From e7a918597d3bdd7d9519935cb1b0557c74111722 Mon Sep 17 00:00:00 2001 From: Haozheng Date: Wed, 16 Nov 2022 15:56:19 +0800 Subject: [PATCH] upload a new folder --- .../maskrcnn/src/dataset/__init__.py | 0 application_example/maskrcnn/src/datasets.md | 7 + application_example/maskrcnn/src/eval.py | 3 +- .../maskrcnn/src/images/framework.png | Bin 0 -> 358884 bytes .../maskrcnn/src/images/infer.png | Bin 0 -> 605473 bytes .../maskrcnn/src/images/mobilenetv1.png | Bin 0 -> 96478 bytes .../maskrcnn/src/images/resnet_block.png | Bin 0 -> 19688 bytes .../maskrcnn/src/images/roi_align.png | Bin 0 -> 56799 bytes application_example/maskrcnn/src/infer.py | 6 +- .../maskrcnn/src/maskrcnn.ipynb | 6827 +++++++++++++++++ application_example/maskrcnn/src/maskrcnn.md | 31 + application_example/maskrcnn/src/train.py | 8 +- application_example/maskrcnn/src/train5k.py | 162 + .../maskrcnn/src/utils/__init__.py | 0 .../maskrcnn/src/utils/config.py | 21 +- .../maskrcnn/src/utils/network_define.py | 3 +- .../maskrcnn/src/utils/util.py | 2 +- 17 files changed, 7046 insertions(+), 24 deletions(-) delete mode 100644 application_example/maskrcnn/src/dataset/__init__.py create mode 100644 application_example/maskrcnn/src/datasets.md create mode 100644 application_example/maskrcnn/src/images/framework.png create mode 100644 application_example/maskrcnn/src/images/infer.png create mode 100644 application_example/maskrcnn/src/images/mobilenetv1.png create mode 100644 application_example/maskrcnn/src/images/resnet_block.png create mode 100644 application_example/maskrcnn/src/images/roi_align.png create mode 100644 application_example/maskrcnn/src/maskrcnn.ipynb create mode 100644 application_example/maskrcnn/src/maskrcnn.md create mode 100644 application_example/maskrcnn/src/train5k.py delete mode 100644 application_example/maskrcnn/src/utils/__init__.py diff --git a/application_example/maskrcnn/src/dataset/__init__.py b/application_example/maskrcnn/src/dataset/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/application_example/maskrcnn/src/datasets.md b/application_example/maskrcnn/src/datasets.md new file mode 100644 index 0000000..e80ec7f --- /dev/null +++ b/application_example/maskrcnn/src/datasets.md @@ -0,0 +1,7 @@ +. +└─cocodataset + ├─annotations + ├─instance_train2017.json + └─instance_val2017.json + ├─val2017 + └─train2017 \ No newline at end of file diff --git a/application_example/maskrcnn/src/eval.py b/application_example/maskrcnn/src/eval.py index e5a7f9a..1bd47f0 100644 --- a/application_example/maskrcnn/src/eval.py +++ b/application_example/maskrcnn/src/eval.py @@ -23,10 +23,10 @@ from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import set_seed +from utils.config import config from model.mask_rcnn_r50 import MaskRcnnResnet50 # when use maskrcnn mobilenetv1, just change the following backbone # from mask_rcnn_mobilenetv1 -from utils.config import config from utils.util import coco_eval, bbox2result_1image, results2json, get_seg_masks from dataset.dataset import data_to_mindrecord_byte_image, create_coco_dataset @@ -94,7 +94,6 @@ def maskrcnn_eval(dataset_path, ckpt_path, ann_file): segm_results = get_seg_masks(all_mask_fb_tmp_mask, all_bboxes_tmp_mask, all_labels_tmp_mask, img_metas[j], True, config.num_classes) outputs.append((bbox_results, segm_results)) - break eval_types = ["bbox", "segm"] result_files = results2json(dataset_coco, outputs, "./results.pkl") diff --git a/application_example/maskrcnn/src/images/framework.png b/application_example/maskrcnn/src/images/framework.png new file mode 100644 index 0000000000000000000000000000000000000000..c3cd10ba7b68be5a85d6fe16059c4df733ecb204 GIT binary patch literal 358884 zcmeFY1y@{4w=Rr3L4yQ$f=hzClR(hm7Bsj!G!O_99D)UD+}$05TX1&`?$Xdr!|na< zoqf)@=iD*AAMo`UtE;+J&8k(iYR&mf=?K*i^4J)!FyP?euoV?#)ZyR|!EkU0L})0m zmVM&86F4{w9BXN5RYhrOYE>6UOKUp|I5>rfq-0c8!X=_mN6@a!k55BfeKh+~yBYKf zL|;FJl84ZID-I85tOF(M1l%Y(KR^y zfZ2e7HfOksdEr-Odd~o8S12`;NE$ZWZiLetrZkFJC;pz+6B!4Lo=CLOq9S@)tQp)w z=XiA5^7fH<+jfVf-ucDrV-hMy{SZO8&0#hoetbAn+G(r&8ah0RZTOG|0)Z)XG!U)b z&lpo0GsUuNwbAa(71W&SmTKQOj#M zCjd?@%EZ$Vw=di#0sN*9yl_%_mUYUX(2p_z@p#@`xeu?iZ{-ne`o(iW#&q$FN z_PT%e(=wMfw^=Ibm@pgB`$3)>IUOcDYCe=UZ2fT2Q2YKnQ~BzdMF#R0OraXRX*(iL zYz7z{IG%)_7@p|--_n0}3?^Ricp0`MilG4mCw``Er(cNPt39#-zEVr5(x>8!ppo}z zN#W%rPs%ncr_z+;B1b6Y3QmQQNUzGW(KX^$;Zxyl#3|4VCZG>T5-N`{CdH4(RVEfH zPz_0$f2?H}OwD+=u2RVaN;ps4P-P}$`1X<^JV9zn#X8?0MW6nqX53)7bv0?b2^o#fp_*M**3Oxy>3F`?f z^eXROyyH+*d@uNp;T=U%D{TX{a!O-DOgu;YS$tMX&WO&C%;@(ag9Pt!TuU9^Z4!$p zz(8(!etDu@sa?ZK+{rg`jd5)b`O1%HH6m*3I$~0tGMy>_HA%UjhBWVUbhm@w@H!^HP(KQ6Eh|#*|={^^~HN zs+GPhZJINAE8Xz9!OVv4h{T=X7U}lYEjo5>XoK7jxw?VxjD|DHyz+I@*9FO6wBqI^ zE8r_Qmr<6Tmm8LG+(X<9++5sR-HeV)k80gn-Oi8HZpd#uj@*wrrnP5q7Q`z9CIW3X z9jX_yCpPPH;%OGD`<>PmelpJ%Pk-)7wLGyl`0TfaWM*nsJCnb%8(flO{q0b9#`xEp zG1Ff^#(vLpFMO>kGvv4Duo~y7;se&3=!EEHRHxQ|Z!p)L*AZ(-Xxi49)BUAarZcDm ztOZ!-+4nYB*XcICZCGd$2K_RmV&aocWEbX z&`hP!Dq$bTNQYCU3Zu$uU1(i*9g(bhiwr1ld3T+>AC2Ipecl;hII zc-LY8j|8iUZ+C^nW%oh%IJH5Xv8v(Zv>YTljDH-73~3)Z*3r~qWYNv6?*4c4FJkF? zX&st0!iS6LP8Ygz{suKjbOD zWyID-u|(^IH%4>B0$%PAYP_r?KgQFi8jZY;wT&Je3>z?3zEm@ zQVJV8Z_H_`X}Yx-wmcpAvFy;%;e%RFXD7e$;UTj{*s7MIj?4qkv;PdtEiYUouz%|C zyk^*<-m=s(<4X>Dvwykge9d_Gd0#&}@mxkQjQLKR&fQbQh5^dS_n;JB27r&c? zHj@2ESEyU&?F^Q~*RH$6UXN`K8hdI4{1$Hl@)uGd+bbWLs z@{FUaBSNt(u4XKY1hCxCURbxy zWU{|vpR2f;|H8YebdZB>ShyN-TfH9vB!H0bn-j)gGiFZ~OmSp>G`>p#Fzr%ozeqz_O zm;EDB>zrS@G&?l`-cQ)5#+OFKop`<)&sxv+8wvZ(F!;_c8(Z!0BTToDtlZ%Iwhld^3gWc8J z!R?b5yMrs;--G-aN5;a{%*EQt&Dzm{`mb?6nL4_=iPF;kHPOGHzn{~>%lf}&a&Y}; zS+E6i{&k0wn}dt<-?3q&B7e0Csaktk*y+kx+rxMUn?vj^?;DZ-^#31s{%gknMyc~( zl-yk00{@-#zuo%3Nk6(;xJWzN!{&4o`>*}_hxotW{D)A4^RK1&IQ zj6L_H(>9gyqEaCO`h%gQhbYid8;{DyL7U21c+97Pp_j;#KiLvqh6F_-($X=L?@tlzUM`5Bxjq98%&YG3C5kj|#CV&tV_5|9P89^L)cXm{AUOPGkV-6UXdj>G>;_a zTp!3&+W1YzXID+2A~K~_Y4EVBm~kME`ZZwZ&zm*&4oPlM?xgj&)7ET9zkDTnaq9dz zANCqNl_0hD|ejFSDYViJYS6fsQ++3I{^2tP7 zykd1m@*qVp)Necy^WFaxAd7^1+#!R3*qQA9kf`)xc^blZTFZJ(AdJxVDoCEnfA)jG z77`g1Rg-Ka(b899qtB?6UYnJj<@@8}Z{J!JWqSNrbDa>~>QM39Ch(Y5lmB|&bs6m_ zFct9P_4B|VA&@GHHhcULa;Z|;7@ZDmkjt~E`AlzqozA|q5#F)C2CSA^x4p5NAOHzF zBQ=r+75YOqI?bQGel8`4^H;1!>F`l7q;E8Ou%b*+Rr>-uozr8Fgkk3qKIq(UUpQ#- z*vROvHYF_|5*!@t?`q4cRgQLhPsZ<19~1-+dE6IwM5S<>bY0k&c@|`TB>TfElX+?` zvCbujmc2GUF+s@^`zRU1m0bFRO~|}mLh<|llaA+|on+5kaoenxjc~f^Xf&lIU8{~k zfY)^ek&0aW!yEfjyX4UUfe#CM6~zU-q;1z)RZ|;sCjQrJz^5o7T z6rQWj{_fiRt4@eJpmHbW(*Bg`%_e1d*q+SMT}S>aYCTAT=E|s=gwI;X8H;S@Pi5E> z6?J%W+(ehHJ4`tutv`F0L@X6sm9GcKX0N*f{XbUa4+x>(0Aw;iXaLpxS1H#^Ev`C@8-R4d3^o( zTs-qNQrs5T7~kL(nl*aon?~CZCf0oK@Y;BR*V8Bpwd=KU&kY%F{$l6Gni>b~B_H zn5Gzd=r&I-blx@4Bm#5X3XF~3r*JfAd=RuqSNdzSM`x~&|5dz=I6>_Cd`oW^01G1; zFWc+X=g(#<=8JbKlB(?*BjsatJEj_4&`COcG(7ia1igIR9~-21uMEgt#3?2WiXe{S2E%0k`cju3)>kVJ`y4d?SHV!7szo_K=Zn0q(^X~G0?y9$p% zmxplZ(vt#cf6l%?k%C?vk6zM{ReLO%P0tQzt*empte3L~Z*d9j@$~{Y)4$VR)TlwP zfpjLy^VHaht%pZm?>V< zL>R8W3#8KuI`p@v`4HSVq$XYVn%otqcdiogfC_*5aBDwKmN>moXEItaGa3}d)N~(yE z0;r8oGkj-usTw7*7tPX7|Dc#Sy3g)sJB|L+L8x_$lz1^+bs4SzXw~)fhixT#(X(0Q zZQBvp9K&nbx@fCde}zUvf(hJqgbwzm_y^?$*~^>k47lF~A9q<1>@e(t1TsI!NDhuiG{~h@RIaYe#p^He+kHEXUqt`R_^(3QcX?$#24t2Q)^a_l5Y? z`N_WLs>R2-6E3`iBqbSkpt62jQg;ro#gf5S^xWYI%ixEQIX&#M&Dj=9LyEKj5gEjN z93s1ZGr}{-C|)Wun%#2!Yx7~MfX7QG{(zANfcEN@cIVYg$b3`h%MTrSg@G__+D~xf z`meNGiRm^QrD_DOf_pcAY}n|6XyGJirue!F6)Up6J#N!6sN=N_f}R@%11CNrX7#j;J(*G2HqKR^(nO%MUJ5zv+C zb5z2|%`KS{A)DjA9)wD{$nW`9OpLPfT)QxEkis*A!nqGm*v%id95k_wr9ZMU)dNXN z^y!p;g_FuRbyuJ1`($HD3r?E%JG%z0Sjl^{n*0KFYu4Wk3ssUg`dW@2s=K9P#tbdA z5Y=ax;$94kxr}N6gCIrrgf7>Koq0e{0g7d42*>*djB5g`a;u;86snNoQMxb%NYIp8emG zE-H8@bc7ov(q`(3+Pt;7N&2N7DxUOBhdYHHO|_o*RQPjCj{re$2zS?FsIqcd(_##> zX^WCTd`ctLE0$%>6rbp)F;NxqnQ^Jj1;b<4mW)i-alw@ny{@{-Jsb-8iff1V%Ylny z&-NV(8s^Ke#5Tnjk8pLMi98Oew_R6KX_&HBu?=~vD+-1K5OZ-_7JT2# z?$GKHSp;!@bVxbVL4N1NuHLWH_Ek#!9Ull1Z8CXJDn~Co%zIx5OM6%>HBt{_f@hn{lPL1c`)gxl?&3Y6=_>14C zvXDLQI}(~#i?;nW-t`z$gOkz_^*W%$RpKx{2{Ym87NkQi0GyReEU3{$<*&kx2e z^8pW|#*H1Ibzh+m4TgiO)t`bhy|yD7UG_$*pWV_BV1lf2a7S414~UxiB7tfDgyYyb zu2rrRQ)Bdo`SV8&s(oL@JK1I31`W&i9+c7@3WT{-%19qM8kZG7iMUTc7!*zvtBtGF zQZ^XX24gAO8#L1=0%$%@(t-P}TVlmMRF}PHCRdDMN~1ax%`J_-vca=!UzLnxgy-NF z?RZ3t1u15@#SRjqwp zB@2}_5n+x>5uPAriF$_BW?(3ik?NOj*k7&DTX4U#R4U zli74ljbV1%X&~Z@)EJF4*vSu?!#Vn6quKEyBqkEv1(Q|QvZwRcRK2sID_>YK-!zl- z*SEs1>?7~;uACPmT0SVzH3~s898r%DAbqycDUwG+W0qWS(C`^OGCVRA5c>&l@UV2| z9~Kbh17HHLJZAf$%9||EOxDy*Jk zZ_x8BV)0~|CnS@j*Ft45Fdt~hh6n^tVstqO8q`~2{JMf^jMLnhb9TJRP$~@M zSz{%{nDKC70?(jSP%ZwEz+UTU<+^Rlm2F!#^S@{36V;9r`omICT`J$UlK8xgWykY@ zTIcnv6rjQNwGKgKH}m{}U%KUUZlWb_cGU3QY$}Rg=#y6|>lyzHW=0pIxDE&T^%X!S zAm|UFG2I+;aB3YLdlgj;^2wq@)LMkN-Y?YJ6!;Z!ez7b)YQ{m8q;AY)P*;@aPV1eH zzC$d(pQj0Z?$aImWtJ-ej|;4~OBQ<4`^8wajSKNog|Cmlwl!5Oz-QE`ZUcaCI67U$ zJLoP3@w{%P)&Bhtr`7jJJBce`&l>!}8t^N^=vakt1wzDaJ9Ny5ib zD+5QdByY%+@IQ|35hB}7%_An_FoqGml`N%7FtZXOX!5?^Ut0TcQ*^ro{^^MoR94wK zGA{o7=oFWEs@G+vJ--4eDayjAxSp>x9Q8`q{R;#M@1TRZ|2W@ZAc%T)=lQ_L*L2Se z*Q*v}zR|x;$NbsM{OA?Qxvb8Nts*C{-P}@`pV;ew>8f8Xp>x{f*{s?7BR7X{^4VWHC;6LTEl)Wi$* zoxI{tOQ9%q$?rVvel4TC1@j=}JX^BKNd$eS78Tyd#$NXK6cKi9I<|5_YJ?9m_N)ll z7v8Wg%JMnlI}wGZulrs9V$AChdQJgsVH%ShU0O{OPQqldxS4qHA31-qf>uoV41r-; z`}O*GJCX9tS{)}sq$rwf_^6`Vor&svSZ+WgVsecitImSCB zsu^XBYmIb{DpVD8dihoP_)qyvK_woNGWRLwR&4#LupqgL2uNN|Z&`=HZ9mQ1el7#t z+DT{Ig}ywV?OZa;h<~CIcsK3OzeB+BN12#v73WEfo-og9vq1KU zY;Z%D$$WeJ(GtPtZg{{m9BsghbL@o@kxe3T!9=Ky7YXz+qn7q9xQ1E%X`uPEOJ)9B zu$r&wT(kY+>WXq=ENuko5omvcthNBuLTU{37x;a%x9SgC%h`BTYMyt*nY=<5c-T#} zU#hkELgJK?)tCmOcA^Xn-gFn6)4r$sO&bF~1|gZ^EO+N@e740iDf!LfI^ zQ1V2HzAOV?hlxsCRk{#6V-3t!D$-kagXYvbAC+4?A;4=_(x58;Q`^EWpN^}fs`~43 z;n<1uo0fS;)_IJvOs5`nJ~6R%;=innrdxFI-M{8tBi&^7=97HWV|SLHOTm>5?iJ-B zQHeH@F}g6R`6#_gs5dq}h-W9!94ISz?6!A8KcVemY#V?F2!GO=u6pZ74StNo5g&9+ zY^M7x5mwI41LoQ7wZp8;HVJg`HS~qOY*F7lO;#K&Q9Z;g znYD^3fQH7mXlG(0QX&9p(yJsZ?z|{+0i@=)+(!rLx2eiXl9Qx&E+^m9Z0ea6tJszt^^+U%D%Q}(L(+zi8xgA97MQnT}4J~@V)ui5+ zu&0Lrb^Yk}nRMl;CH7j;yxd9VpF~I4Ql2J_Vv&p@qX2KFa}7PBx+VJt81=rRR}V0) zRPn8xdhj}ZHH&#Fei`}UX1~X3^1NmOPxZK6;{!Cr|9Sa5G{~@wg|2FdybcjjGV+usEMxtTjnhDcxV&yx=_z(Jn53(GD8Xy5lMn( z(*ob|=|nA=4n19HE@_pQ^GNomg(P(7nKCAsiaFwl-pkZIU(4 zOS46h96YNo9J8R671fD=PLOD4tZfq14ZqS95Bi4Vcaa(^IE8cYKrC-UOxt}?&;N8< zX7^yGA~nE0m)CDtFpU+WANnfOVTOo}4fi#he!*(KN7nj}lBgsWY;#EX-4x`rMDJej zt~xc^WQ56>n)J)SsW9{BA9k}vyhMt+e1_&DOf+qG>h2c%jDZM56zKPloxc7N6Sl4y+EPhL6B1 zFeI)dxbGN(lv(?|Vdnh%t+ul`a(lZxH%FxRgWc=kjnCRrxHQq~O_8YD4Y@>q^+&<- zaSOqZ@;wu<0OSMelw%bT?_k;U3F;zz`CTQhUq#(^!&K@((aC0xi02WF(TsEy4{yvo zamdZ4(P51w2=2&vS_umY%viXr#RO4NogmpaKOs=~nmd#pk3N?!gDVUZ_y={87u$qW zD!-i%$0WhWv-jVNf2u6!BCC;6#x52r6EPA=y(mUQ6x(^P}V3O)n9vvNx zEk{Yaf)|z|Ks)WG0=-U&kwEEQbG>L>+s2ndV>&vjv-ZIr8A+l1>+Y-fXP?U>#kI=i z7j;*TK|lS0W-PW;u?bT}u3A;0U9BHSs@&Tele~dZO)nKDMN7?_YzO_iVbOr6J}BB> z5j5&)XpNb;gy<7U%KyXUszxkuR3ihi#bGx75ch#q>IStqK33gKT!_zdC(%6|fV6{+ z{7B2k6FQp}lrb6j`&F(ILYmSWlG~4Qw<%~y%(To)al0~?Xp&zDWq>fDIlt*y5C`Sl z%_A@SL@*0!5-L6Zi3%r=tBk)?AKqzo({zak`Mna+Jzenr^t;9f@9~DG_r~Caj++9` zweh^u$2D_|;$z>ohm>FF`JnCi#d#!9xuaE1Dj8MI9B^onkB85d%8S43=UaZ;3xp3fz#tdu~sVh^O5ni(4wTo<5l zNifi0i2{#z7HsrD-01VG4$FRdll$PU=1xSuh4aKL$Yq6aiqo7ob!)GDxm@ywiTnC9 z-M$s)ZwzIm-Z24m*4Q7FhjPt+?X>2}{{&i6afvWpUqA2zYc)r{-Zo zh6fd}g?`oyu=uULPjYpzor;9$Mt+)?0^rQe7MJf-k)h(PBn5c;c95d1sx08Z{DC!l zI4ia|-ftWDe_+00FP_f|NFz7J+J3`+BeUu&BOWx20(0_O)8A{%f@bk%>5kQ8;uNzn zBC8rm?%PvjDd}GZj$OOZ=tv;NM-!S~viY}C!QI%V7NBXCeH6YP<2`L$alrKSI>-rIE)u&f>1{Sa=%i%&PZZIzT z!6hPvv8_wR#ttqbGWM)dEG@jV7a_d)mDeo-S_e{g4>pY#HEj;QfmdKSAZPRR7D4B! zA1_r5N$9St%fBSk18g1Vtmx2a;}N$p8pJz$`*}LBkBNI-BU8CemXG4FGfJd%58s}T z`a}sGgQV1{6ONJm**f>TH1c`;Gwqgu*ki z33H9QcNOHcUnm$$==Tq~NMBEr$Oq6L0-~Ti%y5*g&xeP>1F<4ScyYE+=Rpdq36X28 z=Uydbo;8)qTOWb_EZ<5)*I#e91aI?RZ&E?v1gDlfZN57IBVJ4$63_RoNm zC}7K_+5x>ouz5DZ6sz%haAeR;2?P6H!p-mhV#GJd47u%GzLZ3j;-X1YlDzZ%iNt`7 z6Ho<<1U|Y!`D402NCc9%_+N$KY>s=2>U!6nC=t@mmKLaWD931d|6rTt;~Y^?F4(5Y zQ^8bv|EZ@4eoeM(#;({Q3rh^IgE7A=Lf41`So5w#PPiQ@xKlcrst!jMiS!;TAiRrS zS~RhX9L10H=<9N(fci6G!~Msy*`h@v!=R@DLIG8DIEUv{L^)HQyU#i-+$K2dT|P|I zTVYN}0D_tD6&Pm4TqyG~Od zDF3w&Mwn7oR2(|u8>*u!R=&55Fc`lvAWwgx{gr;e3(sefwXM>wQ)``mj2fIUH8?x{ z10-brJL%`bDe?$-iwC-{cRWc+N+1aNZ47Mk9`;QjQbfZo_38gAeBUsmFmD3=KC z{nOm_U7EU$t!}M_0fw%=ACKRR7C?BTn}Log)RSjXE6=_cl8qME z%<5pG-(DlBw%@`-Bj_SVpSF>I>c-xAeETiShG?B4Toff_O5(sgLuu8`e~isY7%m=c z7~HgGk58?Dq8K0stQDf~lBt%EU)aU#O|7CpKuW!}ND#Q(|1#FKmLo$Q->9X{k!``J zB@?&&oUtqMXn`{nw5c-Y%QflM_#JweW! zG*m=i29KcYSDOU+!(0&utQy_>kYT6XXTSKX(?2H_KDjUM#`g?bBHDb@IXO~^JyrER zZokZcGVr^uic~c!3fGF+oS`~jR*HgOaUxS&)n;H+bwg!x$dk6ZKLyQ~!^ZFyy)6da z{m8|XQQGGY7bA|ZUtnkJ7#tFeEDI>)v+B^Xo{lE;!OOi!m_gd^-b}uEXnVvg%?xZ-%s1L z*X0=B*N@nKMW??R?8~W(a5D}TP>BW<<*|vyKuDDYVEYdpA~h!XnjsP?%LAFcP;rTJ z@*8TS^~>Z#p?bS|hfc}NJZW#slQ3J{&0U7;zwFAzZBZwOt-_XiY2lJ^S0oUS2~njnH8b}@Hed6s7Ny)&Db36uky39{Z~da3ow=}e@P-}bog zNjGguey+l!pZ~zR(TjU}LFy+93r=%;Fi=hB(^-EQ{QYZm`CjH%sY0Z}b{Lv@Xto4_ zI9$V0q{6Gd&QL;eO2yCvBjQ|RTTL1$I!`hZ-8P1to73q;ScKfIxR4_`Z#^)=GK zK;t5NlaX03otb%`@706A^rIqSQw3w6ff6Ntm3HW|Uu0vCk0CnWlt=2@bY^Kz0(O=c|EuOYek(hqmyGQJf?m{RWg}<2uz6Zhn!NeKU9Yd$u$U82!?9hHF z-**_k++bl7_9m{;WkyXfiTMHYYW4lyP~z$N^3dm`8l_m}e8>-aDWtg5TwI^I zU)nUs&W#J*r!DTZ3-O0W7h6on6B3+BqoG#D;lC}Mwqo(%HQQp;TckQf>uZ4oyAu>UG}I*80r~op9KU$sB#+6Ai_KOa%Br->}%9Dm%dO6k!9gTrj1UmZ@}l z<8v8lZ1-2B0s;#I-yY4;piNB_2CiJg!vb%j#Sdct$X-|UAge6@p0mz<%XF4_B)Y`) zq?YyhF`ow7pw9VC>K@~YIRfjWUA1A4Mu#F$!ECfF8eDOfQJPnHXX~fe!&NEa9i0o# z7GK!C0gTGt93dS&f|@SrfkXTXJ;Mh2>-y?z16+%db{{VX2x#vz(r??wni5~*yXPX3 zr_3a5<{=U$S=yGa^N?{rhn z1%GpAuijp@+nyVNfu?})ol{0S8qh-6A0$qd8-eX}pA=8_(Y65>UTG*hSn+jI;KBP= zoGHhq<3^KDBPgglpQN@B;_w(+jB-=3Egtf;$eEYlK3{H*1s+(XC7~6&uSfH*lbk76 z-X4i>s8s1YcD$_zm2qp`t@}E*UG!i=MhKnct6@B+J9y~)hv#*q@N?7Rk3$rVeh<*{ zwqJ!TS3~$UR{p7#RzerBC2ylt63S6>^Hxsm2)!?%{qtzv8a0^dR8OAEz7V2&tK zYNLlRANNl5)b$I>++(^e;Ohc2@_%R9h5Kg z<53F=>n6T$$~|^epcwNt7;oEvN+$SbO#y!aKXo-(%V$fAKB=61pAj?RX2cra;Ky1( zRMU=(e)IN@V5jt)Mz+dMG}y=+Lf#!HI0l{bT0O)2db^pN_XV z$dq=)H1Je{@70qO+mWkSwbl~G%fkE*zRziGE2~y3gr1faWNrapW}K_7ew%!coE_D{ zbBsa#S((b_%3J#P3N08r!B=m=Qy@#E#pT}A;@X;QUF0PIsFbtXucKno_3^3Dd@QUs z#k04>Vjv|DQK$Yxw^mRz&u#&XN2M*(P!WJ%+;H;gh>d7{mM=$}V_zp9IadC|a7$+p7* zi&iICmc|5G5Wus7ij1rdmiX0A>2r|dq(b#DB!7}>7UR7RYHG7PkO}bgRtIGMbL4ry zc3%vkKpryrk<$F?V&M5+fLL@Z!je782WeJDhKl0moA%OQDs(;8>KxZ~r$hqCOZ@EXR&hmI4kJS5h?Pw?3I?2HVs&HAMm;_dOfXH8q$k z=16*PKg}NP`$>J5_z0zLnm>2C5|K5ubDZnz!65Zq z!d}q~u7BUVH~oJuJ5D<<6_S}%ng^cSlB1j`4?EH+`~0aIV# z^=oBxAB*i*xg4agXSJ$6M8_{Njv&8LD{07L4Dui=Q4ukd?B$*({`70@ua!?0d_(iF-ym-9?!0ycjW>qvgLtFS3_O-BJYcSx5Z?9^3r@_6L-26J z)08|FHhlmr-PZj4je>&WmKQu8 zKj=c;goa!4ll$MKBV~vCM(yKKGdhs zSNGf~chrfp1Ye>w0i`yHH_Q1VS#17eg@rj}f2kJ^S7`@jIeeGAN^ z25g(myon}&W+LTN{gXy)(j+J00)_xC%|_4zNRL+LY&+%nj4Mv1^o2_;Wx=w^7WqsG zm23eat-cl;(rv=K;CB^~rJz>h*BzWvoQZZ8&(7Nm%c60Q>)iA;v31ochwdTc+U)ZX z3@+vzMk%8_v*Zx~>NmxNkdZs4;jx8HT!G{Ff`JCc@Te9@7V{~gIQijQ#B<+XIhn&3KmRfNSvUb zw4njT*N1tK@vLf8bm{$8R#KuFWkQosrN+0_O9lyikB+Ke+_0OXeEkIzoiV0aw8Mti zGJs+XG)?1D94M0z1;~lp5%Hs9{6=EwN6OeyoHVMegvk9wmuSqU0G??OO=kNmYr(aM z<^c6aCYs3YtVYmmm0?@*#HSIM!-P$EH%=OSWErqVcoFUBm*;<12Rto1PLGL%{kesr z7|i`ork@8BQfWi&8ejp(?)o=&Iq*=sicKKjpj1Dpl~Fffu-LPTZcDqCHS=BFi=q_& zXors@#nQFMsjJ8uVzbRTL_i*W#d|uZQ=@bdhN~aNo@SGF440?*MHU{&xyHxN$kUGr&!d~1ldOF?cdJ$1*LFvyf zdo%hnA3Stmo5Y7C^uEy0CEe2L%%HiNL~rNggJ7bfeWrwv5(m%iL5pc=zZ?(41MZXv zo`bo-%cH9{L**BtNb>jrp`xKaE*sx7fEP6T>@@p_64UYbs*&PCUkp%#yBK_jK8g=| z?=+hBFLQmeux?8EuG#H$5?h$2bj2qyYwFvIup9Bh#opx*n0mlfQ>~n!7l1(Ma+e|Q z7-8r$JmJA`0XP$r-~65K*jP6qmj2nLgVXSs-)_-_Da&iywJ;DCjxX)F&OASH)$|K4@Ky*dghz2aB(F!KEoyX;eJ--uR!d4sG5X zgvxGn=DG6?5?PU~tDD(pnHqkG;D~6CaK;a(-^efjmCuVrxckJ}63~O92C`I`$E(>C zH{_ICHb{Cz6iN+Z7zUS(rT{?6{9P&C5<%DFC!@Sz-pD4PeHdQxvUmna&G%vp$gMLx zzoP&Q@*8UJ|R~mc)fY9M$ zW&cjv5WH}}`nUdeWo3_3^zhCxk*g&(dk_z~#u@ZAEW2uj()ZQvFcRs|?kJq<9^5J4 zPqbwpoqDA}n&|K7{F5hskbwn~&plY$ec-m^KN(|V=tx;Qm*H!!8!F7krxshXHw?k&7DKXQ z1#w9|L_HtGlQ7x)!Xn%y$>?yvKx$J66@R~EmmXpi!LzB}LTLjj z;7}zK#q+NesqgzxNDaD(B3gP(R)5e(#O@l|b(M^RHbPI+W1VuvnZynOi7V0FeY>xO zPyDN_;?!p-9jS*ULpN}ziWWrA-KiG{c4jZA6BUcNC(OF-e?pD&be68!)14a!)ie-& zOQY&Tq0+W7753b_S+6Z5_)^Sq>6QjHt9m@xcV$XXf&4m~8{|uO7*kzn<_r|=@UM_a zh}aY)=UtV^xoeYl%pr7*`$ov?@9FlcmRRy33G~0nSj6OSR(|FGGLCEV2bq0Q{Fqjp z%Z%`SxJoCX_!Fsj;ux~VC3#|q2;$XUCaXwZ*BVu}ZtIR?+kC)H9#unLtXON+*`2L1 zL0D+0%6cGJ8l>8s?1`P>JaPi#mEvwLZIM6c1xwYu1d@HmEDqr#ykDLS< zTq*|VWLIb%m8Un1JJuM+j@ka=jA0i9a4iSlhdte0_zvIgIaKi&B%R$6{vV#su`%v$ z>%+;!X45zmn@!rJjcwa@8r!yQyA2!Lw#~+NCVJ*R=RVH|m{+s^d+)W@@47ZrMWtGs zm2*RceLJkiGpCgmc1KS!N$cb)A3mnf4F6qd6FXz*PGeN9$fioYp8wG)u0+v`Bzz;y z`=!hEDIL03*n;O$uk%Q<9#2~lVOY&iH6S@AiYR2-HPOZFn-54I)NqFdAZk0^BsdFF ziZO6}86H;B155Evg~%}RfZB;1WHG~q)iA@5UVHM>l96kQkLp6??FF|#XKiy8i=$XC*gmXEBYCV zK$AMxpJcdAeO9X%gDDZUqU-rLfVrE7@qMv67g)GeH-Hq1dt_0SS{G1G6XGqhW~*l! zDn5}>hBeCR+!+7j)SMeL?9DLdR3Z@#@`?GdRa>8vLmR9%`AmMbR&}rU)cg4?FA#Ng zK<(aF7EC35s(X4|pL<#FeC)VvzykA2AJ#0PosI>3p~Q__75^PDL9AR!v^`TV#Q_OW zIPNsZU^A+M8R@k!97oPHpzD2b6jHgq=4k$Ml}fW56Qc)cO&Ub01zyQbOGs63kH$*t zS~;X_8}N-c%Wpia8Y$gOJu6dS)^5FUrcdRfD{fFC=%XL9g~n zJ&5e$8W4%_bbf5YzWTtihmNnyiiq^JsUq^yz7PNywwajFE}2PEp8^O`cG0z;Pr_^(NNxefyzj>fPMM2dAPC~m{1qZAyd-MF~ z2(pcke4TUwOY|c)j8^O!E-uT8&YVVkWKk5=g{L9&Lh7M$r;HI;Jl{~D9|gBSW9;+L zHh&M!6f@b@O#fWNfE4g_MsfM;?+4d2=0LvteXp}x*7s-y@@zBwLQ^=d4^VWXFy&g~ z(C#xdj8i97V)#mch`Ux@^9U<}cu?A>IB1ddPjs9vqHQPV`6E!b{FPvt%<@O;xXz>R zDHNNTZ<4g0gLemLrom?*;!{4c@7`c^RHYNk`adAj;n}T20iPL3$5!)y{wYUP|9gU* zhTL@*A}SA+#p6*gpu-r@X|n;v++2`;~KDQgeae(g9?OsX5sA!^YDSQhrb z{8^{U%kvYem&oS%7@hDKBcwSZP=Y-Ef{`Ll2C>qV@Z}O-CEF1MPq0DAPK*^mg9{E>{ml{kN`i`SUDExE^#Kj_Tl6s?1UpY*q2* z*@ll=G^z0H$X*m+Z38nNXwKOvS}nKY1xGQ8n)30oS_B4*q>LJX)JRb7`9%QmL9oBZ zpjCgnoQ;%HaWNgZ-;&;qvnbTP%2jRlQY3bB`TDRtg$<~{&DX-*I;ajW1Z?pq92u}> zli#IY$k<71+FvjWqzgt!uw~M&c4>p^`TWyAJQ~U6D;ENGHW{1NF@H9Y=z!alPyZw@ zw6``rFKs^SIK`hgZTZx{&AiUMI2L?}?Of~qI};zrgeG>s^YPs7$%VtLcF;6A7Ac}! z3KhBK?KsqMtV~i(zuc@W?UzZkS9|^y)ga{S3GbMR{}^tMr?S_McD>Z9J?PC!*#`uX zszcDKbpzp{IimrHyNDGddYskpaN;#oa@)Qt^_q@|aK69auJ;O5y9PiyL)L=ZVxssI zFbWvml-R=Ze)$qNjJcs`b`uuZ12QLoBAiL1<yDziMN3c}?te{G^uS1Fk8onj zp2rb3H+%`l+Co6Wy!J%n%rU<{6)HcLX7o1^t9?r_ATaR&SK&JqqJ(Rm@I8BN85OU% zgZT(X^uwx+c|uyOvDxK7plbPo4Sa!~jcuK!ca~8p0-bT$bG6`IOQUIjj!vY&7LB53 zRg?NSn}L({K%!O{>;WqbVShfBgil@cD#RTB=9o#v{1G`dnGs3&ewrQj2;p8U@Y&*m z$Re?dK6`YH^7GdBLp}mWJc$2+fB@uwZX@r{hil*(>{C@Wxc+ioI2;OpuM*sxI{j~W zn+5Bi*ru85>$ED*n;US_u$gpj;@gpl#$H5NqO_0E_bCJ5Ar?NH+4>tjsLU(W)R`h=S znAHkB?A4w~$sFZL#p4MF^pW*_u+d*qzzjTKC&q zVHk_sc$<~g1{5t8_Sna`CkltG$Zo*B=(#Ep?T4{EY1p<^UEIFJNq`hM2XJ5N`kndW z-!u;tNrZ#l?~mEkPUC-IU8fv}%orYSZtH)BjEq{13}=tmvA*k@U>wADj@9&b5ZvOq zoxAt^PfT0?C%JsN^h&Jl3-1j`#(!IMxQc#=h;nZ8Cr96RRW=W<)5xRB&mCbtQN}68 zuZl~9B6kv(JnLEJnIqSaAWZ^9f%rdVO&T{T~ zJ&m{>T|)>;>Jk>p8JqbvfF%I(ZZ}F`v;|SCzQoij*9Leju_CB>F*CcK<8B%>LT@0r6p|ITS7P_pR3#WFEm(%Pk6E!DED1Hs`L5?-FIUBL z$Vcah><2E?=R2P#Y(v^E#FjwCQmL!|fESvkgbm|<-tV`$m*6?4&r>s)SPU)QUiz2T ztf|MqCDyfdU3V^&G3=(-;7$4#r)}~lc|JwTn~;hy7=pgC3R)9vmjZbv|4xWTJHG}T zQ)7s&Svq%MrmID^#g!05zm!2@b3gnI(2zjUZCcljBL3u1PNqJ`PVf%B6&Q!Vnw9z0jCUMqT+5v zf-+_G(KU1ESjG#n1Md?mpe+Q3cZcwu7Btr`Gyy8tzAxttTG>-7S44N(+Zz{2;|odi z7TtWGIY8ctNzx`Vi-7~)Q;vS?|s+~#?>3o zrHn(gPjoPB)S!%XWePC-&>sXc#1z-pFF-{63uzgxV2kb^q#5cjX^bxC>)DeK+<3Wp zn`XEAHC)=apcNc+TR)~zAH=%o)71&(o|`5w!+UxJM0ZkLY^OAtR^rbGhgWq zhS92F5t*;EA^1jh4&!-du;P`O2Q~X48;$Q>1+~B*L}SLhE8Y(n@eBAA+?)4ytM)Ua zFgLcveeIuk+0#zw8n}PIrKYcKKkz9ZR_`;V692*;v##{rs9u*pcvigS*XR2$J`Bbg zf2lvC|GxEslu&g*N&LRps>$_;>6ow;DQ*>wB7nA~v?qJRn6xH1_(enFA$dNKy)yb)QqS8&ORhR(wY!>rb=+@$^ zyZdCmHQ(amJ>8mPHpOwmubt#yN=12^HgoxvCi~|!SdDqeI9u>N{+89qoT+0Wj^RhA z$r5z5w4Hf*{@k5KhJIJJZ-x9~sSv?#^@JnwN??tAzU5$M2H z1Xv9`!3lYROswF$iu+*XVRn7WOojblA}HR`$}Ri62{UCnqF+-5HaFKwghPDZK(uU8 z#(yoGORZa?Zm?^|402fgG;&u>XvnKqGjIZxs&X<|zDpBU)FT}3t&f&57j&A%QfgFH z2HyHilvws5s|&wMGr4=%IH*UWuMiObTs%5VFzFY3L%}*>vj6bdVfE-nRsZk z@=kWaG0Sl;*>G92*r*Dx@C zRk0UmPI>N;qoYZk`1`P$?S-RNwOGB&ifGeu)z%)?=yxt+c#md-KbK2Nio4|6fWk^I zk-BY@IQ%Ydx4Q&!?|o@W(QdJ{-)#jU5J_$NIa4M80U9r&`NB-`*p82mJPyN+>h}O& zHbk>ed8C%p`>aO?(S?%h=oFzI;@_noGh6YonU`&zWYdjsB(0mBPjY5#xOhdcc*Hpr z0cwAl$%Sq{!-m&AIK$RaCE(7wG)xOAkZ8Ibbs`P02W2ecNrPFGB7l0^Pe6elBI8Z# zU90kWl&DwBdJ&0t#&}B-P zw!9x3keJ)2!KZCkXNy%jfEes{NGjsSsyhCkXvN#n`^}A1_U`4n{E6e=9*#9Vpm?@< z!|@|leBK5D??U@4oI(yF6R1J+%ded^^yj>CGo4I*3?}!Eu=@QoO~=SHdM;`utK`#% zlMDL}lB!x=QxtGhPFM0EoROZEdW-3t*@4&ya+9>a8uZ34+%<4rFnY81o6_0Ot2Tfl z*AXSbX$;zeN71Vml(zVmbWp$|&*>%;$GJliy~10UiJpWp-mT?s zY(KW&Q1fp$O5HOwMsvwmufU1t4oRdUkjiYG>zl1xN9J`f+=<=+B7oy%>%%2x!}(Dz z{wRvHyayUh@P|r4C)|o03PSYwJ$6T8kX{3qrHui`{kCx)TbShne%~v!C$TCqwg{bDv8m@_)QAu6YFZF;#Okt5q01X-``POVxCc9`aFN;m4p>6gD?o+L%)svAva7+LfE%o zmjj+2H)4I|{W`)^Vtx6Up_bt=M=+6HWZGZ`eUSLiQY4FlaXDNaY9cfugp4ht9efEf zp^m8UvsXO+8_6|+?}RBd?_cADF3>CI?8jmFPKjR8oGKy-;|g3^uuCO)TgPj)2m%5|)KC>?eN0Z3j&YWHJSlJk`*=_E%kh)}3|vySqKu&ei}bJ zDT|x^Vk|mC7$&=TUoKU;x)V1o9GSxE+69+vmeYE(^=ku7lWrV@@*%AGq@3{eiUmj$s&P7|#DDsLx-O^-U^__( z;uC`qI`H)9(k;!&wMzQVIg+964_TFQnmR)~)Jq}%h<{vxrM_l~?oA7mzy{n0U_;v# zkPxT)rfpZow+f z4EUUZtgO|C+{YgvsFsQR6gHtJZ@gX30XM@J)AoAJYI$q2?mrm{N!Qmwc>gj%6_mbJ zsbOm@66ufrX4vU$@tIcNUF6!Av@ z{ss;s==(MQP35{?MrU>c+Q=PqBK_(TbBnu+ukgXq1{kk=b2%w5Ef7pUl3Ma;IX(q} z>nZ=Mpv}k5#}#V6=aF*{O@gmr)!Y(;SjSvV;CnUC**)B4m(I}2h6^~=(#FHurTZ`S zMw;jG>Ur6v&u)u6(0q>EzH?KfOlfETjx>YRvH3?%_$2 z^}sr?#trw&- zf-uEyAFUOy=o<>#gNEfc9IT=Nuu?=cS~HtkO%}Gvo7Gj~qkbOMBF{OjnYJ!<(EUrM z%A0J)?YzyHc`|b6iBDMP%w9reoky{(Rl5Kc&{%XH#GrxM(2-)?Ol(9}Xq~6g0PFk! zhS$`cw~zFME($LbolwkIhQ+bEAf#V$P*@O5k0&J1X1?HDS)ahrYk`0~D#%2?a=eEOO9 z@z(l%F#O%xr`5;yKNEy;S?H3IvLWAXQ%zO0NBD314KNmJW1L59{kdnZR6|oIVIrT) zZ?KJtsD3kii!_aQ>qz=U?Jf)9*YHJJ3xVN@y-3rzlloq*qj`MWZd#Ui5W*hjyKx_1Og>vuAJ!yoF6Il8II|`t?J(qB{EUI4O$?mupJBKAH53rJ#mykYjNIR)dc z9EE?9u9q%e-r#_BaHxNA-33?+nZ4jCl&@0BS+e2h&$PC9mwY^4WQ<#-1Wd7FOGlb3 zLqyUqs~9z#(F>!n1I=csL@nf+EYiY*{3UE+icT#GoFXb@WM`{$Am;+C#|{fQo zIN3Yq7mFdcxMkh-#@2X9b^^lNHjzZ8)Ano|aAq->Cw=>L0@89`JzXgL8Z5?NPH1L` z*UgW1j2`Gcc0g-YJ3$-?7l&R9RwCqm7hmpm$Gt(h{y`P)@@2&NP7~p)9ns8wqNKo0 zdRCF;unF8*W$L@#cakI$Pgsm)BJI=amIM4BU|$Xt-49E|r@q`@b#N&^k%vZSLmPWP zxb+}sd;_uG@LuPi%m0^2_CE~m27xK|D$k#&``VJq$t{u!^aWK+3SL9Gs&OMyc$JT* z6Kq!I3R1s&Mch2=Kver(0$f!OOHz1`Ifb3;PbL+mKnPEuuWej1T8Im{AC2RJLBcOV zvj0vtrrVABjau>9xbA?(XPIU{uZDtOO)98_ z;oAr$&|2w{yX!Ws9u{rJl89nodx7Ax;Gn^$RO+362?Pf1`ZmF4wTFf5ihqKU53Sto4-M5Q>96OkFv|09 zTk$8=Ykm&FOIsb+1C16^cte}_2Y7Ft9{WD5|IQj?_<@^a#BEC{yk5*f?Pg`A##*pO z^bKvQy^NC}*NsJkZA zxoNglSAx-7&vw*ZPt=2Fc7jr#IIm7i^_>QuqLx|Vow~S+?X2UrKL9dUxlOU3E**Ho zC*CVVRJEG~$7N1~rXGTWzD_mA%^4srppc#(}$UH?24 z0=grTLAy((sEuzDCImQ*L)H;{fMCqh{C7R~kheKzLJJ-iy?osa-I2cKp3k?nlSR2-1yGcwdUlB~7xN)0`iQ$lMRHGnn8?jF>4;9s z=~oxYZV_*;n;DAbulf>W4++RZOMMq9@!Y>k#wU0(;*Yt0aqV6ir-6 zq(_m^h`90tbwX;^$K8Cv212nKLdXJf3nI)X!eO24ynW65y%MavX}%f4LTOAT@vnP+ zMP@=2J!;>jRXiv;7SF4K{y1;&6;n*0*hB8(F68U;n~I)mI4{xaG)eV2M?(I|WoOxq z-RwNh`J|C3n!M-+1!K7_0;(iWG1W(nTd*w)DJ{ft{&U`aCo6mB@F(@PB!=K^88_XI zkY_^Ustw%|1pWRPpcT zy$P%QgFvWTSQ}m9U`VESdNmu=89uIy%O*MK0Z5J?8`#2K(wDLY>B8&_mO>reMt|Ve zYc#O16Nzq0!ox8W1+gu7Z63|1n%t2xC;(7WDcJG1LnBvKT>%sHs_A1u5Hw2>x;Try zaUf(E01duCIk&q=V;lz_^UUTj`y;#M8Y83F)qO_f^U5bRZH$YbV%n#rNI6?yVcP!@ zn*L?>eRj#d=n4I{65Yi8>A|~4SLDatZ)ODlA00cwA6e(U^RE8_gm%y+NdC3g25oy) z1f-*BqV>AfQX7aCD0tsYrjmaxeuno^)bL_kCR#ijQC`fTSWD`bM>_kd#&plN7Z@qz zN4ZkHYh9i5IE7)zrpY#;bZnWu6-hzwA}$kJP_n)H$CTb7iCp3?Owrd zEKl`|ZN1CmJ`)VeFTpLv{z!ypKYK-zYh1g0Rlv<#$jGAgObiJ7Q=pCCoWY??Ud@}z zk@X;vq;#1;89`;ywao8B7F^)>%M}Aa{oomn$Ry=s9Zwy+ym(e$#{t~ zMN%`Q_VdqmIX;ya*P5rTBr@u zATjKYpTK9KB^pMBnYZpZsQxg&k5d`&YVzG_EX6eBY(<%-f{zI4>=#(U z?f2&p^}a*erff2DK30YN5?)&J1ML_uvTvcsm z1Tc^n=ZC)G+O%UcRtl!wa^6y#=YA$XDV5N#kaqF<5{T$66XW7(vFbn(k3ZJ>5NUM5MF0b9f03JLB>8G zcrmph74?Ya?aW~dsOvEA3KoWzin~Uf5r!cIK4$$Gx;L8@;$}AH!+xB9qOZqHcxg=8 z)1o$bIa309@>yaHdyURNpEVrDeWD?8dst!fkItGPQLKzb#EQF$7swOmRgeJ?B53o~ z!f*2`(I79oyc_;_yXG>4@60ojaq>-a)BYj>Jm(1HKlF}BOo})Q!ah@YO$n@OSYEUlAheG}n`20D( zI#2!+!jcrnX+q7Z_sCZAc`ClD&8@oMty&lPj0ldlhD!%|uvPZ`58L2Ww!fYi@rAd_ z3{S4nGniU0$CMmZ*sz-4PBrUWtl@E_1#dECS~YuElaeaGiILuE-WEbrm6zQ&%r|G} zjjD`UrJS{X!?gK?nWO~-1rAu7m#Y13Z9-OCW)`g>h5O8};P)LE+vkhP=SP(#jC%m@ zLc`Ll0eroiE+EpQafc{`g^XKz_qE+~yJ#gL&hlN^0AGK;pIpm5-_?pA#Q!SQGN>6r zu2#n1Gs8P>2(uK>4v%65q+ttp?lrpYpi{Ud4XbA$kiyY!LRg4i$n95`g$oCz_Eeg0 zKLx#$4Shp?qB)T>>?%LfNZblHubj|{hY$)JF?S+N?1s;mUCW9s3da0cWzc04 zhd6Ac;DC>F9T3i7tq!$dvd3zd?8HlNl5aLk<@>Irb3Az4!~F*vmz;6eZ!ghi zF5e26W2571D~Q~>U(b6*e}GZ-^N>l`|1pZN(87}>K6fr_&DVJQ$2@wK(-=r%9u9K; z^HSmT1*>H}AsX~%z-EobEw8cGRBO)tubJcgB^EzWT7Jq$RXe-F1%8J?*jKE^)E+rd ziNIIx+&v~#3t6`b^Ph)A7`0Az$`qEMcl?pAT`9{a#&udSa0SOXK=oa{R@-zbhd~$m zhrl*4GkUf);|3A{T``p^`4z8}h?r{Y8n?Jx{4qLVL!AN(0HqK^G^E9UYBNBntl7=n z%aeKqzt&!kFq3-1X^;p_EGjm-{_Xx_{)j%kjKYUh&dN3+>|7rQ9pTg!oGRR){3MhC ztwX?J4`sxc?$CA7)fMRs{?06(a9>DEKl`U_fad7WUY2}9gRgK1Oa-zA@RStlsi42b zTeCd@+oaJmgiplH6s6Gvp+<*?o|+(NNvINafeB*zd2AMieb!IoIcVuN48 z`%J@I)0_(UH>Bz2VI@|Ts;w0B4!IjZBAQm_ezs&Fs@qufG-HQl-;aW~0bkv)-aO+m zVxpZanF3z~svuM5h|qpMp%kC%gka+pB~_7>+kT}};49Sd16&%sd7s#H!3HT1V=PZt zUEGOTgdJmOlCxe`EumPI)0BO(bBy)bs`y-lnb0`FYK?CFEz}-=%PjXfU-tQULCK)| zvV~>@4Ef}KcPPyIivS#km*)|39Dp3#M^Z==xxSY-R3%}p8&U}V(ia>?w2jeKGGt8gK< z6ICL$)|t)!505P4kA}aNl6r+%jp0T-kuUsi$rGv{Zt-sE7sWKJzx747R7c8(e@kD^ zC-Uwel}DHUZ7BK>Fh$E>^s!G~Ovtk;T#l}tR12sS;^z9KUelr-j_5IBwQ0`cV87VM|l4?uS-{fO$lyLk4e+_uayt<5#^&f2eY< zcT%ugxnJFt!%C{_(!oR-q{=t*CrpE9YfQBFf;Lpy|IQgsc3#fbQs$j&EFSxYY4+~2s(WKr zbXI8NX}-b&85YtJ#|B|a<>?}mo+rGidj-%$6g}=+F*j&V4Ly>Y72Zz_XI3LDy5ICm zuG~vvkFw9Te_0*)HW5Fyc;T5zaKvW68&1u8sOh_IKeU1&MmVGPjUut*AKjexTucT) z*Lwre^DKPF?w1&Oq+EcHcTxU{WU_mBEJ3M`>+YMdDHs+QMc{U;laYOL0tR>V2&i>lf>DRPq;8_wKx~&!B6Qh0QBJCr5^{F;{dBu3E6? z(%b^p@b{=&z4`JXxT#Tbq+D1+Gk8H-N?*cuXJF|y8Qbb|HKEIjlz;?yF@UPKKi4kJ zXqu=H8ybGiO0RHqQ%h9&(~b6YASjIp+o-FY ze7>%6<6jI$Eemz>{Q6prlBEUupYM+yzhsRQ#S#VlfvjxdZ!RjQh1Q3FpK!TBD0OUy zyJL-R;=yB>K8;>;ul8n*jG()(WA&q3aEWWKm>eMMIAOr|e{>@o9d3o5Pi_BXdcujt zhgXvp9gQMiOHB)r_YEh7?nS1IFTJH1gKn_5hjZ7^%X9G4W$ zoi$4<%staU817I~X|gd~x}WI-uDYNrZfVG-X~XoNha8^8@{y$|ja~{geStZ*@dbYW z$n?%-Y(3`MnN;>klKbMfNV?pH{TJSU{T%?>cAH#_ZCQw@U>?{;F5APG z1eQ(ZF16?rc~_zS@ot!vyw-Cg&Ga{&x-TioRHb8cmO6RJ5*mj>P?LJ&6=UN^*4JrL zujn0@(MZ7ALS3?PAf7pe(ypW)7nl_&e47_UCm*~34wkY87~}}K35^6?^DvH~P|)tf z7(gh^P;ZVHADxTw%fEeiR55(=fqY}(??#Be#g_d7vAspsl4lG}r|tLZW4MPW2Xz$6 zllM`i$r5@n;ZiQ@yY>DEw>iEg67*NG3Qjb=ou=E#(lR3|v(5rx$+0RujpAILlajx! zj1xcobEAk6UIL_w@k8!l02C!^KX=}*odO;Qm{BRR@a zk_Y^)8Q)M_tiTR&bSV}OesWb`>^C7y6!kB-PhA^*WBf3dvxjrRRU`oqSbenO+`@QW zfSBT7atQzkY1-qWP46t&kLWf@p=znd^MZsrA02WT4RST}YfI^%H{}x-%qgUR0CzwT zuh$h?k~ZodCEpXJ+&Vd*o5Ty*N0o+me(npf z!1*-kgAy?{-gJt`2xY!yh?m5L6zVM+ZE|&~YU_v& zi8Lu#?|qkigA;7*RLc<&@hw)H;X}`ryUfag;r`D`wA*HoFAaORZTngCx=z8`0)17` zUoQivnaEG<*~G!+@7cJZTJ*>Q^M2oIS)a-ETDLsD}RlJUlnMMvO8aTh}O$msF+vN&k7MvJFEwu*Uxf@}iVg-zMM z=YsEkgb9zTbjjME{;~17PWcYvnJt6;j#V%wNHcc>Ow)~)3v@46p?pyf{j=^Hd*^q* ze9dg9Ky>_ zM14|q{fsA2Os;RFk5`1sv<^oxowUEq?`p*!HOML$nvx(nYvKZwrd>l#`1|${n%vFO zli#CmEYe_`e>~_NU0oM`TyjuZF@SB&e6G;PMo;A9q^(%1;xjCK_#m@fa#><|@ia zc;m7E38&ZN>SCu!-OnHIVJ5a?;481&kL~)O4Tf=OzL{vhvF}eC&7BZbETC`cJk^;I ztQG~0XEGQr%EmA&e5t>&7|zw#GhE;}`S?5JDz(Vf#C_Kp+z{y7ar!DiGWn3rnFRax zqv(TTzK70!Tl16CZM+4A<1)_q@RV9jH8x^7$%*$GV$|Xo@L`GEorV1m{8jYoTb|)F}E3gk8RdIl9bGJ>1koJQ}h&&mg7WX7RPZB+g+J79@pR zNLTPKb3^^h=0fq-Nek&+Mn`NL!C4oU3S;O9OFtLxVPHgYo5t{W65XCcF6NM zyv|SgbRn?IY>LAy#GzU+^vi{p~apAMzIla4t?m)@728);obo;>%z^u&ri-=OL* zrj=whEvI-*p7(g7*L?FKy%Cs+OPfq<{oKyxECk zd#J2p>=dFe`wb949u1jWe7coqtqrPE2~M4M=?qf`c6_|e2B5`N6TfqgKR171bT-nhw9B7v4DzpYe9o~F50Z!67Y#|Rhpz_F*pTx** zEufyip2McPWt*M1l;&h8zb$Tsp7o?kq^kpDG%xn$d(<%DN~NI%J`1;GE;k+vL={O; z#kF%m@sJ&|J137nI@#y(0%SI?1(HIBjU0>U1|$brHh=jGG0`DT)5#FAzOS8arfZF#XCUCe zdw4ZaMaWO#FiWn@*4ALXq@~}kq@1H@)w;p(@Q$CKEi$g=)P>_u3F*lt9iCrtXH=$> z8>NN!85lZ=LAeBgPCY4DD~zEoA&* z#~Ns>p|fIhiJL%xf3eT$Y0Q#s8VX7^S2^nW7SSEnynnAN;+xM9r>FK??~i$WWx|x& zKSz0@=z#>b-R;4|#oa$lQpbr(b;eRL;`Cyt*Th?una=hjGXIrj_mx*uF!UYFMfLg* z9Qmo+fI~vlDNcj4Z^RQ&pe_T{OSu0nNA+zSbfUM$T(70Y-(9KAJP_t0HL}Te5Y3=d zsQzrlkds8zacKbUB+zQkwVKF+7YexRvhqoMVj_`YN{ji6~E9)gOghA+dtbjMP0J zV;y7nnlreq3N5O~k**4ZJ{3tr;?tXs{Jll04273$6k3{)0*k;8yU%&CO!0oayIuwf z=tMcxf=G505xcz2fyCOK%_-xf-jVUYNZ#+7ztkqH&7`Wd+w`dCnLSpwEo?q@>58~S zpxyhKO48kaF0kCN+uH#aHAm@ZV0g&f_vUevKptJD=hz|5BWO=&62}WtYc$|@uqmDr z;*Zvt?|xNF6S`u82^M{0FvtqZ9c{yYu*YEmSVko$UWo?8?u?#n0_5qHh)H46?y z!QyhVEM`GZh#cuZ)a{HPg)00%de)eqKmpHAgrnbXdeD5P!RWW78K8Vo5A3RYCI8-4 zYX#RE)3oVPspD~6{HqXAqWV``*Iq22k8bK}Ylps?!nrDr7evW;i&+(E;3VJ8OARA- zp6?6MA5t&hN>9w^G)LXeL7Z3~5Q!n$(Pba=+K>5qKQqXGRxN4;jOBgA+xFrqM)I1- zIx_C(f$ZG`s7t>mAP~PFl^+$o60;4;2WC=*UX4LIPFf+-O}W?tq6W9QU`ed-JDjE> z_N%beXBgdi&+&$4&ECZi)q=T4A1GG?7uR+4Y!x*nfUPUL5I2&YpWVLEn_kBV=9nqCb-n8? zvI`|Gu@20Vz5dY9-_>=F9(xHCG#%IEU+$3sAby8V;f-%=G6wQI&oj72T?QX6>GQ=3 z-WwbZhscym2wXyqrXRLJ$UTL*9gJ#XU6`i z5y}O4d}?JZj>IQk1RPW7{9AG=ttc>JlF1ej3V_xL2z?JGy_)zQb`qcaV~V451z)+y zD9vP;l_}&9d-NC#po)COF$zLRjXFvX`oztAt%Gg`9B*GO<{j>yZfZ5*pIvQ#NgmV~ zW(23RWew93?|~~hzawH01gR%zPSj?`4u9d*?|d^*lgg011+skm(K?9uIqB2+XC)q? zwth?s*qf-utLHw5d*nyT`~-(B44C9=3i9xyZJoy?32tbciB$voJ-emfnKk)NsAlL* z*Vo*d5R3#OGq*>5pLhHsaQ53Z2(>6e<{-}=l?Pm71XuX)MdJDMQFd((efLJ*YCRIR zI)cuaTJ|y7aW5R@Zd#W*CO4l3zcH1Sf}V!>e&#-po2~N@IgYbdee*RpH`jf9D$G5r z)B3q_5Tny!*)8ik67PljQqh>%$%{P=3Je zaqIV9XtUd~tI_@6HHl@f`zjZG(o!-`N6bzMoI+w zmjvup!OIpUE%8`JoeXEB zni&18SQzG$8129#UKP4|4!TVgjz|7uv>Ny}Knx>!0sU^i)B5_?Xaf@<^5R z_H-^vtN{3!zt&C)<1Ux$Pz}^0*AB{%9(RY#R~b)w2GzL|^I| zg8&#$VR_7c=-UNM0TkM|ovrzo4n-x(^A?2x0KAXol`pYh%VEXilKwL zeEO;`Bx z{cZw3B?wn_Rcx5f-&yu}EgaM~7v(zL;xTg{qR)Ib?@)f>XG<}-?#g*$8J)b_sj1Z$ z6@TGeX>Bq|zbXE!{cP zP#=3g@BaS6eXnD!>pGKs;-qXrK`Nn1UxIB8@X&h@fsII;GmSk+Y+XR2!0DGk@-fYc zL;W|WBJO+YZ}T|yL@GMmt@|%UFm&=}pGr9%$*1c@Hg4f=(~ZTB5hdP9R_u4WE!1T1 z0kEFlHJbhNkg3R*+8~_WYWWN1ukjFckf`Y-0};H=kLEO^ZFjMoiR+EK*!$xtvHi72 zKtL^?X998I=|C2=Z+!M`wWd+3pukWlKX{Vb9L3ph zTKRHHzTrjNxEdTV1s8UoksE`E)f5P2C~Axn#;9KnRc6#PViPoZGx!5I_Po$4f~B13$Z_~=qzq4N8J1e)7jNsR7d)~ zQeDDeG8Y&hrsXndjD*vhMx6(=UTa0%7V!2ENr4gFt1WrV*W6K;bWI4Pi;628zSlt# zlT=AEm+=4gW6@FFNBZ3a=u}GJAg#2xd_Njkrz(QD0XC{95+r&Ag=%fb{0}tw*OOek zj`Z`H3c9{*VW7q$lgnuib-nX$qQiRVF+iZ4cror$I`jD7lY z@^$1+IhAk;r0kx?fQa|63Mw{t=#lmjkf6O}`>PgOz|C2em|Md+Z9j5b!EjiWu&QY( zJyM%wY%uTl<{oZ5;-VvTsg_>UbvI*kq72)Odyn^l8!vfJL)@Qz2%i{z3(1$}ORFD= zn-`Fu*S+d+GT#WjJF2rkJW2AkW}#>d29lZH)yR`FmOfKS6wE4AkBrKq0>&_WY@XPy zm%Kk70QSdsQ+GmM1Cfek8kf#S0AWh8ER z3S9}u+D_Wu);aHEeR2gc|1vmg4w*KalNC_a=!_t@1VNtpXP))X-xIt?-zoam)oOi0 zTkpL_%e=3VQ$d%izMBw8mIL*Tawe)F{h`S6D+!*(5qN!lD%2r?6%YPl@N(+awfx#z zOyu=DK(kUp!^{8adVbk&?TXS19zY0QY2b63f1F2}BSou^O`G;^1@@1goSj4g;Op>H z>xV_-rvnrj8;t!$UW2Pz2g->cwvU%L7q3YCf1dQ6pV5`oAmykxmIe zH1rStDV=Ex2wFEzT1mRarbD6H%1WT?QS^O;d*Ja7lmuBBz;vmLCz*DQBG)XQ_z|Ph zHvp#}Vu18W9VF%D!7y`Bxo5a$nM&;qz;7)wFJ>|3yqU6Ly?KY0hUrN7LOETG#OY1@pESE&#tJY)0n`J6hSnJnOhRVfI7R2UvcciuBSB! z#8BwjN)lsIH%crtm1~H+UtiCPMkjdwZ@3F+sexn`0pFSm^&i;TdbgHhPZoGsUmSn3B!?~5ag_y2bmJwJ9E~n^B%LES`@537uqQpUlfJFsxporZy4kUlOuSuyV`(w{! z_!bv99b;+1HTjJ>-diigv?y&nISy&+_1f$^lP&So+2ai+T5}e7&=xS@=@h&FMsXG% z!`Zp;DmiKobvYRDj|;lb2&%QOK2f(2{7Y}DKk)v(Q{tedVb714jNGOrutdUj`YVH?$G&s2_rFIUc?5)y-*(LC zwW2B^o{|^2s8gO%l5QZ*T&_7myBn4@A4*$2uQTa{0>g`8p`rfOaX5CM9a}^w?WPUW zG1ndUU5JbQ$d~_z3@nVgKg*QKV1uAY2O-{Uw=19Jo29CT`ldl2j&slgb1a>xx**LK zUdE>1y4$-O4M2|&AHsUXoMrMK51JOVX+J0+n*|o;uYgB4ZpF-N@_Jty&OS8?$(}wE zGJzkf8j9@Cu|PA48_0ACQxtpy2Ase<_vT782pAICfS#B7>dWc0;PREWoE zKg*^~z5yzzF9!mRd0YNW2`Qq{{f^uy!0}d8LL+WFBKK8gzCCh}-n++p*4&g;%D_)3 zE;@S!>!{8WLhXXTcAOYj*Iyq6qK1b*doo=dN=(vn)@{(?%G;is|K*XF-t>hosYJOh zW5rG4Z=|7^j(pV|quRC~xpCxw_rZN8UG6o+6DvyoL%pcw5tLAp>-z~AtP2C1A(tgE z)8wfyCcUb z+KJMg!1cNZD1xX38_D!Vi59iFt?EuHxVljAwV+kCsH;F^EEyGN&V`TuF=`4>(+cBEwiHM)(9yXoHT2nvLPptf*tLxbJsW=YXGMf?|dqt}frp?w)|9`$olHGYd zz-y87?1huMy0muLDy{%6h zs+8&WNL33*$KC9BK0f4%N_bb zmj&}sfJ^EvvYXXTT{@>~%}1PTI@VU(4}H4;c+ttg0V|%4X%V&7syoZAAdgVxTZnOt z3OmRJ52UQ2*!Y3BsE|!kBE~W_?nCt!FWXR~B|l%pYvtn2`#SFqleh;xi;;fWGhDHu z&#GfvYoROn`XYFcqO%c|T@{A9ke>m(0ujjRda1FN2^7}WS05$IddkkdS^`u2D&_;4 zJdVD+c`M^f&lbUvnlHAaguXW@PK!e_;FD^jqBt44{h6}dDDQ#lGmROiNTdY=UNZSt zo_b}(iDNV3{GguifeCBq5Az_ZhlPP-xBQ13k%La?+}XOwQU3cPh}N@iGP9J*$g3Yb z&~Nu$zEHKw-_g1K0n@!_m${r(-S%S}!&dUiL4x^vv6`1ilN_F)}#IPmgZDX?_o_^qrgf;xBFXd_Zinaj)Tb7bw8!|tEf?B)*C;;<#xma7joyJ=)xWqttU&7)Nrlau=_Q4%kGO_#1PO4#WRGR-A{}Ww zV?8t$UcRmC&?67so_N_I_yK~B(n)83X)4M2>U*uUlC+v4qa_h9`{2I*sCM@~;!2Tb zB1!c^IKE6jfo7On_6$dw&gx7#7FLm*loBemdHzZJMZb2q1^8;sbHAqC!CA6Nfua06 zH(*=Adz~sWnR78m@LCmdgW&NBQQbzfR@DSOGzYm2oK`SxAgC6!q~p2`pJHS7 zAE&{7e!lakj6IPA1stFoU9G=ym`-o^OWjeKzCn}U>pKTut%?>%n2z`i`21IW(p}&E zTnB+)bUm%U)Eyi!3z!(VSQ^i`a^O(Qdu$~CN!vfs`lah%{n4oO9uX1`fcZhJ8Bh$4 zWeU`emDnova_@xFV%ywoF4KJff(L1C@HpS;#B}-vJ2!%4?{8B-v?7McZ-s}(&bg&} zp~B1W7~rBC2EjruZFuN#eMytbGO`F_Gu1`|v(|QzuCXnq+uj~!{@zyN$umQGV)~kl z;yzD+RQL70Q05J^Nx=sTdc0B&XtMBT5KAU_8{X!VB!Ppr?fVC8aT)DV&?`%EBb|G* zK{ga6Od^kpE!MR}$a}#0{(=iQs9Tuy7#w{=uAmjt#iwlaPyslEh;#m;rBF)13K!xg z`bAHF7qb`9r}|iBHH1 zrVt@}SRsGW(Nv#GnX=Q>W79aWR3hLk>=8HuSZJRY-aa^U#C(<4Lv;m-g`G+ZQd+;C zqj#P^YmH(kSV~m-Cfnjfof7gqj-f2e8xm>LfHRNN$4F*HzIG}ku-7Sj)&=P_(d~){ zxCk?FOI876B$aP5>-?2D5J8wXxU5pXAV5&i=qH3}6qL8qO0sv_a|tf0vzv{gv+lmv z;7uj0vLcDp4?*JSx)xMy8>+*5GyLCB5RlAq8%XfALc>ee9OuG zq)Mz!TNeT%vE$yKM8es~Oi~?Br^w?mC1aH2=S8WPBJHwnvwfF>c^nZL=|1L6u57k3 z-x4H*mcxT3cle#6F7}b-r|4=!p`6Nb5qg!-Mt-8q1?Xt5(oOqrNGWPDv;6i6%<26* zgj+5yiSOkc`{lfbY2zyY#h`Oy1A)Q0drBs)IH4b^OexNf4q=}WRNS= zPS>P)Oo!0jv^1w-CNE(4@_uF0iF^zAw9XZA8~T52f+#w<75Xvdy6yVIGbX{G;ofSL zxk*+|K7Vd~uzRR#1l~y}W~5HBn4%;!vko|sG2D@Q2tEX>ZE1JNX=d2uA|4vmD(%Vs zfCBGya#-jKupqMSL2BlJ>lW6rxI`ut4Uc(`#_~kn!s-r?p$;lgpl%FkrgIa#46%s1 z0Dg~hEbMeML54lW)_v7EhQ64EQL{s(=Rkvahy>r7gPB}o&lFN3|9SK@HA3QveGTv? zQq%yY#17`s8EAp3IFSc@#tB}62?!U*D)gtxZ;X?P31JveRb(5`XrGD3ct=T06hmT| z<2Oj*&vFy7MsOk@PSZq&f!(+LK&3LH%D(Nl3swkgj9=z`P*!t|C7C$P3;!4c-bgr} z*iuepw6>o}8WemXHoo+=Zhu)}w*0Dh9>H!btK(a={!XTUL?cCauJUVkdl}pC={*99 zyW)Q6+EqgtuYZBuUP6x~?ui`wyIj=`9E0?KXNAYqdu;kyY+2o$WpB*J2Qe2w9yjXL zYe~|Bmd=?jRIiC#oB-Y-gdl-UYuzuOciRbgdH?}JD1TRC`}8&h`R2&c*|&Y&h1to0 zi%pU>YE2r8Qg|TP&1_I1gh(fGcF!$r}r3iUWzaT!qi z0bkA8ek2tO9o0}4Y`?mt$MtM^=GtxUe}$4Bbawr8aDr;?`?8iUOA9kmU#70 z?|GC9=XcnbdpgM*n=W7Fbxf(jQ~Iui=R3*WsUe-2s8o0J%d3v%o6h|z@eOnzpZ-ny zB6LcVW4&Mgr`hHOj`6+mQdAac?5;Fz{*Xty*S_ zglpu-O;@NDtGL&!jplR|FB+?iB3Yo3F2l@dy;F!;nn`UT< zU`ZHY#y9#C_kn@ZjQXAiIFE!^T1xHdB2c!zID32zV#IV(^FgOvi|18cfp+}y{fL&9 z)T~S2Hq@Qo@5`?^e(o zf=6gar~y=;>^Q!d;p4o7bdLUWMD7RGyR{vMbHdT*sj6^2ing{jQjK_oZAALL1i4O+ z3cn;Icjg}(0Db+!l3W7!d5WI2S=r+ccM4O zn-5X)0)l49EsDNql;ifnWG$rxO+0ZF&pf4aLKtF7AwgEKAbPBcHy&Cd@&s~buMXH@ z$9W>Y*dXZawC-fXgim=qM5+Hlv(ae-W3XRm&}z4=w-nE|1hv7Ol-~PGnYz)t$apDa z&1wTozw@_GSiV`chVo`ZhNcDgj6wnuZ4>HGb+E@Z(nA$PvGq@>~|&3=B;WZIe6b8=D6K8Usn;dOSpD@zD` z#JUx95`H;&@L<~*kZ>zCthaMIf8{?eqAsfbkFW@q83z^3zuYxZEg)d8ok_MO?7IFN z)>d|DHjuL?NbJt)O?T;bHYKleV!S>;UlBJl_9{q^(rZYImdhT`01QKgW7O1VjRS7! z0b~&Kz8|3VKuBxZ1JvvRSQX$aX4zDptwL^iQml-}J9!8_cXFm+=Kz{8kioe_Hi3h<3z4yD*Gdl@}_x>v>W0h|E zUY;vU#D0=pFO#rWGMH$82|Li6&g`Etzitjv`vcUgOjgS$8--fI|$k4 z<{qSmg+Ehobowiz>L)~fC;k46<~zLOI1MYUt`);?JHThD+t@Jz{4KMJA26$z&Qc9n_+y1szPu0GbpaJte%7&ptGie&~4oY;Opz13(Gef0^WQBmAWPTGd7Ml`PucynVw$wYLrUINw zFgR@PsWQoCN=f33Frza255PO?0;nQ8@Y+)!a%u8g2j-hi&%4}cveWek3^ z*#os6w&}8(QWda_B87#n1(&vu?F(*Nb34f0kC%Li|5KG83X4boVb@?pu=_J#bC%si z_fnEKNZQsyzi$w#jNVeQZn9yDLL30l3jx(ts!?pHj*GZ{6xO4jKTtcVj6O2LwJ>hP z*WN#Id{@VbC_?=sX?7*Fp?y%yITvXmG+L0`Cwr5KkK>j+N)H)HCV0ytc2R}vl5Dpk z85{6qgVMz5ZAlbtp>x|u_HntAps{>N$hVUO`@Mq(o5rL9vE&d+-;(kddaXbeI!a39 z?FT*@09+!WLSbj|CXh}gnKwxa9%~5cgg!rFyE}8Y8-RJUB(3r2wLstz;fHOW=*n&HYPzcDNNk-@CqFKYTGWM|mUy5dkIxE~5m)95E$7^^krG z3ZY#e#<+ecpS$m_$0;vq<0cdYNCfPv`z=k5wynqg2}Fl0r^@v(e&gffEzwVXpTT}5 zlZ)GEjltnx&-eM7;}7X;Z?AY-FkC$d{a(g*b#_lC&9BMk!-vsI&hoBEIoW=|O(%Z0 ziuCe)jMB`bALNi35(v2nOhgq_N6^5ik^jlD&zJp$7sn~48_c)KerIZsdP zFCD7^x2vbHy&Sjr2cOP)Uli@5JIi^jHqy&0vH54=(?Y+gGLg9UWvXw;u-gd24!8d^ zD7>zS_>RHGZOx17XDy`sj#TdU?H=Kv6z5X+dRed&&x(me1qx#-n=xy!YA}qF(2X#Y zU_c>@wwNX0n}t@6x3NS;Mvly)=7Spm!uykZ7M|d3vZoU~gnFWxd#Xj~6#%1limU&) z(}g-%O~cDrQ_(aNy`)-R=jMXkQd~Xz;RtZ1vLGD1(X@o9EUJL)k0bw=^B8`>yoGCu z@M;4}38D5iTG1j1mS8|~_X^gCdtkmWz}pa))XD3ONG5NmN@JnszQItnI>4bPsio)@ zcf2W|Zdyi)^6JKhZjLAOUW8K2q}$Uh#hJrOCa$!2WQSj(8?Qwzm_-pUso;iZcKCF` zAMn4Ahy#LPgR;{>ii#R+CbxZ2spQW5JN^Te7m&_(1-ApwwSa3ozxm?odSuE4J8-|H zN?PE2p0QN}yq+zCgM#*bzqg?LVdLO-c;Q*unF);0(Gj|;#ua+#2ACj?p{`M|Q~iEX zcMwL=n;xjdwa@qy1tTOWlj@Y6XWj2N>7c*I9kf_O{+C^h~}JrLeNsRbPFNxNAr_91?WpN0UNBsx2sSF@iAX-&5#y2{MdRM6cwgYU_U&vpOyMiqHIs=Xiiu z3&^mV?m`55S|hVpuw*~&;1xVB4q)hH6emU@toiuKWR^QTm*W|+Hv(9TxA5VO4ITyi zyoj270XBrNBF4Jf8z1c#7BL|Ogk=tr2@I=jkN-lnVIn87Ln!;6ldiM$2GE$!qOSqf z7?qARAkLV}P?3~OVI1}#yoqJHHY!EiI4vwDEWoQC($}gdrjr5>p$vf;c}6?FM%IUt zQ>(6BOitN*s3@3U!|O#Em5|;VwLS-($7BwGODs{ndiieRudZLm*n6GW4{YjuK~Di6 zS6h4PBB*RDYjNLLEosEk7QGEFPm_8$P`~Z=r<+)Bt~c2Rvpg-?HIUvieT7bxxddio zP?v=1VJ!KIrr@y&_ddmQp{Cbv#ru})PI?htKEGbhu!1h9`YxZpDtZ$dZn!P1!~y

;>tudGoW1L49ZjDPM9TW&n!VS*Pm)oOJ!GuV88T_mgy@9#`8Ww!06R?I zTU_Dv^+dcf_!el|FGN{#e}_h~zWyx1pfAv~9`<)8l4SsA+~7% z%z_&5b6IYLdL!w5FT4EsxTNSO%=M?G8(V}__C&X0~(^aBCKIG~)O zjzXmK1eu3%y#hwCCLRvpZFzc=cP7O$S~{n$-p^P>*&1hOL9>yM^o~}VQ^Ee9ZX0Ua zTzOmpqL%rmbe~I1D|fT_9qo!_{vhI}a_N7B0m%q^b+`htceGmjYJ7v7BV9#Y3tSg! z75{Ju?x8>2-3#(!b7qWq9u#LRVF%sGe1`m2XYsKeepqqxbQaVla{ZrrdKoHsB1Pcc zzpGy}z1n@9u78CEcHhR^j0~ z-nmG)Mw>k&tL}>;`SZ}7YF|anw4hyL>3zq!6pfXx9I^Kq>jJAd@xE@5A7nEd(7Jg` z!tIWu0ljNbs$mB+Gye@8p|IDfEiur{xv!1@vyK)4((hrxOLXyuN5BC6f#sVakl4d+-28&X^OeZH3y`T|{S^S0XK=t9 zUq0Um)jn4l9Zna_V}TWoE3W35kaW9d1QNadyn)k#YQwk6p^_L*n^+AE5I2?UcIrmG zw55*_--vsg2LFPKqh^hDMh9)hLp+R_TtF8Xz?W)ME0rHt{$?MMYhd$r4%i4*o!DD@ zJDqM(@_6ikZy+j3av`#UxcP=@L1v^}WisI?4z!d(L(8MdwrGUEq|PRjFA&Zx5SP2p83n=%nj5Dq4lp}#s%-a&4$ z^u=W_&CvCbH4?U1Hbq+^j}n%CdBn%kz>!A2{+#;O$S|Uqjltku!sQ3cg%}_s9?nkx z`1^@KBx{z=cpAG-I$oqee1cp$FEQ6jmJ2rQJq~f}+Bdm< z_C6+BXs}KBP`TdfRw`m+s(nQDphLBump}j}*ie6)l5j@vciS2C)L{G&7k64J_Z@XU zA%B}{KfJ+5avcGVesHzF8uNcZN1h`3b{6K#-#1-qIbug&WW>%jqm5Vj!}-ySF&Cg< zv=1D@Z^hkd=XwV~f2xSdah5oluE?lA{4%uY^8A6_M?_$sabu*jEd%SV*y}>~{#fzF zh`p9&skY)KsEo=~$FDIhdX<&Xw-46>+Fv+#iw|nRioC>@*RYpd1O^bUGCAWSRz#A} zdd{PW5Z)kZDM4@O+08I!m>LcYF3K#736acMaPrZqDx#@E`U=LLDAQc1%8VZ_8HdoK z%>x(ORxvfXM}_zD8{HDS!uOjS(lqlmX;iCuXBZT8 z8|rY_4XI+8eabLXSi-})>~8>^_AWo8uuU|+JUx3YW^}oNA)0>(VE;aAG%Lt;>BKBg zeG+=ufnSgMa|-o22D@tN(87l7x%+48We(%XMA7wlDaCu4{t>gjx+!zYkT*%_dV1Jy zGLK%(-^#Eu^){b#ge;T}VK&qpwT@_>w?~|RuRTt!Ws3Y6-jJYyz7&6D28se6W(Y_H zJh$nX;yT6r2K7KNKP$vW{!NVx@PhrJ%w`@@ab1%?lRel*LI-y1hjLfjt8eAedql>c ztl|=T!4|pTg8AzU;Mod=6k)1R*z|;mEjZJZr9P6}8U@GHJ^FspfecxvSqZ*tII&+( z+6bcF1x~DoI#V47%p39w3+`(xBd5@-(-PW;Rpg-00kQOX89yEK7RjI+rTJg{;MG#+ zPs45N2$ax?yP%uRB8ehdi`j@2l4Z%qBTTAK9G}Q)u=Tm2-~utwt8#enWUL;oQ6>BZ zX;lW@wymEe^UBD`c;4@1j2kvS*BW13obZW@e{u2|F|?`m>87~*D$xF$qh%vxz$@8w z`Jw+?^8$ree48$jvcz-s>RQjb?|;rYb`VLs)Bkf_q8OST&HeSfy8S}`5y_twPWOdC z%rx!l%bV^P6wgX5gn3(QO>__;{?er!x%w!(btPAcFN`9T0CvOzhgf!$W@>}QfKw=D z209MFCxF=k(8G77t?1FMDvtz+B2h75v}gCOUu`dPGNEeCp8=b95{jVV1tED`X|W;f ztE2N)-)kmu{JNJOWtuZTy1%?(+EhK6CcGt2vRw~KsL+NT%n+Fyl_4YgA(PhR~danLk2Dd2;g#iM;yjS>28 zux#aTuyD}v9X{Lj-nhj+k>H=c!(V%WKiOkiYJ=OW_CDO5It+45O(x$+l}gcue7-@x z*9VxsITPs~*Icsl{IVFZ#U`y~eRBBWw-x1t7t-akw?7e1?#|BV4oKep`=_78F@lk< z)>yuQyg8dPSytPIqo>Brl)j>=u!agkxO(^}Bc8aI41at}9FbU7l@@E$ZMOx!fgPDCx@xyXPbahYv#!lK+p z>pmhc?|m_F?t?e9Gf{zUvUar%0I!Fb_75|MmObaR$nxtc^6d)<#q0lOyXQd9J_WGS z?$gXZ30evW*PtM|LAS4rCh#`dN(7@Ilz$*JpH9m51w;rLr*NgSx}xaVbfFsGScyVb zshj>7CH(*jNmTYA&R*NJnYESdXC%;{?5D9Fm-S%F(1(rM`Hb;zH|tHBZum4N7rqrT z#}`7oR}S_C213NoqWXU{Vrvf95)S(q&<&IJW6@gUq)>JLdF)lM}OZPBME(|JKHVo$c;yBz1i7um=#v4SpY z@yNCJ|IhS}+R&{Y2)BH=9}iMC;<&K05bFyBxav%RhruwNIO2(Uo6o^x)P(lo(N#gY z`8vkL3?{R_z#B>jqtZlm(dyeU>DhOjIOLz?+aXQRn+<1((B^E>W&O7rsf@!GJfKAx z8lr&tI2y4cm3oK=yQD`ZiD8;uEn2MS0yUYLhXqVoe}L(kA#dlAdw2Jf`DVHj=uYsh z@;|jDU1clnsKwc2926FFNvBSx+xBXJo~jwcTWz*0^l#3wV+US@o|(O32A@~;em~2y zMs2lDdWyEy#0ryc&@NO_tvQr?sBQui?HihTQT*#>FA38{wlL7AHjf~k4^Ky(k$d68 ztLrRlxW5rJQzM-*tn*~HdW);7bAppZyC=v8I))T|anuT~2C?Ak7(l|uUPbT2$u(~= z{lR6*46tugz`$F--{qw(;P1z#_+}#mY58q{Cqyd6xZ*bj&Hcy0?B6Qooqmza>dg=_ zx5>1c7YlQdS{KR{z+e&$=HlDC{fd!e_zbL!=TrkqR&~roL4>7Y=iqtGHxMH0@|BGM z^5mna-%2hLn9zHVI@3uF{4}3rWFz*lWb2$ht#Z1mV8wibLp~L^aX|~RdQcmi1rKD< zc>xEugK`|gEGyBEM7)Ti<00XmYw_K>-b$cedxoK5o^C`?R<28ev*B}=)z@r^>Uw1` zjKOM?CqvYWGqFU%^!xD=Jhojp*%#@0M%75Hu zTxG8`=~zllC3*8LUt{e~wy)Fo@_D>4?!|ZLUZiG^q$4+$A;z*@p4F zQtuUBRp^QujVg6LXA2`W#y%ndJrap|Ldi_s(i7~Q%OkoWBx%Iz;YSEtB1oq#+o}ku zvKROka3jex^n(rlAOhQD_1SRillr3*ZDT<)!^A&hE3>m}Tx>iU$dc}C`pM==Z6)Cr zQRtUZJzKU|Z6{Y)QwzcUZ(QHEUe#7KIg*qEOxZ*nnnswI6dyS)%ghlhfyBB3uVGcj ztPqP&uitfF^{l2}pc-*uJ{PCJAv$Wc72&ngXCv$LH>$so=YF4X;+pTrP!gjhFuQ@z zktz}Tgm5sake9?gEym7il!Q=an*iaRJ7(iy9pmTMHRnv2;3;f`V4SM!=F_7ZcA&$q z=I!lscD{d*$H}jkXCBKxYiQKBA1LDM3(5^-KI1OL$@;=pQ$j3vt$0)E9<&t#{1{_o z^hN4E|7_xlSwpp~*`Ezc4w0z7Wh%J>o=p2Iq9-D1q{sFR=nBhSQ~pwEHF6CQLMp>d z0&AD3Ci2M=c0?njz}x3kTcyvi>JQ&3v7E|0b-wX*E8q{quV}Jv^=ibNaR3GX(lUuc zsRi%1DhOIBc_#YB3SP9c#fBi#dH@k+p(rV-fC*dQ2ZRRZutGA-2J}Zz)WB@-U9T^Ig;_roiw`rPH1{!y1{o8akF<)ZE zq3iu!-Y1QZ1n2)fyTO(dNu~BXg1RUt!c9n(VSf|yobT3kx&2T^*(=g{yXLpb^y{hc zmBIParp?mI^8DI>cdEvzDXDY0*S6~Sk{a;zRs1AqNN+0Yl$o@7LI8W;v}qzpZtdy+ z*NFgYx_KSuoL2AnGJp6WkA`Zu88c8p4$*pg2M=|18BE14qo;Ky=eJpDR60tb$rhi0 ziVVnbx*EAkT@>ga4O8$Mw=~5>X*QOMq?y4V|D{LmQv_h&Ey1x_tum)dECdB&QWO{` zJT=iUC9lZVyI-sxf=iE9rnflIXp9$3o5pnE@%BS`bakx{-u4GMakXGBq_VOJ0~PhE zzLky?RRBf?03O)wpGhB@CnR6-g#-zr2L`PQcd^`&saM`D5dMn{ZalkF4X?1{TtIj{ zK=WCtj!up)gZzuc{<978L*WSxGA7mUV*g=iHISLWdcoEHJ^fxhEy6xtjIjkn-$ zuOSbfy{yjE03g~e8w<13WtKG!b4GDqAn@4}0a-@kwWxy6uWpv0QGSdXGVGsY`Sj6@ zz=W6MLJ%TO=-i0bo6{Z9ChEpa$M%^1m$2ZuW(BDfur=RfFCm&`J4w8=7T0Rwze^9t!V1cx?rWUT1M_hYTJ^y{(c1n?RV zx`n$nQT7#FazNMOMD0BG#zZ-J?+`cMN_}2_d%5C;;gXU)$15hQGd~cgqi6(xY4(oO zLIpA@>*=>{rr4&)EtOIWf2Pd(6?6c(I}KjU8;5H(UV?-yav0Pq`*?#{W?oosVoMe6 zwC&YkT(a_w>nvf$#$UDK;}9`WvjeNUY~)d{T{xB1W(*m^RH6l25<3ob<_|2^ZVcJZ zXR8BeuQ!e=U!jy2_R{se40^P?U4brA_GqzFBPYM*<>TY}@w{6frxx3k)%zG!ug83@ zgy)&P%Iw=#tearUiCf6?@8?mU`K$lh0sez~BMUedP`wyd70`9Fcb6TuLGPuMC*yD4 z8*y+|)8^&tX>gZEd+U@vM9*zSN>tQUW`6AMG6l~2Flj{jo<#@Hqw-2nnz5R9Qf~ZG zzt<(qp(Ut&tqwyh`K~=p2U~B$^+)W*)%%4>QtgNcU0RU|Bhp7z8<@P*lB!VRGp06O zGJfp4k23S%^pk5RbW@QO84RFry+^_@%g3G+XSw5Mv2}Eo*Obhc6hw0-!k3x`{6RSp zf{K^obrXwx3|C-y2P21`S6Fn~XE*7_>x4+@c;0x9?~T$t6j&Oy9=tXw2S@@U9voZz zj_nh0cV6!E7YFkt=KmpxB|z_lRj9h%IPj2^y=Nv)H#uw6{zS!uuGe zk)q~mdAM6)@KW*atm~}v>BOnc&w;wBzPbqViRZOPvw6%j?z?}_P2KdzZ(+B2s;|t? ztEs>W-tK#Q_+PL*IG`31&3`!1b#$69Y{qfU*sZ#u`1pR=F(zrUcdSZU-H7R&qkxL8 zM5n8>UvCfn)22+=u7%&jF)FQb8_UB@#h`Yx;Kx3}Tou?&AWcF`>Yc7j3BpuJ!y_9e zK&Oo%z7nK^j|A;OAOJBqFp9C+Irq*AQ<;$)y*B&gk{AmcK;ad>XZZWOD^d~{?A-0t zGAUO`i(ZK#1<3@MH|hnggj=1EDQ(zqjtxNLGg4I4ckN{a5S$(pv7}XObN}slfqfa6 zs2d{(hjKwo=2Ck8`*78smBOjv5)x(r0Ya0rtC6k{wklN%Q0T5PVyf z$sOs?+u~TNJp`3}3~Iq{@`s@VTc*R&6a^ek;Er*Fb6l?m(R(p|tu-fsdktxis0k|G zM3v>48FKVUY)&dI&5ttzvSa||z%04)Z3vO~csl#vByAg43HB=XU`)5!OM|#h8az-d z!R!Uw(@hN`nZ}vU3Gy_^ijPBfIKx$zjj!wk?*#>UTCKq;u^fO42yE2fz3}BvA4_)L zUt}Y^YZV3s0|HQ;Fh12mY#^P}c>A3ELO;HWViCLuM*)%HKsfekcKyX7k-kJ2TA`q< zk}?zS#BU;3N?bf*)^zM8l0$gt^H0atv%rUc<7c(=?eH{hjUaP%5!=f5^d%QSBjmk( zL>Vi7g4?uJd_PIHNITq!2A`=Z89IJ0K}dZs4eEA%0zYGVQCA^aR0(||6*Y6={PI2y z?~+ah5VoV{FJ_DT@zwu=4ZPF` zD7F zWrW@D+IJ$5U9#H>mmoVn0-yvUKMtMLw<>m3>dGqN0>g_M3oFzF0bATmrYkncBZ+}2 zjhIArn-!v5H%|C3<9VY`zm32BRA4a0kvsgw$-Y}MexOpd3K??qK2 zO#B1w5~(%tq?)j_WIfL6^U-{x2Po(*)HSb+3G=tnp(qPv&e$>1jx!v;|BQ(fp4>cl zc0_kRT>Az+dZN1*90Uck>~u-~j=;kzmWSw5LG9#*ub6&cW&3tA^y_f&mcP~s$`G-V zjnU?1Ag(l*?W-@r-2c{g*jJAq7G^EiujyCsnl& zR;?|>US&>d0@XT**2XT^Uhs{yv>EpaB57Te4<5QZ`Qjz;6J=ZaKro>ht5spIiiZSx zrFdQmXFfN*LD=x-!Q!R%R@*{}R;8Ip4vl+u-0~%Vl&}pRbv1odj&($DusddvEgqdv zGWigVA?4u0c7N{8mdIJt%0}WzUQR8YF4ht^BZcENcieRk>6;Fu;e8i%<))T!wXgMG zlYQ~+k{c(`Nn}ZILfdYD@rfTkKCAnH%CA(oG*pp-)E8CjY9h(!YMd&jOEJr@|ByJ6 z&wdPZ;>CO6fqOJp~evR$S)T|qjLVfp^~250eN=#O8}%P>_sMqbm!D^6bP17B7} ze9y?Wh%$4()!BD>rm;RV@e^%0XwBdf8k_0Y7Dzh)RfFB4j>KTi7H+|dh<#L+-a8lHS9P=kFy{d^x(UET7!+4@BQtb{*L5gl7du}C>IajB zVb?{K;SbvbVDB1Eqs2zSX1&V#5@_i_QOgLfaQVD;>>{1~tuv1wJ zy{z?-1)%q)3FM5OBlG=FXzw|`*GuoxIz0ZK_cw&rG%nM0Z|Yq{YfGNfcG{l4!{14} z!#)hq`a)Vnlp|f|-!plNW zIjowZcH>{{g4yp|UyW)-J2Ogq?O8IeURW^cv7|kMMTq7pE8?n>nF-pX9E(e4-O_^|iYDK5Zuz|90`)SX=g4$A5LU0r2U3&#w#r)%5;t zJN-2h1yXiU0CD{%EbN5y<&twRfEo2v$y3A@^BD-RqP z115-wLV60u_V51Dwdt4#ZgMQ8dP#ShJ~Z&CH6xc~H(M?3sL1B*W?vH0@eGmfTZBR@ z221`w0Ovp$zqbU;C1@w5{JDIA<0w#RvK6tdrdLH=1zRjwROopvti%9Rc*W|X(hHQT zC4kcrgHv&b4Xa|5W9hnUNx)7TTg1%#x&*>ivsNss_TP%e`4OKc1fl`GVi^eNw>h>6 zJv|nrtpK3UZMl0;TWy)5S`Ego&Zp{mO7XAIE-y%5%M}cH4MhTC zkO0tFyE=)78sdYFm7wRtE*;|I07BOlMh>d=I7+{NnwHpLT$KE{wWfC3?oWRT&|cv= zxlf*>hu)WPjuSA{6?l-PfBUxc=5;wFm2mt9d&L=v*+5+5>Tttb0r$6Q89?-`+-u4?7n6_76@DjV{ z&TUpH25iyd91Gva0$^MNi=a-wuRg#UZP#EiYvhI~;~lbC`dn(EXVb&BXgJ5>Z`nQf zZE+Nq6n)|n0SQ9IPo)9J^xVT-=bTCcByl8C>xYsK0G4QmKB)TWsvRI4X;YymD@m4& zrR6|*hF<;_*LO~fVFf zDzjI&iRrwXk*TcWl3bE%eavQyCClOzMgZ#)EUDu#xDr4=!@V_WMSzu{-W)QFAuMB0T^mFgXQr&E zoU9Z_)vu#!zOt=4PQSANPOT5-5j~`WUn9BE63CaR2Z;=26qSus#x*KJt-|xck{xQ9$+Me}&O`dl;doe~e#x>Jhf~=%EGk ztnNr_3(*1|&|iqZl_%z&1Pt%I`}?+j!@X98Jt}ao*F?jA2;?hn z)W7Khhylc-9X{lC1-upWsaIZ%)3~bOAn<%a0@BQ)r+QthQB>lXI1FA@)78SOzVayX zY>Y2enDxH;#OuWMI$s9HYl|wkD*U4IlTvWT(REb$)`-0T%+wCksFZk6a-mGojq)Er zpYyp`REdIqORUlXu@Dt-K(7<`15+evCoC}0s)lwLL9Z)lCAnukn>4%SZ;6|$fXu_h*lZqpkn|KmbWZK~!Dv&Xe#r-#d`6NWYazoJL`TW*dh*Ihw98_;kz~*M5xC8Eo zhUj(2v2u9;)8*0TuP!BYc;R53^X)I24W(pzT#{*Pf!wjB%Sb2sJ+oV6Jff z5u8JY@p_>c%KudMn_MT8X0iai?3yIdQ#ul#5XE`a7|%BeE1+EBKFdWC3!?FBo@N!b zPZlXz$SicIY$9M|%Munz(SyV}!oH*xHrDO_J2%kckhWXyxZ8G2+@vLeG-fGqrn=0}7_ip_LMJ|MxTN+OdfTprtM4VbZ_1XmT1^>j5 zRjjVqUHb?qYSNY3Zq<7qrMMLhLyaf2EfxzD<|wv-0m?986M*UnZL1yP_foMh0G*(X zR&l>TwKTj`b#H(79hD|V+FB8A3*a(p4LP?k|s+@~0tg&|??qB*? zRhYe93SEA1fdIT%0^JVG0YJCfdz-Y}Hkqu|QcD3ba+Q+4ij!&d0({_$1Y+4dD8O0z zRj`NmOxw(Ve8{yix1ixiVK+25kNWdf3{`zzU_8ERrH!3_riCbgYI7W5m+Wv)BgxK6q8-r}Cw>X=N%f-~y=0LqmD(sE<9q`xhw4VUbKHhjeS;5<|K*z4U z_W!g0`0R(NphJhBOEQjY4vG#79%_nKXsuC29aGsQfIbdF*iZ{rpGOss*Kai#%&Y;J2Ty|87kHqQO~@}>9L=g^>h6U_X+qV zJ6UUpg42cG)1sn2$ih#tAK;&7lA=uWT329!-^6V@X8-n(f!X~kF&eDT} zmM3!Q0w1E6XSOh7vt&7|WCQ*5=@;npDWGSNfRRA{6c#~}qz5)l z`fSmXER}bu^Fu+J^w|%;bEn;U>s@yCSue3GzIFo{zK}itq%}4~rgYo3jrPL-@hs~` zB*G!Eu4_W$=b7tOyh9985uA~J7jot7;vB-mUV~qZ+6&a*ue@NBu_Fy={-XS}NnEH` zU+;Bj2~cuCSwJ}yy&pvEINQ==H?JZLw?-$c|}0QPv4< zHSVt|(Qbm?9_-T~=TVYEz5I$@3$)7i_MTHZ1ZffvVV*?^h#;-UL4bdRVx8Cm{KS=; zoD+=!o}HWl#|lIA+hHrNnoq3FeQ8WL@&pKP!#o zVwDIV76Gs8dAVz@OX7oj7wC>0vD%ir{49$gHZDMqDgb{==#T62pG5x@oAUzyD~cD$ z2kQ{G2Vqa>9BmR0`nzAr=L-CzoW?X}>r>=f6iJF5ip6vDLyI;dX z`J-tUzx~zrgCBpJN_E@@7|Axx$n8)RF*$)&rfGpIU8P(ZzYrrg^a0X~At>cix|fsa z_s94cJr{-cK4^nOgQ(|^lVO~*qmEt*C0)HFEgPmEUCwC74#X{H3IJ`|1BM6bqfrKt z^P}E5OOLS@Ybwi#J{EP^37^GrU{Hy}U8w5x`y;}kaed@2QPU^8M=L-I0X_l!VlikV zqiI)3kFt{lIhq|QjI!8S@NIfU zY$H3o97ho$2|?0sK2EN}xxxXQA`5V?Fl}YBfg14_Cy|gx^|S=Q7)jIPlulS~ zlnDS?IRi%jX~AR0U_D{G?%H8jT=Q*PIy7oW9dWpQ{Rem05WW9vR}9c*Ks&(fxSjSt zpKY`zIUN8W)pti<(&7i~vlA|Y#qCmps>I8o?(NU#`v6IZ0QQk%RX@H&_mshviEQ8H+2t_e(X_qcoUbgD59>j@kN3UreRj31`58;>FaKi2ywA1J4%F0utN&{QIu_ElFgpj9!s=B6 z`{g!0pubU(INN!@-8a*Hv*W6*@;JEw1zgIuO^9K>xk1y zoVv!}(zTLKld9j^MBR6N^&nBTv#PCD@K7;rJObO4%CzFeMx$+D7uSabem@@@r(k`DpWb3uaVf$<`anWL2&># zAefDj)WTcAJ{{uSFhA>BEgb_!P}{CRw|evy9Qy^Fxz6BV7=|Q${;(4iW4BzDA6U;= zzxytKxA{uwTfqR(ed>K_3h2LndxEqOU>hIvG+TP+Sr+1c+>?cd8g;l7C;zO?u8NDv3yM)sz7HgKoVH8l+Z(*O6 zi$gXvnz4aJ^!DSVDkLU`2N*v{&rjvSg57!BJ$A#7@3WV`|y~|^2q3cVPdMHYG&#*tvHR&5dpP-GZ zXOpVE%iv-QITn76IHZ~%G|4&t?Ee%_t?Q20Zt^%q@qk*#09-aYPl z=bdL4UwrX`di0Nd>|^%1&wb9_)4qxV7NO&*AAfSH%4f=NFFS3u9le@=xc^AD+wa(I zqU>vnGcDlEmmX~^meK06pEeKZ?Ry{2(0|*M?bQA?zzW()#x2wwrrW5 zeDcZmf)~8Ni6Lv}-v{)|OyRlu>Z|Sk`|l^-+5%u1G$pN{_q^xX5l0;H@U@5n34`t6{f3zysE!q0)$|b#^Xe= z#DXo_WMk^dXN-1&_)}ugqVU&inpnm4s2>f|ZmO10Dew#EtAM4M_i8J2Rb`NBzw#^= zFvTqx0UCWL0IVv$z_Gx(z`KAxIF%rl_?rs4SOi^B@~!s&v-c+ObzRlH|I%=;q^o(b zBu}xEI3^);2nE6vXn`;!B!tpHDTDx}yq3~WUt8MJQrhwguOFb$KHk5Dw&aobN`MA3 zF(niTgd|KE$n3=NJjj+c&$?Iof4}?W#;$8a>^P3>++$0+y7!!Y_Sxs`t@T^$w|5S1PzcF?-(fNWG#j=;5kC#JmFG}|lH~Pl)yCo+HW6oW`q<5?{X6-E3ouc@( ztIh7-UcXzi_tS5ggCP4HeDWwBFqQd?6JJ{a`f0SDcHidXuDfrGSDyc3CLX{UZ_@@#s0I|1LjpsNcUYhu^Vs@U0Yoy}q#x4bKs0Lm??F+};h0+VwJQHu!{ z7zI7_3c4_<1UieVWjhWCg*ANN8kV(y)G4Cou=@EOsXP{f@v(gL_UJqy51olwUk9Cu z8kO@^=F88*Ixx*ZArR<5)Ag}q7y0zk?E&v8qA&gN|YY$=@v(Yz< zIzRM%>(e{s%;A}sKvfX0VFQck0E?i1l$%`a@WQor=i~U5FeN(MU<6PikcC(JP)|D% z#o^l6{F8^{y6@f`=$^&#$E*q!(@SE;~=}&*U&%wCqrkmnLFM3h>Y=1!i>Z`AgOE0~YQpLmnrHuk0=(C^wY*?Ca z@9mmvu8Ft4^{x9nZqM_2+=1-7_jxM6AN&Z6Q}+4m-@KZ%*o}$4F6c8~-Ew%^Ewwe| z%M+Ow=ub_OvN{Uj=kK9_(?FA8w2rjfW`cI+((4ESlX8p!B=X9MOxF`dOSRdtMQgFC z+dC+a4YO6ftFcj{-=2fmQf+boG+-|_Bv!9BrBP%7vszj{pCtlEGDvF?^;XzhLh!T^ za2k*TZ{SeeS_?C^0meX8ss@E777l@FSptC7>S_e~*rx#c7JHbZE*oHiQrckrWVdE{ z?6y~;+Lo07_~Lpza1Jo-H4YMx+&MJKwNUbobE^?%-xLH?6U;ORQ-T#AY;EKCCWQR# zrxvo{nMS6?KQLsAyC&oQ&-_)?V)M&vuHu_xE7+c;&pKn=Ol#Ofc-2Y3TWO5E z7iXTN>V74n@4a{$ZKe2^%Rd=^^O3&uWZ5)8gJJ^M9@bml`(=Rc><4MEh?TxJcSwU z2NlnD@@sggr3TdjtgYwiB32|q-GsOu4m=j4`dGQ_1RMi^ZUj68$E7&{GwgyEypr`f zBi`f<)ie@)ug1eiS&TF%@hrj=s0BP9zZjrTH2`AaQOn{|T}$c!3)UlBhNEwAh--z} zz=VVG1RH>Uvj*hxk`A+wnCnxA-ava#Lo8X@3}`21fcl%#bByLsu&^#^>yF8XhT_I= zek*>umI!|LG6W2dVG)_Y5iknNU^9zXDSBFJsRGazuXyJ#qtcI;wS>ch>o0G5SQT4w zO!Q>>QO!JM^H`MVU84NV5ZzBTRMSeKmr$UuvxA$-5~fh!ERlYJ{ydI?TIfQxcr2%R zKKLzu`;8fey?oB2@#p70_qq7{zyJGmX{y$L;uD{Ul`B^+m`lC?{`=#<|M&l%A}Dt1 zPyXaj;^K=hKIs14`r|F}A2)4C#~(-j_r(`HBRSy?y1@l>;PxHkDIZ_9g4+w8yDZLq z!7)!t4=X_bNg38kqlah&)~;O}_uO+&xTa|sCgYN}_xxFY|3Kffi+dh>pvUiP|AT3B z&tuB3EiZZ`Zl;U9@r`f9PMRe^(i?An^PA(Wv(CcaXi8D}8*jWZzVel?U>9NNukRhT-~R32jZ4vEmWJVnkpYCPAUT8HIlG#RU*NMLI z1zjF{-OqduwY_B))C0bo5tcSJ)iTdU?`P20Qk$y^Cx91LAbnOFUtp}d|LCYC_q1aP z9NHo21oWZBpd|ExRKkz*3&Jf2K8WoteZPi)rK4d#Qs4MopkGB9Jy{3Mt*{~}DJaOd zJ%fftY4mhfmP9qF!!rb4HhlIYQ5u|%YOXEM4M~EB^i!ZOK)2*zBV*O_E3b^Mm%fDG z0pgt5>$caPJNt4F0Qp?IlzZ8?Mbd2XL2w@&Gj>j!`wQ}Ui*HF!i+xfGfbXT(vNpsx z9LIqbF}_EK?& zB{mQkMBJl)pbBMt7BeQGVjlP#SxBm41x}C7rq-xsQdQ$jV5x|HK>ULn2B7OB$mdwF za8A=lJ(jKXqna_(xiCv=z_G`-p{(DG^8pqE4gkeAiY#7IsHTYCx70Mno!|O?+_`2Q z3s5~{zmn<$Jw)_(;piAf9PnX0r&H0%xmT}T92dRkRWT1cf@LjD<}Ck*ac2xnS17_L zC;{AS=5gB8H1pc=8>8C5RB{+N=Z)e^S(;s0s1ZyiuUOwFkQp(uSVtc zciwdLit)+5_`nA~aL82apNzG{=*)*c^r6&rcXxMu>|-B`lTJG6piU)4@9M9vi3c7U zNXNhMdCTI(&p+m%+FFPQ?I|cI`{-h#_{XkjebTyG0s2qc&{i6Lf+KL|;mqpM=hmGWuvWk6dP$~s-SPG=@H1N{38m9nasQLy91;PS%&pQnxLC~*wp5>ui8=C;%yhkw3 zQqiLXCI$L3fm1}EwyQX2qrU^(?WC2p?94cd`@>@}4X9X^M@3%;g!%*m{yK0*JwkxZ z&0HISNp%EVCxqkL%?appjf&#|Ke(Q{=-;|N2L9jwirK+&FoPurEnCPya*ROVV5B9# zYw;W`y5!fRlew*4pfP(L0O{HtM9wenNZsUj?jC_R0*1VSMW29vVq!2X*;?+rmbu_h z#=;h41hBVX$=SfMTweO@tY=oJ`wYy}W1E^8iPN8T5)UaVnt077Cx;R}-~1MVa~BhN zC4kb0&qvXk@Vj=*K(mKZPfiQ|spKrn5$SCtn!RjEJCnUCHg4ESn|kU1*-X?tLLQBU z76k07QNQ1bN2(ahmbWJ0yJP!gY(w>0^?A!)RO6*{(O3#iesXkh947LT9{2#dW7g=O~ijJhDJ zO`x;DMRy8^h4&!`li|1DbaY1a*RNlnqU0MkY+zg>ML*v5wzs9%3+0R zlIFxxXr>&{letxZ{*yVnm9`Id1U~q|561P^Uw^QNAN9w*^PTTZKzAWss1fvk`lo-w zPHBvX9(pK6;eS#8ejd=@-?8s|-}~Zk|MqX=%rno7+i$=9vE4rMk&h&%nDlRR`ehXC zZ#$5E_t!?{{l_-~M#pdX*4N`_ci#!1)b`3s(I~(SClfMl4#!tNqRs z#ZT9WJulFo!gpX)+w@Z|8{I50Mn1D!r?9Ju2XbA|?3*kBto>>VE@Q(uC7_G#OWck& za8ghiY?88oYHXQuFvahVNgd}Yz-(@6s-aXhsR1}3%0N0HWup02*w1rRpyC_Xfenr= zKG?rC`ak^-Q6!b3jxiH*XHj$=AllTV6N7UadU|8|rI$qxmb3T44;-76vcT&E`gzyV z<+vUg8(Fv5>Nq%TL*VXs%9cpBJN?f#-xt_3rUC(X)`oX{!ALT8Wj;LXWPv_d<}hy+ z)&0Xd;PY|I4{wUsTzFoZu&QR(i=b;}pr^W+MtlHIHr@yFpKARhzXB(iHB09&ngyzLOr$TnK1pkcH-HZLCmEq zc^fyb8{|>UA(Usn2<_nwl+Lqq>EhV3c`yd>E*9`K>JhX&hm*;L%m=>>alC;+P&sQ` z5{u(_J(B`{e=qRIX-V&5Xhco)vxN8^`ST-8>=C_Xc>kchci>>?>5y449pgpV3OF$O zhjA7#Nm^0Y&jdqYCXl<-K|Xw*JoTALCNT=61!iibWQRR0>P8z6*IGZNqY;>|I!c{X|3ClUGB z+P5R{<;9(M-xoEM|NHpGuZcDJiCFy7RcTU7PfDIfe%jxZtHc;pu~;Uxeaf zVbiFrd*p9Y_5b~v2QW0O*BkM?XD^Lke({RKa$yyqe^`dOa+1e60;8j&3BaydvnCyJ z$t9P>AN;`|?DuH%Xm$9OH(&4h<@UORpq$b1TW-0< zU(@yc=5PMyf&==iSFcV0U%I`5tB+@UJV0Mjz90SQN0dz79{yd?0p#C51&bBaD{s>M zf9aQgDUHtyU--hXlFM_R^PKX>|LNy}?E9Y%to(97BQS!Z`!&~I6#=Dp#8DZqIKs;%@?B%q~zXHEIe4%n*rz^$xBOefjU zGE`|8kX)DY+l>}$ALS5`Q_;T~d)vUAlz4^sMn}g8#%1Ez>ikS#BMUqWP~Nr8i#Xq> zi!uU;pmR=vwNY;Eb;Scyc$*M+or?Hej4J%*={Lc=m3?3UZIXz+!rW?6)!_(e;Ji61 zZxszEO~%_)jXKVQhKE3*3kC-ANn6roTL=F`ThK^O+LrD#7lzmJmb-P z(lcYpuf8#Ybb@L=bG5|+XRI>uJ^_3YoTMg#K%ZvP=kwU+-Y@Ta0{**~>GYm#9iIc& z%}l93V+FXIZ3yyBQ9k=*a`fveK>vUy-jTGkc^iNC$&bWefA}wba+siid?u}B8yfIl zDGq0Cd+9XCtmwpp+=?>*YEG^-wgS9&ZY@zBZ!%3ZBhwR5=#3ZZHRk#iMUWf0|5sFbfTq5h*6>O>0XV0G|kYGkG~&A4f&cVsia= zv5*ZyLB}Cc1pIclwMRSR8u$caXmVGKaP56N=c1Q#e+7=6VH}(^4R|wiEL7&mM-n4x zfFeZne{?d&X3znELN7IEfL#4X7OZ;M0KH4H(rZQBP?^&g567!n&dJQSy`SQO{?bVu%7>Y1Ma z{g{cJK)Qp&Y@Wxv=nJV8XnE~=l51G>fA`Ht7j^%WpZsK^ZaN04)|-#t)6?Ux3u626kAIv*_Y_h( z6rzAP-?llvd-KM0ZI+c&l+OIOqhb5$o!jH<-+Clnijjs3UwuNXI`;6f6e>XfXn2Z_ zj%yHn3F-xQ=5(v+asK(|9~~EWkXNyF>((?TWygoP>f5$$i-i`^x6+VQc_W>l{`99) z{~pgJ|2&|txU9M}U;5IQlCxv)_B@~Y_#h$MLlT0E` zT{O4_CaS~npz}bmF2J|XIzMFYK9=gj=gApKo7GbHQ>Vc#L>etmZTf)Dle_-c{};JU zYm<|Lp-qwWG>)7jS=scx<+Rgd@r4&hEu{}lfvzzy2Og*)@TbsV30u8{GePHu`d%2~ zyh;YXMmoP|cDmr*Mr}WffDiM8#?x@_zu8IHl zJ8z3GQeGvMs^fuasIQ480J9Gl_>G5?(iDKo9Jwh=k7_tEXY#c+w-PmMj_o_PF?m=R$W!;T z79#%kVa2jVv3=`UOpr#<*{QmGZEWisPIUe5?&bvI%}sHEQ&*t1l@f70;JXG!nZQhN zp6onPcIiS5byDQb_lNQWZN3f9rV5&>gbr?-BiEmaMC4kbye=a8txYUux!D*P8ze8i ziR+t>MU=5K4PY9lLZS^Z5naT_$=|MH)~IN|)7*MQ?gaR?coZjbHcU;8L~j?OgsnAH z6aeIt5|Kk?)I4_=3CB69;uF!Y$-!c%ZU>CR1Q^`GIM>ETsN=U?e@`6SxiUx_iay4C znEvjf>|lFqZLH|*h!YvV-q)WIc@}amoPRDKEEd!mRZ*WMkx32fg4B$uBBFv^>l}-J zS`^&>QCdFhOY-n>8`5VrX(7rM0`vA*BUohk!cAJ@7w>nG9H@B~@!!AnnxkTls9LWf zeCM5art5j4s`XFCpqTsksZV_>HN9fRijGKs^hic$Hy7WW{G(y> z+OGZjLvjBaym@R(dYj@`FFY}xY^wg=V^;zCdyh!v_ore6KL7d8r?tX!>%9En2S2#r za?lU=xP14!-%aCCc6^xj(kmLJ?il$;=ucn$wZ_7=~wyYtI6Eh9l8gNbE&I(iwfJyf? z2sS!`$TB21-WDAudtVSN7?#B-u%3pwX=ysEQyHa~F`5G$_*`W`AKR64T4Jvie4wMC zp3f#JQ#S>e&TLYWNj)ijDgc~i9DwgrKgA1GRI@UQ@0UO{XGJH@VMxxyq@H7OVmpHs zr~pR%F$E6=`YGsy9c`(+W;DP8Ks-N(0zU^Dgc1Yf5xYwPF#0bbpTxm1fuTLazV#Zl z+VeOWRJ#`ix3}P^K(niWg0>((i2~ARgL7Vw`=l>_qrEEn7pUx4)wJ^V6b$B(lrpTs z{oS9vGHTb{ksaqCb7&Iq<0b#u=A!NNGo$yZw}H>-_`dYqQf&!M)mO zG?6~@c*oMn{9|SFaG1FHdlt?27x&TDH}4;KpT6ibDGau8#z_}efWCuvv~A-P+vA)U zKFfI*8#ixHGu^zE_Vxm_n1;0YN3D}9n~*JSsN#3k1Cohs6Rj@Pcg3bnJ7V(&#N1HS zHy6ms2p;5N#3``23pLhGqTGmEjLgKy7*ugQdV0$05#wtrG)D*Y{yuu#zBCYG#m4SH0+1Txi@{l z(jc|9^+erK`EM|KCtb$ee*ibvVSbD%po4vL0AMCMD7PKO{|?v$bvf#BLXIEDVK9gC zzY9fYyAzn*Trg~zACnp&tFZyAWGo{gc?Qkytx&T5&(M}ROqH8 z5@K!-2c!v%nkQ}9w;EQrD#Z6{^2e|M^~K2WPFNB7So`pX`00&nP}c7bE-OZM?23EV zY{h&2EXEvx5U#nYW+G1cjdN1JWMVjps}RV`lRGa7s7M5VdX~QO(*>i%O_I))v=&$( zGFF63hh9k+1C)C4*rq%wodnW_SiF@anVZ!k=)HcF8pR@1jRWNO-g4a$KSlOdt^dt45Du1jO|&;IPs;^v!gPJMd83tkW({_uxkvmAW6JL&9-?pe~(DE{%sk|TB$ zY&-iW;)_>50HX*6V7BL+y(C_C?#lG~aDS@+{lh)tmGkX60#fz=@-P1~0a)LE@rz%a z!0pcyQrq+RqxH2>alhPjd?;YLWXY101OJ)Nd}hG`eN!mR&DX*1x^EfP$FuDV=*t9C zE#H)dOE0}NU9!AL z0a=&dyy05J64xYq&4{`-r4i@0wnpsVX@IOLv{38`)=9g!>QXMJI3H^HQ0uk*CdLt+ zo8mR*ulBEC)*N_kI}X53Cpu1Uy6qeNo<+<_#;;&k9j-i|o0mR=r$8aN&aM{PCkTXn zSCVl9yi#vmn{*T$4XjMJs`mc);JarLn6?NT5Rnu7#9XN*Typ zw*No9`3KSQ?Hf{%PzX*d$>z2JLAH#C=F?7#?pIwHH3S;#2*Q;B`<_Q|Z`+n6G_O9L zmftzCgO?mL88cY$PfvWG{|Wf(7)S@$Kil(*6S7~Hv+wcrg|R(t^@WUSg}U$P93|Ua z-1?)h#XElM(wHUp-UobusJqeI2Gr^o_jEvoF#-?ugs8N1?wM&G{7xnxo~7)dowdrTciyce(>k3pfL)kH}T^fA{IrUq& zZK7QljfmrqTZ9Kr(Tj#Cu%N76PqdzLcb1N*slro;x39i|==!22&O;tMV0#MBTrF&a zfMPQWZC(c=(>t15+EX+;2jJytXOS9bk(uS#LiBV(t>N0M=38Tm(s?69=B21F?d}L< z1DFRyy#f03EM}#7ltftwoA9(bq3RINv-aqgzQGtl8b8Mg$^3~y7z?8;gq$?m*r&Of zh-l_%Xxy4+6Q;bioM<8$nO@O*syJkz={ez8B zQAbSZ@uXXjYdSd5FD&qXtd z>p`!wq+mX$FdyX!QQ)5k&|62<#lkTx@_CU3)A5szB@189g9DKJYs#>2KImF-Au3ejGwwpI^PA&h=@BB_O(4OdNK6m9kIQmB7{PR}D z>8JdB_2wsfuETZw?RWLX*KS;!PUj!(3lS7t{S*ocR)GHDy7NcZc?9UzNq^R}o|ORC z!CakDU_pMFmj3&{|NHT#H@)d#nmTHZaa?6>m21$y<~6TLYirr@q1fG_0{S0(lr`Zw z%I!aqfi$A;Jw5Nd^Wy7Y|N7%vo&hjL@TzfS7;qdS@FiPuo4C!*fx-$^R5210&6A`&Tvk79WiO^ko$Q)VaW){_v4la`TsC5~mv0a~eNR z``D(Vqj1uR(R=>uqZa0|H%Ej(1GJSz@eST#gmXQ%Z%Rf6&@+ZX)|7oq`+E#+c;BpM zU`HKKnH|2a;(qW(8Z*aM2f-;P5Yevy{cIqQ^zTyKKk*NL9)JI-PcS*M9P>KF*y#nhdNS1u@hmqMkbdEm&=zeriS}YCSy}1eTU^fCz{ zdJgGP_D|LR|iA`ImiTuhF;o9vNw+hgIDo6jw zKDVG#%Kf?Lo||f?A4s{kGG*FzL)MRq?FVxFkv($z?!69=E3UXAm8Wx$zxa#4_%9j- zhZ5)u%76XWe?93T9Lzo3`zrqEkNzkL;Q79Sd9Qx;tM}gJzx=*0p#L|2^EW9HpTnk7 ze6PJ-)?>B_5MKWBm&doh^{v!z9V5SJD^~;9Tcv+r#~sMN`#S#V`rhU(>*Jd1zeIZM zbh5KCAhG!}AZ}#VXt$}hlLVr))1=5NI;WVn5ql%)M%tx>tGGXnZkADRZN&_T=acr7 zz)#?7-oD~?wxNjLERp&)Z2VcHX#jnr`|><3KP+v&gVKFgX7c$F=xdK-&~m)MvkJ!m z)Ow=v2AW1-`I?TaGeJV4j)m%KQVMWhXnq<*nwgnO_OhT>F}-?Ox-bGvAD*Br_9VEZ z4%>6yKp@v$i(O1mAFK}6Ajnk((4WR0R|F8Fmj3`~u74b-#RQl~+qKc-0LTj6#0a;&nA>jF6Yp4V&i+`LvK0iNrLoF_$HZhV0Ws7FpE_5NLB>ET$qEYG3>WggF29vVwibB-u|2b3K0;HkaY z-{%7;)hDCIbT8^m9z%0^{Az?w?}Igl_sp_g=A{_vFU{Is0qTA;Kz|FvIu}cpw#15+ zoe4ndEZ8+LPA)otm3)_4W{1Kb=J79I(TF#57fb?5+TqPBzy_$!O`~ozrkQQF8!q z0kj{g+_5Om$yAX3L>j@mtvdkr<3#CeqZ`$}dAyDjENpX3*j#-vRL`3xwf9(sOeoA4acpB=3`gE2Bz{CeJsJ4pm}=1RV6H+ zzNPzX6Df*sdyJ`lN=^qsJvM!=mNbsp3C3Olaa+Llm$iVMug*eB4WLnkK!K|P2>qIqa&ErIxYXgG?{Sr*Sc^+u>ZWpbr;a^9fAf}2TxlteU)7DOd_51PZ+CXhqZlbZdje45UgAf#%7$YLiHI-NhA->0&jXPL4sn^M>(uJd; zh(|MAD0=eI-dz{noe1|ae${|{7gmM`FCz;Uz&O!qoV5JQBKkNG0Oj*@(3PO)bGKN8 zCt_q^5{3ke6{3fo-RHzjU%N3zHf@d;ytZ{UMBj0P*03loI=P#?LRbTMHa*eo92F3l z^e!S~(ev7somVW#MWXVq7By0h0PK1N&E2vjimz4mR0AP-4#~r>t}1XJq4cwunUYb> zqNC$RXMmA^pBt~Ix~e|je$iJB*%Ny>8Zuw-PyXajl96&KRO=6Qp9gUR|KT70;bWqJ z7hZT_%FjR4=Q$dH{yjwSum9%5$%&;gkf{1N+ZM`J0s0H&P8^y2P$}Oi=$@NE_1trR zew1IJ@A~Xk25Nh@@pOD$c6yjozCTAv8R(yN)>)6`@IR5UG9qqe0|D`#oA=Q7-}uHi zCT)N{Kl^#FzyJO3C*eFD)ovXf9dY{Ur}Ou?I??dgty@P)3r|hVN#?TdOjGb8Ith zHgoX>gEHL=vejU}PLY=TD9TJWEKom1oiRqSm0_)7C;GYTMT#10FKYLiD@*$YRPAQ~ zvo)|r)p4?aGc%K518M&TjKl=w;8UV^7SU$=l*nRey5(dkQR{UK%+EJ6aiGmGd7K1#19N!hYI&&I5ZCi5Q_w=d?m}ZJk141# zyC^f)iZ`$YI{yfwdJP4Y@C&hi!+Q3sj+K|PJ~uxRy(?RyXBpK1D8W~k79YK;ENm>K>KrhYong#3rkg+b=Uelr;p>Gf;h-qd zk35TEDx*REQX>kgj(7jyY;3(_UGzh-7U-K7RqZ0qg1_YWWwH1egaY$Zuo$3hrM!A` zqM+@#P$Wu}YNi1CLa+)oxo zBl%V2<$El*IZ?=JY6<}TBPXK&&;R_-q1cey6IHEGjU3`{ci(+?0{Q*@83o-O+s8xE zJeY1A$v|Irie>Zex+kmiyr`=Xzjo0{Q2U-*s{Y>hp#t>x9+ArL2RZ_l!Mo|EoA!Cw z{vyQXh`wuG`Sm^rPrWN|j!32f`m`0TwV8m9V zr!`+}$i%6^4vJ(?%Zf!nkml$+k!-F@3?Z0JQGKqffpZ&dDnPOK0>>u^P&U-3ee+<1 zdYm1y4mgN&S0%-N^YRtbw#^9wh%@{y=+BdzKf}5J06+jqL_t)X-`K=YZ1@5}K$!)y z8wAXbncu`W9+x%|v9>$^vd>Is#IJ_C3pZl(C2AN!-Y{Qv$hCQmI7 z`E>H;HKGdNjsm>Yo&H@D1p3V_`RHDZ zXAcnDKwBE{1G~sWqFhCN-3*I|9yo+J_-bmbBHBL=nC<}R_dv&|gx(~Y0xX0h!+7jS zD-eLrm{`wataHNJqK$|Ewo!hr2?vH$mJvkw6bETRNY049+5t_9m#_%ULAR-I?1;Vr z914`OD^3vqW=#49$72ZL5f`{7Di1V5^DoquV$o96`WH77A;2-gXNf+;*#+C4J8h!- zG+kYU=o`N}=}ILc@T3>H-ZrU6U z7V~(_rxNIUo@s;^=kZQjmsCcAP6mYwvp)##r#HC}Z+q>(r`HSl+uo}6FL}vJQi-4^ zqFR5bulEaI_`+j3n1@3Y@JI#v1A|kEs^1Uu#qF%qd*W3uJN{7LjziL31?V4=VLU1t z5v(ixDP>#$wy({)?&WB0`Ew(%_uO+&`PY5^+&ju&2DKHSzk9gKV^RkC`---gqyD>( zIyA2yPrC;b<@Z^6_~D16tE(%4^ZhXu_IDLVe-_p%>l*Bettj#z>n+5+I!GM=`&9=!Sq(C2^|fH8DHyv|4UMrB zt&F;!9{Nq+IK-f#ef2t2<2RTm$Tv7=TVf{~=CysxsQSLv8DRswoAzgKUa=>s4E9Gc zz6y1p0XdR3Y1tRO{$+9dUAOW8;dKL?k0${S1nG#PcTy96XWv*14dD@F^{7|Df(Jpd zy?OvFk5Tfxb+k7?`yV6Xj<*RKcOQA;K0HSM1K?-Gmt} zDH81m5I#9Eo=Vi!lh=bv2K{Q{e6{47t%Es`kJe5n9CRS-UP8l%sFN0qdVsV5HJj|@ z*Z0-QAwZ~r$zrR zJcEU%XyRI?@g#N-JzNov|67_YCsG?- zi*XjfG_ahXlQ8r8Njbtp$hhc@%&72mi-pbcb27WllRsbNi&d1A3Pe2S>e3(Ud>-}A zv;bHimBkrHz{5B1h`|k1Lcjxw`+(J29RwU8D1EjrJ0)KD@^fO>&^?sk8-V^a#_?1j zC{fFkY6a%dvjnneTk^v{3>?orHiv%(s=oO>C7d}rCT7i*N;yb4A*e-~c4e{l4~7dO zE=Qgxy}mR-ANc?#NPWERbqgEl86zMQV?r*&D z#?&1R(!(JNcq9V-`_~ZZ`1(UB!l5d#LV_o)?pz4Bai4vt0R4Rq%hU4B3of`I1oBVj zW~sOje(-}y1kUqRfd1~$Ug$u-x3@P%_Koga>aVgr{YK#CAKVnT-1a>jfzZpbD+Sr+ z#is}?_LlT=fnEtJzjjy#^s(Lmrbg=ho9KI%pc8L5HfeX(WI&&k-Ga*b1acI>GY?+O znZqv6OM7Ry1=*f=8avO(yuaHA19Js|KA1r#r9fXmYoI9eSz;@LHMF}`_xIQuY{y10 zMd~koZ2`Pi<5ak7?ac(3U8f>~p?2}Svv6XesOc21^^zr`@MN*hEpkF={ z=fj4!3P3&V;yms6IsT9&C|E>9xaTG3MV|FMIZkkRSk6#)iY#0=$IE9Ru-Od?>JPAu z%&F+UerRxxc5!;7o9!idoICr1_D(+G{0h)#B#xM^Z^za+`LyGSjyrkhlM=p>ZtF&x z$75t$&ylM2Gv@aIPMy?(PxD_$6XA2z@mm|A*JqL2c7W{AuBzC$0bxAa6f|4sat6hE zfvEL2n_F5CVK>KH)kjNpSjK{AG;=J8YXFoNb+$863p|kE)H)t)&bM{j#;kN7=^;W` zbL_Lp)4&90;#8|XZ>|js1`+dK6!QoB=cA`%1@w6qld2)2_k+;v$IuO6BKSb_z-Qtf zI2^cEDMPKW2|A$awDKi`p>Jo2GJBNs~todcFc`+1wRZ@&xCjr0oYGjOVK zp3!>2F|X^j!=Znp;9NrgX<(|y3R}y~gEQ-* zzPdHeIq~(8#~Cn<4L&~MdAz19N}U1G47hsUmZmy_dx&4t_fb+18XKAuaL;t8r0P!* z_`>$qF~L6edzOBW5vUW>)Tydp0O0d8$CoJ#V%-cB8xeP889T1aS7~f;kO+mvNhx}t zK)z$dao!L1RhUqF*f;69AMnzD;3w?#O|WI=uDCqmB`Z~VtmhId_+k}FI@^@K%npVfHSgI=u>tLyurO9uu3j}issu791R)cfW|y& zx+cCSEJE*iFMV+xr>;JqAZR5=-%(o7n~&9XU%e*Y`0KAH*PR7|=yY2Uqc^U;fak9fl}&3(wjhAFVJ0?hn2pwUlqu_* zX``Aby`Xpor$RkZ?&eh5!ZI8#G%gfl(Ee4dw^Uy>`!DKh!7o@=VD}h1`l8xs`x1F=N92?Xrb*<9Cd>Uux{Qy z7Gu!ytC_sBpl0)#+@w7@8C%JnU*1jGyAC{+M$jkfqqnmQaXlu7`RE)sHb%r8M@5y3 z0}<9yJb`|V0QTqc8nSdzb)W!MzdpK_6jG&v94rLsRW2Bc-09iN;jwh#)pe05H%7?W zLE1Z91IA2Mdj#%S*lSr76*j45f+~igH?&9ue>Q=9_Gczauetv6TVr}#bu2p;P{ZO` zm21V((GY7M8I1PjzY-U`_O;YOU(9hMEZ}3YdF#!wec(YB8pJsK$C#&ujBd^0fh}^4 z8Bk~8V5t0Z+`KnF6Y2z1BZO#FUnfxZ2Z8Is8BoQ?XYTspY!n#OqRh5zPoFStzw zVd?O0Pljs!6TM)CkN)_N{}_jo0+{vj;SYZ}UiiWnKG9|$_wh#x&>zBC`2|$>>rv9`E+9cfISey6<})Q;q-& z68ENTmqBd>=;tN+@NdT@tfpje^@HlpsfY|^|GTeAO1M%9ETASKs+PE5GM)dQ5L-t4jzpg=s zDzGh_cju|IA z`iU1*fPNa81^ms2>kt0;595FT?|(=Sz7%}RQM3`Io&oTVQ;I^mwUf<syJok0_pHGW@;JXym>+I=bos+f}h;;~eGm@s1Uht;rMX` z`|5HH0Bg$0q4+;l%tvEYQ=I$kGf~e(h-7jUCI3FkWefsP$)6vX;20ip7cUkFMK}bq zb3FLkNQsgf@4OS}r-_}sf-V9?@S*D4uX&s-vn*y6{nokwR<2J_^S%gU*I?BFm~@? zfc|yYU6&Y1dv^2jM1aenwgU8bk6d|7_6PK3PMFrUVZ(-`T7S(o*X%y{AYXluGzx3p zmpAX7)O^1xTV(_udibIE%C%o6)pau2kQulnWJFk32D?#SgGkzk0{4XFu*tGqZzJC3 z(@Uq<2E{(Z-fW_>R83BCI|FukY+Opx0rWBAI1adn-Ja}Fkh!3>h5(#w-y+KN3ir)o zzfY3VDwEd8zpPyCUEK&d{stF_=*tW)v7bVEmh!U#fNWM%2Ne0UuZr&}$i05Y&tl`y zoiT;*9(WTQoj#Cnzqs*~ICI501R}}NAH(J}+AN6G<^+IhLt9R;jbNi`18uD^iHYV< zVzZX$lhl0yz7@6{gF23_#u1<+67(tSo>!Q*?_h8R+R}2Gn_*F)=c4 zzuhVI0Y`@E4LUW9j?Z$f>KRDwm#Xi60&j7EHnK-%wm;WMANe0^KKTjqfCpoSsvD+V zI7V*VPOiHMzRFm-+>wO63~(xBSXHeP2B*!jOQY?D=SF_{QW~d!$sQN%dkv3X2YqMM z`OWvmBswsBHf&300IxlkHx2S7-35l%eH0Bm;~5uLfW9|np>9Chc>asdiQDhEJ>9fA zK)FCy!HyaL?gR??Nm#?&6+mcq^L=Rb)Zqb3;u=tOSO6Mf0vOHLgVx#Q@l5)Bfe3q0 z&aNJ@J8M`X>c&IkBBS@udXae+hDD3I@I;kjczA*mb}gwk{V>saOX*EbDyYZe1NFv9 z)z;cfPJauIfx6hZ1qu&9zZ1{ZF6j5RrDFm8Ir>tFB|TDhn546Xxah^tOOpw95Y+VH z7+~T&wCO%3UUlpoB8Pqm#7^h9G(3cO2YI0N&b2_(S>D?g$MjOducIlpT5B7ncrKlM zd}#Tw1xAhLLm_IFLqCP40YH3)nYd$UC~|=DrOR8P>NiGh!!$yDvJ%pi&L%gnRU36m z;W9}Jr(=}9a2zOd7geh3PbSKI4Gx!_dGquw#{yf$qG4GRbDb2}aJIX~rOEo}#NBYm zMC@F%nMp|*1g;md4~+k&`09=K#szQrOU52iGTM0c%YQkJrLQ}8tc#r^cg4<$+gTfk z)Cczs$3e-#aY11rR*1zha>bd0ZQvgi{|Hn;FG8!7x3d(3bfxU(QsS4_CBV1j9!;dN z_^n^NYQapAJMOq6sn!p1@7&CNf3j5T59Xqc@L1aKw%cw?hd-5~fD0Yyf8$$^#82+r zp2kV4{_9_RBF;a&-$&3^0s2SK&3cl%dN4p=K&aqaS!_@G|Ko`OmqBd>=*1SlSC7DAAR7j9(?e@q?K@>_wK;YR5{{E9D(oMd{f-~gYRK$ z0o(zM+F(V%wSY_|c+0~XK~E4)(~W)7ue_|qX!om#16(ISJ%P4lk0UZo3-(ls~&6zi*{j=R`n?Y19A-_(6j{Kxp*fEGX#1J~5t-uBgT*76tO zRG5x2n6rxLX<9oDM!bF9Oz_d*pY;6#jssZ+W3XY9XdtYI83J@Az`o!$k0>4f1DLY) zFc~N>r_BxUHISG9Hth*~wPdxk{Vm%#7w7b!mTn5r@!2ft0O?+k3tcR#nKh3iMEk@2 zjPiTD;5yx$WE<;_spfY-9i?)@cB)hqr=jRij3y_Dl*IBG;+JAAME_ z!S}0RQ8zyK`O&a?Rn!2+kQqqlv-=*E9tc1@20p*}EEvhB58i7o)1Fl6U14wgRAijA z;k^&(`eE#zzPcjD$6zeXZPS)VV)aR@z17}BZYrV<0CmerxJY;ty_ZR)6RLi?`2h3` z%sJUmjW0Bi%QC~HCC?tft!PIxlel|vHSJ9BuoP15`R!XNU57G!UQo)Sl7~V+LDZWy zAW`>Mu2_z69kiorDDBXA28I#H8&ZUi@^llEoEv&PUOyk=cIY>4Ep0^9>tfx;hoTAQ zfnK`_7M2E-{;PTLi2E~H3$eJPKt6tVJol8<(FOycYtb<=Odk3ek@jsP!*Sc)KZrVj z_qM+A1oVBd1>t%i?Wc>wlCCB|etUFwc0_w~YxLs|G*aK(h(ag}!4!(7W0RAS2iO)U zL0F?IXk880rBn%X(GXGt@QCy{!@|C~K86i&?Se0u53U2=hPa`IB}%w(U&V}Toh zNy}n6Jnn8rm$}C8tDAoCp?5Hmx-TAL23#n@T zCqD6su>90Q*{oZvvA=zL23~*f_kJ(l{N^`5W!+n-Kz|qq;TNxd00B^SDk4rMf`2}d z{3C&?zxU0o0R6p3F~=|>A1nXd+DlaYyOuh6r0ml1sRqcGpF z4YPXpN&kvCQUY@G2wW4%CKDA~6sG~lY3!vaHtlJX>tHBh_sg*L%j2wPKMoVO9S8lGCY$YH4*bHSV#xvWw(~%`wxCrcR)H%78y^_GwZ`_ zL!5W!CEx_a_$>d84Xp#gHpD5i2O3Ce^ovVP*E!4n{W%;SIe>ni z{^dzSP*LCWPQyCzcx%sV>SngC_^7-w9@x1cBkqIm`7LAWTAHv1ovY*+A&_Py-+s9Z zZh%J{@VLx&*Lc@%PBt@VUw{4AVie7f9Hq?1U~E9NPHlOhrOo+`04tGH`sFcpKrpUt zZkn_Ai*Q=h9YDK0*RF zol(+!^ei>txgHuE1$;7j@%)u$jphTy7m=Sn0<|31U?aIP+qaSzLnz%+9m!+G!#>SI z(9CDL1Q&I}u`f;FIcp)xTZ$e111R=Ozpo}zKZN%X5kSN~^dPpkw?L(7k9O$vTl&@~ zjR2l(CL4luvI_75=JVY+D4GE2ZShQ~D@$2Wmake3sBev}k37txH67cTI6rylb{_m< zY}q=BM^M0>sgkBVb0XM{)W|$;*`ipysGEg|+L;JW>?EC_e`pw^iPCy_8K-e*xUki- zs5VTp=rW)^%T^>Oz(}b-3V77o+gb3KStWq5;(3V@!^HAu5)EX5PCp%VM#zajgEw%B zMX(7yf@(Aq#wUjvg9a8;Jc2In+z%&a`eF@Fpg%3U4;ws7kej|p9Tj`TD zD^J275*944p^8N~^&dxsP6 zXug{{^HyisTkjx!xPZSI{WFD8$M$>Q``!iI(@NL+`nJax|NTnr<6(f7!6I!zHo;0IW^gP8v)! zqTT1YwU1|bZsy3B_q9!?Kn~6WZM?>UW%mepQR!+H#eV+@^qX6nl6apg|AQk#DNtB| zp)01y0gNq^2bnb<*m!I7SN)7`n!1|cCqJ|6^O8$24qkQoZ=`_WBw$!<(FoPwbONu> zuRK(F(+TFWL)EJ)0gxxLVd)7MA~OJcl(Cr{Cxw84Dxj*LC-PrI3Ug^5oiM}T8a>FnHSROkB|C!h6R!FsAd^ z?$yVyjNVtiCaTdJFco^vXUFqv*7M4UzP~!k;*av?s9MFqw=mhU=S?$6mz2iNHcnnu zQQa?(*8=%D7r*;^zZ3s*`DXxL-c0TsH{1tPTFexJ7QSU(j(62bp}M3%PO6R%m0-Am z&zmSSX9>Kq5k&S{0R5KXC{gN;Jp4iv;&h|by@WR7!=uu@41j7txC>Lt&Bx2wO5Qr_ z1P%cr|EOQv{ushyI|28WYU}FAQ%;EJ{(!2NbqHuwp|VeOy`v51Ktt>t*amHW0*Se1n`}}X;F+Ca)0W` z9V(zDuxQD$DCH3ND-F@50|E_gL5kY4Y12>0Dl`%LUI3@28FaP5K9cF_5;O<%`i@7Fq=f-*(|s7twzz zRqM0C`NiKA*}LkhEWJTdKn*hM9zWIFLIe6Yd}m$!=%?G#uynAtNY(FNgi_}byj6hy z5q$Fwan}zN=s%IumqBd>=@00!((eX^g+Nw=O?D+{& zaCr|~RShbEegQFUk~m@5j^GeLyUG+>3`^Mu_Enqqft@$RuIY`*3FW!H?u?B9g`W=2 z<2-oP>6c+ETPcfh6u@35o2&vE3yy*N+wLqW0t#i%Nz><=i=b65gD5$Q`=$|NtL72g zt0zU+lm-Vtri5)5a9C)Ir$N!O#RhkDGVwa?c77w`Uk3V~UnZ_1h#3P~Mu0(1&ka37 zyB%xWHb{czccb&R%V=q91N7Gc@}X>yuIp)GJ|Ie7#c^UM?{yW|)r5$-8>i<+>Btdd z*bl69ShG3?WFuJls)pcQ!?T_fUC%iSy@7lb`K$)KBFOi6d*VIwnsp@DhApS)eR2k5 z7{j2jADW^o-Z0R3@~YS3P^qZyJ7No9E5+H*IXmvY=dLvId8WL(+%WH(x0`$&lBNar zDMz0NbBf%T0t)&}b-ZTgeUL-WqF_FL9kiWsXzL1Nw6|9?!5TQ8y6n*Ei>R%`=uZnm z5zpZG7lS>Re+C^GsF$2#zQ zxll;gPo*q$@G)(iI653$=;|1=D$9zn_-39#Jf)-y%&}M`534{s3G`*c8@4rzrteikqNrITSzw8jr_e=z299q}9Q{zLAIi~BSpBzR-z24l;% zHPKSHBvviyiRYZNiqeC3;@r3&2PONka0$+J^#BbDwv!N*yx^55@W(#= zbv|6f@uZxm0`#AhVLc)ntpNR}_O_LQzRW7=`R3!BKW~b}!7?YF+AGS=UIF?G;V$gI z58CJ7`i~pqwjbWA+4!i9m4SM}nVaA*MQRfW!#3l6ZPW&G@1^Z0@oelibNFlcyJ(c( z)K0B5!C*5%Fe&$#ayB1byKOi2p zdP4l>-kbJYi?bj_qzSy8cgovf)v6aokdL`oXh8iRn_g!`ExGa9pkAenR8s_M=(lal z8XyrB`x7k#@JbDg=3Koj07sJ}*iX=`gF>M1SZ15xo$KSDsmj{yjD`kp+9#cdV=bE} zW#8+iE+G5b3+!OWHU;GD+azCB-AcxPX14?K2Oe1)ga1z2EJ4idJTiP?MSwrD^O0(S zPFcn%0H5jj!3OtU+Lx*-SP|Su_pRZA43N%ax7Wa$XnyXCpzuEP+ZW^%fehrHJ0le#-P$*ss9EV0q(Lw2l4$df#-$Qwi`RMD1%EQXn-rRok%VgDbJmkEITYZI00C&bG3^YOG<#CI;xs|rb=31oD@8v zUrfxJYCLx=#*}S(C zRjvQzCqEg>mMuH1efW7NTj-*I_I)7${fE~L##gRelc@Uk>6I@#E}nIIuP={^tpfCq ziraWdE}{bT56LhdbRz{oz?}e+KtD%7&o*R}wh{$T zj9#ez+WO)Hqu{CTIiA6XM2uZ2J-nZ-2?kA z%aDfoU63y*PXRv8=Q;at`%w(x*eP*c*;D^# zSV^XBIv*F5^BKV>p>cE(G;N&y6TILcwo_mOq99zLVWYRAtLLDK6yk3+!BImM`xGWVfe0{7Fhu_|(+r znvyqgiWxpF?VrXK&}%lj%|hcXvZm$e_pdB^hX~Zj73kaVci^0KCoO0}OaU34L`|e#6 z+xxc0B$WG;S9QgUU-8-`7^avwau9c*anmWOM62LOb*&BL6ixCIlm(hc#0hMfsoWHgzFQ5?e?@ zAj}vxpHv0xXpoH(95@qdU{mB#)|Wk@N3N<0h5&%RG=~Qente@GTiTZ;fkV7=9&D+Q zF}`RE58~v&xpCLs{n6af6Sw@}y7=iW--z*n0o(<}IQ{Gw#rePXW){N+CMq7+b>E8G zQlBIu7y~*CI%56W`{SkOoFA)>xBlkN$hD)Dz)wA?vNY0~rB{?|aeTbL$&1KE7V*@2 zy*@E|kXG?T4 zJ^00Ex#Ef|lH#(l$uCmr!r{qoqB ze^!8gc_b=7p9-Mw-{~^2-QOJ$D7sI1zw+zyPmkNzXXW?H`|WF=@_PreZ@IlakJ3e8Tb+;rDJ=p;U22=GUqV3x2^-YAGsE{=|At=nSg-(W91nDL@?+iKg=B>+? zZN-MSjJ9q1xwf?QbyII;8QA{Df&1dVzVE>@rCc=q5Njy3m+1r8Ekcoqcfaz~%Xkk^ z4fqweWJ1tczo%0vXz&i8XBJ&9I*h$u4d{QAxeQym4xq32xZ|Z!>ygQ#w!4glx&l{_u9ZhiRsEUS{*Az#s$s1avV9BmydqYo;b<-lf<*r7-T`T zzOQ{VhJW}I_6MxNdQF>*0Bma8^6UUNUK`Dy<~xB(Zy=jCcohLr?e1ix^SjrtL&p+> z;PPlZ`?=BdtTPE@Hm9DI7|W#ePhYZYH)1bF6YqJxN52ftr9J4kN`45B`}xTyyrKg1 z)961X-{#|;?|Nrk{(t_JXF^H_w}^+q=S**&4_L|<=iyUvRd3xi9xp{6+@BN>Kt=(; zI*YI#o-n|@-YsuzBMV5Lh`j%r0mRFfEnzZ~=RG>cB%OqEUPsBc2971O9pI^8hm-!e zV>*-Q9|QsbHtj<5DMD>;rq+E2DaYHkOtPr);4(?NDP`B$Ssh!p_ebA0^e-o55#(?R zv{IvX5&8QKDWAUvFfKcwHgDAcfHF=C`}@3;&WO8jxg*wZ+7g@kc1CC8e7xaTo*x}c zmrxa;H?|_8_wbHQfN=mh*tiS2eJ7pJo5eDgN^H!K*CWukKK#TOq9H!q#aih8P?ly! zqr0;nfj=lsEi4uV$4oH|0WDLUg-{`n8jdYA5dG#3NQJ6}UhmHgoIBB-pi=Gm!K5}1 z$+6QjsZ+-LRziW)oP4KS^?WnqgEwzphl*4nK4&qUEly+$2A;i^hUdkNUmuH>j$Tu+ z_laptla8Lb?;D1I`b+og)WIeu6+hyB?PW{;(i)=z{FxR}$#+3|WFt z7KmjCt8i@0GCrlE&YR}=jSK#jYkBgw`|rO$i6!mWu_K-AsaCDu`-=76f8YZji0^#o zJLw}MNQ&+))QHhj1@r~KQuQ|@qUp98XVitSUd@{1AHRjUjg6CjME?#nouC5r7v}wZ zDtdJ|f&Mw?oWtL8UB8uW?-7u?e>Byx-y7&#)#av}Zi?@H?|Uh&?YYl=Zk%`Cd9iZk z%Dso;KmBg1**Cs{opIM)v2NYEl+JL*8E3>RUhxXV-dg_CzBk-(0|A_elbvwcWtXvb zXA#OhcPj7WXYQj-@pRelz4xBD_S$QbJ*e$yR64V=w4boN84B(1NAX><6$R=3o~Y$~ zUclxq8Dyg>RUNjP<*RiR$T&?w7sk_)*8*9OldWx}yAJhy-!Lldxn{7{n$)XW)SBq; z3U+IE8fBjXKs62c6PPKz`&5tFP|f% z*PH`r7kFgYnPK3_+^%Fsj%51=|f zYU+SMzdcs0SVC044M)K+4;l|S`Qy@l8XNG|(e5nX!&R-v$Bj4NlBxm>5A?+us}{%0 zp8vw=8|jZ#C!P>Hr-=LmNQ+F+YOcdSM3xIw?cRK$89ZgvGvg^ozexWlh6bbBev=P` zQ;>b8qjyOm8UXoqXco9O$Zp8IdoGfeC4r_6uy1g@91ULMv*c!ElR7PM^55B4Ar$lF z&3~%Jc~Q&t=yb4Fy+SB@5}jbc>*T!?EPGcK?>XQ6gpW9oY62h(sH3X3WK?*I2hAwvDwzamvM=xBV>6KI<$N z>_QyBa!H(iPA4?}yQ9Ryg3mH7YO3nH2+>Qf5Ma;3lf0Yu&B#C3rq{C?kne)TgORSQ zG>aFR94nWxOE0>dpHJ?#5LN5F?g{iyIN<~W0k6YGlWVyo2t$I|4y=yeuV3R)^ zsiGwS6)XZD2-H!JzNH~!rV_Z3G%5g8Q%mt|0d_6Xc*VInYohdozjsUMA2SZhm zn`r(Gg=B-)LYX%`SOZuaJI68hWg4dM&o=)c9zq|=NVVEo0{zD@47P7Iw&SWLXT`IR zJCCt}O3$%b$!APk_LY^JjUCrzhXtizm@4`z8#zZb-zr`L;510$SCMl1-7&P3v_Y#Z z)z~qmGxWh$`R8DPQ>G|^t-YSZp3ce-in0Xn4yN~xLBLiPfO{Ut*G&q(`y`q?Mr#D}0`${eJ&fP(d*Gfp?X**Q3}km?4^?_bnV8-f9~eDn(mCevzUigmBfw}~jN(P| zChG`jhZ^tCacagtbWz&2QW+ieIELHvB){h z39=(};G}0Pj^6I37~Z9VJChj~-`K=B(eYw*cGoj8jod>)K}f>It4&%w`89+8KYQ;1 zXL()T|2}itoHBE!_uZY@-YL5vU5cPIDFT8<3^Dpoyr%rU(cD*F*W4S8N&e=h-CX~c z#Qc+J6r_owf>e>R^o0esm)V^y(|bK-&V7HL-wYrweZc|GZ+A}lm2Y{z~O^K+|+Y~lPMsr5oOJl08%)7IWwX@fl(B<}52 zU*AaDk!ri}eJ9x&XD_vZ&@LkA4{%?wv1p8B4wcipHZE-#jFUD=ZBUwmVVQ~X=WRwh zYxxA!Vw23!HUhc)?uWkPeR!*0zWn7c+by@;;>E97v&NL4crHY(pY88G_uS)}d@(h1 zF(}|{J74<#b_4x;@84$+KC<7Nk;ba%! zK6mo-pI^&|BG7*=RQk=h=j{agzZn!Q_EHp>1^VZof4<#)_uVFIj!%B_lLT3=vPT|y z#J>LZuj5h~Si$|^2S2b&F1h5F2qz%^XMgr*e(v(iFSjeNywa2%=Anlk@@M7pAV8(x z;EOK0==o>=>aYIFgW(Dwsh)Kx6?BM)IQ7(1Z3AHU^wUo_{XYICX!8}^@drP=+4k(- z zB~k`y={*h@btV%;^+$=92Nx(3zT$M1#sP{bsx;oxJQGsD1pt|;5_@v*ebzoeY$$2U z;dj*!^&0LP41?8cN!-@9onk8&oaUH@Mp2(!goR%MaIbQwCUFgbFXgnyCWv6I;4T8v zWJ62QH~{1hRGg0%4VBM6M|pS_KobJjAzV-}J=G&{JFRf|+#_%vLvSH$V=g*oalq{$ zU*${T>7%8Z9AD`AtQo#~>1@!+t}3^b7WH|Nbxbna_L%iJKO*7BVK^ zfJJSxT5yg>IWH4ZndQjOMgu14o8E(*n)2JnkAnbm+DPJ}FKumanTupi% zZbiWY9~+z1=%b<6B4QlWPHjNb?0OSZSTq2L*LmaAjr1xnJYhFC!et13iVh*}Pri;tix#;*{#*(Q_)4^TyMVsT-f#Tj*5^(27cZ=|4_&yN zwaUDoqlYXHZUN+v$uHuZsdjp#QqaRlNB%QeYP7>-I}8z0_{L`Q~4G za?hSUcGg*EnXJx~T|kx|f%cLNU^{l8SUSoz?|@_Nu(4?Wv^6#!Y*=& z6^)#4=01IbuzD47f_Lf=$kzPKxi&$mh=BeGEjg* zN)E~votz{ywBd_{FM3u@)S>63Jr`i_-?YVgufLvVDCl{hgcWUM&Fflr+Ub@6($p*9 zwhHjd7z6lg9Z_(d##q>40*hJM&k$v=vxwypCDSOf)UCTU8~p^28%(9 zH#oGB%7;GWIXJ^10tI5ak5@nEq@`z}%m^=Jb}vb1lAsuhH6Y7`{4^#Y_49Wx zzhQ=UNAB&h#~yP~FGfSh7r*#LyWoNgj$8$AvLposR37Hp08i(fbB@XPQ$cgyDaYFZ z^!IiQ4r%CkUAc3+xIPT_aXYY|ag#7r&Q0jc;D_^mzufE!?0fvW%?R($*o_*vaADO-NUHiUq;}dq< z?YB8^=t?<<$?!`;+2RFZ(E@NC@b#{=(|KKj?FuY+1E3z<4$$Kv@sS?+op+V1&w5sx zXgw_d{CH_8pLMTJ6+Bi~1kf&JU@3xtDM0rK!fK_}qY#ur;%|j5;OpS+@&J87a9RHf z_szCn;8JO&1@IL>TDE{6ft4$%KK1e;TYHzB@|WW)*J=Of3bJGGYnnD`27M z=mHT65zK!vE!97DBCv{}KF3mJD96%R9(QoJ#w6&Y?u{Z;aJHB80bqB8?DQ0h2@d#j zzb-|XlybqLx@XTLCc#p;V7vbLtCsKWp^XSf_&!bAKi#8BgpFjGAn@(38qiZ^1OrEz zToYY1j8eo(^_I^NPYflTXcCp6NaUkzDHKbjBx$U(>i3>$sReCRfvtojB9t#dL7-^V zXC84yB4tXGuj>N+&|DZte`}VWUj+KWu)cM#0({F?EVI2Gdwk4;1uz=M@z0r8$-)p0FWtYnom9+l9`MalqQVK*cFsVelXHtJAmW57Ec9!?d52q zwJl2ufAQ8mRUFrKKGlS%$$1Hye4Kr>7hUT5Q zs#=+pO1+Uo$Ur>=v#YLdCQu;S>aHmpADglUqVBh~mhHHSdGy%-XFYg->eNAE_PhBe$1v|K4zDhQ%y8{KCgDV@FtDK2O^!U9Q51^S0N zt88z3GZ_E~x{)K$-oQ5E0!-2Fd2FOZz@V76$mQs$~@gM*3ANJL+e$@+{i&5)e8Wd0r z{6|0f(IZEIx2dGJ8tDJxp$^lZj`FgYU2*XWYi=rgn|k;9s~H%a^!NdtU1DC$mM^Kc zi_Tl>TK%v6+mn8-2=tu{#g{igfg;d<14Ju6@~RY=1^N;^EBNc-4rw%)ZsfNCFeY9qP|5{XoYP#_Ax~LDHUmt@2)?cF0nk^BrYUg41QZ*#t$Yu;$?N4-hBvPtXs+rM^2rSRG`)&sn%F+4+=etUp7 zG$GXA;NYAF7+zaewD~wK5GKebY?!|1ph*(<-U$8i)Qr@oKz?y75rm1-=bmF#N38>A z1@(YJpr5yJrg@q}!Y5cW(AU`jjZ)wRU7EHv%P&GGRMhCtj>r*zf9mNcZT)fUePU@L zYXQqV!*>P-OB;zMh!(yUpr_4{z*X}?bB=2fCb0%t(e{1dbPh?L%>T84=#bfu1OmF( z17A>peA8>Hsu|$G#DAK_UY;(+v_8o>eiZnuh0)tTr34h7>SKIN(ljDoG6APc#sI>G zi9d@RX<@iT(Kj(K(I5ZfXw7SC@S8_VEpR9w=$XAa>zqzH}TIZJ&DDZ%{tprn^ z`S=hWjhRgfE&jE8+pVWJVM}W3t*R6aJr)Legd7UQ5ynq{8cTw<(!BLAZ$pQ!NTGmF ztO63$6Gt>zg5+%!GyZY>dtzny6ETOAXy)SVfLh4%S()84^d4yQwMjr9EhGj*=Q0x* z&6h5v{w~by54!LmObh}^!CcCS_EwvMOswRq$cnO+6^P4V5cDu5_s%U4c^@Tfk`U@{kb}F@0@lOf&M#Ztlmj2odxH57@5M%Ko`mXaYcU*SaW$qFnKYW?!zx0r`-A{k|Q$H0?~mU6yMHw3X>8~@snh=TZToeOu|*ptO8G(`yeZqOy31!!3{8+0{R(( zOJ~3ZRVaiM@DAM`z@OlI;Dg!BOEDtg3oEFNYQKUyMyOl*f5og4|6f*?geOyKXVNgk zdrQMyj=%nzaqf*Jt*%BU6JNlR*xadKK=M>tf8z4H&`rg zsjq+rUxElaLd}kt#Dn^5@`AzA7~66papgKBdU)9EdfBcKky67{p>D; zDnZ*7Oacp?fG-u>yQ9kVRk$3+Aas%_v(dZD?Q8a0tk~}Y|Rtzxh?f^^}rQ4_@9i0})?BYmQ02GPV zpF$I_NSWjK=Z~OamqblwKtn@;WUGcBhgd>p@gW<|8F6k?A=bg;Hh!{poKhe^EfW%yh7f z5aG051yVV*iMVh?ixuLE#GfDnXD9#ztS1B& zY<|3Jv8w-k3=V_=tjrmJ&pQiQi%uJ}wg*YwwChW-kSk2uWM9NK+>hT7RsyN2CL8Yh zF0m67B%}iKC^q!a7(xt5<_Lg?FhlkD2BFQLan5vXuz5>XS+a)mdIkuBn75nn8${p{ zvonrQTNHsz!78k&y2UR3(8p|FbgOkuZ1X-xkP656!I7q3($p-C6Ria3y-)NpNdHH> zeSWF^`lIzc`#YCj7xei}yvl4)etrA*@Apy^Oh{USxpXLX-YhdS7lQ)6URu2sKwl~I zZn$OZ^Sj)eoxEmZQ9#*zjE^4dixIBvaQeStglPDx%A1dT2s;B_Bu9R}?y zc(&Rv>wp*_T)zLZ0-nMhmLgFkiq9qP)mXsmrpVw>j&&?z0LLkcw4aKO+ZvhLSEg(P zrQaQ!9<*(Jd#rylW}W!i*Oy|N4-gHq1V~wCcHGKyZAslqtjOh04}L)l9z$6tHre2=^PjJK8`Diutz*ri4`=8&IBC3lz=?1${oD(?rzem zP<;8!vw`9cew}(98>u25bANk*u%HO);hYNqh;{L||HG!S2vl1G6MYn)YSqkGOOT=m z)sx_ueb;Hu!h4JE)5)}@fBR~yWNbSQ4O@gU7(ckjCJ!F4@cu4~jxpyLw=gCY62Qb- z7g*){&bBxy(gQHV085ccJ7tA{8Zy8hKE%2vs}a!}p#U9F5XhsJT?URU0{viIj@WC# zKJr^v*$p?`plRk~qY2~EJ^_907MzzhA7P8;fKMow=rPBb&%T%ycu&v80frHzWKzaX zdUSiubuE5PB-KEG45WPW$%x9nhVrx#)sW{ttw{BZw}4_8ZFfak%0a#&YL1RfI?&g` zNT)Hq0sM9MP7>vP%38_CIfZ%t5a4kft-gF`WY#WFSYBRcDe^sPV#~i;5~FyG03DdN z3}TX>N~LYyye1;T76AHt5jd1vO*&#HMJDaoUZ&^!TkQG`oA5O=Yi?eInLf|+gRyo0 zA$wx?Zae$Tv+Wox0(#4GHimmaL;?<^XUG|lS|Pz>Co2$4FiM2c7=MZo8pfB%-5<0= zh%%zLFL=?4FGw3bSO&xifNhD5lBzH}nxH>O*K8L#JE0?P19F83L2p?}1i+YQ*dW6I zdzG$D#z8Q36^QhypnJMcb^4fi6L`_a0?5~*)P_0K(PWQ2JY?nd2v7R95|wm2n|Tcz zV>Le$V+egl=?5nLG6_OEuPsB%Sj`XR5TFb`XD5H)BI_?1vhn>rHqz5?Pi!|^{oZ3N zH*m;$xAj|g9HB?J!p=JFTw8qN5__imJ_ty_K^m8%TuDKLA0?#BST1Oj)1O=tGHCY$ zK?&cXx93)c<`I5CK6Tj-)VVi&%=M`ChYlSwG3g3iq~pUM{;>V&pZ@6^?(bZA@JIvw z2Oi#UKYw7KcQ1v2?TSlQ*t}-^X6EQ|0HMUqKi+ObWaH3r!un=A=gc;J{H3D^^nZyQ z#V>D=0!5(z1_@Vu>=h|63-tftAO68U``ORF?7a#StF((>`qG!|&;R_-9n2|9jB=L0 z+OrC}CrdkN_HVrL#$T#K5%(oT5Rg*(U-5k^U-i7(4w>oScKc7EnZT6zNAcJJ|1Q?u ztsP;?I1TU4i(i+O7#HE)#UIY{h+@+N;eevzQyM(vIEpnfb#4)=k~!^4B|gsrM{e*y z+6ic#buce;ZfU*)U?~^N3<3b&9Hb`+%&ibo8T{)jc_;h2MW(B)3jo|cfpusJak@w^ zCyXKGmr_GdV3P0Jdcddr!?S3AM@MA-O>jHrOj%0)?E?DX3i?(ao3K@6v6{phI6E|H z4{Y9J5A=-N6NfPIkBnJe=~k;xjiIHU=^JgWNH*CAj=jucWO2%(>;e{cFo|q z;F+K-JuY0PSMP(qfpcQQE+?F53oba%rm@f-WiFI~r$&bdvFy*^g zQG)VTxTW^I4_I>jI;ljxL>zgknE-=bcEyzd{kNY_ zV|{3ay!#FjdePE_nEUK^GOLG@DETk|)HTV~^VtE>Mj&$%8P3QzUo%Yp;Mz1~ny-l% zL);c7f@3)*+kM>%1Sg4;O7z+2;4FofKEp(DiI${6l+n;o#l*n(9gUU(^C`eyibbJF z*pg)R_m45zF%N=auc;|@5ZFC1Vee}t=*B>q?JG~)K7!qKvv~yO`m~{}n!tb9$s<%4 z9O_3CE&p<&a}pe6fMt}+MT1|P0y{BZ*R?+{&x;lGsL%Th^ zEoSx2^YQ0zu*vap`{wt5K=8j2`|_Xt@A&bL*ko(k#IBk)gQMVU#Kb7z-uvJG{x{Uux%SYJ0{Rn}1m1k>HdCZ}9Sd74>{3kilk6RH^|*h- ze!K6%ecrqT8V|L1QCsChb2q#l| z(P6Evt?(}e2kHXsI##b$1T7 zeo`*F@SoK0fxM|#+IPji68KdRJ6ZE8C0mZ)=|+I~>Iu$=Yi+D4Y+EOW$iS5Lw(I#2 z%Bd((`=z~B5N0WNr1+B?!03qLGf8nM1sK`6aI;l5xd3BXn|;n!RqwX?N>XaWG-h}%hQjKkr5D(u+GPj>P&lE`a}78G2l33})EycN z&+uO^wW1y${fg)~ODDfmeTVl}nqwMflWcpE*?X zi+d76Xb^#yuleLBtbG1_1U1k@!XfBTg5`%4ko&gpw!xp=YLT99S|aQxtv-b=oM%m! zUuh)-2AA2sXjf3D5gw?0!69pJ2{4#suBb%Qk7i%Ofb}asRs{MpRC?2Ik3ROOopj2H z3|LT9FyVp)Ddlnu^LBwvEogyA2Z(GK*jTU`VA9QE2hq=L3@loLYUq&ZPlCX7bq#Ub zw+HDQKwlez76l&wCo)~flm`m{2?$hg0?;a;KMk-`Pp$~rqOEnduc^u&o#?Zj_<+ZfReq^Y9_Adp6elC*O|(}wS~5GkuR z1NB1z`IIj-ON4*<`_OGR)N!Ztr?0rz`}=xc1_lP~^Pm6xoQ_)mt#5tHzVVH3c(=sB zC~eT<#fx80H|O-dM*`@}RR1RY@s%%L$LXgmu+vVOH)s2;RDa3>&~ZR!mu8DvEA8S7 zmLlYQd7(rR=+D{Vd`C5`2=w1k!}X47>@3ii>Gs19KWxVxcigYEU1^)Y_O-8}U@5bm zJ9onW1@T8@nWi{10$9&H^Ng)pMR2s295Tt5X})+z3BFG_;e_Y!`1Geg?Z1)wT~yjW z3Byl5`DAa00{A`o7RH| zy+mdIKFj=bN+8pH^x^5FD8lL+vDVBKtgjF2O?Yw#huj~L+bkOC9Q?bV_j4huudnnm z%aCVXKwl>N!y{wxm{_(-|3ne;`7V{Ri*sS>&!NDY7t7i5VS;UA(q1^G#&#p9=^PS} z$1)aWAj9W@`D7h1sUY6Gm+~xZK8iU&Jnsq2`zzoxOJmB~B;Rkdx{8c76Ucj*0NplO zL)3kbB(HY*_HSFFSQI$&h>;Rfi`kIG-R<h#{=m>1ocJVC5Z8{3m{Z* zin;`XT?_6KngCo&GcKK=EA`yOKvu6RMm#YZasJx>;U6tG2oFuYf@}pcZ^@cNO2vX2 z$e#-=^xTUMFNZ7Yje-#7iFdUGckV*Ef;v=I-c@=b7b-v%=10flPuSS~_gfT;;|M^X zXxJ1_5XRHbu)1T8CRlkqXrKB>xdQrXr@JaphiJh}LU~63MB1o~3dgOMM!#sf|DvIJ zBOeR)5C8O!_W3{k6Mt9}On*9LIwC2afLt7ans>qnn}9}3!WTxvC2V1jwlC8ffIORo zOYgX>9Gq1(X7lG)*>jr+8b_W?jj#q^(zr76#fON*o*_+MP&Yxus#4b4)?$N$V@xtM z`Eh)}0mcIOiYlLBLS-?DS8%&3fMSY(b~z+^Q-IGunxD6oPc_)c@+NzzVc0gJr4JG0 zErV~70Df6Y60-nm zZ7sg>M9M$-T#J<+^**aYD_`5xY}?v**-h8pVvFkTc_&gS%Jkb*MJZUS9Ss#Q$0Ve%>(dX!jD8H z=K3pB+`n|C^^rZC(70_lIp+%hC4!E6=sP`OR2H1Svse z!I8_4(^R!xbCb;9M;eT|9u)AkQ~Txbe6v7*!(#{R?)&z71p>++`rvYcY@!{QqsO)#{qB!HN!AP< z=bX`IC%lGKe?_1_M+fvB)~q7Xe}@g&JEXa@e!$6O(xd4A_{TqX?Y){WW?n#D@n!V+ z@BZ%ZOux6Yhkok>?xpcxvSf+r+2zZZ&tA6geCIp%sZV{%gR;pjKo)nihvL=Dro6rL z&O7bwv(NTR0{rXOuXon~&H2Co`@f%k2?F}5CTa7j5*$IJcuxFqOFU=Glx~k; z+mY2Rb_oCZUHjo%0r65A#)6`7esjBR9>J_%JSsI4_Z~m}J$6*><48SZ@-HGPFki~*Yg%n# z<0_k1*XngcDd>m^Km4)UBK}=`w#o_UqIpdZ9Y+P=Rcj!JU_wCFgViZMgyI_LKR4?- zCsgT+&M6Z?pz#*?l~t?LE4YjDrAQ<7I5^G6m9iB$oT1|yt>S#&p@TN?zy94u$R;Mi z1f-yhNm{FFP~57`I?1)5y)%W+ys2lx1QJQan}}UTR*Mh{OM!Fo;Ibir5OhVAmJ-XW z-}XKDfKA~p6Q&_CFpnscBRFEiS!Y_}sI@^|%md9g0e!h(P#EnA`lxfT^R!j9lIC!g zeDsS^_eJVAcud=6mtST-{Lv3J-yp1rtw|gVy2efsG-nsHfWG{61k`*ZU?FQROWW@n zeag^8*E345CjmhO|MS*GW!Bc#Y>#i)jYKVwIJqPa4Si*efPTnE(57orDS*Sg1+~_? zu+F+W(Z(~G%L$w}$$}pqMl+7&khROgP)>SG=@9}%*lcoWiNlzr{6T%zmOX$3@$410 z<@kg>xGw~NFF_L7PawGo{BBsFNFn9ZJwep_dKP~!A0~Q#7L7jc18Asay5G_gC+d5j zZ*H}zoSnKB$su!X@E~dZ%0Eb?`ILHgMRah`*z17oyG)7l2DhX&{r+m@i8{p37NA@ zTXk*ij6_gkKb6UXgjNFkqNB!8W2I%PJw#?s8TsQYx+V8(5$XOULXfcuB4)DKwcx0k z#%K;m(#9er7|Nl|N$VZ1WF42;NZ0o)()XNIA_>h^&bLC0sJQaSQJb~HP@jT@s12%E z)*3b8jIBVx5?Zjt21(5~#oSN?PHmV`+&X-dBjCv>(Zf47@3n*5`z(>Iu@7DLVT&(L z*}<{RSRo8kz6?lsu29NnY4Yi!HU)$~Z1J4a?u?rRf{RHs`_s&oa3N)%z2;udzqUg; zd;j)t|JH9-)OwljuU*ULG)InIyLLGvG#eC9OwRB9-tWzk)*abqyiuU9AN-qtyv=s) z8T1A%n3uN8FIqllP4#89^s{^R*hU1QI;ybHx%`sl)=>A_e%y*c-^o^dd6N_<0{u5h zz~bY-LIL^L&j!7_>#n<8V6GhY%2*@+dj-Yo>5)PO!R9&VcraO+)xY?-_uhL=ru%(; z@C8_R%HLiZ`bQsq)HU+D_r33Zul?+2KYLy~FCo2tw>$AqzUG>1?BDuzHn}CP7)vsf@K%j$0a~Q>Hm#6WLPRwiCq=@teSr zUp^-pS#zRkC%vA4ejV*4?6v!N%bK9JECVkZMFEtwCwGk7-#tit zF6LPjD-(s@S0=35#C|)mej~i3QdPqSQ%_#}DVewyHLbF?rX}Eq8t;#y@_T>bt%aEa z_h4cXKo*{aemW;U93GlK1pxOz(VTP3UG5X;cMe?y6zcVZa`~(>b$Bc^#=#YEUS)8f z#>aVnN{}$X1q=udJkVayA~g7UJM`q!HvHos5#b-j9ellV-iJ_t0kd2g=X|6ypl{|;!9-7&Dg7t;0TE*giBtJKs)qnpf(!(rU{USW05ykz-a|LOHLE7xJbbp_g}s zkNy;X%x#MovB`G%qSizal^r1RNeiBN=nJuw02Mxi83dVy%l}>jqDi5&5;ENpSl6L* zZpOnTQyL9P;8w0_G)1z1F!1d-jT*a0=th%|?rbdVCsfT}Vhj#76Z@s~qENzEI4_KnP#wKd; z8BekZ6f^{ID<~S6&4^Y^XufN)MG-J?26}4Ii?|3R7=wIa#A&WgLQ>l>8(<<)>YEm$ z;{pJ=RH)r5OSJTjXGXg}yU{49h5UPhn>4<1lZapv+<<>~FP~Ly;JaU7a|;9ogxTvi z+xv9hb{|qIz_i8fcAGcQPW>V4jnxrwqmq4+P1u`F`?2V7Ga~hi{)O3?8?p9SfmC>U z-eT*oEXV9g;tqVRxJSR~3eq9%zjA2y5m;`=6NT6k@KkcOXnCs7;7Qq|``{`?GcoFEo7Ah6*c{K_Yf&QyesCfPLQeY4l$*QU z-Me?&CqD5BcZrh_K!*hC(&#Iz%?m)oFFpU#)zxKx_=kV!8vP07O`bXAoBx-8`Inx0 z@5Rr~rrWEpueU8*wpev__3R`5F6E50`m)|zv}lp1+mqnoop6Y5QqDcM`B|Flj2rJ_ z&R^X6fV0#ocl(^V&0{^y0DWB(+b`uBY@;8}_j@@r+Fw9s8QR!%ggRWsMK;*5ZIIGTf*I~%ko3G4zz2PlAV6mNUJfUu43hX0Cz^Om33 zz~dY6cV>LRTe7=VU_Bo-#!gegg#=zO&pv;6MbynZ{{_0^&GW5BK%e*r5*}$D&;vD` z`e>!v45k=sZ@2yT-fOnA-9pemftx}>@eQhLEPCu(t6qPMw@=a(Pl-*Vr9@T`LzP#U z2Kz`7p*GRyqn2M-1p3d9%j@{?z(c>VGtW8;A_qWI1Es;%#F#xa34_U}ML8qoV;D4n z+|*{~MgcXM;Ak@F8EqVzd(uG5emkWdN025FtHj#N#@Ec0ER5| z3{o5|yfl$9*B#%6R;$7~+6U3fmRTh}A!7u%%dn7#2FKkzr@9K?aH^e>$qa;!aOsPHboN{zdSp${=nGDjxN}~3UjsXUgQiBF#zCMb%&=^2J zj;YDwh4Zbx0T268f=U3O7c>;Ct&!-Jqih}n6}EE4Y8&b7v$i#BtfIQg#)k*2bJtdT z`k{Mm&Em7H{+_2TPl~Z8@s(MajFVx)Y=T{N2m1^FF`ai=x&m?T?rc9aplM$#j1%9r9EB{`bG{O%h`w zfBdGVrn%I_Bi@$R3-lj(;-KAmZ@af6sQ`8tF89EDN4#N2sK7^`JY;v=v&TzQ8q$l- zTWZUf{xU=QTB<4n{ntXJ;ytfMfg;dRVgUcA_O$JbJ}fQ{1b z$qGO|_5$+1Nr(LLue<(Qli)+(%7q(x=btNQoER`fF!kaEb+~DEz~noR7hK??_(T8| zY?AKgMoJM=$)QK3yVH3^#ZSazD4MXEg#L*XfO%>X&Ad>e_(`%xOh5U4NT zg3_nb_KuHP4@#pP<;sm%pkA)L`Ys+=?T}@h_+A11bVV70hB45sFi70W$#hjhjHkOc z_SiR`mP;@g1mS|(p5?bUMtN1Zm@X}U(i&17uHnyvBjB!`A67TR(Q-TGxc6CUp$v2W zW_b6R{sXLoHqZ4rBNV8P0$FMc{khFCZNIRyw3r?N27o> z7Oc)l!s9o%dY5RMd@V!zGjBl+=J2)l^u`??Ek9Mpg2#ME(wYc?G^SbTaRdSao2`p# zY~|`^&L@fD*ykxIa!Agi0LXF7LIlQD$Gnzm7P=x>q8nzxD|&t{xiGIf4S)!cPgE12 zBiCS?pKG*zTdQsR1ZE^PDK;8>b!y{8-6vok0lMT{R07zXqHJwkNn8O0^wVi0iv9s& z094?c6Cscv3nN=^4bf_=NMnAE3BdAW0sNTK$JyLQI``TAcl^ZOd(?TB_}BX_nMUHc zdZ|s3QDAJk-+GtjNx6r2Jgy9~evnVQ79M(j-}s~w7yU4%XB-e-l#I~#Dx1t5g#M%o z(Uv3A92T_?0|Ou}zEX5ZKqDaUC5( zi?r?v7$PBo)_w_XUr@KqTC>}%(73<`FzX88M^qXMOmo5^QkUS1p&#&)5d9?R-gL>R z?Ra#n^=z9)tACoUJmFZ&f{TzQcoLMDhh&OP^B_s@?LaOT~9yjGyE zz2t{K-EP}=4LC`ZGVk(>R}haw02KB`|!+#Z+$BWIH`I6*s}+Je1h(c!?U@`v;!=$cH+i4{7sDA>^U)D`X5|( zZN3;k-LF4Bioch_NxXjvpjiI|BvIG~d?tKcDg14O=ftBW5<%c+Y13iDcuqV#7PO?e z*5^trHY=*o{!hT`q6)8!pyUGZ59Ro6gU8LlXO|M7P2gMLbA$kWYKtox;TxAUVQJik z7Cwdwx)(q>w!kt6WA=1-)P``;od(RSA6YPi^U1VZKJUUWQWnZoycA_vniy7LVtakiAc`Lj3evtHUI<)Bhq3sg>`+=?h#zm3@Piid4}89CuaHQHIg%`}QaDl6d0 zy_M-&`dezpuRfjlUTF5^9!q<8r7rq`t7xbs0Q!)YL+uS{9R$bLImO-rGiey$+hJe* zS?9|sN$(Ek#Y6iM0AL?5#?tw8w+*HM?(ur*zsJO)9dex&kRKol{(Z=gUWGRF8q7)2E5CN8nFqYmjKI>hA zlC{e&DgyoIN9EN%Fc{~5@O=B(owo-QZ}xuX663%*2Az@hG1CC^?}Y`g3BgbT_%%6Q zTEqv9vHbUgxgvA?;JS*IIgloJ5>VezUyUz#jPzC=NZXJO^4H(1Jeb-jFpDWC%4Ruc z)&S0xYg(+f4$V1$t$S~uEvlHd&E2XfPE<$0I~zqg416~}8QZne!}t0=)lsDG&qZ&_`7cgF12e7})NgXsvACU~C${Y@x9ANV*d4LOp>EP$ab zRc4Dw2N4ZVS^sbst_9WBMEbr2(x~u6nqYjxwtUqh>)O5Fsuwg`%cA8rG15y)y?)#9 z^9Sv;m1kJ`uYO`vP4$*s*NQKH0$=_<>#v!z9qS1gl2S?#CbhKE+6h>o?2|5CQ~HW< zp^mlyTBBp!mjuZ60mPLPl$%^TuZ1q5K(HvZd3fYXY0))muBGQ5Hq9LO2U0qXtpp1K z5?VYgP(CSwy*~R!sr9Ns)*WgOensJI)E>NLhjkB@StI`S)42z%Ve~nxnI5xfs@&QU zL`;Rtc#h4G&CeyaM9WnALQNFSsW?&kKmM^V+2&jRPb)$CK1Prh1f|@swjdFtjSB7( z2@zG3iBtf*%km*VI&B;8+-Y^uC3fbSA0QUO65Ddm=Rb&}0Ofmm{x z2`E~@hCpyY(TcKllY}JKT=rjlKK${X_q@k{Fb;opZk_$y=RRjwU3JymYSdfUn%4sK zJG;m1`X6k0-caNSP1d_!sz_y`X2LSrUuqJU?KN?^2|T>le^h6nq_e)_Hj` z`W%YLFW~DLvSi8*kC&Me(1Vxcx$-m?v?&7OVX9w8w0*_qlHNp7-kS-CH#LDprp)%I zuowkk$Cd30JRsfFFqXA$dJhi?MzDC7-fIm3tj1mmuJXBAkH1bo}F(7OMjB?hTD?cI?tqt%elS0obKI^eqBEtYFbd zC}8hJbZP4KPY2IZp8U_Hv4(>5L6*$IS^;36xzWc!KvzfL|F8b(n_g5N;7RYnNy?y3 z#z^#_RKM19H~jJ)_{z(*f$~dGGDZ5C zma75!X{GU2-BLD6z{5qgMO3ApJoSwY4BIdnFa|b0W#Q2g@Knr|dkn5so`0rAO?i2MK0f+IjlPKd%Eu@vCFU=fXM+Smk(IZPtxI)y4uUc^ zKG1;_Y4*EcaxChlGvBpfdluf;KMQHV_hzjORpjyigw5BwCl+b0OVa%w})?%a-#Pa=g+PSDS~ z8cb*EYOS|#ga9pQzCn(Px?h(XvOm0Px7963TWVm)BD+tu!nRhsyL-s)E6)(UJ&3|C z3DTrA`1;NQ5$Mb!xl=HYN;Zg=#s=OIDgZi__M;99fpYH29Ktl54J-}lAH|B`xc8of zOTdJU4|TDgN9?H$TWoQt!4}+e&)K`a&; zs&?3lI6)12`lR}{_UUqp#S|aFUBcLf0M(NjVlYsS%8-V>JXK|%`fp#hNB-+iEz($N zx%rLEBlSmZ4mLq-dNd8`8~vdlLEx4W>)5p4dbVWkJx85s$DMqt4P?7)&(OU#nCswK zOt(m>sQjtZ`1C}nD;i28c#_+I3S-XTk{}_;$1nX}K#Rk?DkzYA-V_m7KNxfEQ0xG; z@4WNQb6>={*1os0J+B7zAK%z%x8J?no1k2}ml0KeVe1rPs?sY#{1p2R=WW@)H z6nM)iaP!SKdn^HQwczcAh6q3j$ioZrEQqMSB$Mhco4Gf z8C*6ge-i)xG3w4@X3s<3U11JaX3>7d3#h;pHw$lHQ;pIGo;wGh7=o8or1?AV-*4aC z%yUw-K|kRj!P63W$S}f(LT->0dk@*7>P`=2C#9K!Kjz>wrInP{UXkVtV1d$PxwW>e zvJ;OwodMBUi0@Rcc{JC=xC%S(E}W#c>QH^6F+fV@^=PUc+^ZkZ+yC+IebMcHTHk|b zx%9#T&BgcY&{)lu`@Evgsb8@DH{E2t4{tzdfeV7Hh-tel9;OBKX)9EQ^k4!N?iEqi zOf8yY5)65tur$`(h&9f$c~@U)CFN4?1qwnb9aX=qc%`&+3kT>6fUqvITMSZve$QU+ z!My`sJiK_3Rb6zph2rr1@a@v*Yc9a}b58*Dh0omG*!x(pHOnq80{xkBdD%DlLMd>U zqj4lUiclYbbOw?ICM`Z=&M`CKnqYkQ0p~^U0*{`j-B&-8jKR^wloSRfJkLv7#6o+~ zq`}gjhx5KcBru=O5d3b@lKD0^I*2BH%0@|Zp#XY%e$BCI8z$<0RYi?0S>EiLc4=u7 zL%nuxW5{mXSBlwAlBoEas1fc<5cICn4jvk?(GfKFOxPS+;nfSK>~}xhZfSDZV|`<( zomW`b-n`u~*=apxA)X&Y8i)_KOhz=(nNXhN6K(V)z&*+$sHWUnf<`PPpvZWZ`-uuC_E1 zu;qZ;Nc(^dP7c{rD}cVO+D7Il?NBB1syLf5Wj8DAZPrDRsMB}5sEa2YHYa?P)avv96;HrH1gFN$;r$BfTrOJ1Rg)FoA2vJ2N zNZho^1d>G+HEsL14A=v=w_7M#Z&h^@2t3AZWg41q+G2T9j&u<4uAr2Bl%qr&vI3Ac zzd(J`wny=4O0%G^xZ)3N^X>m)(Yi95Zmo79LhwVR0D^%;5PJ&dBmJN~N?n3%)J92V zxbgPAwymN{P-o;iV%lA6m3_*eXhIiI#1to*qeThClzq-CN}JkfBfV2N8~X5O*&o<=*vX! z*4ua57F>IDC_nBMm#iQ-C!5I}JO&0Q?FItwb@v34%H>O{-5!Vlk?ji-=4hkp$uMR1E1iZz+&jNi1 zdVneiYcq|R1%(0s7@QQ3<`%i|_ENCG06O?nnSMXKpKG9XMf^OxBaeWIQ3CNrruGT~ zJvOEoS&F9=08A9{P8Xu6uh4gLeAGH_y4fZOh8YHvgaL)A zHLI=i{bzzHP^{smtNZw%A*3wLZ5dEt6|6SUf6c|U%P$5;3irId$2-bLf9uw*wu+!7 z8aHY41M_>CG)oG@v_RmbcirHF%Y8bhNj3YYv5+6W-h~l;qhMs>inb3>l?ji`JG8MV z3Z~5VmHtk`s~8J0$)b?SesfEs2RzGVL+%f+Nn2SHvo%Lo+rj;#nElic$fFYNKhf`b zcHLOsPOi<{?Za`~o{!@1sh}S*OW`L}N^plgyARSB0=ZER^TyUKp0p2~){Zv3(W(d5 zSY`h@dk9neXY&J?=HTPq+3ga+3=^Fhlvrm z>cPA{^VH)O8t=8*@}!k5W}`WFiFKaRVExqs+q4C+J0+9%LL7SG!;W8*z$#l1eG~9y zK{0r4+7GZ+K27C|SA=zc9l(H%^|l9HbdGH#l1t;4pZ4d2l}E* zG@7<+F8vPW9sVc+{ln8`E}T6a&=**~{+2Do*a&_MPCTyJ&OW1UE;RSBZFu_GZnrv+ z#gH@^im0#1`bYAZ3qW7vB9K4pl5qLO%WcKdnm66eBG7-+Bz(;U6oLM0CROpqA_d+y z3JB;s{|;XTrvtA9yDFudzQOx~DgFJI8>A=1MLAdJ_q&k5?-iiqym(9%!CvK9<0qO#iDZ({OWA9sz{0*j=8OvO&^U z@5mHv1fFdQcUk$ygDCi{6w7FeQQiqJB+$TD#jqG4I(~+9%MqR{foDcmfHgcyMVT|e zuPPAr*tpzI70sSN*3d<`K-zc3`^r;CO*QGDu^g2GEJOhv`+MvwKihA+Gbr9@w=j$P zD^0iIqp!B7OL5DsywmDJSn`Ulv@!>QL<3YJvO2_|s1*+*Do;oYH>lk8JF5@DQ=o@Pn|56~|cmgXdT@ znc`0F(;QU2JTB#&@Q8f>bp!&Df*rlG2=tvGuk<3Iujr&2%TmCwBx=xiGlOQoecwJLOkoFgS{KdpF_oW}v>tr+>l>=be_7^Iq$H*>7aSV4wwiIfGhbzo zj6I%}Y5vkglB}t!w9GhWKMKG%uZG<11bZutTNG=AjSp_K?t_EY z)YxSGeFN6mSZhrLl<4W+L;Ag_)z!7w-W`KBb^B&Z?&`+pzF@8IS#Jr_eeFN63kl(r zErgzxW#v}2ZjB9Iw9NWe#jsQuw^B^@vuNn$cOOL}St4l}`>dv{RKw z@FV)S|L0CN)U-|HMr{4MN;~F+a}cQPwUI~fve5!#kT1pWO8H3%sE0sA(NpECKSddd z1c3yJTaW~NpL)WD*4w_xYFe9Yyjpc@GYnE0Vh2V0#@QOF7jvy3@Syy+GB(iPZ_nP} zZX+EzTd{BzZXL&4Px&)Qc=uT(hr||8ABpNmOMPX7!