7UClFppJTNPJ46HPfu7PcfjERHh8vqKt95+mzcePWLcbCkGMDyqB/7I6Ye5CoUQkiaogxbRuajMOiEQDIAJcSVGJaJKp+E8KFbSZmTpNt/MKzNQDJhPM3f7PTc3N+zv9tRcGaKKgG3HTd/ngwRyU4KCYF3UQ7U5VLSbVRoIMdEqDOOGNAzsLiv7/Z7Dfv9LvUx+0ccwbjkdj0xT1iKnpEHJaSrc7Y8cjkcVoplmpnmmVXjw4AHb7XYR8rTxH8aRd999h1YKm2EkghZ5zRPH04HD/o7peFRRq6ZFSKfcOE5H6iwcT4Un/8p/xNW/8T/mv/4X/0988Y//Mzx69DFvv/Mmn/70u3zq3Xd549EjLsYdWQr7/VEDJlf9Neekx700809RYJOmXdNp9+oDzGNUQ0MXhjp3TlaH+2AY+UG6W9MDDwNN+udbsX73npuTipZ16QkyDdaKkYM9cHOyjIk5Wvfi3GbyfFIybtUC4Go+Z7XOlrjAVF0SsgQrVDWBBMUoF/XhJRdggEfzAdNxfnP6eNl3DLTHiDtLhwtLHOhl4sQaQbqwnr//PomqAzdN70taBd161MWVXIts1vbS1vedPo6HI8fjnsPhwPFwYLs7AUoU3x+P3Nzd8ezZDU+ev+Dp86c8ffqMZ8+esz8eOE4n9vs9L1684IMPP+Sjx495cXtDzpnNZsPVxSW3Dx/y/PlzxnHs91lEuL6+5tnbz3hwfc3lxYXeXxEuL1SkMoqKiyURKJl5OpAENuOg63mzYbfdUnLh+sUL9rd7Trd7QoJxvCDPE9PpyJgGxmHDZrthM24UmIgDl0HYJmFIl2pHwom7sud3fuOv8APf9f38vvf+CjuzxVqAqWBzmCd+zTd/jJ/+1G/kt33pL5DzTKNqvBEC12XP7/7wL3Nh/l+eW19HKvKnR63VCsjry3PMwSIWwKCr4eDEmsa6m8NLcUgHZNcP7DteHbesk2l+OFDa/12XNdFe9b32njVRs6/D+6/jPOo6O32L7Zxo57TH9Xe86jtft3gMUH8N70LoBDiLyYtfixYHyZAIQ0KsO0mdGlPO7E9Hbm7veHF7x4vbW57f3PL8xQ03tyqC0zujQAe6VLh7ufcL8UiLEWIQdg/f5tf8s/8rvvxv/jHTwBJCC1aUAE0yp/mA7LUgr7WMRIiDCuPEIei/N8J2uuMzX/8R3v/cb+JX/vU/RRvUTw6Y6O1KGPBnfv//iF/xZ/8dZDr0CJFG30dDUDBxvHufOn2avLvm3fd+nLgbO+BI0MIurPi6I8tifribQhGtdzarsPzf93g7LfuLJ121s5/6kdUId9WxlrZgY3Jv9kr/5PPnzxLN/cWKBdHXva+IZb4XI16VnijwJNmS1PN1W2oxslVlzpVpKlpI1BahqVL0oWLLC+gqEglR8ROMkOZiIjpnUSLeSpTqdTmW2EP3yJASw2bLPG+QaaDFaJiaqB+ekhY3YKC8gdJTqcx55nSaOBxPPHvxguc3L9gfjlr4fzqxP5w4Tpkpq8iU+xAdjbU5aL/1As/7I+YAdgwwpMB2M3C126qg1NUl11dXXF7s2O22in8lE1avlS/nC37seMWn456/eHiH3zW+35Nw4YwctYxPs/817odgjd5VxZ+xWPW+77PGNHwdvF82/Ke37/LPPfhqf+1Cmtb3vRlOXQRP8VHpY/btTCVBjOC+tmcBZEnOLdCcJrGCJcybiTz019n5+1oac2aeB0YrhMm1kHImFcHFHx03bsVIx+IJCIvlxUUPdG/thavm09aivwfDCnoSwotcS1WxobZKJH4b4Pvf7eOX3MYuS8X/CbAUan2Lr2qtGWGv0/hWiSB14H2uaVGvdQG0OEDL7pa10RoUI2nP08Q0JI7HE9vtid3xjt84fo0H6RqJW6awrItoRVJrshOg4m+r+IlVLHa22kwkzQso+vmjNkmn7eIBOeb6iUPaE83rET17xfL/b3OKrYmWPt87797yJsHXtekUuMh+CMFIBwUBSxKqyAixLoPfKl9stzyRkee18Sumj7vIFF7QKuorWZ9pLdasjXnKJpg7a/zZ1VmXS+522mxmKUWFql8zW/ayyFRdTVKHD8z/90SjVB0rkX7tD158yPd85QfYXUTycLX4DqHRXfxWCVIsT6WHWOHemX9v1cROFtTn6HmCEAWpJthYnbxWyGXmNGupc22V0zwte7fZByc/lJK1cL1VxU0tMZtL7gWLuWZysSYrmM/m8XX3b6UXE/Rk+Ep0SuLiY4YUCElFXoKJZnSiUm3kPDNNJ45HxZuOhwPHkzY8meeZYk1tBMzG0EWmQli6/eD+mQkMFxP7zFlzGXVeOjwXy8216jjLkuPSYoJz2+M5mZe6V1psWO13J1h4LlrzilaRHKPupU2x1mlS0T0Rxa/qOOoe5IIcnkxvS4GbimVNq8eJedY57N2qX5djQsWjqJUxV1LOtBgZU9NmHSGSpTGKxkGxNGYEcmPYXjBuLwghkAlKNosTdcqKRUUhifZbp2QVrWyQpNGkKDlxVjGuyfafXsTUKtIi0iLz1NgfshZu7FT8rAIlCNJbqDiBKVJQ3yQbmTqZ0HAujVCbFbuEJS6KipNXw/ZaWQTTAO1sFqMKp6XImAaiBBNWq71zmBa4N/NPocxzJ6uEINoFL1fiqIUWHmOJEyNDVNFPGlTFSDQfBi5g2Mw6FhP2ERMSak2Jg8EsqCBWtLwQwEwxQK/T9p1SNO9Wa7XPgTxl3XuPJ6bTiTJNlNOJPGdaUbGkECLD3RO++4f+XeT4XO1/iB3bUaF26+QowpxVACFFJWNUqXamA6kGppCpsTEEIYzCkDNl0nWv+6zmEzbjyGazZRiHLkRwsduxGUf2hyO3xxO5vF52bLvddlFaLSbXPavWRrVzbaWQZxVo0Lzsqfv3IQSGmBhHbVQzbjZsN4FookXgcUrr4sm1eo/t2v2wXjCNxzFu/MQwYfcPQdLIALQ0wKwxYalCjIJEtFNpne0+a6MqQRji2Oezx1jF9t8uhtWUYNncF7SYxbvXTqXQ5hmCMMhCrvOf1YQEY3HBqmqa5UKUqqJtzfOT4Bm56r+3ClVjPYkW23eMxP3BNc0JOmbSrGi8WjE2tr4FExQRSlZhw2meqej+s93tCNE4MqJ7TkxDzznrnhTxDpW9uMTzAq1Rc0WCNnurIuTS+tptJhI7zZP6f3nB9nVumECn3V/1MxYcpXjhHlZka7GaXiM9D+AYa3jdAHzO40TvhroCI3qw0dNG9twqCjiLJsTwAHEFmZeChBX4de/7X3F26Az23fnef10o7v7nrM7fLiCIEtS92duyfsHF1eI4qh0ppRekJPPDKFU7A9dKEhU9E6CFSikR7w7Zu062Qm6AKKkxDl6MmQk5a14qBcsJQ+8s6U66YGTLxe+rZl/X8aLvRuHsPuo4SwOpjWriBw0UMFrhIAChWafgllQwPW4JuwcM128yPHgEm0tm0aaMraLiRFU5boPtF6fWKHVWXLpiQiETuUzUMkEtBOvmTcMalHkxdiXqjSBYfq/kIy2frAt47blxaY2aM3WewIVHaMYvwkQOXrejGVZl8cYK4/JNtKFEdMfhJCYVZ91oEcUcI7m4/4Ltf6iAiSiZ2wwCtTb2xwO1Vk6TxrWtVi63O835G47Z90jzY/QDTaATL+TSfU2s6Ko1KySx16qA76yrVBotGv7UghM1qVXj/WRi7urTaXygxNTEQLLmaBWVUyrdJtZQzvLxLg5Hx7XVp9S/q52ZcyaXiSQzSDYhhNb5aZr70nuSsxVo1JlcTzS21DbQMCGtZs0LY1AhWW8A1dwOCqUGcpUuYpizifRa7OmipqVkTlljwJxPlHJS3L3MZLuOihe6rHB748PUCi0HYlSe1pwzs3Go1HoHK84YtAtuLSo2NTckmiBtwzDbCFT97lKoFOtnHxAqIRQvrVbBBJQrFoNyRF7X4+XCEcPCuCfa0vxv2Lp0v9CfOPuA86c6FrfEzv68j/G9szo7k08Eru/je/1t+my3bGJYi7+yyYqLR8fZkEANEXGcxjAOHG8Tt/vS95UFy2mKnbFY4vVnuA0KsjS8dSFTX68v4Ymr6+74KUterbZmDeJUfHqaJmZrMIYVhGk8oDk+neu2L2D7n9n1pQiz32Vg2dccWu1/92YULJCrBQR9UByn9Nzy+h7161ndQL8/y96F8ftW3+8lRPa/nut7zbBFcBzUG15W5Zq1omJ21YTgbY11zBCQBKzmRI+ZfI6s8lzL/PV4wvMGJnbdbA3ZfPN1eIaff6tjhU12L9UaJPXzsDjCZmX3w2rNNKwhQecx2e8lGybRv6bfwm+FE6/c6j52r/rpn6k/3bZajGi+eykVSuXNhw/47Kff1SIdUwPNJr5YDKsppVAmxQ+naeJ0VJHfEANRErvdhfqVtRFF4+5hq81DH15f8Km332QIgXmFl7faKCqXpOfn62W1sXgu8ew+tNU6eel2fXvrQPMd53kQ3y/WRdysxvJ1w+8V2nAcwIThJSBWkCHqPCOdo7qsi2VOL9Io+nL9rPNrXfxIX0sALQgFYSqVdjyR7W/Niuk7u0dMk9HWsWPWsWp+szYVlGu0LgTha7Otzu1svXs1kRnUznUWLUSrlhPrc8nzSuJbp/nXxj0AK1CuxuFoGpu45LOLEdDW/KXWxWoqTfNr5mOrXy4ki9tCUjsUXGQAFrwdXYcNqyOQ9sq5rZe+yj8KZ2ui2iC5LaM6MqPnOVtTgf3+wO3tHTc3d9zc3nFzu+fuToWmtIgQw+Ox8iJfE5bbrE0L2GqhSiANicvLK9589BbvvPMp3n7nHR699RbXDx6y2W7VHkv2tJLNJ8tXhIA0baCt/tC3sSf/XT7cnwHdswSMd22iSpige8m44GGwzl4pBKIMhhs3JAuhFGa0uLzkDCLUeN6opM/7qnFI0A+lBSE9e49ir6hF6wAI2oSAaALArHxVO1wkyW1NKVXFV1pZ1nVtSLWCPfONSlOf3psMhBDUVmAIp+j5di6IrPwdWOJUe9S2FCQ30HwiFitYQXWqlShCmSZagUKl1bwIXQXwijyxmAOLc90HU8uvzZM8Dg0SiRIXcalSqKEtIrxW7N/jb78ey5lXLGdY9KH3IWnuy66tofj883/sX+HiT/7vkXYy25LOuPql1d5XRwxz8ro8kWC+nt58rS+y+FtEawOMjxyM1yWgOIflPCQIw5jYbRIX20F/jontVvn5r9MxJC0rrW5jsO29mXVyc7T2d80weGy23jl6jnb1cATw3LL5e+/xfXwSyer169jgLMYT2ouPyT/4fyOc7tQHFF/Der7SmoUe8VxorPumNqc9BvIzPYtHPIbrjp36uG4urWi/mRJ5tbe2+HIc1YewrTm2zo9fXnU+piv/y17Sm1P0IfHAsPXT93t4xkpcxUPiY9yFcxotT7T5RAuKmTjnchEgk+7zVGld/MrjdhATgqvL2pRGq87fMv9PdA252P8SRzmO0SiirkHJcCqFPAk5RoZB6x5rjCYKY3etlV5/9zoePf6xfy3/b31ZeewZmnIqFLPDfDnzLduCATjbbQVdnH3+cth99O9brUidK/LyIrX3HH/PP0v6qf+S/e/+Z9j92T9OPNzod1ssri1WpJ9TQ22Yipt61kfnU/exZDl3X3Pq39neGgOhWo1IWTWYdPfT9tti4kmLiNKyNhuYEE5BXGzK1/76Kldr0c+hx7C+x/k5y8K99P1w2SqW13c+R/f5Fy7vq34//KZ/lOHxV9l87a9DseXR8efle5wP02d5jw3cr118Uvdzq+0D1cUd2/njVfUJ6+eqxf6fVA/wOhwXV1vGrJzoPGXqqTDVWfOhqGMVEhxbI7XKThqzCGMLSGi0mAhpYLPdMkTldhQTjJBamVumFBvXHMhHoYSBUhqxNDaSuAgjOcApzkw1M2m3PcOnXJzC7oP5m2KM0QaU5x8RksZi2rSkdpHSWl1QWkWh/L6f42e6J+s8EWv8AbWF/pwZO/oq6PNVkGb8hxAZPK+GqL9Tq5U9tb6Huz1VaMM+MWgDCuuC0Bv9EVSYQlqBZg05vAGGBNIwsNmMjEkbrzU0x1GrkIthJlhNlp10sI2vBQt0zzBj6aWozX7qfF9uSa6azz7ZfS77r3L5Z/535Jsn9Mij6l4TsiAZaq7UuUKuSDU9C/dhCIwRtilyMQ5cbAYuN4ndENiERmoFMQ6ciu4EBNvjUiKkpMKJTblyZZ5/WdfML+SYc1YNBsu59r3z3utaf9jdsiBeeT1xwYDWfhCtY9yaV+Vsv7Ht8qV9aNlH+wsWjRHRRiege2rD87AacyCln2f1OKZfw/l3OALQWO3L0GODLqjp9uUTQmrxa8H2JquvdC66D5d/To/Zz3xSbJzUrmrsaaJRaCy59gn8V3+dnr797juLLxZWP1+q5V4Z+fVPuzKxXUaFrJTbqzj+PV/Y8S4b1boasNYWzKMZHu+erJ9ij08Qu1YVSsrV8npTtpyE1SSI7kkh6txzvPF1tGaXV1cdE9UcYuj8mdpzqToepRTjxhw5HA/M0wzWMHEcRzabTa/rvbjYsbEa6+PJmqAadzMbN9W5S8HFYL12CbrdUD/V/SFfbzqWaboFKoyD8jOK2Qr3NQy8CFX39maBiIQFowvW+DINiSElhjSwHbUefhgSo/ESY0xA6yJTbiMEFi5CXzuFZjxG96EXw2k4BixrTBrBajKb2Qvn2Co2U7toVi5FmxBVxeay1ZKp4K75qe5xt4bIoiVRnrzPN/+Df4384qnGjy4qZfimT/jun3oRYLfgiz+rWMZ6Jp1vQDoO536+7zPOuAkr32Bh8dj9tteb66LjKJars7nQkX2ztwaIvnQurzq+bWSkL97GGUGiUQjBjExrupGsvroJKtRQVwB1c7/BCAdVA1oPSlf8JSPyLYIfc82kmiEvoIN6jqBdVjwwDbQaCdbNoFYrcKzBCNoq5NCCF7B5UOfJWiMUmfPWIz4RWjUhiBZ1sEPTz6xNSYQmkiUtatdIW9hBvFNYM9JQ0EViHcRp2YoP1FFyo+CTWImTTnyyzcPEAeamXbWmubA/zXz09BnvffQxX//mB7z30WM+fv6C/VxpohtcwUgTdo8W92E9bxrlxUdgm0mj6qZuL/JkZgPmPNNaJeeZ0xRIMVBKYbe7YLvdqJM/DOR5tIShFmuXeaaskgC64KompXRP0A1lFSyeH+vg3j/jFX/v9+/sAl+r4+13P23JSDUSSvwsHE7WyWyIbIbEmJQ8HmNUx74pSSVbB9FxVLoKsATlrB0AN+YdCrFB8zF0pwu6VCitq6BLiPxE+gzfjI/Yhpkfvvh1/Jbjz5BzhphIQ2AIQinVijlGaoVTPDHHgRZHdhcX7C4u2Wy2pKTiRMOgAiqdBOZFujmT51m7kt/dsd/fqmjVfk+dTwQJ1CiEJNoxdxhVaXcYGLdbNtsNIQYdzzwhg5LjxXMQEaTL+1Ybk9XgNVECa9YuSgpoWxeGYvPYOkNqIKUO6uF44vbujmcvnvPxk6c8/vhjnj695cXNxDxr54txa9tLCNz+y/8x7/yb/21iFGo2CYQGwxDZpkgKQmgqLqdt5YvuM+4mmxhRGiKbzcBut2WzGdldXJLGDS9ubri5O3A4ZYo4nUlgSFztLtluL7i+uuatN9/mjYeP2I0bUtL7sb14wO7qAXeHPXEcGDYjEqN2xUgDJyIvTpmLtGXYXBAvrlSY5DULqNwR0H/4D1sXDVPolU5sXwqpvAuvErN1F1RBnGHQjuENqDmTs5ILkUBiVNXO3Y6rq0skqdiGduQxkk5r1BIJJETcBqhi9Rgh5cB/Ur6bL5bH/Eb5JkMSSlEjH43sLSmb0qsWCN3c3JjS9KCCfynRxIpAWiEFJd/mjgPrXHdbsEDYq0im76uroG8NYvWXWJBRG1jRP6L7RpDAMG7Y7XZcXl5SphMtnzgcj0TZsBsHc5qqkTiswLe6rcsmUDQRRLi4uOKNR2/x6M23uLy8Avn/U/fv0bZ9210X+OljjDnXWnuffc7vd+69yc1NQgKIDzAUoAXSlBLEQsFHERXKUqwGpRIwkQKV8lFUaZWlrXg1FQyUDxo05BVT2BAEXymhEPHRlESJlEZIuEnuze/+7v39zjn7sdaac44xev3R+xhzrn3OTW7IvZVT8/dbZ++19lpzzccYo/f+7d/+7WLdwqqShsRHB6iM3rVFnBwVHjUfaWGZLXfJk/bNIoo7yyvJa9PNrxcIGqkwikA0uzhNEw/39zw8PJBzIcbIfm9zcucCFimmtVB+NqIjqn6siSDeAT0lBPseiYkwjkitzC9e8fLlLZ/4Is2PL9Y2L5kCxHHPOCRQ5cXLF9zf31MrpGFHTAPDWAgnE4mycXGNHBraqlwfrsjTzF/8i5/k5YcfcNiN7FPiar/n+bOnPH/3OfPVFQ93d5xPR9I4MIyBYQmcZ2ESZVLY/cZ/gNt/6lu4+r/9It6fznzw2ZlPf/9LPvPl7/O1X/NV/Niv/Ro+8YlPkEI04SinQ9QWTHuGyQATfA3wohFpvlRLcbaORPYZ2CQzG2Ym2sfTCjv4d/R5tvozPYmxiUWaAKqBPNJe9M9oP14LBIsdn67gh2pZRTmqCVjksvjPmZyNjFvrQq35UijDyU1COx/7/ijCGF1gVUxpvylrb8mBDQYwb6N1umvB7gb47q7AKiCitYHtK6ER8WJTheCrcxOmWv1GX+ndhwztMzF0hEhVnOxr5Bj1c6soj3Rv34rtfD7z3nufYcnK9QcvCSGyZBNzuz+euH84cXt/z8vbV7x4+YqXL15y93DP0QWqTqczd/f3PByPTMts4MY8OzABp9Pka5yNwRQTkytsv7q+5upw5aKoBl6nGHhyfeBqNzLEQIoWZO6GyJAir+7u0FoZU+B8OoJC9OKL/f7A85un1vFxOhsBl8C4GxkHL9KLES1KnrOBwSGyG3cs08Jhuufn/o9/DJlOvMxLD+6b8E1Q4ctuP8Xzu/eIy+Td3mobyqCVQz4RU+p+b63mf7YxswpQeGwm9GsTQrB4b6MKH/wNFSe5bmI463IuILY+bkV6trZlSxhuoE4zX1syH75OrGI2K1Dq734N4O3bBlB+vevLo8/Iul7J5rU3bU20s+2jgbD//7KN+wPdq1HrqiTVFeCDJ3wkIHFAhtEeCEWURSuneeb+eOLV/T13D0fuTycezmdO88ycjYDWBA3Vx4k13DAwt8ViIWAFU2IFRrurG/6qf/S38n3f8i/y477hN/P9v/PXkiRYIYJoTyBpWZjyAqcMUogJYlSPedQAvSiEofLuw/fx5Ls+jTChoynnxzF2yFhU+f/89b+UH/cdf4Tv+gXfyE/6T347oaxF6BIsaRwc9I0h8uSD7zJR4V2A3c5DSfcu1akbbroaocLgmM8Xz9vW49j2vJGSG+jpwonQChMzqmXjzm5BPH/uflfz9ap/eZszPdnBxh5vj2kzh7bJ7cePSyKK4zpezJY9zpjmhfO0WEc/x0Q6EF2tCCg6iSbE1CxxJxUZ8SxjxZyYqFJf537Y0+BLuoknnqhGqI3DyLDbEec9IY0QB6rMaIhGWJVGMFrvYc6Z05I5nc5G+Ly/5+WrW27v7zmdJ+a8MC+Zac7MRb1rYjsAHw2PiCJtPKiv8wDb5UsEUjDbdtjveHJ9zdObJzx9esOTJ9dcX12z3+0MPBeBakIUn+CWHxvh02XPz9t9v4/30MnCEjdFIh03175+Vl3P245DL+bIdpxu47KGI4qvyR/Wgd93+5X8/KvP8Ltvv4p/4Ob71n08+rnddPPg8lAu76snIFsxDRtbZkk0W9+Ma+kxohg5QELrzOHiysa+RNw7jzUx1GqdQYZsBCgXmprzQioLmlvnCDfX3cerCNGAd197q5NKS1VKDVaM7mIwVQoG+6xYSyNQ9sLnC/v45uvxNm1vKqL4om1tsPGDLTUbYPICopVeeNUwZhBabWNLazTfv9ISRUZYWPLCNEdSmkkpcTqdGccTKSWWGDj5Wq8KtVRSSsRktqrH+Ag1as+j+DDtsU7vxuPvbU7gWswh29N643jYFty9dmVka5cuX/88H/mht75mmS9R8VhJxIWLLXZUtWLGZo+t643NIRETmgopEkoTmvKLj7Cryk+e3+c0zSxUZheN65dA10NpNjWX4vfMMLOGpbYh2Tvdb7BqxUjH8zK/IR/wo7ut5+BY8SZOts1JRqVe+OltzW4id/MycjjdksebtdA91kt/XpRaTMChhsCGYuR2Qy/mon3GfwSbZybktAorWZFtQYuicyWXhTgnTuezr31mh1qnZ9mwNyzpXU18pJioVC6ZpbrIVPVOflq7DWi+VxNQbUJT/bHF3FpRiQvBh2jFJmyOuxF6mxDZNJnQ1Pl85nQ6MS+T36PF/UNL3Mdk9iA6dtE6R3dcwBP6XWwqFyu4b/emmBC3vV6sEE496dyWur7euRVxf7+tGep/Wx1ie6ykkWZ3AyrR85hezNrXv8I8m9imiY8ms1EGZHZSg2IEt5aHWxYrWF+W2QSmloWcZ0qeKeXtEprSFMi5EhXmWgm5IEkZxQTtw5BIFJJaoU2mEpPFV8MwEOOAijeFCFCx+JvS4g0XUUKJ6kUVClnUx689QgwMknwtN5JVDMIQd6CJeYZpUMbRyWbRiXPYPSwqa2ctKpWl33p1Qb5WSC9O0BAcl2AViWhF/o0goOpNEzwGi1usGkCDNzQJXXDGOqiZTWriEpZ/M/E4jQI6QM3UApq9ZMOMiOHrCCLJCkeKEqPhRrXYMTUCvYmJOh5KsEI+9weCuiCMzz1FoDRiphGLijd3qbX2YpFSFmqeqXmiLhN5niiL+W1Ux1S8IDSc71Ckd1UzfoDl46qH3a3zcPNb6b6fkgIIgaLBRPVjYCRZQUrO3sle3WdQhhjY7wLDaCLUwxB5er3j5uYp83LNBy/u+Oyr+x+NqfR5t6urAzHZ/bP438ZtKZV5MjGyJWdORxe6P59RVrswDAPjMHI4BHb7ShhS11tvnUoBI+2oNdYyPMW+39an1T5ajmWTu8PukYTkgnxeMJGiCX2Li3+WmUJhoZBksCJML46w4pXKUiudrqsNr1+FccSPuSw2HpvtaQLS05KpohQDJAEn9diwcUFkK64IUiiOeEfBi7msu6qg7os13Eed6K9evObXwgXFS7X4qhfUNAEpx+ebTxFW0GPFyoe2XhnptxRvJlHMDo/jjt3+ChFxu204leWh3I/cCBzQfvfrpbKSvrTYfbbGZi0mU6Zl5jwZz8E1XKw4BSXXzGmZWUpeic5oj7uiNqlZ9ztQRFKPbXts00ZTXUX83p7Ni4DcOTBBmXWAdyJdxzpYxW9tIqFa/JzZfM5+Xgq2bnIrG+BDpGEbLebY4goBkUQjsLP1x0T68bdN2+cv/E33SkPq2FQTghAJvosA2rqWm/xKlMguRvYxsZfI0WfCGCNjLUacUxAiFSEr5FLQrNaErxYySkh2capYzr2kEYZEAvfzvNjRhQTRVgwlFvgpICbCGHyutXyHxEBWL07f5Ks6Gd4vijovzHhMvkZ03xdwcnYukSVEwnDN/p0v58nzj5Ou32UZ9kwayPNCqY0UaX4maqJAoQtiuSBRLWhd0DKjy4JWE+ky/4D1czVT8wJLhpJJWq2Rzzyx5MXWHtVO0lYtaDZRBy3F/u7+uYrJvr1tW26E8+j3xzUFQ7GhWlFqUJaaQTNDrDBU4hjYHQ4cdzuG8UCqgfxwZAyw2zuu6tiPgnHrXBS9UjnlieXBYh/E5uOT3QHFfKzdMJLSSF4WlxfCawnVxlxsjgjUYjFvxURHV3vsXcFFqeolwCos3mwzVSEqjENCSahGbNJVtExEGUxUUydEM0EGs4uloGSizgSNFmO0QhbB4ywbQ7UYHh2CIJiIY5ZMTRMzZ2Io1mwqtnVDHTZQ8uI51zCSmFj0SKl7lBFYC0jwGGgJRkIO0Wy8eo6w5kBeYM4LSy4sJTMtlvuY50zRTOe/1brmuHWmaDZ83YuUaWOiKqXAUoSKxRKBQK1CbELnOaHF/EGJAxIGqo7UMpqHHgoaTLSq5uJiYQ2HsfVVNVPLjAlAmjiuSCbU2R7YWjXExBgDw1ssMtW2R4yG7juvPAa9BLj6PXY/6IfYv/Z90DG4/j0/CLa2+bQf5xewNSzq4jVxWwFrowc769BBFkEkgjdMuOB79DDffTgaN2TDG1HpXcPxvfdiyCbA0bGbJjQVWTvFh3YYr53P5fWV7i8aHrB0PGDOC6VjJfT8dErRcNO4NoFouB5scltvuJPa1rj2u66v2z+B7kasEIzHg+t9aENI+93RjrN0jHFziuK+RyPW026bLd4om9zha0f9o7+5XHNfO0KIKIGgwZpd+H85G74VQrK4NkaL5wPm0/jyYTHv5rmPuccDRjpuoHReHmthfxuTbwan5fXf/K1271vh7/oJK0J0X9U5S13ovRbLFTVxKTVZiuqcDK0t1lG2YrzbHMdra4MD/a2osI+ri/yfjy9Vn+/N/234bmh6vCDw7NlT3n33XSOGiTcmK4Vpmuw8tHA+najnGXJriFZMmLQUVJScZnJKQGapSgkFiYZR7IaBZ0+fMgwJZhcTc0yX2gb25hRhw2EDdNtyeN0u8liv3cEffKuqiNYNd2XlsIRHNquLMHyB+/7/1ZbJjtsItQZiUFSdT6/ODK7eeMxjscc8mcdXXrsPA2xWlmYPVIwnh0Q0BFQCuSplKSx6tvuaBuKQkBCIw0BwHrGt+3Z/EzZuqxoHyQIkfeP9W3MI4iI8Lbfm1tdFp0KrqakWD62NIdc1tuE5q1Bv8+983vq6Wpy710sPO74u/lmf865AZfw8K05rvN0mcNgERPpU9l/Wed4WGcO+W/1I/4C+dpf6SXXuxsZ6rdwlACumztnEGE+nMw8PJjR1//DAw8OReVo4TxPnefZhYseqqeFBgoitOUprLLawzBlF2O8OPH36Ds+fP+fZO+/w5PoJ+/2elJLnvjy3MZ2ZnbenqheTVYIQanh9vXtLtoZVg/sVybjOzf8pNVOJ3fa3PFANgazKmCJDCsQlMuTMVAsTyrlx9qaZIsEFnyuaYhdgShK64JkGgRRQKiVbrhNpDRVM5A8v4m355+ZnGmaFz/HqjSnUBX+tVkRidEaquG1zUEzVsGnHIaKLtGgQ+3wMnu+zt5ay5U80327rQ28cqSY6Vd2Xqc47XDI1Z0peyIs1FKm1EkMgMfT1p4qQ7ZBtnW5CiXmxmq1idrnjQX4szZ1q99Rw8tkasahacWsyP1XbeVV1geAmNOX5/rY/CZRSefUL/in0P/xm7n7hP8fhD/469oM1pIsxmvdZFpbF+VECyRvUAASxGNbWJceePA+nLkzefEsRr/0LYgWsWsnZ7FWQyBij1dUcvEA2JVJ4++bY4A00Kq2ehR53t/HaiRSsvvtrIlNiPIewEfzbbh2S3Ky93dcGaBWh0kQ0tjjHZj/+uvRnUI+v7Jlj3PgZtaXOeJLVY6WGw9D0P2gxWRubPS5tMQKbyKFu6kAafi/mU7VckNRKDeL1mrRPXky9rS1pAnANI9o6B7bMyfqdG9tjB2b2ofkj2+uyvfZ6cbPsSSvybp/YPravtSZULQ7d8szWe9I4Y018u1w0PmrBWuMQtOeWRm0BXovSWrzgwoGNkymQQiQviWFIFBeaij4PbVy+fVHZKmJ2+dy2y/i3je/VhiislZqArAJfuAiVOqqxCVnbvjYRzRpP979L9+VVtvFVE9Owgxn+1O9h+nnfyPin/wD6cLuK9GH1Dl1Kqtmdfjw+v/31yipE1zF/VjtZXShMMSECKYUYrHGY5JVr0WLwrcCUiSiBUrd6HagY91VipQvZbfCVS9658iZe+8U93OQ2bK5urunm/Y/3219r68/m9enrfh7y8IrTV38d9fTA8OnvMpGD6vd/8x1tHWlrmIWw27m45Tev/mnHLNR5KrX2a9jm8orHPBo7armR1+OWt2cbREhxYAiwECm6mM+1ZOaSKYsJbSOJMURmlAVlMdQWYmRoIlPFcmx5WZiWhepi6rWq+Qc5W4uFUAmSOAwj4TqQ0o5hmqmnE/l0Yqpn44P4QC84h5uKxoSoxWrbxn7a7AHVxaYUAi4wUV1wze1yn0Fv3hoOYffSxr329b6xVPtXIx7ExG4KAAEAAElEQVRjxhBM6CN6/tlUBe0YGicjxj7PtNsHmx8xWHM/Sc7x99qpECJDGkjDaAK8YvnkgBIFhhgYx0gKCRVbLXIJhEVZtHhzFLsOCGvTnTbf3XHTrV9bjH9bmkCvKrkquXOarNHEXIrVKU8fmN8Q7TpVrVCUkoFF0aWiS3X+oWL8Go8BAgwxshsG9rsd1/sdh/3IbkzEWsCFyhq/Mibje8T9Hrm6Il4dCPsdOkTjsejblylrNbU1GI+pr2Wy1g1VX3fMn1GzAcEbnIdIJLmfGDzXv65PsF1rY//e5oOhJijUbVz3qdp6erkGW/MD52dUsz9VjKj6n37dL+dv+HO/m7EWlGBaH5tzXf03HN+zo+jf43/rDRua/9rmwurcsnpnq4/W9DJ6XUr3g9p+bc4GXf3S7q2J2/+GmXWBubXuy+5NK95u13S9QlVbvCpd4LJPpG5b8HP2Y/ZFavUNbYcffPwncvv0E3ztd/3H/uWP3tfWqo6LruuWPnrejvHx6+356oGr+8/mQ5Zq3MYltwYYmSV7A0LEawWM7ygbTsrbtoUU+/Baip2DVuMu5MWasFYXczUO68w8e/PaxYSmRCClxDiMxCCUUri5Mp0V1co8zdw/HDmfzp1XXb3pkIRgQrLuI3RczH2zbU1Nj52weVClGv7W/ibN9zEMPhTpa2dtOLysPGFx/m5K6eIxDIkUHQdp+S1pH1+1eAQ1yqt4c8oWv2tAizXtsTjBnWzWOs3unzXM2QNiFcNjcq1W+6H0OpKlVuMwV2uYO+e1ziR9/Mfz9K/923jvD/0mh9Wd2/G4/vr2g8530rK51n48LQa0l+3v0q/96s9ePGRdLS7mFvj09rpUtnyddY1ZuTNtf+vn14f2fTV57j7j+wLtXPRLBaw3bl+w0FR3wDeOenfWuxGS3qWxJU67FQmb4KOfm1AUQvXuag107JdjdbxyzSxlJi5WzGhBSLIgBO8Gp6kdrHV8kurqm2sAXMNGXcYTtFwETa58HqSDbtuil+oJAVMUrdYdLKqr1RhxkVBQ72wbWmJPWqBcnRAsEH1h9a7iWsxxLVpNyd95JqqNHLF21lMflKUqGWWplYfTmZe3d3zw8pb3P/iQ9z77AZ/53Ie8uL3n/jxTECSNCLiI6WV42oAZWmDZVN+6AWb9W1PFk/Vvreij1kJxznR1UscwDMQQ2O/3/TOtA+3CZJwVpScU29aSfKaCqRfjsI3Lz1co1QOsrYvhFrf97W3avvKrv5ppWsxAnM7WdW2emeczc7EkxLRkhhjYjYn9ODB4d4+2raIKuISnoqEFwb5ciMBG3MHWlE1E1Ax923pyBhv7IfB1+jlu9YpJRn46n6GkHRQjQIRhIMZEnWfmXFm0MBOQ8Yr97pph3PPk5oYnT56w3x9c7dVIrCa6AlqaqET7WexanE8mkPDwwPn4wHw6Mt/fkaczEgPjfsfu6oo0WiJOg7CIifY08hBJkGFj1NwnkdDL2DbBjTmlrZikz79NkN8MhKIsOVOrcppnXrx8yQcffMAHL17y6vaOu/sj5/NCVSUOkBIMgyWtTv/Mt/GR3/538blf8a18/N/4e4CMUAjRxIaGJKQIAVdCrIUgpasUNgEREUvENYGhcRy7+MRpWpiLEsYd4/5A3O+I444wmMDLkyc3PLm+4aPPP8qzm2ekYE5RKZkqkTDuucqZ8bBj2O8gCOc5c86FpcK5BKIG9mFAxgNhqMTh7SpSaV0pBCfm9P/A1oVKVaF6McOyWGIlp0iu1ceM09JdwbpWJSUBDyyW2YQ4hnHHOAxcueCXeMZIVS+EDe2HgM/l6OJWUu34vk2/huf1jv8+fhU7qfw43icNQoi1ixIMQTgAEgPTsrDME/d3d6YYut8Rx4HoXctr9e7dLanTro2s834bRqxbe2114NbX2w9dwTLogVBbp5vgy+Fw4N3nz0mi3L/8kNPDHUELUQ6MaaOI7IX2OWeOD0fu7+54eHigVrg6XPGpr/rree8rfiI/Xv8c427vmqdW+BNcxMlIAxunawPumlCQ3f3gIlMpBiuS2RbhhU1HT1m7dLVCO3HHt3VCmaczd7e33N3dMU0T4zhyfXXF4erKAB8HRqsn3tu8rY2RINb9W4MF5aqChMgwRnIpnF/dMh1PfOa99/jc5z7HT/xLnRBfoi0Me8akjKMSQ2BZzkxL4f44UcoZrYsp8w4jadgRopEnzvPC/d09y3mizJkv+9hHeXJ9zVd99Vfx/N1n5Hkmz5PNnWjJ4mmeubu/4+WrW16+fOD+OJMrhGFHksj8cGJ6cYf+U/8rqiyEBHWpHF/NfGa6hfP3o6eFcpp59u4zJMVNtW3r78PFmA8i7ttZp2QTcagOtq/dFdoaceHw+65bYcZqfdf9N8JT25ovb/HRNkBoBVuPgvwWdfg+tRU+9gI1IxJrNfJWXmYjGOaZpRUY1plSF6qaSIeWdU0IrOci/aRMDX1IsR/TGvT0w10TeBs/v83BVdV6Tbjpxj95k8sm4p6MeP+NBmaoesGngVKrf2v3IjpQ2pLR2sjaW9C9xQbNd3iLtvP5zO2rWz4dPsXL2zuG3YFalGlaeDieOJ4nznPm4XTi7uGe29s7bm/veDgeOU4n61a6LN59eC2OLcXm1P3DA+fzBGwJpqkDHw8PD1wdDpZojxHU/Kyn11c8uTpwfdhxddhxvR8ZNDAvM7evbpmOR1IQSp45n06gsBtHbg5XPH/+HM2F6XQ2wp0qu92e3W7HbhiJXhRYcibPmawLJWfm04n5dKbOE7kRIWid/twOeAyWSnYwvyKinVSwPrZCH8rWp27Jqj5+N7F3AO+gtY7dElg7FKkXWpVVmVslbohHsoL5naBne+6JxnZc/rud1yaWcdd/W6TXth8s3Glh+ja23ybmLrb2/RcvvRls2IKfrx3PowN7GwlRu/2BlijtxCO0J/UMGDLcIIQEwezzvMw8nM68un/gxatbPnjxkhevXnF7/8DxdPbixEB0cd0QBwjBEvjVCEvV1200I9h6lYISgxLyiU/+rn+ar/nf/vN88rf9ClIUhhgYkvmColYsUvOClsJSZx5OJtxpncMX5jxxfW0xmCQvnsqFsgu+1lu3OqCxqfjJ3/Gt/Jm/7pfyU/7MH2C4GhFG+kgIqw/UfaY+lgfbjTbiRe2Ji4tNVmJI32qbT3I5iB8Nl3Xsrl3I6TGk+aUdnnOsp8dPHTIXN/uCVOs8WHuy5HKcbvGwNwlIXZ7WJondQEhdC/1LsVhjKaULTU3TwnrazTdQQlRCtCKbRshqOA0ilKpebLMVeW3kjrgBKd+OLSUr9G+d1Kg7tF4xLBPpfCBOM3HI3t2idKBWoXecP00LDw9n7u7ueHl7y6vbV9zdP/BwPBuBs6oR2dTA5DcNo75MtySKNvyprY0btwpP3MbAOA5cHQ7c3Dzh6c0T3rm54enNE66vDhz2e/eHtOMYIsrXpQ/5yYOSUEJI3nnS4o7f+Lkfzzd+9Pt5J5hIc58rtbovFDZrsI9rf/75ijtaXLY+Vd6Rmb/7+tP84YeP8w1Pv9s+95qRWJ/b2H08dh5hRfiavzpQ9rlWxR/WiDu4iEIv9mxEoioQTHAqeOG2qQAoEhRcJEK1MowDu7yjCd4bBrMw54xqplKc2NkOU53vZjGYCeckm0tqYH9xQbdW2FBFKIKJC7o9a+9rSYlUTCzYiN1vL7m3bRcEmS/2PrcD4E3778Us/vAOObRXLpIr/mNDqrAusg6DVXVxMBPom+eli8VICKRkcaVEEyBQT4xoVdSFD7WCJqv/tXUymAhLWeVdguMEa4J5TS03Gd327GJzTOW10eDT5gu5/o/tzg97a86d+FGrzSPL1bRCc18f6uV7Y4uNHK9qxWWa0kpQrYpUE+Mfgs2VEoKT3Ndz3x59s/2lFBccODMtC3PxTjHdqV5jW8PcrFgh++fyWyY0Nc+WGDYi9uu+dBNG+XxxRetolOfMPM3M08KyW8hLIQbHfDvJ3JK/TcCyC8m4D9M6yG/J4IAL+BquJO4bxGiFg9UFcFvRiKqJPpSND2Xjp+XK1jhJYM1TVZPqVjERm5hMkKd2X2RDSpS2v5VwaMfvWFsTlYrRktJpIA3Jm2000XjrFJez+eo5u9CUF8wveSGXpb+W89LHEkByLKDFsu2cavE13rHgvFi82Rq9FO8aVXPZiIHa2tHsmYjbvbBFHrFcIqFjsFVd6FDX7kqdyGvZdrvOzT+VrY8dNwU5Hu92Pzx6nOh+g6z4bi/g82Yes2PX0zyZsEFeKPntIkU1kqvdl8KyFHJcKHlHKYokIYZEDIWSK4HAmEaLn4YdgglTQPPFrfDBLq+tLSYOYbliVYsDjCi7ztkgAZVE1aXHOzYmrcOqSmTOcJ4LMSSGGLj/Gf9rrj/533B4738i4uQKnBpYpRd1tvhvSC0vFnqnL63KMk/uB9c+91YMrJrgMLiYDdRSCLXa/uJgBEGAiMWt5knaZ1JZu6C5syxZCUuhshBcpCGOzv0XW/vFi2yqxyy1nZfg2Fmz91ufsv1iP0qpXgzkL7S1EkBc2KMUcra4rnSxNO90txSWJRtppxQXI9rGoZbLizGxG0eCSF/b2vE0zDLFSGn5ARGgErq8TWWQ2GPSJqivWpzMit0bF7BKLrQQk7DbJXb7gcP1jnf2zwm7PR+ezl/0efIj2ZRKKat333KxpRSWaWaeF47HIw8P95zOZ+Z5hoZReDFcrhXCHqUJf86WqxZztjpu3GIXmhso3f/e4lJ9k44su+iG3ePqDbtMfNBmFSVRa2auMyqZQGu6ICiLYXTZSnGCmLxbD4OsQq2Pm3WMtDXcjjvnauJVMRDEYvZWING776kX4gag8T3UcWXUrIDjfVHNh9agqJgt0GIkKxBq8SLxtIrUSesgSBPjslglxeS9bFzYMkoX90luK+qihvVns8Nj2hkmFCzPaXZGVjviPll00Y/YOkmmgehNUZqtsotpBXxF1dc1mHLmPC/MxQSoQrR4sKphF2aTDJs20qTZ4eD+Ubv+6uKViKC1OpHP1sTmGWoT3Xq7XMUNjgS0Eb0pCnEKJZvg9cKHt+Fn+aOeh/FNtSC0QsUVM95iU1sca/3c9nhMlKb7eT0m81jnDfGIPtpfm+OvFTlo80Ha3hrnyH4atpK6GOAwDNQ4oHn2QsGGd2GLRhOhUyO9J/eZ1LleKsb9qmCER1oEh+P3LU6pbgPWQlKBlX9E+26gicDX1c+3JWM9L6D7mBKt8DKIkZCLx8FFFc3KIoEcBhgPyO5AHXbMBM61cqqFrAEKm6Kd2kUvtf3EhA1ssGeo/sj2N9XqnbwL5OwYcUbzjObFRB1RpGSiNobYWnyIi7yFavNLPGispTT5otfGxI/2ptKI8W3sqhMt3b3Ai5nExSwd4yFCGkfGwzXlPFMWpcrZ/JGM8aoCaPBQ2MUbfsIv+ge5/Qt/jvf/6/+cpcyAsh8Hrg8H8jACJqyf80IoYmR8Kjge3aQFlcYPCO7I+bomgaXgwkWYsGLz5zHbINWW4KLqJE8bc4taLJeKkEIgJiVJtRyZFIJUQs1EEnNZDC9unEhJ9nvwIkFaI4fF1xvPlItztjQjnCmaCSqEus4d9eLiktUxwJEYJ4RI1REYacUIqiampUAMJjIVvBswLshaFsiTMs+ZqRiOMBcTMZxmK3qxzW5urZWimcxiQlO9mK2ttHb9sxpp35QN7GbXCku1RHYp5jVLSEgYUQZyNXGhWoVaIyqB+//Nz2H8Pf+BCbT5Gms/zccOnssbUsDrg4lZGTDidAiBFJQUxRsOfgknzBdhexMGfcHV3NoI1Y34oHR/72IPPRxw+yWb9btj4fLG7/38W7Otb/6Lf2F/dmntNjb50Qe7+HY1DBsXR2Br76VxpFfMsD+X9l2BdqO36OI2rpdO5G9F4GF9NKxhq97ajdJ6wCorl7GJ+C55Zl5mlnlec+ku8hFTJA4Wl8YY1jntO+75rf5Vj/yEzaXrFqaJ4PTC6zXv0t02lc6HbhdSNzttUUQr8tkK2jZcqRXdCCunp+V5tOEuLd/3+t390d1UXRjW7FkMApqoFGIw7LDWTF4qD2Vht7vi6uoaCCxYLjlEbFyIdLsX1PEP5zWaP3Tp37WrESUSI724AsHHm32mYZMtD7X2076cPwbDV6z+xcjfWrNz5LUL/xrP3wU1tRDUlBWtmMQ5OU2gVf3ctsIJm3Fu/8rrcYD7YyAX93zrM6Oe76tCK2KyZs1WIBrcb1yWMzf7xJObA0GqFd5lqFkt758zx9ORJJUkoCmRS4bq2EswjkiMsMxnRJRhHCmnhWE3UufKXBdEgzWhDKP7dbPPHQGJnlffzHs1ey39/q441ja2flxkvfWM2wLSeKIdD95cxxAihNjtc3DhzTVvaL6ijRsTIXqbtqKzXzYX1mC0werYoHoOtomUtnigbwKbqj6PDd4UeLax5btvwifBxlZVpebMNM8ugtlwW2/2EQRlB2J502RkciRaIVnA1gM7WIUYTWy32R0/7pZrM/piuYgPA9LjfiWayIDnLErD5bzwyq6Njzlv5ttyo7WJ3bSYTFfsQ3xRDin29bwdW4iOpw7J8XmzPSG0+p/L5l1gttELbIDssWLt17sN2BanNp9hmw/t+/T9xdTyASbsWothRstcmKbMeZq5v7/nwxcvefHiJff39100R9U4NCYau9YStZix1kyuypyVu7t7pjlzdXXNO+885xOf+AQf+7Iv5+mzp+z2e+cHWyHhNE0cj0dO5zPTMlNFCYMXgYu4EP92vr5lm1oMYE2lWoORtdFWlOrCR4bf+BREgnHmilrxtxVKOp8u4/hzZs6FzGy5/Hm2uTEkZLDCixiEJjzU8F3D83UTw/pYDybcFhpU2ZoO9Plgw6pxV62415qRB125Akux5p1FbOzHECghkDz/VoMJq0SsaFYUcrHGDr1+rh+rdM5QSsmbSqy2t4KNwXnpecXqjZjOp5PlevJCzqXj1PN2fjv+ZnGK5wG7QNWymXNCFLUmcNo4EWtDP8VrzdRiUWpFfFkqtAJiE3LKxWsTgCq1N1sspXKeF5Z/+59Ffslvon7Lr6NQ4HAgjTtScoH5MqByJi+W28tq4kCocX4cdAIpJLwWwq+niQ4UP2Zfx1TtXrtwQKgmsBo8BhtSYkjW/LT7Tm/RNsQmNOUPNb/W8pp+rp1wzRvCmY29kFUMzc1/Hxcrn80/JX1l91jI4ucmyGsmUjf4C903x/bUbSsoBRO4sVhFjBtkz+x76iY2iq2mR9/M1ejBhtsv348dSKtBbTWHa566c30xV7SL1DUfqJ3HNu5pnBV9dGE9xvMgllCbS+rH1O2o+14a+j0w0aDVnq2R1nrF4i//bZR/45s6ttXe09cr981bU/mV9NHer/1zzWtur7TPWlNME4/zhakLDbW1vAu9dl90lRNYVEELNdu6ISLkYDmJsiTKMDCk1nDX8yL9ur1Fm/