+k(z?o(OGfQih?MiUJu?Gu-O z*XeM$mm<(V998DVxt9X{C!g*j-~4X&FfxI#W-tBVGF!4RNZm9yTKqyQ6d>@&cVKm} zEwDPMuS?n$1PH9EJn}&lf89WT7uiv6xMi!GbH>?gKXUnM4>0%wHQxBABG7;1w0pfz z7J>fjrC9O)A_d-h3e0Ns1!$dLhp%&>FTMx<&w~()59EsjLUe3rD*QtGK<@rnYE^0}8*R`HQ4(!`a* z(lkywx`xn%Ev_rr;CSA45msp=6SrZMc=8h$-jM6A+yY_{j6+Eyw*1Ky)3y%Zd;L`o^ZN{m#`(pbB;niR`n%8ny6a6AIgFQ6gbwXYBV z{62V1lzLzm1)&T218wNL0#aARI&E3{0jrIS(H{6|wNW?*!V7#teh2!xCOU@*h`eIi z33lR|vm7t!9O%e3|KiiR!|!u#KA+tjopy@{rwHB2=NAEeKD$4@u#{Q=jRkxqWC#R1 ze13k6b??l58c6{LwU2i_*GY=Iz2CXcB7MEy_89ajD+2&>$jrVVfe80;v!8qEOMo3T zQ>3s1=z|ZUYuDMli!ZQ{TOtO}`rP3jj{$~7hn@?bqF)GPc0YKZP2BsSg-8iKohz~Q z>Z7dT$}6BLf)ll$z6zd5u_%k+0Ne*aUkYdmkd9e(Nl~N!(gAwu_ZI{GWEp^$MWg7N zvzvxSlJ(+i+duPNQ^u!_Mwt(?0*Dao4hta%`l>_zFj{viN0Y@Re=NcbemD9ot-iFa z^2b)Hi`tq>H@O)Z8FybEO?pM^Y-+Bwib`^1j*@S^soLtQFwx-IL^xqrPXQEDBX)nL z&Nd88+YsqCP#{|w5j6+<2*kz)k|L*OoYWpE0`x5--+dUsJQQoO=~0#nf`w2yK!8R{ z>Zy%jh&Tl@)mGdBNh2loOQ+-B#&Ti_jA8-MOk1mK%K`ZrG}ZuE7Rv+o@3KRO1~C(E zwnGOG(ns1`hxQ*Uma0?%Fnhl3dSah-ee)-l#IzWaSqTD(O56Z?5AL_f)TGU0bFG4) zVFU#A=O1GSKF~9$}ll3r^3wP}kkSQ7-Ae(qeXpG>w-(!-1gY;Q;!fEA!9>GX{DW4nUhll4@8^q83kelARHUUtcuN< zAQ~qgdzKA!?*{0%*krkKu8jJ|6k-C=L^h&H>c*@IQy!)AC;|M-)njC|&vrht&pNhD zSao@&tv~iOi?sC<01(#(Vx$I^BM=oKMiya#0ALoE0STgV%r8aKPsY(00Rm6J>foF++TOC3{yKsF#!X%J zlRI{K-zqCg?Y9WLS4AwABXtyk{*j{OtCv#*`mau-;vGc_yxkNCfW9>7;^~6g1!7^| z;FaLP{G>R>*<Luw*=|#qVU!cc=m*R-MKx1mFR++QERCW5m|rS+B-|EdpL=b zE$g5hRude6z+TEWKwktU7gbpbzPft?_gbRhr-);t6mfEqk0EHF`S7X{D@_1c@zW2> zoV!F>uVl6_Yfes2pqQhrvRE#_^k?CDORyH*jKKYK4`6AaxM19?# zd3FgX#G9)H!a)ws{ToGSU?|;*Nc;7SczYjj%H{^H3(WJJ22J&HUFTJfuF^#^Ry}Kb z|JU~{1U)1iklTggP;oP5Qa?Z{PZ_G#Ejg%1?FkO`IiQffE8w0AuKU1+R(aC#jt9L@ zU+l z!PewNq9eeLMqgytM&M@UEDnKqilH2&e_Ev+IRat0)DKO5EQZ966ctf`UpeMIii}>W zGz$zOOPRNfN9jx?0j^eRb=CEjE>q)(%E?0h?P`djJyrl;me+-C0EuC5zJg6COJqz%=BFb}rZ@mHo=i}$FIRGcVxGg?%-a|N zM5-)JT97CUB~RMDx-=VBS==Vb(VoE!sHHC5cBc4*(k_;9N;KXRQkxZQ^rh+rV-* zPRyKKBFE+_sg^z~)r86r&=(ljIZ5K=`|gW~aZv7gNx(EtE*WI36j?tC{j@>I#9sji zJ=GjkkQSX0WmDH!X~P%L=V5IS8gI^Oo)iGxJ?%sGl`q|66O36!CBW*+vuxd|CnEUR zY@=)<{oN(dy4!^jlI(`D0H7k3U9Z^uk7mgFw1Delld*Q?!`*iq;f9fNpTg0C4zY(o-v4w!nWF-+H;H z$pRHmU0b(nqW(p zA8)50doKJl^wSWCmxhUkbLZWOOIrkDK~Fp*ItpxQ93&Lb5m>ke%Dq4+05Gy7qb(hzKkvQ;Z1$5)Z%)?dA3>z^}4&1oinx zUO1DEydV4Ww|$S_tyO{lq&%TRa3Xl9kt?v%#Wgv{_N-+_I(!UD`LI?dKN$E z5FlKiHM%Yh)TGnc`Q&}DKjNBoMdhz=6p&4$p{wP-0u!OeDni}%2ftNe<4A-y@6Fl$ z&!ud~AtpMFlE2V!9|7{v*r(Z1vt>6r}=$s++kDlpYgu@Lfv^$(2>V{VRc0sudO$&Z4=b#-;vhDY{VN5_E0*~BW# zLpF|vJ{q0G0-=nkkW1{?Lc$*T#$y&E07Z-iq-mT3jK*3Ut$TmBl|hqQz-$7u`xIvL zs-xwvf5$pbkbgY1r4L%v5~j${Tp0-D^Acv$kk;H64}dz0rd#3(H+PXhK{auYga8UG z=&3zepls8rTf_dq=ZIU< zIdPgg^d0{0dBCqzToE&_10HYY6TF#tN_apnyA~MG<);1I6l8Cb0x!_$bHxFHiju3V z_(rGxRt`0l>+!n;9tuKV7>0>B!2H`{zpda(C(0J>4V=yvQUb3 zut5GaTKiJW?xm;;pfOr%c*eddzM+MadHyu&=@@)|3BmxynMwidrQnhaaat+#;5B7h z??IyIYgqk)4q5nNocvKhikqFZ2OjFMzj{plh0~Qj%7G-`0qbEvGg#beqT6hF&BInr z-yMVlTt!{|6Q~U|?*aEJY8I$>*{bz+#!(m0XW9&r^sYM`Ktph;<2+EI#)~onbt%tM z|Ew9lYtJ=K{wI3tUh(R*LjBPx4Hi%9&#&=G_XX#Cl++@xL%jIbJAYwgx7{ITm|Fz& z3G@xERK+xbtOfMF5e}wtQur z6jMAgXg?!Fh#>eO{yRYwORW9gyKq@vZ;cJ4BjhAD6x=HdV`eR;;(2h9TA}s@FEj0+ zytT^!`bCXCgn5O-fj$x9U4su5HM!(-@AHx83TTFXOd&8d)tm?p=qyr8@}za-LHszQ zd*!>M+oaVNwv+k0{B~4UP#%jD9~q_0)5D68DQkjSawjI4Y)Q266O%-uA40>AsZUe0 zwEX3m{gkl@L@kXLc=`N8_B&U$VfMb&I(Cv`?~w}I+)14T-H0QR8^S+7iEnrrW;* z$lp$mc*K7BFn;`sOAyXj&w&GW|2^Anpf_WcsS2cd1Og#oM+!@r`STW93qj&m_D|Te z-+jiW5f(()Y_%B?%FiN1|Lp5WctHKNN^?Q0YPI+YBC`6wf6Vq>QXWXRL{NxZGNZwd zhVj++bCP&zK`2uIyAj}B8;8uPB%Sk(D;O!4ROShEsBzN<<3O50bpb$#jgQ(js%#Z( z9y4ZI)G0G8k66!D)x(x*|Hr3pvEG3!fe|Nc&6*nf%xC{MtDm=kGWXh!dp7{|yU^$# zw6bIae*C?@xaA|SMH)+1G3)>wtP&zf;#yng*;*_fIy0L+AY>3YFmNeQw0xXA*ld+* zgAItqpD7F>&=})~01(reu|wO(350mS&i>G;R!Z?BvY7{zW|D3@`6$d_b|7dGUfM;l#)bs0P}5 zK)ovll}SlYiM2xW4ak>2y?A+PgC_~5Ck=ZX{#&<2;Gq@UNxt_@bx}KRE&O~b%BI0# z>)RP7V-n>97?q|kkH5BDNMpEn=46Hs^b5h;8a&`|4x3o8#FVg#f-LK2AO0{7?nt66 zoI-I}fX^+*Z&reW9NPT?f%_ybkP=b&MhbRVY}!Y|vZMCT-`ilf_qM_#1O6eHWvvequUsOY2b^mv6A0sU30gJ66X_{1n=BG~`v7)T0qE#l*i1uph-&`+~D`cJcd{ThIQD*0m#Rcioe)r$z|;fdxPr z0qX`yD(Pdl0Qh?0?M;~PXsKNh!7%*Rk z|9nGJt;Jca@+S%@djI4&pB2Yo*fLQx^Jz?iVpG<&tKA;BV>@mSVVl=fXJbQ{=mXdn z%v(eb(FIn)236OKAJTt3O4d4=t_WsN`o9o@ff2yJa*C#rt}ykjlD5gCV9{0Yv#C!n z!McTLm`FI4nnMdjrtD5nKz9}`eqh$3C$-46as2=6y$5_`XL;}cXl67s(iHW+EA47~ zbz67if^BT$-c4~R#z_cV^2xm+?WSPU67s(x1VRYdBtUS%U@(~Kf_vFrm-Y6(+9Iub zmqyZzbicpnNNfAg+A+jlo7_3OnsUy2-t)fCTju#aRVgSW?IYM6T6{fECh&+`cvmS& zB6Xdp{A?tyz1Nrv=yR_Y-}Ff9D>RxB_HYk$+~3}5pZFg?A%J0!e($u?=GYA%{;-wT z&c+I3yKQ^$Ve9JOhOmSjqm1|1IOf$zaov9jKdmtIRJz5qx*HKXxw<|7LWHrR@IFiSa0{Y#(8ThX?wwT<~_{cf|3{SmwU8!GYF4;Pk}jNpmC+EPhY` zk&p0#oQJ2^n?RO$Cs;Sv-n)-EWn~pAAXtbdUO~Lwub=znMynuig}CU->NJMpEsO$2 zMwzqgVzzt{k?^A#3v~|L;I5=SPhjjR()2}Tx{pb!VrEf2N*(dEv`_)2;n_xW3Cr+V zZIMPhOhD%t8vPQ2$tecZ_BE}Rf&ZU3pPcLq%tnR?k3QaZhXrk`tHTq7fSAKDgK0rU1EI~PK5U$bJ zBm&@T;mh|P`un__o@3L6dDBGG6lCHDJ~#|Mb3!Q_WOD9OGy#3;$^qK6kd>2Oz8xy3 zDJr0^DE%d=1m-koib>M}-nNQrY4H`+lF0YT5~4wpt^;lG`>rdpvrb!Ry)A33e^bsL zd@yNiknSZ)ije9h2=I|1I)0KpiUo;uFvspPD?ViF_R@(Ysp|&&U2suIZp{RKMbZ>k zU{Mg0L=X#u(y|g5^AsjPLzX3)e`t~jpKMw&B$fsE`&fL`iV4yep6s!u5h{%?pph?>}it2o~GgY3<)zZKMOGx0sRxT1RAJgl1mC5BdKK=EvDU z5-j8qHmv1e{D5VbVWuyCd`SdZIC_`)m86N2fZy?nAosSQt>PL4OCiES(YUc$W8E-; zL^KFw!TpqyX}`vb8hlgmlo}ccU1jBHqX*;!_#Ci==5MH<7~+KWnfQc-=K#fEEEc`c(4?^Lkv@^ zFoFCqw=Zo)n=kD<0Z|YNL=XZ*NNXswsWEp)&^`1Q@T4DsSRrEr-6ZtLNKlfHkV3v# zk{(lr%|XwW@N^{;C-|(n7zq{I4OidheLvhw9_SyAD*1E&83o#5Uhc+x zUEo*8F)M3Goi~>`9WW99+5NBQ^&)DON)|ChP zhb7A!axxF}-w?9qE6r2jzeItXZ~g@Li%HWF04M=FSGbAalafx1ke3PgyZ|T$r^Nc{ zyWAbc+q)S!CtU%=ckz+p-CWtnd0Fhr-BX}mCfk{e;$a0q-|L0{@~HXnx(aA5U-|;T zatzhGcw7m<>#L$Rf8LZ;Vd5X|EwHhj#rA9r;D%C<9>B}N*-^LRC}mN|Ny9BoG+Z!1 zzsOxOgZ8K`xYy!_TZVh>1GlZW{+2;^8(4f|lPy259{1c{O!$i|p2V^jem~+Fszfgo zki1O|57`&KdB5E^-pm<5Dm-&QHkejg6Gg!|In-t4k!NgS!#)&pDA2f1Kwtmle-HHF zP93UOZv~dDEU^W%SK28{FYr_1tEB*yc3!GB(OO8=0Y3KyRs_;=b6SJq|9SB`)fQE& z@zt295Z@)S;DdNxzwWQ17YaTBWO#iS;HbO~Zr1a9pIK*Z-}yd|M=@JCZs`**v+C2& zw(Z~gf`!_5d%2nCONhe=>Sq20&-XUc7tNInR(y&1b8Oa?msq^I8vb3*vw;zc~wkmd36g%_fv zJ+jIZJ)1z68j9bJW6RcQjXuqtX|+!x%u{^93!pK^lk%_EXUgfjHWGEx-zCyv(reB| zSOEf&Odk)@S3o@;fuDg4%vA7uN3s@W!D%B>7Yc*wSQr)?sZB=ueo6Goes@@w)OB6!x3zK>?RRIsF^#Lam6JG!jDSCKohCMbxN8W246-SxDMZD`f> zXOW|cN1u-&x{W|UZDN|hF@S0WkS~wVWuJYQ^%oG>Pg;0(B(^kYD5`4_XtR)+ zKEd}`tkS{@=qoe5wj3=o zj2XfitR1vLNQyd68=n60R(tFxdu^QYU2*JEyZ*)-sm<)!$G&evt($BTz%A4HN$Q!> zZi=8p5@4nN6Fi?PNCC>BD^XfEZ*H|KKd_K?AY_0Bg&}AhNzo_DXZv_Aq7ecg>iJ== zY34B{Xrtzxet_`bfqq3;5J+M?2CyHSP;`BMIG~aX8)%&7cd$|Nqrr6v17bWUpI%QR zpFdtN3OxNxtKIj@JzkxJl+tW3dJ|&@ywN~^Sk@HpS z$pigYCC}@6F%R@#S90bn%TwTWp}@<4KD?xO9_Qg_z#aUWcpn|&-DeJmZJe0li^R)| zcZWUGe|Rl@fLC1V;#yV<@lfqbe*d?Sc%vsgHVgpaqY_ z2?R(=?!^tq*on)|gC+vD8VB*v0^r=?gP~E-d0IU^IBLImbd5_;Zu$ut6j6|`YM-9P zO95aFifqY?t(#7+v0id6#uH|Z=z;%p*HM6Ee0eravhdZTwj!`4^ z3xlbz5*XU%mu_iE2SP zO(ZaxOG`9Q+(br`XZpG}5lv3bvl+8~-QyBI7MLniKt2h^RFAaEnvgkGtt2o-FoTND z8DoJe%D;eUnn?Bvz~+DwO)a?G!dx#Ykz@)jccRP^0CWNUD!}&nnC@S23MtecZnNy3 zYI}TR&K_?fm|l6YjZmKg@kNm&4iN-PX6(a*Xz6Xxb`N1nibcTCFedzLB2lD_DHi0h zi|TEPR1;%JC({TLV*E|vYrlC{tMu+xT}Lp$GTM!XKEgc(fa@rM+zNAjw(SRx**1Jz zn6*}4H_Pjk&c3~K6d#?VY#u_3jbFIeVpu6?;>tgN0#GiXPXZG3)X;>@NA5!MBNBkU z?4SO|QfDl&%_D0G(5ImZh##1=D5#va0Qu&#D46_OKpMj+8<_+LUK*MUBx|FTNx%El z_`;Q7fW^gTs!dIRSc_6-TdG8hNOepIDDyo;Oo9lTfzJbhf5v0YJuTL~pVTO%&3pUh z=h(cZE1~CVP5 zs?Q!F*95g+Y4w7QihB@#WXRbmL4X1@#+g&UbJ;iO@!^lWM*r}1$)EjI3dleG2LRq( zEhGiznB9=F%P(5Qexe_^H}7~Of&Rmf@3lvt-0z*Mt}1qruWSNG>c|8ABSmSmJkURK zw9Y>%Pl4A;fdJ^M^da~Ie+Li9SKifYHfmeH`%Me)+~CT* z5Mv)4)9q6`DKAS}{bi;6<-1OoFPv|)uDQ&LDyj~FcVQFZ3n}alY2?8Y!Z=d^MhEPU zM?`mU0l^oQzMCfmJ!Br}K0RIMvXc4;XhI9kMUA2Qv|>@-bborFUinQxe;GjE=ht*G z5l<=eG~sn#X8Y6Q$vKhT$JS}?1I>3W2r!gy9GY;7+$mpt*0%#PN%}NUl8~h_uaCtQ z9X}2LXHa=Y5}>aL_8L+}$dqq&A^!Ch0Cz=5PZgDu^PB}oB+m-WbWU0|Vpq)@x8##V z-#k!Z4~&l4`lSGW0BMfA1PaP^eVFlHdyxq>n$otl}}kg{V_M)SC2^?VNp!TW1v&X z>0$%{yzY*FvZCf{+t~LA{`pLEU1JdBuP&c_-&C0JT1-OI(w@tFN&!EZ|GvrVS^B5V zLb*t_0SN5NEMF2cMa0x_%GX7!Nn<0E7;Ql_J~9&06oe#M)263|$R`%$6L;*lu@USC zO2T&L6=&l6RBB@gRCca^(hfi~boE|WM41;NX=-G{CqSXOMt+1?1*7)-`gVKvg}pX1 zn6+_B zJtBbUq)k(%N4_y=Gf}<7V+ek{pgXxv-*?5gD0lcH5A+XDm;Bk6Q(zZC0q^?lgw!6+8F z1kWY{0DmE3Wo4)(v>xTeP5el}^g%gC4o;8X{t)%Wyq0+pRZ*7Hz{{mH(Rbs|KVQs6&8OF$uU!ct)3 zP}|pKB}JP7`dh4$cmVNm2DTdO1KNr0D}n{_$?(8Cfgs_f36M4baJ7|J7GtWf$xL+oUZUeO(X?Pk z$X)L$V4fj(mrN5_51)DY*e8q2(bBU(@z-gpF0q=@ZaW`PK4%1N@2(=dXLgZwHpnzb zzCdv{Abk7@7AMp0LF(-|IBa#PaogKd!Zbokhux7TSegZS=5fnx>cDP$Z+AU z`Lfn9caBxgo@>9{_>iRrMW*i1rzB-uw9QgMgHn^(7deP4pu~CI6 z*WNW|l_llYJZqNae!jy79(lp1u*j--`|>v*qL&lUYYLy1zWA6mWaPF`U`-dCZWsOi z|F*$gk8K@(h6TVT3cwG5KBn)O90_!b-qLQ<8!Z9KQ8^o<{F?Mndw@1X#RO2{*(4PLqy_TU4#4ON40;6I+OBf+H0&;jFN!&`zg0_wzm0p%0hqrzI29M1!iHTN@ zjelGq9RWijKK(R+KLPe&afjV%0V=Zj`y8Wg2{*mQH`Y=&=y z=jB_9R91sy0*Gj$5f&&5*Y2m!mysWKU0j~-Fszd#8 zvwbOp*0ov>!sPykuZ#N^e;ojK1*MbKsU$M6-F`rMo+(~e zz0nxzf`EN+oxA;WFiw=^pDqRN05jzR0Is&rfZ@PWKsvHf*x7 z))syAFDyjXgUw(0G%3sXA*7%r^b&3e#uRMe7QXua;^E3a`1V#((=Es6p84m($2g-nh^jy(O%Dey`W3*Svzp!QhIRkdbpUe{R|hVFgAVC{lK20_vV%QZd9#5^V&U*O~~2 z0!A=Eu{i!YbtyE!1=iikv<1YM5HwFw_?354lU~xGFyE#5mzj^Gf%2t}v7v-`;L7uIv0zure1C_QK|N2~7Krl?S{S+zdhOMI;sTdUukpfQ4Zc};I4)jruXGr)^ zN)+s3e8f+iH^+W?*Y~V>#W7Y@Uh11ib$y*hN*37*9qpE`S?^}yB2HnHi1E;5EISPT zC7|AyS6k1vj73guvW@-wtsKAn2tfn06Kr(kd!JiB+cNiTw()1T(=R5jz`XEfj;ZJ_oPQ2_wYtOaV{_GBDEeWJ#hioMH_Gg*wqLVb)S_C12 z*KuN6%7tZwq+QTno2rm< z^ILo2C-?2LrderQwgl<(>u~%4P5y>Woi?|r#ICwzG3!7-=x?2)r!Qk)zU5hO&|m)X zDZf_328mw$g|DnVbg!7NZ{M}i_fwrb=gc`+SJnSob-td3^FaUgq~@#Fl?VE-PM`eM zJO$ni3JB;6_&6^Pzs!F=iTlG=Ay8x;9!r&TLxsP*R z7x!Sc?q>V&matU(sVsakN;jp?^Qs+)k-C^v*5@;&M#_?3(IJsWyiq4wp+b z<0<&CT#U5V0=@8^VR*Sdfc5Z*)P2+-r4js}us|wFpzSfV^;i%@B^01-&;M{6V80iz z0e1)3E{@!?GvqW>sBsyY0s&XKx-7_ zBXkwtE9bj-s0&MkEmj)qwaQq=N-h8fcyKh0k@L2%PZiyg0z*ywX?{uo-BYXpl4^CXw`kgVE>{V2_|{J>;F2xkgDT zzV4XhuwD4zYhg))u1K1)1SpE7nGBfw;|@@oh}g1u736U5L~Eb5ldA_T6Dqg|;`}F^y)XY-nJ}md=V>>rgpn_p}2`0R@ao5oB)xWhNV*yC`alj&A_4 zFJ$EkefGxpEl zyaEBmDD7dxq-~yBuMj^cfqD*^?7RPt<{#Ud%&7$0M@9$O3kdRp&_F*FY!5E+;}?Sm z5x^x2y_ipOQ_%GZ+yRht@WUh_iOjMR_TEcw(<2Uht2NDvfiLwANB6iPzNcgS72B1m-5u zc3{9d+#h_FX`K`HH1J@qKKhjG88-&kKF_iN$#*vY*gA@WJHNp~2VUjqnGK z1L$jjn6?6k47^V~20DdLcX7gDCt7*cjrk1=qnL#v&AohhG@uDg`HKPjE+EK7`J4vu z7ucNYVsh0Nvk?qn9zSZwH38(pm6pZyXR2VFV04)FpuykM+Q$MGNW>Q(bDHtdaXWr# z6;bzz%uaih(^`J~r9}jWBWT{<{oO?6jM)Azg2YvxU}ba8;ojhwJMUpjq`GLm7UJ}x zW6n+OAGD4?yx*o~r)+c{62!(7@E++DKIxMLk&~nnNNW9?JFJXoBjL_28*c02%(xYg zM{H2h;@MbESUSft|9l}PGefrH&P{gd4ezs(^0aN4*l3vun<0x??gH9uJ%EVQm|8GL z7p>$oqd+5C7!sC9*doc9ZvrxxVWZJFvA6NZs9+|ez=>=Z-lv(U{2E}L^LfCgs5*5{ z0NeeFs6@XD!-JFd%w1h<`XOstMZlAVRaP8biEt)i*I)GqHq<*vy^OOYx&ZYIlGzco z?y6goUCj%%WA>~DTsL~5ZGnCEi)UexpkRzjtB0FJxQNe12o*;85m6oj1Q9Z;qJI)% z$Vy>!6u|&KK#G}=Q&fIvsb?rxXEuu=824%ujNs32vV_PHS3#B$4*Jr#DlwgrBIOYw}ZccUw2+y{5uSs zfVA^<;^*Ly^k1JsTnj8Y`KEH>@!_Wg{>2lj4Ehv6KENBZd?`#uM+7njRO9&1lL{K1 zQ1Q9+Xa&}$VZ>Szzzb5~RpQ!KmIhFxSnBNWCl&RuCGq#qMoKUv*Yoj*hc6pMi8e|w z=g|zQ-%?~~f~U>G@5ZnS7&jDj30wgHkb`|gcIQoxSgf+q62~14z(%W1z5P!RA{T!$2VDB@c{fKK%Vv##A2?|kH@h>g-2abbBvw5@~mkL1TXBE3638( zTnhMeT#L^$1*G+CofoYGA%NN$fLlL5%{zPJDJSKe%BkK!W6o#&(|A#6rXFhJA9bl9 zj~G7KY1?o8rp5ZYEfft|^B;WNqV=_$Z?Vn)@FjvC4k6GGAfKKG({%GT>Un$@w$L+m zXnxe3eyY`+eI70gMZ_+n)nEqs(~BP$CJEvWNMn!iM#@Goh;W#@E_iDt6q3SGc!u}~ zbRgpX{lY8=ZFHyRwf9?s3zd__aiJ|=aB&{!RGno|n+@2dgB5pocQ5Y2-5m-+iW8)` zOL1vwad#-i-L-gecP;K7eDm&pJF`3amB~zgWb)i|%Q@F^pfWv!jvh9_8kcoQt#BFk zWPC?=LIw~Lv#!IfhTsEbdQqjqd;l@*)5lnhm|E{gGWd``wlnhJ0U)8G5vsv*Br24Z1+Z+qU7;$nobOw-`PcLDB?22lhPiLIB?A3=ufe7 zFwpSzUd=+2E8HglTWEjii>pf7G5EYfDC6AI*z*<}Zo{;m;&?|^T z4vEWlT|&(EAYjY>VQVva)!L8^r|5?s7SL{0+Pv3Lk@#OK2YY)_O~_Hw2PM=gIGj49 zByo<*SY&`pLdN%TlB0s6W+RCrAA7N|+|F?qNR}X;gVg!7u zk-wB)6B=K*n)h*!4Bk0-^g=q+R(R0?(0FtQ^LG$i^|uQp?6$@HqNsh-!V2G3#J7?t zP4c>&{PJD32bIO3(LxxRFp4mBM&19NN{PQUenE$>HZR_YdH=z3+4bc3WRDwiR2VrD zp#+Tl<%&fxTx1-R|AYIoSFrcF1`_}Cr&0{XRq<|-y&B`lKbg{Yqmh-{PDxhNjwpg1 ztwy7M?9BeCp2)sCa&fr+oXA~fiz+GRN)HeCKAFFsFA;u{7ShDK zdEB*2a+eu699kJAHyW=Kpo?;v6^4Q9cNTUmU&}jT)<%gK*^@ZC=uH-w9CTrD$1#JX z_s0#V8~_s)#l+s=?H=Gd>w8RC>2r5ea23~B1?(DB)@zRY)~t*qqpI^7!(B{^)&HyO zNWw#_qghz0bqlvTYcb&KvoUy6zuQ9F;3G8oJ)H76SI;1&X8Ink>HMM_je&+Tjil(> zo`RD@BQ5YChEfauw*-#fT+Wqec@X05x7bCwbVdZ)Gc?!_Qu=R-j|_opU(ct-nW{AObdjoix#yjP5u+dY0P2BOVyK*0VVZ1Eo6f?MaITKxF8 z8GK3KPA;HHA{-ignau}-(nAbJGRUKi3Hs=viFC=MQIxwv>?*yAilZuvD&F@Pj$4IR zoeXy(+kMopguO)s=DtugN*gTZdYfZ84X33 zSe(^Ow<-R!C5NE}>@n&Pp+HH5Gulp5HY>2n*}{TEoK8X);IqwQ((05#_jq~CYSUW_ z-(0dW!sMj6e3#`Pj@8ckuknn~n|o#y3f>W; zieMGtjw9)2!zU`UAMv(dBrC(el{X_F^1vw2Ya;pZF4M^s@RR+fn|z6^?E0M&bwRsu z|Kis4CbHR>a87DyiMu_$*uaE3PNQX-O(xeYL>VixS2;R zSe^I=r45a9>rN@vFRZ^do#j(w3f3KGd+4QwrnFeS+}dES3UsxkAXJ7=U;@-L{;dZj zH7II?2kL|t_WZ`iLi>)kQZT@GFCTQzA9}^CRO*bJq^p6q(#KGS^la`J_eJ4;aLLRK z$(aVp9Ss#jMo3ha2Co&5i7JOUBvV&*Wa&U#CueNA4T@`09NbJ-tS`X zoqxRq6z~`B6;wRpJez(8nP4U9!a%qXdQFmhUWRMOV%vveBZ%d#upuw0aPfh(uIN>r z{>Y&#Tk?>`wRgExsER=#qmOeT7x9U6hUOi5!E8oBaC(|!%v!|RWUpFFcD2|yi|MBo z-raji73A^;UYS{p!F?O^VGO{FwTO;A<*vDvLehoBG)epf_cTO{bk$p^?O>p3Ve!{G^s1=YE!asKVc+$z(P94 zE#ahHz12`JXF(ATA{!Rj{zmVRafO3TZU6x|kkGI*X-`q94z`NVX`k<_E(-V_zUG(!dkppe`4B5br`p5pG0edSB+71GAc*AEiZzuhP2s0O7R^3h7}^K@ujtX#43@-X zEW<&E6djLzFp98ey#QgVe_zrNcFXXXO3`Idr9BAn5vL)s+=;|A0dfRXIcC`NdOAjZ zguEI4dq*<1Sh5BQ)LzyOiwS&_=~hEy<#ic#UtoX9f}NiOR~u}q$#wr)YkV??(^LC4 zE|{qeU;h>;BFN=vB4(L}Ob;a(D(v}!)eOfL9{L?Ub#a)@lhHBmR@Kja((WV{2`Jtr zXCjJBjvMyh-Y55=F8+<>+{PaxG?`+Q@qqJs_}y8KTwes4xE~Tamit{N0DELW zAA$k_{gp+bhFKf&I}wJo}M*R^Yz%02=0L)VRwm>{Oa`KcWLOu?{s8 z`i`=1AMR$H6$W{e$dLc@%Nx<>S${x2`O5Wk&XFL0Doy2%zIE1mcu;_T5pkb5)->~T z3MFhR7tQ65?`gcxD_qMIuWc`xI!=!M!6Y^IKq6dv;~u{%2+1Bs5OmwHeRRF*a({q% z+Qc_m8zE@#faAH2uUuK^w&e7DULrd6&iCQ+s`LSO%Dr#G?|BWhTScqQ3+*t_vhR}q zU&R9q;?quJzh$pLbdXoBBLw;z57fKC_o$8$ktL-WsKrjs>T<$J5C8(~k`Yog-=ZFN zI{@iD857Zz$@~HuWU9VO?R7tKT%7uOC}pu>@vyVhxElw77r4Qm%$K8y%&eh9lNN^Q zvR5DBC2TGo>03h4;Wm4L9lh)>QU%$9uUb%ELEjC+iTJPV2%8wW;_XA9dXsIzZf zA>wS>uDH;!Mf$xDdG|K8vYg7S#)M$#7s~{z(|Zzy#y?F38vl5SRwd|dwh%%i{f0%S zBoTX-QSVeV-jLiz=a0Q-mCY&{!KI01NJ+&p-&}>V0wBx*_E9_Wi`c%Q8Nt=zZ0D}98&(0!Sw1QYFYWY>`hF3hSg@H5@o)&b10R49 zUSkwk2Pt+bBKj++C!}#lzG8VV;!Wqn5SsH5ksO-6@Ug??2Zt8R7Ejx_mVeR#f@X-& zNz8O$*63cNEj9`qt_-kC8qzwr6j`F(B}%Ju;`0IHz8FCP1SnSUhknn9(RD)Bu_UD6 z?Fy1fR}dgrM1iX-dp&#M6E9GsndF2_-CT|Hj8j}vA+#-l03$w)Z%(I$@=b?86Hs!? zNrpEIayoMFdx{h}8!3&c@Hz6>7@E%KScUZ1RM^%{elt~5I~<^_$5y!@JrJ`P!2{-M zJm9b;3K>UqO02Z2&wPZx;&C~af{ZU*;To7<);C2RCo7kw znIE0)TxTeb@0i}_%96Z3ZZEztv$NJ)q=RZpvtF78JYNwreq7UNCd({`6F6G?e^W@r z1nRS-C`3_ljQxnNfc3D&omN-n+7v}cl%NQQUvvu!c)S}{8AYJ@EL_ZPubmPcr14#z zE|2h00~yxsRkwL+`wt~_$nb9KNS+*>JHKxiFlMdd64t}Y+@0~_fS&)opgn|I%sT<+ zf1^kQR2KRFs3G>%H{qiSc>VL?ln!c5N6TaLag_;!eTk?z%iVUaUQNYO%|>vvyjfj( z@pH>sG?v0)T}-6Mc#7Bw6H+RGF`YkkYUy_sAxaQlKwIc#a&n$kBqsUDmNWWu1_OZ} ziL6o5^Wd;|(U|5d;FU|%Na*cM+7KR5s9|xgR7G`{Dcl0EF9qpPWOLrzAmt=#GF@uB z@3rtV*N$!;(E!9_Cg`5zN7mp4gNizLzTa`eTqYg8*}*;;yv0xwbTd~zk0zOZPn+NRD41yarEBgSiNhkHVXjC)IKfqKRkIE zGiBG2Pl{W1ZnmNJDgkagY1?#fK4kb-&gSmrQwl0m3uLF2lbFi2&6G`ek3XcSR zgowd|RLs|1{4rNofR>SN`F+8e)6ouNp934qluaG&p#l=u#BAtESvR@FTW$iwVx_8w zG=8t%kt3KS%O-s~@T3o~+tRGZp7vEw)70|$$(y2}kWTV-Fx_$8_6`^RkdFof&oxk?8Xqf9UON?&_Y{c<%ka zx~e8IaDTpPc_hQ$3-er&pFg@2fLL*}>C`L+W&Dh6cJ)$pohXXD&v+#oIW1wx7%NPN zJc@|Fudp#(8jjWi5GM9$sC#4hjmTH1tZ6h@1jG4-6ww-^hbcE3*O4^7K%|-1KZS*t zjjP3~=WPystk5BhV<+vVeEX1Q4d<#@!auB-ZXydFdeU3%^zDyPqV>Gq!#{_m(hu%_ zgG@RuHgV*H;5Qm{Tn~(>tmhSG;FH>{r&9<0%3InDrdP>)vy$`v|l=_ z?fE)XswEZ(pCqNx^_uR8x!WTr)gzXAuc@?KMg03!d&W|##k)P-heK88z0poh4S`BR zASAbI4RwhQ1^Mmat-Kri_K~X^`s5Q8bcCyWc*ZZC$t>u9!UP)-W{FMek!$GAm56+TUJ1Y?SVCGGy&d6yYE^f`NFy$Gp zyiC`c=it^BOht*+m-jba6i|HoJz8-G208y(US4=!vb-#5K!5Wr>4v625pCKr#v6NN z)4aqI?U2LVwMU$lflh0UdFE68I0o3dAbF_)ME4)u*N^z+$bKP1_J7W3b_?(Xzl8?kBnvWVLD95RVF@d3pWc(TG-Y zd70nSGZ^!#pFF;*J?AOLo)Nx^NCQb*_N4$HBK-V$eOv&69@;Jw&lRQW%v5|mBwk;C z1U!Qu7T?0D5SVt3Gb*lL^=YsaSI-Xw3?>E61&gLJSBfIwBM*N|U+kPDGpmjckSVRo zenwHA!%fH{vOtMAgM8yhbw1Q^5qGZ3ypB!kBb~C;BKW(7Mhd%11usd2opz;-{?ZyN zkf(`6wzcriM1t@F7k&dD)9xzbyPOOy6gq*)gpY@m9&Ete0oK`bWUWcbpxo0gvozN! zAwdWga^3`D(9Z>`AQ{M2zI_j0Da5GL0xI4_r*?$4%?)qnQ*{bg9I{b-T<=5&WMu=njC z_dT8c*MyNJzHu*AY%86;L-XB|oAHOU{mB>Fqt_?!-Ekxm5y7 zq2lhm{p>dAJ;3i0k@U2Ubi;WSv(6{^_Gv#J43C*CN3!Wppe#sp!+iL?wL>LS6hij% zBX|SH->#Qcsk5g`D+9tHorw=N%}gSQ;zz!deUn(3BM+-zRxqv_7(xw#ol#i6#Rhr* zrC;`@pC@Z%Kk+pDy8_F~!CJG+*;f>OeFlFG>D#ROaELpC+_Mk4-0}Gv`9fXuK$YL*$o)6egPLB}PSYul^rz4G{<3e62K2U9f8{|WPi9m) zss1^|C6SyM81mx7;2f2d{yyY8+-N>DVg#;! zXJ2hULzLK<@IHy`IlWD^S+#rVyoIW&MW=#}{D*@A&+wpc7S+oAM??|6;US3MEN8xG zhVbWpztrf3k?=aibtFExGucv`g%&oQ9oAFxn0Lf-RJI-3w@1L_crimG7pf|BvK^rqX)6B~nGF$lxp6PXTe zsMxSlkh)Nx%i`>KI=j=G40Udotj;wR?*ms9KrYw#_U`9KcegSorPW0%=} z%!SjM7Wjd55LG>BB**s_v5Ck5#tU76?#C$gsRa&w$}4jjjgsSi2dHl8fgAe>R;z?e z@{K>>HjtGBd0F>i-LCsn=lI)pu7nM%^#It%jk_Vefr7?p<8e3Mvv1^J=`po4RX2)w z$|Y4w5v!C+&5vdwEvF6+Q^E?-`7tH?rg5{ru^jO%$xXd+{SPTJ>bLjSp0d*X1gsAs z2%)&}b}CMfwGO?*MW9^RZi0W+T@d(tdRO>!;Fk@0vE4*}{|3$H{VH-JxPpPAz}o0T zjQCdm)&x$eWsXDPP-41JgnaYk;iU2QHhI9x&5x{h317} zcN=tJvUz0~(2@$ZWw_}0oMihQ)^^@6X+L+G&+Dcko%G^n5_6LgEc*nMV~Fs94qATL~hjI5j+Q7%K_tdIi}5Zr=@;ND9C2dZsMWG>7T zlMLX=oJhqrLKg5s^AW^M>F@PjixBRR4t}eEjTQe+TonpyDlF`uV_{&`fo~9knNr6Y zG1&?VL%M~1LIwmTHTe9Q>$ZLe^kkhH^xv>V$F25VN6q)i6ND+jJYMErx)>Uk_YKj< zXs3->;se<#hjQsl7N}l0hH8h<47F*UN<^RKL7R4eTCGXFcen}FkRZ_#cuZ>9t|gi0 zxxO=0SG5{?y*;sK*<%rBU6HG&DV37KovukCI|B0ZBXcsuA^OPTzXpFYy@jg4&%(lA zDD#MjYoAcJ7mkVIpG2o}kFnI%$$v`-{z~*j5;^S1 z5vYNh3Eo#0+2P;G%Bq_OA55&aXBs>zS8e@Zo;FgB+V2=ddllaW+*V8+J>t9YIZZ9% z7fr3X@rtw!UOtGw^@?E(+tq*d$WdjIZKHyQ^jW_g0uN;y#%Gtk~%48Tx337hmQQQ~%mv%2-c1ciQCA<3r*l zES#*g(k5!Yk_sKG{k0QrSFWOGsIJb+eEb2M?sJ9Z=a4gJiOFc}=(ru)H_PYV?$@RJ zCij)A*yGA?wr|)p`>0&^W>4*xS?^!-Ld^W#F60HLcc{9tZmvTXvcPZsub#Jj7qzp2 z516N{n{VINZ?c_@g@r$}66j$21kEitUo=*Vw4VlaznAg{aX*UXgQx)kurN~J#(Bi2 z&41)%>xEGj?4?|+)Ka$2VPG(Vk6hyyG?(lVWNnYE_F>cXd&KMtQIRqjr>bPxy9tFP zj_O|m8kpSGGMh{LXCr#I?0QvPzAJAE7KbzTqETjHkf^3VqfY&Ok>L8u=<>lVGsZx{ z@%$%}8un!#m9$~~8NBe)yJPLZPa%2>_~~+pAc|?JvkAwy3@6_&s!&4l~Ervuq$%U>jNQ_xL}5#G%*;7Eu;w-SYF7}G@*?@!-&_^Kn%Ya2~=0(7dJ*; zBPF0)tV?&F@+{q~@b>d%3)o9x_|xhZ@BDxZd1LTMUySHfB!d_f`*2-3DID;2{rv{G ziToqzv5^@%nsoDzTnqeTzKqb`x)Ar`@yB+=$dez7hqzsR6@KBN9Oyp5!djrdamoHN zfcf$ZP^B_IV5z8?Dl?nIGVnXu*Kb(28n8@%d0dyE!__caM>onFEVdczGOH@XgzBw9 z2hoBEBbc60{)Ck~Zx}FGQ(Ic;N&x>&E|9}8 zYm>DPd{0VzuFMw)4C}C#G? z0Rh^k8HBPugn9YR>J=8(Kh-81n2{op*m~|63Rr9d$GCL%cN9C-U6#I3&*$Iz?AU}i zhr$$$$7PSU5l~R94^8Hxc8~HQ>yvG{jbj>~^i3XTC7FreA7^1CrwVm&1*am4Fa=Y~ z^9$I+wHpJTnyJ*yDo&0a34jt|^tT&`6wMoc7nm#m(6y^&_tI%0ct{*{bW(PMkkVAn z=GKeO!CF!nf|>-X_{N7H&-3C>l|HoZzRfN`pLA&X3=PvK9IPem}%s4*ymt>H_-M6*}?O7AyKeiZgkvKpN5 zW<%hsEPJ|$v_LFUs`&i?0_*$NbkoJd$=_9}!C5ZC`aPhEdE1|3W zl(b?R+vt}Dyq`E!x&?J-x7$+$Bsw<}XpxnNNM!~MZf+^#As)W>{XBx30umsHH`$nU z%RUsH#(aNI7IS$|yg$A7^t78~a;36%(hvVY>p zzEXK;H+j6$Hc_d5)A-_5^*p_+r=@GIJRvkN>M%^AG4tmGYmo2Z?mo98TZ|*73kE+T z!fOI?XB(}mz-~!6Y+kYlW?}!}WK$WpbPE-@t>GAF_!oJXxox2tEiykUY!Oz`!~;3l z1!8QcY5$`P17U|1I7J1W!Uw+*wp9cKkRh8crDVs;%3Fl}T9dxV%rymPg3RiRFo-qF zDg-2Bf6f~XcR=M33ZG}8na`(#AB>yN4WTlO3FtQLBV3;)s$@(P*PZGs(`Qlq;c5Dm ztl1Lk`aonlwy=3Pf)7Z=e3rx#$S_!JOlK6hy8C+C3Yf{?)Xj3s(_$5ofU-X`v>3?L zRwAofO~OP^p-l#q{b0QFne#~KqKC4Zl&TyGvf5u#9IDrM`4`fa*b9P|8(E`&60iIJ zO)HyOo{u6oc;1CfE((R1a0f5c9SMRouZz@Ox*a(Xfh%u|K6f<`-jZrnGj@_EG0n;! zepoH(%Sl&OcJ)7mJCol&{w{(az+lpg>0t(XAxHrbR1!7qTtz>W>LNuD{VAeEpbXmm z7)cqvDGQw9(=x+!AE<;AFvw$0$z<}-*wS6e%hndLy&0wd9DD#TfG3!Uq95D+g6d%G zsQ%7!As@B1kea<2F2&hHFDrALTK#&Q`xEAOJny)==zhoV3VyL3UUHSJwXyZrcNPyz7ZdGo;5mYs^e5OK6tm%M~M`mFz^STqY~O z+NWB3tykT_=GEFpW8l@U=i?D2ETOCzL5dUMx@-{h4Blyi)EX+fU^OjKs@WJ8y|xg}0QvGjG%t!JGpBob;;8hIQ7WC1qM;LK3&=bKHBbW4#0iSOFobNrk~ zXGntxUa$pwmLl5*YHpfARax-g6^3`HC|{^vsD-(uJL63247>!zgiZ|b*?17-M&JS% zZ_B$K5f3RNz44=3TF# zwvvUj>A01z$eEcO2v8_;1Ar z%6sZB&J>5o^)c?u2U?Je?}oDlmfXE|4NX;F@7JF0n!3U5NfA2v%(%R0a>(o%L;g}Hp>kt72u%U*Hco5ispdf2_aWzNr?!@ z#VYMEn%fCu$l9q4DessAih{vn#5C`Um5UxP67`exMiI<{rV{g3MxiBl7M7XX(aJ(u8E<8rQ{Kr{)k109_s|DA~ zJd=Ps1Wz;D@;e4!vR|X_CZXJaMuEYmnKtmzhVXX9z?LG=xqAOTEl*I0$zHC$hKy`_ zDwo`wyl)qOYn0;wJ^Rf7z5(jt3%uk_1569vg#4#f*P3(%5ehUu4{HB3Gq{cGPwjV3 z(UO~C;}Ym)X1-H$Lp=8nxdz}>fss8x@WqTAGTEWPKSaiu$FBFE(ACPcmm+Jj9We0zqi&x@lth@2cE6k1+Z1_Mec2CKS*Qa2MLzy9 zt`qsePMO{s=9O%aFKnel3N$nD+y21u){5=Nak%eC>$0#yMXdd-!`CD5F!-+eP`#02W(0_0N25` zq|6NbNl}F}0@CY?J1!ZpPgL|EaI<-bjhY4?jExdcNU~cEVF!T)%26-S7cZ1 zD>gT{9r{T$`>h7IW@AQ?t`X5r9hysX(Tx`mKRJV~KG(;GJDm32@bGg{n_^C2%mx`* ze}8w85X_&J%k>SdgK@&vW2f8xzbqgQo*rc4K~{}Fs$w6) zwP>y}PAheE6^w`kd+uD*pbJgnaS?8fFZ_3ZQAd3Nhi9W4 zd`2Exh?MwCMwCfke7)5XNnWe3{Gar7?cymrCQuUT@Bc}x+efFYs}%yx`q?8f<{8PD zNHi#6!?5zQB^$3%IqO;vvW`=TLLkz&sTvBei*DQF_|?HdUrNz0RW!c;c8l8y$on;G zU|Df6?P0s>E8Y^UR4liX2c+JO%3EnAy|^ z3U_{Su&1)6kmT2bclpIqRY%6~_9`9Flvie$BDOHi6KvO5+na<%-Q8!+E;vrWA%an+ zw$LWr<~W;zem_;%ynHo|5-9nItmS1!gBMM>1bDlu|9vnurRC>oS+9&b|8=>ZviUyb zprVaIH4Xs#rQvpI)~kwvYqKT0=1V$x&!ni##QpJ#Z+R6{^Hqcc;0f8m)H^ph#S`)m z-!@A>pwUV`#__dDZ}n?qXi<)_fVkyJPQcRr*>cFmL|W(W&dKQ<565TPxqaAxe-3?6 znDwr?!+Q6?hR=r8egFDqgIAVs#a&#S^bn57U5izd$E6UdGFBx;&H0KCzjmeh=0~bP zv_t@mv8pF{CUUINpg{;8b|sG9dm1Il(Rq+W8g-ra*ukomKR0{`f-Hj=a?CWz2YN9; zQXn~$|i1UQRV%D}i5%K*UG2oB^*SpMbWmNZkQDoGtXBoL~A0(qI%@ibjYq zQeh^dvncy);=Ey21aJS))zc{&S$S|p(?{fWhUvx3aoX7srACZ-OK_ll4Z(`=966Rw zK^(aH^1P+HIdd!cKfOh!?{)M%;%TqE5s^fwBSYbR$U_B{75&(t@;B%n^aqho{9A0p zaM08E{~k|-&aS=onJ?uux3qIxmwot%D7{4lWx0>Yo_?pMdvRavr1z^n`9Qv;g9v+h zP!AvO;DHhtL3$Z9c@%-Gu6SBG7^LEQDAcFi;SQQpFdJI}u`Lv-3>25-h)a>%WrH6t zqeX!+#q#&)E5~I%9F7`!{D!&&dHz2ftO7m{b7b+E&0n!8)k~qm-SRLUQTRIk6f~A} z%q}jYG!p*O!;c2CA_OJS(&tw2*3!teaK2q#QNrAcWIEm+4IQRHOz+V1kZ&>s;quhS z*kN9UgS%X0^@CR4E}QsI4fU_Nno2mY!g3s#yh3%aHzoSI}Jr!?%m zL~XS4m~ynQG_+wUGu0aCrm+#(KjwO}g-B(v4bvyD)g%X{Cso%%^?TMlJb- z9Z9gc3RBYaq_+|n#G%rO7klojVqW_Fi7}l1j%7d0wyMd`*R>QIBG*U6e3hoWYes1P zbyuH>i1LW+`=#XNLwd1iSndm{s2cD+Z8ufgy#%?($Y_GNEdE1mK(GTE8N63*)%GKItBD-g2^CrdW9&3#nqdK%A#oynDjhm2ev%lu!3xt@@8e@-sI> zp%QUG$Cadt84IhZ@WECdZ$ChWF7|51-nj1grDrlbnmc?S8Y~{A{9svnlIctP*czjw;%;XOD@9E?SKC*5Srdj$PyBolECI?q3`4zG-v^ z(<2|sA%Y(!JevF#)iU`?m-VWIf5^t;;h9x1L2!j&HGo3~1l`4-P_a1~E8SL&GEKB( zIyx0a_9~RYzk$6DvqBJ$t~jxlZgbXxvvg4w`E}jkcaK z$T9ax;$T`1Y>Fg66Y_7qIHW;j>e7LS)!Ls99%~9ys{zlKH_-i7L9bEhSl+=RYaB7- z7pRL_Bzq1O9uA2dug4kBj)z>DW*GAm9k~0wYPCZw(hn-s{G+)yF7jaVa@Fj}I6xB# zd|Oq^0S{5=-ms#N!o3nI{`@~0&Le?RAjRSPe#76*^wJ(u*^o?$SH*+r0qJN=!V`M& z^+$=cYT{tusE|_X9Yk}u?ewW(Mt6&u2;bsxdMrwy1p1Wvj~(G`mO*mDXO*|ljjZv| zlrKNn73w+y`kzexMFxF+I!^7lOqKomN+L@<8THOh^i0Yq*1@$}?f5;p*vO;AeftHb z?G-`}WqsU#e=1d5<}KxT>%6da(7UF7Qwy9`D)0k)fAIv|PIA&6diER%PnFg?1i4Om zo>xm3z8AsaU6cz?UTNilK&Tg~$g4x=L=6Gbk|;KY@ZLVQ@XLZS5?38s?)g-GV9)&y zHrYE__u*?pJsgyc)L=vcYZm$K$8Uy+r|X2d|5$!20>EbTEO{5YZXz8509`?)mqyGK zK!t=c=Vi^5qS?w{^X07vko7fdkZ)7u(jE~0|QR@c?#wMADr zGBo?!^~AJ(L%8eR#Ch_wRW@JHmha?;`+ubpHX|Vv$LZ&Hx9$5;$6C)}sxt_J57G+ZT9;e5pc3lKsJ(J&BdZ?1?x3UD3TUcUx zK#-C$g07A#&L<@0GS9ZN2Nf>LyDVs(=rpA`l+Mr>$BVl-)cs2=iiAe(2CytGaWbF6 z1FGZd_Rmu*reM;{2p3x_@BGy^6>}>5nzqsaD@S}!jDs4z@`0 zk9{`!s26{s&cq*cZ_>&&-M=f(j+z!RYIJgO%=q+%6u9O}+GArqeMPv$&6uN%CBT6G zGi&1w?TDWN{GL;J|I%h$k?)O!lvdkYAUt+9yI>Gv-BrJwvsyAD`MQVTc|BdJz#8PV z9^Ad|H&SLuis-Lyc#?7E>2ha^WrLrBp!lG!B{S@ziJ@p!tI8V`mE_NCT=Nem42fKZ zhF#joEB+3H?yPr+pZd^@y3H&sT;`c^1U*CAfs!_A7~VYrYI+I!2K4-aWPPM!>OQv6 z^?-bx1S|J^Z=mYGmcnk|Q1(T-yK zffAX}5Jw;mXRK#sMVM$7R^++E%Jb~b&D*mkJv>d{=$}(4=M@!$gitErhV~B`3f#hc zklhvi58YA8-0!zkQ>U}mGY58wx;0{A#tlDeEMXmjUDZcQpOztIrC5}&-@61TJvIsd z8bhptx6-`UI-}7jP&#Zq_wC{tC|{S+?L>TK@2VR_p{P1KMT*02h1i$U&8+|CkIY$) zAe$UmXT1MJ-{Y6Em%A40OM+du zxX|PKV70g+StSnS7H_#8{#IA-K|POY#4O_M~@9rOsFKTwgL|)&@Vtj+& z{Awc9R#v*-9AddRU^dU2AvOpasjMF>-Oy;ZFh$}|{Q z$cy`!?&eEyg5Y0Dh91)Ce4Ms*KLv3lU~S?GJvbR6UpNY;Q$I2n$Xfm@`EFohC4^d# z5OrEK3vl;rY%JXV;0}w{K3xOyc^#_!pzSNxS?{o9Wb~ZY&%Ii^Cs~0IXy;Kht~|hf zr#P1fcCLB#Q*U@(4B+OUkkrG0x<=%dPub>BpwjZEz#rnyf_w zzphYVW70yNq{EMG5O(sC33%}$^B%N!NLdALI;{wqlQuh+bTt&$zj~g&DES3$CM0u4 z8+!1(J+Lvc!-n|YXCBcel#Cz%Nq?wZne0}}Zmk9v)jOiIr7*#MkT{5yM~&Irixs={ zTFlS{iu8Y+lbrM4q?_8I<(if&y6##k^Ygcu5}>pq9j2)nu4P(Wm#~#SbNuXBa2Ly1 z>1jIV^gLL9zcuN_!vKG0iL2XAe-t-xxi=(b;i8d(F5C2Z#6OU3rwKg7Q51^n`G+#g zekeC|3$Yy5lO8+KChmr|IM}a_cM20O@O?`6r&Q`^i}`#CcvASxyrRMZT zaxd7Pywaa38Fy;%`KAaghjaBNs-h7WrSNBPPN1huT6 z6rM6M-!Kd!TyoDMN-!WXm>>~p+jn8_*ee>B1iS72%j+&Locmy5C5lafP9YJiT*})K zlOitkqqcdHq?spUJjbVM*z-Y?BA!-MMD=pK?SgyJrb(6TyopKKY z!by;LJ$O3pCsO$}X_;1CbifUs0gmfeSMj7+?AX+R=P|S8y`%A}h%`&ET~Y$}t-+Aj&lov=dD zGj|tKwD3jhoVkG80BEGn^RSEBF4LQyS+0b5Sr(pOK_P4ZEytNao{^C+=dS4GE!;0@ zh6~>+EnS{AAn8CgEESI@sq-sl>^XRwW*1~?SuX(*kHt;gUY2-Pj`{uWYYimo98ydb z{3cR2gr>dP5swsJ6Bo}v(b!7aj&1%OKnI4;#WVX^v5L>bdO1zVg_#tmW?Bt$(|SN^ z`P1z;%NJBenV|sO;nk|-SknZ3F7EMK`Nd|2a0}uUa$0VLVso-h@0Qv;V%a6EiBU~) z4N&=swxV=SH9*xyyy6FZL~-#z7iu7AWq;-)e>l$dASEy9aiW}r;~o4^d5(!4>i#5k zL12<3@UIfxt&FH$rhun`t}4peb6By`j-Ih;bPZz7sKIv(GnDU~UTN_ionFH!SzpSs z-OlGJ;LPB+nw)4e9yb(EC=VOZPtI$7VxKA)(rbB1AWoT<>>?XZw7W30+^h`?1bPoE zKP}apTva+B8pJK1POI>4)Euul?DNa`qK!$7|h07`8g6D8McJ+SwHFpl9pLz?(Ql z=O`lZ+8@J!jRr_TjD$K^u5TP)2g&sir$Dc>l*{ieIT!5@OLfZXbW|f$9%^s_uoreW zGgP)x4z)7y!KH9Uw$$($&R{$?QpFXBepFsqXRm}?3?>`Z@i0yDoDc2ZCm1RG;sfn6 zW*G0H0Foe3Aj{<74_RP-h~~FZHkf<4q4_37;|Em!I}HCiu8ZG>3L44#Q2__WoJ*X6 zU2udS$UY8dAN!Hzb(ZABQ`niRFB1Luq|M*lI*oILM~u~0*=YH z1nd2c?W#`Q2|Efq40h9wrMF#)x7{edll{rHe+0#%Dfp@E zkQt^It0UKavJS8mYjF@sTkn!7ud&sm;md0`2xD()@bFXeBy{=m+VAJWB4W3Ex>Oxg zw!sVGt?WYSj2a@5B~tub%GkW;boe2Jdj{{jfdUs8XK#5OWJ`^=Xi;!3L9M2jy=(e} zz@(Dv^`Wf7bq`Ed!&xbY)YKyjRFW-Dm7`{E{Nw_p3z$2bpie-whpF}Ex9h^<0i z(~hk0;30l_i>`9Er1jhmweWi%NhV+qXK)3wpfJqe1uctU0)_svyymv@G(T(@`!Z6C z0Tb+*XkfL%Wn~dO@byhnUsq*QO$@!PJkC52WSLoJeqvF0q2W%MK^UcXev#3&K$?3-Q+-%hBdir*!WP%dRh$?J^nM7cH5(vRn zF5f&z*8T+Et!|(B;7uXY{eph(5uf+zLia`}+AP+BucZaX31gaKg$yqtexWgusJ7<$k?0%e|EdX&a74uz;6@imC{0{p%nSs}$O>ntzthg)tNLo9kXB}b~~*Wf;P5f9HwdM@f*@BDfD zRte@6bIZ~(MhH1CxvB=QAqkwq6+EehkF3G%V@IhQCrQFy(qzC}*K{5t}VLT)O`q$jwXW?$*4P^4Hr=?nch1qYg z=s)`C9t%5-uM`TZFTo~FDYl;8prys<+JrIVEGaD&MNYu#8tQT5*k_;q!l_nBU`8Kx z!{?&UFbv44stErs=pLJ8gdlp_(EKcR%~8?Eq&d`lQnr9$+yu}~QYT6PG@sI>M%lRJ zj~}7$gCUeKC~~wvMws72`1&g_UwnLoD6!f0k@r5NVLR+G3iJ;KA0Dc)O1^P!HpV3cW+X#$+txtdY({|NWSN+ACIy*b8ET{~vX7?^S7(LRBW=H_OrudjcpMT-|Nwr_pwTQB`R`sU3Y0a?jE^O?`s4&);N zgRx`BI;;Mh+p3q>t~TmteG*#jHeD3qcK65W515e`A6u5uo!2 zVAsx?HfWnR4A`vXTTv8%0R*nOUKpe=R%ts1FSqkAh__A@5lR=GL|m)ke!ub?V(>NB_F;+b{+1+Y-#ZOcHtZR`j-OR!Qr$B69|lMAR&B6qpy`pCLE1aox1 zehH|?aa>854=rSB~p8&FRy`U}+=u@w2n&f=R#b5xglkBhdI)kjNPbqB+aw z)aB*@24rOKQ;^g}@Zq&Wim-UASY zM}w`j5u(!%I{*t%hw39O44~66wTX)#%)l2QZTXby;%9AFV7e-kKU4Y$lQP zlb{}D7L;3E-!5w%ZnixQ16EKVZKgDnfZM@%+qJUJ0&PL3xl=w*Kh&k_Gsaruz~w~H zPqUM%>#e?Fm#y8}NW}hZ%gxCqc!dIh5jTJ_5S`sYYCxtYwOb?rSJtW3*WPCZX+evi z^$YbhSVAbxf;ls6FfhS7q0h9|Y_xy+&_%ZX@!#8&%dfOpM!Oq-FU5uy2a{c!3}df> zbWtc-V8blpI5uqgw9EBDGhZ8#G-?4Bw4=Gu5CL8J%ZtJuhmX9U&!sDfvLHppR~r>a zKpTRdlNL}c7UX_?5pV+KL_eE@{P+X-vk&$}ZT*Ao79&MqBG0*cPP%0kM(kI=++fQd zs)hcAQo%)MMMDc~V&1}uSovc%xq7-~XXc^lBw8tokox8ZYiQbIAOGxP%gWQ}p@BpJ z5yvL1I0xoK*?^W%Spn22jWfTzF%Z3n@esQqgx|f3(#aQwlmPmoiLrqW4fndur7tMg z0|iXcX3c$E6N&b5U7y=X5(6nPDwcEp@W&|7Km52H%d-+1?!JE;>pJM>o7k|MNd_+nW4W)_CkLR~8u2 z^p`DL<|@g}&9!z|X4hYTy?y-SA3t^#kCyzJM_~2p)ppA*w^%S3w6d}?H-`lDPn1JJ zqt(7=pMBOfNfvM^w?6sFPujKDUVGe{`L%C+85u{ijf6Mg6=IvjCFgp}d&%=M?C6{V z7N-zEI|=Y6BaxGeko^;o_gY&BcFaFn^mB8w2zHz540KA7Cq02c-T=wx1^V+~?WV)% zR2n@|!h;033-OwOk**^cwtKpYG196I055e0kUxFMZ$16JmOTK-4-u`NBRy@{-m$3N zI$DPD(f8Z*#IIwr!I+3#tDt_mZ@?#@e}$cQ0hs{?IWK@s)c-9{)!FvPk!`Cd*ud&% zXrLrKjAC>+1=&APUQP{hwxa!j)nnAtr;-w7FB?X#RNp-VndE56&n>o$mGUfPk^b2oUy?i?x&mBeA^vloLa#AS0lRS~B9f zDnVIN9>{VYMp4qVVWailcQ0iE)GxfqG8fFX{rh)W+qZwt2&m2KuzqpS#w1wT!U&G> zOTS!zJb-uz!&>#HKV#_xQI{e@RDI`@&uz{hUjqlTK=V#NG?w#fw|c}s${Oj1vT^C6 zVcMwvJItasyZclg{h?o)7s4z$?0(C@xDfb@iD?jK3p)qxl`RjmYr$0m6zngD9B;cs$-&)X0NQoQnL%J zWw_RQ{XGuo=U`MwNk(~rrYy#$vF-Q!Vc_?e2tRgh{h)!Mi83xl#rTPQSfW9=wB=?kFxSWNlXL zKs+C95(la7JU4075)-6=VY6e?RhmD~?LsUJKs5gNihvn|$|L%}sQEr=T=}O(<2DmE zGtuO=D8s{~q@(RV0&B#@(wP@2R=ah-)vfJi4;!@P>{6R>3Mp8!2JQcTw%L|HT+1db z4I^+?GxZd|dAtD0mbxuv9O;fn(bn9{jy-?IybeUDvo%@|8b!`%W!0)y!`3Q_j8 z3Hq6L`V!GtD$=PoHMj8P2c%7zd*r_#CYD10R|MxrrIABv(I4)CcBMg~Oq2qeyCF8^ zWS+Z}AENs!I81;I=9AYydc*}X3iOXSG{@wFW)yzEzGo{+Kip|hWL1@CIcxshlZ#(f z-`@iCGjSXG#}A$Ssxn{CiTnSwlb9QAEZx|?t+(Pge*A^`BMryy-Mby2Z)(D4mE*%7{;<{5)Y#*XKYsjy{=a<%anM00S|Vg5 zc@Ys#;2%*@uC{&{x;`wp*+kM$Ns`;UHYbKyn5YVp)U1{$;FNTjk zssp9+BM|hx|Ne}HIAA(Y9pr{B zdupmxS5_grB98)0J*z$A!1K|w@qjt9HWlfN;4v0E&I<%1b1SGJ@~+3`^{nWU;T^zt z4^=X-WMP41wG%m6MmaryH)hI=0Co^dfN_#9KVX5e^bBV3eJ!|ohwZ!T7p}gdf4JWA z$5)U^>jmrm-Cfip@S&DzOuRCaq3$a-nA#}IzS4IO(l;4lr=l#4N6wd_4uPC|y!P=% zw|nhoE_zmcUM0&j-{N^rs>iVoxKk_;VHRN=2qLPTF39y3FTO%Oi6(~zjB4$@q_PSLC&$W&;1|^ zGS79cBL6wt_S}>B7)kT!vpLfy6QHA+pm?n|f6gq*1>olPSZA!o_SFqQONtSNGXo#) zcxzbMVtb#%qMtHoIYgfHp=c<`%&~EEt8HEHrSuWXcj!6m?$~8Xw56iB*beO9NgBD$ zr065|K(xqG^CmM6XfOpf0hLOv(c8R}&1NNv3p&oC=*OCG{q0um58B2~G+?<4Q4mbD zMpEom13H>&R#`Bk#4i7*3oQ?h<1Vh;nSRysAUQB8A|ItJZI@ymFr{K6fl_gi0l<4t2V~dn{;LLVwg=(SGErK#44NM*(8C zY77+BQ_7(jUtnS}$Y*H?3%}Yq1l`P!CNs>gp)WyMi4&4_zhWvRvDs)7Ce~M8uW+d9xSn=1cZ?YVG^WP|-|IpIiwr*oHw8K%Le_S5w zF|OptKmM_O|NGy!B}o`}-}~(5n{Pg$#_Xx5p0dw>{_`$7 zi~_}e=}TX-bI(23zW(*Ej{^M@;7PsGN`BK#H`xb2_`wsPWq)qM(xpos8$^Z_DIXMk zZ{fm)j=}O~0R3D4?W;~^7sQv`B^h2uIAun(AUnGUL?!p;=HL^JoEAnt8yJc}3CH@* zd8J+ZQ!QDs5^|h8s&vY-4kjY6m5~)U#Tj%^9;6M}wdY9w1Y4jicwyB}JJ3DWCI`Mk zJu>K@hJ$UO*7{~a;Pn+g|et?WlDS-U&f&J#M zKVTW>ody2z+0y2H){L*cMklIRR1QW8bkjD@N!E-Yw>$BdI@KochYuX$d4Kc%hP!9|3grO*M&i!Cy{R z_oB%QxJ#Dzz`x{kjkDMU0`+REz_MucD#tx<3Cgrtj9%desU>v3a|giCC1au5Axx+E zSN*khw)H1Jw*KrAn{v&2EIT*d*8S|a7T&auHUs9d^m>`RcwQ;sAJv15twR|H#NZx6 z#_r3=vDu&bC!Vk5eI06zaECy@+N84pe;Mm|r(bSf9vll@;{knLqrT8q>hffLTp~~~ zsXnHpv+zqvqH&8L)4OssPngFi%SV4S>b^$!$cG2?r@2QYO_o5B9+7)64649d0vbSR zdeYOR)>={@S z(k;HI+u8`(*HMSEB9A~F*{})flWq0a{$T!6EY_)mF5O!iDf%jNN^Is?=h|ZpvjO^O zuxuN#1)jEv__KuY_3!O@$}-c~_@Kc@P&N$t3y45pjkUOh!Ad4YV50>ht1JzAxU`v3 zC_w#P^_CXvv+|)X0ZSOFvuJj{UH_$P0jX_hNoCb$BVclS zv=(g|9?%z{*JdZ0jne7GSkzK`frnurC~yUB(>bnC1b(MQ)J7m{J&Vx!?6_y_0eyky z1Su`BbPMDwTD`z>424SoKPyE@6`@}k8?jB~>m~P(1QZ|I47CXk4fpXLO+TAp7{x@0c1NKUY2%PmfPKT2 zh0dA&q1BBkx2MjdIh5+qlI=4edPH42>@f=T4?8Sx_{qnf+-s|!XZ~ zdFGkNuW_%Trtf|4d-ju`{KQ@PN-Fp$(0>gBc#JPm#Cpv!S;+;UzxmB?+T6Kwk8!Pk zUGZwu-FM&ZZc@yNZ-4vSR*dmShg?W0#qwAQDa-L1Ns7v3NDw7@=NKkQ&Ll4WX5CciC7=>{8WT|$(oXxBr9f;Z42E1 z!K+~fK&Kab(xqV=jM|Dl{kAiq0QnrSiIkQC7$4J1dSyj~=Gd9kV`GcMcG)aIBeGZ& znQraM=d5L5zD@Rjl`90gxf1{@Id?Et?tuPT7a-09PLEMRyY2!(3YO9J^JZKzO5NA+9PJR$KY9K%hFIDz zQlK$AHTj3ND487b2~qOG6Ce!@)z~rPZA@_r7JMz50W9Xdwz;O+ax+r#-NA~DMlg@G z95bekwG@JRO3atP?mOcWm1+UmP) z`>u8?&&ja@=>O@JQ?00Ef)xb@Y~|_~Eo=OHTzCBbE*mp(6)E{TtZ`eL{r-=8ti8LB zO^9@E353VPC%e2f-zH6{w4#DcOD^xTUj9YN7n(|Xzr<+1J^RHK*7M>ni=C8X$$6k; z(q!aj<=B|A@iyz?>+F$@`DioI7}`3P8W41#)*>Ab5s8#VMo>CYcg&X#*u?J~-}|`u z0_ZHVMmJk}0#V-`FlSN%+C!c7mP&;F%1Ec}?@P4y%&B&uJ>D7_zX(3;)wzr}IZ5CD zrT1A^?|v2nb-)Z@y1VzHu{&xy3s)dsFds%1N&prn3tRN7A+)O6>=WWsoN_>)X+2@z zXR&B;=^1NLN#n$;61DDOUgmEOEj4*mp#aS9*@MkM6Xt z7NYT|#M%6JkFn049{b^U*V&dA>TLpwpdj>`?yepysz|kWUpmLyYe>Pu*rcGEJ9XY< zHjs$@=8;Ej!MT;Vcwk+R=(#CUJ}wSYD6o*V>}ddP=F5aH0`+AmM4CO?E;kbOOA9~j zEc$HUC?n!|_L^U=?a-Ts_<~Ag-bJHI&8O#~;4jh+YGdRczUY#Y)9n-2{Yix#_80~F zhaHwT?BozWV|U-b-S!{oq0E>qoLg#VonHA;`ELZ!mm9!u?%QfPS;;nYdV$@AYk(s6 zzhOZCL8$xeL1&y+VW-S5d#UXw%9~N@{)zG={=VCBB%pt&m0W4X?*bx@0O&WjWnS%yHKCw@n>TNEC(b$N9M|4MQ~kYJ zK>r)JeFa%jmRq1FvYYcG7rH|(^v9D552Z;A#$z%WhH^=ZmlQXE+=o;M4gNq=r(@;{ zj7hdiLte_sg4qg~Q);_DjC2_3Egd&Hv1OGq*#Z5`WJ^pH;0sw_5ZM%YN&)>se4jtN zzuR7j74dEEw=C%0W08$@z)^Lt>r*=I^on6ScQT+6oH5ilWE)pKVXcGju*q>>r`@vV zBjHh>BJdAch3$!6YiGTSS^(p_*LB*eA8fbbUKp+Tho{V+!!2Y4c>Y;pM`8HEeYJXV zrqu>cvQ(n(%c5ULYycU?;sXMq9$fb#*n7ay1Em7}$ebDs)z6{7y*Koc^T12`DwCOK zU{f%{WXip)+AKS%-KNi-4Bmk40Na#kcdi(xv_PhnysF{^@<)Jo1oo|Dc75RFZg7xa zZqu$7jh9-WSJf+-UF~8VxJGRWBRfYitjR^yS^V{}dk+?%T{8OlP_*c@?vpMc80;qN zS-Qn|{tCnx;^c-O|IAW%@8uG&#{$stQtrUk4ukD9X2J}z=Bw>;jV-+4M#~vnNjHUq zxQ24Xz}2%8#?U>k{hU|3)jmn~nhD;aIV;Al6actFFb=|?x=xr;Zna`GN6Db2VA{IX z1tmXtcUahj$+__4D@TF;!7(}Fi-7)|`3iI;jgNd{yp#o+EIOqeo2ltp1gOih=~E_J z1)0zi;}FWx1dCXrFg(IO@inKRvXH@7)jQI^tBFcQp6Z4C0`sA4?Ac`y)80-4c z-ma8@8!Rh_2?Chgv#!Y=Szc!?MD5ommq-w}v~*JZQO2065*t?my?$)a1_9qpUHU@a z&R-1L-rqdL+=MJXGs`jxu`SXS2(?NJ zNE%5`3ravi=jiV#3NW*y^^>JvaTRDN*C`^tmZ1XEh54Zh2ePF^h$CBo7NGVzmnsj< zo}G>=wPi)^>+TXGcAS!qJC2v ztdMkEBa-Z_#j~xWx7}83SY->BltLBL2B*zeK3P(yD98cr#wxE@=Xb=%+7R6)Osjp4 zDkR#zHZ!dJP<*rz@Eyb#jRr{+Gql!>K|F3JLxT#)Ck0F*;Ga1_-xYK+1mKsZ`_u1# zl==^Ui~{|`kINfzw!LG(esk|O>+BW_#AlaYG?Bd__hm)@tw2AMG(f-m!**LVugvDn zF19^;yWUnnUxL?zOLw~%0t%@5FE=lE+4%mw|1oOOKYmZ}a6tb%-}#RH{O3P+jSzqq zjX4>^z=?7kY9&^iZoKhEyWxf#Ue&x&p#Q2NIc_IzyX`i+=bn39ednKlzGH(Nx5{5b zMG7qWsZV{1G;m$+Y61EyuDIe=cfMIb|3CioYsgL*=a7+<+73MCC=c0E)?T@-ZfWST$9fB_nD|yj2mSGbFbJAbhO9i8Y&+7sY{_^4 zTA4s7h8&o_Tb^2Kjf3Z4(Z5xaEHa*8Er6ESAz!ua9)6#lb0Ha^`eOEnFK@8E2GV0u zU&`WB%n$n@xMG=;HD%0B#9%h{>MC1TTV@%^caJpgv3g=~2^YkXQdu&y2RJ1GbI=B7 z*#|oSAQ(LFqz8HRUgr)1ea6Dc&B&Od?#mB9lRkg+WMu|xAV~Ne%P)rQ06K_Kminil zcdib1CqN#cuc}1V9|7+IwsObSg&yGNfw-rj`bQ25(;c#eBh&lEN`+0U76}(PLmmKK zhl28X{Sa2rI13-3ppYLt|9o=iV9vNS+DQMKZ@beNuRsLqEZHcCy?IVy^f6wj*~)2Ok~GIpgkV&XGH0zXG|2x*LiN^Rw-S= zxZ5h8gqRmn9QXz9X|wt&nclGioF!k%0B`)%&PB6Ffxdg_NBgxCpg(uvbOu+G5_rkt zj*2GDdoZ1gAeov{U@?3kCZN43O$Q9)lO4~5+FjRS%b%?Q&}Ud5i!}`m;212r`Oxg8 z%}a+eU)$Wy`GDmR&_NG5*xLtfzmW8MSXu#LE$xHWOMnh(9g}#lJ8GM4%Z`1}+=<@F zCX$p{VDG%(vjoU1a@}}g_3wzJztb*!ZxtI2wZIbCxvmw8?>=j5?`A!c2_Tj9AF0Wt z@5`{UWyLmaO1WiJlTs}SZ6pA^XH%9v`_Fd);Cn0-54fC`Z|TKMVtnHZa;t6TX=mA{ z=G|DPFGV|;YqdM>WRvKy(&&?xpX)bzZ&8hjkMtoC^n?I;Z3@m>PLMij*b-Cu1+X2n(a{G|M9C=qD5_>uM9qn06ha? zcDKxVfY zV6Q_!UjSZX%T_~gloAlyP+|s@GwArD=+iDKClp*JjPJeruCfAbIP%GI{#9-qP@dpV z6?5?hh?_tFrliDF`{xfWb9Ei=*C^0G+^GER=XL|Q?*V{^<>Q96VAhNxJNJyLR~7uX z0R1Gsgm&)ga0-NqGL&x|ZzrJN)Y9k1xT_m?7lgC-TsVQf7ftP3=okh1$M0bt3iQuA z?>zgLfB6?%yLPQ>fFjjjfBp5xuQ9KorbDg7hx$?k+qb)l zG@mZJ?6PB9>0ep;p@Ajy^75QJ!Sw0V4_nHc1@!;tyZ>Q9U^ONqYaw)w=}ooT ztbRMADq;&OJj@ZoNVsG5qqeXAJewN0)!n1EBlJ?I2lQppKj*vz+x)v$d;Wp#<_FBD zoVL&+%%Qjx7{#lfLGD%?XlQa(59LW%Y(jjnaaMd`O z*8zKhazLft3mCh0=py7v$)Y0cBb6fas|Y|ea%lnOeqef%wRSYy;xiTyg&wJyY*naE z_>o+$-|CMSNUt7YHt-R!<@==bx@kh7La$)+!_7E03n0HH*U8;U$@}8yHP6g*o&0x8Y4OY%D?#f_d~2FNu)cmj0; z?{$s(PC1N~lmo-UEEpEuG*FKzPd6(bm-^^Hzra88|DxHKk6QE@>7yPyYj)VFr_Zt; zD9`eTP@s)C23`+31seXuiDg(pldX>+8e=O;tuzb&)`WhvIA%5b+idwWJE3@>0b~Qn zA&AF>>LRS)_(3zFlL+L{+B<03%F78wL^(PKu&9o$M%!1JiUmAmO)cbT4=P;-5$*Bq zYwT{b=U=F?e*E-@6Z7r7i@%6<9xERd?T)Q?*^}#5+Pf~BYtv?D5p*3Nb?DbS*LB#^ z6??6%rHe_1WuBMBTww6^diY+m`c^nqJ#(cC;67h7ua^rb7BWWKa~#wdeG{8}2? z0HMZf5n+jrL;&|}wt@IG=W8E_bvfEoZ+WDxD@|oWL;K&@lVgMQZ|(XzEc$VF#-e%l z{Kk#;x!bO`fk>U(M75|C4PPlG1cNHV(0 z^3n_|E=;pjlyj%dFMU-TUN6wU;|FWqTzLQ0GsqIc!ajH$6QF+rM%{m5W0O6+jD^Qh zSdeO$UpxuFN(JqFYaOFN|M)%65umRidkRR_($a#GKhtE9J<)ur5493!pzy!*&O2Z7 zr9Rw0|LAt>5i1Tb zmVwMJ`hFksydU6RQkn-vKVsc|$bPV9v&op195+ZnJ_yvvZjG(I*4imX9aMd+yg9hx zCL!Yv12O{`==7tQOMVPmk|jOYNz!YRS`R7B(fWt5`X>MiQ!*29bq(0lt23NTrg7SZ zQLqD`AE0e1$f{#{l59`@fX&2J_JZ+}%W!+`?6TUm58Cd&OKe)a2lREXWL5$Fu&>H? zMXs|8rl;92zP5tE+C`Q)2Y>t*HX!m*H=uK1^|J`D$kxb{Ib)J-Mdq+g%U)nvP?DE6 z?wl^wddyNe0&6lAk5_3LFdP>X02ODoQ*?r2>pk z7Zmr>m#Ce6-pQ6p3@}Ik=Q;gMU01C)@M6 zPkfi0qSmcC9golJ5)eb2v zM9GiwxB4p4UP1Oee4%&%Tn%WGp)UZ=5v!MroqUc-6RhKnjm|p-fIj9PDFU1_i)&7q zO?o}DnH}$gXY7XNc-Q;7>f60%r=5QGY-?*BKr0gG7J8J$6C$`qQ3>fTCRf=3BGm^0 z`qgDc0DYp z9%OZ`s>-#zq9iCGQEP6)-#_HXXC&Uz@{_DP+-obB)!?r`%VsaSfr$e^3$|LQ=9iS) zYfV^^&pT(1C6@x$pdZCk{?;|^w)}C@=XLcmIXz8e3Mu~-U34r!|NMn>EtE$7&h#pK z=Id*%e$5&*a-wtNzchZl^%tPE!e>`L=M|L|HVo+R!N)wD_&(C<<=Z3of7uq#$+Vg2 zOTo9<)++yXEc#*6&auaNlUkFT3FsD&1El!81O5|J(rp;pP+V`5<--LiOa*AN>8BbM+A0Pa^{l9;|+J^o6y~WC+2(bAw*C|;07*rb4c8HGaXg`dp zqLONDXp@&VQ=5&p1Zn*=4gET&O^wZ8R&r@HhXMFL0*J`EE&7b#m+I~j-6o8+T+v$H z0;ErgE*62;FBj2M8wGVpu@N0s+C82j`OZ7Gnf0_m2Sa1f($&ouqR-9-Tx?(7WA)v` zR#H%CrFrRAKrk3z4v}6n0Q%Ib&Bz5wVNd8M)nYQr9x3l!U$lX-acNW4tNJB+kJ=IJ zlfPA()9A5P(KiL@Lz7MW{U{3t`r%!~(J#K#MAKJ474#&Azep&If`CnKkbJM{D3LyQ z;{%j^_+!+ffB12EJ!dul?)~EqtJ%}(ZdWAzcb-{oD^~7*)r?*m){>BuCZ-9q2Y1NnN?&<&KmQwF?cKeF$(mL-_slc`Xe8=0R0bG?w;LNGni$8%5occ`dN!~_gEl5 z-x4QJw7yl(IGVW+g~RxBOKmAM`m*HHEfb)>yoHp|{oM`^AaGKuiw%!->B+eW$Zp)+ z%fa`$M)I?hgK2}T(NYh%*a2KV4CYZ#xFHy%WysX0<<;7hNfT|(f(ndGDozGB$;u8^ z^D2Xs`Xm`$mNLe1M6hRsM(R?)X?zf!}WkSN~LeJS`=T2zAk3Q3y&~92vxeYQ|BlO+nf7D{tCgK(nFdN|M!*Z;w z_X6wj-OZLyFuuHWqFzE7-_p(4WK`O{5ALxxBH34uuW$?cYj<44vca#P1)@bITC*(K zE{eWrD`9WqYjFg$qi7*%=Vd|2$0vlMgxmPh=7dfR8jTjdR%tk*poaqZq7~^HEkYwN^6QCrkT_7ckQ0(b~O4)R4e44YyY z#e`BsikT2*0~=;6;{%!YL zkmHR4`i*4$_$?q`3WUbypiQ2TYf~nAb-0T7^;QP@Ev@~Is^8Hy=#*aXI&ZuigOR?! z6<9Y6^!K!b^ZV#3z;rL zKsNBE1DQ&rmq9Q$u|X5laKFTbcGq6waqTAPpL_T*Tc6yCX-4v+3{8?5csH-+t;B)jmR7oN3vC zRM%jM(GrMxb#GKVZzcQcl-iFBEGxP$=Q80NogW}3)M*91Hn*b1-f_yAj5*ePR1+@H zALXe?0dr@`N4|Bju>`y+*va1%C!?Kc_bONQ=uqHjuX_B`83$RgWyRO0IxoN*6(Hs_ z3gcC{0QZde3@69OlWohB^L4RjxsRza>VfjpOLK#~jF!d$=3QU-ip62*lMzyYIu6_s z#h}PVSlnH&d9QZSZ|2E(;#3$e9$w%_H(I)qvZ;d~TI~9#dq&1mMqc-^n(Pz99>5YE@mqaMn@yWq2_+(6d+JFK2e2AjUSMUJLqv}!!Z{PNwX5GAdP;t_ zXajlp<%OB}1Z6Q10QF4Fig86eZY;2DGLc?yvWG%LR#KQn%B(Ew#PaKdvYVRE#!*1t zN$C6awTpS?)vnEJp8lP!e&$YS|315L?s%)fmp+Bfs-&pUe0fYCHkjyO$TqBQu{F=t z0o;O)X}~VPA|UrC6r`DjS{gm3IrllL5u1R(Y>3o@J|f}!(2QxZCx}*sQX>jeLK}tKOkfR&W*?8`U&~t7 zZ7n)c`32^+S;^l;>;P>>(xQp>qrCH+z;%OYoTMa?(jYwC$#tH~fXn4c9rA^jUyL>h zZ6tD4=xiCbz0Z-RrJG=jSo(WOsW|tnlP&y0lhqFPSu8!MRicRF3c7b99l!e3uk647 z`@db24yA(Mb=O^^K>q}IPYR^0@-YTG$KJ#s5+=o(OMwQkOeGC=5^RAuVoLeI2kT$VvbHwwyQZ*U z$eLOMwkD|yx$PjpWIO}NvSWymRoI(jJCZsqBPYQw8WU%Q>0xW%+lX84L$)h?txb== zm8%Z|NA3}9?g`JdEs+mc_&~i4tXWUHk=-~iHmi^LV2J?z{wJRj>a+L^zs-JMmEHUF zE-NlQ$FlIze+W0-HVl7+V217vXhhESQqxH`R&5l?KPOZ>;Hfj-c_$xB?nS0Y;za)C zT7Dt`PPHNy4%k;OB%4!Qjm@2U8lO`KW8_1=b^skY)Ww$q+^aW=sIRg-S5%e250-jI zYv+;ZGv&G$Xci7|0lDd~OLxaJqA9LnVh%gjF3(zi{^~(5KKAKp1zbyw(n@q3?RBvzT&p(g3(VtA1Kbzw}I` zba0u!P+|~$(e-PHxMvK7V>T;b#wQo!<9qyFQTGoV*lq8B|2cs82^PaT-qjU! zwAZG#R+})PoG9`>+usneeo`omugE7lJl1@C(B;q5f^X0A)w|eO(9GcvUy1dE~L|X)PML@r@q{wLtL-8R?DJ1PjCQBeO&sq*#000BH0g@m3 z{eKYT?KvhWlphoa=bl_?%=PgntAa>|Rr zpd*Ji<>Qmiz6%o|(YAL5tfpbewr%UPNn?twa7v1ucgZZu0kHB<8c!V%04<%Ej$5RQF>$rk5Nwoly+&u+*agQ+B}pF{KUBpg9U@KKpYdmwdT$v#Tf%>pJu<0c5#k#1vG8a^#oK*8%4lUxO9lHncQr-q&lj&-U?*CYaeU*pic5?6rLolPc$sxhgSF^T1$K-<}ih8-h9>GRmQm`8dRZX?&) zSAGNT4WS4KF^RzD9Oz4Fv-SwxqfJ)|hX94SfPRdPb3ss)m>7vqxJgWgAuKye7pRR@ z?N`b^jZ-qdJ^y;sDA3o)9*bkmx<=w>)KYW|U-?A4;o6fdg=nsa9)By)Z*J|gJ++;7 z^?Rqj+>Z)T~@oOx75XJo$zVL;Yti-RRf{z0I*Eo>J@Uj&vRya$(o|OQ!6f#v+RmZT# zzpm)Nlz#C<2l@{`@Jm>@#7AO$m5E5!(B{?-XVK5Vsy~2bwjcXeBC@j!(-J0~vEn{q z5pV4XV$l~H(vNJNV7cU_PsP_>E|SXbB+wSdY8{~rK`{aRG-7cfh9aHC+Y9S*FkA^# znoXP5ixIEi9$k@V&nI>f$Pds8h?Tqzsncd;4_jJWu5C-|BojcYol@Fm(+J#sV8dpj z=s#t9B3F1oUr3P3L>&*trrXxgKVZ9yS??d00jLE4Igs-tbH|g0TR?x{iKj69As?p` z9B+QE?HeS8V9Fx;n`{p^>_#?j$GRV~y=1zI2vl;v5GOTBGx^!oa%Z`w#fq(^ItAoq#dg$r#zsyA zo~2$OUWPs7eAhOZu6(BG`Cgzp$;T3aK?l_DSnM=VLHHE(PV%rA7K(Ha&DjIt2f?#I zv;+DYF(*Syb{1m*`~=q8kNbAtkMH6d=7cN93yL=c9!Mlrq32?tLE(OIUGa4vu#Ab7 z(ERlTJS)4d5gwpqT1aiQMg5Tctu{NwhWe{#t21;$^@oVdg-wz1l}xDX1oHK0be+bJ z-zczn=N^cZ0O5#IWeX=TX7ugUIoF_&IR2Sl{;q(2ef=K0?Q0*ioK%2zQzHS+!jAUS z0foN0y2M3Z+}9K)KpesN@W0Pf#C-s664qoz>s;~NZVU7DGfB%)R+w#NmAP2vd5Ao` zf`T*~Vuu;%0kT2U*RvCFlsiCTCjQ@f5X7@JQ7WvpaS4-9L9@DT`Ga2r0Pl8SU3B;a zv_Su>ak}Yf5B?Dwb(T`{R{;J8ps## zuydBVTKuxMYbB>(rH=C1uunNQbw3twEhfrUnWDgWWpkeQiO}VH@nH(%l8}jF zL<=y^uW}Uu9|}JkeuNDn4my$QQtnQ=hyqng4g$LD?y~*Qhb`0}u%1x2wYRp}X(r{cL8sBf;1)Fp+DXggA7M4Yd^ z06dkm0XoZmOzHCURe}OSN1H3Rupou39XWRTDHX4(=k)^p`w4>A*wlw`l4O^>Yoc>= z87chj0QBVsAy)-a_2siBfIn^W%Uu;l#^bH}ItuiU-IE;|Th%aU&K%ZPyb1W9C_w*} zzSP%TbB#-bcIb$V0{ufri?x88ayKoMHw33AA-L$N2CnwngT4wruM zLZItYf1QH4OX5iGU+gLsYOqo0C1W*lyfie(jmW!Z)= ze=BmlVj`uI87nV8jkr>Zr6qX`AO+|OV~ml(Hi3IGvT*Gs&Qx1Zf^B>;8#$74kiX{7 z@8)|LgJ5vjmOnv|X~294qm7JBk~|gVe-SCHV~yFiHHl!=DT#JwMbs9Qk@EJr)z;ne zxa|uOj4$vt?g30==xQ83pP$869evbxbf0OxkF9WRlJMyRM~Jl<$jSA9J{J8L!M~N> zFGj%Y_-X)Z{sN2hTKfP1KmbWZK~!YnG~3a<(cZlhAc}Ow6jiHX%kDQ+JecaI_r9r3&gDRiju`z zGOj?W@Bsi-Jrt|h0e!~V)r)|x@j58m$6(+p)tmsmo`V3c4qdA;jmqeT?Cu4~Q#L8V zbSYJccJB;mlGg>ERWFQQu>(NOUaCF0y$Vo+g($c7*{3b~`(*|(8=ZsLzmy|GB}RlK zfWB9!DyNC0XsrI|2Q7g#>I&jF%)Iksg!E(hmBNDC-Su)2R*rkQ9INThRX`n}5HS#( z+W~)tFot?*1wAH!+%;S*1Koq%ABTcOvby>uqo>A5$_X(R0RKP$zohp_220JJ{%+|{i>2Y6OdChbw%{dB*Nza3%{=ikcLmUqWYIsRcQBq1h3W2-rf#0sP+Wmb@PU&&bhB1N8Kc(8vzT_n9X_r6t6w54Y zz&{APa#N~3@v8@H06;q^syvo!P2x2Ch$bNXzLPX;Lpvk3Zfm3UFc%d(PMb)iqKe4- zP4oq=Ab}o2Xfb^^oN2+hUi-yQAGUH>2TLyfFH24>ut?9HHgzF1@%9EAJaE7U{HfOG z&tV~S1LP@-g`q{PNvdV&qT-XYUEp{i*iQKbFCkz_X)>E>Ldg0_Z@0C@Y}@vzed7yX zgxVgp-ThB8sd0(Gg+j~#QCDPj_JZs|lVV~^bEnjLP7}vQAUcoqs@^6qMgf{uHVXOW zN1{C}R=~7q`m&buTw^F}v>0_L;Dy?pfS-G!KgGKHQAkM1z=o`ig4~1X42X4r<}Zw* z!3E6|Gl24RPOb#ekU-Tr_%67}Pf(u$1C>TpmI;_ap!qTTqk@A&vAa z`D9zDm?Kt#loTi&m?s)9(RZZnlva~1#%&f_;M$0W0PD1bx`WiIxC8j^unDjwFh;OT zNF65s9)0OBVAhW^NSm=39!jOB2>WguWS>x=nEpYc@}mIKIOnBR+CP5a*BX+;9;4L# z!w$<)PbwhZUHIcS;WMw}{By>-^qZQ4Zxqm%75`^4}QUTNXH?z-#j6QB5m14JuV zt~?=t{!>pqWuO22=kZDIJ1P}?6zIP>Q?#?Q(?!+auz|?v93T7G$6$`W|IKO45o&#{ z=@(CQp#Sq9ejDWpzV(1#**=wWxC!6;L@e}aSe#{94HEcTK%e;7=0|o?;BC>eo7;LE zGgn|P4gdDsyi{aWpfIJkktWkX;|`;Qc2C16|ma6G^^P~;6G|hOAFh=1)YXR zEq{?}uP0(pJXL6G6Whs1THSw`loTTCu<7_s7!|kkXN1jO{p&_WH408V(lpu zMAi37cCs&^*4>WGtNZk9#0=1@u9u9j_*O2@yzb=rx0l`1v31J+$0IN>*!(;jCW^iX;h`9yU z(3t2B_h7_CV2+|lNFYwwg4vgh2IFINj(RjV9fdB?HxYT@+TMI9Oy>_ zgA&2dWGNyDUvXu+#brPV!KI?7{UQSLjdktI$lhqV`D?9qQ=>hO-}=UFtxRqvHj`T$ z%|&O8v(qk^W*xzC_}N!jL4K`GuBx*79WD0gPkvy-aFV)%M9OCdq_XQ^K(r}r1PfA& zZ0l18(Af4Vp&ZbVg+j2A#BrqL*jD2}zWhlt&nD-4so%EL92zV`gKU%}378zFHUzeuAF(GT2b@OJ@Vsq;r#yvb~we!efy+>o-1A(NK>SP-hVv zrE+-=MH1}cjomiBY^HtW#*YH@eYT+F?>MnqvKwJPVa4iqzD;2e#+A}d3B2d*`pbhOE{K$t!S~5k%lwXZbs?7m>@#BfOpPZC|4;PWp z<4}^oJTPecsx6Ms)dwju;D;=LU8GSh^yThO;L0lK&3kx+9$^wG=aZePMg&!qQ903P) z@AQgu@EQL)^&b8h1^R~{mm{53K)k#0#}C5bNg)ERe8o#k((S3$2i%v|8v*pU*RBdK+pM%rn>IO+ zuM7w$diq7lRTCymuy1|qTSrX4_*#L!=FPLuK5L)+Z(7>`_ zt(|glp6$ks_?F)_BliKE56Zy~Xgm3oTlBy z{vT~hWt>eYnP@Yr=AsbsG9NfVPTL&~-xVw6fhWTYAj`0&YgCUc?@FmBE4ZWa1Kh=K zb@)dB*ENPhIAolX93Mb_RcXpt<%DS%$ua;68;BJk#ej=$&t%Z;QWA`?3S`+=?14Dg zx=L-m`P;Xf5r-v?_+lRTM~;@vkAW`EC5Mw~Esb`*TmBeTvY&I?sSmT*=ZVYLg zhRX%fb8`WUK6R_DoR$5JIp#5gX(sZ%`bW96Q|)&tvYjE3zqw0tj*PZ}cw7t^1F?5` zoMEn`B#tn=rd|ZJ?i$?+Q+VY7g6xDuyTs(OfU@=egl;DqT*cAZQz65 zMSwMePE_V+TDmW2$^HS$&&k4a+HVgKbw2`t%77+6wkpqxs{v+|(Hn$BkF{Hxrz`+& zb}m4-GR-oIm`tQ>>uR|OzaKC4RYA#8OU>AizkAg7Z)&pVR@d9=wGFIU03v8D6$Qja zXOFdcOQzZG)+(zxfN(#~Z&xij&DKBjls))^f42}RLE7SqEJrl&)bAGR4-^NW&l zZ0kKQ5LiMU-#|VlV;}?C2|-7O2@nH`$3mdvnP2{xt*Uv>mOZ)Ng3)B?OKe1!-%iy1 zLVHK*Dr=k6V8c+-gSC5^^eNEyxf5!;DB;6QIL&f5;bmoKQ7|>#xXa=l33gZ^G^zr{ zEoz_Af@!R*| zhvT$-)Z>F8pv4iThb~ASz&L=f&M^18&4l)8p)1{A0*V8t4TS2Bu9i(&v>$B{#4Zrf zr{%+JIs*0R@0{OHC_*4Rlm!VaIxTQrFH5}BHWHnGA4-e5OSnWXQSs5b;t|He<~l6- zN;x9`qj(eoeZ7N#$Sf%MU9OBcu8ZJy0C$9#5Cq^0VM%6A4hZbSQg9Lbfc|4o?zQbZ zJM79!C)+b?>aDyq<81@PCro_o76}s_#yZ#yl`fuEmU%GUu{p-K} zt1GawveKo_tE#Gcse(5f=qu;CBI&PPyViZL&6qL6{^x)G=crWh*8=oqb(Y0h@drkM z{!5Shb-nq`Z+>I9-wtr#7(afzQ^K66=@%s%End9XNxwL%hQ=dW(i5z#J z|HJ?NPb2>=$edI5b5AO*#I+<0jWeZRYMC-C``@lXc%ult8W{v`O6Q=baK4T9+c^QLZ%$fU`4+fPJq5#SABL$<^49M zC>dsGzD+4R8CJ6lTe=#V7a3l!`f+9IJbyY$z5p(VQ_e^#MLu>JyXdb|D;$jKFAKX+ zvYxA~;{j*Pld(@$e#!+0NO9n-^!zP_gxalVp=Tlk+lXaf*LVg(+66B2q0nh)+;5#f z`?>ju&8AppNjDK>Z*Nn(l@{l*Ak(c80ka<~ z^q5kj-p3Ky5nuCcf@ur{2kqV`wgJfF0Q1RKMGCu|A~ZcHnHrm+T@3mxKQqb3S7%yg z5q|t7fYyX!qO@O(MhWV)KWK&J51=)IlFdVp427)`pWbyFn(XOk8c+l<@t7cGr0F|z zeu+&zcap7IpJW?q3hkPUPq8b{o^I<_-D{64k0={#8;heC7lDG56f38F)A9-4*BZ8+ z_pKqnI~yRAh-qwr;(Q{+w_754Bi#fh&0g|#XIV?fPU!S?wtXK|ev}@UU-NCt$|<$8 zV~<(u+%6kzZ?m3V2cW>mL-7Y#G69G12iJsU8Bi393>A~KVqsa_X^-Fu;^Ec(UJ zsQjdP+c!{Y4?G>R4_~y3VwRtm2_+k-lhv@q#jTT%ujxU>B`XM%g{D|1Z6c2z*4~p=rFBegydi&c@ED%Z7 zF&Fxw=Zjsy9SWjHOaW2&^_f%b(Qc*={pi6(MC^wlzL0Qxz;{gd4J&vcV?&exwhovF zJa*SFe6EpQ-L zL0>MtXd*s_etY1NU2hwpzj<35EQVc9ldWj_mtQ;?Ar9-y+x!>>`ftnxxb3#v?4En> zafO|6#u?6%pDaG^A;+5u^u;u|`R1FgrKQESC>P4^*T4RC7dzmPCcf(JUjq69rkX?3 zrcJX|t5%Hy{a20PYdfJpa9{b#S8Um`W$uQ*hxChz6`*H74m$GDj=u!-RmQ#d-b-rf za$C1<-Ejx{KLP0H<&o`5NDHthkk&wYY^BL7B4u_MI(u*5FoE<0^pS!{j~y?cYUI|2 z<{s<|`xF(32D;1Yu#y>Uw}G8F#U{;18E-fkN<=Glc8G$5ZN zry>Uq1NdZh9U!~b6RWW3ClCM`*)k45DV(SnShMqxFY9wGA!DD7t;(`7WjR=O`)#nb z)t+BFXf1u?Z3-6sw1n+Q)1;;5K6#q%Z3O7sKUnbbCkYnE39(uQYLN%yMBSf0#RT*n zeI1}Wj11XN-GyhL;{pAa9k%e2YzyTj+J}C)+q!T^@MEZRf$l~gykz%-$DiMEg7X6D zl6?jAbqvA?2qAm>{SkXd_3vOh6PFB`d%@&0Y)r{yu9KuL@a;4bUMDDFgnF-6fmR(t^RvT1jdLK=x_nL zaiMV6Aajcm8>8>CvTJY~cWkwuU;P$Pj|`4R9+ZRD10Depi~2jTXxE9Mcw~%7AM!B>(x*n*n~}A*|5D(5zc)JM6`c zZMO2sdMMkZU6yBaXBJrX!ZQ2Qieam1%(EM>KEqC#S;$0PW^3>LKkFd!XE&+T zdKB3;lc0cX0Ao--__ns%p5>d#-p*uVrik8?II+_DcJ4NCAe#xX1kPAsZDYs*8mULS z*lf?NZ?_gw^S%EgKeEi+GCRBTkJfxP8&X$~b?;~d%i{+Q*p_xGghgK2~9L7TDDve4n-S?z3I3%K_RWnk+^R z#O{1!v`f-0{zlz%1SQ(B}LnpC7zRvF^d9bKnhfN z2=w$C(mzTE1?%&I;fbmfX5nDPXYp!bJEj8GazBg*-LK6jM8r!QCNQDCDA-IpJ6dha ziXfYH7~l7xb@jB^;!9@QPrkjzN~*Blr}kMY*%ji5cv>`VqD`7pOsj%K{p<$@{+w4F+ ztPjptm1o+uS4=(R3h(XT0`!&UXA|pq+T?sYZleSHx=v}_O76c6A`7@KVu zUogSNrFdx|-o|evWGgM!sE_{Zn*^d)f95lvvCW$|y8`5kFQ5Fw9d8!UKh&3cgbFSz ztlFa>fk!)z1oTIM>0VfUqHW6+;QssX9|ihH8_Xko_R64$Vuf6C$t6d)`pr3g=bd-H zWVu)R#czJ|oA$ZSea`N<ImG_Nre8XjbINsF#pZxE)EGH)&u@ixo z?~4#}Zc|5}B@#!gATP~&dk1i{MgD^>ot}o9ZITQ(a_0o-HTM#0E8^TnQ~wXev*^pu;xon?SVyFc=ovf{R}H^ z++vHaAl4SF;v2uW&DtZx!E!)fV3k7%^5EfQc)h1?cb*sTb4jV3rdBeLBXeTyjvKPG z#-QLSz-_|sw|NuaVH3-zO8j?y(5nEyIm594iUMDqA3!`#ico&m8;_k2`TBiZM-}sXVn*RzE&-w0Hhy2Jp8ef7J-6 z=ly{v9=G0QD-o9mEJUAuv>}|GZhit+hxgYr&Jmsy_i;2SxEzI6d}NVg0-~v+QX}Ac_;w@6OZf1zth$}+hVJqt+#}v z6w>ywF{S(Mq-kYVIxCM(v)cs7$PfoKk zz-ZsnE!MEJ!FjT4YDdt*rB54geH(Z17h4n>p~`=}+-kaZu+g+waQS{)i>ty8?!EqF zKedd!GCQ^QE^EIG;EU$7ebWKfte@b2qLm0pYGH~7gqDnnEx!_NAIcWsv`%bfiA-qh z>(G=6t-m*7x86y5k(_e7`RYaXfscOJT6_1{wx$PhU0^|@t<**!OSiOpaco$k%4-p5 z??GKc>E0sMrelC*S>{D^*QO!gcF|cBfnFeA0sOeZX#bObqT>y)E??aQ4t;{?g1)4F&~DA54#s?fl|0D20aRTWLQn?K}PvfSi+#jjDI|B3-QZ&e)|m|zq@A$ zieJE{0>q^hI_Di#hg{{oeZ4^c?)$de-UD6s?(@gnr17~gEBCDq^gB8ST~z%Ms{T1= zRN4I5B`+I;xBDNXK>zj6fc5LwJ6~#1;zt1V+_`g)Sm2uh^aY;oyYD{NrbDUVS6_Yg z>jwHGz;x22NshUo!o?041^P#P^hf;Q(4dF~1qIICWAfz5N4)-ce;^Qkr1Xno9lTzk zzkBy?7nD-+fnrwZ`0Qst`=$W>A7jza1)L$6Ap^;PW3Y1jESWTTsYKuF>Kbyfq$FGB zW)oSTT=U|ZDt%fjZo0vKfH*)k9c#X_KJ_7krDdjCTX%(Zc6qF^?5shXc~S=!f5c3X z>q8G0*@Xi7fHo6oMpl)jHAvv?$5!Ur^U2+u2f!hNCKID-d~(oEpPFf#HWZ_j?L4Jppblb^FKd#mlF#BZoXDuI(K8Jaj?okJD&V*dy5(O*S{fX$n9x=kvd;rdN+9FpTl3KZCt z^bVL8$mbn@9y}!5Bg0|@98o7|T;-}O3%-ne0{X6fQW7{YkF}i-B#8$A`7VIBfWAr) z13(M`DFXzYQ4|CSxGlUQMS_60VtYx^Q2*eg*0t&x3&=1?|KqqmFzY0XqRr^ryv6lJ zGIL5{flavnqp+c?-1CVrW|GrArU30A?t=n$t4mQCJE>FslU05M=zA;#lmQq)BPb9Q z%kBTO_Z|RNRoDLix@GS4KEn(!3R+QAC?~k8Q1Wh^sfNrPudk7j2;5k2TxoI)fI}`Z4(Ox3@ zu1T7c7P5leEOOxeD7g0k)nPa?|^u zSNn-j*Amfx;kjM5aeF(UmmAEa&`lmuN?!iyMb<=MYs9D=D<&@{l)_{sy6%tUSjDQH zR=%N%8&AD%C@wiE8CKd8vCVfcB6^D>L6e7x9fonxM=nxQ-EMI?Es&Sa;J8`~VeoW5 zy2DoUfV_@F;KoniLkYm4Hfi%67Pvaq+Mz==tgbL$A`xMLevIgLFN>m6tCaAF9zg!d zE9DC&12&GE|*sC(2 z@-W`w&3fU+u!rcqJkN4sgync)u}FiqpOlbhpZUl`^lAUw0MOt6xNP3qY!bYamsM)- z@4I4xE2Y=o5jko=f60qGY}wzcZPxTcBKgDL(vkNv&=*zzuTO1p^EjQg^~#IK;%H5K z%NYEte=q>_4{rwCb=O@E}yr@kamS~yiV!ixQuAP5=i#0X|?S+@p zY;0_ew;@U3)KOjLhyv8BwO=K3_KalOsE7NC#q|I-=*YzgSdgumVRq@0eQ8rD7^r@SFMUbnpn8P1^{ap z++%;WDWGl?iEo;-PUEJ%7!3()@3^@dJxtiLXW`K_z@{KD3giDjoZ1i-Cm;> zyvpX~r6*Z_b|&6HqNvo98$WrN6^|(9CST6Y#e;^3Usle;(0&jJN#t+r z)kc7b{tn9EEnQq~<+TXwq1+t>B%8m>CeO^Z`R7kW85BXkOl0K9BXJ8tfQL4cV%t}2 zwTkt1&ij=_6@XJmjkiQp_5b$B650S3b2>%BW5ctpv$D?8C^g5~Sq#QnH$WoZwcTP% zwpzjtv(4m}R1ifz`?L3&51>D#nTWzUeb!OiY%N>rjCIj^$yJI0FjcQ!51bYsO;kms zftg$%`HcZ`!o#hW$UZ@pB+MIQEtDku(S6;P1#RgIA3WX8JO6Y`$<4QwyZ%Bz8kI>N zKr;N@g01%SoP-z~Il5eApMFV!Uh4UN`hc>bdyo|6*5|kd^n4SUPjnBPz;6IBEwy}) z@}mWUe0;oratvr8$jh9Kb7l>@Y7x=`Mal!`)#B6*9X|oqg|=QI^lDuF3XoSHC2gU$ zyxTS|Y9Q~OXnv#_(U!2CaLxp~|0~Z}7h}@H19|av=i1zh=i&U|4+`1fS;hhCef)8fs;nFVs{X)h&kam_ z@&M9D=0I4&487#@qbngtNH=-=T4<6{eAU7!@y9e&SwH`g$9cd1Z2;)MbzB6%m%d!- zz8E_?$5F{8w(|-CnnwfZYk~hGqI3GAl|$X${Jdnq{@}NC^57m8jmL1 zh~b&&9gJ~|iMI^Ezy~hJc7VEn=o3LqrvLoU|8$W@9d+rYm)e)V{N+Px;8+2DF%6VX z(AuiM3+4m@_oagOgSK}<-Pb&M=%I%kg?rzq^8nC4q$%Kb+EWx!A4p+dboJwD+mmUK zNLjgWe)F3)fByWvx_CH1UqXY@a*$)Jw6t`u_TIIK{!hQp-$@VXyI3u@`mQDg%1}ol z*hLT&03WnMf^XR{Zv)s>VxGpxWp9R!*9n_4iAa8W65qk-3?@PSZy}oBmTno8&pUZG z%KF&sKBa47w~KcD_!C2*?hEM4iiV}BNIRBm7mog?mt<2yugO9k4R+RuJ}WIsqk0v2 z{Cy#N{`o8`8{K1T)+X8PSv@wah_cM}HMVQ{Beu5feKs}l|A-?20I}D_F7;v9wM2&6 z+U~0?xc2wf)mCCH4cN1kW9ua_l~Pb-fw7~l`{fs{4~By5*QCi4Euj#nB|#xSQKo{n zjduFALo7_n@qLf4vOjFhb&d N5N_Qosk3-_^N)Lb>~a_PJfPVVYfNjM)tre2$0 z`WMS0=ouvCVa|lJY|PN{?5po#=5m+=r|c^*FUG6~{`Fo!U%@j)ulXGN6-%ABd?rBa z{_A%{xE}DiU^h0fY+MK4f$H23{pUK!z0k2V&M&1@Xg1IiK}iJ-<;Wn^={ZUmn>fIG z>#y##p7QOCC)Y+Auh<%tpDP2*}ZC+LGvAGv}si zgF7|-*zL4Hy4zi|t}2Ed=k&i6Amm!rC)sxDtIGC?ohz!o@Qs+oeFRMv?N@3^63=co ztQ_sD%0fz;7ADk)h{i9c#q6ny=nnvW2IIh+#P~k@Vd@Y9oPz>h-0)r0!mMiRfO?;8 zl~wJO%peL(J;kEJRGU_oW0}c7(Qw3SYrAd5#%2Z_m2K25^Rm(r-~dP=5;d}PjAiBC z)L8(bjKNL4c7EOy68TTN^ki$#pcZdWgGKJ&WQg@!t@;Px9{ic#nGGto z2_1j7;C#wPOd{r=G{Ryw%At~qDAop#C$8#QT$ZK`|O+T&ZjhfxcK9wUtv4^)D@tb8I(08#Gc zd2=~0EUp5$65Z4OigY8H!Q+iuDc2^^I;9r4ac0c$=kdVELDBB=*|iwyk3j-s7>iR5 zkK^3JtyP`T(lrI4>N^Js5qGKA%b_6Zk)ARAq1gU+6!%fxmqVbdx5C%N{?HW1$5>$8jDyH)iracLBh+ArvF(7nKa$VyK=_iUV=Kq{JM6 zeZ)Boj~C_kg5>_kb8s58vmee77K*NJ?g{f)`8!<*(BQ}Bk~-L*Qh=~h z5`(FZ@gQf1*7J_kM4LDeKK|k9Z}k00Ui^hh18b=`aN4|Ln>VNE zu$$VKs(+;I9d<|li4OeDZw7Mo5A}AHmzTRJc|}EqJ4E7X7hG_`p&st2^3Om2yldl{ zYpyxu7>0QzqklKpycbas+4B-7B{3Xv+C znjQk^7ogmqi2!%lrcCM}%8%{nqOhWjE22Nd7F-AmR8ePwbit;;jfj zZ?&KLuQUin?$sH6uNPifJV3JR+wOMQTPefZ91Wl2ybS<{eJsa8pQE$Vkbpk-+bih@ zP-dQR7OUO4%bM=K&w5*1919`}&<_IQL!@7Kbzti=cjQn=P9|tbg_F`NKg2x1epiRV z29e%+4-0@Tq@|^vxSzC-3C?Sf0|4FOBZoZz{D5>R?7Mvh^ce?FSepabqEvNAVXk(D zaW3(Fgp!EDDG~!$U{Y;K5Hd!7ieCGJahp5sngO8iM(-d$1oUtD;Kh~<(AO=D@!;-+ z&LcrSO|-_w4iw!X$z)~Nl^337(Y9T91W|ZLoxiauY^ydmAmD+wkOwM@sJ<`7N8~!y zN=h%ZP}*s91hc><1pDYdiPXdwZAi{D{fZ(=eRaWs-g{9O}`i~m!<1^B1#5w0!Q)h>5 z-MrCSs;jN3tHWAhF2t+rfPb(8h89}jyy<}TDofZ@XYrS6ElSA| z@3u#*DUx7iCB=5m>~S`B)KHsy>dBUzn{F$2K1RC;(P>d(a=+owprshjgBajcbQPzr z$+agyt(UezAKwWi_mTP_(K>--Js9c}|I-$}J-o3IylG+^#9WPe>Z|g(*aK1@6*XT` zZ=Nm2moZ`ykxIQhfPOrus%0-Pq}tSDs;GICstW6#ud~MOU5-uA9c!{vFPUWxR2g{S zE6?HRi`d+eqipsqXIon7U>^Py=auUv+O8$G2bM!5R>dOIPIMm84;B$El42mRigOEC z7?>v!7!ewKc{4@((Q+bCFNZ@6W`=YOq_i(bhn#;A76f@QMe*SvYiVz>j4a9t(r#xv zNBdw3u>NT=42FXCrH?K?;1eY3LpLM;%`bU%q(EOK`5yl3 zCOh|xkv4v;M;knvKwpA>3vnDMH!(Xa>9_*=ds6jNQxfdTOU7E!kYn$q-s^_`6TBG! z`iFLto_p>&7s(gc6@dPq|M?$RKm5>+_V)TmM)bur5VJsz1Z`8NPIYD44nze%RG=@X z!5{zlM@Q3_YX5<@0ib`Nk$LlTu^|L*p$gIBEg`*0PHL;NcY#r z711ZK#<`-g42!fAeN9DapYNZ3CeJ2M-bTePPsLwBsc=sM`S_`5I0fvY3)(D{D7c6n zhlq6j>-SiDb(?L7-DFek>-0*|TLE68(p*o6zr@yeUt+UDzb3etVB0q4TYYspb}#JE z!aPeV8)IQuK*@9GT5QJ->shl-=AEUVb0$C^F>u>zvoFiRwvX7>s;GVbfo5!63`5SO z{bbK-dy~2^i0W!)nclc$|)2=rrsx%2yE^V1LQ zFDHSb?{X9<1y(`9enou3?`|LOO0nNLB+fpSFDHeVsZNid9m+YX0k z64);Rpr51_g`qqcyYkM0R5otAkU_}stNJ3D8LDi6N5eTglTrubywOm3m>&eM?LA`eE_;1 zTfem)YDc0CLUlh2uVNPEII@Yr4H~KWo+!6>i=hpiyow^!AB&&Cs$ge6W3l0x3?Puf2RL|oxE5RkM8ox7|7i#B!A51jGj1yu zR$EUKWmUQxX}Q(TzTp(BD6h5qzrMs$yZh`Egi@w_@llJA0Ezxl8cN+ludk@REe)KZ) zE^Z(F;53(;zvs6{0`#kEJ8>L#*}q*j&ehoMZ}(^c{U=x(Dk@v;q}fC5;U~5nS3v)- zPi?j3t7_dP7Z+vN6_gK50qhTKZ$AP9K>zK>NTB}rzyH14@kny1|4~4HU#7vKP{9uc z=qs06AWfz7e)-E^9(14vfc`;;$2o}}f80xPJ5c$>gSYUH{Z{1{H9u==pp&!ReDlqA zRKJhQmH&e zg3~D_D4{*EBeT*7kb(9jV%&l4?1v65dpb=y{DZQ|Oq_3Nnn?R~>+ee?=DA>oIx z4??!BBF%PGj0A_kM9s;x)QOYK2Sy41ZMns&svR)ajp_&b#i1=W{lZM_PoHhA4%_D* z0KYgBSx9yF#u#~{jKd%EgG=Rvv_jf1c7`>NcML=C0RspKDD|J!7>?7Q;AJTn$|WX!*$m zN847cu-@%E)R3CD#9WviAOE=dvhv*+3MDD{r(har-nGx!9E%o|haJyY0rXwYK4T~+ zg|0zBKZZT7oPFu9$<`M=U-v>e_mOUJNI27S^V0~*R&oyQi>?-PR-4j8`xL~3aqX&! zaakJAnG>ZkckK0x{<(7Ww{EsiU4H?TW@zn1H>0Rg?raX*=89TqKdPt6#GtZ~51|LU?$HfC&z6%EhA!{zk7NlB$p9gE!l(CkQnq}jrOt-+OV)Wh+3uIz-)-~BD}z7f)_Wb$pHTXO#kda5$ePvF)?SCh zg7NZGUZW5CzTBOnk!T@wH6*z%mQ7wWehAGevL7G^eZw}CEZfp-#oC=#HVpOA6Gt;a z12z`wQC&^7O}StY(f&sFfXIQN#ULETn~HeaR0vfs&?efy==uZOp^v}-&_D24H8(dqfv^=AZrX0R;RgG} zCq8lD1K#Ev<;^c%yx8T>Uw!q}Z?pHIeXU&T|M-vpa3#t@{2fS1NwH_1Iq-Vi-|E`| zeStCw@11$(nWhqg|Mg%0)qm)Ie-8lt{SFHe)LIi0V)N$BZii2P@{{&~4}4(%JHJbx z?pb~@IT<^Y@_DMD@OIn5fWDY7auUf2HEr57B8wq64hL)VT?6`1_p{Sw=U@*L370fc zHLO<@JT?G9Z=0ru}s*tA<9|{Tn4dSJE3VS#WS69)Fs36Eh{_OR&7fpeKr~9 zMkhd@^juOQX+}+8U;6FQ$Mg7m+T?7h&Rqn)2nuDDBm(r~MD+8a_2UF!@AC2#Te(^q zJ7LmyqxRh5RDgan08(xVpVhB@%A#9evi4Y(ZS{T3Cfhf#=`m_$jRMRQ0Pr0)jA;K= zc7pHw90Lm>oMD?PCRp7z)aEBlvQXg=>w4x{i?>rQn(KA_J`DN34vtDR$MU%y>HXb=ZN-4l;n-3!ZHfLvqk%geCr z3of*p=a-t5R|d=tSlpuO3s2};<)n}RxEK+U?vRDs0_ZjrT5A+c27|eWs#+RPRdmpJI$bebS!!IE zM(p2NQ?7Jk<6P)5-Tt|NJ`w#-y#IW1bO8E@l*It#6&RkIDVFX>t`FLMePzrxFKwb8J^S~zS?TN&E0~mQ5B_$8HEtqLsjl9NN0-{H>n2+6 z5OV$d$Ri^P-$%MZD5OP4-bl_tKjkG%Mo>c!e;1V>bZ&|Fb>l4PLzh7HIlItoh!K%j zZlLrFG$xu?;Yd5zkYvjiH6bkdANK5uyR17_Lk?ILR58X8kDzj>9KFA{6-Nc72w6Nt z?GM7b`0R%kG7kIS27vzF<8m~CzRL35M?St%RK|_Tvy({E*>^h z?Kaa|b|l+NFTLad)GfE%Vnc=uIg+N_v5J)5dFP$(wW#0%krF$5?6Jq*w(SD}eO<2{ z68*WzlieIJlc zZFua#1Z<;jqNY^>`s6VK)v$Z`f-hw^CbJggU~6Wk5y--3^n-Y7YSCDtoLUAzzqE9a zC1(am$xTMzD%FaIcR<6ZLKO}HMcPHnjswykejE|r^BV#BackY#VWDioS$V2zWTf5# z^e<|%*Z!7nwKWNL>M1=q)??NI1N6DYX?Fg(Vu&KYEOF}<4_F)9$RD=tafZ@es z|AcvrZ4B@|b=rA0zGMa?uE3K(ws49EX1#u~p8&lm`VQz5v;%N+0f1)#T1DwyFSt%@ zZESe~VSPdj-2HS$Klf9x9iYKa&V=nQR;%u|f}s+=)9V1At9^HF*Oqq;Vm9=V#=QKF zJ1n`P+QQiQNd(~hg*lde(E{7`)U)O%qA%vKP8-NCv{AQwf-9+90`1{WzD$gQ-05(C%zPe%`3&ob| zX4}34ua{KQ0ZDN{wr+Beg<$BA9Lq`#qsEy)ol9;Sz-tErbve}CoIGY2f*+-pju>A> z`vhxj8*izZD{Rn^SGb!*otY4two*}dwcc4Ix^@PwYI%zloswutP=BI)7D{9R0fKp zy|oP%Dj8wV1?nwy=1g0@`c(@uq2iBkus}T^lK;pyXS@_2Cx`#myUn2P4;%TEC1qAx zfU*xeR#aMDCFe@Z;-Lcc;+Ya9-1C<42=FY&$ZhW-(yVzN;sH*9?eO4(ud%qKTNh;u z$Bv&ybh_J4o?46%Mh*wumfr(Kod&;zc`dA-C8U`zy#<-rU1(L>-r zCyb{>0!NJp+yTfMX#N*XOVl6jD>{wn@dE9!sOMzSa^cbhI95fw0xQ@QXLyphV)+}wdHYzei0ottAHtDQUmNhKhZvS5x6Jf+Yman$LaV60C zr&?y7fH|f7s5SuRb`Pr5LxW1+fU=>*L3dovi7ve9!C)Hew*>S=1Cpl}Po)+JBJsK= zIVxj_FskA~FDVp3)cjw1w#q(!{TFO|{W5Fl+`yth89x^401kshs67!h11!+Q`0~eq z)ke;clu)64`bN)CaD%`(4S0_NtUR-dpb$V`EY4&o{>4MnEg!+XB<%1Qf@?b}(Vc>N zpT&10M(0}~z0cNdO0(_T$Zsd2KXo#tivg!<1GCZrwMQ1_+QsKL@PQU2$8qB+D*1x5Z-ZF{^x;`t2RhVTDquD_#h7|0Cq+ zf0Lth7H!z4n1!9bV%zF}pUw7v7sQ9D9~frKqaU%(s%newgb6%qto1C0HOzm&NAFO6 z_EYyyJt1uQMO_@~w{5%H?biF-$r_L`$$79VogMAYrjNXH3uXvNcXz{v zU5wMDV9+id_Xql@u^~r)`Z?t2PjS6aYOUXaH!b3E{LZnIQ{n``?AG(+AImpFq(ka-VYXMYijaCoE98!&Bnto`%Mi*~sgzhQWZXjy6}Hw7v*t zy0O9m)Xzk4dHD`+z|dtM2lTmSH+}$pmyU}gLbkrT`^ba_u7aRx%jlm+0 z;;`~5ny>MphpO^rXsG#wXJ{joK;V$^nKAhy=9torkL~tP7t!wr`YDvI>rGCw%{v;& zgQ;i2NZ5?QC-29{jY=RgUR0E0ql!Z|7n)V!dIAgEJ8%?Tk)0{F^qWswpss=a$uZ$)BF6~C#fk71;N>jK$hP4pO}8Rua^tcU zfK$;vnav;QDLv)8bxh{la_`?zB;iijR zE_q^dps))2g7~VVfPSunxIg2OXp0wav8yk=!Th0i+gATN(fn>yWaWs7QkF5xS{hrJ z%gtPy(kkNUQe;|sa-rSy{yVs~{ci(6fA4WQ8bJS**Q#t8>i1V&I?e_o!1vtq6)e<8 z59mL=sNDX(s>V(~x!7h;-#ha7ZUX%lv`>^q&`;H$GjoWYd0NTd13d8V9gV;M(0_Bd z`sv0`KmD}(@OaFn-cz+*om47;QVO*7=UE>P&=;Wp-S2*9qTtV(HOsZ99|J)DjiETC z7abiP_LZ-E#g&lL0he5IiF0ByG-+vdN{X8XQljqwS#&fae$1Ann~uQ#K9B(S^zP=Q%>x%{K4p1Vf&U>wc4%s)g#O&`&yf>OuzKod+kMw<+PA3D!UYz z$@mFWYB$F$rmY|#`icpUqCM7SiT-3eamML3VJMY+_|Cg-?eDdzUjp&MH395*ISpi& z21P4ypj_X}2A6|GS1qT4ju&1+Serndi_kl4qc#Pw1>&U@#yGijVUALBqVLPb))mq= z7tYvtju$?3&Xb*+He1!b4_Fdas{9-uS5&`nm?d9yo^Ai*BbL@sg{>_|LBI+=e52(} z9EpIVf{dQyz%Q^(o5G0dmq305U9}|G-^#mJKE7k@$~mO&ay?;mw;cHAwKpE>qwosY z1l%HAq9CSlmCma`rGj)$fKX$>e{nfmIH~M?&dm8EHf!po13+Ixe6Y<$^shUQ(i#Dx zu6fqUeAu$Ro``-OU=fu>d5!>)QjbqaO182wg?7TE94msVpFz}hTSbjM^Za@j(Vsbc zgpHn&W4)=p*4BI?H7{pcTIOoYFMOHX$ppuZ<7gv*Ebgkqsck%XAq45t1~WkbvjJ{! zFd!O|a|v*373Gzv1;CEU;}fYqmS8o{A>6kTagS$~@tr0h{oK7UXz_{hKA8!YpO|D* zPnuz+c%GX6zRog+7Feuwh&`RvVbuxbiEr3pk(YK@R$sCTy+OLc55}<&3oK`MM8Bl$ zIZMx|L1n(zDwglC`dT8>^f^MldLL1K=X@aY9cS_df*Ck40H}=DnpIWgjjwTeOM?rC zT1CYUOG(2)l39pQNvfSRx!6kcS)6%T^T(vy(3yx5@_@<_B9RHv^7XK4473#gWxiJ#g>*M=K5848h*i(7I5DtsYYp84heJ@6tmncg9U1&&zlB3qv z;Ab9kUs*_9DnefpS3$joBnh-6+Nb{g-UB`&13-W8p*d2Z-`Lb+O=xMn@AC0)2+kcX zpszAP5Bzz()4d3w{V;w^F8|OA*<*XRfWD~uk3!XtK-EtS1?aj5`1^wL!vXr5GyOUdV#4fO ze(`t*`oAJaKP!_oRX~=HKvxfTYAtE1-9$(+udquogaJ|lotc?wHhyHj4IS^3z+(4 zEA#vEiGRe7#wN#Zoj3hV8(%b?cCllf@$CV21=U1V2Tfy(lWL$~BHdIZ-078ZPHAO1 ze4`FHV9qaLFM^(~XR=TUYtF#L5g>KGnhJrAYz_IJU+S0i2p7yDs zWsS?%*{*wGBd~vf{q$MFXvD!!J;k>D`LCAVSmp3TFF0n}H~$m8aU$sSMa~pqGie71 zmI&1Ar(Dv#-a z{sZ$^rNZS15JN##%~Wwr_(0B%>60!V0Q!vhK{o;Yo1yNfr-TsAD6ZQVm<4&TO4Xl01sABZ37QQZqZL3L;m$yI+Jr$*>D>LIP}#tS{jk~6vQ5u z;c;A(Tx;^W+m4Im4q>i0j49pS$5YQkGY2;8E~J3r&UVvJ1WaLLy`>}KH8>@9Ax8$ zrZ99`c2hXOMt0y&gO*IK6#%`s5{K z-1RWKvY>Nns-fw>XxQ$O84>ca@K5Zrs%CU*346%Z>9WO-_1K6q7#@=nIVTkrV53N+ zFgcWApZM_a5BQ7>0R6p(=5T@jGmFb@^}0G6S&|LqZ}eV`9u1(cDEa+>{3#O$;lUqf z4?eol#+4l(K!4%0+w5=4J*s}epj5kx(s`K~@<+xnK;KM)c8bDwc6Pelbb%EK zh#gOxGy+tfP1}K};O`XZOP&7?@=W`4srPri13-U&qw?0z`YRMD7hUBSfAE7J>=o61 z>k-HH6O~^SrGC+(Mef8Zzqmh8{!W3um;t(0i8dan{NiyB^ndnU%gIj1uAveUHd_Za zab0~gDUY(F1PB4JfJ*(#fSy0KY=~v1kmw2xyPcrawrvg8(-w6=e`slz1=9nzaf5(9 zx?4o_1@xWmj=fG(&Oz|-qeS#Cu64Gmtgq$Eldx?QZO*J14BrI1_@Y*JWPgEKFof*7 zt}Y)!eIYAp{4Q0dsxcBhYn?p^vgPj|=+jDjU#YG0e++r+Dw|}#!hY;@c%q^;#s0qh z97`ED*#UilP<7AwB6yK;&Y9*_){dmy9+UDHmS%9oGOy7GTNe+UpnT`*!Fz@9vp%0=WISSM*6yZuLtguf?m^?Qmjy zdLf`JjG$ndUI5%3Fy?v`&DUq1!$J6{$68)rV_Sd!2gXr{3Otj#vETv=6%DtFzdUKF z^;NE~@u`z+`gND%B*DQTpwGRO$hZ&urW679n!c;APCStB=K z4avbb0sW5w^fRe5o;#?3MIvSuI~x(>+hv^$aFiRt3}+HiXEQCyPMSH=&YV(Wxq$v& zgw@t;sjw%WTyJ@q={9R_u??LokD=S|a+dFj2@I0fcJ83FP~@vCLWF zV}5g!S&%}2PtHPznYbv;v%0v&DIDR!CMul(7)PAn7JmCh3$~KSv3(1XTj%3)7s-@{ zQqDx;Gv(`R4kz<7Z*ZoKBS$-{zQq#raxE<*%gRfFwk#V8&m!t>R@Pe*ld;V~`~bg| zdrzs6FaD0O{tzn_(9fu}AW`uh>zk~0XD1K3RNyty1+Z}pL^M9CZQpCHEqv}DZp&A! zCTf{vjfm3e+Ox8A?A6zn0WvdemLQHoDXnqmjI}@}q9^oURCU%9xA1r# zE_oJ3*73l)s5w%qOoCw{9*!O;iT24a#|Mm?==Vgkp{UC-Aj-R=5b1%#3#QT*F`NWS zw&F2_?uD~}^NE%thl)IhPRX8j#Vw1N5bIe;-Qs#lte}8Y21o zZbu6AlVBsMMBRdOM^p8~i;^D?KwngSsp{9(k>kiV19r=KXO7(W@(11@!3g}T1AT#z z+i$zhJ=vYinz>PkriBcG+c@9q@7ofc^o8=8Z4D z``z!_AO7$M_x?!AFTT;>QGOwYfl@sBnFeC290-)Z6QDnT{(S73xPA4jUp2ix(0057 z{a^pzcLC`{;<0lu&8!WfwRS2YsWNsLFe*z}|49%n1HGszV~a>-1Z-iecA$q;zNLvg z`##IdO0}V*ax8)T{S6zFZ0pvv-9TSC`hu_6Sptsye&o@7yX=w%?63rT>1Fht2-=)7 z4^}8an8z0;IMsaxtOD5mWSR3XZjD>E+Vd-lZAQX>Ss(TrhyWW-K`nCOs zZPV5o|a*<_~ud*OxHSE?~z)yp4t`JBQC=qCLjA86=-V3-3i|A_Awiv|17>zHuc21tPbo4;wskR-}jVuBHCq30nLe1I? zO5L42od_+0dptiDrU2v0brrVg$<0=fnQ1fU47XuZvx(5-Rct!Z+FPeMpg#zpFM5t9 zcYp^(AYWirlp-x0nuGy<`}!!Cq1+1}`7{FE`ksYAQU4&N;gS(%d;JSfS$EnvYkl<< z3q$~hxCRut2R8Cgel#r{Y)tS39$dw;voaHGVrHHNYile>S+*3sL9sCz_Ck7%bu6y3 zSQ|=??Ar#oq$f-*qS!>AhkWI3>r2kF(PI}|Ms^hoMFLczR%=ErbnQyKplA%Fajl!T zR#`WZ<^swQ$h-ISqV+ax*l0WZyt8fP$`!VH`AS4hM!0;ajhi;GpyuN|m`?4{4x3q) zWs^&bZOFVbGzzxScaN?wDv-QeszIqqFX~DHv>%tp!`O+sFRxxW*2-tz669zxjB_0C zo9Hu+9U)LHuNos0}>+`k*?$xBJx%OXQ z{p|r&qz8b0|7dx?-zm^nBzx)0l#|4ONJ~Y5_oU*z8|2-Q0R4{6s5Lcp+trtkv)ml! z!tU+e2Kt*Yo*w!u6hSO6F=ZBlnl-L_ z$K$o{$yO2Yl4#@n`STAroQDeZ<=ptwpZ?@n0jHjN>H*u+7l#7$>k&1(^2#g8b?}#cBWSpoe%`Wv<# zTM)-XM=Cc9v29fMAvxOmjj0ak4=?Vv>C;H}#2ym{kX?z%V$mXBkW-q=-01ZX` zIkT1e8HC{(A@G-K7hgz~D}rSbTZVk?fZndB?za`)*V$D6S4h8g-Bp7QJ9hWImAc<% zW#sMOXhY-ASc6Tsnf~uN`%&OkLV{uJ*hR~xny>gW>jvoexkx#Hmo~*hPCx5(^Q8jx zPwqqu2rx>&BiNfC_{ln}=>UfaOwt4W;HB$}d#el7#%G>oz56Zig9UKr z=m$w{_FEQ0+b2#SqCdJATN&#Vuo3S6;gAk+6{VR`5zz zsvo1+$90Mypsf$4uxlIp*88mvv8U_5u3J~GjeCooEljSITxoO3?iRQfK$b1N=JvZS zx^^Sqa~_?W6z2)IeF4oi=EGx8T71hY>~5SZ-}x2}B2^+2expBtd;#@d0&)onRB6NU z5>+m}zybZ&N%cNR;7&n3YGko5fl1*Ac8T|jC80ih)P3O`r3w2u7kjz6#W%b02;2kG zlM^Y0E|3qz=Nbt3;=t%doLm?ufU|1q#7n>dn*Yak`==7)6VU(vK6(j49BGu^NVD4J zR@+%!Yc&l$*4hQok_$!NC~jf~dFiLkDznpP7h592d13OyS1#XfuROiO3MpkaYwk!J zHZ2#R@3Yp%Io96d0sR7~`+9a_t=dhnNBXK@O!D$(f+l&Iz5_avh z-h_1M+KE;)rN|a_ZLzk$Q@5Up$WjE*7vS|<8xt{ge5nn-{`(e=r(4;$#g?8`4U0WM zetw%h{J=6O>f2pJJwQFu7IKbNHZVDf#RoU4C{v26+1py1x?HkPlZtA9n@{{~qm!OXM=;{BgNGZjr^4$HEY%ZfRmL zn?(YaMQ1hRn`m7foy;ZfJcvJvmoPCvMTJn5Jf1M(hl8N_Be*B0g#5*@1-g3LESYGf1Y|_R{q+wm zDOsstD8a*~m93ZERUSzh#ie9njyog%DR)FF-%VhK(Q~ zhM4yHjp=Vh^ruZ#il_FMO)8A$w}&6e<8|D|jzL6vj98Y~oJ5-?VE5!xS$63H=>7t% z*mJ#r+Ui#xvS@X=t@3?_9Q!Zx9TulL$|md66XTQW{%!8FU3R9`_)fEN_Dg5)ZMAD{ zM&Nr6SgI?D*u*hx^;g!6weGwtpzgoGxv&dmzp8DV8d*^H3Afux^L7J$tU}q8AN<8; zBKjI9E=K>H&8c5}BCx7WedDF4O~8ZAFQbZT=}2TW+pU z2{yL^XP^qelY8%I==4hfRY5KZhAWD#2)GMuxd0ctYHwb1p$`A(T2xX{X}n6K^&;lH z1P6e-J%Fu#^PkQvR)7<>BM7L-x-LZLQLs;p+(@+3x=8ET`jcP6dhN0xWxBObEIrpw zxb1VKCAZt=Cl*^6=U>8{xpwNM7n9^z;xQyK_*Q<)1Loa^`=*x}qsIdfXzMAVl=(OAmG3zxR#D5ZXh9 zUmhsVDKD9>PY;y3BF~v}aYhh4MPeytMW7`7I&#@6>XW7ctl{R<6U|TSAsIBU2 zv2!lWVN4hu&f|nEA?0P68=#}i_A>|y}U;T0qB`9U#rZ!yk&)t{Pjn zyxo5JlU1xcj6CBkur>XJVF;e2+TUK?ZY@F0HQ0jo@ipCg!gJV#roQ&6hjlb9rng^bzP*n@U zEEHS#BWej^e5`yX7-Jn-A>8AEL9q(OUkl6S`v=qqx+W_^Rrm{Mp}wTOJy zbh!SgU+11NlIO--3*OSnfe(&&1pd{4{+@z%g@uLo!yo?8%F4WF?1%^RC^Vp4YB395 zc;N-tnt-@U{7K;KqaXd~LCr4tXXP-SEd8%X=(Jv&TFS`>H#QyCEo2->oPzUUtg(y3iBL$dc z^zN~}`QEb`b-W*&*H0<(L@4HG7Cl3%YNpK^cb=7v%>YO3w!>X}0=HhDFkS)dfMCwo z2cA*-tfSK_kf~rN`)f~O8G4VskKPykiBOe5Hot6QM`!0VMZ9%@>}MC?bNy9BpW_)E z-RHOhg0h*_BA>-@Ferd0QSQjDO56OiUn3e0wH}6pm2GS34A0?nI!m&$6A*I-fkHfz{Vd`}_ z0S17+n+6B^QBl6dZvOBEZsPS(vMdj(@71bBChSnyh4plY5iKA~9$7aGP^N zo~1~|oJLo^w9}R^t+Sz7={6fm|F9WZj^fR-_(I5Pxn;<+POc=2P0HYYc z@;>zuC6|i4A4ftY(!c}aYaWqqr(biaH4nPP+Itdh^q3`hN&zZN@GdA$Km6}!Y{S}GCb--TcrF+TIV4<9 z=)Xig_rX1wb_|1Xbivb7tiDZG2r+IHbNqio{1y#9{{e*c3;;9m*o-*(%Z zf_4J95+h4T8|8S}%FD|gkg9;irtJeC_<()#lb>|T=*h{+hYj@Q+z=R*;NblE^Ih9V z3iKuH_UyCI+Bd)XP1mLXzkvS@?_r?7ub|yOQ~AZOeeG*bbWtGvVB3L!{(bk|=Y$*g zEWdapK)-)1m7b!%!E@)%bqtet1L)s<*N@QHLhw0B!7MWGhAG1XdVo;k`cK$QJ|`G4vm$Z3VvZ6Y-$}PhliuS zb1wv}UDO`Xs{osZK>%IO0973e1eAg(eJNP41jf`OF;r!X3p2TtX9vG|4aj!6__QHx z<${hv!(c5jbk*k=G<#`Z1xVdhTbIuNE$L?oef6r;HTX%TzUBB)DuVROIJ?6g?idLHaLp1p zbPNNoPFO_IddMk4wH z)P3EZ18(I2{SV)G4nWptLyOWaJtx)Htf;fKYn!YYZy#ysZUSimNzDiW=7+PW3GwZ>AR=eIL)n(-bc zAe0v#ons&S`hVDxT_e#cNVGBI5dTZu!b9Y<`nn$b_Sc@UYWm<>XM*t=`mPIjGKGKflNlMrR@#5+)L^MH#BRO2N^N z^LF7S3oD9`$JF!Yxh0LZMCngwygXX49#{s<(b*I5hUtL__qDl)F&M-pLEluKPM$@9 zd5xX7P{=dKW6S#h&VW8G6r@f#;Liv~aTLT@$a}iAsHE9_cl_Npug7)JNeLA$DTz`o zLlIh&N4dGV!|GAFm*zuGei~!MVxrrm)l7GZYtlW{A0K_D^U5)z*V;q-xYxY##?iU> zc+EcgPYWIQ*)2M*P2GJtD%_FGA>L|1WGr+~7!J31IFB|gk;X=Z3-`#=*BSTSMB&#z z8Pfw1{k=!$U_k#bM7B4Qn|?J^^^#)ve|v041L!~h(oRwU>PQ6`$NWm6mhYD11L$+z zYl-M<%g#!&D=!|4VS#we!1fOxfqw;{FG0J{e)hArVZ#PDo;TijquqS-&HwPReJ3Y) z?z!ijDtZs%Ui(tPRRZmBf&RC@{cRJN+BfQaxIn*uER{>GHcLyf)Y;zaK!0B+%(14I zAIeo+KBukw0bHg$Ttb+jY8_fjTlo4q!3Mzbw^y1*`5(Cuu`-ngj!UfQS9Gap}=Vi#Q? zy(K_pZH09Z&6l0o9VdNqH_%rg4kJwrZT?|b$7fl&z28a#f3`ufMb1{1ZK@jtP-+vY~pUl{=vSJhn0REY}|g5T>GOmAT+_937OsI}tIyAsC3*wJjY! zyX1d1IfsFQWZuRx&iK@i-Dl;OH$uC2;g{QmpR!9e*3%18Y(be1+%p*5!rs{F+SG!| z+Ih9?u|@e$ba#EB$hB~Qk06~VRLIW#wl@J#MY`3`SRcaE*s)Tp_j;wfsN=vpd>}yY zuz~wbJ>`4^_oPiA27rQ(qRT4@ratrKp;nuo&yKViofWB;J*t|sIOFwsuWfd1H z8^K*)P-26Ka63H#*u1(HClct;7Lk3*k^87|uQZNG#JfH@Ftm>!=S2jq29*?4&?6dy zwX1U8U<(0$1w4g=Jo{gmNf!iLx<>+n2#yoz)KyCxEF5Wb`S%iERFpr$xIjd}bDBh=9cTb;t^|1d7uf1%c zSR(OmpH=%P{f16K`iv60=__Bf$2R0!XHOFJ^CgsNtKwk^*plbg*>8Tf)KU0-qN^xU z&l4zRP8TWH9K>Vg>R0kGsze7(yGhM51keTyun1@9?gXI@S zg!blv6U8RZxVvU)TA*JKpHmlAEf%Zm2iW2=@Z2h8CLt`}tG0 zaV37&ij^$9ewzW4;}f5UUYAKu7@po`OLmZxIRmj2$`6vi)XPI1rF@4T=srEHE)4)D z0Am(rE`K2Dd1|u;>Z*&`+)xC4PAZRdUf|Bxr%a!$>>2CY8t&iz^n!<4olP zjahfNnFn8KA4%5G*l1a#Or+xRTf4f!UPR+zf17BqG9E?S-!n=!0QC1Btpfr5C!XGB z>o+&r7)19JZQpl05}>bAbQL>WnG?PCZ-D%yMDGvu@dEUhytsqZgi0GfCeJRUoMecU zf`RSWjKF&x=L363$0iE1w*67T4+rQgms&am0#V=i#y6a!V9yzK zI6%LDEGJExn}0--#GslnPRXq^uT|=9-UcMeEi}j4#7P-7g#*wq>to+6X}Z#0l-#Ux@KNUWnZ) zn-}|%Dp9fv)t*3@i|Ak2gxyB@zP~?a-8=t|EvdxZY+GZWLsk#!KK&8Q6v(gjpJBUt z&%*wX*^H$BXML2jldbG+^wFU11N0}x0r~>jd?7YKh&=gniJB^rAva!iykR zV#-AOi>|tW63@M?mth-HNT3Y+wtQEc-T0fGG@wYdXGaKd?zJ&q`+|I0c0H2AM7iaD z@WtG`Zu{J|W2oFDdtE&i`0n46ci8I+%;93;ekh=&&SAfEuM9ihyF}rX-JqWv)ra7; zBI62>seiJaodC8R1OQ}pRpNHCbJc5secAIa#>Wu~Xem8bQE~;j#3B&xQlwt5mA=}7 z(`)zc&&70{Q~n#mS-e0#M` zNj-EL)F*GWbcelu2)xIo!mmg?AIqT;<2qbW7l(kZD@^o0IV3!&%2{5zxNw8UO4Yu) z(Ig9tnV@uKhEL7}VwrZz3GW-o(PyL&y6xJv&3^cuYniNxJRkw`dU~n(yxnRWyREV& z0@YnNnEYmdel}tqvt|yrDYLR1^+yhX6))}r=xHU z)i$K~6>cya6N*{NBovJXfwY9-e5mqtHJVjUC0vrK?_}L?6ozwdSjQ%@!}rv0{Mh`#=3Tdw6Y@b%m2{g|kAFUw~c!TN55YuBg3x7<-+!Q45{(qynZzITBdrg-xD3*?Hb7>!Nn^Cr+_( z6Vecpm z?c6vV3mmUSL1WQNAEcxo188fJP&7S(MN#GFqy-S+uR&#B6^rrY{;2+ETYDXjr+m)OA0cvdT)qyAhUQ!ZKriP+ zPY;Uv^i3+BN~sW2C?hS0KW^j%;qd6>4+d+prQo3GrToiXcdfF{4mT6IdT$$68nQ2c z{(oKczW=j5e-8ltJxAlMVtm~=)s&B)PLAM^!Rd^7)XqAsWbcD`cep@bf___}7ET)Q%|NGnCDbOz|DRJU}VnW<_n4{cIJ1Z#j1M-QFqCzv-r%TqIxj`#|Lv-zm_S&2i_Qce=TG#T8fV z+r@Ve=r6q6f$A`Jwb+<(7f|ur=1uk3LRfy-k^=f6?E4h{PM3`vWEmNX9`{)%k^f5m zzRC_PD$c>q#r_ILNZrl0En6}y6D_XRwgj6oz1fO}dO;)EXOBHT2%xWMu_*f3kOG(j zYuLq4EX=SA&&Qr4-@E3;|HFR6?qdu4b8JoDXC2U2e~97PR{uw^6!UCE(qCEYr2+b@qun>)o|GBb&AyD5dZ2jI`gs^@Dxq2yh>xwvTf`LA?ND ze8$kIeg2x!*w@(8ve|_;H2wnFGL+?dP+(0FYS(Wyg6%56FPq&RL0M@S%-UZ7Iu6ix zJ&}PRmt=7+nO_!UW*FjZp-rCGhM>T|WYF?<1&4mk5ZYxMC83! zHa@sBLO@UVRDn+QO)O@o6M$38X#fNg?Zg?^3`F#IkM;q7)kCfM8yb3T&4w0Ni&H>RKtG>6{7DE-%{-|9kv(oM(`@+*I|2I@HWaGr>1R!_{4&63 zC<4$w8K6JYvU1kgprJ1U_yDmIT~m}+H{MqSfFy^!ubRF=En#wLvbel=O-v?MYBO~D zFD|l`JKA_I$a^n4_!Wa{t3({hQ zi-Ys(fkVKKyrD=8F|Z&{5};Z@Kh6Uxu?&Ij2)P*Yz$Ju~8^l9}b5RPIKK9i^jPsB4 z3+T&p$C$euFH#36wMa)u3rMp2?%igOKJbDokH?L$8~^=myWo-%_61;v(m0NDL+c4b zPikw!BdC-JQZkfp6Tma)Jd&^xG=8nEuqgbLWDF6{Cnrhe6(z=~)PWG!8;y#|fZhO$ zkrooS@ImR3)2Nrvm1>~!B&}_Ylr~g(!(9H@kWN_a#QS^pLvCS_rDDQ{k_L!&xpSMfIRT$^{zhrNhcK9D}Sr9c34113+R{c zXmz4{6UOG*Mdyv$yCb|io`C*aIydmaF&TmPBG4DDT>0qzf_7(}b(RU}h!TIiY*MSg z<(6AqNjmjO0(sI2+28g~fW82lSa1T~vu4fOUvuuWLk0Q*W)D2@0Dr5(rZj*9wfSBH z`u$Z2`kgQWyI=a!mkv0d@5UEmSg1szswrsu@|VACmtK15e!KEcfWGt>1j@x+7&mU* ze%sTBhYIvHf1iH(Y3vY$n9;=$BV>QuyA{!Y>apKq4gqrsc=!={QdOleqS5Qt*1>L+ zoeD6-c2h(@jS|^o#!+4`-Lu6zNY8C)>V(ptVws3-gPUaL+4^t1{SpB3nzp!qB)EKAB~gpV?^D3x9=8xC`fldZ2(?o~`cv zjLkrGKkCc0b-s^Ta-hY=rQBzoy}7ob`+A!aBoCiwRe>qbzK#>o_j2?n8WDYWeoh5I zP*ANYHqllzT?Wv9iElVUY&rr)XIwVPR`rf_{qcZ4{l`JEZ2b{haq7Kdaa-oGOsb)nk(iM9V%EGgT~9RTTUG*?SKF zVf;6w002M$NklwLHaoL3|Ic%VAq%n#f(c80T-cqRnLGEMd+s@B-sgRv z_jxHE%~*`v_d2)>SYeMVREg__HtAJ43W!dtFLfepeO-P0)EpmNqoAQS1sD14&hM^( z{ly;E&JwnZUxuRSj0av*)h$=$OpWB4^-#UK*w)yLN82+kW{~s|nQuh*g)K8;rMV)yfL{U~vVYDL(3x$=S$52yfV^E;e>z zH-slNAfvYEy^XeX!CG?n`w{8yVaa(6La5)BWz(#3mm>O0ExW@E+5i=UQKn_W2e3=> z_uvK+L61=?Poi}!C=zxMc++u{C{x$%h3)nx`QY2Rt3D#lvFLv zvmT?yTTj$j!vNLVouyWN$32#|aSLaI2G2hY?nb;!RK2%cXeOx)QswS<@757YQnszx zN}2*c%_yNfS{uEE~h* zxR9@;wIIqu7j9Dj1CUwtl_KGe!-5lF9|>>BxzJ47gmgN>P0-&dtU%GUhjhjeR9#9?toNH0?Q<_hUo$`ht=(9+0O-$&hhq8!G zS?>4}W%NaJxp#V>av4oER6|jv0IDhA6mSb3ZA?p*LrAq)5twNJtmD=5#WE=XG(pS0 zo0yK^Odb1k9{QflEF2o51ci7^b@xHnSSK;Pd$(K1ZV1kFk6F+D0q!NWVHq>2scH7} zZ@nA8SNr*W4CwFODG8wesmX=*-u%sW_8I-HPhqy(>5~Nd@6Fo+vuK<3=$2{Sx@6es zkp+7{mz?@$TfVduMyjA6wjcme)rT?#^apoFrC&BFiJdTb zwWU&)PxhVcL;>1m%QA`RL*?&QXCsG`@`|~yXtF?F0KoqAznTI1)x55#vm(d>f&}9M z`mev5Yp16@XVsN&!YmadRV~1t^yXO+5&eO7x2>?RTUY;E)+K#D_>sijP`0fNf7OQh zZZ$uFGCtxyqqZe-^ab=~2kSk(NsPyKH4n9-%JZ!r>b^iDjiWqZiWQtP*%}BMA#G)o zMBOjYbw=&Y`NekQE7;_FZE791ysn|OjdS_vza(@Slpn8%{5 za=5}V0pj#~7wP9c!6yaw+?DWL>quJcf5_l4Qj9Q=)H*ODF7FvU!)DDG+Q|X zR4QFL`f_mS8XQpP_`(GWV#*n%3S0gFY+u?Qf|=~Z*cqq7BTDs^LqOLduY@pxo=+l2 z|CksbUDDQ8x?`jL@`ej66u`Sf|BAY;d%y7g9X5Z#E+(!9oQK?rfaM_8F=A{F8#|#Z z|3%{GvO! zQQRyhjiSp=cme<$x1`|iNR-@nUHet39yGn zaiT zycT9H7+MrLBFEr2`!sX>2*Q1uU@m$GRHi9!kUpQVC3YFUnLeY{ahpV%Rx6>2NAi4!}fW?C=rJd|U8NOsH6I9pkKI1AoJITIu z{tzcVm)PTz0Q$NwDpx0Fz!wnpQ|`NJ(0@`uUrPOt|8s?F_ct#anP~d4$D_0d{+EFM zYp=cLK$)V?0x60fwgsS%#4S^_^re?xa;H|#=0E=N4;wywc$-Z*5YU%XL*j5sPY|$r z;e{94Jf7Y>5YSKLrT6O9%L(q?aKjC49`k<%=s)@7llJRhLw{y#ujLmth9p|2O*WxG zdDpI8-SgId9SG&88B92igt<^b_KMI;O_BG$Y#Djug;;edgVWMPp+s zfFs)u8>yzMnYjdYzY)970X^(n>`bNK4uHC!k`^zOhItBrmCY`|CPu1g)#T_e&#<-Y z(h=jUvtdIk-EjqvgT4;fk7@SQze0BIIRxr>O@K=$!FshuQYhb;k!O?0#jkVVP6$m_ zCLoR+{Ut>6frHlH?y=0IO#lwSI3jF~(R^DQz1)V{O^{K=RQ>n12k3i#gW@!D;i>r=~=s}`wiB;i?psH_R`y{>^E=2hW+>9cmE{} zvir}EzUkf&l|3mafbOo^uKjFpo7PvLS`l;|Up)j4;O(GNN(st|y)67BOeKsX%Dx{A zB#OQ4Y3BveXE>&gqYKnOjCJ7-BKR>)4ZGD+Yn0_^#o?8aluB7f2Vy zUA8@&ZnkYuQN_{4p9l|#Y-h(Thl(}!)siq>8koA z<~4+19u?2(O*0U^tnrIZacP@*e$>R zf~8PWBY?Lm2^x7*C~ULe*=FxAAc~Cu7I)Cm%d;|4Y|M$hZS43?cm(C$@z|CPW!9l% znq}n@Dd+C%28*h)bL)v#jTm1#K)*w$S#F?dJfB+YLCuaNbOB|fEYkIcoGAQww;xbVbZKJGuyiS;TIeO3jf+QVu6^K+;h9< zQA?_#?kArKGT235ls5`u_Nv(+~ zFO?$K9{T0d%fDf1c?Gt4^?NpDQV;7sAi^Mr>f)xh90a1d*WO(St zf*IUf9gllTYvh;^fS0GQv0i{2U>~CIV0}2}4^D|N;NKrqR37RVIp4}@ z5^(1o^93W6a;ao-q0P|sHL+8m^+=?{54)fdwOF+|H5pY=97OT}W@mOoKcL)d>dUM? zT*GTpF{M-q=hdnyVGrk6;(WPTg?9b7UZ#!v-;M$Oz5C_XKh9ws#O$(*j{0caOp2B67i6R=#lGSdP5o;_+QU#r|}fzV{^ z(hj`eL`2_fpF0P3CcsT*u&dMri?npfyEbp*r)`Y)I&4$yESZ_?pa9d#=w(*n!M?Vi zVw(d1m9k3Cd!!!Qkl;^o^JO+Xb|bCQ#zA*)dw{+dpikq}M*T>6ucCRNEw8@78fMKl z6!$E3iBcSb)W?j3TeNNz7(8DK6R{cLB%dyxF!>ao>vC~`X)&mRN&ZXC7oYe#8`-G1+vC@ZH) zFGWa?)uL26d)8L_V9^ejcP9 z0?(-o3Sg|&Cr4~sTENn)iR@D6)5l;-!9mb9C)aZFGi~FJ?Y5z6hgEe+w^M#{o(&&7 z)Oz-qVE=f&iim!a^`pF=fd0xA>+P=FX4~eCQm}Mu4(-=~1cEbZm{PP&XI2ECN3Kf? zgZd*0vBQ(ewH!0y|7^$R1=g#t*ZK`(GU+({$ZI9FOnLRZEQ2XYP{g7^CIUhoOi;SV z^+f=0Dm4Th@D~u4mn%xjh4TBglR%i^Ve_$|C>K5g$oD~uktfgxsE^|4(1G+^{jEit zTR^D{K(=zDxc|B*P9fg`YyGWC38K&qh*EyVO=i*qlrtqUy-;(xyXGbqz!>>GqVWXD^_S3# zXh`+-ICp}1^b^Y*UcWHy(*mSgo=rSY;mbnDs;VYUfgCD%sLLv-(!l<8VZ{7cL?WaW z#3DX&_|u$2z%S+l?`LInwI5#{k5F*|AK8up{k^*+LEXRd(h*eZ*!v6faDaXTLYXU3 z?LT#DFB^vNUSj*Cfc{1lh@X6Rr7O#)zf}hB7|>7j^3nTvv;%$7t0ic+bm>xe6V5;X zeEY!E{cYQ}IR{C?33KVCm)bYK`OS7Uh7t^mMEOMt?oF98#m0;oV}}Fu_btCTfByW# z0{RJYz?S6~C5S28sJ#OHne*<(-ok*x2GWnR* zoHd|jC7|E6Ge$0bGyUm>b`NO@&R!QXZLuW+ce3OK^tB1-$7$vQphUQNuFDGIq`2m@ zJ#A87Qb!T07Kl|Ut%98K@^D}RMd^hL)OWCRWv@mE%z3FKCEMOb@v*ik-a9(GV+Cj*1?V^)m`e;vF$>h+I#0N+&KCXr z7ZwW<8D-NgKkj?qvOu>UJkxQB&eQceUzot1(t^1#7hPBN00mA}9@|6kQb9mnqs}d$ zF6V%>*c3=})w2k0ioPFBTjVG4|p}XuH81eqo zaRD!`tHhF!BSGEfBKjv>a17|{X12AJm2a@WK6J5LBUCDl?zd``D(BDMYKzE`ZB!JL zkuAX4krI5_$*f1n!Cw`#mx`8I0|SVA4LoeJ)Sg`|QnFFxZeV}1 zRdwxT-EO?j$~TwWiu)e69E5wS7ky~G)~=_t9{D5;m~}6fL$s-#Og|edYu!XiNvh9A^*BVZjU~TmQlD;;`6aMT-$G z{L?Hb{0u%kV-k&!z?~a#Oe*KqVwifxb!XCO@k>ubAdWonx|&+l`}S-V+u1sgu1n_c^}skDa$MPD+kM)l#HFgM7(Cz_rV&?Av| zl<@rloFdIBfc{D*Hi-wQ;ft2v7)JFKkDsoE-lH#AaOC`;JYaw?mJp5`QSA9%a@W#` z(;*1$KQld_@ga{YA|HIA$yric&;4$$WIXxE=O?$vQ_pAkAP$ivew@(7-zt1|RZ$GOZrpd@efF2X{Kd7YW5^%b-hy6*CwEr$fZ6UpfAe*HP>82z3eWI4UstJ|2oj0GiQ!tE(n;m*Yb;s zu#5Sjt!4Q|*(rw#^b-!U4jnq|RetesfPTWEwQu>wb`SKaQ?KZ!%g2^6%GOX9ww24a zVFO`$W9a1M2Caba*8F@Ft`H+uElU z4H10L+G@MX3T&q3$L3j) zU1y^K`ua?abYMmFn;Sx~JacT7_eux!bp^796I)HJyRGwl$%c4;jSVR9>;8iTVDr|G zw{?N@t+@);=ZYeXVggf`tQjc;m`07J#B|UmO#owl@INM%WOybsRGk2ToE#I`!*8lkq#I=Pzc-`-}0YCV*rFSTZ2OAw@Lhr<#4N4`B z3uI$oV@LaNASl&XU8mCGisna@K<~y}T)#lR6B-1|$cZ6G$fPkB6YOi75yZ(q z@eOB@AjHwJl~n-rAO5mytOw7F2e4jW*Juk7!&>+RpQ~R*|yd4!+6#h9K@S#MBhF(_Qd0C1HkdIHM8t9 zlo`Z9Wq}n&F8wfjr9^q>DK=opyLdxOaefrrU;i`%D!KB|0mDkOHN|TIwWwQ;9Lr}*?V_)aw;luHlocIElilx0VIpKOsN;fkF5gNE z8}5zNKqm$^wEk!%iyc5%Q$ds&a@gf0kT*=rfE)#yg{n#EL^GH)%74)!PILG?lZeQE z7-0?FD@Oxjq0*w`{$_ztsTG5^BS%1(_X03Iw6m!8k39UIz5K!kE8Dq~_Iho?f*q*CY)C=a2B!IM1CXcWMfYEsIq$_3kUGDp1B(4Nju$fc0n$ zAfJTOfJIOdev78N(to^5zb27lq9K!P8EKTz3zY%xYv@y$2^_DH`yYWZ;(=LE5A8=^ zWKDSE#RO3M<)QUZuT{(mi4$g}b+R8^)p}0oF`!Rhx7a>up#RMCt8K%kDm#8yC!030 zM~gGX|2$lvublkVYs>BYvjOc2Ar3@qxa;ydtB@kG}fqt96(?+o1yer=Nb>e)-E^+C>*#^pU9R|1!|O^Uga> z<6oQf4gTVH6g~g1-poVR&KI&?m~Jkx;n|QFay|)N_lnBf7xj`Tm%JO zJ~?(`3>$3Ksw`VWj=q5Yh~t!-o$c%+-zo-hSKZgAJJ22@%Rt3ssVGI%FIn!X%q4 z>V9WF2T*E;pvzzU==!m@aR`WAD}n1K z+3Wf|Hnp?{6jY5LTdymkE~kxbZrQbfc&;yA$xN(QFbQ^V1dLVu{L9ufYc?W`i03I< zn3HJ(zkQ{pWmCT%Y#;`*oDNd!mmr@62%VFI&qfIPCJ~sEb3wtic#V4jaas-j61!Mz z+$KuvDd6bg+U1l8Q7$ovewLWZ>Iap>mLQ+5P1h+bqSOUF3NuKMUB?tYk=|Dl`V(q{ zumv!O>w#%NpiYh({Y)J%)%{~YU*o9NO+f!I4_(4d2R%7D2^|it)H#n( zO3!Np5sy25WEbnzJI9h!RKi06U2Yt=Od!(jEm{oang93w{wuyH>KF1q3=;;V3)o9Mv>j~ zw|4;1Qf-&lNuUw$8|PEGKM8Dv8f$fO2f{VEp2+Lr_vI4t zr|cbzm>fROJ+sQ5ePStf!#7i_-bZzU(RSAP{kR0!6DohFzL0nz3q@G;eD0T02$;#7 zo4k7ZJ&=q8hI1(IOHP?kBhh`>1dZg_i!P)uBel(Inbv?yTGTVKB_Loh>8Vn{Q8SV| z;DoBMs@ih;g~|Z@MCc12Vu8xd_Y=L>^9FLXl39ErfzfPO6zhew`TW}P~u!8VaLh~FlR?Yj5Lcy_2jUxIt3W%b;1uU&BN zU>uH&Nw#A^-*vSwtJJ(&V0Q5~a-Ng4M-|6jS zOE4^U5)jb#t#5tHzVel??A5wM0s8uk6#FHfxW7_~9~bEV<~P4_$5S+4IvM*rW_t(v zZ_arb;3uFbps!eU)J62ytlI9FoOy_3XXOMCM`3g`#on7; z^uEdl+2Gji*znk!1izY^vuue6pdY*5*@=8Pn&xtpg~B?zVt3VCzd$5^t1onFb;>?loaL(2Sd{|z!wAeE(A8j%UeSR|gDniG zcUoM0Q~@l3bVsS@SPI7JOkzEIobWi{9*`m%T{d={O(B3S%a%QPO^+^K%>9&2>?Qc7 z$z-bIWVM+CLk=vsseh=2#-s1O?~A?1ji9hTXp;2EV6kU&Jp1P?CG98 zY~U4_nxAS6v1U0Q*fcKqQ8b@R5Wn80bAXjLrxC%sRuJ9rNGn%6ExF?CJb|TPr!NVC#4aqtzqTv zqZ<~42_noB1y_XmnR?=}h`xHg&8@6rquueq6?CL>KmdevU<6US_h*;b`+)t_biWN9 zmTLot=3D1(SuV1lj8{iDI0`jfdCv0i>E;I+2vI~DG~jBgrdnmiP=Njl>)LG{hI}W0 z-wp?|L>K2yb0&GSP_hKP_J6tFW<2noZ2+*V%$^o2sdHumf>QvPsogqTBV|)!>ID)^Ilv2n>(y~8G>$Hg|0wH)^#Y0Cko}mOM9!krr6Z3g|_a)CAPT+PZb`q zWERKqqej^35V+jrmv^xJp7f3h8SLI>`vzAU(}Vl&{mZ6xm|#(foqM_(Q_)d&ny{v{2; zL-m{335x9NUaKsgqV@4(XpzxfO@mfnV7qWc>6sS3AlL4tVNxyi#*+AA*~zDZIAcoP zHA#q1$52{;u95E#&d-+=3#c!E76kVpgoiLn#9#f=&_GH^u)u!xqgg!P|8@-M@7*t- z1km5IwZ@)&ZY99Jn^V(&bJm7W6zFf;QD^r*vV^KJsrHo%hVccYRUy6|1Nw=c*#Dz| z=-V@Ax;H0JnL^#*y>%G&|EVMQ>d^%B1)xPQSNSh(mtA(5U3uk|N3QesbLN)0)CZ!1 zPn&k|5q(8r`_O$);pZ|0~Ty4tA%5qGQ{Q>BY1N49Llb@JMPbyzpW2m)Ki5~~(D@{gX zVG{5Y8=|1#qa|E*4ecH1&z$>+n(1uLILH#vZ^BNkw~UN50&`H=vm~l4W+!&LfUS#$ z?FM!N`q+|A@EKc;9rghIK7|n*a{}Qu1e0Zhy2vfy>iL)Q?d-EF%!9pHI_vM|sS{JT zi6C4@fd0=dJGP8S{@vJifLsnPntW4KKp*NpK;NBSh*Wjy0d^tE>#a6X_iuF9;%sYO z6F+r|=zA}+(Z1jEEM{w(KW#f=W31!OnYOL6lZEmJTgAKYQAvP&{4e*l+-|AZ(tdkw zR=P#7KLzwVbriKdX3x!7X@8u}dD$G8<~2RK%2U{fI-fwK{_ok;H+lzrBqvBR=>{n& zI131dJ$rQzK1(o*f8cYspO_J1kGkA-Y;i@YmCvr+`gm0X+4u^6#euudB__4Ab9Ezh zZtPr@pHm)x6S%@*3H77fS4c-K)qRs~LyHBdd0!FzfGSs!E*n?!2bUmr7loOPLY1xh z)i11W7pcFFMoa*8#BtX9^XFL;!M6bSRg453Q|yqYFrwPDJpe9|qP}c&1!#4BVbTzE zUPbT)^yO%X0K!!YyorFH>qD+x^VLJzw(yPe{X?Yi$|=xzHsh(TU%Ud#~t6zdiN){r!xy;s!Eu}#nPhCs-t+4=`TGfk>Y`I4llSRVNl4vs?yV znpUc;REwbe%QWL1z#ZpGx&Axm%}lf6-~ZLRZCAdK1~Y@5R%lXd;JblJ$-t98J=LX_nG2*CwByZIx^4ZO4jA8#8p2ywYlWLgxoX-*dubcSNi1jDQLoy)#tU%2>0 zE3TZy0+2@TeHO=)f~6=baZ0_^>lM{jE`2kTg4+XKMP5U}e*S4c^}U<0qFd?8@yc;! zPRXB{AmFVQG%-O$jcFoRUuvIzXjoznI3;>T{N;`0QGT8fjtZLL^5@l?H5mR;0K1^J zCfdTe0lVY3Pg(?)LN?-sH~#7~me&c95u6jM)7r$Cuy88!3w$Zi&L*PtY1F$H{odyT zeDh_YvUZIjm1d#+fO0>zSw$JrF`|g4I8P>vLjcD>2(&H%7&!xy7<-LS_2po4B7@}o z*Anp$qxYbNTD1MzIvg5m11&c4g96Ga!iy~tl)6wgeF<|UHJNK^K(Ho+>V6OV#rIy- zZQAd44CwFOEr$#A(}~{CdT*1Rd)5G_uCJqil0bj?$})TIY8rK__>qk++e#)QP!9VHpwDw>i*p2**2ocJd|#|wlWl9( zrd!|MMu|_QaH6RN64R%!sO-5H@(|7Uhk_pFfiZh3H;6aAm3_3esc8du)hJ-7~+pT zyVUMpLO_xOyQA|ctt*{KjzcbACr>=+3GLT43+NI&g8`ca`_u)U2$J1@`2fpKR+_7< zWoYdVc(W(Ri>dS-k77}9Gq@z#qN2DHjG`@G^$VX9c#YHa6Tn@MsvRFs$CZsQ`&f$n z3je8Vgs}v;-Bl=mT}R<$uC2VM6AL?Vs~qhgGnhS6ZOyIMTXmUOvb;qjyPb2IWsg45 zys&7aq{*rTV_d{f*a8+U*Q;@%aU~{*KBvgL+U--Mk5$X)3iL02#uAw6bU`pg!Gl$?xe_NF+ZaUJAiQ zjF}~hlDdUNZWv8{294?>s`KS7s;xeS-0LBT+HJMM-kYFPujad|P+N->u8~ zo$QlXh};t92EAMl9WgSd@TH^t_E2q&&Dgq$wlTmECMo#r82i_f3d`!%!LIsdPuo^p zWsMbK>k;T;%VYoNfd0V2?^$yCCUTy(+C6`nYukwWyK*9KHaA;`JleUCEc$;E_4DwRw$8XP^dv1KE!0z(h*MgQiWX4ROz3 zj0J|iQC@FH{bowaH7ZwM9y)GUJOYAJCKKM3&HzYj z(N`XgSKbJ>5GlgW&P>im>eJpaS9{7Vljw_5#-Oux9XOf#N7adjjcU0Dl1O0#R`S)G%KFMDzW4H^Y1; z%sCq)st23t#;Lvl6=6z(lJu(|y{k^#?{*C6@7*nj1N2v{-sKMV#m^09J;5Wsd;6q- z{_Ag**rK8x&WZ3LkAwQ>{a1m0|2}=(mw4j3T0ZKFee~Ed_E!{~KdG{5iStc4d79mQ z&pj{p)A| z`YpxC+G8$t1-Z4V0si5KAG+JAD6GJCTcBJ!PMg*?&{rVWKpg8};Y z-g~bD_nJdD-+Z$xBiGg#JQ$!a@Oal7s|SR?)e-$`;1cC_0Am@sj0Bi<{`GuF0x+s zu&w7&VtfL|vR4I2b>2NdKM~Of+<64_L5TGYSymjo!iIZpRI}VQ=(mobi2fSSSFrnn zmgo7<3L>+tq-3nEUxCe16&p61J)|Jd)*~cnNttSHLdUOwpW@A^XHU6Mh9SUGy6p9OTQ7j;`YhpaS&iXMx*;pzvVzsd*v_TEbiE0J|6*-NsLd90<}lyQKw>F+ooH7VKo);l<6dF z<4)(FYk9|yFfYyvOmUdLJOaK2%w0MISWVbVZIh!&fjd#>n?iu|fO6)g7eK_GbYi6# z$k_mj#Kwk_PkLrj0QNVZbJ_tkM?&DLuBG6iY<7WvVM^_z<~nB+&LNEfr4HyOD9u)- z_~QBdME_}90QPu8J*;NRbWa?6F`8eWY!HPLA8I3KO1zuR)+FattbY-;JGZ$#0&rIcv9?U$hYXf-DIxnlIhPbcV3MV;9P2karDO zYlgB7VbAI{@UA2`V?a+Uxp%sCEGlsmK@saH?esCYMHiBI$LPFH)*XsgU9ORO5U}^l zc34r#R?C?@$O8Sk*_|(Lw^PskjGcQ7+$kb zGwBvhy4RxahwaWkyl=B-%4rkD;OJ#PxOv*{ws4ld~4zmaVpY*)p7f<%~~e9Akb7&y^-~xZA-3{mBz2*_KV4n5P&K zteaO+dh42NzrWwpw+8h8LMgOA{_gkgGe7zH&+L**FWv9w|JyINXQ00?fd15{K4q#0 z-rjPlRl{B?=Gx9Y^Gw^sSW&+oXqz^zb)YYmb+H4)T$nj?rgIt`C{3X)pq~&2EGjB; z$5a$nG=GT%wzahd^b^OFXq@x|R5$&SOWIdNKT+;20ie%2@4P(~3);Hw|K@uMwfaQ) z#k0>o+w`}}CbqR52K>w||4>(�W?8EMT!;taQ2_k0etQ<6KQjMr3se``#>UUsuGnxJ7`q*d zvep)PZ?bXG@5y3yZHWVYEU{>gEp9>GkK$GE2v^XK+PX}D{@3mJ-PC=xSO3-E9X7?* z+qpK-bHAlDtRThbINP)VuCG97PA5wm(9f!7&$rARzn$`pe%5_xt~J#*pzo85eF&X@ zQVkLPun}msXNc%OxE#<+Wh*&Cl1T?ur^)UO!^RbGO`KZRqd+*sdtM_NEz21#p#Y#* zKwozA*H136(}v(k!A@7-3LL4Q;w%Y)WT969fBJbh?OlOD-5uHV@%{83XA)aiP5_Q8 zV9YM=`V}};@Jj8Hu(z}Mc}wg7v3i{^!JV3@KaWw$7z&$df9G`Io+&7}VL2k_4?YSO z1D^=QB?qkwsbhKFyU-GF1uWN~v;~|q0(?dPNElnV1A|67rl2t9}k!45j`+S9-bI-uXk zU~IVXOv@WL%(g!JqNTjGh_V{;4vGK4#N>M9F_NF{gw!m{$E*2aXuFLb(%lx3U$Pls z8|ayA>+AFFiMe%l<#(>K$rC?dZ?BbYEVrbpbSnv+4IMlkp#P?&W^K2budTGZZl6yd zF;HiAR zfNg0iM!ZCMhN%{i2Te1HYt{lHW`!03m9ucUHtKgKwib&J0*Qfus5wj?40lhAUgCP= z)GH<>6D`z4Uph~Ws8a&&4cud9CfDZ#L0EtS&OyNExOYiGQRngI0enTF4~45aFU|~D z0aEgpGoq1{jz9e3ZCko%i^v@IwXdCF6aFvHIeL_Okiw*{t*zvGP*TM?kd`i|gfttZ z)(K4qFQAk)T`gAh27EXlv|wn#4f;D+MP(`1oJ6~!_9)GOe>rLS&eN*$9LY(kR*xV| z1LgRdJ=L^FEC6{ASzKsPBMz7h*aPx5MsYYe!M)}h7OyO#_c(w&Qs_J(i|2>C9SqP{lwwf7{_ebkh77Tl(C<5T>SVL$ z&E4*pFI*UwpXApF|w8bS^(pVU;N^c=%QB7`P5TSInb;f z5>#*ry$PfrD$q}e4Q}K6T2%!Uc^4?xxH(jyuiR{bGUZYy^0P0z@WR6a`iWyo3{eX1 ziHLc70{Z&`Xo(n}amE>~-p?cP#{IA%?!XDCEm3|^PKjBwW*sun*BBJTL|dZLgB)as z1N0N(fGx`}s`A6(0DT=(^ZNADPj~4aYV%ufz4c!Q`fs}OdUO^xnSi*=AvtsvDRog~ z8HWH#0Y6s}id|(J#-p^d-LWxwu6%1ztBruovgH}JvN-0%_=XRM>J8ZQDJL4oKp0`^ z7oP8EV^V%D0wSM(DI*T_CstE+02VBE;qxynwtp-pC6x5li6zo;{GnsT^VU?>-?qa75ro(wn&|Sy!3rw*|WIWyn zdLF+QVo=0^zU~G4IOjV+m;O=YTr_=wXQvqe4v@Vddb&0_OmuvmNf=DG)!j$!!)t0c zF>;5+oMXZ59d{mZ%dF_Jr_J8~Abz>@V4&Y%>v{1P!P&4X=$n|g!Ll;aX@hoA09XA2 zrrM4DG`3_dO52*bf?056R0!P9X0reQ81eV17Q0+SK@>O}Rt9Y8tFx_q?n?7iN}K`pMIe3# zgHSo+8N4E*xv&2qt62lh9cnl&U3vblVRbs5{)-hk#2!5Ii$-H^0L*ubDGBcM4|9h;@<2;b zIXtO##-}%Glk|H;6d4vBR#tYEimC+fSd5r`Vna0JFwq2&S2u>!qe-Bj_fk;(S5rit z2?+FaEF5D@9`b4Mh$+9G0(G2|+Ve01RMyWOgU{9zP2ax0!T$L3*Q~aj3IHrJKfd)s zE9g!8bzH_kGhRFwt-?bWg%#lo60N5_J{%8z6#eBWs)FW~mLi}n?;Oqy76g^XDBD%V z*h%BOI2h=wy4ofHdH`vLP6#3r!3W3-{5M3)xo)EVFhrW5Vi^>DKEU~7mah96hLOU# z74b*vgGfH3#hXq0YZ=RNRZz7}i?J4h6fA5a@I6%K>d8xfVv&264 znf|tEOSN0vKS`kf@Ds~yq^90=_V=&KjUj~!<_$yv_H&E@;Hbr#9qJ>L4W zg8}+~25jB_r$4*Wp11t+mv${tP<{Cp!751SOMTz1HK4!me(mLXdj$IX0%!qU)#h$b zo0R_*E!EbN3NCkX!<|?@sIah?%@D^Cjr$4omPd?cx>n9F+I6(ik z*Iu(*Z@txl$pmn2Z$SUP`|dMEw6z^=xA-%7VD|UlL6581N6;$6&!rJV*mg%%Sl8*R5sYi5d>?n$D`Q&0)RD}R@#jB zPqd(?%JRGmtefvyMEL|ZWql_h#&?sAb<}+t#PMPT13lP~At%Q7!#!er(zpU`!!Gs1 z#>;2{^f?Pu?bV*k2}h+^Z~rT{Ch{3eFaC$ET7JAW5ZH2#3(n@x>tLCK2NKbL-#Ye8 zvZ-I~Z5{jO5KV5fS6<7qnmQu-6RVg*fJcHnufMUv{yGE})$(>OOt;jcFb2#2a9+_yAXSb5_beW86UY{zS1`(TB>U>z%GY<)f3dLnr+{Ys zE~@>)3!?O^BqIB%?Jhv;w`G63*P?5dnICW+qFn_ipK8GqPr^1PD$jLibVUAJfmqJz z91R5HbZm{Ocz{>*d0MjDX%vGY93+5OPf9IZ5Z5-9_13scP0FGjMCV~9*EN=MyF}rq zogA;eUS;^=j7H%G^}S<3D6N++i8%1D(WJ|UM?pYP`dkqz2{aMS2Pn}FFpz?vI5sAY zz61<$jJhB1uvUHx=->9x#dJ10;eDNL`}U!>qqGyXJ6Brg?sK`(3_O6N8<5=0{MrHb#*6P*BkHk@ z3pbbtCCDV+Ol5EfVHE^1Mn&6~f`8Jm`#a)uJQA-q=4ViLxiw{5}@>wn4Tt$g+( ztDOF%WkC55BSF)GA!=zHFDo<4h7}fC#kO_U5wF~qi5=`#QW3j!NwLyu>PnU)*akJ^ zx}X1uTHa6NhyXYWkgjjCja8q+QOc&^$&wp-Yc!1{G2p;h)o#{)xUcmn>6)A*aT~MTcEwkMb{Pm zmgB^UUf{8k+N2I1K)f!>aab{#;4BQ>E1twXdQ2+i>PVbIDw!&iC$CsklM&~N?wU$z zu&(eq791v(78#Z3Q@J}i2%-S_`20VS7OI@6u zk!cl_+w(ysYHFf{9({xViA4fHg8+yh$4hNh)Or8p$cUgM8-U4h%QbUanH}c7#1*9y zb?`tGzg7?OAACdgqh)k_`O9CnZ-4vS|G_iG4}Gve|CJf*tYl-=p3-*j%-Q6=oIWX_ zKWp|TduQ%u8$Gte@T!5hGT*h3`R;*t2kv6Lo)n760KV0;omEth$ z03Jc%zSX<8opjPfyYi}dZv4I=;z@7Mq2 z`h5>+tpRFQfak>Z9V*b*=S2UP;`%w~oRc`5 zdpuO2FFLtW38b>#zkmNd$80Y^Kaox#VL)w1L;1x^F4;TX;ZT9T#0JIK*kAd@Lk0Sp zk8&36ul(Yn0(~8G8IIC@#VU^!(4RT~K5Rxz9M(|%$hOiyfkr)d&t&%rSj$jibFc4y zF8j%WIreOZmLCjc+Tx-xIr>5C-K)_?3|AVaGexa_`&!$)bb~FcKF|6E@3lPN2iR%Y zkeG_$#$-}Gb8SWHHFiSarw-hCzyw~(H(T9S#MbhO=wI`1psyB+y3hAvO>MfZiC%8Q z?M9$mj;*k7Qe1hp^|B`{;_qY2!{=Lg!DF_0b1%$u0d%1e0C!%lr4JcMM1P)j=#g$y zzuMC}^vMRhMC{d9vtSDN_};0cN`ump1Gc05uueSyKtcw*8jFUYt)-858-6-aRXy%tr?QEwHQr&p^R5mXGDSF-6=I)q^ zc=L*YzQDQ8CmUS2Mv-p;eccj$PVs5o7tCV!x?==jo4Z?z4XyhpYP^o7BPDY9Wg{o@ z`UQfukE&WpIIt0#zQn?t0op}(JY=?h37^!sAa!-psTSxZ)^&#Eb)+H~fZ7EBaiFM8 z0^dqcj@P|MM+*ce{Gs&NWbmP?Uo}L^xX)Y<*Qr)1b=k-LNm10FHiux~hQJT5QdpR@ zU8<%@mrMQU#-&sO*(4b5CBUrme9iO)F-jhV4=CBr@tg4ggqzg&dKBYJ|MHjCI-jh4eU}H}PuFtj)?O}cYzss%i{l!*#-(!{orQIpS zbE$oHpr2Sm&NvbNs&E=nXK3$?uJ8WnS{pg?831sq zb7E9%sk6>cjCXBc0V1-qL);TcT%pgvp4ye2o zaSxXq0P>{K&&pw83DN}B#FM8?G!~V((1M|bg`HhQUnvDq?wxYsk)Pu|eOAX2O9BrZ zlRvJODFy&~3V?R`#q_TMAgzUm5x{Y|C|Cpab<`p!Z>M<44qGz4$Tlq7WexOe_by#* z>W{}Fc2Z}JwK!u^L)NcfC+8gU62T7y<05#SD-b3BK<)$3?Km6|Z%+-%>sigco^7vye^4jv<0|9+GsD=y}$o%lyU;puUQ#q-r zlP8nkxDgGbJe$AZqbVz`0sYoqS9^4x^UpocR$%$h?-IGxg9Z&s9BR+w#|8RQ zLRTt<=>Kw#N{FrH)*gU?yyX#B+U@-gA!C=pPGO~=}- z_b@A+O)ncyw!Mq;bA&Lqxt}ygVS&X(1i{v%S+BxID!NGc*lSf=Rw97cY}@OG5^&41 zvB}@XrbLR_n*%`0wODx}d{mFE%Q@3d==+*W;Z4fSwQ$*LYb=>>kx;S~d9HQTeZf1L z0?;Qi4u#$U{pQQ8w>@sFJYTh5_KfAl=3&Fpu0TIq)^wh2df{n6VoyFt1LL2zqz-wO zK6sE-&t718MD(X!*2_Bf%EAt9CZeAS#_(fnS6UZT_mvR5Ygdikbmtsf;qSX!H%pc; z?ci%mfzE*`5xezEU91KWzGUHg(s9e|oytsWP9q(Fe=Z)zp6W}9Oi$?Jx9^@#pJ6L2 zIOc3|J?enYZl|s4a89y^rq5d>vbuB1#*V-aRxnV}e;UrNaVRgxgB0$A*uILA>-_pq z9E7tMPnCPG`zJPl3&?UFIURH^1^dMEjSv+VtbY41&seA8d5~bSlZk)_Pd(cT`ggMq zxiE@lf1_?67t2x)(%AX3;!kTF0SGAHI5 z1o9iO%O%uJpb}>fz8A270-3VeX((e;f#NVxz7UQTA6QfD135JO1TPiHYbJ^>oFK8k z`Uda`K~XsgR4UuN(t``w#L*XFZ+?`WNJIal+fkOIztR5o=tT^A32`9k#!ZyihCrqw z%Zkv8ZXvpe^7fth0+CU9R5S@C!Y9!*R|bI_>GS0CcbaY5oNtxoLo7RYg>~vW*WEnb z{^W*K+qukVA1*E;atmb~FHhYPynX8{EfYY9prv`U0HnEioI0df{;0lIzHo=7&fj23 zFbs%&Ta6<6w6nBZp7s94_pN&Aax1<2QOl{3T0h<%ZZFJr*a3c`%mtQ4`Mm1pGONtZ zu{%~)5+R22!@p+QnUd6%obPJ8^1IjA)QPX~Sr$YFYBTJBl`GByd}di;zt=GkHrw(g zrS{@;%PFr{V`rZ>jpHj4uKW_Cj7P}wQ|Z0(ZB|w2u~%POWt&UL*XNr24C={adfL$5 zo$<1zldIgzhNEjP#4ijZ%@vz8BP)|8TTEGRo@sP0Z zzspT1S{^{zUYpA^qNiL5KIakC@zl2h`O1O8d!~tm(;&umtmN!@}w4Cfz!2W4jmfIm8c0{gq>xqMe&#IJO6Zh1KknlSi zLt#^D{N7B)5&8d2Tq%mCCw0I$$SVjFtJcgB4 zivuT!!e^K~pz2C;fuNk|OHE}?ltxmIgTQM|X9l?OJ~FlK}cv zIC&m=1~FkUm{v{^;O?su6yl@iTj=yJ$9^p{)_Rb z{XKWx?KA|YNNyOCKT``NkOEtciCjcYg9qNO#qsk*^tly+ucY-GT=90G#k$>@&s z&5PRaF7C{+0Y5?>*y^&;<4XAwHYAb{*ml5Q_kuoGq+WUdqQHk;>1^y-{;4W}1Hd#& zrMVTH6WG<4ptJeeN9odv{0r<0>`KGSMfQ2Y1qOv3XoIw`gxi#gz%v49P4?;&A6l0W zpRrg93(nc813LNq&9-(Lm8W5mt4ii`;xF}7lW{xYN@Mu&i zwqhxGEh9OLwi8`f{yYIxr4~z|y#a=?j;7#@bOtch!F)IZ*rL*VaI9tCqwkdCFGq)S zQV=Zmp|uoM6h9OI8^8`Aa$g_XMT)Tk&>Vnsi!ChOu?eHTz&?9BZrw@#!@rIypuekf zquurR#SXAbyhGv$KD;E#VRjxS4LSyAGTs(O4?~Ul!Oa)I*TRtu^+ppGvIjRN8KBqM znuyZw*m@j5|2WIaLHwy;j{8hHp1;~PK6~$-MNZfw32M2ITvcTM?jN1ptmPY041^?D?zftY&qImEHBQT0=Y8n4#T(@C;u1HY+XHh7CE+x(~{>?UD6RQ0QAf(P@syRB#hQ z6%JxtuO?VC`8FzRqACTVpF6=p_KyMLm2V#x_kaS0+I|=Zg*x$VJhTfbnNz4hl0tQJwjtmDSm zPCT?DKi!dtYHw&!Bv~-&{8|if-l*@xh~UNP_$&a8DChemx`F}#tbt%K3s10zg`m`` zh%RNP70~6>VXdpNjPwHM`3s@SUs_wtcFp} zp+$opj)dcCoIXlLYWzm(J*00GSS4e_F$t1c)Npu25qDAf!Tj7pyZ#%myX)QGuVX-e z?_OyQ=&vl^WzW6D`0tft=bbfR?+@|paDl$W{GNPnrHwqUlbt-d&>jEzSJt#kpg&~T zQ2Qo;MPKkMR;;v{Z@pB+JkumUT;W6-#a?J@J6NDEioVW&_0?B9P~O%t4;JWOPWsVu zL`)?*I09BuYuk|n`qQ!B;^0s8aTlcr3~ODLJr^JXD#KktyxsU8yHa+fta*VhQMH5E zWoRv7`wGY{Tb2sYCqEwQe&2o}d-qK$*?AXRcYDg^>d$ZdgB_pqH_I4!s^xV+ zB~98@K6?>>efAj@U|#H90%28KmRZdQe6L}*yq>2Ks zzn*Q?H9mlT4LSPs562_>-R7+EC(?WrKcMMEq^$aZGm`%*Avmcz@!(w@04A`P2 z#hYNArrAv|!#qX10Lz)r2$mCuBTv6?r-1$bLWz~fozk-3l_RexxB^VtB$}<9bVcZe zox)1VW#g-uLn((I+nIYr?3(8a(CHkC>+7=uv%Key6+ef7z3yc*V3}6)U9R(pQm<58 zz&f}=02{!74I*2gKxBQ5z45|oFv=Y3H+7PA895lxth8W61;H>8oI8Fm*GJ@C`T6jB z-E}C!u9RUhB-DEvKMf($dud!y+G3nfmDXa-1Ycp`hN$$VbZ=dPu2XCUjYDq!?y}+B z0UQfTTM(;38d)mqE+>a`pm?arMSxM&)9@GIWI)Ctm2t#50F4}1+5?&HQJ+)J{^YU8 z#Q5mowl@L&`<}eS4a{bNd2C8Tx^6myeTT)rn`?_&bY)?t* z0tn+~H~ZN`LYWIs5=fCQ=1IykiwvDOLc`Z`@F6+wZyC@=Gfj zuxb*XKK_M0jW)DLUn^#?-nna=RpLpL=%B|($v2J>gssp_Nw(C?6dOLGCkAVZ^DL>9 zhUUr2rRQM4Wmum9uT!IQ7a|f3_QF#i*w&Je4JjN#djOtHCchjZNlg413#>1~V@ap? zvK>20?UiSj*{UVm?aZnD3>>T#mH#NvLqi!naHtJBzMs{kQ@#$+8R4ADO%VtcC|5Z< zKc(e#HOjpYAZ8aYn*uEz5FG>LhKY{rZ$8DuV8UqukVAm`6y!R?q$EgKFTnYNIBHz} z5ckj3rDUOKVgd3oc_QS|$eSlNfvDDD1ntBo&_dMENclSIA1onS``Ud=E!d-nC3Vd~ zxX^E12j*IK3OQIl+Rm{Qi4b_!7f6i0S1Ljz!~~A953k|t<6k`s1r!_>6bbI-p_mAd8Wl8$QNfh-kkSqIy^da(bxzhTe}* z5;2fcZ`HeC4){Bm0m_|D4CcG2=ZZ}3NJfWEcYC*bhhv28mQHc(VvTGaAT?(cHS3Z5`x zq?`XI5$V4F!3Xy2)4OM(d%YWL%FJ1B?|EH+$T&#o37h~3lD@$Hw)Oz@l@g)rRD?W@ zG>i7O)x(yM61tT2-+1GVHk)@aK>yiipLL)|(Px#f6P3BG?O=eu@}AW;(P0nNMxE)y5+Y^v91M@1prbn6vsGZEu?*wZj z4`451u*x>aPIn^N*mn+C5*TsviSz_C)k)L{qS%tspl)DYgrc*umxK(>%3KUjo>4*r48CwoE|( z`8l*3(5uFCKHj!KK0tr)5UZhz%$U=9*|5)auq3KI`2fx@zL@HO{)CfitP4P2RmFhs zwzaC+e)hm>+lpp@+c=K;#E0$r>FkJIdU|(gPokj1P{lTFK#2O9duH33#sYT4C|0BR zQ4V~+&O!U*MFg%mvY@#Knz{>+>TeD%M@QVbg58acEKDvIuuR>!$R1UrV5TY}uKNTy za^PM!$gwhLnAofO?$>?MRfw4&;Oqc7`-{FVmac^CEJ|=t!9b9bgsFuMA~-P0DH~o| zQb)xdk7X9*l1fZNNUPQNtfJ!5&Juo58|YfvD)un>^r|2Rricp#a#kYmDh;fbB*BJl zhP^A5e6bTEqzX6jIki_oNjXI%TCTP@#}fBW!&K*W`dT<9VhCe<3Fb;a!3(}?#<@cH z*tH`B3n2z(^C8lwYj!LE^)&silmZF=DHUMq_)Ec_$0GXlZ0lP&K>zN?FLlvZEf7I@ zmblq2FPxjA5)?tGHHl4B4uSmmf+9$b?+4dQaW>S z9z`}ZeS$sz*bBCC+gj?GH(9C_9`nSpkEtYoT)-;%OQiK$qSJY|TxWIEu&=y-y5(*uXByx&W8uOL!C+{zzPSZ97q8eu zOe|6KEnH*%iCV3|S{ef>;dggZe zC}c$+l-LT`2c1)USpcA|zET+qKLb4Y`a&Cc)-Vg6Q;5=J$W|AT&t3zVC1<^6dlhq7 z1D`8n<`3vS%tnnHW7XLuEO1c#@nmThxX3r<>{PB!r3jkd9@t#WUNvzK&#|63S0jT{=fL|?M5dd`xRD0*$RkZ*X1o1Ci84MO}IdJ3vFq{p_ zmG@B+L*?|?$sIeyM2|GaY|dL7Y~E{|t@rR=HgZxI@}t9+OX<6aTP)-?lt6|&ZYX3X zb9@{SK_4E%FpCA(%_$)zBtgZmpij$rFW^M^SmP*rg4Y(+)(Fl4DR}zvGS-J`a2Ub% zsD{Hq|0a?1pXAGN_ok8ZdVajAbq(b#4)P=_J%GORLjSKP9VC#)7_7CXYSn1Pp_7ic zGg{`_sJflWh|Qor!1YBK-zj$EcjqLA_eUO&0sXzZq$SW#PY=5K_4)!jmni-sbR24M z-h7fk|1WocfP*b;U%p_db?UG;h-$AuKLxN-*sIWe(JFVl1|wP9@R1{ltUt+@m{y+n z_UY43x77k+IXRA+pLo6HqlC^bz4*)SrH3AU)W)4S&i&mM(7)y8TkO8O?{@S4FMq$Y z<>BnrmtV2xpTptGS~qtAYQ-&t^;!e;t-U^=Z$H+wh)te4#qJ>*yT5HfpT4Y1&DI*w zKm9Xj*zH8i_T5GfA5N-HRh#7i+XK)SRbOEGQSOas$n9-YG*Z#`ECdo~%$U(;^9}^` z1<2(zkeHp0DTV&S0s0AT133*8#aBwf3;VEI_SfLHfd1yqn_Vt-pFVwDNjA~0Zy*BQ z)^?J6xb& zQc~jb@#QSI_~MIAPK1XZdZ?`?y7$@w`U&-a35aUmC@n`h|7~qY3h2L0c|EKvY*~Rc zY+rzu0xJUYqU`HY_Ox>H9hh|BUI3KuA#7a*iQ=`=1wgUm2=Faio@%R$Q`tXiV+O6Z zSn-{hgaVFi(68q;{Mybs6FUssU1^`7H+K$cB)$4_Ht$hp8Jn+(UzHnHS;LCgErKn) z#B<%Ah<>FJgtM<%x1={LExgp$M!)WWzD}X*aYiT)_14pt)L&#eQNudpL_r)qw2U9ehze%EaK|JghD*edHYjz8zpa(a5D9*_zZN}*gU z%1!@3W!=2YI4;gh3{iG*(`9i9&Z&#jB`)ql<|Rw!Og4zqXky~BF`ZCU1Ui+8bYLff z6}f3Gy+B(|dwMSI+2{LvIknV6BJCDT`fAJRd*1WDzsvLco#*>~ZreM@^K7nHcl8ds zfBA%5``rp993-R`k5(DWym4h*+=cqBXGj5-1sWqKdb;B0z0!D`7Jx^8R?=+YFA)K< z;ER~ikNy^H*4)W^HvpMH?E?&!Sk4*m9?d5&(rJ0Q%5`2LWF8Ts<|?mMQ$q^xM|5+D z84&^UHgqHeZIg~nlfVicp6-u}z8^0J^-)H@AegU*lGk4RymGc7JLJDol03!rJ3y~C zLilte0M7j%-9iRSuS_0yLPpd_jgLZiT^VmN6X@ev#A~Y$D!VNUzs6BX1OpHN!kdXW z`FHXE(5m0VJxY*TPuN@FioFZl#Ytp{dMF*kv18cjl~ zz^gm0{3}x}Z{<`-1%@G6=mfOkz1@_i`;?F3t^%l)<-TnE44Xb@rUfTM08qa&EhZ4F zx=Qzr%4S?xINkz>($FH}InJGhSbVo&7z?p*evvN3#Taq$s%O~)Bdh8LNyW+Vp5{z_ za*Iz{`$-h21?%El0MKG*<7_ag-lHu3Lgt(Wu7w0ylj1s+L`*8LBVwD?>kACHl5syu0>wN+10KG68)G#1F#_~Y z9+wQzzj4`gtKPKVDrb(d#f#2&7j1i|Vc39vv@>bXy+GniO0g`QTS93%zGMd+XDiTO z{M9P^)0#DXtyMPqRa8XKT3ot(xjpjOqkZqqnO%uzOVp-TRM`5B)qUstzmRe~d-@Ew z2mg@!th#HJd;4@ie<8r(XiIDV+YI{pn>XHIzgfMy@4Zt2`oYfkx4M7tj@#|t`#e|s zzMGwRks$+41@xC*$Cv;d2Of(7&>tTqiw z%de`c8WPZ#Ovy^RfQk@uxjuaOumk8r0s5Kj|8fNv86b}XfwmE#|9QFiB4>sJ=nIhd zFTW_FQ6URM0s6|QFY-yUC>c_|3?=p(3eZ>f|JCe?_uO-jt018=dS^4xfBmhse7DFF zs*qYwKNrvy*vlkq_DBFua!40an5fPLFfhsRBX3BZ*L|ci*6zroYEH<`pV(z%eeamR z@deaEbSnUDyzqRhZN1x;FKc$XqObwVCqEc#aJznaeZDQZ7K0zqAc!Tlv*mzw)>T^< zC6wz<0R2W=Y=`Yio9bUwj7`h-Kr2dJvGkS}CT21m;0HHfh zJTnWOv|#ph5_;F#ysJv>!lmOdLb&{IX%vUZrlu_bG zga&P8?9>NU)LJy}7QT;8?-4{thW+?*#pqLB@ApsN%Hl>$0r=UtWk?VM2#GB8Vgx-G z5-~5F2gs>Dy{>1fm^=X|CI}WtfKhCbEZi-P^R2acHp!#**wOd?Zk>&ai6(9bH}T5r zFU94@6UIPLn~r8yvFQ?2Bm?U>d=P@dw6fURU-{5FR@ah@PZs?E7JW*xA)GNSnA>gu z+{LYXUA2{9{mDj{1auX#oq|*-&MUGv0f4WjV9}rmdb=BO-)9F35oW*>(mb z*}^g_xDA(CO33Bq6uC{Jo+Mh$``Gw!C+zJ;sBu>*$}h25^JiLNCH)1c`T_buVt@pS z83aBj!i3dMtF-_bX%-1%NWwggm6p1!@=8LX`1nMEtn&h}B&G|>BY=B|#86M<5g_(a z>rv+v@1oLwi3E#_>r_v^w+C>{&MeYE@m>PtK{f?tsIPhBfQ`;Cw(_#D6%>=eg!`mn z+Y;ScXkvYtH$pKej)C__2(Z^?g~Zx-VQ~*of-K=J_NT_iDt z6(&<>cdC(uEDAMX>h485qhQCHY`1L<%VZh!OZ zMc;FcMn{)2itdYA=jmktJ~Tl<6nZ9y^hUXAyMMV>p1Uf8>>XIV(Gyipt*$PY^_Xju zCdDkjbF+opUUc8ZJ}l0o$`;$!z1P|DrOoa+4v_LdVcHZ4k6)HW|5}Va0<7FUcC67l zcD`g?Ek_;DFSHM+oHgEN_@2NZ*X|x2Pmi?^e7D;id+0=4q`3m7xoM|=lGR36TI0sI zX@hiP-B$N?u(+Ms^WZZL}UXV8J029ZO;CP`|EJMm%+WclaA z{EvqN3H8+0I2L&k2@b;u3-F#o0MwrphRJM5V>bjm*7IUOjsWs8=4lim%L#B(IG2iU zjJ>dqymz4z_>4y;ELyN)q`V%Ze%hnu=s|lzKp(&>SBnrpP1brPaC2oHcpVh*XMqP; zId0-%guJ95VL%#L8(FNf?n`dvY7s!7ni?*))}~6Bn0M{S+qimRT}`L3+7_g2{`FTP zi&&$Xd9J#$2RPP(Lq%{0EpnnJ#tXX?|+UmEoTdIl8j7jc>QNwh@O#@{8GXA}l6-5dhp-oGRUi zGd(~bQbCJPu0(89I;XfB@ihr*YU)cy2@13sgtI1)eD5IT7tf=ee7z)&!Q{g9v0#(T zYAhzkPwb)k#TSGi~#+U$K~Ni-bAj`cH^=c zRxw2~``IxZK)-G`l`S^zvn5wgA&*7Gs$bhbtU&+Gw;OEJmi@S6hV0Jo&-<+L!|>`< zz+1Pj*}B!fed|j1ls~RrV_&JNa<7*!T}Gn5T_pAyWxMz8apwm9%4Evdxc_I*`+Z5U zPW8N>W8r%C>1X&t?6tl7K6Ej41Mm6Z0}t49Wc1fPH$yOFvS)u$pg*Hxnv3I88NC;= zgbj9NV(~{T`h$(m|Nh)ifc{fYJ>^0Y1b{N&In&}QWcZ7^?q_1D>+0&9n|}X$o+;25 zv2`EbB#O(I>whG2BKDSsjsX44Yz^(-p#XgmFdH^(I0-zfHD?O+kD=?yO@6TQi)RY- zGaf6-V==J&;@J-LYyS0TbT&X6dZCv~OYYO?xH7ms`ji@pQ-noHdPeJzRW z^@jDM3CU>F84fhXW6jpF>m}>JFjnWg+lp)RaZJ<^}Zk21ps}T>e?cx zsn2)XWZT~MEo**l+ljX73h$aM%ET7nx*yxI-4@+cYTc1?DvT%rUl)Xp7o&gqWw`E- z18@T}rF(awi~ivshi%J#S*g7vEs#wt{@nbO-B)#v<;(==qhBj&becigvU#sPzFmo| z8BkfeT-(epo*cG^ZkPyGMrW3XEcnOew?hBcy}d+-(y3*W`w%EHPI{ih^cm7XMrDnY%UOW& zPKnXw;j0`3&d4l$fUN7TDH4xs>@L4VK)--9|KH=k00030|8uj$lK=of07*naRP3Dx zfRxqM{?GL7o!(Y@2NA?BqG%Fhk1f%tF~%7GpNTO|Q$Ay`#KdS!@|i?aEU`CKAXbnr zNKrtMqDY5jdzn7-|2=nDWOWy5(U|P3%g)Zc@9p=_dCqyxIi56^eMYYBRqxxM{_!>Q znAfuWITrByENyWM1q0^ud(Av)^ZEQ13>&-L2FNb@hmQ08Foi>lh zESN>dy&l`T{!pu`7;Yi&5_|W>Kbb|EEH6K0J;x2SuEY9pcO$py8HUQ^=XJnRsko~v znV?>k=kr)Pk+j-H>uu|`b1d8Z7Ek-FiMBRc$|4@GHTVOT&2yntBaf)OfQ8c$%kk!0 zQ7T}01-bUBFWaW3vn-M3sn{l0mnXZJ-?^5RQ*47rjkWK7J7HPA2Hx}0jwJo_*|Nna zSu|Q;{RX~lMa5e!nT%RI>9N|Xgsq!hZ}IKh&3tC5fZt-9Yb^BYJ61NJo0b3Kbn}G5 zv?a#<32WF?WozfJvv5<~;^DY?QeF!LLpJ=#gRSGxQVaU?7-qjEJz?_()OY%wqFnmp z^+l|{q1J+-Y)d8677S!tnlYPEzzG&HO~@ zkDv0Q+*d$3QOXF@AD_kJ0e+{fFsF+(B{rCk@k?96nj(ICWBD@MzSV2T9Wja(v4u5| z#r&8hk}=ANTXs$^4t{r|BXFT3$(NvVV&bC;6*oumZjlrQ_)`&;#N^w8+)2^Vu%qCtlqs`rV^wCGt zhOj;S@Wa-(Z{IfW`?Nl|`R1GLi6@@0uYUEbcGXo^{mYwi)9rJad$Vs|GSbRQ8UJ0b zd9QC`UB+y}xbj`z&AgmBcfDJS#~#`9BcHu8<9!Q-{8nEdwH2!>?c6g5TbE9`?!M<= ze$PsZvuw<$E+2XB*?+FK9^DFTN?IX{PK6sSXR9ABz`|X|8t9E|gR(;L)ckABWUY#{_=l#3BsH&>6 z(IXFLzj^J8r=Dte-1%Gg@!Yv{?ZWfF>|Q_o*rPUj%$VK2f5vI2+tN4QU~W@3@AU=N zv17}*_|8?|w&$LC#+7l@F~`{7@4MH%)<3;_m2)F8 zTW`JP&WFOnLVNk;mv{Tzj2ScRzWeU8-~H})cI~y-T1`!j{rcCxwz9Gh_EB>IkKFp;gAba@z5e>^Kl0hGZ`^p}jrP=2Puay6Uu^&H z|NXyRKl(&oj~+eR)iZVKRO`^8!zWVb-c&MY&K&ps(yLc5_kFXwXP;reYaRXMCqJTg}<3wSLxFXW123T=9`x@4D+Q zC$D_xJKy=pXS=@f{qKL@rcIk>-~RTu?ZOK$-1Vb>>Fe3^??lGsjy887uxcg zQ;|D;HrBqE84o@~6m;KxVe4osJy+OpyTN@&^0uU4KJ;2`vfLIoTxJ!o%;r6W4;4zk z^b_Q}pCSXoH@$k^0R3%ERX;kaIQ z!J$EhUt{3mUfqw3j7%&n!CU;TIf!fMU0;*#`Gh`__{v-adEs^QCG4Tnlj%4zDkG3i zxbJ9KYoYx+-dQHTBkiKu=_H<`j^U_Nv8kWPLlitFn5X-TmO#nNq*yLX%AFR7 zN35`8u8p~1f_bw5SzZbgNaH{EuzoXaUfPjP2bo7!B#Sc@Pg%p#EwO+w-{K!$(ZFo64 z5R?qrj0cB>KbYfyR1#3HA&JH6*kl6kP0UG_J1i0?4|M2yIUu6(8Vh)I0C_CLoN+V5 znYN~AEenvt1Tc$A#PV}G18^$Yv_vQA~v(MPz z!Gm{x_CJ7*DbHqr&(9}Lv;w%K8$$8a`y?K{_e*Z$xC{Ljw&Km20M zA)~FjvXZkc*WN^_r)zJ4{;u@}IDZ~|^btGw;DeoV>`oLHfBL_>*qhp)9%~2sAD)3v z=I^})`hWiOpWXb8LCMn$)LLul`0;xV^fzzbY_n(2Hi4@j|M8|Fm(g z?Jdwh{`ljaV(Eq(ZZLhS;Ydr<@15?aX{e~rDKI?eoS1mg)-=2Q9qn&a3 zHtzINg5-YyB5jBx%T1kHV5gp1gN%jTM#I*wO4_ow3aoeX0bA=i+eX_5`yWWD3au&K z(N^sM`YKWHdL5Ya+V)sqTN=LDDgpX3D7nrGHFE_^O096@F!N^xtz${Ojr#)lf%XKD z^CnNub3p&-qZ_PC=MR@ko?K&$Z- z2u<4L2Nu~MHkHvR`U*yH?PJWYK5d{)7=VlmR*|tzN)KH!hWPnD)Vu(xkw0U|ngY2R zW5zlWp*?;FkTrHl|E^!^pTwtd{nHhkMv5F>A4zev3H8vo9 zS8TVO>^$qz1qB$!JP&d&k}f3*3&?;OqMpq6ahx`&Za*@7JPywAg88UR#z85A^qnmu zpp+KoMGgmxseT!NWh_fE*J-Z|b&M_dr%_I5K-I?-vbAQ>%Xr0N;2JPQ8pEsBrj!AU z4)sL%EQL`Ir3!{YDGX95GZGjgrHIgvMn92MJDCL@^9MqVOB6Yueo;q~x{f=d9q4QM z?Di7S|Jy^CGua^q9IXojrvVlq@&ek^04%19Q3v7z2DK0ZKCCvpl}uIfw-y15jYGyO zt&kQflf7-@5mvi>gn6P1EVlItOKd@)>{)F6jvvIrDr`sj&CI`?6)Ff-HL$6bmp6(3e&y>WN^f$6^gQY-E#Rqs8(cuq+mmaggPq zkaz`)`HcKL%4;-F!xjsKcrB3X&9=_vqin?JBkjU--a=79-`SWR%Ju_(-(2{4G+6o8 zZ_sqC*PBoT0GerQ<<=T|e{O|EE4H9yqTeAl&$0^hzP8RvhIF!?w~n_IpgjmfLgTV| z+5+3QCT?LiWh~Z6yXh}GbmTFITIa#ND6@Sheg+jF9cJ^PMPuVR%`SaS1M2<$Bnku7pG!Lu%y|}70JPKD zY*d&TSk|{xHK1XC#|HN4VZ(;@8u}%PaZ%Xi#rF3-&brE z)$cP#tPYe((HI8=^QqOM12BTpD3!>zP)^bso02FII4C$srBsmep}I1P^#G+6iU4W- z5-1D;!CY7hb(WW#N4-t-RR?y^9f~(!JC8QEezgPrmg91ufqupICj09@-n5dUY`g5D z5iKj@ul)u3-MbdpgO4w_p4|)V3lsX-yK8Is`>js}=wJQq@7S{d6P+Qe-d*E>y*fN| z=1jZzf(zXjt3Krp#S^d|K9Gu|9<<~&wgenpM3Ie8#aFYo&o)@ zeB~?l&O7he&wu{&-IlpG7X9OnJI=`{e}E0szkmNW+qtJe|EE9wDF9`vU3_u7MZdMd z+#8@japFV=o@K>v3p}fiy#e~C!a9;t@ur(@GOfF|t~~|%V(AIwi-DvyzdKgSo&tR_ zLFUby_laBd=PdXK-yLG!B8xgX8o8bGS8_ZbIGIV~#XA7YLgZN3p=m7c$Y}y&z&>F= zp214&9`V@n<@s3jbNJp2+koyXZR2XbLq{BCSp|9Am#}A^>1b!3QNe3OwoFB;0vXX` zQ>GN!DW_zB{*ooRfKRUt&ib3hE7sX^&-WeB7yeb<`mJw`W}rV3i@plg`;zzcYIEH% zTbcecKz{~*>F%VHi}hsQfPR)YXn=*6zF~)+5VAqzI=XQX7=La`E-XP=^c$^fXG#Je z==pl){*RN_*^IRUz0}0mHN`v@Kz8k4;IW%NUr4#74rizpi1POAJ@f7Vs!AarQv#15 zJtD&f?YpP;w&MoK$fZ#fh@}q7lmX1$$h|VsQ93^Y$T9aceRWV9{r7beB)AlJD8=22 zhvHC*6_=pJ-8D!lUfhdAp~c;b7ccHsT#7pcee?Y0`~JC~ncdmRY|h+!?z!g}I1Kfa zrsaKzZC~&;!@`7&pvg%y3}5Pj;95Ju0f0X}azRi*dfE+X3^oRfFDk(a5lLQ=*zkDJRe_8l|%< zkx}zh*$`BJrdg$_eQRQr_m?Hwx{(wKy&8kxs$b^Xg8giA0p}(N%dwn>ht`n7(!F?q zr9nsy?Q3a1dkXH?ZHnlRNBK(Pc z6Wf+M0u+L~-V|bw&JUX;p9~s3`Jd)Y$+}*3ZeJ5nAso@1QD*|I@2^z&FAt8d8y){@ zV>+eC=E{yOXtg&kV*LGUD-O6f0^a}4%N+$h1gDn!cz+eBRMFRDVn1Vlk2~Wvc_^}(0l2ev5UL?fr3t+3aBT{*oiq=is0 zVQ2F@ce5L!zt%`r;QLM$Tmaz@NCpA<%@moBL3fcdfAsnZ&;hW5p*bhp>Xxc@o01%N zv7ooR^`G#n@|O9)%=AT{<2_bPwE1P(yvo7W_dif~Bf0RCWed(q4JEU*0iwk6bU~u; zknQ}XNpFDfQERXYCb@4R^IvR>tS((ITGHm39W#3-E|aiRsRo;zKSCLq^Q@)ubnshz zWd2zZZ)xhahlyOWGbQ)_a$e7?s3=<=TiD_IB9=>nJQK}ZEU+t^upWlr)gAqvpQ{ZI z+xoK)M{C!y9n!uXx4RbyHfTx`v83GC?PSrBaG1Kg82>MgZ z1;!^#B~|h|9alv}Pxj4qU#Q!5!D~%y9oH4vPpi$Qh1q^%i;a{!YBa}Up< z`Hs2Axv@1wsTvv{SAE|qayZpcHu`P)rd6BHV@1eypIZl7C)(Ws2uNwLU*siFfr$qs zpS`|6ci9?P9_{?qhkEsI1fEnsJuWgGh;7*hw=Fpliu>JpbDINt5otoG zvtn=IXQ;fYm+*L3wQYPGPKabYc4-(C*qCw~wX~1lFqlU==32e`Ivj{~lwl{d z8|nEp<%YsD&A?Ye>+TxFzH(UtwEZE~^5ojmV(MTy_PjJ-=pUpSE3y}FoRekv;H|(f z8qYiC$RjS+4)&*>L~`7_&g7wkqETb+3|%nwEtm@I_l7irf85ftcek(9=V&2%DOf_; ztVu^}6!l>QDNQ)KIxbY|ilziRxsQ_YpZr5f-v+-rB_YaUz=HYR&k_{Z4Eyi0BdV;# zHXgbgkH-x^N5i++cnR@tzVDzwP53fXa0m$i6?B19`rerkn}BbP=-!pFT;1AG0NIk# z?&*SGO5?!=i4T8x#ek_CwhO;egUzGt9otW%euR;HH!3nRuxIfj-u5ZG;LNvgVtzbo z7DISf@xxl|*6dw$p8Vs7yTsJBE;Ns}cF1g_*V5pU@@dh#R z8;+g4vdZ#Cl}oz{ml5BF1=~Uv1745fSey5HFA1yVmt1iJeZjHi*dI={pKi3ue4Dz> z=rPIU`3?NZwh2>pol1Wh-AjiK6w?9}z5?T~KhL?Nl{HPF1bR_h^so&W9 z5#K%N?by~{o9a@Ox`;_|P|mzvVd^gDj%y{wl_Xc7io(X8CH}*hgZwOY#>)&2LkXBO zeUk>rJ|xc~gevgVN3{5~cwXY}O;^oTA#laj5C`EXBzPHM@VKijKMS++Ai{X_0z|p@ zTD$!+J12YO|M=9FuVCHroC4`=`T7LsfQSVwxi8mRMpMP1{BqkHd(d3z?5k_{yV;Ch zv0FoAdmm-3-IwAXJ@a4W_}#3@!wwtemh~sCd&BEvxT;Hz@5>+dM{r;K)*f<1J5_~u z2>lRD?fb2Jm-)MM2c)NBM*M+t&$GMX+U^?A_(0kgDV4ykvOD#0~bY&$1qN#)&k$?9u@63BdsL$xOfW3w3Nf-tCOPxYT$_;OyHyF@N}g zV1=E146h=Qp5}?gKeKZTy{|2VkZSPoW?A&bAhUXE0fbBO;M8p8(MfO2vw{Lq7uuwX zu{v`$;Kd`g*|INrp*_E4A^kFquYS!sk#67oDf*yx%f=U{-jcM(!bX1kHjf6ah-^Lr zn-ub^C{wA-;PIQl$B&B|?Dydds=U0Ny#T`QQ^vi*7Zv|2*oJ=b5;9>hxY2o10rOS_ zv00hqYt5H@m)P6iJde#buL~r8TA-*}#^1ZG2M(mty$pk>3#eK|{jajh-I!`fyorgK z1ew~Nh6Hr4T5!pIksC8s;bGtC((J zMCr}&@6b_jn?Trw^cS_*wzDMEH`rgM%8RDSP(oMosW^=Kl>*;TUjqTBgh(9Dv#J?^`pTkP!=}m1dGv6pS}Iy(Wdu;<2&lnfAf? zMhAZT5~>9=bnEqi=J0zlafpt0aqGPwE7}$)%efpplq<^`chVk{!f1nyaHT`TFR0|A zf7iMq7f}jY;5lf7sHB^OqV!<_26wCfS-oS)OzNPS6y?1DIkq-3;V_m6&%JaJbE}8XZbuoa<53w~3V_e3W zf>e%CcJZMCzdCF}V-9y!hBG-^+pQH<=03w<^B=&b?Q3IVzXAJ{f}cNpgj%CZ0{j7u z)=C$PLzEp7WlrTg>%oyhsOoOio7F=Y>*hoO;{~SHGBxb`PsM6swkB-+U7yzTWO^4S zknMuuI1qIldD~_ZM)|;00Rh)$-ZiPes=UO3o8SpuWtpPp#7_jp$cTC53U#25gXn}+ z$j$x|G!M2w>c5@q1K!bE8AJNKw}V2{6xFUyrI#U3BIe~P_ zn!g}D-#x57eiD~OBsFJ+AC|AC}n&@+AW*NDb|^FFeP70MVVSWpLhl^GfH-Tp>6 zjpJzd-3`(H$eKYVa_!0U7f3wp=@7acdVc(=#|wN#f{5u|Ajd%S>qa4g9F8GxEz{(! z{i-4|(cTdR|94U4lf!EnWsns`KZSTSG&oRNIyBlezoF=w^UF}ZO|Cz82LcF>g3=4U zM11rCdg~HMqztMoYOZRW>D(qn?}h2khG4E?$-iUYc1U~fIT~{rW!51+Nc(NH?Ke`w zLDg*}=2O$-?#>YCjQxf_iV}f>|I1Slhi-Z{dJvN{cB;yZmcjL*s)6(l7_!EK&8!l9 zT=drZy+{3Qj?+@!752g!rM_o>Er0FZNY#hxqx=Egoh!Zd2zxg1dv46CWs~a>o%GK7 z8H_JDwSzqfD!@-_6&$nW$@b-NduS1XgcRqKX@8jLO*tj*c^>)#qV2mI-<#N>{2@ji zDyHbuT^Seujv$_q9ZR|6p4KDyOYeV3wtwoZVD?;}=|hJQ-vlKXKe})&W=FK7gueQ$ zimZ*lTkMQKhYuk(8P{D9pz(!v>9qoY+wW=HV?qEsn5nk74tUn731jr-J@gr!Jg+tn zsr$QR#iW!6OsK($+J;dz@gf$^Nut3?Kf3Wa7hX58>}K@qDMh`xD_P^md zt!1&+95pc$H>5GXz1BttPV`qcLr{(pK$b^PY zjj=pqV^sv72R-w~`A?q{WnXAi4Tth9115&2lZuw_@+cyO4+5n`zWGS`sWh`2cg-JZu^#^rx|(`HG5*^Dz0*E4YM z!O6e&g*+>3elgV|rTWL66N1k7*VMfW2!dCFuftns*EpZQ%-4nrSU*%7_974B>@IGG z5qRG16U1=ALJtf5bs8(HA#vWWe15Op@CAk| zKrdzD*3@VQ&*(ZESZ>qdfyb5|LT*5n^;Me&)wb^@l z4F9;TP72li{oXM{&iZg&xMd@@|LxG$BM0Ty42R6(_ZfAcDYsrPEjq>+Jd~^!ths)? z0q+YXdYFy23HblpUCb!CTGKlV2Hj)Fy6nY4wF~TN|Ha9y>VzFbV0+ax)g*jYf1I^> zS}>1%BgbI(EG4aOZu`}y$j-wuYirjzPXVh~Xg5L!&ku)(N6+%9$Mzqps8Kxk>5Lp8 zYl+#X4cD7>7+02I$qgE`KQlm`l8{a^F-$^)3chTE0(LXv(z4)6|>nsog8^EL|%r-Et+f>iT7NCBm}yyH+kQOmQaw_^5+TBTXVii ztn(bDt&xPlMl%JzcIO4qGlo{GvK>6HguOVsy3{48*el8pq2>+UF|O^>UR07S>Lv%I z383pO44o)AwGx)%Ob-3Sz!J8HU)URrg#@L>KACYvo1eP5hdYFLs0&2INd+hf=HIYqF9OLM>hvi`$ zkj_r40tuI6ZD$=6lR%IDAE`oSF#?skmMDc^62cC#qaBwvhjEi%c_1ME?p}<-FA!JM z`<+m@{2L+FZh5HsZJb2wWb5Uu4C%Yp^}0;CxrJP4ozS60!=7Zn!Z6U@P#Xd`)$C7Q zNQ>*Gp`m>3qf=Q1d+7}GglaMNB55@DGWu}KGeM_Ud2Cw}p4EaNm@g5FtVNsKUQ3BC zRVlnOwY(AG=Sn7LiB%m7UfJiLR8k4Yi%tJPFIhT4?bdL z)TMHxCES!zNY3do*1T7WiW@or2@7MgPoX9eZ-HmquPV~bL0bi*OeUD&puWMOYtm8Y z(byR?4xJzqpu@I3Vy{86$fga~7RGNp{$N`Ok>JQXWF1k*{z&2K)dlU^BeM)Qt1LDp ziGb5KnZln&oLRMlFbN~fl%mi~saZJ0$~W-rw6_X9sJgj-^9v)@uTYxdUo&9(6E~s{ z;L-9%Ge_l~U1vnKLXFxcPhgK2#9_oV^g}NfZ4+iLsZOZ+A8%KVLIIf*o%tH_)$y$F zO1ggVTY=VU_fd-}O@Psi?GBeYh}N@Cm#~20<#Gg_g&*ZG}f>_b*ik7osf_xN?Ax~Q1P57{X4gFZ(j4sT;&rI z3X2n*YWf(LtFqqRrmHoXXmOcszAgiir~Bg8Oyy$eG|Vsz2#CXXmj;K{QYk#_T(eF6 zLY2Qyz@rGSNqqI&W`Gb4DOy6mk~S#40%IY?DJGfj_iI`Q<0UpWNeE45D>JXz<%nc^ zeg}FJ25#!(sOKMbdKLmU5&d6Bl*3l~NYKQCe_$JB9w%(V)#?ME{x?t$|5zL{lraYtxR<4OkhFl*OF zP(c74Xfz`8m_hyoc^o59Tl_gaM{VItsj<(4j0OAhCb||hljm%T(b4fGhrML$iELafQe-X{*SS&t%AU&lC{bolqg{C zT!4>h#9`EEd7Unr?c#zqVN^VgqQr}woVCy4(}zE%5WTqBKJFk*p@NT=rj`SPu1>4x z;lY%3g&&M+4>Rgr_UTOR-Kfyu938`Qa66)D*D1@%XpK5T`kk}5!^(~(%+_iBJoo;XRVdtiKRVJSL(nLf=99?xee|7TKuyPEPJDaN@or_^I-4v4F z0$rfN&zM}l)-@hj==&-csS$rSNpK#Q33DM?r#DAZs)Z}r*Z7eDhQZ6ke+M=Dtf}}@ ze6>FSl&Zol&@Ls{&hqkC$*Ekpi^E!rbKryL($K?iDdGeUIkgF^Oe(DOVbm^}Z%(($ z#O;XZbU{iqt_q>zFa8PHJ|Y*X!(dH*ZTtG4va0&#mQ)Z)>D74=;2uy?T}e$2Iq#(- zp!eR#vEYe6cuxkm>Zj6T2)smh5cWALAw_EqCw4a_BL0O-sENMNY-Hq}?&ZImkcUq7Kflw$n-f zkxVE1dCYKfbr$t{AO)Q|iogKEgGRWzMz*2G9HFS}$V&2AKk)La4{aYPj!iSg!h?nK zSD@@-S^<(}&|LKWJK?drQjZ?e0jh;GgC^%_=O{u{S8>`DVNS|OnRpry{;Ld0f+Rpc z==KLpvHx8vEUL)xM3zO0h;;X}v^wYDbx<%aFV~6jq{NKm8SSda7gaJkfz$ySA5&2e zD5k5IjsWpfr^F++Pyz;M1IVwORIEG`prY0_-;Ht63R)3F`U-GnS5xLXf+(=wu=Sd*^V@3b`X{gdzS@Ls|!)}s7QO_+BiF^s7K-(!QRKE~d5p(4XhZ4qgR8H2x1>9k`o0HfIfec-cP<@$Ttj)(bG?;H<~fZmJ9;jxSS7PSkKZ^*QxP0yid z{W>32V2Uh*axJ%2<4fD}X;a$!@2{A`DZAyb*_*mg5p|(_vO!f=e^Qb}%M>V`i4_mLp>T=*-S`I?{XZxLpSM4eNV$yd zQEJo&2wE6EKkBXl*DiWl200)EOfc_J5(=pqe@%!;!I+z~pRfg?y)fN!#m7LJz+?OZkDv3Dp7o*JBr{wp6!b*n@9O0KfHX*>D)M6~d-Zd&IV>ZBI(C(a zU3HO~!FObPKfhqd2mlSul+Ytw8Got_Csd~6D6*hAHw8JYmnz4YnkUl+1dG&FLRe_ckk-$a=f0KBh*E~7d4wPU|dJpPe; zI$sNUM)cEFL0o*Fs+#IPP^}jnmVt^V{uBF<9l(Yt_Ojh7N12xDk>iZGvg3NyL67j9 zHY4{#BS}%UD%>{{Rox7Sj?9nhW5aWtdbgH4X$`RX!#d=vow`c@^_`s^8sPZBbO+!G zVfT1?Rh$|omUY@|RE2mCrEx~Knvm@wrkCD%#AK(%TkPp-`olT5^+X=AY$Jk4#2S!) zULe|ElY^+})hsJ@HgiFsJ0mFt6<5&@perJn6cAXvut*dyL3M1?d0+7PnW2= zsh`}Ipj_>7_)ZL!B@W;vezWJSX40F8JE926W)X3xwCng|7g2svJ{IJ^9T1ddQ4@1m zsS7~X@qkDU_|nW+6yl)MHz_jCO@r>$ZkbZvtyW2SUhz=3cuq*EQ}B{XVQ_wk)Dv;XRI?GmUcL|b^j_KW#Cs~~TZ~y>p_yNL#!7Y#APVceZ z67ZmO@GTEF=q}vr7GW0o@36mRF^tZ?$TYZ4jD6FS~CK$F$TAr6~oVd0FI}O*UI&~{v(B^jL zvFroY)bmF3G%};`a}BqyZz2Ky5Z%&-NO48agqz(Y+GX?V2Gnb&`kE?lfRqYOG48=R zwCk-{T{wr<)eV1jr3d zNif2xjK6-;;PYr4>GYmpN7e?@0%zEi-W3oNw5gd)RNZn(0${IELP{<}_`wLU0Xk;z z-(Z9B6+}Jh)(v_+Md3&E$1_Pa1=A8#pQk$78}6b3Paq23BY~08@bAA1H0p;WS0si$ zwJS(?3s$Cu%@->RiPk>S9yXp~v(YRq`mVhF>Wyr#y_7?%wiYA#q0XQBWRCx54Wzs&J!-gX7}o71jIz9cMnSo?E`&1-2p)N;3Of6FtNWg3j#FKBu9S zqBb)P>Cs@0gfru^iAh|eAmbOk&#ia%2QpMIxk;!CEg8Pv^{WpSj+i#XHi=YainamU zkeAIRjm4e2gvakn41L4<9p{oV@&yMMUdW(FvM)#4#>mFWZn@GI*fmch^ras$L-!S* zsC6!JgGkaAqnK-?&kqIqtSVPl&OO_J?>Xcxoq{?D1&5)X?X30zxUbDPFq+Ndju!tz zMWX$IJ5a{sqix!yv5>YFne3vG){-S~w1}-=uKu*3Z(9UBdvSw-tN1 zm1s-OD8`u8L2aJ!?SIBJ2m$wD3UZ_XTbfB9baauZhFToFAQcd9z^OC{+Yx{v+$w|~ zST;*39htKI;ek3@Iy3^n=T)QHi#U`s+<{z4%+zHol>NQkUDwobL?kAs4PWWvUr<0W z1CW&kcRP1=si6t-Qd;=+b>E@;-YvUbpxyjmz|+o1ngNG)*C*(K8E=LEoh<^(sS{FR zLP!CY(-XHJc!jDMaUf0{ruikAcdDW@|920snQTkw1bz* znV5D*c&K0`vbEDS1(CCMo*=B)FSH$)c0sOpoMEMe*1BL(#r3DQCj3hU=JOq^=$D6s zI?apYl{#d!1l@d3or-`FTN268KVZ$E(g*3t*4!fMH@r*P@JL-IgEZ8AKc`J`De-4) z_b}rZ4@{@y2V~FCY`2(1BKW^lI zB}!MMflyHkNF6ygd)07MvbZ)n5lXL>v31fm;-#R(!z5IjFWFz+@(&Oifbvj@YezFUH`J zLlC9+&l3QJkabv*>vpChD@BP5;%sc$qLIKYsDMkIR94dq1^5HaS0anwDJCT9qpHNp zQXWV5(<5tNB=8zF%hOa0miDGG;k1;+BKzQLK%;$=j`=gYo5j{v z(45hbi6QZRi=j7TPQG6}_`y)rho*&{(F>Ri)?gH#tIbr}dQFOLLY7Xp6< zXNo6bSLdw1J~siL7Jf6qSLiJnWmMT+r$Yj+%L*Rv{1ddWmMr^;-OIc1i9uzgJigwb zqntCX=|M4tJM%tF?cj)SPEbS&!=R^6q%|)ol9k-<;>}=@|P@~^e8j&+zh!sz-sT0Q1YmY zT$h(ThWg^n-k^prujwH{Vri;Lu0_c4s6t`8Q{Y(%%6`?-A31?8T{{qSP#zrQEc}u2 zP&xRnUaqj{V#1U@Dt_AKqK~n2j1ZiRn<^Ev0K_QYN9?y76x0NJP75M@T2r4AL&iLp z$3Lmd9qNcqI0BoK;C)2&QnQ`Y-#H<)z1{&s4O*OiolR2KT%tU#d`+oixt?0}Flr+g54ATs zD4T2k^mVq1X_+LrtPGkR`HSNlK*_~H?uO&gWDzlJuXaqyKD!2z5+|T`(|v7~L`glx zp?PvNvTXPst2<W#>hFD+jEchk3+PEl1m{W#oHp(QlF>Bx-?AWqd#wLS!LLAuC8WxDhdQSRZ`3Wl_8GRT6szyAyY7^3mLMWv9+ z9cE5*oxJ9&tq<{IEA>buj8QV>EKif^pR2Rg(M<0M8c$>nuvpOavwW{zj@FVKflb>4 zZCGwm%Hua7CBrQSCi8~eh6%lSmK% zlTjcZO9Wk-+IbWSH_DN}I#4?OgE;5xtJu$w#gV*tCkl$J&pb>bE_&bOVPC-~Ar6#w zT12{6BY$hhR(FA8MMINCHhv>i5O?QEUFHbc$~}0vKG9p`XikbZQFDw@o+TGUJ2!Ji z2IZ-JHDqdS>8_0giV`Yhij&tqKlPL|zCQzK8-Mv(9ZELmj^t#h1xZEuyysq zE?*xmv>@j`xE=~0VK(No;;5b4PUpfF9Ge3GC)`nTicmn+NLpYHO3Gg8gPyQ~Uj5Qf zs@lA{z@_%l<@IZ53Z)(R*$B!Dy|yG9hAAJd4h=!me??y*829lw6vq=5^a5P zE4hfUz?o)(>UyCCOC74wOLnt+R+TK!v7&Sdgp5^)KtVQ{Nbn8VBS4zt$Fb7N7j=8& zfe-~ucY*<0L-`Q}qk&JuuXW{+mpaP-HFy}5SMpd_b#}~jIQQt*`!4aL%e$q?agkT- zObl9m@CZp7Clm~>{{&1HbMbGD@g*k*E_a&|zMi-Pj-Nmv)`V>Iq=0X?t_P7vwLqqAnr zM;P#)Q3ts%+&X9{K6W!7wJbosEHpCzp1(hEs%3D87X4cOcBqr7`>oPtT5fn2&^{Qj z^@_<;ie1iD!Vp}xs0e#mBHLJtQd#g^ba(WT4V`TG;YXP)D_sL0UO{ zfN~Nk9(qs?Z#}I8U7`3A68U@0BQ%U~jS(6s%Pe6<2S=Hon>gYua|?L9m5AQgF7?^#jj^H+uD6pgF5{8Ql`{RU{ghka}@@= zegzdFx5)eB--M@I;v-rv9xun6v}VR`5oggA7j0`#W50RfJ6y1q%f&fke|_SojLTEm z6Jl!_$JK7zk>Bo#ehl5W@rOi3Dzzym(+m@w&N;y1L_3BTx^Q|)A!5f#&$HiVHaVi0g3RTibw|5pKX=eW zuTdnR0sG>a{W3nj8u{&k8)QxI%Bdbhbdpt5UN?9B>E`|q?~0(GJ`dJvzh2!BXcyV9 zjjq=w)%AZ|&nLMsE1S&6Po*cEWwa$Up^U0Sx>s@Hj97lSq5@sITWV{hb;~)1rhIde zELs23(myE1e2nt+I4XVBMxIB5=SPaiW_KMX#MQ`=^8u&V!gMqB{D=g4;v|2~xX)MH zx-{!Atc@H{kRgVq}(Pm9@^PSB(AD)pMW4=bB(;{SUASW{*gq~ycBx{u<|1$4|%BFK)Cu}?Do)VY}H z4vEjl(W#yz8~S|J=aTeh(X@t9O8RUDz(dz5`#%O~JA3vrXj3KBaKEdTVZk@l1{k`f zfL11t)JvNMz=77U(dtNnz#4Rfg+nLz`R^HAvRgCcVePdyw{|D|sy&Gsuh3qY)PBBE zL!A)!%Dv~1{)854j-YL6P$ryk`v+bxjA|+Rws(qMU0{xjW{(0i92%*{y>^K1wAz& z*PJ^J@{E;kbPByXChq9BE&;GszbbR#q=tpO?Csjsl)m3~C2QF`qz3Hc4;91$;8gGp zB#LH?G|(F9*ve;vWPCR$5q7p=ZhundR*^Wmng7HTcWmOs;Xf+k!T#nL+QNYOu-Ha~ zF1lSksoi<(AiBq!jHSWf%$&mFXMXNYEcEXhb-Xd8fR#88hqFrj`OMw#rbdX0!4T5^ zYutolC|ENj3&Q2y}q{33attW6&TS)p?}Reo>*S-FO~qR!FJJfX!j4A0KHa;)-gb z^Mbd!9BJ`}etONnwS&{q-xmas8K{yG`!jv1$!aek%9fXY_OAE4z1+wwUhW@s`%)&fTYLn1E3$X zz+3yGjbvE7wRna*<7?A@$jOcI=>Suzkg1%DoahT^uQxYNk^SQ_wp(-6|F}nlDzI#= z3>CmH0)rb#-5~l@BRl`+o!j!yU76-+)g^ZS42W(vuNpjeNgmqf#aoFM22H8F0)DqU z-cG&@#y`q;xX=b5hT2*?AdyBvwcc=dT4rcT+}+;c-*JoyE_U|%G-zN;!^yG#=~hr6 zpSQM%M0>|+$Adod-(|fCPA-I`unda_o3s5&Lw+Ohq-D?3r}a9G27HAwOz5pz9(ugo zw0u1eUGtR^{p$d}Z==e|hIHyw8FN}ao}3^mTEyyJ+)_o;Ut1C*_XKnB`&@~3E!M|M z4}Z#uG=%Fk1qsx@rX5i{-gF`19^HGFRUz~~S$qo2PX!CCiPD|}XzD1r#1pyK_fH=L z(;7bVioE9S&oSGsW!^0D&t)KIbEXIpr&Y{Tg+*u6wHSR7d7{OlOZve?ZP3V$8y(0w z^Mv*^K2bzL@gxY2Uu*FDqfLV+2@UES#PnvH6*OxVZ;S7HJi2nXntsWOPD!>!CA6NZdxQ^p{y@sO0UpppG;X|GRxJVr3mXKAY>oTrY{b zeq&?o>hCDFk;=W4k*2K5%L%>F$B%_kzi}Ir?Km@z_9`sVh;G8gUBh~G(a!m7jwSmsUj8U%I~E|X;)eGl-c!P7)=kM(EE3@ZqG`-IIr zr~Doxog=7nk8nHA;2(W2qB{{67B(a0%V~xS)A((sp&tzp5>m_qQ-1IeQbD&E#R_;f zJeSJ4!g$#a1BPYhaLt-E#e!YJb1^5JvRZmg9+fM{lj8y{uSMD(Hbwwx3(_^aqWZYK zi6r~oMSc;!9kIu_qafA@Kq>KO;^e7M3KaAcmDbsuL@31eDy@vRhyBue<)ZBO;v~(A zB;KP^nDino#05B+e|}@Em$5ezMRN{=R86R~A*fu034LyYi>HB5bCq&Rc+jAxfjZB( zU9@9W4O^OEe@~8)FAPgEGJkLcJs++8j`H{P>RBk%b1cEP!-&{W61;SzPB&u3H#4)1 za<1i8oqq-GA&s$ACF#JWM>Fa-$D<4cloK>>-Ki6b*uH5i>JRG}>ssKxJbCat*2nQ2 zcuYVjK7O>e#3WwKqh^?U$l-d&&<*<%Sfp1x{#P`5WuvU35*@l(U?vLxla#+zUVX_a zo_KEN!Zu17$Z34=or2xCwfFF?ewlOfW9mi429l*XEg|)3^b%Jm2@dw_O?mX+dzODv zzDq}iliJ)0I=o+q@)86kUX(-EaI_=hG^e5uQQBl$WUd+V;KhQ0NQs5^YLfrX-~LHv zRh<;xVND>|N5ceSQwtp8MI}ys{b{c}o26|yfms~tZ;uG!5&mQ>tk!ck1ooFLI_rfE z)S(=*5V9tNF^Wj4#R9iVWL9ID*^4Hz3Leo2ED?^H$+VPhGvi{34+2s$o@Xb258B}8Q?!YX2H_uTwx-B6zn}sA;hRk!Pfdu_atzpZg8a7>!{%8|rR-A2)c`3exJCSqSIhbxepi8YvM?B;EM)k}K6w}? zcA+48H6iT)3kpOyg^XB2wX}8&6%ZL;7G8gS_5u+(h*+;i|B^QZ`^VXBDQf+1A8HMc#jV8JRRU)PPRVuIa+_{wt9o~fGJ+t1GWzqEB@2npEz=7$q zqhc-6I71e)yj;|M%#hpD1am8z1gr2@14`y$Qj251d{{Do@zcfW03^$#?yCXH!mNx6-+ikoFV zh4lrwzeNo~oA(^LHM`X)JnUT2t_ul^VOw=gM-irka7dT+%L)HWVKs~a@&wS=U@S@J zT2g8$u4I{lOC5NZJ{j^6a!;_tkdC17zu3=dnwH{X#EIzEH@|x0LigRs3}+y+ia|)% zD!ynus=DeLkqVKVpmA!NPUHvq(kf%fgIxcKRGt*9F{l765ELb`MEx*s^VLX9=pz?r z4q&U~W8jAj1{9=oYQrdqSqPQaoepBtg|Bv5nfOUk@=?HlqK?X0TdfXna?DMdA?OkN z?v^=T`ioLN3Oh%1_z;>|0?~xm1NP6z!lOEGzIw9PJ5H45vqZfWrB@DzQ*LyaS~Elr zkev8LNEbDBQO;%ESpy(L3Fl+^?43QP8WZpmz4VByQ_bd9JP{p>ZvBWj&fw#nd-TC; z71EvcAF*i|(ZDkIDo!=u8Z${r%ZwcYqKn6Kaaw%-g(Kn13O}Zhp&DS>Ig+Z!ew>|D zMz)WmBpa*T^k-NLArgjQ^Y--S5wLTh!Bf1g=f0?y+$y4X*} zyL|U{^hrX_u@BVkL!bT0kBEs2$0+$@##e=UbG#3z%KCCU*gFS(uTMV>Q0q7j*cZ8#PZZgQV#*%k!a2K~n4+K{m40CH^SLk<)@)|E`cHcIH1Ic{5tT zyN&m)4us$2-7}MdD?u0VsC+{-jW1>(wB(YAVXmE6ocgz!!cg*7yrtgHO>-eKfwA&$ z-#k?V%=X_m47dzM z49XeMpOh+=)*x2_1vp#V{xvhTk^jdhsid0T1!fJopo=(^0?dbzLgke9N)+;1WcE6D zmPl;;{zn=jBEr?{WM<>u6^fMpTKGT?{d+<8yo3-xL;TDBGWfEY9RATnJ!2RIZ6Zb& zj-=0JFT!dNXeIUi&tGmnO zHPK4BaQ5F0P{8C%%DZDk%j)$!lgVXCW(~e~s8|t){fBK`b;)m|Bxk+_s;BlMm2fvh!r@l?+g(3LdE zYSlf%)_;lfQPu6Xvzzm(5r}@!r)?_S!KV3F`am|po>$ta;iDKy^p)Ip&zQN8?f|Je zLKm4=@Iy{5(teV$YBxwg0x{Y^+W+sdTK$rA?7O<9+%g#+tmsR91X0I`%%j10nXmH1 zPg5Ktk+_V9;c=9wp%v(Ylx>}Uo zz@J?8YP)26w1+u~G^@pQ$9l9R*jybnAK6;iN~sbTgVk`H-p;W<(Z4FFt5+tQ&}_%XZ4Ct+P2PQZbX>xHJRvZ za;7s0=w(QG`U6;daXVsUl8y0tY17$;DABAwb7QcgN^2IH#am*HY~j$8Lfd3>U6x0+ zew04ML2(4oG0^BaCUm|nj}-i1wTp7H%3n7K?h`9)kT&>Tkot+GPFKK1l%LD7z3$;k zk~VPU3&IFIs&bqNm^ny(|Y$?-|IY@ zre!Asn`oU^-nbP%HB5?tiRByzbn8^((My~#ZyF_xqqZVzG&g4Kx>-B6YJ`t>`g4o! z)n$1k+E>v14pn4xoF|K1AY8#llHzSaTfpOJ;oj{}sIl>4yw{*)ZQFs4cSWS~&7!vZj4IVzdv_f|b>D-y{C*5ZYd6JInv@Dc! z_w;L}Ub{!%8a9yl4Mk}Ea(x|(E4rynj`k}(uQr$uJzJK7pE*O%q4yUMK!EHb?CM{W z18v|fqMNNRc!v)03w&ZiLa=zyfa_UK$lp<+H7vFRq^Rw?0Ob3sUl&nEu%~O!jW7~K z)T~jXTiz{rA9LabVNE8aewK1m0Y~8FD18mA^S^Vkk;E#WMS-WyXFxz7di>PCUc}TF zywCPEbU3AKsPZ4l%W7~3`~4Vc_~CcvhmaM}eT4L&9Z1c$&(1;x=o@~S{pTCd5Y6~Q zM_Mgp{e6%f{KDU$K_pyP^S9fuBAse4dtX$AuHyY;4HM?^qnlmA5WrNoQ0oh6E=Io) zSsrYOMQhM9NYCPWG`d88x<8D#+vGB*ZvW*^gM7M~f$uM^v+2>xQU^uYB&s*l{{s_2 z?7mWm$Vk?)05qF@jO+f&d)88c<55}s-x zb`|gj7nU3_53)a&?hNLV(nE4BgK|M~uB(jk6gyW&%$N&WEekq7 zxWj60rL>5{c5NaXR}iC#lqs4wR0fPUtA>e{LV}W+M-03vFhNv7#fj4utpwcTdP~f< z6mq&!Wh-Wz@R^h!iq9p>z2s~u0bI-iik8J+f&8>)WGIforqDVRepIkOrin|7PSky+ z-_zf^=rnH&8wv}g0berQXINTnS(`pK$ag?Lgm+*>3)E!T6rKf-%*Ir>zK( zFCUWH$b0;S#)*N3n4&QUAZ8Y&v&!?C0G~jr7PJ-->R=4$JP!vXq30h}udP&bzn z&_r=xkZA7GD2k?%xqyjSceR-mq0`T2aR9A@`T#tYb?x_8*`_L@HnM0^qQkQoQ>+j# z0ppw!NdS?F7tr_e;{oV@<-&99iN{{Dt_9>-9M+iwFm3hFYF=Nk(7Km$a1fE+!(!Wl zwfX$ZkG8VTG#=k=X`>X$(NE<6B@4$ppx=MsOoHcaa$_JsyZW8&_S;)twGA5-jowED z{eCutly0T-7h0bVB{ul)XIm})<2lgf<)$$8!RhwMdn%m%tbR6cek{d*dU>QMND(V_g%rtpz z^Tv7`Jg^TNDU5X4FPJ3;cg@|#%r0B1`oqGuiRDQ1V#CNc(| zA`YM`OZcGA#{}{jbHI5c>GGuT2?g^xs-W)hBTcamlcop(^Rn5TOueEvVu7bQg1Qr0ep{8IOG-( zzK~Rbzr1!9^|pSs1O1lcvMbQv2FRcC(z|vB{_=gwi)`NOn_ODF0|oR~tg5u9o?GR7 z@IQY-@0JbWuXdpSks{k;YEyAJe!D$rLTGUW}w^wLZ1iYu@W&{v>61>6%u;Ep@)uuh#iwJ5V4=(iY-eg0!#fxcod2tc=% zesN!czAWwn^l~Nna3IKi0s2}qQbe?se(|#b^p)KR%06;y9Hyt3xz3{N1Y{ZGGE?tl zZ@ort5`$Dit%J<&1_5)xGN5u9K!5e>kQEjth;xDL2QU>t708xB@UbUK?Ci6)1Nbt3 z>wOvM;skILb^l9e62uNUy{W#&wk&+oVwG#5z6)(b_5aF8tajGF{b+9cy;##bLe&Ugw>i5;tqTB5A$ za{*NcR*_RvQ0VLHn^35TF^~bY6vTZR?+m?Pj0q>#GR{8A6EjBr6p)r&E*60-`zkvY z&19fbj(W+~@)MAoZWLCo-;3O=XTV>YXSrQF%Dh*p#R;_S3~I1xDKnVrNMK|FF6PlE z8E9dDs6BC*!5ZJRun9}Z#~O%(;arMrVKe@duYVjM?-U0xmZc!kes}C+83J8@G!B&M z&^>%?0ebqUc~Y9aB-q5u8kHea3LNfqYn6YH`BfI|Ve}Fw9(z$c(08kNH~(ZT`rmYu zo}1m-@`By4lsDN?O{?HiZcycb@uVMN<3gR-rIssW(CeCeCksW{&X zvqJ#SpmiDB7hnEfu3riYCx02A7B$R8gCtdnXCgaJD4NIJgsAX!$xgo{&vS0iIUkP;3Gtx*N#6SXT8DqyYX;FYG4_X)ldN12h2dqq~L(5h?dIaIaQ5-=AE z?KeN0+vW~w2l_3CrWxpu!1B3nL!F&>)*ve-g`Tbh3G`onb*-&fS!Lb3@*p?6e zzdO*Mv-lxot}JNeC5TP9c*d)dA(J-w={YuFU{4!3q!+S|WOi9~F>rC03|h^8`?AQ& z_#?(DVi)&#@zKxTLEUe%(PNN{kp?sLe#Oa3!cfKC^~|jjF&$V2uVrL5n4y!Wme@IG zk$M@qE?m3C*37)u0V99(?e?yH1Mln2*28nZTk6qthn+xQg^Jc)9X`}n z&hB7wF%^anw}x3Wovh~|9~BCyb{gHy@`sMF@7gtY*pIYrccdF^*B@!KU6I$+T!B0XSvOJ&q9Bz<0Aq-Kw0Vg z6bvszvzOr(i$CoZ3&Z1;RbB=)G7j*!+9LL=>M*ib`B1_nQn&{b(O&n(Q!tq6iC77` zH;ExK0M3Y_SP;JADPRR{1DnY3D@L}gZNhYZ+$}xyUzlD@04nEsF$kC!o|7A`Fo~2X zim#xxsButv>Yoh3viLi;H5gC6{#v&(E*>-XJTMPRnNRroYz5}g9TQUGf>MO zn#O9@D%ScP8Za$3`P1vS{9|1XcKsGeW$FbSrLob$t^f~;%)fo}Aq3+a1Rz{$J&3v= zQXWSgCPV?1wn&GL{7n*Wv5Pj6p?;_1P{w`G(*@)>DBj&rZNIuTYK?W3&YG`WjPl1$ z5ro3kty+fd$T!Ia0on*J9Kza)^(7`XI-06pjfn?JR;XC9)k2`8s8`fp*Mhkeayp{k#dAQ z_R`En2qqXO?Va2Nf&?Ma_`AHTVjqY;Pf!l|&hR}!suHxHv4d|-Lm?EtoiVy`HY$P+lz`lpu_b$JW_glZ( zfqu(zx#{+~jAz=qlU?HcFAYY~;xu>erUL==BPeJdpR~g5wX;qgVAE%=YY}yS*VgP0 z(9g{Y*wx?qfa1Grx$Un%8zUgg@GpMx3)k55&O6TqVf!>%{+|T&pM3I32gC)c1jxI0 z@80H+jvv2gK>xbyt}~@RQ;ITK^4q%h2I!x9>Zw*&S7%pUbrpc)%(jaBM1Az-j-dDg zvhF=Q*a;^c zVj~afkFf(|5R#r`St$cVjh5RZZ#fxEz)5obvSqpU&dO}-+b2RWK4Li`pNTrHVA+x% zpPtmo&OB?2lNk}RkUM2n20)TaebSVCJL@#uK=BE$+p@;CFL;o4A#>rQzcT$pq)d!H zo)@gtGegz7_9*Ipvqc}_@c*-S9sp8SSNlJ+GdsJpy|HxIr7yiGqSD1)5fBTu#Hi8a zpQgqdlh_ku^s^>k?7e_UwV{9o6zRS9UY6};%Km@P9hR_2Q;1>xcquzG`&i23pMaPXY+U(Qr;x<+ipJS)=13c13Da(KU zC8@zge2Wp{D=dxy=$8WYxmWH@@UaYmxe0R%?C;}t(kARf#z27FZK!wJ778~Jp60p$ zcb&jRu)!;`nf0+YjuEEv!!nj_1ufZODn-pz^F9{Fs(`=PtI`1o5j|IVY6&lTpvA}g zQ+SPSPJolg?rh%jph_Q-?hJkqjuPWGs%Iq|oF{-iuIJ-~?{EYN!zt1)jHk#xJ;G0p z!I)P-EJUD;E6_gTceKGV2pq*&=aMb~b|8UJsp;dcpxyEsF(zobY)sXZ=S18$cuNciwTBC<0-LU@eqkqqgNzc`$9+#6#{B{Me&DT^ z0sS@h{5$`TQe({leD$I1FJj;-_gsTd3xXoR0)-lIs&OxmAd`$v=8?F`?aDVWsDsE; zD)OoYVatZDwrxv0%d9isnl_v6yhs`dT11>f0FcMyWDtlv!vMhn5L2bR@Du}WS96vc*<(jr9nD6i+l_}WfF0dqUo z(WI?{23}^bJiEX$(;M2Tk)tq%npls-3=0s^&jvL2eDkNaJsF`A?oo9mU;f88HeuW{ zDD8=s*Rdr|k21UIt~0p?5qyAt2+F)7&=QxBct)6OXe_JJfoSw4gF~Qv9{L0-=A*#)D zrO(UA#TT_kqI=56k5DhuE#6uXs@Nop>~`2%5hX$Bq)ex|qW$SS)A<9Rj-lGW|DdPF)+(DiZIZUGEPz505)IC*( z5AhF;w-5`wa)Su#2TALYKt~l0qAK#jBAiPpA5=cUp#eRqoC*S@YdCK;3s%(ADWQ`z z?j7+z$`y8NKiDoGbT{X&sSv;CdT|Ws@7Wt>_df#AXA!>s>MoX*8I9yu?{T<5zfH>w zdyRbm_IY)zU#}+aw0oD=tG5jdwMLkem4oyv# zI<{!r`vVmJ>D&6T0Da|B3q-}kfEzn@towPOz7se)Sb06E^vhvz!U-ohk+cJy?@)oh zfR}*eEw|iag9Z&c&?yfI=u5d>0)AV!Zndkfy2^g>i(ee@ocsHwqWUU3SX?Y&T63%g zl>to_fxa9E|NQ4a?aVXJbZHs~I_IGReUpVd)inYaSPbLS*Dpx?ZCnRV?#Kt(pO zqP|#E0<$AW*0BpNT*q|?m|?5NDyqy*66AevY_bi!U@Nw1mF-+J*S5|Y;{fdD@Ts=h z&L*P&h$VW~&>~rr&fJF9uZaG&)`lE?+24jeSP<%AOTH$8ToKLDFaB&YHXoQnpoG7E zuHF0A<89@pbUUSgr4{5yZ1NWY%gqT{hxQdVZhWFs-S5+<%o^4QGYCHtB$8P4ggM3b zw{h6e07jiG5Qw)51fk=w6_b)KNJGQ6Y2ndo0>mq-%gTbT7hRaz03qP~hE1yF}j?gTT?^J*3OJ z2sun`Z0pjB%~59o`dq?eVhk$`VtpoZmkGPZE{5%{>MbtZA3^1efc^Ddy%EuS2UVZKd zMMb0Wcw6uaNiZV1P{@M94oI?P=nT&!4Od!@#Hbg_$6)B z;5L9}g7s`y*D}LUi#UG(c7Q(5FG3s+(Tn(m04WLymN%fC)$N?k-~x1VZQ{c2o;~th z!WvjG`%Hj-vbApenPp^dFv5KRGZY?#TGKxEpB zgM)Mi#5C03K0JTHNI}kp!3w}Tv?i6`5FIBVrGFy*%GC<7pgHAC z1o-3;i^E&!06bnxRVomT#sk_kvTqflBFsTK;i;77v@S(53!XmGr z^76yb{i|q0N%O5ca^>JK8LTC%bGh*-r%PA4hVxrO^8W$3Pl*3S-K(QV?5uJ;L zT68AT5u{&`LOyT=9y%ac}_Yd@|>yRr7+qG*~z9XC1 z_19m2z*8O!=nF_Ims){>{QP`Zx4ar4@9)G1qwY(&UCxcv)KsU=e>gy2ZP4}P*w}j$ z*w?@PwYU27+DzS-o`ZB9F1X+Vlk-IH540T&=*wYp=bd*t{e@=DnmI8)f$0Nn2Lt-m z6(m%Caq;5C_W0wETZ;4)y%?9wFXeamXfbABA+oG8(`l=}GoY?_@eu6b`R%YFf0~lg> z3MjisF1%_*^al=HkNqdx8gPpJCY!ko06T76mIL~VPVZPf&$i7TV{1c~T5(llY`g?( z>$$^W1%brsts3Y%F+SQ;<*#d%aXoFx^g=7zfGBjwPF6g5GIk;M9@K4Mu6YwZcJ95W z+U$9L(q}8}>uGURnyLWQgIBOe$Bqx|0{W%o=wnj~Yp|8WSe>|_)c!h-{^DL_+s31G zUs)>Jx^$a-c2%DQyYRSFkcHo-&R%1;zehA#(Ru!=58@O22=+C%^YRFa%0R_7m-@T{ zO9Hl0ATDgm0bl_2u~KZs##O+L3t_*4gTNYoBGHZvr9eXvxxx~5^7ITqo z7yXZx7MG2#6kkGR;0E*spy>-xi;b-7%ZH)sx^^)p6s%QRu(T5#8$cc!&L@%Un5uNH z5yulz+H@*EaWqtsDy(*KI+vQuy@_sLR!Lxvv;pPF3s=xIcTF+0BLv`7A-8X*QJwgog)E7llQGC|V*8pw6I=gL0%= zjUn>&Bhc^#=0&NJ6XA`wx7Y{csq0=*MC6v=0n!YrN=W(n3~2AJXgX8=P#H?Kjh=>43T zr?V&|S=;tsT2ks7?v+W!!cbNkw%dL)oDzbRgrg)z>o$4TDmmRMzL^PI0HFWp%PhME zz>-O#N%q)7AKSDkYwfhN&alZ7CfLwR2HUxVJA=d5GRY{J$6)sPiSKi+2%uF1+Donb zc)0GG{F)#!J_HLv;qfd&4$$Ig5iLia)EIJY;sbcvG{5PO#Dq+Q@DNG~!vql6m3Rly z@hZG&B_#swRI^VYr-k(>F}@Mi2nxx?-^9M69?83?JQ;F(_|hmY;&{rd#4@qv(UlXZ zl8Ou=SOo&%Au1QB9G@yFcwl6xf06>NdBRL$SO@6v<18uUo|M1O^CcIjf(X7Bk-ah& z)`WP(0evdlhbW-57igOS+MV|i1%9X-w2wR?QWQ!{N!y@5q|xBvImsItEJJ7zR)Wgt zId3F=xih~IAw;75+=rKiL|)hmzJx+tyKbF^cI8F)TFcx+qir7p`ZX8O{{+x~;WfPe zuw<^f1jk?&sVsYJM*`?8CFHf?3vkQ@oUor*1L|LdZGwG8 z`K#}vHUfP)T~wK&y8NQXlKS&-fW82;9C}I}dGNsp-8d3+=Wu|&DoE&@I>*&lU+tWP zD#dp=K>y{JU$$3XdBwF+W9`#VKmEah{>-^w5L6+eOQAX$<6t^$LPdiW{l$iUb%K5R z(TshLN2O)-!2@epi#&+En8wU<~5^8+%~Ig!^zRV$=b%;<=R3scW>p6 zx_>QVeD~0H0(pU4izIZn&1))b<#dFf+jX(h$)8~hi?s_d#ul&JKE+PFzNbx@LWGx- zNnJlJO-PqsATs^_htY_BuU>_)Yh+t1Fr=up&pw*B(;gYW-GNIG4B!#l6(@xNcOWie zzZ{Tm13IMO$S`~O#Yr}5ZDZ_6oEhMZxOh?nNd0RVTVzjM*980`!RIKg-GOSbg8;Eu zs4mJ5rjb)iHm#o&W`SF0<8vQMrHx>lI)*EBdPVeQcXN{*t6-fl2fybyVIl!+^_v_B zsw-bfr7m5|2Oe{3{OrqaoCBy2M$&i?*oGIuH8J>Ui&MMTAfbd060HbMC@YSuf~jz zAe-)`QVe9qlJ-%GhI16iGr*V?<5*)?WxFGcLs9dE7q!0_&bn^61zq-{b zpuc11CVTJw=K*iqD5JKLPG)Ifu87X<@!(0~wdfiGi;C#FQgA#77Zqj%X;O*?qT_T- ztWY&me!YPHrjA7P7f@dBOCFr^h7^J30kR-CI(bZhI*9>`r>41be}dtB^0o15@ysR0 zhYX!P^tVMee-@N|2ARt0$r(_EQ=$rQ5YvTWqP!4MUPL+3aaGo?T}x}9#^fm5$Y?~g zP9vXou9~yn>NQD+P9CsEaY@$gER;OkNV%Tj#$*Yz$VqWtP6II)X3abmpr44C$s|io zTjM5qxm4c);}73A%H~Yt{Is=st2UOFoQB%aB8x=@w9~mg?BxE6e*0lH6x*W@eq>7) z<=Z90F168b4Y%Ll@q2625yysaIh1zphY6FEl!8dy1{Q+4yF6%k%UD1>UPSsTn6MJ) z3vEXAA!zIpw5wtQ8vt4!ydeFi#wz-q5WqR0 zR0}3@B+R)~IuD`01eEaQoQR46ax4`0Fp+gv_Kv=lmr+cDl8St{m?&)^S{;B~q=?G= zmE-B8e`D%%jLI`^pb`T4{VZ52$q_8qHOb>Ae<&Q3z#bwic;6%BLGXYO!qt{+o@jtw6sTJS*iv zpiDmn&<+RaD;Hl;Smn?QRB4ma{=R^|qNy*w_~L)_(fvoRErVPU#RF|g%z&YnPj-n@CP zyq*Lek8OwF19|OotWUoV*0WE0n>#nf0sUsVCDyqM>{LaDF{AYlqmRlNb#3sVtpseO zrcRU?`(2KOa4613k4>}l&)W=p)o-7FmS}Y%<1DLc0#<(tK>rqNw+rZ3w^*l)it$|s zb^ji~Bf!(&#Htcbvf})p&7MR+s9kp}`g9_8AU3Q^H!wTtsxG!MwlPtABKv2R0@f96 z$4LNa6n%a4*f@UYMH{35Ck8g9KqYpsn8FhmA__Wo6Sk;W3}UZh@5)2Kyv<6Cv1@xL zTHh|I7K;e>Zyy_LGfG>74X|HvUZ|Q@TvEJcp;PtLPm+oG%SMi>#tYDk86gG)F(>S0 zf|=kYS3!#_D3@HIS8IgYDm?`O*Z?WN0<`L15DkF1k^osTfv{wEOc@mc6iAKrQ5qXC zED}K_0a4lOV!G-|?mC1Uj!>-UHXE@ zi|9GQRDpT*qtXkMPcIEMr6q{1t+ZzKnJRi|A6>hglv~mE6G#uyJ%_+k80Y-sez}Ir z$tQs6=ebBv%K>=y*9}WEK-ZJNxWN0?Dk4-O(wz_hvvoYf(nt+H8n#*m z^mi6)vv^MlcV3s<>=RGFp={plCNm7ylV2yklTUip3ixm$T11+-~j_z8K4580^g-& z9{bzFYi-FwqSJV4nEi9R^G~mL(Vksnpx(r;y8JaxMoIH zeOo$it|fCHaTx!tGP14h&8JyW3dgcQ#W3L{{3ef^CYf^MXU;%%pNM{&cArvWVhxmX zCL1d4ie$h1+(-7o$i=k5tYOm@7EeUKY|RP_G)%YLR+)D7b?xaBuPt7<#h!ljBin*c zAg_HJTfcmn-F?rWt!>8!Ruq~EATM&1cOPCf(a_6Lwbwmpy2sE5UcYMFr$Lw5M4MtQ z!JkQ+qBM7TUIUahu98Pj4hklSBKSda_jOMy$){;4TEF^U3riqY`Rnw*-)s3i`w)wQ z7z|FGAFrks7fm`NKVNzM@=BINIWj~I2K!RT2ygH@Vue|gp_lHQBZ*wPZ9oz*a9prUdsCU zz4dS`ph*BFNUEfz! z*M^*Zs~e~6e8}4|pkK4Ajug<(-&t<2y}iI%lb0_ip(tP{pU|-8#dvo(KwpA;3l?v; z3n~AX(?kw3SUtypzUznD@}CSG<@_pArcIGgMfgO$JzBQf2=tYMFYq*E$PoMe?|;9$ zD-Q?gKlRj8j=HYrrO12rwm+c%%U}MIXxxhx%;n8K)<^D z;!l3^6T9Jt8+Jdx!vXpaJ@k;N5B4s_YcSyh+Dj7_&r9gA$vJknk> zCRog-k#4_A%Iht+n|DX_)mR`YwkfoB7tsgkdv^i-m^Kz0=w>B=y=fnpT0)ENR`AgT zx4%b$$E+l)b9Ns~&%o{jC!Eq>*g-m5I-j(gXverj0%BgOh7?ip342;WECF(C!Y>!? zu)n;w0o()Dh~i?`cU}TQnSm<1rdN{n>6C^|>$My29dFA$t)1-{1i+^dl#7MBpN7r; zkDti)RoVjmB8LIgVKG-_cgMzITLWBOl$waRDC+vX0%p-N-b#xm3J#bS?cJ+1T-u^C zc4d^Q=7d}`$=To`Fo~k?%4gS23Iqpn5Xh#NP`5CH(tyRf786?bzp$EussiQ8jaNX7 zoM)~rYP|wy!gzX~N*^F?SY@`c-4&3iOTYO+KcVZ!5kxoEx%{H=v-={-U^3^v8?ANT%a^?cMtp&yh~2Z zwCI-B_98HsdHt-_UI!UZPl_3fJrDRfV(Pr-pFNF*jv*?t_NLDv=})ee3bmV=DMM_ zbJ8gDCn~yIh-!SSHOOvkbN=-i1>wlY!86vnXFF?l+u2rT@>ViAspp>TN2rZSpnKOu znmwI}J~{f$TYqG6iEEr-MTkhWyqn`kePJ&@J;P1pw5$fS0YJ?lPOq0?4H|pxhF_iF zCg${SmfJrc{{*4DMz&+ec1ueN*mKXlWSMml!HCSD)W>Q!(YR%(>~b(LjhG*FD?lH5 zdg5jx*p#;rsE;FR&YCKv&_ujj6%yb;5HFV02RS)7iV4GHXE7-#*g?NSWlE|;8}YzF zqY0qQ8V`M@3|2xV`8TDM#nAJOre+Ya=hlibzGH)qdtk{8HadwI}0~iB5kRt*hyR5YQQ+tWDmP& zd{OCE#!xz*O@VmP!;~+@!cdjWHSq$La&`KosHl+C0ICG=nLLzwR(?vOXrU}BIcHC3eOs&8%&kEc;~g>LU*H zpZwqHIHRga2k2m_DSUzM+KvJJ>Yh0If38}!%0-2hGp_B5E3R;~?W3*bwGHUYQ6eF- z`|rQM1|V0zejlJOzrAIm=?{OH?Q%C_6PJ!5x)}6TTw7=qJD1Ju)%V3bFl#k z7OW=+7~`W}y?V}|-Seax6JmCVDR7`ov~rzS=aAD#=T|OudiuY0KyeD($V)N+*iHTChGpHufFO;@xJ_W-{lv-573vUgR~O#toBuYabG}R zeW&qLEq+-2e)#a=cE=reIB`WepBguAY;s2Iy{%ZW!WuSg$al}bzaRGANAH!AAONDW zhq{*1GW1%y4ts7IuVNSIcYBYoJ@-4(ujent2`XSGY$V&2?>#SIQJ@_4D@sbQvT>t7 z-|uBJvr?>A-;UO&e+QTLD)=>bZt^amuZTV=n4Da;qBaFq-WyfV23@!jn5HC6*~EZ8 z!ODs%8$BkA6xOiyJaMNLEE#P@Ye*Yljtl6ou$wGz59&S`&TZ8Z{X7Ts1K4wU=1p&7 zb=ozuF;B0y*v6f#;6nj@Kxv&UOX%6%n#V7*@~vB}AhVmDa{)L+JbUb1Ma0#Xv4{c| z75f1CCDyQkFo%MY#GA1%XRRo-Kfb-n3edTdqd_=Cz{Jm3NFh!3cc&#==a$&j1SrqG zpEU}-DpAY10PJ1TO$oXsW2^u3CrPkYbq?Vq3GWeTgT3q}kSRbNL|9H*TS|Qm;sEdy zokkIhP866`M4#83Q((Lw`Tzhx07*naR3da@3d;cy7I0SZ4#2Gn2eAa@1jwaiFQNKWGfdNuhwGa_3|CysR9CE%$}L!QC@R5&Q!E9;bw^shoWUc9nwb z+Q>LjTC^};l>GpHiZ{=Z2|%trULWPCc$r9kBEa&7Rfw7bs4Uv)wTB*D zY8%&VX2A2%V*vWJL7oRuco?NFqONJG{Qr2Of+-nkcFBT(QoW&PUiZ!RaUTWHA zHxcECP+7PyCe5^`9{LIg0Uj`%7akUw^o)9T@+rM+(Y#OXjz9ONPZI5`ujbivPfoQ? zoqF5!ufDb%zH}ac{AuX^jcwtIF$fDT<-9CxfNRH4V6v5$7ZELoUJos5N6~!p>B*f! z@m^FMO?oN$Cnct^sInlCm!-+72)FX;<@%7*B%hRwq(BFpc{iz5ufC*W3xJ8|>Gc7yR%>cq@)b93EKf%Cd`>+Zdqd%s}80tes@re-eyFMzKxq}Osn z?5mA(90<_qngV~{cl+j>Z}zE0plkN+`){iL-si6^Kz~nQyub2`-xcU9B}e1v_~Vb? zZ~4Xj0sX!Ev098zEQvq;=}(Snus5R9S56HZI*ii!UAH~W*v|jfrCR4Tv9r!S z0VV$C9HYMqo^S?U&znanyd{e0msl4^-H+N^vL6McM~KCD^u#+NbV{=-=tCr3R_JI%j!=@_L5qzW09YJMz3!x?97p zeE~Uk{um3dU1FBj*g_|qVLe)|w}!o1f)50Im8NPi zL(*JCzh}=fYur#*QPdq;I%s*$$`ZTtt#wv{&J~tFZ4l7Jl>wf~Ne4>id=8 zjWZu0C6{P>lBVo>@I5#$u@-c^yf40?cGMT5uAcVT&1{$C) zMh+e#)_SS}s4h>03F^E%3|Qr|Y}*pF`|h1-TQ_V6I5Hst^FGSrRVjKModFCYUgL-e zll$$D^FpIam2-+{MV zR3qp=c;-}gqYB|a55jwqV1P-i1q%^ARx+^*A~;RtfAQi}D92$_QYM<4O+2=ys%l{^qSE_U4F%*0obT)9XA^Xxg@}smE{(=vVjp(fd<|zw*Sj379HM zoRgE|-XD$s)fS+y@8=#pdbmjb{s8iK0s1|A_H^IZik4n;%{BXdG~Wg2FI~FSokuF` z`)i|i_%1+y%a$#CSHwDirl0%TjugW#k3$9e5|0T;tPB4-HE%KEAc%k?Vow}36@zKaIEHVHLo(#h+j2`n$o2B`Zxwse8IKbx|0U%Ejf50~>a65$PMz*hyx z!6tIewItpks)j(n8;~qO)4y3~|ND>SmcNz!eR>|A3P_D{Er=78=rJWneN?29|bTjf@OFzrmrZDM&>4?%nnVY;j;%V@%YOG3~^ z?Z;su&smuK?dnBD>+LmuU(2#KeyWxa4&?$qHde zoONzvl=_uhxk=gIk7?i_bT8`i!?GC|kP##pg z6AYnL9ubnHxI9;;&L7WJ%L=%^c=Ecoky4=Q38?rNBk+fZQsc_cq!(>R4kURAy)ozn z;HW63)_oae69e31Ac@729DO;2L|2NFSCRM1$@iJqBrG}30VE0$@qQxs&Qr<|EO+7_ z^2jnW*zbfc7uujRZe^_Q+o~HE!HEyXT&JTz&Hco%B$EzUaULN}@)$Z{MEp4CRULe>)VQFE)ru zs0obszg%i$t2T|G=XY=veNnJ6boqza8h@ez6ab~{Mrm&cDaIa?~ZI>7Y*8hy;Vhjdu`^-6zg$fxn*UBZPe&QJNLY;R!%C+y!T(U zRG-p52?hc5mm|j4HU^;2`{*W^N??r~{nb_1TAu%Yi%ZS2>`p^1kXp}53qm&Hu{Gvv z)4_u4H(2?o=Pez9>S!Pg%uqMS!pEOwt;@c$mP1dlxJD@sFp4@pjvW2Mq8RJltBmq` zx(@VoY~c{WqYvkm+QZ|Nl7U?bP!~|vIuQ$iAJn)7TD*G7JE)NZv5=&!cd#@|S^6#yo{NY=W_EW~+Ih$54-4y~mMT1Ai? zZPB*{!lU3?UL1U93wsT70624p-w8WIUrI-kffqj9cRt-IU}wyZnmFtZ$zIR<~Xq+q7d6UNR!-P-2RS zekT&qPl%^f98qs>j^o83kWe1pI-D(9Ae?X>lf%oRSpv{cNaQ*=Ae4V2wM(lGxKnJ{sTWBkuZq60LdEmiw8H5T|R=Jg*c>IXK%ORv^FNZ*71V=_0 z_s6190;OMVjw3z5PgLIPr+uLm+JiGko<=;m@(?<;Po6;>4_DWSg+&s}B3D#|;wTH9 z#+;l+TKIg>yv{%Eb~~x-MMrFLI0p1JL=UTq^B~zG{zH*8uOqg)M zEEQF;SHdv>goSD=&N5vSkiTiM}tU*qBkHZPu(=eE(KBR>zfB zU1cZqIAQl?1oTCz9zS-R&7VJyoahYee!>ZM?RD2WYQCIC0(>g*C%W}JZ@q0fxw&@T z_18Iy{2}`vRPn;muyP`$HNEIEagm^< z+On!>L|=WbtLj>MSx)i2)sbthUHttP$jG(&#|?T&x{VZ#^Vw~j+JOC*{*1pc__JnZ(7*^@!G2?s===TEXH>@v^k3Eg8 z90BY;;@b+A#n{|=TkO_xikd56Cal9%32Mav zfM2|#ljSr=cPb1vz*ZJ;4^}FtKAF9ucdUB@=W>%$swa|<9V?6#3&v37U)YCUiZmEX4k&?gu@&SraCCiaVppAvz@AD^ z3r~fx%LUA%!rTg2$|(@drPq2ZP%fP_fj5C|F(QKOBP}lcKiJ)1Ec!~!S@iz-y{df) z?2|@-{q4l|=pB{M6Jw$(997?!gF<>|73E@#`&>zFF>aL_t+6Lf1fL%p9#XjQXVZoq ztyS*HTvy}c=-z4-(BDC=`Ip|i4nQmfjmkNLI6gMbVxVe^F0V3X-dH`@C?zO{ry+X3 zqV|d$3lQspMWBi}C3NT6G3fRK$kFd&8JPv$ciNKSEUs%HR>qI9bH!e^cfzIy1sUo_*k5mRlzst(4)cMO7;Nv3M^_D~ecLOPr{lYO0EkUx^xite-lYT1W6w>RgdX3im@I z5ev4L(jR)RF`gu+HtNCQB1VF$J}6~O-oG&8L5rO}P-;LyK`FF+#0gp8ip!7dt@XUkT=DB;;1NuWP++)~@LxrA}xw;|`F z(kr^ouI(7mukMMX|EKDg-*;aWFbRxGEKd2lwPpLi0`#X%o8}l7C!c)sZp{RxSR4+} zS2;d`ah*fP=depJv*kok_crvD`ZWhYuT9Q?f#+Xf%a$y0`&H*p>vsw`2t;-5*3HqZ z1;A&_m|?&C`3=sfyzP!V>~6~c$pKxx$w0nj*kyL%pg}H2U!ZH$$dS$_S^~>p@9l=` ze{LVX|2|Ik1lly;{aV-guHb&p^Zs7}`qkPS0|ySY-~8q`E|RaP{^0<9Rgh46kIFjg zJWBmJRG=@1(OtLSfh{YLRCBxGm%p$ZfAI?k_E#_te)Fqe+fFF_+V&iCX|NpL9x>bj zt?C^8!2>U}jT<)DZ*KaXz3|-gmXEV(&n*ssHhtDi2h=qFTIM!$WBKZ9erk7cAA4@H z*IG4e?#AprIF>FUJ!H@At2wXnRv=&CNB~{|A}P0HBc%}Vk`czQoGXCuU;$2jCM@M_ za@kNq@SH=(YnwkWjT97wsB_DhOGPeNqf}k(LcGiY{fu;?vw*WcJtaPe9gNLej_UsV z<1_8T3kq!ehK;s%(sKk1aTH*CR+6K?tm>vcRQGkg=!RUTt&052Iwt(pV$)h!!xM(t zn)Ot^n(4FR84E0i^`ZFnM=c$}XX!A>o>h`@xL&SR9(RVNPJPvyUDnf@o!OCo0Fz)> zjvW`+Mct1AeQun)lkQZ+9(iw}O<10Y{alV}KK43Dml&9JYv!>(UYHH=EVW`-ql*`B zvu8few+-I<*v`U8*u(_1&TCw5SDxP)_O0mefOz-{E{#}Vnjo3Lua^Lt3uNNPkaNTb zxYsF!oPz{51@fa2dN2ni#$yzqQ|EGy3Q}JkyTY*zq6}O`Il;>OK+X^5uXN2~ykfR0 zpynPhV=!9!PHqO_Dhc-KGpD8Hx;hH*1-7Hi4lH=It#nRB*L5$V&kK(QQe%{wrsTu=x+z;zar|s<_-@m9uJVbO`=1`D1wi-MU&apm*)v+ zaNw6>XC@7UOA+KSbn+^|mV8suLFKjW8wZf1-v&un z>(ViTm(Oe4@;6vPVaT3&_-k9eq{uB!DR_n>l;P;yv8|<~CfP;9PO;<+(iq5(FAq|h z&r_d?6fN;5F*|=8(RMAu0>_9TibgL+gakRlEC}+HDL-BL>?$J{AMZny&O;tFk#X{4 z3Mp|{22Ce`I7kRl7CC9+@k~p=Pj%-d2ojHiy-7rmym+bMi`E}uF)b@6g&+XP$8jUt zPAUB#?~_t7#IC9$2l$nT6J{ZDtN?QN)h+>jQiO=|`>m8`sYM|IO+Sv*hQeay9Z?^Y zsJ-8x?Ho7d(0+Veqnt_r+$;+iYWtB4SY=`+2*k6{myj|-6#(T8h42=X;aE{bzfPUH zI7kB4sD2B(a>!#Yy@3lJ(d`(}ui2f43iRK3ZxNLiD(q6C> zz^?!K_3pZ-pL#0JfMqf#?AF_Fvx_gj1VAvu?!4np+pumO_6UmGxA*Sb*De}*k&EoV zJ7R>hFFSYbV(;);+u#c?v{^G|I)=%#8PjVFqi3Fe#vZ2ZpqyAsSA5&?G;Qvi&K6gc zR~D-5a^lnuX!&5Zie4{Zr--o2qXqz~gqb3^4j^*1>RfLDPraK*6kTF`0{UILN}meg z2pHBi^7H-n@h2J9zFp8dwU^zG9jeHXUJ-yAH!jTvo?BqsHmtObUp@v z=Z1Azp9&q_&alK!U$9nJ_O({$9T(OA!eSgfHa-gUrMh2_fF&4%2$*fB^zvWdSz({A zRk=9f8v=Oz5yk!5-f?zr_f)Ga1mI%Bu2{Ur-u`HreOcPXg0PC~#Fbkf>Au(YPPeQ& zux7y=Vf3mz1W6T%*E-^f;X2sGVm!RTP> zG^+TmQYe&OA-hRhTY3iiy&jRqtQ@04*aG@`Urs8lg!5dqU(Or?b!v~8)Xss!u~kIz z^?RLDQF~Vck8ve|Z-=j75Jw#lu{ay#tbjd1fHMXsPbF;^qgXgm&kRK`=df^5euAz_ zOVF`OZ5BR}V@Um5ElL<7U04+dlw!>#9mo$7)J#cAARqrc7$KRov-WJY3g|1M|LSOf zJ`sI4V3;8C9BBZ>`ZYlDfuS&|Co4~(28e#jdl)V0#^B-M2>}awI!_@(VAI-OQ1`o9 zCP2So)6W=)+C>YDDBGfz;4WYQ#zW6hj!+0sPz5UTqGD@7DJiV7m;QH=ee&@f%V07W z?xdU_V?dGnSm^EYI&nEbA^$NUL8vTB^{h#YOuK3rHSD2+%ZpU8uGA*o@}`x>XOkD- z+Cs}#s`Yr~$khiJOT4Ze4`JRP2AikeOh8E*?E+-7I8C3{#{vDe?Y~ClemQ)Ds4D!{ zo%!~}{~*v(8nk6IKC`CH8{v$|wlmIajY272H-Cw3+Oi$0)ixXb#zNb$x*Uf`206;< zc)EfJgJfCP<6Bs-0j(^M2=f5yP{gy7&~++#K3aT4S;yfJFFgR2{-dNF&&TglDd=l% zS^0+&qH~j(hF)^99w ziu&iD)pGa2M-u2STDslFez@G~WhYrX%JX&ZkiGjl)h~_#{py}LI)91+{_9`=+U38h zg^KX0Bvx(Qe#}5$IrEB?s*IT^_YE@mqfTJGbAv?~SDNSCqk}T7G!;~$;se$SImvP~N{TKkS2ZRDu;b~i=o1cP7`sGSR! zEOrsu-M>7H7e8j8FCn{|Z@$?@#s$bFXs7LPfWGMND#xc%c6;i094gQkE2Kl)cFv|e z87lpYFTX_apvaA(y{kQ3GIXd-`|4}#I={`HHy3jgdvn*ORHGA*@9uzBU*^NlZ@j?) zeT~CqFjEv+|DPwHu(QuOr}_~4>D5=;q)#Wh_sdqTbU(krSuu3*5V!x=0R25nJofI{ z%Q>+6^y_QSKL7mg^Hjf>F>i#6rppGCod}M{{=x?1CzhSF-DLxU!LapIN1b2}_Or9e zvAuO%6jTa;iB)S(jBm+OfPS+wS6)xiVI9AAeH;uKRdR~4%Pxiii#;y;Rj5EJ@IeHZ z$Ba#~^UmFB>le#ao{Ipp2mAy)qMx}RN`uGxNNJ|+!3cth zI9a5JRaQoX91CCP7hPWG66R7Ky&N(cBLd=b@`w>#NuNXj@Os9=0NSL|FP!H}_|fG- zKsx*h_KV^!b+8wWHOEX)&&jG#&P7a2-M1rOm z_S0*+5J4s{9172-$t&!W`$t*h6ECp*=}`Ru!Ev-Rfk_;ngli0Mk^pbRi~CsGfNg+I zC?;AgxsU17`a0@<>o$|EZsv9tPv!8J*sKMs$j>i=I=IZdP<-+_x3irE6*h2i2kUZt z5aVJi_eE5HbI9I)CM=Yy7#5*8G#P?HqU43;c-7L}`Sn~pkxb4>`amoZb{r{E z4^iD|D}W5+LvFir)*Bj zF`!?gr;q+O)f8~mE!UV)?UV701{TFD% zy?^?%`>tBP3ykTQD`5tF0mGmb?2~ctkKgk&hxPi$3iRjBo$Elp*gE&#TeJM)_XYYh zXU=pfB&u+*w~oi50{tgpll=YRzq#ithmCX`_E&zfRr40uAYuFIwLi1lZomCo&w1Eo zm)X=WzN9>Gg1x}_62s-HE3UMq2tj7yh?qL<>l(+59W%y$^^0F(BURblg$oESMN9Ry zYlFZs0h~b>4Y7w{8)%b5qCKBuknh(4HhstcdVb2MS z@<*wrI=&J^Z_L;fJMV&xw&3G27Q15(_N|-%MC~I`_p5=v3{pOG8!rX)SK5ty<|Cgz zXgyC#$L>Xl?_r#E%drJJ<(c=52MJ`!5#cOi+515>1R(ZwVjo)S=DwxC&Ybd_?7m`wGDw2>N}#~ zP*cDDdcJMm7_p57#WtX49_1M86N|#mCKumJl%6L-X%ypHXD(s`&eV11c9bRd_`kmO%N?TP01qELPjHRWZj*I5l z6R?w`hQMH$vVlGinrg6rr8yuhrt5l12aqi;%`63GHRjZ>dd8{>plb=hD>d7=ww|Gj z(8GKHAb?k*41y52L;=1ic;{HggW3_{m>BxByi|-{f_L1rhx>PF-|QhOzhg1bc9m`q z(|+l2iL#&Duq!DkJ=m*uZnX;N=NGKA5%1qh^i?HjR3A~e8Tdz8H35F*Kr5#r47FRT z?QukHo#+Gt4{<_VJme4qR})D2-=c>L{BK-yl5HnPKeNtUsQX{?doO@cf^N#`_k*uf zdAd-xgNVfi6|EP*mWNFx94c+w)*}1M-IIs{1BCfpc_d)~rK>?1kBA>0D8X?7&=}>6 z)9_PI?`x%n>+FiF+EJE)5`8FTE_~}NoAvGzX#IIsxqP)1u`p#pX-R;k;30o0oSJA^ zOoni~ENgvJL-WdOrd5f1oi*b$KyR|OYx|jHW$a)vEw`;0r)$@j*^_^tVe40}CURNd z>Njmfn|*fi6)h;SSA^#(5lXz@)~(%Q&p$KK)-0FDtjeyq`W)-fIondu4^Yzsw9x}a zJrc9k0(62P!mbw7tC_*o8JTC3ky^mI2MpDk0B9pCS(PD z8LX6(2F`*{lzTumi$ENy5n7BRc+!*`CJ$tYeo#3)L!eLlS5|K0ai9YL{l2(}iAW## zylIrI&>kQRZ;il|pnfL&r86_sUfLD7Oy$!nwEgG}Za4=EWeMEb(P&%r{6 z1^^3}stEY1l4x7J6{9qYjtLG9?gDSEJdDwro=BA70rWGTv@n&I;&J3uF|bUMld|pF z%bu_Xb=&;MSBPUkzh)Qj59m*uxe-HTjkRo^ZUfJ0Rr4U;9WK!C*go5ak6O&wsItN2 z<7<5yjrPScp#QC|KB_->9su>^lTW%fW@l%c=)C)?=YCY*#9od2F#>&+I+Fut$dDlp znD2GV?rs16-wo(DZrs>WtaaYK!FFzwrq~TJ_P}5N;;y-`>*=#Uo z96POXSnR#M_`(Zz&maHf#@^fSj;I0jTj%AuG?G1!+4G!ly#1CPw@Z)Yw%^}sZ@>Ab zD@9zbMQlwVF9Do;qP9RYlRv2B_X0i!I;g1H| zoE_;vzVi76{$%rV3gE8x^RS=F>n+|T#@Duev3>njI@j~q$tNQm2S^F2M%?qY}`>hKka4i4?tjC&#)4QN*oYvoGH zU~en4mWWVh)uZAUQE_Q?aRuzxB=(U)J-3gkuD;*vu<#17;j36Er zr>d}-Rnl6u>6J1eWqakdJ27)?XC3SM6}w!=shqb;`c*>rm%}M)cXK*ycWItU#5_pt z`YOb%wVwpMC5k8Zw1oJ?3U<#`U>-y#RetGvi8(B105`)v+?P>8P;bC|8UwDRIq!G_ zb`VHMY+DWvK)ceSh56J55BDoZt^$r>92XI=h%iZv?j0Mx zTivW&oxRp>wF>C(EZkr(4#%_ZD+1V2E&(dL^0-Aik%x&8x*I6w!3p5k!T_8D_-m3W z=S0kTQOG?!V3l%^Xagh2Hm&PvTglNE&~HF_y$GTZ@{+~lD3E%)oLLnB{7UlMmD{0X zRbr1Z#m^F(H+zdc@z7V046>oAYj9I;jS_K;Mn~QE;9Ste(RE{(T>6sleacCWb~9*D zb3iZ)3$-4tGXOPKO4(RsM z202{hyOhwK6WyZ{LRAEjJ*fQ2iS+>35{8lDK8p?aB@kXtZoVI|F8Yv;t*AtB5ITPh zeO^Uwz21*rg}HUP*a`ll}lpNEOZd4dS4$aAQCEq!^YY(@|!LX;X7avnJ+ z%)&z~DQ4V|2jRXfnB4jj6WEWI(!kruVkyT!xoAmvLc#f5f|ik!ByXXfeMx=^{f*8+ z-G)4WEk0V1bRF7)piIRs_CkDu$LeOcwyQ6Cj52AP=o!U32=0UtW9H1WusGq-Zo3&|`30t7)?sFdl`n$X0sDDvS0ss8-&s|#uY^rJ7 zM}6ZD(!d`Z(3dcxz_TdP{rmUd@7?QnhbqRWl8H(;tInm~^Q3FnuC;!>db^Kaee(@F z0rmX-Z7rKM=ldvPLodC=iIOQAnv;`*Js|@%x;4XTp!dqTKOV5TXGDJ%)a$*4->N}h zDxzwm#*E$#^e-mQ`kSx6#(Cd@2(Dhq5S?%?K=?c z@Yu%_KegQ4T?P~p~Nwe zSe83Bq4tw~s7N-(Ht#i`qIujhe>slB=FJ1>6VY$ns2sLKEY6FNb?#isJqqATbw3kb zfo;ytlhH0sDPScwn>p3}Gf&-OOU6Ect`nc`vg<3tl-Kjz?8@s29CI~y{Y^H|c2-Ff zBVz4Sp0lRCe~wLTwq@N;oAAg&Se+qD>`2MY5r4xr#~{@`@Q2GnZc2=%Gn9J!Y@cTeq z8f<7)2?O6Cp6*9OK=!+yY9*Ds1jGg8!|bc^q37d7^$42E86k}Z=K#|6Fu9dtpwApw zSMZkW%SIQLP)couYcrYX<1OT5d;d(d^0Q!OW zbnBXTE^J*nj%xQ-tAPHFo$Ktyk=HN)0Ei5D0cQPlgAk(~9~A=#FBIMxd35B3(hO6c zj}`|}tgE1kxUzdh>ovGU^4Pc@W%EVWA7ok_j;Wb(rk(gH3oCzOCZT}Fi+_aL+% zoEfFX6*vk|-Jf+9pd9a0-W2mEt>&(XR%?-tg$X(p5&>cUe7F2=)sDU^+)!cQH{lA$?II)O9lQp zE)b@@S_mSf5{THNFNJ9C4&KB_EUKka;ul*W>X9rjmseE6A9xBqMToN%vcPdJZ?f|M zaw@K$MES(cEDng3u*%996iq3X=b%NZ0)Y`JfW{}rSoh8Y?d<+H(QYmFKg@Ov=-2G$ zJ%PT&AKw_Uz%rOe7oOY7rhc;ls$As}1^REkyU13q*=ZM$@870nO|h0^K)>d*Ia=SX zTD8hWg_SFoC9`2|NaLD`l3S* z8#c@->q{UlK*VWZTQxZU-7PoUsJzpa{Pf7}T~i;3v(4bY@?-s_~3-FMS$RQlzx z_`X12<=4an(D$6u0IGrip4967we!1v{$m09n&UtF+0U?7O6?6mZ2kK6_uCbR3iNeO zjUkQ47hZT_zvt604i)HM4&8pr7hgI-##wXc9PpggV{?BjjtB0)-=6*F|6+&w>@^%! zds6qm3(!|1`rztqL0%dFOnLe_2W2eo1+3n*Z`QS=nOOL4D0`%D9 z0(gp@INRKTeC&62isn)aFpIs3-72)l-g-ZGZn7({CyIBE9wh*NSgF|D+9krdN4{5w z`9PU$n6HX56DM{TCezf$k4v}HdvCA}pWa6$D}p~nkTr)Ysk9`ZpXa&L-2z$hw%V@c zwa4mvM%X&L+L{L5w3huYC+KCia^6;(_{akAK+sZ->tTVBk8z)FckU0vm%rhw{mgYt=amSC!kZUZNzPPR2R>FaT~m zCC<+4QjdU|X!L&cB#K-giG3dcb5zj}3d4!9?CAC|oP|H6ZKfV}^m%M+(bmaJrSIiZ zk$YuVd-*{zJU+*+b)5*XC)%xhi$kYO<*&6Vf*;km5@^>wD!_(j8Cq2e42o(maGn5Q zu0)fok^o#>Y%1-Do{0k4AGHj^kjL zLth=>BT`?Tw_i~%Mm9`og24i8Ap&qJu0yH z_ASZBXH5JUwps@C*Vs#=uXa&<(aiR}0p%4g)oOX$36 zOmfY=SZb-u%M$~&MT2?cy56>ph<~b4F`WwJ;1>zE^cE*{l?9_9balU9d z2_LBm9u|Prt5@I+EoYHw#PQL4PK-x6UrrNI_5seyclSe6QhB@p3izrzplS!A?+93{ zZ#XOYKPcG)iZ!vsworLJO~Cx3Eu1?Z=7Cf^Ma!rEaI3~4peJTRB@uleRGETeluKb# zh^3*t9;Hxt@D_%H2^>?*BGkk!Vjd=HB}{=B1W7`8@QRDV?m304N^ySRpg|p)qlQukwa`X*!1iYaL6m4LRp_>zsF%-u$53F`!?wyQ_izpmST>`x92!N!=S# z&a#2q=|}_p$zQIuDbvu4^a@2iLT~135JSnRyPgis5$F%(z zfWGpcC732)rnOfo76;o72K05#TW-0Vjpzu_Dn)qq zfxkRtcieg#-&;YG13@JLkL31a0QyrQ$@lRU-L%{vS^G*jlz~wcqpR@jIm=_Bi<@lM?^l zTeWbb1Rx(rc<*q4{u{5qZg<{xyK_Jcz2su&KsX+T%j-B0_P0%&{|a`i>~a19z?A;T z2mHg%#2!~bMIg@6r=gw8MpH0f`wQp^l8Q4c%`JYoeHYA6vqei1tV!dbopcgql*OPW zsvC^}du_zKnKpDt5&fq_0H<71!K2E`fQ=g;Z#~<6VkPrNS}8z6ff)xN0s1REw^*B) zJFKFLa(Y!aSgL0RAb*qvJ$nB$%k+)4jspgh)>>iHKUi*a-`Hr8;(SZ#b1Fdpajru< z)kw9Pdk7NI4=P80!ZX(K`ZKKg*~eiw`)u+T=!9(+#T=l2a-r3$kFCq?#lm(S_t_@< z`=?ap;ye=~;ust*n5SnN#WQm5NQ_XM z&Lg{Afn6um2LcFz$)pJ&%`!#nBLoh0YLO_^A4(zcV%IwreeT7L9Ug*ki0)s3P^aBS z&@U#I0H0V3oKsBW=1sa=izfSK_P7Ss!vAU)&@WhRZ@z!68<6qjzf|!>ritW~A_43% zqFyt}6$ln>M!=M34A|7z;$idf{i2gF7(zs+^|=QACV>79m!rQ35I&vHG>FI>;o98-O2&11@ku9?8g>aVkFDTh$;oRc1V)|>PJSO~8IGt>{|S^d7fa5LvAgIUl3r^z;)H|eki>X7@ip65j=L2m+7nz}dxR?+|t zh03qoBjwq+Q~*@-E5n7H+e3i!F!~DzVf|Bj9v^oC5$#kf@RkU*zsMz z9T_?X^lLtwqwSqk+F#ve7|T$9?6Jq35qz|@^Kjc!+kw6!?b1rP@x~inp0eopqFx_t zI}p&I|duJ-=6NB;JRJ@xqG&d|L9k-p#Ed{d2G1;|#eT{k=+Cg7 z2)5d5nYhE{B2G0TT2(9H6gi z4^rxH(4c|cb=O_ijxvdIHYDJH{NSSxUD?HbJWf7iwrTNYw8U^5_N7 z?tAb7Yt_2-VF7(zzh!PS?5Bt;EvX6;V-TIpBL!f8+cyheCCCiW#HN+Dk`vs+3KLmh znl>^F9kA#3E-nq=Q%!g|1Z0y6Y)a%MCn&uL1OD zxgA0=4QyrPXOt4?aQ~8*`m=@eJWXJfm1H9#8Hp4ucGGskYj;9kBGY8 z{cMYy^e^ji(?Cn^)Yc|WiU-(-ZSy9tqwe?WRZQ7JDCJPw^$cGgvC!UJNZ(+;3+Vs+ zWS^ba0|zI#AfNu;x^=r7BY^-~Q?hM?0N$8lY#wYKz>A~d6ZHoVJ12@b%&u|)HnH3- zafoD>AuwG<*=y$*p}mT53oKWtoHRkkFgQyAGdXCa?k~J0<6BM{u>o{F<;Xi>YecXG z%3UO0jv96n$WNq_m{Mx>yuNKSyxW}cZ#WPo1g}#|T}KTN0eUCAL1Z5Y z$^P-~;mcDb&mn6713`l;#~tWnNq&TFKT%25!H%DcRL0*i_aOZnK1r1zxC?Z%?b*( zBW#jI%~A>d#n{#_R@waLHku#h&Cu2@mPolh(QHC-RhG)}ikb)UI8~)U5pR`Xr#^Bi zH=ulY^Z;=GEt+#CU?bUD=Y2t^Each=wr*XqJ@x1;+qiN&(S$@hxn~EW`SqZsFj?um zQrh#?)CE?zUMjhM8LlslGy+BHl~-?wT11$*9wxqMj51(cIS%MeK62*6c;#HF3>+1r z5NQII6qiDeZsaI1^0@g>>Mtx>FWv={DV7PJfI~u)6ukqwGbOPV;)?6>%xR$yL7Cry z7zsK3MAb@)x07B_&rRG23r{S10`VMQNFN8o+i?Oz&5<__r;8}_^3+v@VF2KC5T!>d z|Dx#!BL$Qw%-~C%#S3b`yp$!B+H+a}+^_1~d+^|Lb3AJg^<|5o8)XuSVZUP4E=A{5 z3lIxV8H%0qK9^T*$3w}IhajQE0-HAKWEY?H7n~9}F8)i~F`!?wi>J*qA?xP**Xdx`YP$}s$1{9_uc9|=RD^*_9!*Xb@b=& zqmMb->ESGV^DVx!NX^?xxU4gvFO_xWU&{gYovXj?gxPi%(U-QwILff8T^+aG{tG+v zth3zj2lJoq3iMTy?)%^WzH^wgmtTDBvB$au^wp-=B|6%5Jbv_}A9V@nFQ-z2K>lZ- z#JA7G-{462&!7IxjjaIS;K~Y8K?YkjERfYWfabpRqML7` zv2d})L_v24wwC~%rY~VRXKTv#QZ!$$B(c|3c1;Jck~ZWl@Y~X=TwAeHK);pT{6=0^ ziY*4dtZ!^~2lP?h7uc4q?Ik@lP2f!Fu}?fvXcN8P!RFO_nAExymUkSW|DN|og!J01 z()&B0?Pk5fflcl!w>8PHSWZEW9d~>`>}Ip)?^tT<=TQl(WrGDzInQz*y&Wiwoy^r_ z$Ln*+zLik-PqU&Wf3YF|a)ni`D78rwBQ|hQ6xIEF>`=dBBnbFN!wIXSO!sSV)Y?5u z31A{NogawVe_mW{1N#(M8yZ}#=z5iw7Fj3aInhV`2y-E9)!z!6%6E|lBC84 z9j#x&cK~rxokK*(#TXUZo5b-1G6%IbSqp!ejvS zNJQz*a_$JcgPlHbOhn1INP|g|;5G$0If0L8oWWSMEp~2F4kMfZ!UdW~&Ot=q2=hd# zFrfFuw$MCN+JsUX3i5ja@=roftNZ8UyJ@=1KivxG?*QoEKj&*KKIKj`;aKPzu$TZo zAX5|C!E;t#rfeGE5HO}Zd*#+M-I<8w?(i8+T6u>=z23TM3OV{?tgLsH_38f-69cL| z6ni-kd{UTXqNV`U8Lvge;$X%FAO)>^3- zK6BQw(DHNb)X((dnehfT*V#MEmIJ&?aSrr?y?|mprSPOVke6Eus77cHnnHlEwbL}9 zFGR~%9m}jxgfbotFaY`^l-Einf*rJ(>lUNdp5Mzx)Yim?qnvr#O>AMKpoAdjWRYs1 z8m4K0cr+Tdk}{$X0D32cA+I3JhbV%EIf#rXMMBjBl5AeNl=PDTB3m&1m{HFU;D9hZ zkO>J%NqNq z{n-QbJ9hOgKYyKdleVv2HW6)#j`_A-1^WHV^X#D~-m_T%{4t}Tq;VW9pf7g71COr2 zA(n)ihlihZmmZ+sacmF9U+v|zl<%!WrPP#Pdng~>5$H=dL8bE)eN{BSPoF++h`Ivw z+uIaP|N85%|8U6n73eFkTcCR`!go5HVa-p0i6O&=+27_q=U&%8|8eWB_CMrBOGvE! zJlO?jo_)66_KTnM{h#^X*d5Rp$d~Zh(4j+}1EMoAzV?fqbm9zK51T+a*el;()&BB9 z{n;IXzDgxtd+oKRy7N1iU+fCdZ*OzftXUm&Jh}q(AA0B^`^|5DV`^jPv>`D-L_@yf z%U`y7_N(?eqk+ZbvO8e4oOJR@CZMl5_*2*^PdxgVi)^WWe?bKOrUS9>vW>O*) z9((-Bd>fzoE^TwJK%+hbJYNqrztu)MF+OTLsVVw7^KZ=8*VZP!W_<>3x1)|6fRJ{J z&HeTJw)LH@mKWY?zEdx-oJW36TY4%T;0=CB_NlZ4Ir;^GI*ScF!j=9jDuyAzTl0M*7cBjh11z^^}FzbSg(38e~>_&fH;9Y52?gS#I+q30|ST= ztb3J^H&cMqh07>m4airSKFwn}a}=SMW`WYPrP&n&HzaW;h^;FJK@z8gO6bWRcO?}0 zUFj>*>JrG;Av<1Uo(4;}E@J-q_`JracgZjZ@|6m4s2<%8=>O%3t6cr~AYWu@Hi{(b z=uto;Bg&xR{bL**Z3hpNO6!FfY}LA#H&C?|wZXWBz_~$x9^w#LwrRs8s56J*U0-VD zgI?#gTqYPq4t5C-n+eV&x3Mah#fRXYA5g3uk3_oB8kRNN9oN5PRq=d_B8umMQW8(r zGV$nUd;3EySbv@Es83Rcj=GwFZsp*_qXEl@>J!2H<_)kxBvCu@ zX@dwN^nu6LEnXNKYy|QO(*dL+v=aR%_nr-f~AV;9=Bya?YO%TBw z8K)$PE8)U@#iR1O21zT(XbA-Uxtyo+eA=MW%!hn7B~iYb0s0M=SA>Isepi0d`Ll1d z@gx8F`S`orka~cA$6jgA(LdNge_M5{)zr4xh3Aa6@;<6>n>h{!(67TOci#i=+Tl3g z1`jN7zxM$B_8vZXKOcDD0T+Q&i$z66&iJ1=apJ+dz$dh&?gsSRbrWXHnBkZfJ9q1W z0)6FD3rNX%a5{PPJ0JT4^aYm2jvZ@a1U&xu!PhKM1Nm; z=_Les$J*iK)9-o+=!<1gQ9&**Y&*3t4T8$bN@vrwpTC~StejHpffdYLoR#pI4jIAyx1|V}z0Nx`wC%X%i+S!w8Nn(5}-y>~x zNECey2_)+QWar~d;K##{kfVP-lya;*4?#irm|WU#?=O1Z-d=mUjZc4NcDIyZ3BU)mAHvY&YNR z3oZNMUtnKmKF7zL9hvGs(h@T+0XRo&_SpdohGbJ_fcle9Wg_~MCe;#MZs9+ep@>62 zGiQn2^G?cYi0J=hR<4by%yW#@9Du*r$g=+>G$$++L?};l!|!P5a&*Y9%>aG4saW=a zBkmvey*p2iqXhQ057vZ!rU@h}1y<>ZQs@`WUt-q+=8Ed8x|IT)Nm6@dTMM^{#VeY= z>||lDlytQCq}b594jfv}75kScyeo63VOCmz95S+@sSLn`h|@-UN`dTr^_&2_QUjD0 zpp;>aeT*QVG`|$>SE{f+;{@~gfE=lc{AaGi*f@sUpS*UW2E}dJ z+vl*c=Ud-FPuQw;uUj5scq^7R+jCE^Bzn$5WkWjq!r^w*)G~5=TCA*BkxOsL0-#Hv zE+aTtM8C*~M==kg$)46PV#q@8&+C0@PutGKz9uH5RYID{%YgHj2JWAVlLHB?7OFuZjK)vI8qWODdsK_iqW~@g&bl z*N#HdO4293AnX7%&UWYB@33BotXwi42btI+e?Phk^d(&R*ql{%`YA)5 zYX6#b4Lv~r@7;UQev?5oomE&{T^FsB;80wPON(ovxE3hxS}YVOuEE`kYl{}w;_mKV z+}+*X!^!ubbMA7Jm5V%k?z!fC#~5W^I%FWd;SzkC=V^NwLX99(w^o#|jl z&PFdtKrRkysKVY(ASdr`T-{50GEYUpjtZstyAM{vryeJylW%6A*P!#Y{m#Du{C~tZ z-d!+UU~H%vwAE~F7Nbk&l$(L9>bMStu&`;=Xr8KzgzaF$$SgmA052>wIRLz18WFJjwCXgnQ=o`)?$NZgy zhp!8K;ZDeEwo>9tUM~0chuu>I^gH?vRJdDnW-DbjPsR+ zaP5zSaR)7km7<}ZI|poepIOXIzt z*C$Y|zO^k13cytN?$O(2;nm7UdOVTSR2b#R7^5{czH;7rczpPMciY^!y5AR<&1yo? znB#p#GMZSpO?&MtDPd)AS~% zvq6_9!fEfxho59x$1+(Zo!}E52MMmGzES#F3hDCZq!qm5)%pmWysta_$lyIM-v_kW zf#htEXQvA`98Ar12KzPYx2Ei$S&iD%<$c=G_SPqx#3F_FGq*ux^p@Js<)kct`$FM% z$weMU#0af?M?Fb!AVh!c$Tl1X<8(Y7tQuh`(GRh~E}T^`7{dYbtD6_#Wv%ypxX3~r zd(ezc)IPr}z~D?Fno5|h*e6YaFZv!t}^6TK_f49J)F8C*fQ4Z1jPkTS-zs4}v7#F+<@lW~8mIJ*1rsp1lozBdUH4p=X za*+-i?oYZNiv~*$T1qs_Am|ys&__l0=Z)GmA)P~*9pYDWlpF|13^d&$aEEjt=PAZ_ z_US@m_3WL~Ip)N?;O|X(x?cbdvjHf;+v4lN^H;^dv9l_q1J}9fKl8A4hN_Uq{n_c1 z5F=m`b^zf4Q*pU@6Dd-90(gZY%lAJM@aNs?5!U5gw{_SFhlrusMNXI+n2W2I4!~EQ zq*v^cNI$GDzNFl7a84>yI9n$o^|swNJah3KQKmD@FnCnr>hL`tHgU$OF(dl`}B z@gbv5yCVGLjqIT1>Ez6(Ql=(k5pkVI=3ABoiGTjAo%-^1M-Vv1`ww9m_uB~?^UcP% zdyLt}+fX|)K?dZHyXHSmyWQ_DYrDl5w7TjiK`_(fsXf8C5Z+pf*;jUA9aJx%Hn3RW zh`6lTMaZJT8--m)n)Er1)T2OieBT+UGBJyZA}cc@ith1oCxi@bVosP*cj*-zX}C}# zra{+(LZ!fbNQ1o6P2C@iSnTR$wg8L5H0q~jUJ~0!KwjP*JQWGBl!0QH0+BQSeVy4r ziNGV)V?iqL_4aOq)2(k%^r94m0}2by7ZW#J=>sEK|P&G0G#`}`aH!)K}*z@K7q zhVwXrpx%cm`SKJNy5G6JynIhgHk}(mwI%4miyxJ6Y{G_Fvi{^DdZqM(a(=66R@|-c zFTaiH8r4axHb6`rvBF&eRT#s%ykCLCNhnKN7*U06!~P7%5fkG)bQ{Wm!Rifl+T6oa zGVb%e{ZcP&Un^a(je~iYf?Ik#+gf3$aNOsp7M3r|#$#kw)9u^{1HcTHqCQ+;lDN@g z_qz!;2G147;Mf}6lA8UDZ5%!%5Y}>`v9W^x!mSkMzMld4ZtFc zYTAeJ-&Rrd_aYHN@c`xm>^8MOP1fqy2_@vlw+t1+T|&s}JRuF0mESe;JozXozKn7P zP-d%A=6$7zR=$eapA67kQ%uCPY`39O5OZ=TB}$`+DXQqJ?;J^*3s#60B9W(;7(-X_ zWh2+$-H_$veSq_y>{?YHn0?eh@-f7hx@UTsm| zp1-u77gY%^S2w6qi-fs5hCuJh9UtfYFQocD&r|#Tm%B7HbdEQ$TUExvlTyO;Z>%Kv z5vNc{3zJRDvDV{G!$i7YJ9U+8$-&8jRu-E>4J^Ms!ez~U|8%yhra~0_YuaYHev$p^ z5)ExP`RrwZFpF)Y2C^%Aug`7zk0?@Ya?iyVcKYhQ+;a)6&k%jFP~W(|!n0p|t%7|U z`=!F?wnUNi9F{Mz;B8FN3X8gZ`;ySMS zJDr0SxszJQJbJdh3TwBVlZ6VlHg&`Wj0J~*pJ4}b%%rI##h#q}-y8zuai*>V@mmXz zJW+Zd;r(*eF=!qN>hTVvv6~X3NV};hy=eLa3opZeqFvL|2@7b4pRx()1uTR=p;a>R zWES$@)d!@Me|djc2h6XeWa=BJsZp-$qzk;7sdqkpO8893;|Y4f@AkSlhXf@X^R zzE0s2u|#$ZyG?BvikK@cM@>Wu?hYg5sfigS3l z2i(dcC19(Ji>FxlB(A@6eb_BB zl@rs=em`D>^gWtc6{R*zdNs2GxjzxAG^e|aw9A*1rv?ArzK}Su-LM<^RWe6iVuRe? z*#1qJ8oJUl1zJ+ZNkGCw`ZWw+{4Wz}E_8wDX{zy}HgjQcczY%7=>v2c*0DqncLAQz z2yE-z(YRr=;;1b&UYG-zyO7n{2H=$p9sBt@@VuH^ko$GPpBwRS=NRl-wcf;o@pAw6 znEA$$Ff&EPSPL<9m0A|QU~5TH#|3w1f;KtscJ?X)6i{=31d+7@wa4-3UX4({*W@JXnZE!Rt6 zwR}GqN88o@dTO`)F-dOi6z^k60&jPKYbw9y}38WRr$2Xb6=NQ-v7g+QcV*y7a zx>o!3MPxBL#Z-6eQA9J|z(`!RW1yd41c3DOjIE%7#r82e>gII<=tAZ7s`O<|QVLqq zc5UmM>U@MTK$Pw}POSULoGn}|_=C^otAeSz2))of zL{@KJ>;vtO_>BZo%<#mH7shw<1es(aEb{owIhz1mK7bC2AOiB;kKDJ-dBQTFupl&1tAc zhGw0-_j{xWf;{ue8*1-LxIwN4XL82mbgt|AF=oHA>Pfj}JqZT2bW#7weuH^JU)m?^ zOasCuW52X67l<;|3$tAjzg=Z?*QcQMASzH%_y+u)EI2#R6zwSgUbgx?L%1R_pBJY# z9+Hz+xSgW?UWt+f?)*m~%he0VPF6D-dIWzVoDh7%y$7CgkS0cmNb!Qu?-` zWkDzXvoYE6Lb`94DsN0+()BOeMhpVHA?bzN4D@&(Q^gq9frpzav8rxE#_D6Wo-$U$ zcEP)v0)xEXFhLW=L$y@h?yr%ob#}gXpW+!cvB(8fhTiTHI#MdStaio2%WQjGO3EU1 zNydthnOOVBf;IE58xr0z)r{D6_{IB~>Ludj(>pzGf1bT1uzg~@*Xbne8qrj3PLL`0 zxG2+XFh-lHQI zN?bXFAJoJbsjdD)c0YaZ5&MmV#H?G+LbTOU6<(uOq(T(rzB52S89FK`!yjnr(l6sa z!P|%+8?pGUZ3xrSP%H@o23V!ha?p#3VdDALV*Pg5Xe7lp2mS1^uH~ig{bwG{bzv}r zigg)xk&)C~xH-q3fYC}I!<9W(QKk6J%5mumE&Rc{W?4HW+Yrfu?Lz@Pi7zQqbo}e9 zrl>FVLIB-#&)RvfKq5rMN++gFH<0Be#<)5cHjswbJ zAUf)SF3?lSP>1i0jQX<@vC)Xu?BW4-zL03g_J#9fg-hTQER@#SMj@SlRwCgv5@&T6 z%_R^~SV7d+%z;z#Mk8FQ_E?C_6ZCXiM1hZwPy3x`_Pg&^7~S1Wnx~zTD7f3tC`r$G zR%6V8^5Z>hW;4&ax{ZQ_c5treqjE^j=sK^FRnh9cyG`NvkAvI$$q8xgylFo}NH}I~ z1^0jMROyw4X-KD~So+3F0|N**V6Ybww*lgyT;);%N4SGk18S59&H&p zS$#+v8Xd0-J1il?QXg@!p4ID3jH?pVow*|;Ii-GDs5As7fFkq4%g(Fj7X;+OPvYZ_ zk$ogj>IAfw`*}#DrRdIuG|b!!GWO3#)EfE(*sk#XH~jk$jc zc`bV50|*{`j^6h^0G|?fpX*lrGOq3rHs|ydKY1yPgv?3A1&JXEa zcsjvfW}yJ&5X!8DLLgDI7-K{bje4SknA8%$71^F?yd7OYgg8*>cnOYXa-A4eWnX`Y zpL&-ugbuOFgCy=f=`VCmEaKt3Z-xAt!D0#*c%`@@*i7}o7s+Q-iW4k&0ju)tDn&gx zQxPhqjz8f()bIDqDdIR2)=w=&*kI8Bk`YQo@ew{e6mb1mEpWVJckQL^@7>ok!9!W; zJMmT$K4H`2+TiPf3sJudDN?<4l@5H0*kRIIsn!u#@3uCx%2^q3m*M&8PlI+qBR_c~Tjb-JTm636sINQvCTy0opy+0xUkx$+_i_Jc-fD%bv5&wh<{ofc&otKMqY z4AtpS|AZS&kn3@^gS)F5&8lzwZH@H)Ury_XY+U!Ycy#$~dBDqWr%umre~~+`4r)Mc zg`OP=eIsfJj)MbsCN#)uTb0C0Jl^H=d?LwFc@&SQKK>9$f3^0Cj++d@4;M|2wXdXT z-Vi@Ix}xtUYepl|H#@ST!K;RA(^<6j9;cXeq#pVfI$3EG1rd8FbwRPy0% zsLM7HA2@;zD;$)t#m>05MH`EI!xADUeXXMiXO4I-65K%tzi(Vy zn_H@PqSuQs?*_S-*ALjVcw$8VEmx>Jzwi&nq|LIGs%zWr*>ZOQ@IY=xadPzP3W6)7 zqmuic)6@y&fa!KSn8db{siJjC7$(Zm@wBLeO?ay0^XAxO>z$B$c@Kb3`e0qyZ=uCn zVbmpo)pwk)c82spPsNlDBPbgrmC?>b{aZf%N&Wk zRsEqPa$&Z{HVo8EE@k323y!Qhk!^pGYYw(isrf2HCo?FABeD-pT-weh9zOleguBuh zfxoE%KBE0pf}_ME3P3cD*dH2AUmIulKv<$fUP&_`em+i{j69*G6QE5N zBNP<1dQwLdV@|0YIt@te@cZ4lDE*yIte$n0NWu@{G(+jI0MsNaNr0#tCWvsZ4$;X! z0qwMp^pB4+sGnb1zdr>@)*qT$gE>-wCkz=0O=ZIOxTNuMqLKSBU)$lc{gg2jN+(fb z=0=J0umCooXkD&f1}Ng}X^aC92e9)m&mZgva5bo{+*;Ug6eKd{LpBs}B+HkSvtvPQ z5p(j+CfD!U1gz4Z048tKX+%qbQ9&=PXHKyI@8ciCRDiQ@5PGRskAkQI*KDLyKFI>F#BvyrH$nH4 ziN?g)%h+mt%Ag}BuG-T1l}nxJzRqH;n9E}VE_PQ*0C620zH1>%PJ(#E(8y?YmDFuL zQ#pUy^$_QP@oY1z?Kt?h7GHI%JOHATiq*ed$zpwr(_*M1&bx(*Y#6_{bbt2pJIDhV zMiM)i^)KyRve%OOvs}`@J?K@@<}-DsYI)|-s$6Neagcld&MurSLs-FJV`szgKa@sK zp~3~4`Xt4WL8RjPl@m~_KZiR1Vq_tqPO{e67aB{7)idrMyxRjIb%9u1QG@2@;Lp*B zcv1_jbaWE6`sCVzR7ZA&PmuV$!7$ag2<1&_j_2&o7V0{M>_Jec*pA5B37hEYc)-6?}EgHzZOa(RJq@v1ci4 zR!JGjvP7a;Uu89zv15#|`KjxEFotv18!YW>3Df5S?s+PyeJAJa)cCV;zdxLJzE3C! zT9f&D(xZ0-D;j+5`GnY1bqbUn`XO1csc?+uypIe10c;y>q~#BVjd0LB&zkm6V1ALV zetJp^_*oTK;q&^g>9F+ab+7A?L-lE>{Hltbk8VGV z*m=I&7QQ}x*iO+4qT|C-CzH+3%yj2omb{UQS^DzcI=T4K+!VN!kCxS#R~dnKax0iq z8L_aj|6bBn3s2Dh7pqht-ksXbAJv5PVW9@{fv#-K-p1%Bjf5ij?mpYtsM8A^m#P4V zBk<%&!d;poBRXYVYDHGwR2shFbx){sx95sxfTd~lNA$5@^?yK)jo9W=lxbE>vY3j) zqcnxm;bjL;)eTWs`>ea7)@BPs4vhMJjlo2Ke;}TAuAL?O(-I23<|?9hvVFV!H~z*U z6Jibpe4WmGykFXNaPW^N*bosGWlo4(u#}=0c>@`>Cj$rEyMP)A7p5d3rq zkhdbhdR%hDm*hl|#P)7%8$NqjW}1@@6Ee)!sqy0W*P$07T!%37?HYJ)L?hH&CkznN zSo2y7esdc}MTMM(8b2)s5#Db@vkKYyw1gVx)><8_Zinud51=3G!<#Revah%$KS&~( z??Q1Xcdk45dj6*ItsGf0Py|d<@@P#uXC$TE%XC`LPQ`JMLRdN;#0a3Dn3#uiYxT2t zC#0?hhiHDf!+2b_p|97OVZ|ZDqU_0fpW|Xhk2z z^}CyhqtxN9o&_*<5j89@iP+)WV zz&3`M|FyQCyLz0^!PlBsP-$w?2XK`K5bLZ z$^Gsx-uOp+C7TRl^V!392!Xuzg96>y0S*2N{uEwci%4a=kT2Q`U)-&W!|+&13MDtC zNzJ4((nX%vZ6x{}RxLeYuXVBzD_?);azw+jT!l^Lrg#L42%9+_sX(D|;EQvX=v(%{ zI%n8Z6tRI(jUxF}_A0Cs$rfn73Gq|&94q-*;-VGTEJt{-MV57l>F{o(sGotb7V z^<&mW*!16mZ`OLo)8xd2Vb0Atv#m>(XveGLf5zcbSB0K_&@md9jSg3Y1G#ZA>ev>T zeIfmX7Cyq{4u1UNXPX02f9O=c9NF>)ELE#|gsr1hT*~{(A4*aA+KSr`a2jF8L(v53uHB(({gaDDckZlr6I~-^obiU^hmC z%|hJE2TW(8sO{4StL)##DQ&%zN5RU5HA9nN0lOBV+thqbr#L#5sxYZRmjNFm`$Q=<`P#hHcn0zGcaz6WJAxB~f*pvtgYbYsx&H}-+ zMN^m;=zHKfJ!yLGbgWm7-ij?R{X3Q)#)^low8ko=Yg+F6x=`MaSe4#MmHVu4SA^^I zU5L5N3>n+(?tQMm27;uKEp(kmb#(s;?V8l@t3S{ZT6Qu}; zm3h>kDU-=#GApB{PbLt4N?fa;NJDJVlN6}LqYeRwi^ z)DMT2UA$NMLREzlM>5WjEodvi$K~?dn`Cp(hHV2CY=aUlUN0j0Hd&y#ICsh-afw;e zr%|c(V9E#E@vH`aea6l4G#FHct10*=NP4-q0uxxmc~~z zoig*h`apH#FOGficBIt-!G-`Kd>-m&w)4jQk*{!1DIz(xN~zqVl8UZ26=ap?n9g7Z zgdAF9-2#?p5 zklQJ>14hXN{T@l&J%hi|s75DIGIPuzO3gV#dUZJ7_8#@{q^MCRaiLs4#~C&_YDy@4 zz2)9`u+s(HX>HdtMwEF3kUqw;$h}5H-M;#9|HL;uK}1}PHJ%(qjbALO*k3xqO|^yw zme@FxtRHSBe`Yf<;q2g8Tw6{v?)zoNtS7EqUY&$a#4+)dh=)@(UWb3ayCgH6@HgcV zjLY!%yllyIxnzJ!c3;Z51Az?NHgh0pG@am-Y~t9m7j6)a-3Y;JI*&S4>qLz!f2C>X zCgch*RBge@Frwnrpm*_Zxfz{A{JO>qgfy*d~e;mI*ZVL>fvw_duSq^Y&mB- z+fiey!V)0u%ZCkhb=%SDQIY{|@m1c!=aEvc4U*_HwphkKDSu6yFI8@=lc(?R_Vn47 zbbTK><|3stAqRg_G<7;bZCCWm5-d+cQfkJIw_iQa&OT~NHAUVEfB+WmXWDtnZmezA zp$dHUY4wjJ&BNzx(6}Gy#1_V;iVZoC%-J%1lM!%5^}Uv+u284TV4iI1M`YG`Wwn8DLBiJ$ItSwPH>$@b zY6;rX7~>f~g|g8l(3BW3mSXEvBvt;6_f^G)?(lwwO8kp3&H^Aw;=V2q^3wYvi3z%& zFEr9r*_5xs1B6%R0^BrNGsTnHL6QS5l@B9f2XV!~kMyx*bc~tXK1yQfIH}^~3i%H7 z^I$$XoC~?aR>VUDG0Ys#6J`!>oYe+oKn~U{&&={ekLf}aXN#0D^vtCa)(%u@-60%M z2sCx9zFj~FyF{LEu>Xlwv|T-Yy_a-l_k+GP)Gv^{XsywWe|?whbG)!dX7{_p!w)Le zY|>$%{8LVabMl*W=v1+}*7)TlIq!@gl+1O-A1b@xpW%{qH(9`qRC=!wX$Ons{0p(P zRBD>}9{^Ia6ga$va-gNIeo{V^LHfFSHw^7)><|TiJj>gq>T0p`+9qjf+kk?+^U*CZ zULOWT&bVyMef^*(i#6$6?RUIY=y@VlEylin?Obs2BX8sCtG-r;`U@e|^9VQacN}5} zYe9rSnckESORMm2-A_c=tXDn|85Zr+rY_uz9gF-RxU2g1nljJQ?7_ct{X9WTIXmhJh|pUXEPvQ zTxH`Ng%#kG!1!t28LaFFX@AkKC%YM(yZ{9qzXR_>RGemX#v#i(NhL`ITSF4Q7# zA3l=l5gm_DXX-CIxPlNFHU#1Zz#~cS-($0La+UpLn=;w}4dXj#i7IMGDDF9PFiHRV zs6&AT=I=*YTNZjaP zjoVV-qto-Xk4~P0d`foewfC|wwo)pM0I9}flDIHh8&<(g$J0HtV1&r$yQG40!%Cp} z5|OsH58|2)(UNd->o9H-d(bbEZCw4ILo}PHRe;(s^Dl)?DOaizbV%U zSNbGeCRFDmxqX^lrg=eG$WF$qqD&{BCv9KWZ062SlOCA2$ZzsyUg*HQb6@q@yL7N( z&>%`91_oww;6->AA;VOcEJIA8j}0HpL!y}KDMSm#21%-544qqFgr z>6PcKDVD#4Z3;sX`Anee)vf4Trl{dKT;D(vW7cx$Qja)tu^_lQCFrYSyi~16rw6wM zW|$YfFum~>nO=tl0#}YKW8lnIrFFK*cNOI&);`lsxcL3u{mr3VaynTA4_a?l(X&>z z&M%6xTnGb_uLOeLuR~PEq+7~I-*F3B&AzHjs<_!`W9Qs{mw2M5`hwB^G^Y}7kA=0d zuVek?3i-=oOfJX9H9wdFVQy0owvkI z4VLE2i;4w~O&;)xZiS#~`>&qqG#z*-)H3cU<9|4-ttZ^ma{zx4Ka-M_GsG{4*lMSu-5+Tt*$lqPTR`)0HC%v4GTqRBjCbwqAb_~QNA&F2`s zX`NrEl|;N_0%0SGcFCLkziiIlv)mN?PUi1qi%0*z7eIl{8PfzIyTEa2jUL~?e_25X z5NScT`+;_en?9Y`a9?NVI)y)<`g~rG!RPH&z8fVWs<8Y9nAy69qB0(MJu{sQhVhRJ zKU?p6sWQr#`RUCs!oU=|pW46ya?jG`b^aEqwstmA@IRc`o~8JAODuhe^o3+C$;cdzE=*Z%1dmUvqa%9 z723zo6*};Vhv7SQ+(W)X{rnBTme-#sy#G8JPH<;OzfDEp`0kY{$k{yS@Rujox5s%b z%Yc(D+1e&eXr!$DZAk0de*_iot6h=&t7_}FzEsUrNYUPwsLfu|QIWxLaZMEBZ0JnE z+D>(muSvMiXC!*)Jd~QGi>^MukPgnKR1r;h)|^Qn!70*uDvv*Wg!{LZ3yBwPd{S1i zS9wd=%X)dBcYk`4kBtYW6Vi-ox}QdW1d1n~IVTVDA#CLhUb#mB?Kr+vclEVT5QS#2 zbz)NPlXDh7_yLfh`0jL)ej7R1)@oy|sw_L-RVF^m7nhOZHv1xM)YgNdv;D9A95z4L zrgLniI3(j>To@+_grEg(ew3u7dKaMlJ#r(X*yNVsy_hhRi|5Q1tz8qN1R6 z4V=-GHUzh8P#FDwW4^aP@B`a#f}avJTtoR&<=*0kiU!oXM}s5;sEL;ivhwVkLmJrL zEgsYA@n-|P9PMHWb~P9h2}5q^l5k6v*bpD5%C;)EgtmuXG;WX8XL&{UwpQ+|`0p+| zNd+mHq|cg1HF9hlYq|zi%vaO+G9iyfU0c?v_AmCSpUQsErwo;h*Kor(Wi;P@Uas!9 zzF6G9A}!;#)yuvmAr0o1P!!x~wd^Apk!0}|bw`PZgpFqx4}royHBGy18u&QlkMGnt z7=K;5D>K`w8Z~-1u#2@_V+Wbii6~C*j4XsN7{Kga~JK|f!vuK!< zrQxA)N}0R5lxX-~6d*5NI*{s;iCVaXE<=x$3@pakrflbGA3~9bx+##)fZ|I31#>l% z*N0^Hh8g8E3Y}!~6cs{~q#zAt`g$(51krmm3Pmi6C(zik9QcRYSVdWx|4f+X4cbL$ z^^nP?JhC#Qax_8}`OQbirJFb79;WEiO7`aM|4ljzPf-pciYuyJ2-7*27!mPZ9t>gQ z#=*_}yZw+g=kO=9bncb9*N3!wPd}d!gR>Qv-FQBMpC5{V2C&qRvt5XWbI0UZQc=Jr|p|_ zVT@FHY|GD+0`~9-0n%y9HsdROv(-;E!9+5S8pbel!4!v(SGdnUc7s%O!25-af|!p z`MQSm?>+~IU~8626!p0$PHCSXsoP;Xr4kn~7S1(A;q=o}^ESq>*>aVMAYsRu!-+Hh zb_Xx^18@GR+t;MEjeiaaNLuO?tr9nB^yDrT)E9nU=8u+aipmPuo?< zckPBsmtFf`SQ(H#{13SH_i72U7=+)Bi81q$aW$P6MDH3%SuBVE{o>wM9__bT?ODclvi&9Yl>h^TMphGc7hUf=tTuHywn{g#H##ZUjl_OEoPl@aqqYj~V(}dzL~9*YH)=>p{C@pM``VYxkC3 zjipd3xL!fn=;uh=x7HhNf*<5y_zG=Xs7HfLo`Z=A6>n1FJTsMSl)1=+(_mfLNBT{F zS7wrdkcbSmw`tW!YZHcc0IGW;tvS?M32)%isoA=a|vSXV+kJUnYd8H4RBD%>%J zvch_`yE%s?<;xoA>P7O@|98wrCKY_)5z+(2w~?HS2OA`Le`W3;*KSbhWE^+vaE^lq zF{StW+|^W@C?9_0pofT~Zcv~mQ0rCq_}>YhsWgM&_tGn6LR+cBt`6Oetv|SZrxd1d z`oe$|`7!m+0tLAs3dhpj?}7Calfv}R*HW4~T#eHRQ|W8}jYOqNIJ4gVU0a>5?tbPb z74_+75Et+X?SP4e7d_~+)#S=oMFk*V)-jjQfKL=Il1aY5#9)w>?=nnNyuGB_#Hn)c z8Qpd-`d_qxIn!tHEz@Ev=zIrsc9;45bja+4Du)fga^VOgS;aK$kiZ?qKR@q6=(@m)G|%IpesTedEX)cgVtWQW{T7l44c#O zXTH6ipdU2AUH!MdUGu)zC;4m{?|tT&d0fhO|Fi}hv%=~N;pGSzS}i9EzE<%d;J;ZJ zz8)W!l77r|Yi&Cbw&q(r4sT|%Wb@z$@-H502Ssa*+kxtH@*|GQ@Rs7?cPh6{48qYV zQyTs95BB6rz5rfHN%%jQ8h@ob%}=T>bzLuvqFDYJ9lvgntZQuyH_zWP9pTs|6^jzw z^ge%n&Gwn96!ApN-lR5vj=ST<6Ach;tZ8x%x}ih#HTNmDz$f>KMv(owNkr|OaQ+~@ zVDaW`dge{HF&Th7Q@xZ_YKLy366kA z-R+N+Y{C9haCjf^1LyMhL9IlemtrTtgBmz06B^q&8<{raYFj5x7q?e|_KKhDPqLQ$m)So*6%|d^RNDUJ6{Au3$>x%h zt2{Q?q=crtZfee1C7_oV8U<8!0uH}hDwUTX8^1lP2O_vw*W44ff8Vvn39Pr_Q5`#d zdE;MKeFenIt5;yg5UOl-tafxC&Eq_pe*YmJ!^V8Gc$t}M-SlH(Z*hgo-}#&=QPLWk zW}_(x)gDpW)s_*fALXqNfOsvR?z&fKJ6J3PM;#!Mkrf1H1X@`y)kZy~pI6y?b3-QR zk9h!q(JgdDH0wzLI`+qFn}^V(#}m`?+>|6lPk<6x1bB@N1;UF&occ9jug)r z4+Gvyg+$Fgcr?R@tU{cMS0eg;5bi7`X3!H_!5t$lAx(Rq^Dft=y^GLVb!(@!lj0O2EP=5pKP1zOkX(Wlw zl@bhq!Rxz8U>9teu(;FHgLen(zHhIrsvgq{JWYC*um!AvZ! z1aQ1hCrmPIp-tbm8$@VeulBXuuLT$B#q3`}kj6cKESs)&2p}&u$6AHMM*qFFWLVe^ z<8QWBWCh&R_bR3*o)%w*Wc+}`X84y%l>JHj)UYjcoTl8&ODKxXTmcw2^M1KGVcBN0 zdXk&fjSR?kq9z&Bq)1P3TDrAeX1VNs_h-6T4D)AMeR&m`olxiJUJ{o2-LUhepQRK! zS(Ph-;%rqx=Qjg?uq2t;fExvtGk&+4&v%+uUIml=nV-g@MVxbRD?FhIIs%6h`I$xm z5SGa$4Hm0o%`-cxrgSfAYeUGP(18nI0n)zEl^cfN0vufSXfXQjC2$>QK4QyB`omJA z2r1|$LRE2A3RQ;@tgj+oG%sKcwE8yVE!l-%lvL9z6<(2C+buGDsMWzxU=YoOuos_L z3RG6+Qp-^iYZffX%x_OR^Xugez3;Lo=g^n}x2B~Lk$ z_|qzaH($~If*j`mBiNz*`%LeI0EB*LxMV@-U%p_2dQeX-d$3pp)%yKqHrXI?f`5Yf z$8wb6!THO{R;1RPeoIFzab@Lu_JS5AWuUBzQMxa^sjGcHZ_;t2x>NmTS^w;`e|VF) zEKouPHcQk>jppn{;kcaqU8x6HmX}X1*IC6dqpd_^#s_|Bu81uE)#v@A4%ezb<3G-< z*wI$QY!g#a+Te5O!(C`!dCSI9Iju-!l_5Gqz~bH~>oHqd_-Tz(GvKrkQ+IZ2w$wN# zibBmI@Cl>-XG564u5I=)^EU{iXa``wQ;&&$rJov65Vs3+>lT&9gHAR^{jknWY>WB+ zONxdJ`ot&K3es10(5J*PQ{#z%h$`(}pmh~aYr=5cxCy!i<H&snOTk)E8b#< zHeVAPb`lo|w+@&f-&?^mvXI4<)`lw$V9t=q5T+=7ch3iLZr!&)v_U%0g6a5Dx2MB$`-X*_ z2JXSOjtck}3+z7rE1RUW{lG|9SEMgGWyR$6iMA9!_;{oO%lhQD{WHs2sHO&mz*gh0 zxehJz*=ik|F6xeS2u{cgseR!XA_#4m-V>Y*rQdg z91~2J5hn`HXJcCBCt~RNR!c;B@9@jkI9Lw&>HI=g)A5yAg(`5BowxS*N%n)RUHu)y zE}N>9Z^#D%Rr8IJt)}_QrdX5ZwMG4f5Ku%+UOz!`b{*Z2k$-o7%g!>DXVy#OVRb7( z)qywFs2@kL#a>eUSS|g7b`{cztq1$Z_ZO1L4_rjwx(dp_JnDbJ@#ArST=AIu+x5@c znWzps6es7(QxfB1ps1o8h4!h1o(1RD4{hf_6qIv2JD_G{7k_)!*3ZaDh&@F26zQgm zjQ=d>+t^u}5T>u)Of4FSLXA|7d=s2IYq^XTx z)3ecjd3|WqV9_!D(I(DqegRm7n1uPgob{>T$o9Kmol&OGe6`i7?p4lB z7lB0Bch-KcvDt*i54Y1p%jjQ_;EHR8XuFbiWSgYPRatw9l-*-!Gb#WZN;-ZqUOoeg zlzo7d->UpMOE1z)(tS0JU+aJDh7$C8nj@q+Ua{;*N3AE-O`eV&{s&f+k{x7z$_=1@ zrHw0wPJ~mtPQf^DmNJK=7_h3ulY*jObs`nr+5DyAKiHFth9-Vj#zc3zv{SHmeuq5& z@_4<<8R5cctRHMOUgaw^0dq0R`NgDJYVW6qk@3IB+w*9k+)wY6oPNT0H$f}Sw3nyj zQ6Y|Kd2GNR7BQWX|HRf++ZBi;;Kyy$8=9W_y5Mte3o92n`f6&|*kmzq2u~$i6=${o z*@V2pLfYm|ty=yk-3J#x=?Fk9WkNP!l-7DK?}mu+m$sUdaR6UVZ+PwZbyMmViTEmf z4$&qA5bsU|olLDA5(HE`m4lOozlGb5`&~~|``1x%vGwp=(8Q8h)n0R5N_4qvSlPSxkELd@z*aPn>3c~g)NTZJe}=pk5+3! zh2_6iSw7~GuorhE`~F zyIZi6?;qpjE*Ht&e%F52ob#DRCVVqz{^Xw^z`T|T#wP4N+(r7+18>7EW-V93D2^yZ zf56M!Zx`N9)^k?Npo$E#0ZbV%!gnaZGGe5e7B%SD*YHauRyBSeBJ@r}Zz3cKgx}Va zvdSEdxY$k~l5X7o`JHg#-eT5&F9!jrc+Ue_tWLU0%$!A(5Bgo0?67lEBC{`| zTSivbbmu#~E$uK5)r&_@$GjU`v73;nnT6ewS;^5j=TPbD8Yd>|dhQ?oK2`!~3FG3= zF4#3h9oY^sa}{99q0t%!bs31Oxodos!RYbAMcwBt75UMZWhwPjQ<7wLzs(e%iI4?* z06GvawXr(A>u*szRgJP_rp6!xQZ0E*ij`B-V5MZx#XkxC_{i0TftnU*DgW(EO)%z| z@=y<-tnktERxn8*4dpdLwvI9lSAf-=Aas)j>bMj8YX-S5pg!%kuBw<87wrTMOhXaT z7MO6n`BERco2WY(eT_Fp_r zzp-&S%LJV=>g($){bP1|>n#-FdBKEA?Czh){Ewx(4)H{{e6Aang(>R4ae$QQ|8lAY zVvCtuUEWYpxTyxL`BIvb(<5`4nA~~gObZIw>W{*H3TJy&a*Y8zEdMSG9yN`P};HFc&r2 zx_iz2#GT)uBqth;ivVUUukN&OJm7`6prC z7bp{;X@QTWCw+)!&y@F!M+{m0i?sI+F7AoX&@=$_`u);7zKX0HnITJWCe=%;(Jq=J z?3LuJFTih}fGLLv`?qoXK!yx}-6X)LA!aPKdFY@1y#88`M9ZyY1M$U8t$Em)uK%sO zs55bK_6G#B#cU&xgH-&0QCjjuJ7-iJv?*i8X6Vf>3Za z5wZL+C&k<|A;JpWC`wVDviY~PlIY(cf!q2g^iR-6Mh5!WwKs@>_;lC}eo+LTHBPgb zo7!b{^Fe%5@P(&;%&`qS9N~ft+^BJztNeN%&SQ*pv7H`@hXmgZbc-g|#rr3_TqVX= z(q@tp%fEfK4zgj>Eozs$_T`!=kB(_QG-Wg7Xc0I4VO>sW78Q0(@Rui_sL2(mGl0IF zR9-0+`nhL2GkjZ@&)MpXdqLY~ zKGMLzR8B`N2$_DnJ+DFoz1kYsVFwXhXy`S2Y4>m`@_6yOVwO2C`*vhG=$~K>gU!Oz z$i*(!P%m?wCe{b{jM!~QEr0}|fO^u;sB;(%?R^yWa;hhdk&&ScAXX$gTsCBM}0 z|Gx5jw2wWH=nFdiF>ZC5=LuC%?fsA^qgWtD(8jTBQM$enE@D%PMZ?=Q484uu17Z$$jo13f`7dxB+QfZ!A0K2bF5qRi_YYJu$YmsVaC+f4K>Vo}b$ zm|#2N7rC(&qFKmbvZG8DB9u$6oGVoQgZX{>m!Iw3d%aU#1^7&IB0o?-EIQ*Vf;gER z#EwqZ*z#hrZc%B)H|U5x_O#@duvC@+N|oZ3ZPGp3w-GMBgJ^cPQc@7hL=T;_BX16| z*QQ^!z=v05nkqc%p8v_5P1yTe0-aBB&Z?&(vH`7ct}!l6cG{Z8$Hh(mgp@p^66{9= zo=@9StRiZv6K(#(z&W~i$_nZv{M+&ZJ6enP$G0jB`IzhhkD`_o^OJJ69@i+#jKL8Y z80_M3fKP$CO-7>ee-Ml@frZ7cz!ZKephTj_>RNRr-m}EhUmRrv)!|o>il%>W_7-ho z>`p6AVz%l}5w11yKtK%O^Y}2=Dc5AO@fL++TlGL)_A?OHxaOW#Ysl}x5WS%L(C3E? zOYKbE!l#_2`=uV1=&v5#n6!RmXAn5kIWq>#)7ej1P<0Jq;?(qKZNx~ySZpXgX~i*p z9qA_-WNtXII(x_1uN?;1kXDyQ&ok-JTMOT#Tm;9#OS!!}rS$P#F!aXv`O2*(KLvgH z;B)%$VS9gJdD-%mH(=#)^UdsCd1brhM$VH_L&k@1rRGEyY{CzNmN9fhonZ!#eP@Kr zP=DLws;PFgNRxO}LXJCCsBNXwU& zJ+chbKR<-~Jd^mO?{kORxwtDfjma??VC~a3iD_p)$k??i2_M2Xt~#dE$?#Ao6TjoU zbn9ln(N!o{a(48mDbq(56_(S}1qN3k|4R&Uw89j;=6r%6S)twte&e?h0Exx2%+8&}kZjnVu`(H|6?@U~s`54inCbETyz z2|cr>E!_7VrQz4_(Z@J$0o;54enUh~O}AnPDx&&sH$280TkP!xw}N@x|IK#qO3kf@ z^wJLgvzE&Kwtn=EBg}L0?-oq0pj4=~vzoNMu8#vT&vrQ5nNg(_>k79fHJxNu;ynRCD zyPZ`%Vu80oF1euWi?H`xef})B&Iw22#bPAS+9E-3U!C_=*gBbE?R4CsWk5L$3X9p) zv>YLTFt=o%-aKXLWG1?l^~1b4+OVuv|R8u&s|8Wodkcxgo2RO4GCz`d-I z6S@gDT1os0XhN{igY@u~8f%Bp)<>pzpR)vO?Ui34hItgi+cEzw0z+5mVc=G~x6!=i z?VU96z{Sz|>}Q#~Z+lVM(&HN$a_}e>^F31loR85E?i)Y_H(aAB1p)&)FI0vc!=2>S z3&tgChb~6=FdpqE!CV!SaukFEK(H#Z`2CLR-k8tGk z`~|ASeW0Ps5aVsRqhIOF?R9?#08Sx{D9+&x`0?Y1`&QI@|00>Hfqsdf?^`h@?|SDo zj5_+;YfZs{{)UDb5$pdYK(S-b!c5?VjMsIaGdBbuZ9}(2L+^w9jI|seKQN@@4;$m# zrRC*AHs0f*?D~O-XT%K+FY$7F>qCt6lFLM$Cj4SzZjG1bW5q1QJ7bAsA*z~vz&p++ z#;3}3#|*B!uIZAGF4t0mdAxR8%*UI2(&feE^(Pr2>@|M%@Fj{v2;wSH6gCl|{uCaG zsM`}7xyCo-Yn9^axtR6gM?Blh$lCf$uEovS-i9HMqztbLmo+!q^$_t6FP{ke4g6YI zi-PD&lgOVkbXqiA)4O+xu3IQE<-VPR1vDWw{vCe~0LNB##RX3d_N+cf_H6LF%XP+v zGVy; zpG)cQdy2>iE69)232nqg5Bcxi3Y%p4E4rw%Rf585R@{n^qv8{85I0HHF4vyF))m4Z5np?>-ZZ_5-NdR6Q`>hq9)ZG9Lp$vUC;hK}#o#p1~?`TGzeMoNEraCCeyQF%UhB(@%$G`M7m(B^HKW%9rH z^o~L+^zL&Sa*wwV(lYdKn@B*SX1k$nuIycPd;yKJwfG`(UG5Lg`lpag9W%P+tPgJK zJH!gO-=p3k_Zi{YlMLN0?cT`g+}tW+t<_AIYYE!{>-U!kolz2!fb(e$)z>C`_n&oV zXKPjXMR`CsVWeo8buM-~%LzB}B+3se-R$Kb?DbrdHrw+kjU@slWd4B zs2{HJ-VIaq_|5TQqwNA$;}gy?fV(qj1O;j{34Dy^c5TaTaS9}p{Sf0!{F`PRt}XoN zh3cj$1lqHWxeEpv=$J4jf+x3rQveLPMD62)LEE0?=$2~j_C>;%KfOPPUNe*fgJ0g- zHK4OR3JWv3zZAb;f?fvrXP8i*nhO61!Eu0tMZqP{ovpTb;7Q;kFFR1eXM9{vJJA32 z(wCW3N1s_uzA__#8031wsw;EgYAIHK27-D`+Hf2V46@inGdl~RsFbN$89I~ zf_~W>sD$9N8_8H>P~g1dTR4sM)MOb3%dgs4({b_& zJ7=Zp+6po0@-rVk2*fc)j4RH=jl{Xzq6#jfJ&gJKZ?Tm;Ro87b05o_ zBnrWWniS}049UqNJ)7DIGmiKYQWbPmHYces-{9I;zty`z;Qg(eltkX8xHK%O7NEB4 zh^FsM2GUXUA-0qE&u`7rYD-fx$+?AC?DT{TWqHgp4@cHF2yO~U8^;uR5#MnzLvl`Y z{@zdjunU!5%2DQUhl z46#WAd;a|qvKjC18#8MN>Bw3Bwl}_JDtCefZ#{N!zZ!ern!c0K_vF5CzYgi>n(g_4 zVMquTeozs+_;Z?iaIR+wf}0faKN0ND(BX9+RkV()HH-3}qd(@h!c9%2C3?M?(eMX@ za0t?%rp({N(#libNyo}t+H$mN$rrdmdKvycQCq0*dItAWeReu4F3fb7qV6XPWxV|p zL5zCbe)p}c=B-^w%nx)_oybPJ#;D3o4FH4o5|_OJjDol)QyJ&CH6jl4N5wR}X{kN2 zFLp#z8;kA}VFnA9Qpc})xF;1=m5t?Zo@hk3>X=IHqq|9qs?GS}P9p{5iQSc;_gBYt zU#dR?dpXMS^jjO&!^83XZxcUGOw=y%^^Si~&Q>9kojI)ck`bZ+PChv0f?=zCW2zF^+&;*Hgk20Lbq-Ldgme>9h4TwUT@zJyvHY+&dT?pel=7Amo``f3^PP4g@Vl|c4eQ=8_#F-hp`qxIv*B4b{ z!s}oTLp7yxA8CnYeD~D^yvZR2==0lqxziR(!?TXYq4{#hoD*Nsm&M+)Py-msH1fyh zoU2$0f&vS_yg|V-;S8T)Q(*tljTgz`lSrXPu~-T_z=uJ$S%g>{O{Co>x*^#1HQ;s~ zsjH$!Y%AdGgU4;ks2TWYFne$rZc-J&Z8_wVez|&`=8<}Sd4q%IJDZ!=JFvZNsn)w9 z$SlHJEy5)_&?kgo28O^`_{Z&bXMFAK^{y>h5+yEHX)L1|)q?jM9B$&fC%X5z>$866 zmAUX8jyMPKK|~Pm$0gxSMM>|t=fB8DDY6Z26PX7B&8g*lf6{ePcq`M?pkCidLVP8D zjfzPIdAd>pMGw5uK7kH~c-4Yqd63}u>2Fq#RNH*nC@lwunsT5Iu?#GryvkVXO)*cT zys67?^xls!o`oW393UA>!PH~kjLRiMSJ!sJ_8uld0;CPlHcGG)hWqu>8Afuat&WgG z;-4kTV(;=)R(jGiBk}hx)gxq13kCMw@$N4I%yz#1-+1d3=RkeH)d)PKd~Sjad%fu; zBE2D`veTd30{iu0n#rU#{+wW{qHiy0C@3iKJ1h!Osib^)M+N6`*6qMO%f|v7H#ss9 z*l_Qp^;=Vr`7$yLX;wqw%s8+kn%U!KXCzs)>sR#(#TpFfbxlG{j*=5zNu32tkXO(4 zvYstcn-!9{h=n&2j&N}rw#*hkqGDX<_b%{x<-xI>3tt*s=Qt{Zq#;!DjDa6{Wa|An zlGbJlfx*MZj{$E0MWg%?;()JHO)6(38M~6X4VTSqJ{NuDwkZjq!!jjkL*|CP3gU%Y= z0ec_?gOD<$(1Y@X*eRX-i4aX_IG4c-KB^e69>V0j$De(Ole-04>f3mB$SK% zv>T%3)1|?QZ0xtbQ5ol9%#`$2hN`nd(gPWU^Qcp1MJ2bV7W?t+hS{gRMu(@l7=&$) zvcX~{wdO3*IDZ^x`0lFGtSp)?IRIIYoK@h%R#EMeN+jgcy~!Jz2l2NZkbNBDVy%>u zM@g(WpT-OS%EM|^#bS!3vYz`j(|OM=aG!|z(ZR!uRX@cARFKNfki7RErCG*6Y+n@ZEB!O;#9SX27y!@ zQR{ir{3gAYu=qdZVCByY5(1_asjjtyfS>CKPFi_yc?%;wLW_(TQ($(P@=;eZ zDWvMN&zMsxen=PyKNJ{Hl%x^KwwnzNTBEzGxe3EGt+)qLMq7Rx{~-tb{#?k_jIclw zc(^gMqAcH;6Gk%=BZn+=RvbC!G;Z{vR9BYp$>?_AcdUF_txAD3l9jRXy&ElTV&=df zn-qhrLdi{(s2tN}LOJD*PSoqP)s^Ds&i_v9<6i)bch$#PN|fw2WnL9*f+JS*P=)Zk z;@>eoUtXBNw9-S+zbtIoa6i$zvjY10In~mB+6*J_FeaFF*qJDzfM*j$dXc+JCU?moTTZYwOla~ZxWx6IlL#>{byd_>SnxYFSvkuMhxAnZL&O_* zq-{xC`ww}LGd}K=!C=2pDZRaW8}6Nl_c^WVPb&!3*Nd1DtXXYuq2kSLJ>$}yufw-Z z9070WC6+nGUvl^`G)8iAh`U@};Zt!X`BvLI zFU^DK?|semraJ|lUH4#>MnW6SWGcrI|;`TCh2Ag87rmtg+o+U{;VzC71Hb8fz} zX4iSP-|Y3Zsdz54{Y}Qr^o%#E+pSu-9 z3Q6SFr6rYhSFanT95T95a#^~j6O|_oDIB>cvjl}|Juz4R*ee6sqn<7c8{(G67bC65 z1pQ~xN{fHILEIh7$(Bbnj$abAwH5EvE5?MDdr7w{rF8^bFqO!FkiKMl6 z?DTCJ`z_L@Fo0>+Btz6B3&_%n-hCj@o?>L}-B!2V}G8=^(8#2g|`ksU>I zY+sm^UY;I0Z+wJxpaFXs9^Tf12l~jri6U_qx$^B<5TBVdJ-^26kiZXPz~jn>`|bdI zj8d~tYP+FWpVw1`?U3Bvuyc74uZf9bT8%%1x#f4gl2 z^~yl+^b>gZncwdwMh74aX?3VOHB@Fdr~&~U`6akWrCR)NyojM(y8V$umhod*o6njr z?)N^>Kadv-UKou_xp#VGZ944@?LqcM5g|?%it~@O_H2`E-(XiUgihW+Uy^i|@y1A= zCwqvfB0#^^I&RF44u!@KDHc>q{Zrg-%#Po^HV=tp8b-StsTCI)diL3gZjD+{2;&!e zMbkslPFv$PkJ3Wvn_bc>&;|4@j+j;#e>Qsa-i8Eq%m?iPa%>@Wpg z_oxj08f>-uGxgh-I9r@5=2WRU6?8>7Lyq6Weme!R7)O=+Ib`45C|-&NXpAsX2wMn4 znxcTYLo&nUN}$wyK+pc2Pn><9d_o7FKHb#D=M6M5zHV-7*Dut$HDB{)f;3X4cizXT zx_%|~8XQ&52fdj*<~!tXfXs1khAE&FKg(-%1PNLjm*iyxF|b`RZ(*t(2^^S(VoE~= z?+Dr^k&*&+V?hx#m9)bH_2}sy9(Qj!impE>5}c?mMPtSrf$`sHuq!9g^rOrn@>jD? z_88_HPP6h9|BYN;>6|G=cKTLc>`?GLwFH(%P}PfIJX`I3D#yG=_1N!5cm{7Y0y7Lt zGn`g+49-wrFN7&UuRG;yx1Amp-*=PhQxA)dF60Eh99odt4?Bgmup{y&s{Kv!{})qByiwFL^d4W`Y)<`QScLrvJbE3$sb>xq+0v(&n9MWiNpHK3a(7^N-v5 zq`fpi{x-DjBiS(uFHAFYDoZ>~eX(pwd+mz8bi%PwOuk_665Qw|@MS?T*IjT{`*=L@Ur ziyD{jcFTXf4RlP81Z$a-jK#3#z$m2TG5#qIW`Iotx^Q!LxM9vz0qDT*C;_ohqBfy>m>YZ^y6`^AZryA z8V+a_WaQTPs4}YmHx#!USdCDF1Pm_a6^{F^dTJh9_%gNEp5+Q|3PE`GGC}rFs)R(g ziL=q8AlT0~snLR7tiEnNzVy6nnW8LyJB>CdfvTu}cETF)xONSa2R>`@!`{FCdlrKb z`q3^kn7&sc<-Jff3m*vClf$8{c$}^Zl^y?HA;fyjC89}FkipH@9gv-6L^sgl8d=%aysg&c1f3pKF`jl<$ZEr5gYNJy?3=u$m zXd6`^gcDTNNUHrrk|mL>=pl~CWXWgAIdF2xh+-dpCjjOD66=6ED)$j9vixgZmFN^! zDD%INn7|sCjW%@^mE5b3 z$T+BJc3k}7EamsGH?)=p6rLmVfSf$L7&^-H^Sgn zm6CQ&n``F*sy)W*Th|R7r2P?9^#Nb_9W{1A^MPkV;`K?Ks)50X!UhBelJc-K&@ZRi z{l^6g#iLiWh$S&_>NbMUOti^`tDMMc*N3>=BK#rvR_yaXFE2m(9?c)T3PAw&_LR!c}DxwGNYC1!-WRdnJmEdYtlF3YD*EJX>TTj z{tvl!JE<49awK6HY*l*De;UIL4kt+Zvx~bNrpIwt^0Lk$qsKBa&*{C$~25^AH5iW_xNcm9KqAV_V z3r6RKW1EJ}S!~Bd{SBVC4a*!ikt@~v$Wv?wRhjfL!Bi`fov7rK^ItR-)h&jyBK(0L zv0HF@blBVB_nrRGm*akp}fdDg^miDC7(OO$#&#IPb&}*1qLFjyZ>dn zXD_`bohEo-ck1Q!tZezB+!%)d%Q@Xpkj;W5NI=5*Whl@2SOM_jSJ|oW828P$KTt)x z5X*sdhS6_TQfX?$Vi6w6igtOfUs^rVO{mIi%NiUK=VH7Esr8cTS{?MhrueUJ>nk^u z7>D>>`o))d5vEvn@%2CZr_T?F9A{RtqxeS9A|d}o^^yJ@f0HGV5=ZW3OC~WN9den~ zPpjgcOt{05BvIS#Zg*1C{B2-GjX>6!(%^=o_#}5iD5kWm;=AKTxBG z!;1SY&|u1pJ2%od6Wd+@Zt{>O z6(Cc4VL)P(2+M+OqXg6Vx*Q(L!{ zW&F-db|XfHkZy^4p?|zH9Z7qY+P7?;vsrailT9zXZ=)uEKwBjE|5*UNhc+eU&CUtp z9sG95xJXW@zFo(+_L{1~_ z^QnV+BI84a%M$5q{>L&{H_7mRypz-|h7NS1e%vBoiI?L|uQp^um)IX0=v9qBs|=9{ zMJ?(nphffevLN~RFn1QVjlg^R?c~E5MwWb%s%lSkrF=qrCbvZlIES7R>u=GuP zFb>%n%JQ5e)yX&efp;<-#)kHVV?ypcWIj`l++^KuAEKe+Q?M&(%(t?|>l>$cP`Ja{Xgp!Vq$DtEhq!{$R+tjVg4x5fMO&ZgT#PRL4&# zf*1@WA8V^HjnVSBFVT=#<s7U;b9AJtz`@iyJ)FtG4 zxUqjn!U&r739=*m@}07^yQhY{#prRi8y$za+*#G42PWLI*(={>wIZigJBae8&f zY&Tp7Haq_-GUp61l&!ff_LBYT(Kwqn{nVVU&a0^YeLNJ-zMVaO1Ihd zPWQzcMJ63&fJSOJCt^I!ZeW5VX~1^|{pUUgVwV*hZQ=ie=4lgE3FF`8?c+&cHo|p& zev)LS;+_A?RaU1t^C`~c>wIH}Ia^@?`?2MRs}w)#Z<}80X=GV|QIF0?!(@Ve5U&dX zqi+|bQx>X3&juwM2u$XI99p25^3ON`yw(9fqbaxG=R<8HVhxulKYKXTqVr+Q(fdJM zTxIz1=sv%V!;SBQArOjdT*+R~|4;9IxH@M>GrpVhT=IOnK;C>HtTjdEu6z@+zax{x z>}3MlUar?{FpbO_`Igl8B6 z7-+p(1$LQ`PS?A`2uyT7(=`sh69B%J@L_8uFihBd4MX?(>J$$!m&uS4L^E7*1QvfE zj3XwT+H0jx=xa$FOB#vmgbP>@MuyFCDg0!c#D&PD=P4xPQzP6__CM-LAd)X>lQ7Bt z3_|B-|KqX?UiP~FY;EAE${gP+ zZ#mV)JfN;gJ3Xyp&hq@>JkTrRQj_8CTG+m~7QduD#XUYW^nH!4_2heJU8eh7p&2gU zr$gB}ou|XC<1)VJpE(2coO(EWr}<(Ve5D?^UaMaNT!wT7Ysesml9K>E-&AxcO>e}T z{iC$^89jOGlmLSMPCEiUxW7c!6>B2!)FJ)s7dg^*=b{VE3Lh23$Zxat$<|=P6Cd6v zcL^meDvtoHWz334^4-5^dxIwp(p)>d`^h?yqhiIp*0xzpE+W1H7UTF&iQ=9NNUPiHwyYw!7>haCoDt9lZ=+V3V zi;!gNr59xs`0#8hg!hlpythnP^M2GD<(Av@lo-M}-zU)btOy&XL4m#wH&8!jWtAgu zle}7WT$PyGt?Il#B3)gids^WNc=-JIv?p<<%>t$OKF)NVm1@F>{{5Na4d_*L<01O_ zA4#WE#v{DIYkVjoY!+4cX;vQ*_CJhc>$yYrfw>!Yj0kW*ff2nww;d<(&t9U%I%t&*^UzVM%qT{ z-E-6Y&toK(Ip@m;3#D@VMIBqYde9nkZs)ViljHpQ!N9UX(|ilYx2YLN=GqEODqS~_ z!$2x(x#csjKG}T^qF?fpU}S?D^Gk|M=^+4S;S1m%%5dBTNnSF7$b0IXIlhEq$uiGV1BSSk_LFJ^RxD38+^ge(m4v^+WhJQJk1 zfc0Oio)-+)ATB7%9J6jkAGI@n*If|{TnN8x;WWMtry5y4u9#TgO7;0?ftd=Sx;ve* zd&wFvRFdBHJm1k;TAzdKnvFbUCsoMb3Ky-JmGaFpt!~62U!#S_b_lHX^@A(aaO zqBE+){j_v6>-j~H5R2|uyUGMZ06k$Z9~4}#ulQ2QnTGvKQ1_pN-};*%0O#h$=9lUT zHaX8Xb~NrzU)-$De+isFpcVN1qILDI$VI(7`;-?QN2LZmk+3) zSTjoDd!UW-Mg*8X@NZh9Yj%Aa@8HFY6YyEn)_rB-%;+qNe97Rz`)QdRnIvSQ0CV=F zapRQ4;IM8c+i5|8Z2vPXdwF+S9piVoLGv`#g-oY^sl6j8;AFY}_97-=m9u64E$a5h zegFIO(a@D{1V3cJZ2wr=`>h7UJtjLTjv~!r5EuY+eA#sr`+b$qtd1qyJx=rK5#mg`FGEH+EyRr|UoZqy@z_cV)xR8wg!S zAPrh@oohK(;<>Yu(2>)GmXuq-3$pcfDb@Z&>Y78VV4GE|Hb+Bw_nltTq|I~ol6&6{ zsfDNzc8#okZ8WoE!%MWXKG9Rn*vKnYq``S_0)gFeItHNCnIT`;=c{!)mEY`D!c0Xy zx~Xk<148ZOW4xNrCLNCjBEu?SItz4wYjK;^u*?qF#ckE+gaur`+P~;i#}y)R$Hqt6 zq?*_yVGw6Rte6En}!E(%dG7AG4A}C*Q5mreae4u#bn&PL_!Yl_x-AkHZ}A5#3j;s4*BK!EnS)k z>{l7CbNKo;bivy&5P6Nj{Koux;E-BTi(i4k`4cTjadS#(#_lk0rhP2Et?fDUe|uS` z)`z`-6NrD;8V_;tUrA|OWs4RB4#i+}$xXvw{4yCI0h?k>UThb*^n9Epv9_N*f8Q7% zc>tf+D+tOuOa#J?z$*dIR)y_#9f;J*8Jg-Jwg}Ej8s!PTLe#(N=H#9)^(}BUV0||F zDTGM7^TWcmUEB90hC{Wy#=Wm->$Jhh$M*q+cbzV6nRi;*Q0TiPI+PJNb^x7^lJdua z!K~4;6K6b_P{eO~cT{(1N{|PHruRn#IGQj5>B#Mp0cW`$3Ll*wNH9WbkE4w#hvZ?D&;#H%$D~=8V$fP>dC?n9ryGgp9R9v%{OTrY{ru+G_0rNAT zfc!(!7o2D^tX^_Al`pf(J-)x)ROjif*f7v0nYmT*m|8+#I*l>?nTWjJgsL;b0xU^@ zDErUC&F=UzieIiYT=Q7YcKEL8ek}=!K#>**yM3Tp?mwmN-@YXa3XG+X#gkmAeDs(; z##vlFFc*K(AH(`@M26fVUpqG2V|hPN`%H*h>VJ!mwDWJJ!iEOiwNo4)SdzWB<0}wU z{}59x5!n!knOtMO%-M1OuW?olC-?N>yP-`n!gC-d4BjGR`ybo=E(?&VutCK>Nirkd zWz?nkt*`;Ey5t1C&PY5H1kik8tjxb1UmR&vM~1O=vXsNskeAy9GbxWXw`8g}lbr_z zX-{NN%L^U1dJlc@AO4q5Knk74Fs{5b( zlFZsO(2VT04H_a$55+zJVCQUGE<8Gw&pj~=ou2?1{ z*7i6)vN|Iq?*hEy@HaD=i|B+wMr)Ptrl{9`*$#m799W6LG6CE`4D+WCNR3gsnHjP{MFw*5P%?QLErz=STk z#lD@wcrg{36GGIc$2rl!l;6Rg5Dzzm7dAXUatdY-{usR9OdfxrG)sM9S);;G z*iTOTh-(&?6uXV`OYf`l3X}Ys`~Yi-R=@c6Dwo2tcV%A7W{<-gDwgN?#faOxWc+O= zjU887NA!pJ-K3VFted~JnQR-_hyKEz`wT`lGvXt3G}Ye113C z$jps(ARMNbF>v2rS#tRC-7T8yJ@xz3qGG$cmt%+J=qq2~o=VZF-!s4~@={$s#fG~H zuse5w@*4~A4S|wO@%1C{mSoK+9zQybuI8>8lYjxQ4^7rLoY=x`El?z@&BnHWI!ix= z@Hb1)+_*RH9GDU05~$qo$hgql$NKpJGyjaGGFfp78v%G>C61Ws!lXDaeEsR?{D&w5 z5RmY|l|OLr7YUNErN@~A|AQv+Ram4oV1D|6>zpDUmzy{jE7^eO!;;YUs_ZqRC8NB3 z4iVG143~dR?=wtUI-!`!ig(gs^97iDn%af}30%!)73G9*RkB&}SULn;XEkN(=f?s9 zFBymzzQQVB4-;unu)VoKV0mP!y(E2yi(UigKB95_B52N->Z$_X{#p6cKe!0v&k&yV zxVopa*A8b5!KWnE85~b^D<=!rCC#yQN+#wACZ0%*+0HpPKgp(Ia!ZJSuD2;S!C@>z za$XTPUVplCEYC9NN+KIRfHAT6Zv<>@xVH!<&+^s3%o}-9|8(5t!MN`HI;A#aQcmsY z*xDB5R>8YH+X(he)^ruaN@+)czA~mc{^nK|%CLK3>@b?3B~fC=Xs}t+K|t~}?S^k2 z6k4TjM~7LC1DiYo?3LEX#l)i&wU5l(arUuUvl*{!>sr57^eAh(aaZHjbwojkraf(n zpIccIEsWt^ySNXCKqP>1S*NSafG%kz`vpYU8aW&Scm zf1(Y_2^n7hHt}cld^6JW{@2RKzaCPcY@8uZtFr`jOI^PcowLfzMhOF)1j0#eulBPI z_ozN@*U;?mZ*YI93k#WF<(f6g&|I|CVdlK>qqvB9@*Ll;L1RLQnK1x)UqdljabImv?{`i58+$%hKc3u*3NBstaS1Jod#@us9!rdx1|Sm^3CCm`t`LYGzr618 zSUsl4gm`cN(QCbj!?lY7txPOqd0lmfp~kb4w8#7)f5Ki-wT&IBSmw7yq2_8a65VIM z->%%#xSh!mi(H zEgC7&tO>+FSEAO5D16{iimw>kWRn*xfoL^H$fJ^G;U++X7i-gmQ9qP#l32SMdZ$q2 zZQ%aJ+ApwLAA<#x+x&M6@QsM=QR#&|)bDs>Muq!h3uQG^D4RkIfpHC64Q?z~7dEu` zNtw07iNGFPSFW)Hch=eHTFMM2u=MFHcQ6+wOE5p!zvMn;4X!Ei)Q#!voRK2i$2l#2 zkMJBl&fxtdAh=V6Qd(}ls!DLzR;z~+5W0a)y#IRqYE*RtdE)Oz;?aH~HSJ6a>-`*a zyG8T5C>bN-29MofPeuzDkdFF(kxK^O!%<(wK)*R`?c!GP<~bV7N$oIR;iHjy16jMA zgHC_A_80(9-gpB(CNk6wCQ3pfFRJSb==<=xldglt8TTPUUFIPO}D$ge)uiW<# zzq4yw%Q-j!%#as7g6oi{CUoY|X(W3$tXg#%W2~mraU1(o{F?kQ}G!OS>ABR1#Hk;N|}{@S&u$5IG|8Q$9R^rNf8*pDAs4D6~ytWN>a~TSxbz0 zAf5(tn|x6}LenL|*3PV3zKDW6ze<^L$_$X2H=^+fL#{luw0>-Vw#mBv!j!d-;t^*I zs6k|Cp-!I~w(cyRBnxAT5~LDBSY(4)MXg8`Mp%ttOT7dLnp&Y-v;>;N<`---W73r-#*;;^E%@JJWcKGG0Gs=)wq-3QR136?3Yd4?b574#vSeRT z7-~gH&Bhc3t(>fCT_tjQ&B7LC(A-_!9WVOA>rRPC-2h9#H9xb}r3u#e0M9xhqJ)`< zWtJRIfHh3P;TCA6gbZjp3}OpsP70iXk&OxuZw;M+G-%jJUBrK1xz%6!FOnZp9DD(Z zJ%(E3L8RWi>3mzCp6*8^y(zbUH>45d14;oA>qv5;ehk2+)0FQ55JZvUdR6GwF)5v^ zF^!tWbWAH}KKeV((71ah%rA|A0?wbk#V5~BKChgZU2=(7^48m@*$rLVhY;;o>Mjgl zfX{ijbLcDryyq1AhbBk&u}*jXIUG~G-Q6M0Xf}|3=I?)=mz>>uvvafE-zz>>2O|>^XjrY0ZNZV}mu(KMsb3O~o86+a*OXTqm<;|TCo;Vr`OE#>aC%<&L)%N= z>OA;%O*CzJZRzV~mR$yiS;4038&UglpAijMsFEqnX~|-{mH{Y;dTfN>u@zhW5~fXd zPcCpL8LQr_3vcbvbK%eMHN|)%%#zPKj;+eFlae4vaqrM^>I~k&!m0_uC;CROF$n=k z-#+ramT%}SiVLVX=RN6T^xYW%a`E=J8a+H(p+^+f%hlHpU`u#giL)SJHr&m^-*I9f zO9*K#ht#Dk%-a)(g`}(ypz6FZWag{hexqG#c*cy5R1!a^e~uQ>?ZrSq{2u2InB9=?1b?c1qbB69EzAJxA8Ov9nDSi`Xwprkw?mRC3c&pclUg)1%ICe2)*#7W z*+GWLCeghL&0%vZCSC zfn|ypcH3yP?6cNw>(j8u)BQ1*deO@pHqjJo_MZrxYIz`=;!pSV`qYT}2#C9g8~mPC zpc=wAU*ZrGm0#WtUn-hDb^8=rf%=;~AbiJ%=zP|enad8W#`LVHkEAPr-||B~zUhwh zMW{rEH#j3J3wElXD_n$e}Wh_;3w?7t=n*K>O$-YWe3U2ZsQDFRs5lcJEplUF`bsvpT4nnWU^&kCFikJ;pjg zUY|n9yNEHaXeh!IZ1$*oLX4^CJEO}-E zBv%Zfvu=GV590bz%dwN~`%CE~@t;mHqN!dEb!GLC7P+JBXS-uD8wzBL{QWhxf6?z% zz>K(euYm8@&96^;%yG4x`O>BJ{V3qT+nrBI`|B6OSuxy~i^td0$NOR9MPJhD3b-ie z>9BZn^U2x#)tHv`pk_c|`9J?|y>Z#NeYr{$D>v}8wAiOcVs-xEHu}Kf-fiav8YRD` zcr)YQa1NpP*rPiUvWv681fA-loB+}Vs^05YL;s}+KPk{&7Aa>mHA}S}^}nWGk4{T2 zQa5CItl8bs?$b#9e*R-D9LE2vx-FEq4Zsjc5p9c`TcT7qc82_yaPl0UCwV3zD6?)I z7NU4~(hpm&xXMV)hV=xV|Iy^`kW9wQXy$rU_ML~e;pu_p67|dLpOpMBv#adwt*-V* zC?F^d!hem6)VJ}ao=o_Z;Jx4;71v|3mfIgc;QB>&K>ORS&|#FAL0d%_gdLeB;Y)Fj zp+x=mu7inMgas!5@u7%560>G?h5s)fNZ##uxWuT;E`F^}bZ#2RltLS3-iDfHNGsg9 zPM0kwM+QRpUYGfhq$;RU>}gKaPf<96HCIfN78Vl51!8JM0(hc*hbKTQ*b_M1bu;67 zWPEORdj{|X`YS3-k)Gp)@BvB)(M@`h5vcm+_R4t#kH*Hrqb(Q(PZMm{`mi7L3b8`F zEfM7h0QLRI76dCTKV9!2?~=BmuFSs#Ow*L|-F&|$cZ$_0I4&htZ>wZsk1X^VaSZM*?InRfX6v2h+ZRuh`VQpW z2@zYIXuych2Jei<3%a_-s^MSTZSZX!YvoQ6HF1_PAbRim>#Lf`5J0Lp?xL#>Cw|&A#ymY`!p(Q`iRLkocwgot zl!;bmzR#}nDXha_Bs~)6^c#*2jH4P~wqSIx!q?2T6l{q$CX9C@;UVsRI{ zYgZv{#WqrDnxLi?uOQ7s$%LRaq>Umy+oMQ_smwKKn@iV1N`g|0*4CcNLWO*q5!;Na z`ocvEF7lyB?k4lXgsxWYh&`S1XYZs-n?gz2 z*HnbPJF?u@26U%6L|(nYvvMY`A5-Y`(&}ZR3DD!B*?Y@b@N-RM{MW)M0=#lWJH#ad zfp#}DQkbj%qGG<~F;CDzB*9nI+)dxh&MiK>QkgxE(H$`ZVYe;l8`-^w0P$M}mzS6` zgxV$t=h;4|j86~KfnUv0&K#g`{^tao3Q#=Ggr9X@`d@Zo2wH9#wB67xm5(u?B2X_| zl2tZVcV$|k*5Ij4#YZGicLFQX9;DBgh4q(ZGppEYrkN`kmn%w#V^pE-f0)O=dOBR5&^WkjqTqlhW0o}vl5OtsPX>;REcRylxi|HzJ) z!&hvKtHp;#tsbG5B%WlRor$q=ruk$z)oYQb}FtQ`;FJAO5!X(JzP<6sIg%pQao|e6h1nQL0hR4V3Fk+1 zo}PBn6th>QZ=O4B?uB%zi%XQ4q=O^{yRK64Zw?eoA$og75TE+}LEBsA58`_Pm8+Mf zSc}(!U$xSR+yW!Tjz=Yz=x#A?>)L{3@PwcIS?**;)B89aKm*jUM- zZ@3E$(_DbOS`y!fLQR1!^?)Nep0k>3+)Imwgx_+^)e166S+*5X5eBpVTOSo-9fq)3)+)usm5}rGBepQQRIJXgG7>{U{m;A5?=sy+}r80XiI;{nPzfilhFn5KOI%K9+!<5t!o*- zS6OfFg0Lpa>a7%c$EK1qKz~=}-0q=BQ?aLio)=(V`rv#&f;~K7Hvhiy z9QAnI%TeM}rNjW#>n0X{d%nGQZ~5?GTng}?RDdfKz4xHrLOF)6!Pq`R*Y1D6T!oAC zAjE7jfx6gpyUqF$ZNwcn+ZN-f!$#GhM5E@eC6H=m*WfmRQc6aJi^7^~icKbHa55a?q8UzH4cfDu!cZPa&>20PjqXA zgcl9c!`2}0KeFC-1`&;|yAF+cS2FE?s1nqY{8gyrl9zQ+P#)_Jjv)s5(6FzE+mwo! zdU8n;Euki`qm{l_Rv`JM4KX7acuFWYVw-j-z_ zj|@R&Fp~c5xDxvxM|syD2~$khjDoc>^@Bvms;92zB*VvWbzoSX%wfngsnmqI;1#aN z@A*Mli8j=tnZ^YzzWzQ@IOO1tcVp{6SKw%oz;E{#n75`}%p6;Vyrc2NOZ`M~geRa6 zLpu+b(@aD@L-__YJKf$yI?Z_|h z(LXVU4D;FbMROpM+uUG>lFI@YakB~v$QDxZ5{+SN$O;!S!6N3D4yJ>B=-JwY?>|I- zL(21Udn?;kcu&-U5DbSc4UV*YpQspQDhHS5eR68mQ;g$>&qfh}D}Nl$Rt-~bYZ7bG zjt0<-Qw)9=HKi~;ui8U7!OH-QpFcw8<8YiMUy}i|XZ>u3=|z}Io^+qTce&H;K|n-U zu25)eYFk6G%gguUQ=kRr?%t`I=Go#=wFMFZ7nFB?o4OWv%|m-ZFpq|!`db)$SD8N&7ZK;wzewf=tldRFR%l|M#5sdzIbmmbRdNPU~1uA9O7W>Yt zV^%V=zmyY0TX;c8=aI9$E=vHu>8}cvX5rawl223kw}-4^W?r!-aN( zp)Y2S20jl5x=}ZlY8J0`KaY2}Fj}5WGd%?&jO%WnnQ}&E8@4*|AHXft*Fd@##{kG< zs2m{-{*Ki#4W9vnQTj4MZ6z1#$*I)6&DM^hDt~F#;K4TP2|~1h@_ph3*QF}YHw54S|rK` zn6Q{XyPrp&%d4^W4d5-+_6X=Hp!aApp)-gFrPe(#y(zy5M8mS=+P{O&-*R#?Avy(q zJdavQJ+xcmx+u7L%xZU`ae_(+>%T9yUo$|@FnAnGa12ZV2n$}tc~_=KzjK*|2rzVE zbP9z(*i(F#mHrd5Nh}FFgZWY)kJUC79654%h>U&+q4}lT8-Z4xrt+ z?7^U$XhIXeYvW0n`^8JCT~Rx53A%ZNJVQna}2NdeSTm*v!6BqheX; zxOv@~%B7B&Vm#nSC{Rj?nGx3FYu~7TePZIAngTOE9ZKIL9cr$ro>@V1B--o1Oh4!q zs_P(+oAoc5a;PL$pk(Lyqm|9|)X>e`o-pI$aY3=vAX7;iL#MRDfhG@DM+&VQND@GTFVC$M*K zrqkt14dbx~6?JhL+ntlG3to)gjs4<&*&5FC=W~2?B61c*lSPb{MKwU%>*#tdaJYf{ zfG!aXr=;X#5@J{ZC$nB~%{lABqs}4xopD{p59`V}iJ8df;a{NM@@71?DM|qE>0_{k z6a75q4%Zp%-6<5YXNziHsT z>B_sLF|%P6)+7X_7+&-YAu`mbr>9LqfB=L5*ojU*I>`c!da0TbtR9HC9N>fOdj18h zz71j4f%Fmn_15>8TgE^ ziZ`l}cdbJ&7WTZ@uz>2y2#+ocx{cxZ%sPMJZcA1D$Ew;+%gmmxSiBFdmqN#YsD25` zhzqDIs4XZ4H$`#m(>2kL81l)x8Lx*z@^_+1SxZ|oZzV^7$M<|ofH7Q;vk8xx5}M)) zDLqg$*;BbM-O5S*WwS~!T9C+)XT?h4ZS!O6-IrlsWZ1K!1~as*Zh$9%J*Ok9t!B84 z38ASM6(b3mC4%qr93M#NrP~t}*otAbnCwmX`4>|1`_t=$%&SEYn0<~^sU2eiU;C7v zK)jv_;#DawM6%}hEC6Sun(^&uGP{H-ZT$A{*zg;p7tu1HNR`(6Pq7nSHE2;q{v7r) ztM?WO@U+(@xsgSc@s@BSNO<-?w}Z@C)7kxTU4ae?d&PyW&L@7c4%8gEd&~?U{HO@P z4ZrG7a;P+0|L)%0Q@0{1q8u~l2ZA;!V2;<-_bnK0 zebhN|HT z?Te8^x~+k9?>o2W>ydXoejx`R-;)8OHSpB;RZQQ%D7zonb|8A_;n4+|dzu9U(yw9w z5=`yHou6?fk?g(+ILVUa!FLxMp~Oo~=a^~8(^&2dOXz~*m4on!@fF$BbN%GBE7D2} zaZ4qT&If>)LRwKC(*4QLQ=LIK+yM)I!uJJ%ETHR7B+ScZ=mB9PCma=;OTS;QY_1NS z{KyA9zlko^FfaDL8V&pFWb!zdayBJ=2`*2{Z#YelBjL4=FoDdpcl<^H5Ar-fxg=19 z)Th+{Dulvs{s+`dseUOO-mbNf6D)y*ZIPBqyrtP>f1B?VO*RoB$`yB5VnKRf>Rwq` z*e@iD6Ff}i2OnNNLPqiVYvGZsnWWA~viC9PG}8`IGNFGI-U0ehs_Z(MGsV?(jfn$b z0%1;I7rt3NUnVHi`#r{|D+@8I<2UibichJymc7+Qj6atjyhwbJPqQ+(T2=# zJ7QK-_v-$j*R?6!j`%rAENmx9sP`pJ9(AW~2Vvq;n>Ls7YoISsEXRRz?z^GYXic?{ZDa_Ratp87?D4{`xzf6dH zT1#=riIK9nDKQ9|j8p2i?oE;`!L6oYE|Z(;cUrz5e6 zl1c==gkiMry=B{cRmYF4>D)UX?$XI~x>^l8gqj>x?x3Xy1Y@Y(ez!Uu;9+Zg#?eyt z`yIHjSGQHTR+$Is!p@+<_Ko*(y~(kDm?AK<+k%m&yFQbQ66yX%=PU?%>Cr@*1^>2R zeSOlM7IXnQsH=<{EmdJEgMZqxZFz>HV?zI)$M~0sFC0jTRaAkmR39%_$3d6nkKcKD zf$qC27UybdEj(a_KSE|QFJX;`n(~~Ip1akmZdF;$4|eSjap#a5AK1>7!P*>vSLmke zrR{tC&QaNYT`UWRKfxSzt5L+us|omnEM03t{`OmSB#;P>6hcT<7KPkyp`-pRwaQJ>4iB=VC&i;=;F!I%wk0kdreF-8!BZ0W3} zjjxFBgjad*yVz_9fn8XU&XG9LkIDfC>YU+b#u4}*ssTpJBiO?$G-F4}%a?8%k&e*k zcLS(B&iZx_Lq3$$%VySr@cWpXBb9|qWJhJ*M#4UqeqLcqYP=7Ca=S3zAq5juL#3_q zUc(JlAC-DPnf3N}b&jbvFLUKLaEOZCPZb$r55-Zqed@c-%d@6)gWm=BXMh#!vr93E zf`L~bgRkF-)0gokzW2hXaA*u;jy0p&;y4DA-c-^U#4GRwWwUS};%c+S#sX{Nd=cZn zrD%4M^7^*>0?y~Qia(oTMfB`yB2t=@eeY8eA^GChm9F83A`+oNfugCyZ0r^6$UXbY2+J?h zWHtV)^&}f@q@lDTRYKdFd6S&TUgGT$RP70%MF)40LI_!X9CCAZF`*=$TXJ82wNF-y zB0tsInxAW${TN{UTW43-nNJnxkkOVC)LQo#Ku8(%sx% zMwYW76n19i9~Wlgpa;nM9~n>ASQ6+yC4jrj*)PEzwlBnYZaM@2dxNPikyU zh&G3R0#%gvo7EjzUb%Hjju}0rXIr4kBe|&r!x#_6f(Twrju<{(=F#*7iP>=RJYwUd z-caFkOPKUYjCGXf}#Y5=&|B9E|^-S2g83Gcj?_LHtg!lml-RCvEX-`77zK+n_ldA5_4 z`ZEK{m9>ZTh05%j{e+e-6R}jWu8u<7mvNO#5_$By*@Lm@?>90d_Zw z+iuKn1RdM;c4M$QODmzpe!a2_6h=Pz`2+ff|17r^Xc#J-!gn>>p#8m2&g)A0WagHo zQ~Q^-oe<3H?XMlzvYHPfj?{9oZe_2|#n678ftc1mM9XF1+mkZy=mD9!It;EO#X3~~ zpDmYpG3oT-4Qvm&gJRa#28G*82TW55x6#ut|>kWR*?v=nR;wOi2nh{>tA?vQKK zRT72+Wo=Gj9o}!arAB;m>0B6$BCF@hf*hR4H7-lyEHb5xIT}2xT;;vLbB!f#WR%7k z;O81RDqw*2)ttVGsbMeNBq!5v`U)JNBP#f=Ad@20Ns$MZqN17~MrC(HC^NOI56u*r zmYF-%q5N_n21_Dk);QBfF9=Bx=GZTREJD2}Ii4ZOgxIRtj4`6@@?4!c3ER@K`mE~? z*8|&PC0-JhnpE^!2`8riQ`zyo(>s4=#@y|-TI|!;M!;UGwk%QF%m_Y`62Ox2!g`Yo z8SF+hs-Ov5lhSU9fR`jPb+0}Fv1I!&JSGCC)^HoI^e5t-M?;pasL^d@olocw+ko#c zt3Q#%VlWE3Jihxsgje28Xo?cp8ae!4^KnS!SgjIptQbVytEhUV2_$7=9zBg~ALj}+ zQmI7F|5P3Ekvq?-u5#k246r{IgBxVABV#_-`yFNy84US>_GPgI6ZVGlJpYS4Y4ID{ zs<++Upa>wufb~d)rmcmIE|PTBbBaa33)XYhE&JBarJprt`LX1jI2fODUQ~uE|F<1RgW&7!x1z7oKUKV2%LvY>x0k3K~)9K784|$ zQA!PHOoUK=LDYsBnXiuGv#%pxcdN_t@7u<~D1zU-(sI4js2#t^&0dR2~X`eY&E4Y>o^7e@zLpS$_-fUj_vcu*s&HU8uebPo~Y zzcmj{`9mej@6#D5BGC28QMi0)OXf-B(An>{_JAM8uh78;qDb}WO(+6V!8516RF_xF zJW5+8*vj;Z0{8ntGLqq?*k1jn0q1zx*I`*31`OJC58NUZsRFdkJ%+zSq+xt`9`}`9 zSASqPaIcxT$M$o~a`IE1?FY!+6u16q*~KBiiIB4K8s>=Z-X0^Ts7nX7{iN~&MA*R?`{i)|#M zPt}TWSFrISX@s32+>EIhJG2Poc!uic4OMjrqOYSBkZ~VBp|XO1#p`xqz76I6iO+>iKWkC6j)iOAjh`G<$ zUTK+1&!D({Oqq42-Z2c3v6AFkLe&=6nSJMPJliC2=$6-YOF|2y%_Kz*V2Vo_Qlpm7 zsF$YPo23)`36ic}=$>+~a424Ds`d^j znDac)b=O#}r>YwFax5nVs2YALhacfBMOT^i8;#-NUOg@2Qen zbZ#OE|HjNT)Ge?GBLgTEtv1Kjeoa>x>7ve5*Ap1tAHjlU>~skXZ*-D-+MlvHb#gjq zefm=XEpk2?bjtE;XRE?wJ^QSckVlXtck^UohBNbpEtjp(bE2zPr`07JTdSTO?J%Yy^DCJ7NKy3;iUyDzB)u z;|%#p3FG$oYT2%CH~sqH0IF~rCRoPE^1l0+A$r741Q?tX%^!YVla29;3}U-&{aPNW zYV8b3IJnq{4l%es+g4xzw^6+!+J;2sOS>7s**pht(2n~dMsgr-uUQzD9c}FX*N>`$;xpo)aZ_?Xu$8#Pd_+sg zvyhTt_;?Z8@{!oRAZ*+XU+L9gS$6RaUxQDsR!|pLAy*LTNY~h)A>bU!cg%M6R@s0? z5duQqZrI=Ew(h&`1)YiXJ)f^kl>fCiZlX`I)AmZA^BA6>R7Z$Xz)fNflnVIEi@yB% zPb0kC`1+RbPGoUl-=hJL#9n|%Bh80hl>Tgrj?k;~1F$qFiILEmO%@4WNQO1;?{?{D znu{JtD{sq%Q(1jJ9b|oDm8`-OpNBF7(}FhxdA;*K4hD>}!L+W7WADL#W5vhImMgAsNV`ETE^G(r%vaIXzCncOC&zcl&3)0Q&pMH+) z1F1X!u;dYUm`%cdJ+J>)^M|>AF;jze#%j;yZO&t!_^3nQvUiLeq{U0^T*r9>?OWmR zX-;FPAdgx5Vwml2el8o~ig18siKYI{&2MxKVBE?g`{W-aPc4{4R$c4uO?vd7|3<(4 z1@da?t`gg1J82f1^nXjLEQa6y`__;ChL5N~Yud48C(_>JDS1@=JK*^%B4ZGugd4na z%$W7}Sx4GO4V9DW0^+3xg`a&`CTpt81(ab_85k95@^uP+2+%}6wWQXg#JkA=5^KQf zUm^h-c{-zIN}+h+^Ze-MTsH{3aPA{ROHZK?mZ}CU2cS}Z;c?5D29^yb*NsAbTE5`d zYt*c&Z6KbR<&8#eU4EiZo}q6xgW1oM9?Os%prRX%R-bC3QPWTeH9iOK>v2W3DU-n0 z2(-AlwwV8-1JEvRj{ll8k01L=8)RYIDnqEXx9TzfM2roI!twZ(4!11hYuhM$jgl}~ z+r6HyP84+K6qh)i)v#q|JO_Q_H&o&l%HC%LEmt>}l`$=Aq=e|hbv`b={i2$oVCZJx zp2hS(mZ~<|hd#rjzvmNpvI8wu9^6D%LkSFQZJ&7)RbXOhNe@wPz)7ExZ zcL<_7nt)JCPzDs8*puGVx@K9ZGp9VEX{| zh5laJM=y^!;MiQZLZ^mz8*NTB^7Ii=(pLW?lcTFAn1Tz47hUNA!LI8qjY!x6gq+iO z>ulym)5}AR6ZBWVt>s0*z@EY$ng0E{T{Q%?3%>vS-GVWK5{sQKgvmKF z>ns3Zc@+X6Y?LFS|CGU9gZ~{nX*PvhoZ`L-wU$t1r>85^K*2xY$^nZ_?X2eq+%8WE zCUh`?i~iX6eeXk(VT?L4NU01pxm>E`K5S0sABb?zs{Ldtj>{C!9e2e>;(8}6-?Ab( z^oW;#EZ!Rd?o$KhtPz#VA9_4GAS%k?hm;dT#23-Vy~rqtN0!XplK|bBwx4KE2!@(! zQ3e01g|Nrrxy@UB!ea-;(7Q{m?)zEW@vyVM1TH}LX!SY3|N4g zFOeUy?G?V|V&aRyA8u2bZN@P~FX8V)VG61tdXIiqTgj#DfKyz5Z?tn+j^C0n{TtKD z{I-GF5r!Ch?dD|aRyX*A78)Oy3tY(Nwr%Rh`pPpY*8&i*=M04t(__;t`r>2d45Cbd zioPZ1-(cU*tvk#u(iBD5%F0qpE2k}WR3A(*>Ph2l17X#BEQ@}aS|dyqgIe=YlbcnW z97mJqKZN5A^B-mXlssA9a{-EH`;2-TDV`@>td#3$4*|Q1V6-xU-XiO_cp&i7wA-0)ZSqf zc>2}Uey|v32g1CUWM&@@M7xLop4_R6Y@a1Z?5}-2M`D27hvNKw;#MSoibP+nl%(Yq!o-N^Q9-_!0{dAUnFwVG2<*uSZrrUZ`D_3 zuJ5=P&UO&u>@Yz95uO{t+BK()qQXU}DAIHp_(D$vL=|&O7bv_(Ifmemo}LITx3wST zUIr3`pU@MPsCfal*9|nAzFcEuaNkxFOC&xw>1ubIQp>)saj&SuIL&?!