YhtmkS4b7aZkw8+kgfj7hEk6d22Fz0LvwpF596/PV6Ofb8S18TyWwfaP59+675RPpj/7LVgbTj0hZ3S8fJW3xXZbVDvdi/wTAXfuXlCTdeiwLBBdtKEKSuTcmtIZf2mq8mNNUaifTx3NcMsTU7xI1v1U5u8/WbdWrr37ZxRz/m132l7dzV9UJf7GP7HY8/E77j32f5Gb+I+MnvhO//Hwzr9zhNmk1iXX7Xe0av+emiU6hLKWi/HvazOm7hwq7+k37f9bXjvIj5Hq9Pb9mmU8sBBhKBYdhRNbEsJ+ZyopxPnItS045xN3KFctRMKDAilnff7YhpIJSCZms6EHKGUsnTzAKefxTjPCQYxsh+GNkPO/ZjZbdfWFJkFphroeSZutg6WrS6D2jcxJDMBlnD5FUeRv192uo6UBivOP6Sf5On/9Y3YPxGe69t61rCZrxWrMGJ2KF2264a+zxqVsV4IV4O3l7Xlj9XpGFCLpRta7fPPQHEVoKIYU7RYzLzRT1nPCYO+wOHqwOoME8z8f6OZTFhcNFCFGUYmy8AQSrUQA3WDA6vP+qumscIVGvSQPUGGNUayTQeVi7W2LCqIRy56soLyqU3rlRfl9SbseDiH+1iWnO1lrtofoBxAiIwBGGXIlfjyH4c2afBay0ytRaCqjVwE4EhIvsdehiJV3vCYQf7kTJGssc0b9t2njPW8NixxWZDJPSYPZdKydVj/tWzCiE45yr5a5b/N6G8zXrT1nhRegNGWPEqF6hpy3D73i4+hI355gK1+ofafLQg/Omf8iv5a/6Hb+GP/+Rv4Of+d/8ayRZKy9ex7rdK3az/bl83ttJsoDqP0vkModV+sTnIS3vXsOVL39hPZHu+rky/5vg3OwmW/7bGe5FQClIC4niLlII6X6LPl+7ruWlUrKGfB6ddpM19QFRZD2s9xtVXgBcf/fF88GV/BU9uP833/bifxSf+wp+8tFFsfcbNhaPFqu2y6uUfoYvBKvSx0Gybn5LbXBMCmkvlnAunJXOeZ2uC4QLl1lQzdo4Kr/kEb8fWOKLZtSSWxQWcl2wNIoqtadXXIePS5v65JjTV6obkhTCdJ+6urzns93bfc+Z8PHJ6eGA6ezysTczWrmoQoWSfo2WN13tuSlYsQfwRsAxvcF6kSLUcrQ6G2/yy38L0r/8K16bxnTXtncbv3dSRJueSB7HcRC10/9JsHTQ+U8Neou8vSlMJsnljYnjB3++aPNXzga3erJrvRV3tsHFuqwtdq9UHVSVrsVqsavVYc7XmRbkW5PknePpzfgmv/ss/zMd+wTfxA3/0X4XOwfJxq9hI9vi6iU150cLFmGgWXSk+F31FaOHrZs6sz+Xi9ctX7b8gjuGyZmHCo/e11Uou9rHyPcR9BuMlbT3UNqfDGrj/INsXLDS17nhzYg7SdEdoc8Z9gvsa2gIVAymak0xXoRSMnBkRmvKLuoEraspiS5YelFQtTLrnW/6yf5B/+Ht+pwUlxQFJEYjJAHatiG4Eo7yISaW46FToyumdUOUiU/hDHPDqBTDiC3Z0wala/fsiSAaNGPskUkP0opd2k2qf7Eh1Fe4WVNVVEKApLLZAomQjyy+5i6C0x7xkjqczn3vxgvc+81k+/d77fO7FK17dP3B/mphrsUIbWQnajXahCB/9hb+K83d/Ow9/9v8NuIgAa0Kp+6dKH1RbstpaIL1+Bq2cnYB6PB7Z7/dcHQ5cXx0Yx9FJ05EogQlBixHCG6GrJbc7gUvEEyy2AG7//vnG59bQ+8E+ev3t2p6++9wLTBbmabLHPHM8PXA6PzCdT5ynM+dl4eyKvPvdwH6M1mVXrLBHcUfGBfa01K5MqwQ0RAPpWxC09YGaw8Xl/LWnTgAXA/R/Zv4+WhctDSPWZDtY0bQEcl04T4VzzdQQ2V0/43C44vr6CddPbzgcrhnHcXNfmmMhXWDKAmbrODteKfuSuc4z03liPp2Yjve8+Oz73L94YYHKMCK7kTiOpgrpoHmKbuyGhAzREzK+LnWHaOMUurGUakli9Y4G28Lgvj64FSxL4TRPTNPM3cMD73/uc7z/2c/y4tUt5/NMNrSbNNoSl6IHwSJc/dafz4e/6j/gE7/t56NaoGasqF2IUUkJUmhBYgVxteCeV3N6WoCUIsM4kIaBmAZyqZznzLRUQtqxv75i//QpYdwhaSDtdlw/ecb11RMOuwNXN++wu3oCxZPCGohjZScDYxCubq7ZPblCUmJaCnfHs60zS6GEkUUDswpD2pOGt8vRa3wfu+VrYVZbJtTXLnMCW3HRzJgieVmMeitCziBU8qzMy2y6hWLkv5yNzLdPieurg4tx2OeRYs5XEAhum9zmSbQksqiTBbMFBz9v/AH+Hf1qflL9kL8i3JMZSBIp1t7UyCIS2MdoYMo0cX86cp5O3N7fMl7tCcNgIIAH27Va9+3aRHF6cNB+tUWh/w4ehHiU19b/DSpwsaTq+ktL0lYnhQfUCrDjuwwCukyc7m85n85EqbDfMcTgyTSlLCYw9+r2Fbe3t5ynM4erGz74ip/G3Vf9NXy8vuC/uP6p/NzwPeSihJSczO9FIYILdlhSvgvsgXWHdgfa5s+lUIKtZ9FVcltQKhenKf4dMRkRc1kWjg9H7u7uOB6PiAi73Y7DwQrP1ZM8IkIu2Qoyfd0MoRGXq2Ug1FzQWgpJAuMw8nD/wMsPP+TFiw95/7Pv8+LFh1+MqfFF3aonGZrvUEkMuyuurm8oeWCeTtSaMaMh3v1CIIoHika2KF7weLi+IkZhmc6UeSQCu/2OoFjRYYxei14swZqFtLPO3O+8MyA3whgTV2Ngn0CXghQYU+DZkz07icwPR84pMF7tCEP0LkeNlOWgV4sisCRxExGtLm2vYkTyrV/U/MatvbE5UXndDVlfeBwj2xLVQwF6uNDGZXut+9/NV6su2mPKw1acYerJpWTKsrAskxVlLhM5z5TSBKYyeFdBNj5fCNaDtyUc7BAs2R1DNB+8ger+uT9//Vfyne/+NXz9p36fFbs25Wk/n3pxpv6bbp+tc6+5Ka2xnIlFia9v9p6iasT8uhYLWexrAE/zQUNwEbzme7SB2/x9LCluhJW3Z7u9vbVuascTafgshMS8FKazidycJ/M5zvPCw/nEw/HI6XjyAm1L/Gy7XxjRwhOa1fz3bbFy8ETgNA3M05lpOnM+nz3hngyUFZhOR6arPfr8XcYhguxAhCWbWOh9yaCli+GIwJPrJzy7ecq777xLnhfOcTTfA+X6+pqrqysOuz1RhGmauL+75/bVKx4e7jkfH0yw1gkGLVEdYzCBW7/HDcZqBWSC2YWUAmkIXejjQmjKtzfFC8qGlKTax57QEsJ4wWpPwdFE4oIT9mu3u5s4yo/3opCb9r7QfffwyCa1OKn9bRs7reeBjWvdQrevn+ObYin/ojd+9k1bf88PB+x7y4DBJjRVaqa0cMkPUaGTXTccBXLOTEvheJ64fzhy9/DAy7t7Xt3fc3tnhZk5F5BAGk1ELQ2jC03BkhdiKV5wZ/Gbza3WWcP82Hr7Hp/8bb+cgAmdjikyDoEhOn2uBEq2ruF1Lsx54u7BsJRKIdfFwPYojLs9KQ7UIEgWTzp590gEiokkBBF+5nf8HiuYvNrbmPdr1cZraDhAAxY347SRFdZuO48e6ONB6T9li+DRu0h3dsqGINESRZvkRrMX1izT5lYnkrQ3bcZ4S6I1IsmaqG1vuRynKykZPv23/h/4yP/rmxmmuz4XXy/4W8HiZVnWR/bEmQsYtENrzoPFi5sgpvsnFkO04iQJguRCdpJXqABWDNrW9LdlS0PydcpsrNZELgMhjciwQ4YdDAuaTVg3FxONKrX063Y8nri7u+Pu7t6Fpu44NRuYjWjWCFeX/gT04Ae/L6qdNAhrolb8737ViVEYh8RhN3J9deDm+pqbJzc8vbnh5vqaq/2e/TiYb9q/y21TwEWLk93TYLbnX/nga/llH32f3/jZr+X/9BWf5CAFVEwwictCmssReBl/KfAbP/xx/IPPvo93w9xf2/wDqnx1OvIrn363gf39ZV138niRb1BJH//a1/h+PK17q64f6mIbTURKm9iNXswt0do7MzfRXgVCtfHRyFFJrVt3GgaGsRWlWyw8zjvGJa9rSqhOXlmRLSNRe9IjJlphWRPCK6WQQ0YyTobXLjiKeEymK6lDHb+1DjVvH7bYtotiry/F5uNL+7+b77YD6O9rf+3ECOm0Jnoyd2sOtNkPWUWmdCP4VQo5C8uy+HyaOA2Og8VWJB96lyIbl26zauDXvPeMf+kr77rfVrx4ln7c2nGE5tysCdI1XQxc5F7emOxsWNMX5El9nn28eadv+rD9tcXjK9zTn5u1V/NvPCkvSBc+QT1UD7HjIjhWpaGiRSixuuCNF5iEtSOYOq5qQsnuA5TaO/nMy+K4al2F4fy4et5F16vVxEXeNvHfaTqt+DBAW09ypt2c2GKEtj5tYoiWr8iLCU1N55l5t7DsFxN2CLFfGgnyyI/yuEAuYxi7f93L8Z8KETSaGFt1cb1aNkJRpfj9qH19bTG2GUp/zY9Z+vk4aUeUkAJJksVZQ/Ti6FW4qLsxmzFpe6tdfCqm6MJSJjA1JBPKiS40ZXPSMds8mw/lj2UxUdVaM1Xt7/NseZXmSw5D6vsdh4EUjdxe3QcrLjCVFxNjyv56LoU//b/8J/i6f+/XU/LRrlEfj34NwMjPEiDEniivGCmqxQzVBXNKbZ2VWsdYNZG3YLkdZEOCdmzSEvcDwzAyDCPjODKOO0Z/3pL6oQlotSPcjL/uh86LCZydJysyzZla3rJmEW7DqtoakGIhFxMomeeMxAGRSAwDIpkgJrBk4zCZb5crGgON093jZZ8DXhllYlM+byuyFmH4AwzrFAIxmciKxIjJPCVqjSxLZYmV+tO/nusf+J94+Ct+NsN8Znf7KQZAy+rrRy+ur2pFeMknSFVMdAUjfDQCVxvDguXOxX3KIHEjemG5cY1CGCK7IfUCACvySUYyFiHFEcSF/B4eWJbZYxUTcZRSiKWQdrseC2vwtdmdZg81aLgpIoQYWQmXHQh1f9uKXTX43C+F4KSwi9VdlFzp676qUudMqcXypA8npvPkzWDcZgZYBcTxXLzPAzFBZ63GG7AiTzc9IsRoayxlC0sY3llCJagSMS5AyyiYYOlixQ8+doKYqEPQiogVkYYIMQlPnlyhaeDmw5dfpNnxxdkeHu59/jTfodkxw/CmaeJ0PHI+T0zLssa27ssttVAzDHkhJYtpczbSToyVEH2V140frY3YinXN3ogK9eZJrL6QyfYZ4bWFKuZfWBEuaUeMCbRATl1spGimkr25lQl5B4GoxXF5832C+xz2ncFE3pzh2AWy/YfpthSCZDuBIdlxeA6hdalNLkqhNVtcUZXoMY4ErOudQC12rIFgNBYXsPV0PRbvmTfUfCLx+1RUV/K4dxPUsol+gyASkV0kSHSb5oVwIoSUGIbRxax936E1XokuLGVCU0MaSCkRkot/pIgk5+6YI20Y2WL2MrtIx+QNm5owuYbQhU+LFi9k9aIVNQHGCBc+ko2fYmUait2bR6TPjifp2xeVbfEg6Y9tPGzXT30cNoz5ItCXFi9dxgjN335TzvIxFrV+hnXcaMuVtDhpxfQencWF73bxXQJrmcyGvKbace/tfsRxLi0FYiAMibTfsbu+Zn88Qp6Nt5Vnz3uvFqXd3BACA5CCMIZgItEBajQyYs9n9FnkR7fNbW3WvFZMucU9LIcGVZrQFDa+Gt7u482v3AZP8TFbLQftUhg0/mGJAd2NDE+uSTdP0N3ALHAqC6fiLklduTF4k0XzFWsnD9ujoNV8t1IyWrKJNKgiOUMxkSnN2ZoR5Ewt1vm0k/03vr0PNW8IueZYFAX/TNHH6NrbsmmfV6qhx6NrDE57xXwtU8MlhIE47EnjNSGd0ZSJcUfQ6nG/yySIxyvA1/ztfy+nz3w/H/2pP5Pp1S0v/8c/Sy2558r2w0gIA1RY6sIoyfCkqpTF7E+shoV0bkYTk0OQKFSi58ZLFydt57n6hCYUWaoXx+eFJRdiFGaxZhQxJoZUSUN1sang/nJwMWJvMiGYPxlcPEKkY7Ui1caNFhvEFFoeMARFmYClLxsNby2lkJfinNtIDNlsEpFaB5CBLojieI+q2yE/lhiNb1EVprkyz4XpbCLzs1brTqvK+bwYOb/7x9HnXSFrodIaU7TRIJj4iHj8a69JaIIM0Ip4crU7n8R5JOpkcjWRgYpw/4t/Dod/+z/h+Mv+NsZ/8w+ZEKnfzyAwDBGRkRAqKTkGbuG5CaKJk4RlSxT+QvCgH51N4dJG/VCbyEo77ACaYWhrNH1pY/rc1devxIpxPj6G7Tt/kOMzQ9g/I9ujUP/ZQDE2JO1uUx0zC7YeSqir7ewPnHdsa43QYqnNsbbYs31d+1dW3kTP93bMZ6WVb2MWW6fUv8BE0lZyvl1L42IXsmNr2QU/zY+w/XTMPDjnpgnJsC1XXqnr2/v3+D6oNj+l/b762+p4UvA5uZLuNyOhAZpNhMXvecMZ21u237ryZ+x3k5j1nE9pQlOvNyN5G7ZtrmoVdIqeX9zEX1oMQ3JcQUIk1+KVhmrJp2JjJYg1Ou3KdU2sqH9nu9b9qwHDGjTE7hO194o03le7whfOuO90nUfSRaKqx2J1Y6urC98bdldL9mJAE53SLg64HvsmEmpftvmXi9f6M/+IXrxD108233DzObXKtfW7vRBDyIZ1xkCsiiyZvEzk85FpmkwsF8MAYoWlKqfTmdsPXzCdTmhV9vs9u/3eObyJqoVxGBECZc7ekd7GQ0zezCGIxY9qAgsNM7e4efVt+zjSFfN6zB1pcUb3fVlFV9v82nLa2k5F0kWcYDn2eHG9Va1ASd1jets4VYSVk2fFkNnDx9DXF7vVl6JIbQ20a+LesWpfp9cYYzuG1jHVY3aPuWxZC16voczLwnGaSQ8nxnFHiLH7Jc0OFF+bVVfOkdVVqQm8tLXD47LGNWq8uO2xbe3VxRqgFXKLE81rDmJ4iN1XvwYoSjTh7mADVl1xRn3eNGGKXlTpvnCLA0NrvpQiyXN3ze6KBESbZ0yPt8yu+aGHRJJV/nZrD2l2Z3Mn/OP0BhxiWGFo3EJANTM5Rn48n3lwnu+Ll6+4vTW+73meTYC0WsODxnOUsIruWf5q8bxXpWCNZa+vDzx79pR3332Xd59/hHefv8v19TUpJaZ5Rh4eqNUaQR6nM8fzifP5bIJT02T1QZvGpj2Ee8s2oYUpLqchJuZU1SV2YySOAxot3hUtXuxoH04IISTasA3BhXObqFmu6GIxRg6z1WqNI3G3I4wjYRgIUXqhskdXj/BOEDG8//x1Pxf211z9N38UWNdX8LAHEymwyF5oTUOoiuQKZOMghEKKkSFuBBkVr7NoBTuWhA2qFHGzxirmKJ6eKCUTYyZna5AyRGt62xyqba5i8eabPZfnWEUI9n0td9fFKvx4+tRX9X1tG1jaRKusjXRqy99i86fUStZK9bja1iwTWCu1FRCXVWRKzSYW1JroYGvf6XTm/ngi/9Z/iN24Q25uGHM1vnXLB8qeYXeg5MVqG4o1gMmLCfaVYmtgSibQmmJ0sX7Q7GLETuQzDln13Kzx9UMKxLTNvbVGLzZ+N877W7HFht1BF48RL9xVbS6L9sLgdZnY2onGU7rMJzd8Ud1fBvq4EC+Gbr5gX7PZiAz6pepiAz1QuOSWquOQ1V9UfE5Ji4WV/PTLmH/uP8ThD/8Gq8VsexDtNXAXDSX9ILY4smxwE/B54Y3xAqHjQ/2cN3if+sW7jDjX9aHPlnb9BIvRfKoWWe9Ry53bkuL7EMfrwYT5un+23uv2e/qGbyb/jl9N+hX/D5bf/g2sZ7iZ37rhLIOLXK73aWsutnbT7KG4f2l/MD7UGn8GERPyb5hU86X8vgbPgbcGOP1KqTq2KJ6DFQpqdbjREo2ND/A2ba2J8KVXt/1XH13RNjbtmU0dE5vqvqTizQjo43z93GqfLn7aExqHVrevsY5B8w03LwhQ5378vQlZ+xNbsSlZ4z0xdLBuXofNWNmcccvVr6GS4V6iglTPT/kXNu7u49qEdl69BKd9iwim+tri1j5Y3cfYYL19nq6vtZi5235Z72bPHT36/fH19l83d/3yveFP/T5UIeP17YR+nbf7ezzv9PHvCtZcAsdDPY7aXKu1Idzmsb33m3Wbdi8fjdDLJ2/Blovx2IsSJFq+r3oMGhI1RTKFs1Tu6sJQJ0JRak1ckdgR2MXQ84dFYVk2PJfzYg2lfEHWZA6WIJYD8Bglp8TVYI/jMHAOCzMV7Vwv4zioQM2WR8Vr1kNf981XiFEYRmHYjdz/st/L02/5Ju7+vn+VJ7/3V3kOBh/bwe+1rTNRlRTUxX8rWoVShVBbgxSz+2bz6GKL4mLaivmlLVYy7NDqCdZZq1yMQC3uhFruJIrSWGi1tiYIgd2Y2I0DDddelhFhNptWLM9UY7updt3E60GD9DDRxmhdH7UYF01rtVr2WlZulguBlKIbHM/FkFrDomJzpvFLs2Y382ocgNJskUJwnMN9gSgmMDWmwGFIXA0DV+PAfhgYBqujD/Uy5yxeX8S2QbDjViVnFhHyWzfJ4DwVRIqJuIRm281XERdSrVUtBijuh7H+vXHY18V8jT/7S7hPiY+wViflsWp/yOoHruJrwaHDbX3lVjrF9vsz/sy/xp/66f97/obv+NfRuljT02A+nHR/yvbd7NLrqzH4bHVMwRrR2CRr18Xes7UZjzdbbzdC3L4GCzZnW51XcPvVcs8ijTOFNziWPl+lFMNcXNR39Ut7ZnOz/tcuNiU9pmn+L25b/Vibr7A6rDz78LuZxytubz7B1/4P/4ELWK6Co5UmenjhdWzO3uONrXKNSBfRbN9rzWU39t73VKuiUplcYOrBcZfzPFt9VLNv0rRaGk60Nsh6m7bJRZqzNyq1ZjvGD24NPrILITar3JqJetsdug5FKTzc33M+nXg4PlhcDGjNLPPCMs1mm1yIW0Rc00F6XBzc32xxniCuZ9Eq4lu8U3td+kXcJMIwROr/7l9FfvevZvfLfxv6u371Zj9tLcHGb2g5pOTc3Wjjo6qJnRYw7MJwVKAfexOafcxzWeP1vlr0v0uzem0+NJ5zLbQm1bkadzRnyGpiUz0P5gJTXXRKK+X9T1L++O/h6c/8er7/3/4XWHnt7ZhWf7BzoStdNHE9Nja+s61hPe8g9PVtu86Zj9qE7+RiX36Je4wZpMXulz977CzNX7dMmJeyb65f82O1hyy98tz9kdag44favmChKRvAtS9i20vT/RHt6XO0JTrX2MjBb2jBfAMpVOjOhoHjtmcjY9silLWwVEFKQLNQpPAHv+7X8Iv/x3+T3/UTfgm/9Hv/LTTYhIrSCpkqIUZU45qxR3qWRiQg0YvchVVVXwOqgarBHTW/ue34xbrVOlMfQrILXl2cSiNSowmJWIm6X4c2CVaFsNUQ1a44uEUQFBNVmpeFaZ6to/KSWRw8O08TD8cTL1/d8ZnPfpZPvfcZPv3e+9weJ6a5eKAeid61tvQJZ8Pr+d/yS5nf+x6u/+r/BeXhlvNf+PZHN96V47yz6wW4Qpv0K0hrAIM5IebkZaZJvSBwNvCvVna7HTFG9vs9QxrMadkQtrZk7seEuR/MeGwTZxfFq/0zK8D0JS24+kvYllwQiez2if3hCsFEwU7TkfvTPbe3r7h98YLj/S3n85mHc2E/Jq73O64Pe/ZjYojR5+MGLmjzjNXgWxFxM/qba+GTtjtkaop1Le7Rpo9XV/U9MyaRGM2QKJYEO8/K8Vw4lcx42HNz85znz59z8/Qp4/5AaJ2f8S7Fy2xk3WBzp3W0xRfJGAND3DPWyniVbR6cT4Q4IHHgeH/HjBKrnR8SKMHECsSB4RQSaRit6KLNQ79SuBNbnW0uqmaYlwLVwTSx5dU65Hkn4xBN7O144uXtK17d3vHy9o4PXnzIi5f3nM4zCoQEEjfjVwxiurm2e/fO7/g7yH7e1Z34JJACJFFicFqEq+EGrPDYHAQTaospWYJ6tO6yinA6z9w/nNEQefL0hpuPfoTdzQ1FAlmEOIwcbp5xuHpCSgOSRlRiJ/XnpVoHxZCIw8B4dcPh6VOGw4GrCuN5ZneaOM+FeZmZqvLqOHPzZORwOHxJ58wPd1sDFHGFZzfgLcCF1VPwINEKv63TuzlDiaoDUZQglbwkJh8P85KRquzHkevDgev9nt2YrANkLf51Dh0qm8J374gt4kW2Li7g3Zb/7vGTaMnk4gS83BzIglSzuAUlRBjHkV01J3aeZ17d3hGirf/7w4GQooFVGGDf7O26XDjoyxqEtM4x6Ha+NPvFpZdFCzBbV6DWW89IJDaXI6IDh8Oem5sb8nzi/tVL7u8foCxdnEtr4Xg8cnd7y+3dPaUqh/01T995hx97fcf3yGf57PXH+dvSnzfdaS2mkh+tsAscqKmWuIoS3N5a10nVSqkZ68iJiR1pcidw69Su12g7hpoz3pL282zdje7v76m5sPMOz40AUIoF8ilGhhTpdAUHk5ryqgGHdKezlorWzDiYTZ3nmYfjA/d3d9zf3n0JZsqPbDtNywrWOJnh5tlzDld7lunIw/0rpvMJBOvMdJqIIfHk5gnPP/oxal6YT2cOux21Kq9ubzkd76FWrsaRw35PigGplcPhwHLzhCc311wdBk5HKzxIQbg6jHzlx5/z/OYZz5/esAuRpIpOMxFlv0vs9yPDmIBi/53PlGxFWTIm70ZldlRbIKTBOymokd+7gEwkSOkJyC0E0YOA8ChgkscB+nbbvi7gZFzFwcQWrOPAopNTOvTi87nW7EJvFXXSVq4LOc8s88S8nJmWibIsDuAtiBQf3UbsamcTQjClbYFA9O8VD2ac5uinZOup8OnDj+G//sjP4q9+9Wf4jz7+9fz89/5wJ0R5ibOfqT46803QuLGbQdcith7oNB9dPHFRCqrbZLD5/ClFqtrPi271tQm8rvdJEVdPrxYLvEXb/f09IQRbMyVQVFiWwjQtnKbZCDFLcVHSmWmemeelF3Q1MEskmFBpAwbwMVOs6Ce4jVgLYSvFO7aVUhgGF5pygp2odevaPTwwuBhv3o0M0QjZQxB2Q2JMwQvwgFK4GvcEAvtxzz7tSNG6Re28WDbnzHw+c//qllevXvLq9hXHhwfmaXKiht+7YL5iiuIAupPIu3CpLawhBiP8pVVU0MZIiw/sOnc/l7UgeBUcLR2s084Ubv6zg+dCB5+DA7ISzJfeUhOaTWmCulsb0+Yx1JVUutm2sUwrhlnj8gbvOiC+ST492kmP7x8/tu+Bz79aXewOAzYeE+z6cXKZuNzu/23Zdoe92e1a7D6mYKLNTnqzRmiFZbaYfJlN3G1ajJB2nmZO55mTx+l3Dw+cpplclRATKQ7sDlcMw866UVZlLiYeLctCnoP5dVJ6UkbAu58a3JCiMCTrhj2MiSEFI/hVoRQTxJl1Zpky52VmKYVKobAQhmCxwphIMfW4T03kHglW4NeSZa0wsJNrNvH44xi9kQjfKNyGx1rNz97E/NqENqu6+CRIDe5PeMKgdQTxmM2+GCiN5LKCoTiuJNo6obXi42Di2LBJQq+7sv373PY/brGIdq66mTfv/U3fxDt/8nfw2Z/3q/n4v/8bSHUG5PKaQCd/LcvCPM/995xNNb96UTLQi6UNRJe1Y5iv19AK4i1+KAphCAzFOgWWYsnVECKxFd++RVtw39jQWOsAXxETgo8RUkJjokpgqXBaFs5nK9yaponzdOZ0PHM8Hnl4OHJ7f8/D8WTgcVWrJ958n0jzylZyAX350TX2b9s6jGzsYIe1S4HDOHC133NzdcXNk2ue3Vzz7OkNT64OXB/27IahdzyM4vbOwd7odir6OIwx8Gu/4tP8C5/+av7JT3ya6yRoXWkmLcn2ftnze199Fb/6I3/RkuBv2L75xY/h77v5NL/t5dfwa979Hq7FhE6247pdlSbWud1WPMjP3cd5R4dE+nyxea6ryEZLWGwwt25/QoAm/OnH0zqvmgvWhDRMeEDUxLYr3pUIiytDCCagEQtDSpRx7AXru93Ikpf+vYoJWxb/HuvEFtwWx048BB93pZDb+t5i3thWmdptVdUmhr6SYaqqd198+7a1AOuLtL8W28i6PgLr7W6/vmGIWlzgvsTGp7iIJZCNWIb7IiJ9HFS3H62LailCLsKyNDKo9G6voXVRidEIyU6Ma3//p99/zq//ilf8E59+xm/5mpMlpFxIpI15xXgJKwawJr4r6vHB6jS2eMmu0XrtL323NvaVnl94fJ0f2Zs3bduC6Dff43Yc6hgTa/wohgsHjajXBSjRdheciOvYvDwSmvpcHfh/np7zD4+fJsZCiB4Xh1bIBF7K1W1kE/+3e2aiiias6GSSzdKzXiH3XR2ftpi2fFHH8xdjq7lQ23l4UrOJEpnHDxLjSjySVdxuFa312CIXL7RyoRjge3iHv8hz/mb5PivEuIhbLsNh6Kvum19TcJgcqYGoJhYmRZAiFBGQYi2YzQvt+Z4eQ2x+ijlI3U+rNaA1OnZVnHCzuTbNhxNo8nydCOf3OwQXlEqJOET/vZG87byqN6IpZSPW6YKd9noba+u17HEgilrbbE/OGp6vtRHPWPG49ln3U/+rv/Eb+Unf9lv4jr/j/8hf9fv+SSO319Y5aRNjtbXCGV3V1zbF4Ya2vuHrmm66zkKfPeoEbhPtGhjGkWEYGMcdu93Ibrdjv99xOOytWG03Mo4uBCJhU6S8JuPNflniPXuOLi+zkfVrvsB835ZtGAbvcKhdcC7nbCJTYQZJjLvRhMkqaC3uLw/mY3j3QruudSXhS6BoaRpT6xovRjzfYrNtLLUtdLGvwRsTJKokCoF5qaAT13/qD/LwN/0SnnznnyB+9vuRMbIGHa2buh1H8EKUUoxEG6URGNUFcNyWKJvjt99DMLGOWpWQxNZklCgQMcHiJroocbBijRCd/JFATKxDRBjmiWmxzvAlZ0pWolqzDAli2I3HJKHN2xCtsC0YDttjRVw41N9nBT6VYgDJhQBubWR76HPJGk5Zt0p7vVpn9nm2YquHE/M8E10Q3eyXejHJugAmJ3A1oTCEVVBZrbilHXMXGfDF1SRfQaqd8w4ToYZWgFhRSWitRFWIZj9jikgUQoKUhJiEqpnMwuF6z0c+9u4XZ3J8kbbjw0RKdVPQ3AS1XXjPyVAxBIYYV8F0j0urdUthnmdSHH1dXkjLQAjZcr8uaNYK2msj5LGKMPcCJp9rlzhXIIXRCs5iBIlYh72Kivl+KYBohjTaMZYRSYuJ1uSE1gUtE4XsGVQTymhikEUxMQ9Repdu1sKq0FMDyjKbDxglmTggglZZSUgCNQRUrHjYuCUVjY6xqAvwlEqoUFSIGo3s2nDEVuDqeSzYuNvaCKH2nxF3q3NeS+eWNPwmDgnRQGEmV7OVICYY5cKOJnrY5pvZohST+9IDQ0pEsbyzO+8WD2GF7aIm1DEv3oioqhXWhMgw2FpDjCbWoZ4DrX6fW0FXZbVX0BtIhVJJblcbGQ+9LJhuhRyv4Zhvwdbm1oqbuadrjrIV5zblV99a7AMbl07WZz3HRLo45+Y7qzrqLJsCo77vTS7X329Cs74udwxr8+0tznscu1zELPZd6u9zt9P8Kw+ZLBfvBSkBEx4bTWTq6p1nFK2M48CyS9TzA3meyfPieJ8fb5QuqC7OXNdgpO6i6uTuVoi8xp6PS93b/ej23e3qFqM2PEK8geEWT5deCLZya6X/bO65+jU2/05YRKjDQLi6Ij19Srq5QXc7coCpVs61YhNZjHvTxKYwP8Z4305qbAJSS7G1ep49F+ZCU+rvWUyAqpoSkeW/NutE8+mlHbv76VQnb/biWK8SZS1mf5u2NY+BHy8NSLK/91/NB3O2EyEmYhoh7qgMqIxI2hEoBGlisJlqCxQo/MU/+nv5y3/xN/DZP/Of8ep/+rMmYivROHzzTMkFxgHjHUANwpASFVhydfyoUEJhjLauCnhBttmX4sK9WgNZFWreFLK0c3JBs6qEYEU6sRixfUgRTckKxcQF06RaEaOUnlPegqatgVBsa3KwOWR8JENGjFTuPpXHZkMyHzfnxR/ZY6nGQQwEGbzDe/Fi5AXU+Cp9bZPQomfLtbvwo4iQszItlWmp5meUylIrWbFHruTqvJpNIygrkPYmBLqNiuz8i9su42EIQc3GbN+TPR9XK91+NRzHa6p58q1/nPu/9+dy9bv/iPHvYos1DUdu2IxIheIimDUTKN5c0MdtNaSpaiVeZA7fhu1HNvN7jtPTPI2/fFHU/tq24oLb195k61tBnf1+MbTXXT1+ou1b3+A36MqJtCHa7scqenrxvOcZhH7zHQ9oBWCt6NrKTv2cZT3efoVFoGExF3ml0EbS5ic9bunxFO0i24FWH/8m1u95/dpy3fbd0fHyIMYljnEwvztYvmZLeje7FtZ70+yjX5i1Uc+6Lm+FW9xK9xxM55h5MWC7v2LEBLbCRdWLL9etMc82B+cXtX2n2c9ionxV/To03/Ft2tZ7vY7vSFUTwJWgUAJlWZx/bbGxNX7VPka7wIBUi9OCuRaAMxJiz+/0b37MffE81uXRsXFQN+sWHWq7RLRaIZ4nm7Xm/kaLr4rbCysorN6EWVwQojX3QBtvZx3Tb14vPv91XeeMb1X6UFEvCvbVpiF3rAU3Hl85LBMQxsEKgywPXyjLBE3IsxSmeaJMM6f7iRcfvOLDz36OeTozxoHrJ9fsDwcO11ekcTQcJkTD5KKgg3FiDvs9u3EgnpUSAhqk48TRmxs9jhbWmGH1SR/nJXqubwMmqz6OvS/z+rYWWR5t5dJsxPAwf99EFI3XCdGFqN6eTWJxVQu3R1SKmm/jIUr3B5qd71epx0DOofIY3PxL9YtYN9NqXc+avTNtQV+fxOZGrsXEvI+nnmNs/hTSRE97sAHYeEgSGUKy/ZSVt9CaCRqng14E6qfXp09vdhfWuaFqzQhx/KONlbVh0DonpBQkhj7Pe27AV+OV2yQdT2ivW+y5xrPNrzLOiDdjr6EfZ89D0Iqp1GsPVz/JjqPFA2s+uY/R9l6pdtx+Pa0vhnHepmnhdJ44Hs/c3d1x++qOV69e8fL2ltu7O06nE8tSEEIXIxcM74ghGj/DG6xM88I0LyxFUYkMuwNPnz7ly7/8y/n4V3yCL/uyL+fdd99lv99TtXI+T5xOZwDOy8zDw4N998uXvHr1itu7O87exE6br7H+eKu2KIatZY8FAsY5qsWwaUTQKI5zqfU6XazmJETD4hKBA+Na2xErqSgQCSzEWm0M5mrXuPpgd5OhgzWbsCJnXX051vyAiDD/hJ8BT78cmY48/FV/I/vv/BOeF1jHpqJWT2MGw+69iy5pVEoJDEOlRvO9Utr1ddHwskoohlF0jmAMyBBhSIiuWOw2ds05I0AOkSWlzT6rN/LJK0/RxSjWeN65r6y7bbmNXgDp16b7XH7OyjpPXRqs1/JpkI7ZlmKxZ65CUTHsXGUt8CzK4lx39diu1MpcTKAqa+U8zRxPZ07n2fL9BPQ0UeXIVJTdbmS/W+3hYbfza7OwnCfq+UzNmbwUF1+wFUjD2rRPBciYQJyfay2ZnBdqsabvKcTOK6hU8mK8vzxapeLbBn3Edp/wpt3VG5trWfnZza5vgxZfO3pEobYWBxqvZ/UFOrZSVxvUm4RcNJyTzRcAKr1pnLv2dI6dvdy/q22dY+FC1oggh6fUv/WbiH/id3H+W76R/X/4zSSaqLSu8ZO40JUdGNuC+8Y+t/x1Xf27EFz7rXo8v+Ymtg1mW2OsZi/aRez2FpsrXdQRXzM84JH+4fXY2nwA52h7zYAvSmwu7GZT8r/2jaRf6SJTF/HTo6Ye/jDuVvN+5bVdbmNMVHuNUgiBqKuoqQRrPLE2bw4X06GNk+Bzrs2j2LBSaYXujadd8KyDx4Khixq9fZvFp+KxwsYbey0U6X/xODjgDbZ1FU+DVeAJ1nhZhE3sTPd52j714ns3fIrNsVzMsb4j33/za1mjIXNHPQ9Qm/Cg5zo3x9j38QVcI3HcU5qYgF6el7qT3XgQfZ6hm/NxZNqMHSuz8XLN8MvUfVPdxKZK4z+tOY3PN7y2Ie26Hz9hiRa7tndur2+bxd2+2R2/RMvWc6KF3dt1U9d3mOnfiEmxtVelz/PtvdeL67aej9Dm5WZtbn94i7ZEsBz7nJnL7Okpw2N3V3vGIXkTuMLdnGE5UvNC1h1LGHkSkwlSqRIbV9DzJ1Hgamc8DY0DRSKlXfxc0ekMwZrzjsEEqw5j4mpMnJJwnkAXUMkWrwTL/5SSPQcd+1gRbWJ7Fu/sx5H9GHjyB7+Jz/xdv4mP/L5/hDNeqwVWe624+LnFKzVENEYTbgjBfGY1zGqIkRKjiVyHVZgj0ewdtmaEaiMwSJ/nxkna2rE+IsFtqSsleC5ZCNE5JQGESpknTo7/G3ctG/4hitaFea6ULG2Y03IU1EoSIIiLs3qjhsqqibB5aDF/o72k1W0Xwfl21oi4ibjUYs37KhkVTPhUrT7Cao9sTZK6+jchGhY2Btgl2A/Ck93Ik/2OwziwS9GadQTz+yUG0EKuM7nCVANTgHKMsBsJu4SMAWLLubxlkww4nW0Na2ul5XiE5OKQ4vhhy91Q1xxnUOMviFbwXC9xtR26wQ+VBq8pWtXHVjNy/qbaYvpmGLzO1hfilo9UFRMMxkT8qhoP6Wf+5/8KGoQ5NC6w+yUxrLloHE9wMaTtLenCpC1gkIZbBH8uF4d7ueL7v21drsZVrZ3nYpMsuM9kdShNqMt8RGsm6HGaSheFf7y19b7hps2PNp/csFOpdfVx3RjV/v7mG3ZPyy5/O4UK73zq23mm387S37uxxbq1Lhvvown2dmxp5VBZCL7G4WtNnXYOUG+q7bs8zQt3p4m744mH45FpWazJi4iPt+JCc5dY/9vmL07L3GNs4zvbrVsFNemxs4i4uLFx10XEeJrZcP28LNa8oGTSXasnx9bnYju2WnN7BAl2bRabc0HMRiRZ+fBdw2WDH3VOltYLf6yN8xgDh9//azj9kt/M/vf/Y3DYAbLBgRtOYFvHHlvtbbFZqCounFg7DoM0Tq6LxQU1DJLmy5q9aJzbNooDLZbYjNlaqdW42FbjXKmlCU0ZRmQiU841rKULTF0ITVGZvvc7uf3kd+IqCZY74nJ+9pqyusaa/bTEfRi7IJ6eWdcUQRx/tfFtDWTcDxfB6ky3Y7vlkFc8PrCmGZvexaXQ1GrTmwVt16x5nN13gf733oNHzYN+w7L02vYFV5ylmKiyKpr3g2nq1WFVXF8vgDxyWrvMEn0hxvtmtbd68ZyBVdYxKpbqXWsFCYvzVSNf/+2/kT/0k/9R/v7v+jcoaYDQFO+DqfdFQaqREG2QWiJEWUH0fgkFmpq8umE0sakVlDMiiqCSQaI5gjEZOSe4sEURq/6MCdHkggQm6qP9PLUHbKip9TevqXoRd6mLXavqZNplYV5m7whdmXPuHRXe++zn+L5P/wAfvHzBh6/uePFw5DzbhGkCATbqBiMIK+DG9cP/6Hfy0b/zG7n/7/4E57/w7ZsiqRY5A2JgRyvW3hI/wYHHtuA3IBPcOFqxt6oyTTPq5FMjxe8Zh5HdOJrB9QRNLY04bp1TOznFC8WbaMBFML+OuIuQqi2IKzjWFs/2/O3ZcnW12M3CGgRqCshux3i45snNU473rzje3XK+v6MsZ47niZxnzkNiN44cdnsrbqSBaw1ohGb5Da9SDwJaIp9OqFMPw3vXLYC+HLUkTHMEbfGLKfmia92Pl1xBElfXVzx55ynPP/pR3nn3XQ5XV0DsapTmlAZz/CmkYQAUad201cR2pLF6E1jHapvXz7/s46Rhx/ufeY/bV6949TBzLjDuBtIQSUMkeKfyHhS0+dfXIe05MFXMULegp1YrTgyREGzJbCSlWgpzXri9vePDFy/57Acf8OLVS27vHjhNC7lk0iDI7mDBWF6Yi82dIQljFJ49fcLN9Z75fOT4UDnnTIq2FKZkQlMhmEiB+2xGBxAXdjDvkSjCMCRGL0AJIdBOI8TE7voJT59/lCfvPEf2Iw/LYt2hFWqMhP2ew+6a3eGaIY2gi4kaWE7YAolkZDsZ97DbExD2w4FwBVcV7u/vuL+74+XdkUxgQbj+Uk+cH8bWSs3NCK/BU0v42rCwajuJXsyNEeLneaKUQC0mSpOiCcucT8Is9ARoiJHDbsfN9TVXhwNjjES1Ls3iAX2UTTADHczVTtxpwKNpxgqCSkSk0LpOaihoCZZMU+uAQjARxIMI5/PMvGRub29daE54N0QO6dq6FTeXrAHXhjz14+kTwp2k1g1DdF1hOxloo9De11kP6C2wW1eO5gClFJH9Hn32lCRKXWZevThxPk+ePB4pOfPinLm/vWVaFg77A++++y7PP/ox3nn+Ub7myUsId2QVylK82zlm5/pab0BMF0GkOWNQgyLF5jktCRDM3gUXlGidpcD9mxC9a4N3HHUQqBTleDzz8uUrHh6OAOz3B3b7vYk4VKHmyjCmDsbDaotad1wLuLaj1jtlajHRs2XhPB25v33F/e0rjg+vvggz44u7nc4TwdenqoWUIldPnkDZ8XAvzIt3fdJKzvfcPxxRhf3hio88f8YQhbLMLPPM3e1LPvfB53jxwQcErXzs3XdJ777DuZjwRqzmz42jCdvdXC8cxso47Hj32Tv82K/5Wr72q7+Gr/2KryQhsBTKeUK0stuP6JCY68J89yHvf+49PvPBZ1iopP3AwEAYRiuMUbxow2xmoVqAKwaQqTpw0FXst0T+lVyx+p743NtS3T+/T9KKuEIYaF5W0dVvNq6KA3nSSBxNjbgRtvxnXpjzxLJMLPPMkidysa4/tWTAu7wnA7bb1oMNn8fR3d2WcBcwm/ko8Pnq8/fxMz/4T/mz7/xUvv5T32orcDt2L36+PNlNYObnpWwFR90baYlif1dfR93f68GzhH6M4zBgxIBNN85qVy/6tWwBXhNlMj/97fIXp2ny4HNBEQpCXtQKt12M9jwZmWUuXhxWjaDZujGF5lO19b+BC8XXfrdTrYgIHNjOhSVkpjB3P9o68cVe+H+aJ+LDPVoW5p11Abje7xgPO8Zxx/V+ZIjJCqxyZsBIOCkmdrsd4zBaMVIpLNPE7a0JTL188aIreRcXlAgSXAF+JXGDg21+vVphcxsHMQpp09GvxWTboraLxFQHgbbFpqswzpsIzrrB37qAhlpRYyMYt60loy9Fr5pdXnfYyssexzBrQYV24GU9pm1czsWxdjCu2/z1tR9pjNQEFB6vaysAKJt/H8EFb8H2uc99YDGNOqGvdVgcB1q3zrxYrHo+TZxPZ44PR+7vH/jgwxd8+PIlL29vub9/4OF4NCJYMVKKCf+kC1FCm2+RFM2nshAlm+/l8VoDIFOKDENgSJFdioyDPVIQ99UKtQSKA43LaGJTWitLnTieAncPtwzjQEjm41gBsrgrqNbJgbWYbwv69eJ52vyRzSP4OooDZZsxRQPDbRa0RFKHvUQ72VMCnnDbjudCdcGpBnRXrSvpwYuA1wTqCo6Kaj+H6PF1G/M21bfxoJpxo/r/uoKbm818NytQ/ui3/ct85uf947zzx34jeXqgeiy9Eq8uBaaayNQqWmfQZRA8g+eJmI2ulES38WFdsy0et2uWJLATi/1Mqd+wIAnBx9vbJTTVQGDr8DBznq1763GaOc6LPaaF+2nm4eHIw8M9Dw82n6YuNjUznSfO54mH08x5zmuhxIrvNoej+/qyLvyAE8Pl0Wq1xbTE4vExRQ7jwPVhz5OrA0+ur3h6fc3N9TU3V1c8ubrisN+xH0eGZOI2aVusJZ5oii4W4slhkcD/+at/wNd8Jzv5sasq9znwu17+GP7eZ+/xO158Nd/wkU9t7Asewwrf9Px7+Zc++Fq+6d1P8iRU1pV1ay94NJZfR9La3F7X8ZaadhCiGuYtjQAFHReSIHTVBt9nADQEt3wutOjrWvX525JqwQuHe0pDbQ4GXX2XGK3gLKVCqQNDKezGHSWXS/sJFufBaltxWLT95mIchEjEOoYGsWJVrYHW9Tts9rmuP9YdQzyJ97bZsbZ9ccWmtEPE9ow2ZGwZlf4uH009iGZ9a0timQBGIw/Z/XE5lu6WaBdfvkzKqRcIrSJGOQeWYIm4lBLDMHBKJqY4pMEegz9S4l/86Af8uvc+yr/81Q+IrKLQ23MzAV/tMQZiRdur69zs5vqhJmT4+a7/47jm820XxN/Hd0E3RQT6efal7T4IQZTahUFoy6Gdo683LQ/Qkl12P7Xb/RAC9xL4A6fn/ML9h/z+05fzi+VTrB1YNmurNrO6EhxLS/aVjZjS43Gp63rW1u1tzEf7/S3aWgG4ljWXYx3ZnIgWArGnVlZiWxtvLaZYBTdXf+N9nvBd8WP8WLnlv5Cv5GfH9y+JnZtYoa2ZrWhRvOLlgm62MQkOOfpK2FZGfKwXSvfz3pC838RInTSrinoXulqbwFPrSlc8yevFyd2voq+lSu22wLA46Q8T2sSLwk1MsjqxaR1Pa6OSTrLvCXLtbkA/1t4mstl5ocqazRRrDe9Ep0rNlZ/yH/5m/pu/5dfyE7/111Hmyb7HxcHWcetOWyPqbMn9urmAwkrK2ARDDZtonSolmDByw/n3uz37veXSDoc9h8OBw+HA9dWhr3upCZu1/1SckFK9cYLPxbxY18GSrRBMK63u6W3adrsdmit1Nqw3L4VJFtAzJdf1Qgbp4pdNnKmqF983kvUmj9mLKfD52UIyj3M0G+lNfI2Njg8XVeIwkHY70jBYLlwjRSNLFUpRFhfFePbHfx+yS5QgzEv15geG69VaKWKEKYkJ1AqSai6EwQSOASdiNDL9GrPj2HzHJDDRgN0wWu5LXJiiFmL0OCBYF7iQBiQNPQaTEDhcXbNEE0bTeWbOC7lWyrQg/tmgVvQTgo3x0HCiViwk7vUFK2C1uda6j63Ym4owYOvY2sG2xYl2fjnDPJsAkZFuKvPZRKam89lE1DGRL6WuZPYQ/d6vRE9bbAznj6ER6KrlA2p1u27iUGs+w4kutHEBW6A+eKyr/qQ152hxgwTD1IzalpnzmYeHW/Y3wkc+8uyLPk9+JJvplVQXWfI8hQtXz/PCMs/dP7J75qiU2BnijY3mvJCWmXmZGZaZNAzEUkhOWm95/Ub8bTn+tiZltxnFA7lOcFLrblsHJSUliXTc3enxxIAL35tIsdYKQyGWDHmi5oGaJzQLVBfWk5Vw076zeu5ItRGiNmQrxQQoBLMLWHOjEor5dl4gFkIkSAQN5GxjT9TzesYqRsM6NosqtZiNs1BLeiOJjZG33zeiOV5CteYZaI2TWmGo2Q9JwRrOFPefvetrjJFxGBnH3fo9GNlZvHBMfY6lNNgaiGOrBarX6WoQZ9RW8pyZpomlVkIyYcQ47pDBRO6qBBMSUjoWZdsmrroQPLPxEKUgMRmW20QnbaD2eLkRlbW0ZiBvz6bwyJda8arHsbi2uINNfCHrGOj+hPty4gIW2/13sY0mXvLIj1txYPflXIBwi8pu8y/tdYWLnHDDkdd4ZRXW7McKXVjD3mifL2p5NYmBsB/Z8xRSZDwcmJ/dcHyx43x3y+nujvxwos6zkcQd2zNluDZvxOeOY3q+ziDApr69xW79vrwhDmm/qPYQ1+K/4Jmwhqc7BtD8yBb9XWKfOK7BRpgvUtOOuL8iXV2TDlcsaWBRWJqQdS3NIXThKEMkTfDIcnyaMyyLFVbOs/mlywIl+5rp96VktJi/p6W4P6Grj9sEp1hzJc7O8vimeEdqW1taPu5t3Hquw/HgC02KhvXSCpfEiwAChITEHcQ9KgOVgSqDDTEtLGrNvWqbc2KFd3/hW/91W7vVMK2qSl6UnGeaaKkQ0GwNiVJKFCqDRBc9glLN3zHM1hqT1FLJ4HYENAwQCk0wRcHjLeta24SeazEhmayYQFZRSq7EqAwJ5qjEULrtsYKYxlG0+RJFvNA2EKI4hmm2xsSnsLHv2amsxvXIRVCsYHdZTGjLmiiE3vzSupBnSoG8VCChagTW6nFUiAN4U5zqPWUkWsO0vBTmYs3wSqnkSp83S1HAmvBoERdZtWsjQPECxhVlhHW9azaf7tOGmLp/DC7skS0fUYqLIBCcw9HI8pUnv/ePgmaqmA9hHCDLN4usDQStLUIlBWUXIoPHLHY0dqRWdP52zbWwWecuMIYfbHvD2zqe6JzRdUnxOyShc45bXnHlJ6z52raEb03cil3Iur/+xzccy2t2mEu3C0ekmmAkLqHThfGbogHGb3DcwkBnj4mCAeiV9VwN42yyasZjaswlc6s8vyVNWNQLbGh4Tztu2VwAs8DqzfVaUUZx/6qiLNlEARpXDAlISJYzC5GYBtIwut+XCN70TDbfs5pO+67ui7U4Tr047NF17Rj/ajG7D4eaEJ61z3Gb5PxwGwLmA7fGD9t53PKPbd/4eTkq1n2PqmZHl2JFB7k6f/ot2iyWXLHPIGajQijEaLiGaqVGaxhQamXOs3GeouEKYZOLr8Xjmh5DiPPdWxMQ8bn2hslRq/mR2u4tlzleHwitqIp+bxpXoq7ztsWOxTu512LrqAvW2u+G6eFiU1bW0T1JuFgrfribuJDW1gdkM74uR2vzGLZrQ8sBq1puf4yCyOL1aQtlOnM+3rPk1qCvkhB2o4lkjMMApXLY7QiINU+rxnmOp0S5ekIaEnGXCEPlcBh59s4N+6sdcjc5NhiRqmvM5+f2w922IhK2jj3KWfQY4HExUeqvme+xFssYP7Tl5MHkusOFuPhbs1lSksaPb0J5vcCmr1CrTbnIeWy2hieuBU8NF1K2xZeIWf4WJdjcs5qVRRWdM0VPFw2p1OP1GNYmAvadhShCjQMhieFysrF/7VgvxvuWK+SvQS92XF/BuCBtTfVi6M6L0HVe6BCBYRW263/TzhVstSPGrV+FOJpJ6et59+Gr20PLxzYfcbuJr+lrOqT2Y7V1p811XwsFLCAU5zJGKxRX9XCoWkOUJRu/4Hjm/v6Bly9f8fLlKxN5ur/jdJqY5wVUSCl4XrKSkuUtWpJl8QLBeZ6p1XmIaeT5u+/yFZ/4BF/5lV/Jxz/+cd555x2ur6+JMXKeJqbzkfN0ZimFaZp4eLjn5ctXvHjxgpevXvFwPFKy5ZlCw3Ul/pC5xR+NrQmwoSb4X0OkViEU55Mm53WmYI2GvKA4YA25JESSBEoSJDtvQCqEArJjTIlTqYy5cMqFqVYWhbpks425UHYjZYhWuwXNMenzs6374c/9Z5TxCg43pO/4NmqIBMcXmqB14/oKYo3ivJBUsBqRGp33lxIByDkiagL9rcDfGJy2DxNjt0YtUrI3BN3cx87Jt3m09HW3rbd+/N4MdFsgvCxlxQcv/GMTKCxef7UK4wAb3LNhnz6BvUFGWOt5/H05F+cfZcMNpTW9MLShVEzUVLX7o7kqiwamqkzLzHnJTJM1SV1KhRCouZCPJx6mmfDqFTFExmHgydUVz57d8PTJDVeHHSEk4g72MRLHkbLkXuxdaqbMsxfb+vrk11zEGydU42jmakJTwZRhjH8FZOfYzktGJRHj22XL8rKA2xEbZQYuBBovQQiYyH/jU/StYXJVUTGMoWws1NbvA9iKFa31km73ZbVOHWL05bd9vDous+XcdvsKfayaqFurSwM53SJ/7LdQf84vY/gjv4niY98aEXjDMln5iXbs24o2OvoDzb6oa5euPHZazhZ6MfzWXrYGaO1N67xqMaqucSENn15FQkzctnjBefMvHI9SA4TaZ/xir/h+90Y95/Lbf8Um3loz7EW9gdWG3xyC9BRouz4BTOSu+wnQchntniZvqLvG2dIL1zfRVf+eXlFfME6p2+LiOIzVPtmDGNpo7efR+GJvnSnzMBv83mxElbuQ2uY90L0OetSrLrzhwIIIPd5fP6Ob2Hj96iZu2563OVV1/fz25xsQjW7n1jmx8h4UkJuPsvz8f4Tdv/N/R8rcXSalVbVsD2BzdG1soH1CdM+rC/nKev22x9n9ZY9pN7ZlO9b7N2x888vLvX5u/RI/X3G08pHf/kP5S6uPLLC/pv6i/wvhD/wzsEyf5wP2qH19sbsr25MWHC+x62FjZr2563jRi7Wn+hpdL67X5ndWP6btt/vT23NdF5e3bksEQ0ydR254eySGgQCUWMgyMdczExmqEktr0hNIEkjBceRqftI4jkQRdrsd11VZVFkqzEAW88SqKrpkJArDMBJS4EZ2LEEpAeZl4TyfOJ8LWUGC1W9bQyyr6w9BidGbg0mlUkxcbzROzpBGBq38mD/0jzENA7FUSrGccKt3Fp/obexXFcfpCiKFUIRcAjkGhmCCI62hZuNjRFMCcjxn0+iwL9Qu7sRmSLo/KxK83lE8z1YNh2nYUK3UvHAuBT35eqeeg8ZHbckUXVtOdmvahl8tVqvTxT3tnLsAjfOutry6Joxfi7JI4nv/ur+fqz//X7L75H/LvBRqUU+Huw2uUPC8mdq8KRWk2HoUqokgxigMEklBiShDUA4xcEiRQwzsAiStxiduMWlQ44qUNbBRjxs1L4SciaoMMZJ2I+JiqG/Tdp6tFY86NyoG46YTQSOW3xLn6zThlBaDbGMmqe5zqjsCDV9bF7tK+6xXLTYj2ezghfHyz3ourdsnjz26JVCQ6DwfNX9d1LDx2IyC+4FVAjVEBq9p3qin2L9quIRo89Pct62FVpMRwqofcmFxNj6diZxtOHabBoVBhBIqKUaLDz0pbTlhXIhRVuyDre2hX2+aGFv3yc0yq+Ol9AZDjtM2Eajql9X97pL2SJ5p+g6V1Q53u9vtTu32ZUVD1b0U1jxOvzu6+tDu3/bD9+OqWAymod1zaeloEwACigglBHvQsmWWx8jOIW77e4xxvQ3b6WRi8cZLdY9OxbhOOTu2t3ShqejN5dt9L8Uags7TxOl0opRMzZkogUnE+S4m9hdDZDcMhN241pE4t4piuakhRkgDGo0TaboCvq5v4jOzO5eC8ap0AV9RYf/7/3HYxH/Bm6hLnydtzfdm6w03BrPt7vt2X+TCZfMxWNs4s3OsPvbXxrG4/7xilr1mU01UqpTqYu9mW5bNo6hS4kiezyY85TYma3WehTcmQhvVBGUVRX3Nu27O+IZf7BfB7WO7Xi2nyQYbvXy0Otw133bpONv+Wp2zcw4xTLMLTPnfHI03O+x4qEiXUu6H6Wwy9yPpc7dRj75Ql/ELrjgbxoFaAkGaGpgvmGrAy3rwl//p5bVdF82mfi7qiVOM29FIq22xU+uus5QWbFWqFkqMDFr427/9NzPvRsDAyqAmIKI1enFQ6WJTEqqBioIJQImLSYkXpvuEQaWrMGoVJ8k2MSUwcY5g7ajUPZXQAEtPIGtBQzbCbQgOHpgVlTY6pE2CRpK3DnM5L5wn61xQq1oha15Y5sWK8ZbMw8ORFy9f8uGLl3zqM+/zfe+9x93pyHHKnIs5wr1DUjVwXTQ7WTms9wP43B/55m5nzR6vAXB/7bGBa7d0E5RprU7S6VJEF0kpEVsoJ0+ilVJY0kweR3aDF5anwbo1a7WOmzEwzbMXyVfrFOrJiQZ0bfM1m6N0w8Xm+1tAugZsb9MW40CjLFRt1xNUhDjsuBoG9ld7rm+uOT+94Xj7itP9K+bjA2WeOJ6tcFVV2Q2jFzBa1yn8+jdBHaqR3IELa9IEYbpTIIC2Di2rUxVCJGpzE20+pBCYs4miTXOmamDcX3Pz/B1unj/n5p1nHK6eMAxjV1VvBRkBJaVEjdW7C6sJupTkjlLdCPOoZyoCMiQOaYeEkSkrU8FECJZqxnOMhLiz6xAD4iqr6sGVESQ96d3WpWIAvbqXI04md5oXYOtUXmaO5zP3pyMffviCDz98yYcvX3J7/8DxPBksG4R49YTpb/qVhB/4c/Bnvw0pEzFF9oeRm+s977zzjOvDwG2dmU72TSFAisI4BoYkpGiiHiKYWIQHcs0I4Y5VjKZ+Gd2xqLUyjDt2V08ZDtfsr54Qx5EaEkQja4dxR9pdsTs84fr6KbthZ/c0W94mVCFJpAaIux1pdyCMe2TYAVZ4PxJJCjVEMoGpvLTxmCtf8aWcND/MbU0Ie/elljANzp1w5zSl2B9LI39X6woqosRqySUj3s/WGbRWQoSrqyvGYWD0+2BOfTGxE+9eHHUNtgNWHKOtgC6EbsUlJCMUSkBqQUIlxGQsxNAejeFthSUSTQipaqByZs6F4+lMvL0jphGJA7urK1JMFHxeC/14QFd70L0JF1pxgy7+R1/lzWZcxGra32NjtQWV2veHz/mrwxVRlOPDLdPxnmU+8/BwYjqdeQgHvuUv+1X8nM/98zzZwbN33+VjX/blPHvnOYcnN8RkxM/qwEOpLZHcsU1oSbXQRB8bOUKhOrHU3xPjOofCsIpJmA6VJ8jFE+Ne+FOBWgqn04m7uzvu7x+6mOI4jBx2hx7gtnm6LTZr/pv6Wt8PfOs7BVPfrrWwLBPn84nz6cgyn11s5e3aDocDwzCw2+1Y5pm8zD3XIN4V8erqmpubG9599zm3r24BZTcMLiwpUCr7w57d+DG0ZJ4+ueZ8PPKRp0955+lTzg/31HlB1TrLnE9WcKQls0uJZ1c73tknwvmecvsB0/U16ek7DM9uSONIPZ+4P038yfld/rxc83fefZrj8cTxeCJLZmBE4oGhBQNeoFcraHFRMLViG1sbMAGf2BTApd9zxYkPTfAorEmcS8R5uylbx6wixJBIUY2EQqMPuhvawuq+xtkHVVf/MteFUoz0Oy9nlsVEKnPJlLLgUuWAblTx15VBwAs7ghdxrcQid++7j4UfjxW6Rn7Cw3fzEx6+m0bq2PqcFyHao5hhTXU1X2+jBLxJYqq0gMl9w00g2+5FiEbaFqQLlrZCt+AAR3RCs4oJeVX3A8Ib79GP3rYsi9mwYOOhsiY7e2dBD+iDGqE9iLof5GugF1A1EkLb2n1uxDEaUOGTuGol18pSrLN8KJWkQhEjOOZamKbZRKSWmWUayPuRoJX9YGFn8GIlaSJexYv7ZVXmLotyPh65v7vjgw8+4MWHH3J3+4ppOoMqKXjR7dCKzJROZKzFyQ/bZJMTVaQJ/GzshAMS1nXxMqFj5+wuYvNdq++7bh5bwBX663ZNvYNW8Peyzn/ZXGsrHJe+Vmy32otMoM2SHtM0ELC+4fjfAIZut+08edPrX8xY6QdN5L1lmeTv+d7v6+Peur8KYRzY7fcMg3Ubzbkwnc6cTkezH/cnJ6LddjJaI4JN82wAl2on/xnZoNBV3f1+iYvS1BCgNmCIHhvsdtGKzcfEOEbGGBmik+W0oDWgVdAhsNtF8hKNDDfNqBam+czD6d4IrKPFRyaKObjd8uSWsOkuSVNn6Ykq8fMIErzo2MeuJ7m2oKUB3U1Is/ai405CbH6SYOK2BANbkS7iUKsRznuRkJodLhshi6rFkwM+d4PN10agDmEloFDNRrY1wnjP5pOLn6SRI1jBxI2N6oRE//n8j/16arWu6iuGop3A1cii0zR10mgnb6G9e5kEd7SDg4aiSLQO9SbipWtcL9A6bZiPa0Xj0+Jkr4L5uNHFtd6izfCgwjydmM4njsc7Hh7uuL+/4+7untu7e25vb7m9veXu7p67+3se7s3PnuaZZZmto1EuRvyaF+alPrLWm5Nua4w8/ouD5iJ+LQGtXawqCCSBXYrsdyNPDgdurg48vbrm6dU1N9dXLjJ14Pqw57DfsduNDDEwpGDJ3xSNjCP0eKMJzfX1vs0VZEMisnH4JCn/8PPv51tefZxv+sincAfJjt4xAcUK3v6xj3zSX+9v6O/7obbtMtySNlbI0oMq+xEw8VXBk4tGBhS12EpdqaKRaNoWmtiUBBe1sXEdgq0FTWSK6kUmwYi71lGvrnF8CIY/e8xWhoGdF6e3RFPzQsPi3WTEJO2tDsbtc1DHY9ezW/1e8bXMRPqbz9swMuv0USiaCFopKkZKfMu2TkB99PuPbNPXn6n74s3t6N/fUYH+brv07i+p9sQ0EljLqxoxblNQqZ5bqI2sp54rCE5AyEiGuCSSi02llBhSYnRxqWEY2A0DNQ3IqPyGj79CxLoqbxspbM+tidS3+aq4HWf14exYW4GBXIjoPr7ka5K8Dbwf3Dd6YyHD9jvf8PntmLZKNS9AdREMBCc5qREuwvqh0Mg9QV1QwZOIEnkaC7/05iV/8P4Zv+zqfaaz37e+jm1wDHVClAsMZX9sE+90G8aKi1Qj4TXhWCMbGm4ZQ+pFfm/LZnFHK/bNRjjfnKMAGnUT1zaxtkv/fdtYo5HHvlzvCeV9vjc952+OP0DwGCZs4ly7bo4nNv8lSJP0YzPi1m07R0NbMQNNYqAEQTaFS6/FCKx4m7h/p6pojF4gFi2uC9ZxTqMgpVKCkVc7TaH67+qxUXCcLbl4dwyd2O+WzOZ9rSBO6C+FUtvYWgucl2W2pHx1xDNssDjEY79WAKcXRBq7L833LNScXZip8JP+nf8ryzybuFRp+Yy18ysuWt9sVRex9u+UyjpX3Pa3P2/HVM+VuChlSolhHBh2A+NuYLcb2e1GDvsdh92O/W7XRciS+3wBi5eTk8Y66uIFcuqNEgTrZjekiI6JUt+uOZbiSIqZSQpN6HJZcseerAEApDF5nqh2Uo20oiytRC8osLgAqIWIWoBVisUYYt0QjZxgIu1Vixdomp3bjSPjbs8w7gnRG6i4z2j+RUHygmhlSJEhBtKYKO4vKUqM1oF7iNFytO5bxCG6RlOA6Dl1USPRqZEWe8OCarnk5k8OoXVCMzHOGNTX9rb2G84fYrAYp+EbGDEwaOm+X4yRiFKyNUDKOSNLIDmGvxWbEhGbh0AMiZgG/07ta5KvfHY/g/S53damJlbeCTZqeGuplXmZeke4umTmebLXJPDix/7Pkd0VX/7df5oklkdrxJtWZGsiCmICDuJxFDZXYyfQV2qxQo3+Gc+BtPpDrdaxMzWRaMeERFwIQEEkeX1ZdSFnIQSl1sw0nyAKYRx5ev30SzxrfnibOulGu0/ucW6xxlfL4mQo6Ni4YQLieLgRmYJUlpyZ5plhnBnyjnGsLHkhuJB/77RdGtE0945zTYC5lLIem4+JKNYeVLTxRpKlz2Ly41KPpQQNCoNj8LUgaaTmkboMVphdztQ6oTV7zFfM5hUraA5uu5q/a01lPN6ysNsKyCgEWRyvsPV6GEZrNCLGKcmliQg4nqNiGLNgotrNB8JwIdAuNNWKQExEKHYcptnDLqYmhm9sizxMFDwgQQkpoqIs3uEvF0UkMMTEMBoPw1J9xUiaaoXMKoFcK6Fad+BWYNJsdwW0Fa8EKGfDOEqphBTZ7wd2VwfibgcxURQykEthqMJuvyNFO7aqhpksVS3XJnQfqZRMIaJeXNhiXCN9rYU0jYi24jpvz7YWKZkP1aClBgD4SPN3rw5BjO29Lrqx8eiaTZK+zzXeu4j59HVP8PVi6bUR0/Y9bziR131K1vCvl1XI5pw3jwsf2P8T5xrshkTa79k/uaGc3+FwfeDh1Uvii5dwe8tyPpu4klUtQi4mKubrheCFq4J1ZHfxOhwzuygwwfzRurlmdnqvN5FoHJnWHdfdOcDytO2CyGY/rSNoK9LU5gOGCGGANBDSjjjsCHFAVSjZ8hiiEWqhloos1fP9Tbih0LrmalmMi7BYIWVeFsqyINWa8qiIEUZzpi4LNc9Qq1GcazWxh9IavKkLCwUi1riu8dWkZBevssZ/AY/RvhiQwpdsczK2NrImPUZVVWrPYdpaiERr/BUGNA7kEAnDjrJ4oarC4nGaVPNj1mL+Ju5XvLCvsuSZeZm42u3Z7/aQKpoNq4ghkkJEi/H98rxYvkkCCRf0C8Y3nBcbf1ECabxy/zaTy0JWpRbjj4jja9HzfSJGfJ+LxU0hw7wU60weA7bErsgj/XfDOKKwCuML1nDDnzfSahPWVN9HdI5kzoWcW4GyiX8aR5MuOlyKmkBW8CNwToflarPHgK1ZZqAsLkhZKnO2QqGspjW3lA15uCiqJooTQnBbuuWntlWq+S9erKomiKGASETCACERYzL/XCGK0d23OcFSlrUYVYJrClUCheYqBkz0LaAEzVgFZkGkEqNhjKNAqmshaEAYxAS/hhh5m7a/NCxxwxnici3+/Htri2ubv4/fvdnnlxiC7ct8x93XY1nHVeM2Gw5QUyAUi8t7/qo2kbGWF/P4gk1nZtr12WLa5ndri6f8s+569c+1C6F4jqp6TOu4adGVO2WiU54lk9ixwBCiN8lIhju5yFRr4AXi/pUFka1IpeMnm+N7k7ewcnP9HWqcsa04SWsG1gASyxFY/Pb5xou2Q+pjoWEvnWbvtWjteWtgs97Lt2VrBT5CcAFgw+mCRLNdLgwao+VMLF7Llj/2JKLUxUTUK0AwfHWD6QnVGxB4brTnQNtB2LvwotitMAAoMab1vvf3l46LNiytbuyLavV4uiDNj6ntPdUJVxXRbBGGeDzTRpL88O7T69wHuxaXt7vxFz229dNe31TpF0Ux7MzPJ5AZkuU1NC+U84nz+UgoiuaCDINhQGlgv0sEjWiuLPPMk8MV+/3ehGhqZkgmbHg+nrm63pN2EVFlNySeXO/Z7YbNGtKEGLa8j89/3tvXLkQTNj56O93HccSWLxIucv2bJml9XMk2SHXb6fOXt8uOwaXZUFs0OyZOy922IdGh29f5Om8qDlxxrw3+ivmkLYZwOQefQwHVwtKaJ+SZPE/kvBie2xoU0RoPR1Sj85mteZNERbyhWSv86rENYpxZLnNewTkPET8ex87U41LpwjqX18wwxc646tfowtBvPa6ei3ce30VM5onl2sQ0Vi5Xs7cilqe4GNt+XGuBpNCaaSttHK5jFGlSVCvwLhLB46qcC/OUXdzpyMvbW25f3fHi1Ute3d5yd3fH6eRC91UJ0fLAzda2vGV1P/h8npkme++423H95CnvfORjfMVXfhVf9ZVfxce/4iu4ublhGId28ZAlg5iY6fl85ng8cnt7z6vbW27v7rh/eDDuq6rXT+CY0+v5mrdha/fFwSpbfgUX7jUeezBY2mKJaEWXSTF+u9u76Ou2Nf1WSojE3WCi5bky5MyQM8ecOTuWtBTL3WSBTEKdc9dytq/VCqkSvuPbELECV1XQYD66qnEtejwv0fFkn1PKBosQpObe7E5dDCDG4LUdntukiUiKz+Fq2EW7lz4JBRz7FCuyLesoxnG5teAS+4zb5ub7bbGjEAxP0uDjth0z7ToUz0VtOIUhUKgsWjwXt2IEy2xcnOJ5sRAjUQZCcEGpWpmL8UirGHwz18T0V/4sprjn9F/9YU7niWleDJ/EMF5FmJfMMk0GbTo3dxxHnr16wjvvvMPTpzdcXx3Y70d2+z1Pbp6CwjLNHB8eOB7vmeeJWgq977xJLtE04UIUJBv+A+Z7qT9ACGkgxJEQWp3A25UnM9E58+N1U0gv2kRHrajYcmBtTmrHv2xoVPcR3f/ciBJdPDa2vtv8zXrqn/LP2j82TnW9vrrxQ/wYAmts0Go4zL9xP0cEefU+8u/+BopjW8229Lm8PV73a4P7LWtRr7aLAC7Ey6OjZ7OOrhHHGls1+72+ffUP8etXPNdYm49WDeMv1fiLjSu8xjnuo2uT5xAYdhal5JkKRFrhf2Xrc2xFZxT1fErpDe+lxwGlrxkiLrbRef2+hqhSW8NPr09qeLJurnWr3A2qzgHSzWPD43Hb2PKo4PfXBRd6PQyxyXL1OPvt2ppD5M9aHqKNBZHNWOmf6OOqbrzBdQ1a15GeCmp+wCaG7jO6D7MVeevu5cW3vn7Y9iWXp3HxznHH8gu+ifSf/E7mv/VXMv7Rf6X/qUdAj2Ll1Rdbv0Qc96N/ptUv6qNzYI1fYOXYN6xEV695/drLK/wmKOrzxT49F7310Texzeuf2ZyrCPqL/jnk3/311F/4zxC+9Z99/Yu5vJ5dbKpfF5oOzsaHwOMlXcfV5tqUlkeodbMut9xC7deuXZk3nPkbj5MW579lUywEi2uIMEYTP0ciSmDOmTkXTrUyV7ufKQjnAGdVdhF2UdhFYQgBSERgSIFQdqAwL5nzvHBaZvehPPaqJo6UVIiDcQdvdhHdRWQIzNPM6Zx5ODm/GnwCVUrOHje5banBm4oVEoIWr4FqYssBogopGQanpbrQVIC0R+cZltlrGKU31mw+YAyVUgI1tnw6aISowYVbqlFhxJ9HEA+92/yy498sDG4PWsMuCRCCulCNGNBuxpSaQSlkb6gYJJDGSMAbbZTFGsSK59jcv3TYwPzcZWGZzd8z3CmaP1lNTKo1DarF7Vip5GLcnE//1L+D8ZPfycuf8LO4+vB9wme+p8e1huEEpK2tDZ+qSs22P6nGJzC+RiSlwBiEkBfLe6CMAiMwVCW4T6+hYNi9N+GMEVHjzMUUyQbmE4bIMA6Mux3D9TXx6vAlnDF/adtpboPYmmCQoscEARWrya/uA2qfJ27vdF2HtNVLNCGy1RheLD1NbAqVizW75Wf6tlnsDQ7WVupAo3+uaIZYPVk1zodE42ILOLc1UBU+vP4E3/Oxn8Zf+6n/mFGXjrdvrWhVOr/dNEHWY5Lgeeqtv9uvxSq0W2vjrxivpbpQGph9idFO3HqH2362UUTPHddNw86Wa3Lhtd5Mq2N4xsRo4vyqeR3zyqZWzQS0VGEen/Df/XXfyF/9p7+ZuJxokWHnpOq6Tqx57PadWzvjGI5XC6ho07FhbQjCZsz498gmfmh+rghazD+uIRCGRNrtGAFNCSmNa2vcTxMsdqHWpmT9ltmy0+lsd6daDBM8Qi9en7ttjCpBkCLUUKmhICFY/VDOzNPEfJ6cM+VNoXxt1FpIMbqYYkAHXMdGDCNZrHml1ozGRNBgGJs3DwpNF6H5IWzv/Spg2e64NvGjtoXGEfd6sFYklgZAkdLij9BCnAb0vO7PbZxc0+PBx63nEdTvva9HDYvF51M/brch+eLhYoUVF5WCur9m9/W/lvO/983MH3zKaCVqgoRF6Y2gmmZUH9HmiL3uWvl8lEd/uoiQ3c8T/0PHlGnmtdnhNQRt/JNt0BnbNcUhNY93+++yiYf7LNPXfO8WBbQ7vD01y42357KezA+xfcFCU9G74rbEJ9nLoHS9ua24vfuqLT70AbDt4NBvkq6gfbvCTdCpYgYjS0YWQWuwgp4aKDE6oaztW63jFgYAoglqJET13hkGrokaYc3UPd3D9zuqtJ8+qIOJUIQmAtIuqogrsEVCzRASqBEnbMIE0EgN1vGWGCi1AQcXYZJdBy2rMWpES1e3LrmaMz3NnKeZ6TxxPJ54+fIln3n/s7z32c/yuZcveXH/wGnJ1v0ONqqAnnL2ySml9OF0EcVcjJfVeWhv6AOtB4ibd8vrA059B00F28RvnPTu3sE8zyzTzPl04rC/4mp/gAPs93tSHJ1YEokpMXsH1bb3UtbilBWcuTj8z7M1Z+XNweeP5taK6xoApShFMCEUJyoMQ2S3Gzgcdjy5vuJ4d8Xx9hUPr15xPt4xzxP390emYWEcBnbjjjQYkXu7vClrYukCyLiINM0JXOEBdwA8+RxjS85KF7OqOTMXZVoKt8NTPraDj3z04zx55xlptC4DtQZUvSixLWwCIa5JKksou0Cctg7O0AArwf06sc6sVzcjz1UoBDR8ltPpaL+TkDiwdliWTc4zoLQukWp5rYIFNR7YiFZPZFXyXFrqm6LKeZp4dXvLZz/4HB98+JJXt3eczxM5l06iFoT5p/ydpJffT/6an0b44HsZP/WdHK72PHt2w0fefcY779yQKDwEccKgkgSGIbAbTaF4EDFAXMQ6uNdi65RlGnyyumGP0UQyPEn25OlTnj3/GIsG6hBZSqWGSkgjuzSwO1xzdfOUw/VTDjfPiAp1zlTxIvdWsJIi6bBnuLoi7A6QRkt0YIE/CoebBGmkIrz88AUvbl9+KafMD3trxJjWcakVHIEVAAQ36ClF0uDnHF1VVJz64A58EaVmZVEjyqGVUZIF2dFskXUWnRCs63nECjZiC7I8oBGnB8kmGGsdjSQOhhqESlBzKCUsUCLkCCHzYUm8Ux98xXdSuI8HmRdKrRyPJ2K6Q9LIu8OO/bB7ZImEBh/KhU1Yj3WbBNjajXUpbW6MvaEVONn+rFirNDEbMdAiRmE/jDx98pTp2ZEXH2ZOpyN5mfkj/7Nv4Gf/t7+F//yn/1r+nu/6rXzkIx/lnecfYX+4IqRk96M7cXZfuwOkgN/PiBXwBBfxaI6XOpCieOIhmHBajJGYIoTYgfEWTDdBkNblGkz0xUSm7l0ARhi8uDXGVQQFd/6qF8iua68Tgfw+SF1tgAhO5rSAZJ7OLNMZrQspwn4cfqTT4ou+FQ+qy5I9QWnrdhBIaWQY9kDl6voJV1fX7HcHIxoBquYLFVWmaUZq4Z2nz7gad5zu79mlRJJgQVoI1FK5v73nxedecH6YqEtGIsRlIk33pGlAj1csdy9YgJAzZc4s08x3csN3pmd8fH7Jn3zyl/PT7j5g3F+xTPecjidOpxO73Y7D9RX7cc8YB6QGF/1a7WPphaHA0gD0rY/UggYXFfDxsGli4GawBR3txY76AUIJJsaImD0L2+iETYjQg57qBIeZXBZKXSjZVJNzmSll8e5dBaR28RPEattCD97MZ2tBaJC4ApAtoGl+BZuoSn1FUV2PFTwElHbArDDPJoXnCcb2MZuj9vnqtn+b1NwWdLeE9/bRjj+m5F3Zmh+kSM6eYF2Fs1RCH7fN932bNuto0PwnO/9+vg6yxpQYxQCL0ggCbfz5hW3FOGyuU7sTLXXYVqYWw5WqSC0sOfvQU2qMVA0EOVtxXx2JmC+ziHLWYvFHKdRlYTmfOex3jF78OUoghcQ8T71IIueF4909D/f2OB+PlGWxIugm1CEWZAcnZhgQ5uKh0i6PEyeDmp8ZKiIrJbdvGzvXQME2l5rpW0Vhmu1rf6xe7LnOv15YUu0q4olyqdVJwuuY2haNd/G2Pr51854VmNXN8T4mF16+1tYjAybeNJLfREpqNu5x18DL6/WDb81mvvH7WL2F9Xzenu2//c7/HlXz942EIwzjyP7qmp0Xc9dcOE8T59ORkwsVHh9O3N/fc393z+3tvRHBppk5Ly6Kgc0DWQyfyOURmGOxQCkGCgbxAnCBFGEcArtx4HAYOOxGdkO05JkLetbxBpYTLA+gQgwDWkeGIXA8wjIt1Fo4TyfiMTLsRtKQrKgoRkJK0AogUTRUT/yvxdFtBpiKOpgAhLoQIS4UsMLmbRwVqxg2ILy0Av7qfrDv08HLSCSFZLYlXM7tBnjaa0KsFtfYvgJFSwMtzJcSIwkZhNPGurpfv3Z16/iAtESgx+De0e2SlOvnVbULEqlCKcqSM3lpPRec4F8Ky7Iwzy6AkB0oVituijF4qGr+8RqyK0jdYG1ul0P1YtOV7BsixOT2oCUISwtzVvGrt2V7+eqliaufjpyODzwcb7l/uOX+7hW3t694dXu7Eirv73i4f+DheLSODjlTio+L4gmeUrB05yWasa40zZaZf/OmNWz9XItkLPk2JmE3JK72O66u9lwfrrju4lIHrvZ79uOO3TAyJieUx2Dd6/2xAr/bb9kSG5v1beSrNk7tvR8ZC//oxz7NNrF1eezChWiSrH9ZC03XyO/yrFvx9Oq/bpduS9c27MY/E1rCzcVXW0FIEEvS9fdvbYDFW43SJS7824Sm7Bir89CbH6ZU0Y199DgsRmK0eT8Mw2qbN3YUCUTJJvJH2713HJpdnMIxIlgLcla/UTx2a131/H000qYJIwSfm2+hztTF9kW3s/r4d72ISfr2GCPGRS/UCu5pS94miaKbd7dRuyY46dj2mvxsOFrtwn7zPHM+nxliYkzJMDUXnkopMS6DjaMabZ+NaNuzPuYJH4sV7F8lu89Bm+Dv5r3YQQmsSbatX93sx4UP1y7PZdy4vXCfz4dq68ZFIfmbNncjzX9sqSa74NrFMHTNpAkdt2gkaGmYma9fz2P5/1L3r7G2bcl9H/arMeaca+3Huefe231v3+4mu8Wn+KZtkZIsK5Yti7YoK04MGzYgJLANGwqSrwEC5EMSBEG+JAYcIAYMGDGS+Ik4URzLsuNIpmRRNEXTNCXRfJlkk91Nsrvv85yzn2vNOcaofKiqMefa53SzKZLS9rx3n7332usx55hjjKr617/+xb94+SGtrHf19ByCIOZijM0TfKV68amLvym+h9gO00crMDKPQyM+GwbLC2z9i8dwhOhca8U7Wa0J5BOiOKz7iKx4WZ/nGqSOVXhKW+Mz+oJv4Q7RYbNOwpde556i6xryUv/tOnrlEe/lMZUGVqpKDTKI+jnHqXuEuCXxSve5TOw0rr2liEMtXiOtAhXhHxnZ3yjdScTzP/aVXEDfsACfrxqFad6B3AkZq6inC1GWtVMUbPdzX0N9jrpAWBA7dNNBr9Q+b2sXm7IuydFRKeIZ8esjOwabLRfYx9Sf122nrusqbpn262RD8MYxysQ4ZqZxYJpGpmlkv5vWr2l0MXwnDYuRxHK2JgomwKNOavFCPvyUszAOGdlNjEm6cMdjOVJKDONoeT8vNChlFROSBCqNnVoO0eyCFXxnyaQBoohWFKp4oaM0IyeprYFWE8tcKM0EykpZWHq3sdzzk+fnFwzTxDBOKGkVZdMBUTH/AOFYGtf3RhbMw0AeBxNTKpUxQ847FHXSohWlm8iaiWmuInBmI0QzYQQN1wEhdyJ5L/a1JI0V6OdEGkYkW8FGw2JMUSFlw8GLj6fWIymKrXwNbO1ZWZaOgQ7D6LbBitnyMKDNccPIrfdju3/4Hqb0gpQoJmju8ym4EJHjmGVZBXqXRq0LIsr9O99GvXiDVI88/+R38Na7/w1R2Gr5ShM27ykf1viNDWa52lFbmyYa5+su05/bm2I53maNjTyW87UXe1tKYgT9ZB0WOyeiVVo9MqTHtcaWpZqgTRPDWlnj3PBSkE2x92CsVRV6Z8FlWaAOFjZ3bHVgSBOtNi9Klr5X11Koi4ujOOEqOvytuX/pdrO64IQlSIx7kfJohGIJn9DXjQ74AkFyQYaMDMm+l4SWjC4J6hGaCReZyIRtElVdBF8V6Zid9s15CN9PrTtua42hTIzjSE4mdpFZcYcuKCAQOrc55iqRF1qxxCFFPrlnt1zkO6y6xfWtmW2xuYeTz6phRzkE3cw3r9oMh5itKyL+upRdwKolL/ZrRtR1X3Api4d9CsNoTY1CqFssf15ao2qhHI5AYxwnpv2Os7M9436EYaB5vtu6jSbGllwYLwzfxiMyoJUmULWR3S6XWmwtNl2JoKHmsRnvlDxf85iPTWi+Ysor9gsb3Cq2UFXQ+iBiiFkSscRmzfZ388EN31Pk5NkRbwSZlk3M6yfit2Q9tx4vPThCVL+fgGxfYV8BNwSuaIKiRvweph3DvtHOz0hjRnY72rSH/TnH21vq8UibF+o8U5cFlkKqBWqFDeZStSJu8xptE1uu47rag/Va1nhzc63eyVP72G6RpdPLtIKu1t9764nbGIrtoWQT0NVMaoJUy7FQK0KhlYbURnLxKdQKULvoVHPB0Lr4PjrTyoLU4oWqHpOXQp2P1PmI+t9ASDRwkSr7TEiDksUoJgkxn74WE+tT97n8SzT4Xo/4CGwiovYN0VnFRTeM6o6kTJVsgrl5pOXBcKI8Iml7b+w93R3d7N92v42r1liWmePxSD1bSLszkmQnFVfL7+tKHm/aKIiLjka3V+NbaWtWKDok8zel9QZVKWUY0hqLxJ5vZ0iT2tdhxXzE3KypThPx/IH2/SOEp5I2qhhvxTrfWrFqI7tdi0IO90lRkERTkyooqBWRe6PN0qyAspTGslTrYI43f3P/qFZ1bp+tWms6sXLEWm0sLpK4VGWpRpyvmOjU0ow8XJrhdJlmxS6qZK2slP51c9LAnNTPN+yQANosx+DX8LCYs+ce/f4B3uRHrPgyWaFLCJMnNf6LarUmoBQSxUQcaQxJGcXGvSFW8JLwQqVHvs6+juOhNQ77Idu/fzU86wG/4uRPv1vY68P38Y+UVzz4EHfrv4nPKS+izTqsuXYAVSrFcB61PdRm45oHCFwl+ZtmCYq4Wxtv+Jk6m10euA0rt2IVltLOWdmKTFXPw4VgfMBrlpcaVsEpiWZqa5OxyDn0NYGyFQ+P8TjxEXT9tuW+ga99b28fzSUQTFwWy52HkEJgFy3Wb6xn5avMFed4xzm5n2/4inRB4cd0lDKDiy3k5LYIsZ1NM6rOOxWgz5sQn8bimirGKbSBNCwjRG7t3SGFFYt7ZpNA3WeM2HzFhdbJVsJn8jkgYimcPgNV/XMjnnOehoJGDrwLWjRaK4QQAVi84wz3V2wNv/XCf3XBsRdhPsxRdfw0eNLm/5CTcw4dPTMHsc9Vf1PKMnNsR8rhYIWykjnWg+GIzeYZkiw3XRtavA7AY7Gz/Rl5NMxil6xpaVsKmo4c9QXjIJzvJ1orFnOK82D01de5ueITP/dVY7P+LN033vJDIk6LfICJm+eOOUcM17kfGpysiqbGOI0eOj8uO2ZC6O5vqTekwQt+fbcxGOc0vmSLv7OOX8RxgS9HHuTEQPgcU7VCJm3BlQvnw9dOs4aWi+MjyQV6arOGCqom5jJOGcHuj+UkA1vo0Zx/9LrGT+Mb21vVeRXpZD89nTOx96/5B1vfsjnv+Kw1mqL/FK8wjC71ORPPiP3ihMvke1A42R1DPLmP2+vaCuLF8zyPK84Djpy1C803901nbwh251zQFy+u+fCjj7i6uuKFCzwdDvcsS3E/3/GihuMOA601w8IQLz41Adbz83Nee/o6H3/7Hb7xs7+PT3/jZ/jEO5/kY2++yTCMlJ4/qmy5YE0b8zz3uLLnHja5yq1z9dg4VQBzLcavdPG23ji+KVQhD82KmwWaNESrc+YcRzMCoNV7iTCINTofW7UGC2JxEc4Ht+JoNc6Vxy8tF2seOGaaY9cibgM9kRUmLupeTPc9YnkQbSTNlr8Rwy204eLLyWtIIg4s0AT1fMKYrbZjGgbnicjqw7jPUrRRaH5uwT3AC60Nm84YBzq4MPh8yS6glfPK36yqvs4MT+/5sCRmp5PlmpoAbdPc3a/X+B1h221dLirMapif+rLUisdlXvwqAlVJWklqGN5xqRyXYrxUnxPHT38Ph/0b6HyPfvMPMP/NH7H3cLH5nEfDNluD0mFB++y5cHV7y1wK17fXXJyf8eTyCZeXlzy9vGQ3TeRx5OzyArKQD5l5mdEN9oxWssAwiovdOF5UK7rQRZanlCh1oqhSmpLrFhd+HEf45ODiELDBDl1UTE1ASFP8rKTgTrP6bbGfpA2vqH+H3vgexyleFYMp2kXZcN9QA/MLO7kxedsQJrQKOoTrPqsqtob9E9YqN4+ZxH7utT6vfZx8+8wxSV3nt+MKgd1sEdR1NF91f4WTsCWe5nhSIIJh6yR8aLdjwTls2v+6xoYSvrYL6SHo7pz29/4QeriBn/8xdDn2sY2C/pfG3T8v4s6Ty/CB1j6mQg0OSPYmNmKc44TVTA2q1NxMGFxX3zj2o4e8TzxWMEHZ8OPjufTi8R5zqWE70bxEk3Y90scnNOXHq0JMetTSf4u4vIelm2dB4Idut5SOFdnTZJPvYb1vXdzKTkL7yazfT0SodOWnbVy+fqxnC7ocyX/+/0j9E3+W4S/8K5sIKZDuE0eD2DFOgrNwAX2uhd9lN33zaT7fY/7bVAgmJAQut+IeL0/lh8fJubx0rT4WaUXvYY1ZthzIly4GzMj92/8L9J/6XyH//v8afdUEYLtzrHGXrOXL/TaZ2Gz/5cSPizFom9g7+EHKKjQVXKp1T/3aZ3Ty0Kt/+bt+pJwZmgn3WEOrEdKIS/ygS6KKsLgC8JDhrkKuFV2OlmPcwW53Tp4mhnmh3VltrNSVVy/Q86VLVeZmjQvYNfI0MEhjlxNnKbG0kSdnO27Pd9wdZpgbRxqLlo5FGZfeNrhWFQZhHCfO9oPXDkyIJhcBsdudhsygA4jhcG13SfkD/yT1w9+En/9RWplpzmvXavc4CSYC6LG/NLWGKw1yVqbB+Mel2qoyfprlW7PXk6x1XxHPeWwn2ffpbHyiZA0vtpUb6kIfsSME/z/FXk8ji5pwl/Ozq9fLmp5qcr7AzHw4cjzOdh7J5CksBHQ7Wf3+lGJNhZfCUirnf/Xf5cM/+mfY/1f/EfKlX3UdhNapjL1iIeJUpQu6WLwtBrAm97XT2pRvnxrnY+ZyN/LkbOK1/Y5daqQ6U8oRxATQ8pC9Li5R/P6nlGC0pqbDYA0qjPNTeGzHUiw/mj3RkMeJaTIOgwlYO7dOCk1SFzcKW1BrozTzo7p6q0+mFBjiurGfxPTbeD1JIhOYCv64rH6R+4YBd5vvY7kpawZH51gkxRpb2mnQJHHYXfArb/0An3n2c/z823+I7//yj9qH+GYcvghYviql1T/OaoLEqdkcCT/TPaDNWNTNV3BBa9+nzSeF4BxKE5pYbir88BAXBueVdhHfTSNSf26IlFq+rNGozl+sJ7iTnnx5vhvhZ3/wz/KdP/V/5Rd/4J/nu//6v+aPb4SDw4fU4KVumnJu7t/WjgZ+utafxc2MexrvGXfZ50l8pRA7T4wq7EmQB4bdnrNq7JyGmB1QEy4upTJ70/HqPM7HdNzd3dt6cDxXvYlfCAcah0y8MZDvr61SZtu/Fs/rq8fmVZVWCsu8UJYFqj2epok0CAPJOI9IlBB1nYtaPK+bqucAYl461mDEXqL2txF8W5+3WMOuJI4pCA5/CdFANjUlJ2B3xvFb/ijSFna/+pOkMoN4LZbHFX1xA9uZJAYC2Z7dVqGr2ENqVed/ap96unm7xrpmSqvGP68Wt9fmotfV5s/lD/1LvPjL/xZP/vH/Gdf/9v+WstxZ/lgd+9DQ0nk5lEoaOhzrXobijSoce42lgdtqv5Z1BayHYG1PzD8xfDS+bwWUww6fCif7Y2yfFwg2D5xl+ySSrHEBaw6vqVKJWlhxm7pyAF/tY54eX7fQVMLAQAN5XDyJTE/ObS44iuDWjWQt2jhVi92KVNnnmNJzo7bViKBAxgaDRDOZDneKFoK8r8NgXcXINDHiWxUrshN8piQH6NU3M1f8bO7oRxFGM6Y9vTNx/4p7k6BVaspGukkuEZpMZEpbdoclIc0FESLQiDDKDbGqFyqFQfJk71IqS6kcjzP3B++m8PyKjz76iPfe/4D33v+Aj15ccXs4cmiNgqfEOsJi45UkMXz8sxy/8mteMNz65rFZm33SxeObKWcF1A/mxKnY1PYdIuVgTsjDRFXcr+YrtpaKtjsnaNir9rsdKWcm/z6Mo3WO9uKhsikCD1BM4vR9eLvB3pxzGOqTTuqP5CjLsQ+kaPLNUiAlV/y3wCgLDHnk7OKScRzZ784Ypz13N3svyr/lUGampbG0xJ7MJB4kSHQujlFp/pmbcXLEygBpwUxM6n6j4VEJzanPC/Xoqqgy18q7wxN+/O0f4B+tv843P32D/fm5b+iYgfG5aWC+p3h9fZWlGEDfl1yA7Aquphu0SHUK0ThOvP7GREoTkiY+/OhDluWAMlDbgKiTmNisP7+uFFt9C3KyJ7+dzEcWL2ZYmEs1A6XKi9trPrp6zvsffMCzF1fcH4621kYTKVqWhVIbux//d1j+wX+O3c/9p4xf+hnyOPD6a2d84u3X+cTbb5No3N9cU2YTZ6GCDMKUMvthZEiWTDEBPS+oLdUMA2qiNBB8AJpCbSaQxzBw9uQJr3/8Y1zdHbk5zsxzIaWBcX/O2eVrnD95wpMnr3N++YTx7ILl7p65VObiIKcYITuPE+P+nLw7J417NA1GGHDHUFtjOj9jPNszDIkXL654/vzF7/m6+e0ckTruxngTJHQbhRUGZBcdSoOTw5yAouJFSKIU1JNNVog8pIEhD1ZaWwvleGBJDjwkK0KRVqFZ9zE8waliQLCYIoWLhrigTMZcakdkkzY0Je+2mfnSfMl/0L6Zf2L4Rd7hFlUjqaVs92zYFe+4U7i+viUPE/uzc6b93os6wqlbg4WHAYN4srYGWO1/DyeKzTts91sjPthasw5B1Yn81rEsaQUtCMrFxTm1vMnx/sDx7p7jceaHfvJ/x4/9wf8l//Qv/6t8/K23eeNjH+Pi4glNTHBNvRhA3DcZEEqz3axpJH+SE+xzF8ZxA4G08G08MRfAS7Yu7k2yBW+qL9sw6Enkw+HA1dUVh8OBnKyL9W7abcQv0wZ8X7tIBVFDghyfYgRjzNxeJ5PxmY9HDsd7SpkZhsTF+Y7x6/bi/s4dQ8oo6snPQisLtRWmIbPfTUzTjlKtyGGaRs4vLzje37McjzQ1azNMO473d7RlZj9OnJ+ds0sDWhbKcUZro8yF++sbnn30jGfPrri/X0ilsRsqw1SY6sK4HOF4z/H22rugK00yM8pnlw/5XjJfyJf8Q8/+Gw7jjnR2gZaZ492R+XjPcTxS54KeF5jOsAXp/qGLiVoTI6ewN+1BeD9kBfN6sW63Q2C+cCS9Tn0rNmBGSuMqNIX0gsktkaPpRuHaSV290FILrS0ehBcHLSuIRi3amixCe/cl2y9TF2PrASnCKka57h0R5PWrCx8tXGhP5IfKVt9BIkBykSdbqu6PpDV2sHAjxWD174ZJtv6Z4SM+FA1InRRlu5YVGNpeEQVzFuY14548wiIVz9vQiwlfwnJC9MWEJyVaEzkgH0fBA8y2EmZVV1EH2cwv60CzCm81NeAY1FXbhVYWWh3J0rzIVaFl67TcmpNDIiar1GEgY/v5sZo/Q23MhwPH+cD97R2H+zvKbN26RXDBWid3oNSy0KoYiO7dJQO4lwB8+zSxORcCBxG3xshpB0JjHa3j/apk1onYWfiOAeSF6JQ/Lzqgp+Tdi9xvtjl5KjIVv9uHm69nwhrDCVDbmgtqbcIZ7ee1nvvXN6de/UR55aMPMIYAgjevCTG5Tjj879jxs7/0K+b3qANFKTGOO87OL9jv94yjiTyWsnA8HLi/u+Pu/pbb2zvu7+64v73j/njkeDj2/SlAsIbHGAWqFJsvvp+a2BTuE0IWJSdlHITdJOynzNkus58yuzExDjCkakSQ/VPmb