=E_Ud1=`#7 z5%hd!Pu6H)jd~@Y7eTZ$fxVh6py8Mjx13+hCWnPf-LuP6D8J_Fx7Z;Ry6%3j3Iry2 z=}lY(SCX1Mrc;HE*hv|NjBR~*vQZ;E5h&FH*!zoy==Oxl)BF@i5FWr&)2d4uWmm=H z!cbN?Bs+}Fg)UTW4Ks{}H9AwjDtTf z;xDBXM;*6Qu2S8nr{)S9{A3-^ea61INx;|IVRFy`&b`h*QTi2HM6+TVEk6Gf&3@N& zY%E;%Je1+Hvunj)GlUQin~q@JXo>e%JFGSJTnF*}&Zj#AG2OfbdWAMYqpkW)qA3{T zWbfs0E1za-BTj4q+^<+SLGh_|;AvT!Q>k zu$?cI5aZEh_`kCT4g5UG#_GGg2{`azcCt9(%s^0QFxe|qe@ljk9|^U2&J-danx`P#m*xxMU>a(AAD zC7Tf8{4-brb=PH|rZcwt;l79*Grff|W(8Yt4eadxI+ShmjLZEws54N;Ri%Fw<%3+} zkuOYPp^k`AA1POj*9o!}hszbm%uJ9O`~DR9C184v@D-y zqyWa44ZE{XRm~fqr-msDmF1&D|3CX9+?1iebu~8`KqrVL+$A?eYlSnr%nZ5ux3G`t z@CAFL2ah74s-UeDAjY(%meIEccUlj9$Hu&0i2V{nzIoU`ACB~4#r`H9zu~hcg#-|; zLWo#^K97=C!Xx|K%_9g}ZF%sH$^1cLgn(yLd zfI#P_qCJBGI~R@dFzA3~lPwk@n^u|n>k4|LIsMx`6?4OBQ!iKNemfnFgVH-`TCoe zSLx98z>(qp-`8vw;Duu2I)Hqi2Y@HkMZ;>jFC|?He}hnh@A!!Z2dEduW3_W5FlWP& zjk?D&O0?$+(P0Fl8g=HrBfE5O%&{^Oz135zXjsFJTYdcD*c6~VaY*{aiI`1?rl`#G zf@vkN^fQP)kI2>%STqCPvsC319Uq`HC5vR_ij0l;z$nzcYh7Jpf&$kgYY8hXWNe!A z?z|5kKE67rIFdejbrK#iHO!-WqLb7hvK{*& z1E*8T3mz8SP8XGaN(W1P{A%_9|8Y|ukicgR=4s!b2y6&j+m&(`o1+i@_YfO?2M@md zJBZqJ_@J|0Yh|9*`Eo=2SNDq0DfJ82M*Gu6`-{DdaI%=mkoAG1*MB$Q%ck#H?eLwq zCiMCD-&d>gx*wGM1b^eOS^4%IS7qhs+qlz3`@a?xKMzlbbyG_-^BP6&+v832|8!=~ zVbc0$sb41Ba+o5o6LDlM%;lFVk86Z#n9TXQT`KhEo#4jz-%*vMu z&K$MaTViD9QAz-LyE&r8=tZcAYkNE;b~1ACzr>dZ0CU5ZAm(KC%%H%NbG>;RSPpb> zx=O_%vTwWDKF+~$szCKdb!B>jp_y)e)700TQ zVVbqslVfeTRe3UaB#qMW7B=_E{ihE^EyKMqkmEOR)ed=_4;dw%?;}{8Z`A8QAMIW_ zKHZ&Tcv(smDdTAoCnPuTF2X@8bD-1Hv)8A~?W0L==G?c8?dLz@w|piNhRKXEk1%-Ow%wi6T*(Fs{vR=hlE>wa9U7DBam8fNb9x+M4VI=L4ysK&4C zYWPavE9U?;DwRJ=0)q4bU*g?M-XD}MiNFBuiHeM^^)YU2CuviR8tVv<^O5|cTTbQn-Pln?Wj8ApWi(U5b%`=59oq|PTng!Ndb|O9D%I?#yV@=)LC}(EKj7Q) zVfi4yALdI?U}f(nQgneCfm)SPR~-Zf$Ds@@*8%IDCnKyRAo*#j%>-Q=Am!lJ3L$(M z`s_JR5X!FAY`hvsW&-l5`xSs@6s~C34wi(0U%D_CWB9ydYSQhhf{7y^!1Bgr`}AT; zY7{qBy%)9U2OiLT79~;N3X}ZrRz#oa-i__199KeSupb?dkV+?nu}9ZO_mMd&D<3)2 zJmMPcud48mQS#)gOiy5Z4};DzCZUQmIlgC_qheLreJ?WcSEc4$m?D%w%L(FM|FSg9 z#Fx0+jSJY8S#8VY<%2S_we>h*^@TSA5LJV|bSpuveuOR06nt;ifJ=OX&?l4sX-_<&+yGT_(*f@;Qh>6~~jpFh3D^Sob0IbcW+c@XcdO*gI+GW8Y)lM`V`yg`A?w2;4071rlCi+>`n=5Hy5SD2ouZtn6A2!)Mhw*@MR4^$lU;Y_s;T11&=>3~xcu`OQqu63E6P_c9M@txzO@p9ljKVK} zKYc=qD{xF0LH|In6XGl;YwSl&*;_Zn{51%@U^qq41f#TuX26obj{b0{~+UJNi>PcS_jF+qu?TBy@xNgHX7t1p=9_aqs=Gpw# z7CNxHj)Vu2ZaSxgrze)92>)g8aj&xVBv|skv(2Madr^GgyVR&Kl}Dr6<&&l(sd(H) zPC9rY2D9E-Z9&!Qd9Gy{s+-NOx1+&pLlY?r~6*_y^E6mQ*w zK7Fz3;U+E_$Xe8sUZ5zEa=D!do{?dWvdxR13XfEXeYrtVqtQ?oJqdrDH-eWa+Z5yp zDiY5!`$%b?O2eU{aMiD|m}$WFD1_@IV@bO;xO?2+-;KF5ed~U-*sP3MWR| zp|ZM~FzsVVR^X63pWQ~Vg1zP<|zf=*@(1|$fcK$pyn z)~gk1qM;mrKQe)sIPgxwrH_Wns&9}}Wfp>Sw2%K%p=G5^8eyeza^3)&wya1Lfsqwx zp9+)Zp4U-MZmOvpt>5k0%lEp_$ALVpY4lCp_Y&4d*C_j``zavHfUEVV#06&%Fqc6R z8y)2x144ADM$e~N^Ga>?GCv6{gx`jhhVTQyI`-?`oiA~eeVjnk-*S~;(@I+SYa&<7 zw23p(r>^@4v2JC3kr)D(EZ$o-C9e9rHHXTVikGK{f15@*p1XWFI}Fwz+GOig;f>)9 zr1jlFT-$VuQ@mQ2Y{;D=)dJ#$AAe`0+~``);4970MRv-&A((H!7@g|k!A$!Gl};I5 z-1UBrcU7DmZ*PfxRi`tCLHin7kYj%hA^!Lzy0l}7{Nb93QRi3AkH$870bJ@x0nJOMc_%~ zl$&lkLRf6-$A#m!^VQvPlj;-}$!$688KD8KS=KNdIG9rO*#@RGpR~17E4g~vPZ(>L zoCP6ZxwO9|h+ZImjCIWJ?k#Jj7qSfBp2*$NaR9JT#x#2h+*c)Oy_ga~NQ28`RnNfNo4Pzdf0ok6Q#L;% z4j-T@eclM6k)XPYxu32y?4LUPd{`l?^ zteAWz)*DG25`FfU{~7r+b=-~P2Gx%An=Zv9{_>0F{hRZus7*Jy?-AoCWLTBhitM_3 zXnws`^zk?!29I^hs_h;WGZ}y{_~w{L#ql$;D~UPhaiLhrayvxd_u{?C&&XGcI8g${ zbe=%P$G}bZ<<$=F+dIjQXy65N8J_?^1eO0(BL0p)F^u2@C6-OTyD!dy5 zbcPHyysVC8Vr3eZomTAM2dLMEV5Gp)|UgditCKy6x-t#%wdWhI>Unhm+y~MD=#-p&^3YCQsY`+}|C?j9s6i6O6*3o`U`H8O=I|6TZ z8@xf%{sOYOq9s7KZjd-l#@GF>MCX=HWBGMiqOQt9`oc=Kx8(P$$YAZGQ7lAnJtF!P zYK&AI%yX9<2@=3{H*;}>IhyWJux9sGM3ZL`BPPFdWkN3vf3~jUssQ1bFLp6USH}dT zFXR8vWL5eN)CJ%w!L+I->%13ybm5Dn(y_(H(JhD{u}tIhOpl;xJ(6-p*lhn8sq|^u z=FuuxE=t@Itcevc`m&dL%$N{SES`uKl4)z4IX%}$4=jy*n#PT%%u}G0_%1didNMsT z;%a$%n}iFtPlsx!TXM1{i4y5PlxNC+SvFtu$msADGMO6B7hdmI6A+lsCYi-hwp=J7 zjw00mZmyguR?p{XN3yaNvvHfX^{uumU6ah7?n=FSx`ru(b`QtDNzkUL@A*H-B>ffr zUEG}pc4~?ATe-=L{c&>DU`<5HvPSoU)4;g+*F2n;^{?%dUEo4?1PPrgLt_1-QKHr6 z&F~)2?m&mnpUOgAKfek-+ew4QIk9atw$p}z~ z%hBo33nHXk)!MIy>Ha^t8WhW=T${AbA;(D;mMNj0<#fLK)ike+-tc^xWguW45ngtP zs7rLscO&V8SkFYdK5@+)ZOB1IG}j(e$E78cO(GxO8F=p#DpHK!$&-T>{-b9sZ?N7H z-T&DVEfN(4R8{9jLR56O&c1qaT}>?~fAp#DXRnpyj!WYqwv*0tO)y!z4!E{;{4+#r zaKeJWAt)OQ3AFrCQ)}~xWxm=Etqs@@6z*~WVg|{gzsKlnubv0^Q3E0Cv0*iJ>I>A! z{1ES%8e5O(9+sz?og?C{S}0F+VO_fT`nPCVA=I1ARwINSaO#Ai}zia2gicpWl$J85Z<_1Yis)g!d%F=I)eW2Jsty-1qn4+=8TTLcR3_8NvIim6g zss|WX2+G8h{=hK7obDwqaIr2WgYGln^t(>7x^`?qdXYI{PJU0d${5 z@1BF%mzn}ruh7(FsUZxww0b0Gh~O#jEoKV;<`e{F%+KkPDzHpVk2>PMS=GN<)0EMg zWxP9Yv0z=n=DF*tiOr*r5UR4nCcL*0zLN=fUa!&|4o7U2x)*?U!kfQpESoFm3aY>3 z;KzUd1k>?$Gp4kOxJd{}#yTDGVd$}L#$i7Gq~dY!GAXq9Z~J%+Dm1*=Qt^AF`1c1D zT9u?aNmj|)bmhGu(lBiPgxGKNSmo;F=ZTquOG1cCXl=wB) zY4n5X!SeoA{toWHbjf3IY zUw~k*MK}am_wZM>BeBed`HE8Tuow{=2Mbwy$M1GUrFqVHpdHA(g_@qI`BkY}E>|2ybYx-jWmX+B<$Q?K)jj^y#XQ)7@f?|Co`qPS4^367r&z@3yeA>xCl`#NTdSpAO`@!ZOF z=;K=tX5`T(I9tLUoV`?EQkBjxB#W?fj`O$%j+hx5Ig-fGO{z!1PRF^H76OM~>uEPE z?Yp6WjbMt}U__`sr<{|V;i)0mY0Xkf*V{X<5W6(*m+DQvI%!_|gWO}Z?P=E3^pISh z9SkY&n}CFP0y#0R$NwhgPNFwKr&hMOEG`GRm@+OL0_k>zp;{1k-yD768khf&<3iU; zdXaBazUaqTf}+E|O}*6nQ~!~Ah9$Q5Tjy&=yB;0l2)5ou!ZE74f3^;FsOj#$1Znaw zO$c`QBn%xksB%X{d1j3GvW4cayeP{uZKRPsMKA4nt$*H@YfJV#-CM&z`|y%Kj~t}i z1BO749bdQp2uL=@Z&%Xzc1m!@K~|snb*RBh<0q>j?Rn2CA}z<8)vA&7IBEP2YoSP| zY3eq)fB*(b-Zm~uXanW$oteok5yp>5ALQymO`~XFj-Fq`V5{koTuz9MAFR%sHjvk- z+ioC!H|b^Z)W}jI^|wK-+f9aq((j9N&LFn>1^3C?|(wW?D!Z@`%qkKckzPnOJaU^|heUbhE zk`?>beY@3W7@dD{TjW{iOW)&~6j-{FdW{!VEqM(3RoKMP(r6_?V7?AQ(;WG;kwTY8 zPZs8nBZc=OFLguw6lO#Glj~xXYr9FZUnh0?WR>eFZi&@Vlw-EaiC$)#9d`A)hz)^vJ_?Q|4pGk2L@|eZ>n>82ojNp_>vZ`Z zeY@}E*Qr&|&Q-^QEHXB1Wv7z^wGm)FEZercXB%PaURKy8%kIK^A^kF1#5V+V#FDuu z-j3`W_5E;szvA$qOlJDIM)_DB3)Nn;a5efAZc1_xLUua&0e}nwMErpZrgozN4O&Xd#?rFs*Wfza%PW9C12Mgryd#QGmtlA+NR^jMu*zwQ|4Oaxx$ zPh`K~?7iX*H^DlwBSV&G(b@<~B+Em5IXB)r#-?h_Azn#sMy zP$V_cb-N4flUL9}@F=3+G-20W$$eLG(~4DVNeWzBA3gNLX)|k$9u?V>aEhJ@E1Ik{ zqOfHA2hVyZ-~Nv5C_>m31SuJ*h|g(dhUk_F2bOTlcF7~oacEA9D}mp^S!uCw=5YL6 z4NKT#?_4=Yl>yUrnzITb=;SEB^aAjR6nK+CZKWmYc2bH=?Ao6Dz!?TV!Kz!x@@f}l^Zd%i2=><5 zN3(w4M)(v~rXech_T-9n)O?|_dbZp+;S*E4*>Ux<$s$UsE@{m5(z519J@5&ge})j< zWkA;mG`gu+6%oXKVr_IE|){9YQ0Oed^MszexCUt6I~ zksoe3MbKy>OY&qmX)%7f(##N(uXFq(arlLx8sq%A*(GaD053Pqp0<}&eZ{LnHTuPw zex*Dz+70DWMo4r^?EbynwM8q>IwS94d%EP=#HlMCp~i>;1A$YWu-q)d7ui`hAWVTE z4bAD4XP)-6?Y_;X4IB&KGmJ4Z2pnI?I~})zx!UwPFRq2CZTJ5E-lqlnHP9(@QIpSK zw@GAHAi~LMn)|j#a}Fo+B=!W_5P2ySVZY~jw7VonGb;e~KSYV2|I;%7mHDkMp?D)} zAEtIa>WnT@s(+eP&Nn97*+o>s^Jb;F*+tcA8>2xeV+v{6D+eHEv zM?%BTgc(ekvfS*crUoH{<%lob5LOO$t&Ip;tlPr zR>vdCv*kAsSFpO!8imBW;F4ep2y62Dd7)dCtM)mZ-&Z)eHG*GD4w=-U7JKNj74=-r zQOrP!9s`E7$aD+%bNZLDH3Sr58D`SCL;Vttv8*~X;T?)P8XDH{uLsnR-Lf>PhfDz3 z!C$^{b0vXzpNGHbo^1c7e3ez43w|Kv$d*O?kKQjF$jkF8>qy;H5#!U?HJlY^?kgYX z0S=`4*>$=NuvJs~MJcE=M9|quslN^@za<@Sh^|&pUOrALr1D(U;SZ@yMxi4S8!fcFigsvC#cPd zMr?uFL7#2DS6QT?pWM<>u*5R&@1j&fJsHuw3nQ;2O+-+U{G95|u3*Fi4JgW$3XQ(oks-coV z)pawyCVyWECKFn2$hV_PD%Iet(640K6$YPlgf%;+p*}R@k#)HhxPt1lRt$^$CZa=l zyK_&b)*~0{@^AZTxnw~!ZQTo?_A0D~uN2QI$Tr{FZWa-^ImLxK+bw>NoY(-yp?ZI{7wYj@sjN4xLSqSR zO^RIyChLq=8NRcza*h;wU20)8>VouH?3KD&5N~4H@pnHSU*kbE#{!Z%xMs|j4*&NT zQBN>XNwo1k;n6)Sd>yHBHkkg#1Vj&_#dr^R3J-v{{)|`RrE0SoU{ff2XQocypl;V5 z;Ly|R&@Hq1`mq?CsA+$56RS>b5a#-=wW5s#Ojup1Q2!Y|J05YExy&7Wx4!y z)%GP_A+nO-vkJQ0Vx1e+Z5c}ZY0pKeG?c2`IEwO1#jykVfEJy-yjeQ{LA;#hV4ZHb z%W*8v`U|@U)gzl%`zOdG2Z12b!H5qI_f_LJ;qT!r0?sZYYson(X7PiS*oNp$?i0<( z@4+iMoNB99rmef&oNt7%uCHQ8;bb4Cx5sp~?J4xI?g->AZUsJa(H9tr)1(8bdto{e z^>lMO@JuIrp|#$G^Fyv!K?C_33BuClTJ*fjn5wcc|RmC^euxtiHL zkD+?Yh^v!%d(eY2F{n%RTwGco^~$)&;e&SlFf~x69!#r-o(_oT>m}G}F5+xb$0%q4 zX{Pv!PymFTIrOITE{7TEqBJH)V>1TK!FXHR&jf(VBB2($rB8m1PYRgv5%;V8ZM982 zL{7wqciwN=xIDWzOv-md``?%Cc<#a7EDUtLdO6m_bK9ifM6AF?>$BLsk|hp z`}Lwh`j){nnxR@TmF z)0u>r=GwN*RkAMt=Y;2;U9#jMi#n4rw6$*Jx9T$Qg=~!LPY5A(l^c{vP}HBGh{{d# z)^!N?h=C6zBKn_`TH9-AJ1^AegB%5_ZlRrMj!0)kvUP$GQ(o8LJ`6i0{;Xo{V9KiM z)(Aqk-@Mza7Q6~viXJnNFbm_@`1(z#W@Hj>ee84PvBSE%*!%qq%HeA^0WG?8US0h~ zfBO5MacJX(qvPD>P~7*qzH;9H_t)r-M{w0g>S@atFP{O}lEG@#ENoaqadd8S6TFpS zx+oGw0bBy)6L-pxMbm^l>QZHMLpz3(`vlg!9Yt2AtlJPZlGF-qD>E5wVTtT+@A1+^ z)1hN46@3L$u9Kqlrl26YB*>{xl+zBgaOTTfb8Tp6#w#z?AVTUI&5G~Iuy(I$#V5@C9PdrXBzQZq-{zkc#Qc<1Q8_*f1dWuLDJ*loV3hSy-?!oFbbMWj(8!nA^zy!G; zmL~9$S6=%c%ar}Pebt<)f26cUfXE~2{dv2aPba8L^*@H*4jjUI@c95)M=}=)U3&!G z?+>d=0gZpN_&6FTT$Ya&!X{CDiG#|}-g9ztwn{)?W8*Z?&0h3H`&g@9FJulhyS=ImWEj$cwxUU*Tclc&ol0RzP)PS3CFI0C zf3zb2L?EH?KOvU^QzCl&5g#Xgu#Vsf`l3cYWDCT-H9d`zeVCV4vA-|;tapN*tnjS>T>>Uv2~{<&A^EITy52z0rBiMOZzQB0 zT2C6!3icOyU^4#A``O&p2JRt{pj45I{$5EEwxQW|`kK4gqx~MoVpU~P(9&iBLrL2w zP8saT1auk~ewvNd8rVW^dX&7%P&6?}i!8*JhsAQTBL2roZP;Gmrc0pMQPUTl8cHYZ%5F0JYqS#p$k8?Go2k|gktNBS2L zFDkSzCnO}q{|*3SYXjE|+Eu?8YCADNaXG1X{vyNZo@7uAIyIbrrNZ~+D(MkZo~!?I z$HFgLA_B3miRbVgRLU6q77gX>@;7dG?Os~~UU@pM{}4c@&w0q6XTm z-DcJ&B|vxkqT0#mi{4u4p3iE(a8(JM*d1=V<8hT%WYZZw_>iSmmiCB)Rtqnabva>43QR~s@q5CNYa;1?XrfFrzkSN5NVxzk`X=~!pr+}ErcbP{fJV%y{ zNAFW6PsCw49!K|UXc;iRvhotW{=9f;77xs(zDYGlo3ko@TzfcQC~!C+w4R8Gew4+- zQ7GcY$8{Qc-Hli&2jZ}$tajDEWH3o4YLMUmEc<=rFqxhh zw(OvciC`ejqc-vHITjf#V6VjIU7>k&s~g#^Mmmaatk^<3c%SH_Jn9$#5E#)xO(GYT zSV7mH-y^T&|1+{eFu0?qAdMdZs1tChD32Xxs|WffupNW5V<$Qi=zxg~IfNNNCE3EwAH1S!tJKC9~UDP(GE}nDv)p&*{~+l;5iS zLeUoJXsth&b(kILCf%;xcA^URbGxu^mgdzySbOoG3L{XdQZKg>>Ou>Uhy3OUm+(de z8|bvKZIuLQ*DjVvV9}Cnk5jE72!^lv>!qT9*X+45odkM$#5M8tNr#t=I&#qc-m>neod&NS z?|vUztJw?(sYI-veKtkIp^f1DVo=jdYVk`n^mMKr)owG)w^E0Vn{=i(nk*{6hIqN# z`mBME-1e2nDmq;B0fb< zdT61Bq&ZiJsAYHaMh^-@zY0%ZCJD8FVzA)USu3Io);T8HhtKrRh0hDtC|?0VVEZm`jO6*| zii-aY=7)$X;{J8han2l+5)~{7SWY*z`1g4o0Pufk$o+8{&rcRTq(l{y$>Y$Bsm$94 zHiqfE_KX5P@{A-5|xM296?>sOXyB9#(DnX07qa zn9!j8TSUT7_uN-rqF{;=rbicil`AkIs^7%NvQ{JW^2rDiQZEn|%KVDPHPTEGN%OPh z!C4Odd;O~rV-8*pl7aO#o^79CTo4I0()iPz54F^&_R%c`<)-`_epuHWmqXGs zgn|G92~O3TJT~bUkZ#91eR1pGY?;h1*K~$qCZO140G@S31e{(?d~w{nwk$6oM}eVY z*}6PAhnhzzSdn!Ot=z-1GNhdN{66@rY(==711%x7dsJ%WN|Ky(mV${mQ;vZ%k?uy^;QNIZI2AK7Y9umyAL8#^E?Pj9<`9OB>Ap z;=h_~p2G7&#RgJr!An8}g_Cq}#J>Tezo@(8Nw?@(#~`;+JC%~g?42Xaw#-$pxMmUF z)r|)`Mw#r!{ARIQm{(d@V?V^^0S6Dlru#$xwkgHK?#+@IVcvW2w4bkVgdTQy!5AtFNB8RGhaW>K>#WJ3V*1Yk!6yEDehgpPMsi0l_M7!OI{eKN;@k&U z$=w?m@^CYQ6TIK}U)cMBcrs9r{(mq-3{hU#7fBQ0rj;={X_GBC7dLUDuV%{eg0^&= zrWQ$g1{zVxv*pL&9pyb$5X=3V$l+8ZdD!?oE4qnMAq+l%NNa#%$Td35m9~f-b zD@%2cQ1N_afzB_A(%vV(bxknxq~ZQB4}qwMun?iQGwN`iDI&T{n&}UM%nVxDRxL1! zE_w|2IQFY?bU>J~AFY204cZwtQ3D)8|4pX(;aq>J>49`sP2g*Q2+U%2KQ2x!*vsD= z=8@?|cLWeZ%8>TM3tnBNG68?!GBhZ=8{q4>C988Aht0|x&;^w?`N9P=C9)JSvQ+m<_GCZ1&cHVaO1sIYg_!X5-nzJQvG89%@CGZ z63vux*KNyw#G$)(8rf)NOi=pbs}`H3RH-wPq2Zt*qYRu>(};tVjo!FDu}hb4aXgy4 z;~ee%8!BrYBDO|!CmT;o5;4T^wfB!2j%DJo>6bDNMAyBU+OSLms_c_P-z1`~jMS~S z!r}C^*{Adu@&X@RtoL9<=3lcaB7Ud_BPz%L zJ)viQfbQ2Poi7eRgz&e~PUTUJlxi{{3BSoSy-L0J`C)F}gccY#oxLWayhpA+C;RPW z`e?WC)YtJTn7N-NvC2fOsbb=b)NlaLSL(u3BD>2OI;xSzSnZKOjNmtbnvRz}K2Qkn zg-&(KZa#eTGpH$k%EfUDg7H9ZEuks==`T zmO#-A#DsqDaZhXmO(HQ2-A*=ENb7K(_JT3+6LW#AC;unCt+Gwq?0t?EAt^i2RP#zy3-sa>>5CKQ$IyYDM?ZJ&&#hNINUS7oBzOpFK6i zetGb244Hm`yZ(%TGp+s1G`4<$Pbj`lMpx=VO}gOSLwRML$<)uBTdAD6N03EY!o>~i zQ?cv-WOEQ=nZIn_4`UE*1U~6lo!2~at3J!S=Td(y^UI<&khyseQ>-5lLigKhA{|3z zdf-J8uHDP~Nb%M&gv@yIqHb*=qGn=m#b;h9<$`VAvYu>`TNzokEwYA;yIl)- zb!z0HPO#soBlAfX6-wQhU|T2p0*ck@Z{PTvNLm6$;a7fYpR~^r%vUSwKzIjmHz)#l z-N>sK1q;e@HKCYbeWTl78Hpi~$uaDTo~_wtN*YNQ7V4DdphpjGht=>c3uq&cJjyT= zD`d?Ovp{7!0lh|Tdvoj8T~{uWXyCqj+S_v8nhWUOL0(`2j~vS(PY+AueP z5tfk)uK>qJnsgdyn+*gwRX>q#z4&WRb9ZD6^DO$R+x@@uTqIgyh8J&T&d|B3%fvtR zHCxv-TYU^0et_lTC*OmNQFX;(07YlXxhYBQYc%1fL`-jhId_$krR6MmzhtED#4vVT zO@u(^!8!mq-RL|Ti;xqAL643M!{uq^ETO&amVL>hfgW(di|Q`@~bGv zAX|4lqYT#tmGwg;$gN=;+3ZOm-%u(=Hp5g<>^JJQeY2I&P@0C2@+U84WS}tefnv%^ zruR?C^+p48Qb|yfQ!YDe_V}~;k;ufOBDHQZlJnVUE;Rojfwge6h+}`RoZ1x zJkTe6O^0o2jQw~n5^EvNai&wX7Cn@dViO57u@SQIWOpExn>_KQk@Z|*G_A11p=huu zEL@bWG3@I%InfWTNtHR5(`Mr@%*J4&8VU51z>SX*1>2tEF^|*K0Tpbff8ffY*U0@L?=Z_B;Qg?&gKgyaD4&F zu<1&D^ygG%m=KWpmvYHkikrLMi5B}4R-1TMxdlx+_S$JKD#oB}XnAGw+J#%p)CBX9 zeZLYUEU$!8*V)L6Q10K<e#<hW%#lC389lwH88(&`db-=V7%viMhChf#&4`Susb( zxF-p9@UbSzq9#O0B;vBl&!fDxM=m<#b?HN&EpG zM!ta=lWZ=UcwB1KxEDkoYfjUxUOfu`^OBY=BNP7X1pxW4LH}~UMATWSUo+az_g1Sc zU{mhY;F_-f?v30}WD%65nAoPX%rxVFq6yu1QPX851Q(g=)EwRV4B6s$pPLFW+R$gL znIAH8g6@hT4IFMZ{h-_#n3TUN$JOEburAh-iDl3db+%K z_t9vDm3cmZKSTddzfzakogpn5ccjNygHO12Np^&DTl4W`yqyPl%jnTw^L=l>38h zq8MScWh6Eb^Zgox+DsNN8-P&rU?$3=T-ts1Gf$` zy&Pwv>*$7!Quf#sMg~`n>GkMAWr{H6B-x+Du~W~cX~d|nb8QuEIL|udEV+|?a93yI zE4gxGcglk~k7b-Gw~-LPLQxJiunj4VhZx3cavrV6aE4~(PamnNpw|}y)L~2>VpsxO z!{lv?$z`p!CxY(VGX2ks>g=H&t@DY@Rb4BpHx!Xa@_y~|d7$;7a~Jddc$+Zb^dQiJ1Fi`kNsmmFZnj z|gsN^g(#*tbJkDL@vep_!EUCtsZIYie<*I?)37E*N-8 zBmHqxlqi|$Z@@{F$+IWy4I>5$3Fcph5VC8h@M8WBeS8^ZfK4c*mhC82t z<8-F2qlvK06ZkB70m!AmPC@=F_MN8&W1qj7_7b3dhsEY%havaIBe$SqztL~DH&vyo z>S@XS&br%s&Yoi$pMbY$qKI)_x#+kNF1c8NTz@Qex~&q8P^5_`wy-%c*zY78gxklv zL9w2XlCvBRIZ-5*A|i!Gil-MkCn2fMbgMobOIdrVI+q6Ss#N*)2yrx61RE>`LgCCYwG+y>@1<#>t z!yJWq<8~9JN4y9;wuuOnENZ9-eLlJ7v0Xy5zXEHx8^FX%58sWd&E)@kMQ~_O7oeA@ z_<3z=!3q9$DQ5+QDlmkNWV4I3{DHFUcwedGE<`yx;vaPdccW5T6`NEezcg@L42yP) z%{RFdBBdAORxfW~{Ge6q-K7!)VRnBn+}Z9pt)m-w)V@J-2u}C4(?D6P&XhTroV4z% zR^Q?z{=&Yg@r^k@svp(#WqpuNL`pz(y$1@QP8`Y(z=&aA(pY4fKjYbkTa#`*EZRTc z(jmO8u6^wF7*lyZMUTLpHvZo7u@8rvL!nKl@J(bsOs09eDh^s$In~ShhAP!zxTOEck^!5b&!s8l?Kq{ScIZ~2zu zl1(0Eh8uC{<15r>02HrGlP)!GLUY1-F{y>Tx#^miBpSlZc%Q_1UGZJkaeb@kkgGMo=n#1RJYoOta0-wY-O=)Ua|K@HU#?1&xb`uif# zdQS62p@A|*-;cd2L5s&2q59Z#u9Q+YWOucya=)vX-@laukaN$62NGRd&R2(!+cR4$ zHM*zoNv6SW^ITXYe>9}34u+Ml`k~k*+gX1>zSqf&LPiqAZRIt;Zb5rL@5X-v6T)$X z&(!WOSCZT3sE;5@=jEnscBj8qiq*FUTP`kl|G6w;S@e=opBsdGAtxufNf^`>E?N}v zQBpm*0%m$-R(WSeKhoYmydzQ9Ulc0BTb=ku92Hv?mgd|R%9@U%9eqF|UByF;1odc! zWPLwNh}~Vt6|Ij8mEq!Le>kE$;48@$Q(Q&#uT>Y=ELadu7u-kCm@=5j{J$-pTv#v2_lcp(zQe|_+Gmz-VW-M>7eSWC=1h~E zK(n1_VXPtqX9Rm%$Imy|&6AL-dgWM-zm}_O#f0Jc50s$k;XJ=UnYmmE6`fZMSpO?1 z;`V$~p9sZUUe&#Di1xzx-kizU2o3&srqE8XZ?t1XeoZoZ^BYvsIZl2mhViH#E!5(f zV-MJ(MG)+}bRpjdS&rIj5dXlVc1k_+a>-+t{x|m)-)I-m%?IU!_di7SoVwFXUQFl7 zUUGTuAPCgE2~rmnt5_@bVc_{hc#vMX{0)j4O;yUERZnE4AB`@ebCyBM#>22Zr>I#< zg3>(zqgFQW#e;rS#|DLsPO~ZwBalD#oloz%oXQx_D}XGjoY?M`a!ii;W^NnUMe{<- z*Zs#y3$*ixMM^Y5@58oac(5PPd%u%-!|K45=E!dPdYf+5c(poF)Cc~)*j6>>*nkra z3c8@!uJa?6<$4&0jWJ{79)r36l(L+q6efM~%1#o{)6jO9vf#Dk>$rt5hp_#`W&i&m zP`&6&aPVuO;q3T*6lu4c!o^v66jiPIr?Iwo7)(I-IebB=Jg6; z*Hc6>CH1cb7&zc^|9fts9tCU!$LQ&H$JdFQ^ADyg@+WkgGTL}~TaL!pE)1UMSQ?RQ z|Dyim&O~_OQ_31RlB5$N;om}1db7)CeZp0zdAf>wrih;*N_u?l3A5W>K<^XrW|k&N zxsI+oxeWFtuKJP}Cp7U9<4z^{X1b^-knld( zcE}ILA5Se^dgfPHbH%Ek@Bxq|OIAb17T`6akUzvU=p_csdjrK>oh9Q0+!c~6!{8X0 zNJvO*d;f>%);O!Y%CPtl^}pCIFVybmAO|5|AJ)Ix=0?<>Waw}ssRI6%ZcN!WR~3oD z+Pe3lTC67;$CZk2gTu*&DwMj$6hXC%l~sLB;)lM8b1v#ctL6zrqwZv9>{h5ig!i(B8jB+|wPJcX_X+NodxWb~}aTS^uLACr#&NsAab(Y^IG%MJb zWe?r@s~R%cNt1VMTjgV4#gC84B?6l-uVqDX zcCSf6ms=#NSp6=?W_%Z<{Qw{D_LT1l0bl%PK|8BepFwuexJC>a^o4= zTG(|GKYE;Aj!f(Dr{>HvyV=}(DlVKf4lUq|H*v@Ogx*uXpDLzzb ze;^{3s3O;%_bG5nA#@DSP2mbc9;!8#-sUvR<Hdf_{D2rwwDljf`Q_@!uu0@6*vXR?uf^~fM0`3IuIan0}t*R(6P zw5VrcgU8P!g~~GK{*t#9b5|Bmx{#r;YHjWvw(ou#cvC-x$$|*uKW{(zJ?~%H$RL8To7V#`E&9(Ldx;8XeQ+d5JdQ{C;VWE=2H&Bfp0uVGhs%d56a+zhU5nm~O&6xF?m$pb_A zkce#-*<}ky`oDqSxaHca<00x2q3JQ26_ysgk5R2H1D3a%kFpP}$TS{j>mAvW$XKin zSeU_UH|%fR#q}EmGOaz|BAHS?;_gssD01Q+%Z(OBN{0|}p#j4To=+EM8MGim^w0&! zBbi|R($xcz`k?+a!k9r8bxDP?E9=K29gv4&mYuTb=a;UUt4zHAAYXp7jP3Xg6{2*`+zl`#q$5a9I@akS*C8`JoKeg6II&sa5+u4S-jkV31{- z(IVR|#cz*-Wcdfji~j#%Fp=TC&~Y0RJ9-E1i3^p2+HxEbLU_KkZnE}N{oZ=NFO=$c zO%Gzu{FQaRF1r{ z?|CIMU%b%$pJ9gOS+c(>sceZ!`#GigL5=jt`p3Ux3aGM*pFn$AmajKKeb#Fkn^U0< z4(kkfo=N5|4v0m$`HPOr^B)4r%{;0}e@nKlpt-vjvh2#d*1SYRs+j!c%lYJTQu(a- zUX6T-U6CNxiqoF6bz5q)0dav*!ddPJ^m4r7^S8NOTJg00HWB53ae7JN)KoG!b3*(x zN%-%QaQn?72F#eM!{l7w#HWhHOjYC|=0R8q__|f2l5C@BGS!9P0y+>@{n`0Ijj&iw%BiH8c(9NPWB(CqnBD1wK}F( zr3;>oZ6!b42{q19OuKxlusT1~rQ;SZa2Zs!4de6qi z+ois3I3AD$PKgXblvvPUD#GdfwQa_we6RQ|cbMi_Rw*aisl`*PM}~jKW;q`lVioK~ z7s*s+efgPJHXo&|fP6~$0CDeW6@hxMO?XKBj=-%TL^fuIZsm$CK~8!QkudJssB*kE zgR^}fl8L&)tHH>w$7g09fHsFe1zr>%f}5Qlm)7&~4*T|F>W7^fJa}EsH$-c%9`}%{^vh3e zkHq!CZ+9EEWw1FSjUAOdmD;p-fHuFbZkTitOsVWq{Pf+gIb{7g%CpQNfuao|=rZ*p zb6c6#&Ypr!!(J)lAMlAmoYSJ`acs|XY}>%w?vqeWo;h1|sy)GqLzQpriIi!1@Z=v^ zirA(f>8|X$2GVWKPKrc$J*FZrx2r>jwzX-XFsECyD}qRF@B@B4yY&In+Qr}B!D-R` zKZKw9P*=c#4>>|UY9bx~#U5B8(Vh+}R^@&~?kSMh)@#qzK7FGLVZmT3w4GmI2{sjQ*=T%Ik`$R+xXt+j zwHT1-#eOuqB8=wOG%wvZ7K_G8N)B1BBjmrR5lC`%DlXAW^_v34pmC<;;gV$HG64Ko z|1%-ogO`P$dAdTJmI8Yp#VUM)^9|Wy+)A0dA-!rP?x=>2(dx$bqqGbCxs8W8;`i@# zzxHxKvj&21!D?+TNp!Q5R23Doo)wE>$ey3_5Hrf}AX@vZM6@OXNwRdwv~Q$m0EGHE z)M;@QX(C;N2k`kQJ<1&E3_O#$$V+oWV^oz3ycSlXAD7XtbY(qFv#{tsr_baz+wlCb zf9jG#0{0$17eVV_0O#NGJq&Emd%yh8a96VLdaAZvx1kshj`XNK~aB5sIYIj90m3@(HX@+rmyAce#t9eCjx z@Q)>9%mf$+vK<4{bJkwI(;4t%no&b#_wXp{r8iO|o?N({r=9pd8PY=+Nf8yvJ4L@| znBL-y^Q~-n^_yiG1LMGW>;;&s@^LY6^TVQj=O@G2CD_P&pr%+Mbp^alwE&BhJ-5j| z8vgs8Zo$970*K!>j9oeID~iMObaZ>hlE5|wv6{_4#I;A*&NUG2u;SgeoOL7kbUi;#Pw{@q{}_=v=PkQtS>)CyUnhm=y_CJ5N7USxL^h8w zhno+)N0U^|Mm?7(Lr65GP5-%SgDO0vUE@izi6lk#Z`;oDuc)%*5b)SH#`&Fnf0)hv z;LLggQ~!`AUOFD>{ki`Syx*a?>K*V929e1PfAwFK)XJ2#7Fw&0)TtI`%rrJ@g&cKyj1y?x7f$Q5dTC;)%EmsUJXT-jtFMVYg}*fZEn`zL(Pe*D|;)b}K{ zjciV&?=hO~;k3Eb*vNO&Ce1pe9U^)w_FY1=2(TtuI+b6P_j0{IoZT3f11KfqpA0I7 z0r`=k!Z|--*(1SB)je@vbS&H6P?mK1B|3-aMkc|nVM{-OH+za7;2p^NV{13){St1r z3!Hfq4m1L*4c)=D^r9Q_DgFNgP@%nkl^_+7J>1nC`S&&28W=>WODDNzB(HVZV~KO|+Uni4(m;L^3fIl-%WPogIOK z&So|2v@KST(IY!~OE_e}|3XubJ49tXEl#uwWYDXW){Kkx%Z~ph_?tw}mXkjTV#-^k zgbd;SNmDW*vOtMWG(@g=+L9GgjX-iaFiBeDjA2gGPGU~I&ksj+oTY`>T!Wft=mD0~b72uSGz%)d@Wn@}ovRr- zXN<7eruGa%GV02L^1fCgs3z=R<*zCDL+`Q;Fop*jSRH|B-_WSFnN+z@O=qD2# znhMAu*4o$t#c^;Ro37<4rzpIqH?a}Cp64@N8M{&|jIcJ*qu;pLqbHM%IY~aH_&)i& z<2OSl9V# z1SZuEW<#$_#46t9e2&+54i!6J3S5@CU24y>u!}&ztI5y}|Ea7LB3o`CH^oIEF6s0$ zu-Ok#T~&vN&MNm(IO=uP3eRBv!h!?3^@LVLyEbNPX6{1)dh3;pH|k4nddJb3CQSn` zeqmwx>ORftZz8z*;0_PEn|(O^W2WZmDf!c30pY8nj$ey;Xf=GSn;=vnrF$7fa_jp9 z;ftWaD{guEAGdQIrGZ;Ujx!3cTsFda{wB+8zguUx=bOwSY);#wcF(o{J2(oZW)1mU zulSwm!dF^l{PcL@yGzUwGZ2UgkP9E0h zVA4AZ-wQmj*PMUjC3qxRKWGERwrrIyymg^Dy=OP~MEeRxbGqYxlC!146n*7(t}K5a zh|3~3e^S9`Gw-1{CuujLzt(=a43SPDrcvA&Le+` ztcj#(9vGNa#x9xVxHj#aOb94u>xUgvaux>aQendxY`Dk7+{)6Hu-0qUSAu<>;J=QY zeU&Us)h)H584u^|i@m7%6F_j@u@$=zzoJd^huqY-HX98h-Pnix*_SvWcDoH4bhid- zROAh80lj!yas2V#AGN$d20DRLF|j}M{FZa&q`^KoJKJW1RCy1-6^ZiEB)WHzau)t{ z+)-Npd!>Qqe|Hb2;+Fb~w#S3Jd*w<&M63sO66K=|vg13k3l|%&;Ere7c^f8Lef^g7 zO;os%fJE$zF1qtOe?c<)sN*_GbaAb|ZP*5k>k|I(1{5s?gxx{063s%buS&kvx@NS0 z@3l9XL<*U20#&~AzgGFwpNhc|QNSHMsOhiSUcJiKBhCCI#H{el@aFr^Jj)2yRk3}t zRs_o)PhW0$+&Ilg-+((mj>h7+V?JYs5cm~`&VQ+_;vdymBUj5H$MzYMhBn|wjyBCo zH-891o9$VeA7SG+%86YcGk2>&C3a;|2O>}Xe=`D9&YM0$)w$E!rg+J)F<*sXFByz; z=zA!W)S_jKm3)#BEfhNCiqi)UoOs;vb^rKYUAnqp+4*tp)$5M)@vy zuqLjRC-*#oCEwPPnp1V-m+JjKQx?_A8@@q)lCdYwk^@5e8qCs3&&Ru6X0A;3 zXu2URN}^<2=w&))DFAzhY!lf4T*W^-H%qt@cn-RC&Srnt6zf)#|C^%i8G;TlgYi;) zK>73F%0S@cU8Y)0T4or4bTn|ALXXp()B@PgyJhJq> zvNGT&E4B4f=}4$rSd4A(nY%)!-`9C^MYR)YS#f_XFB87pIT}Lqrzdk+;YW<(PwWb{ zqnF7@_V#JsWE!=PtCFUI$nKJ1C0g8HX2ssZpsb*4^uoG{WpxyHRDuXTzUE%@T)>@`tSo@78rwhGB|M z?w1_dRMWk=3O3!j{G`@&l?PhzFhHU>a8tz`C+fr+8!QU zvCZzUhY3}j4n11GN>WU~9UTW`iPjR#$tqzxJgHb>Rokn&N)HQg?w?8$WAx46S*8d= z2A9cB=9bf5sNZ%Z5Oh;;%mRD{SbkFHXl!JZcDpRxZTeFP2IYWc`Zres=skHP=Ns;@ zH!KD=mMW48wo?0L8U@Mm*@neurZCpKcA{n3gPIFsA+HX{Mw0_1C?)S4pIwy*h}$^# zS~hH765}sfFz;5SwcP1`dokyan?1H*+cb*^J=}C@sw#QoI_Yh`g`0;~h0W?3EKP`!tI z+#$YbH}l8W(Mgs11XN=pL{$J+mmKgRJS=X6B#1SG7X!TE+6 z!$gVNg(8oRLkqjN17wTEckOVnz9q`=E?n~=YUBU}@2W0|$3NbS( z18^hnq*L9Ho^Bvavs%g_7#}N|s2ZJRHZRDJTaXWZ`KVd{gqM*W)%e_Ew>Hl&TZlHsUv|7di?PDbyw|r{_ z7#q9lEG#te`Xv9FzEo4LS^BKG^?DdTOsV)vgD6YeV|Z`}Bgz=|72b>BtsriL*7m7ciR zz&)=}ywPK>SY};$nxUG_nz1-0lM8IlGr8y!;_WaJv8Or3scUbFL$n-jL~!aqOJE=`3+mc^cm{4?x&OBGON2 z1acI=gofYv0=r3IU~iA3|B;;7?!>*M{kIkaJcS9K&&i$H-PTDB0E>DSqu-OoB=-|96R zwfsUiuysS8vD9P1o3H5RL30)FPFl2&?`L^q(c944Y~OB;MxHvbGU`;bVaBAML@335 zf{Ge739QGJ*85DLUOJ6yKWJpxNATr~p5Q&aOcYl_2M4aP#w@#=iWHow5x-GuGyRVD zxro+OD)CFC0+Tt@T%QuTIRS3tD^5!5^o*lOVWN{^yQuMKKwUumj^C?Lp^9V1 zt2!TE5SI1nJ3N98VXN>8g{~tQHOt(Oz3$&L+ME!AHaJW96r*tqRB|%y2YEby4!@Ad zIYqag!^rLt3dw(V0+qNW7eVkxZpJ4ZOb#uUHw3%)tgPAVf?sQ9JjwA1-=$Q%F{$(EJe;8Zb=qjj&3y{!)z&Uvk!bvdisY6;C0WN=#Uh1))LV)h4$Se)>W*~Q46{^_4vSBVm9u064rNmE>LNw z@AO_H@C;*gTL9SJ`F}3>*jeJxO2|uag0$ zjmC<;(81jRtnwMUkFuodQQ!ks>VRvfr~dKKf67*6o4sDW#lfXP9yapg5iaRzdF;9= zEY;3j9aSRE)4#LYFLI0vrXr^TAIT?ye=f%)s`AxU^;}IA)uwTP!&}~jpV54O%Hoo6 zUR|U^U4^;Ebf7!Qka9hlWZP!o8I+D_K{4Cw7DVSU#v8@RL_ZMzs=lTzixebu!lLx-qxZ4}4s zrjy^SL2WdGojBdKVdp4tn|4!!m>~^O4Nx_{x?YV_8O}o7KrEcMx;2ISz1-K7cWFiq zO|UHqHC&)f;=w+0aI|>%tI?_j%jzF8*bE5MZOt&ab+0FX`&z)fe6aU8wgN?zOq;5U z*bXY6gimOHbKftqw4xI3boU`9Fy>5gnNBnbPf0Gb*>3Jt!&1P5y-?OvJR-aG-q_py z;FQ%54FrG&`Mc|UjxmSiC(Ug!MN95hE z*dx%45r@p-*r!I2@kfd(7Vsd9fQr~9}eel{`;_dt-B>wgk@wuXbg zJUyJOCN)09kqn_bhC1vr`}9mDBNx{4Y^3JJJ@1|5d|1-x-s+G=tlU6B>|-?;M=O@q z4FE1oWL5TiM-k*asac7&n45!MJd^adcNla!3c6weZppV6Q$Y7e{KAy}0$?cM(wWU|SNC)u zrB28gP_<|isoSJgtMAn^`1)e(EJ<1=td0M~`wOT`#+Z);bIS^ARWN$>!RC#cnOOrQLM3aP{W$_@EY3hD%^e1&}V@W$BCOuC*y`n!JbGG`_(MR=A@7H$O0@ zqd$bA7T*5glB_GvK7EmrQx(_yvARn!M`2Jc9^Rp(SAy0tl}7Sz#6YwdX{?d$oHngP zX+A0&vyVhPW{yCFxk2#&Y|}yl2th?NUB>HU+}I-?&HxJspf8O~X)YeRirQJb9h>e( zTzbFoDbgo>csMbrCvhaJs)o%k@%b?i{k@xA6dgODou*YGFD1SmP0&JZ zo2(If9LpcaS<6KS(9EyUm!z&nU2_yoAwx zgQxuWHi1Ae%%NRIuy|G50~tCgD0%Zcd^=%jMcZc=yxS+yYXt<_)#nPj+dbZe8P(#u z=$F-)u(zX}ztGmD-6%vX(;?|U#@=u(v6sYsZBM_cV0{>azq9w~e4u9jH3KqxS8@G* zDcNbeYb6a!2%jVX1?)#KZfg$>W~YF6DBLKGS%k1rpStpDyl6x#egN|NbH!21+6&^L=%@kcNqxoT_Ls+O z5{Xw!qeQ5@O3IKql2YN3T;&vzo@gW#f!FxuHc^^#(6^hKKNC?R@Z52$(Q|;|@{3iV z@O+*fS$&#T>m1<^DfA6|>?3=jJ0Y$%2S@KJ@Ot`%J=)gMy1TJ_NZnt00~pWFSNn%{QusDD^_fj#1-@8M%0BI|Lfh=S}LI5 zG~Ju6ZhBnpr>zX*JHPV0hPPgOx@}21Y&0Fu1AG%lkm19B%F@4EM(*fDAMuJ);tLiQ zAKoOZS4pmC%eiUB0b5`6cFY`?sYdA79BQ+m9`Py8^Q`ok{>MOBMMmx)DuqNe-(0^B zG?Grycup?$qzPbyI0uLe-01w9N49jxFI^*i@ukJ|%dNl$c?PLUs46$@?jqxU+#YB* zslg+O!OJZtyVmQ{n$8oVwDYBN)-Rwl;#;>MxOmEy=}*CT*(D=M&O<}Qby@dI3i8%J z3E$dJ-Q4M$gqRRy(=HA0wO+fl0Yj?0c;R#)7VHu2!p7#y!sh$wTsmd+TY8oW%GzR!Jzld z)R7?2_iusxQ?-2>dz_8V!-;7cQL{c-eeHTr8k)O)!gyJ=Y56SbjMdKAxV~w()}aDp z{>N$xB4&SM#mEHc``t!$G_a?_TH^W$+Rh|=Hf^#$s>oe!8|Rw<9Ol2r^(LF-&!&i= zBvOPygS)*c;X~b3D$A#-jZF^%EAi9X&MQBfioMtDYiK5nCuW1j|HuzWyI}q2;_hQT zrn_WXostric|@$TqKQf&-;A-PiT?Pq+u=5S{+i<1D-bty8i5;*p#^x^0dGEpUIU_* zR#f_q{&q7J%uC24C}e){^=f!iK%!B{e@);_6dP4kPm;q~f__nLH>Rt4^XYG1!R+gI z^D>NIv#xza9FIl}q0O6gAx58m+z!3pmU9g&8?{H4E5Y#8YNyF5P;_6d(+Vr&w9;I% zR%7>~+n#(V!Epe969ELA?=nVw;GWa!Qxs~BP;lNDm(J(#nV0po+Q0aOe<-x2iD)rf z)F5h`mGgNqcr`Z_uU2^jG*(I(@l73M!h7|5_mG9Tg^Z>jVRcgNc8XxmLnj+=YL4_@L?p~ z8;r`oX%+wx)zUk{-5qjYrg8W_7!%XoDF4=NQutM-dFY{G&1f!iXpwX3DCWQS!+ur6 z?Q}oy%bb1HkE+$bqb4qYFVW_6o)++TV%O}~yD=B4z;jE}zmU1Pg&-i9DM;Y07yVk*C=8gS6i_qE;l+lE`j$tV;uqksL*3-&n~a9-e&5GHPH^se8&q$cS0U4c?pGx_D>x#n zwOrNOwC8a~s5+l!CZ28LC_Rick=RRn3Dm>P<}cgo4Zv(zvCfzL#Xn#jUz2~Wsl{Gq zX^sefZ$x$O6E2;N26}U^iyxg2yxgU!e~dZu%nNcs6hAGLXJ9s#H;8df>p_VCrv6&i z_;hEY#^Y$k$;;hW@8ACi6veE>9%~Tr!b6EQyYW@jUg#KF2)L-m1h?Typ1nPz*8DM< z_rP}HWUR*L!ubg`^|^A$-qF=6M-8o|~Z9a_uSZO|!DH~?^XIECj zVWED)_c$i4(efse1}K@z^EL7gVt4x!cul&^j3%4gB;l2}leAZmj*JjmYe1jRHMacUyNjxHiRg^5gOp3dn`r=Im@)(nEQLnxwT567vzR;A?+!h!zv7w#K+{p|s@GM}{{rR}y z@rSVNP`1zS2$va?zJ1%K(^$Jo9lE?YK>s=|sUBL~+&fuBHEnwS@J9I#8F~}KtIu?Y zs#0CspDgkicx~sfuZ`dASmmX}eNDLj(4Ho~LIQm|v)21u!=aMi8-;8=p378)r7 z!(I}jr4Y>Smp;8kXAg55rHckQhAYMAxMw?00%LUv@XW?Jwt=NzZuRH|#G;R(x8Iv@ zQC9%ipLh0}UBn)Op38Fwj&M8Dz0pKqzzy^FvttK|e6|FjX{Yzy2l$Q@YP$Y|qIE2+ z*JKJZk{=33fv(9l^1!`W1Ot5eU;twHiujo1j0n)VtFjnM4O;TS>>5F~cG+|0Y8{Nc z0MVgD@sq@%Y~V*436;(*9Jp=&&Wh}nx+d~H4CJV~zD6|DpfcGtAl6jDc>)JzCUhNmaWyjnoI3K?RS{tM|AS&XJopHmwIUb2|> zb*6-Q2-fT)Y*MX5$#Uzc*uYS@h;R`c!2?~#lTfJ&>x5`af+~c z>O*MY9%ef-t!YZxpU7EK=?xeFe|s+4q957MQC!gMt6;pM4f$I;MVVu$`jzh?Zl zM^8%ffOoRJz+dTjA@9@-!UjgdFZO`etZE3`d1=gFI25;%U{J|8VPTaP_1C1cD8glk zNMx_ba&CU(Rb}%08jH)&BO=JvDxC#u%9qi8P*t4;%T{S6o8r2i(&ipBw`Y&O zm>8|O+2a%hAiXitk4P|yOvLOvK%S&*3LEiAx|x3u;dFf^2^swi0W>U!?A{rx{P_%+G~N`M(Fce7;qf$;ix z)40}|Zuh`SbE61RXLRcR&dcEG}M5HWS_a zG?!g4R9pDVdbtyN`)Do(19P7a@NI%U&HHV`fJ1z4$xl+Y&$ECkvzLSjLOYkrU!9=8 zY2jk`F&Z1rSBflbt5n{;p_#vBw&KaxizO7uPb}L$yotA_h>Kds6+iU9qQ(Bj8uY}a z;Y6Yng9qA*xor-g4MDE?n@{IA#cOxdTpwJzH_R=VZ_qA~n}^_Cewfv7sjS#kgL;kY z_u1VzPsOFY*wXkUs&{BCiOzSBo&p4OT}qU}kYB*gh)1|VrcH=a5zR75p3~DcUzz|I z^+81u3ee8f)B(>_f!M16QujM7M~)L@{qDHe>n zbwa3L-5ROKKM!h;%^P~z`c5HPj!_l6MU{ic&|{3z&E-^hcO33fdl$X26SyAnDJ9^# zm50)u4Ej}o_c`&j42a{^m{fZU`5yw#P2l-X$UE(9X&bbL^ST@R=BXv&0a9knca(I8 zFNx2GL&V2<-|SK%IqB#7&&ULy@P8O)4P*th$NA^dMC0ReTy|$G#&9t4%~$I)g_-1S z@3lO*tjXKEL*&t-uhpPDTxdSF@Ue84)7(UN81&pJ4hZCU_Rwhn7W_K@n-p&+XUm>ol_s=JHk>CJ01U} znwAc^LBpGMX-z^f*MD}-NETV8K^WKgF>Uz=u<7MT0lswV$!OaK5YSwi;K+%~j#q=A{qC`NNu8O+et65$n%t=Rn|j z(LSsorA0~xpHHl-BX5fCKIgb}{nK^-666NDIi_nXNm+Z(ZMs%keGd9*AwL_@zkRbR zM%+38r>$2yk22#esd`hawg)N!uYI>=m)G2 zRTiw9IQD=4AUboChx1bLRZGmi%fgMx>LBHLhtR47;A}}Z`CM}Ox@8{S)dRO@{&Wz+ z9(dW^lV+rx`b*G&)atDs)1dkdV1V(oCkfqa-8J&!ba|c8Iz-;n?LTDkN}J+_#x~xj zr(yOiwkd1>$X0+4TwL>EFIVJU;QNE*ufnc%p;LMvIK%p)Y$Y7y!?TY2t>KuatzeUl z*E@HCA9~;+7KvW6b-s*S9Ru8*cg_>|c~@9P-;i=fRKIm>d-^{1uZ55DFX=dXH?ni0v*6Bpid1 z>dNzO2cko(YPw&1EbF_9#L-q5^628Hj1(Bmslj1LG<*HA>ik)Fe_Qh2c#x?c`LUDx ze3&iwRa_R*7V3*i-j^J*)3`kDE&q;eXIx1Ti~ProyZMx}d-{3k>K3(hA*qG6 zOAy^j2y2)%oThLSLgzeG9=hQ)JizW1vPua|aGb`~HZmt-{b>0k*Tumq;?I=FoyM=# zdY{9l%3%GcS>-(*!wf-SZWQA9 zBU8Oo(p8E^^f%9F@ip{{-inxrCL5H^Lp~CRVg!B|?NdtJZJFerM!Siqcs2Q2Wuy^{ z^okkvv(>4R6IR$aY;Q@{n4GdRa*6}zgL9q04Gx^+8|?|!@z1%oEoe?Hd#`;=^KXKE zF0L2D?}j2Cq;{yt^}rvj+t{M3Ob#yWmtvOF`cL>)T~3nWqNSQ)$L3EHGKHr?g>I7! zo35J92l1yX(>j-FZoG?$+BPn37pd2;aKPe*iPt2&@%lhNqYm*pH%`>Xl-AADetp_x z61!`RSht2wiFiPMop1Bd?oADbb1LoB5Am1abs|yWM0+^ZHqcvs)djx-#%8Y_(i#N(}mbN{b{ASyG)K7(W*s(F`O0n)bVg*D<`DnCH(fvQw-~t|m7@ZB;^Q!hb2D z%YQGIfajgM*H?erdyOTZwY7COE_{zf zsc+B&vAF*B`Oa?WYH`aQ)XPXxq>@=G>+@O#1JtG`vr}whrh> zu)UWvvFORMPwWzXIUiq)W|g?;neYJ~VCtjFM&T$ZmiF6+c#W{Y1q5s5o{`LFZ&o=~N$dhf3(OQgk+2U@wOo zyxpI$Q}V*Yw*1x3_|uJiXM<s9-#sK^mo?vtKIDC=1rX{<6tN7C9Pbual0aV73 zpXcz9fDD0e3C%BShMmf-Kq_kLz}Zg&ZZsRlkyWPi$Pqr1kxg82mM?>^?a$6vp+oDB z+f#S3Z)E%wBKHbMDopC*rif|7$`65S=~e@jRf+h1b&)=F;i%gzQLhWHTwck_fSv26 zOSpeqqNuzm)F-W9gXPfTx)&1mG``2<7%uHeM6?`=2p!Y@&AuAsFa>JkavOI^J^A&b z=BKP-u3w*P#?vm23$bkl)ud!@k1n;ET;fAnhq_H6ll!TW)e%BdK`ZmL9;B1Y;-BZ3 zR@dYN>(w^!FWjC#ao`Mi5k|Mwm*sPh`w%Focvf4tUv!8Wi@GEcxjYfoq`PG^^!R^L zfVwlnnOrmNJ0Lqu8-yDa8?+_iY^U7anWUh&>uxe~+J!WLuvVAIR>yzPAL_$OY;q20 zW%N;N5Mcr>PFABX+J9Cpxa4FhZIp>Wo+I*UD8ejpBrcnAdw=A@4invN?%ljkYpcf< z>UQyET@0f+%4ai`;Cz12d=%lZ=EV63=TQOl8(~L%*L+JYUi0s|AYTjG(vfi&)#C8G z7js>I4)`q{J73^{8J**~2EhU17mhwp=>k4_*TYubE6-j^P*U@Z+zw@O8L(}!6Oz?h zM2SkbuRXh`O81P6^Z|e1%!3?JR19&<<8ab&T7on@hIiq_bobGf+Bt!m!<&{o)M_kb zEDkJM66IvoPw$n=sduzEI_@Rm1sjqHgyT(fN{8RYzib?$wTvJ!`1o86`)5by9kSnF z12#=?z@=9nKrt+?4O&$u>DQ#9M*VOUpjsu0S?Ol8dQ=E=-#nR4oY1XOa=5_Mtg$>Q?DW zF)@6C!5cYcpz@Ko3!C84O@DHZ4cR*$ObI(8Y3hS{6gWB2NbMezvFFz+BglJm|2rqL zJ%6*X7$qkCoWt9((mYl|7X+n*LExZg8}=~CuDbyt8|0%r+O1ejTZ~wVr!4$c&kOQH zb`Vn!paT^yRM>IH8`g_L;&VQw2(@iIycxzIkI_U|up%k7WETVW&}~Xxx7qKBYTOh% zX%LkkJ_B*TFG<03-+`cjCWU^6AO9~#Pn0t z@RQVIa?T`aH5I4X@I15bsv&8Vv?m97^Kwnp>a^kLgal#{)(fgl7_c z-TOLVsdAg{{GnK0YCk*3M=rQUCuF6gbQ@G^l9H!_?+c^8pjLjeE|I z9gW_1Idtf^3x~i=HfU=;7d-68_n}LDIg}706(1=y1BImd&Q#l23Wdv(Yx){wUUN#O zoodM6uQbmqIP zg$HEFi}wP?{meZU(bcJzbf>?dcOEd_T(yin8qK!BzcjTiSu!v*9M;YdW{L9AsT!G9 z$_}0f@~8HFjnBfeI9$5`TVQ) zC|{k`Uiw###7e&AS-4WT;jmzQAD8O-K`!e7F+=BFQUtG_TQLNYePko9dUtFiV*_Im59pOT^o3AZ8h-1(i^WE#s>uB#LazUn%Nx*pp&6kuGlDmHzf7+qris z8~Fe`CpGIOmUh>xi}si8Z_rrrVIc6v{W3ad(yyg9o)TX;j%g<~W?K^2p(I+cR7iSC z&L(`Cx7bHdTcYdIgX3dnzCUSm_b}@nFQYewuyyu>9tWv>{H+ioRZ>(~2Y2tK9*w(V`P!z}wt3{MOe{!s zQj*$V%dDE=T4b){*L-x3xu{$^^wk*GWxkw_mRj)mx2y=Yj#ky59r`brur6*vK<=0? zi)MImW>4R5$7*GM8G`kP51SP{f>{Ho1gDPb_NZf0z21><|YO-XlpCCG&YbgSta z)q@>!k^MQ`%y=5mB>%5oN2xorvsn_IvjW*qcUH@@3^^s~It7QKPpoCoYOvpS#b>I# zsPSHj;bxkb0We|5k!t3xETQoRa9Gq!u#%sE)LfpAV`mYGRKq9||I+tIG5)1xNG#FR zXn<}UI2-3PQ_4OLC*69p8tDA$GNIV|UMCc{FdeF=9ntunfM0iXJ1;Hus52`|j)&e^ zF^8_~Z+H%XQGiQx07(l&2*GFVLGiSe<-dREz{pxBz|4{#f2U7m3fj>eJa0@ZzCxj$0$+InjD zR@R3ZH;i*+EjjVKK<4o;pA%aLQAHj5)!9U_!EAC02Nc%^1an_L=TOvjJ&@wjy5?Mu zti7roZ87Cz{W+<#Q^@BSQHn2S9Yf{YQjD}e-lbF$$JV9;+_3FJI?T35FE%(*mLts= zYq4J%y!J?MW8+6x`1bL_F(N~BG7H#cVP8~LH0+z&-JbRAqkWT9SKcSW5}NM5#!RPK z)-AMfTq@JgKvKyIeUIg@u&smC^1PPGr8l_vRSEm{**j2i8byqB_0cr>XuW`CiT`~s$>wOgB%K9tHk(P#9@Lslo= zQ_H%z8}Bllj^%xJRT-YOO6n z#N^SBvRA#mq3OM}@E>I$J_#Npug?b~jcUo>VBOhXO2JRs_XB-t5gHxrLrLjS*QY~R z9KJcpMT<|oX@n_fo|M#_^1^;1nl(9caso{E5)N#}fJ7Ljrc!WS>~I%>my?hGwW8|t ze#yXTkz!TTGj0OlCjRNGRK5qR=m;0Z2x}kgYbW|9zqJW3n~>h;AOt-p_P95sqSm7}F;-utpCr}5(8q>PeiXUL^?GjB+Rl_A+n)tz3;N*ty< zzln2(W0SdAz2}>-{EY?MnH8vdy0ax_W)lDttxC92>{OePs~N>(C1+$-=0*MVJP2wg zdMw$zUcnGm4l1)OW!xgWQV9fU=RaOP&U&e%Ze8_Ik}kIns@vM~VQMxOBUTud1`?DU zMqzZle00c%?e)jYN-$a`f2dC7m4_|%ymO_@E-+zxW3nekTz>(CY)5Wbl=|7(=mf{3 z)H~{8@0Ra=dOvg(OE1mY7vgAze@S}W1C=fL@Ma5>F%_3ibn;ET*la=^(Rgx?;*RuJ z=d9CG)1@Y!Okbhlq$Kx>=}in)krMT)d*e#lzExIIR-1uBst8T$ODr>rgGl z2Ai@iC)FfT_N_hG1{Nue175UR4|%i08R*6r%AMJOvT;@%M(nx_lzW77O3yCR{|eS$ z#tkNR2_|<~>vPxZ^8dY_RV*mIlljun@r=@q+)m)L;Yb7c1W7Cj8F~HT!jQzs%Uo%M zNE!sLY5cw5VKHtQjl3aa#-L~QnpOYtwm!HqUPv|;3duhA^Lo^1AMc1@j>eHRNRp)uTGHDsdqxi&(apNC2idZZJIGy z#2nj}iGQcJnn?h=zk;G{a48+i1cW&@$h=DXGO8f-joOg;MFS;Kh`Tlg(u}!;O}Mvy z;#!VGmgbSR^aV*NR?+%4gnjB6jIdEg?_l4WTLYXWa&RQ$c z`O+Q8PuTC4APWLZK;7-G;TC3Z9$Qxxr4zOHd?q9dP$xiuia72kWggeX1&B`?N-SSi z)yv}*eC!6?21k~c_Eg4XsO}I4DUw9JDO1JFxpVancbNEN_N{oeK26$#9E~yJJHPnU zg5p?{ej9$?(xO1-J?lxBaAdfW6L(QDrl4%aZS=c zAe97A=X~yM7`cx~G!|Vwo|AqE2OZDIx|-y7efamCw=@rf(o3^ShYR8kUV#4;9dm#% zn5_%TlbpHJ>kox+Af7v$OHN4@u=iuPQIqLM#E~FF7ZEt3KOJ@7+r%BH4{M7#dLny8 zCq8NiePw7pr$+xuEJS@-*E_U_ym0^P3iwLeab@pF&D@gjPljLE6s1FRWCJpKmwG*h zQ_rIjlxQR^+vM*g_7;yyW-G(|EbB>di_kizo&7e)l3ntgd4N@CYlh1kB1mIDw|v+t8$6XhOT6N-{Lxh$;bQxA89RPZ$)x|` zmFIRUDHiJTp#(DfSVyF|b+eWx;Q9lmY$4#fz-H=001VpGGW}@9X$4*V0i-O1Ixqi{ zj*uR{F(M)`2zon+&Cna`*j9Sjt)i`l(XAWqA6K$RCUe#i6d(M50X{ zMV|Rc{QLd8<)1xnTnv!W(i8j@z0p;-H z1E&4=kA*2IUPqr*W4B)LVM1xlviHkPW;gW~iPp;}TWw9OEI8HETspDeric&pJy(4aQ8;_bFsNM_?aQj3n+i0giTeFkEb3MjU4a&-czzF zmKm;o!lNS?S_FE8c1PHs*s0;fL!`&ME(>XybTxXzMy|Ieq#flHkv|(9zN2bj=HaK! zMR9jG!TZC3e`9d^jRZ1;OKPVG=)2Q5v{n+6UWH^Kho2qrQ+3FGp$CC~5?@l6`4TXk ziIgL3Ki-#wNH~k@kdst2v3NrYE<`eM(p(0GP9(U_3sr|VH4(Y_N5ivya+kaT;w8vl zjVZqLNk&OJmNY&^pL6kYjyP4T*e0MKj^bpVIiYuvx=i_@qXx)J;EXC;MKiiGmba*IyEhzbcZ zFSX%IKl}bBo;LY9Uf#9d;X8Kn&pg3k*0;o1?>wA4Kf~o=%Imy;H1IBe?#B}SV&r-D zO5P|XBvKa2J$WhnEDPsPEcQSGZ`1EzKy^dj@1|THz{=G7Z1Qac1-GU84MTvqOFecF zklx4v&dH=$OJplgwxcnkHsvo$ByNPE<8lAvrf;w7<5trY8Mo-2@;^9iyk6hDTUb6g zwa9(4YOwQx37a5`hhC28q=zl<7hfPN&0}wCpgqcV`AGx^!!~&vn!2jsNi)Kix~qXl zndRCd`R3p2Nr7dj~{W% z^lN1l6gRqu;*`7r`uh%vFC8Y1`g15Bm-Ib ziy1E8`l|G~6p6DYeI9G}XQNHbT#4Jd{XMPCee)-uDn3va`s%m{s6`TZ}QX)_GJv);IgH%FfXJ#TY zb~BhhchC3reZ8K~(?9V2;d}pb|8n2wzOHk<&vou|UGH-pid(7t!e3{XPRb7aXKON9 zS!{e0Zjpu6^qrnBldHoP*c!gao&NmpaiRc_QV-rNsV%QsH6G&ZdNSq^5B4+<1h!vd z!mSRMS&=5EU08QRF(kB)h)i055dg%>-iX_W2TgcsA#*>u(j&S3XTx z4!|iG{+a~vhb3!9mKJYh$I+#Y{+9~z5m&zFhG(#f#j5%m%^{PoHG)2T^cAbr5H24s z>}DH)K01msz@!MCp&6`bWtNKCAB9(v;hu6A(hFphpCr?jW$joYHD->~$!B+uKs2P1 z731qZz`W?7oKsv$t$erueFJbO(4|4ySsr;q^;3n)oN_W@R`xj$wG^|#>mP%cm*SJX zj6Nq_c$+Rfv%=wQy|>1<3{WAQ_yXfN_i!so8r#TW<@F1jHn$rLdjlCSG*^8Y*i@*o z5#LSY=4vE3j2>Ioc}Pqe%!-d>2XHS(E8g9B_r@wfz0A}&7VXJ4_LFmHo&M(y8L4TY z_@WvOX^xSsd&to3Q~)_sguv|cHMy=UE$;v>+Ptq0rw!Y0-5hG5!g-#HDX8yH@pPJ; zKDi~pxM&(=5d9Zh=1@)UNTZhyP;tn5GY=(|ws?!t3$oS)~ zy@{=`B$D2<<7-B$)-@5)4of;;XoS0{Ih^=!{#aIU&LhSQF4%Z=NWgk4icNUhu8Vx1 zCA`yvx4o_w+K3{o0;e7B{`@(_3Lu=jU&5Y)Bfbf93B&^}58I@~( z@cR21B9|{+g(AqK^o0z3g*q|UUpzbV?+AxvdaKjkzOk@+g5ZQv-E)%UMm(9j~_*S0q%&n_;9YI4v!1=@j z2D)*(mh`Fl*kwe6@CxL^^mCP!PJPb^u*BM(hK_w4)m<+}_JCBi*nyXJXO9v)9x#Z- zykDFN7#%U@uB3;?2cL)Qz&}BD#^)uTmoEd%&^FkX1#k7-nw|VLjq?X{Ud8(X5N;_< z)qVjf(4>3;aB;#CYmVfTxyVQI$61h{bfk0WWLntd( z*W+y@#h1Q1V!nv9zljdam2QA(rjYoO=^4O)Pm?vBQ*Rq)hcU;z10UYnZE~Tz_k%4( z7I`)P`@AlT%Bu=HMw#uI>IdYt%__*SFtV@C7aj2_1eYGJw}ojP6Y1hsLv;|6FlP=E zJ78@13Vm;gMJHJ;F=AohHZd>k=QfB5YS5Uo3Y5UMAdxi()|TVOuoyV%+LqH?4u8p^!LuyISPpb_nl@dTIlL~>z;lM@eP zgsY=xS(R|#OJX>xv!0PsalLC4t|kQPs9{VJtDIV(*6jCBBxa`U$=|<%BWb0qynFhg zgGZ4W;_&5Mf_CvGu-*Jxw{G3Pwo1o$*i&5QJmGLF3b#~M*_ zMjV?GpGg9TEUP!0X$~WaxTEkIy{XBsS&U-nZtvvLA-h^Qw!-pAJBfYm^Yqe+dV?(X z3&#se_yLA$&a(5hb$fjFh2su%X=#URM7f}>WUk|*m4`ZMo6&Xl7!h+Di(&N@T#KblPnw3FaG#nqk3F)Av^RT0@c5pnmc$%Sf#|pL7gE*Xj zYtSR4#loZ zig7noc#PutOZwmo^Fv4@3M-{f{g(COQK;n7uwz{a*WQn2L2HxSfsf?6c`nO}6MjgP+PxC@xX zavYKHax{t$_`iEVA*i}iJc`h~?+;R}(y_VQqY6i`nb@q=(#vrw_-i=b`EfE6X7NdOqEfjJatk?Pa2ap^& zu>DPeneW02*H+pX<$vp#Jlmn)ntB^8LTG;Sjg@}gaE`7|aa-pc1Jwk>%)mqTB$rJy z6Gy~zLzOdvJzM_A)lm^c)?(v?xrcdI6e~0j8>A)E3#=|8NL$s76b8+yvl-TYCu+;{ zW9snSgW(G2yA(0)=T$+a1PKP%gd1M1#?V~g%Xo|39?^P{{BTKt^VcOAG`8kk&dZEOANhD)8! zH;H&FQf;(n4QFf)Ju?-9RJw-aWlGgGA=zTnwT8yUc-)zn*y}f@r=M6%bnhvJ3)&!# z9i?!r4aSXTaSXrM$Q`vy#ysfhT871XY=7199ae``SDyLY1v5?APvdb87$zp_xH5K( zIcbeS*QW4`O)-?ABj|Yu&!lV_5^1%hUE6o}Xy9>T4d&x#R!FkJkZn~kNeTt9A#LbMV&I5!i-4zFw!im#RR% z&onsF#<2_Val6{kuN3yZ^5hbnS2Oq^!&JE!@>b8@oa=A9T{K=%&!(eRw$eLOzK7~u zk3K}@jd`GgN|b+*z)lA5Y^BVC`$yK~e~*Ql;l9|wu-ViI_|e%V6+{C+6q%sK8*&VL&*~bn2s(XpFIF?(?u|Mk zrC-~EEJ4OS=wdt$PF^=RR#RyB)WFKm3|>cmKaXL8qwu=f8i-SCt<}RM;zp$_QI&{p zYKvwxroB0|OC4a6df?V^sR)#0jN$4iSR2f_T9=!HF|6r;+F!89w!50^&>j(fgze2k zlb0Q~EkiJAR){0D{86GZG-bDxt(>1xWFkAeebP{!XL+ISYF?IezR1M(2abRz^csWN ze4QKhC%K9KZR-cV!@-!zY*eW9%MMdf1e?XWTM;Vs0BQ}lMbiI*=~zX2>p08%J#hn> z`nJ=}>gRR^=# z6IIR&1Tooom%D)w^1Tu}7j2*PuV~vMc(GSucjeQQXk_5V>nSDYtg6+YC=Jm^9mZMQM_bmN5jSWDsrO-}dO%_pe+% zZg)@I>NvSX(+M#>)p|lSCo!|}?iq>Hrfda^1@SGpIj0qjxDJJ<=2oVc4VF!} z)$2jAiY2dRc(-fUM;F8f)cHgY&Wt_w@!&r;yU0Wn%nlO%&bkiy_AcAo$t+lu&-(U7#(zs0BTQHO9_4e(yXt+tX53fbp=O3}h25^r)hvI7yrQSU z2!T-)t;Wm6ru8Me54@6#3lAq-qGnJdqN<|`o2@O&W3;(v2mhscj22V^)W_MgGXbg- zWt`4~93eOB6TX2qMH%~YFMo7&`i$VBTlb>T`6&1mxn9>Ykn{9*#=MZkBYn4>fN?ou4UKzueqQ82Ty;?RjCfxd zYq}Y#a$vGegV6gjBpW7jO-TEc}N&6mere&f?>ihW*y1t^x z^VI)sK|l|E8d-F2$T#yxgK2Nzc=!GjTu=D=NIzMSgN}clF0NR!J|SOg{ql%+lShq) zG?^c$&~fLuq2bOG4TgJemLj451jOHs^MHseK;f3iC4@qn7k&VqCc~BPOZY%=Wv8yx zf?9y-w4*G-u1%l&15Uu(wQRr_yV+*>Q4g43#|Myu_Z2-=utE=}s{?Hf@ vwdeY87+ntxxFY`tssT~|U+w>U*6#U5g~hpa@!Q#kp8_r;eKWmk9VqHQ?Dxe^ literal 0 HcmV?d00001 diff --git a/application_example/maskrcnn/src/images/infer.png b/application_example/maskrcnn/src/images/infer.png new file mode 100644 index 0000000000000000000000000000000000000000..6d4a7e758ca9e84366f1e68eca8730c9d70d5e0d GIT binary patch literal 605473 zcmce-Rajh2(=I%?ySqzpcMT4~f;+(p?hs^f3liKdSnwdh-QC@X!F6zlopaObQ=~_{0DspJZ#K-^u08K$&`ZE9k^Bn+y7Dj~s`-@C9`p>^N zL3bHlcMT^icdsw5mH_21?#}j3?)J83l%AHZZnjR2+-$sTTr89}?(WWRLhS4g|GvQH zUk%0`6g=^f18Da3Pqusy zCdWsabnx^DbRL7_*Z54kmkr|t5X#_KL+Heb&_w{O-H6^&0TRIsp$%X^!C)-iuiZnZOz*P$>Ouz z`ymC$>HVzh)c`Q_4{MW^kINVT(0Sow%zNl(fNb7(5{%VtgZd&KM)F=1UShj0`5_Qc zUk#7VKYU)i^zKsrnU+)5mC@F%k@wXI!{u|p)OoetSH)>_uVUjtDr6_&eZj>fPt14S0XizA65I@D4C} z*&(2eULY9n5THi;Ki0m=()-s+S8LUN+b|T}UI7PQJ2VuJh=A?3 zuIIK(vaL(9hZ3hJdcTvV0Oo+xp#apa=Z>xKUL7Y!4+#{HSTEm!m+a0$In(-mT`y_x z*i)kSq+%~14Djm(P(0ve2byGaRJZyA5dx3pB4}2jEZ~b`>P9e$v z05KqG>|dY+tR(~QrrwCiMZ5!n?-%c)0sGbg@LTV%TNr?cAc_Yl5pM`UM@Q#@8Ms%o zEf=sW2e}r1zdq~$=e;BWgHKNEUV8p2{PJw;?aX`Yc{AeTx$~m0P%hrt-#<3*btTW} z)=ez$ayLnJhotM0L{j=8#pDss4}@Z(yYTD=Jf8v${nZd8A>I#`pP&E10C?gA!gwtZ z55@35lrla*074M{w;AX1-gp9@N`b^%PgPq_Td3myg3&7VUtf4>{IK=9u@!5b>jO{m z28p;_dVew*T3EmXZ2ukKu=F?`Ar{*8$p23Nce>l}Ku8Eh|MTX(nBRXIZd0NWmU`rC zQ>yPbs^AFVL&PP}zh2y1 zuZ;NJ9Acesb-kAib^U{SC(Hl3zteLsDS|KXX)bSY>)98GF(q;x^ZwqCqq;o=d>Oht zQUwy5ye^o$T9SocONrk|Jv2H!^ZCv3`{Q(iNIIdm?)|r#%CB3d{HrUeH`}~0F1{_b zK~|;$?)a@u|IvjX+|70X_h}9b7(6 z0m;Q5Lc}9|@6SOyJJ7&~zZ2FX*}8Ms3U_+Ha~c9UclSkLxOjMkZ9bQ8ioce=|G}Bb z`>n~4$pZ=y3NYP(}$Owu4}LV9St5{4#eYYo?C1B@*cT?`(3w~{}XF`A6Y-Z z25$Xc{3qu9qpH)r_nOhpx__nqxBve;wEj2vYyUT>{Y%%9z2d*~|HtG0E*M(>g~GqQ z{(o5s{x5O&AXX+XU2iS#BjPwC?|`HG2fMrzuf%u6y?evbKk&r42eUutX5%_gsOR~M z%!1_X8WtO$ZIDkM*7fN>`pr+R)^yB8c8>@4?0MjAqUPSoY+5CGA&BS-f8O=_Iw2-& zhx^J6^T=zr=xlur%^@KQqBO4Kv`mjgOzLHwIs-n&k_1WGJh2x9H5W<&go0h%jGfQ9 z;}G(cO38$78UgN6k}#WUkq)B9i9*ygE$w-_ zOg*+aNE4idWR*PS<3m^eAE#Z(SxcRivrgdlkq?H!Dt+1dtKGK5zfWSY?rHL3=6eC@ zeBPr0u%+>XWp)BDMpiv~)=PBb0I!N9P_o{h`ipIZNCTM&1BZK9i?!HRuq~Q>a1h!1 zoFR0F4gJvA`)`(}!ZGm#QVPlk(T zY#b_2h2#xe_ayz?YM%>T;=ngQX>#K+FjC^k+A4CAO~BlmO}iC3YQpp?DeXpupGbRc z!XfhoE2Q`;rl$fwbyBrAYjgvd#t}5}+bf;OUk2I(;<$<_i2qS#Lv{$>WO^$zZrEpO z-}W|uxb#osaaQo;Y0jEylJ&;3@fdA^(!p-RK3+hCOo5%^$@C%_dS70l$b<`dQsX;H z*ON%+&D9>C%KcTA#(vs6Fknwv_`7y_y?U6@>-u~X7X#C4Zm}F6{e;(tGr2WK(g!cV zSH>iqgHf*ex09d8B(YQ^dC4FWAjRs6ABKD?rl5+WFTc{VnSDfYqAaz?!nxvaG~^t$ zP9=V$(2hy1j~|bIb{`gM%-8$>n3eX8YFj2oL@7~N9}FX4`D81~d8k_i_r?V}Qfyu*(ojO+T2~Ua?3W?;kUYK~&&Yb-#(f$Fm zEwLUO1_i&4Lh_bdO*Avv_X9=I!W2KLKJ)^%u>CUzu<7k)fCJbfTU;csY9Ec zM7T&=$wL_vrI#=~kmA9+R4V!$t#m(}eMfze|gzU)Mv zl+a$hqo^0f=0WU_HYz6u1G473W14cAx4}gD#q0|-*vm&pq5^qZ9h9=bQ1n9O*(svg z?ecC4C|*T9Qu+Zf>!2r6`D%JSH}^E;@JFowgP~pr7C+%`9{ksSPb#lj0h;KPok)o! zJAju>3`cR(&kd$Z!>UmS^4U7!yx6egr;BoYM?}LC-ie zPH)*LM_U}Fi}#4P4{ID*9jf({%i+{9?8dqxbFQZDUg7)K#%w(_l2+=up~gh}9TiH>;?;|<6vdZxcK{_fG& zF}r#;n7V#g*M*T0522~ub8obGN#u+kvtRYI<}GpY3o?W?owZT=y&2wC8?V-T@)Qo6 z$9=*_#AKW!oAj$9!3WS39tUS-=;h8M6dW~!juTfElm<7~FM-0Kwp1lCM`X&GnjTo3 zM3@>q2agxjF~USMc1-gNDhY94>_{ZtyeRwwsU^nr^#6i^^@m z$*9jA<$>A{jn)cLFj`c&1C?7*jL=k$QyhGBwKI8_RK1vdhjsOMDpEfe>`A#{YzJ80 zGV5>zWPQG{E=SvFIl~qd;9sDMi0!bDB#w(z_RDpY11hK@V5dCGE|4>aeImx%wP04X z?{6lGmhFDfqZ;6@LaCu(`$^17l!P1 zVMd$feJV1X50w=fG?Yyd8!1RinWhSQncgNOif1S=`sVo@UolQQpa-j4-jkbyMj<}% zHH1@TE>PQK#B6qfl|(;y!`5~B1Kn>zn-N2fYIJ!r@LtcOb$F!;LQRM+m#yNGLIg}4 z&XQ5(2vjwR>zA}*4QlYIb#bO`08~*-W~y`Vc0s&8pR~=BvZZ6@62R2?tu787aUcPt zX}vw6u2Le06h+e>6%IcYwxJ#tM{&}+ig}`#z`s(J6O@|BYG&T3rM55W#ZMOhjc4Ll zkjyow4ml*hFjiQT$sTsH={Uw61NnnMXe4hMm13XrUg(;6_Q8k4rEG_yl8>+!lq+5O zuRpk9BAiGoARY{JF*G}NJYv?SbOW)4DA3Fly zQi--g#mYS+zu`juHhL~eFjn@nhs3-KO7n-N6g+aRpyP?sdz6|70jC}v@>UXi%|Y+A zWm$0Z>JJ5!T3Ng#$&5?Bl3#cSxxb2XV8>_NX!JpIG2y66;i()7#e51fxzm{fW`M#O ztOH9~8u)1!x6Z-6J-xXiT7{VDp8e*QD~lW1uiHO_KjC2EyK^YCGG|Z-K%uA}es$&n zs3C;noGQHc9eVNtVpD$_(}kZlG(a_Jf0Qc&@a=V$HI46~#x(JC6<0I&s#WXF zAas--^ab)OtQ}W;M)?+g&oHH%gX1Y5UH2t*VHY;3cvNqyarOi(4@OfnXE{kpMBA>g zO^fgyi)?DpgP3|GPehR(S;OqdUN{DpZt;737!Y9jkpj{>?a`qn8#0L9ql(Js)H}GM z1&1kH!7TE^q?hbpWP(yHH>{2+zIHGDTWVHwdp}17X0M9Z;QN7&9mrrN1 znJep#sT|zNx6NGrgk%^nm!M!A3Loeeko;ak=eZVXv4>b|z6p8>PV#Upnoo!B5=Jm~ zbkL3^e$bBo3cOPOywdz~7e3MI%Kg}M+16nmezA|7{)D9tL6ElbvMB~B47ir;EGR$@lN$Yr|1nY4=1+S~>qp%+E*Z|q@u10YN~Q$a zuH*H6iQ=k{X`7A7l8j&`9nR_4lLo|e2#3l+3Qz9rMxchTmuXaa+F8>nB<>;b*z+Jq zp74$@A_`Sbu*b|9_-N+L-WB$rg`TzQR}>W{s?rgVfTdtTO0Vy2)!IWo5%jh9i+iT_ zWNE2H$$gc-rL-M)sO_mbHWUTw7fA9)lDrT(=t;wY2uFC0ufh3o8qwQ~UIYlMZwg$s zblI02=h17oTh!@{J?SwjkE_SthVs8puK5}x=JBCARj~lxvVEaoP~Z{Zlj)6$z$})M z$?qEyLz9i|p6_W7WEU88tQCRQfvVM~kw`=E94q9a&>mXfXjN#Glg@RLJ>wjD$GN+^ z=iO@xONg~Z24Ex1MyEbL#mx+m-fr}EwRz#z8(6elC0xrODZ4Fy7NpKh@lr*vRz5Wq zStTbR2G(mW5@HS}PGhRhGupAv<(<-@SQiSe!5j#N(?X7aMUl~cEBUTj$va#>afB~7$cvD);!6lj`k#wFuijRo~AVj=R$ngiRmSP?M z{xA7}e9MDX)NK*3=~@h!9grN*Qaj?~4{;dfNA~scQS8 z2-v4>?wR8g>4UK9u>50U9G~^CQqHKmHz+MjqiDUrDB~0orM>2fuA;F0;}TXz8->3v zf+gN(i`=;(r>50Tgu6k_Kagq{k43^xNxyiDA2H|vV%lf%;%s&&2-APk6wM6&WG3td z3(<%nkChxRLZ2Kn^j-ETqOrR$`;gyBf55HoQbA!UaeSzjJ~{ic zyeiZB`3!*`zML!DWf@ouzCOOG{9Sdr*@)e+2?K8-=}8ctghWCnl16DTcQZuJ7AM~o z5Qi*j)F9*z;5jnBMR&QxP`6BUS2n}W8uR^@J7F#6n6BewBN0|OhO&{A>Z`?Cg>8q7DtW(x z=-ANZ471O-b5u9_j@)~XCUFFE(I0lMO?rJ=BoBNA$cU$jVm{ys_A}DDyXQ)XD1>IU zR>~@)&COfTjV7C%Y?CNxO$d_FBTg(I>rJCw69~izmN6sRR%2Lj3Au;Dc_2a01u8 zS)xdw%Pyp2xfoCZ&_0sTutI(5uIn8M6bQ3Ivkv(UDCcn+#M;Y<{MK(fnNAnRb(9{J zIm{3i#y49i`07;m!SA~wBbZvIFnN)`TZczskR6StAk>L1-suAtBggtKHM;qHeFEVp zW)Uu)@3gu64Ry#MyeiS~YaABmWnv+vr`Cxa)SQ>?x?sW~XH)TMLWJyHfMF(*S1@%q z_5{j_jsJebnQXvy3K0oD(d1VSE=+92{_HOm7(YtJwBOjdy5Y^;owhN}Jk}kAv?M2v zHBjSu1m>u#$VqR5$?b2yCo|}}V*)ZWD|=lIKQ7K$$=|czwFB9(Uh(6<_Yv|bFIv-} z$prTPO}L{3f?I;A3pbqeD>{SXN65r;w%a!(~M?CyJ z2>sWi!%i8)SBZ9`F0Ifr^}#aZ5vRiyIg9+orXhGy8}yxSGb9`rD&V!I_D9k0vdtEw zm>feromn%KbR?gsx@EyXelcZ#wORN!j2bDuh&#oNHP+eKa6baaponaEW*r)z>||EC zs580J#Av_S-sy>N?xcr}gkB|cyu-`e&aoZW1VY$5pppRjR}CFbktWlg`mO6Z*>_Pm ztbO4jI|EGffD5~B6kbZ-Uq0NB^a^j?vb~hOk6rxz6Jo^sF-!+C`@IH?GSvl7I^}&Y z%sx%u`?!x?3WjZ<5eghMLLV-GQHh`-=4BZR?gR`W>7wK4!x;M=X#u*0H(fB&mblN! z*rXk5NjFTNMI_ATy?>jJ{njcVlU(^~12;Jc0=#B(&L^~gv$lG)>?w`P zP+Q})hPcHP@8(F&i0jaS<%sAUA(@+n)h{+@k!p<0Si7j(G_{GYM%L*vWtdQf z{L(7C@Ce_F5H?^8bJ|4ayk*1q{#rlfm(jsOj0?u}krOs^tq(z`gXo_$i?OP!oD-zw zR6f+%{L)-ZJwe)snYy1vU-cEPzCAe_6Vc3ynPqP`h$mtL3(pa@kW2a(aZ-#bY8gVv zGznI5#L|cFN%$9%VfGk^Fjb@$&8f5M=2n0DpQLd%FinM^I-v3`{?ai0Ai~erpJh@Q zP^69>VeA>9{WxxwH`j*#T~K_)h08i-?{MW1!+fLVwUib<}Lf(8?b9kS2oCf>UX+WqXmWfJXgNz|M=`#EX6+F4Cr1)75w+6Cqo z{us7_xgD~@{P4ig8Mue+eY6)>!3{3fF&O~99x^~iRNG^Ux3=BivB_eN5N{$-Qm>Ju zQM@xH(rIJe&DsMViQ|T7&?8Vj`2jrg$Hpc4otK!YnPDpRnYd`U1421W=qu5H9X+gW`q_iW!qz|C(GF) zMn;Q+PsgAelT1lNt0fR75huqCUUASwb@=E?AIp%0Wg~LdNI+twbwEX;DpNuLzt0qn zw=@pHvGK1CY=!QLaWp5XlYeUF*U;&JR)sd*4$$ty>CahPD(_Q9q3bsm;JrcvjU`-tS(F%v-G(&os zl>#A(T415S>vWOI>AYE(qmosO>y!^Nsxb@MGMA$}YN5R%C1p~oN~)$4=ezCZNS@Y; zz1zIL#!4=F;IYST+E4&eZ4Mw(>p-L`2o(L}^f6tzo{wz6MbVdKDD^b0|B){LYn@dJ zQDNxZ94{TwBS}pTARW3HnL7u_Bh#5Uw#GLTSqz61$t4Xr1Z)Q zmpPR=%C?SqI;6euhn(<5IPdwP0XsT->=YvkV}~74=>{wK>I&P5wdXBSy~CK9r9LCx zcn>+tmCc-PSD}@fY6mqDkXliGmy9dW?a~}tJEhF>?9LJPn#n3+P%$Nq$2m79brB)I zY+)CPH+dLP1=Z*Ips9-b5R8GiAGYi7FWWjF^+c{GpVQfkbI`Fq%^d|6n}7-4#+}fDd{iZtrZ>Y}V@zIJxgTD1VQto^d-NJ9N3gOFX|Pw;Hfru0O@*?Zm~vk-WFN zEa^;qvm$ghtR;3)_&TN)UJVh$LcV$k=S@*dFKR(@Ex1j$4UW=qB z964WQOl;j*%+fuvx*lCcAF?@A;Ca$G4^^JUGc6SxqDCCAK3!yS`7;aa#7*N{du%8I zHyhCpW=dIeT#}(T80O4G&ZXDij@gwKlvSvc>x~up}g=MaXrODd@L(DQt2-@8HB2`*{?sk%j!fIuKZP}wb<;!hBWk$7HSn; zSxEk-lzz0MR>#N0P$XPZw)I1nq39;%`nC);=~V7#vKMIhFMsfC7wrhmRQN&oRG)2r z#RQcDXMRghXty4DDe65~I8-jN(W;HmQKZg)L$0O(e!{k-}X zFjPuAQaH|E%pN)(TF3@ubHcqN4=KGg6lDLg!?El2TCZcCwqOu6mmlxfRkXryZtB=lsWPsa>I(1nS8a)jJp^RDNxsJ_@cm?Lbx+BkPsrvx{TF4bzw#FfHO*Cb zvC0JJ$Of{}BPzQ-?mi7ZQVj>MlbqQRzx5K|UTacb&Uq2MewDm4fX@CRc^r<{@4qCaYdZzE+vKy*}iYl%Elz=utvyJg8k8MbcKWCaBtG`6cl&~ z|HVrz<{Uc;H>B^tVU4IFyi3r~u1_3Bsud|2(4Y|4@Le?9bvmlJckit+S+~33CdQpz zr_SPffrIx)Vlp?cplW~3+3ydwNA+<9nS#uF6kI5K_rXY2^{s)1N3e=g=qIKe^Pc@` zm`u2WiC;#8_!c{)?ftz=Nw-q?>?0R`R35qV&=srf`u5e=t68+YRwwZgGirYlTdJ+z zOAX12v3B!K_ZTRVoGL~p&8!AsBIHrVdj-nnY)>9JqZ{>%N#cf-WhM0`psDTst{h!; zf_GDmSWTZf>S_tB$%U@1hM*4$2Zdkzn0?C58huKjT*03~w1*pNY_a?X@lS9>{Pr__ zF8coXI@@N&*{W_>J5OTaQ2RlLXWQY#`%Fw1zi%qr(7|6><2&V+fFXf_7QkKoJLL#nx2@s}`_uP&^t<3Cqvq_?XJc;SB1i^24D3c;#tkv<~Ix3cTh_3taY?NV%KyQ!?|$zQBagiHa4 z!!j2*`)2xsr4AP9v-M79AkKSavfx!BmZN;O^b_MjA@OWT*14-2(iEEjZC_E)BVeDq zA1YgO+ns~|Q!F5}+a}!xss}gWi}bmMp*{?6ZxDl_kyw8X@DA*K28to*yb+@R)Xf6| z?NvP7Zau&ndtYi{60@Oq57-Xw(QGe?zrwwo0N+g@AXTy0IVkVrH>CUA=7^ea2T9GX z=MRVMf6wLpKvc%x%D~)t{&-#YSzW{z0sDxg7X_k^v?YB=BI4bT>p^>=70mFe2%jRt zHwmWQB?^%|35v#({L+pDB<@B$FjWuz6MXD~mN+((-%1*Dr>LqH*vn<+?W(ARwLG+Hmr-#2uT8ESit2KNW&^pOTHLPG?{`<$%&TcFUIgbl+rY1B#29HZ=` z_*kGRJO$G3N$K|b0_X8w6g;x*kI4R}Ovv1Y%1J^nwxQXB^Jc}}0b_L|ik{_m+uf%r zp_oHNwoJJqB$kD1Y`E}A8~!U}EAIv7qa(#u(sZp}83xdNc8bG%E&{r|k+#j8x@78n z7kuzrPmZl4sM64i>x`%dzP+^$o3WtrJig-?scvYYp!nvW1`<53eqWObnCnWsABl_b(I zSi}_z7an{+D|q3yOL7JQxeWn7S*i(lW`$mAlKC0;wxVyQVyhpo_W?(Ku=F&%K;=H( zJ&rz0;DF#kcT=8wF`HoRco5A>Hma+STX$%#w+%Cd(DxAgkg`~O&-Z;|pLMq-A&TE_ ziI0PsBBSK9LIuxSQak6!!KC~C_udIap<(m7#qYJP_zgZXQvvs>QV-vtna7TX?YbAJgW-<(tc=bV+q~vNCQF*bs{zwvhgI$NM}rUaDHs<_$EL(`1C1M?o6FfQGOU^uYQ=dcL8 zh;svup@*dULej{C@CRK3Lf>EV#KSi!KqJ=l>%bum?{jVpXEzv9bhIju1~y;%I4{Ke zyv*M$444!yZs#EBnWD);ha;23&j&ma6L_?|Owp5Y)y z7KUvuG7XvE?D+4w&re8{c;~<38g=S;cXY%~I*d<>l{6c*^ds+Rx1e>V^wbVCeK;P) zRsTFK>k&NXOGqj|sL$G1t`}2ZpqzyL5$SY_RK$L4=xV+{xJofTPKx+jg5n+3NI1vN zkSH%iLxX?MB+>th;dSE1&Oz@U>}2I!WGyK?$lzlbq&wvHO&paES8RnG8jr?!+PO`E ztNO)$Hv1zd{AFc>RRz<@)_U{QlWKrk>ota&8>+nQC7|~>Lp9^lxjNrLpT&-v^GM)` zT(~HVN@puQ;P>lHAknJkjgluv{w()J1dT)gt)?Ax))df{FuZmzg)9$;rsq_NuD$GI znB@Z|yt_*Z0~Z4f+7SwMlRf&Ua0Zyp>5nJp7R6h^E3Bw1d8f zhe1JtJ%3k?*6mZ#&%icRmqw|W`OQM_z_8sU_ihqRiTG0hckkcW{Ek-$AWqfnml>)Z z(Y~?2Z_ry?2NMW+c-Mb{7gwQKxc4jKDzcE4#)20a8XC7B>9II|SL$=&h}}g^?PyE^ zkqEpP);oNIvc|ZLfoI5G=Z5*bgV5V8?0(4a`#^?va2ZVMHPMCt(na@@|1AQCvc$#r zqVKv_qEMMbk+K@n{wQdXFs<&Q%xnsF+$uk8$8e9}W9?_xe+90~qR62ye->Jco0Lx~ zd0FRF{M>oP;vgdBvvk<#N%;EUl%eyvW5;E=zLvAnrLjCK+4s=@iX!J??(sJ0pkQTQ z#}guwUcXbrK|4XH7~$R;tcrt_6cA98vv(nf;upr{McF{|86?waC~ zP+(N-y|Q?f4~OuNq&#oiWy^#rSP%DIekJoY`-{|%B;b06^U#t~9CgB13$M5cKaSUJ zGiZ;>a14WYM_NG|6AaulKd>CGuc| zGI*q_sqS9Xll&iS2P#ufaXS|u^kK~Fb9qfqHIlH#W6 z(Z8h-kRXWQb~jf?KAxr!xKp<+algv2F{56if62rjN`NEM<`RGSe$(BRDoT7*Ai49m6;1!yTFhRvbt85e*&9(H6ZZ6C=0M4&znG}{ac)(CQYT$W)a|!f zH&mY3RB*?UBxO?-$1(v0%FuE>U__qr%CS4mzuGrM`o|v^nKS^;;&;!zCfnnD`VXn0 z3fiHOP>%VYA1|!)*_~YmTnYO@0w9i&^6dc-w8?Ad{f<=4dLQsLHXg*CN1cr>hsnA5 zxGTzI4A}?Y}Y?VET}^%3nO7JC6BA9r*ILA7l%thfH8 zfC@KcLUvqn#Q{nfT72q0uy7JkwO<&bk1;N z_EM}fd@sBetr8u5P#*TClm6{$TGNBxR$qDh=)6ul_u&rxB;D^l{2AL$>g+uk1%iDr-rP3v1Z` zXK4$Doj7=@#EbcX$(tX6g0lZ_`8R2J+ICV{xzu&`fhNcvBeUqDmq*4agZ#Iao7d(> z&-d={pkf+m<3*>`j$A!}+ZEc-Rj0luhm3}{-fQ86oBMeWhGs5DL^@_egRS4`o`c5b zXX39exrW2bC5F#NKxwnlt6Z*1vY4Is-q^L57UGge?!8B7x^_QQ{!tBl8 zyklh%8p;ZlQA=RHiHAJLgb1BeRTj3hbP3z&wbAkboZ}YIYWu*k@Kl z%XqV&V?1pV_uY%(VG^VxGB^rA^8hjIYJv@Jg-{ye$pgJRaxP~Vf$gZmQ%(!`$xrD{ z_=ZMPiH;s3J6GQZYel1KUZ?rDvpVlO1agE{=X-1fG0GiZg5NbU1Fe#yr0)fHaa8uW5tY!27X;rB-NnutYf9n^uap>U8g^Oq}WL zhcID0bKy)QF~e`Zm)}NR?M+w>NN;s5^39)aw2rL+Tlw#wbm+&x`fA*?5w+Hn`boJj zUyP_&UTh%N<^~?a&eYXwP*ppt+DeFDXuM@%09)dU2?6#E+<}M9+!4hu#?!baTrAZ} zRTSle-fVQkKPxDzDdv4xR&e;(NW8+R&%v}z*EBkGjO^)BS>7w*+^#mcBotabL_I-j zG#mOB^ar+W^uJc^<08SVqGF*6+Dx9?vhn&hi=kjD=Hp0JSo?c1!d{4_8hv&( zlLBOU-G8fWc~UKVCT{W0yTGAS9T4QVg|0Wt_LnQP&D(LZbwNY$)z`uA7{X%jFGOev z@#8sha-?kZ4Hew`OXPn!Ad;d2Tw51grkZ4Vl&D0j zD!7;fxDicm|E?MLZ#`R4TkmaKA!)h5z>^BO#BZw>9<^Sx@^kC#e*;YNaiox;4;^h!o@}f$SbWatAigJ3=Z}du9zh$Q;LWGvC9oT$y!DH_!s>Q_R zd^C~A=M@S0SE^eOy156|D4~>|&R~;+kJ980 z<8--s@jFRK0+G17SK$n`u51svv}_oNMHI3Bh*r=y9;!i8oTvk7f2IYcr<2@V7Z~!h zacI$s{w-lhd(ejO$5nkn?scV1$oON`gUNjoZZL_O!Q{`yBiM74)yu#~zrlq)x?Jxa zXs-)0$Y@A}fQc86&=)~&$0wqA^3FK98lxRQLGW9S*ADFVF$gdBeSNI?+aCJnWsyJx zdzUL*uJGR@gBgx5#)$KA0;Cu=NjJ8G5HneL-tG0kmO`u$)&VzYn+!vw32q5Dn1Z8# zNg|u?)lU-=2-W1qJ1GR6p=n}G+bIa#t57y`EEUDE97ij>Ltx2!4!)aB35}ul?Ar0~ z(r+>0ELst5b6*xCn1uj~$er^O{Xc!vPpd`usEq$4ZCx58pM@HieFP4KCl|g!S_qFU zDk_(X;GdL6`D>O}>ephfjwvy(pcvyr!c38e9TFn@_nVMz2_akoVNi*g8g$wsDY zxk?_>3-r-2Y5jz{ACz_E!@bmYm(F_zdLl}IAbxs#u^B^Y`#t5acDcStv3h8 z+ub)_lK5_omcn8t8HWb=8i4iF|B&gig}6!R5>@pW?7FeJQ6e-p2Q0XYrK5*$7cdY8 z%On=cGn%irUd(OswlobaHTu&9J0E#%Sr4O|ToUq*T1WRMFg%Zi5b@u zXDoO*51~2h?y#P(bcsLpz&MYe%7k4d^>TjwF(;O#MDw=*!8NejB&zAE&Kv@D?t1re#`k3|27?fC_PH{j1>%*`=boAvquEiIk! z*Jw|-F)+NO(;P5>)^(aC*mk7)B6&XB2m<&Vf{xLUTGJr=2eEVy#7yEyA^P0u=^3Z$ z>6&WifCtRK-=hWk-d}*+UHW}GdmgO@=ZV?Qvn66@2=du+5D}&eKyRo9HsRq+Sx+ov};nG2wSm>(sAChKr(CSrRNw5`VwD4cv+^@fflzm=$hTlzV~N z^HUXmG%Qvi+#Bd4p}^!>+dm&lIULSZ>yt-n*>S;C%9qfgwW+wk4NEQ#nF+ z8kKr9FqEi;?zXprrzx@dPAn>mARGa9Rr z)z{Y8*0zY*$@`6{jEQkvPF8>>5X#eyeY(YPiX36KByIydqJCb>xt?JVGAx4CPr~DP z*^2hGoI!Y#1o>8h1?S z$^0eM2P(XZxguu=md=e9^u-@@d`^?&9h`L{O*zsp^ zUGi!X>8p5nH#!1pEpc~w!>na%G- z9Id}!$2>FADPaLTv*08GvcH9=Ef1pL^|O3-IQ9nZE&VNhr~&Qi827m4JyRR|?_m$k zLBaMOnf)zWgSuXK@#i+D?zLk#*_kOM$_v=j@&koMcwg=@2O^H67pLK3dR`L^aGIXy}7-V}Pvpv~NF&fNv|pN#OC%w;h?GPi3Q}zgZ*6AB%pgs-LRQ z-uxyZH8f9rz9|UWnS|oM#yg*bW1}zzJ+gO(E}66q4h)d3cL5QW_|pVT@?7rEjYM4D z#f*KuWA8A+A9s!Bx+GAhyjJ3 zElOjhGd7|mC5y&3#OfslqD-P_?x7arT(b|sKR0dm`V3qz@`)!Kx8}Den4#2%_LC7N z!cywWUz7`U(M(R3v}D5!nI`dHYKa3#z+|Qn0*(@^(Fcc5d+6h}%D`_~;2*oc+I1_6 zI0@fk$#q$glQv}S*z5$T@9CdK91^&ystzWfi#DF0Tj>3-lxKQ3$V04 zt?De0;be_o$AY~Ert|{j2n~vAXu{89r0O4weIsb*h-*NR)UdiarbKd1s1KtBmzrGC z3bT?9aK(w~#4Zx8+U%%mvEeC=(w=`(u)fCWY;%8_`~#EIRT{Vwoi_oR55p_>BfZ+R zkmCJJmPeY%iQvw)VA1aFi|c^*OOYhFeY7D|tg{|gCM zzVBH>6}cBJG$-)fkD;xKd&q+ojyx1yH6GF>>OuLxi@z9*%NnkR0| z-J+;@^tNp`G4W5jHa&80Ck&SvQ-9G(A=W#_F5X?iZUSSZA}G2c_>(NKm|F_N* z3vSFcHFAq<i7c$zn9Vms$^ErV!Fu`N8f(W#Il}HA-m2RROIH!Uk(GDufEA zoS~9W#*==`9#oG3((dU8O}@107dylC9fkJ0>>5I-DSQ}NJs%C*oFkw3u>4c}#4f!L%S%r-KKvcI zbtra1T7(L9n!jJ>e94BB=tiXt>T82;l@|kETnoQ#dhF1Qi(V`z@bIyq{q#Aj>Sslx z!77hF#lxVfap~~rK@{RAW&h$7>%W^?JqX96Rx(-ZO{YKUZ9NU&Sjg#(f*rVA$&to>+bDl37>|?-nksAYYQ(z{RnEZFXasb-;U~uT zp$dxB3ka*gC4$G(wG^VO{rZ)G(Jep3hV=Q#FP+BogCKXfh{M?IBvGYT*^iTk^1Bu&jC+LrZTt*i0Vu_1CYf*skE7m#O6^ZazPHm zl^Mk;-ItkT1Gq?YNGfCq14;`c*#VKZfW{1NlL+|UCHm7AfG0PIj&uSaX1w&$6@KHB zFXPdpYg}F4;MLb2;i5HwI%e+Z3rX5QlY6?F%?AOEC!8k1#{vQ{;V=P29mfOVbUZko zjtQ@w89Xs?I-qmMyv#VyGZ?@$9l#*H)&sb6IsqV@=QGd=Q`3VJSoRRw4%gnqNIsky zj~>2;Pk#CfXs3I4@ugS67kBXBl}C8_;Te5i&`ur4dkyE_@#vCq=i!WpcVEZ((HRfu zRouCE#GwJp+;RWOCoxU%dG2I$5n4}DPA7=rG6BRcJ3ajjRaHgs-gu@Ou7EhD+`H3R z9L<*uQj{bvH^ziQdr%E|Pl*SD<_M&8=(B`KBQ=ANJOVC<;WS?@lLH*=cUOCHa;Pe( z%)8cihUd##xnxWGqO`)ReH*@WxLA#t5#6VMdj>-Op zJomc=i^CG|W&^3KOe9VB>x*s@Q(Yp)c^JfjH=}PT4+M>~t*RK>IS1~>dE)w6vs}#S za7)=%Uu>Lt-xOhm6XShx%IuIWqnDbB&B{+k?{-*6q|t^hh(9`SHq=U9iZe~^OSW%J z$(ml7O9MKm3Ue|TLlbjp#pNM0nzCt07u0F>+jlSk9_R$4$^P~Vbf|W(ue_1>lbO*> z1}S6(tOo^&G}CvKR$5%h=;K)x#V4u$=FTZGO5SG^1VwlWDo zuQ6fPScdY8^uM_6;a71m{D4ARE$lv85*pT3E9%wYw>g+7Ijag^S6iq0o6X6BNH3*u zGqB1hZtN@L-B!1hugA1f>(}%m8IiMFX;CKy3kUlMEiV_YxdqG&PSQ3m>`U*7^^lgRG+C%7^B~4X9)UmXo-MbS2jm zp$Y$r>-00Ii(^L<0Fq7fveRzDqP?^xGIQoLP6Yg^Kk*0ffBv5vUVn6nU-{LK1&NSI3uS<$^`nh`i33;3#cKZ#dfdKG=?c;?}KJo(xME?=GTo@W{FzyDRZd*^`HU%W)0 zFF|xdUu3@9q4~EGwR&wEQUVcW=v_ zy>Vqo=%y)si?*+P#gJ6+x(7KsL*s!f<6T_==GZQ;9E4F8Fh}Zb3bO*R#nx!AzN?Ba zo#(%fnhwsQ9-&}Bo8yxWlrm4rfg>VW0XJh`c_A&M=u0T_ZL3rnk>@y!eecu9ij{KT zY=6K-OpVH?KGG>lki%iHe%x@`NUgTvCcTi`8{5xiEBFVfL7TP@2;S=$1S3Hw5fM*^ zTC8vwuMbcoT1SmJP_tb_H=TBNqd6~+zRD2?$z%axz9 zi3k5&Nig&&#Cs4}leb7j47AL0%~J42j5P;I zojz~jtrY^mkVE6xpOJY?RP}gcSv^}6J_)J;c~5no6T?-WLP>k?>dYBFGaqUlYsXG^ z56Y5ZCi{T%oLH;mpOgxC1)HRBIuwo;L!F#vYxYE-txa-{Kf62x2mO%kHi|OYqd&Kd{GO71oR@uw^WaJx<3@kLtt6a8ZUeJB2 zW1CRj;UDFp=xo7(49>=Q8$DASR`L;Z9sHgun66BFT{RK7NQx|D*5gzNi|nwzjaIAF z@~jY8e;5VpUfyQqH{t4x_#O-qMqp);{9ZLAfcQ>k)YT6C_qeBMqs>&m#YIS^zpcHA z4m)LICUu|w@j6M+uo;qwF<2BTw?QCZIVwgVks5vW)C{tU7gOH(g7+#nQjR((R)8Di zx(P^x5nUp4+!{cWI(XvTHttyF8BaWMz*A4(!Lz3)fa4?F`?m+&oG&pi3+^6Ic>4Zb zFfVxi#n2y@YdifQZZ+QW$Bg^KID1a zkYh1dVVD;jtqg?R9GAK^7;wwy1m&i~HGFp?7&U#)jSi1DkPmzn;2>S?PewXLWj8)) z%NU^07h6VGHOkg>W=4AssN?`dHjF5>BOk0^xE%7pMOb~kv$t8wwNHLrTV~FX({2kCmtvUMCA=@WtqcEPmMk3CCDE!OEgU({4vN`SR-a7?zz;=Z-Z&&> z)LD5R48K6RfKt(FG}<9FZ`lWVsv4@T8n}plT^fxmrGo=zuoc*y6tXjB!Wk~Zg9 zW$owh(TZ{HbX8YYl*n9KcR zH`;fFqk(t=S~|Wv&*PwAZ*w4wT4avbd)X|Qk=3v{gIlY20191gMVvE@t}a-2+D9_p zvT+NaSG8DB<-+!OiyZKg!|8}_sl&_?B+%dUCE!(A2alBghc?ZYFo814HG5Ygz-#$5 z7BhNA<+xRM{4KAp=D^BozsOb_Hjfl`m>bpxOIS}8p5j$_gKD=_r@6>-D2>vHF-G2F zlLG@=biYPT(j$Z81VHzH6)KG(>UhGD8&2AE#L!5pPJa$M#j5rS!rO3``*0N^UWW5w z55DbWtC|$^GoC_9ln%FXNIfkZdV=%gXbgY{sK)J2c}_R!JI}d~H4JiLA2IBGB`Wb* zXfm$&uBWTWv=n1k`|jx)62#nW4|3#PfsM<-CHmZlkqLoI9Wt{#$%yRa1;^9{;CR8vvHl+&NacD_&x?k2Ap<(d%y*=!lF7ZY>NZ4N&`p zhoj&_>;@y0T@AA;w{nI#LI)&j5WicIl(Z6La!0lePt4MTiD-Q>Ma-cM|mxeN?IG(nh@Qtp?At2>gB z8SoE+&zklBsk~o|O9H^Lx6rGru@Q}BK|*U>rG1%1J9rQdJ#Y^kx zi@b24NrXn9acG3&QPO&rekDq?15;y6%xE(}{j7}4XgJ7!jX+bAErKeQM8<@|a^Pgk z7#fLVFV4LgHVutp4}uA^X=-Zx#CsxR^ciIDDVWho-<<@A0|66FI8GBz2Tcp@M=)e> z=E4Nvi1TzKK5YjM2jF=3gpP)V8wiVJi1i6GGy1Zip<$XPJbd&JKlM{ThoAq2yZG=| ze*k~v4}J^2?rYzJg&Bvb;Xp@B0Eid#g)lFSr8k*mzu?|Z!cYgfD7I16jPq|SQX{w_ z#JSK;;I-0HD=X9^znP&&38vtgmfFj!8P==x+1%h#Z6>7NhV}qNq&xV?j2C-gd~8OL zpS*`5P{NhR%(=Cd?py|UB7I5fFMYO^Fn>Q8(ABXZ|6L3Xv4#o{Z}@j*g+QH{_5N$a zV@>(JEzl5A`24)4L1$m4yuT%*(<8B?14lGXW0llSHX_`__Wr0fUlCrvzNHUB_FJcJ zfa@K*!3#=nW7J$_mNb=V(2N)gf=)vjG+8ovw#ycu<^VwWjzUYF>`pf-E8}jg4Jp;4 zhHAja`I6GM3fgx1#Cc0JH0a=5R`(jNsQvV^K>|O5^Ra|P9w*d&(vm8 z1EjLZnD0SyjCp-;CjT}Lu8t|c6ZnW|rp-qggB6V;a$}#X&UVPp z5z_?Bea7Y0Yq-38g!2vK=4QslsiV;er@I&U;)9oQxd1a5hZCVq!1c`;pc#6aMiS6H zIf@LhDhq}jIFO|-n=``dJVEzpY~QD8tEZ;AJ(UWUav{Gr-89b&fmyfh(}JnV{z&c} z69Z>3Koe+^F&&QwEM4wXB7!=62lV-joAZLkjN{>e^E~5MfBiFPpSXh;pI`9g6Hj2C zFTr5kzk9@!_wM21bj0y+#DPwj+FkUyqm!)8h7kv+o3)&Lyx=Tt=v5lh)_Qfp>Uz`~ zc+6d?ahOIm%G2rwjGXPBxM(Bqd2+gRy;j?F2Md7R0ckW2e;$UT)3-ZI(m}U$=gcn| zeTM3k2DFOUZeTrDbD$25C4k0W5@{CwpQk++FY*u(q6K!KjPS606*Y&2{Fd1nTh@%ygEQivp!R-d)==dc5 zVUm+L%OO%ByV)HJ$~PmW=T(21*&X$4HBNs~Jj(uObDZm3gmXO1(O?wcme#d3x8V@v z=7K+}R?f!t7@*WpPI-59z?wRyDDpzyCXk&N?fPuZpV{7w58(h*$rw0-wuR zO2&S|cUQS>m>AO!9e56u1U9n+p^l8w5O~COP!^SM3b!&lB}5hdqBcPCn*z?X?R<@r z)Tha;%r87v4Y@z^Pw(LtQK8w&fmyEs@IwUy8$-sm|p}=z@W+a=i}8N2L9KxjJVrzt!cc`qi1HPE!;`* zdm;zs47{0Dt)htrVUS>u)wzbbcXTigrz2i|{T2M&fBI#7;fpWg&Mgn9q3a^%+aQ0a4QvFD-5;&I;Sfr0NXYkb7S+&u2^%`Q`S@ z(!;Ro9Yl;ylB&r}XiZi^r#9huJb(Z!K1WiK76#3;(&Yj|l$P}G7}d-QDGS%?s3aqz@K1AN zbiMKiJy0kaavODAc@NH++c(L;aXv3Fngx+)mr(ai4tk+Y%^wrsr}cTtt9I)58&Xz_ zw!)~-8uVmZHd{j8wf$7)I3ZSC1Vl5y@;Id(NwrS+ht&7g(=vsltP2=Qt;aZNA)>-b z-!|BWw%DAv`diFHGERnoz-^A>dOxAT_4xg($iHk74>s{Knj!vvI$e)aU6bcj+8{Sn z3gC*@94v_6HKEj2#26A}BZ_yj!=MA$wsErKmfrJ+*;&d#jM2%-W6f=bndydL(sv$G zOA&p0Z)+9B9o9-X$?<{9Dxvw?9TR)i`|>g7Q(ehz2wO39T#bA9lJf;3=e@c@8&`J9m9Q5<&<=7`kl%MgRU8R znAc`da4&Di@)oYnu#^6Rkxe;Rsh>CYI_N)c6cJ!&c<1yu-+EMf^M+T(Q;u+3sVO-I ze-$9woC>QjnywT3oL;;`ry7&INgU@Qx8Gk4&4z_TBG z2fpd+-iw>-YyA8#d;<6H-NDy<_+9wm`|hLPbbQs*PvDEszl4P@@Ms}i-87tUjyT;t zfUmBAYsN$qmKO7KTd}$8$zaL#J*ADg;Lqw6gMve~8_qJHtoHKhyOs`RhNr{i*LGz3 z%O4HFXN}?v01x1ehsKSNCLQUkIf+;EyojoPob0Mj z&*-=jY-Q05Om)Vc11ntau{a)DZq6Q7JZW1cwRUUVE?F|X8G>x?1X1l^Y1Fy4tP< zS2NF#^#a{>9>Ty3yo$VMHH{b(>#j>V#iOn%1~>D)0E732&#xsBWj?VWLbeNM() z7XE2h2~AiSI4@^h-7J{q1>6aQqpViaf=(Ts7);WKIJi1P(}d}85LlN*oQJvN;cJ)Z z=Z>eIxP!iQ%<~ND3!ZuU9`4>b;pw};yxha_i6?M*p7G%2Gw$Cz;o@`;m)B=3v|yqJ zKYQG0JJDq^C=rP%)u}dmRa#M_I2#nVIf7e`KpXZtfynpjM3h>;+hJ13#95`i^J+3) z@;z{2BqjsE4b&KyVWT;F1>fW`v~*;+H)rFqrmcU5Mm3XMvKI|k#&62og5e%1W&SMB zM_uPBI@>2q=QNGQ@ibNoloW$HJ2iQgB;-IgJV%2k+S_&%v3gg6GnTzEtVCEFZCjRY z8tI8n1Exx!)6~My+IYVP!8QhwnP@bylHnWODh(%m#ylCU1fognu!a`ixbVh6GEEqm zMQ35uW7gKjoMt}AmS65Hr(bWtU1S7>W@Y`Y<@{O)z0U8JBeNBNGDSd6XW>*?D*6`P z#Hp@YcQCxmLT3i`7Fu7ozwUD#1 z!fl@8tY31QhR3{J#wuIDLY@X~xR1W2VIa|h;EY5S_b8D_L zjRnNMewcNqIWKt?7L+N|0#hvnE130Mg;AdH2EFqj)~g~&L9Q&rl;4xl zXPE)kASq4R9?-zchMf1V$6#_=kynh^YA+c|M!{=vdD~hc@i9zSp_a{T6%Ou=H0^+C zFK@r{77n<9D}DJ$dR3e61&JovDf!@;w5Llq-fRdt^IMW zBZe@oh~1pp)>`e`jH24HkJp`Hucu7k2-OIvc%bx8PECn%Seq46Dt%E>TG}@;2zI4I z$HWsRCR{&!h~@ek7ZdQrohJGBy`fD_RG_9%%zFGb5%j`j*$dj;IhLN9?qL-ANC5y< zw7$Q|P6urbtqF{sZ_q_)$xU;9-m?9toCR3=?uq++D-{9&>9NvbeN0~F2 z&i-CgMZKICTtV)7nkL4vPatN@=LJ{@{bt4s&%c7tzVju#``u6C`sxM^kMQ8ZYxv^x zM``nXjb)y2c209JUXurh>Ktvv>9>-zdWnQZc z=tcRk%Mv+^A{knNE}e{=G8E}EazCa;t)UlFhoM8xuO=6%%oo6tjx@-L(9rhSAddCf zmfk6m@D)Dv_grNIUzUEhCX0j@HpAQ;<_*Vet8IUuOIqJn-7&afznL-h*gbcHUU7L2 zT}U*;3V>`?2)WPs8jNzsSaLup9psW^b+VJTo#Ch%@}E`iCj-_0HJzv9wv~3<24!iQ zweaeX^=F21q>@!fu{hGX5vyJ1CLcz{11-TcvVZnN%78fjWpGwaX5?HL9%M-G~)r< zo_K66WlGR0Z3D>bWZyC5Xl3xG96eA*{UBL*&O)*Gsqzc9%y@3uo zauJff5sr87;&5>RZiJ-+%##XsGmUL%3}0o0I9&@b=sg_{rd;0<`w-no&q&Y+U2BZf zq2YL%(115-#0n{*|`N1cEIGfC8>0eifPfZSy z=sMQrJcH3OpBG$Ti!&PvmB5Yh;=_lyhB&r2=PP{fOAqkq{2E?)PcK) zb-ecaBb@FW@#571PrdsI{10FKEG{k@=GhL~A-S?+P!y7~ZD~!*%7_lS*r3(&tVW>6 z)telV9aj|wf-Fkblr|~DbY^!d(#uY(#KFs^9CDv79w>9A$E8KSFrz<~_sAVgC`KD1 z6|ER#wo;a0vH4A|f|9bwycK5?Ixp~uugaGOyGImmV1Z~b{Ai`nO(|DLJ>a%|n`PW- zfAD(t;mV)1t{IM0uroUQgG3a|0Jb9K4hwJ7Ty$(N4|1+pQnjAdtu0YGrElzJ4A8l* zFo%o7wIR=tFvri*s_lB84ZiSH(4d{z;>epo?842yPJFI9 zVL;AW-a7mMX`sLY5IxIHZzItb4f0hLLIZ%79ofi&s4Cj%jlkRsTy`ae-M>p4G-7OK z@`Y6wnXdJq2C%8t<5}fpxl7lP+DrJlzY zO?P$Xav;MUP86E3DGFE>SDx}e$nn+_L8%m?CIMLET|jib(rjxHyzqdSRWzArP8E=7 z0^S#SUr2!{qyw!~u5HMdx;mvj=zUvZ3(AxS6S4??fvZK?Ni=D8Y(4@fEyH6#^^{{`AhE_gBt^yAoqiFM#oCo-I&T! z7~y{@)wBLk+sbtAQXJK>h3;!qMr5iAy|ic7W)R#kapB{guLXR@Q-*VVZoiqZ&58uCB$1?fnP7a^yPm-_?|c$>?!1WOl!TxOZU&a#G3zxJ#G>3fv^_}ldGfn5 zJ8tGK20&-TWrzkOvb-%D5_Hwjl{C(KBWXE~Za z&aVx__g|pre6aNJtRM28*e(17Z6K2nGF6O& zEx2jA8Xae{C;4j1f<<;~j&pISL*Tk2!D=lV&BN~H;|hoOlE%a)a2x{FT`HSw9_*yz zoIXy}KkfknDFeqdn!@RuNn2C;GE_&GN}Y zIBJNystj3H-v_2ia2G3ONM3f(AE%#Jj#cJ;^K#PM1swvE_Bh%&<@a!C+~G+!a)y1} zce=SkPHR0M0FkFV8V`+a8BQ|~k8o6}tzR@l$i9N$Svxi^S;4CTHIoCSxkmNA;N-OU zK3!uqsN+Pc#W>MqRvhjWCH<6Sp!JatYU_#zxjsyu_XL>RYBo-NHmUt#EAb+yfNtr~ z)&%EOc0<&FV;^TiL(zeGzBmrO$+E6uvCe5aj3{`OTsP*r7N8PTQqi>*z|V7A+f3hy zKz&Gg9bmN2oPOuwcK~HRkZ?dsjw7A#gRB|^$mua^Ab4SvHemHB`ZG=?B0c{gD=JF;R^uwCSA}yZN|SVNPw%Yz8{x{O zz~T*t;L2so0U%A4aG?;BP>h_2kCFFFX$)cjnrYN@m1u!P5)S}bYNoWeFoU}Y-{~;v zfkO?%x^E{bOSwQ=4yUm>^^p~0DZSGKURFUX?Nfb44Yl4ocmmp?$?A~raRC+vuyov< z7o3+Fu+%eR9Gf_#QnyFjD%FbP{7QW(SyoJh7n=6UM*-089Jb+T) zl()eX3NK!ZK3C>QG0GjvRUcIb06A@RRGpOm4Sor`q8h{oR_343tF`4MT84+QUnSJ4 z8amuoFOBVvhf#bv&!rv3K$<6`Q#&MVt7Lp+BXUcw-qSo$ohKFV zO2LUfoURe$8f5KbiyM)gR$4RtY#7P}xjqLX?*uQ5SSS0#_i@@lhSrL9QTe zIpO>pqdIr2Y2pc6ocbqtdbaU1MW+dmCI`&nNb}ajz|VNJz1LtaV*}Z$avqDpuQJug zo@p&jZccF>3n%9jkb^wZ-1@4HwP~~qk`tF#O|o92qCty9U`#PjT%6oB4g)vI>C@p+ zUFvb2>;^tno_0r$j-NqK2MgWUU2!e)6o*fjW#XxDzg{@4C;HRj*qX zfo@%Kyax@M6GbT)lBWZR`ELpnjH1aA$* zqVJLF=H685u&q#+W&@729US0~Y)DXY7KlV1!YSsA98^JGp@OU85vGgIR0K1pHCFeOIJ zeW&02emWvIJRH!lB;pSxfkNq-wYxHotFa(`x+X1q)$)WGeq13mYrnRs!v@g&R5EHE z%^g4X$edkIlFU|+USomYLA|@MAtJPC(un%vLXrFe=OmnM|6+*6JX~ z#$ZBumc~)r1eVTnxKo>On6hk<7s`p7%$~hq{V-x4s-Z$@&I215pP8Yb#y5^`__pg3(6i56^sy@O@*kmik5H>CP8wMh=7x${?1Om^k@)FWn_@3t$@10?xKSf+v^z`&S4Sy`+ajL&M}JRutYxDa z)^_Ry?5l+G4try!=50@scT(EO%9d)s`YcDu;Lnrrw>?`x82frSju{d*{zf4b>>Nqt z{=5tZ?(mySFCthP+i2wYU&HT!LncDg3#N&ixGtJrDJuv7T2muY9IOQdn$`Jhgy}G0 zYJ_Ta29HDod++F7%&=u|k_U&$17N zr>-jpP4NhzLd8}C>a(O?c6>i|cibtHSC*$)}N*bHVEA2RVz2XSS z#^u-|rMkA7ZB-R|SDp!;!O(Q&n&&^YVK8hNSOtfx-vyqjwFr)JI1(1Q2a#kL3@KlE z?C$in;duonxfL5QKBhPhh8A2NB2ouUK>K)zKz0<1&84>opOsRGNc4!(=*~Q5v0BcT5n%7j^DT7e- z$hW?tf*4z&<$;dN3NnR(?G8h7Ien~V{02Ztx0{>*@_sCXx5$8GL}&RNMt>f61a{Ii z7WrF5GOg=7-YC7_QRYARZN* z*}N0^$*1!?LwkIUJ?7fqDHB`&+FTFM)~|#n3)jkwWkYCo{#HH5yz1}lpVR*3(ZU!D zN4k{H=N9bQIC5h@rCKp-%29Gu2PJIEGn!0ka4A@|V$D=fz6)+#KG;4SGA<2;8wU9> zro7o2kUeR+-%)918M_q(cpQ!s-MB2}bwoO^Y5~CEZ~!)FAz!oNuu=^ew6s!TZLb_y zP<0^9KrzoNu;a3i2e^$cw_QzJRkQ1p7;FM8B?kAK_R|HfC8^UrAfx6V6SnlRqn9siz4Z^ zi~*63Xmer*J>@iR0{Pxm(`~M!wXI$^_9cAUn6mStvLpqE3(o_-C)mbJL>@Ho6(9oS z;GpabSxR#{2qszy+GG}4!7Ra0)C>qwoty+_av1c$xzR}@Cchuq=u4^vT`H>$c*=7g zf+2?+1kcUsC_6hP8=}=Kc?5DtjO1 zcZ0W?5qmC8AVRYVtRJhF=pJ@I?BKjr*^@B9DVv33Kd0AA0V9`s%otmvOc#o92K3wv z9X$bYMn&k+Tp z+(sy37ZHsx8S!q>uNzn4gqYK@<@6fUPys5zkrWwViYggfS&`b|@NTFjp7SGc-aaA<_SEUsjTB<_A*MA$6n1y{?J3k>dZzoIyLXDrJM zfY2A&-$-aFJuR=GkRHk=?VQgum^RkETTUQ+{P{f-z&TLOE{hYct+>B`6q zrBr_t#uP{ZP*U=;gHuuq5snCJJt9qe?>#BVHOr1LS)G6_%MSyQozH`Ztai**ro$LQ z#$%dub380NfZbe5Z3iA#`1^8|sam-ir!)j6*85@7;D&y`Z+5Y|6{<}Z~~*|NRnAB{xlhyxzFTr`fovA8E%zP z{)ZDeCSK1{$e|o)^R^gk*bOzA-1@L|*^mMiq+objb&`Xp`9-V7!@S#E8SM>_Djb1Z zSs=)vxN*K{`|)1h7Uj(!aMRM^03JF>!eFRh6-ccivLXZuAPkzCEp0H>{zk!5`l_8K z;gA(x)Y%qdq0~yG(u_wYUJ>6l^ozu;Jq(sH0d3B z;@mYpU|AM`J9uIAGXuv4@Fe5rjz%2^0=P|*;yW{V>5!`}$rVM~*B`WElD^fDF=zY^ z<6P4VUcuWy=xYzq10caXqi@mnY!}0N2O`VF~^?HK_$d&;fs^+j8D(?_5Ay$BF z%sI8cI=b<}TFk3a8S|8IooO*=kYtNLJGq%o>xvWCK#}1XHlL<5Q06daXvAt#>bLOa zIOd>x5c&OaHhT{1hAeTTx{NPy8FHYOpnb)qi;9#Pw6c@3JRh1Zj-j^eIJUIwDzmMP zyfO>qJ%5%t5c>3=Z1^vUoPiN8clx z=1u2FR{TOA2&*Lea)_k8o^+|fY;YtYQ3O?1Ya@yX6g!K8vji?0-b=E_pKJyB@=F{a zD%qp~@X#(nx809*#sG&*h|q+{!vWwrT*YzI_N$ak^qJ(`HkaSELRnE=djO^9ALe?HFu3oe&wM(<}iRTUFDcg&d4 zv7qx23q;v)gRY2Hp>Hv`;ujH+FMp0#V*Fb{n4&9_fwD5rDf2<5_Zk(iuT+|@&L0=z zUOP40&uzxU#|WhrihCV-Z3Aps*%c*ds}jQ)EW*lE$FUx-Dssa&48|>mX0QehRY*Q`eX&}$`1Q;DV`zc>1iAfpuVp|@#X+KWAar25Cxz{plBSZ^hu)w_-(2O+@$ zd1pm?x?i+|MF!jNx=$&e{_UrwCOpOVgo;aXM(g~^I84`B3ZJ%Z`l|t+GPV(YGWr{7 zGN(I|>5KAW&_Aa`)mi~E&0U-He!@x{D@TFz?_B0KbW7+_d&lX}^jn2C?11bTq&|_x z__)AM_-;aXW2$OS%`E}00hTgu!mu5!%8LLq9kjy(ZhSA24}#=XQzrI|4MKUUSmC2OUH3O?d{r2*!#2r*HaKQr#SmKb z>Wny1Qa4y9r!R}%ZfUHJn>u=y7jbbq;fZ@EFfo>eu`F_h#WXeazPOnMX3R@RUqnD! zl$?+hj21sYn}WJX1?OUIDsGx7KO#M)RGm@XhsN5Vr>7F5O)@5r{zI-4=q&i5i8PpD z#-j>qpQA8TTn<*2^H>EGFhEygps3@KPK1Kq~IfuHP*iLB{mPKx{qDuZ2h zvgKsg@Ahd>z{Z;_G*b1+ ztn}D8yfc`68i7c1I0XKN(byd`5X=ssGRAl|&P>%&6)(b%)hPDy0PrlC4Ia#P&KQX6 zjswW`7$vBbrPi7=*lEJ1WuVPGqM}E}q<5tg4xF&RLOKu92aTI0ZA?bjN-(W8cYf`+ z;tLbY>bKlk=FP=+$IO+W0*e`y4K$+sC@IqohE5-Il-`&l zv3X)j$cl(MRGwakJSO%?KhpSD#vz5`ZyNbVYv8_!@Fv3PqT%8M9Hxe8I;2$_9TPKX zUU0K48ttAyjj*7D=SACZm>TINy$qfgEQ>iA;rfuN_Q>S06X%J^Xh2?kF= z^->KrN^@=?STxrRG=I-%rL<7r9}S2wx`(<}Y=u;DOf1)Abnc*hq~cIYbk#;mlC8S{ zaW#tKr6oL+L-tk*lwc}9?3Pr=3>o8hYia||l~X(@QVT@bs)_IOw0+w|YkAmeI|>xQ z-4DnJ#cF+w^`*5)DXfNN40k=KYJ5V)Up~B`wl}t&jq!NL<}cMReb#x1=y#H*$Wy9s z_dXc&V=)6&tuXhM7*IZqaVBFnb(RmSNns^y;k&>F>(V=gn~q68z}g*+L~E1(;QW!8cAnN^O@jq`{x!J zQ{3BO=_+_C4EMk@JEdm($HaUX`lFez_|qRF9M5WV=s_repDZ2INg&M_;%)*y16JoW z@6$AyWkFY;2m)FUya|2id^jQsLgi6r@0F}#z0QMR@k1Mjue5Wz0?qKoMt8t4?fx6- zT3TKut`zvi3xECBg1URprGhqXf7$N%uCtU2$c*E+fvvT(Y~pL(dOC9+oil^XHh<9 z;Y8_wh@qW~t5N-D=gcFJgQMs5%xKBK6L~t$k_6-}P$#2>)YuIpem$;n-$V%J?CAQa zXg$JPS7l)AYpbS1x*TgtZdR1TxMcWgOvCpyY!`BN7+{+wG{`|Thc@AKm~d!>smXyh z++!{}Ge|GzJ{%4>9*+P4b6>yb{q; zfiTarME_`VAv(EYnf0#3JpZ=;b8Qf{q^Sw3Df2e$#5zkgTp6O2-uItEA{R%ID=6|# zHCn8pan&pM$f||$;3>?bAx04hGWYw(72wW`!GsfMRH`vSwGQL_F(bce)RBd>BF@D2W4NPU@+nv5-tQ2`c z%@wSSNyZ>8)Kl#897M@c9wNUCtE9;)i%$j=oWnRn7V7(m>z8NPWeFo z*F$?maU!EBrZt-uzG_4(Rt`>!GOjFd!B-q+vOrxm6jN=CxFgb4GsLc*F<6oDz=*?B zB26&Q)%G0L-YXnAZC#uqh+UYB!%_bmEcVI7qy?{fuYr>hd3m+Nc)hNAdnXXy$PNdE zj7Vbx^rXmPBHe+pZ5J#VBS>(O6Nm^`b6)e_WjDYXp3#&jF(A*j_KIj?WyfVw8Awgd z4(AI&-vvjKdg)F~;Z+;+mab7*lukd_7JN*>#zEudd78Izjziw*v3<~pj(rKA#V;3od|+K31-GKX2x zR1HtvqPq$)Q4*}GgxCxK?kYLOI*{YGyY4?}flqg|Snoa*$8^!Lvo0w~F1`v>m-g0I z2w;Xe1Pch0j3xHwCnKCOsgrv=P5^qOt}^iOlChjSps9uz#{=%&yMP2*7s1`kSh!snTo{%uUE*~Z#AIv$3x(R7O_G&K)7lkRI>cbgh;V}w@V$oz+)m>tuxz3lJ} zfN!eaQI3^w8?wt@Dz9xhU~bUL0N1NmNrDZI!yBdTX1SgBTG?Nx=LWqnT7S>Zjm@$B zZ!l4UjM-Nl!{7;6(_0uB*McrN9n0v(ldat0T;mV0AgIaxp5WJZ2K`0DWMuuD9g*B= zU6G4+QRYn@p@JK%eQ(zZGD?`3*A{H$I_~|mxuQg$99uvcuLkT@T<(RO%6AZ( zOfGZp;70IBsygHef2NDHUy5vyJa1+3E11^lf?+$!43{$Q*u%L+3j^Id-*NoRV_ntL zM3ODkbo@%O* z%ryY{3MjYGg)T?jsmp|6Bp-7jcP|1K+%W&PxcVHX08Dpt{NVEo$W>Me4)%GCda?4p zT_`obo&yB_99OruwU@7KdGpRZG_dY>>4}fVEz01keOh7#Z+`A3Fo+;-DOk2b>NK%rh7ry-(=9 zBErS-h|Xv91#V@zY;CSDgEF!qpmP|CTLxx4 zhEc#$OU9lVCL=yV$lvNj4Rqx^m>fmtzYMGWrojt08dkxXmHzg3x#f9er&DQDY054+ zHv<8r!HKH0NMSJpZRIv?joolW6sP1BN7*qF$*v>+`yG4nJWK*Z7s-+IsJJfgtz==6 z6{%GDF#eheD(VC4mC@VEW>9bgz5y!lWAoPyn#i~w9msWEF~K{y49|mZmRd_T^GU}j zbndWZ^yi66^c1>BKby^1ehifK+fuL#T}UJ0x8*>qEf*9akui{(3G;ldJ3M86zzlqph@xr2Gw>rKMP zVh6B`e^3OA@+wwc(GSQiupOXM*f>hZ)eB459{9u^NUp=m@k409ZAcGqH(a;s10f8W?%f%jD_>2r z)f+crQ_80@yzje8#>C?csIcXRaoKo_p`AZhrl>vW`+jZ08iFwJ)%ZzH?+8bd^sBk? ztOe53&`4JH7G})4a>mS<^}a;vvd42-L~!&Tdq`ZcktvD=)I(s{9xXQ{6d(x>inw3S zGafyZeGIItGRzJ0qG_Z6XcnVs=}T6ru=Ew%H|x<`6>z51&A1_RFjUHVz=4xsYXl%p zTO-oBYwDa%D%_bd9rVQ4)__IV4w*0!FddFKo{l)q9p`kYgV1c;M`{jX1VAe7n6X9q zDH+&FT`{5g0Z2Oa$?-7XZd5Q?vhxN_VW{f?44c!mvfU0=BDenqd%PGCS zI)u2B&`y6-`u7U(V6(KS?R9QLKe3{)c32$^{vh@*acS3#aC>HBH9Q%Px;>{Dr%ghm zhFWay6YeQ26K{XCdk1(}0Bm9M}&G_YFvy7k@L%Q_G_tf-m%H-pe* zV{Sp2pahu)h&`~8Qm0o2`e1Oo6`uMUiP|p7cKb>V(zGa|&m)M@oUVset^pTYjt>B^ zUazsjeQRig(^v43S8W0_AhhZnxUm{Kh*0|*ojo(@g>PCI=^1-TcNRyoIO|mEg3JkE zuUqa9)w99 zugJ=xGvmB;+$@ZxGv>aaFCEL0uBu@6OMAiWhXItRox+`uzMiH@KXS++LYxlT3B514 zy1tfL>eMk$IM1x70owRFxa;*GVA*HbWpz_hMOE4MkWQRVWc5@Ehc}SI+CF$voUy&3 zxN7LU0EnoY(HwU<;D@_7)VAVDHW!6(hPhOs-L!t!?_oIPIqkU_Z_5-+oW^UkiPSfx z_oyh@qE>xu+XB0+PC!$b(_V~enpVfZuimA>Xv>OS^;H~bBeW;`ShQ1fs3{x)f+@~W zilp!%S})^uJ9xlpF~;*e4eeDf&hMm0oaV%pevWh(Nl@{XKa@!t#xcA%md7dJmE+;s z-M&^i_c$jqf-ASv&NznK;JhtZG16?_(_M{Rm8;-_V|U_jqfsF4IkiSjcG*_~EOk7H z1|FD_eu7rY3QmE;^ik$(<2}o~pn|J$E+eIq)d1X1eO?bVU<*Ar>XDQ{S?-<-7IYbE z!kyD2mGQUgr$h+1&3o2^E1I~4j_f^{p3Md-Q8|(`2O;w3-n$%BmBwOCz@1+kzjvD2 zfjc$6cRVFclprc7=3R~ah(%=l#uL|-6vG;31eDrSs8MTe;7`YgVZ1S?+o_vL zX!c7ybw@Ifm`G3mCbw7IMloZq*aQQbLW#jMe~8>3VK#Xbaw7-)9b(m8BA(dktiZ`R zS0~#uR*TDTS=MCdn!NV5j@irGr@W<=MREpN%blzgI7Os#-hVTpnH(W`146tee3NW* zgHx$2>kMj5PvKm^AlQ~NH>@**l`Aw>1M}aitxx4Qud^Y1%_%HOB@30LTxfh*znT+m z3|=5H~}6Ev1I}SdLovcjCwP7+?+dR-H*5E38zgh^hmoAMcM$r+JKogRa6iy z4rABo>x9-Aghiuu0MNmWfd(`_==?N2_?7fjP{Pu?rq`G=vY^os)Z`As>+3T_r>8k0 z5jsLv>KryT+%Yr_X zWESGawFIo-2q!j@Tj751b2GpEvxn+#)p6z?GBv9eztf4Xy+9K+rggCt7^ z)uNE+&}&+hN6UE=GRCG8=5vNfsW&*?St0md`jyPlLsS6vOq*_wOol5@qdqX1J(at@ zl^z)D^z<}Va`|(6F*`3DMxFn(&(g+P5%BUJQpyjxLudvD5&1^=>L5UkZBYb$SzyMR z>uxs|IE;?L-~pP$m5u%~?qqS+Xm>VD93`8Ec{WBX^TUOd`hv-6TerE6cA3#&V}={3 zBOW_T%8#6i+8|l(YRpdZIbU=?O{$3O(p$F`n*0wn4q$zl%u|QbkXuW4?1EWW}M-yko#(#5jhAm#VX~L0!K6jr3Q<&2vdmvjo_;KAOMava}tV&L%OoB{; zZrBV8p|y#O`qHGES_+#1kph+ldXQwLqfBqx&ZWQS{E+s7z*Ze)rQh!6+*&=#k^PB; zhkNhnN}DLxlrW|a(78MPb#)k7BeD~loDhXJf?Z6JgoAA0+W10tiGt(OR6=fgUz-iw zq`n-_TG@gF86Rc@C2D0LsJsH2fA2g^?zaNeEM;BRA>0TH%UU@>L4ZnZjHpM!ZAe*636ItI^oX6$%TB^dyi&bRBnoMRSzc!W1vHh zqb7#>d2%Jk(r4HuvBZ$;I2yw*Ft$@v2@o$$TV~dAvn#vSfVndob+pM8ZquxyoK`03 z6R|gwJOaEdA($*uX5%wWLz6g`mzOhqcA7XcAd-l&I>(PLFXg%2u?4tsCeh7~^E{(t z0%;(^ATU}bk?2k*5s{;0Y;=dOT!}#dsR1#Bp;4lzx~c`lU;nc~!&_zZcOKfN241?( zm)37~K#{$Wx=*yq2t%P0fg52tOqf|x!mh8b(3b@l#}h8@-;sGCIUtEUK)uV6-+c!3 z1l!zp#!VQ*1r;iCoWPTUgd2hW9aI#k8(vDU*{m@eJ8Yn}5ow=!{2l9bTG`uK4V8_B zs9N4&eoIw15{Eu+X~S1x63}jP561pFxVGKq)>C&LH{@!up-d-`-FazuyHz8|WmtkY zN9%KRJkQJHR`~Ktq#N(mb__=ar1yx9`&VuCQ%znAs5l5i--B~h9C?3_leeA6mr^~E zoCh-3B<3+Ao6?pEli7wp6IJj(s=Gj<lyyFsQBqdls5HRx&wlH6rcT zy77IY$!_B$&tuFK!0DaVp88CPGvfddw^(Uqqs=O%N(PwW8O5ECdImG+G3y(|(6a)C zwoTEFCD{&!&*trp_5f7ogd~h+ddNW{bxs4HZYz1Giuo-eT^xF|5fdW~I=2$XIul_p zZ=dp}oyEMhgH$5;NlLDG5r>(}G(ugIhzJ zCQOsiO83h(^+NO?O%WZ#p;2Jd2y0uK1AY zXjrxWl;tvQy=^^G?)<|_gh*0 z(Wo(OwSm@bZ>q0|*tti38mcvDttkC#( zFL8YazV7S39)IY6{5E{?h0ox%*Ivfu>o>T1c*c|W@8FyNPhW?p@7+OT)(jl65|(l( zgPerhh=-IMIE)5y#!dR;!*cQ%9SrT)6|(JNO}HbQ!;FIg275m0+eA4Tz4?_?2IDKi zT*jLm5;MS);3&pLX}uUaW8X$k0!I$)SxQoI1m4J@O@f)yJ*Tn1$7E~^h@2NJfHJPc zq;Z-avvxVgP2klW5z*@M@L^pFHRvO=M($9NA3ou&+;*2?Cc+ib%Hz%{@VKf%=xyzm z)XbK|r%8s4DVP|XpKSxrwgc$z+Ms|xu7^v12d0@M0$3Du1Lo7tml}5my9M>tLH`!Z1UY?f500yGb54CUfzb~ z&95v{@PvK0un*-)Pm#V%y8g#jxDfRT^<8_xR^%3tI#QGfw#iZXP43%kB-bSL#TZi3 z48gK`WXl+)cd7%n^>>SkhXjYja4U3WCoc*8+=p*UhB($+hSzE($QaNZP)cx{vI-kZ zjD7~Vk)PIh@9qIl-ETM^fUB8sm~0Ogsp@I|{d78^_XR{9ZE9G~i$;kB=aV`9jv|49 zZ8L<;7sHQcKAlcD9>Q_&oiWb~Zq6LSjSY1&is{gBYz@6Bu{Axc=iG61y#VO$kP$@L z9Ss-0=IqqvLme<9Fcy^E1DM zkALjH;^x(dxV~KQRnPtoyyrb1z|&9Mvy<~dT@6I)Nmd}P;y^WA3+l&t2-e)F;1~{k zZ5f8;b%n?G1>MrF+Z$VP|EM$e_C|h}L!3oYfjb46DoG$&L;iV`pUm+>UX_hH>-Vhq zVF)AAlP(!Xfk>Z1w#~vo%#LN6Zy!M!SJcnFlr%6aEg44!KS3SBa6H^tOolk@jye;4 z3XJX19asLg#-8EJJ2A(4Vcex>tl1kdhfZJ+UNyO!+PsCRD9>?GhortQqbDMwf)C?` z(PYrTUG{GkC$`5k4CxA6Ym`=I^!MzP+g#tajN#V;Eu^^HyA&<*)S*!S4S8rr+aL_ROA;bw(%QbaV2i*0M10YoaCg<{{0Q zZPO6llUJKPE=Sfd!?)k)UD0`OqubboxY{>{2=&rY1R-bSBx*I73zn6Z6jvT(XNK*? zjON!w>+?}`NOA@vYxb;uY7rHX{hGdsgqbJHW?o-OsyK=kq=Vmf&e{KBnfpO zPCNzq!73dSs4a2{D#Y;tH5}UkSH!ql7^kJ-G#$}rpf`)&HIN-YoSiNEm<8RSfYP9y zQEpeV527fhsbM-yIGiSjds!B}qC*U+NF6r9(gc1b zx!yY_YB){@Ii0kh(Yd2Fp{Wjm>vTHeaIjR{aMt+>xW1Xy2__s56Iz=@aCJFtHPV5| z1*kYia~x@HEMS7w=FJZ`A>SPeK<`hYY6N7ZFw(_fjAi^&;hSW>r26I@uUE5cvBPpW zDWx1oG<@bhmj*q2M$>@xAR1x;Sx|M*qh!Gh^@!s}OeaQ(31^3{hpUN8=Ko&?W~LtD_6SU4+^1o9-GSh~6FCXe;ZMZV}A;|CKM2FdMsCr2qJd_su?!AZ#)An-4z5->&5#;Kx>^Yv=0H~adSH{tBu;|a zBKHjPR6LWD1JDEn) zzcz=ix^tF9YHJ*;tukcU6NYqhvPMd!41dsQY#T6`fH)XWD9-36f}jM}EfA3;B=v2j z&+4zo96ar?m#eF?VE~7Bg-=qL67yD`%R1Wr1`Z2q21hd2wFX#EimUzC`mtXy21prz zgaa6?#o0EQRe9c9N|`s88Q1n31sz22aRLx09OtbA z`5Kxylnp3!&A)v`FgzHY)vC5SXG!x`Mdmc| zR0Bv4P?Bqd*tc*{ z!GhKrPDkMNM-T9+&pyCY_uq>TeeDs~H)myVSz!>yBM=U%xRP*5e{0|NC>a!3|DGGj z%Etc9r<55pddmfmYvI1NqL^i$3s1^D4luGrp&Bis7ij{~1hQ*JG_|V{VMz`Uk)~y8 zTZh8|k}A3YYCN?z;dnga&YdF`?zp~LvW*xV~FyLwAx&PkhOZ(?&q=qZ;X zemct`MhgIRaW0uV4kvQwY{FEOj2I6h?50UiX;q{BaFEkrnPuBIgD@Q?9FHPUdtda9 zN5VXJoX_Gso=!)!b^;MJ{Z&$OPiW|ndl+wSW>|WqrGB<)5?q(-E<&@5;i9mcuvbBw z4e3fR(ndu65^aHfh0l!otf;e59~>)&`g9OSy)RwTe_QjE;--=74#Fx!t_>AS;F!c!so^ZZC#LXWUq1RpJoQ!2;%mO?1DNi1Fm7-w?J$7{l zK!@pXdBg60gO1lOde1t3OgpuEdNahEdkhUS{U^&amo^q8aN0JE@?cczN>^)QK)a4= z3BEdaHE^T)%%>^IU`i))QbTY4f(8L>U;QveX?`lFWp^~|@a*tVf!p?B+V?SCvGWEmBXHtTybKF^in zH4Rw*jU%JVQjkf5@Cj9k7RmWH2eTApLxBN=!EGOAK>u}_oM{AZx*6=E2ZPd`_MA0s zMU~V~OhF3c@}ej9@^&q6?KIS^Nc_1Pis|BUt4~C}f5-MHT05vZRw6#upeaF(9!~A3 z3l%d6gk!rv=Z3>!!p(WXE3aLF+6^XRwALdXr7u8hm?n+TxzI~O#sr5kag7Wixu(DiDL`FzGzpB+x3hQ$sku@h?b zICGhQapn$(30U+xk4BhULvKCpJuw`2u%7nX(@NnqO*kGbxFO0!zNM4IxT7x%4o6vo z>U{>VIKD-Bb)S#J)NneSz(hD68(KT#W}edA%0KSBWtsyS1BDT2;@FTjysIHQ7?Sfr zCpjWmBIP4ZY2Oy$F~!ozl!iInu1aKORdLiDXY2}r0W4$@-9=?VD9xr$ScZ2YIfk8= z883YH^Z2!oegxMKA7P%a0d&lL!6$#?zu^D%&;M_D{tKT(Ye%$3XmrNI2VcNH{lEVN zUU}s;JpGQR@$83w7WBjc?|kNI{PF+skKn7HeK&X(CDv$?ajJ6dIhLDIWGD_w^zT!u z8~8bT4L5dOW(9hTU$EbTV{Xd1Z5U7N#TfWzjPOZxykh~^MYkp;08G#8lU zv_l%B`-5}gu%wIHosXy*g~f=y#S$C?pAq@bxRg1wlS;G0Qk@p#3KWN@+!buk2Ra(R zskVbTf`9~LvN3J_qR=Q-Sr}U@bEcER0S$w9g(LmfWR*L^q%xMFd*RX>3|S2(8t7dA zce$5&$v&A=UcHkoy6<*aUmBa!jq8UL#NtX%zR%6~*;1wD6cmB;4`Ti_i@>&fR=kn( zi>-c+4&j#F6#Xg=j9i@gSZqdbGIW|aojo}lN#7~{dpQz24hnKPn*s}&LNcv+Acm;S zB{M9(?)x9N@b0FY60FYy>zND`u$Lf>(w1>rc2mPCjKCKFy`wmjp7~d zWOud*6oeQJUNnm3?ybN(Ao!e0FstH1;EAud>AStWeac(BXL0y!4y1hqg7eH#G=qa` z{p=LRABuN@a5jlGGOE`$@DYGSUS59i2+w`$MZEUR5sw~zjTp6^)wt4ADZ#3IL$C^8 z2FaV#TR}?SN5Q9Kh?T#!0hS(DoH;70BHVH=y}8^@R*0$(_Yol`Gs_pFzY}7TFhKQBERRIqG0s-(2hJQTIb!s5SJy;O6EU%X|iF1aNATD)a6a z5!*eRL_jlVsV}%$I^^KXruE>dqIRMxAQ8W=k?&<8G)OuqO+hEEwUy{;BqxwIl9j^V z8O=Nu3WG(Q-bjaD<^^+~F&$53?jjo8!>|AYkav3%A>O8jwwUmi(>q04Co6|B&=aS> zEy&Jkf?QaKlaqvamcmXfmA1TpGsut>sDEZL3>cUaPFk_j#Ni^A`!~f7$$LVZJ2pP7 zCZ`1Ifq{`WcxY(HJK%N)FTMT(e*NR0z|Hay6Uhmw)F!v;Ej-;3Y>&A$&H{J;dByUQh(@Q3rfqv@9KCKEba znj!T4FeD_fq3XFf5kZ@yg}N1AUp-HBVqZOt-z#mmJFY6GWK5rb*Y4Y(=*z_%Kzdo_ zd5q6!wCuAiM($(!d86WUQjLD2`OT&Wocl@$*;P#P-B3}}CdCLjufZ)Nin zKrRETL*`CukuxJCP*~Yl65Q&_Vq?Shs;d_iO*Jc^u9(9+E_xB;99KOnJRUsew5E6R+StuWGgt+3F7PFj z+CSP!(bYJ&XYt&FP85PuN9lPyAWVAKr=+ju`VwHa)6sK4-GTsa z-f1jkHCC0%zv^8U*tI4-yT)cwX_?G{w|bj-5`@s#s~; z9Mm-C+r@Q)m1~6n-Q`Q5MMux7PZAF?!P9lKlj}_<0V4CjF4tU6I{kzUEjCCfFVTC} z4=0sjed!APFf4^PwprvcDUu7^TpHfX+pWBX18!o`GgIz&D_vf_z{%rUJ5_UM$$^HaGfSBhu8xIo+LXcy|Z4 zne!`?+KtX(2d%(URDED+$OgYVol|p|C5WAD5jH$px-4|nHDnlbmaBxO{UVng2o z$S2s&vjJ)HOkV7rF!>o+DcG-l$)H)z<{*OTP?g^d(7|*`&>=C>N*{a-0Q`&uPII5f zAvBxTFD*Dhq$f>9ra*R(vyJANa{9ZnM3wE@gSnBWN5xXwRE&Fh8`P^gd}k&$Tt+2!nr9AibEFTUE43FEYm&{ss@!bSKoZ&@6p3;Wn8WFlnxy& zk*o$Si(;A@R62o}F)widggLI}sC2uvmRhMJcxZY^4SekSB_qZupiu)iO%GhUu7I+_ zL@GpBFSUm&HtB-UAxA^BfH%B$4Me>4Wk#P|LtsO+D`oS3x zCD=O-)1(HSDL4XJoW`4@?5y+A^u%7}n$)LIkood|6@xYNM|S*JT5{AwGEQZobd(lIX!mW8n}u&~^jxy*9KN^27i zhZDfS$A9IQ@n3%NH}I>!^m$yq`WmJ_$rV`r3;;MBkC;wJ%uMKW2Tu+CZ~%yLA_jOt zn;H)H4!9uTG##)k9i4%x9rTPM5k$ldGVAr8&Nv{z6ZMJ%9Ea0Hu*pBUt+C;R>YQac z8FM~XE1I~9$}B6#xh@US#&0o?YtT$<>xygYb7K@y=eE8*?MwM!h`>k9p`Dsbz3v#u zjHCJ{HJ?SyC^I4Z(KHSM;9Ze$$8R=0b<~k^<5q(WL+X1jJ3-)&_Z5$Q6qab z_o)}I)3l{G1Z3Tt>BbuajY~U5QcW-N7L`E>-%@c>Ss{*;rR=JK$da1g^|MN!h^oK_`N3 z+P1S5Y%F#dOI~5L;pMxYv#d8!Eqiz~n2|18oJ)gsO2LYh&K!L(+z!#es0B|Z-6V&?oC1=x%|_@fhW~UFA-gQI z8UVHe1{V>bbj?@4G1Zy0szaOxhS-WOF=cCx9AVVQ0JVZ$`Z=JLKQxal+KOn%_f`7E$3 ziz!mzJl|khC{}BAoadV}XqqHFR}B_BJyd*aN~cYZscP)?Rzv_%1aU7{(2gr_8QO-q zYIM<5nbKD@%^{nR~t;+KCJzx0cr!mBUe z;QkXwOw$oF7&yZx%B2FI{%_;WkXlNq8-D5tkOl+7@HHx6hbzY3T_1VN+NRmlL=9-r z)u@p9X7m#XlOBF1d~Byd*5EA@UJMIn3-r{K@w^QUGrkHp03d`IWA0lYpy+^Ivl&B>pD^g@4`0fy+ zw`GB++*Vq(Ik&9>WE5hLr40)nuq6-^<&gylH1K zRz0#JmEV+4;D>X-PE86ItSU?jL2u4v`b*XzItYxZAHX;P(*cKL$Mw}~__bet9{=t? z{4##|SH6he&v@ZWFW~?Azy2S%cWC&=uYV7w;~hM@TG0ChrVhfSR|IgO?;1f&76`3> zx9=X|11Dz9bt&F8PNAW%O$QGN2lhRTpkkPaBnf4~K)K7D87RT`2%l)6+5m+}zw?o@YJUnN;DhTuyJf5@@)% zIN)?Ts#B*zof_uz3^c~1&LSWYvg`ALW$ChVM=jBzm;(`Ejno<(oZF@i$X5etZnLB>*mwyHS+yD0O@r5tE2%Z_& zkFK$t8OvE#qdPbB|1W$0)ofdmoC#u|N36BQIp@mMqOvkeHc$`^V1U-s9J1MM=rNj+ z?;ILm_hT#!-$(+_h77FN zAPqqkda$^ih9G_a>7ryVNOcdI3+g!UnJp57E5Xc^q=cO6%|PI%YKJx+9$rG|&LMd1S@@6~kYp zU)dF|_KxTkwfihAm(h~!RpmdnhCWwD!VGx*PuR?o%3keD1&~=WfY78RW3eqObd&n} z!QMOTgN+xBMx7VL{illAat>Q-h~LT{(Y8_osaIb-%l+EPxCOs>;wZ%v?u3!m5Z4CT z`T#)DO!1AaQ^0~2a$6Y(Ugd7w3;bc<*}EOdoA~f&O&K%^*dnO$)2ew1P zJn!*?AHIeE@JBzwE3dzc%ga5+JfQ9wum0q9{P+Ju#oztCuj6n3=8HHzTjBC*uLaUu zm{=oxts$t^E6d^;w^73*)^8Z+aRv%#Rw}(=xovDdjwznqORxYX5Ao5<*QtL`06^{e zghT~I?De!*lh2H6DHV}Gp6yMTuy}_nGnf(zC*(YcvNcbr^9-PB>5KvE)d;Q?^Hczq zBqE^3tSfW#0y1kYL{UiQd6pvf!^$m)Y0y;n46v495KxgpIfILYC(5}t#$1}B3tc+` zV@OiZF|kOJ21dn-XaKx0t7lCuhRh(UQdC-jB|zX>0L(tG&WWqE!Koq@LYc+l2fKwJ z0-As%xj&I0UeyW-r+sD(A$=!=N;#-kNy=C14mc zQc7YKMIQn+KoeNP+L8WNwDj(_XVbtKYQcZ{lRv}HUV9B^*S4~U#u4LcCCgQ%{L45F z81jIW6ISa1o0AQ;+YPpx5vQjoSg#V!u5IwdV^8AjWDP2$8mTRg{=bxTv|IzYk{I>0 zK(hUJ{)Roh~c$SdE@vlL+0Tl4;u3Rv~Suc?GU0FpzJokOZTmPb`YlI zKN;QmWE-2S1;UdSLtp+9uETqM6*?o0zK5(AjcYheGDM_30&_EpE;Sy88q(y0s5~u! zv>9wt${k4WWTp4BS3Ci@*XGb5(C+WY*?_Ul2PbQ*-P4wu{R{U7vGG&tDT0({45-=+ zGHb?Rdpm0e+SYGVHmGHwafsmO{rvp8cxvE}>)L5w6T;jjhyXY6Nm}KX^J1NKOe(`g z{)G_yFo_)MdL)wZ*?aBY#Eb&&fO)_2Q68(J#%)aIsp4?(Oh?|WwJXis=&aFP^HL$a z4}O2_Rg)baY0_?PV>nPol_o*R86CZ`Dtqn$4YC;2AfBBebh%{r9WkPj@;YnZ4aI>s zRA+Z#Y@#&^)u!++RVuw+Vb~ury1*n4TVIyOJA{yNhTv3jkHVfdrQf9($-8Q)ex~2N zw_+@^v-}A7QtAOa#da9g@KNXo5Y`_ae#`#78YKv@NEiwwzPdFhIBv3i7mWahX^4fV z_!&hTgE7Zo?34ZxVi}n@_m8g6-}TwgEG9`XA&gRMq`?x;5G?bkqr@YYFT_pcVXaNF zJ5w`js~)~hRFH;>VHCi3b+N}g@7%}b{TV|hPyVol?=~L3>sAxL*N9~yy17HaSS*_P1IM^~_3ge%q z8MTBn7D-BAB)~m4m4J$>^(PZDC8RtE9ccm_IlWKdEE6K-B}C8@Wo7rO{07g7ANaR& z5+Ge08Gw6<7iZ;UCSscG1??T9ujS3*nNEqcf63m#uoHg32&x;@DPu@$oUS*R(uACo zdX}@^T`|yv=%JE%5brf}LS-vBEc?eojl`>9N)@RWn=z<$dYO2Dasq2f6!t8=z$#_D z{rb=F)@yHzM}RAsihw_s5UZRrR>Odtq~_?b8n8K8W4m2pvl?*i>;!2T@az|!$AA5g z{}I0W^=DLJpV87L+BqmXnBHR`-{yC@L#{M*B%&ywZ@$8R)snLq)MuI2JV1zHiE*{IGWz zqKnO&u#QpGGTa1msBp`(e&iXt-`g~JyW-_kI&qaj)rW4{RROXPNvP+P;6_^W zXhK1CvVE+8+>Nkae=xLv#OTnKkFix-CYmyXf~;4>H^2Z-JY-NwyVaN(1#*i7~kT8q`N+|$I!Xa=%#SBJ41f?z48G%vUvRpJ- zLCzUDXCwm349su(uxt~`5l7Pew z0EhQ?o<^b&j@$ra>y-T->7$o4q8P-ZB$_GJ&to^x?(-&s98kqt@ab_d*u5(NPEqFJ zZP*(c4?k=R9hi-ZPVX53k(@79aLo(tN8~Z1Qff;azc){dDanW)VqFVuvw3w$If2Hs zs6rs0DPY!lGE<6syet`r;|3!d?%qvp_WYJ5?~mcL-8v9?y~gOV?&i%5T8@u`;^I?# zIG?VF9g!>Ycg%j>yi_L3U5QCz@G}`@$6fkyp^aZl7G(gO8?I>Q(T!qlO&TqONRvD@ z=H}$%pP2&RI||y=F6eZz+1&#g=s9KSb2VkkjRZD#ZM}fbp3$v0IX30iXO}^Z)0shk zY0GSpIJTWd7RVemqo)1qs-+$S5@nvXkKC24mHZ@OkFtb{HzicYOECE&-yNDoA6=h^ z>oY5hyWI|(WXwb@4aA+iFh{qaveLDZ!C)!uDhfE}}3n1M@s#nhI8%0i`n5!-%pkn5v#N5PKXd z6%1U(KvFfd3Kb|4@(RkHK#EzDwHW9zN>HG~Ff6!S^JCZHd88gd8kIG$;AKU$bO=kK zN-#_KF=Iw4lPG)yP+o8a}f`MiEJn320)oK9U+hMgD zuwG?QDj>|F8*1on3%Tm1^ix)1Is5iO0E7yn!k6L6hhG8Cb`ad!Pfjb0R&VSVe9N-K zhXZJBkdMS$JZQH^F7ktUp%8|fVqYJknEKou8ASv_A?+%ShVfHH7YLX zz-@n-$1y4{a4_BVmk4_BD1i5+p{NggjC~M+&`Ng4XQ(Zb8v_h>dNc^x?R2o#?Bh7n zr+#>0P4wOE(?D=>{*+z}K2Qs_v`4H3^IDqC!_Pm)d3ng5l(Di2ZBu*O)U^qK@!d8k z0^+{+Mp=`mu+xowpS5*USgcMjGcOXQwY>ma_ZmEN1|#&V-m4uI1#~oJ{I(6D|J@WV z1_v)>Ydi9Wo&<$*s%9i_?X`1wR{Fxn5ZYj?VX0>i0ca9CO~Rz~$HkP&=CSnI4L@uT z*T_F9?EEf$GMb!oC03dhjqi}XDqrK$m|jL3(2a_u8f;+T@| zQL;5MXbIb|A)J+9iS7?CGp11M;lX}){?_EdvpTal|uEJ&7kCzaid=30RFq3}rCyl7z*X zwaxlti3W^WiY!@r276#|AV`jWuKzT-faPPfn2+v#k=a-{gx|tJy7uQ}j8}Q6tRBG5 zIboV-Twd;RaW!EzBxObl(A8TcWhofU1=CbfW+;dkkK;5I)VfEW3^u+`Xk)KhhwV-lAq77&O#?^oXpv(!BH(*=`vXppX=={yI zcww_B+(@GX9e}~9!58V9?gcPVfkY$F8abb#)Pjr4D=`X;r@q%o!BUwg z7g#AJ@fHHOyu8F*W^6WFoNhKKrQ+iJ900J{Y%mUk&VBW0fOf8v^lXR-DhstC%3@Hc zkh8D0<_3TXs3-s`3ISZ@tS^Wpgc}(skQ!nsff9?=qpj30b{*Z{$M^qH<)>M977)=M zT7)bv-@80W=-OCEb%%<;qSwcULk9}R0#wKT#FnCb&^_o1nKayR7aw`1YwuI~-8MjL z3{e@B-)K2SUAxf})W+2SYwTBR$mP^SWJ?60F?29`0(zioVgAeUHt=uj@1f8v-$<7h zYtgZg@E)?D^hHD&i4m}q>PP0yX~374+Pzq;SB&V-60&~Av>hk$4y zVb+Kn#C!{Ojy-u_J03~s`$!D#_+eQ5qt~bLdB!0-YLsBgHNlSXI+4M1@(0@XV>Znt z=Tne0qNQQja1U9SYTFOC)>X@xxH4(IB=XN=*Au7aoisWDJa{Pizm}a?Ug${$Q!~aY z>+@WP(YO1lJp0l0OS?X^vbb8W0PK;IB!<}UXWYGaiFvlTW>FR>E09%z)VPcZ2|L%= zJ{Dq5je*HG@<NUB3<*fKT501iSN{q{UAJ==rx#?%v1lYLD&NN<1Pn zKxwVOv1;~BNi-0dorH7-MjVoC9Q7{7-Ih|Y-Xls~&~mK)hmZ21@8~XS-w_3YPK|LN zJg3P;Bwt8ZZqZE zjuziwfyDF;f%nO_NbUI$Z)RZs@Ej|7;us%a*#8d=1&;SC*zDyDP;9gd5;ndKC@3_& z%5P$rk{oBCC55qBBoMJim!O?@kNvQ5*bVIqUH(9eY$2;~&m6~?J?mR+-EF``Lws#@x_&9wXHRgG z2c*mxQpS)6leZqC85y(qN7@JS!>n#m*>MIz{GygKc$4MB{oXc{24rH0g7#dDlq?Ch!CrFmELNmAmB?(O?CMgL~%saxE_IpXX$NmpU z=Mt%+s#kWNX1x5p@8bT&9X$8kO+5R|4cvPCaa_B38#iv8;;|>TxOwXuF78hF>p%Z4 zo_+3leD&)u;KoS;?JodN0pG$L38uvB8ivJpKm}vkkpTw+^uIe;({uw0`iZry0;tRd zWl|+S8TKAA=9Sbyt8foq%H+yn&|P5RS0a=(L6r5|g%^QR2%WSxbPX%lW>IB8Ql&G- zoG`BCoN76rF-;T3)e0kJvEY-01e+JN)GFS~w2||%3?NDVIW|Q(iRZf|0#!f+2wzGW zP02dEmf+iJ_Sp&sxX?XB@gZ+1`o4PgubZfY9<+Hyc!C_%FFJYH^ByGldf9hzB-(lI z-{sGuff%3%riUSod^kaYA0I^+2g=LhS?)%1WUTf#;h}L-$M()c-$RS9OwJw3oxbmj zGm1ZNY<-WqejU0Gi1(e5nS4s75Cu_u%&_B@c9uS97Yfn#lDF~*Yd+wrOln`KTVm@`$A`g z&r}EEF;ZaZ?L;t^bfL8%-|Oued#?50&lln$7-)HM7>_NJ;Xl8{=D_w6YrVpjsz$~r zhWn}>PKy9qp0BhFy6p%}az#+OnN?x7TFWAo#6Yo-i2$thmeEhddtIGNACN^)H7_DX zT3s-MHqSUD62vv>8oaFq z%|w}Ke5H|FxbN7!Ji0zF*WVz)4Iw8lV~bk$nD>NvRwW^|4dGzwm{r>N%VHz6(An5;bk80AJbZnKF$}~VX~uXM zp?h+vw8l;A08tBV+q^OZLk3nE7{Go`k@ZZSDOQA56xS4$MTT2EnPUj8tVzzXR+1)s0km#fb)_Z|dEzDO8;G==hh$D=1ur0$ zkQXL^rO>k|i!&w$Tmb}Wh>)D8NJKzk>@F{n6FE%-Vzo`X9cX}t7m1L1@7;It&O7hn z^fcqKYipdYwpg8=;r3Iv@$?rS!_&_`g{ud^AOHKm!ms`I-^Mha;iczq;`U~R)hZ#= zEFRxQC{eS*_jGfV;EsXq1>GvL(|Kd}3=jyMG-(wGr4&p%$!IF)01Hwczy+9g1@lzB zR;6We^stMOtM^?)z0%QUtvaqPxr<}-YGJz@8ywa!XU|j-co^b8Dk;d@%yB6 z8UZ06@OA0e;b+TB!m$%#-MZi|IG|UG-&^mxsb}S#?T+ZHj#uxE2?ouB`7n^({#I*B zFl^Y5<^ieE#e_EB?yWKp*+UfTPPwBnEpcA;Z$}87GIl6?d&Th3_~8nz8u6mSNEDBW zG!syb{Y1ak{qMaJVDi+J96b--%UC;tV~Uwkq{XdpSd!zOG+!b&3bkjH(2eRvesO!! zjJ-yktZVK@6qV`b88i>9pOJH(LrA3FLsP5(P1vHlN$Ulhe6#gr7=a5Pw{fOGH#J!~ zt==n3%o;{%?ON@}ex5onvGJrt!WR=7J+RV>h#-|u?OC!u2L*Kz{Edh5P#BH0z1imB z7+vYwarmqn){088$%E#xjYd$TZPtwDv3tFT`_c7zzCN?ED1}bNyHab#Fc2O**yGyu zZOh6@Xa``jV-~1AO?YCaQt!pQ^b>j><16R8lQtl&#F0lWX zvw-6$BVuQx0PGdSAfUqMDU?iz;LMmn_ej^KZ@V^~i~V&x^px8F%9h1brv)n*7!q)8 zn{c`zhLobw(VJ&UI-uLi8N=3ObZ zS+5KbXfm9XGpc%j07CXcyEbR6eGQ=|E_9$4Kq+q_|#F#v;?UQ zusLwEbs!TcRTY7RJPg=u2Mjr3u8hhPC=<@EuaKzX{>2p-1(ejI%zCh0l{ORd<}vIA z9-O`zz-qMut%N6(S`^b%-pN2 z28fghG?3DP_F2PXZ7j0Zs`P>ZGFNIkR8DN}kABrnwK;0Sm>T#8`i!7K zDOf<5(6{!bi~l3a2)7%cs7J_2zi4!LEY$1gc*7P7;o;YZ3dsRDI$~Yxp>_vd8vyQD zNv{ORGt2$b=C|=gaz5AYJbZ>aV0}17zgy>`1L>x?1SKSTT$XLXMyg3}y0;p8?*3rs znE*Vp1As&bbrl+HRw&Lycf~%DKV@nVH#y0Gd$+0Gqn*&T=Wfo9&7efI1f@QDLKgIV zO!?{OF7Bbl2zyQVV9p<=RJHT1ZL`KZlX=Gop4_JMB-)vN8+$juA>Xujn~sjNDFN(! z&c+q*Z1)@t$Cci$v=~g02}+gkLsH|etmE=MF?g7OmTA)#+BF<_JM9&Vb9SZ_fdM_v zLDmOr!e35W-?H_)$5QNd2Eim*a<$XKpW9r<(z~n-SH`B%K{?V10f~^TbcgN%=X2qA z?@6F%<6Cyr$M>==rT-FU+UX^Q8~c3~7j22hI{wOLOrUUoFqQ=37N~Z~^cJS!> zyk4JOS=8-DiBabnAAfv~w|{mQUwrX-T)T0CVN~EeONdv65_QX$0RR%Brsc^+c!#r! z${1YGkf!V(6RzEO3^$&*28}%u++QMtF*BoZMMA>GgFT2Ve)OZ)@zdAe z!@v8(@8G599>?$h{_o+}e(gn!s|gS8-$Sj8ArCGe-0D)R0!7~~@-Lwqh=A%Qz7BM@ zfFN94Q1eQ7dQn#*r`FLf6oXSiK4XqBUe>WNgNaCvIQEGf!N{z5-Xf zid<$*3X(9FirsF)G|gD82G0^(OT})Uz?_hYFpdf1m{AMkYBx)%5{D8BrW9V7m5C@} z97YfUdrT;`+VSpi9!x?|=Xu6l<$URCwes_6CWK2V*iRGYdDdsi`CuZcooIqukCubf zE6JM0O`Oc8474>Mz*C%O&3~RW?65Ap;>|up7uytvc|F{ z9ME%xhoG$o(oGO80HxDrxQ{e5sh>tCfRZFM+RwOrP_W-K^2iv+j2Vo(pIk~x?OAGW zt~VPDc>ptG97mj;or#dB6^25^a$Y4Jcb0RCTp4qnbWT$Xnby9Jt5N2cO~~#6$QsT? zyvWQI+wBHtrzZgjNXebK6cEW7N1}r5$qH*8L5Wa{gg8r{`vk6HAV?`ohCV6)icVHm zFng>nmj20yVz62KkMHaDa9filkdu!O7>)j*4(m4d(}a3pJe{)X2&WN556pY~9IVjx zW$R`0-ZcIPbhm`YtQ~I{ZOwx+6kl%LJvtxM1EuBVMl|?+9J>;m(YDDzD;kJ1Sx`~2 z93~-lA$+qe?-4J*-;3FG<2a1INjRL)&>Yw9Z|76pdiUR{&f*FhYxhYKUJLYf#j#P= zr=8*Qww?62$#!PXfNOJjKq3ppiinV`#0T@?UQoFam8yfjIM0rue~s%ubUaoU`j}D} z6-zg8@PSd!#!UK5Oi;pT9yM#z=Bg<<>}?6ZCeX6>oj(gyugR+(u>kBN4nf$ntqdgh zWT={1=P?TkXzL;eb`lj-Zr`IBflN8^`SFJIANxM=9E*PPGl@Q*3_HRRFKb?$oU+nJ zdo>=^^L69!v(K1M&ac>cMC7|oVWPNId>qlpY#BoBdpS}eZP$ZyxRC|+{{o+U@CnW@_PBTF0)OZ4 zehp7O{RBSx@DtQpMR_G*BAJGcahk#AvG7{#AL0m8-(%P4r5Qe10 zMoJ?#>k%mf`~8IdG$VmAtS~hbp#UiA4;l;!Qy1oKTB|d{zz5 zNEz_ZP-G0lfLf)79w&yC2m!>}yxDA}RJ?}M0zlz{-87*VQH;bwX-b!dTyT}Fqgtq! zQr2WYP=N`t5ZYWLt8lgQAcV@o9t&4YWkz8}S|yy+0qZd%r2$tnV_$ce_Zjnkjr}}h zfB$2A@H*l0iotmVB}qY%H1SZ4nPNJ?--yA&XB_x9gzH!Lh}}z&Fmm$yA4FpM}Epq5xcmcuYKOQp(u3qopgSNdD+{3;kZHF_Y; zluBwKfO-&F%c@kKv72_-?-{GjTEmM4Oh_&ULZ%EPsSOD*a!SZ(i46q&%QVGgRgz$7 z07%Ze5>=Sj!?OP_ucPA6=2rIy4wRv`|36LmNAS^qEVRJ>WdQwrxc*(g9PB7PslpBi zk}ZY5uo?qx4NY2|)!1PJQ{E?TuK*g4>W8!Z+x&uPeK?{_9Ss*;+;=c=56SgTHH_26 zYDznuG7uGJr{hD948`9%jMU~eDgXfm_TMe~vQ!YfT`WAr3-HPziB{`N3+vB%qTHS% z{~WE{L1;Z1AC_U6aSpt{_EjP`suzSwv>;|f{-ESyhEB*6f@)fw!w;aYn(wk0*&Qu@BoPmj}w zavxs=Ui=&B-0+Fbm5rx?ekUWw!Ma-x0p*m7KD2*jwQFk+jaJy(m3ut|Qa`h~GulfD ziWT5}@jjcf9Q(n5SwJk4s!g)>S~70i%ff8w@1~lP$}xd78mUBr1&r!gqo!*WMhq$A+N~|_?=JAump{PkuinT1=AYii zv(H^e;R(|WFp{2Tli#auGCMyrvt%JmsbW2j$ioWz-Gr$Wtj0BFRQ&WuZ{Uyr^!xbn zkKY5ABG&#a=j;d;KrYEBjQyk}x=#X7%8VcV=nY(6UE#euck%cB-ml{6r_Zq8Utul< zpuy7wTS62OVVc$@F_2WWGmvN$CZR&Wj%XTc@bj6Z3NzWZ)CTO%zyO4a7YAxpX$`xD+I0FNT=Owq zg=2yy%fWzB3wEXWnTRnD7zZ_>d-`oTpEei9T&va!sxW5AT4yjREfeG%Z=x(CP8ma% zYha2H| zSS5}y^!7pb-7<7dwoVeST4nG+TC_NOvK+}!%RsJ@#kCepb48si_NYi1Sgl4dGcL|A zF=h!_EtPR~HG>jiyIF%MNybrBubXN6BW3aAF@Vd9D}WN#s};tTgd<;F?KI&LVHh(u z*q{^(K`Q_lr4$u>?0rv4??6IT`V|_~G)rNAa`5h(GMG}9ROLtjRhYXYknrKPKy?on zh)poNj3@NM_ZUJv@_8qRqtHL>Oa}lujlg~=$T9uqFui0qAad$hw#U6x&@W5wY(P4tKBSZq^>Ul*i_lmU9uu;6Q!> zzBs^gQ*aF6QhfIkw5gJ!!pG!~(^N#X2xrQ={vK~T&U{SlvjmvOu7EY&=&&TAgBKl9 z6uVo3(iNk0y15HiR33rIH~W_#KD+Fk^DwNc^@ubW__!Me+Z4pU zw(fHM|=qjjf}PuFviD znU%%UlL3T;aYMM;@9@SOZ{x!cE^zyaGwkagKlt(c_`&z?;H%F+hxK~E`b27NAAE>=pIl-!FzU>bK?{JK;bMRi zvRmY;J70#JKsjTc3x4?1xA4)u3*3LO!|(t8Z{has4VW48%ovh}mc{T>P70KYZx{*R z8o-!T7o)KGlp(?_a)AML$Rq5z?mHX}0bFwwOkm<8P!SFHsMs{>_1q=SJX)PsP? z8XC-8Q7I_R1SyN+bKnE8X^_4rfU@|?MoO6VQ~^OUX>Qjm1qLk?lR?-`GcGT8D79c1 zvNB?Bd1qL?T@Wudr)F7{q&!thmF%UY#9SG>{RA3jtj9G@*8p+BoC!tGSDu`%adNtn zav(JUDWg(>yS|7zE8WpEDhpuoFolJL%yptfDPlYDL9?#i3Y-Y*HDMe@K=1bxcKd=c zXRNe#snkQ4CC7AF4HxQ$2jm zBj}XB$p4jpOkN#PJi=Z%XxA0MehfX08AuEAENJo(b`p!>DZ#vT0pRH`(eq*NB5IXC z7W!m28nHbz9_0WN9NIiSk4r_tl{{Bi;8RBF?5r$ZW`6Pmdl_ph`gz-@VYTW}2oU8}j zyL%sh{6Bpg*KeHQzy0UGh12Z@=l3o^kh5rc>q{FZN_*>vUWD6uwYr-!seR7C>Hrd=4De5$ONjwIPP9m+`F8> zNT`6E+fuAoHQ|d`{3O#QfiO>^QcBIAidl=Q*J2)2>y*|jN_Jijrpkd?N?OG8AyUVY z0IKQ{mc%5bidT>liPtU>xF#SqLEpkljM3|)$V6+MCKEdvYNAP6VX3+~IlTZ3$_Xe0 zP6@e?ghaA<$8siD79~WMvD-~xF36*VO3w3yQf6=+kchC#37bSHlrRu5^Ng8iWX@n- zVLt;G7gv~h2I>r?4{`VIC7yYnkZ1(!dDDaxloT_P*aQcvaKOYzLRvbC)4K{VFsNp@ z!2&ZXB)JfHRA8SVEF|kY#aj)kU=$D$hP?9gqo9P82hD7o)VOH|3k3vT@&~&|w{FKWTg)0AlDu3!f{p~63}?w5k2{Q>>2Siq zcZan$y-n^D6vlP4M=0)7YV{*MR6kh>k7E-+mIT$u1U77Aa@)2*|DMQmB1d0(AC1rY zQ4q4ZY&&RSbLxAz>@zh*{ouX@8)ybT_L*Aj(1*YH(e+EeKC`m;|M`Reg7vilAKW>| zE3e+cyKmhGXvTv}23G=DJcjSQ{}Dd?0q?zc2lqaC0OACq7A^?PKq?BhQeW&C@rRN(~{KHW$F9S<<30%PfV)C{hA4Wh5Gr zC}BVC@&4Tle01*$+tmQdz%2O)#9RyNUh5cvfeH*# zdjL{HudxM7m2IC)`@OJTYF5Sw8coS%mhjI^gn2)sCem^T0$i(>sj%Yij9`IdMy<1! zaZrV%%4AT=V49?MBPAdw(3mwjf-0`Lo!K%*n^McXmsR1PH5_v;A`qA)ba5CYaSO4~ z$Ha_#7v~rTQDBFhFpdMZ+cj22&JkSAga^BVH{QO3kM2CcG#88`17`S$0P`Whs{x1R zNnS!LigW~4x|GnD#1%*@F_KVKBT12v(_KZG8RKA5v7+kvOrKvs_F)8H2Uhvy^ID5T z7fqs37nOk3!fbGMm(Krfu7^qME zc*%gEBM>wtYf<|YVeP?UpwM%;HctENSQm_D$?hPlKgUYK5i*56qG;>Lw-2AJ^zg5o za5}&o_ZY*$kQqgscDRuYnGr&w1X@WG3M~2c_Q2px}fi{v*+CHh>jN;&S{2|*xrKhXuHq;(O=@+ z8XYYaGzxvvgDQw+xH=^~$`Y=E7nofJhzC9-Ei!IE z#*l^Br@5l4cW7XMuO{_LFeU(32ANU@eUJgV3)dBfgq%mDOeph&X%GC5|L$8@t<{>$ z31v6o-h=y?P*AuaYZxNc0Yt^m;sI)rB7o8$Dn%)%S}a`pm@w^U{Ka2=A2sjsjjuhA zufOy>o_*#vo_YEv3MI_5Z1Stid-%zZzK@r`^E2GI^*Fx%t6#>m&pw9z{T+q`Vg6ac zPYqxwfDK_b5q%i5U);ltQufFhs8hjyKY>!l>9y;q!Fnlzy%!Rl{%D_R+lizOX0aMf zESq<#l8=^&FqavO=82SAm`TonvSqO(FP2W)59yEAQyT~b1?#~B!K!{)C>$}X(5bM* z-?cV{TI#zK3~&uu6PwHvX61^B2!&kqBW2}~EZOpeBUS9Lt}t0YSb%@ZgsBu)hABz* z-u-^BN`hMUROS_K&}y1ysU^ygwup4yC497nRElS9o(hJO6&}BR6GPtNS@lV%JzrFgH>-qSwRpk1*i!}-H0gzoWP|t z1tMjX%qX*DdzI{^45nF<22}#G8X+*EqM-7GT9X=Rs?=m9@lXqW$l1TjtQkrnG(>u8 zhZ43YTM&sinOQzR*=(KOr+LQt`31lUCnqP!$jF|vx$#%0qgfzhKMz{x2yWFY2kUpQpfDQWj67h`GwIhu zH*$L_hAX>L;D!W4-e`$%3D8id?p?kwnY+1)N{rsn%`;KAi`)9eF$LwcdvTz@{_16h^``~3G=6>*wmiB%7uRQ27OyVOk**T#KT26W zeS|Rq1r@axpo*YM8b0Xd2xt;(1BuadmM4E(L^&oU9CBKb z62wE?!fo0!@&@xjG+}67S^@bA6cZpJx5AA`!F~0lG{)E@!AY4VJT6m0QtuyX#r|q1 zIcuqTctM1@R9HaWG}#%xww|IGH-N&k_CqZO!#Lvl^)sx75%dNyO$9X#68bw!c@kt5 z(lueeVx+TE?5Bdc07My{z8f;WAUfJ_U8xrXR!3N|6)cYTP)4aUO05{u3K&Ktp4}f@ z0n7}{MMJ$I>y@>3p<7D{$O9v1{XJ)F^em|G1aie}iMJ*6N?Wl zM_$xsqK7=PZrY!)A3*`wy4GM&OaTVM=dLI&#u^o-uHTIZwfl_|E&6kGQV&0CASb-h zyAkeR=wNcg@LxQ+FA$g|CK515TcBwS65gVnM$hi=I9_!CZ7L`?}l7}Iht zf^yV@$8 zah);~_kB=o+A;?t(}6Zc{a8YRkcWF>BhLw4)wzi4kdk?h*tdc!j6hJhoHzrU&1&TSa{3yPcYz^4iEL&o5FD8sehd$0F{o4D3VH|q& zCgcPNo1|?(S0J5;kg1g#(TNl^5VqEF-oi@zqOkd^yu?^InaO0Qh`Niw@@&9J-MEcy z`t0=d%3nH!p?d*r$DkTO*Dve(%*x_=HDDlU zav6psd8wcRQ67m`9cvToWow z0u2l45XDcy0E;34BBU_`Tu|mBUa&mCfER11T?VjD3FUl;cOQI!ci;XH-+g(&?VHze z>&6DxZftP-i5mb2KY00F-1%gW2X{Zhx4-=czWR+9@z@im*xuNJXGWQ3lrpKu6QZoJ zFxAGWp_?`eMfgURuL&5}piCH5Y*^?~a6H?Dd>vPFcKPw%%S~9eTD=#>{QV-YR+XO5z& zAI_K!+>)w_4(gkfU;uNOak<-T`$+kqI_EZNi#b`G`ho-U@R3~cXo5gF@8kkZep(o$-PQRR=&*0? zY|#-wf6(G`EdsLZz;k$~H{J=4&NJzsDPJ5G24UJ7vw6Mh1*8@kW_9ZHyQK9xR z8|g;?uYWJ+G4he4d_{Su(ZJFZ3Ie3g)(jwW?9je30^ zf{Y9basU1{$Iip_)kMt@!Z7hcO`Zd4SccELc}boAyUvF;jf?_M6Wnx2+vM^IZO#2& zo5S!v^kegOJV{TRU1=ingvM+72pIC`0`usUz+Un0qXkG0P0B~D-~EaUb4aZVa3iGC zahpf)k;YZLRj%Sm1f-rF*9we`oCsAk z7SuW`Xq2;fm4Px>tkZ~X28a@709WTTUb*`bm@6`Cc1AG9lyGuwg$Gv;@F#!q9h9-) z@Bf3Z;-#0K!i{U!Fb-?XbHY3ch!tiJ7??;3x_g<}gudU41Pm)wFxKM=Pd&ZD<@tpG z{>n&9nz0p_9Tx=eqBZS8NtN%E1njdgP_7jxCtKXQeu~r03T2)#4hdWcB@q}I6&2H5 zurCEENs<;)uM8WrAt{|Pm0@990Id+V0tj)?DjLrXJ?SG z*o2IX0Y&F9gJ{H%8I(n#CsYs$NE22Kl+7QlAVn;olJo>F@RFV>1W5L-O5QTf;LPHY zOw!M3o{&-&FE0_+>orV(F&K3&n06J{uIv6Ul3f`jNeWU*T4GVox>?eJL^3CJ*2oCu zVKzr(#kkuHwjW0Xoo)4{m!%mOjsa>tt><3_CCfi*N>x(;j)$DJeucg|ND5yEfZ__f z)BU13LdVAf_K27(j5z?14%kDXdhDt-9{R1JnM{Y195JaeKr3ZqpS6*+u{RAwzg<*) zr!YC@0kK{l#Wcs}zWbV-*5eS{$;^nf8bL87Ak?ny$il%_|BNXMu0BMqANKAbuoo+E ztnaLQLmsQpN>B&GZr&b>4am?I;P@b;&Oi>$JvGK2)ynxLRC4-0nXd;@K*WDZ*2mg{w3#3gx8s>`;}wyiow?0)&K z(UYyapPl@a%htC-y{fk6&~uYvcyeDOn671?_RtTGiF-(8Eyd|?pzzbX`RMv3U7uN5 zOm%9kf>@L`kZdFsgajb7c=W0&7nKY4yGsm33b+gN5O2{`8I}Pvrvbx|Fr)$VR8Xu? zHUW$Z$`e3E03S){A0r{Nl-DRcH6Rjd_W|6_Ga*Yo#Z&+)*r`C_nlMtr$w>kib={?c z3ZPWNer60AIKOiTfB0|y0^k0t@8iW6pTn>J#sX1!24izVQLC z8Y!CmT(BAv@@fN01@pclYaPeA%Ggs8=9997=ha$Ji+XFalqyL?daf^q*m(dIf)$c2fULF>0VL<*R>J_G;=%a?Op|0XMHLW+ zM4*%Lt>U0ZANyC*z;FVGV4UsbdSS#bfg9o6LaI)QC zy%{l26_=M+$V0|zJz}+9VYOak+PAu&wsy>t07rnF3FxLgFqutM_oE6jNv32pm~FZ= zQIo1S8d6_Xs5b4X2M@Lm-9$$(neCHL0nPrjE1KSNLwE;^+1?c(O1mXs)P`?#eD zNA;k<&q=yD-9Fb{-epp?wxdVD01_!!3pcwNymd9g(#}U=-kT0ww$3wpkS0H@-#yAZ z>bP`I6&`-MVTKWv;Ry5*`{6{PpfD`TVJPfEp+NZBP5Fdw_}ZtIXw7&(988mcYHMk8 zro5!X+|+f)mb{y%W)bM`M?ZbX6vl@%0|UIxya%Pt8s@Og3^_n_D93{j@&wsCY5+ut9sgOljO%h!4d zSn3v!;8`m15QREs7Hy=e^P=m=E}g7DlIX0cH?VmbTQ+Y3JW44{OxuS>z&ejDpMdfX z0tm_Jo|)C~dSsm$8gAQDd~c8qbkE$@Qa6{;bd)tP%;E0~GTasE_DZii4KbRv$BfAx zV_y1^(M(uV595W+v3=Hy2qJ(}Laj|!nt8G^x3Nd^itK0+FWcn%AoY5h zP-CZa8CO=wJqC8}NaUCTZ(^v09Coraj7juY4fOdmv$$goKKU zQXAnR16-v&PhO$mPZUZ?t^t^OX-qF+yj_`wg~z#sn6%Xs01$MLJb`UU*Tue^lko_!KGZ{0wtGp;T#Q05}eSOSnq#^gJT zAX#J?z=WypG0==pK71Fi|L7ec-N5r-dI>b|L0qJag3g5~*)6jmX*mO9#AFG0LinhJ z+YwN$i~)lnUQ4$~aYX^Ef+dlk6v9)jQmzXoJ@oG0V*S>Cs9TW~;1I);gAQlHkN%0sz_9^Sq<2%6LMnBj#shgg6r!QR^v)`7f<4$8zk`+!@{(r^hbDW zQyjR}fT9!=qL=~)t=D*kTr$QnV;D#AF3TH`QpS3{!8po@@7{d?qKs?TPLKz}<>dt~ zFZW0}V;nZ%%DA|=REzR}aTuVkPnjI8jYWWalv#O(%$KBQN>)~b8+5SoH6Ta;k_zv- zSU6hzwBLIWK&~VNVCVNAg^=xMC^fOXvkO-bSAb3jpE}qzt4jQA(FK_eQ;fK~lb1K! zrv@7|1yB*4#Y zxf|3yD%vO8`wPXpyE!;BK5j>is8y7W&JZZM+Hm+XTGNsD)f1?jLy>oc6@!95iVqZ#A zFnjuH9k;Dx9^R%5CDhc6Sne^@adDta$0DxuEhhwFOe7VWZ6B*#$kr~C9%qr!C(^pb zCPM%iSYmGPjEm6>{5ol9`=HU5(xqh}^?o-=)I~NxahjDj2}~#2pS*swHNrL(>}%)T z+WAgsE39*y*Y-n14x??mW#rDI>+^Db_Apdu9?C$OK~=pxP{K(q{4@%%l+3cv4)VqN zBg9`d8)Yp8vnH!>3z>NmId$O?MxceO)&-Py-4f;HD>Ne(SxAI{P|~s#IX5qY)bOLG zljysKA!8f|K$-MB6_k0#y*qbt_s(6s@%p=X`TK9;3orZ>FTMCQzVVG0@#2e5;>jnk zW4#@*-&O2(d$k&h@>1prsG{f~Nl0H#8;nE3$&G^BPZg9R2|7eDWl@+7oDjpUeP}}2 zHmiBwWagViEh#`2?}=vfLi5U0TT4wXp0jw=^av?Rvh1?*e@?;-#YVVo%P4M4}+-K-udJDnKx%9c$)wl&ozU=TfGYb4DK8ok`C$ z=E9JSy9uk+hy+mxL3$3a0)-{yH4|YjjLV(Sa!LuA5@z$p5@Q@jP!@qB#p>56Wk$*g zyENhb_ujz2{+EA%8@K+$K2x_Fv4?Mrezog zU_ByH77!>IUck(l_655uMlD+R6F?qDoLxIXO2EF%P7hXIqzMOVpiY%QD3CHC)G|P_ zcw050m3W=)jG~-d-tQ$FYpDf^62@V~YNeS|Q^GWf!e1*eB*Ik0+rJ`9Ld9BFk#VwB zF-wGD9Q8TnDH)QqQ_sX0FpyF?Re_AnBcVac>hu|{tPW|H%7xwg3tX02E{1hJ{N4zj z47{0g68N_9>KK;k02_zzp?F*DH~Rx2GO9hKKRJFu@kZlc>>$%M34ew0zs2LB3+?lM zKd5%o;EkKc!+r5NijUgbMI_btJNoqccUp(2fxNEY#wQnx8J^{KSL>e9Km=@UaQ)cA z`x;OWN^tkm#cw)qfw>=C_NFep{W$aSHX}{idUVv}OF}-J*yhrk%X-eW_4~+1TPUs3 zQq?KQD~CX00FHe0bPfp(jMXJcjxkvrUybv^7-DItm``9y|u zjg2qZdA?p&QpY=5n{5X_EUeJiRTbd_WugB?I~LxdA19#Yt|3BO5_Uddd&2r?wQ`}_ zX5&vsb|_I#5^dr7i3|$kfmbakL~-5xChu-km_zdmg_TvNkO;sd#^10=I!|um=nNzM zdf12YC_%@=bve4%b@Z>_ShSiZO$xV!`6VxV0uFmADyb|<6CY-kgM#P{k-?o_{>$3c_b+xAhML)k~j<*1j5V$c877mki;u8?e}==%@6Riw?4*q zzWo~h%YXSPzVxN1@zt+Ai!XlhX*~bJlem7i#*mWecWH%0YjNur##9QXS}~LXTnQ&P z9>eorSz~v8q4oQuPNf{`&LB;`V#3b6in0b`JvFB8g4Pxx6Xsg5+fUf-X7`+ySBAb*B!~8l_7)NPe za8T~KdE@aeh>m)B?DileJamg#HF(0f8Zn-oh{42oI0FS5YFra4CovpVDQj}`<_Y%G z4*Lf?4;eNKY{)+)?>0+>YT0wGdUjC3PZfF{$591&@-~NYg{=Et675I`>NsRj%A)8( zj0B!90JZT6rB?$+aC+{gu^XvC;FN(pgfTIwng`nkWnS&1yRG^jG-HA*#~@#`gS83& zdRXAHUtkrm3(ysGf<=P|;3v`thkJd;E;?s?_)tfn?nkGW=mu++=XSaGCRoH<&mxpl zx;z4SKJD_PSuy0-M@xNwrD2#s&F||#X8+E9{&Xh=kS}W#UjXMlLRZ`kVQGDD!m;WcO&v>hKp z+};lhBV6*Z7IJBqonu^HOM_FajSPlnvnPLd0=jo~%fg2rI#rTA*UwSsfetv0!r1FF z7{eb3USPELmb7Aw$&?bA2~~cAQNz93foEBt#8xPoyxU{Shjp*_!>jZQdx8b~)}T80hRn$$0h27C(9=)v}@@l3--kq5~0 z3*(R9WrhYiwz!Y3&&l_d3BeN%pRzG&GDPMA(>4bn1k%p_0IVR+l)`8gl9y5Y zY2ihr1g07X*PA>^C_qgJoVG@+Eqg%SuF zzFLqoVY|-QRG=2Z?!gtl|J~Q{!|%V2|M(|cy!hgC_`Toz6@2N-Phh>^ zEN{{?qFR$}_D9IWJqe_x638&7ma`D{6D^-6pjxPF3+FH>WXX%F1H-DMMj-PvYp+w1 zIV@hUDg3X=PpGnXpp$7)gz>W3L=p(Rc4#HO_rWfJ1A55sv`>m?*W{8oc%;L4p8g^`e(S%Y_!-2IY1`Nq|3>Dy|R4}XIBLS<` zO8P;P=qBs=SQm06UR3j5Gpe7DZHqjBFd(M^7ENK?3$;pEzJb&xSKHWCfRcwG!9mf% z<;n#cg1~Vp8b5D5*Odzs^4%jx-nVSh`mp?hTE7qa8|bg=ngXC@*i?L%@dA$HVf$PE zFy$(MqoZ@@uhp0PJ^jEMY&jPCc{o50&+uY(-8;BgirANK*iq3vx~#F!wVx-TTk=K2 zK1TWQW;cwj2N;f2-omy*`Jf`#F zMfuW=nLJO^vG77`2Y{CGNufLJzZ1|56@jcwIjbBaq$H3|kH4urV>G?P8Zi0X&nY7) z2#%M!LAg9{3NFI_;={G-*u-MJh}^pvy=1)tC(ksTLEc1bjzdCT`z3jqlJ+_R0uO8o zo*JNIzx1aZYif97d9}3w_{a^1Vb3@LR;Z5rBqFJ&&F zKlA7F*}B)p%iMk6x)(42ut)&LPO^&`@jjc3aQd`%nizqEiMIK&`HB1O(AZ*pQ5DtB zutgGLt$5A1r108`yXVvi({^^FQGdT_gMx!T0Zk*g1}a$rp6*p4 zObbN}q;9optfnDz70@3%4FqVIr2b9f9Z5+-9xZfElv+8rR%S_zLSz=q_D-t-2Mhoc z%0x)DU`!RO5ui=R%)q^SSNN;H{t3SG-B)pPD(4NkG9G_?i!Z+TIG%j^HlBUAH4~?neh>l0dKT0|^Ac7$J9BN8UKLEX zKBZYgNy7p~`Ly|N4AR12?R(Nwr=&^%&(&#wl<6ZWcxO>YO!1X4S5tyn`;Ep7O9i8} zRdyK}j3G)#38Hu>k~6eK2|1~up#mw*Ad)02(OAJ%Xse=v(hMFd_7iZKCR|<3*v|>u z^%l=PaSf-Z15yT<6R2hZFR8XLk_ArUhy31lB=z@DAQwFkJe7*wg9~g=7y}ZRl7tdf zpzJ5?_j{CDuo|-0QoQ@g1I%*;7eY?JdOKps31ybB)b(a9^P)6Si+ISHpke0)LdwSslD~GjBwsQg{iV53T^hKJD&@d5$~K(S4o{KRo(; zvu=BT!qr>Df1xIiw$p!cs9|(US`!!jcMgcmi$dTKd%`y1+!{Ux!;f8Zhxs22`q{s& zmE{z)u-iD`MyEy!W_XK6QsdpSAKSTphx5jJK;b?1o%Y1Tq=TelC|^|nm=`Ej?J`?NJ ztUXP0aUgEg(?azKekv^(0o2DLWt93icazb28k8+I5O3r4K{{VCAWk4TzM|{gl(8@$ zaRH;E9P$?=&HvzY4QfU?a{vHp1Zc(+*;^r9=VIoMDQdK!i57a9e0<%rBz>*EmRPhW zKda`@c$mVNf|t5&h;Y0`$7G5sg*hVS^D&W8ln)Kn>N>Uq&Mu!!R=4|Q|0e76!Tp@u#XraLMmr@>IrN6@UBuDNi;7u|@IO zXUrTDZ9Td^Z`Ws57KL{DFf;iAfC7zZC5W-&(Q;*5$E-HVy$Fl26YevP#lpIjNb2M% zgSU;Bhvf09k?2!yiE@%M+r;ox%uuB?QwE5!pC*)2JS!p*#1mm@^eJJQXOwA{cBrCa zMxv}rsVHIFkuj2#@3_1_OG}grXsxnjdZm@g(T8JB|z>MLd(78-1oXP1xvRhVw zSkDD!Ks}IFY6M&{?OV3ZQh|b|Ao^KVNLJ3P%S#8$42WV4pp@!oa4#+|kRkEJji#-V^{ zmfSEzfF?_5q7L0}ZQmVdz5xrxCs1n!r4`D2iOcgH(!L;#Yj91P#y?}83+73Z18oMv z=48Y?0}md|>Y)QtF4&%|FmRU4$IKwgi&}-^{bwpjIb#U>Jm(bFC5|b0ipk2SRK1r_ ziiJ=}YfHTyPc_+vYLj zLpmi|e6(0|`%=f*pm{%s$HOcGCO81qt&_G)#}t*MpuamyX`T*Z!30DeJ<_@*<8TAH zVjw~^cEi1XVLA}kug&8jT=#wAy4}L#6@+=vSN#F=5>uS-4B^EYOzIUTu5!U_F(N&Ck{Oe@SuxFhzd3T-*2=AFRF256EX4e&)M1 z5O{KXf7^EIP^D~vm8f3w`%Q6 z47Dh~*mM2Y$+FR7>t|a#SBLdzP)^Oy>eHvm5~be~B{7VHB!#Pz@z%53{37!1(e+Ea zKC`kYpw^H?Dz@BoQvPXH&)l&Mx+;_Bxl zGci^pA*TVgCh%M_pFh9{pHzJE!8yMEr7t1n5$n@yxN++?_75&FBuSbw)q<3P^|;1r z%pgtrBVN!wpq}3dJ}DW$lF&Ze`PJD01 zE0|HrgfdqYSBPSkxhB_hN=USqd-|c64ZWvTh>NyRNhJhwO3dhDC zLrDWN(-@28D;eV>v*1f#4Jfz>*7lesp$Pz7UG9;X0a)@Rd2xkgw9QF898+O%DY&c^ zImtSVE0fqJw30GqRX$QeV#YWyPEOZYtwvB_xI((04(6jmX3XA&!;!~qteg@!Wu#%i zxLzR*12_+0p20~ZoRqB~6#{!dz{^jseVu+z$JJ2E3XQq<<(HbO^^dTyuMlmSZ6&ff#OiI4gQSmbsr>3nLXK z*~S@Xz=zeqsu}74>J@IM8KdXc=MaC`nmteiOjgh$8p6DgMpI!1T;?BHljRyX@@~r* zm2^J?sn5k^EUte+=+3Z00(A~L!zu9tn_i=T*V}_a6CWXJbVoiBO_%T&#j(b|0nNi^ z4a(s`d6J;sFplCS%q1j|AgFtbd4pL;CHWAVx6_Nz+gL3z6d`25T^gnsp0vbC#Yf*} zu`>!B?hoq!(Y+KDE+_9MBYM#oLzeqBmOW*j_V&V*Qb^1gmPL~aia|5%BQ_eduC(!W z5diT4up4NiOc!>rAUt{~dpeja=7!GNb|yb#`g6Jbl3f5TK@H5G%sxiJeOm26@v(Vt zjkS^L2emS4DJXMoIVRL73kKBN^7DH5==vpGpFP1%3HHYb`YfZTf^k;iV6vely6M41 zWM-Ac`(xprwK8&!0EN7Eq6^9x>#Q52Q(&ZZJE_qz8y$t*r&h62Ehs~2Hx%XuOIF5K zB1FAQTExD9q{f6Qud;C@+iIySM@9f7CS+8shJ=(xDVaeNu4Z6AGhTW19sH~R@ju~9 zUwIBsULSGobd77bPEm)9u@=xgVZOY=CwFJ8wh7ZEV_XfmadU&+a;APR~xTS&x`^6NVvcWf0a(sla|eW51t~Xh6;*py#?usrowsHAy%k$iq7s zP?`u#K#_(7VmJ5Jm0AlU8q(4NEdW#TG6|1L7i*BHB6U9Us z!yq+AC9`h|N-`v=%#cy)jH%4H|KJio{>l6J`h$YUIf0OcW>q;Q19nIDXeXe;9`HRB zE;Qz{BKPcW1}m_^?_i^i9T2*bDri16US1#-$* zuUDW%*zIV&=!`^bg7kEQ86HmThO3pTH|>vUTq1jR_`|zU2*O~ zyCXv7e?d`b=V#jb9g59klKk+`hkt(9qVT}pllN(gV+$MW2&{kMk;j_{NqMiKiGyDK zTsYIf-Y#hIx1_YIZ zXk$N^7ucE^eAYGsZ8WqKS23PpZTEJvCQfZQa36S{_SrxBYx{eg3Y`US|N8;mu-F_EUP=ybce?Lm|Iw4OhVz| z7}P=*JK$lKMQXr2r9M1_wAlJQ7nCx?yiuk+ScXfflLK_yh2gau862`wsgSXnk|?kP zV6_026H(?P$=OczXb=(#Gj>w}rJc58VVZk<_vIhsN3Xtyr=EQrUw!c@eEG%O_(t8} z+O2C?uh+nChxgxp2d}`;_$$@AmbZ9B)+x-Lso=xZzi6TWA zNTV_R8Q`kt85KB}CeWRr#7YB5fG$#!a8eVLNzb!3z$^PLX*miRTk^fzK$C=;Gl2bW zk7=4T6kM&m+E_{n>-8Gr3dm_hPQX>!qZXDrn}F>9xj1hygNK!cF$;Aq74uXjc@E3D z*sJ}FxeNe?&Im@vgOIh|0$_$25CEu$Dn+P%0ECTEn!L0<*L@!)yj>3yum-yHp5_JX zVX=p%_89D_@)&vb(HH)l%k+gs58AkXL97txMU-AkMNnG|Pj0Iq?aVU!6VsaYs^*p0B z(AE~mJ;?1A^L3j%jjw9`r$jAZ-Qvc6o^Vw8Gb2M=ANJX3O8Sy3w0%HF=B_E9{a&$W zoqLDP6JX>+c$&`GL4SHm_9x@~Gn{q+4)2Zc=^kq`*G3rn<@ctx4y~`r4ZR5fGPNw% zT*dK#q_w9@Cp+yqS{QyFU7w%pGb@Wj7DWeu(w!(v!EPj*g5lmotxzEZtVHM*8bCpL z3o9*}{G?fNdSOwt{-T8t#`8f$R%5X`W3!rl1ar@`3Tz1z;L?igx(&z}d#&n8RDnQ* zthEX49AvGt)J|mccmkYqvyO4Wkg}hBWJ-EgtpasYCL?F=Mg|g9oS$Fd``>>ZKX~~q zTszs|xqtIbJoo%#c=D;+7{-JTKDdK--+F-UmchKj@BHp>;v2vI7391|<(<^*BMb4Z z3b>QT{x^13YDMJ&Rx6Mm^OMj{3(wP-c}kXrw1qk)%8Ah6;}+y07eDRnl#5sR#**3Vw5_oq9NhENOE6cwYi7F#Kyo03CJ>zoCmB|8ogQ>S~X9o{>_ZVx^p|2bBnGhEo*?H@Xu8h0dFux1Tv6s3wNz|3 zThLZ5np~al4C8>T$)T9Vc(UK^F|0;V1xAD=lXS&u22?@h6A`OGoU(E@_ z0Ib&ou3g_ECsu=p@uekLYw)F00s>C&&@=&H3B3jaxNyE`0zLwR){gH3vS(s{8e-?g zlZVvQ!o4~;bi{gp^isrR{HKGR525Gy>_PvIfZ$JkJ%=%Nue1GB7VqhhbKh2+=OtJU z%^IFHlixZ%Ca_25WZrHi5vTByT563Xy=jI z_$W-O^Z7u_JxLNQkF|fo3kck%wWp~dOMGhtrEj@bX6*F&IHru+n{^E03GI(hSm zROWSLx$!FxZnQ;q@{9_Ab>ndV^)n{NSgf`p5xi_en z7i~Ye)g1o)69i4D5B}bNM z=ATAWVJE}ZMKEhs`Oj{JF+K-InQLyj4+hLk! zaZs#A#m;gptSsj8(e?ScKC`lzhNM=2#=I;f#=`pIaYCUvb}NEK^wdC%i9&i}NO)US zAtnwBIV;DNF_&3DWJ=&{o;_((Qtb;vD5d(lYXPc`nDjGEljwp^PcrJcH{HacT!$1q zkUu4iP&bknOeLvHr{G)ms`@(3!ZJ&n;$9Sp(G)NLdq#5QCA?LaSQh8B-)B z#vLAlYK)CiL1s}F*%_aNG&2DsSvWL%^0q{b45`DHNY9uuVXhVX{T_o_#U$IQc9#Uq zG9^&X$SH$Jyi_@7l)1XKdCVEi31!-WYmqqvqs$Xf37J;lT0~(+Ldq3&2CnuyaLSlw z0c*Sc6{g)@LYT(_39VqtS&NUP8z*kz`PcPSrv8$foqXIRYsW#O0Hr6A_iDXv2X%-0%Jg} za`IIAo-~1w?2THqcrOwvp(W9(TJC~b%5LNeqN)ar3JjKhJz>ZhIg2r3E)1Gw$Cr7M zJrL+^y;)&R31wgK&a1EB|Nejdzab3-hGf#EoUmH2-C6}?FKKt^cDQG|Ms8b ziKjO}s!e%gB_yhyO2(d1FenTlpGWgF$&M)OZtN$52Tc#WAO<9<5`Q?sKHt^(OSwP9N1fj{cjcR0wGkkB?4(ZlW|agPCH3@E~= zN&s7Got3sUqfUaC^tbElnT3Eki-%2tuCJ8qaiV!|Q zEMcu|VfHX(st9e;sB)dbJWBtmtsI9rktu60?u;cWXB}|E3xmMwkUHSD^TfUw9_JJ# zf5ZAFD?CD}Ddb1#UFV0xIAq_NVq^S8{z+j8+quf**u(Zm%1t4)=qn>hpC>r^gav}{ zcQIr$Tp#M*+4iFEO{ZZO)!u)w%}I#th_41DDI7zS5r#;y&~BVhDE?xyBL}t!Lc_uf z&Ex7|50=c1?N4n}XIjVEcqX8I7lFUnU&+7cYU7UK#UW!Wvz|^$8gk8j;v|*L#*aK? zJFbh5y(wg55Y2fTBa2i--*VZ`Q z4k$Bl_hJT5J6udNE_V|iU7x?}Gb@YJT#%?`1?5syF*DAmgb%aqgndB)f3TCH3kAD8 z>{Nj-0Jl6EgY42hcbt+`c(HHds@5`fL}~~dT1Y7+t&`K<;R;SmT?Y%2h}g_h|9Yqj z76Q(hp0-jM;JNiSCD))Sg%BlDmcbJ4DaFP~&s@pCKej9cO~7+Qm9NSv(Q?~gMeJpkk48{7D~)k6EP#HGAe1R z^}HZUh-kHb1|UuT8ANE;3b2#`5d~F^3Jk4bPkz>~mKl_#&SlP|^Dg2{8q^Rb1qB8q z)fb9k%s9We#Dj~1d7iOd1J68m8#m8xV?`^}dI<~Bp@gQ$Q4(;+#gov;%qI|O5*8K# zf>aReAW+N4a7LmP7_*!mPSEqW0~j+{&*IIcV49>v1`XN4IZ;Kzq+KEmY1DEQ z;=S8!HW-FMgbRz2Cuy=JVrZfu%f!iO$%7i`CS?RUWl3~I;+;=u;AFqs%TVoXCzMx# z#PGtBcq$PgjkyVFXCXq1r80n7L&Gc1AKXW&#X%b@KN*JslqG{=P6KwA3IF)NVTiG& z=$TIixovB^FeYRZzfEB<-os6;l>L_49`^lr?9wN^9Rwa3zH=63-UVr~c@A{~sewFy zj2qx=Z;gDo@1ucIc{cXi_-O=E4;dLP-Vn}$Hh>t^xK6=441N{HkR`)35r$d$0|7{q zuq^`YB`|KU>4aDK87KK67ajDfB^TlT8(KE!&kl00?te?k&s;r%#=2h#Vvwm7yxL%& zR=9U@g^N!^ag^)Ja^I_w%8(c7IzLDBG)Xy5iZ~IER7(nzz&pKYq*y{SGnZ ziJFB~`A8#h*{Wm{0q_w%;p4YX#tqWuXSwAY8=zi^(RLcb=;t7=Psg8(_rQ#Iw$^aG zb~NNufu||?FhfYE?6E>clV9zWaJMFQuj0#&ZP*l9TP$;1STpN$Z6(T_XA;1J;;yQO zRl_ZTUl8=ji2T8NtR<6pk}GBmdatbt5x^QTMT|BYYd6{NT6!f3zPr2vKKN*d^Lsl` zzAxBm93-J*W^g5Z;kldGzH|fS>I$#E@itZjU>Gq^y<-39`g~lUJ;9Bpp{HV-B{_)7 z$pll|+OFi;-+_OMhXl?U9HcNpF?G8=Y&-*O(TWrpgl}VJPj_7^N#%iT;j7%0Osj!O z$fzQ4YmBIEdZ>_KO;2pG{oU~Ow&X2a_?tB&*-Z7_DWRI8MFxE2+}tooy~JuExG4ct zQ8Xjz{d@QDz3;z*2X{~K!V@SauXJV?0*%nEeUsHG9C#-yb3 z&WQwh8NnI@b&zgCxC!kRDx&2*NE8=_mM^Il`&mjqJbvvAUwYC-&uHyX7Hur62r5*F@XzVw<|b*P%uq1R;vN) zam0{DO-du}=ajJ7Y%vbvX~{Wbv)!Nz#nio28OS8(8RR@Bfz-=eDy#Pw0^U$n=^{Bx zN~FkIfZaSzD5WCj0W@Y;{z+?cT4Vx|g}gSf;QWH+{A(!&92j{>SPyHhEv2AJ?@e0& zb5~~Ut{4x__oy|Y@&Llrz%%T;as%&8#Zlg1U>5D`PQ`Hq^=TI^{^qV7cKTf0m!KXc z^BUScix+xqVGn>mJ%s4M4|k-;!LazSo4avDaP6<@e+DJPl{fv}fFVN^MT>XGydv_3Qv$6vxY`q5 zf8%}p#b168Z@>L6zWBm(`0d~RI-Y;#F`R6#1N$q~vKJ!@?EG=#WwsWiN;_%PilNjl z%77$%TiCp|Rp&6CHc~UH*%-U2(@+DhRU^@T^lg6x;|357gUQLDO(Az}G(4f}5P0`8 z)H-@R5KsGF)4=-#dq3?d+mCLnwqZeiZ_j`RFOvc+z z@6Q{0yRKo7W>KX;qDHUmb1khe#*BdP!qB{bi9j{*#kiLNQQ%C;U+goRlfGn1WD&~C z(b{SRg0`N4XFDfwr7>{Vr9lf}J=KHPx*mBuTwcekI?H0osIR{#+gI8qfjinU945wm zh-WeboW!^;$<-wakO*i_V)5{j(*-w()$7Z;$_21A*FQt{~e{9T_t!3~jkmbjuaJZXhosk1h*-fx`2=&bWN zRsi{s5rx;uhFlzga7+;_r|luxzA0xlUTQ&hz1QTKoQV`cR_9q2-rT?o_m(EN#@QJ@ zyU*ao0t_F!xQd`_%B}uGK&lK2BC|3L3TLoai&53E#??5WazRB#oh#n?*?ah-|L_<1 z##f)l?f>T2@%XiCdL|(QSyTQqN$8_`xyo+Bem5yl7cVh!e6MIDVr7LZi&oHZHLPt)?DI0u!t5>F_tzT``8y0VE`G7{%M^X`)%I*OKT(6z8f+ zSu$&M5@!H3v?QgBlrl<5NLb_A=?a@QiG#0Fm@5WVnNIi9MoODWLN3KCChroqF=!v8{-9*R9lVwy>l|3Q5u3MCG_ec~ z!b8f8X+NQ^2AphGxIEv1nQ^iiF%aSW;sU#=U_B1lZq^uw3|3*nl`&7^@wT-yLxow( zTZtcngkHB$sE$zt;3Db0b^U7tJ66xpL6IpGl-s%K)quI|aQE(g{Oo7%;)&<4VS6I; z&gv1A=90g+>qP|L`j1lA0xZiv(X##NidxuM2JB3EafK(e6+ux1(aXa#L0O3gK>s=| z!QG+46vGZ5-tS|dgt1WgyPMVqdmB1aIYg%P3oX&C=i^fVaZJsSY2$SuSsQi_$u$nn zD%v92M+{Y-`n5kyS`y@E7UcEsHgoC1)EO0C>ojk0Sra~Z`!0U?y`SKl zfB9Yf};_xIq?!mqBrw&$X|j^v-6RbC`;#3v!S<;(N2|+<+O;L2w*MzkK6z3^C_sf>LfaB zsB!)kXSmEi9tIrA?0|NO{mK6Rwof|44d8mQ8?8(kQJOaX2IX%=5-}5TRorYHJ%!EL zg~u+G-x!YC=$w77e76UP69*_ExYU%dz+&R+G5d$DQEoqCG8#WaYsWS8u}aN29Tj(r zP>Pp@5sSiU3R#;2g5*y~2vfKiTiAFAx$?Vti#TyPNj87g*CNuGj=f`#s?eL9fkXsZ zPJxnVq1y^Ds$huJLe8u9)S^~cj}3qTB#A1R=OQ^52Ew=++Bn*>hjF(3$%^yfin;D{ z8gO}WiL1*ifM+d@Ci{*nA%jqnF_#(RKv)eGoPpIiV%)BgYeCpzkFL+r^*73f3P6)e zFa~O23=1lY>;|Snwh%=$%an5q?wX*`hFh@W<&udTb})ve8;ujIpfXO}B(I+n0NQCF zwU8Nz?8*=%0tzE?Ph&o$=jv)H-cIXcW8hMhls(4Y2Gs*63)vE8S^S(v^SE-Ya_W$P z83ameY_~UY{nld`PX|<6vDVX;AMv;_I=AD-ID6m8VyWL*THZY(WbQ2LONiv`*RrhG8oG=ap zavs!s%@C7ZQq0BRnvuC6Q9@1`g$k~AS9tHvU0m#Tnha=Ai(e6HO@p4ZOOlI56gE=@UMwaM7t$hd!zP-b9% zRdBVx1arn_wL;oR&BOcmAK=>Q35H>fY2M@FVu#f@VzrWUP4irEd3gn3jqP@g-ENOk zE5;#%#*E9WJ*K%}Or~5Zz39H0XYsJpIQTx2?7FhXwG{UR+Vd$%@)`#)Y{0D1n?)F; zl=VEVhNFe!XHr+z=1)DiDWUR&4?lblKY00NeD&8}!1iR-l0{ka20PQlt-X$|MTu$2 z6vBPYQ+)8`;yMOy52dkj=3ap@4|aQb`?i759^5#*Js66r@cLQvuJ)dxPrstawI3Or zXL#5dp=aE2N~7VD0J5ltOhBr@tVaqwxs0}HYzxhBnQQ;HuFhNX_u0%1^37$8#ER?~3ro>+j(&{-;03fBw_I!rO0uh&*PTjD%0# zyMur8Fa8t0`|Vfo5B||_<9GkgZ{o$5p2hX;h(QybnFoV?E(w&CW|;iUU_u6AmiyUG z{3m#(V4Zh1Z=au`rEb7W>}vbAecM8_&BH?7gTbiF&i3HRqI7LrE#-dw2#3l*^hUMU zDE)K4g{>h!PY!OR*+|HhSMO`UJI#3D2QNKz)|HHS{#A+9_aEE3S=;F5`XH<}_PnzM zH8+6c0vj)x_f*HL?^Bl7?Ooq5VV?aJ${+k(u41Ot?UVR3^d0RuOh0dE$M)^Ha8!Ib z2W>8V#ajQV@k)ySQs6)6$LsAUMpaiK$D6uQ^gKUD&QAj>1G{;`kfk1QQk+;ZsL`c@ zlSDrO1ZZ?l<>FW@)rwRT&Mzm-C^)&!INPj|jVBX<^gJj)o>Yl-QkpVfC7l6)Oataw zOUtp8pQ5Ufa7-wPFk2ppkwAmg;;u7eDpRXh{pkAKU4H}5Vzg>;3#mj@=u9A!KLfN4 zC0x$3Xt5BP)m_4uWgbAEGKpaijtHv@lq+-6w@01htEqXMZLm?zp z*6clcP8AHY5Jj*HP`OQGE;PfOwd4Sn#fxU_kVq_vWtPl+LmmJycKe;IH777;g)D@s z;mw26P_2wKh%)NRC0d9_%1MD&0&&55Jz~UwoF`oEX8icg5Agm+ckt9pPh&MEfcBac zLi#21NuabvP1l6M*K<(0M9qXbWemv30GMX*Fp76hl@|dH6Huy#+R8|nvRL<1^XiJw z0QRL|KZ`KPO23vlm{LZoQg23^=Fuavy`(I_6v0ZcP*Pduut^w)=kW>C5Uo|hlv3aR9pbSFmnFy!_j6GOG zhmG1g5N;nW`WgZ962Nu<-H~DsW@8^Yw$Op~{t~4{`6UM3V@i{pfO!HqgU3@$X@w6y zyo0~`vv1+w{>wkb>#w|tF;_fs>jZOUd~$cfuo?kmy#M+K_s(RY(b$}-)t@t*l2Z~sRV_0nh1VY4Q0P5x4J;=ja88Xj zm^v(BG|je-%m?G?*nuGRK1t3&KYAS0XwVUp%P#MR8A}&9YdPLd2|6+tvA@<>OlGJr zQ$E73oNzp6`cTG23JY~l1P@?mPzef|-De)yrs$Y5)7}U|H1VLh5_=D;;W2x^?ZwE^ z&(U@QG?ZC@tlD!!5a(4r5Hrvg0#X-k>aEL#h7mt%(};Fb(zeyS>vpS#!jj- z`DS|zOi7hOkw5@xM$yg!uVBzJtI0dLV>GR|+KDAY32hlLm&}jV70i?~#$goUR*Tf; zBSOtUEs})fbPe1(y}$+)mQ)Za!y4LSutmjY}q~|GTOe`f*RwE&kfR|~Sz+eg4W%a7%gi?Xse#XWA0++jj z!YcrhS(Rx7r;3>gluiNK;?A9W_|fe}KRBjo-yf zFFuX!M!;~wB^Va~u7PO;Fe6cxuvG%YO*z9eq?!hk2&FLY-reJaI|a26)>}rooG@2C zub7J~{Y2(j2JB#jn-G{aqppRqs{&2tg^u@CKX2lR9-4?&ffaXJ#muv3=`9R^sy}1* zx+1V_M?eO5^ySV)L9Jil;9_zJ~av>#(s%4e>iRs}T zkse_VH8qLcpEF}4nXtC%sk43RWNJn%neRlp_X&bmR5lsuxI!55fEwnSo};wI)(?56 zD!;&il4ta7#s&bpIx<_*;o2HvvJ9O-Sh~8YG86 z#f<&5!+x4@a(WZv2wd&2kO7?Lgq%mvFyLZ0;p02^v7aVv*DG8*+2Hg{>I2upm{Bm# z1FrTvyz$O`y!pY0NC`OIo`6!qTq?K}@e1ZF)dkckBKTIy*GVQ+XmT6E{$9nM2Ro!; zKvH~Eli-2MGKS0mj##~9a;QbUZ1^m2GKGhpEFUzY=&oy z!MFJN_K0~KxbqePW>JxQY%5atcX*|qmEyj6=62?6iKgtm{sg&l65nH)t=u9>q#>k| z^54=&TPSOo3>b70 zpfn(_))>-=LK7-i%%zC6yi@@4J14>nO(p_iqUO@!kW#U=7lWp=f8z^%{oy!8m zaYzni%rsgYlQLbosaEm)kj}l0U&247MkJ-&N{8%clv$I8kcKm{oE3y;Yh{dCo-qYY zNGpL!JWfR!A(*im2dr{(FRED3WL(o+_1s;;YPHt&Qc#i5vh-DUVQBkg)>@7LOIF*I zQEJ6*Hvt5!S0i%DUUJ0G$5n_T#i1@ES0oxiw8j1NE4=#3kMZY!@>lrocfO0W(=DET z_KSGo#V_OX>JtC@U;im8J&nhncn;f>TLA6BI7gxtDrRt*^^Azn0U-li#9Ll!3)#{o ztqknvirt=(Y6c;DDsK^hldk}x)&&{uw|B4kY=WXPVI%ZySg)}v&Y z&U-`kLOf3SP@3%&bL$NtD#&ii7c^Ced99AoKJKJ)0p%_O|kal$AF? z&%Fr{ZfCS~%R6pbDhomFI$}tYj|r}-Q3KIO6_3R%cL2siz?wz7b#B?GWvkS_F}BT% zXQ*dz4D-+t?Cguvh$8oc^N{}Jvi}C+X`y7(!Cjq~z=61eaLITA&w-h@NxSjx~#04{4247ZEm^8 zWUoh_As)y|!t+w6qmq;r3Tr59Br?KCAsSF3wu$(medan{qbDVtMkjH9#vde+BnbOG z&Wr!vFoVrki}-30O`i4DI#(CUnKfoET9~&o0yOA0XKy=(%Uj>te3KiQyUX}s*Qd}I z>ibRsN4k=(5dfCSzB`AhlON|TP*vN~`W`oa*?2mmj$yjkQFbM>Ma?Y7$qPrvaYsR8 zrfnrG>ZNi;nTp67B;31S@X80D;2ae%J%5JVXDbXmV0Ss;&ix0tcd^I&ckbi;kM3eB z1t*&|9=~-1H_uLx2-r7? z^uNQVvJGmiqbUb+uZ2oVeao|fJ>2(Hb~~zUQuLs)jQMDXC=`NyYO+;5U$FM6qMEo%$T*0{ti*hOD$OG znK!02^6Ccm^?m%+w||1iZ#;z;UVIMglMPn&1e7+&>#bN{i=6km-0k7#v9!Cj6y$MG znIZ4X$=H`!+_k?t)>`#%JO87C#u%;8K@3e*n3x1i&lHysS*QQg)A(fxJW+c^GBAtPZG_P^g75)qQu1n`OV6}e!s(RKV!2R z@%-aY;QGl4hBN_n251EG8ihx^`PK*c>%aUK{_}tQGyL^`{x7(DcfyzntKpk??D5+e zw;TNU)wgl`_Mc!F6TbSD7jWxr#^X0vNa;-X%3c^WPbiS1@d-i?at5l3!lTMMGwC6H zQJ!j%P~4QN%trw*h(Rf724K&Y3u?-o3ihlA9+(+JPHs2|=JjfxjYT(z+JK#R_1B^O|Cl;z%+^4jDmL6AA#e=v9I&bgpwQ6p z@-t9)mi5n04ej3bs z#h?(xWTRGqq_gJsAR)LiWc3wsd7~FDO5dz z<4Um2jZTHVqsfzKAP(c_sKgmAYjbb52X2$yE0hRy5%3I1GRM1jM88SN^lxrsLXK~gzvrbF8=QHEWY;K=AIWr0uEm!sE`n+AASy`M*U-PFH zVFrDv3*7|9l8XgXZXnFhpivXx5vI7}hGvC}mO0YH z?f^+lwP{kZH!jrJ8LYV5HRLT={+DwC!Xl%p{LKkogRUz+3;@Jn3s3cqFffhCb-?9= z9bWnA+t^+H6#viv*B{|)FZ>Gr(LY|{nJ-=kUtJ=v7{fMU7{pq+TCc%0BBv4Ku);Jn zIJG<)7l+cVELxFTR8?zw|V|{*|Y3^T{1fs z7*J<3;8buG%WE?jMJ3SA%r<^vpee>sI9FRL4G&X{4nA)DM_y;G_QE)RA^>^WDEEJM zo$3EP+B0h3cfTn>YCQYrfP{xM-g>x@1HoX`=B)ume_vwIig0pcgU9NKArBHN%msF) zSE=IwugB2Y1KS_PfpfSY%9jjpH~GiQF#rmtdqCQL4|7QX^9-bfvK#Q$58uMS`BfqNrBH>g-f%s`%|uh>~k=>bLd>NlG*>0J(3%^^X|BC{Nu&4cbm z@-zJUQ8*uG$!u!(GVa(Psp26=!4o*O=&OFu>Fx?pEws|^1vE6-c6~deO6>WMUG68! zsHyn8T9JBz4(bg?*uLoh5M@}6un_noAkG zygs{U(Q3;$1JsR{EJvma=@5EoOt97nT1YpHxY~&Xh|0Z|SORKgBF|PPeQ0e+Ndk6D zQe()*;Hafk7PQ!yJ>osGX{CsGmiHzg`$*!4cFNy>w%(I*W zq(tI*$^+6|v7crSFJwEvqd;RfO~{F`*=!vZn_*JY*T~c+K+mfcFpAQq*0^-+#u|di zNSaVZ4v;2rEs*r6x>q0|BeRA{nFW`%ZX;zE_O;qQa=5&ff(oGK0i|YqbmtP^`R2Fq zFaC#rf$x3ir-$t9oWJQ&z8RL8+uko=6pP4`zfj2LL%YR_36d zS=kZK|Q25Oy;d-lE-9wtToT;SvP?_gIpD5Rln zWJP{RqN$I8bPfR61fk7LWZnt}yD6i_N1CExvq}o50Ja?6fd=CYgGg(iu?pY;)1L6= ztMB9GZ~qWTdpv&YOse5j8ON;2WW;8cG`w;anNuYzHKh`AF=bEmwA!w)KFPScy28(1 zeG~uj-~Ty2diMiNyGu;-gp=(W5ANT^ts4XGpWnruPwwOPpL-m)Zk%F(7$99S3wQ)TE6HWv%OnvAV38Ldj!x{y06fgRw)55PtgX>F zIqg`OUn1KFqzW6{ITQ`xrKrIy7&!#3v5egfY$1dAJ2$m0E_Wi!f#2Bh1i)xf}fbTeQWTAp~;#^ z^9~ebu;lX9{z&oqgu*O!koO7WY7`@h!n`sA%mu?B>kZ4BP<1?2LfezB%k11r{#hqr z%mZrDqYhP~q6Q4OH(cWFj~?KISMTEO5AFhWhwCQ;K6v{s-kClEKo~~JR1Qeg6j$@U z1B2oav!TtLae9(*<8+1HzF;ad(kM|0gaMqjUTUe}nkCCS3b+zxCY)bfYEcd~7La)R z4exLT3Kf?nmd`@wUG)PkFQ)EBTvcFxbZGH&dHs#*EDBa@0@Og73;OUo2XnP;4vK#` z(U~ldhtBnTZvQVYQ9v~!C5w=qOK~fC3{^CR&_I%f2-;UGO6|B zcTb0H4Q0;BQ~oQ1WC=-3DN9{RWhBPXhan>m68>4{f_a`$tAx86AZGQF$?pl^0VxCH zs^a|KJ^bK150LcC-G?8&kB{$sAbn;Aat7r=GKFTs_3K+a`}|XQ_h)b6>f#=1k#JT! z=S4|F=ci$C6O3porg?{2g((BpriROuf-=iI zR#V<8B&0|&wpn$nh8MC~md&!u6^S6FL3j`avdo%=6E5V5t0poL#m`D6B+e-8s-)bT z2zeYK-Uk`8BskElw^W>N1)%|@NT>($AjR4h5aIvF-k(3qmR)y#*k|p1PUaondsVLr zg(?(g0wkMLQ*5f`R!2*gmTBcSZ@={;{>T6B-|%n#tiTxfEFMz=7C#h);wN- z{pA%OTwd|S}K$ZEkGxz>rK~UtR6l4w>y{LoJ2ra9|uq&Tfp*gigoVw&d*QDW9H)Gig}(m-)uNLIU%3q?$E`5L0FPwJ;RS|9MvWUOl=*RuB9@2kgE4e z^j0n@3^%s{mt>%JCpXSwbN1qz#0^M~w04=|#!B-2uhr{6>|Ryssx~y4tdX|zkUssA z)x#XS!yLW0I&59G9$!TWQi<+I^@}|3<}r`gYN+}kH(w@(u6MT46hkXjATg za-aX#|Knfq(n~Lp0|AnRG-fuZC!F3q=jP2bHlxYu!#wfq*@4s36aLYkeuF>yqpx#* z>m}Me^U-@B@uTnmf}j25ZQg(X6ZVIhr%xuHT^^`SIX%sspKX{m^Zg%uz&HQ;P5z^Q z^4t7}|IzPq>(*`but(w@PUKS=2tZ`G6ZyRk?!)~I;>qH?bIF2Wj*7Q>vL^Crez-lQXt+>D_B0_flPNGQ}Uk3 zk?~T8;#*(daNw-}aBu?nxSiGA2=;v6x`P>VaRp3V;waKjn!TT-_qt6fzHj@sHb0|o zli6H&fTX$eDiJba>AT#*hA_?r8%wt57pr|uqI5KXBt{ao7JKGw_l{n=B5DE6W)5gd zP(5&1slE>et3$69YUA?h6;B@Rxq0gaUi#b#S(N=$IqZ~aI&ka76UOa8YuSmL3KG4G zTLzSzm4QU{zljQmedF=P9?hMI!t{u2`SCj+^W$IK<&y`8&LBOeVo8#04CE?}+A3>1 zIm$njb(U7Csc@Jw`)Nb18?v4t+d?XeG@&&yvOu*tYACH)$w{VKb~Sl|f#x}p=DN}Y zv0=o!B8~YDJ(P3yR##@1%%!rg>UvA{y_lVqPJr=)EYubCh*dL==_v-N22fI^}99kI;W85R4uG*rl;&P2(tBMOM>g=ob zW;lr^kiuxR&-PfD_$(yLfEX0kdgd4u(u9-95)B-Np=ViZDKw|+A95lO2Hz~jj8{99 zN}H9bfw8n@de>=bTt0lngOBc-&~7WX(0HyO4G>d`ktyzLkP}OGWqCiR!Qh*!3)5Q) z;k6j;qRY+t>WC{ku5`6(r*|LIfR>4Anh{_eayN*# z+buHyV;EIl%wKA;YbFckgcG{1iw#1Dlste@ zn{~2V$(E*#l+=+03#5sayb~fTW^y9yNWfxo*+^t~B-U{`oNIE8crA6p{rL9aSN~?e z*fp0?R@d--w64Wkee&38I?CF9y4Esug!H;if42vWDXm4|qQWr2E4$4q*J) zEhiRRO8N&vm#*TDN6zqdsA`<~K;pzbiZ%|j8ImvDxXE<5V4FA0#pL8`pMRCd51v}v zB@%~eN2!LQ88-v-Txhj2j3YTGwkHOaZ>?E|Ka9cD+yTWM#o7(^*06f#1f^Aj-#6vK zCy)5>?N113zpBZQhN9zWuyofer8f45g5=D1zw=Z6!S8>SZ+`PjJiGgdcYgUEpL}?q z{qDe23Kv%grn%TN0@@N<_ne-dak!}b{3jROz4I|Y{pnl$;qQNqfA|OA;N_bm%$Ja? zf314WU#)8TOf#IHaR1H|e)f}h_}-7-f8ci8^(Fm_Ze!&4SOtmWjo9Dh|1znF6rg| zuXvQ(9OC3eP>W1j>@DfRd$7G=EbJf-#~<=w)9n@m+O$Hf->&qxu@#Ub1YW?PS4;<+8QLiXOKjp`T^d@cgsaZ_4ZM07DJq zDDd!fr^#RhD-8SUd&lo}jkN%y##bl0`pOPKkooGX=I? z!4=>2C}0>@f^cN$5XJE;p|0WBw54uSwbwa@;nu$!PvkXvsXIMZgQr86e0{!Ktu)V` zq?90Mug$2m3TZTFAQV^A#(;QVIrRwIGAD>oTcPatBpDzNp2%ns2*d5h#&YQw(oiUFLS8dM!!VC^*Q0s2?&xJzV`x)X)ToK(>rOc&o zl}?$zTAOI)S4u%!oR}K1-@<2{Ad#ya(?fBN8{afxoddM4Zyw84Dc(eHt9KZh@;*9lYpXZp; zou;FQ^6Or^V{A_USyVqoy87ucF1GQp6LxLvN8?`B!(_w4v@Bj9hJ>32P+{7m6?S`= zIOX*AtE6N#yXu};@^iT=;y#`S{~=~^t(T7M`}Kl_{95g+r5ZOLe60iI=vtpzG1pT~ zEtB3F%=64#3d1l^rqrYNl7#Ka2{~VNJs5$ujxrYk@R$dNaZ6>g znsuOf0(ZWDlX~6mUiPhlKINxU2W(rnTq1wo5-6!ib^Zq*@^U;T&K!xA><~R7s6*go5L5<4wj4_4Cx81h{^oCg!R79Pzy0}}{L_E>JG^}3HX<{i#cncP2O68(eaQ&!TI=V_zT=sz{s1J?t0+W}vC* zfic5olNmP|swDwbg_;FT#pY$jn7@>5`FgmQs$N=jHf}iGY5 z#Tu$dgKsNCK5}g1{z(u`y|6y)Bg-CKn=3tjHjD0pG@+E{Efyj(xHz6QvN*|_il>~B zlqqvzo)3&_@YT-vCN_SnlYrz!D@ih%lc6rEB7;E*8#8L`I*V}W^SB)F&}k-w6C$nG z63~r^8B%g*)1#Q(k}~BZ-tI(1NllhILt?*l^Q*79xUe%Jp88+Sn`q0tNb5nxlD`i2o^6cW$RE!uzw==(9PNDa!U_;KiF;>ZG(Zli(N@bj*uRL^1(` zr8!Ks%t940hB^+2SntZSvk|H06yN*!4)1<&mp9*dpa1B8^N)G;ORsP!&-nPmclhDo z{G2lHI32_xLtc-ejhqH#w7^3iZ9MZl(Y)n|ohxTXb;qrFYYkKM0fExa$lAKGBS%VQ z2`;35{#C8D2pk=KTXWA$wqOHwYd`8H*J&dKk9cdBRWcZPQLC-j?nE7kZN|me4@bFg z!j-L{u_@hT(l*6keBr`CTlVkr?O*+Ro&&l5?jmWg8LFT9&SG#Z*A7^&K4%oi4iwKB zuO1KPd86+}+hQ>2vbSY*>0fmn>82;ba4e(i=th;VdpRIim(<}4Je|*Ye0YRal@~i3 zxZ?mUO|+LeSw^^wCmhG)FS~JLB zmP}I%MoFrW8nq;b?SQJm&%iu6XvTuIc3gnZrPrU%*@nbLy>`+N95$x&$O2iBy(c+Wum4n&+Z=h z?swnjXK%d6S#Esv&PP1FcSZZ+D-1c)>g+)>HAg3QT@RjWm%}2~jzo!_?azAzkv}>> z{miZe$2z32d`PALMMS*?mFYRfYsu6c3`xmgoz3_T>@$`HOYUFx+Ve1|Vgt%Do-q9B zAG4p+irmLlBxrC#7+g|)kGEQT`A4IIRFDBfR8@cE!I2ip-v>zUh+!N6fOyYN4Y4gw z9itA_b{izsL~eN2}b~+RuKeLSfjq@}1dnnTtITg;%2F8?_S~C(n1(L0jwz)rhQU{Lv zSqeP}mQctkT39TtxU%cI%iYXW8!C;Hjj+j(#x2uS8NJMEKUZ=xT~-R5ZWE{5%+t%l z`N@VGH_o`)SMEL9QR>XXRvvr53n@A(FgY(rn~!1BHa$xxm(O0mQLkU$S(HVA1O4CL zm+JcGLz#xqk#z;w0-HNB>=rG$QlNVDul;#3Y@$AB9ido6uSsh&3hj!;(}0!f@fg6OVG=vu;Vj}j%8{Z^DV$joU<#eUBPC;%Z2fsW;~C!x?714uG!I55 zlf+VDwN?V&X5L{8%^|UFIa`DeckICG7OKH!lGW}7G{&yKI3(&>fhAJZxWqfx)!}#K5ze{-H=gr*3>a~W>Z1E0DNJ`Z8W3>j4*fOCTd03*^njP z5OXDcY{Fs`W&|0`A+cJbx(axR?PX0%8x;atwS1&DgQQ5dITL>{bC|r%f~DTL+8sC? zcI>ChT#bZcGYH!;(-KT`VQi4vK+C>&m#MdTXuiho41t}^iuF&dUaw(=__i5JZIt3Q z9~o|(XY!$O@12kNZ{Poy%!4tR8q~-Z^xOl<=8G4TBQ81zNla5Q#Y68zkaVUMz7aPE^;qE z*Shm$L=m`r(=?!^!u|sC2HkGioQ<3vMm8JI=B|UA;6at^r|kN~{OTt@{?=;FW%W5( z`Hw5(yw{FB@760B7BWk)Onb=4GEcsD)q3MfrtA-7$!wgNxVC~g5zshn2;(kVG}T(k z!{~vsW#6kb8dld&h27p;N(n%vsO|CvZdobXEK4~TyDtf(8qPrQplo({xbEPpD>I=1v zHfK_Ns;v!Hw8FAT0~kqy)o12rPSWIiY#c@g-O{pfC_9Q+AUKOMlG$Gs-umDk_b;xH zyrIs8-PHsR&22T{oQ)edw`?|o#fF?l31Op1nF1Q^qVRzJh^B_ zLYS3d+>q0jTj#<>-LoA>YgyKIs8nv9p0e9lZk=y=;ntRYYn+{pynO47BolWZUd1Nt za_dM)iFlA?UGgPIc2>{Td`58d8~OS>!BE%k-ts=jigVTbD2xcX?tF9ya&`S{#>E2A zS)5KY3>ODr4UKKhiuChfZ4g>(-mA}Qw~XP_q-?3h>YcpEI*i2F#I3Y2?~QCO2PBjJ zx#p~HVQ?-U&!Rjm3zVpxdfzla)GJ6zhRye0JHt5G0beL?~C zg`9PVC|SQj$6IPGw9**U=ui=Z88y!YClY}-?+$w?u;b0(1@ZO_2IY%23|P+b8Z8SR zhG$~%Lg(dkv6;Mv1cQ$oYg#YhJrJG0!u&a~FLI$6+u>D_H>H^kj=N zGNz0;na=fB&o=t}w^c9CWgpRw0fVvAPeffF@F}CuY%}YiaoJ@VWk7uYdQ~mix4Lr0z`mqpgE1a8!?F zA78E^T_&#~tiQ?tIG#ZL)ceQ3hs?YF=atXYM;WkALkK2nsz}(L$8qW=4w?B|bmw%Y+~hH$E6w_Dyv}h z`ppdg&1QquH5ap^U6-hOPhknCMVARw7c{S1zyZ&@KjZB&Fn5M+~1 z>ZB;njGYHZa^!(B)7t?!r!;6a0H1(}*XUD>cqk{b!6VS7q|_`>Hw;Kl7-O@qe{0su zRvr1$3>$m6Qoi$7Kj&vZ`+!$odx3BK_80i-*T2A+2eMS2J$S~?e)1td`T6_gB($VV zPj{T;!jKYA9z5m4_dnw4@4dw5ZjDd`11m>1Eo>C+aw*nn$-*rNB^&Os+=+U>_*>MW zg-(nBa$lfu?A2_6#3XUcZoI-<{VmZJM}TC`Yn9CqNxXh zttam>;$!_httz!to;-SjDr~kJ^4XSBW~?2NjUo1*V%!HQXOzjfBdYk;mmYY|*`byV za};IKD~i~&B@h}(8)MGwE)INh_Yrx_eExH1Ty% zTR&hAV#dzNVr3OATP>kE%hpz`8ZGOBRW180 zWJj9~IkDMh#=+hnHUljXP;CZ@WQY)rPFHCjVBrU_pWR+u?`u5h@#`wO&tCt3d;R*( zV#9m?ELp)$-nIg)ef?DxZ{E*RE zyK{%G97|V@k`lu>(rTs7wf`-pP>{BXo2nVt-43<~s#BxQ)tnGX4hz7I-la+XnswEG z;OJnuBi*nlut8K8hdRNERn)5sJ(`L;$l?k*YOMkWp+09>pp^%f&S8gHxq)HBT#Rr{tGci1*_`YtQ0mG)^6SgGcw4~zmIdyj zJ&K!iTJ}yveZ^G#R4a-{QJb>aZrF^OoNbY7RjL{;e=e3W%tPkv?9>b!kCKrrXuxWJ zt6KECl!!;-8bDt_4&SS|M4QcG6DJFmroPnA-UL!2n)2wDO8p8{oO%L)55u&}QWfy{t zG+7iXVAy?6YxftEACTIV+A4>sFdZf=SUCXMkO0>3Znc&UvnHWrtDB}8T4l&285pus zT4S0kTIN2X>hOND!P~2hWU*T9ECRV2ssu;i(9l+Wn-73F8e@Z&t7p?-J7+F0CLVsg z=fU0ky!FPrjA!ShW-C(5Oq~y;ri_wkDvVhe&qj7dx!5(DoFbcZYjL2;29VZ_H9IHB ziCT(h>0FMg&1Z5)mzA7aZD{{-k!2Da%Wa3yZFCuLA4uJai<nyTpKfL zbqCN8O_}MSEOmFjW|KfiAPK5blF)iETAMKY9#B>GSm1wf_;90IAbi+Bwev!=Gb-7x zrP>(8%6+uX%nsEa$C1rwq*RB4m6>cdTgK5?$;)9T3MoqQQj&b&=}tM+iWUouG%RSm zKTJp-+0Tu7aiGqPtIIvRCs$ltSvk!yvD`7r%GmqOfli)fRwDCkd%d+Fqx;NJ{7roQ z9a?9wD6wnmab-Rc2J0HKdfmZTE8ErE|0@P?d^Ix|7DvFz;TD{^J7Vjomm~Z;@r7P@ z=KSZJ-8m_|{Hxd8K)_dXWTYKe;`#&%U{231)((u?cIwRK(@f=Bv5m%$z# z`gLs?{=7?s40nc`!;@@VH9D-<$8FKraF`tS(w5EAlDL7Lj`x(TnzgT@v`GZ*O=CgT zVI0YttdH4^huo+Nr8T6QA(>KU933iE9nO=J;r5++-h`oWILze1)@4mC9rI=M{#f)g zsVnf9lQ?R*Pj--XNQ>MF*9`5jwpL0#f(QTv@NjV~~rfla@I82o>HIfWyYU~b1HZ-QpW)qqA)t*E9 zGe#6u-7r%k$g}L`1vp$>!$N3gHN@{?_T!5IAn zy?D&@;A0NWfHBX>-y^$jv8~ccyuv#k;Yny z>*|N_FOPNnrv-SI0ixGFdpzIQUmeQkGRXI7^uTVy;( zH?N?(kKk~yAli0A&IVnzmK2ud3f9wWxu5=&+Rsh|)s7v&=f76+aCOZvHtA~~a|bId z;_4EsEA%xt5)pI2X7wqNt&Gi#vI6|31lD*nNb}c?@|RPW>E~n+BBin>bwjcQ?b$l zM+|87)9DdIEg%^(Bz3mVWHKwE3|rxJ7^tFQLE^mPAz zhg{E0lfh{(t}eN8^PF3^Zy8;d07I002&yAUMdg5S!h?GU?%sXC%@?=4{OWCzHp*e5 z&e3zTO9b0fgSCJvrFw>Ok@@1!Y_Z18K`U5}&a!kW#%#J7GA(BwK77i& ztqeJFe!At!gD1TE!F?_+cHF;r!5i;9;ujx2=Hq)$xVU`A>6jUYL`zDeTE`yAv}(-o zp>rZzxUgS)09-9N+q`L|A$^wG`gMnzrj_b(#R0d~@PK0qXH>mOh}kODiF&dcnciGY zhU9DnYMr59EU0mqXUbG4#kY|Jn`uKDTwEGYLMe8iTCB`y-zrj-`H9uErc&9JnYmhD z^z9h@ASQoso$toZqMO||t$>wUEHbP!mp@lte)jtNe*N0cq8Z=xY+|=ZLRYuNP_w@; z8OUSu5_>f_2&^frz1It37eBKb3E&0ex|kSi11T7|T5Z%)dqywkHHACNRpYZ>HjE&|#~-jIOc*5bER>p)sM!UM&5TDoqXk14iS%pGjW&+|#iQLWeU6~T zu`a@jNzLZJm%vN3B8Y|dtY2gXTu4d`%PrI};+H;Im|@70VT*ZcYR;z$9ilAaeW`rj z`>xQ{DB~U}_jV?@z_;Ll1tqcvCvxm(e~zZsnq|AmY_}&svmTM|e4 zWcxI{<-ts1wfPJ_q1220*XL$&-s1VI*SLp5u18g{!qwG>XbTkw@R+OCb^wJRYW9E(~| zQ^yU1c{Nw`1N*B>9=!2m-utV6&BKezb{zTUKl)Gk#y|PbkX)&$IfJdU6{5?t2kbX? z>a{e#87a$IqdOb^OYqEVND%*?EYH=ARsl2<7{=qcM9jf*o7E^*`(xP)$m(x>tzxdt z@mrix8>i|D_9@Wumi}FXTsTv5i-RCeiJ#Dea_`;~rrl!(5z=sr`rs*CT_V$tPwrka zx5n)|@ALB4UM9&%Y6Hp4HgiHkCUzU%GG<55dNdE>=o_B@3dQM;oH^<1d8HfY>hm6k z`r;((GNxvF3an}Nt}0Kb1G0lLCr-D6WxSd>i@Uu!lD0+}&4ZCVh2BzS95Od<+~C>e zGY$uH7Omefb_|=57m~4c zma4RrC>T@jG+Ft^xGkKW47~TzUB30_Kj$02`zn9>;tQN^1ct$~RMA?@_qOoie+tV#KZ{J{=Cv$32*j#q1o;;rU;SWFL$3J<4 zo3}SibLG`nU*Y|ao^k7Z;Cz$VkH{J zBj>>aI`!bSk+!Gz^MPru)TV}j3z?O|2_4WXBnC=RX03=SgWCY5GIYP&c9if?zS7_(^NboWpiouVHv3yVMBsaYZvC?&!%4EkizS8=Oi4SUT5fYBx@`2nqdko z&*52}6wI6+Su%%RyCb-sx10>h82u@uA$6yL_M1iom2UVqcTj701aRiJ)&eGI*C@^k zYeFiy!_^i!?NcD$L(gbVjSVpA?3?{XMBNq{McxXkQV7 zPmN7z6)S>Qg=&2plPr)~S1F+0P&kSI&N5FdZp(UoRQd+&4o!}rhabqM9{iB#%_I)p z0ZEOd6`C-P1Jj{!@${00amPEvZInHuwjl^M-25y|4 zn)7Z;V~nC1Cjr78Kv)NSIvi^Cd-A#Jhc?(vV=r~`nQ)lm%r5h_w%zUTVYn}I-rdes zL^&x43C8SuwGcHNsuj@_>eY_7|MsW+#lQJB-~FF{#)BtUyz=T7_&e7pg4miO*t|<3QOt&I6)4m;LCXwz3*vhV z;nBVO{G0#!Uvc;DUACtq!#GlA^D8$w@%~#Ma=3cN!^fZSU;f|!D{kJ-z>K<+>zxIx zRt}5|Ciau>MROg)*s(7hJI^c|O4YJmE_dRSwydEPBV(C-i!Q;_qid~J*&2Qetqsg= z!@dn{Tjj|HXi9oUia?LE9Tydf;2gX zp{mb}IuuZ1E%Pe7W$?}LcoU(<#mimH7)UKKh_Kxbj3bn0_vx*$5R#0DjE?LG`@!@B zo<)tgW;BUMss#hovO6XC4O+7drW2;*VPqTz4l?oZ{+_3g3VaFDpi~*yKdb!BcYeu- zAAHEGpTEs(uioa~{fFGVag(bC`#SSGUwefYzxoPU1)}u<4H=R-(vmssCN8cHl#|4E z-gD!|O&A8serM3#JoI3JVkHuihJL0+h0SRq-%|38Gs}DQ3 zy5Q->6{QL<-9F>DzWxgL?>^<((<^@Yi#yEIf%BUquYKuNzWBx0Xm!tYm?)~uRXOZt zuAW>msPdIpZ*p=fOch!isJdr*vghfuJtsF$x&6{PGB<|J7TF5#-+93P@PwP6J7Y5n ztr&xK$^(fFyJr*gE^~Tzj^=@P-haf^B>eo{r`)>vJ}=!q;p<;}l|T8TZ}64Rzsk*< zr)Fo2M#7eoP@tcV33C1DR&xYZRlNUbvb7HpSgM`MBqlQ}g0}2X z=U9C~+k(EzB3`~B&U4^Ie`>XnX|Vm4S~X^4=s_xjgKrq}XuP}85{L)SvJ<-LGl%gv?e%Lr zi%|~}&Oy8az7{d{?kKJ!*8WMq5)d^Ju-2{tYg-_k+6@t_H(MEhe$DQzb_XVm7g@&5 zv6B{Az3LE~<=`(7k5v`w{-F()f_-kxj`Y0Ou}NCZ66*%Zkd; z+ALYU6^X}60CdQTJAWed=DgvcclTeNoi-fz$Y6%Cew>o%qzn;+LXC=N4>i(J-A~? zfF9|IAw{qvvU_ok{anQQTZV2Syy=mh{wUh_dB3jDrARnmX^}OKq_Da%(3D_MNX5Tr z>tT7tk;~mv{`$K==3o7H-{H|GmquTHbK>5;yS(?-&&jzlj$86L7)&^i4C5KwlNVr2 zrpTF0vFeP-U`}Ofetv`_oh#ZM*9a0JnU=CMu`Xv)TlIc@%TBXtRX5CKaR&NXJO0h3 zbzf^yXyO5n=1@cHD2hl$rC{V18>`hxt=D*=m@)5JtcXrFDTtPSEm|U7O|&}GZoNjk zcxrE--sbLu1ON8l{*XH#eavuXhK>0EMqYH7XQsJwB{%rf|MHZx7fz6?XI961e!eI( zwfRvns5J9x|E(P3)f^l-ce2cvWxKS0GaUA{1S5>g?mz0X=evT9WvWz#tOb!7p^;@| zv)Rye;^|?ARA{v_1v*7C-P&x`fju>S>f#ASkY0gXIk7)DMSOT`T z4U}l%7-uV`Xql8KZMN)8eBRL?TAiRKIWbPEq`V=aoybGP=CYQ8q{Ns9%i;`)saVZc z9*sb!Hv62(1V0;bjg&BrYeJsx6U`*XcJe@E;uQ@ZCFXw>SCt@gx7G+tk7dnYoXT0+35)<+tC6|%`(&7V#qBUk=gH z=fnAfr5%SWMS*Sv#}(Fb?DfHnj6*oE(To(lULdU^;XR5T(G_=Cd#|I#Kw7^7c4`^I zRn34n)D4F?&NH>vYmBd}2VGxtWx&GXB=yg_M;zmn6j=o~T9eO_ECJnk-qu#wbz8J$ z;zK#E=Cq5kYX{cWWaY5+G0Kv?iQbIMgRPu|qqmo>;bU-9KHltxz1?9ITv!`N{(cg} zD_&p2*q`PIDw>v-3cWxOMRT&gOhjuDDD%WsoqZpfp%57}V_UUM?bUAYHkI_f+;Vk8 zgx&|UsyWrTu@SWnl9CDhW=>}wjJ3BFr6n;#C0PdI=+OyBT|9ZIUc2c|(yEn=Mb&Yv zaaUvgI>r#J%f;OxNGm3{VRVCT$P7+p-ZbE2*Y}FwA-0L{?=ZMX$8b$J+7PT8^hy$F zjnXPZ%PYc$#W8HFAV6}WgbJOlbjU-80>(L90!9J3UiQ=TUkk|8Ad~dxu&u91TQ!^( zdoM8}oceR0A+m+0OuGy2eSDWYAKqnuwd3r3WZW33#JB$ZFZt*)%a^|V1z!8&>)g2UB9dPOW|ADB9cV@A*~X9+KDRz_NTdCp02vU6n2OGz zW|Xk1tLZbd$|$Nv^`<|t=<H&)_8Vx zMZ5Aale3vtRi@n@!JNHuGcw5Ffi8!aBh&`9dJBf$pU#~`mkZ-C5IyuEL&e&z}~z>V>Bq~Znr0xcSQ^aTuLD&W7cf34#@&z5qMhbQ&?J+NK%*aMyjJ# zC{;=0Odbn5oP(S*KK+=te)2XKhr;jt@$d3mfA9||PoDAU!#mu2cEQ)a@Cq;8KI7ui zUG9BypRfM*@9@HlK(;!y4}boEZ+-i3`1si+4<77z>&NeN(PrL#=Puv>>$j+N;^N|p zlhaeiakKzsOYHZRCy$?6y??T`>tt@;lex}?izm<6U+vfo7nDN-scg21lt!p<@v6DCDfg$1J_Et^-S$Dgx)=H~`aR6xZ;4hveu>f>!jhxM) z6t!N?!*(>sO>lVV0mOPtHf^+0O!SPIqE?4Ic)3$fnW~lzR#AowbF~cURFusyFpL{Y zD>QAEs89tdBuQ+xa5`))2$Rj;m}_HqH5n1#XRqJ5*RSs^27Wzs*7XlqsMMVlmQY7G z`u#ed0f^p$#}{yeQX)#TeDOMCQvBA`3a5q0Tme(1HtgWLxub(=n@&20Np*!wC z^STTXtI<6uh{up7VKHBr-lRIqEo|COu19)etRgAQ1OqqeiboGpX z`TzbG+gmlY4Cwl-Z?^^!oy){@F!CE!%f6Lb86>;I>t`W?$7ttQ=Y>FWum!7f0@V^d4`#@eb4OlCON} zHZOnqC3aT_K772VWw`PA7dXAOLE22puzUD~_x|QBe(})*=9Ia4o_TeAfww<=$cOKI z%w}UPz|hA;-$}4C!m7=~3T;tO>H)nVnW>f9gmO5rO#|DLk(09xA_M!~o+OD~sl5Bi zL#EQup|Ke@jLCaA&ojkatzs*3ENWbu-HW1O7Y;WxChxhfzh2s*F6>}HvL^&^OhifR{lP{8NJ2%v}-NV-Kb$&m=@P99aiIP6*MSYggoRULpBW5)}pZY`g|Vc)8~yrg$;ahK=<$!l(8SA?A={xesOi?z=j;3Mc0ZSh)T*?N9W&TnowIoX(l=oD5eVm(~jgh*oA z&wTjiTYTqV{R{5hFWkO;ga6<^`A_+s7rxBqETe6v!+u?8sjeP;efrjd`r6Bk^h_%Q z_uhG*dbQ(~-})U+Z@y^oQ$U&%BP5d@sey{gi82?as~vM0DEIF&%sa+gnZwnr>%Kj0OW+rC>v{nO+R+_bINtwf8=7-<= zDQBCJx4!xsj^r3yaH0APQN3AD3et5-Ue}I%|V&r9+!gd_Eu{}Y>Nw54a z>SxlN4wn!)If0yKn42Qm&uFb)cg(5|9~+T|?lMoyj*#iFoDCMM+8BqS%irj^X6IKJ_CNc<^B2{SO}T@S;#tCC!$3lR+qx^7fl|E%T(w zGT%<*H3*!XBnt}D*o@XA8a39>+LWTuO5^F1yY@2xMg}&FjkC>$F=w)15NQ>2rZida z?B>!jxn0-UTs?podQ&Xe+k%?>`eE+p)fk0oZvTW(T&YZapDWgnu{p_|mDJFCY{$K8 za|f(h-|ZyH`o_BK5G*J#mtv(4$peg-eU*j;)mVci%8$fIzorKBG*jl{^|*%4Xr+>J zvep?1s-IC&@qn0k235(~ETUEgtx6gSn-Ng6XQsIzNjTXU?}lok`gxq^=B=};bA?#2 z>bU{7&t8A;uV24)MvB~&DG$pC*`L(^laf zDWiOIT?1RfCwpA$Jjx43ZX! z=MUhIxKNL**P`^a(TQ++yNed}bggG6#UZeYI+O{Ipc!l@NjTu>L1N&%L#2U;Lv%N~pXK=u7qYo*SGaS+CwIX&4}6Z&Ks%poWChlw&5l4u`q5NCiz zB1<(WP4%t7(r*BORo?7oWw3aHK5b?yBC&M8Jr&}ck+`jG$bzxn4}?yk6h?~23Kfs_ig z#@RS>dTPB|t2RneQq2}9zzt_rGHTi3lo?avbOSHSDGlLpIPl=ZJKTBiBfj(J-(%cv z`SRCZ=j&hp5?}qsSNQsG{|;aH^4Gcf!b_Z;owD5u!>CBAG~FW#2g!VJS^58d`xAD1 z;pX`z@};MI?VoPI+XXCB-~o|kLVUjqy`@8Ef#JyU7Bwd3xoo(5?;Gi<-rKExTAKl}v?|+vEPiETFPuPqDr!Tz5(`Pe({%3#5TfcmVVROQ` z8Q4!dXd9CJf;6Z#jowX2n;Ex_yb)9j(yYgyW~(i&%`&)~E##At@Ba0V_|{+kfO%GK z-ZY-{gzm_%gR|zs!8t^XgZ=$gSHq5Dv>+tu)p1d}u|fq9k!b zm)Li0$spRBjV9rQMxC~2V>8}t9vHSfxwzsx|MOq-_}Rpxdr!FY{u^vI0^@+}D(5!_ z&d*O6WXm+oK16doni^}k$@OOKfkdb-*Gj4Gq>dy^epuGZYLX^OM;|Dwnstf#O>ua3 zFpj&Pa5-68GXyjdER2AR1^;sPas_u%f;>#bf@izk%pq0gqClp(6KiMMP#dA~mld8As67)?PKpt>vzV!vicjd`}7gTpvr+&VMU#YAFc7zX1(D9R{! zpT)#Xg`~8Wp$HnR)rYAE$&wV(EIhjVh{2l# zJi>r-a$|#x#tLeEAI(83t)NskvLVaJq{X0+$y-%v@*I9)b0Q!EDn_)HCDYOYnjv+R zOl7nh=Q`uY2zjsoRjNj26MZ;CXY1OaT^-~#A4WgVuIrOF8piw3GnElQSM9<2;;h#F z%yhV__P{=ZXB%xzqtEh~Gvkn%Yc&R9ltXRoF0V*gI2p5*xI|!A%%+;=nKn1(c}7#> zYIm^ULsg^|rqaBQTanr9Sw+3|hn?A~hDta&fiV}a1J2Zlqz@aY*Dm8hK5fSD%SW59yHFo?-KX;;4O05{w>Eo4A6S zB90+nijvoiPW_RBzF!hZCD<9)6DNIM%=t+E`KTdFNpXAETRE6e8aLK_b*8#wY!j5g z+ifV*RQlmh$)E~BY_fKg*G^+V7`q$m!YAUf5fNX1w?}(DgAnmJYFaF`9cJPe#{H*7XSmPSq>I-3(O znbVUk<1nz_9XK2cr52iGgP~@dZxI-B=5(`CCM_T@>Jd6$J;4n;n}Zq+j0I$r9zkDP zmY8v65Et7!rqDdH-zc6(f-foie_{@Y28)}s4XZ_CRSn`fPqq%*?G{zb#9FqjbvY77VIKzzJ7|jF zPMi%j_;YJ>4+dykWWxLJe*^-94xF5h41+;%TCFsx9s)4(0LjI}M}s+|tszcn-r8Ua zJy%H9+bs=nK5j_K4BMjc!F!+Z-n*ZW|NIBszI}_&z48KI{>qp5?ce)dzWlYX^M%*H z%*_{HX54JpY>Xg8WJ9Z4w#kAM4M@^Z_9mySC>k`a)-wz%!8?M{14)F#=(!|yTw_br zHgo54&tX^jd`Y|}+1P(`?v7~2GJNI*j4Y|La7)x_Kqzx>e~ z{QO66AWb>FdCJRQc!k@a`y6Gud|`vuL%2$@!wKCHJFCkYpEj-a zh-A#pU|bHBKg<;ufmN3?g$c9?a`0#_r{5SvnFZtm84;fQoGblH2Y>^=`&ofth zWk2r_*~ca}!^~N-yWUPiKlh~=^v;qNskho0$H9z94}`Ulq5Ww+kQFtv$5@W&Zh}{eoxD_MB`Jw{D#Sn9w85jdQhm!fN+>+=33co zM$gt(wwsZZpwQUf+_Gur#0{bhIWe~xNX!K)7L1@wq?S<4G%@IQ(?lx*&b%!pp&nou zye@dE7R;$yObWY5Y87kmu*slhP^B1DGDomWRvEqHos7@} zg-fZzHJhi~vGyHt+pG~ag!W8!R%EFy?fZNsI%6zekBhhpb z8zd6@siKp$q^h;TI`B~%b&k5+L~BsIcWNigi@Mz)>=VmO)>bL4a&jV^o@~gHI5f*3 zW=WiEMkcA$Vw?y}g;vdBE$Sp(*_`!|Iw`rGBVrlex^gH!d;Lbd{th*Zm=W4miz=)C zx+52m&|~MY8x-yoMponc%XDYY!yVnL+n_AUX&Hzv4yf0l9UFqq;u+Z)KZIcYY{EGT zrP(~&m9n#iHZ!^jSZBYqbZ0fj-Pty;Wn02&dEP6W8*yh&*A;&~j(>YrIVo^jp2J!E-5AgtZ-Uq#|- z&^PGfh~f-h*6|^PwSUepu4+B~dJ#dtM{^-)-_L14^6U|PbAGHJ;Ydzi_p0VJ&84zG zShP|+!i+Yyn~^-2vNV`-)Ep#(n$*T-$o+GI86~Y5eAMcf8fYP9I5{1y_n?~5QfloE zoB01(SA}rOS7pKOq^3T}b`Pul3iy)EhdDZJneSz>dZskq2-}vX77g6Udg*`lYe}a^ z#KHH9pUI|u45p;y+BuQcJ`%=pLrTJQI1q>cQ-tb`vg5l7B(LXzX|~!GGgfTh4mp|A zl+#KMtTt!tScR(9NC?z|2N4PGwcBBk1c{GYlva}W&TLjc73g(Q@3Ezdq(;?3lEI{g z3Q01vf_1Q~h*UG|+afRRyjoN3oRp-qL6FPLllyxf-Tj1j-+Yhnedj0KeBni2d;K-O z{Pi#Kh1WjEH-6`LxqbVV(b;DK*^|>i))4_8k5w9ijYmm1gBDgdw|4$@CGtaRC`)7J zL@CO>JCAsH=Mi7}@^ABv-}{CI9Ti9eb#AnIhiZZG2D=9reDc9t{PcU@=A%1znXmSw z!LnVd6N5BPwi{9w27w`*$N|PdXl|?+`XbwWQ?XV|fYZWj#vr;ndhhFkX0yy|Q&Mhh z1nS(_YzK5My#MA${PGv?bJ*>9_4Tjw`d7Zr`K>P?%&bn*N3bngKw)Y(+ zfMhf9YX-@r2q=ix3uy+;v^H=!O#J+3zuvO>yeJ5aRJVT^xc!wcv zHOYybEx>E~CXCjYu|-d{W^IN-tjCe9O)2gy4Z}e6p$+C`^DjO4la%BTR@b>l<*GYTRvKfd2rG+Dq?#xsRHGi< zf;?4>#ac87p_(~Qx%EAynrLJ!_t==dXJ$0@ir~CC!y7|Vxl=~4j{?yWNCQ6G7F*49 zp1>3}>&N;m&^Y*BIHr+W*)`4g%G$|8X(fVx(!a4bnF8r060lM2mtH%qVNVg{Uv8sR zcjR))79ehgq>5JC0}K_(flyncg>-SCyKUuTlI34}4x6LJoR@Cfl$zM@6Sd5YgUQcY z;c_=wt-T~fMxZj6LaB@0VYSLjrawx)T5De3^_ipioA~Ss{MjFU!$~*; zeqj8R_w5jdMbtY!*9Kj=f{OrB3?t@0(Y`DKglsL4K5RNQ|42{k|~Ir4z^)xu;D; zYxbRSG}vWwW80iuo7{LVaiQN~WIl~c&b7}n=5(4QiQ2>H#}`V!^_tVfvWn8zN1@Mk zzZqsgv}y)Ri`pEYCtHuy>sipHO-0;7#9)V|u6kdF(ct{ZIOvO_?T*Dt35Ijg+qtkD@z|$fz?RthVr&RP+Bs9NPb&`&hB1@OLsz;Stjb##dLx!BlqZ{ZAW`udS=l-)x?tT0r@4oqSe)PR_ zZl2xbOJDg4pL^vt7mpuM>&)Q6yF6?e(oGVHBopWXZ3Sz&Vf8}8F#35k1615$SfsSN z9#AJD$*2rmU0m?iFW=*Xx8LU*|KJbI((>m_EpzwIBR+cXEmS8?H#hnApZ$n8fBJKt zJ-Wl?<&Kl{t&uXg{K>5td=1#|_XcaKcBbYcXst}sfoUp6;-Joooh@Ta5;yjmL1huF zK5#IH*%=K*8=EoH2I1`F49JwrD=wZ*Tt2(x!N>Qxc=Qx4uR>|&Xm;7On2Xxw-RjH} zTX3BT%1lppy#LF0_~?UAm?ZJa=U?XQ-~0-vr(2#rd&b4(fiepZ?qBleoA2_yzxn}h z{rqjFY0t^VvhTa8fKH%7p*j1aoz2o3husV(39T?qmHmEl8JFk*IVXm(Gg~eD(3%tA zG**M|vdElsL2@=-=|MW_&g3FnddAS5yUmDY;Kk+v^>U18?ULMCtjD#DG2cz4%ZqWa zEPWW+K|YjH@^S;qdRMieh=lM7IhNEC`5r)0G5C4*{juB6{Njy|`S_E^%*D_jlAyH4 z)7^pHvmK=>XQ!Fc3j1WYVRHG?_Wx(E--Oq%?JTDCqISE>cDSq#o12rpl*K=O9Ha67(Q6-CD}m*; zL_#7$vmV3}yN!>B0o#A=2bgQ04aFW$CLtuk@OMEg?qF%9JDcGchN7uXA`^xAJ_{>@ zDg?*z7*y3;3b>Y6#}Y)W$lg)~*~{UE58*N?|Z7 zE*LAJiI!MJD3OS!V}_LnC5B|Zm_#y%Lt*l^ESh4S8aZdiaWG2tC~$8LZ8KfL`Mu0W z2=mpmoP>5;PmVi!Vld|FSp;+Pq%*$xQ}{D1Cp$82@%*J&@4jKk4sW%;3E|Af5d7e; z&;U{YTU(>-cJ8dfI6}@bu7EweMd`0veQ~fTZ1$kZ;6HSW0SNzrg{9WFA>rFm?`-D7zW4owU)T5bB!U@8WwYBOciJTQ~E(N5T3 zT-kb%NpfOy63|P`fYxpVg{-uIkqXXa>Zeex_oL*@{>h#n|K(5kU;g~B*eBti{U`qv z_Hc3Wj5pqXj|Wemv7Z_b?mgjycRt|$C-=!@hEb?>rZ%tjO>|<46s=U6?eW8YHn}BG ziq}R}hd;*=6m=v;^6Z-%%E{3RtJ>*B+k-TZ@tTIyg@B9 zq~q3JwU@Yb%?h!!TD?W!GzKM=o}M1P}?7 z%<}i81nU?%v-}tuX3?QXHi9dnR;wi`#1U_5iHe-85BFv>GHgbst3sVD`YUcnAky1a z8T1;4KxTzAYzNMO^lCb-1xvL`CnA%i3`s2;tx7G<2a*TsWMvjPSrEH)2f?1MxovFB ztakkbj4pJpS@55|enVcrwzD{76X+RdF#XHzqdvnM~2ZzKIVDu^@ouuNfLxMAlcxHDF+VL zge0(J@QTB(qfi+)^wL@wg_Ce?JU%{2iNk!L6%2ki80>B?lM5LqCO9Sl z)M9YSlr4f4Z7af2T>ND*$bz))EXKTmpeY2d)sL=gJQYQ~*0ZZ_&v@p}9O*EKE{Ipc z(Dy|P_z-vz|I*WPeGRben$bODBo$OM6p74Uwj7OGFD|^j#yq>T7SZEs#v$H1BB|vN z%RF%qXx=WxK}!}@_i?vYX>~@#>ZWWwrUe+KzqneKV)#O|<4&1g);fmb23puj1^2 z4snsi*z1n*%DM0G8S}1aDonLd%Z##N7)LC_x{$(`le)SVL1ZAZn9U=u z*|U|&qwB4z6HVDzO11jqaUAf35@7o+GKIC&E;qtiEUf|t^@`^roWFqeM7$!DyevOU z5GJTSQ#X)(?l(iWTFhk5Tw6o;#QVb4xNgjWLn;+|fJ*aX&;lxE2(-9c1Ch*jv*G+y zkip=3(^P1+AX1rIV}CL6?LYrB?tJ_{|KuP4L;lHs{QG?2cfZc|<}Ir^+&y9b@O{e3 zi;U+tfr94I86%rHug%y9QD{!4l~A5O-tql!f18VoM@-Wt@4opKZ~W~${GufD*S`8?eXPv~(Zcdq- z=V#XTVdu5orTIP=lx$9@dd8+mXJ!t$(wb147!7^Ot$^mv{MJ z{>`89*FXF@dreFt@m3|>v331Wf<%{ z$Ls;jlXkt0I|@TK2xuwFq0H_G#`Dy!gK9Nh9KB^N&gwx}mj~J`NK~;*XG#eYUaLIQ zNKBKm9hGe!*p6GK);Ora{Rhp=NvQR};ZS+|!-st9+dtvv*)7V|1$#Y^C81Thcd_T` zlZm-@;DM_!n%yc*~ST!k?S?D zd98RLp<3NL&2><62V^iOHdtw`=|W-<@1g6c3enI9F85p+wLq)5TvKPd?X)y~&pM;H z2y_&#cBQsBg@VQhh?-S*wih$4@7K0k3y{@5zHZYk-&@<7OOj&!@?a8Sa}k>VII!-| zTw5ewR@urd-Zf3WulwwX@tpy}`LV>O)5Oq>NTQAEVW=c~;D?<{hCMIp< zLD(`tNgQgWw3!>54Jld6l|yZ8Ho{px;p*Z*mCATJAS5m??Fnmy3N$k`w|TOoyS#L2 z_Q2j}uiw1auk9>~vqT<&kM!t_EwaT@N9HZdLLRj2jb$?>ucrcYup&fehD&@e3?DPV zW2Vhy6zW{rmz{GPI{d|9I8pbhtuak=uiH^soZk+c6{Sq(w2vnndi@9<_+3RUJ1oTy zP0UF|`%0M!y6jlvVKBJrFb=K=m)>Mn&+F9pg?>SIJdl)w9f`!G798=!BgcS?#+es%#EjoR8&i z3lbx0Gz{8ax@?Gg5Y*1Qq|u+ndQP^e&m2c*(Oq5lNJfQRanO-Eu>$T;P1UoY#_T%| zw(oKlF7`V`%Stxu-72yLpw>c}3VC~K zA&L9~t!5rR_=unX?3c{*p6zDj(fzx;^X4!4qd)x`{HD~VVZ<#+B1ySs5+qS7P#?X&>U@! zY(D3zT=63AlDt8fNT2oLbb-d zSzM*KaF;QDUBuwW(tII$Fd+gln6iw(+mU6^Ewts@3PI3zUA{f{=hfvRSQL9au{>{- z1g(2SN6E#f9Xfjj8|gA%%lG;nHTH@eeQy2v>)(&Fxs1)8ef@hp*jnerZ>=@vd19Jy z4uH7cdaR9kD!rUal8`nD$p%j!^T03+XvHkG#uHKl!A{j0$a^`RM+P^)Stb66JCF(n#DNR zVXVX}5LD97@glT*`(N`7g(IBm>UCY1=vp|evQGA^!53(BM#nH}B?(TE)t!dxk)Cw~ z=vZ*LJK;`_*@A0fwGz7PG5Mj4%#nyks#lUbT%Jg4tcBzHLp{^E9;>?Wmeeu#*UUx4 z9XYEbYg8&)YbSJx{(*6j5j^$c!aSZ!)=EMa0ggr8?QMTs`vM;Jw{EkP-@uU&k$lMi`2mv$t4O;M!~?4j~p;R_&nnY<*qI}bffD2qWd zq>Q@3+Dt0jRl@KAk670gEXZi+Ta9`;@0(_STXDHU)n0YN*It+s~q8{^d zrhLzqX|`I|crN@gx+A$bxE?)m=jYQe@t{HydVObhyaGyKB_#ux!e2bf3|2c*e6QkC=8( z*lvW>l##q*onBg(NZ5zbL$7aXVaUc3-8xjVak4!D*&u1hbl9UBbp|Sie zDVNipT8c&ZC6n{O2k+kH?#KT#<7PwC!Z_MeTY+NJOhWbt{_4-a#e>IB`S8vMj2k%L2(R2e z<;3fS?mgY{_~OdO<&IM9Raqp2%aN7AyfVPUY0G&)q*3S6Yxvdc+Qu<)c7B32y>}yA ztd_Rag6shQPRbq}ZECgF)dE%~AC|M`A(kGLO)?ntUK5AIfezM9nIVm6wZ5;RWhFl@$3 zA*z>3Wc9wTSde#~EBmX)AR~NkWGljS1(#*!>;&2*sBBQgp{8wNo<4FSR!)?AcT1o# zYV6%9)5YddUE4p4O?5;%vN}t#PHShYsX=2y9=6r_i7&4!&@9&Jx{c*J964NabRW7? zd(E*u`XR=@Hb!GESiZAz+G0RQ_N9++k?nf)ed%`0!e4N7hQb*>auiwS(}RS|d#h_- z()(%lSnd)L$S|v}9iRSB7~C4l zpoO5Y@rW#+H)0GWubi~CKxO3|wq|UQuta3(PT;ZfT`OQ*5iW+y@!%u!7UK%RkWxa1 zAh|FoL0q@bh&w*4oC+hLXbbeU8{Eb`M~qjbv*ZctEcx1*x`3Y1G6fp$*P^ggm7rYh zIDfxxm-IyTa5YCs$WCG~j02l7c?K+dCTZwjPm(xH6Qx>4VH{Tw;FgKqWA$eX6K%X7 z?MHmF=_CLi8NHtU?9eF1l&~|&iPwON0Bs3fXl!6vzTf=1OI=wgM!d+|aQha`X4x03 ztr2_59BX@qoD2$E#%j85Ur4%%0#!gWl##;k5dhwP(nla=CzY5LZ zo3_Sg-2aDUm z(JRhCYzM+%ZT+(r7;)#@&l{y$R@mqHaG1KBg@C`)4X@;Dm~*1et=IV$uXBlE56Pf< zWu9oQGUfp-jc@gJ$J5J^ z|Mvg$Kl1UrclhG#pQp5m2aoP^xO&X(SAU31@bjPj4E4SG*WdXeyTcW8DMn3S50tv+ zKw@M#3VJRN;X2RdzCd8Gk91WygRN@M_=g+_x!y7MJ}lt zK~nNMS%bzpD`t#G9W~?aRB|+3b*DF+&{UnZ6>)O4MjFI}k0Yhv>umv(2ufL5fQ`RY zBe1br;MAWnj(FEqE48ui0Vy72Gg(+YAZ$UU!I`HuS#R7~tr)?wTbXg#AOfu3@BR25cxLnX(p^ulKD&(Z z+GSSu!!ie-esw!>^=!ws;PGeI4&<-SqAhw=H3B@>=fjUiT7P2+g0G;uLVSG)V@23_3Q#+GB55YhIq_k$&I4gCZ!^6kVO%?hQ%M{vi^;9wCE zQommHpBLkJjZa?$#VRu8f-#^T>*#KO=>F`BVJ{uJvl2iWZu6p$wR$nLI{|`a!J4Y~ zqyn0<*<_C#`QdjK%Eh%Zs%m3f4Oq+K07i{UNg;l+@Q3bDd(^HPL5{UsFoR1v(TuY0 z6B!#k=gekfthmydr0l>f4r>Gm!oXV2Syz~Tdcy8dcZ830wck1?>s87$Q%Z^3^)r#= z*mz9-oXcSfHeRo#oh#F1P%z7W(_y8>YX>EXJI4WeUCwC?FlRxNG4oY7;>N)UCbU`2 zl4LVHBU@aG)z=s-j!yQp_y?W|Y0c5N#$XzdG<4-$yECu^rn>1tIEtaLuggP4Enwpd z(0sp$*8zo55Z9}|*Ubl4$~3Q>bA#@76vOK7=4@3;sa|`z2xq~as+_31!dwd5lT+sX z#81EfGp?#b(!qM7syUW#{PH7y^1UDN$N%Ub@{Qm9248;lob>QM4}SJt4o@F45 zSd2L_<|UY5B@wNYdf0wRRE>b9Wz(m*Ft^KI_tsQ;yPH5FWS2ReL0KZ0(Wq6h8rFf7 zJ$RIqVKm60>WCd=hrwr7=RKnRfLdefU;Ok9K6&p0Zk?afRJpj^8)W^4l3U_%IRKMD zY`-I^A$j1@qbCTBVcbw^;_=lL<(|p8L}r@IAj~=UEOorXY3)03<;eLq?vAoK)pgOQ zUH;lUOjG6Q(@U#^@)I0#*=oYYuhF{v3HcmOLv7YKF9!l41r*#qUu$8%H)6Nes@=Q6 z+-B-jP>&vHI5+~Rxa_cCXmjH@&Vx4f0E{0Z^=zWcs~+@nrpwZnp0&c#V{Z))WOb&k z^-;{b2Vk9q%*cU^byNkWV(?W#ndZjFk1D4l6lo+;P!DoRrmz_KU2n>=&u#9d%j0Fu z+Y+qozGdW@R)g<9AKPa=*x~vhV93kgoW(O-U_H(b<8ocQA?D+Z`yDw`%ic4w*RBoc zIAeL;y^8OeybOd^H@KE-bXB@s{Mu9Z?;dA5)n&cO&QIBSAtSG48pAQSXIjRxw&yyb zS|lF&{QKP{P*yg+ZX5Uc^7AZVTg1+?m+?Lk?mk)H3PyB z&zeR^nM7p(QX1@@9Wf+GYD}fFO#`VW9`9iomDg`=x!5-zsj}TBZr>OXga;Rei^Ifl zK5#p2C`YUF+3Ppy^>@lF0`90?Git@n9IxH^_g?E-1n1xV*?#=^^ilV}tfa~!yw=L` z7&{&gRu{&r?*I!#EDZT@oLn#oiGbv^rlb`XUI{-Z4EF?5j}Co|X+18HfLo=W!K&Wa z)W()NM5gH?L{uXRK6HlET7!kd7^_aUqmzGFjitIlWyBekLpiWV&?XKYX-=*ZN>Uic z#AeJS89>FKy>@4Dnk%A>x$C-R-FieVj1*UNX4G2a^m!^vs|){pt+ii8HJHsR5pm8r z(FTyI(pL4VJ=>DJIq<4yk~xgN9-e_sNsNM8qz4*OvZlEEgOMMloGr8GJD>rr6(?U9 zI?Sro#x!{ghh(*!wJL}%^|FaY$qBvI!xU-|AX&727%anRLb`!OHXxKov+Q%!;Q0Ht zF5y7iy;YW(u%Rfu63-+0>Q0lrsXgMJy7M15iNAY>%QHF_)i-CY%!R|@;92A3#1|1b z$;O!KnR`j*7^j@Q{>T(&mc(Wp7zeLg1egkCI)Km5b~AQ1w>Z1a4V=xGyI~yrL*3E0 zEJ*H*e$D5%G#ghq-U|Z2_hDKodtJ5V@fCj zhE3uy%^YT{y*|t{bA!1VL^nHZdiJK&MzWYqzeF}rL+AM1w&({a?tpvq__=x=T^R9x zK3a7dp}saz4_jkvqu~Vl#*el{s&!$F6o7)YeGr-^Uw`#>4MyZ}I*x2d>;L)j{U@M} z4FZ~Ye7_=^*kmKHs;#j(3F087%`=yCansL`ePl>&Cz|8=U&NeW3Juj$PPVPr{&g* zOD}y7A6@u4&$Za(foNk1inn&WmtAhAuy!pX_VX-lM`ayGyfN)ur?N#qgcePcg04l`6uC>g`9 z{_17~D!qtKkFykuH@Uudko?}sL03KVhY)3RH65HyKV z$&0WVN05=JR3=~NVHnLIK^U_MyD}GYGFWV{gHzA^>Y~(B7V2 z88(|9&?;p{YsFBoit22R+hD<=lbhzmK6>zg|KVTX=i7gA#*3$0BwN$%q{{AaK}t$u z)1R>+p3zk*1tYt(#_5SlR?9jaob6GXpcH1riA5|cec3E%u-y*U|FFTjcdUp(J&O~p zfOc{hgUNdU%7bVo18i-rSL?#Y9Dx-<$YOma%$Q5v$c;K=&1+F)&M zHXF-mq&#%7H4NERSYug^>mm6k4YHeh_!>g~sp}9?>5g`6p1wXEaw>fvg>$H_bw@51Oby24>M119 z+ChwImDN~RgLcELTbCinp5w4R57POmnnIR(`UnEY=RWm4mV2$Q(c7;C55%?4{7MAf z>e}nE9NCcmtWo;(tG>6+$i^!6?-E2-^x)$4?^%%8+d@g|J)3Q%5_PWRrfe`I$it@x z&R^beb4)zGYCOK2NCMj}Y;tBd?Rj)jc;)5^DUV!THR@K`3^2Vm8AZ?QL5gc&Ztj)`9U zZy^+&jc_eMwYw{R6~TL&C0G6?b^GBy60Ff*$%TPC6>-m~RWQLQi&7E#cNaxlk65*i zgo@WJE(YiNxqN0ru&Q?B(bz^KvttI4WtiyKQ@t(>myCvybYRe{rljn@Hz&WSW}uBj zV!Jit<#3n~No>c#6;d^*fh5}8m}fN@!`!^)a4=)gqw>QrGL8dNT)&y)tuYt6Kz)NQ z+8V7}&#lF&mqocVlk>oKyQS5c(u!yKMmK^ER`bZxmLb+4xf2(TC|J}!vS+b-h9MiJ zG+t|>0ksxS_>VzArTPuQ7i{FQ;$}TmOvJk(z>zb(UV3ZsYO{z{)oa23u41-t*AM zAJV~E}xQaUgt;4eI2ufF`K?Jp)%kF-<_>*8r4bgC9_pI3Xd_NiW{<0Q5bJ*MK z=t}up%Zvz+&=#k!sX6n>$0{z9=EF>p(t{5Y&P%URwv1FGWRmamlpq`2h?-DF5OW}9 zOi&YJOKistXQLVUkDpy&?oNV1AT@Grq%_-EahbUh%Zo~@P!-LImZ4&30F{v{nQ5LZ zvy!~GY*IuwG@8j*QO4#ZSspxV%~@Ur%B)PKP}OPv_IY{H)`dm&nw$ zmK@a(aQuZhq-nJ_N)k13LegmRZj-G|88$<|ucBm!tmf{<8(XcUYJoYe zxlbmMVNmLvn2WJ~CNB{fk_G+{gLJmy!82Lw)rF zM5wJej6CYBymBs_WoOTZU^8A&BO$LPC2Q&(%+`JnA+Z@Zo@oxxVe!-KxfY_XoWzk0 z1GO2maj-kben$-wEh(cl&Ul;-W7=JuNUO(;^AkboMc#*ejXK5#*&4{3!x|2cI&-st zilK9`jCs{YrFnUeIhG5sJf3sqz!Hx868KtVPB?;UOwM9xp{V25>(`964w)vbNOdgG zaXg0QK1T*%*hP2^Ijifs)3>@%h~I11V`V3;?sv3rV{Edl(c0#cCG*{FMOj9&lq9XL z=YizzAb!f(Ja!O|#v8X^*>-Vmwg2{aj4+e&#IxM!tT1Hq@2lcl2xjpX1N2<=Z-N zqHZPz&f3nhE2Dl*?T%&0gX(VKv4ugc%ZOU@=)d$E z90|Zht}WT39<}xM8H?fWs%bTbxP~NQ9ENT<=bXsnmi=zYPA+hRMVO?NI62uEVSyx4 zwuaQZ!|ZHsi{T;34QeO8h#H?^$mqf9(~?8eG>W9fvIN>dt8kcRl*}-M5fG3)i)6Oy zO|U!hi9;1}IHXo~SB+sXL0wAebJJmSShTyf2DLEH5*&G^2%2$swTQ5V0nzIdofshv z=IqA~X+kXpEzO--Wyqtko~ku1PnZ&ky&CnC)s4a>OQf{Y&=lEI@j5eyy86$t85gCv zTKBkz*C9kEZ+*(v3NoHeebZERW7_8`vJCw!EO%JWpsF#ouI4)eAdBf0_x914{Yoj# z>wsA5RaMDW#^Uf!gDhu#^?|L*_a^GW!2S1{=FBGuP6KarabCw-a*cx@7X~~`I zYLK!dk+E|pvKt}A9QR~UpQHv?)6%T_pHCUk?(yHDiRpR_tUmN^q z_5XMIp+hA9QLr)su{jan@6dXHa;^#4`XZ*}j(Ve(Zo~cJ7K+s?WKjUbNUgB3sZ!8mdbK@l^ zy|qnnG+?3z(C5V={JjLF1XZ85ew0pqo&#rB~xUl$s zUQf{C_+6ii_20T&zcy#<=Tf5feX$>g?$Gzm>VH!!yB48}vFA$`W`(O+*;lMqn8xKa zabRRBiHh)aF2;I{P&IRPP!`;@AX8TMW z;^PNe!+10xcw$bR(!X>Rp;~(Jgri6oIzgx-$2U1T){DZY3pmTDB>!yG<;3$ZhhFAylq}&_|V@7v&m0*pmW&Jq4mdCOz(OW0= zv2{g)Wpi3<%qZybT!t~zKkEj%*2ZDKcSAy;fXoi@X>OE<0WPleYh|8hdRVxxee*1` zD+4h@XrAUS)SC#?JflQ!G410PwLP399By;gh9URob1iMzpB0_?(H>nnL*e{&h0^CY z9XU~5F@%!xjXXGeY4z-Kz`+bsXU>oj%0REN>*MUhu>HJZDvW?haLp^ntMa93~v8;l2C;w_;71NMYx*9Sj`&9Z`OFyR))UpTSNXuHLqGgxPvSOmVq z_1v(tEN$~f(5*L?j#d+RCS)B|4?~JLe!3Vi(ZD((7Bp~qWq%7sGIb}~_6+XS$N3MIPU^BBTCIKtvP0-RD@*qKd*HCKtc7^i(V}PF zNwYD#EbM2f^-Uyd*?39C18e57F6Oylj-{`udixn^hMIM!Cg8&gPUO;goj%BLG_0O?9d4krQPxmTjLdf45IWVViiC&@(DNmr=jnFo&+X zBb=l$W|yC>8If44jAJ-nemcY%k_iNm1tt!&p&DvkGCbM)vBsPg&l(3RKwYB+b~(OtMNi{-Fcn>MMP}+_B%#{*=0W5mtK* zAO#<;^!8%J{fY-zrS%;AsxdDEw9h}!rd$VikD=nLzkkX>zJ8Cj!`Q8v)#Dyd z?%F{X=(=bzooy~lspOMdo&iOS}=QR;-G#9V&GqJH-Jdwu=g`Yf(qa_!&#%csteEXB0f zz7&E>)^8HKdVL(i0DI0LOs@LjNQkuFe7MvgLs@Eqt{+lhQ3PrET=aBH$qdIZ%*}C> zqvyOHJ&JKQXWjc%0_S;?I!zO;3ERyH!zffOR4oK7Ef3xc&gU+<0GX%B8Z@7JRJatn zmD7d14^(8y$oZqRR+x*`9o7cP9S>BItaOO5+lF+3V|@U_s0?Q{r@@&~H9oo$q|Pwd z;eJa!nJ+r7qPkJjf~`{1GS3N+Y^y6}#V$QN%WKr-@ z7lIoD2EE#DM$fc$Ge3?+uR0B)5C`sc0vTD~7s7R0(YH6(yKXSKF}nnMwEsRNtNXEp z-V)Ib$1?&a;aoL8>*0U{3&D`r3!1U+bv!XAag8Jfb#(_!WU0#xwpTO60t!rr9oa=p z1~j*j`q>sGsUQ(C7g#Om!aTcrZ$T)y!9_&rZLRF4j#}_@mA#fT=E-UgLuPp$Y*^UF zW<&OXlEmV92DJHn1fdC%43_6ca?{k$dUXfMcA}k&3FFme0(Op?7T?CP3)aS4>?Uh^ZfzDUI3cK^1Vjuez!JPDO_=7wZePqb zvgi-0)ro0RzmLRTSm_OeG%vbAX}(;sE^%Hx!`K?uf!qyOhu}-Hv)0tJ<7BT(wQB^9 zCVBe}5EnIz>&Tjh$iNt0i!&{U8);d7pV2@Ab-&f>FKaW0E1>r3 z`*@lPQ6^vm@St1@2zOVaeQk2i*7QDGfPtLt9#v_jAXyAaq6WZi+4fGfCqf3$#$1ar zF>3_7gi-)8R@@ZCV9i*tYbh46D2ZumOb+pnZI)aomEv;SWn3I-+cNGnx=i+mbEjwt z$i^XECf>h~o~FQk>7(}TOq zrdeNYv4g_wTK(O(P#^#G-`C&oK}PVvz{=nvY`N7K)^_0P-|NBE(1Ax>HrH*3I%bAJuc5)#v>lLtNCduEr2{@$$2OqtCBg zo1Cx%j>hgcsl_t@pC5*0al|KIr5`SI< zvhDr#0q_i7s76)K@Et=CA}iNncFq_Vj@LTvFA`b8Xs@9wfw+oLsVJemh6FaMYXP1)YeF8c_xl*8#{Og5o+FkVwu5do+xu=+-#x1G|y&;)79Q`Z>*lL zwv~Vp@tTj7;*?`YTau8|NOZ-q=(t+(e=`H6)@tx2yhh09Lsr=*uyzyUCL;vQNPJJ& zzm`pDPIVt-43HSYogvhZ*;fG*cH_pMy<_lVU3^{>$&E5B3xPW~t!qLw8N_Tz8B{$} zxlCnuT4@|yQQQ6!#&KAG$o+QfpBUqajM_Ta95;yl*Z0+m-K-yp*f(y#EwIEz0rpMg ze+UO>F}U3!apO#MaeM+?l$;EwltQW29D9M+#-7)H{iW^1VvxnS&>)2Hy`7dwZtUl# z4JrshwQnQ~&7GJ$476s>{Wy$_gLg$Ida=VR3cW)Rz9)q7LXg_uJU944w7<$mmw z$Y6zGUc%8_9;QuV`DW0UpU2nz2*jwx1q5!_#m?{-&s8v=wr+&{^r=uuiPqh_~Kgfs}`R5a%dl;_?c;B1eKP<{{vTYsX{Ju&nmr zbyNOVI}FF4KK@JuGejbY7TH|-`7(KQTneN8-`Kya;DhfYo95JIX?$Si0`x1bp^!l^ z78lcNV?N5Bt@YmVG#`DwJ5FtJ_>P?QYp-~Q`1g1`*KW01v+LvR(CPK_>Y@jpx0=rz z%e6}%*`3e({{QOa!gGcY8lO+y<7|9z0!e%pCaC|a; zfs`|Y4yev6n|*ELE^;ygPtA4Sztb7`?DhBZ`t=EJy!usEQGmtpgn*64HVgwW3>NtG z(dxFW!VywlLKrLpPDEDMvk!^O>~JKS!&{7SMn5G8Ofg2EKZmwy7}m)@pGe6fC2`+q zqTY?!sF_kV0*}G!AxfE#oyFD`mboK|v3w>TSj0#^l;ccf7*-)*tRLZ`kov(BL8?24 z-b*dAcEMIDSfnUeT-S>c&VFl7PLnYrh)(Xa82>hR27S!gjjRmhjI{}|xwrc+j-Qr@ zLJw?CHk@uZNT-eoA1yLJ?wsr<2C?F4Q&UmLWjm%+dp=#YJF(1&!;ibbkL;+oh9LLH zSLp1OG1unADWt^E9U3>vy}7iikGw$;BZQzfN_%lbCAP9h(tTY0?<*(H3gCl~!Jva- zl=g`DYHyTMDRV`J!6<9pF|Z7sk?UEyLpl^xQLp1vhY!|1Ml*QDV4Y&~sw&o-GLUx) zq*d)x7)DL0vT`;w4B6xTzBq@~jB=K&bnIm#)+uPSes--c=OO|^(VRQ38Ff#R5~Vff zd3NW;AgbdqGLGJ_a_!)%cE=|*EH-PW4#k*K*^AnxHf)!MwjWbAk6o6FfD)OLe# z49Yaow2||`I1C<0FgY0H9Fh`)7_2wWmDPcko@EVr(jpMjv++uH0Qs8D&j@H7cF1D< z23$?uQHVf5z*{50W-_+8tg-7>r4yfoJkB|HV^r2o3+h28i`oz4NSRAF%%g8<5AgZ( z)mAx7uo;HFr?M~HFboD~R6A!WVGgj$>e+2Ro0HI(0pyuLO*C;Bv^xbkpsH^2N3b-q z#u9bu)r_r_Tu-{gWi@a%`s}3)Q5s=AA6+(!ESYpMh_2PGD^NShR0M(OXDZ~%V*0K7 zD<+9lOfu!@8F5cMdzM}N+yqqANoHc~YcE3N$bpP@CF5pfyV-jG$#5X-mWc2Fw5sFx zp1<9HBhG!_9d1K}e#?E%vSufVs+3}oPJ^(TytIKiN!OCdTbx!JeI=}db?mmgiCA+p3vS!;9#*M7JIvmt_ zCu=!m!UxjenT9B)4QP*~{QT?qGavs(fg3LNA6Nmrq?SIYUzR=hy7Awx;khe|Dx1&( zBKhSC47Y8=wrx1ah;S%@fORY=L3C+!&3i=43@Qh!Wy`PL!w6fALI8sRtTic1;fW0) zHD83%m6@q5`8X%~*061jV1qwp&uf+nEAo2g(ls!QF6OGrUB_pQ7TKY&3QBanJy>pOdvwK%JMqSM~1-6$?yY$ra8_CGZN_G7(#o#3JnR?^8b`_4qn1~0O(uCw~sqy zfl?@_W8(37;5;G+OC`m-8TNh0zDLMUhI|?Tb9_DyJkOcyytVKIh7!a=3$2GoW+2Py zkHPTLg+N1~H8e~ru6CKU>(CA&UmSJ!5D5juT zue}I3RizD(xY{#nw}mw^7{7XRRzZx`T3Q@o5;(}eOHfr<<`kQd5yx8gw^oJFu$Id+ z1Ux>Uu~y8_OyEo5*7UN={(3%-D8{6ZKcXc{r_m_xF>`$Scd+eA>(NMf&gjD!Z4ivW zknI-eEelV_f!%J=Rz;xQ9eeA`ev5TG#);3*2c|pjH}RjzeHHt0i~xDt*a$F3@DxUQ zz!&3?v8SjZK!ydtKW)^0%Hm|9c*p1TyyZd_9i)P>0!=FAiWHHtE^?%oVnvvk<4hpb zo2r<4+MlBGZmd=Bs_Yv7Ck2{vq8o+}_;CUrRXC?l*zv?1+@A;l*So5avYi3qx4?$ntr=&?|G_O4M2C!0g zj72?h&B`b_8N$}K9=u_AZT8Gc46vkyp3IgSH!J|nEZMIX`W!1*}v#?dHFB$OQ6R`0rw9`05>HNa63MaT54k%0pbjV`Ds(W=X!YywmGkTtZeQobpyz z{YaPU;}w9v0>QT__$S|gHJ-XQeyVlIayDY_FQWbB8D9hI_h%F@)^)E}eyK|T!RNZK zXz>ap7d_(TD#t>XsB_Lau=miX=Q$!oycw*;K71Zy=?b8H-F7JoBtR{0TcfG*{P$q| zU&sI7$G;2~ReSSeMcqTW+*p=9#vBT%EO4zw zXqIxUs4oy8^-RXUZaoS9diJ(OFPt&Lnk=Q`x8J^_wH>#6$F_kXJcz2J^Gu<#@7tn~ zA;C?vhQ2j|fg|3X3apffwD1c{T-Lcjf4njkB{O>SxJKUcoM240(4he>dK%vL4M;CS ztYbIeJO-Yw)&-%o_H9E$RMB$+)H%WvFj)a~(8CgVTf{qI=-4-7h!s*fR7FHJzdp~A zJqML{cA*E3@s&DK4(Eq1xfKS5&5$5^-J`spfM_TX%jV+);u&7IHsvfzSR0jiwh5s? za7WTA<%I}>_o=nk8m+>sA^LBkg~BmB6ifr>lEs$*qfy7vd)#GudHR4wD4A$0XeII? z7Ji}m(ImN78T?dwCe%hF=A`CkP5((=#Q7T2vCSD?ZYd$6alAa-S%ib<%sFv9pDeyn zVeJ^md^88!10?v-CNd27q_?P-sUEU3J$=aolgtEA1&CID>`4n6v&IQnv`R?+Cb}WW zGo=7TMdB?DXqMsB;?v=s8u|D1iF2Ijtt#m{7?M6?zM3mHX23>Bg>ytUZtTHUd7!x& z>iwnCTPkR!xWzLJ-FoIOYJbSnsWuf@=prHj2E0eED1cO=BjRN+pS!2LXlC$kXxkz; zM1IqOUZ5PL^?6ncn3O{;ksP9*y3#SgewD?Sa_=p3lEzKWR~FM6&Uyn}h1yDS7gl|a zRyQZi!b`mGH_UNHQ48L0&J)k)ll262J;%iYW9K-rZADMd=M%>>@{n)0GTa=;f#V$E z&1E`4@8K~vr@<2h$pBL#JjWx$OYI{8xG*lLx;IS9w`Q$2$Q3NS%k+z4Y?W59e&@?~ zm#Z&-U-@+0FKAda`PE^|I_WMiACY7Ta%DWazD9+*F5kGuWBJ!r2mIolzC14KR_QJO zCt;Wu@cE^FwLI<%u=e#m0r&U&)U)vRoIiT@`rTy=m(}=E;mvQpSiOG&v2?yA?_NRV zdYYcP%I79|F&*9%9}$Md;&*zd<-RHswbJY53H6%4Ua7y1Kg02_gGH~>~)(I)1R2rU^df=s6*BconN7VvSRZYR2r#sfN~k# zwrC~sa-PB}VZeDrPMarCyfU&Z-Tnnr$xzto7!XKgjtng}ps@V1xvU8rSSrfSWd9Jb zgUT2Hi~Nu`Ug@I|2|+!{_r6VYwC!(p42OO6m6qQFP$rzT^Jw2KzJs zKa&oMI4lQhW(;AKvai*}LNt0GP&)gCKGydJb9?5SDYSkV6$0H~|EAKYTPjYgc`D6Q z;GsznQh8&Dulij&74+iMv5x0C@q9i2+#;8&71+*vL<0pk`1@kD&7I&3TPfA%dnR*BZK=|GvK&9Cyh{O%5Ym}m;R^XQ&UaNXbyX2%kr>h5N~baas4a{S z78B`>o@o_nnE-n2Q-J;Nq#VTrHRfE&%aR14=cW>@aykny@iHJ7TUZpmlmZ^JCO&6L zTg@8V(nP*c=2ki`MhIggaS2xK^Na-qU={$voy7rKRB())9Kh8P-naYxhW)nX`^so? zsk*%65tgFDYOxbVYcv?e-c!#=zVl@CG947^k(c0nhIcYU$q3}4uVzb+v)L7x03JoC zf@l~@tz7bn<2i6zg!cE=vKWu5`FU$m7%4(2U}o6+hKXl}tcK?(QW3T-Dmh0;d92No ze0uL4yW|2Ds^gp(!?Ev%k3F6N8h?&4a2zLYyFg#e&FSGu8`II;VLRJN5SY$6@qA83 zj6|D+-T-V{c!gQj(*cY#A|DzYxBDL9{mG{qPUeKS9tDzQFqzYF9)l4gQS>TuvK^iI zw8!(r^nrbg{%9s1VU}~&fC$wlFPT*Q$1&h67}dMvW>x=`(GrL};+T)Yd}DdbPc%Cj zsvUH+^4+G8Q>ho^gVm}d!p^NR?D%+M&M3;ZZLy~+QYh{_yyT~Hgx7pL6W`-YNXHRf zr;J^6^%ZA02bzF-8MiKV%}>6u6nD}c5xG2*zC7o8kM+UJ^Incu!?%ncuZOK;S)NnU zk)en1#aJmBenEQ0kARR*%XqI5RWIZI#n@io=WXnld-~fue|3+yu+;VM%cvH9|MI-A zJeFU1JOA19|2xO(b-e!k^^wt8McjF}U&Bkj{c@dXGx)QoZZRD=4(Y+#lZ6a(&GDlD zF1o<#HU8`P^B(_3>x@z|jQaS>=&xtS@s5f9m^^}MT@Yk4(Dfb{Ch96&BL!Zc*9M&v zWy$8n9$FnO>!o~}3CemtPo?tbT8T~;SpkH!n77;{aj*Hpi7Ffl3p0@7F<3yP^=K~4 zy7D2=N918;n4VY2!FisT=fwSf4@K`(?jRB@Q0s?653?xE8DVx&_B}j!XE$tY-hLbh zEyo7iLYW_P;^bUUDlnpv%FnDhOa*}dPF7pZN`wG1RFv-o0YzS{93f8?OH*%`W*N|fF^o}+54Q9@qS zPeojRn*pxgU@l3V^fhPEZ78&!ZC-|}(ix2q7@4P5-YJLsz%d4&*OE5d)cms|+=-%n zAkXtTEBx6-^M>d%IV(hUnPY5JaJ9Q*vjPtERf!{Laez5{D(_!wx+-+q4FxjwKN*%j zVWAe$lX5lGE(du(9gF7?0cvz!zBj5c(5g7CHu>a9xgQEdw%)McHneR^-WuO@gf%zv zA@BDc`)!B9JSW#_L(lbS#(s{?7@|3fUTG25J7`Yf8`PsS^T`T*QjwM?E3SV&4xG<3 z^K;D@{XkEm`0u!A|3EfUHvrwx(HXWla(~P@aWZT>s>YU4PeuzhhM#fMrPx@6Jf7zW z&`Q7+CIhGP6P~@jF^9DQHYcVJjN#~;%mm#09`rW}qPLaDMY3XgtHR($?<&=8S>nZU z4ACB`lwRh#n&UVRbTix_qlNZo$Mh5D33T^J5w{E?#yKV)#~ES4w>{gqxKE4;d_JEz z$BFOv8}{uUAeDLh&*y>1vDm-&#Yv-!6O2V7T4y*l!ArBj2=$jEVPU>IWhNy|J&Wl-uwqhMWl_Mqk3*l@H79 zEbZLIyt3-XD~45#xBp*llA+5TiJH$QGaw! z=|y^utu(IjTp$&YiVH#R3Y>l&Nu}#wqfP4i*W(o&zMlIluiiiVJnv!aTrafnYy zv@!vX_b@enKON}TigXfoO5m4AD~nnrAjO5s4Y&Zr+;FOXw<;WOuM>GFQf$o(+a6v6 z0e~1s^fQZmlQ^&Sj&{;h#M}*cCJy&va;--QPv1g7nuP-C0s|p^BL4%xoF@U_mLM3( z6r&|a0w;zK$(#0ge8Ozt$x5y9TET=Z(+X#t0*tT(-p^3Q z!ti1Z0%)q0dse1Rnp7^HCI7H|W(=dZhUa-^F&%~A!owJ2C$M$H{dR*}!}A&Y$jtEV z+jlq|&(Ek-{PA(a);Ik9$4^XmeED7XLzE{b6kq?t(@q2UX7mO>nRG(cdp;3)=G&#e6p z?gzLYQ+y>`$wYU-l3)7IHZ&V-4-t8X=@qgxYo*L-7JW^d8C*s&3f|UwcrW!g8jQUp z6@?M=4HgG8j2W#xtam7N!mPn&cukcX+bG*wi@u@q;`ZLrd&l5jjkULI_n{-&$0$EH zDw+lhjEb*tnajsWQhx*RU!=SX-hiu_&2~}Dbh5=UMO9bWh|R+JyvFP*+;LtB~KK9B9UDzdY%Lv z&kjYUJc;#tDz+xii7JHFIa2(i>9cl;Sgc&}C%uQ9j@CnwJtw>?r*i?H(O@h$Q7VY3 zkYcGG=Ervfdez6iRsS8}>c&%beBw0K9l2TxB0%h<#B8hUTwXVv5G#~6 z(^oCP&q`O3cE=VJtCE@Y8#J7a$wC=N3epW`^un!_0fGNtf#DVomzCt#6V zIh~aW=`jwl)Ddm)CUB@yWQ@fkOAe9B|Z$~xI6tPyu)My0UP0gb zvm!2D)GQM`uD36MM49FC05310d(%QDT3N z4eT-=%lpnWBZptmqPC zkEc{SHIfdG=^QhxtX4{I7WZ*OC!mg;p~a($B3p%ctn?V~TXd3xRI)gkZFsz2_0J26eVLM;#OCUXI z_1vIeDZx>rhq-PDI#y|Jd2A*;-|d(u+S95UC?-0q4EmgCphuLRuk(Duy#WN%c7~@g zo*O_5QWl$`xdARukEPOB^v4 zNM3!;lg8Kx`SdK(6s;i6IirPymGMc6Zp>c<&kqb%ylL>!5)kJ;bcf;sK)I=6Pgz`u zG&mh-nG1VWZga1wT@X~%W`fA9ctW#kzvc4S1ejIz)O|OozcCQSi#AiSpLpnCZ`?5a zupu~GXvDllet)jHi3d5iK}E|*7kKqd#hCR>8V9tG7qF1BmCUV*WbF|R3zaOK-BABgw8 z%#P@0eeP-?e+903<^`y`e>wNdQ%d#Ad%Vu6=g(gO#<%;vJvcflWp85bP9KGTwR)^k?cRuMJB`ffFpmC8-&8C)#w zVE9UJ*L7ZC#b3vt?D&_#Vp|knO3Ac9)j>i@2D^TaE3dn##LHp%4;D2eFU}CT*V~&m z*VO_jApj~BQur^7C%q*GphbwM!XxQT-1d#nsIY`Fmgg;ks5}~mwL)dSxh?rkQq>Kx z<~WZhJvBb+V7cmz7F4=v|Rw zE<-H=YzUw#q61ykIsu7Mv10tal(1IsyO2>`Psq`2!deL$_we9JQ23nDFOat=@b5_@ z0J5!voJnKx5C!ejeyO1(1(R+U3#Jq#F;~7<-&$0=V?^PK0l?eE z3Yj5yj1r(NG}hlDlx^P{tnGRCtr@1Dz-jbMIn2VKpgxjwvO@3z(nTcAi~u_Br}dX& z)!9}gXf=3DlOmpc$!Kr@?)R7{HAaVRfSm#ATgw(Tq$U7CW1pW77MhB8=&hQouk(|0 zlzRh!v6V${OL#D-ST?l2A^I}52)E337*S!gwT5lq;82)R6e;Rm%4G5Bs2tjIorCwP z;^c&}s&O=EHn>G(M~;PskfO~*6mZ$L4eh>XFUDrkwqcHe0TpZ^4O4i`?3qi$$rMF2 z3`P{lTc&Z&>3AGLUy*AEuBRs`ju%1hTNPZ={O9H~&+4%d-|~ufi18{c)rqZQ{UR^A zC;gPHiT%{f=+Ug6tPXCG5^;sNS_ThaQ+pC(js1F5} zl%;ynzQtSKb(Hd$>K$xZmeRbITP^EW@Z%b8YIU_2El4L)_%XQG-X8I?2Ctv3pT8e| z`F=Hi{t}43tYZ!6I#2mKYJSA-F88wf%&%XkULqq|Jy_ST&(|0JLZjFF>DmJOez_XJ zQY5cVS-sABMzQbpf_RIhoBSIPgH`ke0HlV;mv<6qR)*GGg81QTmH6xU6CM9LSZq?x z*2TS0?y`A26_W&)Nq>KAXIa11#>mfJE=-|sk2575b1v>xpyHdWZe#BJZP?@=Aq&rouD?-(qL9tv`c z{4E%)w`e(W42;Qsj9JZ3!Xd__zJ;rzhPf~iIJT{0-#UR9fDvA$Mu|MD*_l(s8n|(M4h{z)eiuT4vqA8N!`j>@l!4g+i91Axf9h zq2JXzuBh4hXXHj&R_{f69~=Lfa{^~Pw|C11-U4$fcv9Z@7?VOtZ~Kmq`$t>@53f;% z)maKG=lz-~2X4bSj{rsTFtJ5NC^cRMOGLm+9@X00)zp67{iGGsmpwP|(I0K!3Mx|_Rm|E!v3gU^BN$EWd3_Fe^8ZFgWE z6FyHEJV5u9hh2GadZ|s%?Q;NRftdS zw>@aoJ#x$$lpZuzN?`8|fBWrQ(6~8#oKVz+`@n7AV36@Ic=9-B@{O)yQ!^q!TI&Q< zhOGykL|zfSJ6^J)v3jZsJ&Df(l4Y}U_eI+t`$Ak%{dF?}gat9+9=VXD=j4UWq5#7{ zJin+NjTj*pVjs31Akw(kBPY1%`tf{7&B(|E$+^-$iuSo1;F2-?Ohy+StI;Lt6j@F! z-}S2SFW^s9E`Ewt0bh9YqAR=tqF4Psjdu_|F9YMrzP`gUhTLzjz~<%bwra~c)P02J6~ghr0mnD6 zP=UfKc~qlS=g_;e>LKW9-+lG&i9qz#A z^Tf%V&AxT?ZaB{<2S0`b&CzZVjyoyw%mTo|f%7`S6XYHK{&1JCOMH+>o1_@zSBAek+X-w2A z@54GyK_TGW!Nf!pd z_I5d6bE#G@^Ym!!Ex_L*AGftI24&yBX$82%P`ZRuD5%YDI9udw+Bty7$UVD;eYpqC zIKYrTOQlpGBwkl@73%C*m1Hvv7{-Zs78N8F@mP;+;BHm)#c7P$dc)SkBmCpXql`Aw z@ZALW$Iomr&@2GRIDfK@gbW-J(a_o!du9Qs zq44#j{h?|ID6gW_tk_Qx(z?zeNV{sY5N#kF^BfsAXz7iMFk%_NT4!?4RNzaV zG#Kt%Enft zMQbE2A?8;6H0PJwD01a#dYGb3!Moyjr9`iMst{G_A$oMl@HB23>o{CRJVS`fxK*I7 zo}09|%vlz=>a+cm#_wd*(k9sGPfWif=j=s!v)T3jgPD$5?kviAS{(SIHP1INE! z;07p=72FRH6EdW5d|!N{Wi}L}aZYxFcqKjk`%3gH122ZVGCC>VW(Krb9vMjR@J>FL z&#zBKGLd*kRo;V%p~$mj%-3P)lq*#5T0J!KSi<|*TMMO{p!Aht$&Ek9#NIn>tI(~D zW#iM$-xi^gTzfL_OH6Z7jHs|`Se&T^L{^o)F{4MMl1m~*O3`!*VU*Q>wvN`K@?nHGjkGv5Dtp^41pRP^6dBMv&^N1ey4KM;u=PEK zMF8)~A{&M_Vr{L3_p@)bs*jkH-hkVU;cfoFaYjYID9W&*Z!L-djWfYeGsA7)0T_<+ z#6fVqxA@E`I25*Yo(E>@xb5MgNakrP4KkFDd2Y4Lo|f%+XP~*^m=Puy$`@&UDmN;W z>YRTVJ*j@pQCYMFg}!aAp>2i)#gLazyRy8tK$XH*Xk%70)YZQCOJ7@nLX zji1`fQnJT%G*pi}B4~_p;&C!07g3DG1j;GM=9oCff#DOqo!Hp&1PHp77f7RsVi*J7 z2>6z=_nrBChiGSL@JVlGqcu3&Ck=vln@JVr zHBe}Q6}=RWiuYuJtC9UaYYw$13P1p3IIOXll_-q!=0JD@QAUVTkdYqdI4#yCjfBo> z(m;5`7@6R3%#*UCl@Y494x1CtF``J1J1nD9f-dHmP>UODEh0)5g|avCK1USqLAGJq zXqgBb#_-*TM+8kb;I{Q>9W*BQbVwA@z^~O)DdnYa5EF8^{-*dh&|AEKtGtHu{1%Rx z`{R8i^1=iwAa7adr4)2r?z0Sk`SRu7`dJpP%TMiT#*V(~#4?nx4OoKgIE{ zgGGPcrML za!i1af;Lo^s4ygu8WrM$jh?0@#8pbnwr#ZZbIepweTJej<*HvS*{c8vU6J8jh(2}a z>1i1U!Xm%*jwA08>k^JUN?Gi^ndT$QU%e`En1L_ zaWE{*Sn|C^wa+Z??@*7hX3?a3+c%u!M1RH&BP^1NVRHz8%1ih0aYySNpPx@EM>AhF zyv{*)W)0hZk3vz)J{d`43o-=hMq5q+{{#%w#<>M!f2cZS%%Aa@Qm4H0suiLZ1wlReLcX`ax>PjgzR41tEd-{c&6)lGp#9)${;(mv-?s1o z_n>v;py9*u`QwS>Jkgrr<9^4-$2~xu0X`; zoanB1D2cqMVW!5{TT|J?I5&03pdCdBM2m)*=O}!#z~dTn)-oJ$RZh!jFgdTSdeoXY zU6H&B)rh||YdDVs&*uYx^84h)mGTD~_mF!j4F(fA7e?e0hA!s4P3{{4#rkff0zWN0 zlSbaM%0^WmR$GsvR|94gU}-7<0OY=o+{@S-z3p(!h;DF?98rs0b*-6{_r}&h$9ZCo zlU-q1HM{Nb-Y|`Ah|Zbs;H`4{#u%*0Q;{Oz-kqa7gm5f9Rco!?1sJ24R3Aa#VGN4> zx8H6IB}RttT88b4ZiCN4x!*2`7xXu?y@@=#i-JsJnj;Lk3KJK-iFYJ@ENZ!E{q=Y0 z0A?==yD#UU=3rUTYre5xLo|PNTxcbm@Z_N4XN!To>iX}xl~6?a^!08lXuXU*k-+QC zp-GGTS)H!0*7H{&Te2TXvzotk4wFOKI*^y~;eCxRL(GS~>y=mML0i7FFTv^m`B5Ou zU)LoDmt&dBbO-VK%QbcdR(bgn$+A9oov&hp`K{NaT*tZ&|1tpHWYKY7fptcean4_9 zTn2!AzWZfQCs|wk!Fs4>%csj|5oEtNU2KeM>XWi0M*?TA{ z&3Y=jxnInpD9IRD{B4*%!=vH~S6lctJ$bQxbPX_v`qWW*b%#m8LiFO3APV`u=7(O5 z2cW{9HFo8ZSk_W(KPC_?`|k`~(IZZ!zn!c^d8*4h!WkN_ zzlyh63iMQgQ~7$c`Yu|Wz-R&+0NL|(xqs!?aSbQWW5JhHBrU+@!g__bp~7GKP<{H= zVFlebMhe8Wty>hCB2gD_X$hWntj45^CI3xBsNbW-fhtvk^rh=K_GXx8RCNxp6q~s~ zYtd@VmsfQN%d9ZR~%@mf4xTe2Aoh*{`;gN0+@tFMv9!wL4;r59B+*h@~O z%$@)+6MUBu2x(NPKB0}?{otu>&L~7QX7V5R0C&cA88MeJkNdu1^IibAYWc%p8J&@a z(DV{V=&Qixh1vw377K(KYCi#&YuaV57y72`eWPdXzn9~m={hU$#As1Ki74$TzTF>R-LZvX8&`{PkUQZtkDu%#|mk=L*H^*7dlIbGh$V&&zu* z;N}%98u?d+9>0${#_BJxW?xK8=|cY<;PY}jKD)lF<$Jx^*Ee6m_!lF~pI=kumv=-8 zCen9Bb+Fp0FQ+bJb!V|F$<$SYSYC3)4fx}2@z?P`c>J4TsCHS~+En_W;nhmA3Rzi| z;O`s!4~bcHwp3AbDqoX@4`kIb2^<2rIc9X(N`=&^G}9v!0}q9Cj0o@REb8JD+jfT| za(%{}IG#^*v&^%@oET>`w%+y~t@o_>CClx$w^X=`aan{la{9na?{ zLt71FoMByF-X}qqlzWph;3XI#8ssX#!k)C2BNOnZ18w>MHmHuCq0w?I5t1X`N zl|Vve^TRBlu67l69Y1?-*x1llttkh11p$9>AE*E<0pL;njv18r-#^&Rs30a2hRiy*x! zoTTf9w&c}H!LI#fz1m^CHQTn}=jRy_7IO|vD5utgaXb(94^aWMD#vYZLX^kV@_hOE*k zuvi|y9D2#|6|~{&BaL8+h*&;*KN;_O)GWE??ipbc<5(^%Wo-Fj3#JuM$AU>05cCRs zt}O5}chYlSy-x4%{sP7zL&^L3tA|RO%(m(oqHK4_v|2dHI{HKl;oXemA z6u*918~{j9deT60_|mOc5Gy0aiqT3d`Fh;-jbD~=J^SsQzXY9zGDzj%QkQ+33$WU$ z-kG|`YJ^F>l|^l?clqo1GadhWfg3bd=krpoOD9i-KYlMoJ(P-()jEOj*nCMT3zJxM z13o~1RR++?$5x9`Ug944Up_iyWMb{hbnTz5&1s4 zzw$Mr_n^O7*qb%nZg*HOuHukl6hdj719P6(wubwCN3#%~X5qC`C|mCvd%t;rCKYj! z0HvTeQ}`*Ei^B%ah&|e^!P?R^8jij-{O5oEuWWGK_Yc@TUiuu*tOy!cu>8CO-8#HY zJm-nlBZP4dHZGS^iYq&Gu4O6eRA?7kasXpYeExidGRDFn4#ymZ)1#bzBdutT+@mPM z9I$80e#!($D)0mEmM(g&3U4kQ$+AoeJ}!5kkdM^TKT7~`CiCHCnF zdy!66t<#a9n|Wcm74l>%W%H_7gL|(@$#Pl91+sCXE-( zaN9e!9^uW;=gIpDXoJv zu0{uBRUwwrrL~k5J^GU>FRXZl0kF2`8m)p?&lWg&Rn#&>FF{H@FI$6X7d8S#k1+0W z0s{o^jx5^IxbJ$8++v^g&SB`83$U~-026kLYmuH9(=0%sF>>mCdbNMS;tg2qzH5Mx zsE}7pZ9rta0WyHm@`FXDsKr1j`$5lFrPtCJ(Xxn3%P@0CK>YZ8di0pJ86IvpD5IFG zKPPMqxc8tTFkBz(e1w^|C*%j}mOW8ZWWXrBeVJ@43>DeKF^M9ezJ@jlES`F6h(1dZrX=b`xhd<=|nV%v7~ZHKb? zW#JuXD0Ls-KJf8z!|(P3upay1Yos}Sc0#csMA~e?>kH-;}P@mz&%-qH?SO_x&_w(}!w1#~H z9&Mnv5d}j;Yjb8HjNB)rhGwEu=lmGF_4gd730mQU4yC3@Ild~;2DR%jR(R~qlD2>_ zG~_;pN2nS|tG(kG4nOq#0k@8kGDN>Dy%iv@N`>~VyL52hZ!NqW;T7Dl^#()7XjY)| zwm}}LF()RgShM6Kn%4BLF-I&7ROBm7`J?0?9c*-FY9V10OswX|Y6RcYIvkhww(RC*lX?zFidB?A2d&3xVR2y26Kd`p zIf^rT3dTDUD0WN5-h2Y|Zs?@O&`L97uQedT6qQdC9>nP<9*-exg!VI9JUAS!bt)dA zByJ68d#7^h7~_dKLkZca0Ja_$+Q(BBJYx=@&j-PLSYziinnFJw{{RpmU}Htr-V9?N z7^kE4!Rm`r1Rcj2;hDn&(3}noRT&J;GZ{sCz*-2b$W@DcNk`m934~N+k?0vnI zk@pKti<-4RU`5kyT7Dp}mO?qFv&USE-fjv56Kw^^uzKg*UY3e&%&nAIhCwyu6WUUk z#DNqNOP)h)U=COrsPVn^0z*EKc<`{+wggg9R4Bq5&+~u*3`?ZgZ-{-yB0>NwZ%(b1VKzt9=8dr2 zL0apLrL<@)@oi?#?KnpiAhM3pS{8IV12=<|#y!s6qrJvSagXYz;k6DrSo;ae!wLf{ zsj8q=C>zZTh$6pX@R>1pw|&ETJR>`>MaziRmOO6mwJ6HMQEES;#-GYpf+CRxjWdjN zi17y9OaMbs1q`_jFHr4AS57UTodzFx0yTMMgV)73nM>V(X;CC60j8?}mJAdb+>UM? zum~e{Ke;O>d3~$B)Kms2Jf(`XF)++?*;@j3fC^Mqk4qI{i=6qMM%na+WjMLt49mGkSdhWM@b zs}GPs_VN;_AI0PCMUj62fmU*?3>HYx@*3%o_e=ou{sNM_lg8>V-{Fg6^&0-sVF_5? zbN1GExIU6Jg2lnGfTlFgaqzwXoptQtl`NfEh3Lcyu3*jIXkzjjKw6w5+;1UHZK_#>TB?KPCKEH1wGkkXtvv_%!L$+52}4{NQI76T$|m6lI2)7BcR(v>IF z568Lntm0|b&^(lZtsAUG1L^Q+g%$NYqa}bUjrw#P$620*rhFXBs;+i&6XU4)rqJun zSOf-C=nfVE35)*YaX`T6zyAIYwBH+!BiS8uL0+|bFC-Ha7g7~&W&4zV?(V4d6pfIR9{@^#Gu z42|~}O_W06Mci&l3%pIzLOQW>M=rlvs6%GT#g$^`U^ZMRjGX7dma_JudYKv3e=3Z4 z5gLUZC465LjO9D+t-1}BSX5JQvrg}xCn$>dAy8aGc_d`@l)zUL&&Ppr9yrGdR|^3T zZ_atLV(y%17U9t;vI$;~BO1R0bM6=(;NudlC>@w0mGQ zM4KL-DarZMGg_eyheeNg3=f(MFDJeK=^bnI3U*8%e7dSGA5q;EjZPb9zAXTo@f-^e zZRBAO>am9VzT>uUcv4wueM_*XWiavvfkmz)3;{seVpPo4^MirQFMq zrt9^d>K$nfW+&f&!rAi4t@8CCW#6RMO@!yx2;e+5Zs)(+zmkdW%Xl~kAg>r6d5_(> z=PjZR&Jkg`TQ_XXsV9R-`4p@^K;h&#&ahNOU*1K>=qP@=8pPa@7TxwU{Fua*UFvi;i=qRpQ-!mu3i^ZaZ&#Q zWW5h=5uEnLlC0<3a(<4kc-GrBf~utpb5N-VDfGVzRqE3J-WqWxlD9>%E6$6p=lseO z`q%MiIR168n8bxpl&6?%0SmYUjJ!8j{a#G|LYO?Xk#ZxZ1*bNlgq^u#dMLl4l$HRv z7{ko+vlT$50-*C?3Eo=f^OPmj76mYsd3qwpc}DfVzD3xZQ87n(DMDrjNK(G0uGjOk zf*choRZ!I?lb6EHS%RGTE*^q4!X8utJr<_7XwZC~;Vp1?%-+*GHR#b(c&HfVT$HbY zYxPq=O5DUjiP?J;b@=i3-!W8p1P!;_4tL<30R+MeRS75p0P@)@Y}|cBVFe2-{Jw8!eW8g)P&*zeM|zZt@d>o z4z{Gn0Qe|8=>C>ImWg`=t1W4S@=HLv#ki{F2#pm9(mmJKJ@RMcnN^g+kanR|fZc)T z@kBpkgLm7I7GVd@%^4JdG`3SIeo{*P5!GtM)NQIsBK1(G`={kt< zM*b-aS-7+Hfa8AK(O@`_fpa|ZWb2FGJ3j6={Pz7DY-{-Wc;NH%f#Y}raNKS;{Kwz^ zM!JYS+La@BPCSnT$8lhcf!-VLw+;8(E%M6T@Hhr@qK}xP{T{U642?7zm1(0jgZ5iv zlH!(+Gcz#BSfDsu2j|7XJKD3$qd{x-ft89kn^T3$M&`>i&-!?Rh z^_gR0$a7CmWO{UEgphyZc%QO+yL~utKR?d)}(ov)yYt5M@pZj*zAEL;W(;y0DZGm8x%l)wE zCxs?o!B62^OQ0?qyW}xaKM|?UW%PdHD;lEWK`(fve(&t1kJA7cHIctEu$7$7)=7JL~1b(kI@ZT{`L? zPp$!%7F(B>dbz3pVjU=!{~O2keula*-?W}+)FlpIt zWw=cUW0HycwGD#BeNqSz;HvUo>k%Sn3*Z6Ba2wKVAXv7Ubcj*8P`18 z_$j+9Z;|(FC2Iv`;V3kw2eqKfx%en8Z zp>G`@_j}~6`V4Q^0v=WakK|M-x+6Um$9ZC$tf)u<>4X-J3JJ>lx-;jmEy`czO*J6B zY|$M2#BoM$?F8^Vj{u+M*^nG?w7>m^|M%~Ik3u7i3iy2ffT7`UzkS2Dbr^FmKR*xr z*FXM&<2cih20!t4pZJfz{Re*g?Kh0!_<#QE2gdP)PlAm8iGAPjpa1b4_uG!g^ND}_ z{u#MK7`Eh#Gw-lBdRm#+t^0IS9y#TX zih3;|)6groQoO)}?vHaMkjo-x<`~m(o(J4Lj5XFUa7N*!GbSaC%wynOfK+cC!-3~{ zhM|JS66Jo6F_LFw6v>>4+hLX|Fs}c7kdMj;T%n?6>|VXq;^XwDp@6d`KV5lod0W>A zlQdgc{hvT&0aF?3c*S79K30Gy_WEi>cte2;Qd)1c$d`-P=LPItZ?TMZx&2pOqxa8V z0g%_HIgji3sVeI1SwK$S#PvCri?@zH3`Ze$)gDdrRi5AVnG%P;#OJt%mZltD--Gi4 zTUKL{-@4E1VatdvC+Dw~v%IeE)wjJoKmT0lG{2cuY7C|E+EmcrvgpgI11e@n z!7di)K*sx6YXAj@dgMtV4Iw??KGAx|4&?#H`3f^l>m^z-`^iS^Kw7=H=VM+t`Utz6 zSN`i@^}`mG<&HCBwbUJ|-F zugkv%z-ERL^-Vd8D)^zi#GtW8At`z+kLV&aCx8~7B}{!U#wf4yMAnEvjC;;d*0eV1 z!COEBAR~uz?R?24_=0igIy4HzT9<*a;8#0<0#L64-^}0&u_R5#u@w2B$ECv868S8n zqhf1@Z1xVdkgq3}5YNoicrFVp1swy;77qaxbTDjMo^C*)?Z|xC@YY8KSIyH z!)wr7fHK~u!IMv^;E;*tT|$s;1H9%=1wH8VkNr5$qQqPSOn-02W1?`qt^Sbv!;F zIL5%|Bl@JaHnD%}Fmy~rk(1~1fyZaGXWV?0rM@`ZIh!PaNlo-WqOuht%WN zHawm)0PT6=+qaJdvBx>^`Qrzk&w;*g`0e{$n+=bj4?G@E^xp9Ow{N+(o{t01;|W8@ z{o}?Q(;e=H;|KtKyM+NNTbVS&I3_+nf8u#W!JRP!+}-yb-@bjr$HxuhJn{4APn=_< z4A}M!_uCz}`wp{s#*ZIAqf)2Gp1$92(ciC=o%H}1$1(Bw`Cu;V#-c%<3gotR?gL92 zQ5&DVcjm)~Y?~|u1gmP-y7qp*<9`3f!fFA?Fa=N>{^M`|k#f=CwI{3OZxlI-zYq2(b@HyP2tFffW8Zrihk8q1)Dv`9 zC~RC?X&5rPozG}RH7VRzFXzOld{CD`QU_ zAf*eaN^DjDDTes|PVb(=1+-n{UA^z>eO%|<(kOt-J=f=~h}K{gYMnZQzV*_Be03Dm zx$v)n-TU0EPxYjm>p8}~{!UBMHLob|8k=-|+Im)9^YvMlddI2@Pm6=P7Eb z0A^eApQXPGI7;t5)ie69<4qoqa>&amx>=TUVP~y1<{}y!s!ym3i@z|Yjh+X!ld#TEH8-5Sl?8q41%?PV6&8i& zFqZsVnOlY~FS6VjTD9-;A_ML%OSZ@DOORiM(mRVxBd80$S?U1(Lhq(q==UNtDk>xi zg~ZJg0tPIhY%4qmthFfa(<&TmumUE`u-~FA|D4gDB*MsIuk7q2=X2mVgDz$DpEMw8 zI?5y8fTgeun!(SJpr~`g<_ung4N!ZA3mrMvkwsyi$ARZFVj)-g_HoH8ct@jE&q!*_HKm#^oFV{^G0a|d6 zcZ%RqDmDDhf+vjW_k!#S2-rZb9EIjZ=UXdSH#NX}}WV>!pk{QdVI z`1$h_TaO;L-+%jn0r>s*pZLe`pJ)yEkN@}^_I+PMCL6|i;K$ETJe~*8I@io`9-jaj zdf)MU9{9)aKM~FbdJ-N79{Yj+Z2yVr6TkoCcYHpMOFgFhKD2L);0cW#_NvjI3&Yr91F-^bn@$a zUPtk(r{&qpzEN~i8Be~V=f93W!|`u`#Sjw_7RbI^4nRHZbRKZoe9FChKA*{ax2@3% zM5dfVV7_thi(ZIieCsnZq--qS zkm(FTq;T;l1aZIJ@O(UQjsxp1;G41(zhw@J6w2ON5CCCCSBdS`nH+3j(VAXGILP!u zNA4kz&&a`QV1bU-(bj602rq~#z{=G$#vm9A@NA&6x?E=zI@3L>btbr6^FTfS)}i%? zA}a-~G%?2Y0f23bFxumY9K+Tuiu=&Y7v~oMa?Jw)g|+DGIlW56hk>6AvKdsNGkwH1 z(*vdZq{q#SR`rh29quJOd=8wD1)jCrke=g2(3)j0^vS`-2aZ{NUq9_fuJ+G<(cLRMk8;bi=x zyJep5?Y496W(rFwIIex)8k#1JdoAgV^QaKLTGz6Un=eYPmlsLTk_Wuzgr))a45f!p z_!#k-!hFr+;^yex=pl{Ir=MsZtrP-SM;_PRJA4?|bKpD$P8(Y}D9n+YvA{bR?^&rf{Hr~t?Fap2?Ij>qG~=g%jO zV_?pP_Be3=_JJ`@{P^*R>X-mN_XDlQL%n3@n0P)9oae~*xa^>H@5L5Ng~&*MTKq|x zRQ1R6Jma%e*aj<&FGklz;f&nF3e{f!HAZ@1&g3NPNV{1U6@qhavJe>Fs(`}F>mB^t z69ff`dKCC^z-UnHZOKopO)>z3WuAI@@M=P@(H35y%Ee>j8yPW?MqH*zz+tnB z{seLmj|i~6()%l5NZZ@8FV=OautmS{QyGcWpKtZXD1Byq?iy<8Ql!38o|k8Q1){zR z`P2kP)Pr3=$NRgy9@3jq1prrWk==g;;_7^ZUxw`K2`MvEOIqeE!*uPBA&J0cMx`ZS zr9LS>H)~fEJ6}P|Rj+)Fgu1@?Rmb^?KGyHotM#PUb<66tFHf`l?B%|THer+_(kx0x zE|^FqE}y+tCI{zCImTL(eDeB!_@jfm)gm8jj~9P&M*97A{5g+*y}-??S=rL(56bgd zl;JFq?U)|L0-n!jDWTpj1i$KP##2lcAh6L4eVd}x`ZRmvLOU3JZUJ` zW7%j4!f36XUb&Qm|En~9z8l}OHPD+l>YiLrll9lx;9eCL*?qeaz>YZzP*GVDK+}4Q zQKw*D>A@nT(kSs&*rd)e7>hgiRz-kR)$m{`{|HS4RA@$F(FtOwW1hwQQXsFMD*^{8 z1R5iYII>s;(Sdv9V!}c>Zz?iktfblyDM1yYEvB5x4X{)u3Bv@#mz^pFp}vzPF-6WQtPaF5-WDZs49p)wSvRywD2-mJRo>_ZtLnGp_) z&bA-cbHA91y098+cCtyh$p5l0%(Mah!X&q%tbDK7KSokHi`<`dA>)@G4agWS-;Y;=Z?S zMdrnC<6rsSD>l81bpb1Q`7J>>4XpLvHEFAnN=FuX^Vjux0oa#uEnxmK1;v|N3j>!r zmZc$F`qd)Qiud~UhL?BbcLIujeRs`~e{tpOvC_l~KW}%t z44^oPultev%td+|4!14GWNMbl-0L3fYv8DBhGnWyk>g<1w2*S3b)Ce$~rwVq*(V+_cH zG<~8|d9_YrC!kY~VQUSykB=xcGon}k_|D@T`0?WtkN!-N)Kr;;$8_f2P%&?8G^{;% zJ`X$|PXG$xX<41HH^VUoT!4B`3edT1@(8nR48;pz)-Hk}n!q>s@U$cY&O9r?%&D-) z@47b(=}ndgW?~US$+)O)cw2wAX}0uPVSwT;Db zwtZ*l^(gW+C+_z>QUkUg zttqU-@WAKufiX|OS`?Y-9nBrq9TR6%Nu}6sW|3a(!2`OrsIZ*%BR$p~o#EwFD42tu z``^k~7yzPr@@m=y{#z?0B8!eNs-)3SGkl;=z}psudOQH7p<2r5hyo>E6+fw@`aEmT zOR-CK<@s!PQRY6( z9;u*g8Xkrjfo(_fj}>rb|3mjQobe5F{1wwvV~=}!?yUj`MbGjeOpoyW!RN&L#a>Ti zvU0!%y*s*<*F#lwCo6MPPw2)1T+HuG|Ih-o+#~$IdHtRA*(TINC349<4P=Zdpu%sd z^m|NEzV8YEYM~{AYaADyL`u5AuR`C~N#-@CF@LFyFABA^cdN0!oLQfnU3k$2)W}%2 z-p5Odf2F|ZlKK1RfMo45mM_NlcHN>sByIze-d}m?3JS|}xd647snT^TSg!93)(};I zfe@Ap2!4H!ER1K@(_VpD4*3^r^m^aRGk$sYdc3^L^{$t5@(Qc@^M#%a(#_&~Iap*6 z)ZJv%Snuj94JWO~-(MBQvHX|MZ!$gob^O_mf2+@;`tybLk~weAzn5crSpUuB2?Rm` zp4aM?-0W_ivGXf%a6T8)S;aD##~k6k1C#ir0D{6ng)kaRz*~YMc_7xlTFwF&fhwW` zUMM$X3=9k$$AQP^1KWN>-!`}hh-o&$WuHpBVT_57`z^eA%rVUBaV+t@(?adTG0ovU ztfAYsM`L(`JhF4G4M*=do)0{aiCe$Jy1{0JvjO#93g1wnp$JutkVT&Z z@QJNA-0$CD=J@>l#29CQ(;i-&04D{`03%S9REr#yzG+@T<|t(>t`TrnPE4$IwT6v~?)f~D(TT}LeyAt-mV!9^noD$1M!-;Ie&2gvn4-ZZ+nKad)HJti zzze(obw6n`yKAU=kdgTy93rSXk?o{V2#C2>;R0O7w%PonZD7e zL*tW*y7Wk{K~!dK@M%$%dW471n!~qH#K##03>4bzbK*S4CHf*jg$!ZhOB?pv4af1M zm#w^y03#4Ac+o`g51WqY%Q#u7o0T#N#?1nR8A5KEw`?nOX%FEoz^|X{E{l0;QNj8= zkKj2?Q4lR7Cmeuv^_4`1#6zIX3=<7o2ksx=FwP_Q0jMBv+Xfl(oJ`^zCzakP$kckCLr0Ns{?6T#CW+Cv@%OMq8kF<~od62Lj&R6ZjQevsNDuRIKPf#%(V z&&$~6)3Rx~na3V8i?$bIqybV}=+b6l0SF1ns0f2q&oi=VhQUeuxHfh14mdDV0a-wy zz4O|j*Wj(DO0^z_+N*NT`FaIa(!LWJqC%EaGyejtEO$+S#h-6p#T7Wk;>E|@I~OP+ zd9c3dGUm&(BvAb2q&$b?wwLc0z7l_?q^+kc4eT!&^*O&XG`|9%avJE~GAyStV7Y$1 zCxFxyr)dwB6GLOG>Gb!d;arH`QtV4VS?THW?#l!_u=2u-&hQIbD2PSc&vPu#viw(i zLwzShTIdO$@2EX7l%=$+!<-&99i%h7jm$1&ROGxw+ANdv3OxTh{#?hu3>E|Uu-_OD zx#)`=K_Vzir;_XeRS?7#fIx}z@ppm=3QY$U5N}I}RS2GK-5(9`!Cp-Cu5I*q4vp0T zc@oEnYI~_9u;7WArN?bjFh{Sj$mQG2@Y~+;ts4e_gPw_|kBVR`q zs3r`4OTiWhoEgw&iupWBWwAxF&|?CyHO#;x@{cNueJA2YDXkvvS#19+YzbTTO*?hHSi z^jH~-426&$S#)Sycm>DGyueU~JHg{bYXXOWs?|#IU30z8^TaX2R5CGPwg4hQ-M&Y| zZ=Y}z5I6V%oZ~>-HuMHO=77)W_ooo<-W#?pDq)%dkHF-txvxdlSGghc|laKieCk z9R`BmZM|W7gZ0>rDqJ?n&wNADO6GaOqICsM7*ue~bM*|MP$T`SLZ|f#Ulph{zPCBD zQngQVfQVjbitw2cmSW52#wQpqK2hP^KJ&v2H5Jd# zyg&}XtRi6CTNO}a-g_7;8Qwm3C4T7PwD}d z?~+%NPZ}2Nb-5?cr>rXjkPaCl3=KVjNk#JLNtRJc#jF*nfCPyO@7J_j4S5;N^>y8; z(inn%lxw!q#`4@1SY7V7%;|#NNJolP65#O5B&AP!c{ha@rx9&=Pys8;YocA33XWZk z139O%Ep>x3u7p0WbvK>GC@`G+xI}-({9!XaEYYpe{Y`neSZZWn#VB>^05TJJIO^u2E0XpS5T?IR+ zn4Dwa@%W5p#$MiAXOBO3M2Lo!G9EyP)jr!IK>4cbRh7bwOd>!b;LWlSku!(L-Qfyf zvx;%|8H&F90iP2e_j?HqGVTDDPA>xUITxuau;^y^*f;oyJjlsB$uTBi1Faj5bK>!Q zV&6C1`i40IAhkAOJqpic->w^z5Z(72+z7y%f)=FtzUSNdbNh) zQd;raZehqRR2)SlUDMIA8tl$(+AH&o0*Ei-KHbkKy_e(|b8zWD8i--)(p$9RB z>8Wp!fpLzA{O}7e5)VRxtGVzJd53C@MMqcw(()x$l*#!bAN2?)_9+ilU6-^WexgS# z3cu&QeYu9;r@ruBiPI5!(AKMnRIKmF`GRyQVlU zOu-_k`ED-?`m5(I=9mVgEG8F|pK?Z8zx2ZeAck181$;>-Du57=V16;>!&FoXdHM+Ub+fQ7`N|upJc%lbNv(|7?bTwjG83=-!R5S5h=C!LbXI2@bD&u$Gjq_v#l^g+m!c3CC4Yj2WJ8fdBwEV zok~ZxVes^ar6>2zl4hznXXv&uypC%IVA_mOFrFUD7MsHx3&ymTAv!Aj(;EvxthBcp zABcRX0E zYfO23BDZcboD~%E*)9YM$BR*S3q|jCzvH&==#jFG+pXj0&u8XrITgKaQ{`ml){-aP z_AR{PTgT3P&J}ROf&cv5Z^AMkJYGMc$ok;R6*-U-&CJ;Q#(6DJ<* zhdHO?$fyr`id$L!B@+Z<%EBZiiF~THT39R!I>ZNQTmo?0x8yT2D8S1Y5sG?P+hq_* zKrjb$YH8fGi0%O71+`REp5HtSIa7`qvhqPeJt8)>Ml&@SkqvV2PGJI*MZVwWMR0e zRw&{5>08IP^(ff%WL~n-+bvm|{Gp8RF6Oc*Mn#j$ce&k*U;26hN}lICr8-hz^s@JK z`(+Pm4mI}|tf2YEGNc7`*F5QTTOJZM8d8GHiShP;>-As#ef=`tsiJR|G59MkdkK-1 z{zKUZ>0MYs;Iam}SSJEQi_o}F`Z;s`xEP|&#A6^l1_Lv~3sb4nSqtkibHg<%~p3Kq#wiD8^a-f8in9)}y1^3_$G` z7V_Rh?2S_uWn1)2OKW?C6&j)`^hOZYT7=6CDs$&K@cC4W1Eh6-IKk;;$e=<3-GL<- zLBb#I*t+3_A=|7<7wkx;RiH>Ai7edU0R*#TKg*0;1G-lT$8ny?fPe@gl~S&Xfk1%q z^iESvm_BfvEH)tpKN)Z_#nxiJT8j{3vkm8%*#JB8JU14mh_U_S#}5F&_ix|AaPYtX zUyi9I(SKzn1dxS4QjoDFLI{JJJ6Zch&l$E!Cf}@#1Wq~%m=uD?&7+`@djys?i{|U| z#D-ATPnQC&(Bs(6@({T@o}`!fgx^tdkBYUHYYM1$9AYF>0?{t{c)h<^_(A1yD$;-g zNI8WT;q1@HiOm|!!rOURcq!pv-dBJVLlnsv6ZkwPWF4RLq?gdKS%j_+V?|o+MFT@6 zwP%=PhQ9EY;5XU2hx|zSxLU6bVPJVYPJI7v_>aH+hVLIYG`7Py&;O0*aYnwNEtYhb z=Zav+j0Ujyec!rt%>*ag)&XN{6<_D}3T})BpCCi-ZJ&(5h!!2km>BcKbi=pXZ}|Lt zGIi4MaH+#=tg}%^wLg_O0W$@82-jLRSc5#lH1a3=IL$ zx4ko8)6kk@%rlH^sJ#ZnyGGb=y<_h6MONzG8BPbwTvf0jP#7Gd$kv3jb;sHgh@pB- z@{HAIJ^1p*(9=mED1I>_KqjI|ro3HIRU0EBEasfqIw`8!#v0sOjI}e>B5MVZcSbu6 z;PjDEMZI@4RA_2rsA?LNG!KzW@&%7HDBs)NGY_y#mViJfjQlilQx#&jX3i8qE>1k<%RX^!-oY?lB->E>Aywpm&aYWj|3QiIXuL?m-3O8{X z-Y)KaRFdtRC%#w zw7v{$0d-#icLAad&*XfmXxkqGIgQe=%;ojDtI}Hzk}Hh-!@IwYnTjy=mAXC0;qUXX zdO)eGIEMcN{A@pL zFciwbJh^B`;`3zDgN{2rRIPP}r3C|;pofTaaE^g-#{2YM%5G~ts?bW1IGLaUXq}38 zSc&(2kKDC6vG25+o)i1F;}|C%&u89qWlC`7{Y|xGa0qb1RRAND_$Xc>X{i{0V=<4& zfqNb!*K#s{(Wqzvtj0MbY%6*dMxQy2OTyEDs1#{MmkR9*Wv8K|0XXPoW0>0v?`Yq* z^c>yqcie6_{Num=fx#YXG4!He9gW3fFso9e=(M#4o8g5@FY@t|U{>!+`d`A?;7Bhx zIPZfrBhcbhYRkG9aeNp^t?;?PjF)uZZ9t=B`he^ATV>Y&GP?h4z zu|A&%dLQx5eZw4QhENL>L`C6V3aTkI^@;Ov()Pq}-*;Hs09K>)IRFe6m!Xn2qbjoX zhTFd5`FJ2SV^ypKe13 zw++2-mpu$1`wWhGq8rd##}tnz{i!{LZ4KY)F=pgv_RhY6hL8IP^N$tf z5Fx>>_b^Ua7(?W(Gt$0f2^=iarnyJTH;$g%kQIlAOk7BVmVlyoyK$~!pU3B>3dCFw z^9Z2z98Zl+^XlBstr>HBmk1IEa{yTYOncc3w|$TN_t=D446L^n;op?4`@RFd<2awl zlmpUY6c~%WXb8FPsBl67wg3UG04YMxh$_}AFN$?Y`3@l6zsr#z2L&WGo;3=Nd`Ebn-PakG8_9OrppoJY#y8C8HT-mkX;WCFhVtUwS(FP!B!%OxCCfV`IX z(3oZPsz+21J z_sbeAdLs}a^O%dL+B9RY=e~o{)zf@={_@x~Vi?{+Ki6@*AJ=C}$JG5A7dwn1_ST|m z1+waO9P>>5)ZRm)bzBQOE#D6V@_pS26|qij|MG`^^y^$tKK z9K@_zf+-cw$wC?oncQzTG&7uIV2)5^toO@?^vh5P;D)j(S-1g6B|FDD9Rm)3K1(4* zG}exHrGn`WGsn*#KPWT@#yRmw3!TGQgvD@G0*uOCC=ZQQW@A2-ccu`6D1jadi?zmv zs#Idw0DQmguo3UFG52yD1N-fUeT#5IOvioSv%SH_inZ-#IL{Nm|NZZ1*6{8A!F)x( z%;(3qDDD#;g@YE{U|xeEq$?wujS7ZTII|21N=0XS^c+htrJjEb1(b)(qUaH5ecO5f zsK?_c<~Y%M$Mf?i&f|!71walzkz_5pNn#h%GyQ^q-UX~iEiOtRxzgD!f_tqQE>x4Za3_=TaYU~ujhHt z!&y}c#|(8f3W{{NZ`eGv=VlFuJC5TlC1Fg=HZ%7X(=ZU#I29HJ1Q^)&j&1R_wGEgv zJmwL~7anyxgRYhT=Jb4^?Kscysn$L*O z2E8*|Jj)&DoM_CoJB}0h7CAKiwxKnKledQHCvc83v@oIp05%p$nQh?tc(V9TguqXF z=fxzCbKrPB>8)=GVtTLeZZnIP2jj>bKULzC;-3nIPaKaYe*Er{=iGNH_w=;%9$;iu z>L?F-f>ebk2EXfu+{1%?ME8Bi$Hxt)@f;jSsA?n3*4}k2Kh6kAbCj1wFH&yo}bd(f_~;0VN?OK zXYHm|Pc#6{lOeHYczix`t`+(lx#~UT>MExz!p1NEgGMgt7{08l3^D4D`U)Pzdy%u` zNsEid0C{NZ`f$Ta(SEI)kP7i+m@z?h0iJ=+pFdd?YQ|oKG2JA_vw8(({1c=|gZGM! zJa|nVmUB>t=iH<;TmfQ6Y^XhwmlunV$Q)tH4MP-&!o=k{7jV0N>@Oe4VBrhB@t-kb zPt9{wAKk0M$8+f(@VaZBdwJaD2{}L2TetMU_lO??!auryp7(3OdVS9Nwz%2QDS zDy$)dC1h5@cH6^pJx78+W2lCEIwznuAx37c79DzyiO~a@FSEW~ShvbYn#^3DMwjwQ z0ANwm5@+PDXqs&-mK-rjj9^-(mJ$F|;6%@-0GSpFudLR(Sy=Kb90mYAu8}V^Af-29 zF+*}rG-HmR8S^Fs;JQtQaz$=dB4gv0st z#e1u~MS4r8=pZKE=fKu?e0+R_g7*0!9hSw>0QQ4h_l84_$)m#BEDvm2Yf*}Pi&g=X z-HIpAo9+Z3ac2SdF~ibOAwShmahwyQ0e1ludJWth$2dc1_+&ASiN0+Yk*RPkI|ppv zkVT$IS6YwrR5jDa_YXyJYYoEuB`aS#McjXPyIg3uA

*;_2G622w8W3_*cy6z*_>9h$LeR*lzq?cMoJS~%~`mv0bU~E>o z%A$0;dQ;aq31gC?Ptu{o=M?Q3YHp<86@`j^;(vMJIW(?wCJfZOP|l@&Re*Jw|Mb`q z5xl7LmG{keJDFzDdP9@(2J+m8Jk+~|F$t_#T*`cJ3Rz#ki7nHr%9=|Hl2vZDrc?@p zLh=-vD4y6DF(kg$d&^MVs6gylIK`UQTJ%@OxH%Y#zjw?T!0>**1uw%OaBl^6FS8f( zZLxK;;8Xw!l$S1-`W=|WE<^&PFBSV0I0B`U5Hv_nh%nsnq$^-a5nND#loxO$k-NsN??GsY_UOLa@+PO4s(Ve-1d!yD?-_Qot$J~urQQcg@97#V(on;W~ttm zx>Z!utM`j{j_@<(A;nyTC0ItADHQ7ke#R(^(RrQ>wXNqVw=xi@!KnC;F;bz_Gkr#g zS~NhGg-Z$%vY^EJ!qbtS%IC56Ekn*>w@#rn(X3;P6Q7?C?AwOE?YZW?H;gkBL^W|A zXMjy>h6m?=+xD>VZiemSh6kP)X1L#O%nc1iW7{_>h4NSjE#3Bxo!;Z~2w>WJ$BsQJ zRa#V$-1i-g06YL$tm`-@Znqs<4{(cfV&4Mruq+3F07Kc%g|pUrRjd_V2`0K1jjN=# z8d=LzVb<8)WU<793L<0}sQ)kFIITYGJ?`UNr)KT?40_%LSVXJO=L4rguEs>~d+u8Y zLk|Kk&|hWl;9zHe|hoG#wL zo^j*A90$IA{4f0H|N37z&j@9mKJfGNf&cx#{~!GL@rejAReJ*}>IB$H+0$Vg>BoWR z^MopPs+ZwOFY1pUKk@i{;P;OkK5jd#0ncNmqAhqCl|ostYHJuL!-!ktN+0KmMo;EA z4($6as?7tTy>JBQZn|0N-kTWwh) zf$x^N=eFoi-4d`tg?FG(VJ!4O-GCr3D|0*3TF8rI`sGdJd${sDt4iiYmoh$IpQX_Q z5(cr37KXwk@x?$PJ|>GsF3FVqiR(?Y+#03~N+_eX4C>lQigqZNf*iNx##H3cvfoyK zwCay*Ra{&?x75R4!Qrof_yusie6RJnRCVbrr?VP`kKgaQJS3_MbBmnS6 z%3l}?zVhx}nyWTsWlU|A(B~F*VYLYp@YMs7aa^8bb)J%Pk^9(_@hm)-`9azd>pjZa zy!8lBe4Ga+o7hWm_G;ep5VNhKOUwh;*r*<1vN!?XGL zB!JP%&C zrxMWG4p_(Y`2>98g+i4h| zROC9`pKy=xoWK9$cSMVh4xdqUr?c>ac~n82Gb(^?J&G>LZyj^g(7R#VcTA6V0b`Ez z2no=OzHHem>z=db31H!#g+0zAiaxosn9CrIv-J0<}= zsr(p~K+(hP{(;~A_8aDT;2Z~{lq@|(EYK5*NYOhWdIr=_s~n;;_*al z9e@A(KjI!O+J^MDVT|Wxzd31A3i@$G7~WJ47QO9_MSe~iL&k8l7RCiXCjRk{-=p|Q z@65fO`0e|5w#s0;jBfaRKG|~Q#2DeJMKc_aCqCR@t>f`L@$>T&-#)$p02|zgq35>W z00SP62fh3NEXvoz9er!~cE7_AbTh`pF=IdY>y>;2uzsA;^#raw#GLsxqfF^_g7vC`x8= zzpheomAMH5On{>;d4M|iqH^bT+Ben!8&U^rJ@QH<*s!l{m|V-{Fma}XC^9CA!BL*C&Q9(~F^SN`m( zQ{_Cwr=3M+WUQSYEu&Tdl)#oU56&?DG#*@t69PdC^n>Ugl2n{;2Y{3GL7i@;`-|0u zE5B-_0*Wd+sBve=@$y*#M_dkJyaHOdod5cJ8pB-rTFvtH=F$*r?7CMO+x+djeD^%J zEuRC*F_)3*6{raq!pTp7`aAWhug`b#C0(<=PR!FgAk-R{XSpJwu5)pH*T0TG*YR(G z#jo7%{_^hS7G7Rj*) zH<`H+XBL%-&AH)r-q+qu=Zzkgau2y@_ zD?IZKl=IVDR6mSc8}m_+N%2 z^LV0f4for(9J9l5u)^VOi-zz~y1v2A2qWJ19djBD7aR85Jwgbd2h5_kT`G?hDBU{_ zJkeXn{dNn1KL*-<3wmUj=e|d~2!rDo5sJJc_QBRS0%Qx%GX=Ff@O(TlhGXA1R^yzw z-|x|v?F=9$n%QqRI1FQ)3AQHl9NV^|S;rhtj5)C}*Ghar)=)Rk3Z~6E)bFpgE!Q51 z?a?NH#`9SXZcfL4{ntP6Uw{7x;Bn9MeBvK}{~gC83a0G)j&I+-0d9Cao`8AwM=g4Y z{L78y@&oupF|3^}cJ#UU!?x|X-M`^@KG3%vI0p+7MZZ7g@U&Yf0&O$c(QrJUQM{-{ z#bui_%v9CP;9sAQPmE)*2uFBq=8WPrcZP^d^)ri#g|~f+&{|fA z^ld}$C+3hhpuT?r!mmnB6eODLpBe@ZvnZ-^949_MKUoxm zg+5w<@Q-ibaKG>P`SXeAUt zPP%iSq7-TwfNpmhYhsQYQy3Hx5v_}QR0f}e(J9Q~o~sO6fIR0`-Z%9g?ybYnb8oC3 zq}~m^@8~_kBiGavcZZL`5aZZ)${!ApX$cnhZO7I-&RL$nh%y+o z{jA84W$heP$ff)&Ex0<{pb+S;1^%=zLLP+?7dh9#8^b_WIh)|SYtWt77$Xs~_pa2S zVs$~yi*C2lY3n^&PATNo2{c{+QymKkLV?8v222^_-O3q}e3^8o9Q2xaEWgBcZZoel)H&&0G-<@Evi#TaXF2{Yu-IrJ zeBCSywd97a@8joJR+$2Ob@KH)1n|#H`&f7Q@7e+_V?QkuTFS7w0YB-T>ur zWr7N46JA!<^tK8_qs~PRS&9~Kt`;a#s`6Z0u3BgTWX@#%o`bA~SK)-^q4DihuR4X( zD6A^px%%lj=1~&KRY}l+<9XCv&WYzdG6ZB05TO}A8u0qL7|Y ze6}=>v}U;NHyp=-&(G*Jx!>*~fXBeL@8LOh;C_p+(>Z1qUD@{?xBCs-e&G3dME^Ec z1npbouZ=lz`i^E>R!?m#{Bxe4`1~1d1wMZU;QqMXpn@n-?4zdw5Jhq(%mZ9ZQ<-+) z_kaArkDs6T`SZm6I|dZ8 zIOd5B9pAovVA}%lM0Mj>=Kv0}z|*6zy~MKmrQ|uRIXV_)&m(s+idn_JyX~qPyR-pv z;2dH22t|+uj)*DHJMOnF!aCW5Z;lha0UzIPxZm$+?ZELoan1oBu^$v=U>2=ew!T+i zREuYXr)9(5H$3ow0od<*^tK$KOWAtvzDj1K4kOY`wAi^bxsYJt}Y< z#}P81HH`Db$*O^K-_RP>OpA5}>X8b7A%h$C7CC0k3}YM_WpMl3j{SDSI1fA<3xhPn zzTX%w+%Q>WY|IIp6Cpa(UoiMugjqTjz8ji5zJ0Kr%&hSF@X|&V*`0f)v9M3bp@DsC z*m}opCm`}LV)VA9Y`E!FJkQJ{S4)HY?T-6B3`cO_e*b{= zj^iAF9gFu5__%-I90R}q{E0axZu=eE-Xj$KJfOVM)(z8*`Rx`p`Qcp=4JTCL+FDDaR->$#lOAuELgSb! zs7A3WP&`<1HTV(>wXu~Be9;{!F#Q~8TW2Nl3LzcmDEu)&BS}lX8j}}bz3rU$Q+d72 z9hQ;LB3E2}j?JPM<+qP})Es|2DYIJ|jjz3&jXDk^2Nb=5s<_;G%WJYI5s(IrYO@8- z$&1b^{gM3D5QXFvi2%}=F1S>4CXe3s9fm4)rfUTJ*|-Z4v7~t^!&=a_06Nu88aV*x zys?*T10r$)G$O2(nd2QVp{_>bRyPvAl z?sHi~+KWKBj2jFcV`~V74C%Y{T&03!*LQGPQ)KIl-M-+~U^4u>034XN(pH&L!(=a4`J_6bw-|S5%PGB zu+(=70SQ=GjNeXHq@0uCkL=afgJql}`WN1AwVV2;;e}0CS?L0Bg89A_g zm)U?enfv7vkLQy>YD?Na$H3$H0N}V&S&n{v2DK;BKAYSN32++QQ~>F{F>AQ(w*YDM zb{xl%^kGzJx89PMsZwdX-$WQ*o0v zER-&&z>sI&-L!bG&(9}$chKqWzTr4#hGAz&Bsy+4hw{(nj5ZC?n=K40_eJ4VD#fcO zP2WXWW$O6MWwZj4Gm4C@?K(OONy)?X^XE^TGeWJc0UL~Y=U@PDyhpPZ6_;~t9et@9 z+G7ClGYl=q`Gk+SXJ?C@F;yv?VZ?BbC&s4xTHl~N|HfF>j4F`Fh+wyEGE$aO-CKv! zF_ohgDUb_TF>uV3OTK^x=|GJo!`#C|iiz`h=K6c4yBMJN>#mchO$-vW%SpgE2jQyNIC)*-G%403*9JPX|nLx^>Egf@U(3ZWG{Y_8e_;? zc}rU>-Av)3t5&z_=ZwclFbxpE(%5y;&2w&KsMpggHA|zr=y95(TmrA^{~YI6(TaZ^ ze~#nd0*kM1^DFEC77D*yw;t(IU+!ag4~cki4eTX`G&n)K!Kb)MIs>)4XVU*>jQuHdU;ve!jOENL1EpKLGh=`qjkjrKTJTf*CN zeDTM{fZ@pSnBdP9<|~Go%#TU@X2ya(%ggc}K+&=CF(X8F-6tWeG!XUF0zk{PfK0Ex zhzJlB9#f8YnOt|~K`A-jJj0z7LInWEJjp1cV0a$SDpumxoQ-n~d_F#-M;|Ogs~A3J zEx_aRIHFa6KvOH_S8W{>>gnTTHM^)78;WPNd1$TS&b*Ytik|2j9?u7kM!3?B-ZyO9z_vAf z|8~dsZ#&L;$3bB9cs%fU{KVEfzJ1&>H!AvEO-3Z67c8zc8t8M}&yHRUfege<@kYQM_}ky=0<&7!!3aejghXA1Z^9iN{M zz#bV!t31lBZ>(^uYQMlao>aDt05@p#^YIA-XdIxoe%ar87v+7KMWGRcG2EQnd`8%8 zgf8yzx#JvX<>Fd+{$%ts@Cr5cIq~zykIaG2>Y|9EImdB8-uS2n97Tnc-*1S}X|UZ( zx1Rj_`22)Cb!djhP&Gx;jOl<=iS{b87Dl2T5f`oqm{{a%TdgvjEUGl;4lM3N`P8IV zTY7y$F=qjti&)YwqcTo!-t&0k`K(ZCK*g03(s7x?d${+;mR2QTV-Li}+PJ|~B*>wL z_A~Q_jev1$OWrS^rSVT0P8!FX0AA@474Dxv$Rb)}3}e`J7~dx6U*1*$quy58{fm%N zcNiv~k4N-+riV5PGOex11lTUB6b&*a0uMT{#-5?L0G+mVj$_H!g)H4;j;{_>(R7qOJ(DY^h|O=UTlBZ5LO1T%9t_lGN7uOT)6>Lv#Oy-u&)}Q7}vC zzKUeII)VH$*CmtId)LUn3enZg9IGzK?PEq@`xj{ZvmO63SbUGyzHWNO(0>8b{`rxc z3;3ruvFpzT9xa=tZeu_)&-KPqQl`&TzNKtCLUG#q1~oiYo&efnO|b%M>qu&U6oYGM zZwz|{U%GB#tMx7+8(+Qw*ise+Hlb?OfGNR0D3Co0-OSdKw?O8{WAJWo2uUT9VC zpOwT+K#~mA^uBu6nRDJKY-Fiy3;~hH)M$G#jgywScY$%HA`V1x6#=DafiZGFjHu+1 zMv^%O{_&50#C@%VhrEoB=L4$Z*;ZKP*8A|{MQfADuNfF;yvP_6$Md9R z(lW$o+cpe_oVCsz)N`aFuJt_5Gr;TT16yl2&lweV9jsp2Bma>pWBb12b_Uq^{{0*F zJ({pLwpK}i)i)}F$o#-LI(&BcjNXbyVBTgZgyC5(!->|g_a5_0dU7DEDGE>xK-aYpuLJ02LD6KEhWQI-~;VVL^d7Ud(+jWdNe%rAScg zREIrtR$`r*Z|G4`8O_jKAc=spwFER{oU|)O-#{rSVg*3$p$L(US&sXF-f!lA0hs3j zvmGit(}mBOx227!sIiql#Nx%?s#*<-9B2e~Ri0kke{x~QJd&U04b7vNh*JhAkDR<_ zk|RXOYE~sldC_~zG0X)}C`UedE~6`d6~?9e)r(%EJ0b*DDnS`0)@Je6)#`!;d{FYn zX?Vy?2e0BAp(Ka*>|}eX&T!e_aaF7)d31lNj?2vvEl~2M06w$o5R`mUR7C7G%X9ly zId`u%?NW9L5E>(2$lrGBWt0@pzbMpopQtcS-n`_>PVS{Q`IM450JwU~2BvTMfY@i! z!wCA#GUBO0VX?(ABaI*oNX17O3T_P!8WXJEDRhmN^QQOBcjUhUime$i%Mg8)_j*(A zU(isc=M?3oal{&XvN~y_v8_hRRLw^fWt+2l(t-x&)KZiD1y(9lQu>P+bw*IF>uQ$t z@fvmv zrE|iHAH43D+3BWU&7sx&4ytJ(diCvPKHC4_0C@)-l2I(1f%;d3dEQ5?#q3aF(*S=CfF7R zSNFVv8!_~_?*#?JYI^c~xRerL9fImLybKeo_+6E#RoE^sgbpcn>zu_H*HX~|q^^KE z>CY(OIEn5Ntv{wL(o1228A4tmh7sZlDvuVSKu+bSO9_fM^2Ys#3M16~wnk+>XF=Idd2Qdw31$>S*S0jP|< zv^x88|3n4G*Z`5sQu#6h7NTS+{m!OsaX%_vzU&1ma>@%{4;8k^y=$f9th*tA%>aC2 z4&XT_y;cQeWen*mIusXP?&a+c z+jgW!x`oAkczCXLZY&pjY-Wff4Kz@=I-e`$3s-rgd^$70l-%wzNCaREeh~#J8kOEF z5G=WLt(3R`R=$fgzZLAbc(GCXq(NhiJwfdIg&wsJ+e^U|_vi~L?`4FOPkOip*H3fO zqU!c=I$W+^FzCHZhOcEWpqRG9V9W#M#WBAQzG$fd`b^gR_SGgDlvy^QFB3e(M zfRYuOS%x#J?`e!VXs7oGB@}-!QRAXSyT&JZZ>aWOK(4tW3V@PJ^=>&E*@sZkt||Hm zqPqbVm&zZet97r5b)V-UnX~}V^xLKkDm^3P$?`dC#FPvm^iDHR)tJjFZkW15o=>_| zs4eMNhC7#F&F8KfK^ceEJy}L)gJe$`uxUKze$xI2c~UBCt>yD_Z*woo+b^E$RRgBh zPdb}uBX6}DtEETPJiaZDp7io=J||v}G&GX#*BngUYi-RI_l^J42=_9EmG`VHcXcfN zv5Vrb*U{ig;77Rme#8bgH{wp8Ze9sGE>Rr2y;tO#Jng z=u7yyJNDkO_sFw(GVg2!LV1lfNH{f*>AF2EkaNXivq=s zs*7E>of(!8S1D0KSQU0!9QO*WLQr3@Tq;P*+r7N!@-oZ4G+!x%EmW=)x_Su^1uK=s{PK65O9(iRZu3hu>4X_&0=sN5y9WsVrTsL#akA`+2?0s(`CpG$V= zJ=)T1(k!g$V!|tlYc^sWWi5?$HOv{EQH*NL-409aZxFVgLb) z8OZXGm5IIf8Gx?(5*{8FeKD918wLhT-m-cjOLM6G5c!`iY5SBC;o&8b(Mrm9te0rN zh;#l*iCDo0FTOUE53g5VZ_!F%oXV>V;5rV5Oer4^EbikSu({;R*8aD=e+*;FiyE32 zCPU7Ka_7um^2>_HM1^SWT}5FqB+UWqk!L3E?>gz~cD;^YoN##^+UA zkpK-d=P93Z0d?_z8R1saaTkqfuNH^b9@p5)E5Q31n5PTwuek0w&QcVYy&QBm6R1gs zI>X*x!D%SIHRt0zgOc}Pf)P$$Vg0cuTGE&*Y^NM`ale@NP7sj>1BUTRfzJ2k-if;u zPdVFM^3^!Gl;7aGnjzm+&kgVXqMulJsONN6`3;%nrj}CLqLJ$xf0TUme7&n;4X$tH z&3bygb!HS;3EnnE5Yz?asd9lBi7j^+d*bDDXL*ZOBTbIVow z>vwwbi_D|!d7b~fe);@rOnRS(zm7lO@$VJ5S&k~V{r>%zUc}}1+`RSzTH@kgKKp73 zd?&bdGbiYjv<1uTzj{Vrj^5i+4nHjA;q39$ZzTgV|Adlcu03ZQOIu^F>->Fw@=prL zs~~x0u1g-=iu^xoR2JeHyyIb)$vsORRksoLfMTI6dfe^VvFqtQ8VyQ|54%+p2> zrnQ(eYXHvl%PwLEgrAzKSAc&_pvdFFLRJTZYYdf*Fi`6yvmpeG5OM@@iM3 zi1n5VUhw7!uT>w#wFp1do@W(q!F)!mt8aD~ZRG}9jFk6hDQ|(Jw={Z81CyU+?%n5wTV?+8> zc>1LwJHRk{dca68AYh5>!$=a~S#;CMW3Mtas0kUJVOZ$aW}b7AiMB*dv?ZK%U0g$i zVQ1kGtHs$7rztN zAG(*zps>ivl%di^q$s`XQwGb3lUJ}2GPA~;d%WAlV30-BUOnv1xAM_cZp(X4>Ry<}JzB~+*fNkYL_;+ftSb#u|sI`S3N)t*=lvafu$$nh66vGS>47H|6CstW<{y7oF| zPU~OCpY-^@1{Pnf7J!seY4oNNWWNdwR+O}@pAji zIlRZ^eeE5Ju7D>5WDQzi2Y6>#`mE;T^|KOac}ETSvdrs5*zcf4HIUY=QcYgy4H z+>P($i=bTfz7Bh5lu-d7=Rua-73jSgNiIU|s>J9G+@t8jg^_cDw1-NFl&93b5(dk| zY1ZDuv5!O#WX{r+-pA=qF@F41iDY`{RU&TR7@5(X$=Pp zwy0;LJdm4OhmgKo>z7cOIVY>ghE*D8=VWfxe5IO@e!Q*+__~*snccFMCGoYvmOb9~F)1 zezT|r@`xBhp|ehKK;;Pt%p&`lD`mt2^pcUEJKeKoK}=Iiux`tWW_v1)0Bk^$zeBzGd?MTOQNgTz6LLE} zf|pT$r)=SqE2D{f9g3`|8*n~pTuU#e{=r4B%0e&`V7A9H&KRR;RvyY6 zLMvVhRH3I}?=xlndziQ9Sl>b13;(c^U8&nhxJWkBD{iypwHMU&sI8@qZ-@RmZz`&cY?) z3J0l=(_N$cti-+C+b$d9s^kuE%p<1?)Dzgkl-Ov{$JczI+o9sb=)D6O8+)fy?4E$3YH z)Pr4XbD{f+(lrh zpveMQ<`BbQ0D_9yq)~_-M^hmVdT|MQ&pBW%0O1_K^Ed$ZI}9%u%jH8=WS0U5Ko*fo zj~Aj+<#9xTn{LrtZ?JI2m}e~6jF7u&vw&f1nLC&&%MxKAaN1gfjcWY9?RyobAwW=( z7R@+}mUOO#@*fv6K^8@^exVPnG*5w<;6>al`r@QV<8>cq)j~!UNaojmx++9v{h3i= zGHH-Xi?QVg>CsX1FM5v_foncu(f9JwP(N0qp-$})j`Jw+=>hOxxru0g4Qp)zFC3LB zu7;$Eah~I9Z3n7hcz9W6cq5sU=hIn4N=jydR_8idXsoG}wHF0n6DtMQ68P5KTfRd_ z^T~dao*{2-rHkuC@E$aQa&4ovNr6D+#|s`ftEU1ij5TA9 zmqqa}APoizS8hz9aQ5tNTQ4Pq=LcDcCy*wY6Asw2-wfRij!ykX`vvuekt6(U`q}N4yl>%I994E?8u? z3LfQs&0sb&uk%vr_Ck;(gBQ8~SRlYV`) zr4?ya0K~kL_^qBD!kh6h|jA=p$+fXck%c44$s)~8Q<}u2=L;z zUR*pI%dqkub()pbrLs^8?J`zLB{3Jx_scr3%tz}gucd{ia8(-3VA2p?gpKKcGkP2V z_pvZ0WR9P!`kk2e`oaJ$dqAUwR7DfYqq8W)sP|8+GONL9PF?|E3X}Mf$_W)&f)Ew4 z=(grmVNsl{p4lA0yQgQ_f%%Tk$(W0f$aPwj=~R}ztn*QoF2*;kJZ^f1ia-IL6+}CG zsrj)8YlhLyQ6Y$PoET?g^XCn6EyUaf&^t?%Lp|MOZ<<_df!0ud)Fy!K1)A1g)ei+o z7tqEA+UI%V$B!T3K{3Oa@wf4QK9yTn!ramVR3GxsnbTa<&-u-HMy_Lo&sViOdG4}x4#QPrd=(NEv{C2A3cOUxGXb|%5kY=Orirq) zXevbW#&?>TccpjEx6?gZ<&x?9sHQq|?iPVlAz~1)lhR(HpVMb3yR)hgN8u5IZz^h< zH!SQJF!pkMU4|%fqoJtuzt%1QZ2+Y;H0|6)Orf5XN!J21mOP6_ zoF?e%xo&fgCE_3qqti-ONgZz%{r^mp>61=0+eKj}Wuu<^csx_zUTm(uw4ZaIw0GSsS0{RG6h;$r7#SbgR(PQqYiP;mb-@mF|k6#8xnCQDkO$Gd3*B0wu{9 z;|9sBQ$s{CV0MGw4f zV`~G}i8<%MVDYHUJNy8KKX4q;o9`S;Gjo9^6#~%yba9i|cg_l=K;?Y;RG69ORu*z9 zIBjEYBijYgJ35Dysm0JGy3s-l_Eux>8ca@2TY%{WbDt zpbA7mf0W8mZN@9F7f|IxzNeHluoA5;#d*-sIoDAb48<=~0a|#ODWPFKG{Be7RWvQv z6w7)OoMui5P8qj{0X(DrhQAUoOM=W3JxrU_{ z!lFlX8EV!Oxp7jSFDq@)+9Y^|!=`v>&0%j0!5uS-8c74VD9xN#kD^3#8FypU#d)3# zpAN&qbVeOXKETi#^&Vay%gf!AYhu`1^fXjeZb$6dQ!geufMu?)X`Wl`4|iuvj20oU z@}`QvsTKjpVTLUHh9qB(w^KHgMgWTfHFHEo>17YE)ie!`Xq%x$^fX9Zfct7p0Uxx` z4y-eO6QZ1u4^#4E=7gr9!Fflky%PdMGsPTdezvBauR2MN!wl;TipRUG%cAR?)2mn5 zUheqnfmH9%iw>}W%6ta^YT0DVy)GWYuk?-=9d7;n6)>*niQhCcc=OA;6)@L0-)`~O z@h3U{jhsa-u$0VV5XMH-sojXssgyYjM93m71v&^wmr+Pr5TxSur{E z1uv~PRskM8uB1G4_9j~15oCgk9BGggk}|h$VS8ib5(p`-ol1*7v-Qh$ezp0Q5-d_M zmbrpi%=aru;PVrt8oeJZuP>!heFd9I6{mF!i1r?f9+V7jdU^gh{{q(qs;}>(c~4J- z&RrS!`hE)-e4Q68O04CGFIp3_lA6<#z;HT{!rE+(VPO?* zW57>`TgT+~Mi$43T*hwExZd5P;kU%^IuY=w9JhpqrwnW*0JRoUnzG6$EPD)U9pnF3 zP@p}h8F&Q~Jm(7`TV!|TAL19u)l63X^&ahQU##y_*Il2fC)j1Ka5=x8^8PN(6lx3< z=hO<6VXIjwGy)v%$eh(UF&NUG#1BDaO?dXCd+sEEFeSn_~n z;7q@-)5EP0&Ll@NafibvJ9Rr{8^clAVMENJ1leQ1OVq z3Wyyt?3-7Fp(w}Z*f2m8X%r9;Q8{{00R=?SBdDMVA|M!gk`U5D_D-_HE{emuH`Z zOPSwE0$<$3axR(6n8`3%M=qX^{5@fj(h=e4KBR4&Rbzk4;C*Kr2bbdSjx z=E8a7`z?eBx&CVY{x2%_@u~7WO?h2ZuH~53O_X=_BH@_tp=O`W9SoR7@$z$&DD`~Y zBa}8j?|9Rqi7E3l4QF0VFHwAhwc;eHFig;v94S`Ve67j(8`%NNdM!~=twv)nW%d_j4u+3riz zZkdd+>3%PD?-%`TN(1EVVP^B3?SbMj>MU90Z*xj^nFR&o{&|sQp8u-zGbV(vN4BG$ z2OSJdce;9gic<(B!w#K<(7va?OT|6HF<`e1VQE-c|uRAmS>MRyf_E(0?88YyK4 z)imi5R9Pz}tB`U=sc1Bn`y8qqWSiGyO|rfqyT<@U8F0}rc@bZ<4N8zIf0ucVX;gXB z8!mEeyvPh2Q-aAe+ojxhl)K|ApZ1#`*Sw7P0`VP!j40nVI&&mMsZ&&m5e_YK4+;s^ zsH0xA2Gq!+U7XXztk>r~`coH&mFZ%m&7!9MkSW(km$@|MJCOP|J88pd(bWb2=w2xBG5UOcikCUXz?^9579;7WTEXM23_I=5yPxptJ z^*Vn3%LnZy+q0~jdsLFl-B|mY1NKT0?m6$?JG=-|TILi+d#%{sqG01VX==7E@4fy7 zshg(xcyZ9|;(C9n&&Nlc%}>#>^Zjt|dGodU;p0Q=_@JFdYb4_^H#Y7)MyQ)Ai>qu} zJxOiyKQS?{`ze{k6yrt4yevRrAk;d2p>U0^)ZjOAbEo304IG+lEh`^KNeU{{mGP%m+f@fK>#2#yAAxo_fv z(3l$&sF}i5=0A(J>pXN?6YCJEIvTahL zz8A+jpS%*WzW`uSqk0(E&m*1jrJG=Hq+jhIu2vy?$OKsvnDsS*HRl}j2g!${r55p9T8H1nK3>Q zJ;@(p@S`FPexPKL%5$X@QMslt=3*md5=kde29?C{bVeG?f5b<tW5*fm!6mR&LkL3&h#+OmoHP1f#3}5nvpU?5#yC?-8_4+sR1^Kh* zW}l^$_^8*vfiL`$FVCMn%is8d&*$!)JELqF_d(fKc}*AjGJmntww>1gOWP0gJ#kTi zs(U`4=5AV3a|Qd-iu$FEmV2RaFR_(g^i21DzZ@|p)Qg2CMb?R%!fbt9ls{!{OorC{ z!?K6cOoUA1()Zj}QhQ=Ibeco-V%I3wkOCI4{Vd*@d&qK*=Aa z>?n@fsL0B(e*fP2DEG@cJKtQRM6Bd{jtXeU>iVLya=II7jp6R1~*& z`aSVtd*wynpE*cltZ}w^M(2tbA1cpXNYYEvIeU>*EN0Y4zNE_cS80L5-HC)?Jbq(FwG}`3wgnDZI<=2$GwkdB}=2P~jDuxbIP-HxOM|$$=h)bat8xefAV> zoi^b3ufFFVqj92`9HTUjyUcGYhTO~vn2E6Yj7^(=_IWYB?w$W~y}9#S9Mm%A(OH~E zIsP==b&3ua<;Qp~GvB#9V`g{E8MgvInU8V&#_V}x42;Aib6Am@!RjuE;@NwcIqhZ5 z7v-Erg*#(G9Pw9as%M;i-)h5R(GY?k8TM>$GtqY)RV{5Eybr_}a8<=ezWeKiZ7@Ik z9K!ePec#FLga1wpk*nvQ#LMpd!C53#&BhIHfAyckhd_*xk9g(_SoV*MZ(=sn++M$l zC$D`6kXW@Zd$`^f8($J1>W}7 zH}k*!