/9h0vWXmL7wo6RyxzhYxzVhJKXGPCQTxM2gWliWe+7vjcSDwG63Z8gj05hJobvfrJO7INQKQ84MmBhwFis7EWcpqQOUHTvZANUmC++Cqc66zLqKdVhBtXcslET2xFbT1NdXgJ4d+NZGExN7aTQrKmsbvGYjYBOp67ivTY341JoV1sY6FwxDsftgRavVTruv644nNCuWjYJZ6zywGLbh4li1mohB2SQhWlM6kUNMZMo4yUb4Vi0rUC/qQsLeWT5nK2AI4DGJF6SDpEKQSsfBUjClKsdjpbTl7/Aq+trHu++9S60LNzc33N5cc3tnXy+uXnB19ZwXL654cWUirncuMDXPM/M8dxSgY9SKd7awI0UxkZzuYeovqNppC90KrH5B354REaYhsZ9cZOrMRKYuz8+5PDtfRaZ2E7tpMhGbnBiSxz9qoo0ShNpwjnyuWSe+tXikf/WndcdpY29Wm//yvr1iqtoveAOC+/WuW/ImhvO9utNTdB0TXaPnPkbxJq2pF6YorRlpWIJRsXlN/z2JCfU0I9Yk8bi2G1whWEhNleR+R9JV6DdnK3xp+TTptRYYB84kiCykxdefeieMpkgy/NYw3FXIpHhhuTu/OHW0zwf1azbMNhmpO1lMfNJJ9L8jx28pVPTqV7FOQk58/phl/uYnz9Z14trvzfzNLQJhrv/q18e9CNJNJ+GpJ0Tb9vGG1YGa0NTxeOzzZcjZRCfy0MWmpmHqpFxSjlKW7vuCcFPhr74wUu4/+CY8GWyuhnCFpDUph1/BCYH/wdh2MtDJY6/2tXqCKtbh5nURG54SpNbP2N4rkSicsJOOeFPFClWSNsNTorim53WUL97DJ07PanOd9HvUk1Rxb2OPcxHWVkM0xIjR6nhNiL+3zTVEQhFtJpQiIfhh5I3H5lOqRqHwKnxmj9sAGXbowr6s1xd71Zqwl+5bNC8+Cv8i4m9xYd14XYjW2na1waq6Xfut4gBdcYTk5yAx/uI+kO+vREzo+2yfWz4r1DqbNYxcLOH0JvUY1GyzpSE82eqiRuqEShOyzl7kmHr83zsZOZ5oHZ1Kj4keCszFVylWtCZCLyqQ/p/do1qsO53WZk0CSjkhjZRS12Ywpa5Fxe4vGmHJAF9J1s3OfDl/XE4+0TEH2Sxwuq8i23uSYo1A5FdTEhOcGgYTnBpHxtFE9IZkRIGEusClNeAx8lQmiUXx0eV+8KKH3W7k4mxPUu3dsh5EeX/Xj1grQx5MHECrd2W2HI0eG9Ybvfge4SQ5SVbILclyOr5VF8fJDAcCUBKJ2rxT93KkNptPUQQ45My435OHoTc9QDJNhSxqIirVhXmSoEmYtdGOC5KEaX/GuB9M9GlQypvvMHz4a6Czk3mtC/Vq65yEHCKWXrhMNfIEnudMKeJHy6UXbeRaYTF8vCpogkGNeKLVRf1EoVgMWiOmKTN5MMJP1x50XELBmrJoM9+rKjU1mljhi0jqRSuBuWtU2G2n+saeVSdh4TnwUrdCby48NLtIb7F7ocXWXx4yb370S8g0UfOOj3/lZ2wswJtJmOBa9MaRnjPeWEhfhuu+YI8lJ7z3NesiZdDcXkKzVKbvdXSBBxM7VlIekGFYyUR+7doq5XhPm+9+D1bK3/4R2J75DO5bN9sTlmZd4OJWqghDHkCsEDLRIglJWQ7oUqhlQWtjTJkxDd51b7R5UiutzNRlpi6VMi/OhTAC1bwcMVF927OjgMPEYTE8vCiarGOsVMfJxIQwEsZXQdWxhQnv6Q4yoimDDGQGmoxoWdA0UzOoVLd/laJW+JySzWlrNmEF00WSiTpXF7XQSq1GmM2lkqQgmhgGm0XVC1pVzdsycVTHyZJ3r3MrYHnGEHMBsxvJCsqSxINx5+zfhtlfJySaCPhgY+hOujZIRdF5gaI2Uj6mhqD6+gsSY1Wqi4nXpszV9tmWNsImYHM6BMJQhnFg2k2cne8Zp4EQ29cW2EWyAsLcyMliyKQCIbyTGpIU9TwhCFqF6niMDMYBCJ5Nwq7BZkn4KH4vH9GRuj/gh4B6oWu3ue4LBzKgIlEP5H8WkEgA2n1t7oNufcDoLh9xDbL6iNvjZCa5Lx85G3HfZttttt9zVY/jxX0r33tb67kT843E4w2P01pQwP2TXbwR6FwgAMnWHGQAzoYJ2Z8zXlxyd3XN4eaG4+0ten9A5xkdi3XNbMWLl9Ryc1XIgzAlWOpi4+Tn3gvmyT2vEmPwEGNZi+ix9/WYT8CFZViBG9Z8FGJ54G7PxfdZjxdMVH8kSyJVGJt9cTxyuLtjnitZMlPKDFg+x5rzNLKfc6mFMs8sy5FltiLKpJbJopnPXI8H6jKjywKtEr21Ecu9mE3zc/ZGALViBWge04ha8YC4/45joLU+PgL9b334Puvzze6mF1mMI9P5GWdPzmE5om1B0og0vGDcCbdOcNfNXNfsvoCYHS3Lwv39LYf9nsuzC8Y8QF5jPhvX6jiXkeZbLbRihTQ5eew7jB5vGZRu3V4Hj48buQ3gcQ4YCb30nFRwoFbMronzJHX1ezqOBhtsuvlzAFVybYw1MWQ66d6Wd44n+Z4GrSZqG05y060ptSiliJ9XNjEbBGs2ZY/bOTlzZ1H7WzNREvMTlXnxjrQYflCBpZmdbZ0oHQKmzUNQj706bmX+3RoNQDRYEbd/TStmRtZYtH+16gJwXvQgmLhvSuSkfv98jAz0RWtFWL+SVhPzojEIDOJzyUche869lcdly1bMXDaQ38vYzAne1WHDrx5fPnyPUxz66zkvO6vTJ/+djme9gCJnAt0PXHHx06MYVmnunW7mpJ++ht8bL7Av9fkumN8p4LPc85XuLwZh3Aj3eEMkeqFV2HqQzltOw4B4QYPhAyPDMJLz4A37jA+SU9DZXUDIhVmJ3Hfc8x73naKcFo/507bYpSprdUT4E3bv1eNJDZ/C38nikdX2Sn8f2cxN6c3dwq8Jvl9oNzeRU7f6ERyG/Y3kiKd9clihhjXKEFGzT0IX8bcGDu6jOH5kLlHkZmw12a5ToJ5ypk95BI6xdcGn9VBW+xf5tV4MFvMrMFH/g1JXv6rPmdpzqq0WYr1ETiqEZ+LM7UibeSV8rTX+cL+RsN9+EQ01MbVsY7YU399fyurE5wWusb6vOOZTnQc2TjsGBpaWTLAb55dsROsPhwPLPHM7mD8/TBNpzFxcXDLtL40vIMY3zcAwCNNuIGWhLSa6qyQT7o379jVA34e5hMgdbDlAMV5rV/Utj3EbQ6zfrSDV7VTbfl68ZzOegYrxnR/TEVwzx7BM4cC/SzTUgpc2B13n1Un+ReMreAU+7/tzPB6y6M4EFpz7vopm2F+thtAbc7TG9dU1rVbmwz3Hwz3Lsji+rex3OzSPRGPn5s2FRUI8O4Qe1lhtta0en/hnB4bf/6YREwYPbzMHgLBAaOviFS/Zar/+5j8b32UzJj0mfDh3rQ2FbJ754Db4H6IpZfKcQhTGboa9g31CcsfW5qzh/Pf3R+7u77i5ueHq6prrq2teXBsX4fbulru7A4fj0QTvG6DbxoBxz40fXGMcxET4z/d73njjTd5++x3e+dSn+cbPfBNvf+Id3njzTS6fPMFEwkov6Dw7P+fs4oLd2RnDOIIkjseF/e0Nu2nHsiuE8BR+J1YM7/EdWqrnHBWcB681sA3DtaUImhWK0kpjKZXWIKdCzkrOkGVAmolPjYA6vhA52eD4FEyUoMXvaqKz0sSLBl3kzPdt29e8oXnHOn0+Npuf1fd/xQStE4msyfBP1Lk5YnUlbrNqMxHceZkZsjUKWQbLvQxe3Glr33yUqkpzYm7a+DC27IwfFU35zKcz0VBrgqQMYkLbuJCde5+riFmzuDClxKBCzs1yQ2q1MfbaNT7V8Bcdy29JKZJY1ISLFbcj0qgpoSl53sJyCEVNIKqpCTkszXhJRRvHuXL3Cz9JWaDszrn+Wz9K8RjQfEPjgYlmBjHuU9NqtXouol0r3N0duL2758XVDRcXt7x2ccnt06dcXl6w3++YxpHd+QXDbmKaZ+b5wP3tDctypCwLgjK1TJYQOxZasThz0cSswgHhPmdGGRAdqDvFONmP5wi3eIOirful70V9lw2/zn27NRdz6qufvqPPA9nUznRfMW2eTReiaigroAhbcc5YZwpsTrnHBg3cKKnVyPhbaDQowXxbgb5WUtjRlJDXv4H63/szTD/950lf+ZzToFc0RIID36/YvctYA6dhTB/PfgUnOdyNHYBIoa9CS15TEpyIbZgUvnMI4RoGb1iGfvZ70LrA5Zvo29+E/vrP+3hu7eRpbBWxX/ftmq63x+OcmAO4bW+0ni+IcUrJGiaBF3w7brn91IilTER1jct0g/v0KeBD1KpdfxefwiXANbgh9KaZj+/YeiLrfNgefT6fTqOTv4eIdH+ac+kCi7b1hdVhfZUzWVeSdJ/KxJ/Dn1oft3PSk+efvJdsdov7G9J/9K/4HI/P2vi48cmvfwKuP0DLsr639k+w8fELVIm1dTJKL/2rrJ9l89c/cTNe2wE5vQx9xWP4/IsxwXuvrncuMASRV93NOPzES4H/x//m5S3yFUfAGVZPttn+3P8/mTz9pq9XYntBrGW6PW89r8OD/fNV3vGDN+5/ijzZpubgER1dkKVinPhUaZ4LQzIMg83qbP7SrMqdam9YTquMKTGMO/ay7kfWAMAatw0tMTQxcSkXyKytUXJiqDOtLlaLLsqY4XzMXOwy5/vE7Dh01UaWxDBY7ck4Wt2xJBMeGlwkXEhr7gfp8VX8a3m+RvnmH6TdPIOPf5b21u9Df/MXe4xhXDOl+kJKzXKzxJfnDauaqEaIuXobPxrCoJlMckxpFW7dECGcy7TGh6h6E2aPMzZxVYrAldaxILAcnHHfC2Wx72usYnO4lMIyz1b/LYmUWhf0AM9VVONoLYsJyizL4mJThf1/9n+jocxu4laBqdWG4GundW6v1XqGfUtJkGSczpyUCeEsZy6niSe7HU92Oy52I7ktRDn6ytg2PwPP8Vk1b4jnZPN/5wXu79H6uPB7sD1IxBpNjePEbn/G/mzPNE0MKVm8sBQWWajisUOrHg84T8eFdxMmqhXxTHD3kgSXd93P1zqKDQ59sg/5Xr1Op+5imX/g853WcSqbczF3DOETEZpU9vfP+I5f/8t88RN/gO/79b9MlWiwEu+/CvaJKE0aOWPNWJPzEiW7IM8W+5C+xmo17DI0PUJg6qtaEznNu6nv6bL5PepItr66NUPx927hYzUXWbN12bp/F19rxUOcz/f/2P+Jn/1D/xO+56//a/2xuDddDLWt92k9jwd1ruE1uK/S7138VbfvvbWu/lwRJHRUUiahDK7xIHkgTxN7tXptGTJpGEjjiIpxQY7zwv3hwOFwtEbkjywfXVvwMnxf8vi7c2uJtbLOK2240E/tzU6jaVqr1fbTebF8f1Pncw7dzyDqDLH1QnUfpJqfX6Si3tg++OHhx0cDcIvx2sm67XurVHuOgy4SMYUKLXk8+elvteeO5/DGZxm+9Isdy0jOKbITpMcoPUQUcSxytZERq6jXX5RSvDoE96dW37HXeeWBevFxykdfNrEp1/FYmgliL61x++f+ZT7+T/7P+c1/739POR4sR61qUGbbriH6+XarvZoB87Y3E1yIkGvFb9YIGbPVL8VS9Byy7Wv+u3Qqsb2H++ppEz+t4bWfWyQQT4PMzThhGNgqC9R9hfAvm0+lk+uPi/ktjq9boqAsiwNa6gTOzNrtWvvmrM3DmCDDA9I2XeTTqmQcgxMLL8LyFsrHhkL3yRaiVoa8NUwRrSKyOPagSDZhh9odIX/fZkVMzT+/pURL2UnA/vyEFRqmZMGZ382V4O0b88YRk2ZOBKH0qYMJiSQX5JJNN2Ni4rMS7MXBz9acwF6ZS+E4z5TamJfC3eHA8xfXfPTRM9597wPef/8DPvzoGVfXt9wfZxaFRXxYJBIksXEnzr79D3H5g3+aZ3/l3+H+i7/Q7+l2fshLj6yHKhvV8N/68JD2pHA6klORJOkG2mQdKaVw0IN/ngGm0zQxeNfycRxJybpjp5xNqCOM68bwbpNn4bSEmmZcSy9WfWRCU/icQFx4JpwWrSd4X1PrFlARkJG8v+BJHjh/8pTj6/d89P4H3N5cc5gXjvczxypcMLDfWTI9DJtKFAa2dayCYEXuwVitgGR3APJKKCS582NOWC2NQ5lZtPI3Pv49/NH2JX788lv5w+cHGMduPPB1r1hhU+vSce6MDi6yo2s3LNsPBCPRN5JMpKxdjbohSM5cPnkTZUDTyEcfvs+8HFEKF8MEMtinaKNpQb3LLAAqRDdzbdVEGaShWqnFkrtK5TDfcX13x83dgbvjkaubG26XI7MLD42jJbxba4ziao7AxY//3xlGqMm6Yrx5PvLpt57wmW/4OL/+61/mxbMX3Fzd05bGNGSmLOzywCQZ6sLgJMtaCrlWE2LJqxBeAxMgkIGlwk4y09kFl689ZX9xyc3xyIIi02TiN9MZ03TO/vwJl0/e5OLyNabdOZJGmsxUSTCO5shFYDlOyDBBnoAR1UQtjdIWNC2mOO0q+Lv9iFK5v7//PV82f3vHGsSIdCvhiSF3wyX8Xe8cMiYjkgHgQISKdXfLmWEYmKaJKZtwhgnhLAw5U/3vraRVHIZkFliyF6c2EA/ckB4IkweMyGiRrc1NJ/ikxF86fJYfnn6DHynfxr8w/rwRC0shyUCehLEpIgNNbymlcHt7y/76mmGc2J9fdAb76ihZ0BbIf6j7xmdbYLEGRtvx3KaUDax8QMJrxZLlvsY+bBOTVp4yM44TT5++bgXkzbr+gPLP/sa/yeuf/DRvvvmGdY8fJuZSDWRxz0IjMHW/xwQEauSfjDglJrpiL4hiNbvGlMQL2nK3TWazXIRl81gQMmqtHA4H7u7uuL6+5nAw+7U/O2O/2zONIynbzhZFriJBaNX1/vp0CL9A3dfZqrIippJ8f3/H4XBPa4X9biKzZ3qEQlMXF+c2xq1yd1O4OR64u71htxuZhjfIObPMR54/e8bF5TkXF+fcXF9z9eIFOQmvPbnkY6+/TqqVgyv2Zuz+LW1hOc7Mx5mrD5/z/lfe5aP3nzHfz5SjMlTzE8+Hiadn5+yHjGhjLgvSqikg54FjTtxp4u3juzydv8C7RWmaqOOeOp6juaBSqEWZ72dSgTIuJryRBnIaGcaRPGTQYl8YQRjotksd/e3eRo+/gw4Y+03M39gftmC8rassCzV72Un4zjHpfbJ0wEZD+MqSyqrFAQIrzFSPOru8gQcuUdDSYQjn+cWWhQt42Da0rvcvXH4Ln7n5NSylv73QPhrh+Hog5vPcLr5ff5K1/CuAoh6gbXxv9RESf70BiWtwtQVtTgAcVRNE2RaFO8gqnoDtf1MT4rP6vcfmL8p2aHx8kgWmXvBghUzqxQ8uHhGFr9iUyf5D8MdEoSXrpCt4R2Rx4dPNnhkkJRObMj/RtDCNrTkkIzlIa+g4oEMmKYw5s5TFOjwnoS2Lkd+PhXZ/dLEaZTkeWeYjh/t75uMRmomsjoOJ+hrpwGKApRTbbyLlkjGRyJRN7GpwAQlfdxFG29YaxT1GSIIHBNxXhD4PkzEhULy+/vR1a1yyFsurZxclnZL4wsZ08JEVMBEx0m8v/mrqIjqCJi9sRa3YlTWWiuNV17L+TU9+3n49/PtXex0PwdTN3nU6fjF1V7/rty9y8Xt//MoXf50gCOH7/jjs2O327Pd7drvJC/2tY/n9/R1393fc398yH48sx9mK4ZsyDJk8DBugF9+bQ4zANljV2NNNfGVMwjAkxizsxsR+zOx3if2U2A3CkJoXeFhqY3nnu8jHZ7Sn34A8fYfh+eesWE+EaUrAwJCgLCZAlLJSy8zxcG8+it+VtLci9kFMSNHIDrX7iSpeuKleGBhzRaGp7cchQNABymagnah1Ru9Wzpw0S8qpk6okdUDfVql6cZYTseI9adSaaFIR8S43JzZ1BcPiNVWri1VXahOqRpfa9QtNiIrjM1AYObz2Nun9L/RugK2tIgRLFFfW2gUK1s68W3GpFZwPexOiCil7ccqgyJBoDWpd+nxJCUuKDhZzdMEE8X0kYUWZLrSec+qx+7w0lvloogyP6PjCFz5PrYXr6ytubq65vb/l7v6G69trrm+uXYDqjrv7A8fjkWWZXeShrj7Qxn9oXqoViZ++y7yqIJfuXnfcCl3LWCQJUzbxhrNp5Hw3cX624/LinCeXl7x2eclrlxcmNrXfc7bbsRtHppx7QZElniBL9W7TXm+ZgkBnPkvX7BXZnJUfIqs/9tJV+M8P9894n1ivus7/raCJP7m/40tEg82vyXeZHjer+3GOI7VePKyWoG7dMT19o0BnVT0R72K6TVciewdKDTNs4KJdYom/TQIsfMMudhK+4OrdGkilkdQ2MnGNcdsITVmhTRQJtC6UYAmUVQos1natlVITQw37/fjs2O/JcTJN1oQ+/fsrCOYnL1l9fNfj8BeGcyA99oho5KsXXG2IxM1sYcWKbZIUUloIodyMEwtw4VzJDF6sLQjDOPpemk7WzOfuvXixKb92C9/zpJnv6EXdySbo5ty046w9kNfVl3ulv/Ng2W+H+WuO5YPnd9zglcfLH/LV3jvO8RevG//hlyo/9LrwWdnEtq/6CtGvyAkRuaHWidCRHOwNH/rkCXu2LSbSOJkTgblhGBwjejzHNh+BPhhnJ062WjvxgfDr4QRbEmcZRtHD4sJJi3eSN+xofU1fCZGXeoBXvbSnv2LuyWZdiUift8kbO7SmRurdFE1sk5sp3Cy1TEJE5/FYB0Ac47AQ28nOErlD6TuJbISmJJuNCYJDJN2bd4eOAl8zFavoZ4hMmW9W4uN77Jo8KR5HrfZezYWmbmXifpiYbm9X8YzF520NTDNylFj+JIvlP11kSj2P2KTLRWzyU7Aa55fnk8WK0jsjxk0Kn29IybpiTyO7aWQasosw+3VG/C9WNJCzuPiz73UuPjUNA/vdRDk/YxBhP+0wDHi7qz+OI+dMiXWCic5lSRCtdppSC9RiJIbBC/dEhVZsTaoIWfYMWFGG+jwwkTjvAlcXtM60cjQBK12FuabdnsmFpnLOKI5JRFwk0IrjbTTLM2uioNyVxjQXdi1xfnZG+dinuf79f5jXf/4vc/n+LzmxWwAT9tVSaN78KAgGIR5i+cGVaJ8w0qThjUppFV1mUqtm58aBKplJEsOQuo/Yyrzuxe4D2f2XXnjcY6im3T6mZLFhrdUIj6rkrC7AbIUFWUJQRTfkw811bGxFELKqtk5GrLUyLxZX1TKbyFR1MYakZIRxsHN564OfN7JNDuLFqWB3FOjHngl0DkKzSUKA8TZTZO3ylSBhxbxNhFqPln8wV5PkoszqWCoJEwRS+5vkEe2xvgtV2EShHh6X0JTlxIw4SFVqC8E9K1QnDYYfO+YIYnbN90VqNRyvWvOc0hqLCMthoux2jCKUXIFEXSp1nlnmxYlUixNSF47LTKkzKiaUp4FBJEHI9vxU0dxQaQwUlGLY/DARshoojmNi85sEeSRpQecBlQmRHTmdUdMBlSOaR9sDWoNWaFWoekSx9kRNis8XQDKV5NwYK7AtrdF0pjWh7QTZOZ7QTMhJMohYPr1h0leoMgyObbifKtljSDAfqDXDQWpDpJEHW/OBieC+gWrtRKHsBkqCs9Og1UYqisyF3JQpZ8ZxRJOwaFuFH8XliarzbQZfS2q8jQruVydojbIstGWBpgz7kXGaGHYTKQ8mytPch5dkpGtJtFpJKFOCyQUMUCMdDllcCHzx9SW07L59agg7u6aUyeI4WrXxa+GnAqqPC/eI49XW1fFifD9yv+EUTo09avMaAavCqtvwaP0cOX3ub9uyq4tIxLvEPiqWJ4iz6rGNCJKdo9D93YgrPDYSt80Px0OMgL8lHLc8IXthTJnzYUfenzOeXzBeX3O8uWW+v6Mc7tF5QRdBWyUHxgAm9E0i6QCs3V4DWw+4wXLw6zWArLgEfv7aaFUIAfivVqAxZPM/jLCn3WbHkSQx5pExT+zSxMhAbgqz7Tnt0KiHBRY14bVhYEg5ThStSxc8XYp1PG11MbGtyNm7YC2t0ObZBaacNK3u59Via9yFWxV1v0Xc9glON2QtNl9xENXKJsv5351DWIsw3A2PZjR5HNhd7NH5Ce14x1KOINUaD0kyoVAZjIXaPPcbwn4+Ll1AuVUOR+MLLBczu/ORaZqs6KDaSh5EkLxt/tKopZjYy5QZh4HdMLkQaKHUsBORt3S5GcfFW6u04gIwRAO1iMnsu6eQLB7zOD1idRETuMpJTCSxP8d80bwYCT/5e2YxLqcVGiaiUYJ1Qk3UasW7rbpwggroQIgKSstQDbv20KrnuJPnL0sxDMHsrFJqw8xNthhLxMSzEPqOH5xOjT3AccvwRyXQKucCyZaMb/Peuula12lB3E1stP1EmzLp2XOzTk4MtmYQXnSZXHjKea5dMDKpNztbPymjDGLfs9h7RWNIu2+xFh/P8VB8ZPv99Nju/7hNWyVivuaxwXjNx/l6xsDu6cvP/F2IaQOWYoOZ6wav8s+33ExCyOv9d0b3WmTTkJo89sTvsQmeBf8OjZjP1nxwhSJCT5vTitqCwFLCJocNav33TfGiD5eIkB1nQl2oOg8M42BCU8PgYjJrjCUEgGtz1eH3FYvc3I11oNacr/axXJ0SkcDZfYY49qsxbg3L+SErDyVcoO0J4HMxeVCGbM7L99mUrLkgApKhyaOzZOq8i6YhRhO8dGucgBi6ZLwP2yPV7XJr4iK4IN4EEN9/7b4b3gCNKqee2JZfFK8LmY2Xz1H79xj+1nPDXhDl9jFEh9RvrFTz1aPRq4mQhr+xYpzEnF5hYd8KNs7ub+MQgabFRDtyNv6v2LW25raC1Ue0Izgj8SbbN1TyMDKOE6M0yrSHannmlCcXhpo5Hu5YjjO3d7csy0wkQrIkhsniJhM9MW61abIYZjfTPI/r/K0N7984P5sTUn3lvXqVgNj2HvaftVn3I05zrR2b7TlWs/lrHk4IUbN+o7B1LdIs5/bYOPjmDHafn61t8od0fSYQl7Xas+BZoc4D8idFwV4svfgn9u/gMgCO2/puJQEn2WckMXH8u8PBmh8fDoaduGh8U+XyzBogDftsuVVtUC0nllRX7sD2ygNT3caMqj2Hvd3N4/eYWc3v9SZ4M/8vhS2I1zrPuM+LdXxiHF45X90/67ZP11oCw9kecgY9rvRmRs03CfXiy7ARUTCdB6sNqLUxz4W7+yPXN7dcXV3z/Plznj1/zosXL7i9veMwzxxna9hcKyjZBb9jbbhUqCpLqRwOR+ZqQun7/Rlnl3tef+NjvP3OO3zyk5/i7U98kqdvvM7+3ESkUrIiyjFZHjKJsF8W9oeD4TPAvCzc3Nyy252x2x8onoOM5mXGuX6cnCoIu2BzbZRkDdxUu7+cm5ArvpYGGl7zshQEE/gdBxizcxSbMonxpFSEpXldWlJaFmhCatlEl4vNlCqNqoWyKHOZIQ8maD0YF6DzYFVJbbPeUcP0pFFIUZaCIIxNkE9/J8OXfsF3REVlLQBGbf4XVYpWw7lbZiiWl+4cnojnkvstoj1ns+bzWrfN3edGwDnuAiy1krb8P1iLsxXD48S+VzPH1nAIKHNZc3r91bgtt1+LKktrzCq+1jXg815DQqnW4AILc+e5mJiDJHTcU6nc3N1xcztbPdvf/DGKwuxiACkNpGRiT4sWhuzjVBVTF/bmMdnyZM19n1JnltK4u5+5urvn/OKM8/MzLs7POT/bs9vtyGfn7KaRqsqxFMpiDQ+O80xu1kDcyjJMGKLSrHh2gOOxccuBUoVxXFYC7SM5eq0XUahLnyvJY9zgOYf9sbFTUjPRuiorl3X9kk1un57TMbsRPindvoTIVNj/Nc7wk+p+/moYdfsn/27xkMsfNlnDv02xu6BOUfc6T0J0SpHv/0dJP/OXOH7/DzN86V9FWiVF/CDml2T/vlYEncYn4Wfad2dDbQxmjLHZGI3TW/FOJDaVGHRvVmfj3guowThP4vmCZli2/sJPwPf8UXjvi+gXf251Dvo5qI8H/X2Dexi5NFUlN4t3BIim1wFJxvxIYr7mOFheYBjG3jBdPW7cNtKN6xfHmLrNDt9/k6MH7SFazKt17qyxHP546jnI375//3t5RBx/4iCGJ7IhFtgly8bvWcNT28nX2Ka/S4u5G8+NdRbPfGDb9VWPSV9N5l/G9zjfOJ91tm9mEg+RkzXW2qxlFD72DdTv/0eRz/8t+NW/gZaZbR7g4c544pY8uKXbX9caqMAw2JyzPWG1y/2ETt+flz+s+7kvPXezT775STjcwv0VLz9jM+fXrW2dBtvPgo73hd0kfFB9cPkPpn6/gtgu3OcOYam2eZ7q1s9+uE62j514/V/l6/EcFaW4oAatIFSQkZqSNf8B0jAy5oE0CcOgIIW5Lb0xVVsWBhSmc15DyFoZEgxiohxSE1W8PndJ1FSs+XMxd8qwdBNQywn2Wdjvsn2NmSFXcg0eF4wulrL6a0CDWirHo5K0Im0gTSNtHBjGjFr39W6LUSX97H9G+94fpv3KT6C/+QsWs/hOEFiKei84e7wxho1PIQ7RTGgqmd30DnTQ/H1wzqQYjjsk5+G7AEh2f69J+Hfa8adoCrnm0CwXkKoLlfSpZE2qooFULWuj5eDDbxv6qeNQ1UVtWjWRllrVao5LZSmNslSbG1X9uWtVT6gcrevc8Key4RwmEfJgzWp7Qz4fu5yE3ZC5mAaenO253O85GwZGYEiCDBnSgPgNaK1BUuujHR6EZFLyOuo0uCCONzR8ZMf+/IKcM2f7nTVTPjehqXEYSZg47jzPcDhYXrBWK+elmICuN9HO2kituTBl6hzNbRPW7fGQC7vWmNkhJ86iPwc6VccwBe3CUmEjrF5aMOEc5xZVoYpwfvs+3/X5v2i6HyJEkwZfSH1Dj1jLOE9Wk2wCU82/b/U21qO1VWAqNujOi/f3zeKNknP2Wu7NXuH+tWzGJ3JysV66r+hfget3UdF+ObKxH3E6jqWIdNv13T/xr7s92Y7zxtfXVRi1tQ2eFc+U9TX+EVjOTV5tevoD65dqckzGcv+2Hw2mK1Abg8e3w7Rj7+LbZxeX5HEEEe6PMzc3t1zf3HB9fW246iM6hiH3Pannm0O468Sn8LmQHuaJ/Ks2b1DgQlPOpcZxw5gnzQUTm++Knb8bQlUNylJ8HQS+7bzezvGzuvVoZKsaHFa7hgKG5yrQHL8IjqAIIg35lf+a9q0/gJSF9sWfYQ7P0nGO7IK/6k5Ne+ebSV/+FZ8V8VzoYkmuQKuqlI99Gv3oy7T5aOfV5yHrmkgDfPa70W/4Tpa/8RdZ3v+C8bOA0qxp3uLcw9/49/8PJ3x1E/iPNaUrh/GBg2bNg7s3dsIrjhAtosSXPC3ZPN5xxG096IZrLSvXuuMzElCRPFxR25PcnF3sHZ6B8bGVZm/kjC8Xa2we8/v6fOAw68uL+qXj65YomOd5JSmIdbAMgSjUC9m9g0oTIQ/0zhZmXKtP8AbZB9AHyuqeA2DDku8epMYeHoFzkWbEWwdRHsqM1dxogyuvpcQHF5/iUo88LTfW0VRMbKemREqlg3ktwD3vbJOToGl7czeDYdG0TQzJkKolTcRB/S45ZoVLtOxBclozB7oKTC3VFDnNUDcO88zd/YGmcJhnnj2/4ktfeZcvffldPvjgGdc3txyPM0uppggf3m3Cp5ZtFiiQMud/zw9x87N/jcvv/0e4/8Iv8DUPffjAw5Dnd3a8ys7EvI1O1MfjERSWZelCUzllsgMe6sVoUTwQ3atrsw6csQE9vKjVONMN9KM73C5HFHrqHNhhBeS+PiRBNvGgYVSG6RyVkXF/zvX1Ncf7ew5Lpd3eU6qymyYvJmZVV87qAjpKtawNkhyccAVE0C7q1NddWp0oBZvHrVBF+dPHn+evvP738j/9+HPScNkB7bjGNTr3HbKtGyysDkpPRmvrnyPkE1xt3cBhnEbOL+HpsnA8ztzcXFFaYZmtU4MMbrirG2OtiFo3OcsaucCVNHtS39uKJXdur3hxc8P13T1zUe4XE3C6/9a/n/SLP4omenEHori+AVbeDbsMeRLeeuOct9644PJsYj7ccfX8isP9kSTKmJL10VEjqwnKmIQMaLPEgSRhzOaIVVbC1dAgpYHd7pyzy6fsLp7QUuKwLJBHJBsBO09nTLtzdvtL9uevsdtfWqcUhEqiSkJGWdeJJmQYSeOEpAElY+Qx4TgfqVrY7SfSkhjGkWHIXdToUR0BqokvNE8qd3AJ7fNJ3HAPOTPmxDQNqCHvPRiw9WME83EcmMZVHM/ex4WWavUkGd35D/vXBGs41kCk9gjKzilEPkzMwAoXfFG6Y/hnn36Rf/P6G/izTz6H6I5SvdujA/zjkNjvrUDycDhSlsL1i2sTyxknhmnwwMbOd43WNpGb6ubh2JHCldmCW/Y3e0qQXIorSLvQlDakVd5vO35q+Th7Fn5AfpO3xsowjrzxxhsMQ+bp66+hqpyfnXP55An7sz0iiaUFIdTtKEFOsZsYjhgE6cFA6rEXBanvJ6071yklhmFgyAY6pNifVqUqxIWoQgBrWWx+X1294ObmFhFht9txfnZmSaw8bBSWHfzJ3r0n5pk7PW3rvLuDSxCA3bkty8Lh/o7leIBW2Y0DbRHKoyNrQDneYzenkbQyJaFNA2MeLOlarDv97c0tgpHZ7m7vuL66otWFMSfGt95icFu1JX7Pdweunr3g+sUL3vvyV/jKb/wmh9s7Ukvs8oDWRl2UpJasT3mHDhPzMDGngdKUq/sjL+bC87sDd/NMqYUsjYsxc7F/YvanwaBKWo601ljmBV2q2xwhpZE8GgGPDGQedFOMkB7Mlp+CGAa01RVc7vNk+7v6vmRrrcqCcFxBNH0QTjgo0DwYC9JWF21ECUJZ/108UavbcxUPlJxoI9KJhL4x2jk1+/2XXvsu/tbrP8hNfsJ3Pf+ZnnRcXayI/tL2Ajfbsfn6RqDUTfCyfua2qMFuz/b941yDQLkCMjGWIQgT4I0lFH2PyO5z+Fo3wRe62vKaUHw8R+5AtoMzPoaJzEACMcBWaAbaNFyMdp1rqHYyToxlEidliPZCvRCmWkXy/DYmCNE+29/NSAhwPCYGMRIItcE4MKREGU1Qd5kLB4UZtdjxMFPu7slqYG/1ot4QF5GmtLQmssNXM1GokJdpSHQoUCvW3v7XF0oHI9b/ms+JiB+2gN1JOqubuw6BIJJ7kZk929ZUizGLwTXHvQv6ROeUVwlN+ac9APK94EXFAYDKqlASPrR/jMhm/put0YiNHoIFD37fAprxvq963qseCxKYnXvsHw9fFet6O7aP73jvo498PlisP6SRnA7k4dY7/GYvsLJEyrLMzPORpSygRmIYxp35DZ7QsIT/5qsUK77weEjEnjcM1q10zJlpHNnv4GwHu50wTZlxEHJW8xl97jdt7D7/I8zf9CfYffTzjC9+2WLKEPtWE6XKg41/87nTWjXht8PhRNwJbbRhx+Bg4zAMfQmEgHNrStHSFdyDviiY3+oOL6ciFDFvpNuKU4AMAnU0MW/7Pei9vWAfIzJLAHvxvo0OVEvOm+RFALbu1nbbYl1nolshIl4MY0mtWYXrT30nd699kt2xoL/x366JsV6E610C3a6vS94Lfrrf1x2EFTjMJp4jXkyespgwcVNk0A4MDzl7YanhVBEHd9wsKaaXYwWZloCI4uaK2f7HleT6/Oc/TymF65srrm+uORzvuT/ec3d/66JtJjA1z0sf54hLbeqIx9ixZ0aSLxG0DYnWUV8Dy9rOveQFPoPA+W7k4mzP+X7H2X7HxdkZF+dnPLm84MmTS55cXHB5ccb52Rlnux37aWQccu8GacXljZYw8idqovfarHCd2K+3Z7E9MVnPT+iCw/jVbu3D9jUhEBwx20NBmK0/s/74ir1YtuMWNm8VEoljLTaysW7VYx9dY8Rt0WgI6qmrByVZxRfB7Yi67+V3Nwqy7LpsLx2GvM4F6LYt/FmDq7QnQ6UU1Auil2aFb7bokjUL8Hg+/AgbggD/w4e2eNMIjTDURKkWHw7afN97XMcJIUykz4HfDRxUv8rP/fMePN5/jz2yz9N+gjHZ7W6L2pc+XBsdceC0cMrveaksLH3eJYJEl7pvO6SBcRj6Pd4pDKOJl4SdUoXvvVCK+3XfeYYV7/i5pmqEZmkxx5Wffl75gx+zwsSwgbEeHxZYxSXbY35ffJziDw8vXU9+ePn94kc9eaKePBgQbP897obvR0GQ/M/fL/yDHxN+9IPE/+j19tJeEuO/Jr3X7ktBfG9hBzeCi+1EeDFivE7R7ucdpxn3KOf0SIWmVgJA5JNW8oD5YdX3n/4aVS9SjtckF65VG6tSKHNhGRZmx55CPDZihV9v53xKKucJJ6uHcGU6KTrqdsI2ypN4KAgdPbzxnyJcMKws9eLpSH52wSbZ7L9qoqCtKkom95jD6MJrd51NAjuFR+f7dwqCqfRCwojrTcxzMSGeFli9va650OeyLNbxbp6963i1uZNyz/MlF/SSbiOdlFUrd2nH51/7Fg4MfOL+yHjzJReZKi502YjOUuEPq9vwEJki22NNpH9GdNXuX80EXdausycrlTwIo2akOnHahaKGnBhHE4g686/dNDJky18S80rdamvyfGmNyWrvkxLTOHBxtieLUvZ7WrViu/zIMA+A3TShpUKxYhoUIz45liYZEGs0YFqk6vNbvThPUMmd3Dv63I18rGqlLgtlnqEWTPTOhDDHPDCMO3b7c8Zp9AYHGRkyKhkTvQ3C24qXiCmVA1BIHGpCdxe89vYnufqef5izX/4prr/tj3Lxwefw1L4Tp/ycmlix32DF65LE7qXvF1uyUcckfB/W1lPDFBJWLlGY1PcIsQKrUmpvpBHNkZpYoJQkMQ7jSnJqamPse3hZCilLz+O1pk6iMtwBzIabErndx1WEV12AsHoO17uU1Wr5cV/HtS60agV1glgcBETTjcD8AbRaZ9Ekq/jPFstYc43dyq7+9QPMPgp8RSVSleScUM2rcY1YLpm1qq3aXibGg5DBCzXTYATQJtRSVzF2fVwYfvjTIZJc6uL3Hrad22NMS5BIS+kiksuykJt1TE3YvlyXQplnFhlIqaAqLEthPs5+j23nW5aF4+HAsRytIVLOFJ8fVasR/rL5g0mcH2BKhLSlklNBJ0WaCc0NKZuLHzi2RDGWCcRpyWjKaB6s0ZgktCZIC1oLWgt5sn0DXXzvSMjQrKAHy5WriJVgx16/FFuRXoxfa7UYffJCffdXkyf1zRyFuJkVK1YvIpQGDRP6Ts25KhlcAdzsp0IWe6gLjKiSvZWTKi5c4b6x5z6gmZhINjKkqhVGarP8nWEvvo5aJRSTq+9RgySzZaVQZxPGHnJe8cyIzny5hSBm7FbJ17ARfVfhEnF/qgZxUwqpJkhKZqCYshS5DuQ8ItPkNTyBBdi/gX09qiPEEfqx7o0d1InY4QF+EV5HRzy2dlpANQoIA//Y/BG+zlyGdDgiGuPBaRxplxHERMfZNiI1IdJs+evw7ix+Xq/i9P0jykdxIY31XNswQR4Yxolhf8Z0ccn+4gnHi0uOt7fMt7ccbq443t2x3N5R5ntqsfmrSdBsuIN5xeHfaj9vE/SoNDEfEyAaK57gLBpXoCsikrxYVCMOaH2sLSOw4lZ9Hfjfs4sdD5LILoDTykJdGvVYaHOhzY2WBlRHGMw+J28as5SZZbHvtVYEGBww0WrrudViHdhbtWJzMLvTmhFQq2G4kcYwv9rnj8Z8iDglbPaGUE3bzN/HdawWfg14DFeIrXqzP3nDB4MQswk+XOwp9xekpdBmG4dyqJ5nrZhM4Mo9C5/BhKZtLdfWmI9HDscD8zd+E3zwZaZpj7ZMuV8AK1QAegwdy79VQevgOLDzvkidkN9ECMQgcF+wIsWlKtqi23PgwuALzOy8XRJBKPUtH8SKvgcXi5NNYYjg5Puew8K5E+rrPuj7TvRXqFUpJVEWE620z/OCj5xcQH5DlFZ7nyhcUYRlsSYRcVdLaZTi15XdRiWoYnaghr/qtrPPCV9n0QxDUhQNhH3yubDdKv2GdOGb/UT51s/QzkaGX/wc+dkzj6kszswJUtINp6/2Jk6WI2xIai5eZV9DchsoxgGzzE7qPoVqI6fxd7wmfjePh0JTX8u+nGJH7UR8dnt8rff4an97+PirnxeP/c43qxU+e9V7xX5jvl9KApqRwXJ8qsrQVjyjpeaEdhcUWr0mmvt1gQt4VNltKmyKyQlug/b52vwcW//y3DRsik3ExTrFmgPnjGgITeXOnzot+n15fNciCfrG8iq8M/ZKe/w0Fjt9w9VYxifadTdatbhMms+54N250F2cY6xt7Tkh+y5tfdMBw7ekKWii6ePC8K1pDC6sLt6UJnlck0Gqie01NRGg1Ew8AvWCk4WSCjkN1oQr4nJtRHM6kzgsKz7IigPiWKC/4waVXZ/b7WrH+9x51ChOco6tv+XqCwpSfS73SbJFwRzba8Gb80dfWnYPH3j5d3n4u5+LJKW1hf008ql33uHp6085Ho+89/57vHhxbVifxhU2kDXjaH8I0TJhGCcawjDtmJ68RpsXGpm0WHHlcn9HW2ZkKYzDwNnZOdNgzXhba1ZvkTM5j3ZvUmU+FlpVxgTLCPd39yzLAgQObF6t6b2u600313o6Xi/nBA3nXfGR/r4bXor4fpCHoce+5krE37frehO32MIlUKo+RR7R4a2x+jxs0kxOQsCknm2zSD3G3PoHPrci5yneCLVtfUzWPXuFCczv6/i3f7Y/d41UzCJYTtWa65kwdwirNKsJWQpvPH2dViHJwBk7P23zgSYxHuo4TQh08Yk+U/q+7DnraPyFeFmJ+1h+ASIb/oW/PnzRtUAtgkj3hfT0e/cF+ristqvvQ+7PRWxrIbIY9zLG1vHOOH9a8+Zb/pTWX0jcuNYaOWVKWbi9u+f6yhpcXV1f8+KFCU1dvbjm5vaO42x1N00TKU0Mo3MNH9hWimOXpXH0Iug8JvK04+K1p7z51lt87K23efL664z7HUUbcy3MtTC1yiAZiWYqQ0YlUWoj5YGmsBQT32/NsLFhnNyfXog9rRYbi0e3yPDYdBMrBQ8TNcxHivvZXivWVExgtlTLSUhiiL1FAjPC60w2+SgxIfMsiZyqYVwpIVppSSnaWLwQs9YCw4DoaPYTE4ZPuuZusNOmeXzRkrrUn0/Jb/5DtG/5Q+i0Z/i1n2a1DdAtqc8TdZ5+00ZJxpUUccHLbDixeKE0GN8V/LGX8uBe2PlgnM2Mr/dfBKIZ5fq4iWYlUY+33C8iGhhufa9Tzm1VKOqNnUP8R1beZCN1XLJUFykfRqsf9ML7NhRSqehhZmkz98vSiz6T5zZQE1rcDcYhh8ZhKWv+WNT4ngweOCXDoI9H7o8z13e37K4nLrxB3OWTCy7Oz6xZc06oWPHyrlZmYLm/Zzku6DIj2qyZRc6eQxNqheVYuSoH8qGQhmyN3h/RkSWawwK6+k2dQxpxmuOMqkpVIYlSRYLaTZPI4ZsNax6fyyv8BsNM3E652ED36TqeyWb/jt+3vsnWY7H4ISlu/eKzPL4J15SVc+ov2TymSBPSX/rX0X/kX4T/5P9MKbPb0jWmELE1neK9t77julQ6nofzo3uNSX+ydHwADUr0xreVfsp9D6xNNz64oN/0/eiv/U0T0433wP3Ln/tr/jEb38NtZggN9GL0VlYsxUUPBNaayhz5Mec/a4yFMA7Gi5nGid00MU0Tw2A2yfYBjz99rW7Hpzc6ihhVHSOM+Fbtnnc73Me0e649jjCx8ccnMgVbfGGNBIJDYb+feN+bn+lzSvH5fLo01rnLOpbiPtPmXdajv99Xe3yNBwL/0+0f/dNdDys8vJPz6Uv4xMcH/cz3wZd/mfaN32MCaIsX/fu9bhJXtgYk21qZGLCtBYvP0s3+ZJ+3XZeeQVrd5u2fXjlO29hx/bTTeyMf/0bkO/4B9O4F7Rd/HO6u3AbK6fsFryOu7uGft+/Zg7Etx+b07Nbnr/MqsJ5GcEM6A/IVn+K/b+aJ5bBPzuT0uRFTsHKvHtNRRE0ESl0FU6tzDKzuJZHIeQQxHCR5HK9FqYcDcytoXdjnxE4hp5Gdc0WyJAbnKGTNDAJTTrQh03KGUpA8kAZryNyoDGLNns/3IxdnOy72EzfHwqFWpFr+JMU9alG3bM1vizZmKkmFrI1BLduVkiDOQUxpbWqiCuln/lOrmQuhdBHUGzVU3+fT7//DLL/8k26jU8fu+1z3mip1vpMvLDSEJXFz0iqlc7vcRkj2BmdqebONsE7YfqKhWlxL9jqizbZt+4HxplRNAKV03nzzJla117dXLSbE6k1hCwP3n/wOhl/9m55HMO5udRtR3e7ZSTivIlneQmu119SFUmYazf3s7AL6mYzVWGeBMSWmnLiYRl7b73h6tudiN7LLJlKWMFw0DRltLqLVqokvkSEnhmEk7c/ZXV4yPXlCevIayzQyZ89bP7Lj6ZsfZxoGLs7PXIh1YppG8wFro90LpVbjtJWEeuNk03t1/KFWmkJyjYbUkjd+88bL7icF3myxqmw2wfBFNr/Cii1s7USP4WM/dE75Zn/vblzDBH2kmYiqP0E2tnrlla8fJSK898a3886LXzW5g03jmOBA2nvEmvB8jZq2QHBgwbkn7udEw8LQSDGeaNQC+64fNa/hP+rKlQqfKwRKtz5eCKqh4UPZ2Dx/7RvY3T9jON6uWwCBw+nGz9T+uLls0kWl2uZrXfucmhRwHtT2nvpN3Nbbb0Y9mmiYY2HzoQvGefPZNAy2H40T+4sLnjx9ndeePuXJ668z7faknDkcZ25ub7m+NvxmmR+X0FTcz+ZNmZJfa/eJkT6nkouXx72vGrxXb6TqvDvTQbE9NEWMEPc0xKaw/K9u6jNjodQWsZSPt6jPUTGBr+C0p9XHXX30WC8aML7lNEPvI3kNhQjyi38dwTIMdtj3E45eU/imv4fy2e+1GtbP/2z3fWHjQ0Xc+clvpnzrDyLvfQH9pZ9Ey7JZ8hsO5n7H8M630b78Odqnv5P5S79qnFts75rLKjTVY9q25kWigfDW0TzZwf05cZc30UDfR6Jp2taX724x4vU6Hj95jB41Cr2hS3xPjlTHa4lwcM0Chqu9soT0wffTu2n7haz7Bn2oT/brdZ/7+o+vGxnZ7XZEwXpyJb6hE+ILi8nvUr1jZ1I3xL5YajUFedQSroMnBJMroBt5WlcB9/hOjJmBYBGohrJbdMeuzRbaNGRaG2hVuXr6jfz65bew18p3vvh5Xluuu9CUdQn2zT15cOWPN0m07M+La2ANKnvAg9iOapWBVqQkuSc1RQwglpQgm+JeV1uTrdBUZV4Kc1lYauX+cOTF7S3XN3c8f3HFe+9/yHvvf8AHHz7n5u6eefZuMpLQPHRhq77X62ooKJX3/1//Mm/88f8xH/z5f/VkiW83+02Ef3LoZmL9bhzxbttDfJVE0ZMVBTTSvHYvH8eR3W7HNE3klF3II7MsS38dhU0xp98zD7rC8LYoeNkEro/xeDmItEfXON02puZEmOTJlzQkXn/zY+zPztidXfDi2UfcXl9zdziylMJumjjb7ZnG0cmcpj66dlyoiDRwYxFEIMATZj7n1TskqvQuqaUWI60KjLuRf/biK0zjx04uIYCTvv2FfWNTKNj/SdaNMT4TM4AnRZKCd9UJZ0nJw8DFxSVvvFlAhJubFxyORyPd7ieybLo8loVWZ4TCIGp0XGk0JxdTK1pm5sOB29s7Xrx4wfXdPYdloWKdVq+/+4eZn36GPJyx/6UfWTd9EVKKDlMgDc7OBz728Sd86p03ee3ygvl44ObqhpubG2qtjGNmygltiyUiKoxDYhoyglKXeG8TmrAOTLZmhMLUlP35OZevPeX8yWs0MOVfsYKVYRyR3Z5xt2d/ds7Z2QVnZ+eM0w6RRC3FgjVfd1YYZQnWNIwM0w7JowepAIlaGktdyENiLKUrkh6OR15cX/1uLovfhWM1rJYc3ToFawpVxNJHOcGQxYSmcraibfHUj3pOA+uEkN0UxPck4WC4zSqLdf02g+c30gQCRRXcqUMSLQpVxYOOCH5i2juJR1zQ8J977TdADajIKZFqoxVLZJnI0siL3TnHdsfT43Pub2+RlDi/vGAv5qSnFI6oJ2hdlMXWltMr3BT08C4WMeJrlQ5w0QpaFhOaarUXhAUB6sMykbRyp5kXDLwuB3QY2J2dk8eRy9deozV1kHuHgiWPqif8s3VTJ5IgYrtKHpwsIKsdlpRNFCJ5X4zmIgueRM/ZupOmYSTlwW33KpJhyswGSEhKJvp0OHB7e8vNzQ339weePHnC2dkZ027HME6r2JgLwUSOW9PqMEbhjTmzPkbNu4GrCdbZXKswH6iHW9p8gLpYx+llYb4//J6slN/JUQ73gK+lVpgGITHZfPXgO6fEbjeRxDpa73Y7Li8vOBxunVSljOPA2X5POc7g3Xbn48LNixs+ePcD3v3Su3z4/kdkElMeudhfsLREm2fuj5UXdwv3FNJYkV1lyQuHVvigKh/OleeHwrEoIpnzYeLNceRjU2aogk4LHGeGqmg9WtBNMHCVKgtLEWQW61gfqoIE0W7j7G0devNmnSBSfJxWe/ZSANL/tAIV2/QDPRCIZOCGxKkBG4SfZQZXJEjw6+uIM4xkFwFA2yxUTYgGQS858GkB1K9dfCu/7/ZzfO7i2/juq5/r5ygnPpZ0oCFcyk7ojWvsJxr+tvTr7gCFSE8+rKHdJrB+IJKTkhVk5iGvUZMGGTpYKFYI1hN6GtagedIloOPHc6Qts8fnVEyglATR5L5c+I3u8zYIsl8ARq0Hydi+qWJkFy9YjvsUxRWbFJW/R7Wi4lqZ3Y8c3W6OOTPUxJKEw7yQk9nPsixM2bqMUSupVHJtVFWyQi2zASllodbikhxWMGVgm9Jc2IVObg/BEfGYEffz8L031qUB0WthmKNnLotvQJ7rgIeZi3mqelL036m+3eeTHrAD4IWn6s5ukI6T5MCWOrggHnPGGlhjFN180lc/th0k43y2yVCrd5W+R8S82H7Wdh1FwSEbIvl64Xrys77y8X5i9IvdQB9xn06e+4iOu7vDBkhOJCnA0eKeAIMi/uidowq1ReFeNr95HMnZiNo2X4uLHXlHjhLFOg4kjZMlv1JmHBP7s4mLs+xCU8puGhhHK8xILibXO8Wi7D//F3tyCBSrN4z9UMyPEe8kWLEkyTyjKtQGpVrcMM+F/a4wjTuGNDimYwCYYh3tUrPCJqsjtrmfJQWdtCcJYs0GpmrTYZ330omsG7JnzA/dTKWNyE2IKElfnG5jVLoIrPT5vgrOdFKHz0nzEzGBYey1tbUO5B4ZuDl/k/Tsy1zt34SbayN5ttpFpOy7iXZBiDGYDel2ODpaJBDJHV9KIb6eQLKSB7AmxYmkmVgrQfgNgkj44G6mu0i73fu1yEY3z5PN3vUYjs9/8QuUUri5veH29to6p5SFeT4yuw0IvM/GIHch1rDVCYjupD2uUgObE6uIoIGzJh7pzg5AT7RG3JZdVH9ImSeXe15/7QnnZ3vOdjvOz/ZcnJ9xeXHO5cUFTy7Pubw44+LcOsHsdxPTOHgcYr2ft36JeNGliQbbp8ecX2+Qf0nYn03M6qcdPg8bPy8Wybp+7IjCgJNiyT5Wr74vq0+6IYFJEBHWvdtiLenCB4HVbBNLUWl1asHib/T71te/eIGWtm7Ppdv0hmoiZ6W17HYq29qKpFst6GBiAGMbWIbKkBcX56TjGktRlgIkw68lFYv1hszA4MLktrik34HWE3I0S1yW1shNGVQ7Qe8xHg8xz98pBvqQWKMPf9iMw1Y8SX16AF0QjRB0YCW8RXLnIUnLxFtYBajiWbqSvas2K0Cq1YQfoTeOyCkz5IFxHLmfJqbdZCLQOQTHEsO4SQrZYPH3XqzbhtV4+oV0kM8u+K+8X/jinXJoC//w29PJWPdY66XY6MF4nQ6t+xwxBsLGczt535O31Afvsfnc1pN2qz3uyWUnI4fg0b/0jYl/69cL/8InjhzvV7w4xE223ZQ6IarHoM2xjdOvVqsLkOtL+9erjtXPtj0iit4e09EJnUQsYMRxI8s7Kbo203rU2L/tXue0XpNE3FJb71q0zIsX9sRUs/f9Ik/4Amd8RZUf3N9x7v5UdmH0LXVsLehwEqAfHVvwQKdrIGzM5DovAFm79QXOmfrktLXQklA7/6LPMJuXnvDuFy/xWet63xYsGsk2hMuad7EzYU/bP1q3gyFCVcrs35deTJOcARtkrpxTT15rM6EME/eq3E0TBxmRMnM9XPJ0icKeuhFIYzMea14iZReXEeklecT6aM2IOar9e5BFTHRqjbBVrHh7HECkWmzs5z0Mmd00crafOHMRzP1kvseQXCgVGxu7BeICN2rYjedzcxJ204ien7EbremA4GJuToJ5TMc+J9I0klpj8XsSAtOyFSYLf7/U7rM0v7Y0jIZx+xy23JbhYllg0UapxfzHnC19m0zgYtrtGaaJlAdUMuLfFVvWRU0cpnqhqvmWNjcWzSzpgrPLT7H/5Pfw8W/7/bxTFn7lO/44T37s/82SP4bW5wzcMchsfmpLUDNVJ7dPQK6k2hz3UD9/u8/N7VLY0OZzO/yV1mZKayyLiXRGF6zwcyxGa2iqUM3fHjzfX5zYpKiLFwSpMSF1QMUwmSa+7zjeG35j0GZDrKpVi5eCZFhaZSmF4gT54rZ7KYvbjWJ7TU6Mg50Tdrm2jST3+3UVPziNfYL4wgaPUMK/M881rb6JyNrcoxcCeIwgiZSMQqEbHgMi4DG1QBftQsX3d+nxh2hCG4+yw6U6iTXi9tgXAhNa7bbNwxCQrL5/xj6pjtzVsnQx64h7WsOEpubFOtb6eizFxMVKK76m1QWvjHyKx3EIqOe6KgtabZ8cB+3i+glBxtSJOcaTXcXc8zDQUqamRBWL/VuL3FdGZbFrkMyQJ9DFhPO1BOhhDqn7gFZUUW2tAUghzbONkRrBdRxsXsUYxp4PQhU6dqAbjLspGIXGxE5ziGp4l5qAcCUJldVW2lbohSEeFzZtLIvlUtRzfXiH9tivqNYYRkPYWTwfX40MLCn79SrF/YJokpJyQl1sMUiVka+WlE1oWcSEqvz6khhuNIgJ9mT1i/ZYX9w5rXXx9ayUBqUsDHlkmtTSqXlgdaRT7yeUXuqr/TiOlVdEvz/hM605kPCfVj8/9WA/HCj7tvX3ZPNv7HU9n/TbMuuvfvLXU5SgsesLq58fcV5/TvzbAxy2Oa6epfeiKCP/T+SpMUx7dmd76muvUe7uOFxfcHd9xe2z59xdQ7m/p+rsoj90TFB0FbsKn91ikPCxlRDUid+b52UNa/JCs7QW4ifMnzSZICP1h2BVc2LjaTSLvV9jw0lSx5JdtL5WWrWi4oqJ7CSxosdCY2mFpc3MdXER9uDTJfMLxBtAur9nkI/7AqU4z6RaQWXn9OF5EeffuOaU9NyHMpfZcjTRREpX//cxHeJNgwBwHsMqMGUzbEBNyM/tMYrd49zIjAz7PdOT1xiGCT3OHG+v0esXtPtb2nJAXfBWNMRZxUnakX8VEpW5Kvs/8PdTv/GzzK+/ztMvfYFWFB18hjdBk5CrC4C535jF+FbzcaEUz1t2QSyfM5v5GfuyCTEOlvcyZ8RMl8foiGMiHX+w4hPLKFTEBVlQsYoCtzPamu/B/lrfd5KFPORoShgkTg/3ahVKTZRFzby0RmsFqORcGQbPS1bD3y3eTCRvopD9/Gtd16fFTBuCNYoWw3+qNpYQCAlByO6LQlZxP06sGNXXTSA/gS/0/VdNnqf59erZGe18QOYZff0Mef6eN5ATcjIBg3g3q56IfHJDqAiFEHcRNVHb4Hz0e6IhMmSvV2nUR1ao8vUKTXXMq+cLY36sj/ubrD/H+8Zzv87jq4lOrZb0d+FQfeV7nRagqhvb3LEraLTBRGRybeQapHaP1n1zst9xgVsFdT6Z7y0pmdsp3e6HF+mYiF9w+JGNaDNm76fuGxrmmbuAiokY2hruvlsXmEodpQnRbIFeeN4tt/8TIlK6+Xsfmy6+Yr+vDUE2Y0nkBTw/E8/Q6NJtMVcXJ81BvF/ziqE2ElxSxfbP1nMTUXzhBkGTe8KP5yi1uP5h9lxW86ZA5gtri4aFZhdSyo6BtI6L04BBkArJ1T4s11kdD6wuxh1Ya4x19+J8j331Gup+nG5+D7JE22B7SVZ8Ahv25gLo/e7L1r/czBle2hr8Gbo+V20NpH5GuvrVJx/iqyQJkhNjVv6+7/sO/vSf+pN83/d/H88+esZP/fRP8zd/5mf5pV/6HB++94zIaTUfoKZ+H3Ki1kIadgy7yYTBUyJNO1IeqE1IFKQW2GW0jM5DNt9jmee1sUAz24U2KAvXxwNJlN14QWPgOCsvru+4uzuY2IwMZJlsbXgMqpF31s24sK7B6jF9v6du/0Xyil17IRzOV1kFqEzAhR6nGg9sJcasmKcVBZfub6gIc63ubjwuwcRtK6seG6h0LqxNnEyPrDZ26lTs1/0HUWueo/R4vuME/V20z8/t+hJVjyUMy0tY86NG7Pm2P5XWuLs/Go+j+nouCk06PncmieSNT3XDPZbkuH2t5uO7rejLZBP/hCmLnG2YqZO1Dpvx8PW7IUvpyRPtTX2UfbXq6XM3oxTnIDl33zMwPSKmcRzGaoTs9R6u2HsnEJIL2IDWamttnjkcjlxd3/D8xRVXV9fcXN9wdX3NzfUdd/cH5rlQG+Q8Gqbie2qP0YL/4fuYFd42SJlpmjg7P+f1N97kzY+/xRsf+zhPnj5ld3aG5MxSC8eysKsLcy1Qcr+3elTubm+5vrnh+bNnvPf+e7z/wQd89NEzXlxdczgcWObZhMc8J5HFWur0YtBHdgyDoA2W2ihlMXH34JkWr+MgkSVE4pPZdTXrn7LzrlxoPHh7qFruS4TRCDGkpOQ8MA6VaRjYlcLQrNlCpZhAegVrjmNxdssDVaxZZVYLasIbCM/K0k4mfhBDXD71XQy/8fPM73wH/PJPQXBOOj7TLZ7Z42r7f6EwO/5luR087yBd+Hm7irpAj72p/a/rauqPbddPmOEuNOXv5c8JMbmOkyc78xCbWoWsHFeP4mBZT7AXQjve0FzRVPG8iCp5HDh+2x/hzXd/kensjDSMvHF/z3vvf0j7yrvcffSRC/ILw2iiNtHcpdIYzVFze25xX63VsOJWrcFLklVwp1V0aZRlpiwL8/HI7d2tNY0737M/27MfBsZpMt4PILVZjY/fbONbZefCZhRhbmrNUHU23/mRNT1KHiNqw/WrpTc+Mh1Wv3dyWuNld9MazguWfjJYwXFx52FpKNL4i0/cDI95rFbL/xZ5Te0fuwowPwgL4rvVvnj5rL+X5Vn9KWJ2MLmAQeQE1pWgJ6fEj/wbfXy2DKnuNUvwqhXe/DSMe/jK59bneUxj68T41b34N8SmHsS/MXYrl4V1vHxcGs5JROF7/jjtY9+ADHvaL/w4hmFvcOHIX7F1rb0mNhoxRdMW5zHj+YzB80/TOK6N1XPwLVe/WbCmomMevMnpjt00MTiXNUUiRbfCB8HF3Jyi3/z4u0YuyT7IxjwPXWyhe0RCt13xro/QjD04NtHKxmXZ5vLjkZd9ptXTie8iuN8ZfpxuPmF94smyednBWqGV7vvHtDudj/GHoEbGWlNW3tE2xGL7Hj/1HyF/3w/T/vr/k3Z3RcQZ8Xldw2A6I33mu6m/8pMEvhEnL/0itlfZNw9/rj7YZ2StMTk5p5d/hvDBNz+/4jkA6cnH4XiH7F9Dp3P05vnp+2wM8snPD2KA9Z6EfY5czqlN7ue7vfbNJrdGUzy8vSfX/vCQvgdv62ZP7/npXiqvepu/q0dB0SzIONi+0qw5kNnhZFx7Z4I3HAceEowDbRqQY+LYKgdtHFrlKJnIhCYgOR+qiVoNZkrkbE1mS7b5TzK/Xlsj6cCYEmfDwMVu5GI/cXY/c1caRzVOT+xbIhHuuVWVlX9o9QADQ7Z9GEm0hPFa1e1LwgS4m4vGunXWZj6g0sh/3z8Gn/pWdH9B+dm/Ci4qtU4+cRw+1o50LKYh1ugAzHcGkjSS40e5GeUkq/Ra1/BfVVcByqgMig1EJGpcfF4lIfSpYl837NFwiOBzmZ0w0ajizcaWUlka3H7XP8Th8m2mAukX/0tPDYuzXhzt8XwJ4oW4Yn5gacpcjUNXy4yKMmDNvyWZ8HISIaOMWdgNA+fDyNOzM97Y77icBnZJSK1Cm61OIDUTH/P7UKtzTpOQ8si0Pyc/eY2Lp2+wf+NN0uuvc8gD9wLz41tmvPOpTzMOA5cX55ztdu7vK2WZOR4PNIGlKYsLShXHrKuaBHcT8RRHiMRaPXOrSsv2e04rhmSH19WFP6ic+BJhCyIXHPEH/pgJWdv9Vv/ZtriNkYh8WFNUGq3GB8WahMA3t4eI8OW3vpePnnwD9+Mln33vb5EqvUZrFVxzf9C1GCL7G7luxblIyRsciXRcrYu3c2qLdBNHrbk87ZzQ4Fl0cbZeexJCU637cwo8f/2zvP+xb2dc7nj7N3+aPN+5gJTHbKq9+YRq+CxR27cRl2rxs4STtg5z3K9wYro3EzZyHatu8OP2YHgAERMozuu2/aZFzXQamKY9Z/sLLi6ecPHkKZdPnrLbnZHHzFkpnJ2fc3H5hKdP7yml/M4Wxe/y0byRo7pNiPZtK9fAxiZt7LDxg0zIrUQT1VK8sVRxHmxzcbbAEdfI3vw+y+mqx2WkYMPYjQsq+9bPEiLmcv/hVSWAce7AeovX+xsxZuAK3dlwZ9h8juyNUW1c5BPfjPzmL3N865vQX/pp/K1t1a8T1K7l6SeQj74Cb7xDUYGl+IwJkSmr4WzzEX7szzH8/j/E3U/8+VUUHmVphtOVulmzLWIW/9nXXpzLOronA7Hx3XzeS5/t/efEiqWEzyX+khijVWhKNvtE4DGyvqaPJ+D3WNZAcY3r+nnRXYKIz6yRwvqsVWzu1K2Mvaj/LOt9/K2Or1to6pt+3+/jcLjn7u6Wsizm6KAOuCZT40R7152UbfIE8TKJMETJkGy+/PfewUkiyd5dKp9U9lvrm5EtHsvFaHCmnezYaINyVRNaFu5T5q429sWLnDUzOKgp3g2hNSWpFQ3lJChOoksBqMQEcyJGD5ActLf2Mp6kcdXPSHCmAakbdTW0k9+awlwKh/nI3XHmcJy5vrnlg2fPef/Dj3jv/Y94/8NnBnQv1cjLQ3LHNXXg6OIH/iS3P/uj1PubNXDyDaMdD3z4n/zrJzHNS4Hjg2M101tRg6/y5N/xsSa1olOSqrKUgpEqE+OyUKptrGOAj606GaWtm93p267XE0SyAB9PEnCP54hNHg+YOiGIh4DCg/MXd1VEGPNAThcMeejCalcvXrDMC60eukMyjgNDdjfOvQhtUL14K4kTNp3IanPOAOAWm7DPd1QpZaFVI4JP0+CKqIMH9GH6tq5jbMb9EtZ5GUdaCbm0cNr6KPjr3OHUtfP0/vyMNwS0Vcpy4Pb6ikNdEK1MgzBkCwBbq2hdUK3gJKlWC2U+UsuCtIqWwuFwz83NFTfX19wfDxRVWrLuUfXi4+Tr9+Hp2zbecZeE3llDvVvT+cU573zqU7z19jvkaeTdd9/n+vqG5TgjKEMaGIdMKwvRGXAYEsM4gFoxRcoGfFunE+kOyDRl9hfnvPbGG1y89hrTfm8CY63SxDoyjLsd49kZ49kFZxcXnJ1fMO3PSeNoBU2eAM55YNrtXExspgF5HBkmE4uJwl8FJGeSjKQ8EkS2Zanc3x+4ubn5Ha+J380jCoo7YO1hagQaKR5vlaSF1BpZKxkl1UQrC6Lq3RcTYxKGpIgUtAqtZlrLmOjT2Iv9TTm6Is2ENVot3QCmrKAV1LoqWzcy69Dd6sIqziKbtb8SCrfdJqK0JeWB7GAACO9yya+mJ5Rp4RvLwmvHZ9xdVz58P/H0zTe4fPIau92eVr1jZLMuHkNOKNkScrX0PSfIdJLMdtt51TXo8cTQXz58ij+WftWKRCJowsb423iXRuVSZj4tN57UaeYEjyYuBSbWYHPO9iDxIpbW1EjwQBCUtkVREaxaUhIvwvd9yBPO3YUdklX25xHSCHmwhLb7VjlnxsnA+VYqt3d3PHv+nOurK47HmWEYODs/Z3921ruF4OctyUR5akpOajFxMCSTnazfqnWalWqE+kTzTiqNQcS60R0PcH+HHu6pd/cstXL7/Iqrq6vf0zXzt3O0Mq/+XaskrWTPOGqtJLDERU62v+XM5fkZuyExL+dMQ+b6+XNSM8FSa3Uq0GBwAtXN1S0vPrri9vqe3TCS95lp2KNZWWjMbeC2DtwsmXKE413lXirXWvmAgY80c5Uyy2DFZReDcD9MMA2c1UYe70nplokDv/jNP8T3/MpftOsQm2+N6p0CFWrqCU664nWgJ/TAo4MGuFDOCYEFB+lw8yHrdz+2hfgaasj9fZ0Kpu4Ps/oIYYfW99c1ektY53CgifbzEcmrD6shOunBi7hfILaL/okv/QX+6jv/GH/qN/8/kALCxVWqOTn/mBiiqZ+HbhKEYd575xjS+pqecFsDOLt87eBMED8CWM85k3Pu+ge1FBdFwMGiIA5JFyGp4V+pn4F3B3pMh7i4Ly5oZ2JAFtfUBpoaRRvJAqNeyAqb+4CsCcCehKqgRrKQZN2uunCauF/qPrpt2SGioR0Aa0W672ldcUaPkcw/uD/OLMti4K4qWSsjiX1KiBc4tSgijY57AtoKba4s3RauAHfGxAQlD4gLAgZRQFEv4BbE46aKm1AHaWqKJLN0oC56Mkufm9uUjwH6QapYi0VWgp9i4j+SzMdOOKia1nUQien+5fc3An1vLgY+1qG0vXbSW0uZYbOufe5mSd3nb7HMAidwAxdgSnO/Yu2upCCpgyAPI6YeroATHONxdeDVXh8gohHPWM/3ka2pVx1BTLPCyOYYg++rDgINg3UobtVj0lpoTmbLpTGODhWEr0bCS3l8roTQlPnTFmcpwwDjJOz3ifOLkbOdMo3KNCSG7EJycZ/CJ+y2Biy5pKuoBNGlFBBoi6XnQuhqXhrHuXGcK4f7mWk6sN/t2e/P2I07pnHHOGQrlPTPiALA5HYvS6LSVlEfv8m6FXgCGxBwMTvpQt8bKrnNf9U+XzaW0NeHxaa+mbNOfk8lxtD4euyYQV83cfg4Nbu30VX2/v7IPNtexX/5H3D3Dd9H/Rv/Pytw72IDDm0GUOtrKmXtRTiEuBGpA7e9OC1twEQXi0qDJbF6AiOSIiGOIGvXsPWSpQ+B2QP1ArGIs9WTYI9r0f3ml79ErZX7+zvu7++sULltRLw2AHzMAEswBfK9KUT036OYgz53XPBs00WrE5bUYpicYchWwDtki32mceDpa3vefCM6IO442+04O9tzfnbG+dnE+dnIfj+w2w2MU2IYTMQ+eeZMxNdmP7Zz3AvGXgFehf/TZDP3fUKLQIjub1MLD97C/jnBiVjPKXyqlz/aj1dgapv3WkWr7JmBqTXdnJEGcA19C1IgfFXWa481EfgXUSyNk0n89qfUQ19yjkJrNbs+miAqLs4Wnb/zYM+1r62v7gmHahgNCVIXU9jeJ8OCxdd2CJdFfXlzvFfdx9FHJoBzegReoP1ngBM88Wu8dvUcvvY+0sMMWX9/1fsFwdUatvuN7XvzSgjR8I+8eFFRtzN40lSoWk2k1EkZPelZbU+YvTFBytm6kA7WmXsY10YQklxkpWaiOEwjXnk4js1jnLZGcZISHx6Uj03CB8c1AcjJt9ikbTz/iw8Wvvf1gaejxzwR58R4nOxv63u90h/z+0OsvbBLCrDGm+r+QPhjv3C9MInymbM1rqxe8FpL4Z99q3A8rr5+rIPw/6s2Ki6sx9pxqZ2QHq0oWWsx4fVqwj7ayYra94mXkmRAdIhqfk76yMi9IbSxjbuz43m0ZoSM2jYxUwhamKihqjKKOIYmLppULLm8lC6WHnFta42bltjlxl3LhFxJFNmtZHHZxCSBla/nvY0/4vc44nmhpaZBgvL1tRWb6i9ozUX1+7usfmnFi29CGaPPWH/mJp7Z2iINIu0GZ2yt7xnqcWytxTvXGWZpc+7B9RL5xlhvlgsQ6DHsxfW7fOK4cKMjT7/yi6dJ/bYuvu04mIFyceaUew6Hjk0YSWephdLUxKY2X9ULVmon21jcOjqOmDxvM40ju3FkN43sdhP73ch+N7LbjezGgZySrUVlLT5rhbI0aKnjy6iSkzANA2m/R3eTi/BlE/IZsgkWPKJjL0ai18HzvcxW7DdEkx+b++K+lTZoxck3tXUfI+fRG2Sqi0pBSoNNX9ThRkHywDjsSHlinCYrIuxNhKwrd1XbK5emVmDUlKoDSTI7IFFoTShMyNnbnL3zPTz95j/Ca9/0+xlT4tvf/RLPPvUHuPvglzncfA7qTNI7I/gx0nSH1h21ClUXUlsYWyM3epwvbER1g9CdIMQASSaktTQXwhpMaErU8O1hGEge44KLFniBfxdxrYq4oIJNdSU3i2ulNZKzK9UJPpIzkfVTsT2w52ub2NiX1n1+y/Eu9rN/2RpuvPuZf4BPfvGvkT3ezinwQTCLKkRiPgdxvcMs68+Bz7DZ66JbJ5ggYMcXJbm/acILNO1ilTY2Fks3VnGiJAnJozVQ0FVwOKVsBakpGUrnRcPLbDj/ozqSmPgIm6gr4ui2CkeuBcrYvltKF/qrpUBpkAZSEkopzPPMYTi4IIaLWi+FZQm7aWNucU07wcPsLkZxpJNwsLnXlsrSZkQqwzAZv8PFjFoSNJuIVHJbKDlCahPzbs4dWbQwN+uWm1vuflBLJiqWE6AVLQtgoi3q4h7W9KSZKIzMhh1GkUeZ0WQiEWMaSa0avsr2ekNM2cY9ZxfGwAQCA39rarF8kANzNlwhugJWQE1Z3EYtp+4Hqnrn16qUUlkWLyoXy4WiLoCh1vxDawGtXQxWq+MuVWmpdbu3FGvAIckKABlMaDGPJuYaX2kwBe0q4gU4wSuwezokE5oaSVZMWxtSW4RqvbmACLRsxE1DX6C1RC2CCbQEOJLWdf7IBBNjT+1uScev4vf4Ft6w+W2xGB8WJcQepx4Lbz6p+z7y27Ll+uDn2C9T/9vKvdCOX548juF3tvmeOmARy2zjztXtXHce77fsRGKIykVN9pchD6RphP2Cnu3Z7w2fsWKqxG0SjnfWTVpJLry2FlZvjyhECf9aN37l9jmBzzBEg8ENeVrX0Yr4qD+Q4urU/QwXxJFKakaKrI4XmQ2EqhWViibLzy1uO5MmKrBoYdFCcQmR7Puc+XzeZbmsYlIpJSQIykvxvcLw2hQ4GZ79UF0Lefz+qefQS11WMSy1r68HQfg7fUjv8ITzBrfIll1v9vCkNSteUDJWdWkFpGncsbt4jXz+hFSV5faG3dklty+ecXf1jPn+xrgyKJrXdagRh0szIiyKPH0dvXrG8ewMkUqWxjgYkcL8SBNAlxBjcHy8aeN4PFLbgpBJefSCZO3E5IfEdNyexsKysMUb6ujqK1XxuKvn08TydW5PgjNHY1NcQp8TsWxTsjFY04u2O4ffEHy9yEeYbbO8FuWILCYsqQ2PsyJuE/fFsu+DnGKPEqUua4FxxFBVfffMg63VlBFxwq9zMMKPc4Nsn6dufWVFuiI2NUwa+Oh9hl+e0ScXjJ///MphleSNCnDBiEASzZ+GhqgJbFEXoIBUt8GYLWVAfP/oYtWRm/4tsLe/00fe4DBfq1gt7EQ0iorHVvtk/8jGP98e8uC6Iy/88PFX4Ri/+8dX3+3Woj7oG780++7rI0Wx2TCSfU0JQpWKenW3tpCKXvcr1N8xcHbZ8qUdNwy8fHOum1Iw16hLcbImyjqAE7r7viViwnkR84hEN3j8eYBzwUPwe7v3xCf2+77ZX3phdh/L5LZXeywb+0gUxm8LwXscByBCwxu3qH/vwtObGHTDkQDnA0SeumLfRaGtYjKP5Tge7yBPLhhj8UiSbEWBBlz5OjIees4+/xfDmvrV+PoLjkxwZowvZHGdaPOYIGbUitcJuhG0Oj1ezhg9XJk+qnVdPZ0P/FWHe/WLHz7n5dds7DrhO7/6zNysYFFEJqN82zd9hn/+z/wz/Kk/+Sf42FsfY1kKf/AHvo9f+bUv8Nf+2o/zn//lH+dXP/drXN3d9304/EWcGzWOE/uzM/bne0QXajNMgCwWi1X3ahPW0GQcKEOmVZu3Z2dnFitNo3NYGjrfotrYne1h2MGSOc6Fw3E+KZqJ4i9fnpv15mtS1vXZWhRhrX59cE+34qlRYyAERhwcfbPdK09LTt4PYh/UdT/01y/zwtnZOUPaf7Wb/nfn6IY+cpguRt/rTmSNK5E1t7X+cDLfTdBIPcZdfa6XcqfhK/LqXWc9rU1+xMdTVVmWxf3w5oJ7tl+Pni8YppGdKJIHcH6YCeAafz8PQEvdf+znKqsQjZ3Eyv+TLqEjJ+e5te0Pzp4T0Snd/NDHzfaCMP8h/BV/i96svJSriD3KvpKPeRSKxfWklHtTr8jDLMvCshRub+958eKK589ecHV1xc3NHXd3d9zfH1lmE3GK3KGkEApyfkI1PMtSH3Yvl2IN5MZp4uLykjfeeJO33n6LT3ziHT7+8Y/z5KlxrlM29K+0yrws3M9Hb6ZrmNrxeOT58xc8f/6cjz76kPfef59nz57x4vlz7u7uKGXNr1kBumyG4jS+fixHHr3hRauUYo2iIENLtCSIZsMNB+dwDiPTfketJlo/JCsSTylb0xrFi3shReNJhNHv15BgypkpN6YhM7RGbTOtGbc1sXDQxizi2JTlMKvvq5oGj49lC03YIBftcX36kX+D+vf/M+T//N+kxp6Q6L5TGJ20ITFEsbA6F9gaiRRSziZ+NJ6W6QXmtmLaG19q63PGkt3sU24J1vfqbnbsPYF7C8Ngr0vq5+97eGyBKsniLqGLAzTHLVptq9CUD1ZpJgZx/11/nPHydW5f/xjfWL7M629+nNqUr7z7PtP552DIfPT8BUuZrf4HSJpoqVG0MtfFhcc8ZvPapNKq4c3N/+bC9nkYDIMV83Xu7u6tSfQ4cLObuLg44+lrT7g8O2McRtL5hQnep8wxD5R5tmaoKVtDkZQpKixL47gsxp0DFzJ+PIfNMcPJVOO++feABPzeBy6SRfxv5n83x8MsHFFrDiBRS+cYh0adSSCS8bPvu/G1sXeC+0Q9RohDVqxMN+cXMXxg2ptC3rwq7fYzMA/L3kA9fjf3fvNZGgwk7a8Qt3fyxqeQb/6DZl9rQ7/yK+sZSvhBrQsOiKwF2Ss+iO/DuuItn/0+9Pm76LMvb6535Qwqgl6+CTcfUc9ft9g/FpxI59OHnY68k627TW5tw23MYjwXEcubDb6vTMNgYlODz9ttkkCVYRjIKVuueZqYxonRBaqsUDoRnMmVExL88u4u+BxcBa8MDvYY2Pf2HGJT4SMm6XdmvTurJ/BYjq14dQx4TLE11tb+99MoRE9+8ihonfo+rZPf4z6hth5XhNkxMq8w9bp5YmAD+uBM1ufGWtvmF3TzvnL6bI3vDf2pv7Dxa5WtL4mADHum7/8hmuNwyy/82GYg18tbcXRhFZ5eB/WlLSN+136lpz/H7+4rj3/wn6D85J9nrRnWl96v/cpPWR3ni/doH/zGS369hi8rPjPdrncBSLeXfQtbLXGPo06OjU+xijfSt8P+/RWX/sobCT0vg/vjIYrbeXRb32E1Br/HmNlv/7hbjowMjKPlkZMOJAZUBosOqjUFK9X4AiHEkrLAmMnTYNzAnChJKMn4gS1BFZhdQGppxTg4YjUvNbkUaSvIUklSyNNASg3JMCRhPw6cn01cHPfcN2GmMM8NDZ8Am3oJ0GS+yG43cr6fuNhNnI/WMDplE8pJyfy/NkR9MpAs70oN+ylddDVrJr/5SfTF++Q33zG9Asx/LTWaigiaDbfL6rwWtx2iQtJoLGh7iGkxWLN3s7mBx/p8bmuMFmkx49vEc9bcUTRkEFVrsMi6F4ZIvfEElVrdF1altMJcijVRWSqLJu7HC9LdCw67JwzNapRU1/WyIj72e22AmF1cPNe9lGK8BFEkRw2Tnbckq1faTXZvnux2vH5+wWvDwJ5GrgvUQqsLIhXNoNJQZ90pZv4SyWzatGfan3N2fsFuf4HszihJGNDHxvYA4FOf/gbGIRv+NAyUsjAfDyytMtfKYV64Px45eFOwiFkUrAZtsPnYa4naytVsVcmp0XLb1D2EvY96Rtuq6kPsf9P4Y92E13uubPFxzIZs7OGaw8XYwtpsnQQ/iO12u/qVAHfTJfv5irvx0niBYFw+EXrdSf/M1RcI9Mj2czVsTROalCHmXbhLyXh63VL7+ba6No5ZMbto/LbycIMLaTooGx5+5MmBQ94jdWZOE4sm42+4X9q8bq3/rhvfxa9pKzilunrM9u/GPm8ef/ln/93rSDcm213ONXehHldGHYikTB5HE2IeJsZpxzBOna9Xa3Mx1sQ47XkyTlxePlk/4JEcgbnG9eL4fceQ2XwnYgfby0upzEthno0LPC+Lib1t7lckSwKztTXCCrv536NB1kN/rQstqfr0rr6vg1ZObmfM85MR3sQqsl1cffluYiO/ypwaTbPdqqboX/l3yD/4j1N+9N8nJrDAykvwc1OU9l//JYbv/4fQn/svaHdXPqc8LjqJj5T60bu0H/8PWS2U8y+aruJt23GImlZvBhGaCxuPv38TDH0ukQAA0HhJREFUccZN33RiDCLmjhwaq7ic+2BdyJttbHkqNNWxd9a/r+cSc0tXMSxZRe06Qrt575NT9TisauSWN/f1pbnBiifq5k1+i+PrFpr6vu/9Pq6vXvDs2UdcX11xf3fHPB+sc3wTMP0janUANq2JQhVlEHryIiZLTGATrdAuAmKJ+u0FrE4wrsJnHX4ABz1i16rNBSlq4/X3fp5aC0/bHbv5I47ZOkZnlKB2JjDyBI3k3a1UTdlSNZE1RAPWNdMLiuPzXWiH5oBDcpEpL8SP6t7KWjRpDiHU1rg/Hri6ueXZ1TU3t3d8+PwF7773Ic+vrnh+dcv17YGl2kWnPBJCG7HxX/yhfxzZXfD0j/0Znv/Iv0U9Hjq5IQLWNeBZR/S3Osxhe3VA+qrjbzs8EQOdkt8fCQJxq9RmBJulFnS28VoWA01qi+6pxYnKUVi4OvgdmMIe6Op0jxCA3waSevLg6pw/fP7pmNvms5RiQh67HU+fvu6q5ZnrqysO9weOxxlVZa8jOg6MgxiQ6juv4uq+qflmFZ+nnqR28kNVWrJ1rbi6fynIMDAM2QD9HJ2eQ+QlNjnl3SXxq3fwh59YOX8kyE4hgs0VJhAvUIz7DHTSTzeQqHVgvriglJnD4Zbj4Y7lcM9BCzpkdBSmvHVIG1Q1QtgyMx/vWY5HaEYAnA8H7u/vOR7uKcti3dqrqYu+9hP/F15853+f85/+c6Rh9C3JQRjHDFIShlF48uSST3ziHS6fvMbVzTVf+tKXuL+7MeqD2B46ZFAS05SZxsw4GECImugOY7ME9TRyPxdLaDXhjdde48233uL1Nz/G7uwc60pIDwTyNLE7O2N3ccF4dsnZxYV1lNjtEEloaczVAK08jIzTZMVcLTpRjMi0A8nWQbg2NEGSbB0MnZi2LI2r6xvuD8dekP9YjlBZjvuyusxWsNSL48VI4iY2VS3ITwssCyKmzDsNI9OQmHJyIkyjtYVSZpY5G9ElPisLyRW5bZn6WqrFg/eMtV+uZjtSdsBf0RpJ+liLK+pkUyzWlXRBCXPmUi8IoBZoJgS5ExhFKfORZx++T/POzMMQSVSzX3XjXDQ1+nvvxqc+Pk6OFZolXetCLQtlWfiPl2/nst7yn8pn+Mfkv+3AWz9vEX5/et8d0tSbZmptRu500a0WoLMIMmRSj3oKTQsBiUokGzziV19TIq0XCFRaxDpuv11IJ2fIIxpfaXCyujlpYZdKrdzf3vLiygSeyrIwjiNnZ2fs93vyMKwAiy18K7ZJ0hXOkSBrDEgoOmsjqRVGJZQBJYt9TzSW5Ug73LDcXrNcX3O4ueV4nLm+uuL25u73fuH8No+7mxcmLpoSg4sbZFcYV8GI4TJSSyEnI0QsAtOYeTo95fr5M37jC1/kbNqxHwaSwJQGdnnk8uKSp0+eMki2ArLFfCgWON/vUU0gO5Z0xn26oOQL7tMl1+mCF+x5pjveSwMf5syNWD/RUZRLUdjveXK5t+KyeWa4u+WXvuEfYDze8lPf9U/xR3723+1dW6H1JAvNyWstCCju+4L/s1GY1tDbPT3WwCzEbVa/NwKFEKWIVwShLz6nB+/tYUpD+k/275Z45mkF/2x7xkb0Q32NbH7eFuGb7U38sa/8iL3dA1LNGnji2HwYRjYIj6xBi19nH5PNe2yvKF6mftGnAbM9a6sGnAfzL4p3DuzJB+zvzTcg1SD89iiS5Anmx3SoWkGQkZcxvSxkIyakdj+9ONcKlrfFAOt9ClKABdNAJ2Cu5DKzC91wml1AnejRnLhodnSQtZB3zAO7abQCKEmoJIpawbVg4PcoBoovzfZ1XWZaMcGwLcq1kecw0WAP4APY0JSRNHiRr4Puis1xiQK15BZDO1DdC//9epUN6WqTnOlEvh5LnCrMt018sS5Gs+NRsAiRzF/XwMNCb1VbJ+GdaE7rfeowid2B3lUq/PQe16jvQebTRPHptkBpBQ20F8yt4jk+S+I0Y63732LdyYP34eFzoM+pl7xBOX3ksSW5jMybyNmhEl9PMYNytm6F4zgiGHlvnmfmecbsg3WZtEJKrAjPxzji1cgrincBT0nJg4lMDaN97abE+X7kbAfjYP5Mdp5GC7TYAzgD2jgJIj0s2tgl6U+oXuxbzPlCpHA4LuR8YMgj+90ZZ2dHzvcXnJ819rsdbWeFGn2ONxNrzCLU6CqiPkaSXeiAk7hbxJKBccdTt0rrHOrnvTEl/QeRPr/Ml1tthcbf0Y4N1A7Mr4BiCE61Wk1IwEmHJnx04O7u3oSm4m9f+mIvpm1eBBCCRbGegwiZkontrWvc15DHg7IFEkXWeCE1L5I2HyGKiATpRUcp5osEiEivNhAvKLe9Lwo5PX6XiMMfz/HBhx/StDEvM2WZ+74bJGnbSn0H2kyAh8D86Z4Vc8MmUGCN/djMpyQWcw8DTCPsJmEaDb/Y7UbeeH3Hm2+ccX5+ZsIO0479NLKbMrtdYpwgD0rKFTzx2AmyfvtPuxN4bCOpr6FWfZKHDfBC2b7n4n6jNiu0iPutgXt4qk3W8ZDuQ0VCoaGa3IS1FWfzAdmOX/ceo7jQP8MEZNoGhNcwkRub6DakriQo+xt9PeP3dAvBSXSMbM3EJln3CxHf27a2T6JLjkBeuwqaYnimUSnNcCxoSFLyIAxTZtdGcyvSQmNhCY5is8SD1EbVQqlqguyji8V4EWjT6iLS5mekYWDY7RimiTRaZ8zHdqzr6bQo+OuBQbdmebt/bPffl99mJZOFu+/OwiYKoQuSruInLmTQ4yBMxKtvpeY/qShNTRQbhNyU3KyLkqa0+rBqRVBJTZBdSkGOh8jwIDn1Qk4liuftc6xA3kRMYXACXFyDmNiE7y95GPxkG//0pzN/6b3Gn/zkyNqdyQYgEoAxLn/13ZlnJfGffKXwP/iGHZdD2sRy1f1538OU1RhG9nBrA2I/INYs3a83cbTkLxFWhxF+6abwcy+K+/OJb9xJF5RotVKWYvjuUqOi032bRi3WdSyIPlUrRRulFUpZWKoJ/tQWRc2F1hZqnalloZViYq9eHBquc4zXOtdcAHJZXPzGMYVHdCyLCRyFDy3Q57Z6Yrd4gUP4EagVCodoVmz/KaXuZ3QBoo3fYc8Vvjtf8Stp4Ft2hfPtcPgc3oop9YUqciKc9iqhqYc7mO3XQpSfxVxOfW37ox4v2QeZ4F8XBJaI2ZvlDft5dq9vUzSgfT5Hp1YT1219rQbOFz51xLm1mmhNiEwRmAMP9jK/1h7HOFlDXaz64vlvMh6OnaDUNvc23itthHgN37KO25KSiwTb86vfx2UpzGVhac27PFt+pKh19uvF2H6fw1eUZHmaaTKhqdHzLNkJUkNOjDkxjpkhZQq+7zmWrRVqK7QK0zCYED5mP2WypiNJTHRqHEemcWAchg3e9DiO/TRRazV8MSfakGhLkJ4svl/xJN83qvvS+DJw7B1x8VsnuDXx+Vcthza40LqmgWHaMe525HGkNcMqTLg7+RzdCOnqSqZPJKjWsGGcLnn61qf49Ge+jbc++fuYzj/GmBJvfHLHRco8uxh4/8sLx+cL9b7RtDDJ4PffiyWq5RhyNWGnPhcjHhPPLWtDmuW0RVafOtZZqe4HyoojRqyRxDBv9cLEsiyAYzYbHzNt9o1ajJSScia6Z2rDChNUXQwy/EyBZnHnMhcjijZbY1VX0ani6/sr3/In2NUjX/72H+abPv8jHYsx3NLWR4hMpWQd7UkbP5boVJpfwjdsL3RsJvbMFAWkca3mbDe3mymJCZxkG8Naq8t8xJrN7itoaAT394q9tXvnsvXDH8cRIjFbIRkT8G/dR27NbHoIk4UoYq0WQ5dlsXRWhpqSCVEtM8t8tOI/FVo1H6KU4rbf5kbOVoArzfkkhJiBYVl5yAxpJHscJb7GBRMZ0jygtVJ0JgmUwQSMLP4RE5vwBgNJTJCqKMy1cfCcwqCWD2xuJ3MakGz+HS46JZgYpIm4YPkAko2PKOjSfZ+qtQecuWUGVSD1Bgix9pqaL9Xtohfyr1luX4OqPuVl0zkw0WpQqdRiFo+zArPXVp241iitEZ3ih2yiajinQmMBb7x1EwkFWIsuc86rT+vFXeM0Mu12VnC933s39AFSJrrudVvrDo8oZGy/ymIEaGkK1eJqy4VWdGlW3NYMRzbXRikp2T4eTWIEu14vwntsvmL32cF5DdDBrgdB2UoOk753RbyfYqL4745s9zglniv976yv/1rHCWQifZ/1HdCfsGIvtVY6Qc59htZiR9z4leKYROAWfo6p55XWry4yFZ/aeVUed4kRu5MTK1WEnVhjrhQCUP1qlboYuX6pZR0bDYkaxxtiXF0ArtWVcxLvZbld6bml7oMaOazzaDbudo/5Wvd/PQ4gUZN2Tlvg6k2rC8sUGtXsKs32kQoShZ7qpGIv3lqbxjWL2eYjdTGSfFI1ccnWvIGHrf/sNi+uIR5b59oWH/I9SFdbaTahefH64zrMvZc1bvYjuEJxWYE1JB9TX0Co2t4h08Qg1jBzN2TGnIxLuByp84G6zMYNlGYdQkM8RqJIzsbwK3/h3yP/if8h40//GMePv8UoLnyUMxkxAb0ELI5FuQhgkmaFn61ZLL3MzMnySkPO7o8kxxXSCrb5WulYnQTbBdSLs9eCgOrF/GZT7G/WsMbiCdu3G+se1RS3E4lo1LI6OOYV2XgHnhc7gosn0bpQK8HK1PAxGj0l2f/x7q4xZx0rrVq7sFvYRY34LInTaqKphflcGRgHF5+3q2EVzQleSYdaza9tChQ7X22k998jfwiy2ZMsJlt5rEmUHBiO309Re7301FIQidc8kCvgY8Ixnpcsfs2P6NgKTYUNeng85Fy+xMGUzbeOH2yPUxuyvhEdG/xqz/t6MM7f2bH9gLASK8dCHoxJNKNNOTMMk+0Tvh5S4GEuWo56gyKIXmv9nYyNtX6qbLe5hxub/yxYccMWF22oNUF0X36bbwvEp4OSuPiCr+f1fdTORrXvdadfYeu3BdkxdA+wGR+vh7hUPGebc4jB6N6D8wJCMIfkTdL6Bzg3zvksadugTZvjzY4dP6Kj1cV/qjRJZKmoDoYrdhzOMbYkQLY41oDaV9yP8H/8Zj/8mwtfdP+p49jh16x//eqHfpXn6Mk91ZfW+u/0iAK0xHq+URUZ5+W/qrIbEm9c7vkn//Sf4h/+o3+ENy7OSWXh7OyMz37yk3zy7U/wHd/8rfzA934///H/9y/yE//Vf82X3v2A+9n4mzheIaqMKXFxdsY0ZJgPtFJ63i/njOYEw0je7ckUWlFmj1d6QRleF5HtdePuCbUW8jgxq3Jcls4zqGVB04SK2z11wcue72mbex22WA3AD46jiPN4h8517LyHWH8eX0pwwXAMRvHGxC/f58gzRExQWyWRee1ix9nufN28Hs2xsm4UHMvWNSzDNthg0YisQuKnRTz2PaVVkKr7gmq+QmAdippQO8n39th8xWJzWNe2b3yK8943e22rleM8c3t7x5DMH5yGkZwS0zQxTZOLGhlmsXjMFII94lB99xv7KGz32chExXzgwd78Crsf/3Yj/cBgi2B8O/HxjnhY17FYn2rYumzeC2EV2YONCr7173U7ETFYzOWqylwK98eZ25tbrq5uePHiBc+eveDm+tqaux9njvNsIvJd5YruX5qzrMbZ9roIVVaBYYT92Z7XX3+Dt95+m3feeYdPvPMJXn/jDc7Oz73YT0zERuF4nFm86duyLNzf33Nzc82HH37IRx8949mzj/jow4+4u7vjeDxaPvPEltq1t2RxrpnjR7fIGEexJkE1sK1mdVh+70I0PaVkDYESaN4hpojrQkPZ9qM1teTrQE0skeD7wYCJmI/AKCODVpZqmHTWzJQzB5SjCLMIs+CcAMvPKK3zNVL4QmDnqIo0X0spoz/x5wDLlYUQTfA/zK8y8To6d7BaDFSNgydSSWIF2fNSkZzWVRB+Ubyfx2k5maDcie/9Kj88fBtY1+/Jn+3aRMTEKbttSN4YYa3rw/erGWXGRQOcC2oxUqxzj8/8NcMwoCnz5HzPU3mTj7/9DsM0cfH0DYazc6bLCz7/hc/z7ntf4fbmBm1Wz5PHaBBqXK6K805dxVdIjhVH/GTN2E3QyHOFbl/LEs17FpZSLE9RKq9dXHB5du75r5GcM/c3N9Tj3OdCI9FksCJVqSyoi70tPKaji6LBhirg/q89+kAMxX4IVnf40SgmMNWsUWOIhFplV/AJ1vXQQZRVxYxAw1ZELMVW1aeJvfr0NT3kAKD1uDwetYJqSFtf3f0R8euW/h5bFvzmjTX+5kYeRWolO6ZRHN8nxqmvif8/d38ebNu+3Xdhn18z52r23qe/993XSu9JshqrsWwJSw6RjeQ42MbEFYgNxIRKKBInkEqFUAGKFCQmicuVVIUuQAgVymBMJTgIAkG2jBs5liXZVm/5Wd17st570tW995yz+7XWnPP3G/ljjPGbc+1znnRlPUk7mafW2XuvtWb3m7/faL5jjO9wnW8kFb/tH0S+5/9xFOOBhZ/yRV+HPPsYfOBLqD/2XXD+jo3X4tJrpf6VP0X4mm+l/OB32kDHGX+QRc5irYvcRo2ZtccYghJFJSXky8lq8jqP7fb0XVbcyPNNqhgxveWZWRwt50yXO7qcSEnf87urNmShYrjjq7YDYLVUtY2dF8LHFJT8Kmer+TFyuJSNuE3nk+do/6q78b+CzfNt3DbT2J/5Uwu/1r9rv9BsmNCWw0LDONWp2X1mQ0Zbn/oV9RfCArM8BkgWVyjzue/mS/r1SIsrHWXj2oW95rh2r3odr/r7fr4QJsI0EHOvtQjSsjrn+3Y7Geh+6+9n+sHvgGm4o9MWA2R2WHjrE4TtA+qnflDX+/x1v0EAum/5R5DbC7pv+Yc5/KX/aL4vbOr6tQLlp/56sxXnT143qn4ul6V6ExKW2tcwlDDL4LZzeN2xZx9EX7PknId98SwiVgviny3mgs0HteGDQYc66kvSA6+5uW/b1X7HNq2IYQWivhLRavWJpFhIxfFUI7wMQs6R2GXoOupUGaVyKBN7AkmU/KBDmERzqyYpWpdCoEhlqoVDGRkmI5OdItuwpe/UZsxRm7udnZ6yp6N0B+rNwHR9YKiDNtCaJoRCjZEcekLoWK1WbLcbTtY9q6A+pDdm1Jwf91XUdo1S25zy/JJqeR8CTN/1J+l+69+PfPef0vpNnFtA0CQPrQvV0tJIKoWctGFxiu6bqx5NISAhkiM61k3qisWhg41zaPMxLuePNRDUlV1bk2PB8vDLZDa6xf2NQKVM9rNow8pxGhimkamOjFOhTEL87v+I6St+O+lH/hw1GN4cAtVsiTkX2YlBZmIebT44mR9nufnuQxhOmDolVTzZbHh0esobmy0Pu8ymVvKw0zj0pBhPSHqfZapUitm7FpeIiRg7SFpDWitKpjtMjClgbSXu3fbmWx9UrKDrIAi3NzcMk5LUH8bCYSwMk+bbFjBdrj5xrOaHhEiZrLENKCmTYSg1BM1ZcvJXwearHsscuBZDxs+x8FKWloWrAI2ZisWJpDX/TVbLqLHppSTG9Fww18Ri0nd1W4BPfPZ7+NkPfgOfePt7F3oRZs2icvV6+yY3m6d84N2/5SrJcGTXaxqni7Y+YozUqNfoNeFelOxx8eoEOIb5KGm217GUmVSqEYzS6j5nzlD9+/Hbf5NaK+uLt0m7S/VjqsnKBdFUWej/VhPHbC877u4K1jVc8Nizv9dylBdaq5ot589LQot3u11SGy401+BV8YbtsfES9P2KrustnwvGqUCpupatJqvvOst/uT/b3bo6j+Y4IVCzJULAc7ZLqUxjNaK8osR7YzGfU/Cc3PkkC6m9eGZL32VeV/YlIy+j2W3LGLhhxrPVurBHFsh9izEtbLUQbKo4ZjD/9PvURrxYTpjJ7+/+T/XoSxvR5PtRnAJh/ME/19au297NR/IxtJqvutjPNG0jAZ7rjnRNiWMGxRsj2Tg1O49marsO0fjbLE8awZTZWanVAc14sfIfHce6Zv9yxnmO8Bozlv25tqchiydkeIs/k4Upe4QDSNCX5sE6nmzr0Ym2GnZy3Nzl/W7vm2jqK7/yK7m+uuTli+e8ePGC8/OXXF9dsN/dMg0HZBoYxgPjOOgCWPhRApY4rx3lQW+qqRAvKKHVftDAOL0jFutTB8kNdNFCSQeRshfTVqGUyKN3P0mXM/uk3XnVyEpMqZJrmVkVEWIMlKiAZJWqzKIN0KMFexUWd8UY5mivPcjQVrZAiNQwGYtoaI5YAaYysR8GLq6ueO/FS959/oKXl1e89+Kcd967sA7haCCxVqaKKqmkXblq0I4H+3d/npOv+ibGt38GKfO4zU7iq45MOI7Mf95N3s+XFuf4O3FVGqjlyfTu/MRAMCUKLAou1Fhc/t2KwpkNhjlowXyMxaK5d9simHN3UxtsvuZ5rF/97jRNVuCfWG3WBjYpO/lFuGC/23EYxsaMGcm4bdBcVdU0zbFXt8EUiwPjZsyHFEwhanf6ZMBYDIEU1Jhx4jNQQ/L5mPiu88TDVPneq8w3P5hawnVL9nPX3RWWKQQP+HnylBMreEJXFesC3mVOT08Zhocc9tdclYHxcEsdhTIG6KPSzZlC0YTgkXHYM+xuGQ47fvrNb+LZzefYvvxbRlAxmRGopDPjVKiHgZMf+FPMqtudHOtaHAK5i5ycrHn85AlP3nhG6nqub254++23GQ47OmugGFHm1xgj6z6zXnVkA+Mg0PVZk6VyJnc9ZT8xVkh9z+Nnz3jrwx/mwePHjEXYHUZKCIScSV1Hv9qw3mxZb0/pt6esNyf0KyVVQUUo06SdLVNKxKRsoTEZyNp1hJzViJmswAftljsWQYYJITGOI+fnFwxjYbW6Xx2L1CgI9lyaqjUDZy6MdFZnfH5UUSJBS12IwZ9VoO87S9SMpKzKYBwHKlrYWEUL6vNq1daPgJIN1kANxfRGRYuCoxlVsyknbhgsWLIEL74MeJJtKZN1/a3aVbpMUApv1B1fLntCmXgUd0x9x2EauT3sOH+pHd3Hw57Tswf0my3/8XtP+QNP32UYRhsXK56yDvE/eHPKA7nli9IFUidCnZQ0q05WOFh4Wt/jM+ENvkzeUQItwiIZwYLv9lBUnvl92b3h6xncy6n2KNSh0uQGrVkIsxFtx06ERl4YY1ywlWLdcR3szuTckbtemaizgtylCiFFTeCM2oVrt9txeX7B1dUV0zTR9do9d7PZqvPsAtPlqJ3HbvnYqgkazIuiBQHadSLBVBpJUxSQ8cBw2HF7fc3N9RXXV1fcXN8wjBP7/YFhvH+wxfnz91SOxMBm3bPZrFmt11p812QuWqARFWwok9pJ2+2Wev6Sl89fcGXjkAmcbU959vgx667nwdkDTk/O2G5O2HW37K537Mc9YQqEmCGvuZkSwxCR9Zp9d8b15jHP1ye8u97wdsy8SB27pAV366ga7maduV539CES9jvS7RUnwyXvnX2Yt977W9SqxDchCRrhLgiFEHo84TyYJzBjvcukHzfk5+D/AuMHmdfFHNBVh0i/YMRCbRa58+U2njBHNWZ7dWkAKt4sfrjmhCyvZ3ZpNKlIizWs6M5/t2TFRkJlW1uv7YRuKpt+X/5s4swBcPfcZmfIk1LuWmzuSPtFz4C59TnXuFYjdsjZizWhRisYZSaa8iSAaoQDPiYxzDrifm3uHJtTbAzzpao+HqbCOIwMw8jBfg7jslDWrBVzyh2cBcOJloXsXrzZiKZCo31oTqglqaYYKMoYQAhCFwNd0leOgRR77XZvBUU50KR9MaIqYrAuxRrcllJsNqo8CHEBUiEGGhtLd5gLU3SUdPJUvyexhA+fMxbcjB5EDd49+A7hErMdrmJgasV3M9g3Axa+17y0ZF5n4jb8DC8tp5f7biEEWv5XCK1YnUDr1EetDWxtUmAJxsgM2MzzZgGu3NnuEre8LkH87jnuvr/cROZA4tF57Pk1VYkDJvdnK2OhRh2vGI1eKnln3aSkM+s1q9UK75K42++JcaekblVAkhJwl6rd7zAftCoBQ60FMVrYECHmQMqVnCu5E7ou0PWB1SrSr5QUJ8Xa5qLqC19/tiqXoLjZPIHAzTf8U5z8wL+j87V48Ee7Co6TFv8LBQ4FOBCI9N2BzXbksNVO6+MklIoChAvZmIJYEoIc2a96vdEuZZ4v0UC2agBarFUT9vBD6nFb12EWPq+DRfaed1xvOtc+UJyJOTHDXh6EKqJFleM0cjgMHA4Hk5Mj+92e3X6vJBtVg2RlMnJJl5N6IyZHpCW+hKAFto1kxRMrHECMMxCpiWi+nylL73oejhMkVTaZGLafc8czWnAjBMzGKDYmCe16pgXd92m7vrkGdC66XeSkKi7JXRWp7WI2vn1z/h8cXziWQdLyWhvEgtsG0AUjl+phvcpsNx2bVUe/6tisVjx+dMKDB2s2ayWUUyKGRJ8Dytcg2uUITRLE1nJ0Qnib016UGJZIgRkxM3gd5jlkiYPY+6aybPovgBkfgCOQdHGTpocbd2azrWhJ1LQrOF6jwS7yro1Q29/+/cXPBQmVd0nx77FUjfOpmw9rUx0vrvNbnPWh3Uuo7fcQq3WwVQw3JMv9tSJ3LzBLOZL7TC9N2iqGKqLFy5MD63YPo3ZZqmY7xFRN5GgAIyUjgxHUJo5JA9dpTki+X9ssk/9Ot1diC4Fjmfv59nvNT8fwvCgoBe+RjE2SZWIa5hosgjFGNuWk0S25a6H/PBnfg02Egng+qN2MJwE3EjUTEiEE+tJTaqGrSjgVDThq1p0nXISgyYgBxATw73pDu8a7vnK/Jzi5gBEyPu0jP3M78YFVaEWuTS7YtWvASXXBz+8KP/hy4nd/cIVbVkscqC0qG8b/66f3/ONfvDL8QUNsXtSIfXUb1SZJCCtotkGdlDhpGpU8vBjhTilTI5bwhN1h1OSQcXLikMLo5CG1NNIfL7JW0qmZyMC32QZ8dQ1pcF3PG+JIrfcrkHw4HIxMaJyJKIPiqc0+rhWpscUwWmKOuK63xNUUX41x2PGcNCUZvvXV3S05JUJYhPRMJldbY7OXMf8W9IDtuK1oIRyPvsBMPNzoeixAutwXoFYroEimEyLkdGTbS3VcTI5qZquR47Rrb0SFtRVCF++kZuvd8ZWWeFuKJrvUMtsBITSbaXlj3/Psm/jmd7+32dKyOMY0zfPbSZpLKa1rEMGJhExuNcMvKHF98BiF3peTTI3joGulVibBktctJli1i/ZMKKYYZErq3yag7zu6LinJTS1GADcwjSNSCylAlyNREgnX2dZ1VgrBkn6yF2TmBBIhZyV97zpWXU/XWRfJV4T+r+92cnLCVAr74UCKiZw79e8DeIOjIysrhNnPdNyiFGRUWVj9Q59HqN2ZUqSL2tSmBm0WgAi1TIyT4iuTQNet8WiIniJqApF4cbmSTKXuhIdPPsAXffzL+MTHv4RnT98gxkwRIfdbHr71YWIu1C7yHh3XQ0cdLhFGcpzIcbTEw2KxoqgQnM/zOqMeItKKUQRabA4j/VUyTlTWWEtyaUl4loTYooFhtgltKlTcljO9UYs1xBBS0KIrqnb1xGJhTvCrj0TjCNOoSYVj0VjFOE36TKomeorZ89vb97h+8gkeXPxMkxHRCPyU/CQgQe3FHKKRZCkBh8d+XykGtN893ihmYM8kKcfYjxJxzG9EHQjc50hRR0zcvg4zqasXwDjJgNr8QQuiUjiSjfdh8zEq42gd6jV5cJomI0osLeGtNXsyH7kRIk4TIWRKKSQj7pumkcN+z5QKXrAqNjdKUb86JSWKdZnnifoaqzF9FqMWxgYd85nEV/HxWiYtbIqJEqFMqhtDitQSSNEKaGNkLJXDVNgPA7vDwDCM1HFiKCORasTOwWSLEpjGnJFkxm+sSDSdI0oaU1M1m2ciiJKtSYFgcUE9d1B/QeYkpRRhmmaSmRDQ/e25uM6LcSaGSSEgKSgpmxQjbrUiVyPvKQKhVFuXwjhMDONkpIhuR+g1eHKu58WAtHXsfrfH3sT8dszGyb0mAq7Xa32t1uSuI6dMIBgGIZrQLYBYVo0IoeraXeeeLmX14YAuZ+o0aL6BkfgowexIMiI6KdZQJ2jRSsqd5ZPoHFM8937psdA6Qrg3pDiRiwK30txyc5zP9m7f0K7B0sz+pYfn8eIwf30RBz0mfFjaSq7HjuIEhNlnD/OJmv3m8o7Zx58pKtyv89njX9LEB/X2YsMCxIAsjwkHO36LxVQjlZO55YI2DOoJ60xIK7rQsYmJGrTwllA43Byoh0lj+xFNhLbjeWKht+fSWLfNKytczTHgFdkiWCG4FRizwEH878AM1qHqoohir4qHqD0dU0dMPTH1BKI28hoPyKjFuJ37hXXOH9NnGTQvrBRCqaQKyYkzp5FiBMFSJoJVXZcyEWqBWuekRzueYzTZO56aZVOq+yDVMDSzD0KiRCtksMLP+7ct5nibwI54+R86zyOYzja/ou2fCFF8lRJSR+pW5JWSj+au1zzIqnhrbaQWpjcIjbSg1ML5X/oOVo+fME4jubM5Lda5NwZq1ByUSqEWI3JJkS4lgsAwKVFgGZRUosREzZmUtXgwRC8ANRvH7tHJrxxlxWIampALk6hDEqPnoMzF0M118jnuOHrDlMLip36xyohnPQSTdQ3pDIEYpREfahGKPoVgDUU9dqG/SitgjlGIMSGOpSCtqAXHDx0vbzE+4wOI6p9q/o71GIviN0aD00XasX2OqGyoKIOBjr1KKlQO1AJGbOgUeU5e5fafjTjKFlegjoRQ9Z6crAq//kIIc75ECJGYOwjvO3X312TLOb+6xpZ+4x2d0zZzWKS+zgJ+VV/P+975bKm7wuu+t7TlXTr/yrdZjx2/u8xR1pMqOSJLkvAYiZJbA6wYIiUmSsqNZCpMkyYjNMXucwdaoCcGPKFNzxt8qs2fmw6V9vGibFeOC0Sd3MQ/U4GhduMy6fyOoaJj2uSmNFu13a89G5FZLvnuc74J82/L6dP+XMbXa5tr3mTCfQD1DzzJby7ECE58QISQDIOzmGWYKbwUO75f9qJK7UnlbgiEyWSQ2fle7ODzMcyg+VE+g+Nq+p2lT+z5eZHWkMqNSvuuiBb9LMruj7bwyns+EV/dfrV9Xo8etQyLMM8vJxQgCH2IbCL81t/0tfyeb/0dvPnwjHJ7RScrJSMXYbs55WMf+SDPHj/iEx//GL/5e76WP/sX/j/8wA/9KO+9uFD7JwRE1H95eHpCEGEcDzCNqte1elPXek50aUPfQzZ/Z79aMQ2jNisoE9O+EEsm9xliYJq0CdQggWEUhtGKJ6XiMUdvKrf0Ao7yNBrBETZnvOlNaphyNNKSGJPWGswG/uLF7Av4L3f68C1JSlwc11rpusDHP/YhPvSBN+nuWZxMliaMLESbzdYoFi/04t+gOcGOm7nPvIzxgi9Jn38ey/X5idmISgC4JL71dIA5o8nktsVPvADKYz9VhP1hAK4AtUGkqpPm8QYnnQoxUJO2UAkuL5nrXGChwsXt5Vme3l2/LSbd7tH1iY2fLGQ4x2KhoQpiFmILKrrs0d89X0vfqEf+7vLlO2nzY9NfASVZFahTZX8YuNntub665sXzl5yfX3J1dcXFxRW3u1vGw6hYVyn6RM2PEwy7CPqUtODf4oJmt1YJ5K6j79c8efqMtz74QT70oQ/zgQ++xdNnT3lw9kAbOdeqxYOlUkrlan/N/nBgd7vj5uaGq6srLi8ueP7yBRfnF1xdXXJ7uzNSZyX4dJKOYNelBMNzcfp9rHXp+qjF/CVQJVjsQ30gKyud7bgQDGy1VVCNyDcscEGx7q/me2lcjXkyBCEJ+kJ148GaUeYgrOgZIgw5MaTEIQQOIgyGDY7WYEcqFMN8sR/e9EaJBPMiPyhYrYHL0xkc0elcG7WcQolaC6CNvdWnHoaxxRYWE7sRAXuTTW0Ikoxw4ngdHqnkgOKOr5BGzRhRQ2gWBZNLoik/pBPjDUEYkYZDge8TjPhYm+ykCjFlHvzcDxC/8r/OJw7vsHnyjNRn+tWax0978nrN5mxL6jMSKp8bB3a7HUUgxd5I5mAqlaFaTMPuS4IW5yoOdce3LYp3OMlA9IbQVdgfDgSCxpQlKGaZe8IaraMYC1Jt9nU9sV+R+hUxRcq4YtrvqbJnumdEU2E2tucpcCzQmy8Ox9OEEGzJ6RhG96lx23ten6EEXY9+5AV5JTRoZfbE7roNrmz9f4+TNz+kHXk+ty3uINoggjTfWpMddpHz76+xWNvCmn0WEHjxc5RP/mXo1pRf+NSdMZJFYyEIobL+b/wTjJ/7JOlb/lHGv/jH55w8a3QGINcviW99GbK/ohx2JgeOx19A9foPfiel6cB54JyMZPIYteVheFH1nBegxfar1Yq+6+n6jlXfs+q7RZOibE2wQsN56lQQixX6GtbvaL52BMu1ovmGUoy03ovVWfqH/rwMv3B5SDQy7mRkV0aUnpNhWJ0S65uudwTlV9ll+OVvpnOOMF9bVy0/3rHy8MrsWxzHbs1k6MKl1jFexCldJ0ZZ4u2+j+sWaedr8rxd37y+5pPPMVB/dG3V+QftgjheSE2OSLONjuwxf3DjnvKD30n3sd/I+NPfT2CRu8qxXdx98x9Abl7Q//b/HuN3/XEoi5zVYHpN1LaNb34x6cu+EZkGAOqnf+g1fqjd+/PPEj/6lZSf/bH5YD46vl5n4+MXf2afZ5tX9ML8gFajZkJjcVXL7x7rell8qz1nmeWU+3QIRzjvq89n3ppcxHKPDTtZyuz7tO2HQfM3I6QS6EQsXSVASESUIClHs8VjRHIgpwBjRnJkpLKbJq4K5Cg4KVBMgWz+gccugjXmCkGljlRtoKixymr1oZGQE5vU8zCtkG5DXA+Efk8NN0xVqLsDw6T1OFqfk8kxsF71bLcbtus1qRamMli9ppJdFYuxiOnUili9daEU0fjp5PlQmhsY/up/3hoxef5KI5CpleFLfguRQvrZHyal0OK92WojszVqVZmsOUlZAjVqrWqSBW7thDj2ijGQUVu6+XrVmq74rA5qg01Fybe03kAJpkrR+/D8kCqVwzgxjCOlToy1UiahjrfID30nJWQahheT+ltV2qtUr+UujZDHm23EIEacGOn6TNcpaU3fd6z6jpPVigdnpzx59JA3Ts/YlpF0ew3DBDJAGElRyCkQghGr1kKLC1leghAp1ZpnDCPd/gBdxyEnphCo94wAB+DRk6eA+v/jNMBuzyTCMFUOozbtrUGJfLIRiQbDi133S6qUODEZTlnNLqhG4C9RSI5XJM2McjImzx/3cZx9l4UVaJiyE50pNq1roAZpOQM5LkRgq+XTPKkoouRYhtHEyEJfLPKL7fxf9Pb3H813PW1FRHXyzfYZn3vjq+jGHdOTL+ONX/gkoeVnqOxW7EWvsxjhW4xY/tLsgzV9ZGM6Ny5cNEn3WGyVRpIzxZ5Pf+J38KU//p224hynMD0RAg9/4ccbNlFFcawiC2KeqrLF893dGTyy02X+3WN6R+oS/8MQIqvLacaAmcMeb/BrEcNSCI6lGPmbNYSJqSP3Pf1qxWq9YbXZsl5v6fs1OXcIih8ENKYXQ6LvVtrc7F5tYvZLo/OF9pv7S7MsLFXzUMdpstzRwuhytMyEYEcvnS4LeWiNSrwm0y/FHA5Ba7Cq4YcuteeawoX9YTu0eBGz3Xo0T44whzC/1X6fbdOYhBzFUsHv2jfzqnDDyO3RoxyWOPuaVZSssNaZbKr4HF/st7SYW42+yzNf7I6vGuY7+59+QeqDOhdEMB04Y9/M8Wdv3uBYseV8qW/tjbZ1fLQs+07+y2IKzWM7234eT9dh9vXZwJrZd3W/YNlNpj1ji/FBkz13iabm6zAf433Eyd73KnzzzTd59PABT5885urqivPzl1y8fMHV5QU315fsb6/Y396w292wPwyaMLqYiC5IXb1GD4Lhc8+dbns5I3oITVgqsLZwSHx4RFnfRALU0AakxEgR7aJRUiKVZJ1/NbHOu38lS+4IQQV/idoduLF9GljRSLAWAcwmOVtnCxWS1Ni+JyErCQgYsDyxHwdubndcXF/x4sVL3n3xgneev+Di6obL6wPXu0LqIqnLYOyH02iJ4jUQEgjGlvnjfw0Z9oyf/QlkHBeTzBRikNYhovkggeMJ20Z+MWl+DX2OpZC9W+jmCyN6kbW/5waBOeGvOEq2QKXOAWknIbuvAPy8yewgHsuDxdjoMz16TEGJU4KoAR+iJpJutyfKSBsjlzGx290yjCPIRApr+qSsgq7ydMnV1o3XQlbqatSiwI9gxVuaCCu1AAWpUTvVW0dxFe5e/KkH3MbAB/rKzx8CX731wOhC2C9veHmHDqgs5u88J6LNkQbN0/cdZw9OGfaPoE5c1ZH97prpMFKHwCpHuihQR8ZxTxn31GlgGg/89BvfyFVNvPf0t/DR8+eE6b05sbBiybqa8AVq3EpVZk2xJOEI5BzZbjc8ffaYp2884+zsAbf7Wy4urrm63CFTUUZHUcbTnIQcI6tVZrXqSFHougREyqojTlrQ6JlT3apndXLGszff5PHTN+lWW25vbtkPE6nv1LHqZwNtsz2h357Qb7ak3AOhdQH07jws15oBjTFpR1oETU4WM1AkMIyFsRZEIqMR4OScOX3w4Jc/9X8VtyV+FE1+z3awzlN9bsvkS9UtWjxMK3CIzjaJFrLmFMmddh4kalE3o3bDzF1HtxpVXdRiJF7VuqFUUqqEqMVYKXqC+RysbeuwunKPiJRmoLckYCPlkDIhk5I+1TKBVN5k0DUdgznDhf1Y2d9cMxyUXG0aBv7T8Jv4ppNL/oN3nvEPPfgsUjX5P1uyyg/dnvHOIfAz9SEl3PIhuVIgUOYEvCDCb+ZneSB7viq8i0UE7RnMcnqZBHK3EESEIxktlgwpRY3JZli4kSvzA45BjUfV7drVQUqBsjSOVb/nLmkyfKdrJeaEhIhUlAzFul0eDgcuLy+5vLxkGAZCCKxWa9abE9abtc4l80g9IO4GpizuqYFcMWqgoCr7ekodIQilTjhxgZSRwzhxdXPD5dU1V9e33Oz27A4DY5mUcfoedpEthz1T1cKHcRfYXSVS10PuEOtqLagDpOzDmeGwp+sym20H00CicHVxxf72FkrlycNHrFNks9qQUmS72Sib/PUtdSiUYWIcBro+kfqeElYUVpR0wk33gIv+IS/XpzzfnHCx2XK73jD1PTEmpjpxOOy4rAPvDQNhKNQChMgH3v0b9Ffv8kU/99cR8eQOLQ0US972zsBgc/aOZxBaFzTdtFvsHRsk2GowG7eRToA57uBBHJkPbSBN+xq+03wJ0oASdzhUnqiHHwx4aYX+hGbLPt9+kJ989g1882f/DHMZm69TO0uL8N0xGJdKfGGvvbLW42LXBbHG8cX6ffoYM9sCfhkxtlwn72QryMzY746cd18NBujqzkrqJgY8Re/QqRenNTr3y15s3QkN6JSiwNFkRZCHcWIYRvbDyH6vZFONYLTNvbAY0/n+5vxqD/5Y2rS7PHHxTNpT0L8SgRqhlpFaBmLVDl0pCjlCFyGHHumyyUeDxQxYU8c8aQFX0A5WU52IYgB/c8jtGgJGKDh3xXEfyJ5gUz/zVPUkijgXWnnhovkTS38D0HXihSnBiq8WvsSR79Js9uN0rLsEKMiiMHFGY9zxWSwfXZvJbLNatZuWP4voBBlCA0Qa0Uetyoln623uinGHSGuhn33zhNRjPTzPl6UMe2UehebNH/vruBR5dT29LkD467mVKq1TSk3M3RSjzbmsXdOyFbbVKHRFmMYCMjFJQWqgTH6vGjaCouujzgERzL5MMZCz0PdC38NqFej7QNdDzko0FTWD0BKCvRDBn8VMvNxsKIHdN/+z5M98L5e/7Z9j8xf+ZaZJZmb8op0APVGtykgpSuKd4sjtfmS3n9gdJk5PBvaHk0a6k6ImbOeoPpDbzj4PKlWTu+ZlAejzj1U0wceCezCn0SvAZ2u+GXmemOl6xEbV53rxgnoFG/1M3vVrqtNMRlAmxqKF/4fDQRP8djsOh4HhMDCMo5G16vguiUodsHNMynK99bkYwJi8e7qt5RhD+2zWf9C6QdjvoMkJSlzFQncdd06NR91o/DyLhIcqVswoBjwXpmlgvGfEpJMlCCwxnyYC/UvCcRNUZqyqJda9YnfZjnc3G+sUoUuwSrBeR7brxMnJmtOTDSfbNet1z2atgcfT0zWrXjscZvOFUg5GNmQFQu3FTJi+0K8NOG736kkp8xolBoJoUVQSxfgaWIwXj83FjVrTb8ksDTiX+bvN6pQ7L9r5uSPDm/x2+0rcB5ZGxOPXO+ucWdYcEf7ceQLt76XReoTnLp+aBZnMv1U8Uz/Vdb88g72CFVNTmy2ZUiTnRFc78zuUXLRKpIjadoIWhWME6kVQe8p8K0FINR6tUQiU7CRG3u2SWXf//8i2iLH8neztTsf8XBfb0ocPNg3dMtNRnMn3ohXouW0wuz86/5ucw31rGoGf7+iE3I2YDu/UUy0vfbZ7xC7Q7cVqmGk1lllPPp2miVXfU6xJRYypnTeIU6Tqq6K+g9i1hMX1ONFUDJFQtZiUAF9+GkkS+fA2kqUwTcxry9LVvFb53YPwn33uwBdvI//vnzvwez7Y3xF54ejnv/ZTt/zXnnb8n35qz//8S1ftmGUpKgXe7IRvONMk7MdhYhyqkUzZa1A9WSYltpnKZASNRjRlZI3jOLQusdM0zfrYExGazSltvrWOL2IxFI7t0qP5ZL5s6/52zzD8w+FArUo0NU3TEXlLK8a0NVGs0Um1LjJKnhBgUplVSjoKjAItkTRbgUHOXetcGo2wG2Y5roQRvi7mMW/PwDSS+jwL/+g1s8rn79EcC44XzPgBMWoRe9TCK+yVmt8NtdgaNZ0dwsLXYEE8YnabWMDY51Kts/zwAuS7HV69KH+2sxad0hD+8lu/nU9cfYq/+IHfzu94+7vsmdRGVFVeIZmaZiI6aH5oYu5S5IacRMXFlbhovrZxUhLTYRwZihIVqeWvWPpUK5PPbWtI4OfKJnO0qECV4TQdOOwTu15tlc2qg+2aFDtijiSykcLRujSJa8Cg5CDJiQZECZu7Lrdk5C6nxZjdj63ve9brFfvxoLhb0Ov2qI844ZLbyebPq12pv0/TpIm6WEf4mElB/QTEiCpjbJ11iwRG81VkUiLvcapaQh8mxUMM0+0ML7KHCiFB7jl58JQPf/RL+OKPfznPnr1Fl3stDxTtcljSivDogzwMKypbxv4ZFw870o/+BZBzIiMdQiYQQjJ7SJ9lLWrv6Bpe+gvmz2FEiwhY18soweqvdJ4Wc5dyTAgas85GXDAXKFpMohp2Zv6Pe1pSBYo10iASc6TWqcnrYoRWgkANlKkyTIMmzdeJaRpZFiiHoK7es7d/hH7a8fjlT6EFMN7xK7QGNcHuK1mhcQ3auCMtbLFl/DgcvV/BC28sDqrv2z6Olc51vEa0akWeVkgqngAXzTqVGfVVW7Yd1I4bKaUQ4/3yyXyc3E92oqnSSJcXL7MHqhEdvUJY712dLfFwYqIUI+KNStxUjY1W4S2111U2acZgsfmWzBcWw63D3BppYc+I4iqlEqRDLFY21dnfrqU0jFNkYjjs2e/3HPY7DvsdZdhTxwNBhNzrGujI9NaUqXPdhsoALNGxUjXfIxZq7JA0Nz4bJqHKxDBaYmpQuU7Xk1GyqKY/0AS8WVtpQbzG+fR8ImgSdAAmTwISI8DyvIjQ5qR3uJVaGUZNVgsEQtYCEh1XXwttKPXchpUHqcRgdoP5uCJa8NivelabjRa49Cu6rlOctlQqk2IQIVItCVKjP+ZHojHWGCKrVU+fO7VfpqId3UNoxZ0xYKFGTcwGlXGIEpWL4WkpZVvnUWNO99AnCwvHV3XW7Dk7Xsri5/EtLOTXnZ8zdmxzSmQm0AmeU8UCKTh23Y6IOkJ45XO3YdWs9HjRq8chzPZlu165e91aDKzhlRnkCSEsfCh7W7xz9fyzmr8tTQdEJFZiiPQilDJSyp4y3lLGa8bBPTVbMz537H6iXV81JyxY84vgPii6Liqi5PiNoCK02/NcK4F53smcQOq6NMVIyD1T6kl5RcorcsqMVWAaYKzkqqQYE1UJswSzd7XhhUyK88UqJCCWSh0nGAdkGq2rdTFdpOePZgoEnyN+r+6k27seQ/Prn4phQO5H4zZIIJFnsp97tJnLpZvYGltgXK0OjCVSFlQm1ToThQX1xwo2N1Mi5I7Ur+jWG8o4WA6MLWonHHJsVoCqOnUYDhzGA6VOFElQC4RKNj9FY2XSmphoAW2AqAXFOSnBYAnBvjMxDqqLa07EnDUeFhO+psT9ZoLZrWicLQTLm1QCZO+mTPO5iuVO1CP/svlibs/YeC43Ha1FDNbWSfAhrXPnZm8EE4Jp9UCLO7p/Isn31xwWlztiGCw4ThTbw0+e5BsDITl2qA3jUgykUAiUdu0xBoLA7d/zLWy++7thHPGiZDy3TDSeGQybiUGQOmn+l/lmJpHUx3CEyOwhzapWArtaBk2OT1pw7qI7BsvdNLldihZRd2nFKPcrgb7rOsBxBGl6ZinpRWh+sH8XVMbUoO//YtLjlyqCW6jSz/v9tuy58+W75/p8b969wAVufnTeBZjS9F8IuLDROHokJI1vRY9rx0QwezuWomRqYvPOOzY4SVCzwczf87i3yZngunsRK3Odekz+I81X8fsJi/UstWoxsckBJxwMVXMkYhCi4auhGsme+XAYzqgEmmlxXstBa3bJUkjfHf35oTXfUJpWanlWPgY+lu1e/Q4XSQAtn8GTTzxuFubmGOUXm4y/bpsgMqlNHZOSJ1izPDylfimDxYkuFm/Z504mOxPkgMtWjGRUOJb5dgX8oovnNdf8q7XdxX+P17wrmWaZ+buq120ZpAjbLvNtf/dv46MfeEYnE1IGwr4gYU9Mnc2vzMk68xu/4kv58Ic/zFd+5VfxZ77zz/Odf/bP86mf+dua9yuVs+2aB6cboihJaQyCEr2r3Ku2doiBmAKrzZouJ7abDcNh4HDYaxNbK3Adp4lRFNNcZZCksccYtbYBs4NFvFFPWdxrYEZnbJ356MRsuayKH/uamYlR8kzWBjh14nywY8/7KH/IJlwpBYnSsO8QQbhl3Re+9OPP+OAbD3+5j/xXf3M5f8fXaqZyFcPNTDcTmt7Tr8xFZKHOMSBfW6FNyEVuQHB6JysTFo9/ScPVvSG75jMVJhElKg/HZF6HYdC8BWsKMliu6FQmno4jp6dngPrsjgZjt+xFT/M5Z/9LcL0Zmt1/d2X7vbmP5HEGOJ4fr7MVGyaGvLKumyJpJwqwaNzu5zqKXwetfVAdM8f3RovPXF/dcHmpxFLvvvsuF+eX3NzecnN9q/VLxe14Gqbq9x5gUcjm2KbdV1Q85eTklKdPn/HWhz7IRz76Ud764Ad5+vQZJ6en9KsegRYH2O8P3NzslOjq/ILzi3OuLq+4uppft7e3HIYBEVE8qrOmuF53BI18TIrp4Pq6sfz131Z9oFR9CZGhWENJi9FKnJCaqFNmGkd91rFSMDlHbaZENFMrWv5nChEpYqTkM0GJSNUiZ8vhO4nKMtulwCYEplVm6ntK3zN2mUOMDAK3w8DNThv6jsPIdBiZhtHIriG2f07K53MYw9/Mn5TYbKwADF/336T7uZ8gvfNpQsrEZDhrmfHvag1TliTTLZZhxdLEwDhVI5aX1hBGN1VyzRIPYslKzLo/6j24PgTMF/RMklm+NPllcqmGQE2RmqNej79SNOKtZIQxSX2Xfs3p2SlPDz/P6bNnbE9OyF1H6jJ5lenXa/Kqo1LIGdbrnnfeeYfr62ttpFKqEQybiI6W21WqNQTUceh6bUqg92H+q0jTaxqLFCMiqAzjSAQuk9YCnGzWrHJmtT0hxsS4OdFc9dzR9z2p69X/nyZK7BhJjOx/1dfNL2879kGWb9Nm2B17LtCerzuis76COQcpWA5EJEbz4aHNdccb9Mvu8My2f4PLDBiRRkC/9EFof8/R3sVhUDIQx8Kai4XrsTBfJ7T5y3wVS9ei/Wyj8uLnjodsOaxo8TG2HvY/8T2svuZbOfzQd1Kn8sq5AOTtnyaMI/X2Eq5fmh9yR8/aPVec7BYzCXTde3x6KhqXLtZ4qd1T0phd36/YbjZstlvWqzXr9YrVasWq7+i6TvPXfE2j+EuZJmoqlEmJ7qOt8RjmWqfoqhWxwnBj3nPiy1rUV3S8sZFm6rNLOROzrtto+GdOic7IppKTpedMzEoo4uSQ91GP3Z0X5vIu3rdsp2UtB8z2YjMq5x+y+K8dxwmqHaNNyRfbfL4Fpr+0zGf9J6+85mtvFIF2jHkutp9H93qE7Mw+4ucbH/PDZBoYP/0Dx/UmvnDxdQD1s3+T/NXfSv30X9f90904X5jlw+0FHG4Iqy3h4hdem68gtmbr3/puONxQP/WD7XtNnwoNB1jmisj8QH6J7egBv/Z3wVIC7MBmKcxj5fN8AYccyabXPDuxcfB4g9vPakp7rH6x36vCzORAeEVm3YcthIRQGeto5BkjpYxMMpJyTwiJLpkul8niwkIOkRJhSoEhRK5K1ZrkFKi5tzkVWENrdp6CYrkJzRncTxNxnBSnTorBlqqkEiknVrGDPhJ7tOFEylAKjHu6OrEPcBg1R+UkBx5sVjx9+IBHDx+wWfWMhz11pzV/EozY0ppVhOikMGKN70Y7P0xT0bCVwggUW0M+R1R9ay1T+fjXE978Eq2PqoX0ub9JDtqwvVRtGDKZ1k9xHosYJ3Ko5DjRRY3FB1t3yDzHIpExGRFp0+fLuID+U9IUz6dSm61YrfTFb/0DrH/sLxDO36bUwjgVhkkoNVAlMYERWCZC6JBgNZo+PpZboiSM1ghzGqx5RdVc76wEW32f2fSJvu/IfUdOPX1ac9pveXR6xtOHD3h8dsLJpifuLpA4UsOBEPcQJyXqikGJ94tYHlEihh6ho9bAWCqj6cRhmuinkVwmQk70Mbfmw/dp22zPNAdxHJGpaC1ZESW1qRp7SF1Hygkn7XI8uhbDhqdClECswZqPiWKqRZvORVN5xYmvY1z4HObbBMPBw5zH24zJ2tTejD8IQGm2n7oi6oOL1VcR1cYUr98CHKkRMw6P8hjDq7KwYeQsSViEtLuivz3nsH7I44u3lQRanAck2GWLXWPlR7/mv8PXf/I/IUahOmYd1ZOcsRZdW5/6wG/i4fXbPLr63GwTMut8Qagx8cmv+v288e4n+Ymv/L182d/6DgMoAlrjKGaBzdrmGPeZ8e66eInbeG4ZNN/PdTYLUp3FTx1aMCw9VsuLseco7RxOlKTjL60pVrT6P62JTrnTeGbXs1pv2aw3bLcnnJ6est6ekLpOCdHGEc1LMZL8mLWh3D3aBCeol9bst42q2wOL2Gop2uRX84kt36qNm0UVLc4h0AjEplqZihLSTlMhZKzppdpBHpsTRI/nWBYe/3D/fzYWqhmTszdm14q80ihmzr+3LSx+aT6m2h2pCiXM9Wse43Hb1l1FP1irbfP8XrMlfXaLSCOakiU+d9f+Zbb1gskbM8CWV97OL8FzA2f5EYwvIsVEjqnlh/g9ajwKi0k5YbfXsYa2ZmIIWltw5K+3UXrtTBL/hvnaKXkBGk2ecdemE48GWLwOkwWBNl6thucVX+GOz+DOxfswGd//KgyR9eaE7faUh4+e8PTpMy4vLrg4f87L5+9y/vxdrqz7bQi3BANEfWsTVxawRqAxIrrYXBafHhneNkIS50nsdd8tQcSUWgMn0jxIpQqpVCWPsqJiDbJYklzKhKiFvCklSnUm57mQz02DYMFbX7YOQHuAzkE1CEiwAGBShsvDOHG7u+Xy6orn5+e89/Ilz5+/4OXFJedXN+wOEyVE1ic941TYDSNTVUBPgh53EtFEIiPBgMDtp35YjUNCO7f+Gpuzsewm+Pnnxh3n9wu8vfaogZmRzkDD5SzwZEEsOAdYeuncabMVVSwOOtsoliSCC8mZafW+bQ0wCDNA3h6JfaOtC5YAMk24pKyEMHWaWnJQSInNyYmBzJpcdH11yTCOHOJI6CEkZfh1WVtrQbu1SAtkFNzYCUiIWpAnhRICUTSFVGphHAbG4UAZR2pI2rVCLDE4BtZR+MbTyuUa3srWLSKodzWrsbBASu4O1Pwt2h5GRkdCRMG4gNB3K87OHiBlJMhIGXYc9rfcDiOySkgOUAYOu2vGw44UhBSEN5//GO9+8Fs5O//b9JdvcygFTxSp3vF80LmaLB6rzO7qrOakTMHrfsXDB2e88eYbPHr0mBgT5xeXvHh5zlQqUdS5Sx1sV4nNqidFobeO4jlB32dqraQpo2ZbpAp06zXrfs3Dp29y9ugJuV8xlMpYhBICKWXyas1qs6Vbb+nWG/r1ln5zQlqtIWV71qJdJ/peE0fibAgSDQCMnmVvSR2JVjxwGEamOjGOKudLEWLKrNbrL+wC+RVuDYwOHhwGn/DqwFQLCNnbjVFW99fgSSSn3AiIap2QGjUhOoZGYuiWeBUFCYbDnlwrJSVimtSIrkVJkESNYk2U1e6ZQdT4SV7AhIMJs5YUK9xwwx0v5lOWACWAqqWBL14kG4KQY2DVZcbdLbvrW6b9nlArv+nhj/Nd9cv5fWe/QBegIMRaqKMS+Xxw3PEz0xuclkseyEumegDxZDorFtCr5ct5h5ZUzzzuR4nMOJnJ0snT5+ImxFw4p86Ps2WrM7pwiESs4EsDX8G7e1qguI1eUOZpLdQzkqkuW+BW5aOKSpV74ziy2+0s2KsdUFarFevNhvXaWHXdQENsfSRiVodHgj4fDW/NSVF+g9HILYVKnRJaMC1MVbjZ73l5ecWLq0uub285TJOmLhrYcv9opmDTR2XiHUZ2N7dcDgeGqSg4lDPDOFl3rcxm1bHulBzxZL1izQ65vmHbVS72F1y+eI8yTISy59njM1KsECub0xUPH58x7G8p44H9tc73EAoxRdbbUzh7ys32EbfdKe+w5r3uAecnj7l58JDh5JTQr5BpZLy+4Hp3xfPbC9bTDV25pRv25Gkk1oln7/4N66AUqSiY6UVDYsnmVerMjAuo4p4DYICtA32/fb50XELACTfw/31nc4ScQKOtITlWkZ4814B4P9DScfMghyycwuDFWzo/LzfP+L6P/m4+evGTfO9Hfhe/7ef+7Hz9tn8rLl2cJ7Z3ZmDiFSBnSRbkXqR7dM05WN43zS6qLEH1+bvuYwnWJ9tAljmIZ8eJSYvsKDNq49Z9qITkhFVzkkD0bIZ7tDXgplZKHSkSlGRqnDhMhcOgXQEOw8T+MGqixLjsOn0XDfC3Q3scXjjgfpv4BLLaCmF+hv4oRRTk0Bq8iYQRTKVInyNdisY6LsSsBX6abFoItZJD0IBkUH+PWpBpavM+W7JETHMif+wyqZuJpqLJ/7hQRiFZMq6TURmJi/t53t1hmSw9F8ZzZCuAggcppSO95SQ3M4LGPH7usNu6QZwGREHQefgXYIzZ9e39+am9dka0oJUYaOBEWCyOB3Pxv91LWJzjbkD3bnDrlwr4Hh0LGrC71PgzgLQYp89n6/86blqoAS35LmjignJRiCWvqX0XQlLi56ko8YglQIhUYjXfJOo8rzJRipHxViefwrqNCF0ndD2s1kqCs1oFJZnKQowV7bZSqRRCLUhQnRg8+tQAZp/HgfzJb2f4zf8E3Y/8SfVdpqokEaU2kFnEem2XyjhVxrFQ6oDc7Lm+OXB9s+fkZMfpyY7Nas16vabPmrzQ5UyflHgqhtmOk6o2pKElxzFYKkwAxTo/+Ujod51cLuLy2/VMmNcRLsaPiaaqF+eAFTFPLUFDCTEGDuPAMAzc/LZ/lOEv/Qn2F+dKNDUMaJJEuLNGVBfMIKF3F1yuW2kwkAffZlUm9l1pY7SsNhQ0eSbGqnhUxpK2ohXWzKB+NBm4JJsC735TkSIz7w4aiC1Fi7nv0/Z+E0ja0zclNJs/zRuaQcMFOrDUTY7FZiOZ6nNk3UW2m56Tbc/ZyYazsxNOthslbtis2G51nnfZCQkTOWgyTNdl7caW09wlLisu54VV3vFU1arJZaQRCatK8UCME65ZYWMAbdc3W4TNXpRXX0vczH+EwAI7X+oynatev4LLiqWeWw6tv+r8ux9LX3cSIDjavf22TD72azqyc5nV3rxuwtHcv7vJ4p/frBNp5CRoHZR1cA4Jpf0fmYM1gxUyTzApyax3ewmlwAhi5CkqBpTEoJZj8hMN2MzFu/9/vbmtLnfeW8wL9+HdrmjBHLdvRCz4Eo8ShERonQD1mc8Eo8viGN1HWqBNgGo2a2kXIaoX0TmavBDKJrNfUykTZZy7OQZgOAysVz3Tas1qNdH1M7FPMjY4N4f1XmObuGKBpRBjC2b7dULQNRe0G8qXngQkuL0WFuPgd1WoVTiJ8JWn8Mmrwt/3Vla8sSV4+NjOAcvf81bmP/rMwD/4oWzX56RPtGJzD9o9i4odTUOdCaUmI44a9FWMYKpYJ81GNGXJHU7KsyyoXvoO1XG2hSxS3y0Qa1S7xuVim1LHfwszcc99S4wahoMmu4wDxYimgDa/nXwQwBNHCWgytMeqZNF9Z2GjO7Gkd7HuOksa9fnYkg/neIgA//a7D/mfvHmJr0Xd3Kbxv+yaNJ9k9hcWxnmbY4shbyQvYRYHIaBzn5loShYSsWF7bQ343/P8rMXt6qkVNnqn6iVRstieVaolG9WWDFbdy7BrbJ0bbT79hud/gx998xv5und/QDHUWs1GmjvFlsn/VgKrKtLGrD1P8zdjwxk11iFGBHAc/Nc1M4yTdqYSLcXW+B5KPOXPv86xOiUzVVKonLSLo5SJYS/c1koXE+suc7LqqdNJ69qmSUGlxUYRS/iNgZyj2jSNoEx1pib8Lm3K+7Xt9ztCgPVqBaDkTyJMokRQk+jfep/efMSSEgJGqCtGiFTw7nKNVKHqpNQCC48TLOIFtsZijKSQjCAtEqISXmHHq5PqhRhX5P6Upx/4Yr74N3w1H/7ox1mfnOmai4pPjGOgpB66B3SPH/Cge8xPnm05e3nB5dd9Gw9/7E+T64gETeRKxNbpEktaMLWqBG/Vi301ThdiolH4Bl1n3mkzxqTJisVkR6qWIxWIOSkRzVJvmT4VEdU9RvCtGLcep1CRUMlGzuVyv1giYLUEw1qEqYwtYb5Yt74lia4/g8fPf5IYA7nr2jPFSHwcx2nNPxrGOM+b6uRYzQ6Zt7moNjTib7WbZ6w1RsGLhe76LNrlNCFRxynGQJFi5EtGoNkwBHCFGM1f9OLx+7LNHcysidekCYjTOOozdF/aEqHM8sIdBSUusq6RwTS4y9cwEWpEgsxFQ6YHVLdFlU1dgpgVbxHt4qrk3p3NnWLJhHqdY1X8MKZIrFWJ/jKkmjSRd1JXO1IIjIRaACX6Oux32ijt9pLd7TXDfs80DkQC/arX4o2xY7XSOFGRREyqIb27pDgTki5CJHXq/9cIJSJ1YqqFUirpMNicdXypM1IBUF2rNmMNiqe39I0QCJYyps8GbeakRgQxWXJxFS18dsluk05qpUyKBZcqYEQG1fQWsrA5BZMfUCWqrAGiVEKM1KDXH6PitV3fs+57uq4noommMk6q8GOEmCF3hJQtduXJbZZLE7R48uTkhJPtCTmnmSjfm0hhuC7R4sxTs+MnqmJwU6GWiZKd/ELlQudEl/dk08d57PO619zevmML/1IgqfvRc4dHsyFf8z1psRt/04GCV/++882/g82tw8/z0RK7ePUX+9wLQmZcxz/0KJpgYxoj5ExerejXa8bNhn69ZuhXlHxAxslsItdoHqdzu9Vkss81CQ38cN+KqsRP6q/Edv526W0s53hCy6nA9FPOkHvVoV1Pt1qTu54xBMWGi+rNmCI52zqpepyxFsqovlpFc+8w3F9Ja