@vq`lH+~J@{(0|4Dfr?y{~EsSPrr-Df8vZ!`}{}YquGqPS3Ssu^1_#WohEPHOu zx@2KJen(wov>Vs;Y<-UZ&31S(Ow>L5ZX8F1g1?Hh>(6V(i@~R28B;N$CgW`~T;&d9 z@MmsN_fJ;Z1L7Y86;S(7u4^Le{x9_QQPVy1SUAuT7T(IF^*FZB3I=`q`w z@_9wx&W)(TG+DCU^L;puRLu;mQWtp78hLRhdMaNinX_`uQ7_MazOcS$C=*hC2Wc8p zSudsaMY=H1*^e<@$o`IFOf%_lVcuqIJdY_%mxDO9>bP*t{2j*md+~mhM@X}_R^xKL zFt+(KmUU2&9QS6#iY|>AnNe!VitHak7 ztui;W4CgqP>EboYGZ%YdBCQ%<;Ou^Roy^wIl$cN#Pb{(_ueritTHgBwCri!NMm9=h zt*6Q9N*C=sv0v^P2RXP^mc5$Gue|rmdPx&8&Ai3Wy+@2MmNRordf_{1CbO9n$jq*- z)QdL4_G9aY1j)okgXlYmaL>2{*ub7a1n5o(~`YGY)_9 zEB?v{omuRMVT!I?Fe)Ik8FPpY522c?v()>7EAu|K# z!h*jbcZvlFrAJj!krxfOtUX3&XtemIYo;=iX_Job%_LpM>lGz-VY?Q^U#uMFn>CNF z%y)6RCHyvm#LW> z*x4wV3DS%EC;ttFvT8IiLTTWf=Q|NI3#yVxbY{9tO!X-9MXr?M^2x7-1mAG_8~MJk zdOxrK^lP|A^F3eo1V8^hw+Sio+K>8Z{?woS-#KdT!}%-xr>}S)@A!ecTz;hD^MB-5 z@l)UN9IyEem-$!U`+K;1`!=8RXZ{?nyN1;j|K>0M62J7O6Ry2-$shds*Ra0o=+o=? z2mkO%e&WY}jHKZIIQxzKhcA5}Z~PrsSzUJgyDxs6xBiFQ#001NftzQi?6#4neStpQ zUF-$fq($upFKAN!_f`I2{j3SaRhUo^3$k|W7U5IkDv`Yn|% ztm(2A?+wh%R?W=Vf9d0wGY+QU*S+^s_l$wj$a<-3lz-*NTo0&5dw1MpsVMym#^A*O zR5`}XOz{YcF*JQ~ln-TC#Q}l&<BiSy|VlaeQU`ah&g@GMrN}Ycnyuq4`8jeHv%a zp^JnrGBnK`so6xQX|9dZQeIhD!HTTUgTLrRs0;gcJ}>3H%pJvh$0qV1j_Y4ub&=uY z(jVo&Qkm^HP4&Hn&9|s@(Fq~1iRq@&r!kCUlF#F)V+y(2n4wHa7A+Mv)Fktg2c?Gt@8T9N+b3S!F>|pumvg0VRnK?_=FVl= z_ody@T((SmJYCS6h1I!?cJ>HU-D8mt@5rXLboD=??JlcD~&eXC^9b! zDXB{?_q=GImU{^s`-}JJhmZgFj}O{etgIb3!x+(2*>EWeA^|z-kaC1MWhpssI5`tY znP5Y-R9Wz2k@I|0FsoxA3zh+@yGIr3alV!+{JFP@rdQRarre z4%RO>L9@+%@u$2I=7wic)c5T1G(O2RZzYO1H|j33R?QUiO!1}hzQuW-ZP}FR%SQn? z7gQG?XX?Q?83Hf;_%DuX&MlsKW^4RxHg(0OnGD_eU|#xu^ZSYt$<}8kffyaWG|ND! zS+n;Gj_h0k+#`TzYgm+WSzmfOH*w*a3i*S+r-rF0@o_%#4Mx`9Sk`$F!qN{f1fR1K zxpvFvM2wOMUW`-p@Akoe=hpg1fnVUc%m0zD{_Jn$;g>ziH+<8#@x3qnZwy_>U;4st z<_rG9=W*xGZLVCo$~S)NzvO%Wz~}P9dd>Rk5Ab8p{5`(pPyA;T@Xi17yZG9_^`*S? z?Qg?qP1V$FAKUVc|NLL_UElR}{KtRyUA*FzkMR%w=|ATWea3I&?#Yt?ytn!ezWTHO zC9nUOkL63h_G|gNpZJ}eZ3i|dJ-wHj$sbSuCvVc?TVDQW#wDA~n|bdW|0;(c_p5p4=4Xy;;tBtKB=eQL_l;l3;m7@I z-hcZudCMz4Z(PM%{TxS!mpDB;=3Nhd1xjf?{{8<*3^AoM%cp{||N7ink~!Do8cySW zof|mg61%X*XA1n@b5*H1n)ZJAUiodF{kqrbobQ`)&#D6Ho9(G0*YYYWS1#-GrH=XD z9Sx?kmkYCKxk|oBX|Fbo{vP9`oI5kXCQ+ogP-HdE*Tri9Q(&&>qkBG||EF~pvT9T5nj;g$l55*RJq5v=jMB5ba=)kGfr)pi}5@)*&XBGW;&&;nezN$WQCs1 zeUvpPr30g-G|YdoGW#YoXGbXslQ4vRe>(7sI#C+ zOmS=K-tdoZ1%Kgi=4cmvuA6v$i)i+Medkud*!3z>Wx>u$MH$| zf0MjOv-8Wnr`P&o`Obx7p5y>kh=9j6kfmpS=Tjzfbg1*5Ns#$ACJ1nv&vh!_=0ypU z=^1B^;!K#_>kwa*diRV6L{?-b+qqu47uoPq!Nci3Ghqg^AV>c5tiFAI{)?UDvLioy zd?+0sw6nNeRu?vRAtVu9KC#KEtQbR##E`OMG*P)1#h!@Ld(BLdGZ5iCkE+LF=p=z! zl-jg7la5*yXz3IsQ)&{bakklu5>jd=KxUg>;IL|9|3nkgr0`*`j7qY+ zXR=_u_#~r|GyZK_=c8ei=E8QWXL!+5rrfl)G%i+(q%=|sS(^EB&v&N`fXRdc`T_%H zzLrr;6*=<$s!RlvQX-8t5L1r-`@iSA(F&e@>I1y@J@4Z6Z+Ihq@I3g?Lwxn$|A!aG z{?H>YDeO`-*KpaP_d^(z+V^A1cL+MJ?}6t;cA;wf2G{(niR9lvdbG@-wa_EyO|> z$uz)@Bu1+EC>IR2BE$6frBahz_RHKHoP3MXuqZO(-srIcrA+RBC+EyzhUI?Km_*^L zG1@$idQ|rE?~DwFY&MPSuRO!N&ShGc<5S;DZO>$UUcB#gBRyW{o(9Oip^=Lpn8x=x&C9*sa#=(3jHlKR!pvZw8J=@TaGoW;U|5e1 z**)`_(o8qZWX4!0SS~TMKg##Vam@C*n!Y=SVV0owRP%PxK`QqjgDkmsVOg8yof|EC zJw=&ZGukmZOPcpZ8P@npbC9Bpzw9HO`wOd)C!qBBoy}2s2gMmE`fo-GC(o;2@_biMso_Eh6vK&+6crMQU z^xe^ZpF5$y%rPIs?6hT>9VSfZwS zRG214qAo_fD9U1Zm4%sXu1_d}jzZ%s!Y$_ibfGve22W8Ac_(Wv!gM^+Y?IF)LU#Ss zw<&MF!YU@wrAXQoAZWhx6A4bC#=3rc2YJEQSi$H#M4Q#m^-0&6rH%ljUGFMs9pK4%j48On730}s-+`~00qjFEr*_r8{wKlWXV4SC;OGm_%I6pm=&+dO< zoUih|^RqLNSMxq`su=UroKM!%y-IR2`sX~7_rj1~WUrU&a?$uN0hZE3uq@R%+1L0( zS%>5GOOHH8gL_&td0taCs*1r-8o7_cGQ*imP^icc<`AvihDT2_qwMNY{^hYvP3g7F zk1Fqd9+b*PoifvSWf3u6IZg7hyrv`#TeH7Xf==0Z9s_N2d634Mq9T7(mdUeMMG1PA zdydA`ONiIe;a6%jj;8-l@=xCJpeeO0by zpTT+6G(q$Eng2ZQ>CygH7ta~*RbB%3teJZ!oScD+6cV&~Mq2C~J-hEc7Z`Qt#lO!D z{DKCWiJWQ7c}~l^9G6R3gEKv=W(%l1<7j(jCV8a_i||ERr&3`c*7?1~Ne&i=Q_buc zxM!VBHjpJ~CPsjA`XYYEvyPEwx?$Jr^PhXgVe317+`IesQ14qQi z_$)J7#Qgp;5lI21e>Bte|L>1UK2K|P_8#v&d+zl94_y7j$A`x8K|70LOp3995~_Re zb93$l+L~ODjTq7?jT<bA(3{iHI)&Tu@E9Y_;K+Y zYq7>cDvqPhEda8RRa2B%scfJph|vSmYt9;rF`ATu7#B*7&Cg?sghEV!9wS|PEI?PI z>`_c)0U~fFOgnlKkTQ;0p-73^CYk5a7oOED#O$P`NdisA9YsH6=CqhdArV7j2tkUf zOLQqELKL>j$yQHeB&aALjY6AQv^7JK#-3OCn1pd+bYJgP&di@(joAuSo;7-dEyZ^Yh{q%T!IQ%m@Lq??|EwOlx+qR29gD$VL)l$bp+$l51O z!GxlqG`Z&1RAbLUxw%AMi&LATw3vwb{i?ji=7MyLCeFwY=E}9Ola@+}GR~wF58nKP z<9WaBcYY@S_B+0n8}~oRt6uY3-v3L#NQi-lA9)$S=70HhyyI96$e-H}ktc^Y`&1KluG91@C#++o|iC*T3Ooc-vdw%aH>5OE4MvILbMeU8n-L8$ zcPwX_^Fl;fjMm~PN787VOZ_z{W%FJvS?FRU%X&()JvL?ymCkUti`yb)2ciUcwIcUk zg%FDbE(UmUjtcXl{5NF~Wsek*H9^M8xibSXL;S}YVsyUweA@C}B#q=|#pxKG*DP05 zZtPtQU&j4XOv23Mna47sPKpzhVh-E@Nt2Aa;26$@S&=(s-(7TEC?4GSPDUA`CRp7l zztYq%vjnrmNuAbuLJ$ELo%$kBrv+EulgQ@mFrJrBL z%DS8N${bNGMQ2a4QI$Cury!LVm}@W#{CO^CXYXO0%-KaUJ#W!_#U(5vq3F~!%D)Lg zbuTne=16qKRHgugIFisz!JGX54AmW>jk6moE;>3FMc70XJ_wB?9N%>dK|;O zuF8dlaPQ>I?w_)KFu_$z$Z7m81;I6kaLfJTC{r)4yRsfHEXDjzN7+i*rHoGah4-BQ zu8TaKuc`U9U+TfsG*9#Ac`1ke;)RmrREmC??fW7IQWiw>z|Or0fQu-A4<8?D#|P~! zu2ySe2;-`YB%G7TlrD{CQN$2)gV(}xYKSqh-*-}@XbmR0v@_18%)X$6ygFH<{YeU(nb=~lHzVV+?)eZmT?|&V;-4>-1U-M;O#2@(+ zpUdjt0P7sLo_~(7`?4?MU|FM-V!5pF2}qjH{=C1yeGfiF41w)t!$1DJU(J2juJTQP z|8MhIpZ6E}1Ap|hh%xfb-|%;+t>(tH8vry-#p$l6FB#_~&r~e7MC4^Je;NP%hrf^I zazWG7JoUb}^EbZitN50G_AmHtpY~h$jNkR?eC3yYC9iyF$=83y7xS0C=!>bUnirmb zj<5c*FXC`nLxQjU^1sGk`D=fJs;YSYxo7#xFZm*t%Lb(sU-jjGoxl9ozGVFD%fI*w zu}%}iK*{<%|KPtuD@~PZlo8io`X~Fb7hV~22-#~Q2YrwXHbE4wHfF3#DS@d8#z>Y` z38n2+Hy!hy8f$8^(~_j|bx0x^QVPU4UM3By32BGx#ZmGOrd83r%LrBWyr&?HO>dCoKu zP0~roi=sS-II!7B^s*nxb03n-wMuII&nSg)vSSNcg9La%Hz;jLDv_(M2$3;JQ)(bJ zmS`X;xrWKcwm5d8gOt%kl_C41OR6$ih?n=Mkn#qtP`PKG$jI#I=OA0~GKa<(P;oTy zB^aSaHYda*rUaeLXlRlhakM}?V=BQ6nUk0yykf`;f&oglvv`h0rj~U#Ijp1cHfy;t z5>v$NJg79zgZ!`b<%>j>2x?;IPDLMulp*-iV^OP^bxJmW3nC*Xw9R`hX1S=!^X2<% zHMUJjOstv4=*bz^Imnvd)kp&z3rsdau@%B(?3)~X4P$^Jjdp_2Lus)CRHXECNhzX@ zA}N#SHMca9jJjmCgVgjDc9Wj>3Z)Xe*jrt%)LA)IP^$7|&yrs=mS$Xjldov*wXMh7@UdoM&zRNe~(+CHt!{D>;=g(;(b!L2EK zHYY}+${^k1~wh>3qk$$7ZWJGtQPdB0(yp1eA58rfbiq@WYPchx9RD zr@x}(*MHm_MMx?&)|bgzG)!wWieWQ-*7cLrRKhTY*ye=m}nWC|XlPh8(7l2)-v7SAQedWXDC;o2?Cv(U>UCsi|rrfkowLDu*$$AC0l> z+CBTBCqy7Bh9L?&Z?@#cDGc;MVT{FD&BAHw%HTsb6hff$1G_Mwatx|oR3xS7`vIF% ztVujYjMlhZTbeWyE&F#OU#HAVe_A;fJ2K?+HYaE2Ro4rP27-rl2%R##VaZ z5i?;+ftV@LA=aAd{Jca>l#D=75*)B9`}`$}mmPcAwQB7D7*iza>`0~r7cy@pn_N&O zYFzIn6RWfy9W@ja>@O?baUVsp15;R_MaPw`RH#4-j6;o1W68v+(Gf^lwt~Kp1r=FQ zoX&D?*~0Qe7!fKZb09&$RDv9l9PrC?mStqgl1|w?HD-jy70iBc}2O=i;b!0X@(=mRhyyI+tjq*+1<75_xe72Ux4aK;J z$4qY`2mG^yEB8@xx_8#<P~3bNJ+8AVo}#yG$+3_U)0K#cA}37t|l&N3JGSOb|ic~uE3qAYqN za6hGHj7yTWDMT(t8x)ohgOH$%jcN^GNGXc(UugT3z*18RSZh!!W`PSn3=%m<6ppn9 zr8Pz=oQ6<2$^7UXna|m>1hoA?utu_4N#L_q8_*IJjy?dMVeo8s9aUA)FT@CnKA=s) zSVv0W2dNl_8YiT<~F1P-AdG-j~i1w9?a3=d4~z3X_#q zj1g-TAw;^q7Y9~JW=?A{U{x~IuA;6qOJi8AuCTs*m82t2J^ehpZHF=nXB@5f1RpSQ zK~-BS2il4)K@3trp9;I67?|3~;QK-4h`hwdt$~HL)V86IkzQCBsEwHv7J8~_)rn+4 zn^HHZAj%p_A=1Y{M4=_wh}9O7Vu<3@)h@?AbI(EJ4T@M92|_4~2DDE^73q}%2LvzqW)%?|DQB8BlnA z4?V}{d-k12CoLJ#Vrb``_#)Leb0CXt9aCcPo~BuF-?bIn-JWfisH%$SYobT88_}bT zC3;bkAti=E_JVN^m7ObNEk-M>tuV%+RL&^fxu4Ycbjzn{>IF(ELi8DirL#;*IH#~y z6ZLH1^8%pF1$XI*Pz^u!pbDsgs04mz34r0D&CQ=qiL=64Xhr>-4~ z#!)$o)s_?!#%g-sv+sNQkRa74m2lP)2IzW^GK#u(IF+b#uqJ9Swc&8l;IzhR&7!Vp znkDD$hO_O4?S9~V;~9L1P7q?E>jORxRMxSwHP%_GN>gct(*|loND-Y9E0s9ZV3WbB z#A4~t&M~wJzYjzPFe%GQF=*o`SHvW$ti|dY-+PA8k(6Z2V|GeI2*ecd5rz;(xu5+p zV#YltveBjl4H81YK(Q%Nqq75Z$;EeP$9ej{`5J^@HeL;s9 zagdZaBU)#rTe4m%%KnUz!4KKglt_FEqp%=F3A!qyGC`Ke-`vqTQ)QcBa*HP#xsevqJhl0d)Fk|iFA zkP;~3G*?QIbj~J+I67KlJEUpj&uon3L!MI^aZIxQq$gw!z~sF$5ps=>pM$(*J?rtk zsN$)^_?<$iLw0U2WN=k+nhKRye&>k&Q&??B2z_~FGaZ@D;2bzAK_EswKRRXk-kOqC zl|RqGMi-uOvgyl9%?!Ib&7OtX&octD(d$#Q^VB$B7kMel>?r0zr};E}`1sH|K6ru~ zr*al9k)jdDNrf0SU7>wY9nLUQ>{``ilG~%UIy7{&Q=+|DAq(u;#9>D^L&YuWRzqQ zMm#!zHfU#YD>EwHlno7QJar`!p{m50?%IyFkA$R2N`!3Rbz)3Mg&!h`C=iM2S$vZP*=edD$Zm@#rgGPPB$+pMI9j`5C?wn6TFgjAON0 zvZ@+}u4BJz=`^4u5TRlkYqAmoM+R8b6<3cIC=SfFwyuUn0Emagw6RcysKB7{J*tfJ%nlFc-sa-=;DXKg-F?lcslqC+4A$DLK zNol;KYjD<)QsN6f=l65Cs6ba@Y?JUFh#IXe$|z9^AqRj|6i3AvtTI?2dTE&36WH(D z5mwy$K;L~}qVFMG0(!>*S#&K+Q!W@#PH82T6)Ldf^= z;2+!)} z$xyVMg%-J6V3^r>&dy=TvQ%{4WL8>}vvV09Tns=lPz?pXn24AhoE?S%h&WfFmAMcM zMa^0hm9>@~a&qme1bl#8Y7%1*vv--9lwpp zNTbK{o)Q>INo=sDX>iU#in6|Z5L8BX8bc7fKsk#4#aNG<5kTGtjL}$YC7?I-*~d$> ztdcydbq=K@;c#$xKnNbCI${-bpFNp_e(1+ccZ{XvNdnR%_k&WH5{S$2ce0aB5P#I48z#DcmlsYqr2fVlE&8fLEr}3m=W@+m6psznhL@}qTxzwR8~$} zgLNgFngnWCJJjH1j8-6!DX9#<72)lyndF7a^%A;3ECRs~V^&KkP)?zuqVEJgTDb~i z9oE#u;3?7K`f$l%j{b^s0&Ul`-FJitLl%x9M*J{HWVXP5drv>~GLB3oSR!_P*P)f7 zs%x625!hQ2n3u6x04ITFsY=ri0;h9TMevcn@6js5Yn38~LDojDGYJ`b+AJ3wE*3oa z&{YnP8ulk=Bo9?(xqG^!8xr?Fc$uS1if3ETqpx`tS08*`Pr&%5>(bnR$Wz{&0O6=P`ArAOt(AskUl{ME77u?$J82l2G zq*nE0-{Jk9*Iv89a&gF6>$!8jC&qzFTdHhu8l|X|WWBoR@yOpaiPjG^hgVn~9N_v6 z+qIbWisN=e@QHfiKnL2>jv7nUL9#GO6J4V1bG%whme6TS$Wh~iqZ;QbNQzy%qxYU= zQ&XFY%IZ<+RoW2JKo@(oGSt@MTutRfw0C`E+Yjs)7Lq1uMHd3QO;6i(457`2tj34L zfvY%8k})M4fCY-1rOE%G&?yF%A)*N>qEw_Yu&@bbpzV9kHZ8Ta9A2$xYC{Y#R2rij zoT~^SQB?|OEh$1bbhNuYT^G^TplwBE4M7XBk4CcFRvUB*xXNOk<17qxZAb5WQj%63 z))}eDQ&2Y*)>@Hw{XpMfnn&eu3@!av1}@7SrWxi z(Z=E$L1YYmz$lGz4xJ*EF*H?;t!l#Hu__RTp2fmqtRuuk+qWd=@F5XYpsGYRo*i#t zxj-3B+wbVRfJL&PB+cb@gFQ0XT2WiYQM1I@n$xbM(Fr2l-E{1{r>-@z-?6Bc?Dih5 z614`a0>`_K<86mefx1>4t!vN~c!g6IX9CtFZX7OX`=0#}*$;tzFOD>LfusgS?>(*- z=x{qo*0-{Tnzra zE25CPu_;jJ1;Jtre(-di7~*I}N*b+-(DQ7`ahPRIu z_TrG{5)mI%ChC#;dLWY{Wr$pMCbiYsh>as5Qi>@fd<5Yjd&Hxxm4IWEKt`q>7!fHc zLJCH*zgB?{s35_lK_z0+Xl2n@R0_m2Fl3aGP8On(8cgj-$xM6+TA{)q?^6RQk)mP9 z2DZ-6rnIb;q|}Iz0tp1f!{w zyPje2xTa#YUQM-%Ndhz8NBrO!yr=Jb5)tbxJ_Nka!3SlEyNmZe+f<6dd&$VFiR?zC zy*PADQ)4pZe6eiUZa1u!wUqAE4H3i857@pP10jV4A0?#(zV8WM03 zsVi#duujb4w(E$&V_k)_Qnhd?NS|Dv*@9};>16Ab&>KZyok#3M| zuJox3LgZ5!oO0C4j>YQMl`Lt@hKNAt1U@0Pm7;*MQDm+328@y2ZpRSBc+pyo%3o=X zZ8SbcPR`D0_j^{$1&7rkwz4D*wKmkw5kjErI%0~fYRAWX?5nwa{g8LP`w8Ch_9uAx zjZ3T#YM#4!hj%}5hvjm?8()2igXVyflUw}!dwz-k_5(l1s~^3OkNs5-^8x)FN0%=1 z#$Ww0Jo?Crx4z}wy!qXyEUp~#$)E61yy9h#lGZpMIKdI3NVC!4SMJq&Rf)C3D++3GjIDP&Tii2V_y3TUjM6J!~Sf~(DuCd$(y|S z-B0k$(=V{l3zC6lrMds|nj7~Wv0ALqO0vr9loiiv{(f!Q#LVC?_a^p-b%g zp4v4G!;YrbD4nDZGn5GEuS_+>6fu?J(MRv&#%0CHt)4C#&Nqo&drtE3>W6M{`EbE{ zT{HBZ7#!M4mI;Z1J8Lo=U6EL@YcyS#sGJxQZCw#l;x(^&kf94`9dVU7s$%p7F0Btx z`jC)dvu%kbGJ@-?~^y_yMgmvK-Z2N*VkOXv_Qweom(%kKDf%OU-mGU z4=vlx2`4A#3_~FJ#BRIe?EIYiU`RF%fYe{nU^zG))LAj{ZrJKMp%H;(UQRj`XOPgqG=2`MIf+`1Hlih>xQF) zHO6UnyFInCD3ypRh%=}J5s>17-EN1EfqGG6vvKW%WL}ImkoDRy48qckX4giX(;OWv za9Xq9x9s{}5DQwNt;I_J3PF`PONfcV4|p%|RckA%s>T_G@*QnAKqgd5u^x>zZK{kq z8StT}8wR>AF!YhCuBq$G7#mqEq|Cw(aqM^Jy%^Tp%@*$kUR~EU0Q+GWYj6GF@jl@r z_#oM&rk1+z7$Vj>lv0vu&2Zhpd%Atj-YOwkN?8lp%zi$!9nM&ejt*$*irs$4X4hdX zIHRbv11iqFr|tF}Swmep_FhUpmWzsJwZae}^eAoE2T$L1;y9zl(euy`UC!Y+RB{-T z@OluYaW5Gef*?JNtt6`zAw>m5l#?3o%1G&e_ddhe0VMl{(e!@6qDGXF#LopS5)-+G zSz7+M9H8)C$YrXk#yUflGj9b(8WNnHoUv~^w6!9mx(@3ci)KN!Sl~mX8+rzBsG`Xx zzGlB`F&dO|gb3|!PeOt+Ly$Uqh44aDRYhq*W~`>F&FDlG24tmSwOmMcH***aKG21Z zMdh;nAx?1R+z2;~A<*~2s@*IW`S*dvVmY#QOMG4e-c{vDG3Cr^X&ICg1J2L-<6sNDiRs|NEA+?GTA}sxcWp5PcbQq+@-e@D4=ajO|orGLU8A@v~ z@eil6GC_Hi%%|9URaH|vOJy<|0>y6EX5?6|l{bP88^Vxl^BFV9+~rq90nEt8ms$Fb=JAxtlm(-V3C`D2visYD;odCS}5e z)oMvqRfG`e+m62P2_aC`b#8}|s2fpK!FwUT$!w|xj#{EfN|TvVBb9X+V~9RttYf>~ z(RDrbvgYt`jWvdD-=ej`IwSG2q@`VlLIhaf0}5?iCYH!GDAov(N@i6p%!fu5vWOgY z3BuSKQ4ATP2+$9M)XY@^VGS7`x~wayLyRHc*UH?tDM{;7KJKf^uc4SrK&}^ zmTakz@_4Gs<+=hSIvo?;5E!!3cUobrL=B7b5oSOk)<`ihcp;d83Im#pfawQGswPavR9g)=npG_&@{XmS7<>3J#!L3`zoSdAqS}X__d=DlX z4%anTFV|c@S}~}|&Es=ys`%9(`3knXyS(GQ&#*eW%qM-~M{@bl@k2lIPWHXxm9Ke( zOP7|M+`7x^(vlv{?HBIQpPg~zXvynd_evHA4|Ds@3BUCCJ9+&5Px16~JNA7bdC9^i zZSgU2?P!715+LY&WaxVCzkZdr^E~!$U5uYOWqQt{+Il`R8wM zdFSKLa`na)-te)n;)xGD!<&Eh7rAwJ$F`HUGwbys^}1obZm3A8zQ^gvmBWUsS1+Mr zVtc;BH5IRX_d-L4NYayRupmy2A>kwt}J=~^SAi!ANmD;_@|#> z7^1+bGJNKLL<*^l!BN0N_g&+2|LCW4;~;Tykx_n!TJ zpW&*a{FjS{+F7*9nXf3>vetVc?aJ`-6bo>W96%EJ>8wL5@Iy~R5u%ppem=)$ltb?$ z+kHnnbonBRgH_GdqcydYnq^lDbk`3u?%gnO`}myGvzE%$td|zWKsPA7hO3t^@xY}u zS5}rwOUD~O>C<`S^`A(LiJ$+8ALdQ}>EB{(jnUAyd+wZVINt2}ji35E_$|NvGl>aq zKKnG^{*S(nrBWoZi00k9^lZ=JG+!;d;T1SH6KqUjIqNq&U9y zJm2*#U(fB^$Lw2Ay{K6%7dWReD&afN^S94AKJRE&j>W=`88YV@bT%pn9~gX(wFYYq z-bZ3DnWN=$Dae-~Suv}@sK}ye7<{5_djf(ISud8&aNRkw5klNrbg++zUvu+;D4h} z_&_djQqr~vf#s$s*}#|)BtoL1@qqgSM8?4;Y(+l|h{H;N{&fmlexpMP&?^S8IYc#5ABn zq8$>a`<@4{EV;gFxOsQS+dgoUx{iF(>mOrX)eJ+=e(2b>o~o%(A#m$-$E~wH+s;!Z zI9S%)I@_|@d)AAFP9nZv~X}Fw&4JiZ^63Ev^XKHYL*`YnZJ3m&HD7i$N#kB|4D+Iq{JX;doN@T3EIBH=z+?aF~TtnF-LPG>jav1 z7_tME7jRZ=D%a8ZK_CD`A!x8hvUEDvWsnqM2xB{rQfnw=E}Euks48(MIqD|@&N)XS(YB6u5aDC36GDs-fG|QzNI^1{Ol?DSG6e7G+JS91 zWc%SQB7=??rD#sH<$&WRqiID<7#z0VDOGZ{D`Y>?5-H<%2o#WuXYXq$c zD&e$d>BMPEXHx?$%9CHyc8y8Ioknv=e7}Xa}CVInWP1=tNal zRF&h2XYSJX1N*keXn5|{hFhBf^UQ5(XIQUlR;vYS7^safciuhQ@RL9LZf-t%hi9HY z=4>}`X}#oS4_@QpM;_qPgV#vDBklKeZHw=FUis*Cj?a6}&bCBnX$}v0=oJsMylpWd zu|7B=Eo;tpd*1a+@8`K^Pw=hh##O^Z55FA8o~uUc%xY&j-wk*###ZzK+3LH%>2^;f zvhM_fE70VggJsR(xjgggy=efwpCS)uqh5OLV-k~wS5xBm>a#DB+da^GYpB{ zevdL@aGY;Dc5Oekoe6vC9~UL(5h9swHPKmd7MonJGenQngegAz2Y-A70~N!fDE0sL z>X-9Nk3NXihF3p%lVA7lC-UcVUU4jwf^YfM|CP0Y#i01ipL-|Qw>$I<)-F+9#dEKI z8E^Z9kKp)hVD-!~zwamBMpaoBwG+n^P{y#^wS4CrUdzoCNUZoIzvQv&ui~ly<=5b2 zXOrmx*i>5&*Az15&$fj%Q zqsRA(-F7oFU2CoJxz=>CaySEZRpI-=p1Of>wHLhCNBqP!iY1ektRRu}jb&Mg`&l#+B z5*W;mWjA<%n0EsyB2ZwZ1ww13_BKWdoEqySV-SV#$A`c$n4E13MBiqjaVG||mOzcQ zioOr@J_=?Mqhd83YATq?KYflS{_=hI9OOr>bZ4(!tvQ2V=e2YKow8UTHgQkF}v-C z5F;P^+J|}g+LGt)Y`J}MOr=_u%N4J9#cR2K<$#p77}N0cZ+jQ}wkNqBT{#X9mb87x z(k)pzms>E_PMo6=KpznHu zk8~-~4+BQ$mT3xx(9?H4ZQBx3q^c~gt|jA?1p1tU5NwGVr^XEOkb~Vi*YJl7(bXyw z(S*!!ooiJ~KS;7ORo9Xj7=}Tz!ik){lY~XvNya>c$l!(DeX*!mHVwmWtw`yppfr#{Ou*Y+w@ zw)4ogqXZd;!Q*o#(+_^kJ`4AT$n#<7bK*jrdTTSeP~KBr*D(ye@PA;#ru>OauSH9sZh$0l0=lWHq=hzLu9}2sGUSiN}n@h#2J(9 zVg_9rOH!JC*c0N!Y^jwKA`LYAL@tn4Q{i(-LFO!;(kd%ea28fgP2Wib$>^9d^$Uj6 z9evwL1kqZQ)6`BNJ1R+?fIv0|jFmbnZ7Q7AgplZZ5#ZK3AktftYhx^m%p!_Hn}l09 zDl5u&I}~QqNU#dh)UKqe4903vUYXFXX&fn2|7)eQ6R)rafyU$$eTZ3b2%JJuNxe!C zmaF4hdeWY=k5PR-Cy(7j*-6+zXE&bpzwqmhp=!c#sp1g?<`@9Yu>%}3lN>q(Q zTj;uh?YYc%NQvb_;CRMLc5T1!AVyY;3Wer;Gti&!>G~dp!a9L};XU_VJHpkP^Ua?9 zw&!3`;T8=y4iC7zTCi9)oNhMko>gqmPSMd*R~BO8sTVffzIBFIiS^NnHo-gJ|2%%T zr{A?Cw;@%U;}>r8%&k*Wv@Em`2c7N){BFa#cB~e{_P6f_p1OILbp;PxKEwz3!1K4c zyWNm%#S3?L?Dri9O+_+r|Ft7hlA4&!u4A>Rxp}_B4?W#}z!`%?Q<*Y~sl-eFZ{$s` zi8wr1@z`T8W6?l+w_~?!Y1^I{g21k-h_VJ{YLWs|Ir_}F91`?CvEA=;y_G0lC4Bk< z?^c$K1{9P*El?_yVi-Dh`(6+P+HicjqwNNcj@FWq=z98I0%QtJ)zs|wd#Q8QirP8p z#g`&=Qxjt1v%dew@iFmnH*a(E>;4XhpYkc_rs0LJ{wlWr`TJNcDn8EYYgql3PeEV0#OCY1n*D$M zeu#lb@4w91^&{$q1=1bN({l@{j%= zkG%SR-uL+9yzQOu!#TLMe-oegSHFUP@lD^zL4d(KvfavN;$gq$JDbg5`2S z-8fc@ibZA7G14rT?7N=ZcTU*sdKzaXqnWeZ2kRAAFJBTEqe`@0&&g)TcDu)iMAKAM zwWId}LH0u!>!q|-^h2cUrA|v3M{OMIXCu9`e1Xa*jn)Q`Zv2 zt(;+*vq+osEhz~s5UuIEj(+Ir+Lj@REU%r0;6W<_3O^_`V$`ZAL`?FZr|kl}U5B%l zWxW*LJ@nMBLK}rog3eJ|YA0iqEZ?#=G%j)d@*%`%{Vw>?9GZQEfLoSkiXuHEqT z&D*39S!&1T^bDd%U{i5)zJ!SSx^gj6r){>KSnfY0rHjMXfZ!{l1;!F$@aWyo3M+|YD{EDN(fV`dC3 z1XkYn^nFLydq`?@V!f9(DGO&Yjn1{pjzwKb@JB0w?E4@IjlxxtB->x-`f}%7&fqDQ zwZm0auIcm)z1SYbh7xB{V5mYyTPi&hIy?8iIHMAVr}Uo|XVvC}hr(EkvlepeAFT~O zSh}vK>w2lLw<0S_eWTHarcz_3zqB-inBnGu6b5Mlql9ZjYvG#Exg5)TaS+>n$ov)J zd<%S7Nq=7>+!Q7wWnzr@l+Z?GPGt=)GxMWI-qxHrkc@5cULf@!K0f4*587E&(LwT( zMbrQi;S3?j0#X`h3@Sqn6jIMS%09LUmkLKb0krqVYFyLL2nLyS_89iz&14pR3pgh1Q*EP%lfaoHgDF|pJ( zXG;_~Jv!+=)Dr2-q&Zb3FxR1PNl7AcuC^Fu*|!}-4AhmQs)R_yL`|)1j+8~LHq_M; zka_6_$x@sAe#*NaiHmaTW$=+c_L$^J$`a#%PXTK*%erB?sA*Ij4ZPac9M}qm&G zInUib<@9_{Hw>(oHJ8@QOiUALtl{9&g2T&u40l=o)Muf!=KZhudd_xRv{9^W#nJUc zj2_TIbN6J!&9}URFnCO};PR?sWfiy1THg1}Z63I?;_QA;2#F8eyv=~exFsj&E!*vm z{cew`9gFpn7=egCD}!GP=~}lvo_qQk zwkPMDp6-b;(DeyrEp@FiK;K7vimVS7>^3{R_d^-@R#gSAVzb$E(rp=h5W^`XaUQcA>f4^7@2L7( zGAA|1E!){pO72;bs2d*Z+Nf z;2(V{RkP%=D_3~aBJhjf_IKItTR!Kn{4M^^zxOr#?9aW0o5yDiQFB+X`1jxNkNNU% z|8~ChTmL0*c;g%R&VT(KeD)vy1K5{e1>n|i_$YqvXa5zKufBqh`tq;f`yNaTQFEzT za-Wl)rM&JnyzT5c-uuTsoz;55t6u*y9)8Wo@w1=%dpO^1dG)epxoo)o+%xc7e=k4v z=l%${UwDp>|Bb(g`&Mhd>-T&*n_lsGAMug&Zp}NMe2(At3BQG^ZrHZ)?svV5-}hO6 ziks(=+qZ7=$N%JK&@7gmZwGGOIYudiwjzHPuHycymuQUQh0O+2S=P%HT5IXwSOHqm z`+>9mV;`(9DeK+oB+Ya2kb<8s_oU!eCthFp$ z#b&!@wWvASM!X+5-E8q1v{TetvosA?4j1g(j@C# zvr|jPBW(AaZnm7Aog+ou6>S$YTQ`JZz#Sgo8V4CZwrm#CUo|D_<&wIt8N$GE@N~VG z&lEUos1_AQcx5c?g-85L$aIy(Jee0Z| z>#3dPfrnqtW3T&Y%>JC)&%Tdc^8C{KUZCp(DJXQ3y5gI6&hYzz^Yc@VkGB||*lc&4 zZ1!L(Y;93QoJw3eT(MYIELRO$8FuF#+s%%qsi|s1vk(r0Tepr;$_f0lvG~EWIopx6 zVSOkydjn!u1)XqCbLDV_xqO7JDvZ?-Lw5d!fNVLHH-KLu-wtt{YM) zE!hG?hMW2!3PideNGO~UA~@^p*wMlaTHP-fnN%QV88D;-|p$WL{h9#xIUt_$GRF& z41Fg(t+ZtQ7Rx2B5-8}<^^h_tj)868K@=fUIZIs|oR!))qcy=f!q5}Lz%Xc>ayYG6 z95g7sAo@g74osqLTdB!2mJt1D>{Tu|F3){)s-{LML%VAQVq^@vuA}P)j84>*L|oBO z)edD6+x@_hnG93k5`Dx~2IE9A3}FyGFoT2~c{fJy^8By5InEuEw518pyi zaBgAgdf4}#W#c$l*0h6TyKM=*XTRGr43;`WOpU3fr(Os|AFxU?V$K+<1H)=1(NL*r z^TZHY)P{qDn!2eZU?NF%k|I0qk*@0*hA`GQ)Rn_p#l9bC`#|F=x~}KW$tlJ-j1~6M zRc%<;24^d@(imrOO2{o8}wPL87dO%+__=sRjg#-Z^8p-ANQS)9+W#alZHXaEAB7Xt^JH*2@~5B7NUcUHb}_iv|6gpTUR3a^W~Q zsPHJ--jkx#75mO}_q;-}*N6`T@T0 zN8ZNQ0KfReTd13g&UgsYpm8>zk0~_k?VP_N-wx*G<8$6 z+x0wu>zv*01E}Vk_;tVivq&lNp11uR0C$f!Jn{51{P(Z_8b0?=`~}Xn=B+>T698Pf zvf}3Rclnq9rKLLpQX9E?`y7>Y%1tDz08S;=b#aF7`rXlPo{>Q}5u;`6;)L zJI;53)zb0U!XSTPxct6X?HClbV#oc&C$`48~0t~kq54FX=R9A zN4;3%Lqa>l!Mb75)SR{*x9@JT=?sGBblcJe!}ZIDtQtWY99}wLX=}7Iv|S(&a3*1s zCdSAM#~Y4McicYSF@(TDZMlB=0Ke}z+wDO~@UdxXs)L%^I-1G~`?rb=ZNTY@m>f?& zbDN*|h4=D{k3UZsywn-iHAe?E_gy|9rO5No-D0e==xRKKA^Pp)7%A3ec;&d2hPqn?AsP+4C}>; zq%^@KfmZs&@!cKIA8)W$QCmw>HB_!*-$!nroQb$Jn$2d9wt|+@XJC`U+7;eJc5RR9 z2Kvs6v#1h>hYJpmE};^kpB%`k53UFB4Oz1eNXU-#w`SHYZN9bTv9Bm1wltt=g}q!(|0?F6R71L z09CFxmV`sfrB5ou8qJuM6T(GJXspzAixNR8MW3mP#c`70zBY*%2couU>!f`ZLKv7* z!fIF=L-dKbY^bXx?Y`yY^c0jrTf=U@r_Dhgtu0L>*;o)FHCG8qk1ve7#)lOpw0o@m{hF zN`cY?(TlS|G-F?;Mbl6ljWb}CWe5@LDw-=xY~?Z;jnI%=Ys4tl()hdU5`CxWF=(er zX+SB(;ksd2tsw@Xkyp|_B*cO3wxx0nDJnMGmM--Y&8cdtK?rL4y=S$qsSj(M+As_P z+p$)0uDgu+uZ7b3sKN)IBWF5Cso>h>E08oPh(bXr+P%eAmC$DA2-$jJGtrII>@3WR z5C(jVSY>F|OI8abQ85g5Ax^sQg~mPkf!bBL#gdh)Q7PB7q>hjhM9JEOkXY0jyIL>| z(%d)t9%CE}+YpTqG4y>P^r8l(wjxm5fmNkh)i%p0kE;y#uMTOPk(!SoP-#Un4xbPq zo(y^c#%XG6SuGbhCzSEQdp2!P+e-$uagJrZkZ4_Q%$$_;`Ls?NSM7Ft`aYtR)DILA z38lrz=z8#d!+niAPttSG=IFiA(09_(M1Y!_%2q7uO5oC!ldOFLl_~t|#?cP} zgW~d`qj83)66>YoxjP$_vXH!x!i~&urQQT#49qOMs6bTG!;{L9Lc;fvAK1vRKxn zOE-P3IXZSW|Suv%K{480IR2=u7VeFX!GQ@U2#*VL8J?DyW&4W6Ve(F?0&Z8i5@ zyULYIm#Ch4iqbpHX~ltaG%GAGM(@5wRSVAUyukMEG0Ik)Zuabk zjw_ef-2BD2^G|-}$1$$vvDdtg^OL)rZH{^1z6G!T)_=zK+rEu|`#b+X9A15Zle@RM zd;5(0uN>0feuD4&_OIh$S#fyjem19fxw^6}FI~lG!*T05*`9Li_Fc|j+_B-x*F%TLuElmEm$@xp8pF%kRGd zB%XQZoH&50k2%|)1BuF5y3X_L?Q<#}dE~|=sbw1ir<;zao;&8s<7;fA}UEg!_5%5b$rTG&)?=`*Rp78Dr2aOrK$~eqiK|; zS*#(!-LoCH&(7Gj=j=8uIw)4P1f+~M4Euqb@h)BOg)KK5d|gmH{p<_)5YbdzTCb_= zkV^+F?S5e2w_Lh>$fMWRRJ9{n&B3zf#(GKP6epV<&!3#)J=}L?$>HjVMO|SvEGol& zmk;PnVs&)D-CG-W+m;8e8QL%iK~?ZLC4@53MJ``jaRhwe*<*g;y*C*UCp9F^ruCd} z&RJS;t4i8z)GIo_)J6cy8gSsv2F%xRvz`y}}PrFEnURLSdVR+8UmI z;&Dz_3#>Bi(}I48-1p!^?E9UN67`aubCnZv5))Y;tXUr{NpTnr{vL&o3hNRF^-}8D zN;?dr>7!@6+evMmb10)ZTs9o78iJAxkcpb4VG}*{QWDU$dt!pa!vh*sap%qncTUeZ zJKx~@gsUwocBD?qR;s3=+e5eC;iHEPB@Bo?WzeKP(Vc9twdLS&O&@!FKcIA?HV)H! zVlq^94OM0)RcjK8uIo76oU?Z=!_cu@E?6I|g-JanaZrZ=;~dR$i645rm%fWlwUEA$ zMEX9^wJj=1qQazO9v>sSeJAB5PS7vA?T+=~nr0#O znts@GdU7g6XU@>|JuwE34i1r`3dMftg(=n;l1`XhCM6JJ!)CLiYdb=eawDBv!nJ*1 zNF9A{`%^hb@Y0eA#mGcY6q3KL?*-Q0)S1Z3F@zr9dujFKr6i|zirR@&oX{B4(0d8K zpYJ-htw)nsR)%FG8EK^>o6Q+M8f>*hTLr#F97+vnhTMKB1R<6b2RH~6+(}k>zuQai zVv~Cd2Z0b9tdM4Tu`5f7SsH{4(&RQTrQY+y$A{MOK|71qT0)S`ENpx#XGdgVSXWWG zT)&pUplNK)5MZ~J)Vp&UYb1r8V#L`-aNxn?v|_!g=xih@SVT9nXetf+K^n(8tywg= z`E4yQp?27Eu!<6KRxKq%GXMbq07*naRMJb3RI#W9@)~;>yik6pF48Ax2aDQy2DN3` zICN4RA8**lNJ@q{1e6LK9j&Mu$MM;Q^RpdR8?Ibl6I7zxNgpR|4bg8Hx*lsm8-+F& zt1U4MR82+Sd-}mke=aT1%@hOHDw;)&t7^Kl0U!4m1Ho0?ynV*9UNCeWDfPHY;jA>L zm#B>NM2kp0q(>a=rmjgb(GET5H-$_gAx)~|ZVO3swjJ;>V01($g|SKS`n^QU6A|xs z)S*HtmkA97|8J~i=!TIE%}0d_0p)~-Ifg-spp%e)BqNa|QIHvuYATe{C`*p|N$^2c zi8?7#P=q+JGL_T=M4=52A>k^yUhNjF7Y$0=(J@uJmO8l@guxHV=o+KN!6C6sLMa`S zV(A)G@;IeXP7{rx(h7{@yxoA3IgcT*+wbVKr5`-nX!;EI(pqIWPond^Ky|%1998Y4 zJ~k8JB1hL(Tsc}uL{@1!e?&5xt`~UIL-!wYuson~n&rY#IYZZX zl1a}ji2~^s*pJH*$LOPEqJuQwHHQKxl75?tyQdqBhGy+p9WL1HhfGdz(P2y!0xJ!~ z%+-+uEfABm70{NbYM#G+27}Z-EtZzW;ey^9K;Yp)3EZby*3zoQR;+x@Znu~9Ryjf= zWCy)B1S*NRMkS;~wWH2G8I_j)mtEWAl*TASK%=Y$t%<%T3!1W@b7-;oqX)8 zZ%|pwbGJ`;;m#?qcwf&S|I>e-@BHe2fVG;x^%;MTAOH9NoUZS=QrF!7;1xV@yz^`a z#dhEF;K7nl`qbaaFZ}rTarJObz+7Qdhk0jIr`L1~(50Z8A+XKvobYQ=iBK*c?=_aqg$dFPzdZD3JZ?re6b6sV1%kBO(wx1`|? zx6U@4w;pF4K6NZs2OMuZT&KCN)@(xJh2vXnc3aMOfwqrA(A2}xy2iR%Sih}6+U}h0 z=~_?po)CM6=<$Oh1~DW}9SO1J?7YL-n!0K*8qv8?bF%HwT~Ab+le3O~)pBiJqpOM= zSFh02hPvw6Y_dR`v(dQUru|^=F(6a4!pd@g*s2rVOauMj3YdE;~C*u3tW4Q3=$wa+xI^VOHO7T7jPG4EiXJONv-$uuB6h@Jd01 zq3tpelrWvHmKC*=a+3YNrE3R)iW@`USERV2X%@6?muvYn-7v5nggm9|Jm?l`<5Rk2(yu+EI|OH^c0OFOa<6Q^hA^gfW#?Dqqw=Nn=!`4KdaLF>}; z!O*rn+wD$B%A)i?)e#o1#{0rRB8#Qs zV9^lTp1uu)0eT~beB~S(INj_xKHK7IN1fYHfRON5XBm2FBU05C=L|{gUYgpl@R7QS zgk2!fu~4+6*Ji?5x2LELMlYD4P=2RiG_?=tv>rmBIT! z-*p&WNke*T&_)q@#9>c?6gspr`M=U2UV0zJ7)Sw75o;VODG~u!Yg{rIBjhf%XK5NI1WVBgQ>AZk*wRFx1!xm?HVDoy2T_Qnu=V!diuEhT_ciL@rF#ID=3Uy4DsTCPwC zoqk<8yszo{fj&6)`%W?#nZbBjS!sHo456{4s4|&V6lbfhGkaZRd1!gL4m|SAU5@W; z@k5lpco+0S`NPm;cbsnbx#tvx5E7#Vo~*Q{jzVYd ztSC6Cm#J9PqHOyhZ6}670zOyX|GRM3uzT!#u@>4v+G8|Uf*3>81cV?*#{u6D_$W-B z0F^R0W9Z``aHbrf@LrgslMn3ndvWlsL{iu51%LmaeiKzy^UdGz^~7#VpyC_;_LuUR zfA~-E`#<|nVy)%Y^Uw2jf9p#ba)a$Bp1s3nCx*mV{LR14D<6AhZm)30XaC7RM*{xv z|MySwjsM5r_{7(?81h{HuS#=^oB^d;aWKel7JQFXQ)LI^-AM`X=7>(?7tj@40z$ z&j0$Ee}=;=*HGH1f%_Ib^59iSfxZiz?*fgjs1FjC*A>>*RMxZK2eehxu436Zs@igT zw!yg?zf6SC(e*ppp(m<}`>tK1)|z&=Wx0@=^_Ubfi9MjBqP7cy4kC|p-@TX;_V9>@ zU-=3ab;aE$Kfp6LZ)2J@btQcv4=z8z;{I0>ch9gqx(ut9Ctr9MPuw~o#lR~bx>!jsJGPGW70qqn?83qhzEz+hU>@yo=MMy&qh>P-{0#vnO(Fo5&MEVmB zy+fhL8bW7G?r#`S$zl{JBLQS*8p-VDn(@-kqW3+f(yZ!+^;&A+1YRmcG}Z~>Ob7vE zlJv%`oIpz}LF#y#AC^rXfnEETr77ERMZejWNfXPW0M`j}N(H;+pss9>4ojJ`shcD^2K?l3qzFQ{g80cL;@6H{U8noMzl`#!BC^ zlxf{vB?ZaDAPh}LSr*HRfYcEhWrguc%eC*Gw>*1$%lUqwAEaf$FhoKS8tY~@A@}S_ks(6Tio?oqX}Q8x6`O9u*=9$K4a?fHUTLX|8$>WPPMGjwifnfs zoljtdp=-UUu|{$G_?)}vd+OzarL*WDJ*iCN2q6h;VlM)zZYrEntQIxS3EUv1(tl0h zA4ZFi-0gN;x^hM8`F5>rR3-H2ckk{|T54~It#>FR`c2u?0t4ee#p^YU*jj@_x@U;6K5Tpj6 zuJJK41R<2DjIizcOia``q19Iyuo~wSI)NV&Nn3GX{gB!ADk`I>8i)6}rHiXbI*mo+ zkZ_eKOW*g9qC`8J2A!kx05PhJ^B=~@;cnNl-R=l6aIjv|EHa%x3S%llO6>Qo6y!TI zQhxWXz;aww3t5XZ480H%2%D#5(x3a5&nCslBcJolqNtGCDRPgm5gMbU5mMhvl(V#P z+3mJyZP>R1{opgIAaHcBplO<1s4le!DZy^H$7s#b(IJavL%VG`I;uHOp8xtYkMlj> z`&OQP;THWcqdm{kNF|9*qQr@}Ij%MF=oSyD71FywZ zVxZ|*h!IroaV51CF-BZfVT{2jnTNI;qzSW;XL!Y1z7lN|cYfWMKum-r&8$JF(N$KY z62y|glXYUKqM>n(oZIy*>WXDkNmMq-b+nfC_WR%ZcC=Rf=J!0#=l_{MOcNuOHf)EE zu8*8-d$zkR&S?(TD^wUTuA%LF!qD=<-80_wwkPR#9-~F3bpb>r+guG=BDN+^va~cH zA$2!eVUps~!HSQ3?Zdq4<=0th#kEz%3wJi0?0TBI!YYjih7h^DT5$j61|K?(&pRRQ zv6^k?xwGBz@`tbCJv@E$jJv0M+IHZ)6Q;m#eC}zQ+VM|6`4cd40A2C?$(~zx&*|Hq z-5|_ZCqTRJT^ZYTl@0?N94cD$*0^oeJE1 zsM$w_j}a3*`|~X~&w3J?8%Il)&T_tKshnlg_uM+&0f{Rs$H{gen1s`c+B%eV_`aiF zR8(%s(=VLy)4%WpUAyN~f5RL3bszaK=bLlh@qrhxcELk8F0-)GNINFbv8Az=5EXp{ za?iC}caB+P86!cJmcH#+Up?gEmp#DtWW$q>KSRB6T)wiT?R!qn_jGN*DIpLENU&zn zRMfS!a=QAmm-F(E{0NqKo_yfq>2g=#&QnbS&r} z=s!p&Iu`^1f&fW?2tgzTa$4PE$nNqcD=S_2&up{YYjyCfh_2}|8Wu1_AJj@DG9xlF zzAyG(d%cgj@9U;97ONboW^zp!6rmKc9RQtov|iL%sjT^lMgVK2DuyL6O)}8cCeyTU z2N?o3DHP^e;6>JH+Qt!M;&41++lIUZywyBlcX?dITT-Gu*C5cqaSv=uN$xy*NsXLctVV-Adm2-1m0x4&f z7&#n|GJITtG|oENfND($foTdXYgS^6La&yArw0_vJh3cM;6u)e47ReuWW*;Z^iPS2 zAPZUlEq%VM{=bxq)SA(?(m2mJNfBs_kp?kFOpqc_ zXPDziNP$=#FK%aE-<@TuuH^&iwMgu$t{7EU@?>R6nS7oZP9xT8uCDjgQhELQ!2KAw zzTEQks?s)|P$Ic#HmxGWiTi`%>SD`&*RDjUz?_m+7Ykg6I1vaHmqlp@Y+ zoCj+aHCb}wIZuJcHF#?XF;Q}*Yn)_rg@`JOuJLR;gLfKLG9_!ero;4=5JzHClp>~c zYr&{SCc%i0u=OoQR|)}V9kptfMZAc0SqZY9YY1KN-? zjA6z#o_T>B0=g>NzNab);7v&pa>S?wy$CMbC~zjp*0qj;{;mq^HEpX<+OsSP8!NGb zMy87rfShs8vhVtLLGhRSOD^}9YtXXLc$Y4nn@z{x{kJ?HeSGBg@kEH@S_Z6!_FC8e zMae-|!6}6`nk5xXyX70-_$L43fB)|@-+aR9c(-OYTC8fAmsuwBD>hsP5tSuK@pK+W zG4dC)N}tp^sFEUYyXo-Wty9xVPLonteW{C@~ZJ6RBMN2OH?>~H>jNv~-NQpHjw!T4oIM0cc5b4~m<@#ce zDw*RPfQ76LO36mIB40PMa)WAJAx~>Fu6}1K`0iicZlx<#RnF%T-!^>rkG@VbPYkD- z_n-EBpk(U3gv?<)^Wt_Q<-~R`5<<6)9PW?goY^)N*E*IVGsR5f98VrKRBgyhz&XqH zbcfN7Jl!?K0LMx3o$q{^|K7j<1XE`2&I@mDC+^RIi_1OlJ-TAI>lnsB&ET+H?|M?d z;o05D&6|6M!-4DG^Nn3cUNm34I&nH4=yYL9vh6vJ_MzCd3#UEnXAh^ zFYacXFFe?_bWO*&WKQQ>I_LQDCwKhn(-$00C$6_W8{6{g?!@bxJ91Kd^()t0U0yIA zPbd;9Cr+n{haX(yjpog1=G9^3ZdmAB&GlY$vGr)%Q>(#~xPG+bW{P}rbKqu}h{MEZ zw0Vk);T@?e!R#mcSGW zMj7JVQXRCuVb^zT`VNZt?U!kWTIt)4)_Zcygd(1?m=b}))wZX<*uhFAH>GmXHKcWO zSW?8O3eJ;~mK<6#tv7P!smvS$U1QnxTVhn4r;%I|);O$gn5W7ZMmayx@93K$Rzh5$ zYMj#;BScW|9Nrt|WoDcM+IdtJz+NJ8IE~CpCWU}oWuhr%fhb+{cox3=-ea7F*SBwo zL!~6B#*(uTP?ve(?rMM(Y7ttSn=vF^V*Ef%t0vT z8AYnnkb7gW_ATAItnn~2F)TRe*ldKSF)#BPTOkn`);MhMR%%<76-GN8 z4K-Kd3XMsn66W+yHKdhY$)AxW$Y#!3BlfFz^|7c;tX6A{kWrL(b_K2Fzn825FPpqt znHQ0_FHyX)UDx5gCzUL3!XFZ#~m4W|CG+qJSvcX-mr0Pn7x7OgC zT`eNQS(ukVTxs@ip*JFv_N4kYRk5O~4DCfdrevGCZW6UNvc1>S@7tFA;rcgt{oc)D zyXGD_r)k=qtd?UY1u2GoCm-krPg(*-X*3c(Pp$Zi7T-9u*o-J>k&)gD4RzZ!^sPiQ zl$tO`({~NiTzK|oL0L=NST44X&WmQgR7F+_l`C6sdGe^odr#APtd$3zH!_jQF%!lN z0WLesX4mlYI1~IARC?bqO_0?>zcCo6Nu%Mo1nM&4jAmm!UJFJzS!ld$ zN^>dP9~NGxk(@I9rlIv^B{ot|iq<$OVdF+iq|UK}x@iz7SKh zwNgx4*AkPE|3aAQJ4X(Q5NDQ<(O7m{LrQ?Q*eJ5NnlovMLdsGLZOmBo`Vc56E%6>o ziKKWq%O+Img=JZ&wbFJnbv7XA=#nwYak<~o_lZ;z-f8hU)=W%QsJ7N%l%`h6hBQ`V zRK+@lHZ6Jz=m<&`&;pid8c*XJkvNnr)9wgV+4gz&HmfsYt>faVmEyn1HZsO45S3Dx z#(|gj6W5n}`Tk;{bA~b;L3@r<;50@mn!eKveA&HH~l3h_s~U$TSVO zrop#v^%*FE9XN~CddrTnhKIXrzWvQ_^6hWFhx^bI=8>uj&Kmk|D_HQf z2slV7!aQQFBcw#gFh@9ziTl&Y^H;A?RtULqoVdF?@%f8eK6`n?@jP=eN3>Ra@#3D& zTXq{Kg{Akns?b#va>ND1z+6wYiUBR;zDw)5IEBPJbT&+|k(x5M%-|!dz^cO7S$j$9NB}vrF6yh3r6FChD zt2Dp<_&L|tdv?1GkFFY?UhSw=^EwSYx@fuFH<->5lwr=5wkF&~PyfrGQ)A)FkKgC% zhX&&-F;vdSk&+T!x8b~u4D(D$iPnfW^wr%R7Z(p{v_h4HGLDDWX}yEA$mPb7I0s@X zSf|z|H*p>WAob+>fi#uN!aOe+EyTcSi7as-mq?f4jPq}?O7X2PUGw$#9Cp>g0>aw zH5!GjGSJ9MqU0NXc)qF}q(<9)xLF*8~fmIanj@z(ROlg!O0*ALk4woJ>&Jk7*uL0QAY z2NyV}Nionh4aOP{rwN6TX2EJ&o7gs<5@DD}krgUOiUEw_YPZ4ZhIyJW-tx_Ff1AF6 z)>L-gMw*)A9rs~G>B{Li^U0_8I91tSY-o%nr^-3ZWD;SSnFAE1uv%fz?79u(EJNR} zb&Nw`&V>|V({=1FI!aN*rLq*5W;joYrfK=X_ul7vb3vRE=W!xC1J-c9yXAOZcy)W= zC%^ibm@6@Xwea49OCDVA>AWY#%IjBmEHPoxq!{_)#V8RCPGO8>^MyHJjAfcFFJ7OR zmj!JVecPdd6s1W>SvFACnzgxUh(U&rr52i|q3t{L8vC_tTQ-eEbG^Phlaj>VSSvZa zwH8t-%#%neD{sFiMT~)*g&J$tGdrd%1XVzX$Z^bKn@I~w@lH}K5p9Z;0t~Zc20HsL z(>diL1G}Qc>o^BOO0pnWWwS~NzXCuRX|#6UVRc6ZmJmp(u-omKririw$*V*j*NwMq zI?uM3EY27uNAft#q^bnsm$O6*but89mMDbU5HUtr0@ixGx8&BXu^g6?WkVg7D9SJ` z!#8TdS&dWXU1qnnhEip?Opa)!BtlR5^*xYyJ0aR?I=iZ&-ez%|zqY4YEn943G>w-H z^s9UQ`?e*2xc&`Zzjw1(DiZo`6pfKAxRAoS9dLLp5fUnAFswzsLsPI?CKhvuoW}@C zvuzt}fqmmBXpD1YRhZ`mQ8bIxvuPXNdvJ+1miHd?lyW88iJHkJNO)}$KtSgtdkR(Y zYfOZ3hFT*vN%0^=QRuIFe*Wt>q^Zz(xIGX2;;mRU^O zPy7mPk$8l0UZ^F}cRj|s)u-WcuF`apZL|cDYg|EBTGm)J3vix0BR2`Eb|*;2pDVG zY#XK}b2^NeRo+{wWjPIaXXLqI4aRw_(VWMLt8LHIs~x3eZchVW|LRj7?meG=am(%P zncb%6!FwB?KE5XB#PK-NH=b5mW@ePCm{tD&_ElZopVW6LB_c;vE8i9+&xH!)qIvQ1 zKu#H}GShHERYS#q6~c47hTL0i*f>k06y9iV4->ENj?|=RoMYQ5>R`EhdEmD%Zusow z$X07q2Y>wH4prd){%1d;D#aMYEA`-F%k^$cDR+dJ=r#?Tjc3T2!`+d?VZ^(M+B%k; z$V;G>%n}wZw?eJ#@wjbAQIRPuINkE-;*#r&9ZQ^8R=;Z3cv6nsA0~+!axKala;wPB z-~)`uf#YeAm&qtXOw1{9eYIt|zu_-_cE|Dl4gbSG{tlPBo{wMM@Wt(coHc}rX`VQS zM8eQ{hqsnTSG{2Em0?*bFYgZApGK6@TwPu8!S#j@t}j@kz{xHegR7Cx-<-HP%RO$e zOervzfG$16%HcFH=gi%3;?I8aDX$JEjM1`bI-j_`KcTgz_a2?W*1~tc^pLA<$K%Hr z7^C_1Coh>(;dYpaMSPuihd}?_v6O`|ENt3_N4pJ_%CpxKFK=gdo1W{v#VJKdiBv?^ z7}G3B{i0C5!x^ANLatyHDK4~)V&^=0th_iKd6iBS^#vFI_+!5D!JhZ7J$u)ot0rd6 zxCBC~7-!h;w<0O5kV~d$&r&4TsByAAJDWhiYq{QbTy90G-|2?lH+ZUe5MyGFGvnz@ zEh1rzStyRFCUTz9-qSW7Wh~<~pq0fpo`Mtyn@vM&4NfgQdU(YLU->@QPu}Cd}&|J6VKDNo*ezz@FnRW`n( zsFusC4VP}-)>RGp;ONV9BDa~6eA ztt9QR#$ZvT7y*esn_{3Y%R6ORs)~}vHJn|%ZC*8u(@4&h7&0ji#5mJ$I=Z%{6txa} z0x>0?r&~6COXEFdT@chFiwbQNO3RrOlh~GO&crH>T&+;AC{g6RrH^W( zsTfL5BvsHRlX88x5GkcH)=bVLF~`;S2eAk@LCyq`rW!Pjby%ZloMF>8^qr?^#Xny% zq+FQhg%k^8UO1dztujubrZ#QM<;50f4ReYdZw7LF`*p=el2Rt6BGD#BvVh+l21=T71Ifv?jzVa<#l>E#^X= zMP?v$Cq>MGB^I2K30aI$Vl0wul9Y;sDM-#wtx`;yiYj{bP8sGo6SQR4PzxoM)u-an z#uAgere_c-T?DX&8bk;!N$lGb6G&{|#>t1M)Z54pC(d5>$F zm8@5}Um|0O+&ue&|K`WP<*$DBDN~r&IK|bdSl8yIf@1YVXwcg6=+P6t{?#w>@BE!_ z@TIH5;pPoyQ9^6fh8PkhiFv;oBc$O`4pVEaY%5D)nI^Q+IPcbJa{>ysW?HZDPxd^z z?uc{Z*Z-&o6yN=m4{5w(oFXsYTymTO#W=~S3y~Zn+Bjl`yTgh5^F%EQ2c&ss7-x!t zrs*V0D$aDR$7qRp`CtFTe}V@7w}1RyN=m%EJu%D^M#C}$KDs+_I!$!m(Kjug%;D~q zmv<*pg^NqiSHE)2&puw5mn8R>ls?i9DkYs_mBw)0Gp?_>d>-G*zo;AmBl8f!IF{qWe{%Uq=!dUv zq`8nx8m498G|rSTbo(rRc1}mCP`VgraDireuh~-SN!*c>yZUz>+HGWn>(JydGN4gpWUa2`IXz zq3JpvJbjPd^$tIrrMOdqzt1VL#LWFPGrvlNkoe7~cc2{BgLaxw6tN`Efz^+vIHyF4 zlh`Dz<>BKC-qS{;@lK<4S>>l?}RbBTT{*>y_Gy`6&$KBpke0t+&PLGxhK<2#7~sVK>7PG^zqr-ITI-&mAx z3E_;Yvhk6u3Z zIrC_@1@~2+eCd6v@tlqWZMWe&-`YWrYc$Zp#YNAzzV$UqiF|Oq=ez_iUU=SY9Q|g? zH^221RV}Yx-O{&}2M-_fm9IYL)$1dt!;wvA_;>%_x7c{k<86;NmeUe=^?KylaOBg^ zZ}{lhD_-6YOiSf-9M??3iqYV`K|9NZF+6#2jrR@H92lpGkTYe4mZ@4%Mx$011zFDc zS_(-EMN?_{RLbaYt)Ys-c!#l)W!N;0`14k-g>xc1wbrtP$Q;%Nb%ot%R=K7VyMt0< zy(mf83}Ft0C6bFGrLrp1>^pjB)A#Ra<_blsQrErZZ7BT~*C@&`VG@WMV_5>J$oG=h z&8VtioeZGbrmnKpx=KkUyIZgFj>ZdVyJR7ZW(2k~&u{ae6)5rddaG#~p}e-FcPD>`M zQWAfbqDXJw66A_^LZ;8_@IY%)Mkw@3W3;DMCkjHPkWXNJx9!bYK#TR=86=Hw{kp>f0UJxx+3$b8^#HMM;g*Ed} zh;tQ%QI%q0m}j)neEG>9V+yJ&a;gHaP_luWmPD8{OPQ!hGp1C1o0bF zd3iiDhr}>Mnzmz!iSv16*E+VH6F){HS$^Xv!O*(#+@Av}WQIAi+a)L>L1?VP8AEmj z?;DmS5|>2NcrLGcI@i#8htaDvVhK0{UE@U#XctPZ7;A-E8UduaR$6g;cjkCrXj{wG zWs7S>|6hxyYh?=NtrQid(@f{cG|Xfy3d89QSb$-FB!7%aoZ*#OlJ;rO;UC zII}F3P1&GzAr&biLORhlnmH!MIS`fwzf#t&E+kZTj*+}%l&Nelw-lwAm#|LM3M6T0 z)hvc}W1z8yWtu3-L9OH(B@>EDBeW+reJ7qYXSlytoQDbPBHL}x{^FYR;Y6biT_gEg zIVAx_wT{cHOB(N3LU>oKQxdiIlma)u>AC1V?N{%pwV+Hz8`(U@alsgaZ#?nsguHPy zt;cw``q3+4Sw7-_ zyR9qJcmD z_6H;!pWmMutK);qEz_77=g5~HUUPkQ!I(jng*Uf%j4ANw;UgYDzUGiKzkPYjyySH% zyEcKazQ(Iz@ol*6+DxvJ41VVapbEQ9%b$GbYmD=WT8wNLQv?TCMVSj#Y4Dbs7nW(^ z(r?(TnXSV-b2=}e;qk*gUu&;HNf9v5kztf!$7z-b2Did~s@5!NCX6$x_uL=O+#g1! zX<~o5q3s2-(|N~k<9T@5ak=ZoSA^m?j>HH?7j})O_Z>L~4yQ98J$uP+yXT@YEGD6C zVbNPI9$xd{`hq#le13b+=bzp3{jWUX)jaX~%?Y=^hUE*s(kUqYtA=!Pz!Hv2LhF5)AHnE3-iLGtDYgj zG%l!=*j#K_V#T+XM-O*gZX3cBS>iq2u4kHO#$l#27NvF+Q*mv>;|G^CN5LGN9db9%H>w?%PVp z@_coz=c0F5r^yjYtY`y$E1q%VBtk-K`5fk0IG+dR=pFH@&#v>5 zTdN(*9J!eWhGAk>LMFZTTVhdw5U!0EFd>L)C>)GE)+e+A>er zB}lUecyIB>(|eJuduM1{*_OGs5f#aKA_k$aJLlI315Ll{*k5kh`;Loki*g>{UvhhM ztNVdHMQ=oF^V#cYN*3mppjX@ciY%tJ@pC{J|Cf&fopF z`1t3a^V45E=gly3dp>bF|&k1i4xJ|nig#rw%*~jCM#&R4VR7OYTL8qvic=u z7)q71P8->JX@t!B*V)T@1>A@=Bj!xZk=7|%@8xNq@;ZnXkQ%Paa6uWYmF97YiFsK_ zS)f1G8@i^a_hK_hRs88W=D!|>6@}H7)`2ps1tA6T-)lwRb?kRL#&Kd8kEAN~sb0N_ zA}P((D$ht`^}BN^rOYtPKwTq#LXAQj8J4tdv$7z}I)Gf47+E}==W${Pk^50<-Eo*` zy+vCgB7>rB9bMDNz!V|2Dx)|YjuPXsHf7Grz_PBfV|I<#NL65MsZ^Abfs3kDYR3#p z839-=!o^5Y0BDkp+7K6!zZ#>k&WJ>}D$L3wG0sThL6y`1r7T&?1{Ni+iHa5H6rF3Z z#z<40#OhSlYH2EpB@`q=vPwpE&eELcw|baATz{Lc-@93KjmW4(HC9&BZe>}LNH#GP z4AU&WHfq5dMa&6RH56(1N|CLAv$ENFON|mLV-?a@m7=@z9`77so%EQMNVUWTmE=aO z)ljOI?LuCJS{gxFFkYinB?d9Ohgk8>(sd1538CrcJd!hf^~poN_MQ+=Q(mVbx}r)I zKR_vrvt%V=D(7=piI?&rt;&c@bDrN7@K#9^+qI5yoL5Y-G&ogjI_Gezk`+)hQ(CzF zd?1G`xawBZ_Lgai#87D(&$vXMy*hFp0=dd|E+vJwEmjvkeBY2t;`Vsv?xbjp!|F5B zk~o~j7ZgL32YOVXjrdTV<-zry%T2?s6->5oRxJ5(U^oZbuH}lJWgcjhrfU?1#A(gs zff=VAozrZ3N7FjyFfvRsXb9_T_|b2laXuv;USBXL@d0|@5SKv7g|=o&|WrkTTe5c!0X1|_G$dCF)j-kZ}D zF~;$@+u*%pn2KZ(g}}6ooKu!VF$SF0G`^KAJq@JeEP*L&tISUB+UmqDx6K`G}Bz7Yvmasf|LE^CSHm$D zV$8UdIKR5Vy2!)b4(D2qx#BlHMdqSv1xn0_th^k&$mn=Q;YatswxyK-d>{&-g}%@^jlBYbTr;#Orb=H6!Km3 zjv#zEPR#R!QkInA?rz}r?#P@)N~MaB0*}MOO*T|AH}_`_rv>k2uynm?_&eYFfcGEo zDJ63rMlv(Dv>fM5DpHUhPa`%5It{MwiK;rHH0g)^Ui@|<7)<^|&vQPuH_=P$6Iz2@n) z;(K5FGGF_nKW1Xb{P9oOJ-z19X3NFp1HSmpZ@4`TTxZ4i|MYz>9zWpr`3Q$Z^OrpP8uDV$NHB~w@R#yAS{-aAXvdC9C}EmTv2YD7Ikq0L$d zidK=7B3DH$nbR;cj0^GkEv10>9_u}|8kRYdOvPG-(h8&Go>WG$+qOJ-=$RMc9cZOU zAxU_;F-+sgX7z`Mm^f^s9eEPVFSFZkK*9hZ&f(c??L^7I4T^`7U4g`fTEGk)}=pYi?$JiOXq zRUyaBcDE(Qi0=&h{SK7^Z(hFQ<(mU@sW@kNxZe`O%$wJDyngwHw)I@>_E0OI{OVJ@ zR($yMAr8$)AHCo&fAI-_^~*1~83R>oj4HHVqL-E|jeiOWRSVt9c4&;EX)L>4kGF=? zG)Zhm$m};8tT!xiA*TeGb;BoHyD$e7(oCCVs7sKHYch?K_k7d!5@n@jTcx#GDW$BW z(?q3U)~%fK9&g@y3?+8xEkQMxESoecUDrvZSSf5b;x8-}ffj{@loGq`2DfH3Qj2_T zB(QBzSk(}?e|ROT2ls$i|; z6snu_5XY&uKVdEy)y#s#IFXw0h;lWZ?rIaysdXr-uC za)oT;nWqJXp(;yO6}|cr8|#I1l>#X(MAuL;#Cf64lT4yE9U&>kIbs5YqDW#eVl-Acy3X>!enU=~^El!g&1Tmzhs3f}jCORbrhzFs9HoJ)_Uu9Z%ek1Fuh@l0rF) zGX-6XOqme5>zg+R4yTEm`w6tBRfd=Yse(3EATv!Njsk>HN}?0a0fn}99R~a3c598DU`A{25}AO-SXto6$X(CjWKgSMD7m*B?h{t<**cf z{rrYyS!A=N6(wd`V|oAaHSfQ-<#OM$={q)8drC=IRRx};HQHF&c!a{?cA)DvD5JQ& zKcJPvy9wJEVk#U?foWRShRw6xwpeY6N#nJ_yF%j~IaOZ1x#c&{1LsrV!R4MOk1u7T zQ7XkOMDM6sfHA&rIUJ7?4Ur2Et_R+`-gCJzw4KMRj`Or|x;>#S*sVjO7|w7w&Ezzp zjl~zsJS0B({0;ZJiN=bFyp&3vqsXk3CY8WA%!D{%>_Oy>alv^<$ph0c5>|72ERo)O zdfy8HbvfhPj#w41ZV#Xo%Q&M~Xh2GpyPI2fyB)?=`lbi(sb2B$tB<*vBR~1=bAJ0@ z{x|&gvl~A7>UkrlO;b+Gi7T=_S(CiQRp6QGbw;{JHzFaF|3{QT!1 z@#OIp-~9Uf{ONZ;61r{=d(zwttB}t|F80>qL`ONYYpeyBjrvI z?K!Lx{G!P9o~#SrY4&}G%yct5>u{_uh0-*w=e=HI!$Msu^M_ZArP4GVJMY+)M6BR# zPt*3ixSRN=fBAEM{mW0Nxni^y;D+X1%*Q|fn*K|EdgTn|weVL~^GDzM8gmfoQ(lq& z+f6UndGA-udZBGatxyyU%fj(^CXF-R$@gw;OL+prGNX*;d;iD(l$;BH_CNi1d2@3l zSIKe>F;a`dD$Ct@;>GJb?hhj|!R5Z;2j9HrAN=vR7!LzK|K+C~hJ{oD&u?ClB0PSu z<4ceB@NL@$kV{NU`PR z>o54#Pkv6@{o9n&$WMOq37`Gyw@lN_*FSilCm(!;FK%x6zy7Cx#*^)q))<~X>G|eY zzD4)J_vxD!bNDr;-JohA+~2d?ZF&0buhQ&yjE6fu_~4#)+vD3y(2-ONcXwxQUYwY# zK)VdY)w`d_0$6DzQX-~EiHXKox(52B zv995wy8u;aJ3}dv^Dy%9&u>|l$o^tg52Qr5Z@Id@QUCPd?($|Ish_r$2vA zyX*Mo`(NjSuYJhHgDZiIP#DJ}O|ne)1HXFtF?Xkt#lrP=N2e^y6#3$}uW35X<#xkn zx52oEAOG?tKl;UIOsiESrA0t^F|m;8I!i5@oHFw${>%^sETa(5aqBdj*0Je3k;xm$ zKsLs3b+yAc9_vIlTG_62bOER=Yjm1KQHbm^yG+{{s2y$F;hkk!7MvFwjMl<1IGrb! z5NVng?;NpYrfJ4ni?f-&YuIis&{}gmpIKr;8>#VFGYqxXY`0r-f%7mDVixM>FrrGP zYa4dk3yd+G&ZE>NrPB3Vrg@RbC@Nb2HJMat0kKdj%Q!QQvoymi9Otc-23X-Wil*ym zH$68uZzy@)4Xy-n=Ou>9tYAj(9Y%>1(`k*jV2!9{mSvHxd}C;G=5ph)PcP}c#~UHW zS7aksN@1B7<|Iw%##-#|8my6A#GEAC+Zq}C=1h!%m?gTRRz*=}rG`tRDBewt4q^$( z$}$asOp?Efkj7(P(0ajWEBt|)CGxCRa@C|YcUdb$f?Q>IUu7MH)vJs)%MidAg*KLV z^1MG>f2*$FyIG{HRK!vUb4IrYqa4aeW2CiAH(KAL!?GHF4Ix$zr-f7_Rf}gTB*|wf zHF0%yxq?AvsEJM6qO~FC$}|eJz*@y-Bl$XHh#}&f_-KZ4L|ezBs|!kPxjRG-%M3Y+ zvAWw}tit7t(-~(iopT(Ag}d?0*(kKC%rR4yVY}%ujX~8+nj>S%9EZr=X-1(Kr-3C! zE-x==n})DVq!6&qW0k>qBhuR{6Ify-=0w|B_PdURM%9^|Bfb$0eu;s;b11Jd#dAE* zgdEVy(0R?5o?h|hVEOD>#VXIE%N@3ND4j@Sqy$BO(Nl9}iW4dCp%_Y*Jf08&r*Y&k zE!>ZRAyl)}6eLL9M1 zaO%@MgF&`^Ltq{xPslpUxGapr!o%$~+s<%%%vf!pT4IQt&nK2BQ&&~tbR0OHPLd~z zVb?co`bLoCHPN+OwtY*O7SgiNwih^OdGtUwFsaJn?^{Rj8$!sOmx=K>GRz}gE0GGD zMsYfwxgEweq}X7sqUjrI$z&?8-rNI{r}yabBOZVGOJrc4XNJ?6(=hSoIAU_-+IV)` z4c1kZZq|HFgKaId)%@9C{g!|DPkzHEAHU#mcj7$EOmh&BK@mxfLL&Ws7p_wOWsS?* ztE%7q0Vwh69!{ClIq>@R$S0q@;YUCDj1NC}$lw1v-{$ZA@mG1+8K&WmB?J_f7(7km znWjh$0oQriylO+H!FHZ}I#ZKK%S#R{F|*xt*v3(m!W+fB%<|rALx?kd-%(TLv;>h* zS;I~XE!H@p4J)O|TLJi#te_M^O%%Y`7OgF{M8w+(drg222 z$bLiHX_Nz#HQrdPs(4@7?^_-`en8Xrz)3!r^>?8`@YgFw{@Et|cbj#k-u=o_3t21d z#fFEEuh3NhOj=8Rq}7IYbAjy}Ok>4|IR%_2QNmmVR@=!(Gc}=NNV~?d26o!+02Y zb(#o=6B|{ye$eBZma09&T#5cjc9(1~d%pL>@AB1ed`MRoZhrm?e)+SX^6^dLcv`5| za2!Xb;lx+}-LLTUqGjJsJb(F`U;OM-Zk|75$%;lzJbc*l_rCXt55M0@CX~Nlt zm=beHgq$&FOXEFS&&0G)bEatiRI-L9o+Jj=L{ z!p3kJJ8It78O`}BOG@a)(1jZ?%4ZQ!j=i!$g zkxJmVzxtHl{N_2zX#VaGKjh0FJmO1NJ*{?}?*@ML>isyGn z(v+yVFolTIj&FS95nlivLE*lBxaIX1FZtC!`5B+S7&zQdq>|QWCL&cd8mqMo+E;mB zP8sJ7O)HiNXDxld!F!8yhPDy)R>`915-*=dp(Q?JSylq91th+~8b{xEl+~_~W0Kg2 zm@(E8i@bM`@WzRRzgALKR3r|}8bjB%Z2Febdzz-fd&wfzTA?&Fjb%xJQpJmI5jBuB zL5UC|%QCTq#OXW|W8z}p)AWX-B6oLpj8mXg@w$eT2w_1Pfd^{!JF!hl@;YOPk|n+b za;`MaV4aiuF=x;sh3&eQwreE1Cl#8u1tm3~TA#Zmt?$nY}G}=16R;x`- zD7A0TAh9afcNvX;;M@G|yngRyv1uE$(WD}V{hVcO4QdTY4IEErtnbjeu5cJRD8@;E zGs8HcDHx@2UNU-aZjWe0y5g-xRU`15B@;qgJ%b8kff}eqWFgiy7;AB^C)Y|8F*G48 zq!ehZrEOcF@cL$E*E%k?8`%Qr$adGUs~sT}<`CI-m8)&XgR4Eu`XKUq35lN5#5l?} zt!Wx|`wdnb%2M#k;TlB%4p)E$SL#e&4HUkK-bE~wN#@Smq=q2b6A+q3tnl8s)7~oJe%H1Xl!ly(JA*OGm6xuZMpj3s{H*EWk{l+u&9<4N+O-H@#SW;pfBjY5b!=oC7D5f2% z3Mk^yhgYNoF%6ujiQjx4xI3PC|KV0-6N+^bDx1}|z*j$bkFIOiZD68S@xnfPdB?L? zM|KxmjMe<~moITv(KVV)>rrR%{Vq$TR!!epb~_=hp2mS?NrWY1lw!N-DN3>Ag>BPt z{b0w%zQy|%kYHb{)hfBl?*LTC(+OoX%{)mMxKVViqp=&VFLziYm~O8OaWdQu6R8$z zU-<0sn*aPSe#QUypM1ivK6)(_+)~N!JctNE7x`N7FIXb}E3db)4!^T$T#@Lxz!Vqe zn}z$s#3x_8=Ht&_@>f6qEr0s`ukpv<|1u9BHH4d6?q0p&yi8zv(3xSjl)R^FTAtq> zKo?r8u(~o#Li*Fz5~m5fELd$hm&!DbSbdMS8l?s9(>gDOL5|GJEcDP7o?)zK+xIlR zrPL@g9pzc(KnN19o^mCmg^;5_Vw#5ilcy^@tAcM(tw)y$kESsaCY_CADk7`5)!;Xt z?|$!n{_@99_~_Hus~teRnSXu#>%aIFu*S04U9x-pWrpR%>GpB0JA9lE#8|;yJBJ zbJ2M&-4(SejBnZOH^gbiD8u!GONzCm{gx*v&i6+ShkIU4Gx?m@?6>T%c6{yXny)vC ztB2P->MgBVn5PrQE=isw(>{c`Z7;D%~#*QWM7ZGzPUw*iLbx^ zh;KZ7$mNCN@(>U_=?R3-$g(ECg=O-obF!n=`ViHkN*50 zaXOv(AGtlpHwXS-|L?!#zxu~Nr2@_rj5a*Dy5PF;Z1PAN7jECoeD=%#598epcB8re z`d8UKeMkxm@pxpqyJ5M%WzIdn{>88O;`2{f!oo6V3KpX^``w1!c7xU$=URqwBIGDr zj#OBdAm?cosi<@Q9Tl?mGBB+QI_Kz0qH9{lIdO9unCC?Xx2>ld!!ir^Am@U0iN^ai zFkQYzt%h7OZELYwHZ*P5vh5p;ma}pkXU3SYc0lV&$pup#WwM-x#5Byr5YW2fyr*+c zwl=k(t)Xck%!QOdn0n$h9+r&ONuK>xp{*us#c;ncP79?LhB5Q{l&CRszCVf|e7oUt z*AZjnSI_UrpWm^}fzxmj-@OrNkFFK1j1b6UWt=n07~1`wO)C`8Pj8Q$P7Cw7vULvs zz^{a3A(3ip#gY=``_#q=ln7{B0h@s2SvQT7|F)7Tm99AJ=(-K#Af!~SM5frajpW!W zO^Q+WRqZosyEQg2{^YJn# z#%V!Y$w9M5Xh_~7he=k%R3yu$0lk7?#`S?vbH#fr(|DtWAj|FTdb-qCSzU4<-R4(fzuGs#)EQe&YoMhP6dh-_{JD^ea{jX#&M#QLSqz}0=meQ zt8p0Xh*7*(zV#eWkq{&2^T<3#T4!i`4@Q$?BFqb?^UUcyW0YbO6EQ^|)*Vz!NRg@% z+Ej8543o$&E_W^M^_G$aT2ZrNoM!IFfvPReIL2}0?%+vP6H+F%GM!RY265~9x z1n63eQZl8ZfYXY0E0gSLN;oH!GVfNR-qv9+A%%>pLSCJU#EHbDC{-reU8jW(S(Hd? zon{Inr(q=5%91OezPjaf9(n)aB}HZC6j0h?wPhX`x~^xtsqA(Q+uovzB#;er;Pw4L z)`EUN9Z%#G@ZLy4RSfeSj zJ$uDxFOD3tX4~SNP)SqHTwVwP)oIOd z|9Afh6~(vzSN{iwX+&9zYkN|LToS!)FeQ@0%osDeDDhfU$-mpgmN5;qZpUu3r{+S5 ziDU}Sc}g+w=)X=|9zDM1be=F+cH2EoYpHdDaiWHWa}LZ!b9au6vqjg!qX#V;S9$vQ z3b*EvQI$-*f1mN}T5$B6p6zZA^NFP-rksgIG-bh%lNZOiZUBgz7=82~FGJtVpNy90++Kog%en zLM_Zi(eE~N-jIyqXe_UyT0OQ4JMV-N-B?17eD>KFs5y|TA}eqg7kugJigw$tzIuZ$ zhT-*d!ZI@*GGkcK&a-JZU@V2De&p3BpYg@Z1E(qQ{*y=SH=d?bc++sT>Dab~*RO9Gf}?(P%l*sW zVq3?fuYH?0Z*KYQFa8N>j-=Bq;rfCS2)>`S2qW8Dr`FOSf~7!W-0PCYcyTg zVx6#lwb7(dnC6L1-$J8BZd%qe*E+h^p@94Iz&I}$Cq73C#90OdtdU8nB!)S18U*5{ zS6GO1A|-!ycSHlu8JzQkB}!wU6sanz(Kxq|=Ym?dIfo(g(I+>|^CU4(t*1RL+}wIn zNi22Uij{(0J#)GuU>#?uDPd~j>T1t!E1;9@MaQmlq;ckp`+G8m_nth)83>5qORYXk zV=R?Iib0BZEoWdURpN$JMOD^DK{h_M$hIt`h%vD1TfEU?gV7eKSSO&90xYX1v7i{v z1FBYbo1Xnx7^=j*ggxtgV#5VnPrQOXDqpB(@_Z=lnP=oQ74dY^_LYmxw}P zl|}(+ZSq1)EOS_?rCNrcjmGTPw&+q> z!XzGCquzPebE;4iy1I8wq-h*UWwf;`KxZaa$TeeZlH6u(XuV`f+m*pkYF=&gb%h5> zO`6x|zf%TX*VvCJTWqb>yP@+RuD@N^@7*lExjO(Ft+dDwV!~*Hb9E)(RkV?tCnrU% z8sBKVtCT2H1ZOOImE(mu)AudAtpt*XC7{i!3)h;akp_+;B&~UgXlo=^qZUqU6J@Q) zJNvF7RfScKrf-F$nIc+QK77*SohB5K7~~1=!kL?Vpz)r*Ybj(te>F1Ck*(j*b)Kvw zN@CNsG>zouXq`A52j(ETK50ozb0CC5(-d@xSX*&c9!w=Kygb~C_bCgcp=lkh(-@u6 z+Opa7T(*v3mH_1|@7Z^SX(_~wXMee2iW9@Iu=N{u8_SY1=egz8-N4;BvAO6W$aZdA zeU!!(rX_HDduE9l-+B^(stq2^FfPnV!nbR#bgiZ992eU??>*d;t7IOv-f^|tfG&LU z>^VRB*)#dGDHxWx#$m|e2UWJ5RS}kjun192H(m~=c}6cYt}$rm2pPh8S>sg1`{gZc zT2I$DEOC)$w8An+Uc9{Hc$iSCU=*}#_EpJU_VF;;R>JpIyM3R}d78{>js5{k;lpS{9pMM&al^WITa!QRb$@n*rQN~1Hz zDB=>Rsj}H^>32QvJ?Z(`PoMFh|HIFD_ByPd36aCFN>Akan;oM17yR76e0d zpx3a#x8h0}RHW5ohf$2V2-~S$e`u(r-m9KsU&jDStWTxfF zG|yC9P}Ojn7V=oBxsaBHvMg*iJF2&<_fLb>I68^{DTQn@VG-y+S!R|3x!aMIriO*% z{XMVJJ;o}I(-Dg2{m0jAJI^@JR9AWb!F$wLnWi%z{r7)BLi6mmzb4HKjnS00$8{}O z#rZffjw4G9EKA}v%uGQ;*1XuYBEe4Jjd+EGB$xlijrzZ$dzU_cl?j)CE_dvtZFNHZ~Y}>HA-f+3GbasVeAY@!>;`aW;i&rP6xnLSE z3W}y-(>7SEC}jrgxxJl;so=c~+Mc~RFhz;2$yK4XrPqem^;}>hTCE0{@KL% z%hz<5&)IAnN{LhjFOHRGKlzw+_{S_SU-0VY4G%x~GTp_FFMaI^kEX=<<`sDw`2N?g z*!|!GN~ugaa?x!$pGRID?|F4x$gh9PI7T9htQ7HQ|0Q7AqE+88do^iK#M_BG1}s+Y;%YSk=j2>f=}v3>Y}szj1msH-mym@D2%EL2JfV;xI~ z+)XEr=aD&Pv=+*zH44AT_BMpXd7P+KRBXn`c1qPMvP%?8D#Q@PgIFupNZdwUhh_6J z5(beKr<~Ci!V(EV=;ityCHi+_hR_nJQr8?tB^ElX4XRXBE|N9d_IM{Y8nZT4=t|Cs zX5=t(^^V}d6bP}sg=w9hQ@kwP82eY z7mw(?M2_Rkd0fyy@8uppPl@w1(>EIJB>to+iEXFQ)}x98qnJ}9q(oI(>NX?5n!JJ? zx3g>WR7tpR72}EecR!c#I_l2S7l2f=0d45qzExF&oj%Ch`ExJfO(b}R_lY% zXN_@dKJ)aiS1$*W9T6v>{I#nXXVrjgfcdeFq z2wjyF?wPgmjKmbEXsm6?IWrE6L=9L?N|j}qSz<(M&8}DMFZy-+s42=4i)9=G<2ci{ zEmxZs<1{%Nbk($-$og_pck}%4=`f zUv%6*8~p zm>RK0yaJ|bI%OdRj!R-m3S}JDN!HS?ZE4$vTr=Y`lb40d-hnEd=aDfi+@42jHQc|M zQ3^~&JPKOy(pFit*5sP03Yv|W)87(rU9sp4ddGd_c&4%GTv&;f!vCeY2+tY6w=5b&+4RmeC)x!sv z)-at0PUFJ1^;~Ux-g|I~@rLKG7eX#nm59s8DbE5us+t$C?>P(;cgKO#6iE>_n~v?? zP&2%Dy?=Lj_MK;$3e%c*HI0e9#=aDUhF6q4q_wgb;L+6u-}vw${pF7Pe-x$58i7xg=Tucvyg)VFzo zWyPK=gD!<>IP=SoKIZk!EkFPD=loCp!$0L8{NO41a8Heyrt7h7%agt0;$knJ<7Fg< zg|GzfhnXoQZl;CPC=>Z#{Pvdjo?OuyxPNot6f>8b9XTw#xw~fw8Q&k-IK#tjD>6$o zP8qH{%l$ksg#^WLIL@5M6Y*GSeM2aTj~`rfJdLO?ZfP6CZI~Fw=VTnmY2o&6z-Z5= z^?=BAtW#Lma(uJ!(TiKAVGy~`TaeJ-yxunQ|H@Ub6frp$!Zb6yx#6?$hFlC)HH5G* z$3>*Y+R`{jqckNc+D${Mh1;7GF)UnN%0}vZKU1|74qrUG<)@#1K}>KyFBl#8&;INu zw7urRMMvK>R5ZtN;myq*wMd4pRf^6xDBEyzo|)&7jkjz%&qC()>yIE+6pq6XczJg~ z8)&TKYPVy*YiOH-$_0y~P`Mi??(Zj2N4${iUqy$;VoU;EsK!fXTv%|%$Qe-+^HjLG zIdGgOnpXT;$D_n5v`%Dot!=p8w4e+*E4%^goebOJ!r|qKm`?c4VsfEY!#Lk_=Mq+1 zK6&vAocT31Yo<99bHcZVkAL+BYu<3t89Lwa+v6S1X^gkrO*3)H+}@ulsZwfYsfk!J zx>Oq5GDj$?()SGyFZL|UM9GRJXO5F*4rivD1NDBO^`g`$Ra4P4K_aO-*I~7mY`hXt zfHp#yd|MQ1qtQm;J4ep4(O1TxG3W{*&fFYsSmuPWioTJCZC)bh(}{VWa81L`h=HjV zkqnk3e1xi$3|>lQ8AocZlp_A9w-WCuEGw|YVO3&YA~^+`#!>r@d7hYWWyl7Km1Tl) z9#u1xOvP}X;u?G|^hql8jTdW4%#;%GPTr@kpRpPmqj60`v4;J=q4S!IB2_Kfwevz= z7E+4LHPc#8>l%*dGk1r3a!Rz`({(*5SMJ9nAp}&BND9`?QQuj-JrI{lObgx{wwn!& zZ=lu{Y-ZPH3lxdQTT<4Kh*6{YC$aw)J z+oP~74D(3i{kl!6B8OB`?+86~q7;~>NJ^0y0;wdSU{)m!Z_e?b_@W!fDebH}LqO0&5YAvMtHYOy~HZ5;6q^%a;y0@a_Nj2lVqiH-^Wt1*h zE1;KoS;!$V$0(lQC8Ct#Vs|Og9p@vpWSUk=_hp`$m&_6?wFn`)UC*>4=LP69bIY@y{zw2s5W~BCP;6q30Uec-AcMTQvgAB%{+pDSwcm{%yQ|e;R6*{G^y= zIt3EQs+C^lXa#Gn_|!^9JXD#v$P~v}=&Yq6A@^0oI7wDhL8DY*i8DFpH6up?N4w6l z-B#u~kTX~-fv-*DWph}Sgv?t*EF!yDawN==WsWqi;cyhsmR(KVrDjUXbk5Q?8~JlB zkrE5k z9L8?hwwnFcQmkgXYshEG-f^`hld#swq$i#!O0jJ$)+xG;MPaE)v)$}i!o=}(B4pN$ z=bmYrIiAkk+)dn{151uruZclC9gS0LY!4Pv2oj@W49YrEifC=IN<*!rn#rwYS;=hH zXl!fWQOT4NsioGH5`_?EOJ0LqrBO+>lH)?9kW(V0NG=ttJyZ#s?K&yoOO-%t?=*d9 zsd+=m5p5*$q+~Ijhn%>}A_aBMv+FiAZKdyf(h6iMRFN(nUh%osSZB~y8cL@deB&vl zaC^MxG<#|d#27iw3t!ycQ_vWtXspE*SjTG>h!WqERS#eUnORN~2_3o?#iJ-Q@zjbb>R zxxKmPFrHCa2#%kA_KNd)SqBx0QWcv{^4m&*>&=FK)6!q<7?*{^-5C;GhR6qxuJKr$ zHWXcmN^tOZ$1}${;Jsplp)u-Ru<<{4{cGrf-v(l9tufY8u-uQCWnL&*_&t##J`0L?he|GxHLe z$G|XUHk*z|mn}{!hB>noc=Y&!w!Nl=NL~_`-q3hU$r6KfaUR)kEy{QnS?#mkcpmOM z#$lqMS*SdG=z0IqwfLpA6p_O@lPhetf|)m_qtrr73kv8uPsxcTREBAxvxW~JT@!Ml zcOA}Iwp&Xflai&iFbt9V!;GP_-*yshR4w{)M@*S1WghQ4DB>qF-Y}jbZ=&X6<7vES zjuoX8F%7&v&z#1{`BbR+o;gR_wpoi#iLT0cmJ&opUo8%cZ)8h$ap9;{>>sfNmb{3k zwi@9B?6#P!NsCa(o5s<$4(H^2^1hKwJPM697#fP}Vnu#fp%U=&ajd7?7DHYP1wfGj`7NbOD zq*A5Xw;E>+jrTNOp7jdo+LpCoUf)mgaEDo5qYxq`%eGBv#isK(Bfj;iRKhv{X`7Z9 zX69)oRfRK-)=Tc`5+_iw-#N6BKT9cv%dX*a(^HjZo+oOSX7zjw1}jCmIT{Vrb+R^7WGa&v~L4eOF$rYML;ysFCC23T{8 zoHdlPkh1s~+s5LZtmOO7lT)TF5j{JRJS}m3z*SDCh(=>{#Tp4#)n%0q=tA3gn#SR5 z#AwSrRYHzJcrqeAuv)Wk?3%|{nEXr(h1N8fsz}R1EwUx`-iq8LRHivGFX9uty4s#z}I)ieb|>q%7L~F+|2`A?J#zYvaEj zFv@_|O2}x|GR%RS!^m$wd&P^}6XU#)QdwUQ@p6PH_W4F@YECrPQZR%ZQ8nZ7P-Ku0 zdFwq>CZI5p}&Px$! zwPMpZSR>o!ilOTq&MKy1CPa&G9L`y36jCB3OH~aiS5g!iwd+M%rsIz(AY$X zf#WbRFA0>R?X1D36$fUhgn8rY< zBTHPEra&oHqrA{@?k9 z|4a_x-<&kceWMV$dr^fIz=|r8?KYeSe)f~!04@9f`G3rxeC>Vm=?hNh0k>_qxZIJJ zz;HS;PU4Td+Fx*cdnZ$T4Z6UCi=NGM_U@B8ODhxKlzB=k{G}C0o7XZ>}pF2fzuetHF42z z*fcH0DEtbE8KyJSyin%I%V)1}R=*?By?y!q`5y6K-n6TAfYbPf?WV_@itai}nwX<( z$*=YsInZIo=8~+K$l&EUzH%WDzq&W1LrAWt)+2>VOSWJz@K02&_;24m`G7m z>O{zym?ZZtW|$M4&a)6@Rh6O8^Tg%lo|F>HFw;1P+ceZzp%h%B*_18A$*^et97rZF(i16^a;_8nc@ z;{5}+Jt^y_Q?rDHaajO`H6DFl2+P7aPlPDZ0@hA|*WaK$Z>nysiS%OtQ zw_0hcmQQbI#Fo)_9lmY2(v>hp89XC#31Ob-dubB;zQb9!He7{}Bwnkml0oY|Z+!(h zCnz$UZ@ia$)toR|5%J6{5O#mcDIq zP6j>GvdDSvJ#8zB4y`mH!)X`@A&7U*$c9WQjcZz(Ry={zID(SzrSWd{UrLOFK<>o9 z7-MEy0%^_nD*O(zX+D2&s3#v4sl zl?k!YG)-jFWm1f*b2UQb8 zp%#VFMqoF~L{kk{t;2hRG6sVtr^IobWMESgjn;g4-N}~ETDH5Mahe%k5A>TIq$-1Z zW634+;%?y8;mn7RuX(uZxH+D(=gVewtRYj#t!o#&nHBWr4O7)=V5Ux@t;E zXp^NVQ*VPfWkRgPbt@B_C6h|PYN0??3bjO$OrgkStw%HX#$s${3;}Az7>6~A^BBd% zjd-lIx7ZclnBUT=sFbP!jZx58k2NsQky;I!#1aGAHYhLQ-i=k*#&Vt`Lr6?vriqnQ z6Y~@qhJdb`VJRpp-j%L(+@BZ9Nj?!;L-A>ym=3g!6n(}yGI4Ey#sA=q$bx*MnL^<1 zb`k<@t*9#bJd(xOp{=I#G8ImJ7NVQC5(cg^O1Fft;cysOQXyr<93m!#HRfhP8%y7` z^qqqmd3_VvHV*GBRUwpHGBJXYEOWFjA{|~JWkpDpoFWrR9tIRL`CaHb6|6>lj2Mgt zR9-WA6xL>ZBb2%#`5aIRT31X-^h$;Tu~3ruT{H^oERE9y9mzFImZ*_~qvS+m4VzsNlk8hR&KaqCu!X_oDmwPI#RDXbN_GD_imN82@QLtO7C zfe;z3F}f9>+Y%)!uNHDFBn%~=`2Vr@=TW<+`CS+KxyE~VhWCBd?aois{P66e5oKviw;~)6zKZjO|zx^ejLs$Zvt#@c^*ceNmXRJ|-C2>5> zxZ{a_)w5bT`o=NYnYWByUIMjj2%kRxb5KD2xWB4D*35q#Q@~h-=O{82(GR<;Y zWM(lFLS~xe^IDcWL>on_nbTq9`eqc^N&#nPnt8@+Bf~}ApsQw{X6Bk{e8X7bm?C40 zj5*V3%keaF7y>b8RMi-*@vX;MO`IdsoY3YLrKDk)=19(pws&khfwL4eX+L0UL1l?i z$j68`j*E*8MqAds#N`&7kSOS@IvvmLp@5F&+4=RHn& zTCcE;gpb!8@vXyY$8LAzbR3wo#7eX)hpHLv6t?k%S)wIQqs1CIv%UA&VsP4s7jx}s zw3WQGY?z~FnyL^Omy0UKz~MM?8pMx@mh8STFT+F86Nn7BacnnhstR%+90$T21QgPH zTqEap$(gz|Qc8hR=295Q1JBs5b@#4KAD z^OUz>3cd3SwO!&LHrpO$6n*1ZH7(N|8U4hA%ZoEt z+nlDctesH4Qxz)h+%*eePc~-8$uKt8ic%44J8JQ0t!dg$_yKc37a7*;T9~ImoCC%x zn#M||-yDdsFwaTuDJ^&1Jd3Z+SW#1m&pNTpb>+U#(r|iXo)JRj%$S7esf}dqsVab; zs+p#l7z5T>*`m8f?qaPaSG)1c{j)%8s(S{_inGL;R3*SVYb|~2MQR@+Q;0%9ErFbs z)S62?NY}ME=LjKkSh9*^Dv0@_LWVH}iGYb^8Go4 zQFNv44412p8YPNl&Y8R8Nxs*ypmSv$XQ@Gr{JhgVvuZV$XAO;kaSmMXCQ4PPl%zRV za;KCc+gfK9NR%~HRRwkxm+z*Qm66s0e3UD^F0|D0_pBX0`TYOy`GlLrvu(>X1m?L= zssL=tGJ(vp;g`)5MZAa-{7+Y%P%hjkmOoBi0H?eq0EFVU*3H)fzAqB_Xbx zw!u0WL&7A5X&N*IuN1uz=s{G0V;EqNpD#v{;aXjxRC?2J?`+E)BPri;b$61&a0v!Z zSqPWbh~|IQu28lRa^y4yX@ayO$IRuUHK#dpbt4yK-+5N9@c3$AN}1KFVbyyyn#*-V zNkt@Ki|@ee#HMYiMRB)3k+r33dse-s%V4y~5Drrz6*yaUob`^2^$O!#QZ5WrB$i6n znbTn+PO|?=b>=h#4yS@fnsK>cBp7}O6H`>AB8c@`gsN3S7KFLei$X-plsRYORB*;D zTkA=@09tXHXQnwUQ`1VB2I}!7O@ubj$YWIryh5vra}{S4W`Q#qr%(rx)a0Dlu2;la zs9~CB;JTE5n>PE*{~{{R=M6S6E$1 zDbiTWx^bigkALXPQKiy->Hml}j$sVk+}$#TLgyRSjmJG$kui{;mZg596@o`+wjs;mS4N`t@JUulm*B3d%B113&r~|2XqFF@?gI z5?}Z${~=y__h*n(;v+A$eDA;cI`4nw37_^EpU>z1@?XQJ=gR4L;CsH~zv8u*AA_^3 zFE+Hwl2YMtxWQPtFiQv+1GZ_oyu9G-tRtkz?cKx~czy|%=ua956$I4zrQArWe0@hW3+>`zDb#{r7LDDkkD@g$VK3L$33F)~h3 zivL9&T}u%Mt+j%nN7HE7p2+O5q#F*=mDIiG-rt zv#iF5Vj>E+6xJR4Hz4HyzeiFHDg~JpHDYEtA8Cvy@`wzCPLuH;K>wZm4Bc*1% zYdGo5I42=l*9l{wZ&$=QGKYvBDn)rtOOSicP*TNc0e8e)2qBS@c-hX+B!Vhs0cX|H zFC;@RL$gMPqDsRw2B?LumHa-X6|T|v#^J3chKZUDjT67`S>H?EuvX8am&Q>z0mC?Q zJSjqy{I^_Se>zHjU3<2 zYg&x43-vp28b?l3Amz&8cmf4(kyaX`B{rg4VU&|hXH#jMqVHScoH-pQj59Q?6`Hjc z3VPc*F3&gI*DQW)q;M`^ov4tg;`P0`y%VB%OdN&-IcB=nbGGg2TaPIMTwC|uGpoTg zMT|9zyi$O3zO{HK079w^sB_YI?*)PuXAURvwR!LG(Glm!{wSgMA!QjBDn&^m$u!oX zvWFDuSnCC2>!iA(?b;jiM%p0p}rLl$( zWN;c|?ONJAAC z0Fkkl>%&Cj_pG`WYLy5sRUpk$?%ur-n!Z|C6VhZZD{&6V@&L)S!CWtVTz)2iHp@4)0}vHH}KlyBU2WT5k#mJZS>-4 zmPVds5hF74B+a^#_tO|dK}mDHoU3&i_!?_uS@ieIIr!xBf7$c*YbN@;o`2z={8gNW z$nG?7nj>?vOer!9k<$>E=O|4O;xQ{(4rBosE)xYUDDGU8co?*i=1~=ts?Vm%s)|`! zrr`>06^-{e9Wkn+s%4G^=UGg&RtR5Old@>+Q;H%ZGzw=d))`W$Smju6Iv_JG^eyWJ zzg;Vg!$i|Ln$FT#L)SDYT{+GJDMWhfINNM6t)rw!>%2_c<{51?#v3|o7g&G-4X05g zY!pRFm8LbEZO&h{50^i5OTpf#dgyXQsvb*_VkVCeB-H0Hsh-Eym;@N-TuT7A}9-Ja+TMwHwLG~ z@ZGg;fdn8BAu9Xh%y^2R!F#zN3Nj^q^YJY=yAfp^-aDr81T{0vfniFds1Pz-CgntV zsxL${O@m0bN|I^yxNOsmY*bQ~`p`E<8oMwNrho+ODq_qyC;kkj7nn!R@)=ShN|Qs) zVzh+Xmz)J6vt5fXD9#uZo9&8=i!G>343QE=0$BjR>XvPJ6vTGhqDny(@rayl)?98^ zbiJpj%5;htrCIlmDGUsAVvaJoHr~;1TU1DtF)+qLNQxW+(=?;4q3>E&ZBN&Fdap@K zM$~`vn}0i{R@7VX2Ee}X@=`D;zVNSpAD{i9pJh&o_rB+I_?ut()r(&Uk+tLn&Fu}p z?fZTRV^{o+-|@RBzwh7WFa7$j=l}ikhxwkXt0mJ<-Xrq^e+B&q|AS$wC?NOo4vnfA5Ux%cn2NeSO1U`19YzxBtoS9gYykv z@s(e~fB#+I&foanKg^r&`v}i}#^>_x&-tZ%|9AZXPDA3C{>ooZE`{&@wm-x)4y^ZI z#p|!$ad`Ao{L%0D)BJ0{<6q#FS3k_J`Zd3XU-_%PhX3^6`#0#jmTo0D^^gjUgL~&K zm+OvA-(y-wU5I@{m_b`s&4%miYu-BS=-Q6o_-B8ZS}WiEb-$Xk2U{LKx{pFF-uhPwDl?ec!4 z<>)unN-<*#S}QIu?(r+W;`8{rU-kL8960QcWL+7D6VouEbxWz5DTo9y3>jr08BHuO zPl^5Uj>GAMwJqnHHH|a8`Q(r5*BG2vj8nkbj#MK?fin%qDe%_ao)TdWN#2hF zjWL|vTM@#@d>YvFD;_<3K;xWzSAcPzIG#=%b|;3MNoa_gFwTr|L_3Ys2D2dT_hV## zIMKGAwr!YGrt3De){^2t%z>0OH5HUK6f)L`L`@gXlpm5%XUo)L18fUn?+;Z>oe2FwEbk5N>9+2YE7-{lKsT_}i>)Ru{!+`Y$ z*Eps*aeckx_Ews6?+tC+&^0a2L$_>ScBg^eab%8(5Ti(C7xKB*8fQA*eDWr@yCcp@ zqg2Y%=qjYtTsK3 zH%o5v447pISJAbSOX4ubWeb;xQL=(Vh~hfXvN_E;Q%j-o4c_?$l9k2(=OyN0o@Yvt zrnc`_%ptJb9hO{9QOL;lT2u(qFKfAjoosu3qb25O4q^qe4r*nbBUR}o0;9Ril;>Aj&)TffEdBH{3XQVC_ma<4K0i#L| zco4~?vl8}PlaQlwEmRYkqeZELwlWbhPGPOcBR73RtdS5R#}S78k*X`9W@>?GDmhOy zJ)DN47>AdDayjfA>%K=(ndgDNYv{b8>w0R{;(G|1Qp2;1s>3id?j-EIYh}`Bbfqy> z{61gB|cw;QquP{pDL8ygkigZmQQk`sA^)1d=$*0PN zi_Ws$uGnsSrjx}Wc~!AUpme|Ls8!?-r(q^0s92_H;xx@D6y8gLGS7i2B$2`-`7EVW zh$%7*VjV1169PLDh#^u~@y=POoT3bXCT{=4Z>{Jyt;3h#N> zhE(9?{7(MGS3k@@esRe+eD$y8=l_R0?w_yu?9cfMe&gFeg@5&}*Z9XaXMF8y%ONG+ z*|dD$u;&}U@z+yI<%_=P3;2eg{22g#<^4;3&wJj@J!kpOH{RrTzxVx6DxdnEck!S7 zfBs`GpMRe8+(Ul%FT9`ceR2h=^2a~_bNTf3idGvw{5$_;{`uehTiNe+e974({^QU8 z0)Aq*=kvE4{;dyukVDS=r=RiZsF?T(D#mCYTyB|Oy3cSLMK*Jq`SsuMkMd{!?DueW zbq&D(_mBKBe$#LK4g863|I>&OuPrtjRUfwVGAmateVk54`%($Nc=yzs@+!)P(|Ul_A&su|~Zv{$Qo0fG`TH z4WUTXfMl*|bQV4T-G0wc|NJZbvak9qKIRIIZYGCQ^f8y+qU6s z<(cM0#If>@X*%-OamP3YUV47T3lA=7ZNu(x5YM8v)GW}CFiqmOQC0lc%FuV7hX6-G zxW4x{+&}NoN`N2MYYZZxG}e)V45s?7$2rM(eTt7SbXfC0wKue zS}TpV9j!K;wVt!Lbtt7VOOCB`nzCdq?-yyC(a?Fr`KD*HUSYK+g-EFd;~hJdQE|m?uJv9F7w)3m{0<%5X|z0jL7dndiW1JW2??Z^ffKMN(Q~ z8CES(SB7bl=q=}oxssG(vpwU1x4iW50n;3rXR&l>1vCqcLgzs?Lupzuxh38-eHXvNqUj(p|b*bk^pz{A1b3o_E|LJBpa=EsWXf*q$D&^ z863;`r>f*Yrxc|wTU297iCw5BQ6_nBaR%DPvD&nfS6L-zIVK^2hFH-=j8e4D;haZX zO)4^UhJvwbQ8Tf4Ad&i1t7SV_7nRr|zoag5Tv3=!F;R*P!AmaEcuu0)sjgzJ5eo{1 zSTa^u=2*y4>YO2tB0;SRGRzs&lsJr;C;NagMj|n4c=p~EZHY-DsFG7`!wfv-v$jw&Ibg(}esxkA4MUkx_BkMU2=1(Ac|8;Sf?HnQP>@O{mZ!1{g+g;0BXg;!vgq*8^j*9BUPs$Cq?93h zbg}G@nV4t#)?u_FhRkuAx!x54jUe(}r8LHlVw854&8A_~cbu;r;~Y6oBV#?a25?F) zWZ!6}G2@M)J==(!a1LDFyTB-+(`m%ZX^qBcPb!5uMq&})YnTI-BHoc|7{`q7arwOGk;Us8$-%0~K$3m`|X*g1n!nl@dG{@bZ!!S{`!RSayf^)A*qpe{yncX;$ zRc0O&jZO<-VUg?Riq*2+g~GM6ym58FdXIMoBVQ`H9CgAr4bBU)T;sWZa)UJnQ-#)O zTgyB}9^XpQak1_&#&8-(hH>KN?#Nf%zt6p&e=ooP*CeQwSHAe)<;CNkv#j^F)z{%yi{{#pKkfA%-=TmO-7 zCzkwh9u^;0b{_$VSw|?ulvOCV)?vAux@$lg}H@64g@%9(_ z(1$-Ne%M<1$VXr0rI%h@sI(&IGFtIdKlM|r)@z1(2IiWV-t)Nt94Af54PhGj>@WEm z9z6d}QkeM3AN+H?{DGf?`IgQ0j2B;g2XngPQ$O|d0eJZ6l5zJIaXhdOg*;|T0oTsV z(R07o)KGX5GgC>ZqVP%-4Xagy1Hq`Lgi;Xm3`L4`Wvswjvcs~%RFPg?-A&w`A`kAL zvE6Fk`+>*&^`H3&?|A=z2d3K~@-_w5c=6g)ktyaBF;0rE@Kv(WDqTo{mr>&Nmn*mTh3OVShD!mU4yp@zZE%S$eAg}1!7|Gwcs_hU4!?Y z5X1@)Qev7Dr#Y}2jv@!E3R4w_-3dEd<|r`?t+!mB^_*>1bgf8zo5rJn6cU}+;#;hR zrjcU!te1@Anv)dq&J$B*ce`6iy9VzHZRZ#2Xj$mjkdkGL3S+Ivv8@wt>#D~tLGraT zLL5!dt=6oYmRbu<>#3!XHlk>0npR>eLZB8csv@lx5_l5mP0r7PU;mb0@SZ!DoyhDjpBhGC{u`F9V~M9T5+ zu=o_M2w9p-trXTtHTX0ynX-5twZZ#F>MAz6??X!W2LM>ZRMF@d8M)8I&Io-L4KU-^|bsME{)?i&r*Lles zH}d+YB%8+=3o*+19TL7-YL#76>6q0EyPfcS$R=)IL@0XhlGH&e~@Kl~QEWno3^O zWS@L~u|1z~v$)-QQjlO*YM^A1?L7^!bq(M(jZ;{qvEE>(_06j!KFHq0TTs>qp~(~M!p8chh9m?OpT4EJudqi;n5cDp~2qg`SG zpyW)~HZsXfil%Wiz9WUiJP-Irf{HuWa=z~IjbRuo#uyBWS{0{p1|{3WAd^5@?4vUK&?zs7i4h2ZnJ# z8%s_C(-Exs#5@g)AGZ(_sEjD1XiUTFVG#dR65p0> zG~QT-xe5?QOEF}WCkL69|M=AnFTDF*{JMX?@PQxM^EckRvRR6F>cPFZ02d z-@u>0!203a`I|rcGS9v1Egt>C&+^{)e}Jy_ym7PRGd};_l82;((5e*t@jw2j#A6Z% zzT-RoJATEl_+|W$KlCGf-sgTcfB3)pHk5*&|AqJRlRy14eCd~d5r6*A|3$v_pZfLu zhHv^tymzenp7*`~gG+P{y#M_l;>UjMCjiBJ-u*6y)4=!tIZt#Pm#N@N9`Dmy*nuLa8WK@g8pPuK1V#)qkDe^RN9&oNd0E*IxcP=4s$G z1d#xr-D7w42JiogAKKl=0N%b( zhS@=HHFtAlD)m{zM26vb;zxe;=XiW|;_7zfmwm}+^630II#sFR$TS_CW1FiulKB+i2G->h4j#xP7X!&LB1 zC(T+(q!95AHk%GA%yYq;GaiPXR3RqF#e)(mWk`xu>R6qGf@zdlq<>ZXQ?+H)TUNa^ zY<=6|j7IB1(+b@%g-i?r-H0VoH!Zakymg#yRy2)8nTpnyaY}eCgI4PdrL-8cP@u8T zWNcx|oMNGCEG4ZmTDBPsRVbNx zE{pFvVU2jowwoSnb%yN|B$*Bm1ej$xYFueFbODW=yt4~Gj zA~T(m_$GBK98V%mm8P#!3Su2nm6F4<$$|;-VXCJCeP=KRLI?smQ;J-xfKzfMN61&Xj4yqBnkB(W9V`XzotBHpw{mKRo<*cg)JNXA9J zt3;7zy}=j{YJt(@OhlAOQZEYSRy=o>YJpmC%Lg&%kHv44MXs8X_#IO!&whSujYQIz zMwD_&NsXbD*jc<>CX(jxaIa38DbsouzHWySUj%BUrLbD+@xY?5sg=T1pYnPbd}dE&a-qV&vv#WQ>_P z!Nbc9_ckpmWp3{Vp4?8XdQacUrm}4@cZFj1~QphoLwyqpcVM(Sc45MKhW{ir2+@P&yjODoaysHzWhs`-qzgXPcHz_jJxP50MZO+8K`X zeM*WrV{nTPVzXY+I73W{yTiaZ1vHw|JThs=STv{8i8vgnxlnMFB+ZR)MT(YUp%n3| zoQ@)|tlFcDCD%+$kx~rvbQ0f4$*3wYlROt%Uzo|18cDH`lEOIgaJ(|leC=0%E&u%I z|4BagYwz>l{RjUozwI}F3+J1jzH8_=j>G;$N>U6=)6Ct?o+nRk`M`%?XVq9f@Y)sc z{_KRYP9UTU^RPbk?xX$}MI&Wt)SkMHzw#@-jNkTKe-mH+RbR{1)ivMzP2b3G`Dea` zr#H&+B;M7J$tFRxV^1YyESE{%g-&+Ike8<~(?X}k_r4k~b z3f{|4@%`WbgQPIQhJ z{PpksHcWxD`xn?R{N>a*uAnF#q~FsQ0n;s8Fb zbF2cVIqw~G*#|~z-GJQY~{eu zkTj<0&@o_XSo<8i<=h3Rl0%n9FjtX7s_ z7``{TfNvtqmH(F)9zdGh#*X`Z=v{~rCiql5{yS)sJ%a6C!$ zM=ER{wXB@MDQK-lH=5nui7*wWk~!^9Oj#5oo$skiwu;IqPIKfm7fKFpp04{lQ^EiuK zbWS2iHkDQHaaI&HvSqH2MM62HKv9{d^;m02b0UVwl#|HpR3*mu*N-u z?1c~rVZwVu*J+X!U7%WkGBUg~@;yOOvkbKpnG~|npmV?)$J({z#-Y))ji+lgT`NAd zm=hpU;Kq5ZF4C-OOD&QWY#q;3FcLXbNwIL6X6Bgi)t?RN;lXG{PC2DIJB@!d2g4LE%;O6#7%9*yYbgjG&#yepkgdjQEN|TDH z7D~=E-qCmB?Juc-GK<1YEC)g*=b5LiW{Fd&N|9RobA80B=kMT`GBL;zf~H zmpBzsQZ!aJpRKh5BQr+8ghg^EbCKb8S?=^wDkY0PH-uThQd$~gk^HM?1K>|Szqp=H zxLJJfhi*_*jH?&}O3kz(k)sqTIb~9;bgKqyDyl$Uh^b==q#_@dFo@AvX@i?O+QyQC z6p3wL*&mPGUI);IekB=GwMM2Xq0~;kpcNYDdH$kf-8+;rgisfhvs|)wy947CQN~Gj zUC8W*z%(apm5peiG6tENfkIay{nf?SCfi176dUJdv#2u$i^&@ABHqhk60^`Pje|H( zc8NNs z$8#^-f2GAEvYbk5xzxZCaNjN@VI@m^smI9qXEGL6pG z9;JFAvXLmN67t0ElvwvIo4%(#TaiK_hLPx?Tc~+w+YV!&_7euvSdMe#Bd@(FQWpcO zu3_7HG8J7!iW*a;BG80NVK_}#D}`~6nN?@`==F&=ZU(f1`qXYfds0pur-Ad!`}Es2V+hv+*OyzuCf_kQ1wU-&Dx{N4}#5-atY&wr2O z@yJj9)ZgYee(N{$U;nXh=hHv^)A-!a`7D0yum1#J_N8CMZhzqV`Wo*Yzv(xA({hp& zP)qKnlC9-?-}gScuH`Gg;!FAAANf(f{`p5-c#$z`MD`qVfgJhM-}T?~Lx1_t^Lzh; z|A@QWJATtY{Vn{dKlPoYB*j$05ToGQ*ImzRuis$0dwlL^e;FVBxgW=pXj{c_`#KNb z@g83N;LlNpLVKZk^=EH5eda5;c10}{&po)uXa3TEh$k=qH1|wla+PE%+IjkZjq#4w zcc?6K`K%IJMViKPe!j&z$8j97LGa+tx4iNDeix0=JhT=~B;+V?f?SvehclM06Cl_F zYkBu)zQi!heCTIBNE#@8Tc)s;}V7Klfd{`?*Kt=}L%v zwuPKXX(ly}_4$_4SbTNZ3Q8qREoj$D@N=oCP%*Zn+qSs2L+ebtQXB*9a%6pZkBx6> zx}MG&=G|Kq(_;HhykK`ncK2>*8rj$wt$FLsD_;KKD?Ggafcvdy@>=}Ki0tmk8`sSF ziku4L;lwEvUis(~_Q#WK5S*iGg*FYhHwW%^JDTQI9zD9pJMOhSxIg2YmKZhnwwFA7 z={fq|G45_52HyVmx8YjL?%p-s_L8&pIpJ{2VVt-=obanHXX`aRnFK;WoB}F=Rhm!} zhr^C}PNb}uOXYAo@r0SjcXyI0weV zyntp3u_SumusQ3{Msq#f5oU?Mn$#ZH%RT5kr+E*6t6s8eeM1F|_pH37Z#;e55@W%v z8n(T_Okz<~E%1?X$c*DmuC3(w4I|oUw&xwCC=SPw7^5^p8J^l2&(|Hc(^#)qsg`Qh zLYrMta%P+cLX9Y^Y1@u|i9fK;l1iddDKQa(GzHdFTDye9mzjASDQKMQu+FjdEvcp@ z2F7u3+ls`u)&&@1d2o47=cSq4?+3Ip+*^5aitLUP`ze!AO!LI!-S{jPBBeyzbu_+V zo<^o=d`4g`Iny?d^KD1pi7lkD7S%LNQ(!8E)w-p%g{~J*_RappldBt)gEl)F=V`sC zb}T2!jYjS5T==& z3-c6-IWI#%#gqy$7M$@k-r<_ccI%(zof|EUr>>5eN9Hs!&mv`iN+<^%n}V2lBgLZ5)9C?!L2N6KK%tx=E*RaX{( zF2+cFUZuhkccql3>srQ1vKv47{Nj2(;bw8YQnbEfvuaSaFdhPp_l!9)%z+9touzFg zyf=ly?KD$rVSh|=F`e~jJcFGGMMKdzlM>HGlqz7S{`gycnrHkV9tp!&1eg`7EVLv{@U~C z!mvLL-0p9Mc+8A794zIV0+$Tyk$;>VH#O=9bS7$C#Rw@*lxw$FtZ;6RcqSy ziYaBz`i}Fi$126edc|tfvpaMg$BDaBKpVhmQV19=vKeJWmeI8puRS>wPT@$?G+5h0 zwS*}@lN3=S>%PUChB*sRM?W|tL@`q90>`@}C!}%g`yNLTI-=2%ccjHL#maR z9-Q&1FFiylO`J0KF4kl+w|m1pFCJUnU|TDf@Y++g<;nG)$8X%xI?LN$yiaq#p;kp2 zVfXqi7|rc|;`Vl8v+20l8hWQtapv}oC}cM$6V5OftX6Eco{O^;Y6KM~((absZsNIj zzJuo)>Ns=n-UW}Izt0?lKo@FdcRI=CSpxt0i}z-%?cNyT9{0 zxW2mP!NrQJw_fGj{=|24Iv%;cdW*A*HJ|gD@8rct7u?@;eEAo=n~&Ze$ban@WUZ&N zgx?gA6#v3|Kfn+F(D!oh;+#MIU4Mq}`5(R)6#RzY_*?ix|M`Eyzw|qQ8!08e<)8lN zxO#HM|L_;Sk8l1bzn=H~+~4Ht`kEj5t3S#Yf6*5_lc@mDHi%&keABo57XFL>?DtV? z<%c$FUK!;3o|WV>N``#ld# zeBZzE7*EHie(Fnn>KA-1XZPQR(wetE`d)tWuYC_SRXXcA@7Jui8~nOwIvtp&Js5{^ z7JV2vYdcD{eDv`ZVIGLXj5Ccu0Ck~h9Nnr%Wy5y8;xvssxqgg6vpu_yRUYTSsLXsg z^5nH0SwpEutV@szrpmWdEAg$QTA>s$0ueiggq{rRjbURonn=-LFsK|UIiQSvhQ6<= zQmet(MIxm%mB@a#=k&LKp0{3mgO9xYC49rL{bjuSxh=O>Z{n24yM|gb(>!t-XEJcU z-m+P*!55~}5v3=d(;AFI*@{(x+sAJ*bUiOTy2m}II9=aynl+u*c&&)H6G;`E&a6Gu z6q)0U$|Fv}aJVH-Cs2m{X^--77!PQ@LKX2X9%jSKuRrGYAaJ3>F)-{WlvA`#!}jbR zDQAXZB<0F9Nkjm}aNLjVcOT_L+TfcG=Nwj7y4JAznfG&cafTwXZZxmn4jc{xt%ZjV z58S`pP;%n6$0yd#@yN6&KM-{$M}<|DX*$rgEsq{N;&hsL`IV0_#6ss<<~i{4&5oPX z#BrSPMoTl86UXsHw+h@l-*UcbSf`1H54X^38tw5(BC7hXVYlCL7!%Vh*{*G@w2k5N zd@bHIYs7<%+^MLBS|hna-+OFp@kW|0iMz?Tu*Zj?xHZ&CT_Z z+q)f+$~;FJ=h$pIuJ%W6Zw^98ZyYS~C*B!quJnD&YSl7~M-FplrB>+H)2uo!@88Gj zLfL>zr9mXkT#vzZgXoq_LHcmbGS?=w+OjXarp=-nnOnX{|M<@r3ar z(WqH1lP1xP&r`x!i_(gDo|jC-hMa_?rHsb6PC}bYc_xw2+OS%;%;QYo8qUvFj6-^6 zlukjBmQZ%vK+cMi^&;!bG~S?%WtfDnsf?`Dp9ZmyDq>>Bp|zO z8vt^K);sQ>w^(C1&XGAJOsyE@Fy7D@#o4B1z3v#tC=$srp{k>84BbkkQwqZnG8n_Q z@5u9rww_w$aJJTRn&kb^$frgdLs5!h8d*0D7R4|IvQlg|EzW3>^Hh=7l~QS%hFXgl zx}$7(V@~vo89kPQ^Bz@1y3;uE1*D2(J~@N6AHy%#1xS=qWt=2Vq5zF`Y}O6ywZl0< zn9p+rC4SB0X{I89)a%CMtrpp56}(Wh_`C$OEk!|0L8Lv6Ujlgb;z>)ijTetkqnM{i z37J*j(RK|}n4c*tjg_$77&5g6YR%6+i`r*)|+mT}7`u2|FabkPE;=#q5l8Xep zYsEOrl(btQN^`A*R9IWhAN%rOg93j0-}*r|muDQ5<0G$L^PvyE#xRWBzwEf&_UuoA z(=c$^E8hM5IllF*`VF(c;0OPwm-#RM%Rj~4ZjV6-inSJ6YnXE(m5=!?o}DHi|BJ;3 zrT7?)@9#c-o<8+|V-+av9{Dn8T+mC$O+wb!!&z;GDYqKVO=Wj|xI?cCdJSofZk z19yib8Aac0a0;BRw5tx&_RPB-^KhU&zo0w2wx)H7;o1!Tr; zSa&N*&742FicfSYw$(kE=mnka9Z>D=1A`p+l@de#yRrFlN0ZFaKVH7TLI-5L&_D?HH4CATF0jE zxx3!;Ge7qs9$z0gjx)#8%#+)ZVV)>t@q!giEs$!&H;(P9#TiA4nZE1k8pHF?U9#PD zXbPKE%c{|MD=`84Vd6AQAq|I- z#(UPQ6&TGhjhv1HHCHz46|24@<$!aRP~mtO8IB9Et?8(xV6A+AwT6rHHH~%n#cq;w zA(hN9PwbB;j>ALrf(1GQ31 zp>;xH%(W1T`1W+w9H$B694|h4$nEZ$P3t(@_S8}cb7Hd+Pv-t`0 zuNWg>H&BeDKxmW_DW<{_Vr73EIGj$>)OkyZfqu0@8_PV;8OwVhN#N;7J;ZWsqUkGSF95B(X}PwG0uYnXlq~ z1xiWel9voX4a!oU+L@GW#0r(PY3~6cPR4uex)3^q#BG$Y}!9_xy zmd~W{10=q~YqJaw5y|{AtWhjJ`|>nHJCe#%?S@(!P(|e_{THF})+$kPW#NfbsrzL@ zT*NcI_%t8i92w^LzutU&^7%jh{9hTJVYMgbz&OuLN#TsAU1A0tlARN0xpe0sm}+ZV z`BJG$MK0!&j9d^-(8a3FB9$nb>I}UX$O)y890C~WJPL_za9WW=#`=b)^W5z2a8|ME z9I7T(>n+v_Q8gvSs`q3>#+qU!%o?iY-epJ0npM}Jjf8{doM{?OV;wa~F`=y@=FDz4 zGlh!M4(|<(gAcxX#qB9B8?ne(v(V?JnHV!MDTW~srUVLUWJBRJ&nP7*V@<^{V+~|2 z2a9)=W}K)5s1~CmjkkCsMtPxD$roNLAXmmw4%1aG3da$zbiGZy%3Rd3JwGAN)oG7M5t`LjJcr%In+bwPDflMuiIf+?4 zl}sw>Sum?L8s`;V+W?w5$VOI+%|vqhYGvK8s3c-d#8M$kzS?%>DOKT&!WhLA6S`Ea zsWR1CD7CAuLs`W*NYm|oyAZl6H~WD(W}4nJ%mJg|-nwDkwdl5`*2FjmGL~VE)R=hm z;2!JVb8|azb$w!YY-ydrSZIt8EUQ+eB-_-(Nv6NXiLSr(LR{RmJ&lutIaAp0kL-3c zVlub9_~;R?Q$l- zS$x*v)xWzTREU=e_+J=HJ;l=eZ#?zm|0sW=pZ>Llx=`y9@XJ%+jfBsuQe={hAab}_;T2IqDzU06EL5#KhJ$Ce@%pjw6Ysm>XFhaGOiAd5N`2hR|Lj(O_7cXF zxjl@my{2n=ysiW?Su0d^KteCgH(CjVsb~RAEQL?gG_1RxIgMPs^(KGg$A6N~{FJxx z1)qLK+TB8&@O?*HJk>)S6D0_}Q|p$^c8yYnkN%c_9BT}li%XQ2AoG$lPRoGtxid?g zMxlFZjWrIH68lAl2?pP?4 zcZZoxW3g6|LS`H!&ca$nDu&f+;CMO`V&rVy@hLCf<9yu;NbPuHn#6y0yC3B{MWNP& zwpJ_=&XQ8*l{an}#snCqD9yJshKCP3oHdjz1-Y||)w-8q*_#KfGa?1_p1Z>luQm5J zE0i_d9e0$Nh&gkbXXX&Ociyw=MivpbS=6sn|=L2JKiX&Rx^Y6DeuxJlv> z)B++I#t~;k`nc{5tL}_-Cmw673SL`|L*O(99&~GBP8>rdRXIC!$|z$v43Rk;m{a1g zA8ETiXX_QiFfk4@&ie&6(^5<2cpR9m`0SlA*mFzYHCSV4jY1nu9ODAq5wdO7igqW% z%Tx+QK}wZrPSl)m&f(e~t1BhUl$vpk#V$a#kODayyc3(sG|iF)xOnA+j;RPSGYmov zmLZfTXZF`#IvZ(PmBl*p(6Zvx~i76F^xpEqXzB*5llwnShDMYmPA~i?R zEJJtSY-ksN7wbkgZQkLX6UuB#oW_BaXI878_1Y6d<}}VE5`EjCtHW+3KeyCMh>@Hd zoVPT-!6<3Ga*>8;m}ki9fMvF}+R|rWOOKUaW$$&B?X^iS}Rf@MZN&|-{<$|{|BrZig1Jr13&`O$mloo$C zl3O@WL1f^@F3`CphdayPZ)%|yO-XwBXH|JGoxC=<nfxGTe&fDvMuHQA%0}uFEn9 z0XgOrCE7%KWchE4(g3T5LdS`(roghcNwF-p@i&6SjpiAt{GpEClmsYMzeijbw+ zm8bERd-ps!Dsps7Zlh+L0!nAv*5S0nDMQ;?Zgxjfh-|io%Zqc)x{gh&xqt52kC|E( z;}|H)l4@ZXPK1~kX2p}od*%?)Rx{_q&3@!&cfy!VEz%?_T}g_C?wV0!VDV04@FJh^ z3abS-Vx32+LhEJgmZA{Ql(HN~M~E{qCbsJ}jZ#>hBLv_Ym*Makq%Ers^VS)7xDR}LUWh=pO9mO8JOtT4N5?hM*! z`DZAFHA=S8nr9Ie067Jo>Tq;sp7>Aj8iZt6E?m-v*NxmmaGfhHlQz%j@gqYbKk2qt9K@N3i9U3vXR;{@mX71kH z5n|&0VLCYC}9g-y3%v-UU- zp=6@gT(&EoyfHG2k%}Sb6SuFuMI28wE06D2ymW8N@c53Kt6Sp5+wkk>=^lLw-P=B$ z_1OcoYZ*TBliXchqe{V9CGwO~Wl~yXQvI=Q;m0IN@bL!q`t*N)kEi}U|Mc(t3r~NY zpZ)sjMf|iyeA+U8>~~1sVbwDCoI~c-t6R#wj+7M_+m5dBT-_bHx;-#XGe&9NF^Q+? zXMgThVu8*(R&68l$r@=^J#Tw>&PCrc3^Tja9yM~{5|3`T9@fA}P z5Jk#Q8^xy$`~UKb9!lnBn0d67*o8u+DudAiEMWOQDWwHgvZx=NwX|NqJ26RyTbLuS ze)vs(?8p8#pYg6=M&})-WLj16eS-~|V@$MmMbkKpw`{u&xh95pzJzuy>-CmGk?`)6 znNAZ^45(b0r;+Lm+IotzR1(z`?p6)H22Bv9XeZEFfaHheyhENM*oJeyJ#YnD9bB0xqBOI$&@TAmA7tgi7Df=B4ncO$>A3>h4HLpwNU6q}f2>yaH92hKMT5CbeHN zhs1tA5RypFeA6(^1HCcWqUqKx*LOQkhY^%!jD_pnkyl>7Vck1ct0jt|ifrw4JkhtF z%X?>>tvaElBH`tB2`XPTT0F6~L2Ju#7>IGkJIDSoadUM|ShYf%RK&~(=F@X?ynVc>8YvC*K<6mtli#u2Rz>ve~>hV!#EecQ4>EDVOK8Ha%( zB>e6uF+Nn9Rf~6q6teh9R}J1xcyGxiVh}ZfZ7pakK)Iz+u0~UHTJnhDeBE-sSu+oj zA&fZZ>6#W;h^SGbDN-o{ddXRG5XY8O3rY(?bDSi;!a7ac2+_E8o^{t@yk(ptH@i`k z9J&xg;C4T9v!B_IGqpq-*I~4%Z&D3xR+`p(R_%(eb7-s3iz37*8OB?!r9o4Qsbr>k z=5QD|4ilwV+SW7AkvRm6QLHS}{x$&emt~W=$glo^hNw4FipnLCPEx+Bgow zz?>4TH`35KM~#KkX+o6(-r&5V@t%@|n2KtdX2UcmrW7QPTOkn|&QQ^mEE$P&2>8ZQ zYQdUD6bdootN?S`#!;(XwvcjuM|6+~42WW>DsmosXT=|^B^E4| zM5$Touqt`drOX&@a9*~Xry40`CKnl}K8=(@X>21u)4XIqq*(5%dm?Df1Wu!^06?9ePjQB(sm|;p`A?`lqu+=4tG(UskeDe9l^?bt3;$|gU zeXR^>77t0gZWh^vMPh3TS~cwF!0|Lgg|;<#x28nH{;;R} zD;aHND|>g6T&BiaoHd+ITI2y$c%?#h6)CWya5(HadCOZj2U3hU?daMq+60uYC?xmM z+RPj(zBO!D9jzA`T;Dp*H)l+%ce9XhGF7xn()ra z=4WG;EH>y?9rrFT@Yd3GRxs5C#u&M}J&}rL)p^d&8qQWLw37TTK><1ryCdWAK+G9y z8oalhovmmd8Ikdp$Xhpe?5_q|-_dx_aG1Eh8Q8vbhSge#gehT^CdNH;n1yhdPFQQW z`D6bqTEXTw{}JL)SZm9de$ES2^-f+sZ2918x7>w-G8Y5H18yF_#^cvNgw7GP zG!7L|RXmI3@7M^6)Eao!@YhAo@^Q<+zvEG;WrFy>*-gS9{KNmV-&@K5vz}Bf9*bO; z%WC;MWtu4kv_dmXfe(JwQwxMk;{#8THiWl!)V3ZLLur3_O zz*~x{=+D2Y-PwJzi* z{@z}XQem7EryzqR@rKF!S4)*MK$oRpSY%ZoMfKC+)f|W^l564W>IpyoH~$u2@#UY% zmwx7RxbeiiA1O|z+Uw3^t)k>aI8DqsF~ymyn;W#YY}Z?g%B;_})C{}pC!7vPLiHSu z1IA17sd8r9cT`>3oNv%IpaSUHV6`Gl16`vqu5vgWdHm!CMWS~-t96fSG&yL}3~3I; z98lJX{l;2N}V@NI{wmEm+CB%y!T98gvGo2N!JgV&zx-3!byNf34}Y&H#j>xeNk#!OK%kebH8G##0zMAvxE&w8|x zO=8nJLP*41>ARj3X1b=KWO(bz9apCxs#p&~nz*{!lS0KTeyh_o^0wz6@XpPe$5$t=cSnrPJh)iXwVncW zT_ZV&%FwlrmA4qJxw+kAOrgYz!O%F(!|jHC-BB@|rWLVl={k+Bp1a+F*WSA2$<4?# zPxQUzY_lN-2@?-7pqvtqqHid=;V?$}s%exA;*4`#Y#i2JkW#@d;F)oph%xcz@rJ{2 zf@r_4OWPpb0*G_(=f3cW{%U$s`sp$ z29(?fb1GP1o&tx>EU-VTF-)X%M=cer6=O=A#u=q#a2s-h8YFh5X;`;XXN==ayYiqb zVV*f0XLh@pogFX^uJ1-(e|!L?xPP%BFN5ErB<7@M!@aW&eWU3*!{y~#AW8dap{I*X zaep{6jpEx>y3nsY_wV1MYb@)&Wn~>J>pAq1F%}N{iCiiCQj3qM+h5a#* z(~L0&tpeVQPx|qbTXwtCv+bm{V6tr742}>hxBH2hMs~*&Pp%K-EOJTbH0Ku^yhRKH zMr5sr(?HH}zV0zviCjHZrVtp%!0|W`LPR?&aS%9x`H)$6mNPoe&pOV}He!p3;tjM~ zDEiVciZ?REybRXiFbFZdvrgpj&OMU>8>J*Syd**vIjGTMk;x&Vk;bgl!VqM+VwSs6 zl?+PA|K6Epkf5--BbO-fnOaa)p{tgRNG(b*r4-sJw2^GkQVM8;MnCf(QY6bfrc6o| zRSa57cDk}+;VDbwDjVGRtkJBWY!-h}KA-qzab<(M|nKG!dRt=kNhimL2uaQ-I+gS>VoBfe-9H}*9P;|cG{$-CY zmBT49l@moJyj3`5>6?zm_N=TY>q033jZAz{u<@SWwd6c=nj_j+HmeoejV8<^rB=?@ z4exsJBERCZ-_B~g;cyxm#+kNjXx1I4xiE|)^AyNQ(9^r|#2Zg;`Orsico0BxjMrqVPw zIIU=$#(4)?F`Np=RV3v|A#!nkj@|`^@rYmKAu%OdXSuiT*&mO*_IRXfi_@CR?FR1^ zyHnt_3(T=Fb&-+^3Psm9m|EE#MgaIg2fvZvcAnNYOd&Jx_joU%zgM?M<|&|S#rlTf z6i_H0J~-pvMMq@9l+1eFbN}9!-EQEOyAj`1T%F}WGmhJxNO+pgbMK<%a@(WX%f&E_ zq-exg-?oe)QA*+%Bk6GjWwpZ#Yf~-#3&pvEFGOUYv3N!8w$`8*lBnzByr)VQx0O z^y1t21Hb&&QA*|i^&{WIyxmZh;+K5E=QB@7c5l8y$sNys;s1?avUw-(fB%R0;lKPB z`IG4Nee+{pG_`_U3evDR`(^QyZm3*Y76RT9vRSu9UezzhgJ(9gDn<}Fh zu+X!O-?9<>`)LxNK7Z*4KK5(%F*Rzf&!C^ut{R7`d4X6c?t9F~vwu34_Cr9yEOT(Ql=yik&SvYEd<)!f}#Ky7HCNGzo;jTP`ooc>dlQZ-02f zs?oIFectiT=Xw1jZ}C6<#Lsh_Cn|py&gqHh?)B-vuO=h11X^p4_7Wi z&@5T#g-VGxcnmXB2+~;A@=T7ID_rl6{P0iwET8gx$2}6Szy5@~C>fD2J%1r~0Ar}O zL3u|`GoSjyKSh`WKl6p3O-hw+^+W&&vf8AS5#F~CEcBPaPJ}Ob%S>2tRfr_J5-J|n+|6b^Eh(a zpD@PKZC1Sc`s>tE8Ry88*WThd15-LP&I#x}TW*lrv#Pn_b&oFotT$@L94yCYre@!E2J)}ed_A`od^!!$;wK_DIT zJTV=1bZv`Ml~sGr<=Hv&bR?V(BxC@5w$e0b8s9b)GLNq(s*=0x-o;jcO?``R8cHop z!@xWZy!!Z#x2{KO)?6P>oQ^Zr8e&Nth7(R@KKrb|4G^-x`k7fjJMj z#-WWP2JyX*Hlh8%I0`k>dc}jYHO?7sjw6?6eu24Up``bologHFTwZjHF)@e2r90!^ z*$QU>tGPYSTt7KTLo^?G^41mO{zSKGNONLNm5?IV3ZSiN70*As#Ct=j3U9;@Img0V z*Lyzv)-Cg^kJ=%9Cvvr!BqL8?!z;OsTH{reG+IG}jnU4nn{cPHW z7tmnq%(`#b^bHs56%Q`gj8lSCDOIywcl5pE`3GxGqeSiu!;zX5Dm!8p4=Y+@fLbb> z&5BwEVn|>uQ_y_i!`H$^P?^qooa+cmGMD$mK+1(NX0DHc;WRN#C-EgJD*^U7F^&^W z)38~!Xp_Q z(eep2i&$HN&k_z5iycO!K$#u!V6u<3o%mhA3L;c0}e8SD*&wuC&>lSosBb7# zF|wi4g8D5f;~Gut46St-W6@d>;zZUW1@t)%blm`I=t7^66qQ*`7%n(w#Ev%(CAE9HBg0ecfMJ1 zvFRxxvEK)#l+a$Gz38uX(Wn#{%S_gqk}drTta0S3F)E|AWC|URGa*HE)~r^ZF$k;s zu#bc(^5FhGa-4BC;arrwnV<>Bfpw#K^srqZLXb+s@uf4q{Bzz;R2sBl8fWeff!D7N z+#LpDOq5(mArNBZaGW_DCsK+W$3V;lZHk!NYa)#iw0KDYyit@?NO=i1uS-yT&5R+@ z`i4{-#ECfsa>%S#El&ez-@Mu_C}}7)FMcu!p7#C*rSk%>@lY$TUER`lEvi;(icl2$ zn}LuLXoqu+WC-a7XW{DRz-v#ALXk^>?P|q#-LdW0n6+Y>CaMPCC{iw*=8?neBU%d( zXuB@7-f}!0aGhbZ-J(_Ia2(j}W|^V^)9oF%d(YdSKPQKXUGjjOwRDZ6gv{<{Bo%~K zrwZ0-cKeajFmih{NyC3qJb!OR(`=ZhiD^1ueS<2MaU6MhzsD&>*R~8(ShAKX$KlA~ zw8a=W9cIvy-BgQgJU{%Q*HA{0=7=pCZ7s(*^5Hk%U>If7vESViLLlYB-~PY{QPT|< zdgkrF^lMnZ^qDAs!Dn?V&eshe`01bK$Nt9O;=BIa@8-2vKg#QGTroz?yqMn=YLU7K z&f8ndx^F0{ayZU_0Tn^X#89L*A8$DPKVf3{aZ1+(Ww11;b&W zyzf#GZjOPoPIJ)$rJ}77 zFLn@^Q?5_t!=ON$d`T=?%XrZf#Z;9;>_M_I?l); zbGJKTHZtjd@N=)Av|;=$pT~T2%i-pVm?Fk{AtD0SJJMz1u-~K5`1KawHJo(~oiW_q zTyuA~LmN#hiZ|~D;`PWhL5_vC@2GR;$++Xm9v(e9=ibU>TR0j~|07iTCcahxPt$|>gY z#7FP$aAdaY2EBlHoN?%C2r*Do;Q5D_TwY$1QpD;+YaNF=b9)-OdG&-vlQN8R#5rkn zpyIoN-kqRaaT;cBc6-!gk@u!368o+*=$fh3aK2r$>KnR72%xWg8^+ zxo@k;UYo8XM#;^_Dv7Z1Jx^|KxH}BY36zrD!Fe2MThC^_#u~>s1x|;Nl23SNxqq?d z;k}K(fWo|Z{x8aar2a)bsM8csvl4G+NYpGgju->ZIlS{^r9{I0)?-i#KDCj(_`HRDv-ogy(NjF$JUk~s}0yq)pRGlj_RDB0X8XV&YMRqJF(Sfw#GO5j7b zarlMbFwU7A0&UySG@e>2#uzs1Ewxsrc@o8dcJg^klJzNZDU}cta}Y~dt(m&0Zk)Cl z?XgBku}VpncTVY<-`+aI{&?gx&i}`2g-<^Jr#_!>v*@kET9Jj$r7+F~iY81;OoE0v zB+{HPzM?5OV=&8xN>`}blIsYiVss{{!p3{FvQnUyLg9HT0@NDB}ggJ^%iTuX^ZzAF=v@DDv?M`apcKurlf>b z8f*W5?EQJTwQFA22Y&AHnbx%Teup!kQ>W_G3c;ISh>>8 zANBlk&OZCRYrT6vYpwgff4|@N`}vj(8N8-#Eymn8{TA}3635&aQNni-kt76B37V$D zdPunhqPCsEImdQ#xLFWLTnz{6S|0WCAi|6lGe%a3l<;$*0@l@nPDwVcrtKP}()i?= zlVFMu&`+Lu7||L0^Q#~*bR;(O4qCJC;G7zgvd+`GsK9bP;Em>q$tSA z69q?%xyJ>{MDtk02M=*S9E&XRhF>zL0J0oL6@}I{xnizwt)V^Y`(4hoRfSQaz!{=0 z?;9;JHkHj(D3s1v1M?g?41p8^LIf_h2fDW9Y`wr($uLhCZP2Dnv)o(=dh7LqehS>a zcOd0dJb`t^y{n1ky25CI_W`REbz{g;F^z%S7dw(GSb1$~LY559lXJmjYgM7NE?v&q z;paka?V1K33yf&Ftg%&%Fp_*YkaJnQt+kAYj2}JyVP*^-Tb1mj?SA5F=dl&I-ci>D zFK>;-XkDaD(*&}}VJq8`MPzcW6b}N1dB%lEN|8ISy+)II9)9Z0EFbw?WW6E+i&e){ z?|g{s*9Ypej-UVer+NPQ=hz-*f>6YKpSX9N4vGvYaz6TNWJYTWo%T5T6L6F=-d{0( zsY3A=JK6KU{4E6h`mZTp9w&?<^C{?dKnRSIY))3VFmpHzc>hUhYzAUTC2W|IsrvAv z5Au#DHVoTK`q5*wqHPs!a=5u5>-)j6J@hO#9XSN<-MixIIBi%jEZ5f^0>QoQ_6TGu z_ulzbz%U{6rU$PPk(?iT&bK{6z(Xf1Y-6x>&GMC&rZ&9wu@$}#)W&eKX=rl92+h@D zV4fZ15>(yTntAX9=MisM6hGak`Ac3!LtGA6v*$1=mR1)?1FCe@=YS8Ne5U(^x=($j zi(3Y0cDH`3G!X%rz! zViGhKV(d{Ov+9cE?atkiMcc6G8ju1PB1#Avs~KG&#()(TYb=QPNmz-lN-R^AF`|$r zdpFS!o)|JhRUitHyRM5$L}|-3j(9gQx`6ZGW=~}eGAEqRM62oAC3Rz|s*>F|OeI=n zm}WXH*=>6+E_NUU53Ck6)>11$Ya~J`j4d?Yt})bgO^lhtkl5}VF$-!XkvS0jMAnuh zCF3~ZLS(&Y5z-(NL?1cq9kcgnt(a!dIJ)B1$`E`a3d`&g^H@{|lZxdvQkM2ufYi0& z+Uc5`4__}H_!v+k(CCJJKb9tm5In$|d7cPa6zOu3sE|qbV=)FtP6F=|E+(d7CW!*T zQ(B@mNTaaQkRr^ZgIEIIl`MWOA4+jyl|ottvM!L2BOp@hOlvhK>kg#i^*dMWt|o$& z47mVpaxx6_gm#HV*HLR-Vkb;0xtU6nbc>RiaSA9v+j7oPTC!Z!NE9k5l!BZB>ewiq zd_byvxAhGgC|LWwE-(8 zF1B0thp7xc1Z0u$Zl-lLlg~xgnacCxV;Ll@isv`Qz%+Q`{QyCkFqOhhGtP$sWJ;28 zE>pP}69|R2$3wCRg^%GJ&PC?gaX5@9Em8CF@dA{{_&U-1lBw)MWE`fV+7Yr4^mPF{ zDI!{xtj%$D_?VBDp~O5#<^&m!k_u}CN@#MDc<+yX+;D{NOjKF{39U;8VoH(SzBKB! zwis)VjSETF)yL=*$gxm~T`cRe3mGF5wJ~o?gataFl(}#kQHUf%O4V4P`#QQ*w5k$p#?+|r?1o#-qLgSoc zQCCQ1*tvaz@&C9~I!)Ra zt#|J{S7T(|E%1IOi$v8n4AV#mfs`v6QzMaRmFQYi$ZozwO=L1kmc=y0K=czv7kX>c z7;c-g(ix!evDB^u2x7O@-W$Gt|B!@^0o|rQc&m1EAVFVJ|D%z$c9>a<6qsNso zBv*{;F-DBB%)1#k9|&>9_0t8lQfO1a39CiL93s1M#!&WxX_}a>27Jsc7n)^Vd;vMb zFi!0Ikyclnoh;~TOGeUk2Hh&gzAuk=o^cGcWKt*#s6`T7V7+P!jZZ4P&+HE){b581 zMb$M#0h60)>z0#iE9|&q4)YQ8keQ~4LLCv}$I$Im9DA!6c=-BFZod7?(2EC2qWBER z38i+NKG^e>*FKMvO~><}c$WA5>_^Bd9Vd19(-(0;0sYLL&AMZ?ZrScfuC`;z1{3!u ziNCbmRESUc_8a)KU+T|h`2F8fzC0F-rPq2N(2@~IR*Q}=`J#7o>)tJ%{^$$%=-vqX zm1JT{g)}Tn^P^jIJo?BD+*)#V)pNR8QCmUuMY{a#_kA5_Lh{z%^Uq15WXpLs7mrw9 zNRsp9xjf7asYT_?$-?<~?pw1DVFoGZRK{CQ=H_@si!>x!8?p zp;$CEBKiV@NabLvYpA;#p%+9iar-NRlSC4;o6BCHD`eJ$*`sQOsthp+vN7NyGG~(a zIGM>x5`n2dVDv=Ob+}1^&McNSwzZs`YzW>HlE6)#MPpg7+GB$^;_C{ZJ4bd{vjlEaXX6Tz7| zMY5JCC0I4Z|F|1Rr1LaQDotr$cm>WSjFL1>i?t25O8AgjE?WA1&p1rXb0OG@+V=nY6;O41xE?i&Eh0;l z&LlK0WwMLdTCiSff|Km`#p9-}EK}4_rf#!$%)SucXFpTfL|q$l3PrN3G&W{J5@kXq z3Pm`j5;3N&CR6;}{ZQahK4s?e8Hp((q@b>9v@#?gKna@KP*oC<3mxCh z6G}v^H3UlBj8vLRmBROGKXT{?gw#k`Xvf-UjIl^nrowe)kDlY1VRDRQRcG0M_=9-6^1lS1(*~vJ_zPH5OxK=*tQy*S$ z;f~gjh%rUdTAH{JLj3eNuFqb-Vy@4)SUlhLq!g)DO>GTAmJeRrElLMUK~)*1l_myQ zR5jWtd=4NaDwl3QqD%ut*4*2BuANxOk;52^#BQ1~7^+q?#v%!=w4mN8v~K8XOC<{( zarTj@im^QUc%*ZAk}ndpsxfr6rm0Q&;N%QKP*s}XJ(HVoK^AoKBudyjf{X1$WfdBU z$i9%=CPO^t*ksBW{@P|!h?c2DFAPqgjY0TOsDiC6hmJc}RF$M{HCfEuJNF0@^E_ef zfYF9F+A^)+NI^a35M|+LI!OqnGgX35H7Y9NP|)FV_KczUB&7{lQ;_uCLXo^gi%6~# zCo6^N6w*{EVZcE?7E(9Y#RQ)yo~)P^&pi7o+k<2FQ_;;QRS2`BHzcfyT=45kV5CH4 zK?(sR7$rGbwP;fUoLwx?5i1o!N^p|kJrYk{*Mtz+9VUd#v`qyu;gX=K1*TGjBPDKG z*R)+tN(nd3oGv>|ZQ1X7!aReN7+n)w$qG7MH&oUD8t=;VSSrc>FqH60ZShk^Fdrq4 z8jYr|bRnwEGfEmNWeLu4@Dqaz?1zyY!Jydo6R3i_zjw7G3xPWn38K$}$(Ovd5IrZ$ zC9O4tFd<||+qEd6ODK9J*v}qQnKErW^lY~WQmT36q3bLb2G@^VUTv{ju|JGhW%0oy z1x#a4j73^_vT1qzt?y#-@H;`v;8+4r`JyS z@~`}SKJ=kq;Dr}nrSJW5k|vJC)Lb&^a`E+CZ4cbLxa4qgn>)AnjN^pLV2!5h8g{QN z$z&!s;ay~Ok&p#Og0%`ME2OH3c0qk|jT0+5?Id+m;i6*SPt1NGszj2BH$8gBJKp*r zhk2qiEss5P6KN8!zU@)&-s^epr9E}6IlEE3QHT8wLCH|HCjzo08^cAM@d`rG;U4{& z_dzuO^SAPiay*xNc9;VDDY9-&kqRBZe;;L@Nyqi^7eD^~pZVl}dq4Bhk9?dDKCqt2n*BpsEZZX8OJ3*%w~mgCBX7Cm*@a>AE8b%dI;H zUK{TsVkSC|lCbO=gf?6Z0hC3Ah~Hn}e392HZK*ZnB-w8F__<8MtQBll6;0h1$*qA} zD99Q&I|v!w7@Uu|kg402Zq=}CYn+`+rsi@<@Sfe+qw1QjTTn?!4RlL|(3%{IcP{#Y z!_b3}WKs6Uryi;}J6+;p;4n-O6INU5wxiO8;A?A(ZY;MiZZWwTWi|VuCnv#Xxhe$8 ze!%C$ip|U(N%`7vZXm0OIUc@8IqAlxgKnH6Iav3=5#^Tbm*#LN+bO|Gxakh zsOtu0%UWGojg=Z}0*#i$q?mJ|J?k9l`-$6k?hst0=_=}`q0(j2`LOjLrKA+YYOQy3&v@p?;SaMR*ROlwp_)Gt}5nZEW*{nbNkK}_xb^)71vfB zr;CnC7wYC59aade)Xc%t4>MCJ*p?In*&2d7PK_k^II|rFLe{ux!VI2jKhc=t{lAm+@5}aS|$gxa?4%1AG0wtiflK$YyNKk@yT`}|?tqX`` zbOTyf2qBpgETm+!Sd+ud<;B2m+mnRA)SEZF$^QqI2W1y{esAs zCUR+hmZ_ak1=M0B)TR`5N~uEeuZk*c=nur`u(4s=_w0s|6eSvqn?2|IEprG+QHrm& zw%oXO!lEq`WUD1zS8=sVcnOWwCFX?!Da@4nlVUhVR%D1^k!Vw5KcrHnX_zHKmSQo5 zOvq(l7E&JJX9|)pN-PONrlRai2|s6ylr&9IDx^k}QYqMC&V-bSu_z0~5pE+yAwthn z;BXj^07A()jm%DBlr8`st!Sj8ZOkzbGm;WVO6sTBQ;yl4g^DQ<@?Vk{efIhlaDB$b z;>C7?=&*W12+cHkgoxDLuH+$+(Gr@bLCMS&JxUdXvL@47OO_C1LMv#DW>p&+s~`(h zN>oN5+LpZ!R23|3$LZ#TN=L4bEmJHRF**r?^HjCP)&^u?b`wLNkHCaP&WWnhESiRS zjHF}WY27O7PBIJ;A3WR388>CFJ#fNeWs$N(7^EzSA){iVZA~GQ#gfA_$73{uQPfq9 zk}c%KMwdJvlq`8Slq{XyFcMP47=(X5oDwGHN|W1kM&BE37UG1pFsK5}t5u-qKD+7I-*9ybSk1Zyk0 z%D^gO7d0WrlBJb0ap*X|Xt;e(a?$S@T$zYUQ%uo_Orl`aUGGULqD9H;i7BA9qG>B^ z)Forf1#DHbb-qj(>zb~uONZM#d<^Wzo)jcjFOULio9WuBcw*zk>1s)B45qU9oEX#* zYfogeS+Ux59EO4YI5PT#5&#yG}p0@Rp(?v^ik$V@HjIMMt zl{6$7xVs;CY_%fg%>J-vnr5oylDe{lIdZujdF_19?Ynn)_Jvn@{NWRBU2M6xb3FCr z6FhKMBW#7#2CD>{)tWm>Q3=PJ-}QD*-}S}F#p+l*1;`UwTp*M~rke~G6+iR7kMfC6 zJYSjs$2C1u2GCFqDV~M`PL`6wm#$OkG{zBFTakDNBQdgIEUjU-uMTf z_Wk_n|M@?A2#S70}adnwMY94&xjE5gNqh2bMhe{g8n7H+C{uZX&Ti!8wHtPjv zn-1d4%XbX7&L^~pv_@mCB{rgXT93ip|B?;#m)T?GvBxfeAtZKF#QBIa`AGH5WLfU( zr$unwFAk5z`6mUw34|ahLGYdrKYNGuYRy}3cDOKb>te?+3gDd8Qt{>|ALji0z}t2s zJ|^Dx(U-Y%`-*;;`AKUE#X2TX3dpS2HE)0OL%ikT8{E4XxVt^DJUiu~hi-6kvcZSM z?(#0%^Sdk?Ny;OmccdVZWKwo0S+T4ul+oNfOk}56wiaas({3tWNn1j|g^+Y@$)xPg7|%b||Uc-WJp z!wrtv2b$W_E?OoZAu3*a?wldqW4&$(Qx7U}(pZ=x;~bE!U|CxhT}{lem_`n@!I}yw z6sm4%JHvv6F^0*Fcoi|KD&8f3;C#2|wU58Zz7O2Hnz8vH!5 z-Ylux8l^2Dxw?17PN#Ml>x_DNffNN|)$@BHi;;ZG$xiB{MfqJ2HxpYR-2T46~!IYg(%r4hI~WMXR}f zx~6VhhJI$=&UCgyNXf1*Q60k^ansDzwm^8+CoO57i^W6KWS`L{vp%iSc3G4*vuBt* z{jAxnmdBqjFpU#N38r~wBr`@wjGj4q?%a!{ICHjMltNoNQXi;m!;Q^`lrp`WS=5%! z*kiV~!=I$0qVS$Y+hB}g90RihlP!n6pupdweYGsKO z@4Hrs>t`E;QYEW81lEg=u2Mzrn-v7XxSNn6&>D#mnw&)$VkpfpOhu_>iV|y_rqXQ9 z$6`xJhH+*NiPgGg(N@&8!MWmBy??HdMqn#J*EB~3Upc#a=kVS^5-4GD9>(!NK7!4> zPxw&WEWvxoBT6fjDxS^|B0@@HPADN!R2Wk+PE)A`5C{QA!m_Jqn~J73#F&XOmV8Dj z$z)P0()kb)Aw**MEZpW-;`JF9i&7fuc7YTgtuhZjc%4<(VpNfqOq1i#PmELPQZ$vs zr+}MFvExH5Sua{4D$N)I$p?1B1ghi+c4#_VW4n&zJ^i-F$APR%0Pxk=qjbe-wyVhJ3TB5K7_aK=cubpzdtZOp9Wul@g+mSe;qiG#Fh|TaC69^RlqiRWW#v z^N7`@QzFIvu2+F##Nbf6$igP)(Z`@srPVPc)}yWFq*+5Qg>k4usj$HI~hC!6I~Mk=Sf%PET*r4+F#KaC7OZw#$x)=4zNoS+H6! zxpB6{Jvwu_?OC3zc=XW+xVRel=!^Gw{uRet-ufiUT8xn_79Gnk`BAQKVD-S0$n_19 z3?$JYvPY`YU`WX_4~Azx@;txrk>|O6aUdhh#5gOCZa>6*mWlwY1zlsPtYRJ<`|}H) zc=RUSvPNjh^Dn%P_Z}hS8&MkKI3+I;CgM1$N~Ba8GM`>6{t}gA<{0@Pj>^l-wQJY- z(l7V|THo`~X2Ap3ukq@wErAI6e)RDD=NAwXAAja`e%0r`i6`IsD4nTj79G-RNM)L} zT{Og)c>M7Ps5fig_EccH+%iogF?zg%7e4V4gByrRaC5T+m033ilN{SiNA#JKg+*D( zIBt32g^A4rr&K~xWzC!g`_U2e#Er9xwgwd)3Bl=&GpcJ9ewdhcR|FARv^90VM;+yH zN0blTC&&FSOcn3PWGE?)_dzoI$S^n-D^%RhXpL5xsrS6H9l3My0-Lilp8Vl|3_0_~fA0{chr(>-o64%hlH5C&%DD?>W7J7nZ{ikxH?-e#Qe2oX}tP>@N1m zpjj^~l=57&Ynra5Z7j}3s$694U-9+d#y|dn@8tX*yz@Og_4!{-L=fD>C*JpuF_oijE3WAcnqT92#DTs`=dY3jfd{A4<2;FnhuF!wXi59=nn&j ztGoDN;^g`bbY*$bil#Ey zuH})NHA$AjXSdxIaL+m+ttjxjt4jou>#GhIJymTuSvE|gM{0wTiS5qQPY$Uf58k|S zq<$(6{lqj*s0ca=YTc4mqG=MV7#XICoIGu9N<6~sFj-J(MQX~y-Dt^X*^=@KdGzpK zJ6oefX)aw{4NM_WwTi0I2qC$?+@Q5!m`KOP2!ZWA$K6Aqt2G2))+wpTIkO$_ z7D=PlXsL1DmBv;oz!u%WrmAUTQ<}dD8YMAWU}{|yCn*y`#HB<)au6lsIa$!g;6tDv zNA7KRWqnK;DHJk8XB$?HL}^*nMBZVfWVKiTaOn5Pe8T(dsUjvArwOSwbyZnFM;e#*Ms;WR{)ImT_xH*!uB&W=r90pCZXc5LRx+Bvd zgRVPb@@&V$ksG2g#uT-e4m5R9t_4?=Cqf9MEPJ*OuH0`^Je5*ulu`_XW||x^7JGL{xw=S_&4FsgfEEj=A-LPmZ zrC2E>PANs9A0f#x5<^DU6-Fy^^jN9sY=tp`;37U{gcc|*2{ExBXLJQmrXDYY8KBp^~DIC=$?B65VKqeqbIQIe?ZF z&qLNnzzrxN$*D|lC3TU#QbK;~x?<5aNLdd5b<;488Lc!S2n3O~5lCr^w=+d-WwEAA zAeyE^Nx^2>(6lw9(Kiroaob478$n!h9&jYS*>YM$%M@ zt}#d=tG30>o+%}yQZ%i_nwpvpr43@9@rNB+W=@w2k~CPWdGux}cCTj7<>e(0{N4YS zuBmwD_FW$NqDvls*So2&KSdH9Dc(bh*MOQVmSo|{$#HcN_{pF6DPDN-#qvJlXf{9k z58sfL=Asy>DoxjvPOV1b+)S7Uo_KJB6>p_Bk`I6UzI zd*^r99`@`<%d5BU5ycjx1?#S5+0`YxODVdA<=V1Ak{FC9g_;Ch9Rlau9gG4~+9D`b zA%!WE0$;MKB8nU`<22*qfn9$fgv`);#wqc@IB@N(L7qIq;5;)W=dcfvnSxCB))1p0 z(V*T-C?F526BSU*$qDLOTU)C``7*~>qWzt z|E7P3H^1wPcsY*W(iCE=RgxG=W^B_fS*%Z4tu~lS5mg3Tvs|q>Ic*5@%=YTQVRmdUdS;)B z+)se;<+Iy%4OtYhNo_l}Ze*B8)?Llb^%?!NU>FBFqcOEbNI{YUr8Oz30_5r{mg}x~ zu7`=bu30WRPSzcHQK9HSMOIxyv#5za zFwdbhvYkf}up*JeM73B$)<`UE)u2sASD>T9IoOQ>t0H>2z*(y3(j^7ZuB*_r5?~_ zh>(s`Wvz;(O3I9%%Mj+X*RQ*WfJMo4k=0VI?#R7TO%6)`2oxlrV?He9=Y#%i;``H1(Ksj_4O z)>NFWI$T(?-SzAbW5I$ei7*P3U_Kn!?Hsj9NQ!K=szd<>Xu)bxGt6`GL&yT4L5M=f zEoyv}5G6#`YlJA7Z2?hev|1JDj31chp-3|$KtjkpN*er8qF}Vb>f#45T4S`t$3z}I zQWdC9In5?)ZLzj&-n+gBp>Qb>qQ@Tzo}({^Pc139Zvi<*yz}%vu@|sjwKPp#I-pWf z*A2VFp6&jM^DP)tAu{;jSuC0(#3wNY!94pS(XyscLsJ0;Nhz_mVVFGIea~vSER)u{ zCgn`b0TByf&nktGFyzd|FkvWuU}GfLHw|xl{5nD^KJ>8{+5OZ{u%9CzT2}NAHB8qX zPo4#CRG_p#=G)*c$-fRZGY8EJ&)ngs{->Yj?!7w*ncs*=K*ZxYzIfwAF2#RS)wGqR zw#CPywPv@y;@Wz_7k=)WI6Lha=ZP0zyrgk9+DI-$xk4l-5B4Z>7Rpg~olrCyY zWqNi$x9O9GqCg5sAaSxj;mwad%mXKe{q2FpqUOzyUFX4@r)&?eALpUvXa8hr71-}D zxO?}Ui-#=x{hsY^DseA2Z(v06a|o$ewhb~&42J{ze!!UWnNm`5clhWjd5Z~|9l!3M{tN2H^4>r6&Fl{oGDD>Wa}2ncshXBX zM=*xQR0w0pqR4kXX;l2>eV=dq_E{7!BAGd6_D&LACdVV`GUZPxC?$~ioj)sMc1zxC3;#}}Ud zPCozi8<^68>-Cd-;NB1NWpDj$2qF30FaL7h|IEJ)z}wbe#czD%Kcv+g-hcP+@%Ntp zGq@Ca^zp~|jz9bDtXCV{82K;$@^|r1e&k2+KJ)+h&;C45yy*!lTk-PCukfe;^q)ec zz*m07m-Bo7z_;;!lRGODQ z_CdbtH~(%fcRjreeCgxw9?UNw1CESW8Zina5g7+C>fhgcRy{ z=u0%MrRypV`<}^9Br4)OGhc1lhlt#4kRsxS16e9gPB);7eM2gZJx0nHTYS?ZB{u6N z^Bic~n)R|q<$OG($CA62Ga^fLN{EyYN}<~ZT^nj^=!X$&H3`WSGW*>g>)X2thGofIP?RT zR|A2-=sgD?kcWwBU!XVIWNamgS+MUtm-~UH(}muxYg{hfH>)iqn5MaSkrNzd$KV{= zNZPLWna4hGxf{9Y_taLiZW@%W3Sh^_qeo8jz}co01TmI^qt4`z2w^T@7^~svPt#gq zsY(-R9&rJNvFwM$#MRY^5Q45wTvF=mJyMtWm~~yz7?@^9e;D!3QQ3yzBPr&xR>y=D$HuxaD3z(S zB2%(ya}MA|nX**^a-`OhEG3hd%q}tY6FNpD8J7ex3tB5_Ei`pS66#nS3l?=48;67dZ!a}EJwAylTA2?2s1k#a%++DMw( zGWvo{)+$3Tkq{EYYPl$jO^z5NX`7nbT4D-C8e$Z6ZI2m=CHYM%MO9mrEE}tonyxAz zc!Xuqnqv`FiWVVN$!3!RW7Hd+k|K{&aGZG9s=z){$~f=I`8Xkyf~KnrX)z|$u`4nF zjWtwS7h`gYMb;+E-)W>mA8BvKSaO2>zQ?(l)p|*a{`kRE$ebY+bF|eODK#-B=4mDx zg-FGVC8eTm8W3P?>GY&rh>uDZl3|LG6v4U7FgTjFDH&L^$H&M@z&MO(T};?97FppV z4{vBp$!u~6j4{Zt;m(Ca%7he|aq`S_fxtZZ=n3QO_|V4$&xVN0WkMvdqy*D6AO%>X z7@S8O<1kXn$ib6+EHqhTiYz!MYFnZugh*U$`|^0JAeWd1tu<{^W3@tQO7kHLn$DuF zBn5}a0$Vp&tr+?qq06+Wwu)(r7-^|1fsnaKremgVGB%|GV9J@gHq5TvFB>&kWWwy} zry>PC%rkQc#N1=G<+QE1cD6y0IltV|j{)a1lPjA}S63u7=NJ33k%mILR~A^aswjJ9hoVYz=4E)?B-BN|KWO_J9;6A5bFc`=0CskKDM<^_$nY*zS1!)?J?c z$;Wy5BQvjk?N9Rdx4e~W*D5v(h4ELY@G7!fbGg022jBl;UU=!XLh|F262wv=9>+?@ zZz`pzt)(^=qZP`CLWRXMjRU94ng_n%DW>7TKmCc1@Zw8%nS3G(0XdL!C^E`eWRWpN zq|BuYDFhCP8FD^$8SjHuj)q4eO1#LMo_L5a{(`r0q<~e^ap=#v>i2}XtPO{8 zV4NcB^$BgWD#cw}yfIx}DROFDz05SW11i5;op9f$G@s#z0#}}n)Lb!^Czy;|5snj_=Ruh z@!$0&{JH=5kMq$Fe}cQ0TYlH?y+PNueD`1aZc>JC_^y`5eF5M2t>1>ylJEVm|2pye zKFZJk*pKmpKk#SyQ2keV?`z-3_AmW9{=#?v6`pk&@U=iPtY? zW*4}zu{`zUP2Ta=N4dUU(k&{85tRj68?q{jirN~C5RBdt1#GH@rPYK4-g$D0RMy~P zWbmmpEk&VQo32Jlh0Kz9oRLa!ZM{L{OgJ`1v(yZ;XWy5of+Qk-o)8JNkQ}xndmjnM zkoMplbybrh?52rBn5l$9<;c2Ta+m_IANE|kw&qO_Evd-tcLT58yX57&=REoF!!PXqzn^ZFG_^YBj0(ni=FsoCb8nAoWbx4+95EzXt!di^sU+j*$O29_ zD^`n|w$Yrd)<`M2yWJxZoUA+gX<+Dkv@oQYxEcp0A6PFJY);oDcB+APQFFGfIrIZp zyPm;E8f(Z&F-(!Fc3fL6@i8J?qODrAlw4f(-04T8g07LJk(*1dDcT}(L{oqxW0k3O zW_E##-CP>$abg%euie`ciQGI{<6R;+kF82GcYElub;sl~Knui}gWp;sKoDjLlLJx;x|5$bvMi;nG%;gM45=c|dWGNkG zsH7rAH3lUTUO8flXav-CX{rm5x)jhSt8%Y}lxU?;0%8!%vqOkn{E${*v^qv{XvR5m zx!r^CbZv_iig_xu-55)@@M_UgSDN4)vn!LlIhL5VlqDoVavqM&S{GCC4(5`(8*_o- zD5F4RL<+>55V1@|RW3;aJ|CMvkz@2lJX*2J**1%e$Qp=c(8JLnA&RmuxbpcBB4Dd> zPM${3GI?zA?}%c>{du2kxCZo zUb;ulvUmcdK#G!0Xso8P2Ca%`Ppbk6QL>Pqy4scy@K~gXbyX%Xm9-@cFnFq}X4x5} z4D>@}y*60evTQ0^BY?n-vkkUVWLe(S0!@hzNJp8KenW##63oFfI$yNbrl6gJ_b6ki zs=83nGE~}9X;Y>rlw7wgJVqt7(rBS^^GsI79Nabrtupg8QCWMR7f~jxwq_U(xa3LE z5mPR?k@qvWbBRg_$wSPvi;iiU7>1z)$D0yvy*(UoE)Xel0`DfSb_1DGc#{K0mqq^0 z`6bhw@Ig}9#M$PA6cexCxnvw?9=yInDf0#}NUMk^bN%#$#ZqB~;B60ICWC)q19_ElLRH`GC|CAw;3unv%sthL~cJ zk!HxS!#2Bk8}lmki*9@R9QovrAmfo|5^y|ZWD zC(MnO^`^$H5^gRrG2~3wDvT0b>?Wo=dseOGWYu!*+M4Uv&v1T5D2Wx42Uidj=OZ%AQs~-9U&;9i8Vt3c_u_wNVr$6vN@umkByz@z2NN+*4*xU{^^hY443=)=)Wt$@<v;6h z8}$1SdYW zJomz@^z%&9HQZRQI9o2Uwu0Q^Hgg z*;WNmkR|2For!#k)b^LVj+)*qMCmwZm_y=fa@11daw*W^=urI>V9p1B{zJU|ZBOz4 z{7?TZKl9$7=Er{Ye=HfRF_2Qg$C4v?@BDQR!;X(X_X*zdo_F)Y3(sO}%~MZ3hI-{? zlq^!?tBamFI9v$)z<=}KaIw3Ktt|iKpZ*Vg_5a~3dH!Qh^VYY$jlc5V{|`B5o_Y2K zo_*#SzTgYKfS>rWALqAz!#D8jzxHd<#?Z74ue|gM>qU#zf|p)=kq^B8gVeR;?QegQ z+0A_5{XfTk*Yo%P-ap{m|Ky)w4xV8;V0A@TSHzGRM$f(TJukkpBeA7g-ejB{@BQEl zte-t+m;$KGa#8VT|IDA_oBz$<&AWf~*YR^7cprzuo~NI^MOD>&)3uvC{o#-Cy?^bm z@z%G$lW+U?|2Y5mKlvZ9K(p==Kk<+M4j+H-5A*i-dtT!E-%@V5( zm9bnu-LNu(7|N7?GM3ia$L0 zOr?wTv8oM1OMLJQhXM-mF`}0ZZHB{P#vdlm&Q4gaYY>9PVPqI*PP&#U&YW~B1e%kJ zE!%!z?q{OR><%;Y2f%X9Ahk zYQbx_cHB9PT%PZ_vGTOauxz z00>AaX(~a;qD<%_48zRrtBJ!nB7oM`D6NUfakgw&b`7i5qBQkIgc}PUeQ=FWaJFg@ zL@uvJdgt-MbMtyjS1&p2d;BpnqONP2%5eAmlBzNoElE0Zx@j>~MII?KqxU%Ha4w^y zWZ7A2Q(%H9i4-7?)2_OySyZwBQ!=;+PDF&CX>EmV6}6Q_9~ov>^08$=gh(YV%eI2H zLKuw;kzKndM9q4+MrLqfB$E)aV(dK_$rL3nWM)4z9)*9LJkh38|$*f^Ky8*3!% zWrxls^EJf?Ip9?$W?xixvLYk6I*dgbrgSNGl{ms}X0$5#t2s%g(Ulmp47M`loETk+ zXLCL=?@E-GQnD!1j<0phiI@TcfllI$hM-ZJBqA|6gj8ki_aH<@ngX2?LeS`jrBtL; zY-TY@lx|A1O$91zn5S5#x}rizgLfrfPH4e69*Ax(ds)sL`jKfGFzoU``Wh`XTX_r9m0?8=eLHS0kn=yqZDkOxMsdUEY5|G|lMIiF%wKHlf z8D`JqGfI?6oYm0OHEml_SCYD}Fh-%JKq-w>5|@gu+9*?`pd^HfoSiOcw80ul$dPgO zAPmA3qN>)4oD}EYVJk!1)y0?T0*BpzkP31tl7SR)ZbT?RnIee`Mc+M6GyUwzLQ)xv zrc6M?e8ub?F}bo~i{cS#w4t*#2+hH2Lh|G!m|Y?#$SAVVD6Ocnpt70D8f+~|Sx}jp z^`>K-Cc+$1su=&3QuqvhnlVz~#u-WG;TtQex-N$LG?h-4%iLT(g0e05E_U3#?1@QY zsu~w2uC5N;z1ZPGLR-V+92b{8F+@ZR#F$ADTA`?_0&|F|1XHKvnMY3y0V!jVXe7sW zJJVTo*$y_LqM(#Kc$q(8p<- zmTI}?OMl1L@yav5z~wW~@Z!%s&3-=c&`HgsPmR3TYo2-eWx`a#-s3OIRJ>nkNKqnO zv=%gtqNMw+T1aGu%~$*cvya@q=Xm772YC3Q4R+BW zOvN}JST6&k97!>cv$@HpTaYANIFENbtTcdN znjO!-dXHsg8D4mua~G*>%cCbN&ejcX8kmk=-(BwsAtC-ZHec@#TO)#g&IofnK;HlV zzldP_{PQpJIiL6CeBIZ6761Cz{W|`mZ~tR_<8S}17{Dk+E6ZBBUM@-_L1n@`b9H&e z^Dn&0`gFxxo_ZUPKlTvse&!{fI)9Zv^ytHHR5Al(9VW@PpjBa~o|GSKCWU__bnt;rQ?W{txrt z{eyqRX1U^l2X68Wzx^9||IdGz#d1jqf$#b2-^XfEvpY;&U0pGu`N+pV%J$Hswc+tc z9^{#qFZjRx#ox~JuOFC)dpxjQvS}*hIN^j~w1V;AI1DpJTb_LMCY_Pg)>17yf(XRH z-tdp>dNHeG93u3J`Z zhq|_)-JBwu3T*@rX?3Jy!kxS45FNGAoSr^FpzN`Jnz*rEk{%Tdljr%@U+3c=yG>;^ z>s7F90U{iOjA6hWy$gR5<>~<5YMW8Z}GOGEL+RX z(`Csa1{Q0{_4O&vOJ+B7=hnz}>o{E(FvvVbY*ka$H7?vE%mJMZ{lW9n>*q9;L9`O@ z3*cqFS#ok_Xljf1o}3li{m3g97i_mZXR8&XcN~TSUs`q=F?%+q!h6s5aA3Jw^3>a& zD0@slq9Tl==M%5q=3>{gT(vy%@S5Oe=6=N16%XDxVHjo(Lr>i_2q}56DXO5cpXr(f zIj!;0GyAf}TUoL0$~mWQDsmQF><0QVaF}->GqtvC8jV_MrYRGH=P(v|ztCl0jHyJ8 zb+d!z5+58PI-0s>RWI4P0ihLE3KWVY1S)%sDstjsj!g4Ftu@YN#^@0;VQj`!k`N~h zH9o@CVPKjAl``n8kUFDvqP7Z=Dz;ZWoYDEyRI&ifRsz{Z3MC;2|hU$G)3}xKj)02-%yYVF+x_K%s>?z4GI&zjsQkmW<#bVK7tm4-B6>bc4P0Qk};?VEW!XPLT292bvYNW`d zRHJS2K}1))PFZPENEkeJS){TLoZKw=Ju%=z=@4cin5I|`h9Z+vV!NG~eJB}bSu+d? zp(CRUY_Ddnwg>k8p1vQ66hnCmg}j-_46|peXN;B*GgcX_l_*>C_Hs-l>5)#6IW`N1 z9w`+hMO{UVEr22KBS~be(pYIQN*^Iaij*B~J)%U(2iy3XBn!0+CTwj%NT$gZEc;>P zh1-`@M$l?aKMkC0)^uHqQUad>l{8ecOxt5Fhmh^n4zxlV$=yTbRTnw9fRP4kE2O0S zo&n$JmeeSgx-zi6zf|=o4JtyCCOZJgLfj za>P_VV@6B5wqmhtsGHI>sg$CrB(0HHEwH-02i-XG=*{c=YhV3tqzwGXKa0Hb$^|Az z;?bSpvqUC|F#;LIG2A+#fLIU!g;@6nMj;`U;QIBOTz}*Vnv-j+?z~R5sOXj*)w1Fd zb;1{a$y<2&^$WZ&O{$aWg<7hUrs$9lyL^@t3@g&484k4@bXQ z`jk=Pr#$a({LX=Ei--BaKkWDifB(PdXMg&~`I(>lIj)^;cNo_^KZeY z$Se2maCY$!F(&TZJEs=O2bKk`;{QQUb>aY45ma7#_Q*(KqIP@d?VMc1h zPyFOh@|XVdU*>QA&A-9W4}AUa_y&IXAO29G#FDA%LR$UWHOzk(0^%==icPFbzieEeh2l7i;!+Jn6I`s+ON>?=I=rmtbQ z+w!pwJx@-8^X7`C(~LvUI5{$<3F_QL)7G3WJ1VURxqNb@$OPx{L7=3it~FI#@&y?^ z7gu+A_L;j>N0mt=(9biwy~iiP6cWKrEZdr@GK|y6t$PRB+A_Pq923$?kYKfl$s2vgm$ho(B+tuBlj^uIZK?#x~^Ik#nXIEox=hZ?8x$U~Ns))C{g?*Jq}?5ib-j z!eKWsjftBNELkqrgo7rf!19{K?k#clXq`9=6W30!v0Mno!$b;!ZqcG@kU_HDIkx)| zVHG#7pHQg-O2dBWxqGogYk>=y(Iv)dCg#9u*|I)N5F;^Vw*AaAuiT-t6){O(zrE$f z*Y1*4#^q~t#^A=xJP(8f)>s}sSz#Zv*s4s5q%>S!UNL9S#W3Svx}>fut}it?W%k3K zVJ?kQTWjh{LD1YC58T`LJT5oLlnalcZdr>0{d@W4JIu33h)iWHZgxZ^NJ?<)>cE}5 zJEn1@X=>`GV$n80=3>{gdu7M&s^|LIg0s_(oD~5NJNS?%Ey_>&EO@Hk{ujFA|^$|upN4au}Dvqk+h9sxoBBviHaE~GFQ8)zf5@>>d`DYRCE;Lt*{=vs=xv;-)pJd%KZ^xQj4jN^>04RurFCVwPWi6bIe zaPS4GeYNvUgJYZ%U989=WDdpmmqjWCgDliosUj&yYHe9I z7D%KJvDQ*m8j&SF1Y!z6p%o?}sG0^LOaUsX$S}o@PR>aAP8*<6%ouWW!mIbD+;9@*^jOR0pbBVznd&3ca+cFs4W@rBWEH z2yv#aOWv7CiS5vUFgQ0C!?)5T6wY~!mIN0WCXY0dO=qwf7In$?5(#2RI5$u!No@@M z7#XL)cDu(`7L;NbC#KmWq^353L+=nMR-Hv@$zgDXI-3(+Q)FQXj}jNGPZq50HE7Q9 zrbDgX$w!`>xOL})xOs+OQr7s%Vx&+|6`M`RqAM~rttFKeG*+=}sxs|P5~(yHMj8oE zJ#xzMtKQ7rTYD}phO)^VAuT?aVz4&3c%P*tq=e5!nwr1!KPe>DKk_G$lxC2Siqn%5 z&aPi$akA#@4>@@G;m0)=1XB1|ITKjo#rUzP)$Jehd+^>^||fBZj1P&{zo^Iv`!7x(UP z*zWk?2j0i`eE;9!^86mpKmQD;r`JK~qlY@OKkP^zs!p)m?+76hQs%~kkFi=U*`M$D z{eR#;K--!ZKk*CDzsft_`Y@k(?+^2Zzxn^juX*72k^g+h5B{CM%CCC&L-?>~JY4aQ z{)ZoCx83rg5B)rEddpjioX->+!`W$DDB2nR<8S|V{>UHuV`Sii@BaX|Uw@r(bX;6+ z8D@6`UsPP)yT@Pu>)*>?`Kx~o5WMfbKg~b+NB;;T6z}-l&*R(v&>!SmfB&~4k^K9A z?dkIYqn*+_~y$wIxrXNL;O9+k2Y3JL<-eL*U-|1#?I= zRa*++I1^GN1i>%{giM@nEN9o2G+jfbE3_GN;58l`irU6+Qmdl2=((H!7IF+DtEe&}raRc)l7^jJ0F3_~ivPEgABw&lDY&$&YL;uy11=|b@Zg_;E!MT&_-KbJU(6wq3e zvLePv@>7vJ+Y(~0Q^~CE7G+aMcW`mK8BNKas(xd=kfm3GmE2CJWw7l%ckygnf!S#$XQ^m#VAFLp)4LT zqLierYMQ3PC&w^3a)!#3NDidnFwPtXU(CYC18~#m5?i56kz;k5;NkLeWSn~fj@b!z zyP46sLZ`D8B!P1?x;py%VllgG0x?>Q6j)opGM!b-5ym-Tl%g>uDhGW3(zUATD9+QnZI0Nm(F}Z%l+!D!E5eDTorKBic%|ED4aQakGD^cz zYTC-6tJ0w)gO4*^Q&a0Qz4s}Ql0Pxv69*fmW^dmS+1S7G)8mnwByFj6?Ic1w4$ym4rAoUfA)F) z_J8+2e*Wp_ag!^4iXs(2i(ICQx-3gEmV4%Z;QPuT?CZY?ji8c}Y%9L-i@ub9>vw(? zU-FJMx1N0w({{``vpwHp>k6~(_{)Fg@A8xH`#8J9d|c?t+H`*p+iXtxiZA~n{@ri> zwOqXTG>3kNwGEeli1;ddc-0CzzZ_ z^Mn!tU0KX(h17=NXXd^~%p;FJ@i^^ziBOs+|D*pm2*D@*{2#^$P$}bwfpP2+N`o}K z_VR69g4rzi-oNpW`PmPBoWrm`{x%YklL^D^}mDBiZ6Tm+n9Z%scVeVY%dSI z^6DKfE_UqukymeDvFjaOQ}fWeLwAac?Viisz}2?r&Yc}TDU=ZG45OOZETQ}joCuERVn)R|+5~8EFn$5aHD#>9#6GNn`4N5EAe6+-ejGG+JIZ~8pZP@oc z+wB1%B+F%kMAFp~QyFGo$d$?@v{D3D0C%c3L>1X@hmz}OG!liDrHQLWrZ$SU)uiay z_MStZ(L!;uvMg6M(>Nls#MU)J3ntey&WUB!@Wdl0JaY4drEN*cv7d$#?cpILNmFT* zh-_9JU0WB*aLQ;jS62fUQ)bo`Iy&a*^;_3CC(wkem^ozj((W%NL&^S{Q+AUc88Jee#9EZ&C>-j!JHDa^T)l+Le>~% z2r&?%!^mPaaS8f)##+h3TBgx6#u4WPQYe~M(Kh9*>ZgeJshs&_E@v3QvG6>eSyL)@ z3vEa#GYn&~jhL48YJns&4+BaHPOfbrXZHJ^m;znfFpq%{p%elmBw2dtdepURVQYmtl?6wDtDU(ShCF4}! zTI1|EzwEg>%#1!Bvnq=UPsn_{4YDu|^bwZmJ@f1cDIBwXDeHmO=wrV6y`!}Ev)BKQ zSGf9De#mD$SsbRh$RATN$Rmm$B&Yk5(&C>;xr9CETs|~{lIJ3h6Gu40ZzMoKJ6}ki z0yt)l2~m!BT9!#w2odi?iS1C5lruhNf+*qiDraQih;c62E-_{tC4(@hP^O;QV3b1X zlJSx;#8hNHlaCC3Dig$9C{2|S*!=-ANOL@H)Hf$%gj zqq0CP%kL{h>3oMEQPN^;DO$Ep%Or(G5yP%%o8o+O}mDBUP)oe*J_uKYq$P{bK|r8Fzbf z^fXn2Nt(mtnL}i9o~zw~JNGUaUBWq-r%28Tr8ySDBmFd!k~}Wf386DnjD(o+A(4{9 zXvmYmT0?Cz$FXMzWU>QpxSKrp9}ZQkg~9qLslNiL9GtTN)jv9MrTj zynZ#YpGJZY=p;ED1S?;&9~5p5Eb5B&qi+KtAq7M%(@W_BdHD#Ut(k_%-B(`XmFJ(s zJ5NkSc3rMdFF}+NG__^3Ua(ly)J9^h!c-b^A13$Ib~bLeVrWwKb&Rm{Xv& zicT9k0=lYUagDdX^$9-w@z>dpz7#k|EHVeba$#us5 zKnRZAZ}~EONDLqQ2%?fmp~*qfA7*afI%m0VP+GIPevOQxk0T-9_jG*f{O@1o6316J zA63R>()6j%`N=Oo`F(MJikZ_9aurG0F$@#2FJ18RN|grPVLx$se!%&RF$Om->5QSN zG&v<+fAML4WZLqjU-CITuv(&5HBIA@rp1jDDJFbK#FV*nl{j6UlA>UU8K)cSlO@-6 z=0<3F@NC1bFNpb@>yAZjxjZcCr-_s^&I$HD(oca8e&l7IdH!|gn3;#jJk6xA2T?2w zwz36wlwseGNJ_ADTU)B*R3Jo0B^8@xhp~o~VA~(q^&>GvOjY&;83c-ivWkA3$x}p- zNFkABDFWO)lMtxNVwo_`9@RM|3gOPJ9s6ly97`ld)zxStOC%JM*+-mnSShJ(g>#Oo zwKQ$^ECd z3RtVCjHas%%SA^_lH0d0*!L60)=-zJvN5{&uSm>OAb3d1M@KPdPTzS0AlCk&f_5)exLI_WStL?}K_XnPP=^mT)2B`#-A93#J2@^%?IJt>U zx58-6ei{fA+r`PUrS4i14mX#k>}%(HcKt+U71uWlqEA#-(Jf8k4g`hs23=duFZYCL zqOpqBRNT5KYg7n{S}7j7vBp|M3XwxUu%9OCszF)H^~w^X#s^P|i4+vdXtvt})1Wy! z>DX;Y>UPPsuHm^??(+T*zs5=1Q8#cdJ>zEL+Bz^eM-YM2lMRPCaCf^U#lT6^a_eHx zcIY`SgaQwU!mC@)jvvZ`BP*Nj>B8kAFsY*j# zYr3{#Jk03IVjD{)Gq{<)pK;SnO5tdekp&PXEN!c38qHytxN~t}2nl5ri^>p^=V}F=gz=kItTO$LW*ns~5 z+mk|h=0Xh&c;JZvk8Hq3!3_*o0aY#uR!W&tW|B;j!RT*u+TEnCJ&buNAkCkL04s8I~kxY^x1c!!$0kCr*K+46$U6 zhrl>TmXst8qZ(Q(Dn0=%T3G|ujL1}q$X=Bd+mKque9%xSLcu<2LVFWdDC7mKx) zRqkogPKr3CB*RNt2;`iwMy3hQ8q6wJlbcO|Hz-Ic%ON8OCfHi> zmQ@Ya2(?rxMX6N~-A)c6$B>9c(YlPP5v2l$x`?!`L^Lw?cUBIJwXS)GM&dlQE?6z5 zacAX_JhYyncNoBGO}}Yye)R?#AvY>CRy|1(BG#DIKWL~~vJ@j3R}mcX`b=nR2|2UO zd5!OYB`n0Eu)4u}gVBXr!FdfNDjGPTG_>AH=hYg#(>P@EsjLO97@7^|L(4LY95v*G z3JF~^I?psJvgAq)nOZeD295{unpkZx%A>7e4w@Plj241yDvn+6INxj~E~Vr(u+OeCKt+vrIA;h^@{=ke<#~c1S!?j#lS^j*c;v7@(zFfT(6B5Lvb%&#NtL-M zPGRBZ<_$4ta!H(~1*ILWZx}Wm+rH(jZ}EM{7#H@BBl9%V*ub;PGrGppHHqe;<+nb% z!rAYw9k9&dI5RDQaZ3F7(>Hwf#cRAaJbQl4i|1G9n#J=F3ZYh%hR!RJvb?_C^XBG( zhbhoD9oj;f6U!V}!bHi^f!9XhP+Du+E`VC|wN62@L)Yd($x#;7QRGa0-;hx_Rj4_# zj|Jldm49l>pHsL$uy=nIJZuUYsFy6Iib_UvrEsv^*27|i&r=NKmW5IaC7rW ztr=B#(h89B+Lc}9?4?L!MpcDYWi44`l5#v8xw(Pc*LP^^*mezO9q*@j;MacbT`tbI zeD>A7_@RMd2y>;lNke)5v?{8?vh4ECV zCd<8IKxxb2e$Oy$XtiMqfn_?7^AoTK-cAUA(S>|17z=N?xBtrbdivYdqph@H(Tg+! zLyA-#(8^&oXf3fSu2EE4j$_1x6W#`<(~KTA@>v>9(-{u;U+^dYyz)uEW6qXlbHVTZ z#`k%@*W~#Q_s9QjnZm1r(*eT5e407U>!c5dss-y69hRgWTwbBI;-hyiP&E@y3o#@f zmYG1|!|%My<0LT;<6&ND$q8?ynU|8%3ob7hpJU*Zl zZ{s39fBA}%B`>e@R{UluV_oIV?G0V)8HOIM;QryrXUL54aeic{&3*&I8jSRX^S$RoH8jKs9JK4U%uKCV-b*^skGkku-Rf8ORAC97@nPP z*?1veKHQI#2v=uYZXXWZ+=?osB8`&1-$D_uoKgkvTeQ_ob7WdF&KZ9C)dOAYxjNgj z9d>lxmYfqI7bzN)L|WaR_S_sNG!o_HT~E#yYNp1-GM=~`9Dn$G-^M75bsF!$Yc2O! zH?Y}m=&j`t7S1luP$A)vY{%>CD=xMjjjr^rV+<2rYuWY&wP_dzL*F&S)tx zPMKna9DCLdEFp07aL*hvIaW?n;N~zg&x=GKDT&`|8p|}!IO{P+&SZ@?>@Gao$T~q) zOd<39`ADsqzL5$3-G1cNqkPY9*wVKK1suoBSSs_9*&iQ>i&&ISA%bi0R&hKo+&@fw z@a`pNgXetPvFTf;dExclBjJ>2dWSa>Y1UXze_p9pfNCXGrZJI~$a#Vu>*d z-!^D%I8A|666!+m6fr02lIVSl(}vC$N--2?={kdN z9a@QmR8_^{G;?+AW>%_)0%Y%;w==#G|kL0NY-O6ghQZ&fN(3;+zrkpL4X0Md^%lGmUo=@lYy_wK!AITBez(EHcgYYs7-7WK^$32CFsnS+XOI zk-}C}M6O!%day7&xv;dB&}6C*u~1KwS&_<;GgcK$*N}2WB~5a2a2`6x;dsJmp^hpl zjWNs$-nrVKm0sWDOh){v6$#lbX+f9Bz9xJt8usIUW||AOF&J0T%Cbz6(=iiMrW<-T zo0c3G_75i--?14wN-g4BYYbXfrkLp(gI0PqVXvXKZBOeOtTs5K@omTJ?Hk_Q?s;{) z$7;><=R0<;;ckq)ygf3_ndcb7vao9go^N(^-qG*2q&0sr6VXk>usLHHk2HS4d(Y`q z85+&I*WYLUosUR4;+)8vypelMYm2cC>kX*H<6aJr^Sm&}g?=|swBqIgzIuJ&v#(zA z@bG}j@)^`5P@hzybPw}7$=nAa++~ScX}rZ*jW~EU1;gd8qwfv56!e^URT4K3kLX(P z&ZG4O|K9)h$EftD5H;K$(fiM-zEIt7^W|rs^7*Hqtl5ehR7O8VRIIR@stkt0uI;$o z?$~s#boY&x5MXC$y`gJb+P1;iZ{R64Wwce8s>w<6Sl>JA_;>%E-{jSsBmeAAB9D&; z6iBcz0z9hgH(29`0coHmb|Yg&=awgv;Z*0SwA*TX&$F|lw;8I0oD)sAV}8=BPwMy1`(frv$4v1qu1B9(o7XR6@))uVE)xhxbO8z2EHmDejd51 zwc`4s<*ad}X(Xrh2cl6`;fzQd^(v8~Na*zS`G#rI7^R6zWU*0f1ZoYRu7-!3H~42T zMavI<@+E)#&;Oi1_-nt%zx_8}@PZFH-rl19$nD+2##^c?Xab$evX(57(I|&MEQXi*wG; z2ll5z(`YY6sX|QDnrsS`LTfzUI}XPqxl=-BK297@ z6VsB}4hb} zm&i2F)S5Xv-}3DFHODD(JUo&zG)}T(BN|l`jrV8_Ax8R5PgRcN9662mq*4hvV;jru z!+{c@X&RKaG;1bXP8zM%3emIpRxAu-5sK&%0-M2beLiru83^;l@$`so9m-gih)@^f zBGOg`jdz?69j((?3`S|L&UzZ})}Z;y#o2&Yh8PQXhY_RUbU1)EU=$jSDMDC{v8*Ka z#22p?Vp!-p&!+FtS`pF$T5&oos9M-;8k}pz7fK2iVX14uHxAP_I9nwQ zzE*Oq%JtPXb3y!TYld^JMfSRBfl>rE*moSKh0|%K7DeY9YEC4*ppE8m z3>=RWU2i3RqgJ7Ns?4*kWAc{6xG+uu@5Lgdwa5F8yN5@nlIYu>w)1qY6429<7?;G? zZyvbYJ94VDUg538Q^a{8FNz#1N-KP)31Q;#al#l&=e#I}Y{hG{dOaOo<8X~(=vqq7 zEJb2bmLwCs!*LQ|BTx&BA))R^6tDydh}!NNs7a)qT9HaY6^W%`9axl7F;)~uyG@VP zki%MdxfOC`Ev0Beh{Pzi5Rt44ASdPpYQbp9ZL~(SETX_e8^$G&mW(xy?beZV7E*5! z8Ccgkfs>s^Qm9xIX$*8j#{%S-sc3Sl#FPjzqE-qzN)uvy%Mk%#M#Lnx9jOfpstTv1 zP>Fd}Ag;=mTFN(KmS0`JRM#&aospgZGf-<?-|5705 zOsxV{5wJ}b%`;VE2b`fB1PUOUXv>Ps0cBTzm12p3lH~xUb!D0A3e+j26fnBrw5D&x z7~Fa%Q_Kn|g|iB?(l>>~x=tNyA%sK-%lbPh)Zr+;ByBJ&U`A-mrCn3yPYNzc(|K5j1xu|<~i{Au#m#S zFc`eI^leMuK-)Al?T)YnQk3qXz=A>Eq9X(;5O4}z3XQ6K{N4qB=MTTbstJ7$9q?2oOdmEVU+K+ zHndpL;-}MzAAkA<|L)&@pT;*rXVa4D*>^1uhXW<#RWXrBc0)0SsG`xe@K@c8Pjkb6bvORG|5oaoFMV5F zilpfJeBd|Uzvd^OzT&hTS5}aC(ACd>c&e^Btcp$B;19!LgjN`<`#W~NeE^%J-{JQe&`kd$Q?s#**rz#6obGB`` zezv7)H(2kvxZbec4x};i=IgI{@xc{K$&81Y{q2!zWoKH#Oj;reOI3#b>4-8$nm|)v zNfqZkoj256xZfYRJDjN1aB~VQvp}p;$y8ObMWceKXiBMQoiItU>07K;lqA3|@3ds5 ztpKv7X)so?q)g)+MjI-c<8d!O>s(iPS)yq=hM}i(j+`q~$c!;EPYZF8#?|38Q$VtY zL!dFz#G1#*mtWp9o(^wGuHIW3tH2myh$zOlYeK(d4yT2hA}I!$Y+H$JI_)P)gkjs$ zG!}c3cotO+F^Pi28cQmYw``myB~2!CS^~{!Pvf=h7el+siaoVR#;0N@XN4jS-=S;q z#AY#>_2%hxByDTti0b(A8{ z*YPl-b;TLQw(seWkfJo+QZ16j8y1w(gb?H&u?;25B++|Avo@_&1+NQBE>t5E!`@4= zlC_ZN8*8xD$ictl^}t^wbJtozsvO2Z%JO|eQY<;sww+8@5o-VnLG`{%+q4{x5+dJp zmW|dZ?U+MaeSU_L6Nlr8S`}C4TgrAr<1NN1$+<3Yv1_?Dnu2Bui75n1F{sw#TaB|G z?;6Y^>$r1}f?jifq1{+Eou^R5))5zs0jo6gIJ4^=$1zY+q3c_0%%Cl$L=*;R#WpgA zz;4??sX{?7mDb6Wwe5^Ng9-djlh-IXRmC$75RFC|^;WI7#KdWi!o?s-11SqwFqML_ z8jO`p!x)Ki!D#5RGzlN>A2GI(9MxqZ#>jT)Xj_jq3WuR2*&B>D6e`|35o;$Q!H@I8 zxJ1U7i7By!!ki_lM&7*2WeN*b1tzK7am8h3Wm9;FDLN04~c!iSk8r$@% z>zD2Ng^NY1re;B-*HWpv%H#|shyIi$q+H7(vMT8sq+G?!UoyseSfvt5NoZ+Gb)D=< zQ5JH-MWJbFttd4?k;8~gbUa2ImJm3cW+^n4qLxa@iMDB_XI{k%*)-B^vDPxB1+ApR z8dJd8if?2gtVKE@rHbtBsbii}BG*dJlK=HI`C9vnt1K^KjdW?+Hqy0G3Q;Y9^^#RHYj6>IT1r9=7Mh|_sK&;Gj z#J8Ttx3o`1ztP;^Jy45yWsNm-!$7TYb9;lI7kulfRf>LU;WQh(^B5&ElCFpIUBhst z`S|jjP1nk+(i*HqIZINN$Kwg5Em}KrNX*BDWsV$ABgQ&Thlw{gd+tNw@wn%7cVsy% z#2g7krlryv!`bt1;Vxc)(NvScoTGeC?KtqWuv%-A5-YK0G!bW$bo9~u;cvdj&Fej% ze}2o|<6&+3{M@byKUc5F?^Y_3G24;aJJjwn})ML{t>lQe)u8d!C%)YY<;4pK1~n* z>V#3NDurBCf8}kj>jwUl|C(}q{&;RU4eDcX}(EhD2Fz?Kq|M}mfXrTfc z1--N6oca3IEf0?;Lh>XsukP*%Zx&(%qb!@9qwgJYtZ3a}22Gq6;uv_GG69cUz3$Dn z;p6U#t2Y`=Ikyl@Q$!#~V+ijUm=Dm-ux#&8^yFE9rZ_tAkN&g%O zOXU7I^KhKGI=^^J{o9;vxwyK9s#m%H$k%V~_~O+gQ-Ecf7>^@wZXVd5W~$cI9MMG@ z7}^So@ZXaxn*7!ymOMHr!=Q&USnC-rZ57|h`Dlj zJW_KeQHe^E%ZyW1CL_+WoKED&AU^iZfK`TR5=n92b@*8ttEECra9RTMe&puip0982 z8Tt-qomf<~#%ei$d*4c=5hATy#(+01=*+`m#8}OCR}tsECxy)6bYhxk`pz>9o_DX# zXpJK!#Bvh~P3t6+ZbZ~aLxa&~eH1EIE0Ob!0b?o;Q{eU8xK3*#IYoBc4bQI5xjG++ zA#!mhughsT?^>2rxOtc`zGt>7T zo4z9k2fyOj=+c7WeWLYb==R0=W4b;NW8v5R2oTf(b zM`_wpA?8di3ZnpPvEHIep=vna?dW}rQilC$B!tNJtd)jXT!AxbrF_-FyxA$*e!R*Hfo-vbKODpHQ(tS+=o#X6A+HQr;NwAZz+uo1!g)><)oA;l=gp_Xox(n5*@ zkSa`GyVe?`93?5nQ$neXF)M+KfL626P@TtUO~w+l!sddv(6*MGqoA9O!Bj=g36rAu zwp69mEC7X-=4GwLS^(+J2!VE$@WHCZSE#B<3R027@F^sgm^n?$DsPYoim-Z3v_cO5 zw!!;MN|6v2LM$vPgN+mnF=!4aK}C<_#Jps>*5I9xLeI84E-%h$y`kg)rP2>QN>}1M zT%> zcvpDG8@zHXaYHO3Y}5uWudieZq9higWWjX1m9!djB2|m?GDY-_k%ogU#3YiSr;J0Z zEuFC}X{7Or?XIKN%>LoPd|K!lgDQ#RY2@L}11Ldj8*9;4B+@BooNr07&^yDs=UdFK zA?5~S3*+4J`0f>1DO_7|Mq}p!DKn|eSFaxU@{>>b?r;AV+vo3tuKbt((~m)C{?32! zHOg!--Ikns?%&*U|N3j@(<30AKaE}QmW-;ER%g6c?E0Re>u_r(pwpJdIvQ&kx`vD0 zfCGtnS*t{8wD8uDUyI026yR&+YViEE-*}%-KfC3>_@_VSI4K7YZ3y`jzv7MLE7q!=kE=2GalTOm=-3)&=ftEsL>^_QGpz2xh!eoTy$ zteG{Tsx+z^r}*Btzsn!}-QVO-{`8;m)n_kxIF2OBTFgB)0iLok^v}J!@_u-4R{8U) zsCX*)6#SF_xS{oq-~PC8wXqDH7j;K2P%>)WMvM_CN-c6g(8`KGPiZPfJhRHYEh<%3 z;1tR$oN2hbKd>#D-~H|H@Wod*q!}LG`3rQ7^#8A4$GVR8QlX4t3YGD2Lsu4kL*ti6!6ZVYhpP(@aflgTz&YiM3!u%WB&Q;*QjNoCdJTOF3&x+ zXu|%$*Kcl#rEqm|#_KOX<>i}+AO7?ez8(1ZqZiEi$PzPWO+(*!LMcoy16C(}?Zy1D1qzWp(s>o_~_dH%sO-hJ^7r`t!C>BM&1u-iW4yC0s>v@H(D{^rEzU*B+h z90^&YRi>td%0>1#W4O6_AZA5TnxYiBNCZbs8EwRJa6BG4EJAp#MM*S`DnzA7A+60Y zL$QjYHMjc*>J*umnK@T77N-qOBl*EvEAjo7MBBGyZMZ#*OvgR3%KqCpMNQM&7$qn| zaz@Sy{W@)4=83E-);U`1Wz|`V_yTJo&5@yRq?jp|DMaQaQ?nwbOkEosAta9D!W;r2 zN1V6JLGk)_BB#PU&O)~x8jRJXR4`ic?D_(49bt+%>u4GWy3n+W>Gs4pPCR?|9ODdM zzuxoa%>$)Wt}Y(<$+L&I`&`#sp?YSRmqhOyE;a*dtUNsIX{_e`_b+(%!4($G>sOCZ z6&vlqIC3fiQ)vepXN6i?6x*R=8WV#RAl=KmBcW!RR&zdhTJKn5=FQ`tIb_ayPv?+G z0%u8S!8&O?YbU|&DM*%G>l%hjFIkqG9@B{3B*lbQn$2#*)?4<+!0|Lovt1eHIS@*s zu8|U&iu2O2?%NivH8CcpDUf54xD{oHOJ$i8;F*piwIs$ExIazO*hVIm-75b_E6NIu zi@8!tqUI#=TW+EP`)OiY3fejpfmaVL*So~Fm*(Ye+fkAx%t8s)Mx#o>DMK+9$ef*b z7-tD{U|ANX5Gl#6g9cBd6$-=IuHzJ!72H@wv7r^3OxJq65rVs0?LE`!1dYKv3tppK zCPdA{ZNR&NZyk@v$nD(&RVlo0*K=`}Npwu4REepw%#qeu(vu~}*tgcB5EFL~d#IJO z%@(Sh2TLhy^jO1{w=DC7vW2E=Fj^BsWL_d6z@j8mTtjQv81#X8rIrvmZD8SHzgZEdKZ}>)(XZsR9z>FtBkU)5>b(yN>OUG z$S?)8kR=000ji?3Ol!Q6c~s6qU)4&j5?5IaQ!NxH(3#VU2)A~XPSz*?WyM-61(Pw9 zBz^~_!DuZ~HDjqdOCjgP$0hPT#Zn5oNRd}dS=FvV@(BT$B%IVa@ppJl<1}q!XxoI= z3ad0qN10}|4NF`wwqlGNgj(n5lwIFnf$2#61gp$fdG}i!Rat2+6bCdD2qQCJ9RaIFd`GZ5tZbp|c{V1#-kU zLbS`JGM*Ncs+?apoNGhQkyj6Q7-MLy!8DrIcNnD!X(pGEFlLO>B%?@5x^t=q+O}oM zig}#mL2*JE%vti$P;hp3#?|FH)@pK!A_YTB2h%A^o<)MvSZXZdqq2^(%^77S^vGhu zB2jZj9){vAiwEzanT7cF=ecQ6z4p^;ub3A}{gluuf;C)YL9KJ0)dv-Lh>;gm`PMU6J@nrrX8<_8Wx}g*Y#aDUqq9oKPXK>FOGpl}RO_YNc;G z&bK||IP-X#r15JYt3sR;dJ#KG&7$zx_6^{%R_?uNS}3Yw8?lKPYiV3V=M*6Z_Q#3D ziFsZG0G2hEmuJ|6W}KxUnd6h%DKWGyCBb-H_?NFgR?0U=4ICAG?61>J5sZ!}1PoXl-fiOpE(Hu_`tV)Tl z@sgz&5>XY2oKOanHJz5}H>L`OA!VX6gg8@8#XHTWan$Tt7A;mLD|vwL4;@vcCK6Pi zDpL?5`zgr8a-I|O95F^=t&>oAqu$c!-y9#PS_-AONc=@kg=vYjt;2asDutR>kYZi4 z1GPZ^It@-o%Ic-pTI@}=RK`;wSc%*!5`IWOtYqSvQL1oxF|6`fhpvj85>pK1&I{Q- z7Um$d^eIS_RO=_Aa==>6JI{8qCtI_w)lOIzN~4q`rOfGMNLeJpxk9W`)Ef%Mh^ok0 zFVf`3vWAjNRK_@yawHeUX)er3k%}gTf->SmEJf~zoC;Q3QZ6esTAIUXMXCwK+BmM# zjJ8_Ta7t@AdsB&V6lw9Vu3xI_7YE$rRn}Cb%lI@-{-%=+AUC&6;bhXFbwO)6_@?w! zSPJEo`g5{XSS^v_-;>x4k%yHmryir8;5tun9SCx~BAsg`dUGk@$k`qQNd6>0k2@YY#e6tzW3WS1l3h$(N)+m$`e`bn7rk>W4QhwVs zQ7CdrgcKPkWYTDjP^;{M@BI2&Ag@z`-a8Cv@PY9f{iV?9Ib$gaa^ z!yE#oRJ`@L#*j)RmIbXVUDxmg0MV+j1fk{{YYAayUM#N2^wn7L9(dD9%t%ORZP;$M zjHd&+RHkL7s)B18R0U(8q(Ih{wsB+yN>|!VgR|nfN@2#}#h;TSVVwBUS8vdI;l)|Q zcGpvvh>ns+n!}z?w54Tz7FGj&RZmkRMT|3FfB88N_YdTlu|H>3E46TSdC6~m?>){3 z!w-M_1;gO!yuxasu3Dq;2KvU)I)knmtHgJ!l_FIUUxkzfexi#snX92Xi&m8sCUU5} zxIW|efA`zGzCBP9#5r=BmbGM&wL`0)6H(SG8xEC>qAEkqiWoD#ZD_2a^`6FQF6Yeo z)s8P-E$nt*aCi48hYJc6S;I<(d5pYybL8D~$Fvk;{R!5u#(QNXi^^p#b`47kY|pNF zetp5R1pe%&pEKvow_jW`G@fx0WcpdR5&68TXj@UHa`F69WH|dHv7BL?tO+k)zu_`h z&URM}LrYkWTwnAUUC8ms>o;HX=I()5ghGvaV%Ca3xI1^0!)xsL!1<pXvAy8m|MVrsX#V`gw*>xWv^2Ac2Q#lSSpkSmQAx?jo>pBGfkw8NI&vuiFcc5L6d;O^Be(_tj9`JRml^vYnBVY}(L zeD|E)*%pjP=Ij-VbjaQA4Br^S@xbHV0cX$HowqpGV2q{jS{mDOw3fbUxu^+@qVZm& z?HXR+-}2SxFPW))>%-?+cVQWsL&BMgnjR@35XL>PZzhy;TwZMG+7621 zcs!v@g0PTkq{fBaZa~+JSte|$bimMf+Ks01p4O&DJOD@L{-Q+Qeq}Wxi_Xoa)p&vxJE;*GNH%?8J4f=8!dZuSTZq) z%1Ie%);T8))p0uFtw$?OSQ4QK(%)*u?yO_Cm5_L&TY-txLJ3hkWlA#zd3~;Ryx8`H zP*|1)W3t2m6-A1PLS~u*aRvKKbLMfs;EZAnBb$E5&@~(mN9K@GPNQ$MP0JT8KR5Q&Sn2%;A)IxIdCo;@$VI*bD>P zK?+<{!RgA`W?)%FhI{{bB7{iW^=xoOw!;97u0HP2WiT z*OIZ`(zgmqA>;+uG;F=YP{}~mGHpGD!V)tvM5ycDRrK1hsBDG?*Hqe0q3EGnVibaE zOcINvlqTd%h!KsV^HwI`D9D+TBN9^*iAmIR7z1dW7Sg|26?mmWV~tGuYXzm*pvWn% z7Oi!*r!|T-6EbJX2v?#!In9A-$>h8+IYZ2aQbiS5P|}#pa@Z)fifzca)oLa`LzgId z<=&wXn55Ry1kOdkY9*Jqw)tOOzg*WZTr4)-O5~DJ3`(mt6H%`+G||6TrKO-V()B2% ztOwFe(@Gd;twNBBNrLO&YL>MYa7!-I8DC|U3Z#Hig5fo5M@0%W{no=|j24>b+mlg6 zDMJ=+IR4d{aOks`4aMV&5M=>;8yK2EJ zOo9Lp>8WTeQb6X4QD*%-E6XwwQ(R#Y4IxFW$ugY{iI8Ws z4p_ZN)@4czt!1|zXd1`W*%=qxfm8!ZdC8&Nw485tlp@(dMz2u_MLL>?{m48=?jMDQ zT8b1>+p%EXk>g1~MvY6@{lqjMNipNS=V6+NuRx{B&{&3{C&kDd7EA+;)A*v%)w0Aw z(;8Bd39k2!w)3Q92_ea$-naOsLC1)7-HHg;7-N~{k*;mA+9FUTz2=Iol3!&d>#Krm z8?+MoSj~yLb_t&#Kg$wi%3=)Gi8w=>(=?8=O^@qme)!2({P>f^#jxSo zJLkOj{v~J6FIZkJ;`=KFRTgSpJF+T+j%a31<0F6m=YPuG%^g%jQ5B_S;V%`w`|(Ho zjX(S?zWnNE_@-yr479z_SiNshs?xW1l|E@G`E7K{H;fcn3ren}n$WspbcK=`=K#8* zYUOIv^ZUQ`ZT`g%KI6+TALU-xLU~gt>UTe;R)zY>PenDU5Lvb=Vz@7kXS+*GIWp>n zxGX$AEVLWT2k)G7{`@(=dn)|JkG|j^KOTsQRn9630HrER4BS4)B9c;~$f%%2+4lD{bs>*~>DT|C!6pQ39*NUQYd=j5rig4X;u|CcAUn)#Fe z@ik+rymPVP+1Zvi4+ojnQdWtpMqx1P^I){)I0x=-_uM_sa(^?gfR;ikfr=dBmC|&L zVV*Mg`vd2fJGQ+@^h>SW-9K`39N9IJrTQ=*vxaZZI zds3RY9tN7-hKtJ$TWh&GKWE!_Sg�Er$Td(?niQIN#!Zhl+vav?o)!+fTf{9XTEX z%XH#<-+95%x6Di7I0dHD3F{oE5SW(*vJkKj$C(NdyF@PxG;?iCCfdSN+E<< zy!lq69K@ya_3H7T4I7wGpy&zWszLUswA&F zmq^VOQ=}oEOTjgsP4DogumovH#+V2pQfk3ji*ruo6}tRbiWNor4{6uk>OL=Qq%cT-xVu|q^`@^rUU%KlTE*AAV zrmpMhP$`WzG8L2l1k|e5GizN78n;depq7j=ipDuI6}QMDnL`qJDy)aOB3NIZymx9X z09P3*YdV{l86{&)6-hi>Z{kvlP~PD!v_Yu?DzX|dh*3IE5=gEvCahn-qI{KECzYL?iIRAqCn>*u$GC^~$xzKQgYiZ)`f zE*J@G&kD*);4+|{!JBs7SivgUykdg;!^HUVmM{D*L*L70uB7-KI?r~~(YFm<>uEYe z<3xfnj)868a6AejFXqA=GO;Kgr-)t>BnjNDIk7)h$;7L$)JRzZ<5cO4p_WRnGo>z^ z<{9mzm@_I+66BQdgO|xqtu)QVW-D~KWzNJTSZMDZc0K$$Z`NsGW?3S;O`&U?9ITbb zx1MEQXq>0<4W$I8aFPtf60yeNjHAXtsRi3gSZ<6#h`q+rI7do_IM2*gWIi!Zq(yQ! zH=XCZ@0~L(2fq0Hk-PoOT<>{QiVswa4vJLNnteF}4bt&j)=66A_Vw5N_=i8@@bD=A z+uCSBDK2+s{Q9qbpLgGTpFjT7KYd&DS?5;2rloaoan^ITX=t61B9JWd60K3|LCzUR zN|ITK00xGWP0bAc9k=W@%hfA0maUOuo$HOE`;;(z$R5U|aE_rJeB#4ANvSMDAT zeEIU8&AX1{Y2jgfl+3262zQz1yMt|9kK9Cx7+{A%%6-5V(udl~f{+W8kz* z)U+`DlfMg%r~P~XIpY%LcQS@%0i81G6j*XVnTD&2Ga9Gq8qH~%z-jtTPcE6q!^l^! z?s)TXqHPbnxj%A!xn;b4WR6wnj9N4F8w`<@k5m+`Y1uy(F5iEjS9c3P``JA?NdrMT zw{m&!d3JfldEWvB+jMNtdy)SsjjEYdqVaYOeOnN&f0t6>behSlzieIMksy<`@mFD* zBV#ChblG#Z?N>F_b}E`h)f}J z$O#uS=R1wJ;_nV6po=9Y#lv2JTzQ^|sj%6!lnA%4?|GOajdMKTG@RQVN^jVwN}!OH zBVtItCNMzN7D3_RGi^0@E0oPK&JJMy6_wRv2YC&4tfj z-m*WAt1Trnhs?MXV$7tn?(<3jJxd7WB+4e^5MM8vk_sUR@?R;D!h{We$N_l}JNlkZEnH+&%^xuX)O}9@>`6^9@CV4dtWrZcE2)}Za+*ApmsWdGJxQFOvs zCAq(;5Muxf^EhxiPQ+a3T9KH~Nn$@@7Sg=V4bFN}Q8eDNtrcesxkhSLIBUrT!m^NK zLYXIdy}|dEnqi(YValX&p=KfThqSyU9M=L`SwgJDB8-cQS~H)IR4g%NmT7^iXuCxw z^|eq+BF0S4PmB(QHs2I*zOk!fFX61F_Z`j{X-XS8)TW$BRVejs(}0ruC&h?&PIwoH z>a1-orC3xhGOb+WGqkGWU5C|^Sb?X!Xn_`@A+9;bwMu5OHkLxh)>UQrtLvBU`h|Te-zzBBQI=xCRvJ|G)VXdZmw|bQlQ%IB|1;8{bj+3SH zatQH_n5T!%adzJGe&3UG!8q}YJnm;6_eVmg#1x5oMybRY9We)ySk{Uun%=d1>!Jl? zNM$CJfO8J#6_1Z6=CDSG7)9TEmNb)dVSk*+IdgvAqe`Nz)3%ZVH70P5loWm6 zNuT)SvmcV;-;n8hx<{#&@wDahAN?h-zIaUtlSomDLn}w)6@TZi{T_e)_kNS5oOt#6 z4I8Hki-6wpU7yaHlWE!14uA17|_6)bzw4}P6!4Dr|h&s6Q0 zm&7z3i6q*#!7IyVaI~$a6phubOl-VC19$fi9FHTVXf7_#*_`b}5?>31z}3Zo?*^9l zo)dFn7&e@54An|QDNmW(y8}1-8-DuPSA6lsJ!DYz>G_s-U>I6H{`iusvqXp|PVojTy@~btBTuo2JBH(WtICcU8YBFi&&h6f&EQXVW(;!aX8~0g>O= zT1cs)EdqVAPWB0t>HCJbtdTwy(wumhP8jc5mVm0#++?`E#KNc zqxBv)^r+4YMcN1~=j9i#xV?ErqVoQW_vkkp<_zPUh)ZV90qZ=8%H8Xign8lY?3|t5 zqLoIs8s|3sx;C>1%2zeE*#@ZePFTlg~aQmcm)zLJbU8XB>|U<(SAp zakgvmZpWL~H~1#dH(M?)uIS!*&VF354@X{j#b)dH{HsS^-|U%n=E6B@)*K%KfAO=I zyxAYoD$`noqWZ0ONYCHJnSskLVe>7gX~BnztC5rzOiozi@CM3qWY;!)@cnD{&pn@B z_T1b*GM(;u_0xNtv23<23CGQ+C*IuNkxJqDvv;_@+;TK~T3gs{EltyaYB9FqVsPx5 z4IjRD#+P3`aQE;?h>4mjXMM}f?G2?S&NdysX`m#|2FC{*LJ*&5^r@Bgb(ecN>i%egaWuoMQcaHO`?HY46QIcWP_fo`#Szs*l z%#sCMSJyQcC1Ao@9m^6(WuY4y+D0a2)>yoAVpUm=67eu6#(AMq*bF`AyMc@Io?+9` zwT|mH<2uj0ENspPK79W@ywT)CpfQT(Lh-@#GnSOu3_WSSBxRUF;(mW%oF|N{2msz- zz1R%`k=?eTQh0bAdHwptk|WA#&ijs53;o*omVVPpFXn~ebfY-aG1 zXW0)g@z&wfo&@U{SX3q zD`PKDb(e?jFbcRSM zo+f(=$@(d|qMgNBPumItU0X{Et#~XoW!HFk`!U} zKUOgkKXu1tY9$$ZMhPuXX@eq*1{zk0ET9TGFDSH_bR(doxGMQ6<3*7AwG@n%@OOdM zhy*UKnKWvBNOF~FpD`MzM1ok7Oe!1aF(!$8)=0NY(a<{a7gD7#dy?)dB^gE5h@W6i z;vsTcQ>w^Cy>;UAD+*cxj#y(>nJs7|nUC`niD_ayjc+|0hoewRLt>pKR*aR`C)3UK zwU(y?WkpxD8juyJgx2y}t+qJbpp2s^F( zNOoQ|n$3BOU#V+tz+LB`wVqN3qo-0z+8x5)yQk^l@vD@rWO0tNo zwwzy{lS3efgmMivR<^qETOVHY(TCSOgv9>kBY*Mv9rHAEcs%mI`Ct9-`2Njrvpa_} zkC^tH{T_bsgHO0WPGqHoJXd7e{_fc`{{6rAZ}a~97yM`cf)miONoh+}0sjC8Hz z`McL_TZh%67;w&tj|hb^no3@QP6~<9iC~JrqKv1O1V%P0XM}uQ)69!^&-nN|@9_E8 z_uSkaqzGO8O}t$yszfpvgD#n~!PEDipMCiS4-X69`_2b!+AWGi|9oIRm!{6Vk6g7a z-~Zr>uW#>}vfSGhfj^b1Ifa@2{2iVRXT0oND&QLf3U+;ux$H?bvpMTXOD4yKVenj> zpEDk2?)G==bH*qGMgpCizTu-6*9=2TEr~b>x?zK@nqye__?yQlOO(=yN3q}wN?^C)F`3h_1l4Oed`%|o~R{Z8jtc?nmtKKgu>o#zvW(-%cGGZiamnR*OZPmpKRxpBNyFyF1=lY=phL6I5nBW5I5Ryy z(iqL=*#(#Hzo5IiCWj;aFwj^BLysOJ^>jonmD4zJT8@NLQC&|WanP0_Yy4aY;Y0`r z=4E2O9T`tYUOaCwRrBdrcg(uy^5QwwdO`^Fy=7iz#>acoY2xmy%3KZazIcXWMo$w{ z8`*R{&$kVyscdif<%I@6IpIuPHNJC|}yGG55 zKmU^-FvW$dvmKXb8weBGKr{yBTly~2>dNt0IL;IMf-9AwYuIiE+O}hJ{)|#G&WUJ#JdWHy z9+;=2L@iyO^WuY^asPnV7UK-nX=Vz`xRB=?T;J0U1Fdt^dBQkNrU;6^WHtkIuE&(h zI7a+7aq+<=HU!4Q!toU4KxzxMB)X;}22p*4T=?qM0}9w}JI;3 ztVe5vu3QSLDx7lS&74It+4`QW7eWrgPN;^AW<1Q)obg^7dUH&o=F;K~_1>}VT8z<5 zAH?;6o=DDT{35VL(UQ(Rth*<*zE@T z&a2FK9N zs48UdWvSFuQ89_)tZMNTD}nzgGig6mrIb+P44v;f#s%zSJmo}4h0_?A#)Q&}wsrWGyjzRh)8i85yg3DO z5ynR@l@u3=Y4Hx-vR@MYT@eo(i$2gN9O?APi|RGK$tl zVH?Y~5gFwY1Z+}@bk=NRuv$>wxkwgMtx~YmB61FGr0XI1hO(eOW#FyRF`%SqD^*cf zv$9^vj(U~G6|KlAql`#Wa>^1^kCKNTq-a8lr&6mNs8@fc7^B6^tMw|0E#Gv@%c{jz zDpC+wNUl#AW>3YK#^|(?B89Xj5FLxR2BQnkuHXl4FiLW&s0wQwP2=gBmab`O8b|B& z+jt9OMQ@(76!Q{@E~eo`Cd9&F3Y?}$h?$(q&pn(XMHPOKS>?Mz@siiHB95zcvP#wB zvn;DDSyu`Yx|(a1!)-38AmlH!Y?j^{YU3zTh*{G0m4EaC#uRdz(ORvAx?aQHCD+e8 zL)$f+ZyU~c8)A^@Vn|h>IU!Ih5^JF}^BkF%B)&htMxo?N${ABLyWJpx_qA{eie@gf zzFiA&`5h^hi?a=FSDB|-y6H+0ms#XHUg)q|N%TZ60ylEn(l;HO&4zv$(AtWZuolT0 zT_xJN7Q&oX&##7cV=>+cxiu9G4MrJ?mJHFHvV==lP|k8;6}t=1^~JaNKU{5ClHz;6 z{rem~|6{7H{OCXZlJEWgC5O8cKmN%l9LE#7R!o(jd49Iz@Bf4UI)CktzR%ZR{gjtK z`6;cp4BZC5v5fOXTxP~`qO7FgjhMf z+2d5jJH?V5hf$^;RcUPR#ZMVCS!q7|^cA1f*9_a1p_Ti08t*X1v7e6I?)O;VaD6f0 ztCC>lTp0R}XD{C6)33hd@vx9m7BaGk>BuFat>yY^$9KMU$?15YX)V(nxq10WPMM6z zJ=eu?{pVjP8h>tb_*ce_2(&@|O;i=r68ZDb4*d2XG$hxda)hj@DN{|6KzgM`Ibt2E zWNK7cWw4FJZH&`QjN)&MF%g!`X*%Fcq3gB`eNP39D(KU~C;!oJ^89c87V}4m&p&y| zVlB^}pL4Zo>ARMkGM|2N!~OAVQm$+U%b}lWe8a*U+Rk&?w}j=y>#tuDa-udJbA{I_ z@&1cvoNYW^hRO^ffgEGeKhT%Dgd9S)pbo^y7#!y7Qpa62wcdgM?O)3We* zIPm5D!u7L(Mom24e#vQC`0)Kp-rPlg_URjPS$O}wfe+ukQ^~|q1c;MioH99P#xY@( zoO7DCp*kZCtsGh6B>SBaIr0(~Qch^ZLoU%D8I7T78giDLTI)5`2&JI4!+S8gQdK5p zMGo?u8SUiJmQY+YNqk^W&7UgvoS0eH580<;Cp=I$u%)Ai|`HBGlw%4 zQ!4W^Vf4xo$O%Pd7<#O=@-vnNs|{zHE%TBv7II0HB%rrg0yw_YMdsF(e!PL(Ps7gXZpTJJIfNq%W0Lux!W~o8llQJ4rdUHM}p%q zFpdFZ;my6FZ7f;~(etyf_Tn$3P>WE?OIf93N*a`sO|3YKp3}I}b&c3FGL`x0N7o2mX6i`}z zpLtHCSTM%EZPw-#xw*ZUbOEXiSZbi6$hk0w$~cQxGo&Edts1;_wBFJ*mezZW$}%KT zin>yZLt4Zd6OuGhZA0-2rzHQ}c>(x%?@&t4KkX7|ts-swN;>^!(Bqt6srr^_nrTeN zHxh00aF{twznU!mvR%LUWKn-32}4OYp<;w+R4U6-$t3_8r2@vNw=j=dzLBU=1rRgz zp6G?nWUTmYLWs=Mf-&OdD^;&~O-g7@QrWG)OO@CN{WKPrj<|j*G^`-|OUXnK4YswS zvybuZIZ6D7_N}+kXhYQkZZS%_SG7P^Ndl*xm#NB{wE5wj{JOLLHmuwQ(RsQTf?2Enh-l3~NS_QIHZAMb|ov&J3MrGYs^t zXXs?{-fag$T;$&Kg2q1XC33@Ri@}gpqO%RkC{l@#D$X~AIHI*2Ae@rO7NZqqExvQk z0)8rDNG~}_ap@dZTecMb{=;X`KjZKHH~s-%eD}ZP;b&hH-&h`h_%HeL=EP4v`w85p!h?oaehgR!1&Xy}GU2x=vgLcqCmtQAtI)-qL0 zDIo}Pp{j|DTRy{*3#lgYW*7(BpmfC>O#=4Ek&i#P=DQy~=SP3}lGAbdE2WK+WoNBx zM2h-&IP&t0y7KzwmiZI~rqOzqSg=Zbd)sY?b*l$eIeBJSea$(s-=BDMdtlsW z%q&ql_lFayR*IGhgt3v?2RMEPUvJmx3l~1#640YQ{rlig&Rf%!JSW8t6O3fU{k;f&WhYNzW z1RTeypz2J`fek z$Z@~tVraN}PqDeUmbi+cp*?HqH|Ja_PrHek(6TFYX)2Jx}Za##KOhU6PLi3pTFcUfA&)N2gYI*TwXN1|Kgmp zrp0a>%6#B(I5N!((@}Hq6FDcmw-WU*2RhqOQ)WtmX_{EV%=PtFa*G?sk}{|JBVo*x zTG;kZ&Ljo0@@y_!zUy0-@mo9|XXd=HOcT?bI7|ymNH}fj`i9%bk=utO^CTqhkRn-u zbsk-eK=W$E+k#WVO-Kb|)~oeI*amXOfG{p(vs!3Y1iG*h3`VWin<8@Clvl}jk%pmC zhN5Ov5f3EVqqG%(OHPy;sYMh!-e^)uQk*Dh^m}75R)LZN$!KYSD=pAAW7c>QG;ZZ4 zlv40cB+7G2#FWr#CI4DS2q)npl!EsbXFPLEg#Fr_Um-JT3|I%pqZA`%wHc)#O`5iC zh+$?~WG~R#z+RdgM%6WHau;ffh(wMgrNG*+kkfj0LdfB(C z09S+(${GP7>sweBypuvvRe689zLiN?t#5}3N=YO{N{M-y@y_G5hhnK!;<~Id%!|Bl z*OzB>eJhH+7{%YO^;@#7GYvrtcQvF;scD5iiKo$;iZzO9j&D_NA`GiI@6lHLj^lI? z%Z`yEFXzNDhjqD^M!HrNZ6v)Q#4KmY72&VfbOF5%P^=SwV%m$uRL%hcu0$zPl)YH5 z@I18mJC|u;nr6w8jEP(lKFM)Dq+d-Ie;Kb|xLB;KMDgi?Qp&7dE@UEBDq$AM;#&;O zTS^i_&$rGy|^tDvPT6-=R$ zR(Yj(3sNq!I8xUlvb;SwR(M;SmG$?}`I~4Ek*cnq$@ooxcM{F)TBNR$QsZQjrDbI2 z%oCYX4x3tQnx}$ONon*H)giQ4`JK~hB(6mYV66ozqGgtcStC5kQ|G3UBDW|bK8Fgf zSW+rff=q+g2fmg{Dl5#UXz5_V3Lufs^+`hWM7T1lV9`9qq|^#gGDTM4fJ_;^(*lGk z3AYlqa!P2G*2oSCw^wU)3aY+caH?U=Lt+ID6=Eu6B1=kd_4dv>tg~3_0FgCXW3jbJ zmXuN$RcKl(_eQBS&Y)<~RwT=%6oSsw5=dm0Ws&b;4SnC!Y(%1ya;93D@J%&hs=N)^7`gM zI@wy2YvuC#ia+|>f0N(%o%d<#4dHl?GMeomGH0bVUE9#Pfx$ve3#a`7Z+8MAS!JkN z>s8Jo&r+`C?em=1dx#3A8i7)wO;%C-5^6+rv%dhS+M7}izx)$bn zVZSVdd0~1C6syJCQ)EJL8Y5rbJdm{J@@&KX*}&D-vuiwaN?2!Util-w#WBT5%z+Rp zeb@3o`p^HEQZoPh|IR;PF`Yybg-l}u$KxYE{OOmxdUF)rMwRKlR*pL}skO7*YQfU5FumZJXuvfd+yro-vPmoIO~AySp&G|!YI*_8I= zan53u0JM?>{-B-0D@87mTr>aZ#S6am?v`usP}Sm^y82-f(>&sRN7EQ$3f!M=cyo6T z<^y);8ww(sIxHj0Nj%$)a$NQ;g+yZn7Ihj&d@UT}iQ^PdT9K_mIZucqg~ZS}Qk=Ni z2XdZ?HBqvrRK@8y(w&a9Lr2buv^2*2439@i6PlQ$fh`nt*>g)(gp`SK5zByv^DLK%(My8u7Qdb34(>TenHezo|sc@V| zN-A`|q4f=R^^F<@&T7gWnL}LP%Z0GaG>wpzQ%Wo=ZLO|*k5(FoA*D*G5w%KjODXF) z)X+68DQ04-E2uCqjWbFqoFCU|o}Brf>`cbkwUDhim$=){Lh-FKe8@QyQ^8oxwnCSr zxK^;*ZVFEX|CA&`NE?eb1ywbMGh0B!n9?I)9 z_311p1XE!J2=uWOi9~YFKuqMEaK>PhNPlCJdm?8!XZuE=k18f!)BSu-U|kf+juDfiZhfgRCTELFl$RRyx5mi0!jbv4b)?@@{r z9a^uGg;k1GfhkD{dwuFE6_FB}Cjx6tpkzWQ0Gs$$k}DlI!Erk)Q`XlHlgLs8J-T)h zS0XIpG4#f+asWf)oX9P$WwYs}%U9)HHd-c|)(AmOc_-biqG^3AuTxdJzFq04ffx&= z=(WJC%uD29e_)z|nEj2&!RC|&)m#;&T6ySKjkz%fZ4DtTz&ENknJ8%*-$((R%R2e0 zgp?>%F)s@>%LGfCr=qs3S&|NIlmI!ZWcp~s+pl@*P(5u@N>z+@7+s~_MuVz^R4`FI z7Eh`==PgP}k*dm5lR>;6l4U7i43tbZrK5-dfjWir;%V&ro?+-X+YI!53rZ8KVlHr8 zW}MD!yynbXEHXV&2t+4WiR5^ijT$c=MRdWmioS0sh!jRssalbh(Dk&^JdwwoHjLu| zV=B&QYSCEbz(Gj!+d?fR0e*PjP}7MrKcM2m`1%ru<@^tNUVT*=|NNf32#88&P1iMi z|2MzKAN}3G&e?Ee|J5g)9_}%nV%YdKvk8oa?Y85+^8v!b;c<_(ipz_g#1pJj?@A@d zES+;i)}xdZlsOm4EUS{OSt^tyI%a1aVH$bytmAv%z2=ioZeYngiQLt?-Y66XFs0DB zhV%1FOq+Rp`G(!l(P%gwj!Y?|swZfTvg`dEG-re3ja7_FiDIilsfqiC2X5Z%7+Ni| zojGtkEZiLqyjc>r-JbqTyl$t{L}MB{-_o{Drc(Poua=Sf2g~3a+M#FL`L#$(I1|Wa z5_xkKPl(b`i{jPG2f|q-6$!jfW8%6DJUpD3mIX-#6d!Q`Y~y+Vy=%Vr;T4akuQ3)L z_Yb_fy<-ZACtZA1=3hTJ{Qr8b&6^7Um;Xt})0FZwFZ|yu<&b!G zc||u2oJRQRPrs(dkwWHdx21EA_b+$s&bDkeJu%CaL=OBjeQ(j$(FVsdMKqP-dQlYQ zh}N0XTjG+jQ9NAJBBAY@VIbs4+Zx_^amDWXic(q&UZB*Yf_=z{T?ob=xw}0SvT5fwE_s zrRg$Hx5O#);`);9))SM#R2W)?bA=jbtWI29^<1JMB)k#($)+1{Mw81dlQ+`~4R;Bs z1{yE?)--MuV>8v`}hh82UAPJK>yW=(o7W z^SD2dqox{5*A8^8mkHx)iSovxdo5YO&QW3{>FSMALW7%R-DvVqA=n%u5lF%Tr+; zlEhe0q4gTywJ5^c{8XeYk!Yn>mJ~#Up=ILsq~S10qSz{xaSp^7FzeYPMzI?xW68Dh z_3eHg7*rvSYlW_?*_m=o@B0StC6-7s%7qAR*O25X2J%W6O)@zlsfe|QD%ssn%0p|k!2H%o zJ6#bn?skAG=L0Fg3zfn+E(CrxUHoOce(_>agLj=6!Al~id40I#prup=Q{|utuoj7B zMK(W0Mbs+Y5pAqYB$C{0Pq7k8MUi)EO~n#(#Tz&uT6VjhIYb`zN7}YQyFvVcIllGF zrImX4BxfwO%4Ey1%4em(Q>;>d)=|3FYY`|TeZ9hIYAM7JaJFKs!zc-c%{f8IYdEkJ zma!CKDNKv_pRAGS5JUO@u=i&%yRLb9AN0GYXLzS?UTY6ES9RIl?snU5*vZk}`{zZ#|9hp<*Zr_twajS@+Ve*bq$mO$$BM))kV zNJ>$(CMzYx#1!jxRtXtVNwX$fVF^;!by%Q{{mO=!O2*ZdzAD+8^Sls!p``r01(k=U zC1x2`lp^7=MjMo_P#xsjYJzw{Q%N}MaL%yIGuBFmR*bRw3aihwz66XFDlC9C4y6v{ zB>7U?b;owQrs-QsV`#gUuf4eBZrgC#$~NHP5J|<=IF`sX%p%!oWb^5LV)7pIc4F%e zEHRRdrrrT`j-Hs_lI;|;wVwq<8cFTIRK_wyV+ODCr1(gaY z%j?TKTBo@i_xvaSqn{_^`D_3CACR>tYEUFh$rNq)`q#eApZl|ag717MVUNGX>)-ud z9v%*82VFJQI|G}pWxML=JIlq@meXlqI2_Sr?q1%4Qg|;C8l??6o->%V6ha9=Hngd3 z3`-GT3q>ZE$K$}oy5XB2U(ofAVe#;9{ZFbdxi)tQX1ge8`widvx$pAF|Ktap9^cR# z$9Rl9Jf83&aTpbE-#u{{k62|`E5pHPFE#7U z;<`1uF<1@LDf0U9#H<3x(?E_3x||aUAr{5Um$$rlalvWW^ZL!6uYd58!zVxHa6BT| z)bj%))n4(eB>1P@E}p*tJp8V__)(Hc`-2~R3MgVw^xD#G6a5CRE_<%8FIe{-C@UKY zJPPs0ghe(LDabRqah8xXCL2l}FlH1v2SU(1o&q7tP{Bu`^gZlH=Fu}856m&rt$W%{ z4dgB!sySnynPt(F>|?TIX#Yi_TZUU7pz-N zyKad-kZ|-}PmJ*6*C)nlWLjprw&5GMmwfA`Wex+2PF#F+!Ro@%8qM}%D}a_^VdFY( zF0Uom4Mhr((-1iv6363#>zg$%Z(mSK^=B%fsV=zHRvKH$UXN-~Nac61z=L+c-*2lo(NsqVHEMqh}7Dqzadt z72|PW97cNQSbx~F>pNb*d&m9YQAKgtcdWV{r?LakcB%tva-}9H)~EXjQ{}6401yEukci$B7i=9c~>c1Hni3`x8F7uf%&L$thKe zLWCk#0v|+4rb<8_=IYsdi7NQ2dJvmRLWT64?|057Hl{q+QdHJODb@Q}VJzp`(0j=X zHpUQ^L_W?EVMK#6Fo%h08N_F2EF~AFaRHP>@+?83iICh%>%^*(LINdzyJeXO$&1RS z+Ne?%h?vwSS`-z>BYv61@}xB=L(?`aLGl^35-X4o9<8f~-wLB2CE!Ku8Pu3*jm30A z%nvDxlBh!RbhTX-6d`4%c_GKhk|K?h&18s?5DO^%T%YE;0sd+YD*ix$B`$u!S<7~_ zrfnLgsi}MiIgdFZ=QtP1P4*rpsg2vFfu@mWF&0v+Q6IXIrOC2zb~zX$OB`bi?P?=& zWkwVHLQX+yA?Gk!*SL=is;SB(#lzFUIQf6d_tejhe^JLz-7MbSY(=ZB6{pk0)5C(n zp>(OuolLX5H*JI5|i>Vr@ztTjYkC`p2q9Kf2?11ohTQ;FmTI0GsIF_-^et`ERcMeKE-nEb*pFU&RPMuabtofwO3FN~>E$Wmjx zr9&l`LX6@0=T%x`w81Z)6mz}V#o(V)h1>|{=NSN`R5i?3e}-uLHJVZj+42k)k~Oh< zZZcU!_x^k?vow85oj2D4972JwFCI!EHq!8V?{T@sXh$jysEljDHAbdi1xlTa^eF0S%9aDPVN~cnNvDJ%H zkQZD`)vzO1J&MAT3On2I%@1$*x$k|zKluBfl0NwfsubCJtBfL{j07>O)^U4x#h>{8 z*VzAL!4}QxyE_t@!|}ijr1Bk#vXbW%6OWGr|L6bc*Z5n1_jh=Ae~{sd5?Ph4`J}(| z(f@*1?~bhZ9kys(BN>}$0ZhcD=D4bYPabD1Ny&4ru@+|=PKQCBLwP3Wgf$YHeK`FD zl?vVm{`I~15r6%+KjCsE#6)8aSDOu=z79O?C(QXltz_b_is5>iYa`plEh`>R8+pIU`l&YBVV85S?uVj6>Wiq)#H-ddWqqUb=(x>BoUYit#) zTg(2*v!uZPY&@|GGymb&uW`lzhKwO2LxV`-c-r$c4fWZd**_fU!^q?dQ;ev_v0JYw z3J%8;L>T9Q-#;+VnY+t1hjGHkfbJWV?Kn*nom+9S-8{!6^?QponcK@X%C@ASNJ?>i zcg<$KW*$bYQMA1#1Ob4##&NrA`Pz#$%Phs5zTVMvYhpHpJaarQG(~f{X|XLlKJLlm z6UI-NWXRc&RA78KahN8e$|yCk_L@=*P8k-T(JEn`C=|Sxn56H1ctv~t0im&+ZZBAu zKxZ9`vN#u6_bVEsna7#^(@04H&&pSL#+Tg%cWcCAAvp`8X*czgdu@JZgo#^9Qs;b{MPr6|J?5aiK)RX$tgKv1u%AFJPK@w_!ecN|C%=V+y-%&(~ri7mX|2T0PJ*!>IX5Dby4}_RmZ#q`3!J>KfaAN#)W|?N%uJ8-L z@HI}uiHC<1{^Vr?*JLhtD^`6EB@Gal>+3?(v?58Zsye^Cw^A*>5d27^M!a91y@)9zz&$H04@nQO z$SzTA53>)?^>WDt?v#4UwGX+Mk!7 z!EOE^9zS)nIF6CUk5D9FQ^G*0!=`$Pl|m`8uIp7*Vb%ts>dMaBEp5&L&o%0zZg+I` z6ACh4{%-J*=nY|!Ky72SXyDtHzFPr>#fy(Z%+%*Od7YB9vf(RPE_x-ax!PdXKTIL2 z`oEPlhv}JgS_|ED_G2n^%rJ!t;1HUYR$r09646SK(xoJ{F=%b1(NRK4H9A%5ry=Of zq9QrZ078XTip{FSImddv5|Y$BGt8c4nTcT`#hQJSkRW0eM3QMiXL$hkS&_3MhQv8N zQkIk=!O&X0f6$(rY570TGU8k%YG)A8S%RU+s8TRm8n2wC`7_Sec#>Q3O;G}*IZITb#-EU%A5dCDjIx!r%5Y}&#JcGONIv1COyd?GQP}4umFk_e)=2CM z5}rIwvp|XvJ^nODLJ1_QXEbX_K{lEiw6!=pu<9(k^?=s$Aa_Qy?mJS5*rVfOx8>?; z&E4gOb?a!lPBOYeq$!ZCyf{=YL|;%D*4jX08G}e;+D2im1Zh(QZ%)kQ7$`(SnCnX* za{v0bq5L_NTA+N%@bEduFTTL3OmYg-Y%bcS;5g3eZTjf9@alY?U66lq- znwS*ZuH$>(y5R@E^##l95rN8CNG{iME`<Fga_{6LGfmd%1pX$~CXOuKki&Q|okyhz7!rYwPy3#&~_-#R|~ z@{wU$(?|b3WnUcb0$Z z-xT@z-}+y5&-bWEj-hc$g08KlC@XP98MG2?yvAZwqHQ&+-qLBuA6ibdF_5yy8b_|r zTU9iw2vF;AI-xKX#Gol*;oZ9q-cxI27Dlek%Xq-c6|HmFGY%NLAio1psd8w z%%_R{n^!iJ@Qmi&DcQ-qBUBmt1#Jk5QhKD^L-CVFSnq(7t)nHv= z+pJKXW>^wqNz5tm>h(PjZ;ujblx9)9B-mcA*ll|8xy=*1-m&Uid`jFu?s+^dteOU& z5~(Q3jB69EZOIXQsQIbRa&vdVX4Q&(EeG-6$3)k6+}&Prd37P)@kX(1*R-hZE6fi9PBx<0Oq}E}2|oph}LlARc-1Ffz}PPzv|^1KXA4{-Fy*gJ?>U|ZW*^vH_Gsj~ZHy-R1!W9Pqq)6aaeKXHv+n3S zN4#30oyImT(MR!Ot{Qe1D^90{5+ZkZJA7Glf3x9qoUvNdtqj{u&#GHNR`}>KR!QR? zi(HFY-X+FZPD@~aI1yr`?>l0M#B}!037l`7BPo>%hZDe`*3h~Z@1saCtAtrLNr|>? zP}(t!zP{gu*g7p9ALTiiQkM62ZOBlFUtD{!GQ=qFK*ZKytneR<7PXU6inehTwnC+O zhG$P^N@$OU3F1t@W&?W*(|K z*e{?(ZKHB^3{>@$Hq^#jtSL^(AX^nJThfxr@l5@f=kvKqlj|>|N_wstbE@_$E%33D zGRrhG*7xRfv_`ISQUxW&3SZK~B2l1XltmElEnDXiVyUXMlBIr5DarC7C9Kx9W|j=n z3htHdbrO3}0f~z-qAWWDi+**~6(d)^wJ zuZ7x}m1l`sU4esSMO1m^nVy$xtEqB9*-KSAcAkF3lqkm3g_Sf+XMt#p2}F%iy?6S(K{(gurUH0mQ74VA zJ~wM63Nf~lrqpQ>@+$H>f#|$#&B$t-Bd)QOEK)xo{Ie-uVMwVkO|#IanlrsiklQK9 zl$TO)Mu?QPUX#pAdv46+_dk0s&!n*D!v4Hz)grf0^`9vvQcSYtGZhD3eU<_YlFvvf zDi9^rh8;BWv!u=qD9xtPiaB@`L3008s>OSQc8RX`4Mn>; z{S_MNynjoH3Dszd-tlzMeEH@`DG`gND9_t>pYv$8{WP<@!7jQxj@@!tZup6 zZ29ckdoqZPu)}8=Q4g@Rd5Isq1B}6{*OJUhW~0 z!JwgSEPj!EsPBH`mff!9@NfKg4q{t(XNY?G))*)h)VHv^7zqnJRNvAjvS}R93m=3UaTC2$kQos*e{f)17VCTZS`Cu z6YzP-_#_3k0INn`Jv<3GL_w-AP+c_ZO^-7$4I{_n$a?Gea$VD^d2UC)PiEt}S|%nRcn5R%oZ!!(8^B<6W01W)4{a>`uYTyk@!~Qt&_U#^{HCGoK)+n~M&m41L>DN~G%yUDKkJVV)OGrvbkR zmEJf<2!+#e!e@zDP`M!ljdhmwFC$5vBE);CU(egmm{RrampYr1TFF#c5l90VbHT?@qfXQ_3qYYN021*E%Gv@M zyk)7uYs+iuke^Z;lRMPlmKv%7LsW&-@TtF#-j0k}& zR|$imrsO>1k7E)!m-m4&%}_U_)*4oQ%VyoOY81AUtfa;{k&`T;(oyAik2w=^;cy%X zagpy*Wwz2p$@Hr#6J$wOw-oaHI8$k5YG=;RfQ(SvvH>HTg(cK4q6!L;q^7!QG)Cey zWT9K$Z~NyXonA$EHrH zQ^ky*4iiNcmI<1p!P-az80*lcR4;-M;jC)J_h7*)ODWRWXq72SzyVnWu!4SRtg6yV zi_4m{OenjfhW(YP~|~jxWA=$8`Tl26h))jJ2eY&kJOUVX5kZlm&)V#XmyNt+`81 z8}6=meE8ym&;ROQl>6h~`S;|$RQcKd9{tRCI58X+;&Bu&a($s$V<~w-mmp-vtWl|u zy=QZA$44*kxVgUI)&1l12;oOR`jpQ<`x@nc``;sni9hu}{y%ZC+OR5$O>6o3-4$)q z(^vz!`l3~XkA>s$#N)}cUovA1s4%fgo)8sp_MV6PBjbM0tNQ~!7o64f_peDQbNk{3 zKaEVoOakT*ByhZXzQy|qjWMjdj%Aw2T7gl#dH2L8pS|IDnq(kWA8Y4l+dtFs)gkY> zKtMeYjl5T+D4TqnJUJOk)==!TN<-vFhQ5`1OqKJ-*~vYtq*zkAFonoz&V2tDevv=? z{qJ&W|0X$k#$~4ITR!a9xXy`}dRk~(gKITbwP+Nl$ukd$r-uVw*O6R@ZJf}diJZm( zQ^1&p(`jT(BTuJ^5)&_PF8T1~29!vw<}pZdnKJ=J<2tT(J2sn^aq*1Fld~a)h>wx| zI5EtUXLs5^a-0`j+tS*Gx9^_#;`KePZMeMH$RISqGQ1*dd2ab7^0Ys)+wJf^@H9?1 z>-gI3j^G2UeuZ-#eJorm#kW4ZLKVXo4=47=iA~>ddv^mW({CEGcEkXO9v0j0;WYv;$;p)Qj z;dO^9j=XM&7b_MY@HrBKhe2_gCZ=VfZz5VN>}epy1&2tQeaVDnVCe<6vdkxJ+Ypw- zFnjv8g|4Yv4=IdYV?~;sitrPRg~oDu(X(z8L2Jq5y;w`u-?X4bTf($lf>tzrk1vub z*E&sWEh}s2t-{SSAG%vyV;F-BmAKyU?Qed>loOwP`9PQxw|84E*N)TR2`NxgU=ERx z6UJFcio;>zVL#wH%Zu9;+E`GU&RIfem`)3^Zpzxm&~zPb*W$Dxn!w^SnZ)EH%M#(_ z>6!)CD2x@D%d$k4D1|#Y62^dQ9BnUKujBrNpDcr!D_pBE&4FoJaE+lYnVdAKz+3@4 zP3y3YWATxuZ!r}7GP8tC)34YzRvO=;&?T^sk;W!AD@|j1oGY}GBc+CvYUVQ4JGl|) zo3o0x0$=KoknHAMY3y2P=2d2@ovtx+vXF?mvN!BGr(5bx$XF}+lUn7vppXpAQfggi&munk zTz_e+X&Wb-)l!vrRmBxbeg+Y0CH1T1HI~YWpsIw|s2qu(p4$Dh7VSJ9D9;3_lHZ5ctGYo{wMYb> z{eb7DEk92tRP9kj7Wv#HQdik2qE+EI%p6XO7?T055?5DStdpSAlrsHl%{0$KEk(&B zCq>9gf>zV}#kzd&>Ik;RF^RlFHU*NiBU$dHN)OHunmX+f zmVK217$8z|!l;(EZJ(RgoC|$>CK`%Fv+ZQVxLI{vUhY`6N{EuxYq#63uug(}jn=g> zlLyr36Q6!@&kuj{C6D{zS?(EgLN_9T%}L-aUp*A{0ivbwD@8ERy2dJyM1B%ueIV)Q zo*9DxhO{#01=4xOM2>Z2_ zWlA~K#<#*%%KIsvqCEQ@MUxLooBCj^8JfD#wT+ycq9i-WD0CyTOlK_4h{nHfTAY*U z46UJWJB)_DYv{U$&KY`V*j=t@%*-;vq6*$>x)yfZp2lcG3{0mPr5ey+T)`Sg$%d2y z-cR^N)jjjD@ZAqD`S^n! zeb>|4hLv^PUiEzRqNVQ&Icba%>Z@{&q9ZAU`jRxbrs3-Pig)kc@#gg#Qi|NZc!|jo z(2`Xc)5VZ zy3G~J8I($>8QN}Ly&{GZ6JdB{bG_sHzwkZ2@x8C{?s&kYj8EW~2_JKno)->dWL*|Y z_3{+!i3-YgMc+7jrO_s#I?KzpM}2ffSvBOgV3bBpiKHA+HIRk&_v8a9Y4YT8f8#qO z@A>cl;qP#Nf8h12dk)8e{eI*(e)xngOC8n}vXKJv?&bocGt)fbb7tOW#t}%8(VEXg z7u54}=KO5_&#gxNC;a*I-6n+$BGHeT^89R+uyIx79@Iv_TIc_LZe*1LqcSpA(hw7I zNnBlA@>l=rukiPO?H@884=APi)xY}*o3`++mv>w{13BY;;&`0-?9C(FrsJ|(aj|Z3 z4GbNe_6yT|B3X-?3wmYw#@Fv?je?|Duhv}OuJCi>i%;)44I^*f?FmKk`t=jZ2Ucyv z?RJB08d_&KK0WaG5Se0RnggviT-D!)C0zqX~o#mqKQE`Qj0iU2>UD5W2=mI{Cj7uTrnVbU0 z*<-M*nx5;eqy4bw?bCtw_J(X$SOQx;bF=E@-KKSo?a^#DYeF8m*lh_u^V#Fb7h@!* z#6~NM_b99Q;O>%DN~o-PJ9v)MNLofNwjIY|KyNqPef?`BUugRU69O(~PIKbj?~`TX64Up!Y^%hx}; zkrcvaIDQfonnR%MX-t#VN z_QOQZnHRU0eE8yuToPef@G-O9uKD=8FK|k88b*A|#H3gjPe|~%A2Zqq z=9v&9yH(3(eaAc zlt?KEl&Nv`v(5Nw`w+Um)NnDynlq?t^g|-V~6_nEUA!!EIlG3cNI^k zq193oB`wPnrER6^gSD=1$RkZvJ4v0Z1RRtiV-$a&vldXyF^a;EEKCVyYYn6;DOHvz zU2Dim{DC0}EKV!={e^a1Ge3#M;L%l@s}NYBt&5VB(zArNlD%z$Ik!VcvI}})!g{8)J#9V(GQ>78LVMR&)T{zP?m1HN%wPT>vMo?AC zD^>1m&QrQ`>_*`{IEdjqT{NUp!~=SqWCEDa8}IylaTGK~IT~xBh&&X9Y>#;#8eEVp z((Oh-6go$ofy-^r-OY{{cNa8HK@l*3)rQ7t)+@)V7tgBEifLKIWNr=0Xv(yplgBL{ zAEiK=lmr8t@sU@*@vD6Pqc1oOu?}GtVobEQ;pJ|{#pQ;+7id-AIbPmv`PSFA+-y5E z5KO)P$fOi7$o*HeBbGvlGuCBpZZCLz*z@}JTS8LY-n|rwO9}!H!0`;0iiwm3sE|t` zq)aw4bHmNe4O(lQYq+?)#3)d@V{PSgm*@*cQz>sLWvr^ug_Oy| z1cPjDRVtJ+)6^hnZ7nOSC>B)j;IIG7#G<%Wiedjm;M<(?hQIympYi|vo4<*+3bJ^z zR&C4A{rva%SN|)2nl4Pd`ScYbgEo%;$N&59^21NQAcgS$IrWd@$NxFKgA;P?tD;#@ z#893U7&!$}w&+}Nrm0}1jML}bR8^lP^#`hruvV5~TF6=R%@1F)|MXK{fBq?7{O>MV ztyX-nL|&gp4yT3QIZ`OhLzL%%3GCKAtFEgBOJcR^nCFGf#fF;?Zt?SivzmABPE6w@ zF&^rHyB8Z84Ss@QD$M%_w%dkP*D_!jg3zkl;OTDfND66X&TXO%e+jaF|gZh z*C;Zr;n~Bfw?|It4=#X&y3TE_nG4{aX6eXjiPTH&N=3=@a31Ucy}6k zd3nu;S8J?EyxmXaWGUG*+IvC@5=OqcBp8iViOs4*Yr}fAW|{UR0^O#=t(?4bY{N={ zPMUd+oQ5Mx6~6iH7tB60pF9_vp3*_@deWSj$B~dDyY&h)&5XxADHdYa5wzva;}fCg zw@Du3B{!EHrxKVJPsnhyTJbO(fkSTR7-x(we1G*JKlz={xj)U~ zJ++Sgb;s4Zq3bP8-_vQs+v9*9J(t^-yW1U`-31Rr$PLM-rz&w<;^u8T(5~Ka6C=K80dOY!W>SXfB3sk?1#5(`p;Q!8YqbvGTWVEm@~Q< zTB|q?BSVNZ)z{v&EjQbad6_uOp1$vJ&a#9B1L)2Xf@DN0Q`iqDj;E1zw`RR=agD|q zMXw#VyDfwFjC15_cMaLF#KasIN=m4Va14TCj)@S1)RSFD-^lNhO5*8oNFT z7y>>DQ90XvIUG>$`i2K_W4z{i4;V`g2O%V@0W@E4e<)awI3oQ$G{=#Wt2} zyop79rJMNK@dxMlXUbVD)q`|C>A-WdbY7REplKUSrDOthu47pia;lU}MU7WD*AVAT zq=>^rzI~pG3#n66_4HbRG0QyTV~{{ss9Po3K3F3f@ItQBBnudXKqcQp*7LHVltovm z>Q~u*{vHi?Ep}uRB{HjX@hk9__k`12n+auPGx^@^dtSAlSNiJNlP9`fC|XktHHYTh zcmh>UAW0?SzigaE8Sy}+n4S&9S}B}qXqtvZc$N(mjXdtEmz(&cGYl z0G=~2C7`!9;^%E}El5iid2v=Ep$qA~+(EpJ5VFSR`24j^@R)gejscOawQNPTbA%YH z#Qyw^1gvqE_F8Slo2Sl2Y5f|tK#lP|^hVc>t2N^7OEscH8(pu<45fJ<3@9Z{!uih_ zYoGH1&)2YAqIH{FKSNzNe$U~_)Ep*jpUG$ii?W*3t~jZNGKh~uE0MPgB>T&qAdu8b!e=dH5@(+5ameN^Abs-}{{MC;r!5ytv@Ee&>-d9^Y_`k*=}mDCga^ zj_u8w)wV+^#ir@_-bYvb;cwhvcX2`6b#i^ybFQ^~{>ex#l%EsX7&M02FU$&F+^lI^%e0)OHRX9hW;85e;$i=m z$HP6Xn+aCYx*!VpWv1&^#De5wWrTLCEW>`{li&PZKL6w=*didJ8AD^XC{~}wY348mj)P}f7LKQdVVFgBZZyUgzPxYo%S=v& zw&~ezEyfwb;(2(QQPyy=Ygwj=@pZ&6G8u1LOD>tqi%U`r7!)~ZR=vhJjZcc>95~I1 zeyr1fvuxE*Pb_Y8)Dw!*SyC&mJ&U?&ovnbQBc--OZNE9bgqs zWv+J@++J-+(KC;Qd1#14l+r8#4yVN3c1^}`v2MB8_7qk4{Ks#3`*dPiqWJiBD_-1O z()$BtZMoWX++ALglE}0V`x%O2!1Ma?4f7=VcF`yL#&Emq*lv2Zmn(vYx3Bjs^FrG? zhSP#7BRSOU$5LpUhE3N(irfzaKYp6|%^$y`HHnuuJB%{iAD;N^?ViqBe2k!l`u+G6 z$)@n}i#2O2_pa%j5XzO}<;?|~ufIScQpRt8?6^5B9L9x^J<~Lb^mV(X?N&5d;no(n zIJ`gc_VGZs-toc5FNn$zTZ?TRHWie%SeqG^8E3`YUXU9r8~$aAw~w%O7;iQe!@^KL)$?s4Q|Yx%~9 zAJAIIuq=3=Fs)@6j&!|c({%LeEQi!=06Rg%zHuUzE&(4CA$F|#9;Hf!GRf9V>w;?> z+H{;QE$?;>^HMlWC#+IzyN!TviueUnOn4tS3=`V6T$NVp0P85laykvf6sliPqJUzG z*rq|RJ5V)FEuP7s0>;V6pfJQl2$_-#&U_gc)TNeb-?c$$AVvLlQ`sGLD!7l!#VVcoKE!9iv!y-mi+}`R=>u zQDxyA0jEUm;zP~4b%y7-xS}h8|7XqOAH?IQZWhn56FJ^*W7O|i!JRjRRmYsAd0DM` zD1~L2>#ADtz^!X)!C47cNkBCq%~DL&AZ&!7noB|DL`X7;(MHSk}nlYiB`Tji(Kx>t*#^MC)njiIhh>@&zm)KXHU)(=C~n25?Bl}1MK ztP6iu=OI)mYpwY5N|I()3yOm*jhj{m*H#VxvzA=~+M}xEP6euD8f_>VV##DOu_P3R zGvrF;+92w4GkZRtRkMyrHqWO$=OhJc{TE*y6qGEIjoR5i{~cpAx^DGSO2m?%o9t2| zXEK`B(nwh=@FwPQ^KyA9dWz~0d zjiqtY6d9$k&Z4y;qHEJF_dzNJqJ-M!B-?9eW$;n5;$Qo}{|8_cYO|qPM>Zc9zIe#o z?~jC(F`|*iI?Hy~v)T1HtJw7|-}&g0?|NMuHEv~7#CaxFKemFHYh0#_;GqtaTFRUxEAPC+DnRf668 z&A*2#F#PeKrz{?AI`)qvpZ(->p&V9uM!(wd?eBb-KlRJs=L5G#6S()(`zKDrMAx=hV|aKN znEZm$hOTj3>>9ekF^x0xl4$#un|aIr=$MC@<6&mCU1RJ8*1~B&Qj!e5M!yh~;%XCd zwqOlBxFfBz^qZA{S5hJdg%6p#n~qIuNJ$0jh#}H6j$PlATtgT=IK!rE=^BI1fmQ+03joL%7N2-GjvR)7HJYsw znc};L1Ey)%j}xs`>^7?kCh9Ocql*xW6oIC9pcQfP6hCvl>AAYRWL!Lt#}VT!tFC3; z&A7(V_baY8E38w*IO7+`WGqgBQi;>)Kv9a;tw=x$kydN6b?lFx-~*Q%N84M97O9|4 z(4v@znZtfWsY2^S5)+n)!_co=E-$tu4AZ+K^J!tzH*B{Z>&=SIuIK(R5(0QXV}N0d z+`oH=!=jVs6eGvQ)8tH?GP`ZVX1fAqh{1FJaOC2m$5?qDg_t-_0c{5k$4D_pOxLhk zX~L4(51!>|qG@IsGUtV5T6pjiG+LrXl41!3XB%QHoQ4y-i5!J-ZM{;u6OuFB4Scb%yU3H&BeASmw+mnRom74zf7kang%i>vril*0fW7H zcw#?{bZyV^aKyHb&1zL^#D$kHF1WkgP@=+nMb@T9f~3kM=urw%4EQ*cO2Odh8q03m zadF|e_AOSycGc6hmaJi3gh6mTjx-Gdp3+8SyD@`tY}e8d#h6gFE(0 zGu3)ED~Tu?riB=b)NDCRMm2`ug8*`JeG}J)U*5?A_A^>xj3q|l8lVcPL`aa5C_{w# zk%cmwgtTgHBS4&7b0Ra+$W`|v zI73l|;1k{pFvzHauJ~bcdES7EL$sv{}3WEOXG8zr!&M}U^^OojS2ZGK7%=*D1b#DGl}tqcYAjH3r26|VM2bgSt$E7pz0tS)%{gIBzLbwsB^2@#(n zyX}_Ss~y|E<*MuWL*My;U;6$F?rztp&OvX%HsCW_SIJA=3ZbQI6O($qVd_hwpwP~6 zxw<5V#MA!7{;(&6M7Qox+7V(PC7CcL3P~4ooX8m4oX&HG+8m$`n?0d(?_2d#MC1O>fZ93>3zxMb4AwT@lr<4q?QDmLzTg7nroX5w{ zxkUy$z9iC86%NJ#f|yS^fuHfgv*|mz%tnpv9fgdK5v}Fkh!rKCviL~O^QBS>n}7d5 zqLjkpFMpS!Gc+y7#q-4%Ul78KE*ezf<=q{B^cTLzi?wGtyki*l*sbExKk=)-_V;*q z|M>hgdiI09zf=AxpX&eQ)5P&QuO#`q7+4r4O(YdLGa>FT4G=vXOT~7jrWnqA+R3;7gw$1 zZCZ^Fp2J}#q|7)ZtWLD8qU{=Tu*CSl=tq>548T$nZ{G#1wZtf1=GO=DO}=D0s`cpR9I3#rkhn6XNuOCiU|ZoA^6 z^-KD;A%{%vG@WbNUG$WrVt6`W72LhJpb&R5*?!ddl=&&xbEB(M13*jn-HL&ROOq@bGvdrO08w z(6$Y`O^>l~u|nWttCm&Qv0ksZx(+DoFloUS#W*Lv{k2P4*MhRV9Y!9e35sGLCT#1t zKaIS)KY&W41ov}5mB=#B3_~C%#bJ2Bhe*@4TwSl(_Kxfm>x&K6bv!;CIS!BL92v4k zxrS-iv+EtUGy+|kX5PF#@bGltqYp0l@aCGvbu3v^tTdHa#nbV~yv$HENg2|xu-&x0 zxY^2pQY(T_kYzKPOUB2*X_~OQU_)jKi8;h-Inih`)2Dkmxf_jczr)`nkTLh|3+4sh?gt_f+Zc+`oPwtuGUJ!` zGGuC81*;_1?Lgx+T?5WcOiO+S#8_kb@OsO;r$;{d@(oV4EQ@EF7YVUX5K+u=B!qy< zo~!FEz7(c8;+IU*G=w;EzdvD>!I}nb4Y3F*zO_Q8Rz=epkyyHHMTu52 zR$a$xwW4u`Na1i8SeAe?hD<}wvV}B8W39!{9u#z4gLQ_KT9!$Ckgj#4oLHviD?|AF zJiuP&K=6r_>aqiop^nSKGD}38wN~V%8BXKCsosY%LC&(tn5IzcV(}M}>*g>fv;x<( zQo?l=ZH0nF*4Eg!l@dxkt z=>az>*R9z5>9sz0Sx`4oLI{1|ObDfGIGvv9q}m89WtswEIX%l7tOYWN=XXgD0zmuPEK-_3L0Z61$mfZ#P?J; zjmjDdftWq$i&lzAiJrHf3eKuos9RfPOA}N5KI$tHIcFiC$zS#F7sWJqa*^$( z(xp-yOT|>b-!N+}Qo?gKR8A7lBE(;L_?5bKe*UbBkae|fNJ->kjWw+Mmev`%PN-`s zW@4_U`f4ywsgQz%A~&`rs=~A^L|^C{jZcxJ6iwH%TX%f>&3}ugvHXM8-{=0_qX24( zcn2=}Ew|fCZZ9wS`R~5uSAON2+}&Pbbb>TdvKP;V(zQ_+e_1S{(k?{`taFkaxay6N zrbxEqUEg!pwA|l6a({nMH?Fz9y^!Zf&e8xHF~QG^csO>f#MQ{H@>O>EV&0MCKFcLbGle z#yy|D`GT*9M1$sZoKZ?*6O=0qVW#WXI2!1fkq%%?B@U_#@x{8Yb^KhJ`Ui+>-h9?a1Hx z_21;_>B#SW$Nuwa6aoHk|JLfC`0tHTG*%|gF-kUFK|c?hQjBPWY?E|B8HZDfVT?SE z6H69}ZG*svzVY&o%T>pJdiXKR5>YYnhyS~KK=G^p$rf!KH&+|By+fl|7BHn{Wo0m< ztPIJ<{mf5>cT966d&3YGeDL(GqA`|jF9qGO%p9^}IC)H?an3T#5lv#ZSy7DQ-Tj_V zzPP7bTefY3GKy&l#3iy>8MfOFqb+^c(1*e}oOt{8h-owz+Z8uEOV=76_MX9y%t5jq zFLw5)55qce0hDO3O#w$wp%u!)Cpq z9laObu?|@(=Xq0JOplTF8KUyqA}1q!{IRV@Hn!&>bbkza=qD6b{$PC%8Yi?AinS< z))Sr4t>fwbNIINYbseVFtTr8M+mhzY@4kM=tH%SwGSGK$z3RB!ZfX05er@>Z?i%kS zrqf)d4J%{tH-%_3Zy)a&$aI%CGPqhiU1JDyh&{IW=G7A(VY<}jX6I?4Ut_Gm3^U!7;JwjK6ri_(hIIPr9t(auqnW*8Sv#~GuP zKpLG9qHTilG_c*Y++MBu@M=ZL0vO6AVVu;&Ac~?=G(N;iI?W8DW14ME0Vw#8QM#dT z6|L2z8mqO0g_LA56Qd#~VSH$-2`LbA#A-z>K@>VARib@`GwNDomAX>M)S6Zp38hq} zQ7%|3Q6uS`omz7sg*6-O z!*azGtExk*UxhOeUnxb%5S6MDwHae)T31cQ^~UIv`0Kh>VYL%kTTT>}P)5_b8a-ev zC1zq1iCT=qu9dBifGj!`igB7KN&Ghey~K@-T^BassU-#l$#G@;e|+x3-F?;BXXANv>$+vmqLk5U_xx(|eC1BBhn> z+}Vp%y`q(3DGgG60BD(XrI>5zeQljfJ?Dtm^h}7ACa}~EnaCCtBHg6a>!r#p&QeoF z-T0n;ocavTIeTYCE^%gSNr!gckmhGOutEj{8i~^YMX5M(ZFFs@#2auHu%3UX=S!XU z1jut!eD;uvRJvwto_)NfHklRJq?Jg6K}_FWV`v+TbGi;944r9NuX_}QWm)jv<8vY_ zg>5peHEjBpMk`jEo;iB{(O>(oF=xe#|KR^h|LTw7tl{H-X~o0+n%_M=(kVl05-Sz? z*2_Eo{9pK&_}(vEado%CG#kn?!_z%#oMgCR3`J{l%_++z)c;+#Nd=i0o;SwoEKyCA zVrZL|7cX9*c;JgK-*6m`+}>T|I!pEoAtZ>I916y1ndU!ve*DD)|62Y(^8fkO-{$|d z>v(rRO4F?~MHvA@DUDW+zFG5)7ah*EoW_M8e)*0#XPj$@^UTAmBd4`zyDAKiC-9M# zL#C~z5K3m87GAx*NBznFm@Aig`{t3RZRuYac701!EzUVw(@>%jN#S~f?HqAgFh!w_ z#q^3&33zQQKAH1*&py^mvJRUxY-~fJV^J%H@t)J^y&tu84cB)UeDJ{~#0O5pAOolz zI1WedA0FxpntyC6`}-*8se=}QBiriT5okhAnWz%hD2%EZuSW71mA2fC6Y6y06Jr>T ziX$z*{Kx({fANohk0zbSo0d064VdD@S3onaUz zVwzb!dfFzl>Kd#G^tR!u-w?*kFn$6s4IX{KgNSh`}?2 zfL4avZBHqQpS*kGG|Y5u%ldwypl~j8d$qx4L!3N^VWMcw-Srml1D}01@%Xgx`Qsza zcE$D8CAZrSHE+;OgAWUYh5gC%Ff1%S(6xrvIKKJu2W)mLwkwhOEq-PR0kz2cQ>B6_ zio2^D+^Q#piNnKzAH8~qDw)33?6xZunQgbi2hCxbc-T)ErzxSvZ5WaNF7qSXs}(^N zPAAVaE%cq`dfh-2`$gMpPRE6(r-i09Tx?d@29DE&ZX93x=!&9tqAtNO4+}AP*6Rji z9mg?3InnhiiJ3B*ic|JTD=xO{3ajxk8{e%QdZXRk3M8D6qQ0I*n6`6d*(xYQ5dI!rLgR@bq*5rRe$wV<03?QiWKA z0g#I#28eMcE`iROT1O?Ww+&st0_{jqaT+Eb_6K}Q%wEy7EhQA+9R3L^i{7#nkw>PO7-K{sSYxFX>1ogY zG=P%t@2nF~T;0y47$kf&i-%7(d^OL|T9F581uP;rOrGs##pdDy;}=fHBe8gNC>UdD z`xVAm#%1FE%Lhs+7;7=gRD7{}{@z+a&Y~+{uS6ajLSR_}F~Kx>lpe8GGJHxUOy(>w z$6Q1jX)DdlT7%V=5Jb}2cMUIJT=VkfHJuSDUfVR1oi_=dx}cvWlGbTLj{M+vKIfAk zz2Pt>z)+NY?{nP8IYaGCER-fp&as?N-g^U6{=Gnr`sdM98f!hYoW~l8D83l0E0I&S zZsmQ3iAZZ>d5%+%=nJ6cF;WK+DaoHP+SaR3{ZXPF&9N@eQ8SrD))8{4F%aPy zpM9PdDy1=2q^IS44p22*7_2rz_0<7mI#P=K=;wbKr4;?Y`|t8{8qvz|yFY%*FwH0; z6wA%sC4cF^{8#w%|H^-fZ~o%9*j#`z0m5sPKSIuw-l1ber9@1b6lKC`wIL}8C06f5 z!5H@(en-eL(=WkE^+TZ(< zx9|46c^c@umal(&!@I}11_~F9im2+P7>ALijQF@Y z#c}zE9FGA(bQZMB0$Pa>#)$gnZ*X&G`Ql6QbL@{3`*C5MGn=*JX4m2rU@T8Q@%mxl z_Qj5mZ?Cavf=}4S3VN&prqwKf8O(fKU&E<(h;{(z^s;mgk+7*0o=(WD3;ef?Yf z;xGI>A6#3yaV9qwcXh`;toZD+H{$(M=ZK;5d@ufUSStSiJ&cx&xOl#Gb9v5Ywa(IY z9adXX$>J+V(@^*yeEJ13CjQM2UNC$3rC<3I{FT4*=lLUF@9?MBeDI6kBzKoQJ z&9C9T=db@8e~A}emT7!R5IkSrANbVPbzc@o*e?JPo8!__+@*fXtiw1ECa_ z*|3C}{V-v?BSjd8g|WaqXROuel(41B_I!{J(PXra-1aL}fjLHos$|i*M!%GdGEy9N zO(H6hgN>6XKTQ~8*{(Zob{#2YzI^wD)(WFC7u$~B!T#}y!w^U%VT=qJT4!mjVbzJB zZ3&vU4^J{+Bl2eaoXJZey4$pDdxI~9;bCAHMjnncIUBzIa!c1Zj$`0BEI0=kXoiMk z@tl-miIIn=JvJ-alfj3H(-@dj=EVmWtU8T~1zq6j@rY>(FE$Ojblk2s%y$9X8^{Ge zixfL*=-M@#43CGALs_`F*z&L+dH9XbP|R3WuzE$9J-dsJ&03SAXNrNCHO91@#uJmz z6k~Wijx5VN`rdN6TcfpQo;+=1xmG%oLCmm?cEhc z8y=ocT%|yS8ilwz|I?H}z$k}l^jC}Uyp8e?Q+ZEf+U@hF; zthl>gfk7C$KA$O#(|^cg7=FIZj<;dSFPgZbq`vUDa#U=mn1Y{ z9T^@Ua-6N}NuKr(+=`2(jQpLR-bUw>Sf<&am6|eD<*C z}oIbZNS0Q9+-Ip->#n+A{|Qkhzt=jNiEGw^c8IB8T%$%Gi5^BIGY z?Uh6_SYj+9@vIlC2;M|Py`+o@Vvf(%PgqJKX3dfWSh379@v$o6jDgZ)Tw$C%`{N`~ zkDAA4w8m;Jo2uHdLc%o`8w)vme2DnPlZ!^r9(_1bnJ6{0lJ^8n1=cR_rKCohg_NX; z?z#q_3&(L{-O2>qIY-;b2E*4(9;1yk)6XLtDddz&q>`wo27$#?$?3Txspt7w&RI8# z&&#_~Pv%+sNquBxY4Fd!PLZcd19_&C8l`KLMt&YFoFxe;B~z*M1ykg6m8P=CA%f=U?!=Ij3e`mil&<)#mf>tDgT3 zB$E7DQk4c*`EQKR5?ku$qiPdPk!I5wf!Sy+Q4veYRr(Q$;k?;Adr+!xPAgIcHu)3? zenA(>A4I|1$0OcL5c1onfpHQ!$(*3+)_nIDev$A0@*ktwYE*njR+p&wi1JbH*YyfD zjS_;CHKho2#N;Z^uIE2z@%5dvEvpKp=2a?*5ka<&>&+S;BsBT){=n%tvE6p`HMjE9 zcPD=Hhi~}NXRjDff&80>Kl(>L=JIk|zhiy&l!7UmG-uwteIVwMVVd!wV2x$nX^NIj zb?17zwx`{8^uFaV&#W(dI@fSGoJjM8O|oUC7;LlV>Vq|yf=UrOPDG|K~rJ`OznzFwYaE6#CVc zKl)3*%&+{ycUbucQV8^|VZFQL?d!siKi}g+y>EZdCh?zNr}*Fg_fG))AO8C0_xyXU z6xK)s9M5EHr0I@XB=|)avMOW^4kYr(7#Rj?$IF-Bt(k&6~F; z_Hm%?9NWt^7j1{hiP*^oKV{Eu)e^}R)lgz)8Wx7hbM%q*dc(!0Ve&Jk>DgUg(l-rS zCz{sr@@gx?#1aKIv_wKo45LIitojBYGt(4lwZ&L@AA}^&jlONT-R-!#xkNd~?d2sa zU08K1LJHg;_8frF?2?eN@8`IiFHnqvSPE|aCNaGg^X`N>x3>65ut!# z%8W76bq(5z*Y~jwD1w&=D5VOkwqfy!2~Sjo)>&>hEjKS#!QOy0&5GX;p@x}K6Wx@h{&a=B~Sbsgbm$J1#N_*BeH zzBVl=3a)O(7J{EKO6(3LI)=e>9F_`>%Y^7fJ+NAlLc)i@$~6ojlC!9VVonq^!OP&; zHWud^Y*iphEm*1kNc2`NFwKkPH})+?i-L|yPPbN}u+q#2Pb!7Udz2C|T8c8boPDHi z8_7|$ijYNZrj^0*73GxCgj^UV$(zi`P%A`33Yww>@@JLC8I5y}Qam|EbWs%+>2R|w zdT?NMQ>myjbeQKrLh9s{&gwbMvILf85h*HX^-&>a1%WDw7nNDcrM@o`I`a$-{Mqpb z>-g!TGtNTe{~tqux`#TCoTX6K@?T_grJwr|MZwgKmeEF159>xzDIs4L$$P+PL%)*k zi8BUg4HTg>LDfCi$c@%noCfENOp5DjUJ$;y7HT3z6p5u~8fT_afC*X|*;46DQjx_6 zj5fraCF{n@G*6n%@*La>rh54l#x@Mo%rwp9qHBQ|DIwNPk%Ce^f#uv7ij-0LMVd*a zo}(~SWvQmek@(p=P|!6ks{YPR%?AnC_NG9^X&P6(AgMxqigo#7mDqB*yG(xji` zGHQcW1hIWS?egcUU$aU#c|PYN9X(@#&P}C8nnZV7^*j{$8P49&=Vr8iP5F)} zl`u5}4^;I^$(GPm|7)pRoU^&=Y{-R`o=jb9^!1IJl*X+sj#?=^uD(Tr5 zru6$p@_Ey!1-oqwG|tq3bjf;j&WJ~``ZIHt(dH!gf^~-7X3fpzmQ~k~qi6P>nB|%; zr4VC~@2E6BM!7HQ{UhF0ON<^e4C@XQ{NZnY#QM~O%KY57UXqLA{y1`+4Bz_JciFUw zW&bH9SQl?0buZXW6xqsL*jtf`UTdubapTFDlgCD&j=YTVc-~PA%Z60s7{F(px|CF{>q@@yy zvs_i)2Y&dIF9|s?j$VrH`q|{{QN~KFiqdqep09uXg8gyfgO6^w+O7G)4?bf#jdf$4 znS1>5WPof zA>fu2DJ9j7qORAy#Fq>Ke)D&K#BcrJHz+|c>mPjhHU8wE_(S~sw=dxJ=O`@323*%O z#er83Z}IV~1DD_P0RDYFWS}L_u5@k~b0Ve45*6h9oGs~`Y`=@NEXoNrz1HmG*;8Nj;`xy zo6N)GgwGF<9q#bN|Tf12?xjT4xE-6M{S&AmQUeqYazJ;@TB4W;7$FbsU$-(=gJQ zOlO56oK<19X=y99((P6l(-31~7-!}X2}mJsYNS)i3fnhqdrRLr#%1B@=_rKal;A?+ zUq9fQhV{B-P;ia?xzV8WoWkQ>V%k7Gri!};~q?o)%p?G|n z7$#A>=q1o7@n0LOco;m7#{p*+nsy?jgkL|ES}RaGI@{p!jf3`Yf=oNe5u9F)3A_xMcWm! zPFQDndATJP2tHKnPC;XcKB8-OVa$qQSeVDe+xbM_iTvFt;UV}Gg=QW#IeTfAld6N~7+B;>hU3M}5EmB>hy)=Z1%IQR;g zv7++Ifr3ZdTD-?34WqNnL7;6`Yx=H18OdE-<|yjA#=Nh!P&BQn5np06Ggj!|W38ie zR)i?;h9$`sQlZh>iQOxnZCjb_q){Gz=2`p$dHmGPqSCrH4|S{atU*05rfOVaR4dlnNfHvlp$U01~;Y6z4I4FEY6=)mN#Ntkrcb%5u)t_bY&z#!9ojaRJ6S~R{bww;oG(n`GaE+}6#=T%UMgs>nkZ(Fh&ZLdWPj6szzqKFMiJ;q*QZyl#E+ZF#_k90J)A#C89Pv|?uoj}o&7?n(Foes+fZei*0S4mlw{ZjM`Ih-+Z8b-hUtXTil*%vPzT`1jmo3=v0Rdrjk&>7+3Ym=f+vKNIA(}le3uV zL-fQH1^5NPiU0us07*naRL)Tp*S8leDe$|WyynyUkzf4oHE$mW?jJ|iZ9^#uirkkM z7ahCHj)%9i* z+?Pb9sArvd9GL#bALq9lX#T7Jp@gk()~s45&jyn)Em)IibfGPdR!54D#BpLAJtfXu zUu;;dq`9GpzT7xdb0Rf0@Du>&8kRZm#b@t${pwye7tZqaZ+*-Mw;Ibm!9eF)!Zd?% zWTOaipx`-6u>VCK60W|Y>l*GKA4qv2n9CVSIXIo~vI8u$vY$THI&yd#NLo<= z(;}C0J;&&Iy?@8!)4ut~e z@x*w4;%e7n8;5EJy4Im%VVo9DF)$_Zr#CokpufSPDy&8sz@z$Z1R{ZJEb` zWmy=eK(}eRyvfsfNmAmWn5z68Who`;B0dr)tYUP^H@MfGi z?DsUzfODWlR=?}P_yyw&jaFQ&TjuD=IkD?IcDJI!C^_L{;WQ;?UocHe7cxtnd0Ivu zP7}ZLlecK4nWhCF1I}97rloHk+G(tjcjS^1jdASO9gPzjwKauCHGo6wOiG^9X=WKC z?lCbg6Fz#JGdSy*lam6)W)7~-_hHx^?XR2Dzqyu`YB zi)gL5$gt`f`jug8#B-^%;ql3F8fKz4I3p`69RVZglXg%Rn zNhQ*t$kv8)&q&sVawegk8?&MaOTs6SU1TaSqZG)QRp;2QS0b)@t#>Tmb37b5 z4Fj>tF3(#sW6pBHTC^zHG^EGsK9cDFk&RJ~^?NG~rN%L6>NKT7J2*GJ=c33+ zfG7f0{`l(OQF1hRfZKR0N=Nd9mYiyT+)(X0sxM#Nx&9+jb4k3JENwNQwb# z4NW6)3(GujYXYEYbJ0db4I2W?sL3 z#XJqXOEW2f%7wOB7-M8!WMd{7l9S{TdhskY#?sD-cZZ27&a8U@BWb00`*gr%IlqsG zkr)C#Dpaz3>*JOWKI%EXdgASG|2@L+$je{+kaqPAl<86GNU;H;MbC+{ERilCI-(E3Mng@&L(*=`Vdeyv%0VZRru9k`ypR^@s`iu9$A)5 z<0L5iOsVZ%!|nB&{i8=EIWODYieLIe-{jB!$!~EwjWn%8kx4PoT1%@7tuwT?XSMD~ zP2?ZFdgRxB^9|qr&bN7ad%@rO_1^|%F}ASMEmyl8&C=kU;^J~gjtldUP^lrCLWmM( z+_joTCua7PvT${?Xn>pqex?*D8X;yD!}ZNI|IPpUU*&eYNBJOIXr-}TLvA$f-4#tV*j6$D zo8}T#o(Ri?i;;Cs4D-Yo7CNnITPO|;5-$@eSe3b0H(Xz>F-4KAVwpxvfxhW*O@mGe zrxf;bO=BCP4~)ymvftA+4Hs?0#fNwJ+e^qY^t6p8YuFDn>!EOc@d4$V^1f?r16qoz zTrATZxPN%ZaqwJPg-)5L(evu*$m#9>m%aarwQWt)^RVZSBg{Eh+Tom2=Tx2Q3SFH^ zQIr@(%BDq{1kJV#%dlWT_Jsghh5<*wCI}cXU;(<3VFQK)L%#5hW#0&r!;J}&AYp={ zNjBM12X+^$t1Fze<63Km5&r0l@1JY$Q{6JDA}G~G4PaO8v-X;4%n|;}nkofj-{Kb;7&zcI?n*sX5{%|A}xY~6sqDiC8k(46) zY3B7^B!$dw)3e=ltWm5iUwZcur6fLmc?Z5@>^kb>EBe84u^X{XE%EwpLThQ{zPMe8 zAoA-3>pYQj#P=Pq?hkM{5aR{CbL?*?>}Fs$^lUqgv0z-{YwurU&9wxmJBu@gyZce{ z7(-_CmaDBN#LO4WC6vVDi=KC$UXhC7?*7Oc7rb#eV_Cw?{&wZr>mw-@o?JyXy~v|q zzS?uYUr^T2jUB00?oTITOn9pptj2a0*LlLW<8WN10a+3yi!}#Zu|{DltaISIFON8H z*ll|@gTuFef^`D)TB7FVVaBV4O>Y@D0(k1Jrxe3snwjUBJJ;cSN2#6|19dtGzoKYz z$_%{*r`Ze!tR~F?noYxN%U~+Tb{Hp=^OP$_7dCx|bKmz)2hqWT1l&suL=Xyv&e!sccavgO_YJhB)`|>|47GW)REuv=EyUeu%f|Oy?{d#jsslIK0)m z0Rzt7w-yD_ir;!JS`hSb&WSZfF+?|zNlKBR3TMwwu0n;1F%wn^r@vhi-OD>th?4L2 zY{GgY3qxn6Q&a@rW2|||Cak5l?hOw?sFcE>HJibrts+#wjhOxd+g+fHp|=x{w;7XG z4zG^f-_Md`6PjnUNk-99u;n7r6d{44U{rpP0-s+SWM3GSIcr5FL#`E^rM}5rt6AbW z&`nNzUeul=S48@xsuZ7vMle(gjTpjn$ryul#9GJU9INq=`S?~LSg8-*%k$Lx{O=FH z*IuJGubtMq6`b|q!Y3Ez(t^gttEP=-ENSlVsB)tmN*D7WeW28W8A6nA$Ezm+1> zl2O@WlEZ2-@28Y83cmQxhVOm%j5JEWa6vp!sXKA z2FpfZI(Dy<{@u)UF6|C8Qo$rzP*=hE{V)^Lc9lsZ(k*x2GtsAR1<#>&gvS7dd= z&7()W^W>7v^@-*71-U?HMIx-MMI9G3pobp*AO9`NTsZ!*S1ivz{iYdr*#X=-7^y;tk4o91aWfDd4@~3zr>r=kW$c zD?o=_B@BDb3(MieoHT#@PyAC@V>wPI=Ho;PEBpP#C!gMNF?hD#@X76w@4Py2H8_6n z2amYC9{A34nPxi@W8bqJ5+A>~Wm+PJ%H`OjwIWT47l+KNgPco;!%8(mI_|Wi%O2+) zIY&n0>73%2k96A(r3!hSBok?#Q$KjKRosz8HvbIA&hl-m$Kc z-QZCwV=?T;4TZ{a4UB%n#e0VRG?8;csYppH$9>^tXUHlur@+-_kh4fD?v5v(-|lg~ zBjv<&Jn_Mk8*VOlXk{3-8~V;6w|lwgOkv@jcP^L~nXbnWDOxjlOD>VyW0PsC!g96Y zvU7wGSYr|yDw&W#SHrxloWg|b9lluluA^wp%i9wqf1Io zlv0`2%CZJ9J(o8<`)T6Y%X^IN=zK@tc{GLIdM>tGatWN4g*rOCG2|qGuCBLuCrT+} z3^`VoUF6xzd%peg3ykx;b3Jk~c-D30uq=d9@utICxfkq@3o#XXH{d$O;53~cMg5dl zI@gmHDLk$&He6p`Nc5056jdaf5Y1*B0Yl1?J(w}5T5;C4Y}Z81g}4@`Qy`R;aU9rf z41=ua896&Yc7%ia9Y`nJ==bukeQbmDC~Al zqSkN{{gx_WO|0vR^;(oOz`Tfr^>|$H&a)jxQiwQX#1p9nm?&%uMNEa*NcI5hy3+YV z*LQet@mBI0sg+{H5~G`~XI*oPU$H`CO_8jOL~F%D%@yl4VGYc4U|usu8~Pr!D)hZ) z35oS2GIg0K2n_GX+mGJ%Ll=wBULIs&m}KEdksCj8?ddaOaXDMuLidcP)DkwN@Fjk4Y zqH_|NVYC#Dm~)B&L*L<@mAH;19UHAQo$v5gPR3FyDHoPCky~L=N+E_op$Jx3%Sq*( zCl^IVVLFE!eKYi$HiVzbRYF!{L6D*^JpjlPK0MbA$zd5iKC<@~|U2h>T ztg)h8hjqSna1_2ccCMmxV!hsxbL7Q~JAVC}pD@h{tVL5$S-vE%Mbn;J!S%54Z02m4 zsB%_)KFBi5xxi|)&Npx))t0SUR7^@1$)=tGNG-3hl=k^)5=Pyod8th#TV~^1+quwt zcuae|I)5k4fAAoaMzxM!`P}={>g;BGQ+PhWd73QuVMy5|x#z<0?P63UKNV_fzyAi* zbpCTLP*X@`icDc!2M+W@q)RoL8VhSEgi zf13(?`r@AFPyRPj^gmZpT;{~xBdaY{2Lwk0pD%7@bK>4%FllN8SmU&V8$Nh z9XhQd0q(_r;futuBs~!u5z-pnj_ph-s@=?jNLh3{1{z_upeO}m$!INfUj=9ivE_Y| zp{}5vNYK}qNGb5alS`calzA4=ld}$^6?gkv4tIf4l}Mzl=DBv{P{=hI&Y<6q7~X( ztnF~#QxJ5z+)$+$Db33(F+7gknkvh ztWRJR)pS57N7p}2ji?^FIR8l7xj~XB1YPJaMwIg+fv=gABVLIr!4#N|k^5!k;_4}X z#Z8U)^29^KqvvlR1DDT-3$5HPCH zZF*GKK6jkV5N2e_cjp-a!?}*D4DHn{l zI5Ti}>{;d>tt$q@a>x`CzSAt#a0msRBNw&u)vteesx{eImL+1)TojpK zyuLePjbhHPB-SBCUL1vZ*>x7HJhnRePO+B66f%c-6^UdRNi}1Y;j=msQY7ijJ2y96 zjF#y*vxJE8n*Cv>)B~>$GujwZUHGiNrWS+MN_@D+5bKc`61~%WJH6)F?U9@9Ku9Ye z&3CNp%Ee~G&E*v-DK5tWs~pE^!F8GKyAEo`JA+c5kYEmx<8dY}E6z)3dW;I|JE{>i zQ%X&$ofKIqPD|j`DH38~@ExT@N`k!(GTo_}tId`tmm_$~i~E^Ro*$X#Sz^7MV@(2N z*=-azyDhu1gHqWaR}RbECY6Tkv4;($T3KVJX1Si_0{iL2cH41ty}>!8fN>pzwRBdo z+c++hK!SSHaaseRR8&@2UFmv_rP6uv)5WlgZ1$pK+bfQfrK(EEN0gBX;yG@?8H4sh zudh`4UgM`siHVDg4a4Xq_GMa8RU(zK|nx_zcnDyL~7#)9{vl+#g)U1Jn|r*T%)X3IKbjCdPmGN{NE z`CfBGD^aicVW2aPVUU7am<9@vM!>pcVw5JibwAEo{88P0=wk6Z-+v{eXw?=OMx)Fd z3aUQ)v#JDut16Q@namV={nowqas<-#^L)8zZq~FPo}WuO3oIP$LJ2FoGcuxX$4Rfzop99CL5?a zQ*^|8gRA0?bi=^7+2HC-E>N|E$3ui%B=RE{R7sQ^*iT26dB!`7w;AhfE4n1Z@$Bh4 zQ@qpFI@%ZWQ-*@NvyMq$5%U^KE0sC!m<=%sm$|{k`tZpDHWDQ z6N=;^m8zvdV1OJSVk|!VH~$SGyD2EjkQ!h@4W3#mYl2_@Y-M;cvreC3l;ukwJm$1a z`1|MV-+9V-^Mvh%Oic8q$5=zvg{m@WjW#{jwt~MZnR3-gRgjBJRM#rr;)+DXi2PTP zQzGUStEE7aLP;`EjaDdCaGm1jX3J+rKt>@%p5E-}I!8T7ci9?gK-}F=oK6XaCs-&d z5h8@3Sku&`)dq)U;}lQd+48;5?)Z;?^D~Yi^QHH$`8_}VW!}5)+3#;zLcnUn;kaO| zIF+N)Xe`4j(nsekp*oU*z6$23bM~RhR1|2d(ME$(7%HX$N(+=A!_$BJ-=~zytN+1& zgVlFrqp{v`vGFYHJkrzWKp2tt#=a2r8Kfr(WPye%oKlqe5-Jx=&-&jhv)L6(h$t2x*meZab zAK^Zv^{6WVGxf|Oc*NF7^<@vmDy}P%5@k8s%G9Z9m+XTQ7jAOf*Uo*X(cWZT7%7a zPp$=0mPQEbL9*Kq8{#rC-MxZtiwPN<3Z1v?HXHh@o@t%XUgO6RYdk3g_ILMu;5QhX zIju)dQ=laA?j}1DjV3M=b%|JQd3KCEyS?Y`^*u2dvi793Qp?QMuH(t>l5c+NW1hVn zxm^NlUa2{di^JK-qfO7FtC2M(K7D>i&V|v)!Zv1je7WKArsFWLyxy-Ij)__gA+KyN zdq!*MjbZ3K^Rh^MRL;}{b8HO{t(Z?UMOQE|pE8ER#pqFLCFOIJL*}pubC`u-d9hQh%fi(~NAEpFYrOaDPYcIm zV6z*zy6AD%pey8>$qJ0KbSP@f%q37tVpddc0c6=MwE$mFY{8ONUO z;LxfNOQB+j!oZlaXDh0Vwq-?m9=QL0yMMk4fIYcaK=!zWeJIxptB0w zfp=}f852toCWSSY6azI!nfy9K?>!;6^EyZa-C9{|dgt2!qe=q^h3`Dwb`*bMm{H2& z`|bhAv$i-4g#h_5(r_NUV-2vxL_pMVwG;#rq~#jwgxZQygdhY~qZQ6Tc7_rX=iJCr zD{G95uETlxtf^$;TAIS9*}I(3Rh{>Ao%(@Tz8`NtD%%fTEOyq)!dyx5SCAXK(3X@; zzECI%MH#epfTCp4IQxD;m4d37&RU*6y1+Wk>(?h<-yNCenN-EBzpetBF;=5m5vEj& zr>Ha;K#|4#xgem$P-qSDJc+90JhcG$H^m0Dg_gR<8j+^fMi;%S_wAU65{hMf&w~mKe z9wwUSte}VIIloSOZx4T(Bv3a1j?i>lYz*qWE9E%VRZhNIWzwxRm*c=sefS<<{qP-f zNrVt6r8bXB7V6*`d3HJxQ^A;)bxOu6X*itWP{kT)*35}j-EubvLQ&l82A*C!mi@ zC&jInYp2$k?z2}YD*KJ4sGedhl`POAU3vA{M||?xEr+jPwx}6HsvS8xRGP6Wq18Vo zYWyEERs7rkPWQY1yrfE)WdgqGHQsAdDY&9YRU%q$4}tgIf1h9c7yk_Z{2%%mZn^`N z9(D5td}pZh9Yr~+>rqNFJ!^>+rzz`#`4fLp?koAL#I#Z$)8z(LR!$NVrn9) z%n~P2(D{t8cxee)F{?tt;Y|Bi_0B3 zYq^IiNIKyeFcxx*9F8+3MYJzulQeyy-o?afGP3nv_Q^B}IHGSl3ev%=5xJt=uo-Nmg0_bR`;z zdFxwuzU5+1)5^S5k)-~3`;psz_~;Cyn~zQkH#rq(1wzYQt8$a>T*s3qm-xs$%46=+Al!hWFKov=& zZbhKVSt1Oyl7&N657Vr39Dq!}#8YyZP8^pR)e2*ZVhW1WY*0F)jbv0=qj9Rq@Q z2_Xu|qDmLJW|5LE1S)c-dntN50esO1ehSu5Xl47s!&s8oeQHL+4Un= zgC(sMr8?}`Q5!L^=9cYa3aJ?E?vnSvJhJ=Vk?`?r=4BO}dnwdbsM0_;saA=S03NbY z&ikjzkM#Lp>Uom!X2E%$P)Z?JqN)3SP->D z{KmIGF}@<^M5?6$dJt`| z(qy32GsH+^=rBq!>5ndMczU_zkN)ky$g7tp!g}PRj~B+?GB`~vj!tU~l1J*Sc%pNW zVBmsAJ0&0!Dk%#DiBd^-2LhF+myTX5${hK%fAD>@Hgvt`W)`XMul)LV&{ewHO2Mvo z;uAI%r!8aWx!hSEU3ji9b`MQ7IpixbOBSrvhV5pcy>#UUtu@)SY=s_Cnu5mDs7}od!C~I6PPQ0>o2;`{r7p%;Cqkn zJ5h7JPc<5~jQBage8MOzG(x55`<}eclqlC>)rlRVrbu%+6H|JS$s6a;8d4DO zLbuz9hiHF5YuM~|s4N+@+9*2jQKc{~6NkeIYb@RwIhLs$*9D~~N`VxrNWF3(*FraL zFur3gkZx7a$0B|v3j0gI?gYA8ekOV#9hpj5f0u1Th8!Fqb@@zyX5J>U4sdxUi%r5WR% zV%(N6O{g41ouLiYC{|##9dWI&uK2p3Q{wJqczM6@YQN{z{hoPRuu1dm<%v&T-SYal z$JD~$H~ju@yn|5%x4Gc)7vATWf90F}{ZDUMjuV~n=%_ida&xgmTZ8v9&3$pdpo-?| zLhL0qS+8#>%yF*z|h%4H4^j>p3&b&Sx>AYdP>j@EF zygYG#d&jux@ST+~o+8I)*Y(_7?^udrTBLzE9TyBDSu9%74?U*yguJ5SN}5(eD1;LD z?Dn41oN?B3wHvq?rNN)mit#Xx9%Fh+2v}pdpJt3I>;_9(GM&+Aujx96vmIUMSk?va z9Ahu^T5E(C;hdrOLTA4_MLvCY$^RrRIVTG7zfR!7XTRrp@XiKM;D`b17jd8 znHmdbtMG$G8vz9^(}|nQ9XD53P%HCvB9{)^>zdCh1B8st8}hcSKzXInjG*z;>Oe z*#xSkWm@P3I8)pHLRVtT6}6@`D3Ft!=5=i>5s%h})3iJ^`AZeKY>17Z-}n!u-Q=7# zsFDaNqqN+^PKO1n#eSicP*0`dp2!74G!hGvD{GihZT+LsET;vu#&@!6tOZIcq)@3k zOYB|MSZm28{1dr{{doJw-~KV8GjhwNkwuCV7(V38%iDwCpG!rfIUWMB zB$g0KF_U8^mx|J{#d1hof>IS@KnRQyc}g>6%$ zn$Hr&EV3r0A9CqRIQnwXn?7Lk^&7?#P-H zhjr%FeQcjC(s{v$%UEBFltC3zl58@u-92g_OhS6i;4#N8&&^w{&`o8FnC z3fg#-mZ00tIxaQ?wI=-F8FvFE59B28eTj+d-G+6QY@*tZ`<%t&=d2Jmr)8mcj{p1r zyEytap-Unhn!(B826k(GjyOR7w%pQ;H(L zJ9i$Ob&Q)4Z465cD5H4tXyn5$4va4G3%~WtEHQIC7=G)UFL?gh5maIr#bZou{#G=q zNSd|LhKiOBa?#k9@2QPQLygLKt5C|Ka?1+!n!#E&qvgdP{R#m35y#DD%ll6^YrPNtN3e8?}f@2 zBe{TeRx(nnTo)4stu0+u)Lf{YW!K*b{VOa&y6rc({(>A%l)Ms+Voe&AED%XCaJUT= z1@m2ESWes@Zh7|NmL*jB&B#Ze?$OS3x!uxvOW##)29Nfd`80DptSs7d_4ta8h{+MH zEY)`m!QLUfntzpx9p1ymIj?9`Ox*Eb%nB&a#;~h7bR~&BleDv|BC^Wz4 z_xu#(m0$nXclr3mOGfLs8ZEE(E7O{&MJz6a%4gsGg#F!tH5Sq-;Jn4UN-d5WE2dP* zV{Sl}?Rs0>Wyh5GYkMSOp0_KHXBa#v4Oe!I`F(=sKn)aJ!f5E5LR;&src=7Tg&BcBk(b$L@J!bGBhs>ukRK?Z1N>yH5+LDmm1u}vH&Bh?v_!(c2i7fe@hUcCDIL*@1TM4>W{ zJ(m|9y;HpV?#Sb`<+GQL{eGtR7G2@)<;2T4lNF#doo{}54aOS!Q4?B2b#CGHTGk=3@Be@plIY2E!4E352Gl%05 zg{JR18FExn@O8%04MNS=y5OCqGi`mPU|9pPL~0hbQ>_rPG~-2G1t|t%jOZ3cr@W(g zo!nz$1nZ<&Y+$g|8WP5JI43Lv6*D?UoD=Y#R*JIeB+^QQa&kYOr`Q-HRT{e1fH7Dn zia&eKfBfe9buYlq3u6&P({Sx0Y^@Fx$>(tkd}3 zpjF~K-+4yKpsb@P)uJ(!+-RC)RHV52b8AWY{JPasZ=f-%Dv{hZ+2h;t(}ypo)$^*! zh9%Us$ye2xoLU}o8r#?TFkyUCxSdO~x8|4+GTHN5SEkWtdZGMErE?Br3`+=TU9q-r zQqeaAT;6)i=f~Arv6zRB+S^jrhsmc>GBImDMAu|)HAiX{FpV*elrkyHL|iM|-nV$) zM(?rOJ>dD3GU5-ha?EP$ajww!g`5g8CGn*Ir6&1I+OX+IYLYM)DkvSPh;(JsTP`|} zHjekMZdhXCy$>Gqc%vC#9B`WflOwenE_MUg*IS-EeHUXYFP^{V^=antN#yo+MybSZ z?6|lXxVXGvx7%Ty!kPi!D}3iDS+TD1;T%vUV-VS-Q6e1||3c+r>v{KP%iaD?77bg+ z?d>fuKV3P@l_gbvt+Y^Nx2|K; z4}=iOCE>hf9Ci%8Ycgd}%CLR%KEM2(6Q6wi8dE`4M>l#lD0-)e>&)x)eEd0A|U;C3X`F@x%R%w_Vjx*o<_D6W7`0lfN zN(^WUO8|GVPaaynY|{Y zL|6sKZ=4s2^t^CfXAW_tbDqm?z$nG(a3tg^pav%Zo01YGE9O~zx!pLRmBVOIA&^2M z>Poem&BoJf*lsplTs~pRnF4HfPbh%ZP;*9=!o_Al_u#z6javeSIjl^lJ+2nkXn1jo zBxA7Q#MT?Gt~Lx^N6DJ!pS|Sra^UIHD>^UKPDR0cN7tK&35Ye8H6*50sJe4VI4jrZ zWsR)&GfM3lH$B!0eKBX4)<~)1pHf!i`<^AiI?r5ME64g08C}n~+YsW)IQG2rL^4-v zDV*j&S}Ru@g}T_etW_Q$~O z{mN-wi7C-J!>%96rEr);3Gm+I3qE{u!AH*y9Fw#I&vuHT^Q4j_HmeGpZ=P4a@s;sUk5vvq^=g38|^cJJwG%e&(Nxs< z4VoCOc&(#Qy3K0oj3z7*9g+Ydik%m$-0SGx^YS35fIh&hSOG$d#fvayql zrgaI#Tv>9##SA%7Y6f7iDp+l%|{~w-1G%?0=aqR_PR-C%I=Ss-npeX$5urE@~U} z7RlM9NjjBQ7-cvEk>LD1ztea4`9Jbv64?H51hiv8J8)=1Zz=J%}4lbQ*!vWCF4M3yy@Qej?l^PLseka+p(#IxsjOsAFG zKm5-VQ^Ee_zr@&AoUNp!*bJ8K*fH2l9VDj5TSZE+1St{}3dv9eRCy>M3z`rMA+3~D zo3zKHwI*kXbA$@tJKf0yQAwOl(b819x!CgPa=^Jt%#l~GkMx~ETZ8i+>kacXqm7jb zRuXth&K2(sK_zmL_#dqe+IhbF(f9b?$FHc?^X`|v%uoL8Pw;ns={M2Vk*X#yk-|b< z6MBEb<;u-Y8gc)quyNIV!q+#~y!YN0h%xY+zwsM{80GvfztjKt&;0B1?B`PW-4PS56^OHEc!?xk5&Y_gaO{r_a~2 zO39fT6R~8B5}icJk*Zpgr_^?+RI-rJ2#3HF6O4+^8UZw=L@rvUlSWZOB9@4@3bSUp zmTHlyoxPG~O@_ReT9ff_TK zOo|onI!tHCwUDd97}ut|0&5CIvCMKzr-T&vCNT+uH)-pe8RE@rX}+%9`JpSahCnvLdXs7hO8OZbr$li^LQ(M&BJNt z6cXBiHwtYGaS>vsQiZ`;jQ3ch7zR(O1yd@6u{esr>QZ5z6Bxtw<%Sd@>k^r&!0pzs zl8dHlgYAVLeVSx3eK;+Y0>@dTn<;DNWg*to7Tyl8J_IHAfKgB%TyR zm2v%OOV`V!(bSgxw+7ZuCZpass)qafiNjGqFT)_Q8aZo>hR%t+^*Aj!r`ZhysaBDP z=1R>w1il>_P$jwfld`R21GAPREtIa3bW4^_sqOZ2Lh7`c7d| zX-#g$G{x3r5d|Db!`5g^$TKw+tg&RE>kYo^a8>}1^AecWNX}C5Uf@5Wd4#XTbQv_(!MH|j>?G&-TRMJXd-3`Bw{2G~YTY_BiHNGoX0a>s{4P*HT# zC{`gZDbtFK(xi&*c$7j(CZtv?oR3Uv_y*rU$yR9DKb@T3Vk777Ri@04^mE{k*W$w(*2#MJTsQ(Flkl5zS3*Bbxe(wvD*j2(Pu(z;BAhA`8rOqy}wD`j+(e zOkXWEladsKowpBhENfUXT4Ah1X)Ol)GdM?8BAKWv+F2n>dQB}Fl*dr8HKLP7H%gk; zihdYLIkC)&7@GtyReTkxB}y@lBgr~6upK+r3<(&oEa4v$;Mh1k-hF?^ICdzd z#oJjbDI-~8r^vF3c|YY$R*F;->3$)l23|r_|9k%mN>zrx_W#CNMGT5k44aJ=njji& z0y#$p?UYHg(OpCBk+})GfE3V5oN`6ZxzmtTwGjob5wRIZ9$jrnMd-r17K|1t*s4WhA98w_#w|IqOi^+}ohD^aIWyh8 z!jx6wD6HeXuYQ?7`RD!&zx~NAYt_)C$|cDJijukB4Se~7EB>a_oX+F>f5?6IEX{uB zop<=DpZ+QKhdtl^_HT()NXc~W^No`?+rRuD9N(OWz<=@=zQKR(7yk@@_@Dh5zV)?# zmyg$5<|S}-ZMnKy@a~uS<-G9Ti?8#ur$3GLmOJ~5zw&SXHYi2>`Trxe2pa!pA>rmEBN2*I&b%^DNEsa#$3TwGksb;&r!%@&pg3^FOr zQt+;GM0bjkAuS6j1Zq~q8X3Gr6$rVID8wAujT`#TGsl%&O7kmKcH@@o3qy$!YZS}8 zLNzF3o6KLb-j;b5#J@4PeupZB?bySZ8=$M;w4xx=znCiHXy`@{IT3RpR5(sEala>p zN(>SSvDtL6-QbNycMeTuV=LQ78-}AaJ;q+51#~w68L}vwmMosDloiL6nNKU}v|yrS zOa@@wjePuKPd9e-W6$mDnRTAXF_KFq)~=yqi_TR*MZL%Lp69O) zq&4v5QP1T?kJp~#n)ueouh{P=43+KR@Jf7i)%PT3E_R-;|HONI|9j7wgT!n&t0-Av zlI8K$6<52S)3kD$3pbCq9F}LCmcV|>&@!$|UeQ)J2{a%Nc^DZ+M>pcG!boZECrphz`m=8(lMqy+@F-3+{c zbIH`L9Oe_tn(4ZpzUzqV!m=(H@6lOvm=m)N(#X(?HD{c!y!&LwFbtTi33FsWPpq9` za*1hOIZkt1^FiN_80UyF$T}+~oUQD}jx}0pk=)%{3t= zV6PSLJ#Mfl=jfbg=sTRTtZ^oXh}ITwJJcYmFxQJDRfzY!klah9_a3ES4hvH%oKA|< zVc~RKh!WUKt_AB`q3jGgN|Q6^OwL(~)!uWlb5IjC3)NIx%XYINWRZ5~21T0Y1%<*I zCqBrvLM>=aJI^CZX+nz3A+pAdH5u=ntXUfs*J-(zYl4)bDV$ku^MUrt)M6ypc6-zBqpd8vjQBBG#;2y2OSWB#xPH6^b zDYdf1fUyN{I!G(poY)qJu7$COzI6*NQq=U$u<@QWC@7jGujCrB#!^fLEfYdrO;g6U z1y+*MH$O{$f#8Ko`P1gMK z+wp-83-v8YbEV|kVoc7pf<^#9s^xA9HovHfH86CVHET{wWjA^*Hl9sygmj2d8IzJO zaOX5ySwfRq_hXOiWO`4P+_|pnC?%7kAl1FoJi6ZS=wid+KmIDlX#Vh@`n}{5DMeA+ zQDwCuYnk3|{J?G;QJts+C=ygGbod)`DwGtZ*-%6xo3aE+Ypq%S>7Sz1Os74+_xJrQ z-+I3Ay}$Ig`ObI0$FKg)A3x%Bylel|WV8>@@t;z8wsTf%&4*w5kU#MIe~zzSAGy6y9G4#N zJr|cFV^=UGN^at?!*92uDmeR5YK7GNywa&@ua_nJH6ilRcG13g?75hsY6mTUZC$f8 z8I9%UQohTQqfofpwKQkRVk@Pf45%y~>#8)yIHo1y3|Lc%rEq^ZF-*~ zQqWXm1m2)E)X=~UmLA0xp{i0;lP4NM`)e%CTD@J zXswx-RVb3iupTE4>&nn?Bs(-mE-$tce^U$E6qK=~k~p01sVQ@Lv85jd)^%l_S9CS_ z&Wq9^Wo&0zL!dJvd#fr7W!8JV?@1Nv4y+YM06Al7TF|ytD^qu82#Wr~iCE8kC z4$g5x!!`R9Hy1jcmeCO^6d3dR0>)G-c^EWIdO^$s=`nL^C_^uUznl* zz>KjC!Xi?d%~05QPc4}_23)jsPV?FAEr-*Ii++PQJE2`N%_Wf%m4bG|R6oLScZRJzXNydlQSv?OY&xE@lPNlCR_ zMN0~S7y`2uDBv0cu5)bq4sRXHkXV*Lh_S6HHO|@=876TV)|zJZG0aP3S%f%Us=#fm zNhpNSs+Gn&{os|&1#-#lPr?|X-kWME2vb6#@YbVMq4NUMI~`8)d&Wvuu`hzp|b7Vmge0?M2iNtjk8f23zwmKJQ4JAwVq_v7< ztt>D|@;pesR%bm*6+x%RLlTDf^zO^Sv6 zVdnN;I*7(7lr9u)peiiLB&$}8JxeL=L*~r`(Nn2L{5;1(v|_Qg;ECFzOtLJ>Gf=S9 znj4g&J_O0Dvn==rr;29{FmHZ-&ONO4K_J^6-@qR2JO7+ixm6~$$%>@TR08QS@&soe z<%6^onHoMEOSL^`lfKga@9p<}-p*51p}ZPGOuT;m`r&vj^5hRvKx+-k$U@m@g}3nX zZqMuE5vvW4uXhqc?+t5Mxj(@3yAy}gO061WPC`7Tk%_g!+eqgPYmi3FFMaq6{6fgo zTKQY={v^Nlr~WJ`fixZe+{!N*jW-qp{Nlg$zs7WylHqUscmFkxU-$yG7VeHhhAUZ$ z=c~W|H+cN-{d=ey(ckzAzwy8QKd>%Q@=hO$4B1!dfA;6$w`7vUzy7bnpZqVMcj4zt zk#Bzo{-=MTHDxsXhyNEqjvtLoiv_Qps93JAcWj29>9lg1R$TAs27#X#2Vlr4Gj0Xq zF^5Pf6=xkvSwbwtl5x&bQOt9b!sipWcQgHQK`Z#xZ+?n54d7*vjR^jUI@;m$(*eBoIy9bHa}6DV7HSQ=RC%oy+vpFzs6WEO(SJ-RwfB|ulDTs zM}{Yt*scR@#0HQHE3iKuh%vC~JFYexl&V-U-;h(HG?}}mLQ>QulG{ORI_CwrmaBOD zE8JXM(m6xP0m_PXB4e(l;I*L)hSZ9Nsvsv#j*{QlcbyP^Yazr)N{QXLftnlG4NTQ| zXC?D=jgl?bd2DNjtue|X(Dx4$aqoI!$>KXxhL9u-+N>S*VxZDnOrlTrN3IfUK#*VlI;_3v1Q6kPL z1ez7(eo_iXSvuFTEj*-uGgi>frg za}dRYb_Se8UU;tr2D47ZZtsii)wb*xs?E z)a*c-ITgZvBxN{GE6!=jur-!PrZRfV;ka@IFEuB-0gG`=}hlPE}j56FE72RQ_ z>%^8Y&lA2gpt3~hq(TTYr6{f+iFLwiOW*g1U@S9Kg+;Tb!kPm2cadQn&}d37SZ^s( zVY3;W(9x@9T2H8|G1NvtZ)-{~LH88_{k?jACwauV60&4XYn>Q+FZ>EEjpkvPcu0ej256wiUH>=-gcC~S9IdS^wUhhko4iV;QL z!DvK-G?Ngi>d`q@SuupVeBb3>S~)bJuKYSn*~1VTt4uyprvKtsRpr;$c8HUT(v?q zZP9F6ky_+2XsQ-1cTrL}7%EzWQHrcIIZMG=l@_D2()682R{@wPEgJPg%YQ^}s#J-@ zkk}7}))w3HYpgREYj8%1-=uRWYNJ;raxDU-iHYU7^5lBU7v8&J9DCBD$hwfMAsLNp zokLSCDI~~+O`jRn!bhJN?v66iv86yRC|nyPw8)AgvV~Y8sMu;QS$duqpy$XG_?uXoIy6aeQ)|9j^a(1Ns2Bhv{b3BSpA(IE0K^&1j%`k zD|1ctFr_?y5P>1pA9yUEdtIPSlGU4E;;kv@Ssr^PrkaN!nf5z^&z8?B$6=wc=7w#` z8C}H}a(%I5yAiYcFm#{`DJD8&xEecjE$lkWX_2g{*eH71*e2noA*|(d-tH&9_vrsd z&V|oj!8EU^RKEEH&+uMbVdia^-qrS!9l}3-2DRfGe7%SGn(2EZ<7uA{(Mw&@RgFbtY z&%RXg3My654mxkCC1Z8PJB1rNDk4MQj)N?&wd8Rb>nW`%q0lI082XNi!fY(V#&OYm zwqsAWMy?5{25^vllUIq+F;y{YhtnFZ3l-_sT5DOC6I-|NQ(t++*T42fe(hJk$*cR< z7_0ETC8^4q1GOkj@%Wq}R7&vYqxfN`{->!?rTHP}%l2Z!d+$Hy{r9f1#!>1?F01F} zi~0e!syfqFC6dH%2DTR)e2vt!vc|-_*VnxNc+21ZmGAP&%ctxfIXsD)CyH{A4aV7a zJqLXz1Q$SyB)rx_#kX@zB!*69j8|kW9cwwQMMV%}WL<(-2#mzI*AyOG_d$D7O=WqyK+!T$GC52(cE>q;q-uP160$!A;Fz`7=Kt!NckvZ1RZN@@0oy%h1P5Y`2XK{?O< z?nFotH#j=0x$Jtzz7wyXDp>1@%PNiL47DVtR46gY^>tm*N~S2rTXZ&rAVKHOI8XwX zsdbWTc9W*t78ziIL02U{<60Sfk2BKnv?)tS{LZo2bSN_3C{UhvAMY@TPr4n_%-M06 z7uMy-GR+)L5mh}OJROKR^M%LP?2ijr%W;{wKP=qdFTB1xvOi6PRTj_27>xHaQ7i-Z zhnaav(%_|%b40C)&MAi8(|M1{ij_$3Jl2S+;&@t_*F>(CTolJSa#}088>umKb-CsJ zCl`G7{GQM54jkq-(ar&HTjMxOl4k3M-#-x=m9v1SM*6XVKYDpP@JDIBI1+ew3F z*LS?$2W;Gnh8B##x)LoBNny58dX;Kwy zLf1<^U`<7$JCvdtOG=Vo7($?`Dlt=5fwk0PIjxyOfErnr(jwK8*p51nbyi5iv9M-D z&R#2JhT|gnkQX~g-&d9;kYW^)zScNv=qVf~-5O?N z-{W16vEuQMQL@xis_l6G@nrEwar>c*#V7!imospBu8v*v@sxZpo8txas)I?SgLq(g8&PxC)h}=h2-K4XH zS|iGtCTSD@4K*+hJA<-u4f z0+E7wbP44mMjK4?9ZJe`>vW$NoHUruxrQpT@5&qG4IoqDLTSK=R7ur@<}I@PWqKDq?9;yeSkP-dFq4nUJT>^xG=OXDWqKlE5>7RKbu51wvAU0Da%H z=`>3yyt=(-T3!-k5SnX?qlu+7gM1|?A@Ew~@ZM9qidL0B@aO;M{(-E4h!=HpFHkms+CynJ=yl#854=P~p7zf>9rJeM&#q(TAVd>og=423K4^*GY-ch z{%BtrT;=-JiK-pPCmW_0uNa3dKmXGo^8Dk^_~_F+42IEz)fr_x#UN7_ld&bEQ*CN| z^|}51cBy_=U1+V*SROxqm+Qxmxp=zc@t3Z#zJE|nC@QG(=9>FvNG#7+1@!gg@ikw1 z?=dz8YRW80vFSBmecJQ=$0OhT;wIAm;+AG_cqkU$c6k8D^|e z?3@$-({doEK*fTR=~9;!rtgSWH<@Q<4bn`@%?nM;RBcHyO7o-^X-rs!x8}i9ZLBm} ztq!On%_wUvDW9K98m1N{`MQm;Y?Q%t(k!chNul}q4HzZz%bHlTqC_qI6QX3WI?KAQ z0y8SG&H}U2%~NP`tyx&8h;(vZSCMIVJzyzG8agNqN#UIYdao^RV_8tZG=1;1FB}cF{pENiU!lv7FKCe&BR2rRup>YF$7{QqIyu^ z6lk-GFxbk*In?fwT(-<>1T;AX25tC-t9Rs{CxKQRj}!a*iNh(d#6*rW zB{qvgEyP$U)$siFJ+JR3z~Y=`e>#z3A|>G)%pq`dwPO<`W+5wBLSQ8kOMt35Oo{tr zV2z5O``Hh;d$lJlD=+UR_NSG@oT&4m-P9`HK%**4%DP;zgxY|0t{N6RY(eqm$M=q`5{(dH;2nIUsNvRUzO3aniRh;TbDlItBPTCehe@m_DP@`1wF0gxY2F(xQd(`L z0aa^(By|0h3Tw=OTsu=rP;28*i1J43LWqfVU0FhCjd3r^z^2f%w&Htfz~$Uxtc)Y2 zLd-#;^0N5)O@X)s)-{l_0D+A9ak2QLy8Y0_;?NI3l~H>fQ6);?u~oznM21o%XH9D* zINs7Ej#d`t&Kpv02Q5OGk_C+v405w+@R8pss(SO+CKZ&a)Y%``3Irt=d1wo$qOe-y zjKUek&>1?f2_dlNHxQgyThWvXN;_)nFlz&w-f^+%C3w9moUYtY2TsZ|ZnkX4v2}}E z7rWAYevperTQOa049+_H5BXPp?Oi*)YZ)LioSv*Ef{xhS3|jc-d-&xPUxH0v!;j&AR{)Hlb# zc^!S8Du6U3tP#M>=Pylfpf+-$GZMpbK7Ly9{V;+&AA+S7q3w9o?RcbS&eAvYaD395 zCvpO6EizT-9sTZ-{&Gi1pmji%nas?gB;-O4r5dVp_(AA;u1SWiF$`VzkOOKBSZ4&t zqBKq`I%`qZ5K|#lORUf7d&>t;uK>lWE?DV7JFKdxc*3`)LP!huhdW*dAxY+vCAb%n zFUe$zH`D+6gXipdXT4p6sB??vy!#&{mFMHa7@3xaB*l(10+KnLj-)6Pdg>}rk8++Q zH;=0}_^zkxI{?BONJ&6i#%NMXEX%@@1g9gJewu$_KcThe@BaFCah;QZ^kspn(AJ@J zmM(EI^w!Yz8e=M5ClWjBEW5pK9ih984ES>bXWPt zPh9YKzxA3I@858BZ6HTE(3K+B%= zSd`NEwrHwKQEDg61r%L0vbZXlB?=8SltQYx9fh*+I!#d|kS)tsYb^?k3RW3xi~6Zm zk+fnhnXH7W+^K?hGC9;m{PWJ3CJpnXxDumG1yn1VU){|d?<>2V<4I>pvEqy@D%Vxu z75n=mecv(kJA=m+4ccu;*-&z1=p3d7bOEX+sp~eP+%M=qbRAet}7V0xV)x@BP9e-nou;SWx;zx=j0lxwL~CMe_#-NRvJDUmO|bHR2{#JrL+JihGsXo}2h zVi+1dnk46og3)_=KQP6BQwFUqDGQPGI0v*9Z~MBe)PqBN#nr{YaV;$K+}093%d()2 zqU4oz(WGRVPYY5Oef{6ww_t0PW1KnSuLkm`GY;VHN5*g38c$a*bKn%zi%s zvX-xiI!qgjvz-hRB4EX{SQV6~X=?SP+OZbJJMUca<)63&T{)~4qb1PSP|2z7 zKUPXSQr1jdRzlp9YG%oaLWXEb)u4-nrlJg0DOs$S{MPhOcDZUrqH6nF(LAONeDY?n zp&z~@TA?gJlhP=)^`RJr^OW!N3sceO>$eJ2{pS0Yulx;-_AF~t?Lw#ZTg66Gx|Is4 zKKKx8c_Vv$_*t!=`}=ufXN~3Te^hTzFyAT`#k-Kvs&(625o)w;IhOg2Tosw)cFuxM z^f}Xc$IpEItNe5Sl|R9IUwoHXB%C_eLJTwWI*Z{xCdp*V5!)8K6sSd!D=6)tY6K>v zs2S#8`7)|%+|PWQR1)j75+?D~Jinh-UrX1@3Fr@VT7q%)ea z^G!w_q=T+R`r?eD_f|0csk8|!JY=T)ZWsUaKv;?N@$Cuon`%+XG{`_nkh6T}y>AO= zpgQSttLiBkth8FhBZ^FtjM2@90%Pwm%86&gS~7(>IC3iJqA*%KUE?H+Kk!FQ7I%ODIrZa@8B~y*!`h_VZU5Kv2)rHl79<~2X-wx(UbBxU zighSmNoht^%Wl)N9`5+`<;s(*9pm7zN+wuUotq`?dZGfMPN;__mr#ps)_nTWGY)qv zUwWh|_jfGw9oERAzqE5mCWPXj$vI<{1ZArVh354(hUx_G&Uubl#j{tD0yZVueMgEw zZR9sgN#b#8*D&2Og;8x9c=l~8!v@cTHG<}q*Uj(R)C&1b#8yh84sxZ0D)iqZIb^wH zLR?rzPe_{K-pRKA(8^=@tF(i2aLOHp51y zSL@0!Zg_Q=>6XBg8-wc{IR(iAwU(|E(&5EmNLhZSlr+!!QK5}xSpuajlxQ)=;mw&k zsW_%tq_Y;nlDWRt5_bZG9I@WBoP+KAk)1NE)1Ga=VRx}5Cb-|vbl$KVyhL+^2vyVB zkrXq-*z?Zd2{CY-4p`rjvv2#|%Ga>lP?gY#o$)AT2{kj0hOz`wRw(aVLsp`xQjAQe zi8%x=hk?HD(P{@R6E2#B(lRZfDx7mDU5F`QdQa(lQd;p!p@so^$)qDh7<#lejD3?b z7P(*M6bS2#b{)=bNTIOI3EPR^G{hw9CaVb{;;i9vCz-ldSH{O1tQH%~@AqH8IL9)r zpp3M4w7`&zvfSREILwJDB&KCzImvW;`0z1b{L&*dnp4O;yM0X#l`y9VV&?5>BE~{o zHQQ~^qnn=B_nB#p#C63`cyi(S`JeoNzxS8vBx%o+nFCt+Wd zf>DZE1!yb-804J*s44N`OKeN2$`t2{DqJY`gD!@gL_Po@OUGirN@rlE}M) zz@eNqXyZ`8XrQ%;oOn!V7S^1c<(4EQmM=# zF-?h-6;vT?DFk@4=`2Gp(uSI)(?9sGO*<;3L{f^Bq{&H15fIH+(9y6z0`Lt(6J)Ln{Ansz{9kn)^lk5 zTmPWmCR(;B##@rmoF&VsHW{XKw&mI7wpV|WKA)F(-p&PKE$8=N-}*TZg>uQ6#Cd(#8V>EX-=4xq{^VQo*7p1bSy&lsAN-Pq z0#<=B7|~y2Oh?w1dEK+FhDt=|Om8&RDn=@+)@0|1*|07m5piwlE|6kEeaJb*$P?mEvG z-g}3qj|bLy<~Yri+Gg8YVU>A^TQEw%OG37lqV<7rdzR=F*^en#a#5rbP}9QB|5a** zPhXxSYN1FTl_?45#9Of$H$49E5kLR4-(WlR6cgq7bE1@hHj*v3q(rU?RSi~YdZTgU zK-U|-{C|3lR)&A=U-?s<4)>H?*!7;PvEvW^u}e~|Ov}pQICFnkSz_k$V#B=7T=YF& zb$s`AnuPe%Z6`no zrNy7r`>sjY3S;lsMa!q(yT>TY;~_HLzNXfM^BR5bhP6&mPDOwdTH~A*Z&GU#RG`-L zB+tG%cdJ0jlroqqi^uczNsc_3TAe{^T8Tiic?5T@j%3qqvFN=%Ka%5*YyEfp`EB8Qb)NckDJDrRb)jFjxa2CcgjdQ#$Lox!9s} z;p0!AQEJ8+0m@+<+fC0t&72M^HDyk7V$?k*D`~Lhl@f)-T7b@oZ!wjXYAr8c?uj9Y zr>qnFe+-d}%?70qxm>AKrC8%i4N;UJT~9amq#}#>7>mRvc*k^#atzvz0vwh_>?PWX zZ`CMzZ3T8xlTb;G7V5b1q8KTa6qko6o?HT6SNhRlI*Ue=Lc-aO!41?>u%^mXrYLes zR1!HxOjwyxMp>CghM1`HiLEsZR~DrQRJ~-46S`4;tBP`` zVi9Cr2!(kL-0zQ=yyfS=dWBJ9i?G_V8!SKf`&ZJE16760UaV^@94Z{-X~r!LEvM}c3_j_x%PG-td&!o znAU{V;wDX0u67$9U2gf_i#rDG>3tQDnbGX$iOWHua^@5&UK<>Ruw-T*dHiHx<2}zl zd&Rtpm%sO*v|)(_T^yaxEF?lH(n#}`xDUjXTTZOOTP>g{X9aYV1pZTECS{??=9ExI zk@`+@5>vuDP1PQ1C8Q`+|5DKo25%ptqShdO$dm%LB)U#$)r0S_c0z8$SF~B78<>l4AkYcNCU!H ziHd37C#8NTgW|{AkH+>x7mL6By_X^-wW67S82Zs-CUS-xu|BaKDqhs>(Q6 zwz~o49r%vwJh6zzzE+F1Rsv6nn3@G^fdT;n1O)<=1|UEX;D11s05wXK zs1X!KBH0QBaz^MLOig!BS9eucW@l9{Z@>4(;_hbl+YW{EGmm&#RTL5+I)$`EzIR_- z4`0m9e!p|hcM~*J3y!DE^@|&lxdJAZl6YJvPFct$QH!Crti}f284|N{cYe#ew`Ytv ztXGS1V|4KcM^l)GUSfSqFSs>8rXxni^hfo~M7rh+dQ)YdEb>i90E|`2zqM!lxkSm80Pav<8CroR<^QgrEM!pK8G+inPCc^BPm$F`s6>{Q1A;mA%0?M{E`E zM`~HQ4Z^ewcv^{P2hYT2z+QPXv$Z5wP@tB5}!4b3;)(4eZr7-tNwZ`{K$aM+KG z<9|u3jo&RFb6mRaMGUr9YRiaJ4Ni`ZU<&E+j@4)b({d)I73)23k7w@BnJhYd2^0>& z5@TRDIOfv~#`3eDeT9^SL3nTA7b1k=o@xw&=9V@L`ymn~v9v<;@Ma2p`g+F@J;%AD zxJ|x&sj>lv!hRb0(T{$YKmNlHm}2Jk1IIu4Z@=azpM8T}vpOuIZk|tOL&_uQSPj$7 zEg${hclgmC{4VEjJm;*dCdxP$q@iQs}ElpSWnvB~+wGI_bCDq-g=!olQ+>gx*{_ z?=UuMk=7ce?hs>Xh{gaJMLer!yy*RLh}x72RHJc0I)rMRP7CMrsu3<@Bo)itSwuZ! zoB4F6maMsvLuH&anEw9m$m#17yZwkax^}&~z2^0ciB{q9xU%NT)nV$6j5@5_hPl-k z;<&>**Nf7^5Hkh+`)D=$IHiTrsbf#aN!?uKn!*5PYf)s@^kU4vSqw4zc1 z>#)w@1)O!HoRtmYBM^E3c{kJ%z*?5`O38wBkFC}W$2n1&M*dht^yPv3Ag(hUkj6SEj#;QUu)03fQo6%s#2cuyqErq=f2%3f3T3V|Q}NQXHFKseD~GEq z;xKfUh_byJ6>EiYi1;vKTV)>|kg*5DH0=moUwqg(QmGuzE9aLZpL}r3Gd#P8X17~;IH`9-ZjDrwC2<%dxg?IOQgCw?2Iq)Qh!OUaVG=_yjW;hwrr?-U zWzLGgR+Mt?B1{;ljl&dq%!QOHrmo}$FJ9gfy+G9{uQ{t$FB?lDA*L}}&z!SHvvd=* zxz-DtuH{6}T2fby-h7r^S@McahIL*Mt3ws3o>o?d7_crX8xIr=u?=H{QWv&Zp=yFU z=o)P0Ya=D4T6=F1D#kQoh#2FT&r7Gh=icZwoNt7n{eVcK z)!Ypx{ZoWomn75G)F%@SXGMkd&S^-eF|=Bc zvSO{LNhN2cW??iyJf%jd>aw`z###(U1aEZ#s})R8gbrgkE{WO<&U$KXU4W}-g0pHQ z;%s-Vr0eRMFy}%pxlc?D!^z{VVK+T+B=6Pi|>Wwgs zo;XC}Fly-fZscGZ%g{B42GX)B_0!B`aa7~6M%}IaIIxeAU35fmn8t}|97!dyq@)|0 z3#zY@Mm1WfI&`XgUJU!`1vfXhI4tYh*i9PPDy^x5m38V{Q?((^>5CE*c|-Yx8}~uMv+K}oI<5ZN+AnrWvw3n?eL@bOy>8dm$+P$Q{IhQVzGT7igko+i zOVwR=#HwjyETZVIHC=Bj+vn=<38%LDwy8G8S-ev^=V2Vw-KQSRH)`oepZ(eNYek;_t&z(w z2};TFwyDvn1tf7gCe4!UsB`VjrWFuckFQaLeCtE?`|PGepwvSBs#I|AgquU;&8q{~ z`%#-}45gy?p){mAN-J0@SFiSb_xm64!|#4XJtne23-YW1N37tuz( zPhdqFw=Z`%_88Huyi(ObLy9&6-iuOjUB=WztP4>b&QDCc@uG#>dJ(hDHnz{*|2#y` zi-Y0H&g_GseDIRpVTbMJD@HWtL+{<^O{W3Ween9#E5853AMl62_dBEy8r24Z18PRP zYv9#K*Zdd%?B~4soe%l_-~AYQd?XufY_6_%hzNi1``@QXqpT~oYKVJkmFgTn`}#<+ zju+P>FZKg6=Wd?Xqm+zQ3;Wb4snRm!9uXt`KCM+XRvYW1ssGy9DOKZDQaPaG##3ne%)>C2xUk(egFL)Xr)k- z5S*on*GP;tgNPci^qj*jOH(>(UrHra&5^WaGs(%Emqx8Rpi*{5x7N4dx~u~!>hygX zv_a@=yET@ErFc(k!u1$PeR$=(#ahvroz`%uX$ONxf>T;tDwnlwNsY&2BCVM*T52^k zu{@qLtrZ^E#Oa(_YUcHe1GhI5Yf`7@(~@vIrF@Pk1$}akU<}a)#Os|3KbkwNx0moE$aXj+iRWH zbP1uZsmYngy69&)maVDK+#wiejW>HI1l&*=;u&g<=CN(|* zLpd#kxUw4~ra`V6ry>YhREIW(NgMwx7~8WMP2iLYYlBKAtt(|Yg9}t?SmznyqFQ*b zX!to5O3e(;;%vakfN?sIpUlXM8>MDeQS%*Z95Lu{=De)Desj>e#|Wia2Cr*NX%K8= z7(74yrR6Vv{+8o$!F$JU7kTq)&-HF(w;O4-^7YquU;}e5oR<}(@uMF^?(bGk=c>j# zUfEgRSx)n!&fRO_;h5Qn$dYGbgrWOr?8ksHP?~T~nTJ`2BlEIyb3L)!MQv1<%FSVd zwekMl8K_th4$}y&a++u6HTO*Kf&{Pe6&ChG;5%0@c>DfNjp;FfXgF#s|xOKd2^kUOEeIb9`?Yr}|D2byH4Rzf)`A)D~UO zyZ3|h78m;PsQ*kv8{d?aMP!W*Bb^sD3@VjelCpT5#Z`K~vo`hK8HN}MR;z(j8?ESY z)*4+ev#F$%SyH+Tubwl&etZ1p9KUw6_}%ZkBv^~5siv-PBw{QYVppjpP>UniN{LD* zQ*E2+=$Tr7=c+e?HHOo1)tlYx#(K_`xA%|SpB8F0SQ|*Wv8>9Yw@za#cB9&C5785> znla?2!K&g~4^_8}-T5y%e}Ty{kju)l%uLh3ix63s%>D617zf09R%4N3AQzU>h`G`p zR$4ZU0baj|xWQ43AuWaFv~c%0vu1UJiqR9Cqk4ymlOju0+CvCCe25e&tTlr%1RrTh zC(apBosbE7E{nsy9C^9Rm_A9OR(5v6cuTH=kJ_A-qWM;)2JWs0LR1ZeZ4Hl5ja~v; z_?zy2wIOL*ENvyD=|9_wF?z!QTLY+7|JJx&=x`l%Ge(VXo*Jl*US5E^ORM=*!0^;W zevA6L9UB;Rd999MJ^Ot?3%8C&Zs_RqUwig+-+FIP4d=HVBA?#dw-4u4pl_YMEUx;t ztRh>zS=?gh1vT-R#*ui~^S&C=ea5ELrDL9&8Z{d*jx`H&5{fA0$mB-I`h2NJ(0FkK zvD$DHEiA2Z1UnFHQT<-f@bC|B_Iy4)^8TIR!!^w;NVRIMZ;re_uFU7G`dd?|q;AyH z4L@|Khyh|3xSLYD4)OU}z1(V-{;}gHpk$bf-|ln35`mN(Vg(V~2RxcnCD_X_pyaIf z-6#@=h@NNZPNqE3r+Wk_bo2~5`kN}wHXyTp`2(dDzxcZAWh%LL9kx-e$W=Qq#DV?Q zfZv6lDX5NaMjEvxN~@Hv!|Ql`cVpJa?yn}0#vlFRcQDQ1jcTTAYlzcLdrj)Pi4-JP zj5oCN!r`!|jyEt|fpOnH=YP|FYYfJDtjVm8_s9ZecOYAyzDu4OM5X=9z2x@gYj%F3nL^2x+M{AzpTg%{sI_RJR!V2JXdAYfae*b;h&9^4 zNy!KvM5(8BTNp|o{*l?bk7Cfz$ z{k+Byutp6ay!RMy2m&^FYSHG$x~_G$%1qdtV5`lz3bsmjHiTRaDGTdbSk{#_={-9P zgEm%8&rN9+?<{eMIBV3{$Lc^Zc#jd&%_kI%orb_BF{!mOj_zp~VPHQ*T0?c0()66t zxP5WOG-hfkikuCelxDsae zQprjOHjdMLCc1$4fycG*_5CAnZVv2Yq?Jl3>YO`{L8H5BrL2v#W~Tj)HC0N<#NhD5 zz&bC8Q)Do=N|lP3&W5p}vq|)O_1rf)>0Mj@vg=S%GiINJ}2g{o0{@FaOu6WOd z4(?r~nuc|jRxRf>=^7dw%_iTW=go)!H+7!{ft=lq;w6s&wSRF%HV2Gga66-QM%Vk6$v+ zD-Vw=r8R7{eaNHtL_r<7oe>6Sd4EjIbJF30^9+M$T@$&ilvZ$7_xF?wDJOM~Efr&Z zC-LZRV@<`m&K7Gu_Z!EWE3N9jWL=jDlt#&&bzn^=hZ(YH{%+~+rNQgKb&ImK&ftT+ zyk@Pn*G&QEqprTT5llCU6r+p>3dTEpuuOKqSx3!E7yj+>n|J)$&Eh})(_b=%fx#QK z%`ISDCZ!ofod#P?nv3Qm!#MS@TSM@H!+yYHmF`i6k_$c>a)PVPum8nQ`2P1l=DXi}#mkoyLv+;Qa4ukcOuDaSK^@AtmL?TdldG^g%#KJvvE_ek@6^6@KP-A)9nW(n3pGs4&l&-%j4b6lFUtr-xdhduv= zEr;+KgmGya75&>DquL)u4xSn7bo9<_zb8-VUth}lpY%00x77Z?jx_bpczI79Y1oj> z{<$~g@luo9XW5Auswg#6ja4=h<+mxb(lo=;dg+U?Zm{EYg*&|AU%#!`BgATPO`Eb> z)$y#fLKO>U#38i#gl`Ss6t!O+G`})Xu%%GbLc=hgGZw?Y_?N%L%Zm4cpCUUOd2u^1 zzdP~e7Yp}yXAV1^bS5_-O1wyL)*bHjvTRsA!@_Yum30Hb~9fQy%w#mAy=#ET3M)W>$aQpIxo9h7Oo_u^j7E6%@q;Ogbk8>uBd+eO~?8jg56AItEHJp}2 zTQhHtXTb2qkAKSAR(8QtYhhl6X&AV^8sT)}%@y2^m3lgIKAjc4YeL3S7tO8oW55QB z3!cF`tQ|E9s3VNd1;jemR8g!>IocVpUd@aoH!u~vUMCGTX9IVkFzdXj zBe|UkP^Hqkb8@MbR@J#S1hwgJn=`iQLk=T~Mv5bNHIy;d5JJRS$G$0|!X~*eiUQ(H zx3|yOHuUBea*rGE5*S5w^vii=KArV_8@dUSN(j8wL6vc?4*}~1EfeWfZUcqJ`SHFt z`WlZ=YQ?$MQTlCSq-&+O5Ur&vUYW*-yN>E~-3?vVlu4_8Zy|cPRy3rh#xgHTCANlX zKXCu~1E#-KrRYT89X?p)y;l<4rP83adUKqzf@PYGr!Fj{D4U0th>ir$YH>Tah)%AfXD)qV+ z%foT$D6GY;ndAM5X*>|38lQ+*YE6ve$az_K_x_PJTXy5fK3cqot-$bc$9_NX_x|ux zLiD)SNJS+*WlfyUiS?LC6-r*%4S`*_Ce=hLmGKaX#*x>;{o_n)nGasy;%xvYTwO(8 z?{}PziEr)?R13SwGdK$^@Z(>6#W(McRD>Zq1{(>3=d>Jod^|IS$j#Lb>kGGO$1)dA z>zQ0DbI#-<;2qHz4*S6MVb9m^PuxG88Ar?EX5#JRBVW8fa(7JH*eBuPnAnY$!Rz-` zDm*+a+&`|ITc(QOO-1GtMh50nL1+x4I)dliIG-PggJ&2wQ+nbovo+ny9*W;CXGl6&C zJaG5!f&a$;CHD_AX~`^)CqDm7`1x00Twpie5W++l3btil9d3xPKg8XPJT$>HA%=nL z>nq0THODn`w>FONGq-zqHATWW5v&ktTsw=8a6HcZ^e-}YKk~i5^9e6L(Be>xp-RDs zMkG|p)EEi-9bpQ+v9TC-N<(RlW;M6WG^j=e$M3)RjQ{c<{lBS_7)DQYPIXtUJ9*O7 z>bTN%Z~8Ouz0!)-j3Ao*l*NoSu-tEmzZ7qjt+y3zp}|pLL4dwM*EZ zQB6o|8e3t0C3}$#Ipor~U4WEJbE*Gfo`u6-^sYQub?Nr`z6!23piqpZxJd)L#bVcjBz3v{r~m9@1mW-fr~ebA(@C+3k}Sg>jyHc! z`m>*7u0Q6*CnITfs&#aK#Sk4W6bu!IMblCn-g+$>spP87{C+nPePVW{I}`tP?STmV z^`CC1{jbAe!jrk`R%p9T!+N0xtN!8JkfiCRB+oK5pA7``H9JMMnNEvp#4vC;j0{of zcW-X5vB84T$Qjct*n)GBx9^WkcINfVTmGHD|9#T^nfdfUmBO4Vaq>*pJ9ukIcMsUw z7`>$~M`)flJO1x~|92?0ar}#)@wR`*6+>#JLCh8uzly!_-ls;{a8##C;trQk_6^1EXA?8_5NjJ*EQ$K2j0N8%CH6ox)yn?rWxA!r7+FdVvwd^byLX2^MW&ywc1}k9%>!(wa6v!!Tlu zWe9=mt37dyEbB~KS6X-GD&4wXYQ_fDA_gCxF*0;Lv(6I3*fVN1({UF(DQgT&?b)>; z_@GD@=m4p;%H!h$tr^V%4z8Pu>AJbjGwocvJ8__8jW_Z^qn5CZ?|!nUwuw@eay;K> z*76R)GenL3Xv~ycs8TsDXTJL8ft+ATE74fy^MV;%*OK#HxAo!kLIehQfW0}yk)Hm z0|8?qB^RtK1haB|9mzG|f%AMOrHl^)%^S_AUT2IIQmITsAQ;QK2&Pt=Nf-mSS39Ob z-)}9NiI=j{-JL64XRDt(xQeTPc$BXIDl<!+!RY=|3(TiPN|l>ik9Upv@yxq9cP5ABVLtKl_6i?I-oL+RoE*2; z1HM{LOGd2c&F;Wq^nCH|fv@k5EIDJ0@Z+C-!+FgJupb?-Uj$wst~CqWt7+VES^4=F zpR<<2>)Xg-7!W+hdz`OaryFi}6YI-N6@!i4;WQWKS>sb`YhWBr3^^6%)5^ocndJ}| z;(@4y1K!>*jLvYqiRh*$)Gy7TzCE zq+Iy$aLaB#@&5gZ$2l|XGzP~us3^U)wF;dmQl#NL#Bowx^3teBVH^!HHZ<*Ahg)qa z1m{2s5fHC~V-qa4=T@h)AX1d=Bce#PG1OL&Cd3%n5JzQw>0a#{oRguom0EO&ZjAK2 z$lo5nX~(bKEdJydUjdb1^#%e(r@~;dCTix}XoDc4@2PUYT%1^@2P$I@4aO=-eJAPSmkzG@q`eFKT)@~ z;61^6yc?*fNPp>^f9nd-1_n1!N@DHS=wmQ=TR9$AYIFRXufO7O6Bx&UK^JbRl_;u* zm}}+c`kD`KZ}G-4=SnpmDFs^9%(KxU-cqU%L!_-Ib%*O><0Q~Js)93E(MkD*9Mu~x z)rRU+TE)s80Z#u>vo@+Y_ zaCuGvP~GX)@IfUd-FVOWGwzb*tNX%>>ua)Pq!kj4$JRRSt5KTJs-n%NG=dm>ZHj6b zM-3CsT6U%~BG?Ab3hnLhU@iRlfAe1`eajd$-`a4v8hQBoOCImv^5=i{W5#xiH3QaL z&c}N_uT7p1Q~}IpvGIfmSJ8%gKLk$a#FF#3&ik{|^mJ`J|JmO%Oq4!65R?XKF7)2o z|6Z?!O-HNWz4_MfYqM^^c2`?tG&{7T0>-Jq1gqm}H}S#CYlfb!`0B-g@doclyzxj? z{ZNv^bt!!K=7vwc`*bugu32Yf3us5Je%1z-cWkS$HjU zLjW!OrD^m}DXNzhb?U;DN;XMz_=@oI`kLSWgHQSBpM1v8zj$O`(uE$hS=4Yr(iOS+ z;_Je{cEWyY*z1{4Ry9WG-&gJIX(I+JI+)nZlAX8w@RI`vd(Th)^fQj9MX8p?vo>MP z6)8gTj%0;*U%cbT$1|Vq9jCiTnw)uYUNFEz zzrG_?8wp>Uu7z9v>ZXY-RhuX4lxChv1u2)Nbjy!zO_1J1Z8Hti>D$}2hym{dv`Q(f zeh1EJ0DXTCt+h*Lq%o%F=+XyKY8a8LqF3A6g@sZxE?6eN*L7Mn|8X3KPO(>}Mhsfm zmD(spwb)WJAw-O|uXPI=yZY>pKz&p)iHioW8 z6>2NAYVcMY#~31>&OowNGwIAVAwiW@9`zx`|im5WC~|m9}LwB*5aKf zpgFM37;Gu9>Abr%!xAuP7`qJ)=PgUhL?0OaQ*6&Tj0A-`N!hckn(gUK(*bj}SgXtg z#NwJ>tH-%vmV|Lz{sBgkTz}rY9Lq z()bGFSFoCg8eAg|o+}s0t?1C9HV%WQHKWmK7(Tq+^T|s{&2U}|Z*F=fsu-?6Ie^ol z^XNUoKx&FiRS{m@?s;{)Q{<`%si@i9oEj+=ye*g^@b>;4rCG*v#MHvg{=m2&h~6Nj zvaFSJIaAImb12P#30#dHtl_jS7;AZPeMMSVFv2*gVNY5!`D!G+Jn%y!YPyy)r_+fd zk?(zY!@OitEm+`uN-RZ4rEt9;83xBU4|kL*jDDh2!@MM{tVGu+Q^a_OiyohxiG>ompLHOvy1ECp?cbQ}?xoO@uS+g4vxY`G5cFg&SS}n#y zDPVP-XjNGY)dER|ceV zS`*{lnNwU2KW{#~32fTVmX%gia|}RtV8ztP0DW(TPi(b{uwr{iv4K zsR_%P@ou1%ky@0;Z^OWOT@eWk&NBr|7y>?2d>AQJdZ=wCT8LIBzAZJ9)rBMy*hNFB zmQz+e3q}ntChL?U;4D6P4p%!;X|!6IjJkD+Ko(d#`dV^hPL;t6b+1jB6sWAKgR%yx zmA0x=pJ@%Lg~3}s`uGFJ-7k56pONn3Cv@5+ty2TFacX_~tyAFEiKIO%5io6={`5v^ zb2Jq$g@V#mdl6rSf@);+C7MoS+cvF!GR;wMR(&t}Gu_0V%xbjY60@Os+v{$Ps(FSk zZtvs?LEKO(edF7|%>{*eZepW(iAD{8wt@K8ENzX4Y)_#Dn%xjUv)NZ{c$Q(a>oL6n zs{%DQsEu(9ym-Asq|j<616Tb#rK(}JX)6?~;8A2zmQ^iM?Euk0F25NcBHmWKL9?i= zXZ&CMpO|b>gw{Bk@u-_)!M4UeLX3v5-@YfUR|J=-wQ)W@^6)TsG}7xSvg*ods;Iut z=(STtBL$|xRS2q+|NcG7aFSm&t9li zx@&C>RKM;4nyy9H*CQW&c*9}RBJ;!F|5TCSpft@~n&x7aL@9-jKYGn~zWXV0yw-5# zai=b^7K{<36#akB#AAI;JXT1+^XZ;oEj7Mm97eo(q75o_yjS+U(NtEp z!-tXAAKb8e5qWr6If>wMAviXUc zbz9%IT-UzLDB@`KvCgPtFYU=FOCxCn)9S^oRXXK+8)&sARLL~a$2g<+Mr)1KlCIfZ zQ&~#W0iW$O`F?d+W3XQ7ueInJ3*e<N(BYbgF*7e=cJXJUOR+ zZmZI(4H#_C$rQw@&RMGF>YHpr1ae<} z%DhtRjQ55qI*O>@XAa{THxcL(uhXg;7hGN+6-+3MaLp3CDyd+9_KCTPL0K+Hqx9CZ!s!wLj(c^ z?_d}vK=s3GX_S^!8yX{nx6~rc>7*2J>viv|1uGC^xa8u3BRI!y)bno9>tGxMsZ^R6 ztXHbDZgQl^Eomb_-YZ;YB{gvl~mhc$r`EZ*w=I8Gzi zGE#C?wukjPcw8$}jJROf9Xu%~ZVx-Wjm&GNlvOp^uN_T1xn$1k%+;jQh$Ur8E#zhy z#WM{NQ`Bs+(kPO3+moQiPNDKRXJ*O7rjm(<8fAqVX;q~k&1j94b7rTw3TtlURqKoK z+VkrAijsu8#}k6VsZNAe8?Hfcp&Rpn51o;gE3I0>;Ao=E1VimwfBP$b2fsajQ;uIh zXYt(BQByR}%{WJhsHsM7l$uy2@vfCi1Av@SlZ8gjRdtF^-PKaIJ-9P4jgeqAoOQ_+ z=agSQ1W#&?_xB5?byq`MF+Q`ux@L- zAy|T$s9BiTm3dAK-V-O!;2on?G)x?tkK|zpI?anAFa%gvVV*0}vi`jbx;R@)Z60w3 z=O7rzI5@^p=`3?es^18j>+|yF3UzJsIz8DBB_F=N!aD%X-wMIuFlu++ zgSxf5acYFaf{zAF?V2r7nv<3_U1RnuH>%l?u?_j_6XVL|&s(9O&DhpFK5d$v0Z3~? zvsxh3s;-Zh#;k*Um(0YAW>V3{)=@uapP^dMutE{d!lTMlQ@NpGmq+RE^{73X(+&Sy zW;;gP;+(P~$Eb#s-aK!pnsiF+)7jGww$`Epf$cS)AzhocaeKToj={nh9EZ{I!HdZ6 ze0)W#ip)u$Gb0T#l{Kp|ff$29O;&<8gi^7&;4MtkfDbxhFJizBc_7aFgI^Ic$D*OxIsj79zYeb}4SPW-=-+KAg)szzS6z?7Q5_Nc zHnh9pHBbHF-?~5OFB!lYi|e}8Z+H7$pZKjI!4u(BooM@aB^6V9At_4n)9=lKg?Y^! zPYe6D#l%>o`5uy7u?}LiWGwqI@cQPO{q7oYw7g)d8u3)qZNeKM>TVn+51Xl0YYfIQ z{onpyAaMSl{>SRRYM$<$)|#5eh^Q9M`Dci_p_YY;;l!RF{?7M#@z4L9`-cY|(1_~I z^t|YEI_EgNxZ;Pu_bGq$!$>QJyY?Mk-2N%v1-lxb@wA?#jUadY#)aj}>%^1+AKEVJ;_|L`AjT2~nMNIq);ZW`5k zd>l1Aokyj-hk!MXR#vQ3QiG+aUQd=vqv6+tS=HF4G~IvnnrRoBclIoGBUYQjel6G9?5!c0Cv!&QrCP0+J{&1hdgPPRz*@^l6TJ5{)P216 ze9B8KNNac>aNbc%?Pfi_iG!}WRNb2hxH#aOYV$7Hk^S`%(S{$vSj|LiMJO!;?cxsI zTE%&*Xk4f9BGL>sbvLr+Z3i zqHec9S(ZMWvDBo78;F{ixFL3Grlq!~nZ?#nvl<`yZUCgnqz>?kS~62a=Ov|9Y;?5L zcsQPDG+tj{k)>eqSW$|r+F$Dx5xni1Y{7||3+3F%tzm*^^bx5mBDKc>H6E8tS~RMJ z-gK=wG57!?#NgSF7GoNMMViAbi9*(x52w!Pnk6fE=dhjClh)kL>7W=PSfeozO<5+z zRBnbyZI#xP?@^?&tc_@`n&{=mc`2Ocg%AwEH^f+$C9$jvuWk-ZQ)J1Nv}(=eJ)G7| z@J4l-O~^H?TX5TkSyd^GrcqkvG#d~{ZI=B`NVf9s{fS)Q)vE)$*!bkt4Tm9fJk8YX zs8TsS&df_DCw1bic#N^EYo>HJw4Z-|X1CvUin8gD#Uo>$iD$kp)p zm+G-*OG}8lnG7zn8y#a%gMd~Fjm%txIT_|2WGp>1F=#%3=0r89 zV)5QEL=A;C4T>qurO+177(Bb3TAJ5lskPHMOzj(lfVJeNH@In@y69_QDq{@PNsG9< zd7-@p>5Z;;O0f!qWj72&uK~Vy_h%LJ?n2MNvW(s_*UC~GWAyAoRCm$fx!!q7DlBtV zoBKg;`nDBPMaZcFnyX{c$PutS%nPL!ymegfcD%aXv8I)27>HgSAg!^SmowH!LRxvj ziixV1vE79)8=;8CDp(g4rEr$!Drs5BSsMV&`g>jslIXR#%_BxFMO-*GGMXl z5(sRRx69;wJA_N&bz2j=~G%3tE69oR~G4bh-zQDeeh=zgz0-xy`g(D9gm)9m5bA$4xJ; z^eba@VCbDwYx(VZ4O&D_q)!T@`V*PPIbDstYNdxzMEQ(6ATt0vfH* zdX$B=80*MI4KBQQ7_=ZWKrKS0s%a8{^}Pvw(iPT4(FxV4w~p!PV5?L`9MvIFdn(*I8vMG=!?GfI@F* zmHI195TkjNSlemX+7PR$hU=7brCowkq-IT6gx~{BI!i|cL%lSm&Uu_|RFpnxr0234 zea>TfO)=WoluXSl)=b#uaClNmyt`j16pi2LUI95}b+Ijl{WLHRBe@jTG_#)~ zf}w~oM$hd|8;@Wu;5aUofAjer568rd!^rnOzF{{GJe(d7Yrv~JGplOjn$wJD>%be8 zO~fIR`uAk51*guq0f*Z;Y%o-#kz&zBy@zvQEtzJ7>;1%zEaTuY)^bh> zT;tV?9U&OjRdu6oQgf#J$3zjs;5>r^k<3~Y)MAE(RnbAQq?)T zWTjy*CGq)Jcccv2M&7*G@!fHtzN$2NL8-zi6-pi`sbIaw#lX5&&g;zM!;I^ZB7gbw zFFD=abLI)wzMZ zhCXc7x;EFq$3Eb!ANT8~NnTOCF93ORhxcF-`0A^Epx0 zdZ7z9Q+o`UB^V(DVcbQ`Qn-7_q-;PewIt@bGEM`2a8wGpRlIlqKL*FYJ^pPTzjm|u zKl=B7huVZ{6m9VYf^9hKY0YVU?HY~(cBEOac`)b1>0zPNGuBj2r^Lfa7ctW;RgxNu ztd(^YPD`ew%41sb=dRNVJ#|JLG|ReV-raqrDdf<(&z8{#9OV++JxwFiZlabIs_B`D zj=`&)H8pTIFZie-zt=BDT3!f7h&~cR!28DaaNug^n7ry+N^4XC&YGSBXEDaH-@|U4 zNJ-JvAqHrLAy_JghsAK31te1?^Y-nD^SLlgp5_|4t+cc7O-gFeU?X#0$xT?3<0f8l zHF=I{#yD^x5Q5TkTB|ryh_)dfQV>oFQq|}HO#(9%q0hF3Q$KOt6q18q8VbwcDjrOE9}OB;1YGvC(5#r zx~2Krg!lJ%JbeC_ylyXO0%=_oT{dcFRElu-c;xZ%sK!J#V1p+{rQF}nXN)m?_HX_r zQk9AmeC!!;fpcnj*EozCos$-&+$}W$jqB?hcp2~!)sdNgU$kc&0omHqZc)_0H3#Bw z9;V%db6#njK<$O|Mhn<(eEP{pytu8@uwciXHbA+6DP-H&!?@>c z53KbqKYb5>eESK9l3^`CrAVO~iW1fiL89a4)d}zS3~?g3g2>9-QzHlj$y^1) z_5O+w0&6ZkPt5YoY31j44}5+9NSjx@2q_D)R1B&Ut!2eX682_zDol5sc-0KGDj`em5{qJ94S|I->ht=njM9J}PS0 zgj@^GZjGS<9IYCxx2lz`+Wa6!HIStDd?#*YO6XpkB+Ou$T&sf z6nK3Y*kiD@(wZfP0c!_R7C!sxj-P#b&zvi_w*&w14?g9^&4Fc6`lT}l@3*>2-;WWi z0qxFVZKIM%YoQ=qjRCwP)ruoCp9&2_UKQ=U+6QbfG+SA6!5YhcvJ64Lrnw38vM>ym zk6!ON9UDt2oJwNyj==@ymhc9e30NNpzLAPUj8WZZYs}fO&K2hk(HNGJSz00@oVrtM zvzAj{`17B9&gc6`h?ZrZ$we5)0T(Po92ld;xJpBKaTVDgJp19G`p*D2*WYDb;O=qZ z@jUbOyE{s)oae-O$&{LKE)l%vvv+5Vv_6;@jMeyvo5RG_VNmzlDo}*kJB+IgLu9`n zu&rv8M6mb(sb-R?Oku+N0T&Wj2;M>w!s~%td!}=28oN}%wxkg}eo%H2j^G3P{lKzj z9#1pY2(NB;>c`Mj0#TYFSEUXkhIy&VBN7+~;nO#hM(vn^^OBW~7Al7+kXxe~9hj6- zDXDNbSK2&l2I`#2U4EuRaKU)TI7EVXEK4HzZ#$R&_V~>?e(h#4C#4MdU>SE4!{DiH zRt-hd3?y$=>tW1_i^A1zpzZ>B=egQ_z|}MoBN&&}Kp?@q7UpH<;k@wnSo!?@nN|zY z8SYLCKl}2%hSLselrq}D&HjdQ47eb8A22j60Nnt<7$f@tSCi+(^?|jlEIog4a9u+v zg14S(4NFlv%GGY5(U=Ccvp2RPRtQ9#6pT~Uj+&U_o@yP=HG*qMvlt)v=9?4VTduA~ zqSXR04g*3Vc;Urf%{oF5e)Q2TB>@KF=rpU%MON!rav{%ZV6(1;tKCREM8w&?;XP$m zdQ)k&;eEq+14+0$pZV!ee@4mD-Tt(Q4gz8v(lp!2Xk~dp6Lf-&o=>~QS9GetR^eaJ zK|Pep^o({X+LYegs4@4;9tZnSCL z8b-LFl-g7FhO4`Ec4w|96y}M-T3f?z)K~kg@dTcup4;m7gjR0N%Tp8dEe)mVcG4zL zDYy`MarJ`V`_T{h(eHmsE?Fr$bK>#g$hs~B?{VH!OJ$x{mSx2TOSz!+mRt_FF?5rH z#L`xRw;bNS0u1MG-V=w2Ae2@K4N}$b!%1PcuKd-%{4x3E#Os@=`KCo9Uc3drT@$@< zYUU||0_i#ygdy0D&Ua_d%Qf`4fB^Eeh+WH!xRS;)KZjZ zGhi}(9dP|Sj>E`zzWav5a8J7bhVz$S;-J7qGF}Q!tlG5) zz!by?A4a%+bA#Ad*kX{}wQ{XeYE^oqF(3`!v9s1Sq}Dr{G2QlEnF1SC-i3fihZRy4 zy%>#Vo#m_)Slb#_v{{eCh&0_ttkpuzpnXxJYFN5)6oe(MtflDnD=?o=UDL1YjPqVu zIbvCs%$gew&*O1n$&K@QQL5ym&EuML&;HY9aTo@ro_deB4krz3g#B)ZvucAsM%Rsu z8oOa2j1K1w-urIarN&F%E0f3|Op~r9ZPULQi}Rk=1#Q+kUC*VFYVE8QrKft+v;8`y zz&h2`T0A8zWOPgI@wnifjRw5nR+Qd8fvRE{!dMNdmr z_f=_~${)SnbG1=YLL_$viN+a-Y}CVu^Nwt?2G)xjkFhn3MTZ)usdKcAJIcH$5W4AE zQG-2^4*xfUaWHzr=to6;jUw$*cNjNnUS$)cz?=)~n$*Mv)h<#S(hR3!c|2EgQHhT= zXEKfBT$rmGB|WS&|K!g}j$iXIR$C{rw{ibpf8H z$YGqiYjk5?8+Q*gZyz2h7Ce@Rha+pQU9;P`vw?@x%$!!N)8PBy^*(dXs>g>h(C!(c zXSeG}w`7JP;QdHWmRbtYH}<1v7$d{}R@b(s-WA@f{K^=Mw3*^;6D^%OfH@s!?_Cg`FMi_l# z2!Sy=g4-xJjll8CII787o?6ZBqUSkUTY*An z5Ruc$>9nvr3^dWAB3KRQb>1*o0Sew*4*LOvp=7~0$G96Xt&tmKXUWYYDKk1P!sDP> zmDXEoHOfhgkt#x&7o-RwMvN&qYiO>KQsaEq1yjv8dcnN~M_YO{LT_%&hM;W}KXXBG z=na*%hA>1*d5X4xP1~pluem@=?ScqxjogMXT5Ee?v`(CCNA{l3!JaW@`g?D+HwyY1 z+68I@Vy)_V=u!?^z8x`xE`2o&caIEOL$(xCrMhv{g-^SQ&{__*Hc*p5VQ%{-e9k*6WY zc1e`2(4Nml0bXy&)#32$*)CdUe(ujw4t-|BrtR*75$2en6gA5-Y7j zN?@ECSj=C2O*4;t+1?>nmRvoD{isGZqK&u}UGGyV;K2`?0ccK%X}1UK$g+~kf-{yl z^g&l^c&C|f-f7%LZdJ{rP-6!-bi4P`Xa;-?njPBx=bH?ObL6Ij7i%D(-Gvbym>D*9 zhG4N8g1t3?)GF;QsNf6zS6S-_1~(kUO2Q z_UNAwBPmx>>BF`HYf7Yg?s_!SwU^zg*Pn@lBlLpR^y|nPgZFA8(pn`BL0K%lS@hoN zI%TerC}?E9n#O;Fov#^be$$%aIMe`93M{%!^m#38X;xWEfrnqSc{^7 zhpR~gy(>5dU_zWWlb~9XI>J&_~uA;iJS{#XngmBD|TZfEfwo^ zXm?5lvqF=VX`DFh0yRNSXdGMA$S*uPNbm+S97c~HCJtj{Ksf9m4uNsm;jLje1YIJn zMRFlpH94|k*bRD~Q%Aa+=)GdPF2ta*4+Vi1ux88O?NL!qYffqEp1+HZ`0@(lG?Nem zrd6ysWt-K)IKZbL>}b{?$+GjFTr<`gsuG-g*$m0kJ_hr>a)vRth4GR2$X_uWkmU7)sG7h8R8j{mAuUVmAe> z^BQCCPd@#O;N(Gsn;oHZJnZKDb_%(J@{8`v73NxLMADqXhG?j zj=SZ^5H?*^WEd>LG~T@25e83iur)l!6vTLKNSfZPOH$23E0s7zY-!k9d%j@B8X-DI zqyd@1Sf*(4V^m{@2Im?x5_xOR;5OaFAjX~>-X%3zv3aCFq;!(-Lk?^%9*ox z>qu$6P(q(KQti_4^dj`4Z`29A>Cn!WZ@8g%);uj3n;C*Yx4rL;U@x%ShRpTX-KbAn zZe!zlzM*+?L^WLKP^P1u+dpe>%4GYf&us0Vewkhfc2uhCJvX_bpfo?}#ozO|2CLl+ zwnuI}H_g%I9q7T;{S1NWpOuR98n$bV;B!XSh8Hd_mGgOF7FbJT&D|9)D{Z(n0V{Z4 z@zQVzKJ+X(7^dDVim(M`tNWz705=3HsX(nU3 z7EVedq=Y#>f-{&naP{U5*Gs^~d%iwLK6>>M7XpGIjuRw};7RMsS{7>3YpLeS=kMO( zYs9?LK}K+UmON7tj16Fw_LoyetTGo`t}KryhTTrJ!Fi>m6%j)W8cpE5a5xOSy1ga# z;y(ARL*IufLsTTNHNgf?*wOWOeZIs;|EoVp(0Io518}*OC1TWrQpqrUdUUf z?sP6#M3mkeyykCO@AW+xAzC;ui2xW=xw_dCY#^=bf+>9;yT1=C>%uq<7`ztSB@v=$ z+C_3+F$7vuq(xDxg0tF8Q&ppAT%cmRv%6+8lI`ZJORJfZGZsr6h1OKBcCnr_YE zoi-42!g|BamFiL-Pct#7(GOx-aw7|bF(6fl-l&I#sA1r;F6_dHp|Pe+6GI4wF<6G+ zIIo#n8sjh!f?-(~ssz?zsO!RRh)lk*=EkumvIp;AH#qj=NU4n_XG*P1qhs_c)kp<|kg74HmYt<)??ZJqt4gP*0Wh*kQkHxPr?bvgBT6cn(Ke*H>!#t(yK+KlSZ=%H31 zO2Z!}hWKl@CBHrX|9Je`-^zdR-}#vNm|5qfG)VEheRpQA!sD9w`tHcvcW1mG_|7M9 zxZW9-F(Tbw8G;&^Y+eRO(ti!J`B9P znRs=3#qG_W{b9fxT^O5G#CG?`qy{%v`w?}(FACc`wO4PoFvO@hP}j6G1Hi_UZ5+cQW z#t?7_0i|Slr`i?kR+{%D<3Zfz{kUZz#6S#D`K7^Nvxdz20bak^b9)#$ACJ0G1*hm% zYe;V&r8hJi0(UVUF&pX6bRD7TuA+@~T`!q+TM55WP}Rj$dOn^uc0GmSQpAH6r-=06 z=hi3MPq~U)f3fK(tx>&T>j>yZNTj1o&U6FQjV@|>i+gEq&83jmhshR=crlUap?r#x z>JR!WNY^7-nni`(qNX5fS#W7Bb-;k_O~HmSD%Mq7qZvnZmg{lg!^1TnOnYFa7!Cc+ zsd6lZ$Cg-g#g|4b>iP&q5rdReD=r+WoZK<1Ey87 zZTQ2EYd_G+9slxQ{44Ihx#r#b&p4$OaRw`DYi&ipb9I)meGsG9iqeQIscNp5fr|!~ z?UVP$Z!5wKg0}|2Ql)(hVKmRbb2PSM$rWSc(@;X&zTT88TD+l$7bQ4}g->2x^XZ4L7=Qeql1pO#!~dM$JJ9)v}JmwBya~En^56 z58-Cedo~wL7{E9ruf)TSX}-qziQ)B2Ue+C-d}n4}2KXwVmIZpT_Zo&rz#5Hb@kog#v0vQQYlKM z4MCfT^Fqp52QposkAcz~=_>SfT<_6Zi|#A^Vl>uk6V>A^pmoPx9ad~en=xuy_VRX5 zZEC8b_m^TT+t4n0brfHYXV!HE1Lq;)yw!%UvmrKw)AV8&Yw*tV>gAPE`g>H3ZIvmg zi>T=c?KHmZdj}XI%hFhvnK&4Bhd@dT)&!Pw;W+DhJOr=0)RJkn^u12Ak4>^@(44ya z-X9loQ4_7`EWv@aqW7)Xi+;ZLHC8>dHtN2i)WpM*I4>GmF@(UnoVmF&j4|M?Mzjne zD{_X$z>MB-J@xB$8zFb&xGLS1)p*UZ?t?>PZLew6I7v;Glx{pa%MU-i?t@g_^J>Y= z^O=Sk+XUx$u^&20ZE&WsE}1nKa#h#jAQo#9sS5A!8%sLzgHK+vCgHEXc#rk)oeyt_ z(Xc!$Oe3s${rnpm>l*ZZAgHw9%rEP5_t z@C4scaj$?2V!E@s4%B?m?9;qt=JSdD^>C3J{r33HI)3eD@o`>BrIINcxOy1a-S(+C zj+|fd{_(_D?-I>bW-&CUMaVQ-ZeJbPMX$VRZwN6EqJ<14XV!V<^q9GOuiWN&IrGzB zyyNsxP}RCF+)^5C&I~UMuO`prgy=@xG(v0)hlwgeaF*Q^7^25ItDCqn)ODqn%n+Pf zv?pOXWpc`d=(%~Z2QQ?Sp+fMHFpiX*It372P^~_1$%&j2R&U|Bbu!l*qrA! z$|#+}sn6Mw6nM%{?32=3>!rYV&RrV1?eR}m^qs;87xbv{lzVi^ZgfvH)))t5Rl&J) z-F44tD7V^t0-I}OdqOLvYc&mAqBP`k;!jI-~QukjDi2&zyA+#wIaq*eW2lZ{Q4~-joa6^z1U3r%U?7~XoOMo!=_Q2$|hBj zEwuUgRwpPr@fL(-U0KtrKYWH5ZhFD(x&pyD&lm$_4R`)_KIXTco?HscveIg&s7pt5 z`}a{r8zs|S@_tn+ztM(8wAo+N+9#fsf~894c%Hd`d|>+7ALCl1{O~`A2DT#z6Ht63 zHQ~j}8*Xp+guGx}Ar1zqL8--bXTca4V?f$Li}POaS+qFg`yV4BOw-{~Aa~9)Z1;;% zLk;QYuvw>#x>p)K9SN1*j9Tb9sOk{8A*#*?u3x>z@2{yoV<;GFRj*})W>tA;ZBorv zrC;x0ZRGW<5BTAy-{DZtaQ7aXd%DNxq!bOwP!eN^FgQ%j9K7e|aK+C)d(S`kgCAgB z09)|4ds=chQIi{=GStdy4L_eW0dIO7x-U0UD|pT2+IR(zFRP##0+u8*tV!uQNF(HJ7PyykA*T(!#uH zdA%$PCFkzyXz^iG7DBLU>t7AQK(O%ceCGbVAhmHbjl6pEl6A3s@zuinhcn3-s`ZpC zv^CLMr5UAj8fgs9vY!U_Q`AVQ!C_2OyZ;anREl8$=QMXRSdX(_HG{Uhlp0GIB8chw zf7L?zjjhqMBrQ5Tv_?@wseRbz6y;KVyqdqLq(n8v&No8THCRNQzcr_~U`2I<(qK1@ zeQ$Ks3e_~MSBkAhVW=)nL~}~TIN~`GIwPet)Eo%iC%jiZm3N_MY!>1$sa2Fs+AQN3 z#{pwJ!#MJyHJlMb9CR=2n^qN}7NzWpG$&ftE;v2IFtsGFL5FpJ+rok@s?Tz=ZZG3 zu3}xpSi@j+xTi)YP1hoW<_6}Z>s4pzw5n9zI0SMkq~7EV(UaDhoJ1oktm-7Kv8+X} zQ|Bx%UqqS-_yD)BCj3ropHL;Y0uew%F-m;q_)XJP2O_ZHut$T{#s#SLs3*Ltd z-J0IOAQ5n~;tSZe75b4jFm1<{z0JZFq)i0HL`y&H(P14dw-XPgJ`8pS~hhCDPr zyd5cZU|!UKY=1RTN+T^r2iVS#vXD~a_;>~b)76g0(}~lZnCDEchEyBtvf#bv>M9~e zYjIyRw>%YXz-u$Sdo0}DovFqW28&x(TCNC|I7XZ_0>Th2xJDJhuK{noo_7&AXU&BD z?eQCT{Myapzy4S6s4XkC$_IASg14nxYP+7#Wcm1JWQ^+2sXTBPhQRUu%)2EsFDqEX zZs&En(~R=x-#_sF{fX1ka6VF`@w3n0@@GH(iqoojQODEB>9C{a#$gvZ3>HSmLtR+j z-r=0#uphA^I2yYcI2eO!4Src z+N2E*61%3xDY}Ukx@s-G;zo}x8h=pHyh(2xWnM|A6Vo_hn`M1mab78q&Do2tFvhSA z#V)0=wU=sK7ipuYf;EOVj`;n={xI<7lh;H)@>mkZLp6eNwF}fOwj+4zGO3$~e&*J5 ztPIi$ItXuF!`XFw-S}p+P2VyI4V`x6G)|$`Ee^u;=FD80JDOY~GPb5cdPCxz(iV)U zm3t{_prF*HEw)1)D8;l3BDFc;m7)dBMcXEuDzTfi7)7}@$}5H^daDlPb&`9bk!q7p zsZ2id`o*5zFfdx!A0{;%szvEoRfu6k#4yhbwH1abvSy`segDH-{_fxX5#RfxAMonR zL$0(Q;NG0=9I-}Q3uRHaO=G}#r61+o$W^dG1D?HTE28vK%b$01joTM5K?+#GhKRVp z&Cuy0*Vh;vzkj&mm-A0)^`z&(2b_&mS(Kh;EjCz8>yzkK*kS@~KfkR<3Lslk`0RK_ z4{g%#Gi!U}O^1Nxa*i*<0k&&Szei_P$G3fVbUN?Woodgup~^~uQ$t$m^w~zsxqttV zfTc9ek&Ch4SC)WK^9e&ljPLoI8KKgqKr=ID@~{X2WnM1htw+1d*U?lGXFwI%?~@W>qScuw1C_TNF`ih2|U4IlTAO3}y99lUJ8wqec*G z>L|2RJ^Hd%)$~iFh+)o+yW`CLL!mUoe%up+s?FcNS7&S!B0j3IPjrqi-o4{ACqPYs z)@9K=Jp^lnVF>K^6V9sZ=omC0e(ihRoD#JetP3;@Ysz2(!Fk5PV@)IHr4K6{-g#mO zSSqb04Q`KvW~pHr2G2AN1Ow4o#$nLGq_t`y7dn;H$`k9O0%8b3_ZsVLN3=Wbmu|?^ zDVj}$B`aG-omc7Ej=CoW*N1~vo4DEyko*u4w6UZ!7+NiWrC1>^Gn?iw?UIJEgTC^JPV>`IGo;z>zObgVbT zI3coL7(lHL;&k?^EEbIIx<;W%!5DSCtu?C&6kH@7X<0evGh!OM!$fe7!8XKconc+& z_9|eSewWq--n{Wpz=&fv4$v&MWKQ!5V_=Mf0t=V=#_D>Lg_63Xpw+>qg>ER*SXQN` z$EezD=RM1EM5GZ$6$B}(CNqXWjC$V|>-xISWdPW!kk>+O1)M_-%`K@EoKxDkcODU^ z%!wuAoy7%DD=UWD*B;F?uC1aTetxx^d?$tf{ar zi7`xg@7W!8ynZoqo>#3YiZIWKhlfarfoT^NY_W|ktlIfNbb(rgcc)pKUEA1=o*;(# zm{@CNm<&T0pedN(yu(&?d#_Fak;zVE8f)!B zTt`02u zr08Jxi$5-zzx?8X&)+{X1VeO6KQTtw?M9{{upa}{P#Dh%;~b?vV2oiLJi93p;|XH~ zZ!N7>QclD%GCfWV!+;T;Cbep@&TE5Z8r}tB3_T!OX*Jebrg2o=i0&9v(VWS&3gDE2 z(p?j)S9dkj3^`?nB{85j{H>#2TlqX&b?u8oAPh<$DOS-2Bfa3Gg0&bw@K-;7$Gkk? ztmpKw@Zx4-&3)0T1!?h;m)LOG{_#I&qQC|J_+#*`=<&--; z6fg$o`g3)P(&kEYaXFQzMiFTjN^9F(JDu&#Vgr}ikA|1m1I`HheZ-paqQ5l8=!OO4 zqCv>h7&xs9*uaPTJ-539;}jWhMocP5o=|$0YAK}k&s(ZagST_tO?S3tz#y1hFjb8< z42JLj55B}$!}Q|%QrKIoPLbo)0T~A5a6kk;j0e8=%Y{Gvum3rJ_0!MU?FURzt8Wpb z??dP`GA*#2HTV!N1&N-s&3xu*sL_1``(ZBERjrkrOSkI(m4&ANNUuGmh*u2(gif34 z;5F8I-I&`ZobRpD)_*GWriM>lo3l}+tq6bkdq3oV`0xEb-+O)FCx3c{0Du1<{t;qA zr;G}%WT=@|gx&QmpM3NIHYhbsnhu?mf7<%y-XH|b*tLKg5~>bPePCfOllW&B-P4)s z#UZv2UoeW|RRBkGfhG%2#y|ZrvM~*~+?&G?aJJt`rC{2OLvR={1tSL6ET!wv1fBRd zN!&fW=ck{4#vlLT$Lw|^HCe1xEu&Hw(dVgZaA2{RT9}4`S1&zr{28A;Rx+00J#82% zVhN%dhb>l2cEmPdUfnQWzsF1y?5>Hy;A~>b>Vj<%MNh5iW;+#cGQlKD(-@cSR2FHF z6Z7dvlc2%sYr%?u@#^&JJ<|EV;)D=1=3?x*iZKR?vAy7K-HgRhOHqRwsme4F!8W67 zaO>;}LG`5~48~%dx)X{sI7UjVI&5(skw9ha`Z1;O4Ne2OgHZ<20M~)@4F0;PoIO0RZ z1;0HIXAQgE_!N)R*8%SxzB5;Jzcox#ys!*f)nRRndM{dIE;0#YAVvdLwXxQADFYp? zYw9|ywCtv|a|6w2oCMiWOQ&NRm1AgBR(D#q=qlG$2e#j9c3Z2lc;7Ta;PU!lyjRvh z>%IwMy3?xZ1}}lpc&raP$Tfzz1Z^HMq>@P;Fe@dKvo?R~2CIfC-YBER=o4Pnn2l-C z`f%0Y)cj7mPO^1bfz=F3TE$ys=Xlew!S+}uls?^*V(jcQnM>1ivw1?ark~N;2&NBV z#nQY`L)JmIRsF9um0B80ZTh`E+b6`R6RB|)X-eJ3fOV0BmHr*8k43HJ60g;2&TWy*)$PS*2o7106HBwEBnGa&$1-uHDgW2AOt5}b_F`&O1)0GpFMn-Uo&$sBs~UCWU6SIjgN`?c$Y2U0dxEFnJoPdq2U1XJs5v1IVV?!TV@2q6@CaejJa9RD>lZ&TYk^v02k?1hM2) zIj@CrGTDl)a2CK!ewT%*M-(>W{_s(OAZaB5Ob}D+Jv>0PGRGqGSEY4y_gA~-2 z&m{)$wWtwooTP6!Yguu@^)O;f^_50Ne84o#cxqC?Ho^e&!--I3iP5*{se z?hbuDqT*7-UT_GVq&c{VmA%){X^iRaYE4~9`{Yvk)Ciy+9VFf^PYb2BV1FMu&upCUHyQ zXnkt7O^X}Gv(&Uw zAI@++U@N^zHtPOpw3sQP6W-1ILHc{N8$H)qjC0uFkW%!0TgN~6U;P~G93uOE4wQPy zamEZI>?WiKBs(AY-VZ+IU;MMb;IpqD*iV7waaH%p9$Zd0?oh{BMTM-jio#GY8<)D% zN-w;)AdS!3pr=V`x7PpFh+ySJhi_kimeiu(OmjXl|naAecH3jSH+WV;cM zRDo{R@yVyJ_}%Zk=JPR9X?*nES3uN;m4<7gjY<~cwC8F+=sU3*46SpACj?pmfaMYk{7f*pMEZqPjP_)1S4DR$6B&=;CEfcU?8G&I=8Tx4z#y%HWVvl@((f zjYe%=(G(FzYj}5m;^&{;ad&^D&@^D(d2X))F^sfk$t|hAOf2W6kk&+PN$KAx8^#BJ zi44N_HAGp?j6Sw*A=&BtTE)A$vHFa#%?$z-FZ}zF4r5THDwH%6?)kRL^b}wJG@mL zW{iV2veb6e(RBFQoO9%mLdp=(u8hPh%i3ydl+56f^~1txiQa~)6zJv32TIDunfU6xQGK%ZRA?P z8%7g!Pm~5?u$Mt@A%x8ZxZ#~)w^J?aZ;#)+E{3si1)o+>)I&S~M@W5GwyH0}V0HM;QD24V%{3c(3DSgSUpyS*ppOpGuNfft8~ z*RQUa_LgW>ho%c?)&kvn2J47M>7phoEyY1Za-Z3~R24w`ye_ z47C-U3*GKo7)FmYOPGQNdK;%A>Dn&NP@r@>=NvZZ+E}Y4HKnLXsYouEs1${48n){z zYwcma))6IQz0z34YG`Y#6MYPix$8p?1L9A7M;^uN{t?Aie z9oGrUnct{r7ZV)2A)6}j)+Vt>e27k3@u~rNf6SD&@Zrl*k%Xd1!