9Unq3WCanEGN9/9p4ksj+u4vanEP3W2AcVISt0+NwxL3bg5tpfu2Rp77bYghcewW/FkQkFjow2HViJQUFIYMRseMQKxlEndipg6e2UtvAuREDpEihZ4pKDHtTiW486H4aA5h4ISyUrRuFKA3dd+I7z7c3Sf+bQ2rCgHpE7E0NNnbTwnOVNLoIxaLDvsR4YYSLmj63pSVnJ8YjD7Syhi+YToOTVnRe9RJDay7eWaUNwiNB++VsMI6nH2wRwrArcHQsBibW7PmUqQWc858U4MSZtShHlOteZ3gMfJ9HPPMhHFTmxCOyav2Is+Q8VShZDEknmVQE5EjDzRpYBADdx+27ex/tRPcvu7fifr7/jPkaLs35ofZA3izHz3LvASNB7jzee06F+LxYtM5Ch0MRGyjYGojZxy0OKmiBJNLTDMZIUYU9Foeu56Quwo4/1CGJ1oCtx+0O0oliozqXsIQUlIXD81P+v1uu3YXv9F9MgvuX1+3fl+toXKmQ/1mmuW5XdbXMhwFlfhRqoeLCjRCJOmRI0jNSViMp1Tly8j6iK0OFTyfV2n1xkzd3sgmF3axnIJ2rhuk3n+tWdTCiUWJQdHr7vWSkTXgb5m60VrBmaFHhyDifMIzrkr4VjNy5wgvxxL/47IkjbHxrCRdPkYKuGDmKBphTltPKLZw9H0dmh54xr/DHin9Xu1Bc2RaqiXKClFkEqkU3u6ESvN5CNatKU2dEqBaliWb7XO+Z4uP9scFbep5suQxf/vb9G934H8lWNNc6EW5KTzoHhM3D8RIwhEsfdQCh98+pCv/g2f4OGmJww7Yh0MIw+E3CGhEvKKkDKJyOPtim/8uq/hw299kE987GN8+7f/p/ytT36S4XBg00XOtmuCTOQg5JyUuGZhbAmKk9RqzxDIXTaSjI5xGrndHyjDHiecDymT+p6QVmQU29OmGKK5TMq+i+DND+2OxfPErVDUyRujFsg4dtzetzUVHSuVOb4Q3HhsAm5eq3dzSZayXn1VbUQcO0FkR5nO2XT9r/iZfyG3NlNdRMp8P4s7nb8v7iYt3mvCSnGB5Zgvx+SIRNPslXn/GW1rYtpiRW6rpKiyS1OdzOYwYtA6Gf7suA2OWek8iDkrwUvJhDghIasNY3UtyX1IIzFsQxLuyMWjP/T4LU4rx27QcW2P64eFkGm42uLn8nEs/BuV1Z6zsogzOW7lz8umquNH4zCyHwZub3acn19w/vKci4tLXjx/wfXNLfv9geEw4OsgW6MBjzVKG2clDZ+K5chYzUpMmRwjMSeePnuDj33si/jwRz/MRz76UZ4+e5PNyZYAjKWw3++5ub3l6uqaly8vOL+45OXLF1oP9PIlNzc37G537A97racwnLvrOiWczUbik0IbU8/3qdSZtOieYYugDfNWOSDF/fbKNBX1qWtgChBGnUdTTdBH6NCCRGy9FSXUy4SWHxSwfKEEPo+qzQtKJRQjyERY9VrwnWNkSJGSO6RfU7db5GRNXa+ZcuZ2Klzc3GiT3+tbdrc7iHumw0AZtcFyyBYbMFXjsdVaNR6tBOIzPjp+3e8k1Mr+q/8e1j9ayS8/p8RvpTaCawHCqA2jg1huU6nzHHdykAqlKlmuBC3mVj/fZK//DppPGex7jpHHSKRyZGMvcCP1p6pqDyMX8rVFhBC1iQ5J4xDJsXiLVcaUCVEJnNabDZvtms12zXa7Ybtds1qtiJ3qn0Tk4YNTvuhjH2G1ypyenvAzP3PCZz7zGd59510Ow56YtFYi5aTEyBafG6fRCLfUxktJ8/hr0Xk1xwJMkgfFBsUwmbEKt7s9tb6gPHzA44cPOTt9oDU7onslz/nMmRozu8OBtL6m2+w4Ge9XXpX7kHeRN4d3FexAP/UcNNHfj/C+1lgAkukPojaGilEWeS9e/7CUy+2sdp4w64Wj65llV5P/srxYw+iOATbA8oiNNNV1ocbdLFfEGoQoPDD7YiyPJaZtWv3oHe0j/tddu1f/nn7irzJdnVN//idZ6vTlTxGQt38GP/Kca+9kbrSxq1UJHtS+KE3v1kWMe84L8Ga5qTXhWa83nGy3bLcbbYa+WrWG3h4/VoyittwDr8WNZvMknKD7OHchmFKtAWoNhKT5ne4/ihhxeF2QEqOxLkTvVSxvJ4KRA1oe9+J1xE92RNB/vzZfZTZDF9c4+9ezz22zSJY+VQMEjiyk2USa9UGLXbpfv7iGV4+2MNPRWTnbpnYKkfbMGk7RSE99/S4t0uVd3/0r2HdDG5OmKJrvffQWbi/CjFcEQH7+Jyh1RJ7/rOG0x0RTvpZDEGR/hfz490Du4fLdZq8ut7C8j5/54SOSKR/j5cqOC12oZqeP5i++Le/l6ADtyPN4zec9Ht8m9uyUi3SwI5k657+YzcESe5U59991ecNk7jw7WVzb3ZjQPdhy6rSWNgbCpHWIwzQSx4EkK3LuSTHTZ5Vf42GgDhNBImHS+y4hcFtRgqNaNVcjBXJQ2yeiZAjayKsSpTCWQjdNdJPiuCWAFM0rqkFtgWz5HvqsEnWdGNaJaZVIY2RHZR+Uc+Dh6YYPPHnEW28+4+HDh+Quc3t9TY2BMQpSB8Iw5yDpKkotl72K5dUVMYwewHy0annGwRsw6mcxQvq5n6b7wMeJQajvfZYakjZDkkiUqA2YDMZPMdBFjVXEUEkUcgx0aSJH9Qubr+Y1LiGorQ4213XetYaz4nkh1rCvFsvv0rrV22/+A8i7n+X8m/4g/Z/7vyGX785xClKrNSdkiFnryVE+hVLFYuo2JoaValy5UJkAjcGQIqmP2lR41dF3PSn15Lxi3Z3wcPuYZw+e8OzhGQ+2mT4Vxl1hrAdgR8w7tD5Mm9kEG2P1PnoIK2roOUhikMAYVM/VpM+/6zvWmzWpW5HC/SLAAbQWvEARJT8eS2FygpaguUAdHTPzhWJO2oxFmzlJKkwEimh2tdSquRgLeahQs/qnBfD8gFl22heb3jT7E/NfBCOM4ogMJ1hMJlSdpxKD5gI3v8zin+47iesq48hwf2ipr9oF49N6oTP19zTd8sbP/yhjWrO5fWm8oDI3+YZmE/zIb/5DfNGn/xJ/9av/YX7LD/+Hs/8VI9EwWrfJ//YbX00R+MzTr0LGkdPrn1/kz4bFdVQ++HM/wOc++nfxxT/9F+ccYyd3dHnfxhJm29/1vhCiaW2RmUyuGSGmA8NCTxtG1Oy1oPrYXQpBYwNqWx6Tgqv8WOiwZiexsBciuevoV2u6fkVerdiennF69oCz01NOT89YbU9IXWaYCsSD2sxYMx3RGqz7tEktNt/dJ3fC7NjmUzH7uRRv4DvNTf0amGZxDjHbpmquj6b9qCycWt5qIRRbWxgJL7R5We2cXl/vNQxq8hi25Euh+YkLA9a+u7RH3J6qsxF7ZOMsbdIUVdeI27l35l37/uLvtu5FEO38RDtLw3wU9zm6v6WfadelPqLjqvbewk4KNueVvYSlWQ9Y7l8yvyrO9tMch/YaMSftDc03daw0RiV+nBt7Le7/7hS2NRJonibNjj5yBEKTWUe2vONhNgZefei5Ka8jmZp98zvX5I7tL7G9b20X87o5Bilk1qeZ2G84OX3A2YOHPHjwkKuLF5y/eMGLly+4uDxnvz9QphHEiGriMRisbOyaANsYi5sfNCsdBXqTES2F5Sy130372M6tB71qNE2epyrTYgmEyUEITejIKXDbb/i+r/0f8Ts/+W+T6ciSKFSixNaVoglBAkFCSyynSktEFwmEpMQsMUUIHSUI417YDYXr21sFts9f8t6LF7x4cc751TX7gxIxYMXORbT+chKYROg/8hU8/Ibfzbv/+b/RSJZcg1bRzlierJFCMNIeW3wi1LBYwIgx2L/qUjTHVRaz3JL8HYw6UsDMv8a2AMJct78MbKOTOjCTEcTgCcK2n8jRcWPwh2wLpZgAS8ws/4rA0BxnzGVfOLcETcgsVQ1Q0YzTe7W5bGs+7UKgufA+/rL9EmBOulk8uxgbE3YImqSytQ53UykcDgf2txOHw6hgT9eT7BkrUVVpQFe0zndaNGGGZUrq9NRJmTlRAL/UwnTYMxz2TNMAIZsSVFEda0RSZBMCm0RL8lIja6mObBAI/JHPnvAvfOh6HgsbjyVQUC1hKMWgpMLjCNa/b73pkXoKMjHe3lD2t+xvb8kUQgGZDtxe3zAOOzarRNd3nO3f4xM//u3kYQ+H60XAxpSxNSHOUQvEI6ERR6UU6PtMToHVesXZ2RmPHz/h5HTLOE28+/w9Xrx4YUaYFsCerCMPTtecnGyp00CXE12OraC1FCWXkwil6rnW2xMePHnGGx/8MKvtCYexsC8DkwipWxFyR+6daGpF7lek1Ya42kC3QoI9Q5sv3XqliV4IUibEE8Ryp8/HCqOCGehTmTgcBm5vbrnd71oRwDjVxox5n7YjIqPmLSyMHMIRsyOWRI7ri6QJDNpVHgia7ByCGhm1JMhJDYqkxqAm8RVKGRQXIKNp2yqLSs3kXKmpkCQTJIFYgCaltvZUlqrc1gZylamKFZVrUYManQLFku5Np1o6jelD1RdRKpscGWNgLBOH/Z4rqTyplb/3SeFjdPSxZ6rCOB44HA4c9jvyNPL15QVJRrp6YJJqwIRhLm7J3tEvDWtdOCoz/cDx+7MJNTsnywJJlUth4XQtA2XhdapNEz6jBuuFSEyZruutYG/RAdQc3z53EALjOGpA+Oaa2/2eKrBer9hsT9lsNtq52YP+rn/MBtBjxkaIqHe00KH+w5KiJERqiArc18J+P3BxdcN755c8P7/ker9X26nL2rnmMNxLoqlVNohoGikMjHUHdaKIMA7C7X7PNB7oYmDIkUOO2iV81dMdnhNj5LSbOO0O3KQDt+ypdUWRG2J3ymrd8/StR5SyRziw310wHgpdH4FKrYM+l80pF3HD8yHyU5cHbh+uGU7f5Gp9xtBtFUQbrylXI/tfeEG8/HkehR3pYc+2j8SobLtTFKTLUDVhJtZA13dMpfJi8yE++VX/IN/8Q/8ulk1n1yAoy4MXToEXedVSzbZ1feezfYkq2/oQdyIWgQj39WD2HOHILtClLw1LmG1rP4YeYE7Ac8BHAYqT8Zwvff79fOrJ1/MtP/ufEWRS4yREA9os8OQnEL2wFCNo6Ho+Z3MMTUiYJRrM823Jxst9DBjy45pWaoLEk5GX1oJ4ol0UglEwu9+iYHwgxGw2qHYMLFJMt+u7KVnBM9YpST3Z5ZO5N5uIFe9VYayVYSgchsJ+NGKpyRLQh8mY6Y+dws93Vw4sLEGj2UC17/g3vIAuasK0lNnZ10ScwOEQ2e8zt30iJyX8k1ooRZmgc4QsSmiIdbUJqSOnZGCndukW0DmaNFkqRQ2IZku6iZ7FHuZECpIFoJOR/zk5SzKnPygbdM55JprygmbmuSthJsHR69BzL0EHwAiRRYsg7zjhbc3SZrMdbC4G8iBBc33MEQjMSf5SrYtQS0KewZXaikKOAQtfSwos+Pf0AgKxBddaTY3/Eyy5+XX6PDTh0rpIt0vWi66WHKSuyhIaYbF6eYVg4D5sfbdSwCjNPq0nDNVaGUftsjKME4GIVBjHSd8v1RKAzP/KWkihyQIabKmlmEzT5Ku+V2Kp7Say3Sa228x2m1hvAl0nxFSJQQmA5+6lBdCEJ30O9sxVFbbrzi9/nPT9/ybx4nNMiyJyBRixgJBYk4pq3VUqwyCMY2F3qFzvBzY3OzbrG7brNZvNhnW/Yr1a03cd/ZL4IMZWiBgtSOUJSKpupJ3fZ5svkICBcmYph4VecAB8DsCGBoS1QigMTIPW5WQsSjA1DAP7Ya/dY4cD0+/4x9n98J8nf9sfZvd//yOMw5Xa9HhnPpurjTTqGCScQXdwfePFO16Min+XBiG1YPvMki+2f9W6zBRIGZJ1YkkhzVyJwf2RORkkWCbHZMG3KpPO1aD2ZXvdR0Xmm8uUX1IOKOu8vHIvs3LyQ0W8IEgLq3K0tZYj6y6x6TtOtitOthtOTrZst0Y0tenZbFb0vc7rlIzkIyo5Q2cEa33f0696ur5rxFMpR5xSZIa0FK9rgS1YgLnV/AIvgoNYtcDLE79ml2G2tdxmuWvciWD2XZj/br7SYrTE/1u4w+LYqbRxbHpsVg4sdl08v9kH0j/vJN68soO8/q+m/I7X25HttwwG3jmAJ0TFmMgZhKg4VqrEkCFMRhrbGvJZ8pba7aGqfa5+pyZ56hjNAbUasIBpnWW66+L7vMaYffHl4/g7lgth9tUX5kbb3Hd3coij4mq3G+/gxLiPv2CK0ABN5DhZ/zjZyoNJfj8BmRtZKDskngzmJN2YraPkSkZ0YQ9/vVoxrtaMayVZWFnCXu6ykY0natZgeioWE7CEdKIW3iaSrWMUvzOd4cu3NqtoNg6DHN0VnujUIXz9A/jSLbzRadKJy4KGoZu9LgJfsoV/7CORD22kkVrWosQzinOBF0R4IVsp1QoUlIxxHIxsatQu2ZMHPe2l3bKP32ukHswTrcm6Rha+tHUDRCHcgQv9ftpTtmdVraDirk36672Nw0GLkScl5dL5VZut7H5HkkSSTK7aiatMZqdIJYy1zfNxVBKW2jr0yNHP2nwMnzizTVdK5V995wl/8NEl/+rbD/ifvnmxuFKfcToJK5agHoMmj8al/LVd7DTNZm8EmUbMz2znz4FJs0mZMT6PEUk7humclkQ7d74rZbK42iKByP1Bm8u1eiB+okwjZdIEmbqIK2hy/DyHaoHHN2/zm37uL/N4uKAE7YzcxrZUDfJbsL/UQjGb04uYY3SfMy3sL5ufRrYzSWGshcM0tddgyQNK8KrYewnWHRoNihdP3AbqWKmh2Jglw6QLdQoUqUwhUMeBOo1GKrDoRpsVKy5Br90JpDojc8l57sSEPZ9mo3t8855tNzfXmriVIzmtOQwDw6DdrgvzXJLF9TsBNUCth3asEHLDkeukpEBOSCYSGEctZsGLrax4IQWH2Qsh29gtjPoYAqnPCB0hn/Lw2Uf46Jd9HR/5+Ffx8MlbkDdMkhkxmyxFauipuUNCoDtZ8WVV+FT6cd56+4Lh7EOM15VYdkQNaFPCZHCcNqbA8HFCIHYdweLSUymtACAGi0+7vhVUjsaZuDt5gUhekG4vCkdCCIqbWYF4SjpXvNhADyqMo2JOjjmUWplGIye0IqEgikmJ3VPOCREba1ORis8EWlFIrUbGECnM2J0gmmPgz9bWu8eg/N49AX65xXb9C5pjK8QMBJO11UhvaPKkJW0s/TInVBAjm6oy3ww2nYISunWOWd0v2INapSU5TeNIndT+GYfBSCVLk8XetRow3zc2vysRG9kUqFwNFC1QkTu6i4BnEja/2uZljpG+t2IL9GnHEAkiJrdLI+yOdUbRK0KcAnIIkHpi0g6LMc2EMeMwMuxuuL255Pb6kt3NNYfDnqlMpJQYy5quS4xTZqw9ecoW/0sEz6uwTDmNgWscTnNMOqJYMnIZCVJBdP4P40TOg5HIJDLJiAx9HNyGMuKohi1gRAIzXkPRpM8cssoThGkqZs/FRogRQ6CMmvArBGJIkGgEacEI1D1BSwjUAIWixF1iqZniBe6VLnazrhCQUhjraBiKFSvHQMw9sRdyp7ax2nGq94iJEKFfrXjwoOPJ05Gzt1/SnV9TykRMEakaV2hs0VUIhrEhBZkqhQkIlJqI09RsjRCSMkvfo20uYHbZIEfv+ztNbMirn7/2uGaLND9ed3713DbXjvJ5GsgQzLxzsIr5szvX/4XYXhF/zY+UI8zcLf72Mrt6zmwStWbtfmsIhJyJXUdaaf5DWfXEIkgomuwcgpL117koT6wBTLR4Um026AIbObr25R0c+6TB1hHYs/Hdg665QiD2Pf16w2q9IXU9UmCcCtNYqdZgMBiZJQKlKmH8OGiMhyCqqwJQCqWazWo6S71MPa8mO8riGvVfaPdUEZkshyA0OVMt98OxSF/DWkDgGNY9S6pabIqz6+DLgszd3e5WjCQGmQuG1c1jpLNLcw0KgRIswT5q06dA1BjkktgTURvNk4wtRjOUgf1wIMdAH7Pto7P56iu+DqiMX/pVhGkgv/2ZpgPc32hKIAYtgsH8Pil4szehUqs/q2AEvMHWUaRIAVG5WKsVTVvOlB3aCje1WSAirWmZpIoXOx+jFSDUxRJRh0sw+JCgOS4L4ttgPr7mZ7B4z7E+x95mOzuwmLtB5vxDv+7YaBZtfZgeDIu1G7TpDX7NqL26/oHvZfct38bqe/8SyKBjbfHNMHnzRS2QnImm9FqypgCRoii2EiYihYTdb3X8SoxYytek+dbuvxDAyCjUHkhAUpLLOBM73Yct53wU62w43wILqE0WAcx4UEts/kWOv9R9r9M6ry3wu7PvL2dbzunlm3Mc3M6rJ50t2NDePdbjlYU0MNwlMNtHYfYdUhakdqZraBiHWPGBFwazwEDdxo5+/uS4h8emNAZ3XNCzyI91vGb5fAyLKWCFvjTSbGR53zpaMyGJzHEEfH1HvFi0elwh+Bgsx3zW7p4PcjfHA/y+04zD5ETISgBASoSYwPWmxekbqRRJX8GI9dBnU4mUYMTfJgXv07Zeb5iGPaUaQa9Uxb4sn68Wa0STMin3RugXkVItFmImXowaGq5OWFGabF3esrohweyCZhkt/v+lxkcWr/ez/crG+ziuoLiG2nBW+Fz9ydJwjlCFHvjij7zF2emK3dU5WQ50CdbrXknWykgtI7FbQ+pJ3ZoYYdt1fNGH3uLv/71/Lx968yn/4X/wJ/ihH/pBHp2uOVl3SJlIVFK0ortSwLJrITQMU6oc2YjDMHA7HNjv94xGKqf5MPZcu57OdKD1k8fzOoVKkGK2Kv7AEStwSQ0H06eoOLOSfESrs1AlHQ238MdiOviY5e3ombmPv/y76zqmaeJwOGhdQ52IYWK1XtF3kauLd35Fz/wLvi3ld4NtAoTFjI/esDQA8Ug2qY09+wfLmgvH0uamKo6P046g5ziex4tQ0eL9aAQulv4XMbshNIkZ0Dz/292e7vJS8zNWK7quJ1vDFM110jhC1ymJGlFJQNXvMvvOY0s2POK60NaW+pLxlYsO9tlicI/8TE9V8QC1FybOxWZypCMIwYrm55kmsiiOMp05NxP3nJDCMGiz2KurGy4vr3j+/CUvX7zk8vKS6+tbDoeDkuIXIaakhWPWqHYZexbDVbVxo8YIahHVM13WGOF6w5MnT3nzrQ/wxpsf4NGTp2xPTyEGdrsd19fXXFxecnFxyfnLi0Yu9eLlS16+fMn19TXDMDQyTlC5rThY3xqMaLNazQU/sqdAYyBlSbJ3f7YugnQBJBnBamgx9GmaKKPmwYgUZIpICYSaiH1uhOiTkZlIzErgir9X5wLMMsc1lahpslwnISbo0jx/hwA1ZlJf6FPH6sFD0tkpQ0q8uL7h3RcvyasLuvWaw82e3fU1txfXRgAGGY0daJGmLhLF7gDzGX0tp5/8awzf+Pvofv7HiVfvYUy86hPgxFQBUoIpq/89GZbv99Oe69KOnu0obxzrNp/rdyeZrChG7UWlLnsCtFoDtSHU3kp4Y7uZnJAYCDlBji2/CODqa38fm8/9MOn8MzjJTE7JGhImVl2iS4EQK1UG6mgxiJjpu8STJ4/o+0zfaY4nogT5L8/PLR43kZI2cA4p0q161YSHA7QcDXOKPc4dvNnMXDdQLZ9Z0OYwh0GbscaY2GxOefpsyxtvvMHJak0Kaq2nnAm5Y5LAxfU1D25vqbWS8n3DPmoTkj5VXufTvPKmEVYcbabaNT6oc6QS75BMOQk5SoxWaTFYPUaY5b0ddK678VwE5piK45fiyN5dOWa2aAgthz2itY9RQSudA0bEofPfJjvLW7RzM+NCx+eSWYS6Xl8MrH80fuZvWt6G5/wt9aZ7SvNgO+l2VIULElqDIW+aVKtYUY3qPMfzxOyJnLPOf8tDW6+1KeJms2GzXrNZbzR/rddmGTlr3IxakVJnH2+yJmveGUkw0jjVg95gsenBdq3VckltLKLWIonJK/dX24CL4iVSIpQE2WwjmzM6aay5hM2PSrBGNDO51n3Z3BvyaercK8s53ubZoqHoEjMgHHtIfo+yXBccq3FdV/XYzmJhO7rsW54ExxtcOdoxGq6hOzRSAb8P+Xyrz47r52/+l514cQ0qj+MyvNCwnDknZLa3AwF572/bcRPLwy/1lGC27+EaDqjf/3m3xVgajtPsdb+/Y3HVxn12LYVXBqLtoP85BhSW79kXBK95W84TJz1pFqudKjS5+2qe6907Y8ZcZPZBWsOpWYzOOwQafivQmgl8AcM6X5At556uS/QpQpqoYaQyGZH/SBWVaasu0+fMrhZ2+7014TBsLWdKDoylsquVm6myScIWWKFxpYTi5VIBa1qUJdCZk1WMRNZrLB3PDxKJE6Ra6KSyyYEHq446jiSprHKgW2148vghbz57yltvvMGDRw9JXeZqsyGte/J1x/X+BtnDtGseoz4u010xau2vUEmNaGaWlSHq85xaHqPqs346UH7gO7TGZdxp8nObl970IHD4B/5FNv/PP4JEi+9SSUEoUQkFSzBf0/ysthR08pgfgk1E43TAfTmz740MSmsjrDnrX/sOhm/9xwg/9OcYzp8rmao62qbbIyF4cyIlniqixKBT0ab22vRiQkQJVxWvV78iYLkWfaJbJVabXnO2kxJNdWnNdn3Co7NHPH30lEdnWza5EKcrbbQ57UkyImGaQYGFME4ky8HpmKIRE+cMXUdYdYQ+E9cdebVitd6w6lfkdL/we4DBcoWGaWKYipJNWRwixESMGUliOQxmW5qPEXImZp0bI4HRZJBi15GcUsMRPOhWrFEZQY/vdSPop2bHK1a1JKHSskXNFfXmia6fgijZvtZW61ptOUl4zaXZijFazq797u83XHyBw8icLxlkIcNtGnTjjjzu272JaMP5BnnY64s/+R38xNf+A/yGH/12hrEQYjXcLTb830/7+J0f59Mf+SZOLz5Ld/UOo+ftNtluPwOcPf80X3x7web2ueaeu1xvoK4b8NJ842BrOQaQqO9H8SaX9vy89k1cIs3+oI9ZaxRsMS1XMm7HRMO9quV6afyzWKOXBQJWtVHYPOiBaD7jertlc3rK2YOHPHz0mAcPH7E9O6VbrQkxIWFkmBSrnYrKgMMwUdI9sxdrMbJyewiSiW4zyhxnL5MRvVnj3slI33RIAyFFUsgzqVgpGs+oSqRdiuXb2SvEAhUjClSsKhBncmCxXBzQ+LUbR8vNbHy7E/uhzzPIPE+WNki1G9Ncn1ftyADEIkSvYq/zd/1cC+RxOZIz3teuZv7f7eaGvppP6dewtHmDY2cNv55rFCIus/Q6fL7r/Nf3PR/YcyobNmx4gevuRjxFaKRTLmZabcNCtTgf0t0ZHHB8w64NxTAa2Rthvn/HQ+/UxTW80GtcZc7UfrVm9fgi3Ff2wX4/eUDvm2gqpJ72cKMWTPaxZ9WrU/vw7AE3V8948fg9tu+8Q//O21ycX7C7vWEaDpoIuEgA8gflgdEomuDeFMYC4GrOuRedNI9DZmdlYbyDC+MCNS7IjWaR6w8qBggl832/9Z/m63/03+U7v/IP89t/5F9vIDMLoeps7pbLu+gWFhurZjUDNEwjhEiRA4eSuD4IF1d7Xp5fKBHXxSVXNzfc7vYcRiVgcMa0QoAKxbqj9299EU9/1/+Aqx/+8zz9vX+Y59/xf6GV6osZVdbRqy4cNd+qscVVD0r52NlYLqdJWE6yI0NR0zt16N3Y+jxzJc6Mbc7mph/MyqfiXcRic4DulhnPiXht53n/ENpCcXS1kXy0gyyNQuvyECzpOgjvY3382m7iwn2+b1l+JvKaIV868zq+w2Hfgnxh0eU8hEBOkbVs2RwGbm5vGQ57Lb6N+lmSREANxGKGjQrKYnNfA6SBpMmMZaIIkLMKW7S7wjQcWvEDUbSIQnydpnl/aSKhsTzeuTv+xc+c8k++dcs//5kz/uhHLnQ4YGYn9PVeRBOATWGM00ApSqLVpcB6vYZyyv7slMPhhv/iK//7/N4f+dcoU6WMowaaDnvWaUNaR2pMrG+fq9EoYqystrpE2hrqEuSsSQujRWK7FFn3ynK4Xq3YbLecnp7Q5Y79fs+LFy+4vLxoc7BLkQcnGx49PONku+X29poQtFNzzmpsmX9rydaVsQpn21OePHuDD3zgLYYSuN7v2U8TqVuzWq+RFEldR+5XxNxboLojdD0hd4rrWRJxSJlshctUoRz2yrIK2qkxBAURg1AlWqH9xO3NLS/Pzzm/vCSEQN9rge7hcGC32/2Kl8Wv2taSLT0oYYyVrSuOHBlX0RLKcisgN3Il9fCZpokQvIilkuk1OBHEkt6UuTOYk+aMriVqIpEWckQmK2QOMYG9Yswt6OnJZyLquDsIq8a7nl1KQaoa8wn9GVq3I00CrzaHO6msoiYaDrdXXNSRp6FwxRPOzs4opbLf79ntdpQ6gQgn4dBWajS9EF3PCs2g0s5I0Iq9FkWiBNdUi2D2kcw/Nrru2DuveZ5qwIUUm97GDPEqVRM5jagrRSWByl2npJA5WWdBXeMxRXLfadLHfsfFxQU3tzeUUuj7FZvNlu3Jhn61IuVkwasZMAwpkZKegxSN8GsRsCCYzld9qQXPpsus6GWaKlf7A+c3Oy5ubrneDxwK5Gh2RxVKSAz3y5cCYNVnUhSCJIJ05NBT6JCk/cSvbyK3NwU57GGcmEbtqiesSaVjuzqhP90Spsd0WXj3+TkxC7e7Ky6vezbrE7p15smbj5AysLs6ZzrcMO0PTNNAkQ7JEDdr8tlDatxwNQkXk7Afi3ZJkkTYT+TrPf31nhMiH3nwkK948JiveNzxtFyzn86ZDgm5rTanNBFHDFi7PfkQf/1r/4d8+c/8V3zf1/3jfNOP/nGdc95twY1ZxNwPBTyM2m8Bl5sSf+3mn5n+iXeTW8RMBw8SVAX+4nzEoyP7JAzuiM1XhdtGVFI98CUvfoSPXv4kJ9ONJdhoF049Yp2PLLaeBUsmtWuWY/IZt+OoMgc0KtQoCvDGeRyCAeHH2+Kz5d/2qZLXqryIcV4YLdBhnR7FkmliUidtSbrTHBAvvizhTrDhfmwBtYFKqYyTFbMOE4fDxH6cGEa1dRV4tg72bR7NDi7YWN4FEdy6aj7lHSdUmH0ytOiqcYVWwTvcTFU7UOyHPd0u6TqvE+O4YtVlOutW0cVADpq40Lci/agJeQjFiS4tkzt2TvphTn4MHHVpNx8zRO1GHbMlSESV78mK/DQBL7YkvBDCXMSMJfOJEUs42S7zmDS04M6z8U5irwuORvM/W5Br4f+4lT8HhkKb78WScZaJ25504sBOI5l6RWHOjNXO8t2uB47PHdzOnIGZoxUXFHBtXcFxfc7RT5cpy3EJizV77LvfP0WWkwZlUlJ6ylKnuajRMIYwjmr3SQSxotQyd3fy+4pBCZ9rnZA66b5WIBGTkkxtNqERTJ2eZLYn+vuqE3KupFDwBKxlB1NpOADN7QXMx3IMJRKvPwdJfe5aMXtMi351bminFO0ookQWtWp3kXGY2A0Tu91Al3bWOUtJptarNauuM/KdTM6aUJSz+kC5/R4b83t0LKGNkQHZDvyHpLYzOtecmULEAbN5xvgcdZI19w29QGycRoZx5HDYs7fX4XBgGA4M3/Fvsfn9/yyXf+bfYbx+gRgxRDQCYSdncoDRAxV6rTOWpO7h/L4STYE65yYm8O/pfGhxgPY19Tlm0z/MRFNxTrj3AGFMVndp+ctuD9Q6MU6jyXwl5stdJHeJrt6vbipLMpkQ7Dm/RhbcfacBxuH4w1kU66DHEFVlZCUn6FOky4FVF1l3mfWqY71ZaRJuv2oBrxBSsz9asqddb06ZrutYrVYtucdJaLquU4I1YS5MpJg8ULvpWF3MpIDNXDwiz5+xqoW2tttzn2nWSG18TP6EJXr9i20tSLDUG/KaXRdSe86imY/hayBoMVwMwePQM5gvsx6RO/ph4SLZccIrL+z9121u66UoXkMH7n8GLYZUHCswFWHsNWDdjRMlVqZYLQHMC+1o16x24ELquC6tC6KdWj/vtf16b+HOVLj79y+1NddhscaOcNs7a3EZlHCyKXOKZhnq9gPzOvNjeMHa8TyIjRjFT9qeg1QL3IW5QYSRUHvhUDRdh5FGjNNEPByafgloEYqIMPQrDqs9m82GYRhYrdasVk5O3SnZlNmVSmRqhDPBZW6H5KzJjkFt0RqsM3LTF648ln7gcsHPiUKC0InwJEKZanOpwIqqLUi4TFZ7K0MZrIzSEpWrJ3nUBcmU63tLPJzG0YimVHeO46AJLFbcX2ptnWRLO6aTPnhgz4lzantp0NT2N11eF/d3NB3vxCdmd9kKnz+vz/zrs03jQTG9aaJOY8OtXB4K0ppcxBTJndqXEqCMSoQ5jWMrQkoxslqvWA8rRiMMTmmwQhUjhcbxhq7JHS8g+++ePeffe/GUP/zsAlh6LrNfrqrHCB/EfGgxwmbC0Ro+KvmzdSZYoHnhyziGupxvywRiP94cmFY/tkzz3Ctlss59MwFgMZITJw4t/qqa1FpL4Z3th3nv0Uf48rf/SgsCLw2tavhDFeFkfI/J44yWICuiftbYCkmsk1SwdW32acyZlLuZlAksblIZpTLUwqFM7MeB3XCw18BhHBmmSZsEGJqilLGWjCHSfLQqMDAwlUI3qc0RaiUJJIEu9nSWjNH3HauspM0xVCOMghK1bDJHUYK8nOh687uTEuAmKzJbBsSP7Yr7s1V71u7fdymR1pE0iT4HUZIcqZUyTeCkt0kJ/2KtJPObY5gJqIr5REQtUFUVYbiQCJMl5QYr7nGdlFLGDHoI0XD6hISOGjesH7zJBz/+FXz4S7+Gxx/4GLnbUsS6aLneC4HJ1lMNSoz14OQZXxtBpOd8uOWqBg7Xb1OnG7owkrPLez19Vc2mcyVEupTJ1jhByf+KT+HGpCAihn1YMZWJ1IlKKtKIpVpxXFTSmBCzEl5pJYqu/agEFrpOjZjDrq1UxaGm6naw4RR1UUi18F3bi9naTN7ta2H3dkkdnxRj+54XXTcs/shm9Gc2JzS5/AmBmQQEt1Gi+sntGmd71WPb3uhhLuhWeRBDIBS0q6KNocfTo4glttG6pN2nbRgGhv2ecX+gjCNSlfhvnCaGaZjtMsPORNx393FwoqlsHcU9gc7sAq89YPF8QlBSoRKptdNj+lh7EayTfXnxX6ktFyI0G11tHYBEYSoj00Gs7rySciHEyWzGwrjbs7+94vbmisPtFcPulmkaNeZblQCpSmSaImMZyI1MezHPQiCGTDYyCi1lN20reu0hoQnMFidyW0h1XqXkmWDruCJHZ7YY0YuEQCkaL9FcZ8GJL7wboXcanZAmz5UQI2pTmqokOrHTRmqOR2LHwzohagMIQVPBdFyDaNM2jQXrs00SkakwRiUk00TnoqsxKjlUlkCOiZoyiOa3FALe3CIQSDmx3W549KTy5MkT3n5+zuHm2vpTRAjJcLZoRHAQJsetzJ5F/17i/zEm0j1bZLOPaIJu6Qcv5JX78a/u9/m3I5Kpz3sBr1yQ+T/u27PAEo+x3S90wc8dt/HO5j5BMDIomeWmfV4NX8AINUM0eDQGSJnUr+hWG/J6gwwHyiQQJmpJjaR0tv+aoz8XJhoBawnBmlDYenM71s6t6qkBF5rP5U1l3A41jFiAqSpxx2q1Zn1yRrfeElJmHCctZB4mJpN7MWuMpRahDBNlGMzPELQjbWZC1241IsCGNTW8RVrjB5WZmjSud2GN5RxbBstVsPGPWNxc/d2QlHByHGefU5bxvvuyBZ8cni3k2x3savGbk1NXf3fhn1bD0yVEJTONSbtcG7lJDFo8HUJUO9V9+kZ2q7b9MIzc7m5JVOJqQ8gd2l098ODTP8Z7X/PNrN/7OTYX71JzYir+EL2V5gIXycImaLxiKlWvO1QkjFQpmgqJETVaQnGQQJmEOCrpUzBHVShmB0ojxdaYGSBG9mn4fbu7RcynNWmxfBOPn3nei8r6imaLmZ42Yy857CEaw5Z2pwmntGpPy4sdEL3XWNt4HD3TYMSeEWKsrQi1PWGb61KLNlFEkHffJv/p/4Tp9nq2Q6NKxhh1frgtrbax+cDBGhpkUQIrEZBKF6OGtk22BItrKDl4bHijXojKiAbDSlb7gQ6RjNQAy4T8e7A5ibxu0nBzF4W1vqq3Zozql6dPPJPi+Hiem3p8ni94Yerdw93Fp+6c33/V3EcHNcOs2G2qNjsxOgaZm8ypZaKUrKTGRYlyXWYH3IcI7VqWOKkTgMbocSvHJ11P+bjpyVy/qo2u5HDFGo7WKo28QkRIJiObOxmi2f1CqEFlo+MmC4IrbwDT5PI8VTgmMNJrdzmnssmu1+8nRpW99iJmfVn8BvPF/Co1h0FzNRulnqjvXwhqk4q17/mlqjt/jbfTk4cccmY83FLLpCRENg80D1DzA1NR2el4s8Lt8zydi6heY3W1Z+H6yrG6BZmzLCP4v/bbEenc55EprfAJECnqk+VAICG1EEOgy4m+W/Ogj3z4rWcgE/vbK5IcqF0kx0pIPgaBSKFOlVpHYpeQOJFC5MF2xW/7pm/gracP+Y4//V/y4vnP07Wcv0IZD0SJjFKsCM7WuNlVEkCKIIZfFifGzok+KImaCG2OK8GQNwpzwEJtQM8tW1o5TkqUYl4QS4UWj3F9KTLPEcdBHWtx4tV5uF999p/PLXGsIOfMNKgs+8mf/FneerTl6Ze9+cufAL+KW1InHY/Dz5utFaHF4hv+vcCw/Tu+zyzzZlzJsfAQPCNQCSe9cMlP12Q5C58MG080Bu22ibitn3Nr6BXACoYD+2Hk4uqarl+RUrZcV61l2ZofIwh96AgxUFDSfalqj/q1iWjmopsyTYLMylev0e9BmHOy2g3MunrGUU3mWNzD4wdzPYpqBrXOIk4kJcxWvZN0KNmJNWA3+VhLYbc/cHl5w8uX5zx//pwXL15yeXnFzc0tw36giBKUpK4zH0fJxL1IuqKFkmMp7A7aePcoBiWBmCH3K84ePOTkwUNyv6YSuLnZaQPI4cD19TVXV1ecX1zy8qWSXb33/DkX5+dcXl1ze3trueSh+Vp93ylBmOUmzHlqqquXRefL36vUI1lwX7bsRkMOppUjpSaL4QiTmF+LUIvq7BA74xjPaqtMSoRMLIpLh6Tk/qVAMbIpy0PEZDFB826S5YkHm9O1VGItquW6jq4Kp7lnffaAeHLC6ZPC9uEjTl+e65y5vOb6/Iourzhc31LGyebgIjep2fqArSGVtAFuzsnf9+3Eqs1BxNeN5RYEEQNQNcdRBCRXsnhjKyOdssJ95zARmPlMDH/QvF3LUYphtkPvbL6WrP8snWH/TjijuZPaKDQ6BhCiktRHGiZ78Rt/F6vLt7n58m8l/difJl79gq7NlJAyUqaRYX/L7W0PUejLhtytyX1vWGVi1Xd0jx7SdZ47pvH1z372s5yfX7DbHcy3Vps2W91PzplAoO80F0eqxmKl1tlekMBUZ3mtMlonZAkaqzgMo8XqCkIkrdesuxUpaBwp9T2h69g+eqx4dIh0+X75ZMscgLu8UeY5NC4TFvNn/gaz7HBZb2PYaimD+sOKOwcjbRdCrZbL7c1HaAojMOeFisl1TwCoMsszGvbk3/ULPb7Iu3lBR0q0NUHyQZmP4TpM/VWA2tbfXZk55+TOPuus6hc5Um7Q2fYqaUGTAMSqY5cWdoQTd5UiRionSmLhuq7qiEVrDpRzIt/JQ9tsNtr4s+9Z9f0it1kxhSoVmZR0bxot1j6NFudxW8T8xhRJOdN1mS7ltsY9flFqJUyuzzUvtRT1bbU+Sc/jg6P4iZPVlRbzH4PK3mj2RRKBaDWtEpgJtu7XtnzsbpEIy1m6cHCbgF4QQmP29dGMu4vdHx/TcchmH5kP3yxE93vaOwuMohFB2PoiNrKO196czfH6uo8XgkMhDXcYFl/wS1rUfc12bWi60ZeI38cCQTnGr2GBd/jtvD8/1GOUR+v1ffx+5NcYxve6LSz+C4sd5xWvf3nOjCNCYucSu8blPLiLLsnR3yahg/sXMv90u9AJgZoM5ujn0roWG1Ph/Y3nr9UWQ8Kr91Pu6EJEUk+ZCrBoGm528TT2DHlPKRCyEkXl0DGFgjBS9yOjaO5Za/AmgVKVhyAgKD+r5ZdkxV+lS1rzMFVkHLU+P1YjwgMZK7EU1jFytl5p3Acl3ek3G85Otzw4PeHBgzMePX5It1qx3mzotyv6kxX5+px4rWTp+/3eGnUVpFQlj4mB2GUrkdIG09NkeVaiBCNSgzWF0li94ts94eIFNWns1Xq5I1k0dyUGxj/4v2P1Hf8Kt//QH2X7J/85tDLf9KG5ODUogtbqY6u0GlZV1+aVmc1dU8/lP/JHefDv/y/Uoza5hdnGpVre7MtfQP7LfwvZ32hdhFKtNuIzFiTxWoswE0xNtRi57NQaDgUqMdSW+xVDoO8SfZe1YXDXE3MPQZt7pK5js93y8OFDnjx+zNk6w3DJfnfLYbejjIM1ng0aUw52j84q6E0uEtrUvlNC3NhnpMuETpP0JQUvETnKeb8v225/0Mah48g4Kfl8ipncrej7gYAwjVCLNvVT08ltOqzWORK6jljFSCN1DZRFfMDtLm8YidmM7niYhaM6A1ouDaYzouk8iVUbk7qfhUtUzfGbquI4i37L+nmRhn/VRjrF7CMZdt6aLy7/HRFfLQoscdGvV9Hs1YWcFYTN9bt8xff/SVaHS7WVLRYcwuyfNG6S4YKPfeq7iGWCOlCajF9YC44hSmV1864RvTkqM9ud4ne/0MnzdwyHMsBP/UTdI8VZP4HMca+wIOeKc75gqz9f+B4eL6/iecYLe8NlR5BGzhwNLwxR/bp+vWKz3XB2dsbZgwecnp6y2W7pVyty11EJhFQaRlULFKmMQZu03q9ted+CxkZDk6HVsIjJCGCnYuR8y9rNoITWRM0xUmxY9QRhbiRUxPkiZpvCLegoPiPB4zbBnm8zRu7MbffV5jxfaRiDikHdX7G32vSA1Jmrw4kIZXHc6nFcP+9ivrnldITz2/fcBq6La/o8o31Ewr18v5mqpVjMXF8tm9Dy2WKb77E1YtXX3ODZIBfmwxzH4+JybVscztS6+dRidu58oXNe2+wr+LIOYc5tnhtF2HpfrCvN8bedjkBbaWvbc5CP/dvXjOnST7A58hrX4JXt/RNNtW41fo0aaIxk4qpju12xPdmw2m7o10rAsN085+LinJurSw6HPeN4YBoHHGieGfAsAGrCX0c7tIehAB7tfWkkSfZqYnQevNrertblodkEgMwPHIih8HXf+3/kB77pn+Gbvud/z209qHPvD3EZ1IzJBESg6yZy35FyZ7pFDaMyVaainYsPQ+H6UHh5deD5xQ3PX1xw8fKS3W7PVIvqqjgrMH20gTnJAqb3PsvFX/l2Hnzj7+GdP/XHZuXuEyHIXM8f/O5jG5cjxcTSIb3zkMXdHx88NwwWUym8bsflRAlNCS2dStoxF5PZGCnFguttIbTH6u/ZvguHqXXGckB3cXlHE38JuiPt5WN1nzYHUsS7GRhRRSAuxuF4E5VM83iAVZ0qUOVyJYZo5DhASqw2Gx4+fkwQ4eLdX2C331sCv3V+87QXO612QSito5UmREEpoyaV10LoOuo0MgwDVwhnD84ItVJkal2jIpEaNMQv1YtYbH5Yp7c5R0WF4z/z1iX/68895F/68KXesytpf7ZGoRaAP3u+Igfh797sTYHp856qWOKEXtf/+eHfx3/r03+C/+Jr/2d823f/EaRqgdCqX9FbMG6QQVnUTcnnnBmrOkiDMQaDGjaTkeh5caIbvtvNhgdnp2xWPX3XUUvl6uqKFy9u2e0Km3Wm7goxRtarni5povKq77UjbAhsthtSyuyHkclIJfrNCY/ffMzTNz/IwyfPwIgAo1QSiZx7ctfTrddstlu6zYbV9oRuc6KdmYIFr31eWDdr1WMCoRphj4lZM8jFOnaMU2E/jNzu9+z2e/a7PbubGw6HPTEGzs5OuXj5govzl1+IpfEF27w4IPp6srkWnWAI8ODQ0jDwcfHEU/2azq0UA2DBnwlL6nEjTkglIDWBFBBLNjTtXoORwpSJEmDyAnvTP9UCICElMy6jAc+z8+Lss+KllCKIaLANC7Y6C3Et2p26TlawJYUghY7CJBP7mxv2V+dMt9cMV5ccHj0m950lsowKcLtutgnTYE2hGV4xBXM8McMo3AEbbb+okIarL+GOUbnYHHD0XxSgxa2upp+jFQrZXmbDykIOJpIVienPTAxp7shien+aRm5ub7m8uuL65oZSMLvmhM1mQ+5663DvhWx6PnVINdFJycI04Uo7NrhjqDJbn6vKvApKUEWPlIlpGJTYYRwZJSB5RVoFYtROVGUamQSGqXLftn69IYyRap2tM0W7t3fKwhuTGtZjDDAeiLWQgpBTtkTdRIodfb9mtd6y3hy0s2+MxKz66+Sk4/TklCiB8+fPuTq/4HqcAGUUn9Yd8WzN5q1nPOhOeXgojA9OqV1i3XdAIOx2dBcXnFxf8ZEu8TVP3uQbPnLGl5xFuut3eefyFzg/z9xKxeFORBMdaoUH+5f8XT/9n/H9n/h9/Pbv/zdnmzFUam0GKq5Im/3+yuZAyvFb+iMu/tBiiwZRL2yi2XkKzQ5bml4eRJYQ+C+/8V/iW3703+B0/x6epBFLoFoXVrd7O0ZOpjKvyaD2aVgKzyP72zs4+efS7Be/u9mJnPd29n1f3kfJwksf8+6YNdAHcxDBPcZlQpr7E4TQOv1FEjlETeA0sh4nKmnAO3EGXu6XuWj3rYDEaN2th0GLY6fRyHBczpqvNdvKx+EcMFvy6Nm4f6Hf1+2OrHEGiRAIeLduHUOHNUS0gGwYDtxGkDoyHnb0Xccqd/SWSLBdrThZrZikMoVATJmYMp0IpEjJA5RCjtEK/LOS18TYfKHlHcWghAEaLNXCCGevdwbqlJJ28kvRyG2s6LRqEKJQlEiV2sACMfIeJQe0onoD0GYCIl47X0IDNB04sHVinZYUeDn2uaSRoNGKrJ1c6iixqIGOC7+vBZ9QW7jOPtbxhTmoMSfOHT3mxd8SQitKaN5kWN5TaH6DYkhL/zG0lTVLxlcDavdlq9VJKjRxbSojU50akCYOV5is8IBYaD99E8S69SEjTgwVggZ9uh7WGzjZRk5PMqenHSfbzHabWa8jfRZSGI34tVgBx4R2fpianQfMsq6hQMFY6qMV2KpdX4mksRIsaKUdB0Lz8Uq1AFaIdF1mnKrJmIrUiX5/0E4zfU/frbSwOVshuyUnrPpeSaj6ntxnuqxdZ3Je+KNe1BTUz0jJO2kJOSTiUq7UGbj2hHXHNxx4bD6hJWVpgezAOA7sDnv2+x273Y7DYW9dI19y++//szDuAWkd+45wjOjFrqoPorvHTnbufkKc9Vf0Tl+N1NpB+vk7vr/qMR0EiUJI+orJEzPQQtkFdNGO03gUHPuqjGVknAYDoXtyDoh0rNalJbXdl+1IbgB32t79ItsC6QzzeyqaZOF3qH+rsj5Z0FG7Kq76zLrLOof7FTl3JOtKo5iL2gu1emAAXV8pNgLo3nz71aozXZIMqBYcwtXEYg0qzHbLcgxmuMv/Xt7T/JsGz+6YUCwL4F8ZpTvER82PuouWmVw/tiZfswXel7zWBDRfLKLFkjEyg7M+Lgspefe0S7/K9e8dXXPXX/S1Z2Hx+T5FC0uSaCFYV0XJO6ZCN6psGqdCmgoxFLUfZH4MYhfomNUyobe07iNZyS3u4baAVxcYhtsgn88v+UWPeHzMeWa+srW4YpVGsrTEAo6m06JLSbhji8xyNdw5uO6zJNAstr/y+swP0o+tieMwlYkw+pu1YXdlmtivVqy7nv1+z36/Z71asVqvtTt01ynpQEpKOuOEHUZ6GnOmX/WaQGvxAydMiGEOYgWznV24exDb5btftMIHZnDIsVTQ/eL8DGTu+rxMPHKCqdYh0rsCm66X6mQ/RYmmhsEIjgbGaTTiSSM4r4XROxAv7N/iif6e9O8kU6UwTYWxaBLMaN16SpVXkrPnGcaRX3xUnFiF9yGGfk03MQL3MlkCuc97VCcdBfACpJyMvAEtEBdhbPNRyDmxPqw47HvrYJ3UTite7D4nJ8S4DDbqwnwYJv7Hj59zFqPqHsc+TQfN2IFPtmgGhdmPbYEvXkcBSJWrnhh8hM07Ae6CKIrl53cKJNpcKZZM7y+fnws5O06jvsahkU7VWjjffoDPPPxyHl99hp988xv5De/+9QUWElW2+LktWUgbxwSqzc8my4smelW3T+MiqS1mTfqyrvA6TIrFjiIMUpRoahqVAHqaOIwaExxLNYIBzGoNjVSqiCbIFPFuYtoAIKVZLuUQkFQIqOxZdR3rvmNtsigEUX/Ank0QTbwKEbou0ls3e7VfzGa3oholXXJBuYwH3p+t6zoOhwPjMOh4GPHLZqU/u5Q5mLwqTpgy6XOPWTuia8JeJIWOmJKO/zRRpqq+UkzmZ9hzDWjcucknJTSK1mBFEwFjszPJmZFEjT2rh2/w6MOf4OSNj1Dyie0Jav8s5HgxHFiEoU4Eqaz6M9KjL+bBKITasY8bpqvPQr0khgMpWHqzzSVHZ5YIDjFZIbCvudq4XNWPV/ssGICmMQXtKDhNk96PYdSxgkTrZB6NJE+UREpqQKoW+kxG5KVhDsUmpsJizWPysXL+1lezf/AWH/qp/2pO2ghO8Gk+DjTZJmIFYVa8v3zf10i790Dz5WD2531zrMa/G0Ns1+c2p0fiQ5jfA8OWCHNuRAhIMBvXvqv2blXcOjolkjSSsYAlnfxKFsSvwrbf7RkPe8bDYHEkLwB0rMYwHI+9hGWscH5mWZRwtyXrYMlIZRER9uL3GCCKFnxVl7tKzOQxZqyzNmiuiHZ4XdhLtgrEdKPEyCSCTJqsF5PK2RgVH52mkWG3Y7e7YX9zxbi/YRoPM4GMaGJlrUKJkalOpGkw7FHXgcpJTYLuUyYF0ykxKCEHkbBMtfExrFAm4ZAm0jSRRivAMEILjy9HKxIxbr2maybrGB6TkkWpHJhQ4orS9LHHOyUlahSzhQ0XTQFqwkvx1QTVzOI6acdeaaPqcXbVL2LzIgE5REbRfaQWZNIYQszaICeG3NZUrUp2M1VtHhCCN6TRwspVt+LRo8jTZ485/YVTrsY9kxeeViMPqAFrV0pLJkXt/Km6tVXdDAKE4XC/kg7v4h5ebDTHbWaHRZoMWjoFn2dr8svO41jD4jg0+XYXZghtHS81f8Ml7lz7F2xb2PiLC7/jTXoek9mRwS+szkTWCBiRUoxB46l9T7faKtFUv6bmnsoBCLbWIpGkOSpVsU1R0wntNAvUSA2TlThrDAC0Q3ZdDNASwoKZQNTftNUzY3AxEVJmdXLK+uyMvN4whcgwFoZhZBxGRgIyJbq+hyDUqVDHyYppZ2KQUrRYOpTSGvB5MqPIrMcsKsNMcVqP7HJEMaYU/bmobHad67JPgDqafImJlO5biYpu7kPOwqDe+dzGQx+MJeEaNmL7azGK6o6p+XA6v7SBSSanDonZsH1QfN66pYsRIqqKQ6QyDAdubq5IVFYxUru+FVfEw8CTH/jzRoYtSJ+IVbSgRTyuZjdgNkxKStRXJTGJYSGV5psHMTzbhsDJZKZ6AKrqkWb612ZNJmt8FvHCY7WRRstfEJkJSVsRYvEO4zQbWmyuRpRQKoYZw1/aaKG6TevFDBVCxZuVNT/VvoOoZkIqIQVrgBKt8KUqiVVL6g0GL7uP6tEoKFIo5jdNtSLnN0ZwaOOG2hOJSAhakGletEZ+ottHTqDqmKVokaZjFiYFkuNgote0bAgQdAIZVtQRQobQARmRZX7L/dg819Pn5V147hjr9lXVvvF3dM4ldjzj5r+GEijMcv51GLRvjrBI2y26e9D8hKW69zkF5p9YAyW3s6PMmARokdMyR+Q4bqX7NAJcx8sXbn673sb2rr4bBGpRG8qj+aUeYzWCrl2JM8EvQftTpxjnCtXl+NjUjUGLXF3ONgzK5LDbnvNxsfswO9j8baLnxWV9pQxJi8i8MaM2hrOCtRAs99Ri+ILmHBCYrOBQ8Zn7pc1S7tjELTEI+/0tyQo0xHKbNaFQCbNkUvKKOWa5tOUMA0xxLvzBxlOF1MIG1E2xQ9Uh83Fg+a3PF3/61dqO17/HY1RPNJzS9O6q7zjZbtlu1jx5+JAPf+iDfPQjH+YjH/oQbzxc8xu/9CN8/GMfoQ433Fxc6PxjZLVZE2NWosbQgWTzo6xI3/Tapk983dd+FR946zEvn/88Z2vzG8eRHjF9AF7oLQrma171ggylmu4EtGluzqQ+K1lDjIjFGuLkzRzsNttxLT6gg4Jjn24dg0miBW5io2nENGbXtMYstPXaKk714K9xQ+5Y6yIMwwACOXeM40QIiZR7Hj14yHr1iM3q0a9wFnxht4b1LIUxzPZeYC56NDk1z7153JdL4ah4h+P3nYTDH5HBKGau2nFc9t29WM8vsGuj5SbMRZoNYBSopTIMI7vDnpvbG/q+bzjwfL86AjVqvDqFQEpCznmpZPV8cbHmhWM95xjH0T6Le58HvH3s+IDLfQzXrDhGV9uOFSvKs4YliDdEc5u22BAFxmlgv9tzcXHJ8xcvefHeC957/pzLy0tub3YchoEctbF8SJEUMjFpYfNkca5p0pjAMBWGSRsnFq+vsPmQopIXEjK56xmmiRcvX7AfB1bPX0II7A97bm5uuLq65vLyisvLS66urri6uma/37HfD0xTAbSBQc7J/K2enDty5420XzOXlnpZONLR923rI8SsVstkfri6Z0pWcpiKEgGMhRojlUxIgRoxAlcUf5pAoiApQE5k5qahUWb7TJuyJWKAHCDHxBg1PyBJIahjpf503hH3A70IZ13P5uFDHq3WPHjylEfPrnjx8pzzF+dcnl5wsjnl6uU51xeXHPY7ihznAQqihClGbjk/DCHcXiBBMUIizkaKMOcZx5Rh+5Dd3/tPcfb/+mMALQ4WJtVBGOGSH3dei7o5Qa7bm25Ltc/v/ARbrubgaINty51MQX2sSPMPQ7DGbHaExz/+F3nv638/p5/+PrrLtxEp1kw2UseB6XDLzU2mysQw3LA5ecDp2QNyPlGvzgjq16sVJ9tnbDdr1muNt6/6np/9zGd55913ub66pFSs6VtPl1as+hURyw9NWuNSU9es71KLNagxP8yFrdmtum4Ku2ni6nbH+dU1J1dXpK6Dk8iq63WURYgS6Ndrum7FatVr06B7tbnsn33K0JwOs5sWT9/bnjRYgTkfNDDnbbA4mrqs5uB5s2HXBG4uuL/d9hXz2RdVima/RFnk8rVruJOTdFegNdNGv40INVidqBfwM6ug+Vj+hp3NdVCQRjj1mhFtY+OjqjaYx/bnbwW04HuuRJnXaADLRdLcjIjiPHUZ57YmSwTFElyvuh/kjcxWqzXb7Ybtdst6vWGzUZKpZE14wfCYyZpbi9qjrQZoHJWwvkyGcQQ6x7a6TuvI+p4udw0LEZmbhsUpNnlQyoS5XJYDUq0O0f2KcOel9WS5Qiqq62KpxE6IsWi9Ga7rX81L/vXe5pm5zEGd3w+yAAmc5KHZa7S5uQDeXju9522W0h7LDLPGuLM+7/w0QolgxpaY3RqqkrLURkIx1x5La56w9CBeezntnmajzsv1mbGI9nGwewsLGcxCRizjAbO+Wmi59q1fPuYzS7ljbGrx/t1bY5Zz7+tsR9e0IPRbXPfCFFjIu3nuLK/n+HnO8wd8evn9yFE9gpPhHMd9aDrB55BYvL5W4biJ46//th8myiiUFNh2HevckbPiu6XMsS7PEwox0K1XwEQsgSCJtO4Y48hYA+M4UigMUhmAMUT6mEhx9icqgoRIipkOxapqzDq2w8iEIKkSUqbGjBSBIqRaWacIm5XO7ZjYT8Ww3UIpA1Do+szp2QndqiOtM3GdkT4Q+kToM/E6c3u7Y7rdMVX1OUqtlhc/+2IiYrU+pr/q3FTMn+kUNB81el5itKbP1hS6yx3df/wvs/9Df5T+T/6vGMdKMh0YAkytlEDY/cbfiQDbH/nTOl+K16HQcrQcQ7j9J/91Vn/in+f8D/0fWP97/zTeDF2ncLT4hDUluzpXORHVB4NopFUae5FatP5CtMlSKUpSVCxWEESssa9G3LDmSykFbWKflWSq61bE1CMxU/z5rtacPXjAkyePefL4IT2Fm91Lbq+vGQ57Ul3km6hTfeTvq21ktmSKxC6T+o687pF1BzlRgzDWkf04AFDKxONf/aXzy9pud1ozX6eJqUKImb5fsd6MQMGbg09DZaqT1b7MtRsscMXQdUroVJW0pcRoBDSuy80vLZabGkTXUIAoiSDJLFJpNcTR8hK1zkxJdrzxidu5AY2JViO5aoSozLnKweaypsnNFl2z2wKNDDO2fR0Pc0IoxUob/shcEbk8Iu33GRfp9xd2ucf5m3ruY9kbyw06TDbnWMryWeYfn9Ms9zDn5cz7tt2aZe1EhXYjS/Okxc28ftqJpo4bUjb1Pdv79gw8j9ixLif8Web7zpxtVRPMsPWWMl3fs15v2J6csjk5ZXtywubkhNVmrU03U7I4m8UBDEgrtcD46nj+em8RG1+xbL3g89fmsOtu00P6UhJf7JnGNLdMU5xDlPMjTko0KLO97I3nqnBkg8xWjnNu6Az2Z9z8ofnL89zzWK7/tHlQZSZFkhoIoWrwO1aooa1Tx/PaMZ2wz8cBs7UIzE29F3aXzDaNr6Mj/hOOn/s852fbKXi9pdvjsoiD2HhorDg2kqls5No5OdlUMp0Q2pi4f7as/vMah6O1Ep1gyu1jvdK5h/k8Fu5YBs8YdJkR59y5JkM8fmZ33m57+bprCi78lvmhHz/7o+Pd3d6HT/b+iaYWwnB2nPV/TfLqWG9PCCk15/fk9AFnL55z/vIFl5fnXF9fsbu9oYwjSOsDughYFc/bs/+sMGuxQLwotT2gu8MgdfHgwjw4bYJbWoEoCK1jG+l353zjX/rfEGRkCEE7jMw3rwrOOgR50DcXoStC7lCBR0CMDX1/2HNze8v17sD51Z7n5zecX99ydb1nvxuZihlBRwo0zAmO7dyAVPY/9dfZf+qHkDKao3j8pbDYq/3/qg59reC961QdFxo75G9gjRyP7dEQLZywo6AL81yBO8URIbROk3cLnFvy8HJxLBwk/7ksblju6/c2EwhIq8W9j5tUZa4VQbvgeqKpCSp41fkFmuL2z7y7WPHgJrQOLAEtOs59z/bklDpN3F5dMuxv2I8Tpe5Y5Z6+y0agYw5ce566okrxoKgWY0AlxaCO2jRSbws315fsbq7I6y2SUlMOIEy14AFwL5DSomZTd+1GI5sg/G8//IK+JYHPhupseAnfc7vlqmpHqu+77vlN3U37rBjYFVPi9OyM/+Xur/DHPv6H+G//jX+Fy1IY9gdCnYidksPE1BFiVKeziAZ5g7HqgilVG39UWQYRUtJCEO8Uvtms2G7WdFm7cAyHPVdXlxxuB2rRwo8yavfxnJWQRqr+LVWVSe56IDAVYSwCMbM5PePJG2/y6MlTVttTA4m0ALaLEHNHSFmTK1cb8mpNt96Q1htivwIrOBeiGZMe4VQZqklbqd3gbLjqPKqiAOLk3eSnkXHYc9jvqLUwDjsuzl9yc3P9K14XX8gtLQjw3FlXvzc2nUL15MllJzh3pvQ4IoIUdWhb5Es/McK2SIijGeXegSDOXU0kIaE2+bgE3CQmUsg65yQ0IxO8G50n3GHAl12UMdNrov3UCgTMrFedO03IOCJlRKaJMh2QEMhSSTIy7a64vLrm8r13uH75gt2zZzx89JDVeqNJD2AO2KyHdTycxGtm+kzRiaZcAyykV/vz2NFiIWde3ebzHQXOCASSFYJpwNgT8ZRTZtaXguoG/552ekiWZGN6OOm6v72+5fziQoPAh5H1es3pyQmnJyfWQSVSqhppsTEP2H9uTWo5ktkgtckjny25y5b8aUkyMZKzEvbJ/sAokbFGQr9l8yAyDaO6h6VyKJWxCuM9JJqK3RpqZSIqOCSRHDMhddpNrluxXm/IQOh6I5qCbtVD6pkkImPlMApjCQQLIm5Ozzh59IQHT94gp57p9sC0Hzl7+IjNySm76x0hBGrfU0828OiU7s1HbFenPNgVbkjsxh3p9gJKIJy/5OTiOW+VPV/5+ITf/MHHfN2HHvKhdWEMt0x9ZggwTEU7ggcNECEqj1OGj1x8iqc/8G8gZVKHL/g8S2a/LJ+PR8nr7BjYFo7+D4t351dzNgwkuFvaHdr35n/gBcr6+5/5Lf8c3/jjf4I/81v+BX7v9/1LrMcrKzDDyO8Wl5XC0dE9sYbPc30iTkrptp4CMnNyhF3THee19d0Sd3+ZHarg97vYxD+P7VICJj6sa9MyxzE0hyy2ZIAQW3gG8OR8WqJCG/MQiSwDpfdjizHo85LSCIjKpAW3WJGNF87FGK24cE5Ec5CggVBzpLT9XD5qJ+9o/pk5Uk6YEoMGKUoFZfk3xuekJH5VhHEcCaKF2GNOjLmj75SUJsXAer1WwsUAOUXoMl0KdH2HrCdkKkQRcgz0KdElJQvDQHVk1t0ppZZIlawozPW5E03llIz4Js8yXMzhDxHtCh1aYaYPTfOF7PvgSX6vbk1X+d9hOdbHTvoRodNr/Bq1LUqzgY/8H/6/7Z1bqK1bctf/Ncb4vm/Oddnn7HPrS1qNiq3BGzYhDTEEoUlDgnYjQXwwjxoQ8c0gjUoejfgWMQ8iiC/BiCihCWIrom1eFDUvGiSieAmmb559WXutNec3LuVDVY3xzbXXObtvyVke6tfM3uusNec3v+sYVTWq/oWT7lEWxLOvkkIm83mhix+b777zndvg5H0Mb5M298O2eH0817aNPlL0t9t4xyfjwkMhxkkDyjKTx0iILaCUjILN+d/6wpI1BFsEtYASc9UCXns+xV+YZ2C/J1xcJFxcznh0ucP5xYLz84RlIcwzI1JFgIiCAhVEFYE0MKsFPr2RAQAph7ICXCBEOfN2z+TMKJnVJwqICYiNenCzFEYujFw0vTRA7KsYwcSoRQviV8ZaGkLMvXvIVvU9pYTdsmCnYjwiQCXCcjESYgyYkghZTbP8PbWAEKTQKoAQKWoeCttNCgmMcf/ZVPSbJgaKaJaJv2Ssq3SgPK5HETwv4rdQACIFcD1qYpUFFtGFR4coCECBu9BJuCM+1R9zu19USMSSaE5Mw/7ajkkkOg8UQLGBQhPN6GCJL2N8YZ1rW61qg8rzxhgFqMxVY1IFpQTUJsWl0/ywEqJOYhv8rQ0BY0jeDmQmuLY955YoJ6KDSeeclCbEKWm30AkxJnmFJAmnQf1kHmMjwa6viaIFLdKSB5BZbAXqCyvjfiWy9Co9ct23sdCj/uZGPKxvUw20YQ2dnqkhHvSqMyg3KqkNdfqnoBGOYVm+l9kjY47M61Lwi5680s8VUS+EsPmlJzYwToWE7pnv7NqJSKY9d6HPfy8t1EHjZSGi2nyi9hwFQmjDT40UkKLYANI1MyHFghQDapVkqhN3VH9uLJGTprZuF9DJBdNUkGt6cGJuA1twHfYds9nqw/3+5jC/Xp7hnpT0vtsZn8H2J40NNh3TrZOxicBs74vtAq39t42OlSHdkcwdZ/O4tFhLv9F2r3ID1SpzNUMFmUQIYV1XTVCYsVtmncd2WJYF8zxtEvUnGVOi2JkSWwiIU8Ky22HaLTI+nHRC0ViQLRb1IgH1N3Re6XMI5Dp1EVce5/jEwmLq84AdiyylmNiPCU1p9/RaVdinwsSAmgpNmcDUuq69Q5otFFftJCZiPCY0ZdeCe0epWqTzbsnyfOQsYrjrWrAeM3KWZEcRkNTX3XFt8+/GOtaY1vvcnh8AktwlIg/S2ADoz4iFuPQILQFcfNM2fNQg93upBWs+4ub2BjFEjbc37PMeJZfu120FpkwwaGxbOpbL/UJ3zqHwpec7PIrAH32U9Z4bHbMlMGCLsDb3bORseByR/Mj9xZt/zd+xedCSTbb+y6k/pAm8XQxNBcxK7S8RRCtY84q1ZDRuWI7/G49pwbPHvwvf9+tfBkdd8tXxnklXShhdBMuOoRQRd1+PK9ac9X6XGC1F6rFCe86t67mdB0mEYhRuyLVhrRWr/luqikfxGNNe1tNkTd5VEQ6tQUtR11eKiIWgNSmYiAHLlLAss3Y8TxKuYWkKQBrbZ12boUCYVNTZBKbmecI8zSK4H+MmVok71+bhsD9bwKjI5YiaC2pZsYYIihNinLBMMjYXE+AuGblWifu0qjbwDhEmrpXkeayM2O1pArUGporapFsf0Pq8whB/kAFY91+E2OPfYsBNWB49xuOP/za89tHfjnD5Go66hpTUj7OYGiNqpz0GowJxRUXDMQek9Bp2jz+J/XSJq2WPp79RUa4zSpEugxYrs1eME0CE3GRs522ssbtQ3H/XJHAARFah7WHH1lqx5ixJji0hzZOEM3t8m7SpUkYrcoqsAMvs4Fr4ZA4rRa4Lo+LmI5/E1du/B7urr+Jr3/tD+Oj//GUA6LGjHi8wH4rEXjPf2tZMSK8HtvYnuPvAPbZzB2YWYV8r0uIxj3W7G3KoMYQeSwEskkkSfyL0+CBjvEfsIRX6UStYRAl07dvm/QdmL9bjinzMqKsKmmiAIZI0PWnqh8uhj+5sQyxTBbSaNSWhzTE2ULDCAZuXVICzJYArSl1BmZGwAGARfwGkw2aU6xyCzUOE1qSrbGsAMWmBhcRHzU5obZU1u5jRQtCY6YqcD1iPBxzzOmwciLgcoQFNGv5Qa70QRkSqaMTQiBBrA6aGFCNY17R7V04CCFHtOwbXoP4Do1Xx2UuqiHk0WLN71vzN2N32MVdKUviIPbYG5FygJY8SByJgihGEigCJg0ZrVsOQxjZ2DxJELBMqTKU2IbemK1kbQdQm83PmjMCEGooIv+kDQCBpDLBIPkFjFiHfyFLkHqjfRyDGFCKWOIPShHpOeOuNM7zx+h7vPguoKyNgRqMGpoYWqiSpIoDDJLF8ljXZGPSsMaMVFZtqBAr3x2c/KN4/CdL8NNw1fE/ipi9hvlCtd3xjXS/a+Afm026LzfWbe0ym37yb/e15Od9lrMCh+zUWT9twUpitr54wCxF1aurPJRBiSrK+OMl9xST5IbVVUKs9ETmEAPMimUnyb6AxPpCugwWNLY2196IxScKd66nXzs68xOGbdBmF5OBQECGBMC2Yz86R9mfANKGAsKrtImIGAELBFAhAhahgyFg0QcagrEml0CYU5uUGguy7+YEaq7F8ABNclThM1dCZFBqYGN0QKNHYSRR7p2qhmnVblbjZw5rHAHT7YJOzupnDx30sey5jxGmUAt3fttUz8b20GUqaEeKMkCaElNAgifmsNjSxiBT2ryboWChF/3OKyPudxrALqGnEoq4W0IJFSSMBHAK6uC8YqCo0YvFjXcxtLGN103we9GsYEUnuca4VpawAGoiTXlv125r4mKwTT49Vk8RJQtgm+Ir/KnaOCAnKbgfEIDZhY7kfgxaLk+0bhr038v1E6Iqsk692WpAxi7pP2vMmqIFtzZG6FyPrTBYPbgH8+E1c/fBn8egXfx7dGdMid+LWRxJJV1PxTNJl/UhIJMWhkXVdJ2gnb4vTNAa0+SKsSQQBRHOfX8GWRTZ8ZSKZT2WbhKYxZ2mAlkCQDuxMEWASkdcHRBccBe71GVkHyXvnPJnQNhHn9/mOV9D9GuB0Hxiv2Po3wz1xKSK8eq/GnGYjjpgoJs5KY3uwSU/XGYBeQCGN6yqYLf/K9km3qI8K0bC5rcATfQ2Lhi9oU3z3W1rPezbbtDCPztgNPa7XakNo6s+w7mOkLpobgjw/PEbMzXkYD5XZIGoCnqyDdLFzMwR0fGN9XntFM4m9zZQASgBFFZkSsSkmEXmwRsCNJcelMoktwIzCQXKpGlCYkNkapj0cchVRhd3FJWiacbi9Rjke0HjVGL7OMdzAdUVtGeg5bjJeNFieBlCKrJP2Agg2wckynlW19cgMUbt+3eIaELRR9IkDjLuPzXj35sHhu5+xd93zzAfEfixWkMIsQolcGWli1FxxdrbDeljx9huX+PQPfAqf/9yP4Q/9/u/Dm48f4Xy/wzxLo0mqBSHfSv4WL7h4/QwlH3B9fYXDi2tMMWKKE2iuSDMQIoPXLOtH8wyaJ4mRl4Lv+dhbePP1GU+/9r9QWwGFJGmYYCQCajuioaFAi4dYm5uGCGZdBygNkSQ/Ok5SIFlbBqWINC04cECgJnmOIaAwUBEkhgQtPNK5Q+KTFrSiYcCQxHts+h5jpa47UAAhyjOsz6Y81JojSfZMj+tjdREcRJCxQvIJCAG1SB71NM/Ix4L/+41rfOlL/xa/+it7/Pkv3Hd/fECocHE/LC1Gssj5yK+D/LtZhxqEk1vZ4qjtnvGE1S/Qr0JoI9fYXgAsdCemEGkeot77dLKvpGKl+uxoDK5BxPQOecWLm1ukaUaMM+KUEJLky1IIoFKlxgWau2t1A2q7STzZXoBVh4zbYDMf6iK22LynPubI3zg5G30b0DgpkwgPmUA9CIgpAJXRtJeuxRAqS4w9V1m7qq2g5BUvrq/x7OlzvPvuEzx58gTPnj7H1YsrHI8r8prRmBHTDIoJRFLfUxqjNWk8kPMqor+lYM3a1IJlPUAa1YpIakwJ07zDNM0IIeLm5hYvrm90DJV5JueM29tbvLi5xvWLG9ze3iLnjFyqiDoCIC0Ej1bYlpKM35pPPOK44tNJzstoAGNjsMUzHyJJc2QoSv3PRCJW0lpD09wVlIbM0pC8QYzjBqBFEfmxNCrW2FwinQMoSNx505QnAEgBIwckRqzmuzIjcUNqAOcKHDPazS34+gC+zYiNpLHw2RnmszPMuz2WZY/d7hxn+wvMy4IQAp4/IxwON2gacxfBQIYVQ2/XuOxeDoFUJH7EKc1PE596Rv6TX8D+n/4tvPjjfwlnX/ybsgX1E0QQLY61NrMfba1cz/dYK+V+Trb2YdAxfytGao22o+ZKmv8HQOMGAKhJTJjTcFVLwUf+wz+WGgSzHSE2SctHlGPA7VVDXm9xOO7RSsacgHkmTEEy1wqkiHNOEy7OzvHRdz7SSwaZWZpA3d4i3x6Qm6yDTlPSMU9iE63our7meVqeGIAeWxPxpNDtQiJIM2QEHNeCZ1fX2D95ihAnmZ8vI+K0qJhpkKZWVeoqSjsZzD541IYjtTHk39NJpd8fPUbY79Dhy/UNqp/RgynUc4iCfXKYoegNFmmM9WZmEMyKtO+36wHNc7C5cfvsyAd4u3BKstfcdK2dNs+SvoH6+2i4V3rd5Xe2U6zB63ssW5u+NnM99Zia7uvG9O3+sM7HI2f+1Olqmo9bigmNWoOu2gUDucj8YAfdc6AAqT0NASnNWOYddjvJT0kpichIKcg5o6gw4qgKkImT+xq42nKBJI41TUjzgmnZYVoWzNOMaTKhKTuJkt+xHo8IQer3SsnAKnWsDTYnDwHElrOug4sfudaKNE2YkjZtm+XfyCwieyqy3Jju3IsPA7tbzJ6xfBuLd4jtpPdkz4/a1sRi2EhAvz9HzmB/0x1/Sf5GZLVHmr+1tb+26P1/t0bXckhYfXs1peTnzaPBL/1/36sRS7gT/94+b3fFDXGyryOSQf1n+8tmraJ/8D7Pc/Od3yZbm9nsq1O2I9YrtsWWe7pZd+n7p8dGp36vedQn4+12EeQeG9vGr2BzLKPn18DGzbtrNXaRdT9NHGhbW/uQePHiFgmMkghhD8S95PACYoeUIk2ggV5FgDRN4ndXADUhUQJnRpsD1sA41ozrAuwzYZknzIEQUkSoBKCKLxYbYhKxjICARkFyc1DBraCGCkoTECdpWsbAxADFKONZlCZmV7cHHGpDXo+4vbnG7eEatWbJgV/OQEsC5oASG2iOCLN8FiEg1wI+HMSXkcIaxKji7pFRgzaeZhvPoY3lgBSC1gQwylpO51GSXP5J83+W6yPSz/0FlFaQQkTS+k0OKoZIQP69P4R29gbADdef/GEsv/plte94jPew8aMi/p2/iMOf+1nEn/tJHHPp9xh0zRqs699tPHu6ag4GetyR1b8pKixWNYexQ4AIDFmzbTt+WfeepoDdvGA3z5iXGTTNaCGBKGHaneHRa6/j7bfewttvvYk3XnsNfLjCEQ0tH0GtynYoiBgx5Pz2vDFGP3JGFdHbKYJ2E+JuRptn8BRRCEAtoLzq2kn8LXl2vhWurq+7DU/MMt9jj0DAFANiIBxQwS2jFepznunkRv1sTAkICRFyD6UYUDSXrrLkMJbWwJkRWkOF2AhUtDFWlNhXaFEaBXFFiAkRUZpta9yYerMRG8sA4gCoyNp2rTj0MbfLoOpnbR4Un83GfBOXsSYHQ2jK8pJMzNvqyWmM7YSXZon7Zk7bH/P1SOdQmzdP32tz0rATttvml35mXQvh7oPZVCA10ZaDib4u3FelaMy4w+ylPrretwzT7ZVmDQZFdDTnFXldewzMYkJMNPKlWFYJWq2SQ5ekWd80T9jtdji7uMD55QUuHl3i/PIC+/MzLLsFIYmfRg09X8Z81tYYpdbvwBr4zYEIQGsaC2yqO7Bp0gOW9V/1gexikyoTxc24wQCCNqkJsSGEhkrSMCfXilgKUslIVcSRgDjWepi7SB/34qYhFHeXbY2o5bD1vHu1F7Y2yTbfrseYAclN4DF2jEdiXKlTP2789b0sL4s7b+0cudc2dQPv4TvYaNAzXsjqQyQuEruWgcbiQujxkC4yNb70dNvmI4P7GovVkoVNfna3CDe+sW5A/QgbE4bQlMWIqC+a2adCv0bDlzTBsXYyzunyQz/pJ3VINj7S+BmQx/fl3J9XP2XfltDUyaY5IJeGWjJiAKZlh0dxwm63x8X5BS4uLnB2eYH5azuEmMDMOOIWtVoLcT1ZNG4m6+gxFrhsoLPvPhWbGhnbDCuwNid/G6zvu6zblMQHko5zjYG2IutipjhupBdbbgVmApoElP/dD/wUPvWrfw+79QorVzRIgnLJFbeHW7y4vsbzqytcXd/i2dUNnl7d4likg3qcCNOihjIkIPqxv/ZF/MbP/ClQzd3Q6setkyHsb8wbB/B0YeTuTbu9Ke4miHVnCKcP9Om5MiNw3AP9PjjZ3uZ3GIOPFc6MB2NswxS3Q09uvv86bf+7X7t22pn2frSwVjtj3w2ZPTQaYN72y87ht8VI3aiQAakHwEJEmmbMuz3OLi7AtYhQUC4gCohz0sSf1gvb7ZqRdoqzgJhEKap2ImiIEJGr4801nj59gtffTJjiXp0QRmNR2CWS5DS5jNZNgEfQgkgH64aJrMhq3BeMjUAFAZ8+v8a/uLoEccEfXp6JwQNNwtVE2SlN2C17zCniC9/45/jK2Rludzvc3Fyh3B7QasLlxTmiFuy0Buncx6TKkiJwJYaoLO3akGHj0ZQI85ywmyct7JBkq1YySss43N6AuSDoJBGDOEWk58fGv25gQARtcpWkj91uj/PzR9jvL5CmnSxmq5EoE6WK7kRJHAtxGolwvdtXgiVfmO6rBYPkcgSghTGYUNi8tpOzJp4xo+QVQV3Op0+f4MX1FbIq+D4U7ibfwiZydVJM6s+U+/vLJnvoOFSbdOQmRi2xB2BH0Zddy4KczVGRpDQCpGtjsEA0dF+sMIi1OjIBHPr4L4a8BEIAqHCGXJOg4ipsnZ9bkShLG0JThArUitAKQi2guoLzUZILAcSaUQ43ePHsCY6HA25ePEfLB0RqWFLAMksXEmmrqd2c7Tm9M2d1R41GwM7MrpPrIR84Hcs3RqHNWb2Ie7uF4QVplxURiSJNzDKTwO5WMzjtdJNmPHLQIKDuM4WAXAqev7jCs+fPcTgcwQzMy4yLC7FpmBllzahFFgR68KfPwNuF+GCWSR8/GHK50zRJoFejYkGFpmqI4HQraulxxry/wLScoawikrAeDmh0QGZJMn5oMEXURjjmgkMuyKVhCYwpaOIDB8Q4IyxAmBYkljFwmRLCvKAyYT1W3BwKjrkBMWHZn+Py0WNcvPE2lrfeARDRwhXm3R77/Tl2+zPENEkRSAjA+Q7h9Qvk8wU1RFAuODx/hmfXXwf4q4iFcX444BIF3/towR/52Fv4Ax95DZ84C3hEFdfcsOOKuVXEWrQwTcZjBqEW6aCaAmGqDSVESQLGmKPEeZSAyD/6zN/G5/7NT2FanwNDK/ulc0ebe6j/jnR8kI2/9MzZe0bQYuO4bQOMAD77738Gv/iDfx0/8h//BpZ8pW86+Trbke0e3Il9bMfRcOf7bDH3zgY3NmB/r5jUJ8GS0N87xrfNLm1OgdmWG3uuQUWhtPxAbQkTc7X96GO+ZEn2wMtYMBoiA33f8bAgK1ripguTdVhEJMHxECMARqym/m+I9WQCSqduuP5Sb8FxX0EFLVk786IbPWL/2DxHfU6aonWXkjG5sRRQoxFaL1KQ76osgwCHgEoABwJNEYlE4JBKE6HE1hCZMYWAKUjaocx7rY/vMRBSSpimSUVtgubojPtWRHFIhCZiVD8EajdW0/gYJpA5Q5sAiS3ecVccH2e3n0qyp0fnwb6YM65HT47eXJ2tYMfW7+mLQ/cITfVgUH+N3bV9tKdo2B6n+8yb/+lB9mehH193MsUuNz+1b4Wx6TK/Rf5gw03XoJQTc+94+EGSYtL4BMtYQRGxWefvFbkHaoFxtOO8kYqvBSu2OIl7yCslYFkI+7OEi/MFFxcLzs5n7PYJ82S+gfr5ra+ewbp2dH00IhWXsL03ny/2BKFcGnIWoamcJdk1UEB68xOYPvOXkf/+T2oXKkYpgDZXlBxTksU4Lg0cpUCpqhAAcunnTGcEAFLAtcyzvKYJ0xSHT6SiR7tlwtnZDnvsdSyPoFrApuNKQQocgSFQZmO7jtW1VXlVEVkSIQxJssg543g84Hg8YF2PqLVshLOGfdb338xayWEfX9pfJIJT8bQQ6yQgRyMP3oRc5PebcdUEbIPm6cegcXiWv0Udawl9rJb4jx23zVcqIqIBRBG/KbAnWQp3M2oTAYp4TyD5g6Q/8a8wY+mVbxnPH2/fb/EEFXbpL7t+SRa0eheTHvzfiBLf3Re7fl0UarsAw/0adZHfvl+Womvbob69IeZs4+zmcz3uwSffMcblEYt7v7gYjQnq/riozlWSHIETu2dbxGN7tx3D+SWLVAkBgZsUFtuUFwjUrBClfwFOr/Bdv1J/18/Zfb4kQJuE66aJnNZ9pi8Hmr+nNkBUWzPG0MdrSQAdBbn9nybu71ikZO3uVPucPGI4D4ntOKSjKHM/r/bztxR67Dcguq2kt819b8ZLTka3eza2VR+37Cs21uk9+3Zi94AlpsU9R37znNDYsY2tYl3EZRmnIutx1VoxpYScMmrOKKvMJWtescwqnDhNXaQlqWCp/LcUiVgSRtCx3YRNJNk59Pg4wURZCYF0LNJuPUELTdHvt7Y5JjtXG7uLNTLKGOJNbB3rao8xNhUkLPX03m21SYFzLliPR01ULJosYEVoIiBVqyxqVu0gbUXfDeiiVq3anNT6Z4bAVRuCE3e8kDs3it5c4x18zxj2gaPxHbtAJ8djwodjRBs+cY+/ysvm9arnXYodksalgyZWTyKYWeU90zShWmdYPV/bVbPNIyW/IeCXXywgAP8nB/zKzYTvv9ysEWhiBZhUvHgkU9D2OvQfTn0Q9H+3M+B4b0886p85HXu2846Nsf/goz+Kz//6L8nnmtigrTbkXKQYgYA33v01vPPsv4NClO5qGEnzNp9tnxWYP6X3ZdEC+u24Y01mzF4Q8WSxp2zsbM1ifFq8qPaxdfKyTlPbA+zXZ+uvNRNylf0MhN4x0PxuArTbfOj+a1R7Evasd5O0dXs0qP0XVTjLimWssKVb1wxQDepfPqzEw5QSlnlGywVHhsRD14zGBSFmEayd5y5eezweES0R3WLuDQgQYaqgxXhhAibmLqcmay4aIyFA4u7SJKVoskjTotYYtVlBkAYRlQKm3R5vfPTj+Njv+N24eONttDhhZUnIigBGZrrGaEjE6zkcQKEihoDWJtQygaZz7B4toHKD4+1X8D9+36dx+d/+FR597b9YI2mgi9qowDDUb4UJ4UYN2W9sHQr9OYsqxgZIx8WmBRw9caE15FrFIiMSP55I58Tc3VJJXLVnX8Q4CGqPtaZCUwUIDWdf/zXU5RLrax/HJ/7rP+u2GUiTMnTfZElexiYTmmomqKETQdBnnVkS3PsSz4ZtIc02sdbGhlbEbxLU/rP44SZ2YkEV6vOz/KnaCGmhRpYVMUksbCfHNeaure/wMKg5g3MVoR4ewp5im5jv0TZCmFvvbNiYIqSlyVHdR9KZwMYpsNrsCSBGrQSsFbUcEVvBVGdQjKAURbSDofFcSEJwCKC6iQ1oBg1pAIqr2LW1ZhBVcJN7oLUqguF5RWkZuRWsm3kpBCDoWnfvGre9Z1h8izEiVxSdLxFlzbA0dT0BRH0OA4KqRnEXyKpV7SNqCIERpminDKyJxCNFUv3IoPfg9uZhEaMns30hx97IxPJkX8XeUFEAAqKKYnBjSCSnIi6TBIBqlfFKt2k2ZA95tIaaCxpVFcvoK8MiupkCoq7Bc2V9ZkQMj1tFs/siBMxxQZoXVDAeX854/WLBbko4rgGMCUBDDVltDQYogEzkmBlMEhsWMdUqcSvm3j/pIUFm03ZknQhAtwXsZ+DudX5/Jy3GeLLmY5+njRDQNq58vwCICba9vA/fbLxBN9R9lbuc/IZpM0acfLzvg81XhAZwgWai6CNP3QcFBTBJMXIIEXGaMS17TPMZ1jgjpklE53oWZAOqiOoFQNbE9fyQ/j3od4gYpIwTcZrGvdcbO+lRBUmcTynq+hIhsAhdrbWg5oIlXGK/O8dyfok4LzjWiqvDEdc3tyilSNyCxcatB8Y8J23gFGR8JsBaFJrAbSTN5dcz1YuImrzHxuBt7FDmUFnPFHtZ1kySNguwhEoTfM1rFiFP7VZLgUSM4RV3wgcBqW8pAnjqz6ChkR23lQrI88gBUtxMEkfoOURoCGpXMCS3IUwTaNkh73a4vUnIUaw74iy2s16HWtWWhySvN0i89qpkcD5irhlnVAAQEoBEAVOYxc/Sjq+hVh33SddNVaSQG7A/x9f/xE/gI//w70K0BAMqrJgbaKI4JjkPkJzDqg0CdQgHUREbMka1A+c+Lx3yAXY/mYiNjLdiezWSJxHqp1gsmkXpUQSSLCZH1MXQrHi5mTCziuiCtdBS/Z2mc+22IDrG2OcgWSce1zywNoQwex8Ndb/gxWc/j/N/+Ut4/qM/jvMv/oLMUixx4ZiC2P8sImEmDG5rySAgQgQR0Wq3BiMIgbWBSDMB2dLTb5iAI2nzgkCIQfNauYCbNF1tupbTda80MbxWAnEFkzTsakxA2uPi8Ud+Mx+Zb5lXzQHEI9fhpfcywdZCX0527lv4pr/rnijj+0aWvpvI4/7y/vHmHRbT7t4NjQK5Pr+q9UZEIhyjYzxVa8hpR6lWnhWzmq2+8XN6kWdPUrwTQ+/NLKC5OTIqnMYttKBMO2RXtYGZgcgyZ8bt90JiDU0beI0YpeVwaWzJzpfGPTYrw9plW/0uIkjDFfsZ6At0pCI7FMGk4jgUwUF8cxG8Ct0+YNY4jb4qEwpXFCZ5qch3fWidxYhwzBVpIsy7vTYEKmoL6t1kcVjLX2ERakkxbIoKzL8JLz1vd2M9fZ2gG/tbH+uuQW1+vhmufSvvdUAnn72Pu2tOgMb174jmx5QAVKQpoJWGy/MFLRf84Pf/QfzEn/nT+MyP/DG8/fbroHJEy0dp2tQKYo4itBPR82Piboe4TAgx4Hl9isP1NVa+BfaMhCTnlAIQEtqhAFnWkRmMq6snePKNr2KhCuYKsMTxQpN5pVn39kbiuwAQwU/W2EBAmidwFZsxNIBLQ4hid8o+ap5gjH2dvRckN7FdgvrFwQSXYaYpy/eFbRFO2Njy47pIJEzHFlnI1niSzunbuAWFk3HXrlugKKKLkNhprcA8nQFEOJSAx+/8zve4Nz4gzB8gu/e3tSYyblpj7BEjH2MpbccshXkrqs0nv7MYgD2TjW3ct+2NLTX9PYI2nG2W3wbTyjzJ5xJ/Q58XEtt9XVfc3t5KvDhGzEvq9v2IDUqhXiBZP7UYgqwqRM3wHtxdj71bK3Q6H477tBcfQuM4tPWJJWbfAIQmqegmLmpzT+WK0qzpnuS/mZDT4XDA9fU1rq6u8OTJu3j33Sd49uw5DoeDiFBVicWleQJ4k4fLQOkCHdIQJedVhMCrNO4KccI8TVh2C3b7PeZpQkyTNrFKmJcdKoD1eMDt4YCbmxscDkcRk2K5BofDAetx1WcDAIZNa00Px/NrPoj560HjsfLf1uyoFmv4YmP/b43N8+0Qe45oAJL4BEDSuE1GQwUF8cclRkgyfuYILkALQWxKLcisQfSXY1S/DTIHtlak9oMbSiCkRBqHa7A2MJEIFBNCJGQS4T7cHrA+v8Lh2VMsrz/C/OgSu/Nz0LIDxwkUJszTDvvlTBsQWDyKpY5GC20lVtbQtGm4rjjrsWtuAqCCanq9SNerENBurkC/8NO4+fG/gvjzX8DtZvzoY7YJSXddrTvr5yfWpgTCqH+PNgeMWr9AI3df/CuJ4cp7IjjN+Mrnfhrf80/+KiwASyBQ1RxAUPffNDiJSpIfGQmgtqIcAa4Zeb1BybdIgbHbRcwTIaGC4gQKM2pecQwyMCzzhHfeeQsN8szLms+Kr3zla+LHqhh+Y6nBK2sB14YUkzQvXGYgUG+C221POYMiOFobYozYLTsR5o8JtTEOa8FxzagMxHmHs8tHOL+8RJoXvLi+xuF4wO3VFXLO3/0H5Ttg+BJ2XQhhK9oK8x4AW58ZnpgNH/YO2dKpJ4MhRtM3K34sBbVdSOqbmtr3J/u32SJtvoll53XNV39ndirh9N/uV4ydtsL19zonBNLCdGzuA+7HANr4i2TP57ABtvuLvg6tJrH9VX0h87fGLE4nPiJDRbVsnfgkp1e2X+Xk9X0ifRZjSxBhOclbizFprnVCDEHXKGUuOxykbqTH5knj9Dz2DND1Gs09CSkhpklEKecZUYWmiDS3EUCIIiBRatH8RdIaJvOvxKYxsSlo861+TWG+JUkNG6lQYBAxVVJhM9nOe1zUB8fG/9neE/2+HSJE/Rkgzbr7lo5RNmi29n1xj7ts773tdQeJddd4PAe0fa7u3TC9/PPG1rPbfnus931kHMl4Jujk96fcjQrZc3n6xXc/dCpAflpXtvkeXUt+uZged4e/V3LiD22PysYRPdesY2833t9zK3d/PP39XT/5NF90szlsbIjNe0/y7B4QIrDEyCDkWrFmme9baShrQSlVl45kHJymGXGZZLWwsKz3MiHMhLAExCWiHRlrq7jOK85iwJKSNNxR8Rg0GRtTCwikcTC5QdBKRckZiA2hNoSZEShp/SghEoswT0xyLzUG1iOIC0o5omapAUhzxLTfYW4L0n5CmwnT+YLl4gzLfo+0X0ApoVFAI8J6XBFJcn1EdJ7681WrzkHMaJGR2rhVamNtCCnxh1IqWGuw12PGMWUcpxXp5hpTSljmBTGSiDSliEjS4CL8py+jferHAAKm//yvpU2aKMpr7YeN+BWtAu32BvjZPys+GgCAujiPrAXYNUP3jWU+JBSGiP2yCek21DrEdMW0pN7giriBmuSmxEDS0HoOmKeIaZFa7N2yYFpm1BDRKCCmGbuLS7z2+DHeeOMNvHZ+jjkCx5KBvCKxNOibOGAKEUm8kG5nk47jpPGuyozMFYUrKhoKGgprzUc5ImZpLlVCxRQfVqMIADgcVwQizCkgRcmnCTSDSI67lhV1nbAeR124zV8yBlvtldZEaJMV+3tr0hyHqIoPp/Ggk5xWMBrL55tGboGo9pSsnxK4r2OHvhc63lkTEp13JfJEvQ4Qup+A6S2Y31B7XgNggjCbWDYFhJDkXLDEtYh1/zQGZCvTNtW/P5ZrbfukNqOd15OYyt2tbbPsTysKTnNo1TbmrYAsepyJe0zK7DE5fyff1idt+VvPo6ft7MPjGqpQdNNc46pCp91fJVlf7DXads2bXiu1e4kIIUakecKyzNjtdtjvdlh2O8zLjDTNQAgq1t9gufykeVpdmPyBYcKZdq8yGIiWcxtkHNv4DJt2I7B1m267AKDQQNrgkkIEa9y5QYS2LN+6552aj2frN+r3yHWxHC+r4ZSP9Lhktw3H/jAzKpE07tIjtJW+MbZzvz7WiNw4iU3cZ7f1952exbH+pX+8a/v0bdu55pfuB7OZLe5pQ4TltAWNhfZ82bCJkWCI0J3uIVvYo/9ra2wSW+3DUP9bj0SobTbOhcWebVwZa4fdrrb3m+3Wd8eiQCPPA+ZX9lFi48tLgFd9Ed445ScjBza7Zlbkq50OAMQP8Wl0HMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxvmPCq9/iOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7j/P+IC005juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juN8SHGhKcdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxnA8pLjTlOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7zIcWFphzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcT6kuNCU4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4ziO4zjOhxQXmnIcx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx/mQ4kJTjuM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4H1JcaMpxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHOdDyv8D1R3pmFPB/eQAAAAASUVORK5CYII=\n", + "text/plain": [ + "