&3FUnrg^JCxbqy ze#s+@hXp>k;-frcA0DY+Z;gAm?aoCFa+*#*YbhA3G>*DilQsZ@8v-!e@awf=QLkxOB{{p)Gt&beUxGmLU;%=&Zd;G*?-njI9=a`Pmn|dpwck)rE>#Ore$3r|yO*dJS7&Ninhb#P!y+NV{B{8zOH6Z7^y@ z%2RV~ItA|LfBk;|;O_tUzkB+;cI!2JW7!8WLLXRkvn_J&0}B*cYU(-%TqvcN=RuvL zKX`M^#iaR*_j*WmnpiZDbG<7f6=i3W2Zq z2pEC*1Y99RbH_CxU(g5%34w$ykSN=fi?XY-Tuo+WW<*A0L`K9pZ@2eeYt8vIgNreq zx%P=FyR5i?xQG>cPrS|AtC`L7jPW1;W`4olGV{G3e&BmQddC;9J|JTlD-QN@kD%%mlS=#%cY8&dUdF&)7HtE|El#LtO4 zH}}p0*LA6zYapr)6q=!o73Y4Rcx+2;jV-T)bUPzFXFYaD)ToTiqX*KZX?IWklnVb6~ceh7GP4hhG zjTj&%h|x5krBn!k`R0y8OoR|QJ)P*y%`sv|QlTM~Vnuf!1#;VH0du2m7U9+P(OD^t zoP{YFfU>O{^PG9{^4{1@s)S&Aabp75d6Uq{F_1%Go-)faGx@$?aRkwT%ouID8O-C_ zww&sjzqZ=N;Pro3RDw4&uAtWLu^2+Ke_+op*0^I#c5PYNZvpOwwqHMGmwOCt|1!@6 zk2O(b2Rys88>-W6yBlnkHum61sfC=(p;*0{4eqk4nCVu+G@`Yw2Fi7R52wCsZ~lG3 zbuix0T!AZVzT7lV+)}R_3>P$_SlonavuQ1+ukTnUX9`9HvWca-el?)InaNBWLyKrr z!D>_55X9-A;R;sz9w=hjhSLEIDorhl}}zC`Sis?h~_|CdN;GgdLmXc*LwZ>mTfHtJk*Y2Yy%0Pk{pOP z=hdC!b7$s!aj4b!xMkthRfNIkEVwX?KFlUZ=;^5Sd90OCHsI~HRKJnqSq7sM_I35p7DRDb1voxL_&U|<(e0aLBZh}gt z_cPnJ+KoYHEtQ9-%9n4RIBlK@)8VpqO6hcM+}|F!T^c`qxAD^tD|s^dkcc&Xy_#Ml zijae_%z^v6$l+iaJ_$1@Se8hhR$755i6lnTP=RH!@a#ePi%H1AMC4sNc@}PNCt7V5 zV-YYBJvLnpQ=(SWI_7EOcypx3;u8_G%#IoeTjS}m5vIt^iv@{+;)Qo;!BB2h=6SX} zu^b^-rjoHv4MnT9kTvg4Y&TP;$3&&_c&hyQpS|I-R+em9KT##;(V|n?edOP9^hJPXpAFS7)XW=NDRICotw zpw-M1Os7~%;nLRKu)xcIHyePIGk14)_Plk2U}h6j&eT@+2$w+vT$Y8_Do;;O-n52Y zJIN?M)f)^QSx4+tqub@k-Q6wU`1B=z<=0>H`tC>$fd*Vuxzx_(sd74RJUpFv|9IlE znX6&$jVT7BOD{rs_>$f_y&Gl8K4BOmPz$aWL8^tnx87;4SI8x!=Zv<^l9*zog~ZdJ zzXXKW-+EvQrf*AeqP5P``2oo@OPiny*5LTPG03+=V@nidHn-({ z$~oxF<2pOe`-BXxjrX9~(iNI|bcWI2RDx5KBkR+dw)wO~hf}jpBfBC|S(cgm`vX}n zP|Z9ADmTZK-}=p88_`CSLb1>~rGxf%JZ5HNUjk^8tc;c^I9{J5*{m9%wyU8H77FpG%6^d{< z-*Gydd-A0`Qd=iip z-nwptAe3$6!w1Xv%_(xaoPEnMz)8C~B0^)CBDZ%(?v69BZ|~_rT#f+RV7nCFy?f++ zDLj^D(E;m9!wkPtFgL~C49qOsX8W=`eV^7seS0GOk3> zng&{k8-;Z&w=p<7AjXK>xl?O(e=&FBZWdLtGNzs4y4m5PYVwk%3OztK9|Q@Bkc?rq zRhvTB%`|bQ^NgStOLJIejAfy&hfiqt$s7fG-Phdi`z1RQ$nMutuMDBCohUYSZ=T5q z(blDI6DK4YE!fSvv?;~J=Vme_RxfmIh#0%0Qwb@NoU+>S%)f|DFI)E}8kez*{a*I{ zOQN{UY3yMJfTMO@MKJCEaiVLYH8ns(8&l3S4Wto@(h;$`t2K*E z3F5UyOq8~v-Og{8#Ad8fN;Q)?QRViSIUY0fVrFZXQ{x6A_B{k-c~fBE>udi>nY;;;VNN0e>bi~JN4LS!u)$4lb0HqKk; ze6GB?tklzq`z7#d37{LtL*m8#$J`tb%(H2YYTFPpUE#8wc{)`do|H?u@N_=$=ItY2 ze)YuT2|`MI=Zn{T{@N%-wKfii#Qp7T(GfV(D?&(#`Iwj&Aw?zjKr0OifxIN6bvmMJ zx`|gG`o@79X#SwBqGERDJ}trN5s0!(6DdQfC(|Yb+d!TkpZ4o# z&{5Q-Ya zrPQ(`x`=B4eS;es$dQ+5M8f9N*Jy(MUis!{AM@A$`d{L=zH`IW3$d9i+@%#OJX;{e ziPPo6n}-jSR&A2KHD0`U#TVcDoay6_Nm|iT=*cGZ5jArqw{?#)K7(B&h|r6h3yeO# zL$A$@L{R?j|LVUAz<=d`{C}omMMDUc?Q&u(l|Uw*3s6WZ=!dUpAAUl4eBj-=^3i-i z0;C+h2=xhJSD#d1i~@nuls%twZ{7Ak+94i4e}#FUQBb{6RNa4m3{UM+@mCzvWh-5r zF{#&UOXS+r`^#S4QT6&epDs0o$A=4l{D*%=-Y#6`KSfpehkxgfm|}zgn>I?f$-pvC zeDTGneDR%ckUx24MVJ(VikTbqYLSI*Dls5!!RcFm?=y6}+qzSW>4RGd#BiM`hCs&( zfc^Ldq4dU&fAk}s9zX2IY#eUwrbmn+aXcQmJxN zOMmTG_&b01yZk4=|Btx+=$>EwFZ>E0zs{7dJbrlK^!6 z(TMc0H)(h@Lv$&D0aijxfmRHhs}3OLkf=G(dL@xbF_ZFa?2>Y(Z!2{*AS{SAm%*nH zMk9|fWn#|MT8&K+4D~l4tP^8mN)~6bZL8_#QY7U}>&m*CL*%w?h*+dXEykR%=p&PF zgfy`hW$TKHHx9wpTC~}H?G0DVH=N)6gome%^VX@Y*!P`XUW#ik~4>SP$ny-R8-9= z)_@tKqrU!!IaCFP0vkclyv!N!z$aaib|y)uKeS~)$Qk;$}W+HGAjBM;L+rIr?v3@RN2-G+6s5~w|w&1C*0lLct&DHYoXUp=|Zb* zr+x}HG08ch1h%!>)MT2C$}CDPux)2f=L=gk2iDr4_6@~Y8#zSN0eVwPusqh*l^E2V zSc4VZQ?|V^q)1L_cUKj$NnuKfJSC@VTj3qtYzf75@M)~C-H(%yrpR3kdp4vYC3sV1nV_PuMWMAZku}y)Lw9F-I(sxsh@M+(c`^>JKM_RO z){P*-{r#N{2R5VKYw4EtxlGJUCbR$=i6NOUKs5l__D4a)w5~~nk@sASJ8p{s8BMLO z-l|1Lbk9uOm?vc>7*3cYNu{Wl0Zr?AqrDU z9Ogut?1I&v$jK1+^EvYV-4hEdF&(Ko^TQ11$4B12Kk@Lsa9N*t`|g&HU)}KPZsIl` zsh5JTVmgfE&5b59cO2qO4$7Q`I4^YRq$M-Y6PMG;-PR1X+cu*cq$c!D&BP!Iq(nJc zZj=N;wv6V2(AesjR+&gQCYw;U%I-u~FNKJqTPoeA4gx(-7Ukd~>UHbSsB(h%7{69) z09wEU;GHH`#i_oIemjy_t4-!~N<6m0<`XJ{na=bO$r>%{qgxd#ZYDAsFxy}-109d2 zz&-^b0t{Mb@cb}0A;GjmB9;NhC>Z=Z4-J=yQ(jb|U$p|y^AOj|#V1#*MU|vzI+SFT zv29x&ZM99X6{DpN-CC=ibG`T!z-Vegu0^*x@jnC;V4FU}v@e8UUKMI>h7G~Y*-fMH z_H^Oz|IzpP(3C&;{vAh!LlA^c)ke;V+iB+J=7>aLlY=>mYD8s2YcR7BtwgILsP+~< zx$~=6wJLfr~DZOJSNlEC_;_`Ig<`EbmjQjr-s;D&A@b=N!ta|OjvFpTCUf* z0QErZ!qy9=BvQ2vUxH0W2IEkCBB*|yqIgL8L};+q4X;t``F7!4Ctpr677v5>zhrL_ zM;AE`h74n$0NpaGqW|;I(OA(k+-|*j@iFKg#S+3k-Lp(N;buB;n;}tn^R36C|l>xzV|&oynE*~K42JD`7w@S+9g4e3KF_g#uBlveDd-I zAHBR`&WT=ZjoMvKF>16K$87w=-~UJa(Qp4If9)^)WpaBD(&!<3Bdm~u>8N`rcAKj7 zxDlxQ#%Bw^^SA$fwx)dVzxm(g^%6LQiZ&?ahOK?fQ)|3?-1z;!^Ftmk!p&i3(q;vF zJ`k2b?BRM&TS7xak`i-6%LcuZbhAdaXL44SdE&4fIOLfWK=ncnLd%nB6~zLlL%2q0 z7(ge8c6u$QE9)I4nobj6W3V-*wdQNIy;e*XTE67T0Ipi;+T8HOwT?rR9)kaW6Eahe7(h9ix7He4v0OuI80>Sm-g$gn=^f@NaXcn71ZtHi2BIyKP$Ja%olP_?pUn*WXd%AftVu8{o=WplV{;oR4XYiboHsb3fdq> zTSr2G<#u8D_&}N_PUo{ZbE^SfD&~AlD`t9kb3hRuPmhE!k(|*H#PpqI+vpw{B_U8- z_k6fOOg8O|(eAtEnzyY~N^gXi*@{IfscTznZ|0t@!+^ypnjNZI7GCdtkF;vtv}fHj zEQ8qk-`xbQ){PV*W!nI2W@Cyr4IIFlK&h)`vZm+&3;VtsqiHjzMaVrN5?GeQj$;jq zd#Tl>4dUEz zP*tH6B5o!mHqgiG4{;!9FrfzX1A-d{DYX_`mP6d{>8|d>pqOD{SEIZ8l$S~ z!MZi{@rji34yxt2k+MzkMQvIbVjzZQ8O+#3F?&5U)_d_ir1nJbfkxx9HOeX=GkKcW zO6C2-iPp{#0;L$BHN`-woyXdFcUn0vf!n!qShCfu8Z0VJJJPV|n_zm;sM!I5Up{`( z9zS=p_@_VmU=C5qoC13{+R5a>()cEtvI*sT7qojIX%=D@O4ztOS)&jpnDayl1<}rB z-FP|`-aVWsO*n6jAAb47kKSGQ>irXsPldNn8}FW09xfYOz2$T%&`eJ-Ex|P(l{rs5 zeOS3UE*utjzYB@#g64Vl3?&zTU)BrTTA1U^i@O&{H`;3niiSeWi8LDxpsPEPVkRvH zoLK>wQzjCO_pLDU-*id@iB4&>AwwLwiNUE`A&}i^&=A5AM}a-h{*sa1Ce5@MMrSgV zENi3}MN;7Ka^`qvji{(v@zXmkHMh-f|+(Y2WB}6B$56K|MfOlrCz9DlvGmFf@urx9RTwS+>1x`R9zhKIUhw2#3XANpvY#>CEE&D`_Mg?In} zG5WpQ2VGW72k6IARjCTgl91N8JY6`QDw2dH0@_Whl`<-3V6|O@`7jYvM78=R8|-)t zeTGlt)zRf)tYe@E`@OX{zvEuBJIW4071w$w+6T?lO^#gq))3yE9w=qoCt~{*?fY); zopvc`QIHvxX9gd=aF_$1fAoqMcQ5(s%~w|%uPt2GHmVW@e)#=A;ZMH%1KwYLhu3K$ zc8iIyDQKfLn?Yz$kjTw@#eI!f`-aLH7XRnV; zr5G5HJg?6+rHHXBjN+&SjZV#NNSJ6%=}njRNWY_r%R7 zjJDX_sV_tF5;ladT}NZ(?`r3)wuWwH2d$J&618{;Rhw8!poPAJTZx z(?n~*&f!6r?_SX7z^liNt*GBWm8cMVA+$oT7Vj{{%-wCZC=6|+kO)CIEQ>XX+EJr` z(0WCpQQuUfQ9j+RSX-rBE-X`GT{j|u!#oqGNL_tE=qga#Dca}GrhOD~ zX@=N3X94GxDXL9%)SgpXMadAXMlc@&+w-a#P-B{N+4c7gN4Hgonh4Q#w4PZAV(XTB zCG5KG-gf3i*Q>!>tDdFnjh{#%MR~?}XpZB_vnI^wpay0JOpn|5yyJa+6QPYY5ZN2n zVYuGBu`}-g(?Yf`yJ4PSY#DVLtHown8;L@6Dk|<>AnHK1`ra{Wm1nG%y_n)!^C-ra z5((G8a}B=MKFS@_ESp!2HFa2{G*)kj)Fx*18f+RZLBCdOL;{li-s|e$N3LrPwx>r8 zggAjln1+_n*kCb4n?5(IvubMwa(e#vRvXEw)~%^)OF^~yUSVclIVVyIdu8(+Dnx9u zZMm<)l#MkP1#XrE*fhGeK<&){I2GPM72ZCaczEo*ovL}7gt2QI^>m&l<{XgF+_cfp z|1TfEaF3tg;O1tgo>yv9QZ6Ix)LpNhIO~^5EbHt1w zTBCL4e1S^~d^lA;Jgz*h!g9Rj^-JO99n6Otmczu&5|J=*UO_P}NN<50D_J5Elz+}~|dWR}dJfgRDxDOynSZo4e|WXESAzPJweQfoS3 zWF_ie44Vt8Iic28>9y}%eBe3_kq9cj5clWn>MrC@$&krfH_EnI!KIe-H+fdsXc7i` z*nLVE2xeyB6A9Bi+WLLfDB8vua4noq%Z&Qk_Cg;=npqr zPzXWL%^mqdB&SHD5n>{RVomDviKBxaJ1Xs)Q0s2G!?OnGndWX7yafNL7$PYMbff+S z2PAMX0jyqVUSvc!Gjg=X^^NM+-*xhsr-g6-#&2@>`6t9#IUX8uNgU?Lgi)bGvI*!h zCwd6H_~;{++oNfJ4U)D7#-lw#iU#WJQ+aP{yil=5-x{iLn5@Y2YtQZC0CPasEhEy&XuIozN*y5lH}>8#zlrb}wQnS(Pn0*|4SG6YG)%M2kR zb0W@1q}kdj-6k|m`|j#G95`*-fq@sIBroQxyCJFoo;Pb#$V8e9P%EYGw6PR~-pqy2 zrgLWY(Q7l!l>?9Bjd{_&GYX2R(a>(*={S1XauG9^yu!n!q*$BT^pBnHe~^}KP} z3MovKtr*ipm1VjmNo8IPe6xGWrcj+oLphz#JU%{gaf7wGHrB0j=}OT^?{=JHgu@)T zyIq)LWX?)2jq~NgTB`5E$pK4iN`=JnIJu@=nWxA+WqK?7q^7q@tKHV@oE=!`W=Pg7 zvSgYq?!w}H3>5C#EzdG#>Shk&vCuNhPgsyanpwX!Mt@)lYYADxG`qWXo?$b;O1Guxb6>O@% z8@2f!p{@C67lymK?(3_#mJp=dcP_1Z9Wwyz2GZP`1l#WtGkVA^>RVT!J^ z)oQh0cGE2P&ZrH#PDUT?cHD|Pp*Em4rAVU`JC64MW#EN~RAaX2HU6r#PU+3oy_8UG zOerwuYEc>4*a7oATmGV0t=|jE4-Xd}KWy|4G0(&dN~dYy z{o@IdMiO&&3c$zErPxXAi|t8w?_~4#U_bq zio`6aHp*6w^PdyaI?|QPd82kA=fs*DW!rfB@I+|~^K1xUtx9=%Eziqm}v?o zoS&0L1|%z>g-CCet{W*&J{?RPU*6D*Q3F#Dw%!?&esj|@s*&v>cD$BlAw=Qq8!i|s zlu{%m0|rXDY6Yzjv?vV(BJ`aIA#L_4k9)>E|qbtxFlt^(Ml9`MkhT(P&Wx_K3t7SdIr;hadj<9Y4S} z_&Hl)bv~aA`I~0$Zx2inrX(zf4e3gX3gO88=aG6iVp&#+s1h0;6HOXb16xR3;*7RVR5P8D0L|%*m*vK$Jfiy~S!G6JLV9xg>qh(Vjz9m?AMn#J zKk)K+M7Nc#m?_fD?M$8*F6E3|%(N+`$TUTIpIK`m$eDpoie7bxUwg>)oanPB7%lnw zH07#$ln{wA`^4GwCov|}?+>s>xzu7)jc7%t6~dOsHRZg!@tUh0ppE+%xBR8Q`Y-Wo zfB7?(>5>2VfAp_I5PtQ4^8X|gi4mj9^n#Rv5}5Ap(8FTDNd>x~j>IFuV}Jk+*2s4= zGLa~|1`)shn?!45M2zR#9VBvxMFBK<6TLeSZV)s5f;C^-=vv(z*NeFhM`!mPjk*CFGKNkwje1i9(P&<<_fC6SK^qbyWnKBnkKgd4pS+X1 zlja6It`}0u(3Hbv<911C3PWwXhPT=NW@ zPg-(5Fk&upj?A;UZ(7U&^y*_1g=%*)I? zFZABHl#A>Bq4W;bu9w!KI?cIlg%ld+B%IDG?>{^sDbmHVEJKJyi3F?xNMiKj=u`bE zC-P+O?I~xXM$?`7_1|gxG!3k&1)D5)F*%I)me!o?(?yS{5d+Jq>L6yaY*TE#8;-1g zr&$b{#2wVl(ZSp9F%QY7b+I!`VlB(I2^Bmo&)m-AsRzWOp75OC%^%wE+b2p3M{l`B+#4d~+19P6qDU-60k{Jyk5!K5+ zwW+NmqD%*mF-V;a<8ucGIbx2~9MRC|8M0(U*wpgPQV7gBF-;T8Yzt%%lo$3&BOY*^O}A&8=7ZC`{F80g8pyhT!zn-pnlx*`J$|WqMUi z2Vwn}p}yL!D4Mdllf_^*{4oF;EQ^bYq{&J9o!nO*fAWSu`IEP_9>|MjDrqswW0K&D z5rAp@O4$fac4Q10(Gf;{O(D?Lj=^}?aPX>K0Coxr_&IcUwo!1!7_YGxnDJjqV~S|U z!5Tz&G3$MQH|;){k+2u2_=0T(3)u`n};|LA-?5hjhD0>MD^l!kIqmSx-s=m z)QZVYNRc1?8M`cNQF%u^u8MwZ4L0!bokf%m7v+igSA#FP_<6u4RJ zntyuuFM=w6`1^mr;b1PtqDl%TiYF!xhZ}+_=h`^Fy5-d;FZk$_SNzHMeoTzY(|M&9 zn9qX98R#^vrgIfD$cS;FQ%N}yr_A}hF}i_qh=2C+929WD2G?3dcl5cdWhAB~h;(Y* z*y?6YzfXb1U(W`3<|x?w9zvC-m0HVAZQ4POuDtp3Oa2f4`~MTKUoO17DSY<*-=uZ; zTmOrHo7;R~$pMK`Y%*onP@osj%j;%_(VgNa zA)^v``fpfMDi4oN6ALuI7bFBUMd%ncS)fZNl3Z_Ckd%;ZgVK!FK3wIyO(yUoszF$5 zL+_ty5pN8q7_XDXXY1P@+tP(NWwK1RM%%#~m$MbH zwOE7EZ6O;J!);8f)UNANi_!n<#$`JrA(HZp=Ezg)Je*g$M;;LZ=M7HV#iBV1ND}I% z&^DGOb8~yc+A8Jk1Eo}!Y2xnghU4wDQ{HVa2c@yhN2YAn`5zunoK72BlsP7PNUW{! zbbj=hC}pjtCGK6>YDLn-b}mdYa({ndN`cGi%(MjV?rsSovaOqCCjyskrD-FjNRE-9 zM%RyXCTk)En-umcXcDS6wxVno1Bg=0TuSHZe6g&=SP+Hv+*nIB0In&^l3A9C5a4`% zG;_BYxNORHGAC2*D|ybuFoBy_9VV+01jv)IJ6dh#kcjPiKCS7kc|k1P z=?xm}9_-qQp%JvvYoSRbr-jC36Pp&eIo$B-#k}9wtr`fs9424${1ywkyF{m$P!*~( zae6N_Dx&rowcB)A_UIP_{a03kjOMBnou+J)tnTZA?Tr@yA=Ir>XjhO|u4`@SV|CZP zmI!05b4uixuBTwmpo7sQL_$1zBRx#R*kAkVJD`Mijb{*oH6XRqch&=x+-GSY>fS6u@v2m0!2)!)ZN+B4l2<#wmq1ua_?%BYuD6TWY~3K)b913 z1N0+m#Qu)GmI14ATCKZ_?C>dQU0tW$cE-(Eb4LsrVsfMbhj;h4z#G*x**Y&#d2yJC z!KT3d{xE#Hoq}t$*5VGes#ruz@0>5@sHCsGLj*|t$U$(+pHcIc54f3>*wlk4VM0hwC@<||6dWS$}_F&$ejlR)aWjV}t z!zotOM-QqEM*k7N>9%#FTvq0oI4%}49Ah9)wg5;peL@Za3&4Q-6j-~#`7s5S**2m* z@D&r1SGgi-A^{xX-Oj5~_2$5|WSbDAj0DSd5cPP2ZsU%jdEBYBZn~ms%_nLU(3@r9^N(Kg`sM7JCs?Z)cO0jMu9dZJw5nz$ zD4j4xj?;nfeDRuJ{q-;S#&7)!Q);j_caVi+?Htz1$D3~o0fYv%ka{Po&W zji(498qhL~3mpA64Y5&?p378P8&j_lV`0}@?~Nb*;E#F#)x_-~aeTN?Tjy{6zyAP2 z;4r~F1KD%?Lg4k?Euj_k%};6D8Qi)ZaDyV7K4@3h$a;=nG&ed0*1z&A76$(KXbfnl zIQ6cC6luYxv)NH{qFAGef;Pe-LEo%6=zc8a+3^!lv0|h4#>0n4%B7;I(#yprpxTh~ zNTQNMvgS*=e_rq9FzuMC=|-O(ANcaiuW0o%I)>^8368wGn8!_E0AvSw^okH@^Qp4< znq^>2_jnL#cJdVU#Xij677`-VsqYhgu@hPZj!mS{FrkjrON`1rjw|O49!q)gs zc_QWmak0sVb~Eg$+e(zgl5c3LCjW@0NuyR;v)r=fn0WK6uVLUp5yx~Yph$V%gO zns{-0fB=t=8*^H?xt&OpWycXJDG%DA`vU}Fy;zKqHl=QAVdSl{92eHL@c3{h#l$Bc zzoh9#JXMqny_)DECIM&hq!c(D7J|U>CX;i5E|kp-YjQGYSoLeA^}0LDTCQRuXrq)T zg4i0`fua_#5mPXVX;bWS?o6H$oT7Opl)56()(LcEAa}ag1GP2-Z4|(p2njR-tqdKv z0e&GyG-qqt>ISNIeUSHk(Trc4{-aW?RikU4yN+F?d9T8dW!hK+cJ-opoFH8mRXQ&G#txydc>33U0ci zz7L=-!*IlH;B7&IDR=yNf|8T7EU-osu9RZ)#c+LTyEf)yTD+fMuY(}a6pQSrUMGez zd~qoXMv|EZt0bH5wl_1b8h|Whj|4Ji#a1e(^M%@t!dtcR__WgAuNHUq%f~O=ODXGaN)FdBxG*p$cy95%liY3ii^sO;3iAX@J5?XTuhejM|w>yU#{Uc#M zC^o5TVsol4W|toAzNAO-4Fd=bY9)y40c-P{xT7)Kg0&XYpa9I42RRV%q!xh@=0s`2 z`*$nrS`cj}CU?z%1f`C~OYInl>vjg0em9swUE^nqlOcRYH@TWw`gBMfJsWg5pDK=M z48R%$dA6D8KD;+Ylo!KK%sh z2BjKRyiL@$5L05F7U-3j6LHC`?ZUb~ahMZ_W#Yr*3S!Q|)3UJ^i(@G2ZhR>)Wz#{0 z+*zhT!eR)9KJja($veB}ab`dHXdQCC0&EsMeqn+^8d7 zjT10afbQ4FaI5P?KE7M{*5|j}-Ao++)QY3O{+GU>i8`fMIoA!kauWjI`sQc6{`^yj zh3MC}7=l3-ZzRMv?(y9;2$B;LlTDL+5*0(-E$}g%Vz5oUNHFvu_}J1W6>e~m6XeNs zdMf*RX1$~CG%#AFoFC}LXn{sUjx_0n?TJrc-0;OWK4Y0Om($scg5a-vy*E(h>B9qW ze)@)173tMzt0sU3-3&#J3YvUz)p289uYo>{kMwJ=Z^KJPnl*qLgeq!w`gmxKm?0LU z$Wh(bDxcqZ?rH!Gd7mb;)Nh(0m=RQztL9ZP^BKWua3RvNy;?}-2C2O-OP-3+~t(FfunP$bO|DC3$F|+K);@6{H(<9aawK_t) zpw||NK}iYIM;9@$1n~yjCg$h!iPD_eB@V9k?u~Eu>sYOE!NB&IAx68VyK8M_WcP(Y zoUZqvs8O>;gt7(G#yPm!6fSG^X3cc1%1RV*lOn5KEN?mZ`susGXl#1lb9N<|nclu; z1_!JVf9|4- zUDL&Y$ze3qoNms3OzVD*!6=}Nbs|JYn>g0F@#lTrz}9NJ)|&C4{CJ2vI?MOUZ8T1=NsuCFzcfn-k470bj#IwATs>(1mO6PsW)Z%z}ciLMqk zvXyH0_zw$P{pEP^7wz$LH;XSmI#TLHN)|8ByZySX!s&G3@#)0nQkar0V#mYG%a`}u z91Xop!6<(*`b0>A@$g%rm5uY`g@+F-=W_=Vj~^1!E2nei?YnnuRheGgGaVQ1ro{b= zg`2}<)5I)HvvKE5lq}@MG#W9P&M&1zoK3@MH z(TfM0BnH<oQ?wQ!P>?@H}SA&ryU)Mn$2}_s@8DXu}!E)Q$(konsb>= z?X*D;YEy&`LL_t{#l)Zg=na4GZ~tR{_-AiXjkZ|y(R>bFPt_x9Qi}SwWJ?Y zw$^1BX6s~(S_WTO+;>ulAhnY-phqmYR)t!2}PXQebbv+l}kc>?Vt`2N_ zD7%bh)&8$5#8Ld(7i2(@&qMUtEOkC=WsmICGhlgVSD#PSQIpp{1~>woRy7_Fm!5AWyaDRFz8pl=9H*A|Ou2*I?p z>W!A^y@q?L6})B#A6?^irC2N08I|W>{VR5ax)mTp z_h?O`u^q;B4npV_nIa(~c|!68A%R+ZG-ywR(Q~UAxol^86C}(?SOMd$N-2E$`V+qO z?JqbSkDMMq*!y_%B+X5H{QcK;<8(Tsj%ZWe(bP|XO)r|QO+j!i0Vu40<9GJ{ah!Yg zMpCt3>8PV9RP$+;ZV?i}tFke*v`fegZfbA4kwuVX1+haC+Ki4Fq|uW}C{#LH`_;@w zaQ(J5zfB^gn))UYcs~-V1pSyvPTVm^))g2Tt3CtquoAp>-%th%Iqh z&#Zc}9{JuhrElM#*jAg6-yIfIg-aEB2&A0JInYAl=Jr4@f$g$U6ng1g&KF_`yncD) z?rvdDfy0!^9?w*&@>I;kuU2cSQ?{rO)XalwaSuu9!bnfaq$W9#a-wy$Jll1nRi}hXvUN9GNP1a^BYB{dLemPOoGvT9 zXP@%orgP02e<^$1PjVBQkfMVb#=siU9cHxW%}B7d+M-2dZ}wUjs$z^SF`8v?3CGwI zYHdg|-JdzRdJQvH8mIf(UOX~>-4JGEbb3u->%Fa+rBy_X7Hst1t0Sy>t)blkU`D;s z_l8Tm`uBBHE~iUEa9w&NM$nIV!AE?5w*9m1Q)NZ1iGBw3H?@7Obz}NOubXqS<7+z433LKce*ETR=`$-4Poo%W=pRGt&|p_n;t}bdMVAO*TQ7elM1YGza03+=dTI+z^j+HeDujJ z-~IjvE~Sxg?*Vfq?6EV&#GH(lRkg9C%>B*G)2Z@qbsi(vNv{u^oj!O)D97YUoQgBD zp}?BH!<@J~X6oroNW#tCft)A0wmnC1D}{y$^)Hu=X-Z~84=nSMWtk~uCC0?Mu9T{j z3L+Oi`}Q~Z%m3o<^6Be^r~l(UDEx)r`VLt#St7x6QS&s@o3I>@^tO@b;Plai63sLT zHPe|?pcWh7G$pz&nAQ<39RGL!cL3i1jo-N*2h8=@8acs6;F0TYE=X@kwN6@{0(QM8 zoVFxJ>>ZOX?aJk{Qo2xs8Ei?ZrpYUXn_J=YZ@lKCPe0?!pZ?SwJk{4qUjl6skKlb*vA@cyecIcM|Shy=lF&Q+lfoU;F*2VZWza^|&grs1Q8n z#&91yAHi83)@Tin1=AMiWW#|R0`u`;$J{?#Z`S;$lqk)gikl@j&ow;933-O04- zwttSUqi(Z-N(k!88)LSln9R^n#n^vp4&!Ec>Fc+zs~Q73^qsbn7>jT_dF_^VNzrhx z|K;Ns>+y3pi?w&?kyecg5MncQ@q7VnnwE1WM>XwKGQE}3-9lPv6>3pxHFwSs6RlLt z2iPvAOM|rvt%)H*dFG36ea`t(Smpz1nMt!)MvQD|P}a3^dOXpa+2$`d6UV!m5F@qt z6fGoTwyHJih^fG*LK*iwb)HCGDxcgV<+dZ?+X)6Q$>)nv@;f88oe+bq4{(585G914~ zGwHJgE4(~HL&wj+j*eZYj(*Z)L|t5`iug39cXh!y_UdAKp_mdujp2V?$n|Qt^Q`zD z)Q=FN>Bge#7ek_ICM~yo{Eg2!-gI&(lqWM)%1h*OsXV=EOt}z}5+yN(M5#B_R(LT_ zyt>KEsXA;L`Ikdi$A$g)mv=|mq$c6D`x6D*}7t7S6DVdgh}{oDK-t@Gud{e;5}#M_B~?{EK@4^PV9_?Lc-?W=dZ zdv|8l#+)+=;mzX%AI{30BB!TEke~3wck8a#^~3J~!Lv!CPn^bcREK_KoWf4brmG5C z$RQ9D&>MlyG+Fp@?-reKe!8%3Mw?T2O%;ix>}E%9=8$tBB}Gq_Q=2$l7UshppM8F7 z<`xK_e*0U@Vun;r+^9exb|EYiOaV$|Xk8S`TpXh_nG`+~8O@Nzw#c(~+wOUZ2~r@eM)mhA)pV`OZu}x@>rCsN%V{-wSBz-vgi!7L*N(^| zzxFF1@z;OvU*Nlc{KxdN+4SA6G6Q&AXLub7UTxrU5UV4EFd2Q@c)-_YcNBkPbl~3) z)SZc~8B@RH#rtE4Zna;E17qSk!@g^nRn_+n1EFH@DYACzwz54vASocr40_Fs6NI3V zkgn@Wbk;-{VUY!i(biP|{OZ%=5L~C(qC2x*&9;IwAXJsPD}!3U(_{sbK5Hzy5{Jo$ zx`ll=cTJT>uR>{w9*?ZLalTYyGcc(J;lugD<4?W<6%I>AyKp%d;$#z|S{o9CVM^KWpRCzdIaq7}jO9LZDMsmm(DWi@lJ(i=}(;c088*(yH$aEED)fhpgR{Ceqh zG*09Nnii%!aeFv0CoARi%cbgCmX%4Xm1`1)(ol<;e6g`U76=2p>!DrJ_f=#m4%LPJ0!^FiK z#E)OS=5SmrE0Io=(dgJQSzp{3u&U5XvBqM%a9KCDQVp~LVmh$Qvo{5T)Q!?Q=d<}c z%=1D*$)e<3EmKm>U%{raiQ_cW@Yog1!Ll_2zBSl2`gmG-`~Ha!k7shq2o_eq%$aOq z+q+ISq-eD0V!`w&PsEs*a^Nu86muBDWH-EvQFc}n0pgU1`?WIGOttGhME6~As%1BW zm&va^1&beXC++UQyD_=cCyAyz1p~(v*jBvuvl^mQqtzO9dQf03Lr}ef3h`>}XXZFp zKsx2)sItH(pmyC0sF^k8X|hS_aK`q!q<1q*8jU2~rr04wqaJ&nb@K^gS2HIE@mq z6FEk+Vorgs6QNc@RpMIMlDQ_`eeH5(|>6~$}2_*hHbZ)7cPpOTm+%CizB5OgHa!4+b+X_xg> zZg>zpGtCRWL76}e$+KF_k(iEuCd&xgX_~chdRY1JVWX=#FsgJ^T%>5s3MyiIOow%Ido`k zt#A)cdzq(9PC{#r{-;EqClq*EH_J;+iSwnIrkTu~C(h@K<*N2ho-P~@N2ACY(~nXs z59c#aTVU&tXnP=Cl;8e0{tl{v`Es&GEcnE*S4X#JJ9gb-DF!1_V_XX(1Q2uAfW4{m^NHdLW7iSX$-S5EweDv}K$7Nx?Jd9gzH?>f4gBTIhDh`$c z!J}ug8KTw;UwrzK-~DU9&A%w0vz=t>=I@q#=ALdfo{7(kmBU6xB~ zcZ}a(J}r#j`!Q&zefv{y$oyh3zLK*ze7*C}uVU{0I>^_U7JFRYi!`D`+Q%hp*>k2Eb@ z&YepWG`?qbMq*&-pn6m?q81BBkwjoEmIH^t{q2#@KY@>4 z-Iy*_ZDRNEbV8*QV|Dtm0pHq%lr3j75J*9oj*Ha;A+T))ofA{G#$hX!+AXWGRRbTo z2DY{F@Ob9&bYl6+au?UCT(*ML&Xf}K;s!nf)0DY8E+lEp(?p(c$#eGwz&s&ROr&VJ ze8r=?4u^$1Y??PswvMjr#`$8J`olaSv!ZfjN{K0D8U|`4EHXm{vQr9GgsnE#&+Ob8 zFmHxLLBv^RwvU#fJuQvWI-8&G7?S~iDC=dTc`w z*lsbJL$ta9SBP$?bKPHd;Cko850jc`@*`!Zm^W1#KCJ|&uS4HD{d{pY)^Km{*NI(M zMn0nL6QjtG9pqB4^ZID6LfVHG=3H){XE=@p|C}1Emb9`)>Df@YkRoYJJO^9KslbD- zUrT!?GqU3V@hUGLG5`rA@FhW_oizB-@bk6g+g-irW-z z<3f|6_x?Tsardc4E1m6OG(C)Zv_oJ7yCP!lcca*Ky@|bt(-8(`GUy&RV1?zgwo$$=V3r-F z8pUUG^u-oW(JLx%os1#hmLVj>l+n|f?R>JFaFPpcu;!NG66#YzWSC{`REhE5Va_v- zo4GvtvbWR0#?>J^%4feiBiK>#9<^VaGt)c_eWopT$*Ec*-B7B%fF2v+Kof1zjA5Kt zcXagv5XD^)<(Yl|_#Ri}-;TX~_TcE-A>~v7zVELF?*Q ziJ_4ypmBuFdm)QAfU0QO>^LSnKY=kA7*u4XMoNiwdPxX_pkjX zukUZ62fp*K{0NZbtSt4XG)gSmty9SI(G+)r@B2%E~QXjzPjUPUJ%UTva6C)WLsAhrFFPm zHlyYi0}Z>n8)g)Wz!rl|{Hhh0t&PBLlMZNagl>$arkmg6kaI?LBSc|YgsDT6fMRhQ z=@6O4jifL}kcwxSsxeH8=kFbJ=H~8}lqVz@Ge(+{F|ahoM2L~DcyPR57r~t+qeZ7g zpVXv~IHbwhL4m1N^8`?v&`yVgY0aB*dvjnbw?qllRydWyJegKh2Ai7C>GUDLtW=V6XF8YmIGF_e80XMPloDck2( z%&06y5HaV{t_H>g2N4U^9Yei#ZMIBxEEYno1TltP6qh9p3a10=4t5(YecRU*3D$7# z`pU5mJ_G3Y8j;a>j*MK0!R`YIf#H_hdZNTaYtgloarcJkqoJ(r*;LTnZB@D%Hg-II zWMuzh;2Z3~@Bn@B+A;dB7=vBs^y_C-H*NZ5pZJUW__>?K%VQ&DxVxXZyA#Ve3W*p^ z+>IBY!LwTkCbZqPSIu=LY7@z|R%&>ri^J%EZEW^p8b9X1GAHIkCe6l)Uk(;+(HiCg zCQ6rT#uULDkS^{<=ToQM;m-_Xh+&^Lp@#lNf4-O8jxee5w|AF8s8}Z0Zjr4PP`&2~ z`Y{_Qk2Nw_Q-x z?5Ld#y_7HL_QdNVG>)PDlKps&iY&MjSRY-Am=TNt6LA-=kN*uS72fn;uS0Q4A2eUg zBBp}?B}w8qA9!(psQ92>^qX$)nn<)cJRYEm%$p1@j2~o4>(uK^mOY6d9v%THoFdTW<7UK=SEBm z-~9X)tyCVKPL#Uv)3+DC`=b+6yyX&CO6_c=(zJ3Zn-#7_-LyhE=HwEEQP%$Jsr^I2J2(4RQ zV;I_HH)p^h6~AVM0eI|p@P1GGU3LX?{HOQzXFT1n`JX|izW!3Y055@*lkG!c zEIR(qW9=HxAA-;Qg~NVj{?l*x{Exo=>NuY;==0BCasPW~f5frw?_bS3=UoeaH5K#A z2NmJf{SDvvJeuiC@08xzwnj(nzTB!cWCWY~mulK3Z%{`=4mN#JZx(y^u=U<7=BHI+ zl%2{SJJj=qC7B~_aCgHfaCdVsfXAn{UG2Cl3n5w^V9gbjYC3;ait8#H2 z;>+d0>%&44%gnTJ`Czdet-9t;EXG9pJ^}UNnKjnYfX6_hl}N31-#=9+MlRow^Y-SG zK#z1Xx@R#z1p&l@%padtp3WO;W6a+oLPYz?eRU@MKw<-+l}5JM;B zK#s-q&VGZJYEwGPd^ByO#budvz??#1%8@AQ_pH#GHRgDXLnjb(cE*>pk3>ig_;hE_ z#OO>iwamg+8`ZNwQw+p7sFQXBw#_0#T5ImgYG8Fr(Y+P=e*bH=3E~vZ_{JhT#3d54 zubf>C>~W(Czdsrx$-j%8f05v^VV>jYthYWG4-PC2lfPOkgPICn!>R6TQ}Am^pRJoB zc3tKaoy}&AWY^%|8#l}WRg3-*5jHo^6ES0=*6a;qG&xpxvp)lP+P*)HHFzwSR$B{W zB&2HI9s3F=KeNvM^6?At__>?K@Bhg=jyH+B`-vEo%W1V`F${G78Kn$EM--!+gy>7C zTVxx8SZ(Z1H+yRl&gZi)9Lf3CuDe+~({v$QM-{3F&>c{-y zANnvqF)oinjneF;G&Mg zDFn-lw8gGbicN3^4Q!xR*3)%sI-(u7ri1o7-W%{4br9>d)EC>~>egC$cHHe}YO?_1 zAi~x**0P$ITavpRdS;WD9`O8BczAbVnlqn%>jknFQb<-9VL|dSBzm`rM#uu%&|=f_ zfT4apn8i7V*^oQL3-C^>7rQ<~@_aWzYeS}pXrfD}M~|av!JOEzoXn2DmIxaY0?er+ zz0ztSbbn$^T{;(LGeL;k_v|6_jeXFn#?jVTCu&b)YWB!(03-&H0#(CUewzPpga z%Kc5`+&h=GATe_6jezovk8b(!SlkiLsKcfsvl~TRpAlqGlf|1O)8=$lZsv(!`<2)H z=C?oM@%;lghseA458N#?w}-@Gu0~S|P}U1&GZT)jHXh%-CC=95C6q(TEIAQ!Vym6U zOXbp(!@3gsi6BQ1;ZOhlZ$NK+=U@Gi1=nMgLFww7t3ogI8X#ti%IV$iC9&e0ZUN95 z8eaZ`c6v)dg)kvnmfJx+D7TmtT{aUAsKj-HPh%n^}I2U#tSCce%DFaL2uvw+$TL}l98B|{QXs@^Zjhs2P2NyC<*YTe{K<7ARBP;7 zu>u_5|Li*(P+Dq1TIYCwAWl{ohh(&FV!Q%<0NRNy*rZ!K`1;&y^PJ`CkrKAnuUq9* z3Ty3@j_L4Li-|CnQ)I11D_xs0JE~{6i5dpbRM}eR($rjCTj$lwTaKSa!jhPh60)6( z-j%6aq>8zPdhC?=a^?3~ibG!qbVwnxZH>#NBQc=_H%<15WHcxE+UmZicf<3TrUN-y zq}G_=y#DBxm?P6N6LMm$24?l5)CxTW3ybecR%_y0Yg}sKw5~j!3Xe}0p3W&q?38NzS)LLiaR)}kkEf~`dX33rsnr^Eciry_Q=Z(^ z#woI1bJ}P4&$rb6^6~%M$Ism?e)ms*%E*Ad+$haM9GWA6r<@6wgxm(GHOKhg>q-Osco>RIc_O1vgriz4cw?3ohmT{}ppgf){U;X5fz7-CK8CBC* z*g0;HlAlX6BFWfwEebtP#APCSR;Zotk%JU05ZSf0Hcd7g?9jn-GZn1?NfSK*tvX6r ztr76+;?IBZ6{5ly-+oCZ5O0t4DD+?(X9OkawMcc4+bL!-9Lo-e&gH-dgyH4$d$73_;hAl6>aAJ zI%SJRK#XQ5yNjW?hg&B&<#R+uowtn-rxR;g$r^$TYTG-_Z8D{3^gI!cIkC(WAsOhIyr}I#Xd%)CQp%*L9An@WHhGFU+ujn> z*u?DhgEiK5Gzi^jcIS2DTsLpJ15f7*PY-8$ioCeH>tk6vV=D3ib;Cgzk#8VGcnC`FXD z8@2hgRxY)>u?eKEOwF{3YpI+r7tSY}4wep=OJQ4$a=U3IrUXPvNoM4y-5R=OX3Cjq zisT>`y_5pWoLT0{403#Ld^$ZDU?7>zwU51b)@`Gd!g5GvaF)fiw-U|ivkxYT0kP_h zeyNu4CoN*8vcfXYF0ocZj^?6YHd3$}Fy?6f9Mgm#Y-Odm(OE0aX!^-wiRkL}tYv7* zE>p7jo&gG>HaMx5YRlX+XZGC@UVM#FquI{O!KRSS-n)C$h&GQBYR_uhXimqbh4vg+ zk)4)n5~{Bo2)0&t2~K+EMjcb!>pXKfW?!#jjAUo^sVY-WR=fGI$4VdbqG;VUkL|jq zKZnbH`S`_o{M^mrzx=QLnxS8g2p#6kvKY#3rO6DEfr84|l!q?E5mSGyq0@^_715^j z(hP-Y>|w$W=QBTj`$&0e+}_>t`sEGxH;I=oGIw_e%RLH~8&sSsVq#;PT*M&eiZ*3J ziqAIiaqD`67mY?($_+6Dro|Qni)4tqh5S|QEAD7#^v0CZ*EXx&IaDzFcTKht2m4I% zW;X3cYoL}TCTg0R=S|{nFtblL9Eu4_bu$xHqcus0L<9{BonjWpm{tIE=jZRYrX%du z*bVKGe+~8gA;0-sH=Sc}^N4G)cE#UE2=35be!YQI9}o&7?G$xGQTo&=> zG#Fyq{dm+`e1e(0dFxRibYyEr?a4c>L>akeBO;|^Vs@hxTH)5E(SvCp zhCZ!or$uuuYJIT2zaih&nF%uMs{uyD9Lvb?xKjt4u= zF&aR!uFQvp2s}KTSsToA;&w4NxsXh2usve+S@^-5!Z&_xCLdr|P4`B*bVP=ERj0N}STZsR5*49d?@8^T z1)J0wSkjvjk_4NqcAv%x!n^$RB*PGzQZlM|nPe9Lj}HUSuh1^dlwW(4TQtCzR@YyYKxoge-19pC$-KVXW2 zcs46tnGOqw7cY=7vCqpCAR3q@4WT;v?M>vMM~x+|UdL@RzV!GkT${l0kR4UG&$_o@ zgSIh#*c;UGnu3}{g3-iYoto|K2Y@zSLZAIs_u@r-qPMrM<7s=LMK z4Do&4xA&`Fs7A5o+#0dSu}>UsGMDp(S}P$GWAgOE)+?%}%S*M9g1c|-uP;b3aJH0o zrC)Xf$3!q);4~Rvt7x5nBwPM0HfT$loJn#^&zUOZcQgp8Yx(Tfw*s4(5 zv^OEzh1RW+?O>tnrEpm{&X<+P)7dqvh0A5*>10EO5IW18InJ4*4+V@qY4<@)(FXw; zk;zPYRN2Z#SB#Eb?Zz3BMsp#x6S|ek<-DQ@EhP%-W;=zl+O%4{#zQ-;RbsMwE`$3YM^8j=JV zCU}ghAo}!2unWW*Dl2G$TV896h?oOZtDV+nUbLAPuV-G}y_#i% z&6zh$VwpZRiHk01w!b$mrsa|~iO=})X)h#p69o}#pgX4jbS=$DdF<7T(Lsq3<>_4c zqwjvjKl+0|XWc3}g}o^rJpP@6FwW69F7i*6QQjbby@R=O#U-|Yo`R%{@TYUSI2|ca0k@?~)gNkw4Y`Tn_<3uwehzQG+ndX@g zEVHdSC9#)IxhT_QQ?Pe$PP}`ly!_~v!{-a{zkEc)#PRMxoD-$3oL5MPG1Uol6{b(V zvZ>O+ObvRi)Q1yM%|SH8Z1-q@K;;`RUhbwOgL=SnSbdVD0NPM#?J??@`2OS#eo)~sp&MPDf8*)ulekg zm;Akd{6kJpWxsC)VVWm?{ntL`*S~p7+g6?~5tW7Q-07RL1=B38m%^g9DZjj#0eCnS z<_cBKvDD_)RdheG{2ouaG>rMJBrisO`kPea&24p=Um}M2bNHO{jYUi&yLmeb;Vb+ zv0j9|#pC&*8M4uT){3@+V9!9Vf7ZY6#>L}>^w}5tXFc?)Jscn8SsVELiR=sJehnDg zAVf3ANvbpvn=%D&Aew3ETC>SwZJo`VGt=7PF#?I>GOeahxYS` z&}!%ObmDxz&`^qYwpG|lB*yGhNS{&0Z0EK&QtZq*62fHB8{L55*4uU6Zss+RvPD%q zJ)Ld(RvRG&^B3ri-a1<|@Sh7Z6dl+4diUy96i0r zM{M%Bmg=T=78O!kckQaN0)jW~D2P_pX5Y6pwI)SjS+WD-Ho;QFHF+6jW-FCa3bnm3 zprbT1pYaGWRhyP+cYs)oM!FW05lL0h%_nbxyqWAMMl(UmetvQY26(9HLq~m5TcY1i z-W0o5*PEkKiZx|kclEApmzAy{5-F`wOEtQ-*Dm4)dseG9z>JQ98XdW{>L$){k1|qB zXRO`sQ9<04$K8PSy2cIgyj73+2!YGGvXzY#GxIXLX`toIHqW^gH~-6%=O7C9IaR&c z6LLzs(NrJ%(V)j-O=)jV-&OXSR(mr5eg_217>D+ZvB5Llq=_8unC|PJxY3$gO*8<- zUp{`}9zS=pxSoq$xZR4skcLjtizD3tL-K~v$ThSxI4>M`#WIRP@6EJ8u%j&@IKN+q z^HMSgRxyoXZNlYZTyoqQEQDx{pVKu0W(RE?Y+vA`iSxBLT6HHb2|Idiqw&r(&*mz) zTd3QOV9skef+MtM;`QjL3OI%xtYNl=w7LOMxKbp=7P(r+BBP{aIdbX*Z*x$?kDGDY zb2953|)}Z%_La#3k2F$=wj6Dfa^ud;iwoq7{f?Cd6j3E)r}qDZy6(GbsrjE~gDWuPjMP$Hch@qQLUVUafEu2 zKOO7Bf5!R*|BQz5XS&XzfBcz``1QwVn8*9;^~v`AhjGTU*LdC&6TGoBFk+f4n@&-3 zUzog6@9wHuYGbRFt#{_mK5-O)-dIxNFeNvtF%V+P$s`toZKHtejEAWPvv8OvGc^fT z+?!#@b(%5E*et(T*|y^H3)6))6>k>%4i=hYVkdcx&{R3y&*qd`ZOW-)(Fo>Fu58_! zWqc2a7}YyZi6tAoGtVB|)vpF%vnnPjfZD8i3SEiQfsg`AN=zyFG%TAr4G_dK`~tRj z48xProaLCE(KM*GpgrzvoMjquP_|cT@6=hThwcqm^VbS&)##hgnK><4L$5j}Jyu6; zwd{_P&0T1f&U#sm5*dx{q8+xr`FP0QKmQ z#@3AywQb7zTiN&9#WK>60i|Hty!>Aa*7*avi zJs*0f7Bg7WTAj3D^-F0s1zTMwH`as@#A&CM5F^WM44_^+NrZWxk!40PEgzU>vECf4 z5p)?9;2^&pYXhvq{@N0v-@kUWdKWrE^_Ugt)LJOca+vY+fw0O(R%2{vca}|Z!#`8u zplb1TwK$Wk38QQ1V>!(PXG6W9_cQ>*i_IYg+P^yRA8f^^U2u-jo0=?QsQ8s^$ zkLN>(

-F9aENQ9dGXC(GRu(~yQ3 z$T=`s@ED<6qi>C&jfry%Wm2S8sF6=Ty5ZwbOo!ID&i%bPTSjfj z+F3$kp1Y0DT1TRiL*UhmJJ!oeq9I!&#Xxv*Lo1e3CP^JYh(_nFAK1!;hxhL&Z$9vN zs+8WjJWEBe8T|-cCF`Tu4{hlS6{y4@(_4@Tsg0uob8w$4uSi-nVUTG@^C<;axNFnRiVQY z107+l0c{CwiLGqp6zCFps-5%GiJ;2;>(98o``(fY)o|7aR!C_uA~ecLW<>jj+w zEzYX2NwkjGh;Gw5iIuLxmtURu>fOfOe23;n?1hvfFaBr$HmLIOKlnGVL;2yb$|%_V z;#I{;4j9x%4LNs6Oi^)eW$0VXPy0dLzvsS2IURT)_8{aCm=U9|K5M)c+oys9vdVS35ZwJxoH5gzW#ZX& zY@e)qvuMf$*G-B|{FkF5#4C^(a3)aM?_crnS;~mgut~W|>vcCB8S;T)^G`P^Nm>>I zv^u+Pa4iMt*c7aJR&FpeJMD!)bB}`LF*5iBN_R<&X+rHNZQZg~V}m?R9Ky^L6H7Ac ztIQJ+J)g1KzHQ<&%S5h)l#OzmqRT(Do16J_FhXQEuxr{-6;fJAIZ=Jnv3kUG)U8cU z?`u0#NkTB7T$RhZQno^fksR!pmQt~p2aEMsFBgxT2=oxBty9*GfHi0K;dBS1qrbj6 zhc=ovrYUiAm`NCDSk?DsZS+vgvs%QUW(|}A7TIK`Lv6E@kdm-9qacs^qc&^4)~(n? zaI*Z*K_O5Ou=H@@1~rCU0X3iF~HB{N!>ns3`Ej1;7CwxT5rR?>V{{=!b@Tl z&fpr}S{nFNU7iguLh9zmo6V$dT{mtH3nIatNo~*|Vol_@?s^{%$8A8927=P9u~W5u zBG~y0V$P=O%mihCO#YIB)33eJYkgl+f|)$*`xm=B-KNw*hOb83*Onm8+QL8%;(x|c z_{+!tUmrhrv-rn<{D$?iSv*Ay{P@p}D?ZON%bb~J$O)oaffdADmFz~px>lM4gEv~D zglIf)(MWGby9_Zp$GmV}E9Fu-%%=N0tt+)RruoP`S@B~N3qvC3#dL?;y3$%xCi64q}wmEty$B&I$K>umv{_+CZb$M(hm< z&5IQ!hGtYn5qjUay*=9Eks>i*i`Q5zRd0edYCw8$vK7+UN#>R)wdN2Ms3y(sjZX3{AaG-~iMY&)|#SpnKXx@A|Vt zbEwxpjUs2b0|JMwA`;Sgwx>1o`}EZ|^+;uiEiiRoepyXynSv@wbh z2+(bE>DC{vIc?s^MADSVd9sD97E)Aib`p}aO+HKF@N!{2Kk}!4^j$tXDmRCP5F1_3 zZryDeMxqTZ8?RxsL1r?Vj`BFPrpa@mm9Xfe=J zCWXnG!M@Q_g6tbmSEM|V#ff|cBq(ui$P9f|T8qdO(NaMIhvOX|ee!~jULAONY~0=@ z>bcWO=jrj050^^q%HxM8&Zi4s9W&dy(d)+c!^m-(X*5bNym|Y;c`e4o%oExRDZxBV zW)0qz504k-Deie#R@A!QqBXw%{U5N_%2rLsl4GLR$m^F2w7|o=#xyUydU<4C?E0!r zDP^ORD9tECX^vbg$%NLC zbA@2WGd5AFHo*uP)rlP78z0~D^1gGE8*kq{kR#mR9f;rmF=GcG#$Mh9dchxk)a?^H zpJFLy`k|_X3Xzr1KmUl2KKYnG_{T=^9ZgjjnsG4)XkkSuUjyhQC^UP=E}h<=`1o7D z#pl2JZEjwE#ObGBvSc_+6Z*KZgvcQ#LMWiYCstPA=)So7^^a*iaUf2={ki?i*NTF# zwR-#C>E1Z|`S2o4x!%|Ne;xI9!s_)Hs#D2PmpC{b%>j$&E$Kh?xS~j0b&%K3`%HPi zzt?ln>}Ox~XB%1{OYYCz|6QL+17tL+_OHV%?)lV|*6li$D~K=*e6)4ST0kL5@XWPt zCLdzcV!+H{G&ip=yMnUO4;7ltAc;MsEOuo8vgBvUST_ zq*ZIcn$c`6cQ8_F_diFQ#6{cNZjUqZ?#3E~vN)B}rp_9IO&F`4pK)(mKC%JiTWws{ z3u|2&->%lmwym_%p-0<;kC3HO$Cc~TZB?t&4#`|@WsdYa^8;vMNaGLdj>q6E_82}Rh8O1#kb0oGj%JpR>?`2rsR!}upDO= zW=g5%Vjlw`F2o>|t$=p6b>p;cY@Uf-i@WxV(Py>yJ!|>Zi#w)i=6t#E_;eft=i)HZa&LWl-52ZS82D}u#++5I|LcxX3wSM8*n$xZ34v92pQ zn@Q1DHnex9X(lg|T{FcrsX0$9$85D>H=Vvk!c_-Rx=;O-QmaYGc8Qfu|7*3W`H)>% z?KQ4p@DT5@P+3if4FFZk^5d;Zf zBp(6?X&~8hWWteXTOuh^q}YgLk*vOd{kz>cXYaMvoO9&E7;~<5?tAiw(g)Xvw}JQW zz31$`_FA(UbNt8nkN;RQoTkO1YgBGeGmjomTt8jdpAU?qIsfC3I6E9T+gooR(c(&$ zX01(L*|`3fSLehbGA%PDD-nwntx9z!zqPDGoS8T;MHez)@|pVM(1u!&P`ErOy> z``S1n-gD8Yj}A)3D5)V>mMWiaU6BB4K$X7=QnKu2t{&NCZTVozQiTwNaU5ZY6rGJ` z(7;yl)W0TPx_X{hp1Wb-326*WCj)?1%w4E8c-w-~Da38Qnh;HkScMSR41wZ&{dHqE z=SAGX(pu5zz1P&_*<&2MhC^M9zyNa!u^XcptnQ$-pNIi=lebu&nu1#h#i%kVlGP6BAXv={AhSin!!R)A6OT@CF2YSMGh-624(B{M%{;uG*o}#gzIegY+Y^tjGf9;p z?5J`^q_Df%bJ$OWa3m(Ng7`cc4K|GAIdgM;Yb`&jt+^_d7LV0qHyo*z||SVI`jO8 zE)lFIO50u$yVX{cE73)5jH`@qNQ>Hb!J9QW!hFO1v&7}ap@YxheauR&2niX^fe|Su zV)0ff4j8gRsJ3^|0>v{ZFPChseXnkND2_UgJkU^dh4)xGkP(!h;^A z(`&cKfA6Q*vTQ3Fe8!dttQyRYs~XL;)m*QaxMPGAR9e3}Ymrb@4SPE!QOoL>7{JsO z9BwWJ+`0cXVJYh$8y{y2ZnuAH@9UKPeybY@>1>ono9|ThCO#w5oxHA(BSt_gRmqcO z^%kdn7L?O8Gv~!cR{{~~L9%w^!2wJuUKieK#w9YO!Ry6aOBl7ls8|78m1^1RBrZ}H zyW**Y)(WQ3dd8I{dk?$VYrmmo)f^0i%};6f0oj3+V6}uf7srOi1R96IXt@gFLUZcb zb;M}mxmHAjWu+FYcQ$3uN(zBt3}`;_=+O4#DsT9k^?o2aa7%ces!2P=5nikDJMd_5%6=+vVKKCGm zaC1B{ohB1963c$)IxuJDc3PO1$rN+lzexdxXl%Az#DIBFtH;H9KbpU3{ll%qCUSc{ z5#wT+(4s75X1CuF;=ocDZjMK$d2&_UOewVo7*#RFVFzg1iw2d@#H8{<>zf^1m!tWs z(dnhut-$E;*&8xO4+1oMZfn>|)bK!$^|f|?uI-;q3Ng6P*Xkudc>VCbeqgZpv5(!u zD3Q_uj~xoZs7}EE8rT}DP5KNol%q>s=Tcnkre)FWXQfm>?7hEJEi6l6nkv&=Jvt}g zwLfR)=j=vn;u?bW0W(^P8I9`7O}oRc_tGiZqDR(p0SAUHGFvxM~^~jg0j<5 zT5ViwNZnLG@hEsZ-$S%R7c7k*#Cr+_>#wIMiKb3x*GMjo5rj^u8V8e}HfiSMv`UC+ zM{}&2Onj*D;=N1uW8&>6Hw-CImf5Hx#R5VGSR!N>x(I>f2Yie2h}dQy{4hhs)zoS? z92R_c)jVKGgEst|}?z}@Nx)<`*+QEjy$tuK)KrnX*HDf!f?M^=OZRWeD1SD$~tE6+V( z7b44Yf-&@Zj4=&XIPWw}qgk0lVe-`h4MN)Q*OifX=0eNtI5G*_D&S;bP zZgdXR94$M`d|@NV=yWcRv=dA!PC{|P`~X8h&Uf5a;oGl0%iq=Gkfy0@gWhSJ;TnaJ^C0oxd2AJl`%@cQS zr7859;7}Fi$<5U3Y=Q>LZA6*5W#-Y-8&ZNXCQ^vxQh0JbF)x{6Cx|3-9Ey@cVmC&{ zQ8*lIElRZg7H{C@$u-A&BcjTm`JetZ_CsL0F-K242vqch8fS}fH;{HaWQe|GJ-gmB zT8jzDU`zr#n=AVjm-CUPl=6mE|vvwW7GHt%KQGEz^8ltj}U5P@}9W)gf7yyeegkFzn1e z1b56dc$0KvY*^4hNY%!$c-eu)6QVnPYfWXVi?s43YxzJ^TnvpeXzM#*K{=eJ9Ha@% zwRP=6aq7Uv10V)~o1GR@Nzd9dA+>nsA1}u!Yr}NSg=L;ii4}1W?4YMEEI!b!&tMED zf;DBcmqUzqMuuvE&?w%@q-U}%AT$gEF@V-W zh_xMwUClI?LS1G;vOucTO7NP{>UC_jSkF5Pu-f;Pr7)M-1Z<{CR##n3W*@b{lpU;# zo$1L1OhlyDTUJ0~wN_y&9vrY*(4CeRsry|7NiXb zvk19bu-C>~`o7Vs3@JD`H$MPk2P-=bobQvBq$qdSi9#J#KN76R>^KZ&Ma$w@HX#l| zsf%ULaGG$1Wm+uzESLzK*WRAyleMUc)*3GK?BNr^7UhB$4=$S=RiSzrdcWg9R z-C}JFgAZOmbgv&6EMDE)(Tdr{Wz1`Fp_mYS!Y%s|LzC6DXmE&;PDRvqP#8@Ot*(w{ z0ArVizIj?9yd9)wm|ON}923bSGvZP8fVc!(u&UgcX z?ND#oH`@%2g6T8@yk?<~me8_WilQ1_1=Wjzqh%#ylpc9(%CgehQ=oRR1gpoi0JFM) zj{`1m`5;jUwX!Ug<2)frxxCslN<`R`3!Ik4<;0aa+aaA|aB6`mhb0GsF$QZi>{+|w zvfm*N7PW6ReJ=OgFV^lm^2= zO4n6V1BkZfTK^vVg=+ONccn9rnpOY)?og=Jg+`}^*zc{MVTh4IB0-fJ3fFUHfB7O; zue{1fK6#&fIz=avDsOw_O&*^hfKd^7I84L*pNYG1pzMoHUJ z;2?BGO{*Vrt=OUB-QD2_2i_8!Ox&6!LCF@KjDt}^{Se0;?VfFSbvhe-qpuMJ zDYdK4c{m!TxvTN{Wc7XDsCq3ppl*-EGelJc(IYRu_#!X8@Ek+jA!YWp;1ck4;qk*a z`N}uG!Dl}HQO?fxuuN80S-t0IQKV)E5d){|TTTxjQja$bQjsFeHx?kde)x#D-hPK7 z2@MJh7_DJJYBkE31d!4l;r817-QNe`^jH4Eo!_;b+I#8-H~$tNo4)QF`11Wt-D;&a zC)|))t(lUcW}^+`Opf*)1}04S#D3Ol?053pW|2BKmW?y%2;UuW zXf2sUEy%HyLX~FoZM*`l-pQ^Q(?}Ykx2CE_jYX}`9@2x-2=0sc`7D+}T9(31p2)Sb z+l}12x?mg!tQDqZZL5pUEsHbn+(!t}L{fqW>w^0VDJ5zt%!^S$TXqQ-=c{6hu^vGr zBgR@u2^kWpF1>$raKIWu=3PATpH+Q@Ay1 zZt~{q(gOdOzCw(aL9~pX_WplDV}L*ygmH+RN~P3@*N|91*@cK~VT~j;u{TxN?FMh( z;Nuqt+ka~7EJXK3ip^I{t7ZcTp#-9u-`2zoo2sr5sX90_%hp(kR%5s1#aJz_oH|Vt zOUtN9@X{ALxTjXD8C4}oM5Fn5<}WlhSnSz21jZC#gtFfe0tQrDP};#$Rom-ez$?3; zQAmk-wpJp|FRDcu(tfowElO3qpR8+xpdeyu#-(Ny@r*mxbFrH3uzE!8HN-K9wUevr zEG)Bb)*IWt&+L)gDKQm#3+kH1ZECB*_q1gRrQ5@9Y8$)DO}VmVhnLAkrhjwz!pq zrMHb9U_hf3B`=vQMr#d?OX@%`m)RrH?ruqOPIy!5vJkG>i|7t?10oJMHUVSz#t6YG zCDx3b0ot}BN^OAEM00vyHQz-gJJ<^ls!&{Tq6@G9LhfJOoJgb3V(litMGDL?ExC}A z@ce^w4q>F!z-i75(=F3<;`$~t&x=X12Qz?Oq0SA1R+A?$9{HK)g`yB*GL@`iGaQ_* zQMJNpMldm>5JL|Lw5VYle|50dzEiO5X>=NI1Nn%xCz%&}t~O}KBo(XmjM7-9M)6T4 zXH#~wjDRvYHKt7)-i*3dyib|38%IzRTC5qk-jEG0-D`{EDMrN^oF>uS#4RxwyyqR_Eg+KM^^!kBJ={bW!+2m zXLZrh^}EQR*C$>$JL3yK{~3Pj=c;AIOJ+VThGT=B)y|VdVSoo*}>Z_j&#Ghn(^?5e2D4E!475T%bc@WE=)EaCLRXpZMvY z9l}HI7z&76v3F#vw6^K*FTcp)A{h-;&G8K-qGg~;AS39qn8*Y`@}@P#8lyL8r#{>^B^wH~0}cb0 z&N25lYwvre7Fdebf~d4T?%=S4QSZyOI&s<7CE|<(wJfaq@3rvc`fdL3kG{g6{kaeG z;fn#5ThM}rqY2@d`jy!lt*Az__j*l$)^u&;$muL2bnt0RmGp<4ZYJVoo9rnUygVPHssAqq=O4AB5p6|7CooW1pd zDM}jS1Y4c8a<*4;jqDP=RZJ~T1NK*LHIVConedkb#~{KG6B4lOjG+Kqm&LM`!RuqI znnuBHzoQQA^VW~Csbr_LX8$z=f}h1k;g8fhQRcbVZO!vc8N%v2wEaftPO`fFrWAxG z+@bClm7Zx^N?}^8*Y4tTF-^0_iISCS3=xgdPIncfDr#k)0=vQL=uJ>9I-ASJDDB3c zRjPF%ChPSl5-9V4mg36dw(fGRj3L;ZvVbd^jw$wYs{#yzIrYKBZt%X3)muU3q7)5Y z8EQUB&DFC*W(}*C#u)cO7(zr{RW^pmt|`jn` znh%6P^d6B8ip1wntCuBJ&^lVX1~ppoS=vFcy^)tpQ=GRX0=?d~OJ$gY);ds2{xk^M3unU{S#eaf^#1;D>pw=4iXZT1W;YqxYd{ zGSID8OKllCOrEz%)>phG1qK9L9;LeDTVx@4WAh%ht<}Mu9qz?5FlN;4pla!IiKhD1 zz+v&55D<*zWj|hxlHHeQaGMw%koCAxzGxW@!VHH zW1zc9f(L07Q5(;k3#D4`pg6cR_|jChEaDYJ7*eB6H0pt0W79{`RM=9lVI5K=1fM&X zix2Lwq}awsoRe>Km0^sQt!p%oXcFL7U|&7^UD=I;I}S$CP_^i31?E|-|JaZ`AfWCn z(y1pTtMSxYSxV)_t1Eu&<1g^))yQ~rOR3_tq82@q)i^d`4V>BtNK7v1K!X`BA?8^T z4gDVMMmFy7CMw_7mSqk**R-#Dz-xC_$kFOyyA#|t(o#8#fsed+g^Vr;q);SLgY>MW z>KUIqBA+o z(V|?$h{VADFfiB3{pX+K3%~H^_!B>N;B0x9IScc6K^zJyiO8O_-GSW*wcHSjM=j?g zkHv7G0(LBP|!KtKy`8IR9 zy`h$gLF`brd1~~x$~;#}HKkNa@%vi3u$L(S7gQ(4t8*T_@-k=l@ALS{H4-ZsrN+uU zpZLbtU*mWF;QKuPvj_I^XyP$47-V(|qH5^RcxT-L+U(@!5uuHlvnhB#Sms8mEm;qo z>7DoZ-z^nlnG9EvjMdMBYQd6Rvj>Bmf?C#A1tJy%lMvP*&9l#Q=ee}+$G)p|1>su& zxz?F!+pTTF)*H>ExJ`Ow5I8v}oe8Iqqf-xnkpdnd17gft(QB7AsA*p2< zgRT@)?*I(J#A12|RqbRdSS@|2SU|QKeXjRt^DI}2#;7RS#99UyiCTQkRc)CRqmHUp z3qaOrffEtZV8IwsYn4+RsDyT1T;)@hTo;yQ?&S&lakTfHT$wc_uZgmKkW1-;A~6W( zhaDoyaXwkLZ8>qwksNK!%q6qTv(=Z;YWuBZA(w36B(xS4#){bOc21*Aj1oL}JCT>d z&CQYPsc^gCHHTK~c3N^jvy9R$R5c~dD9T|!aCN?CzYAQP?YTI!n!^+zPzX_o<6yMM zS}603E|sFfqA*o!Z(()s(gT_)+Rx$;8OP+k2@TAM7LaP!9tJc-3Z}juz4lX7*rgrR z$n|tk3UZwRFvdVKDz@mb57A%bEy<0 z#J>L|L{x1a4>D2?J4%^Jg8+$(-2uhg)2S=bHcDu5!9Y!Rj^)Kl7VwPgl1%{6Y+LRA z+`KHHLh!&$jBBl@1xa}!RjHcXJ zD=9U4pZhXSZz`pBTFae&d<`@PJJ6-q`gznb*x@E(8Ai<&s`SjBMHk&kaEB~d9^CGs zR*R~MQ4l(<2h7*#?{gsO^_S7x+*>VzQ7@aXCbHJbgy6JM-GE3u^Ww(es7?lyV`xff zjegsD^n|+w>Z@HaC&Q!K?b>TCWQ$k_DiI+QWdQGfQW%^{TGvP%F7C6L0|{bnCmOv##4=~j1 z_t;X&Ei+RsLaqWe3AtpR-Y$InEm|@0m`zF zv#qfrSa2a!LXM=1fg!)eSHAKF-~4+=rqg4dTo+0fFqeX?6CeA`JJk6Nc4J^C!r7QO zzua;E>cH8Mc=Gg?CqpGwGf6>|N3XxZ|L_0t@ALF0U*W}jnJ3q`y!jZ?Ze-BHSrUHq zM_%P)AN>%^d?aXPnvT{JO#@S|++JUE{q)9El&i9+Qc7UA-*J9OT$~S_o$olmy2t*L zuX5N8NQylD-c=tmRqMB<)eM`}L|dci6(3j>J1DK|1}!Kegoge5)HRCf^r!y>Eo+8^ zzCUbjSgn&OFE#)oJ%lJjF*>opOgq7>4&=ffZWDEsprna70S zVg+XH>>07_yw(XlJ>+Areu$5K;zxM>weN$@NVfG->dfok{~o{f+kea#{^VccLHr(? zZ&6Ja1gQha(rr}>sBPC1&hpul=39$Oi zHYeiX&Zv_cN2gD8yDg_y$=xSt&$^jv`7>h-ietIunDkG2d!vv(f&LX|vC zoR(}3d#Rp{DNIu#XUk$tQ|36GKmu8y1Z6)A98%(JH?kX|feo>}MXk)avbYUt_h>?M zLar{)FBUkeUUwM8s-9wq4ApIDwSZrU0z<$ApbSu_gJ}TNlD%z5APlLm^(bO}{d5%= zsl{lANxZ(wX@3^nEi@KRa9^P8h8{?;c{3_`Y1GSLtp}nAXJ;eh&IHd=N}LV5elDjt zP}9yR)*cTi-g?P`r`g5VjG`&Q>iR`3Aim^6SxlT{x8HGoe#X2k@If1^AYxm zdN!~ZIP7*@j)^43mYVCroEK9w%>{B{7Zc08a5J3%VTc3MWbH3R4V=ZD0hn>z5tDG( zkIpc#^T(9XE7NphJnSji+F7U?C_LUyJwsbgh1UOankG_832xwCnA$#wF%b}!xw0%z2oCT?0*Av{KmUUSf>`Udr7VOX>|Hw| z?92x*OSZ2`Bc>i~0S&a(Wm?uTXQTCI#{w|~idY*S^`Nz}3H^Fl8$8P#8(rAibl}0# zut~yv@cLnT{lH)`C67V6F}3tFPDimn zc=+^&<0*5tyJ8MTK}b>wMS3KxE{k#UUHV*tQnJ$>U7R8WQyi@oqlI|Ex7G7lcDXro z03y+793iZlDqf@6C?GaIjk2ICNb~nJaN3;9fE7{~^?r&NzFJCUkXA3ClsQvtQw;NL zri1P!+jm8mc-NLSD@LtRbS-$7_Wa`68S7D))KvV=Q$p$vP63(hDO(i3WdOu!)XThh zB+?GhCjMhWM3%ko68b%wA$_0pm-PSne6RoP!X7pOYZhY*5ZhvHd5`UTM7(uH;joLO z%PVts1gaWEr77kunkl(*xIE(%AIZG&?k(SXcjnVCU2*Tca$Ab^#5@(2Nw~j*AN%Mf zpa0a${GHd|BqWP8mpM~{wb?Prae)9s3gmg_OMmobzWwdj_~Pe3&W9fCn6IDk_=&O) z5j`7u^5h9`z6H0pPZ);8JS|MKQZ-N(tFaVGq-1j()#_kwZ*R#t^5m(3%6nHgyzt_O zI2-p!Z(uAG@t##$tuGzwqFS4Q_w-9|RnRA)AqzHh(ZG<+_wir&i+2!HpU>?_TV$av z3;(GvCeQ+TX1~k4`jO}P=qEqHSHAiOggS#XWLKZCu zry&w<-r~nU`C)$YPy7Ub@O!__G=K36&++20K)ylJ zg)L(-J3$rDvVBamm)k$v8pRiCv$NZA@kOkSpm67xc7~`Apbep0o|e^n&-vrP!hyR~ z?bj1l=18}LdUqb>nZG{^9;H2CyR58#2YL-%`%HUwz4PqSfu+#hR*DJ0yDm55(xCIrpI4Qc9;B+Wgs_ zrI=V;`CFa+QA2Br%$cK)*`kFf z*GKZxBU3Hh=FH9Q5zUpelsG>-FziQa4CF>h4S}n}j(hvW%U1&z=Vx49UXg=PWPmxd z19m9GvLNDsK}?Wn*2PM+!72N}*XdyN`f==nWQr-9hF~_u0=ULNn@$rI%L*$nFN@80 zsYVN}mAW5oTevS+R7ph`Q=ryl)X!X5s#2z@tMDeQ1(zTUVgZ9`wtkIi+<6-kK5kYFub z*0n5NGSr0IQZrFz7our`h})LVkWicJ+QB9+2DN4@i)t78`QY`#_xgdsVrv+0(L8Tl zs+Dbq%&4d4@HX|MM!9U~uJ%LNHrx6OQ(Q9&L3PTAS}z{&zcV;pu+>T0nPv;GMQHCF z*s_AI-eg|2|66O_e1<#qhP{6v^bF|6=LRfl3GM{6td!StHWj>9|JJd9M?GuNUijVq zD|rP9Qp7=Scd3AOuN7plaaO3Z5ThB*$8SF2`tdDiXCwDQbdI^vaM}Z1Uq2-;0o1dm zV0|O~S(;(UUYikuQ1jX-w}W%lCgRu~F6#yDvf)Vce%o6>yvDR<%iM@lL=}eK#NEXV zeC%4LLDiy+<|G=RjUhU%)2L3dI>4_=7+TATRx@c?B2}YijKLhNG$hLoM+4@$79T3Ml;FP6=^ z+h!v+AL4WW+?VV}o`vdQQrG3%#68qk5kZ}KjItR_RBb|W8sDe&ee z7QX(i6F>FYPw>j6vXqGuBjq%ar^3aDKZfj|^5K{68?8u8e5hn4g+Mxtghw+m1a?sv z#z@$WELHg4I}iExn=kN*S0C`nSI>C!(JjLmdEvP$UVixn&MpodPJ_vv7buI18`XuN zFt{*6E>OL1;qC2H0@fGpIA_lGmSGV~u>0O_b7^!Wakb+P$#pZ-tahUheFN{RAgf)p zSAEZCdRD3xWl+3 zQnJ^=8ikCO^-{3@Vk5dd=H+`Y@?)R+1Rws$M|t}6h=z(TN}y7fiPyjTE&lGW{T4s| znZL|~4_%Vx8*~0$y;U}STRUjmX3qLrrU!JoM9nkrYlHVpyki~iJ~BQeRXashpeqAf z?9M@0|I@D_I2&Oz2fF#bZ9wKdceeh1^Vap}+G>|K8;`qV(|_;7WNXaB1MU>B*S9RA z#8z8pPOZq`j2#O`?dnL?Gjg`GHo5JIVho9#E$|u#>+2_j+1~C9_YwlNx-_?0xw`m8 z17BV*8ROa?xHXekx7X|RcLFumht}QQ)m}qUYtaX^ZpVD|C?jv{!k7fV8RZ6bR%S>J>c~MSF;aD=0Q)D$)YOa(5Q%O8M zDo<-uoQZ z@_+Hp0!BA?VZ>;@eo>Ip*m46R-hRxnLG&|5WbMPPp)sWJ(y}{;-v_TBlGhIm7Ei~; z{bT8>QtM$y-zWfnURYLYQ;P>H2=jk9AhKG*)}FyQ-%2i-+v|yGp4jayLO70VU#H+| zWwuc*``Hd$5u>6;iQVyThqixhZw%T#)an`SWt7d>z+ctw|Do!1)TZ#X9!$D9JbHbS ztk2z|S15?Cim8H7)cZ0?18qig30@c2s7RtFh$3n#v_-tR>}e$B$mJM${(d0o!136q zuqJdcEroeVq~w{?oLP$XA8M+bV1?@?7sg=#F&XEe*5uXo&h5V4A<|IUjfruWP$|e< zyRxW>3I%^o3j$buKm+b(Na7G&5f3+BiuLOXn4m!A?A#jchOlz^+x+BQI877NG&2l| zI7EitQ^@K}8a#?AxsxNDpPl(Un=xMUVxk5GruoF2GbJR#KJnrU2hJ`Ni(1X*;LfHx z5_7kc6u0XGPgK~%s{@nf{J3Y}jzwLA6`fMI0fo)W6>%Cz6Y3BU1F;|b!guWbrQO$B z%h+m?`g(0jsRA0U@jDJGZ2#E$PhK0VReAC9ijRL7e&4c_)VXlcFSs{46?kc89m(i~5dNZ@eTu|G?$de`4x9`y}!?|{nlrA{vZ1UpSXO0&NtS8T&-J;C1)yGmUoa-`Cbef4`x^_3J%o^h`9O)m4QJ8%GGl?n_$DYiTvnVz5Kp zRw|}Kx!WI*V0Dh-0k_~m-nPDyGf0f4)^4HMqRm)!tlP4=K6uU6`J1}(ue2xjYiRJ` zpwmdzGGxs!0PYB?HAmNmFrW?++7T}ftn7B%_=U~+X2x#6gWc!>?^c71**?Q0P8D_* z(487&xA)rm+O?pmu(n&mKG#iivjM6mvLxainIhT%fne=Id?wU=17j|^k0PcbpHhWg z;ZOtjWVAJ3)x?t26>g)^8|S<@pt8EXs*yP>k8dV!riCI#g$z{kG_m9((*zH1CLZ2S z9Os202A=Lmt`8$ug?KvAFhh4P((0)#ZyfDw1+vCJM70Xb& zR>3$9qyS?|oS&arTQd*NjzgmLuoe#rsOuoa7zqjX)zEWn&i ztu_}WUuRGQgH7SKl)^AX#$B@KEUmWH%DGhWKAP*M3nJ`NWE`<|TLcrTcUrXC-T`X| zVx>pA)-0l4LbZ^R^<}jTq=^+ui2h!qq=py?l1*qSMC)zsDywEkf(J>AmO7+J6w5%y z80o!YyWihv)qL>!A$E{1DIqGuD5TMvtd?x4cX5Zy9F_*`LN6L`j&X46U(VTzokK@< zv}Wzi!EeGIji26HhoFK6UB!E(MOs(q!g}2pfAjl< zP#MPoU93t@t1^3yj75wSBFPH#wQv@N=b!&D_g?-4`>V>mQzj7EjTd&l(Zcgt|>c7uSGyG8{n1F+vdV-l=}z4GCb84L2IoY$nJLm>dqK4G0+%TLmVtn8I<6Z z+n~Yiu_(4Ut5qvto4V}qtUhIy>6b}z%!(m4nOnhZtCURXoljj;cruE}&yY)uj|~ zA>u~OjbfAD7ne7#YS*;}y5df|Nq6ULy^bP6teG?nJb&+k554q&*WW%`|G{P9Gz&=L z`RC3-_vFQn{wh$$bE{blQ{Vip_f_k8gv*vM6{e;1L$eXVq*h|dl))TTtx6gOL@ax0 z3U(&?67tM)44sLrk^RgISqgYMhZnxv+xG+ry1P_Oi zc`Do-j~-1ET7Bj)4lKEFoK78#-`<|OGh>;}N)csnaiXf`)XYyO{{C04UKzAPP-{1Q6 zj{@+qKlNQ(_uX?}>D2Zkqg3UZxw*OKG@U5bYWhOj5k~8SmL!mfEY;d+u)m=U1D|~5 zim!k7yL|7Z#N`mUed7&wXO~<(_z(}@J@WPMyw3L@UNh_mhA=WoMv@>YkY~%J6D&YP zHD_fm3&$cX^@e$R%m!12IP9#RYE~o#<}z8cVU5JJFi%Hnh5atE8-%6K z4Ewz)E}mKYgy2r8cu;1wX$GQ$3Z|^L0-t6>Y|tI3c7;#RK(u+-$b!Ew5Uiy)7{B9r zcjV}|q?Wz!nGLUxev%LTCx82Q`1^nVAMp6yw|V3HuX&U=AYzf@+ova{(}XFMCbyE6 zDrE&5F4PrNsqCobmZ84I$6na+`JehpzW3eNxP4MUtQTvj0p^)M{)6A)Z~gMec;Q1Y z@~1xWBKzZ;NGO2!2<_U4tm}8XthcW|rq80{#spY@_a1QOpKJ8f9w6~w3GO7iJx90j zPgn7rXJ>k)1F(I^dxA9mR{cA-$iDA8**I06X;kU0kGjB{d&E`DerR2vT`_vSk~`=# zRZ(+xO`xlyB{Kvei3Mt@0Wg|sZFKo+fF;lXn0@y)Zdo@0lLq#5`(TP?(RIz5+TFc3 zAYeh_(4T)Zn&u}Y`(1T~Mu%B0ec| z7;U~xzaaY@8W2+ztoBOm9WHp)Xs#s}2+e0$8A8xYGHF%e_SmjHpn_=h5)g-s!31eb zwzaC50d^NwRl`OUFm&8D_IDjPp zsGfZ+9rU2;%Dx6ns@A)+s+g*9Su7~1mbghNS-?SUe8efI z!TmNXv9T<)F~(dC-_NdjDooR2+78;*w6$X?4)&T@Pcx*J1y}cF%)c7F#L3!=dN8RL zESdj7TJeYV^#g;&$4^a}3UH}tE3i)vfJ~0WDTz`$pql3e=D9a9Z8d@-4phqQhf#|d z*|!ugR8M2DV&4?0(kKPBX9>j*BGu4qRIJ|7jH>lz#DSI{1R{jgvH*x%=EZKL?#Hn-WKM`vdPhe8{_xkJgV%KqRssAq|02 z0%U6`cQ_xt&tc~L%%0!+1`U*=po2X_nTg2?sFMSsQXnR~URjI=baB2Xh05_bS##f* z&=Q!Jh0FT~KsnuJ=2KzGGb+mYArV6~N=Ggn4hJqS&KZY93c_wQs_D&b=6E}k0vryJ zTr-zvk!iN9nK%J)h$E^>saBU~R0wm0(qKKrM69JoRTE4|!PfUFFI*iCTwR`%Bq233 zEtz2)4DdQ7w}JcMYp>Koon2_DhVJ0B8s9tMP&V~y-S3kAyZ)2rT;GYJ+v5C#zxp`< zKK`e_N2fje0oD&0kFo+x%f!RSkGOvNlrim@m&{y@wp?rRUQ7X%M0Tn1IPSRA6HniM zlka{{`0&{)j6)#D%saP*|Mb^>iQoHszsAK_$#KszFHG~yen=z@T<(;qR&rKO`N)&o z%sY=4UVP~upZ$qX^XU%{T)*)Ze))SxZjKYX-N5trulUeQ&vA8i23QujF6MyMs@zV6 zk{9x_P-XRLl-L4pK|RY?Tp%lB&9(#94m@~}p@I~&1-2Ln^NANn_}R~WhF|@Ue}&VN zcf0|+*~J=!s3(5s*M6C+v&6^$8-J0HobL&BBGlqQn>)a&*~hz3O`aJ8dP2MdJ_mQT zDa1B#;@52In1*y(@u~g03pzN(TsB|O=B@qTKHjp#>uWo&+xo&jud01dX#;Woo|e6= zo~?;anQyIg?qn_d=&sMWCSu#U8#?>N*1QKLW&Ip=JM7Au+*;dZ=rjLsIy@_BbR7Zp zGLoJfS3CQDOGV-}sJ%;F5E;3}i7P(6gulL@;ad3lvxA&8Yth#@K` z|7f3MOTL?BrD=L7woZ%9VG4;DY+a6NPZb;YQcSx+Rj5^1iubc_f%T<8h|JmAffZGz zrBIaK_jD?S<5W%X=rof9loAcp1tCkMsGVuG3ME&9(`B<$fm=2(im?!CwKgubtXWny z15Av;%6(ioOWdZYK-Zt#&&Wt%berz}m(P#y=omy-3$gYZPG8oi~bZ1lD5i*Lv@peMX%!~IA9L`3T zsZz7`SyTdZQL^kgT#V$!vN|Cq4gsoEmKwYrTVdQqqaUKgX#VGv3q)aBW@`0%F*Uky zDNX6h4xSL~0Jf&LfniLDz;r6qnh7zGYvAeik+adpII&|Hlu{D8X7;;*afr0AcS<9> zT_UAO^42W1D0&vy?OdRsDzyr`AyKt3ijb1^;L~acgS96#XJzMg4=Du~(1E$S!dW%P zyOhjv$-MO36%SrG=j>`nU||=nUr>uXpsmhy1p~G&*1rU4l;YJIcev+4iS>G$i)@^4 zMS5W6y|23;Y>s+A%(geACK_~peom5T)LRiN##hTwE!l)1Dq=LGrI=!Byy8bbbKuE! z;kW+5n_M0O$1w5jZ-0w7zx8!qOqu=5&-1m{pK_Z|#GoAK8QGunCqMTmx%_0|jqiP* zWxD0!{G5+}^uv7S$6w&(3*qL`yF7jJ2we&xCXT0thmWt>yD-39C+`_&4rnfgdCHW! z5Mrd1g?cogdwV;1eU{74KgpbynFlXC&qdlHz@PZ%zhvX4a(7I9&>F3-`Tw{{O#NZ3fXD?X|CJALjRr?=wzwyM(h~w)4>UBF#sCpYLo=wA|gtJy_sxx3Y!MYm*yW z<<6VjnOb8+!re>y=xl)Uww|(I#{a$ju0FPY9=+eX+l&xOk49ERgIGAHmkbvYF{sGVAXrpjqhc(!?Y!dx1hJreXT1< z@)1zIOE+KV^)6MB20;6F_s83e+iD-$&-9s}p)CUrbSS>g_4ZYt`M1~-Ti3YW8P)zh z+k0I9vaUznoC&&_xavNZkBr&=9;gU?g>;cYzw;>O&jbmKDN^12ES~k%&3|ofI|UN+ z+t8tpJ4z3ptMB>7eyaZO?fx#s0>Z_q*ouGN`**f+@<(2q(EImvAvx6Jb=uc&aR0GV zF@ev}&w^$%df`W)GeZJ{0pbWlTKJ5S|BVJ6FDlS zQnK}Z%xaWsJP2*$Y+^Ur)p=E|jxd+H22otuwG?GuGN)-a=AYMEQ(<0|lq~wSf}T7NsK;c00=oPNzc6 zAZj8>F`C+AF0kZPfqRkT!=YzN#Bg%quE^zCFlg;I(P!Ln~tR^qVd^4>Xzi#_!e z7+ZS~EgMI!_Jc;mR8j5kZfIL}K-Yt5iMP^$peZjzCBIzIB21 z{SiXo{OpYVU_dMlgQ@Q|B|t3Gn(IU?cG%pMiCc~Q_{U%3@BYeH`P+Z*kBJd(bK$Mm zzsDyY?0D(&g6rE`ZjUoHXLc!a%nQ0Zfy3?4WW zYwaM#Xrt+pi3^_A#3?H`4`<$d_*H)6w|}2+f9HE9?BnNc6hW#`XIT|trS&P@db2Hu zWE94L(V8*~VOV(K!{_|SkA0Hg{JlTq$?cIb39(pI*+f(-Z@={hzx5CPke~nT7rDd* zM}nA8kgOS!_RP<&;jKu}>ci^h9ro|wSwwl}cfHQs_p^I?v@(LtfZtvJ?N#5$Nonuf zf~`Bh_8_EefR(QGJX=6vLM9eeYlM~l>gbp|0mtoFZO@ldiqp}AEoij0v;vy77qQ>F z!Zr(c2V~v>4(mPLp`LEnf8Qz_5Y_Jm&latq(acz*%{Kb2xcS7~UOLq0?2jdr+Hqba#KMXDORbLJNmCe}#7JG~Y_wXPRQI zIvA_{xq3)ltas<#<*q%0EZ$QaEaSF)jyCpDA{t}Qh({5kMqgKJ20ePu!6qWueM<*N zXuznKjfUD16t)P}hgfOP)Yhi10Qwn_D_9Vsf-9!l=(gr(p|*J_D+N4k7ZM<@!%!AP zO&l%+VK0%E^|rDCA!_ipIgJ8J-#}FxC3IbLmW8$eYZGIt)qT676g4n^ds?_TPE2#A zcujL}_10}^Wj7?w_B(3HEX&*(bykt#G-!XeqJ^bomTU^TOEJxYcb*=(K7LTQ_`~-4 zfx+T)_b+I5bkS8PTaAvmbaeO)P<0Bbt>G8udaDvA#knnZYQz zk{4^fo0Bc(W>5pdFj@xFyrfEPlvY{kcCGM#eFd`-v?5&vvCL8SY*(WPHf6zX`I~dl zobXV46to@S-Jsedp;}EwxJQ)jL=`Vk?wofQ62Y$>T$~{^ph%;z24XV6TZ($Yvl)c~ z+}_;s#yi(Me0*Y_h0}Dh{))ktKIB&Y7EO0*PFmpTTtG=Jv$( zw6N5b@|)+vX`VQqCUQ}b$ZkJau%Iew+#_O5mQSadVHkLD{|eE<@%F~pFrFEVGO`;Z z)3k89Iaz-{DjFh-*R_TatWK?D&mfP)I3OV~jFDX`MvWEg%NYnnyhb!A%d)U!WnLC) zEiMGNOZGyjF(Va^Nhe(Rjy`@jCvclMI1QF9dd*uVJi!}D*T^}y+uKF@>S{b#5-bFT2} zFfgQOy(`OCdAR$ZaEO%}gn#nU|Bb8PzT~yXu{wIEiH*UYnb7Mum z{sm6I_*0Zpcq&FQPebB%zatKjKliWyb*L6>`py5tpX2HGE(yB9z&?Dh{QS51>_7MW z1XUh>^Mc>_KmGYWw%-gLCi2o}-{RAM>1$lR^02p-SO-^y zGh*s^GnDGiq5>YAk+`xJz-jF6r%LcFWVt2nA|b|J17-rMcD*2#nQ~e_B z0$L_ig15Qdy3B2Ko>|wjaVOpfO!mFd*7h@?yV=myoAvd&1%b_8`zBi{#cdyUzt-!< z#pdc6XMVfS-t)7twutILQCo(fO|`st9lZyU@jgnZn=_{e8SQ6HG^_<6+x_+S7mmK# z` z9B+Z4O?jX3&1ZFUscqo#?wr0Mizm`rt=ck45X&ziP*?%;e~6J{U1OskFaW`Fs7dc>Qp_eqgZp(hHX~ zDo_Z`aIG7z9Ymoo)ZpMIvI)ubMIK}D8U*QwjsdjLYdcUkS!&J=(l(hn;wdF}WLv~V zx>Me0o8xXh?A!Uf)`^)j-+C*lwoIUJ+}eQKmM*%vUw5KfzsaWb)Qal2+j%Pv)WuBP zKnDklsG?qA9GoH(-El(=kha)$j0r8?b4Wmg@bJlzH{X8Dx4-u;kFGPPr2-3w-5D`P zmgCIvl)1f~7)Gb?Dv*RHw?}So7D5H7LaxFa<5Mm#2cF(eJb7|rkigk_A}^Wau`uV> z`>CLHL2Kda-hpu#xVf2_rp&NA0GZq4ky3MyJTHERoeha`NaPu+4rr_t4A7Mt(V7Xt zf&&r*l15&9@daLd{sC9#XT)H@Znqma9w(k$Uo+2>)f>dfI0Qnl$lkoD(R5WAhGey{ z!PHQ9X&^{ksH(PFC3 zi19PdUgp<-SKjfqz z;c^%#rxPh!e^$W)D%$cjY8gnOShPAPM$NqX!aXj}54?jwDJ<1QOuExlDtRubA1%`C zUyEvQ$LSe>wOw291&X*MF5PgqT9^0V9d1uIHCz6n{_oYPmpgN7fxq{;@aFSCSH14{ z+XE>EOd0@ftbnk(p#6*#2LQ;kk``MT-_8AKltU;I+C@t-bYxkm?jHy^#t~A=2 zUcIKU7WIIE`A-c9m*TB5P{akL5La{GlsB0lXB1|2;T)~rHX=sGF|H$CjSic|bRW=& z43V5GdC8XLYk_5ysho(>h49pcX9Q~*vQdOp3>ZrcKJL=jfK6ScRHLpo@E8DO%?cx+ zNstgp)j(wmf&IM;p1*hLS=F`n7VLVp8X&}da#Mn}AZPWOO|4KhuPe8+s>J)GMyoab z;PpfI`hjOfd&=6<&#f;|?Fwa~2jjO+Ws7)p0UQ5cbzbu}c6a9x@~CL^K8PK-b&%E? zlZr>0TFZ=PMC}F|a11R1=)Y-3%6{+M`%QFA(JqXjcyFZkOQD0i7O=LEyVD-H8+}!+ z&j0p@myN2bTBPPqElMraXor{81^PXSm`rzFGdpD9{;)@DVF-h% z-bP46WH(x?2T>&rV$|7XVa}OxOsLKv%5Hbb)x8To`k`|UNnpVg?P>#Vn|0NlNHemk zcn#ymBk=#$b+Y~W`ybAm-PjL;zQ#9>%Rl+Q`VUs;0caGoQVL)E@BW=NXyX6hW;}x= z5P0cR6aUP=^*7hO=%Tq=9}OSk_UtSCd;i|Q%U8eh4MZ~+`yIK!&F#$X zX)<;|F~jg5KKO6*BOiU46ohZ)@1bQzhLJEPE_cH2_Q0F(KH>X6^)>$TzqaRd4<1wN zE%h)$92f{h6>5E8vgum+bN|C%w>_l+39YU|dsiH-J5(z#{pg9m{BQlD#jez(y`!uA z0&C4q--qv=hXx3`gWa9e?iP1&*gxa%Rg~+0`M+X6EUiweO|LtU#hpA+YF(J}4fRy` z&bPk7*T3-(cy#?5ERi}_h8U<(O(wroqJTCHNm1r};1X1 z>FX}IQ!E2o1Lu5A)lVnM>@JhsKw&XnplvC&qo z<*RNSNjfm-;AwmQ_^1a5MlGX3wej!gH@HH0>$%+O&2UNVb$+*CM>dEpNbJ3Ow>HrR z%kRbg4pDm6yI*f(d=*91%2_mqE)b-uE?h?k8>^jmA(fI>;DZJ9WOMi3R(24k8$5Rx znD*y^_xb71t}U} z-HbDB{MH*1KudL%&+0v}T@=Q@wq=hS?rcIxwx;LX&9RjI|*_5lj>GO^@^A&tGJH+Z>0)4LeQ0YR)+V+UL z6`@vJQ^AA(xl~T`Os$ZH!PQvB`b#5jS4yAHs+F=-78mN#S{ZgDxme9&6Xq!;TPvI< zfT*o>$;P}YUPtKVUoKABY9Q_R7HF~-B&lmZ2>5klUpH2I)Os{}06Gdo4Gg|VE9zoK zidF-?Eii87Uu(^2yYCNPKU}XL7%Y~W`=SS>sL>5^5GK{@5m*m3qI4r`8)+?g?uNS^ z3eqCWA~G9e-<)^|RPU$LtaqdRbtlgc$VOwhV}pnck1A2l_XFe0 z_brMu#OLcHpfJ zksZI=4B|>V)m11UG$*Bjg>_X)Kj_!b`?uZMquT?tEzXW>)_1MVNXLdF!>;c{Q? z3hz8Qa{R_?cCBe%;sHasFEXpnqJcuRL$R^Mji8 zEfmBRpDWa8(N_{dB6X=ur^38gbBeT&)B?B1#asJ8B|ue5fGR>co%s6KzREYg@(Ry= zV$XS+tO2sFjoj6uMFdTdXDpVUpiabP;=?b!!q5E7pX9sWeVuQA?T;Cga26tC5GE=w zz49_&_~Pd|PYX-7x|2XbbMEvvd-h7nxdY@*k-D><*WcZxJGMY$aIp${*@LPDr|QN5 z-7;0y|F+lnVVCv(?tZ7Q38$^y{j563+|=*1X_W0XJ!?_5*Y`KaS3+~-W&KQF3<}zs zW^W_$c;HFz{9Hs_*-(8yK6;4B`?BpL;}*`-ReQN^9V+Qm1D zJGC)cW}s&_-Qa|^qvdMnbREog=C*n(`&qp^H?3|^y$1Ns`E6PUXcH6*-q#p!A=7dH z`s%)cQ3{Q57w(+#-4E&OaIL%Rfet+Ls-BtIE|SeWK5HkowCpWle81p9J0I2`*yk;f zatDS2jlSykd~>}ZvMSfM_gC%)sy1ILo3GRsL};RGSccM)@M{o*wijD81no4_c8Bi) z(&A^Pe?bVEFSa`r*GQ($~3Ks77yao zV)Gb7plAkWSgjO zKh3Z@1yswrCKbft%CJX;CyJZe(Iv7UoHvZ#!_iDgOlJrW2Za&tPNno!-LH86zA`EI1<$W2)Y z$r|$-Sd8q4#C{k-gn6D!4!Tyf2xW$oF5E7U2=7|NE+Cw49#augii`;kJK@FWt~lQf zjL86U2*PkNa&`b!A=gaK6EOmquS|Mm!+x;PZ=#AN*A-D&ABYLGps;w|M3JKF|O3NBNPD zyv)U6;BWoM|0xf@{B@4Yyb2fiR~+YsSw2oDk>orzGwaivoh|9bD z{7?Tl-~P^Py!P66Df7&r!ZIu87ngkYCw_!4eEwsM`3ZR`R8e9+5sMOZQ!l0_*S>X9 z8&GUz0DbW`M;vVKf;nm0M5)@Rl{;+L+4bfty>lzc&)ty3W{)p;0Vb7O+ot z2gjSByqe8yenV4}HcbL+EI-7E94yFQYGurk?CPCb&FAZl?ul(Q>HWX~4S4Xt`gfO- z(W+!ESu`=?53jBx#IqDe`ApKFxwj8I|jNcgu9|4F^2x?iypv zY}q|D>Vcpk_AG0UZs7nH`uA@j>1x1LJR7)D0NXnR2Z6XOaf;oD+I^eDj*9gFYQP=k z`u51{Z$9QY3p(sM)y14;6p_d@XP#VJue*H;oDG2?fl8!mAnkVS#(_~3Eepq7c>MT; z>cZJsVhEAbsW9crYi~W_ou?<}5<_c4-gs6-$ zai~}9N9DMjAQsYKL4upxiFa>rIG*eoBFgzbF)f+nG;w);#+VX933qm$uAx;C??8^>bkiObX)$={ulqOudxOMbR9rlqs}dZ*1?(E{aPzUUHaYupegt@MvB)Bx_!r;q%JP= z444;MO_PuNW)9aNpG|TTve4!vs~YVWcY0+7!|qc1TsEKCzf!}Q3FeE5Nr>H zbq=y#~r#5Y;H|;@@p&ZOi0Cdtb|5S}=6U4alnn4WdzAYppEH(!ry!woiyL zbYYRZfdy}`g%DFhHL#Ryd!Q&a8PldX8>;&-ZO*j?42)$_8n|gQ-a*wf`@XG@_8jep zZ3VOd;+^1ObF8-3<-NX6bH=w+<+iVySJ8j>%$Xqwb;V`2*R<6duRm)oCi*zjb?xcd zUDTdK!~lQ44e7zu-Xh1>L2c>wzPwsSZ@oVa;ZEHz=t_ykOFJ~I0U2#le}Y7(LTd4h zU$7d$REfZTHz15X5My*?8`oZ|iBhG}P|Z%4TBwREd1mv6t1?xXi?wK5=7rW1w3dv7 zgdi-l1?z_0$S~~CWK4;yHBp}I$qpNu*eRwZSC+}x588z7kSug5CfF0=S>4@R!~eY z;O)-xhKAWxAngFve!v+>wZkH~2tg@jrH?ca>BgoXmUgGsWPSrKSC8CHQZoeh04~;Y z*O6`pUt~k^(DnD`D-;KMo9JwRqHRr@M{2z}J3;zEX~wnt(tg-l!Epz`3PBT9Dj64y z2{y)A;q2_dxHEa`;RF+f5@8nMRFqqdoMwn~=8%*_f`o9Bg(U$}NTm{Lh5?pI2x`=d zT^vYBNju@gAAXMb&JAxrJc2+MP!whB$TOJJF9Swf;Rm{Ba5s+GeonL*6isaUP{bn8{MsOkFe z+SMrSaOv{*%`xbQbUQBX?>&OwR;aA2bt^()C$#nzq-ym$_!{446Sq#s))@dOt!pzb z6^=V=W#~?TXZl6su(nYW)aPYxAI1*QB1su&`%cg*#U3WMjU;AEE#9nL|%Ee^GM` zcfaw606hIGfBu=bw8*+=L$awH*CA4t8_t%@r!KE}_0RtVU;L9l!r%Gj-{O~k>6iKL zcfW;%fe@7_N(_o5Py*xbj8FgQr}+4*&v8f((VI$$3Dt?J*_@)_cE|0uh5+Iv2AT-- zLb`p8pZoETaQZ9%EPq}88p9#+g+Kj8KL67{$46c~kn|hGt8+q8G@FgmT8)ZI<@m*) zKtd#dJK5SZOwHkL`(<6H(m`aik)=^GTg_5ix6QZi4*Z>weP(>`0)IOP?oL|s=~eIi zc>TehNWq%1+{A1)Yef1-1TQCO!Jy`3!`eoI^%+{Q1|V*~lJ(hB+8pW5zERrQ+5kws zbFV#XJ-U;JqD3}D0%U@0o4N2g1M5m=qlc$u$Ve}cCZIR^q_=@ z(M*$P9YY9IKiN_mtqekh3u)~%s@F_fyQb5enR8`X3R9kWJk2bR;pUXNzL`0m3QMW% z#)18QU^gaqW8(Z^{iN64vaQ@Gk)qSaqp}}tpOs>Jx>PuwPE1pFx~d5fp5_dm;Y>qf z7?ZKe1X4>*1k17?&JXN{#4rSsYeg)}Oo+*Rv0_>k86_{(N}{R zK_%j9Qk8yKRc+)jbwP)g$%{Z(<&ztLbx%$!O$w$v4C3;{ow6ggS;F>Yrh&FK0~oxR zx*ghg>SUU#DR*hAcN)BcAKXH8=C?N04Ue1~NL~R%@d&&iU68s`DT^Iw!!U5zMYLLB zbqK=M;hb3u$6Q!cIUkgm6UXby#o5Si1T71pDi03l9nxqcR4$Z zoS*L*1|tC$H3PJiN?r=fY<(C-;PPSz5{aVhhDaKX?z+@MSr(3`%=Psx@2V+}DG-QI zm0TCbUE*xFXSW*|#>oD#BgViGVV5F97?|c{@Ly(cqmc;1$PfpTADWhx-X8uwwbe2R zF{C?`>um&h;}SpXyRN^#-+; zXWaWsKgZRBbN++B@k{*fZ~Z=d36^0($Osw|SNHDo@sGX811aogrNn_EvpLG94n(Pn zN_9%nMifRXp^g-U>*EdYy!jm-fBSpP$6MwqeD~|$=W_fSH?KU$uoun__ZY|qwzY6E zEWET!40581pc+9dF)Ec{ZB7~h6QMOwe+J^YLg5w!!j>+|c28|Lm9J~i_5BURZN5j9 zmSnxN&pd|EzgM@veCE9ktZp$R&je`tYFH1&I{;KR?|To>WwZ9SZ}w|!N3A)-wnx{q zsAVpL1ZxeWCLX6);G{;}miRRrNbu{gP}ad_LzZfdz}r0BQKPKu=W(0S#=o+DUmKFD z9lmsc+w4Tx0Llh%`jd-iXKD0ZA0}znUImA0lhc((#dT1tN?CHZoz|{F4Se|i53E^I zS^&3+EjjRMwTykeR{MU{*ll_X9&c+$9)#1{hlqpj05PDjsM=&h8^ zQcKV7OIUwiU4KIBDl!v8*xUyl2#3wuR_Ix@)pzrChy{0BrkNI~(KSOTMf!d8%)Ko@ zx>_#{gg0OdEqsalqTRprc`nuOU#-T_?6mol!N)hK5<{iN*j8B=RBW~Gjh=1{(~2(M zUZRgFeXLfsd;9!;7#O`KS45}}&RObWe$7%jPMK-0KL|BPuxobC4<_JPAbnxgy|7@`H(qZ$poC5e_&D5%w1o+dkM)LP<|oT=`ouS%;Q zyndKo{|I2Qi43^m61D6?^2}HRODIh}p>6d}>1fXFCOdNH_pDBAi`H7d!PTI~5PM;* z_-EV2?2z}m2LD-zYrB9(?d*5vHE-RR;tp~!?)VywZU*0sVvtqjWZPe{-?tmi{!9v1 zcn+nHJ_c^YG~-j>m#(q}JIQ%pY@i ze2z~i-g)PS*GuO1G_fq1G?;;$W}_;k7%8gxzjnnkGs%6~8&p+}s|?8FCdu8VSJ!GRCCL z$0Mh#oM!94IgXKwvpqwK{NYz$W4|A{cXiH?U@7#hY{`W=TVzeEupf6^TaHoMwUxL!aCta~v|}7Vl5{0M*{o~rb9mRc z+|s6Pi8NXZt_Z_v|hFz~6pB&ek9|Cad3R>!oD`Qi@O@ zs!Wm5&yT&M?u_ASW@|0Jv?(+-(_&?60x32l-@BJZqrLM$itFMOD%kDl`7uYQ@Y ze*1eMm9vz%cUHN+eTj*InkRI9wWCP;bpPnFZKtudYXnwoGhGM>c^p0DMRQ2SVK#=S9me5~pQtOkibM-3P?TCdMo ztNHe81Ys?kp_+%>-io$ExsPR^C$Z1o5ufw(y)=;?e}B=6l+Ed!w?OUgtgc79T5w9W zix_PN=1!JPTpUl=1#N;aeQi}b`@sS4CNE8|XN=J5{}imps^`bpFZ4hQL=S*ye|}RX7Bo1y$IpTc#_SQBCv{&o zF`xpwA#iby3rQ)bd9rT^!Lxy|%-OP?UYj`Q(rMaluT}S9YqbpNyv*dBxn&Iww;rf5 z1{b!9q#(qhayBNOySVJZnGj9frsT@a?TM$i6Q`+CF*@v%n;V|oII|;oFkY1u1G|(g zLwXn)Qp9qw)`lZUV2FW~gg7>z*)q8)ts+++ync9IKQLId2Dobr3PjMdW-(TiE9>Em z9X`e_*VPg6_cqz`>MCfhZZU*FDJF%Ub0wwFrFTV4fsML}I+&4}G zhtl{ZV;=_q#`ody=GU#Iqip&iCe_0n#qAQ&B@ z*LC=J70(`Nd!A95b7h_jDv`7wkzoWTBp3E$rUh@#$B`i@Pi`}Z{ect%<0#x7Z^#8C zjD#qZGIM)#WS$D+ULi(usl5BJR9 zN}?z%0#$`jO_uuNJRoJ_d>q(~BL!v3Ga5!tb4E48NqFbs4Z{#Q+m9UfBjZ?*2=j6x zr9G;VsVLVsCl-XLdv+HsikMenqXrgL@6gBETHkDl_y0NlnCyXz_q)b>{%nV6|NAp2 zP&Rv^e`a%_yCa|lJBW)r4sv%N)0Be!qY=xXAs`h#^5K_A&ppRSzkS88|DE4wo))WL z^A993rL`!L8k-1(sRLggMlQy}o8SH#zx@_e$O}zMkiJ6 zV5gJ?$qQ0lHIYORH`6jxJ>gb*p}6krvrfyMp{Do`t03o1>eS(&EE#iC4EGi-sQw4|7B=!cet zm9(Q0dFSCHzW&BT-hSn3Y|fXidv+i z644q!7UF)-Ea!adjqmcMuYHZDkDm|&y#B`bdH$sf?!WRPpLpdZ%G2)?&m*!M88z~J z%tS0ObpNmZ9Y8t#%xBO-7uD%d zu6w^*()F$H`JHTbo$B_++imziSD?|}`kt?8nI~2Ud;9Z^Ldpsx`gzmN5fAKo=40E) zejDIyR6tk(k+>t=zPdO|qV@d^sH-D8b+Ks;w6hPVNlHVjvesj^;ZX<-D_cIzmp*^eD$kNWnfJXaVyL9!I02VZm6)bLGm9ZuuI_Lq=u+~$Bmhpmc}8tJh?<1+Km(v=Y z{?Eo}Wf!z8W?1J^*SEI-MBlUSdv>a93zlr2S7?C}^+19tq$-w)6QR>B+dNeld{J6< z(tv$cFDsJbftu=LUI`*bF-;K}0y+*Bv=z_NI$N%4={3sP>jO)v9=tTRNG(3U)q)z8 zVyrp$SAG~H!GgSjoT-Zg_d)j!t09)hYKxP}6q8&o3 zquQNfU)a`gca1Pvy55{J*+t{&d)=U!zChLD01fkfH=O$}WV11_f<-yn_XjszMJ-Jq zz4+H6s7{qYHV(jQKwIy;-u&2~Ir!mSYxQdeLQ4IRYOg!B4c)Q#nltC^haet17H_X0 zELDlI&?t~GDTiI;ln0hPaLR=cD`7k%>B6w9)Ww?Qjv;b(c||%C&JSl?osXngxxKkT zVx$tR;cCg`(>0GC9+8xYhdqy$$24-XIx$g`<=DTSn|O2@s==NFevP*5G1kRAK2~oTwU%NQep@L zyJ29rOXxVT6evq2CguE)kbKJ+tO)$gx1aLx>BM81IGwW9Ac*kv@kAO&uC6XPKdbD= zz+o>8gK~(4QX|t;4H&19t6dbJLK>*GuwX^`iR1^S z!zop-?HFjiC(T+7^vkim_ayanaH?R4R{^ozoZ~gWkQihSREJiU5$!c&&Twa`WI0Pgr zQgC4je-3RJqd9Css1Xg;Mu#F00{Q;O_|hM}!!Q5J@A9>8e2Y=7uJ~Kudk5LS&X0WN zr}$Gp`;*+uXXrQ~X+Rdx+Y@^Im}P37nV6^p*~Z*$UD#}b)fR4i!R@}fyJ5OB*VnV# z=GNOyTA;+wANQSnPpl4X+r#}z+wCHEzqh@wVYUu{`~$MNr)@^l?rF1opYe}cX0AEP z4Z5m3!nO58>osj_)^A(laYqDhdv0yVx8H}}`I(@bK7Y+Q%w!jnkr+D7EJ*OO4lxla zuWMd=rpbzbgs$w}0ANtr0L{B+^!BE$9?ii|wOZHK;-rK`Q)Sq~22gVTI_8wBVX ztu}YnQ{U17X9GwL7xo2ifpziLBJQ}id+O~SOBb)BRBcYtf&>_m?)A zm9{=)oick!W0kbthCVkjS|Ws6?}$0IwlD4eEdXi#XBJ#4sWVWl^%1L4fvb zaNGMankqEG?so|7Y;x~b%*Ty=y|=wwQL#2V*5U>SnI@t$FKyjhji#v8z+WB)Qu5Yg zC_&CaO#G~BduFSP%yVI0Dz{VSIM3XkDyO9~%~l#TXXUsAuQ@HI3>zc!lKJ5E!}t0} z0E>Z=6^Tl4+1_R_LTJ+4tZ8|t6$Dor3@ruTxZqXEC9i-I?-%98u`wnSB1tVml)Kz_ z+sxG|CZgti_JDFzL?w8X#STN;XeP1{x_W8*UAog3N9+_fF8UVKx$&`QF;LVb-K}_= z9@T0G(YV`LpEtw{;WzYHdvxDG+M7%_N{&T=+!%OvXGjs$@6o?g0}MOm%U}OG|KJZ_ z$HF{;vIVZM|-5Dy4rP9#rwh^lCK5)~l=4 z#t2QM%94VhGd_ zNC>yb%>LqvU-%0@%VmI@+owFedCC~idEu3N+$fNmw7|4vN}jqf03k8%t~iWBsFt-$=NAqVtu9znq|Swsy*@K0%ajCKvzq|J(ekzIJStXo!66U-=*Li@)^S{Kl{SF8{6Dr~E=$ z&>K(!;n71LeEn-Y|5yJ%>^^>126y2{x3a~t&PG+Ax6kGy5Nnt2vd7x zvuXW4HYepdv&S!Jfo8!AxncX^`>*pId>eSI^fhhgb_M6QO68W6mRf8-w{ciiU)x5o>-NSr z9x(7a6bCu$KC%U3>!vAmLd%e^^^GE~0igzjeZb95dr8l>RYPp;9eVbf4)_}EtbYG7 znpy@5{^sk!I_Jq8>27 zGmdTTsr!_TRiN(wYRm2hLa>T4+yCML1N*9+t(`|Ml{ue!mN0ltz5#5T!De5R*z_Gn z;cP$h;KH6ev>=LqZpqo&{ZwVnnXi27T|RjI@V)*KT4z|nx24x1FBTmh$FUbYi@-2g zJxr;E7{nXpx}o#;ry+FN?vx@?{2(ZWT}()b?YIOid)JJv;48B2#}FHJA4JwDtEx3N zwKZy>m4Y~RZ1KK(1{CceEZH_&i;k+g@@h-~Gwi?a)U?u$RpOCSFT?_Mim9Js!z zWSv;%8_HaW5;@%*nJ2aWWl6~z?BFd*$eD6FGS3T34TQKO#zM}So7-Ddg=JYdO(*iA z<}?PSObcO}?69u39x9dn;fxSQN?FKDA&7c!supB0MYN7QWVEPE9FDRrX^*B{40F(W+x4gr@{Cx%J?Z@LDW_ zx8EgdR;H!02%PQTAfEy+KKKk5=T|KAL{m%a(=7%ZOH&L+tX|C{eX?2E<`A_{ZoSoY zKXqrIIj!!2yhj+Jf4BQ88!LR(rR|)Byzwl4|1#V|0ee)eoZy#CeLRM=IoFp(HR2S4)Bon1F&l6w& z&O?6vj~?^WKlUnVT(}wpB=WsCZ@4@k*bmP!p6^+x9LvPCC}(v>ZcaRWe8cPSUh~%D znVOZG;|-6lC*FKC^X}7`#WOQh<+=NNKK#-Z&tL9%^|^bT?E*tmcKc*hUr=6sq1TM6taH*1>g}90YHCFx zHmY;wkd*O-d)!P)ed{rgpWGk2yP=4>-*uH}gW4g$K(@Z)?v`G()Zg9V~MxckfL$ z_t%}IJL~)I{#Y}SzSf&(-6&NJthDvs)VSR~wHoJsecgb>X9w&*>(v0=_EWO?n0v{0 z6G@xr*1NRxs@uSm-)m@D0I)z$zoRva=qt~kHFW3NvL%BHf~_SSa5oFNy*_&Pp6t7f zaS&o-+h`9sw184{HP$|NJu4*ZQ>r=oea>V9P<@WJK)TWQdJ^706H_Fr37~1UG3l)o z)N8XG6RkCYHlw}H5_1(|@O;$`e@2X@Y&2NY0%)G1T}xDuO}4f@ zX9tq)Eb7+ZPAcu!Q8Wk=6QwGluC`M*HoPD#*(k*-Vt%V+7kv^JSJHMU^snT<51Jj~Q&?V*7KxWBe%~A708U|8mV6l>tP)qL7 zpBN)C8SOQAjbaF<`h;L=hE?r;P|F}7y$4Qk!49?k>h~ptm_VG@?KA;f!={YYjD{0V zx}k41Fssw8wA#hIyi$chie4MGJ5Ju(U zlUp8LAFbb^8cpJOo2bizdi7+GYDvG4u&Q*Uv6?Ki(?iUSF|!h^F?31+DG|-e#eO6X zW;}B)rog4jVtp$Z2jTw38TT%(xOe}G`!C$%{J|A9?O1Xm)CjVmVL>Q_IuonHw2l7FUwiubXf@BcG-@4rQQYl0pb-tJ}H)RzE33PXf2 zM$$0Y;peq1F-415d(=D<7!+iHDZsbhdc^O4^>xngUGXzN`3XMtf^hxwKgH{hCvK0w z&AV^Bg+!xyw($w6ITw~`lBzs;_?WMK<2640(GM|SKjJ*W**Flx4Zj#gs}&&Kv-1K#rL_;#S(nVyL~X~TN7FmvrDyXYFLGb|N6gVe|6771m68$|4ZFr z3DqM6_C*%Wb>uXE@pCL+_#6V9PB-Y)NBGj~%K!8K`>Xu*zxLNj<>>V-%K!4^kMl45 zbAN^Z`hV#&JScC$yfBPs23l$%V)mqd{6jqaH~xDLo-#VI@J%7PJ^%uXu&wu`tX?SpqI>-}8mU$Oa(tkHUH=gYIv%FRFQ9{e3DM6c7Y(VcOv zT@Rp*m-*nU9Wa2?e!u2R8^fV}&VYh_-(6m?zZ~J2Bkgw>?tXroL9}rTG)a>Fy_-Lc zSSOo$O>vPJpl6f>4S^I^uvnu3hR{Ufy3S6c3pOAs-EOyFTq}`S@@Zv6iS3yf*7My_ zC98|QMhV2V4QSu9`OaFEn$5`<5u>21k{46UG%&C#q6bm0eYPHxIWHhE4i?N43Dif zZ?xD>MRp+5lucI~OyD@>fu2GQ==~C9f)rg4+wVU zU$-p=R<)P@fLO_buF$YUNiV0W4v5PpMkM}4R>rmNyN3J3=f~`11^105M5^ejrpqP^ z-rAQ4Xk1$)wVN^^8?B7Zv%^v=Lx{c2%?Ga^uGbF?7V}bQR1WVr16uoLw&P_=B{Ni(hAU5X~FTUrD^DlxUiitm`ksbE;sQ_q4RLRoTmER3Ts zEb|(@0!4Cbr{J4j3N@&2(z}PYZC)=}cH>~1*JuO{)UCB5_VadNZChrcx3aj=bT8{$~`|E3;AwErz5Xd zr7$t29ar<7oC;~$Sa#Ox;*c|WTHsJ&PB2f%CQM>gWYI#c#aa!Jsdc7oJE$=4XKLA_ z*H^~)v#`IpW|@S$`!jdP$wQeV`P~F)sRnIKzR3V0I{*%a&}h&OaiKbfqXy#-4`Ty2 z!_m*_D6)ZLhVx?swiEiVyJ=?56Hz{0a<<$CUq|csH-zPgg%N&HPW;n<{Sj%t;y?Yn zzrkPo+JSoag5UYg@A91wf6Tv{7Z=vWDvzd_Z-4hgo;*A7=Rf=j_pk4mYT~3yN(=8i z{~EvXH~u;tGn20D^2~O8#r^ABUcb2K`ud9N-4pV(W0w=#>5MY*>}tn*@7_?pW1uJD z7S{r78>izvMRO}OkW|RK%yNBY0A%w@copW9nHQK-gsgQ-cN8co?y<2v75lz-%G}a+MK6^RP&5RxGZ_$vlkox>R$UNf)YTtX4_X!N1(>gghuKkuGj#|Y+mHD0o98+i0f^tr2AS$8wVo5ZICb50ZwL5;MWl)ca(R!!6TMOtOf zQmtS~PTBg`hWw9QN}z7#!dTjr>1NQh(ADBzVlCRMed31KBv90AO5jmn!Gme3MYVX} zPgfdiDW2n(kz{;$+stq$K1Nf*Q}ak~o2Ljxm1xyg$cdnFjkyhZ=*nS<6sC?dLu(Zg zs9t!+4J6SkQlS;FXq;#r|<#6Cu*uwz1WMWZ#coO*RVM zlwx=}WRBT8rQ>e^E#QU#k?eGCYg!dAENt&=9_6;JO-ZcUa-pNkz}QdpybY0fUmahX zM{C_ZMp)33ng*k066E3>(s4#Q6fIV54$y?6id3c>m5ubb5BQ}UToA_EMF3( z^_EH5?ra-l|&YpS$Xng$HTF5f2_zX zER$NVw6b}4Z>DZyt=v^X3rVa5vz5#iUtjYkiYTlg)!u^%@?<6Vi)N?^sN^|Q^h{0@ zlec1dIBvXn^*QOY*W`I-t%cL+OqRs#6~4%@>?U@*h5bCS&*oX4_cQy$j(JWT=80vV zsAc2z?VT~Jlv$S9a_P3!6hxg!WVUVPbUvYJ;=AAYkSEs*@4tIsKWCCyD9Yn}l4eOx z)@C6Tg~piOVy{jE4J)}ZqKAeJ0JZ_rE*!*#Qd0`!XKKEPcF0?P15@;^_f+*NYW6ew zB2`bguUMg$G%b|0^8Fuw!WW;P`8)saH~8N39p^7za5@)wN4USe<>B_8jF3@ME=<#o z?|k?!U;E&ik3RYZ_phL;P^ysfj;Bwb^3Kx(*Uz3qJ(1JQ`8HD?9(Z-S<298t%5vIs zxH=f^X{DYjbrX(hB`p(a%H(-rI?QBIuId4;$*TZXv^YP=2DCDQ7HvfeYAu%Irw%|b zT3qM=j^*Ni>T@|DOeD_@^y45d3QUZlX<;nr>j({MSL^jHuPA9hQfhuq=m5+b%3;z7i|D5yrj%A+E zn$Tnbrfz4p3e)v7-uuRPc<0%k-L~?<`m#eMZY$@qV&;+VIcxs50J(A@ zKFr$fib{l+jyY`?N`{(R(E76pEk`|62JK&6Jj?cFY(VYLrY*+>2pUdvg`s_Oxxcz* z>(J78_~qu-t~ApJIeaqw=I<|EL2U-6P`ctBgBI0ZCMt#p?M6tV@uAwi3Gyf;I^L=& zgfR~PJcSk4cv{c>A9xvV&~5AIwAYNVF6ZOEUZu#UNP9)kwgyHk7WFVpw|0d!_GGMa z+}jK?u2A~jV(BBWCz^-P9%dWsuYqSIDzW2zMB@g-d^I{AJ-E^^#7Mtp?CK5L5uwgj$SbONq87e6?=ofbf;TazGWEiGUNLnOCCS`8N9(p( zYbD1vQ7JYG3H3gg3TYlFzZ=A2#?>cP&{nmcNidk|SjeAMYe6u+U8+)wVXc&`xY)J^ z=1Qi_MS(f7cPUk^qIZs36*}yNj3!~rJ+HOK{D-ABXt`7h#raZdloq|0i;e}7{92Dh zN#eYC*!o?`b}zH9qe`NBUTCGZ-jGCSt$IG9glE;#nym1Vzn6-8n~O!Pgj@(dA@%)lDsc0qJbrCu(W;<2 zp}2qwg>UQ?7LK%0j9Y}NF|sIh1B6uYJ}bs#)^&4+*24wzWD10cg-n39HXhTIJaiNq zQzlbOVck|#VVbiQKZz3G0Q1zwQA?pXGupP|7P#D!_hp*Q+U5#LSnB6A`TJFGOC?NR zEw;y&dt$NolquDE_O*fqBE7V@n8hbg2_dtsTPvCq*2P*Z$52I)WO<`hp>B!Y{=nDX zdrqmD`HNd#-o8fCLahniK+B30WjBFbACOd8Qer1NrfZ>MaUT0+A!T^+`j*O`t6k!o zA7l>K3#FWS`QjC)V?}a86C95PB(v;imRzB3lucRY%=70@S=VaSBa?*(-`<_9fX;4a zO4dX+=ZW)Lczt(ADI3q99yp#7>)DJ0SrW@KvzseVpI-Cq=@YUfUfSfJUv`-oo_fksr=bre8ReY#(U3ixY{i|``UZ#u4dL%Io_W6=;If>zCChv zwea-mf$Jwb=ELk>`I($%$U>FEQk10>-hX=Fu%B6r`Ind3s={jIW<{uwmo|@(G&A-D z;I56gNfg&mg_M!miXv!HvbtwXt>LjoC22{mT4WKc%t%V6Xglz(S&pY$+l!VsR0e{c68=`yL9#Uwz zT2aU%07y5oxH74s^z>a--Gk8-{3H&DLSY>C58?4)@U#v4g;3!9NO6v7j;$L+;6u7M zbM!97zqQ@j9vF?~$A?OQRMd;$^uJZrz*#73l@`_*yrX$^+>mQvvKI)6+`}$oaD~=t zaO0mFfcEQTXhu)>J{sAEf>s?oYI~9F=^(+@LN4}D*WguMAr2f7MmC5x6>ji&R6GY< zF8Mi;D;eXD(7E8O&BKlvh>N;+$%M1ZW*bvg(Co^E=QW0*+<1XM>rq~47%$A@SDT@^ ztz%nralQ~r<@miTm8d_R*oz}fYTUASOO4^IpRo@fM zn}_w~Mxr8lbza-wuQ599`LAoOtifw*MZH?E68EvcimFAnfg2N)swOw90^5dEmy41e zPdJZIsAXl&mHf7F_OFir*^ggeS+piz_J{H0Ruwe(RaHf|u;%nlA2IswpfdswVP5QW zvpOa((`%ctmcqJjoKKc?ou{dV)>#WG3Cv|5ey8f zSD4z=LRxF7oKI(a&jeF0?Ye2Q5IxmODh?e~TZ#L!t<5#i~R=je6i?s(?q-I0_hZm#zf z!Mz|@PQ+G_d}OyQUdDgs{{D`#RtGg1$%#{0Sx;xQ!fwgTDKm-iboU&|iFJG6cs`;v zqiVgiGL`GAnZth1={m7JzcOZPIt$aZ@a%BSUf|QuUXi7;Ogj^*IeC+H7vdslwFd2H>E8F` zg^fxn16ZY%+*cU@$N(J2{8c}*!zk_N^surJ(r$zp%9@9<2fWBaRmx`8+ikPliu1{G zXVR3I=ERbrvg7KVD?U3ZfBx|oq}`t1`|I!U&6@+fe$Ca*0eSi%zyGt3`RJFQa6X>c zCE;8%`k*{}@0$02>GtTUqaqtaamjuI%?a(gcUYj;nnp>&ofnkr%Iy)Vg^wy~J*xdFP!g zb~n#Ry9s8STS*f&iG@5Bx2z`PA;l{yGjoBypS=kvx|Hge9)^TK|~ zEOXGd0oKTOQ*nAr+KSu|#n*g{O5Yn%{j!C7R;=>1gQa12w!Io29m2TRH)o@r5fE$J z!yWW%cS%{FPQPBf-9XHmxaO}eLwop}1N*u*LzZf75i14?lY6=S-foxkk%oZIwWqB_Bbg1Oav>_u~6enRBy^ z*aoVUW_S@Vup~s-Z&zd^0?f(YJ)sdP79~==|Mb#Bk9(0BZP8X*1+8ura&KrtEg#-1 zRyU&)3Ya38ywdedW?v_-;;ZDe7)RBx0;pHDHy)FcwL#KkSZ~`5-zLQKWv#DaM3q@e ziYsbv7>&IeMhn#NZp91&oA)YADK~}EiY&o-t^RlQFj>P4^Rl2dJkgdv8*>(pm~AV~ zp&`j|@@V9$C}lHQZ&-VzeH&MJ{(7XGHvA$ASq*0|)6xuV$&0)N#t00no-bVkYdcS` zrJ!|Vo_m47uZ}Oz@oOuK>(-T@R(cw@C`f6dQ`}-z2F4xC0&wNWehmdOi@3GXlu9e{ zYZjAbw=~P#G?_)lDyhc#(cB)-L$QJ{VJ#9dCS-+Xs)wqk2K=-{0=YPo2qtUAEi%dC z^|i9Oa%y3;2JP?-L}P#*ya)JD7wn_1-AWaQLJg;M}XXR6{tilD>hks82K`z?NvCUE+P7iZCS zl3MfePz*2Vy;~vLZL|qu`zT<6HQW}aWp+!UG9yfTv7UY&zAa^AezN0>^~@js;3Izi zix>RI|Ixq8ci(@HL)p;hPvH6~zpT&rC;#Gq;^#m8CHNYMCeBrvch{ulDG#M^JSkDc zA}X?JMhzwU-P4nUhw4RU6vgz zbK#vQ3-3R>=CGf5=jy%uPbgVoGKJR4 z1yss<;{Mf33ch}94Pd%$%{`R~sRFf7>&bdW&d>Ptv&x_T;h%E6eLy0rP(U)ADXeGV zJKz2`|G~fiH~8iUH|Y9;tQAR9Q-A~vLHK^V$hQs8iF;9^utTGAr(t!)T}FGiiuVhhye)xlqjSTIk{@exW9MMxOp&LVe$8=?v-c?OllmbDaDdg3t=>+R=VfSg?1h0q83Hj ze2iWRI4V$vkRKHFP!JIHRz$8;B1C9jiFb}$4D;KR`S#P+A*xdrOm=zch08p$fi~K; z9>-dvm51|?kONJ)6P(?@Yst8-Twu7Of=6`>icq|>zo&$PI?Q{lQ7P4Oo}I3>s(I_e zprPiGvR;!@H#9bya^=mZEE>m$F+kM~j-`4o@)$YhIg_!rf$uyLEP6Uxx=(e_e6(Tf z;ku3YxE!;+SK6L2-PEzuxQ?Od4tPwk`Ug?178R0LbG5@$8yqW6I=g816s%fX5g?%L zrzqYR#w`)+)vF3JS-$t9;;hWouxRpn0hYt)draxYeNIFU#>)$XV=`?y4;tzzePz03MmJ{m@3t(bupa_E#{L zU`#Y6(=0tXPt7>p!#lMxh_Ui$RKE&h6zPE7a(ALw1@Q?)5gxz@>GpF-LPMKxSh$uTT zCb|_9Vo$EGSf<=6mEwht_WK)lvv9p6_B$&he%=bTD07}TOtUqWZ6)n#d!QRhbXY;0 zQRA&cB4HlJjp5|ffwe1wfu4szv2MY0tED}=Cyqw}264vS_Ly{0=E@BSuU?!vAsh}fheKi6Eu7cF@mLV{ObeXP8?SE9)M}ydcds6} zKFsWQ(Rkc}Qz$MWS$n0Awq~GSWD7)gR(N90kl^{#E1upQSgY{)%R6>+MeC6-K0mXb zAJF%&d4IoSEhk=|k8FF(A=a%jrya{-$JI{IES%FsE(hwl@Mk~xF+cm+M~Em16VMbJ zXhxakfw~>3vRTeb$<50YrR_z`bExHv%o)9UpI>}l`N#k0pYc!rhkwF$e~+}X@aBO& z+#L98zw^8NXa9@8$A9+s{~GV_R?^*xM4=?}P9^P;9!AD*0s?jVjxfP-HiIt)=uINb zyBV1mYMPPB^D)&tE8AK)ozL8#E3Y4ptn144A+t;~h03a#RMkAjNyxM1tIo-Cpk%Wq z(IUC+K|*nCo|jR{3onigXcPyeYTu90!o~#56Hqo+7E{+} zoi{`)g6_49Fhs!HE2U7p8jo?F5wggY!cC(Ru&0=`>Yvj2OvtUMLQc#D%?J?rxps|5 z^DxqbpEqtKv)Gz~RpWh9^Crbw#Hs3X-26G>X(B!Uv@3^^v#L!&(@??(db4@gHlGdn z7ux#uP*XQ{)G?5BAcrKrH}P;+%Yp8Dp$C|@h!7MBV|Fs0C-V&83RzcFLVhT{e_r24 zimE9i5icDnFQxRbV;eqIoQY7r>0EW?}&LQc7bgR6ROdl(D?<4DM;)MQ<%R;VUP zIPF10gJ^5#3RkkCd!fYF=3#Z?dE1=k2^TkzTfwf<6#F(0gdrqD?M{c# zbFBuB=h>;%vcZH^P5wd2S3zE0l} z&Roa;YHr31@lf$LHcziothgjts(^YVSTp8D1y)HEo%}tu6%>lJo6>TPeZ8wvic+@9 zR?KR&)yh@_o7g*SRoc1*J|ApfUmahflcGC}akR?sn_MR$2 zwLtb-*eea|?oTTZ=M(3(u$9Wq;fhJbtJ4;-og|d1B6q{eI%=dVwSyj}@uHJWu2)QR~S< zbEnL{!1-*zZ-2cbOXkVdmCJ#ZdEPT+%Y8hZ3@|SHjrDATW`EdmeSJl(%DTa}DVh~o zy_JVszqfUxs&bSQC1+DSv#_a$hP+%^=FBoDrYSMc6VIMp@%;M0VaZ-}C+NDd zJSlYHVc82F0wv=8srn82Wg7S>jL{81hY)!TR2@+fAynb5Xm@O0fOK(PSd(qP_Ru2H z3OP}h%%AnIul|ewjvxQ%r_^;NNg5h8 z!^8b6{_IcxjIC~L>&7I4Qpjq8bf&;?~;ry-z~ zOhQ@g?TS@&{qSqgky0sTVt#kWx>;+KIh$9lmW^deOw$75xfB$p362j(?(fgc6Xu1i z7Fv#km)K{1Fl5!*JyGfgs+=>sC3BM&-pSW|^IPv*&UP)VrShHcy~p1_{RZm>pT9bD ze|O^9e&HMM+)&GrQVVmow<}vA$wW%RVYc_)l5&=bKl_6p@h|`NpYz%0uh>rprW0nN zFOqrZYwz;6e(yWX+sJY;Qq(!+}ofd5@ z(eQV$D2hv+)rQiI_*Jz<5k$5AoDwokCd0O^750JXuU#7^ zt)Ykw^gZ~*hjq6WChgn6k=@$kHk8yw&_Inrn<*uau6m5m6FJi&x-JYq4nnOkns&S( zFnM+1D9+R|O~<=6BDK&?)4tDZjlERc`)_6Fujw@PRT%1*^Z2!u#j;wWvF6MCCrt|K z{e7^~^NnG~pSN z&vzV;8~bJ9>aeHQiK=jzAnghhh0|KNyE8+6}Y}$`1gPJ zyS#sM%^_#DYQa*%;0YhV)8nIk<^<6FCYO0qJwTN9UC?zXqG3d6ic82Arwx(R==TDE zyI}4)GEQG)r(wIMYUD~8xTsn9^otjK_Q|jK&2N2^-~FwxqxUDu=}byz=G~r$Rru)B zSN!~wPbl?l;kgwvn~0FKAe=az&z#rNwuYkQn#n3`$0MKo{3Grk6gkYuR?vF3JuJod zTnL)2=Xn+j4Kj5Grj&VdJ&`gdgv(-}dA}p&L@gVyZeMYA*t6TstlJ7&dGBl2?DsQM zo^3w8skaF}iyG+siUw{iC(49l@BtH|O3In77!a9q;@!i{2TykfWWGIvB)+xZ{M~<-|KtDRf5Ue^Nbvd->gRV<7S?Q_I(q??Djh@w#mAxJXA-9j#ubr^ z^Mkz`rdsh563%NUBqip~(#pwT$R2$7~Rs*-tLjQb`7)egm)(hy;rk}?`CCETzmB9v`&eBX1V zA_UU%4b^(33Lb)+NrUk+dKX7g92I4nv$vUW8R+4@+2c&N&G>962HjAKw};B)JT;JM zd!-DDmFKle^879}rXxZY%a@ND1xW0(+!Wn-t`%1`up348irQFXQJb2t$~;XL0vWxO z#m5t}J1RLkDo8FFP08=Ye!4Q$qc}_!OQ-lyoT?k2+jph}MkO5RoQb3qZP4S`C7y%b_t(-jy}!7$)S6xKbwt zQ<{^u=f%4kKXhfEYK|`HeAFH|HMwYB$Y`+;3e@HMhteEnEG|5vGSZHRCcEOfRio<~ zdE)K0dr_e5``p&Ddgb>@(c(C;SATCwh;<+yJEQ;nGGuC}p+b*CxU}xAFpC zd-0*m2o8-prh@?@wb0t&L)F(-++el^_K@%#Vsozkp@*azFLk4bYAfc|<_(`qr>%Gn zE-NopgG*!kSI3v<__dWq^ElZqzKGj*%Za)LZmZpTIW|$&fnb24f~pHp9iKLAE*&i? z&V)wV8Y;2&s-n5I;ZVgDpga`aQ9LoDgZ)8K6A@E_L(sS9^>}*wGZ7&{U1{K=-A60z z6Uw0S*3IGjbr7au#F5Ytzmo;lvG?5~czdvn8+)cfuw=HiQuM^tVj)`Vdg9?!xIdmz$w-B#1RAOfLxf zLV$-rZ@EqcO*l~bOPFU@M1wXjEq?L$uvfJh*WR@uCtQ;)Jl9Cc{KU zsSg{cds918d9X#uSoP9esdcuBa*7)xK&ArBR`Nd2Z0Q|d-3#@!G1ZFHY;#cy6T*@b z3&OO596>chR;r#+tc-dM0Jm+_IrFOQ_|N}u|0Dm^fAdfI<*$CloYclU!+8^a@3;OM z|GWSF|CYc1xBogH@Hy+xUSKVeGLo!Hpf#pmG4D-S@jGb0puLfOCvu*RuS<9=9OyVQ74JU>Kyuku#KCjt$<4z& zyoYKtId%~4*EG53_bD}$+-`79$@1b+_YR1(d&NGtHd490w_{aOHba=W;+jOz+4lXD zCpRXWT?Uq`;(1S&3){l}niaDv!`r$76Vp6HG6gQS-{El8)--a`s^?UdTCCYSZshbR zol?_9rADi4yCOMpJRT{fFin$>%k#C)Cu*&njwgh~Zoebv#Cl$NIG)g|cFmMY+1^1t zwIYR)xG_3UY4M(fW$+|TlYLICqq#(=D4T<3Yt(KA+w9eOTUBeD0YIAPSFj$0(agT0 zoxa4vv`1ye*|4WpMD@~M^rq2NQ@YYc=yCG^4`!Ay#s~!wWr{gc>$7TJJ{^jr49)1t zmx}Q~@v6midoK5fs7GV?Uf6tE#B=Ui@rIdG}j8l2Y7T93kx5ctFfWla29HwHYZa{If7k(f_$#j5E2xMS^NX zIuG<`S`mZ^v(Cs_`SU_jkFBsU=JOhKZj3xm)lHl7RVs@CJLDR#jSX_nLG zE)V6Eu*AARCzzclmDgTQ9K!knK1hGf5DGm9q>Zym^WYGCiZYbxegvIdXqkmJ7|!UO z^mmIS;nJc`Mx3CI1P3DzS5J}8AgC}rDIB!lf(;Nz}ftXSz_VYri8{4k% z{Kf#nro!nP8^`0BhtmVc^+YAJ%m>crGp8af%R)+-r%w(Xc8UFD)lHLB$V!?fuB+u< ztTpki53kXh*zXSPc8Phi3R!g%KK}HUm$ygOTBxF2A8xogEIfO<}9ENdx9?ONH1>(23cH{E z11!GvoK-kd3A2+69g8NYDawNP`7gRzZ$$-b+->hYPl+ejnNkaPuV3=;x{yA2#yo?t zT6kW7bJX^d!t2+!oK9z+J$=SB&6KjXypin2D=Y19-cPHJ97P{0stHY&qarHyd$JkR zl*mcZIt5s+BW^PQ=p5Of5xA=R%^C2JRPuOl>VxZaboXqQL zs%`Zm8Lc_NUuO7dlphMp@BxFeg?oTR&C^#rCyDGvo|USVb*udJ=eLxieE8mh{cdI} zt9d&`*tR2g#}%0;_On=vlsvUU3q-gdpi$P^ri>(wTr}Fx2)`^1#Hr^#HA!Yw#;Yj`>U{VTd}>>x z^}IE}Z8Fh9w;O+RATO?TO-$^TUE?z~_I?_?A1=dG6%y?CyOtXjN>8+;QH7f)H%+NV zU|)7zKfNZZ6{DUSVpQ2e3J2?hznk&E;-PR_EpLp?-vN`uSrTbBpq{H*uBeC1)>=Hu z#&Av41PDA5A$L|07*h_sC<@J6G#JtGd~)Y$inO_CioEj{5wSKv?xjsRcg1kPNp3zF z6e`C&gD2F;#F$%nylRB!4)rCppWW#~a%-~@R&K3oIhMnIA0yC25;bY7c-uXGy>MX| zfdHQm&y{YtaQMFQFmdCLjV-HJxmUF)Ftv6-aiL{Bd8OVI|5)E`d>?5w&u`9Ce}`H~ zx#y0yeW^m-Y9D(jr=xn^MSt7BHmgqS&MOP0g^^ovrclNM!`e+GS*4IxLD=cWjQl#_ zSy%QVyc?5CG5(IsZ6sNe88u4jUPnJC3PJWri=cCHact_m@gUo`wEa5-|=fJixGRBL|QIhistgrfUT(YDvEe*Rfbsh&d{QdPtVCP2Gxi=Spn@9BGIfx zJy{$2Py2&`q0yM-7~T{Ff8n9=uUiNNp_qC&P*cbrd1rjX*cD*`t6r-8@eUBek`?`< zE*J`QA#wRaZ8Q>Av3Nn6J+p(_K_Da#M>HRdkJEF=qS9Pk*ov`uZff*bnn)~5WlEVT z&xj<}a<&|%+Sl=X+BhB`ETLW|QWg#e>(?mNtgQ3o9#DitvC{V?@iZT-twj+~%MZM| zPEgG=^ZvUxF1+F9>M4h1W|@^aS;$sO0%`Wjex+GQOI6m@+E+~8jJJg-4T;yA3)TRS zTB}zR^fJ+2}J~JT$p_OCJYz($`Ab9*q1fZJwv@ zB@V&r)uP45Ej|ZEcfxk|s&l8a^^}#u?fJyrNx0hYVJ$3EVyp1Q>j!@E(ML?D&)7|s z(`rB_YeMtn`^$3hvM6}LBdMm8R*y`;l?0)pV!ZkGc*j;&Ce+#hAgrtK;kUoZZ~xZ! z_}bG6x%~nyST2+|nXZjQ-6*Bnnd(U8O~ZK04$zTqV<(Js>wv!skf{`VHz|lz@+3Ta znkidlS(JGeBu}UcwJ7(eGoQVkr36P*JNZ{ol@=G7D~H-d(-w`MD(=kHcsd9?dy zR81jMXC~R@uPNA5pFbVPsOB-Dk~DYO9tuGlq34>p;i*L)(L?rZEeo~w&um^D6SR=Y z&UY24>)=sT`nt6F#tlvOu3gFYlf}HbwXIWXH>pFV&SoTc!*?j?2yPHBZR3iV;;FU3 zc8RIN&e3I;4tq6}dZ#OOPm>kfD_cCYNgl=X096NPijAw`%!YgId>sZA z5+N$5_M%qWs+cOBX2$ujB4xC>^i1M5oy{X0%4PNRETSl%I3|ic+SJTOKR!J^2ApRA zffa1BJFg4j7PRdAFwE)gJ%g?;SLv(cOLY9&%HqSlHDgUVJW$4H^OUV}U@|Y4q~!Td zp0KQz^RTUjvKdk3EX;FiOrk2RTV*?0NSKHfV^H5p!8|3U2H0wVois8T=cjM6X16Bj z!E=LGF#I$$;va~+;)6E^V~q+}G~nKWqvHq%H*rfzgFwMHn8rp6Fb#wC#-7)~g#Y8# znO-%Owt2_*5pb)sgV#15>6KD|2*oWFx7Is!NPTPm_Q*+pXMhl|TFG$Nb5k|Ad#X@4OFIFC=bY zFQaU1C^cwFOrfc2Z6_wN4uj>q@xvedlwW=EH+koS1(h>WCnUVE;&$_>!YH(o{er>( zsPWbu8Az@Wi@Q8S*c(>N>~3y&axHB2Y;-4PyKSgeJZu}-?H1-`c2HtDE!%cBz@?D$ zZ24WzXmZd3fJ|N~)P;LeCZKE^cX#(}wUTG$xWRFqSklUNK68JBx-6>zQ!nZP zXijWv<~!g04Zimq-)29Qjs0@TTo5E2hxMmMYS#~?Jgy+TgrYgPsqFcX%8TgoDRAV0A zMHu0QjEKmA{=Og$jCRFzh+t_7jnRwyG(6csklxoT7zh68a7qVBQPSck4KnbEm6 zx+F9`dT$$-xO?D8k|PD;ei&#KnrOWzxURZ`tXRA3uA^IDS7)0fB%#- zlPaRgy^og)e$0D>MQSUQ(v|F16tG&mjtW#MUBSNC*0E0geVT$Z?4zazHE&rwqmM1p zeA?~AA}y@%Bp19!W8cJDd1z-;<&FYRCP@+1DT!kRV*9q| zH9XqrBotwqfk-{%ER-w7YidLxDY~*1_YFlZ92z5k?KB(MAv}{|jA;VX=E)aFhjobG zo4IE&6c|SG`x6cxh{8VIVA^+ji?SOTL(KWxaLHH4|Ln)Ftt@V-PVw=o}BTvHqFgsX>^HwDHS|00qGwq8&(l zqRoos*9`kId3%tG8Yq?oNi8P^jWm5~>HUw2ninm5u4e*T@doe5SgIw3mrbdgGR+Cm z6A!l!*0N%m*mUB!Zk*1R-?FTQc^0M&WmC@Q6Be$PP%KRBe14#A6YC1oegNq}7Qbei ztmVbaSA|V0N?|)$n}z4k4wOwepUwvO#3~7TGacQKNb2wIMHQ=U2Z|QG567;%cjvAOH9l{Nj_(_|A8~#&7-RhwRpk?YvQl zyej44{+{pu@gMO0Kl&Hk-M;d!5=|r;0Eux22zBsU9b6`)&2>3G@Q45U5Bc#=|1Q7r z{s&05Vh&+IL8=3JF9u@$G>qO=kz)Oy0`dsTfR0-^B_*mCgFICCSXDUADJi z5SwQFv5=kO$^TWAZ7b+j3_wi+(`>Ybd!=iXythJGlT=fflX=~D%R;S*+lMoUedhh^ z9ps6f*cd*0eIie{+&nv=Pd?yQ4jlf~&q?wHH7V6gNN%cJA9g&uIZ!ksWumY_vNG^V zt;m%15-VuR<}IgKFGCGw3CIaemBZn{emB`(RFI@hOymkybRxo5yWwmE&X3W+2>zO9 zC3cPTTp78sgcToqPv4(tHliwCkVb5AR5Geo+$MWY_WsF^cb^}iT6d8a{^_BGazUR) zqvDYTjaRrFh2oIwvf1=h3p#iA)*X2|8{a^qz3aWG~zj(SvMCL@e zV2y%quJ|~1pa>lx3Db#Bwp z>9fle59!NJ`yy>k5lEAT;4_CLrU7tV-l}B6*d9u+R5_M>&$~rIcH!rMQOF zmdkoSf2H8V>+)&!C#vZMt#lNWZ1pXAr(C4 z%5Y&ThU53HwO+0@bOjT`Lh43RyJ>PKL_}+jY+ta4__T$j^o!> z79*U=tRRE(6j-2Ex5k4BmjY~vM1d7)p@<^F@u7IwL>GRwRJQd*)r~w&?52s7tRGh7 zA5J-uy_Z+?f>ISzV$?pXrH5YDVpi|SE3n*;zUd+f--KgSg`_crjr8JS5{aI($q-dVlin4Aeaw({0swAdmCNDFhmHm>~?PhYC zeE1tMv8{?QBeKBFHIglFVa^_|rOH}Ca$=E0Id9g^V)CA7V&0-QgGs0fYKejZ*+Xz6 z55;($$?j}LuvM{3Od!2|;IIG>q#>9Q3;}A&;Sn7Y2m&!nyC~L z8zrw^iFwZl@9cT+gZFr~?)Vpf{0aZp|KgwWM}PEV&Zmu>g|Y!@L#6Wic;w^H@A=j3 z#Mh?-xvb_%5%B^Jg(Nd*HoiXXsB&eYr$r&VAtIS#w4OHV`9zXE%RG_2`m!x#CTS+g zkH&pjK7)EDhBjL#1yELI?5zSljKjk1^)8 zEpb$}R0f5(-^28x4!rx=+oZZNbWn68lxR9#!C)}!t&#zhEh@hz$3* zIMnF9XBPJFLpg1#f0J2#}*CXUG7Dm z+(qswu4u%fhLw99f8ZsRHdi6q3?@d!;ZT4yY=@`}iq)W4gi*7EfjjOuu3a@{tnJSx z2Whk1ejA+#>T8k2q8GqbCo8CyJWtqi9WCO@2+4~JwHs^WIZgU$TU{Gc&Q|H4z;S~& z&(}$v;Fa2Bd|SIma|sN_fgr`cKSNzlIeb8tz%F>k5K@rw{(#3I~8Fdi}B z5+Y|3UyIKF#0fb(ch*~)KA>S|guxH)}?@>5Eo_vopXBUDYu zY+FH_^iTw zSc@g%8(5(i5eXb5_Px!Ads=4$9?3mrh3fB{IG;DzYAeoSy%#NXW?hdSLRDDTl`6t^ zch9y}CP~~}?I;xPAMQDx&QLd|EF9+@nT3>KUNZZ=aoVKHoK3iIt5Vj=Q6Z;^Da}@y zkd0E${PJ$2*35oqd5TelC?~7}UP@@$$g40pEokz0&e97Oh*e}G84cndo17;1B9)*@ zQkf~6GS5-E-IT|a?Tjqhz?~N?=nS^6nf-mKJT@IZ;@%OfE24;#g@G0}^&hq6BSI@aRD6>px-K@E>WZ0l$zyGs;@rV4s z{-;0Shd=wA?WE=*B#KQ8U=q)vb)!TG`z&6l#PjAXXLRGdp4dvU$b<8VX_{LVW*O(G zS#y)meQk5r=C)19Fdt46J^U8g=F(?l?)TLUh$_t`HcV5|M|b>`~T)gl(m=#L%jN=3cE#k zINkAsAN`y^_=6ww?q8pnG*e4uo@TOICF@5RGQKeCFuLS8PDqx&%JqgQ*;Pm;_uU^vMDW>&6GxMD&hDt0Xjzz+P=~LQyicZtZ01yxF!I-gwkqWO2S~}z`sei zw*Wuw1GyL@ZO%dojJ3Wv)t;iE z@V~hn5n)8R2qE_yM_Z6)3>x@sQ$GDYB;;Z|+n>~EUL!sv!Xfc=oIys8^D)e7`(#i+ zN0|{y?^t1!_UyJP+I+KP+(mEX@oIE@rg_=gQune%6NJEQBkB`&Orx1 zJ=Y_g{J~oyDP8PgZR6vG1qQXUS(4(x!D>a!8s^i}yp-z_)!ZJ@>9VVuE zVM!U0LP`~7VOsWV+se9~&Fcc729|13YF?S<33BFKW?tUivz`h!*L$8^@3`JA9Cq1y zY>A*`B+XXW(ZOq>Qnhg2%%foCofFeEk=Q`1dy|Fpwwmy+#g)rs)l^ptEeuATvRJVn zFNPuNR?H+94EnLcIPQya?~L0i{vJ!EH*aLC@)uA_2Ik&m3H^pHWJBX|p%x{s<9qLo zjMhpKWAf2Q?XxfL`S@42JbQk_hwt4WRjF$I$pp~48hDx#Kl+Ow^XEVQ8MpT*_9=Qo zY1^mqer@j>F}D37qf+L3QF3Otn^|V7wkb(SY3iUdfI0zgI$#zz{k}1mZGFN}6aAn3 zx?zviwx2G6WB@Gj}m&goFr*Qy^^n$MKp|t0E@VYe6$)1Vx?(-jMT(RrJRrC z>xFen{POjQAOH9lZ08d>xpM4l*A#%wauvx7H9f#))mk@&tQ9HBR`01fasLATAWBwi<>1;2~dJFF83Xo*+GVu}a*0qwR3=BgQk0c2rM;*Wx?YZ`MudwO8$e_uX z*b`HpP&PBTIj!WBS~bWh3=-`@a?ppWN9Wjn?e824jqi0A79qE6ee63`E<85@O4}OY z_ZgLo5m4$lyFxPvzcJw+azBE1>CpIcT^?WD*RXjZhi^lP>2#!zem)K~FKx*5i|Qo(^*nJaxoO7Y}I9Y;}^GqWCx($7HVMh8hOcPEO;`m~`jy zorQ}Ad*hy6?u|}` zsAJLoy%o+67B)L5^?iBzlLRPGg zP#Y;J7gr{u=`dbqIzXyzmgs5Ka~j=}+y3rMEXrSN+kjB31bn~P5W`S>lWPMf3P_E{ zsCJSm&eDW+yTK!2b5WMsdnU#BVm(wWvAc>gdH$loYEMc}m_@KCS_-u&TQx;3JTk$k zw{7EmHlRt)6s@f1%IQ?NdnjymWmVWz+0H93Ufo(>!el++miZ-z!;H7ELUdx;9Z)H( z>xuJP*s2N9tHYk0)$)#jwVDt-9`DI0S9e$3><&D;S$KLgvzt;Y^PTd7Qd>2+TI~0t zm37_Nw36q{vMgk^2G7f4J-bR-t^BhyaiLJQ%~RZLPI8_s7gS)LEw?QU3(f7&j>mwe z?~$OBi+sfReEc~W9NPMF>HQkPc-+M9-v}>8bLlW}S}-q(bb42?RGy7;KJjpO%Lnfr zc>ZKZIjvs#(!HrzS@CVIoX>Zl8|EmvET&*Ie<^^Q#U5$l)kCV6ts}~mX6C#w&y(ds z`~1hWT?jUfeo%c6j%DIUZ^USk@0RyL_O-8v5MlayhJqSOyEw0+nx(yJxoAAxK>cu! zP$a<=#*{3i(~4)cc%r>b7et&Ot3i4QQG1x@k17;6}@rA0%H zk-Y77q|a@;xP>;xd|dJuL8EN0%{c*HOySA-Iy%=!ZGYSvI^V2Xt zHRRloXL>m=c4Ce9k-m>3iePn>OtbSVM-sj;9mb{gLCtk-LY=aVyOG$r|4)=y_w#!eKw5q8!hKlao)xz@PBdg$7Ekv(c z?YKbszX(8tgA`d11M+%;|W9GMn+HDp@m#vSlGnGk5n3AHAv^<%;kA);Ia&7oYIz^$K}rca;$>>=jNA zNA4d^qKLIRt@Km$GY zdC6#Zuhj{Ur@AT>be4-SvA(N_j3OvwzLRn0KBmBRUaW}0Vq%g&5c#R~11 zp)Oklh%0lomWJy@x{e?9J@K8c4*k#J%FfJK9$I<3yXzlUF{P;OGKIx-za%ee_s&CFg8;mq8`dDEMo)McS zzPnJm4fI^J1k$!z1HHti6r1;v4UJ3L-fj3!+WQ61__u7tua5uOj=x$MDwi8Zuu7U2 zjNYw3QJ6(4L?S-WgsUhdu?F!7tq)%B{|De+#j$dls0kCVPAMtMr$^$yJ;(Ardj6zH z^3YVJcvIV`a5d%R`G?jxzE->ige84jsL*VMc2Xw5_%sRGd5JNUe38RuhlO;?AQ*zV z#AY5rPk=CWS69kbk-=E2H$IX6Xx0`tOda@_ojIwXERO+w$>zN-Bz|@>ySm* z?RF$Rz_NgcIcs>eB|Op2kOx4OQfj5l!vJA>DT?Jp<6mFbG3U-{CVCMxIV2qnwn9X) zzuH&^Ds=SY2w}IS3qVx7qVp7GMP%=3!5tU_a{EPFC1jz z>24uqu}YO5(qdEKsIP|`3_C;Gm@IGEg|21}*VpX!E8FQcuRgs8fx~W3%BIklTBxPi zeol#wl9fDJwcDhoyqF&*o|BqEXv~!h@7U;18NpVJwN=#%o+rk4Y+0>Ach#P+2|_no zi&yjaf;>6D0m3ZLI76+Lx2Oe?iAjvF=6vG$lN0YhoB8y3;B-EtdNx3-mW!LRg_%w{ zakX2RQz6xiX0KZ95eJ$xFYix${98of6_->=ny-r`-FF6Q4yfu$y2d_KZR6~){7{BoAnvce(5%^xNk%~QtPA} z$S$t;{W&~Wn=<74F)+Ux!5-* zlOjJl>`IY$YFk*1ze^aO@Q`Z1N5eYlqCaCedu&^KIXxX|NdA&N`qlAeIQ|NrMPovd z^Ff5M0WIWIAkX%QAYE}~C5{kjMnneGk`ql;tbf~(Z&hl++AVaCKvN(kQA#9KJMm>e zOi{FEzqYYzsa7l^S-72wL&I7v?>pYrU?r@FG8p;V3!M^44+ zt|C^lewrqV3R#pn3n|Uab8;_8Atzy8G8JX3i8-a#4{@u7c}iqS%#xYr#JnV)+$`)S zP+d6eb{q~nmOOENI9Q$~l~UFgsudxC^D?7Uua;};=lZHwB~t5sCsxEG8gox`Zp=F6 z1Szqe&K!?NRF(ZQbJ*{UuCRc~wRvfWz2dD#z}9!3rlue!5AO@mW{S;dfDw}CC7B}V zoOw_>Ej%#{4n3q%gWlwl2?rgjn#VMZIe>ZhivopB3a4`7)$7;1c=4M3;R)}&^OXIr zkeFD@k@~Pg5|;ge=hIX6(ac_ z{CrO>(xU*VR84GKtE57BuUbVspcE)XxQGv@St9s4-7@_7lXIGHYu2XXu0YaWJ6%~UdrB&ZMUmUnpi>A_xz-;LT3-F>z(GrTT_!>?vZ9Y^ko*Fap=Yyww*Q5 z&3L~!fN8wZ|pS& zT&N=lvkPmaHz=s~H4D#Re?3RwwLh>M!n)FFXNte30I4}LwBpVctAAlB7-qC=(K1A> zj0#$u$6eA>(BW6dm+$zsmBrbWz}8SW_o5Z!Vh0E^!U-mCL??7*uZ1b;kSB)`WsS2F zB(L-r*7!zTBE3qq_rejeDs!sRHxA}CRA4JuLs?Zcg>q+%sbIbM8WX7?LxbAJ9-IeW zyq7rW$p#2RnWOI>_N@wREy{Y{SWjoB zX#%a>9q+k&IC46kcy)Ts$DcoNcY<}R)b+&GenC*yt#DeEvQ-X;iRaIDT<>?F%K3Dr zs8E<3uqPyCjt@un^TLu7SIfd~F)yb|WyzVUmf4i%%(f}>lv%PV{gWgP`-!Tsu4i`3 z#Cy-5adov&%SPEY?(dImrSkmwbGEv1KA#a0cFWAXWYEI-w6ZJ<*VhM@Idk4t*0r#$ zRt;><6NmkdCr^aklF5^hv$(|&&q?aN+q$5&LP59@Bqu>~y%1)t%BNdZLoga0B+x{! zzNxU4rdakHIY2F?Gx`ANgOG`Q$i~oXWtwIljwil&`I_^3X1Ck%&in6hxVqu`YR57c zmLzO-$GRrwWsfdT_~Oq$=g)rhD?a-4ma;)6v#||t7T|LDbNEHU+b=*Zkdi5K>v^ND zD_M)1iKiB-H|1z*pE?l50YfrA5G{35%AP;tdoGFPKu37sP%LEJXH5*Z#pr-;3<2sd z(E*@1C>#a8b(2wpJ#Y$#r9&cckTp7Y~J3cdsbhMpA2` zP-Hcu!wQmiJb&j2-}}}zyZc|TdOl

;G1@FzpY#gRs}1@sscWF+cdpFM09#uUH?B zq^i^cclT%VvgddI*5BlN?`8DiGj5(;fo7guUs>3=LYCQBeKNkDG?B<{u40bgq{#+3 z9k@llk+iuTd;0}jt?>(eEn1#iJj}r~0Swzxjle`N+5n8JA|YcgSIX#-!PhA^3JJ@7 z@a-(Elz*&l!ep4W^Dy8PUYOKqP!XRyGh+0n+h$OeHV*@G9zg5xb~;eo&}O1}(4FQx z*ma(AaigGn`=>UgZrBg{s7Op-J}aEkKN?toecoGM#HIbdP3k%wNhc!XxnU&pxw!C# zy=6Wg8x-2#+V3$8&yKNJ?=YsWBz4-<@jANl(Y(RK`L#W-X)1l*hOuZUL;cd>aQc7r zObr1tylebySS{w~kx^y5M%(ip5cx^fpV_BxC>BOnAoX%GTBv;Y^7rRn?9HYOjpG@{ z+#fVN<1L=xVQ<)wbr|2jT}kP(ATVI?ExfQ#AAB>i=)k%zp&34% zW(4brso(_)d%LBS@{oU=yjy@Yaxz15v_z3MmXKG5)r}X_fdEB>X`1>z5=+4{(N>XE z+t@^eOm6Ehh!xKRBxh77>o%ZziF5k&eRX_Ek6%9wRr}6pneBMXMPZN-kd@Mkml(s3jqABp;Qii)9x+{_bv~|` z5lo_WhP^?w+E5fJ+Jtf5{?VcWIMsDp&H4pD;p(Z)rDK=xW>Xiv$B9p{I zoKg~066dv`_b1Bf%zduR%Z_!eoKG7mXP!R0;_1zf!+vJTlg(#NXi?_HnuE{DKv9|! z*H;Vkl(;!$PB%Le$~V6DlyAPc=kBO%MbYidVM>Tp9?pfAug^R@Y#a^?&z>*5^K?g2 zxP5tItB@8i=#eK>Cyoz$mT6|0gk`pQxxe3dI2Op6>b9+Xnl8x$K{1nbQxgLi4Pa+{aDwu*?h^vdQQ zu~a))Y}UEf)+P2*H)6m5s%qS~gQZd`4{PD&t6N^Zyk}V!_J_V_*?doj6f!KsQNw$f$5w zlr5plbswo$>RtiFq%I)dIFTXhP`m}L8p2$fXorwq}%RRondBO)@dyku| zj6M{UOeT}GA}N#iPkDXb^Q%{9ZXZspr&qlA^b_vyZGT8kBu&)y%%A=6XMFVc{v*Ek zt@n9vUwKkC5|aa9Go)0>pxGj&lZ8_zhQcl$v((=&f|8uK2Dls&ej-dYDMV^PJC`dH86n$(LV0#>F8)h3hq4+f2i(wwx2Ny8D>EAM*cR5?b z*^lM*o98|T{cRoN*{!yKfOeG@x*~JQ^SYAxhR5)2&!mIu2295D8j`njM{iDhs=C*w zDcx^TSfKZ{b0A@g?&avlaW~H~1J8UbvJQo0{8CzV%l5a{z6XYP8^<~-HkTu_@62Nr zYx$VJKN?ljZu|Y3|4lEiYs%HQl#i7{a6`%P4v%j3*0BuAXDb{-$D-ql#=6Fw+sLJ_ z@qkt@#u?0r)Yhul<{g*dvH;uVa<%=~6?y2n?&^EDkKHxS#J5>K?)u^dv(jl zzk1E<`y=zO7N9~c?4|{D;&@uw?Iz|Wu`DyoG+U0|GI4XgV}IDOEHk@l;^t~%zrW(U zA6$`gX17c%*}Sr863%P&)*6L*TG;L2`pQDF$~jY1N%LxcA)VN2=5(?!)Oi-Rx^X&f z9FNNJRH&&~kHpoyaUXu|Iqy8*GcSqzhcmBUt)LUno|t9r;ka>kf8w-Nikjy@fz!Hj zyg#x_d!9XeN)q9GUQw$f!hW}7nlrT)*3-%|Eo3r>{la0tSdOfMP??gFu>vebg+yu! zTh8vSmhKG{p%o9Z+C+VgJM$bA6hLYh@U>Q|D~ou!ePgnNC!is}WP!KtIagIm2vl(c zh9~V850`!Y@WAW4J4kT2+EdoTdb($t77NWyP|MlqT9oyW_(C^6`ut;l`Na!P=QAQk z`=R`qfCdBbF}$#5ORI$1wwlX8t-?H6AsuUIzf!At2}>=oDihiE-cZ#so(UF0oRS#? zn(-=98wtJ@3SRJmu6)GCf2&}B%OP_4rRZo-a)8-zfVLJt?UNdS(hNRYJdZdfCV}I6 zVv>npz1sNxpMS#nyjgLkRH+*ziiKHDf~3rTzoTrGk3ad8Z)VTgEEScQkQ+nYx;4N39D3%(_algH zO5O!vj=pBn^+tN3BemnTLHZj>l{VV75ne%#Po@VA{qGsz|W*%4Ti&+NV5XEq^ z;>M1y__lD>Py~HA(&k9pI|;!9I*g~S83SF$tHcHf&(av)c6r#mL?lic?m+{#ah<~l zh(b_p?Scy0Wo`tvaaMgZd~^(d?FIKP$2WQ#`x^K88aBTF+EW37w~Jl^U4MAH;$ker zb1&vm-<-FLbB8%==M5L=#Mo zJ+StPD^9JsrMAuXhSAHhYcraa{>~#M0&mcDT-VxXNn-NIgjy?QtF2B!yko7}YFmWd z?R?7=Ig|UNqU+<)&KHvxid@&N%~5GCL!ng5)9#UV1dyi`O9!fDb3-lUJh^iF^;e}w`!5rd3-Nu-6OTYtV@ebhFOw$GCEYKE;^lSuc7IHPLHSYup6aS%r4 z;&&4(U}4H$7X~rj-mi3`!-CpSMgZ!NWCCX473m;>o>wt?YgDZdRy-?vg;IZu!NT2G zt6OF|g9%upHJUMW035w1Ggh(FHdyLmkC@^T9?$289Z$b~plpTX@x^%;zufc=76v`-c;y3YshD^NIUyrOXxXH`bRGG_lMJ%VLVcZnv;36RL&taibPx zzuWQj$raC^U2!-}Ec4`fVP?5XDKn))PB72HJZF~Ojx=S?w+8x?K$VSkJ#(06rj*#q zW?(uc%Sk+KJe*dxqD;%eufDir-8QZc6Ng>q{pSl=tVidz6%Nb9&Ee4U(V((vVXMV8 zhS|ZGvaME~@OV6$b$?3K>IM$otN>3{9!@LkdIp5|-g{1-W^czblX7OB=O*j|u!$=^ zNyI`YbKe)O>X|cj%WHF(n=S!jgkR6|?6mA8=X+6Zb)gGi$wt{Tg`t)7haGz(=`|q&UA5l)Wr-}%cE1{QT zWe7VonG_<{6>uAqib8^UzGm7#B`A>8TB60&{olhz?SIW5} zT=8&s%dbBEl(KH@1kOd+6ebZw3mGNvXCBrgKl|uoe*CkK`S5$z=X7N?FmWz?em?Qp zPk+MeUwp=AzxV|||LHGy{qn9WY^q37iX?XXJs-Yz#nbDFZCj~z1s0syefYQN|Y(|S-c;zz3Cg`SzVG`h{-8=Sx0VyGRxG5r+?I1!{MMOwIxke=Y zOfHY^$q%y8fw&ux9D5y(_j0gio^C6Cvn-2w#|@!UHp_p9Y7rK*c%NV6KO%UQ?nK=- zR5t^DRa?$`fWpZ0QgOqsPmoCG1sXl`;uzNFf}M=B)5>_#fM@ip4Y!b1toLstqf5mp z3?c>^)nyv3h|gu1s8fQvu}Oy^$0M3T&@OnS1zfJGiuB^ggRy#GrjKsWw2|%s8BPh_ z+aeO^d4AgNN#lEO-1pH4FXnxG*^#6ghIq^Mty<=&wCP))r=i?5<<_4b^WHycigr}U z9ahP4O@wZFvj`dJ!SAi(?YYcH^xL-m+7(o%iKw9J8~*V+sLO?BIvk9!W3)&k5e?qm zc6Y;P7lzQ_G4XCgk*2SXFW>R&7r43jD;Stud||{FV97VJ1Hfka8}bLWwOkmfeO!$DxOS`b#XN)ncF=U; zvDD!dA9G_((O@{Zs6-fF_CGzJ(W@&W)@;7N6AhHIg_3Dj=EGsf{%YYpymF+%!+GQW zxN<&AoJac^5csL$iLGl7MS~;(0?(UA< z-5ptrAX8>H3)hF4!;*NK4otg=NtC1ovLN$>CSlXUZa*`5WyM(*CP}6|9~0Al&;F@- zUCVi6nHJ`JKx^W7Eaa(xoLS~Qh)}ao_00M1fm&hC3(51;bV^j&$f>ehGB;NO5ZbGg0>}{(^n%N&FmdS%oDrhriRK`T~grF%B)oW{;Ah8#SoZ4{@xo~JS zc1g$a(*#Vn#5d{W&&8DvFFV^Mp(YQ-G&-AiJJz)z#k_#)ws8=+d2+)tO-z$j5RSfo zDzKXtZddr>k3Qq~|KR7mdVOqrN@Dt4;Te^sBytf7)X(X^lM-5lZF^u{kFC&>Mu8Ni zRZA9)X3Mn~{=uvMI_eb_Br5!h*yInr-9`YXzV-vm8a{VmIRJ&mq#7$6_Wj5qn&Q|i zP>$hH4XilbNpiZXg2jSYL^e{MQA}Y|wQy;{ic2+YSSt5-XTI~>zscYG`+tXj|95_q z^!i7X3iEVDIUhOR-Z7;oeEqk+%jxPVFYC(b_?qLf@Z$EK0?ZgdxqkATZ~xYB^4s5g z&ePqA)609#H6!JOWTm=sAO%{=nOPjs4<45&djO&ReGsD;YejTypjhAHox zl3P4%E#=90)mgnLTlX+dQ)^+KmGEx{n zRl%ba`aX~NmcFko!Y4O=qpGc+A_&%%$mdC7Ze!ZJ!Zix$Zeab(k5B~L1^<@w7-+5U zJuaR(UeQb&qcW=F8J(ZEF}KtEXO|wnzhr=ZO%y|k+g{`YwuiPGU+~m%Zf)4TAWaL| zC*IxZAq{h+`Hw z+L1D~^r~(KwehuiG2%gioG>|_%^{)#?W<00j%u5`>KN2|!z#+M?2P}`(hS+PIL}eF zp4QveDvr1@s&4g8Ti>ZHKQfj{ow0?D?ybtSr^B}^-_v49HyP)m(_I6`f!Wbsn z8Jsh)0sJw1m2j(HYd~w>7ir*B-x!pH6_hU28hdYGvu*hn25W~`g7toNQk5l5Ooy49 zomqaWE6H=t?B|JE48)L>hvSjk+j~x{l6MpHoH(8~z9<{pIq`6}@=yxXGLdKDcsjb0 zS*cqHm^oQ#WSxE zCC|y;HJb<15s-VCtgqb&VAa=CQqWF_6KSm_LRy41a?G{rYyJrAjv%4Kw#S6r#$}A% zbI2kD7WYu+Y?wjNuq8*>a?I5L5>y-Dj`uYr z=+CMW646AeSXj8tMeH8!f?m5)-{x34m~9H5hw*fWjrQ{gF3|RF<4c2rBIB7ZH3O~ zekuIPpZ=I1{N!W4`22IwiCx|!dha=O87Y}3*H8HefA{b5&97Zi*B9KszU84LD?W5s zShqqsRpzv?ZH1Q)5A2sc&u*^S?K9i98gD8a(IzH(;~KAqJSFBl+3GvbvTf;Q&e8x9 zQSUbzd18GY8(18HonGbx13g?c7W{%%FTsq-xyGS~y&5ZK_bL~;mT&G!_3dG#c@D?yqX}d66#{eCbkmY_A<^L9Nvk%0UMh zLp}RkU>;N7YhG%g$rcF%O>l<6lW(Eda&hm+p@O)VV`M8AfckBRG-7x|vFT9+KK@4r zxCZh^x$e)?w|@R6_oWZ@jW3OqjSmM+bft3O_mAN~$n^_YBK<{(`v@1gZtcATyN&ap z?VWp=V)w>3cI~_^sQS|T8vv#6n|Pa1#~WqBsBm7`WgaPdqern{JPc}7po16qJK8-i z@zmw$Iu>k-W+O0-DIEbybc2nlv=Qn)qoonP;NnWBq09B@1_~bOV zYKfvf;LI9hW8OAb1gn>MuIjxjJKiLOs`6?J z^)oPK9=(g=M?nn|JF0`wW_1sGioF=a^>#&9IGqV;ljzG+b(Rx1Ds zJr`1aueNu#_JqN|71xNv9-)8^YqD{ zC;Liy^{KUCsRDZDTsMAoTlkZ|c*T#uc*&fb@I;3*8wUhY*W?7Wx@g=hkFIUm~Tb@VD;C{-5| z*H4PCf(|cE9oMbBp$soOs&V6Qk8?~PJzp+n>2hv>kb6kS#gA{&d&Ww`aQX%<$)kPJ zX_AY(b-M9C{P$2=rPHF=_(GB7av9sR+FS;1N+wgP=hjbCuO6N!tH*&xzOU+&|tq%4jewM#}74A+I416AukA^r2=2up->MsTJ$Zc7nqArh); zxk&Atf%v39*G>)^?I65wx}Hzas_Zojr*G&qc=g)&E)Rpv#w5B&Nc{gYFs?`7BR+tp zWXFeH85mxoy-VNlBR^_6DLzjvzcK)T;5mKKbT#HI-on?lTH6Ik%=5%h8BS_HjLkv(G%}cb)7zMD1E0Ne(Y9YYH`MhyDuaGml{eda(Sf+{fd_uH( zsOq>kviDcQ|Ema_(WViiV1i-ttR!hJ+3%5;T9lf07KGYL*p$?NcVOmiCjZ_pjL~NGfP8#%IMt!L~xmGf$r$czQLV_xEJP za>tXh*2L>$Wu=bEqUJFLeOpS@bSJ)JqIvQ^l0FXr zOI6mgr)(#tIkTI0Br+vcp1iZ;^OyJBy?#K~m6Q_8oH*M#R}eaqS(A*5wV}KwA@ka`0H+?@^Sf0osfA9}eGl4I4aOmXNhg z_lWyka;o@loWsXIA0Lm`>GE!m{`R6MfkCw4mhK(2`5y_&*5`$D5CHc8LM~)L|Z!Zpa_;%*AznaaW!%=k!A1_Uq~+W5~sP`141V zq+?S%n)(`J8D#GTZMA>;o@skUwH400*!XWKW5WpE;^}PTYVyLzA32)D+DJ3PzTtfz zXj9t&yZmbVz1N7k7}>bC5glbk>H_D7!PWM2%GvmLy-bP1mB|)GmAsd8TN^>Lw0Sa2 zRp`|B)$wIJ{t98J&g6!TAK+f;Py6N+0EZB?B@NCtT6p%xx;I{?j?fDqW? zK*VxRQoo1KL(0Cb2L*k+f1AsCDbN(CWupofb}8nS?R6}AF&)WP?%pcV3R_i5IlGl< z1}v8)PZNjbz%nf;N^W6d@b1lyb-On2Ve+B?u|Q704726ntZU)^;lz2}*h*zPTakt| zP0Vv<&WUBp98X7H-rn-?aAG}glxhWbo<6gtNRZoGatvP_x%Zh@_GJfAtPoAuGe z@)MH?b588%%VEaoV}@Tj<8OE%{-uh)Iw5k|3O&jV{DhgJrvIP`y#~3HE!!?XN5SjSf#dC zpMK8q#plR-$~0xlwhhG(I{265RXJ05+H21rX~0psQ6_uU<^ZJ{RY`+}FNOEz9vc}3 z4WLCHQh!h7u|T)=3m#yhhyAvJ$H8xOmzcElql9k zZN`!7{lb&$9mtVYt$N-xFYIrw_}Vk!w{LFw!5_b5+U@!7H$Om2=JoA8@?dl>N%-)C z_xNA_!@t9CeD6c9(=XYMFS%8(_B$=)c~2F%uLahVd9UY%uRVXl2k+dpDcLp;lLf-4 zu&sq@nmux&c!Yq>XIZ!IITWjoY>J-)ULEMbLx5{7)T-7)Q+kR0VUjx$g3F@#?-HqA ztX8QfSi*xwU=l`(-pOxXU0|t&3Fqf zcc?1?@#Ow*|4f4Hn^LH*V1zOoGM{#ia9Yi?lPAxoti@6flG=W+K3=h~?^F$z_5Z^x|i~Q-6o?^GD9N zw*z3u5>2TJvaDRtS8b1ai-P!ww-_6(gObqcrQ@WoaKH5kTB-GN+@o?xTLP5J^SY|T zqi^~NqZ0Y(_HAm$f>dvYUk-b2oID=S&*N9?`?HRys_}5WnCHvufWdPbpH+z)xUw~_ zkq+;8@v;n0hsY%joY3f=pviGeZz`MP#C4nzV|padhC##{J|3Xiip*GEO6M(LN@7t@ zEh=U)?)--q8sF#D70+QWs=xC9{2w_>zB;~a$FJWyqtwQ9fySIP)m{(=SKQj>3G2fE zU;~Kx?&>@HZ0hOYPMb2_Lbthqj(7H;F;4F-~UOCtZG zRS1h)wR8G!wKZoBg`)rLiTyFo(*F|Z9>spH#yrcw6p9W*4o^&V@L|hd){RnDa+<8S zVoXsMZ^W(ctuTdV+fI~PQ8iF5sWMGFR8s3*H@U^ClDK_+$5yNi&w4J1_b5y`b2_g) z9FOF@fMiP9xIZ3wIGxCnn6t3VnLKAyVAF)kOiI=#^Ya(?eDuo~lv3F()+2Jx6Dh;C zop?B}Kt>VHTcH$~aIay8X;yNE-8_?0;&9k;wcjyi*zadl63aXry?6=f#fwegGa^zc zYjJ>|*u3HGG)+jc&`l8`&r=iB0eZD6HC5hV)Nb{+_9=wy>eM5~;-d{k1AAUADYbp| zmxG?_G;v-FdCFLIU{i#1O4O|Ym6WEwuho^D45eCFbON?@MI>``eZ@2ht89!{+LuCo@kWeyO3gz^`RfT7V z=RAA*b$3lrOi!;_KKn7RKK(hL{`?cZ z|ASBX*)Lyme}B(uxZ3mX^Cuh*6aVU8{sBMw{-5x7e(yQo`Q}rWWg??&TjdA8 z_#D|~K78+*>s-)d1#hWQsZ>{xMT96CZF7=Z73rYs8gc+EA8`O5VHmrRJ&)$!LW?V! z^IMgLzIs7E0}z$|?PWMxmmO~cZSB|`1}{T^B1JvCbbNS(JXej-b?8chD}-20jYc&g z^9X>M3C~Gj)&WvJ`d9i`FXn87t)s&H#wTqqtimB|YvsIFT5fnT1LrhZpIcPe&J`6) z3s{zkS~ia7Gk_Hvlk7&U;4_zUJ4qYSA zJYSsAAfH z<~6;esFG240mnrtN}1#S|!5z;EQW zzBv!0f#Jf~FgP7dj@ZhE5&S~dRSP>Us*mQWi_eh~#lu)twHX2%pVT2D@T=oXd;HqU zqJ@}*x5ODnC{fzi-MrA38@(|l7?BkM-JKmwW)x!5_LZLt0YY27n!#H4IP}x+GKk{% z#jla^BWVIj5Tci354{b*k{YnTcuN7fc&bGRyf7FTP=E=h2 z_PdE?o{hnk%CoC04u_d(&MeE!&DEagPxs{6N0hDKpJ;9dl9Fo!CFbj)$)YIM(CAxY z4+)C2))E~M$UwJ#I(UD0TTj6n*Ko*;dolv9#(Rm$Wvy?Hdhs)Y=w1ONqIrF z=lCk>f+AyKFc}rg`BV%5_XKw@3dE(B)dfR;BW>VKXtq^V3WZW0*p7Fs`N&oZ**!)9 zC`u`mQdP#Qgq$GN%3AIDS(L0oQ7F?6mTM+C zvT;P~1k(;VyvN=B&-ow!(I4`!|L`Y#`q>@F;|Z|7j){cS$_MXV^Pl{K-{EikJHN~Q z!##7lW4k}Gt%Z{o(zJsKe*WUkN+uM@NQzqHk z+<=fhKe23ESJb7?l|t(km?X6v#L=>y@`Pjs$qfK@zFp~_IQ4xP-Ygk(_DA01K~7v8 zdik}22Hi{LBEobD6=o zsOrUYnj#@>K9j(H5h#UqtIT;~!%E{noGN!;oH?CVuC5PU?}cSfzQ-n*O=g!;DP^_! zo~AaxvA;(zybJdBJw7)hp3wffHs=Eyy}())B@_KRNE# z?mO~7exZ*M19Lr0rATv2v(wetO}Y{^YK-s6`xK(tId% z?c6@UZCLT1ZEp?l^=PtVOudJ_K8BC|*^ia$0fe<2e|>aL-1EZ8;ddOvWFI*l+L4CP z=}_(ld1W65P4qchPlyx zZQM8ZL^yG(w{4646cG`lk{SHpgLdn;4?3`{4j zBoXtTNurd^l%||a8K{|@EJU+vL8?&7gd$8iF;7AkShvDfl(JQ}%`D6FGBZh{)MTNc zs|mUUOgS-0A&HW6YK1LCt$}xTZ`P70_PdFq8)-W+Pp~EB?tbIEZsaWNmWlncaJ8R7 zlw~?|E>@tXEDMN`cbSx+T+hDLnQg0_&c&3)t>^AR6wok+wVey=TCDuDCXVZwoQ1>H zfq7o2Bm=!zDe4Hj3WnSYFZrscMmM%^O0kf;24WrK~IBVWZXi&4oe3Dwwj; z%oQ#T+}g&1KmT&=#(mobZd@I_D2~Pp!$KQ?^0CKc05A<^JqjyoV7N+0S-znKA+3dX z4m-a4o%i@Rf3&dG6Uj0Ma+X-a14$(ebVxz01^FV&(JO!tr$G{hP%5%QaU?oQ4Fn@U3@lxSAJU-<|Ba8P270df1qcEBoEX zJWoAL-{&sp%#<@*t=@w)S|zFF$`W~;CUffGNfLSw%UCD#B1b!j+LWt!uKS#A4zoor zBx>6u&A?C{5IJg%IqeF^NJr!0q1s+uH;fF`_hoAQ+>}E5IJZ3z;CtBK7kj1DYN5Qf zS|P98ue}I0l}iIh$Hare72gjYg)rEN?;BEYtzq+E;d|o7qN0_JjdNL{nV0qdxKOGeJIT_Le z2Ic*+hbk~h&}Jx#NT1_@)nD*^d*GlDJW>LJIbE<8g66cnd(2Y1LsQCvk@oAG0f0`w z1BtfzKziE;RX1wYK}A$;PgJSxAu)IA^1*Bfk7Sd}EaSV@@}*4)&BKm9~sNTytWJ`ayCf}M|e&n=BX&e<@?rEReSd$@lk@35j zzmXRWds^QZ&sWEn?fA8o#Sp&jkm08cAI5IF;AZ2;+Bb|JjiBYxxfdp;3(oA|$g8D| z3_Q*XW;0wX2q|(PFW9LQZ|wXSM+=|r1f66swb@Bc;Kp+=`WD4GhGs9UD&x59bZ2d? z+G{XwFMTaaiMaHzmg}(TeN(4AVG&ub0*m>4Bnk7hAW10OM9$WCr|3%ZX7x((VP{Io zs9Km?C_dAqY^AcB=aw^?vsEyhvY0aIZ4?X`T0WXqQ^JZjy>H|qiJXOL$rd7slJd?% z9ttQA%-h5?XC^TZCSpq4VV^iqQ4#7Dt>2zC1>7-Z538tZ_fmrjwN@|9Z>9TFPL$31 zN|wz4r=$d8p_=n7Oi9sF*s%VdO^8O`TceLl3weM#)C##s4qqu<*aofmat0_EMeC@v zC;|8e8uO#ns33TmH+ednCwAKusFb>)I{97-<+X=Zt5=%^yd=J`)|K^m&qtr$@zF=0 zm@*jvz}u_ISfV>fT)e{KAi#}KEx*iqLkg;i!*0hr&#qbKMBT)cbgxVcib@YzOgWKq zx1M%kiFzFJ%%S` z0LHoTz9@d9hFnKPv%ith*2LSaYEdv4E#pZxge96sE!|JHN%%gk}zm_?x$_G#w&ogJrlu6TVs z^2ObmWuBO-Qcg!oU72NO^005M#f(rXfh1h*alnTnE&vx&yK+)m6~nkimw%N+ znr0@7KU0|VWIffMnBrec9RPLpb#rC8YU`)mLq_8nAWgn$Q(W--t~^8Z;_Ne^sVfluQf)=KM&m=U)XuMlca1qz5FLw1I6Co*ox?WV zXY$A2&+|8F2DliG$)v}NFHPaH$!hJ-=m!2i4?&YXs>N?(L|Cp@4~6Q+eqh1!L{1m7AJz<3o)Lv(|0gh=?j)v%7GxW2D}Jfgv`jxXQw>sLeVbYy>eXw|ss#Y@s@ z9V{^eBWzX?>&{E-J?3C?%*jKI&^quAsb(8)7oa3p#Q_co*OR-THST>-Pyj8?9&;Ev+H9MEgE+<4Q^E8oD@^x^J?{vTl zRw#L%4E0n+i#M3o>dl;O^huHxi%CMxnOX|9Og=sfmHqI&YwP8e5~V8Zx^`LV>mOda zoUT*-eq$jTNc!VnP}@W@@3dZGIi& z;-FMf=4tAo8UBxYn4Y~)h$;;d9Qk#lg;5BEkOmLCaz$4p`Mpi39ZxH-Up=raGgsGp zcDwBD3=(xUgMp+)U`-eObHx| zPpRD_==qYFn6g+s1XH$vtJ!!=jr#vS;awp2OflQJt{m3BCy~gH!n}*gJSm~PxBS({PNeml3>#I1XqdAKKh(L`@vsuJe^q7yjB%$d7VrZ&WYDwyx_%WpHlzY`)u1vo+dv1^b`L1 z4?f`!|K$7p{D;5blNYxf?^h~(3ZjMW)rogLxZ?Tq9mj{n?d>i5<-qPR*?VY3*-W{vwpLmz=WXSDuH0M; zIc3mZJyuil0$QbkS)8UKA0}wXl(ERGH}BF~3il6ZN=>Xa@%a~b+&!Er^NuWjj^9`Y1kFET*Yrw8lC)W$LMK}aMGO%n&_q?ta{+*KZ zM_YrGtd-KuAtPL&TG>i%?TEH&8cRf9s9I69b?tlB_$e)K^#U(8RDOBL@LfpgF_I#b zMFsbUX^;L1#gjfaO5lyI$PorQ>AAB3$>V&(4zV=%7MO8HWx+_t3N-w6;1Wzan!vciDJ{7Y z^z+B)o!HO4e{vX@{A@R%#=V8q<}QpR8hEg+2d#~F;J!|OJ_dqjF0?&Ax66&TPHG0i zZalWH5{W8NU`j1@$&g;ujBL218H?N4{TWeXpv}*v4nP}ckW|Pdt7LwVXSpHH%UUKf$0UsH}DYe)PZTdkA+t?Us8;|{|v-oYMLh* zU%p3EFeSnRdq^H)3R{U>r^X!ZnR)VXpe%spi)Vo zQKH`UVfCb?CuuE;l1MBPAhxY>|Y^?-axugV({ z=lEc5wr%hKo+DW^%aTyF%9)mz7|olR7DR+;nhfN{SbGP7g}+T>tV}Y5P!*K8+nUnk zf+sicp(_Q>XoF2Ls>+fKScIau3ARQ{O5~Kw`^Qq`K|27Xbqpw`j5-!^h2LdJ$-B$G z=E-_0N>)NFm3?XXhuh7DX%m=68|d+PKy+ddWdKx%Vxv(+qU9-Tw*HXJgb;bK8~O1^ zTYmbZ1OJo!0@Wiy#d@qsrZg?>fOH8pYIw?MUlqw#R7awqIU!LvKi_b9F+xgQUEOk; zt+MWJvq54YEvc;UfCS5d(n9+wl~6|QyluIN!?HMh{I4NR!BBSDJ=!iG(|iP z6GI7C7Fmdc6`z3t_b3KN=6Oc*!Y~d+5f=jHtzYpZyl-bG^uav10Z2vZCIS;GdnE6W zbcQAfnr!dY3aW_^l$Zmf1Rg(m#FM8_2uFxn(A^^*JpG7=?-J=R{tY2m4(qW14G@w9 z5M?(6J~-d-+2eEOjq>a)vYB8}NIKda<$%US+zKL*fq{=d91s=`H;H9VXd1~$xV^dM zbUKlfl-{d>(}pCB$HUUyE}23Gfy8s;KN5dwu5=`b~|Ak-8A65K9uN; z$XLQ@gJCMhaile!mo85;pgJ233e~tp&Ap?RnU6)rXwD@+zrm^8$rh2=DG=Jp6IMTm z5Nqh3bYBJ))R{v$Un^L&YKNj)b1bFMZO$2;GfM&DUSv%(9FIqqB{7WyDJ{lV3mWL^lx^YsZw2JiS>s=?T3Q(gP=`KsH!V30choq}Lsr;Ir_8M9iLHeO%vrbM*->UO9Xovjz=dkEiO zr9Ml|SQQGk>*um6ncs3WMTt5WPK~CXH^UvSu=R6G?#602ar{!1v|>PIbsnthuDSxJ z_WY`_)cJIX6{<4j^HG&Zr@Pu}r&pDAJ;zN0q!v4LubMcn?DO@C9MCX;IQ_>o84`aVnKj>BC#=t*h;=|L%59Dc zqkvdp8pOtG?JcZ5#t;qUnqp_3LQrW+}Y~eZ0xR z4R-%r8r#Rv8jY)02rGLel!7W%D1`#vYx(Lz4$|$N(mOC#_q7R_Aq+4TFNIRteMqU4 zHXu5f608wY;OfmS^L*mT(=BIbQxR}xe+)y(<;;O0n=;1``TVPI`1S9;;l)?4nP*FW z7f}WgE0m)qu4@lFpE|s-NIMiIOf*if%EMJKmXY$eEOru>~Ft- zAWWMJ4*8Z{yynwqj|evhes?~xn+pUp{}$zyG_>*-B>o=z_-= zBRND;$urC%WJ$ybK_jAp%k$BSNS#s%8-~;Iz_f+kZe&RThzy&7xEYA^iS00OwjH^A zaAJRV;_mHCjFHV`O7BQ6-YT0U_lUVS38-@b)UbH-klX${-)=bDZV7RKIP&c2nE~_S zVZPm;`2E)>PRGOt4=?!W$%fN$28~u@Fy|t3T5rg#i8*D`GNYIWcqx1pv8agHS=0fx z+YLgAPH-b26n;>uaOXtMx#n)xeNvUSCVTvFx~_)L%7ToK)aYv841)2ss+1M(Q-Et6 zqS0_CO)YG{foPv^3y)QjF5KSjIh|(Cw!5l`g(0w+24Wn^DUs4b93o?9c-5t^LaE)q zwE81;?o(BkW9iwZxl^v__Hp-VHOl&&`*R8=!GCtjN_WF{UN=wmJ3QpLtkJ#iv?yY2 z&$l-fs7iY8wK9J0z^NOrD+5*0C_JV!L^Y+S(Tn35SSw2H5Ci==<00S9k1PMKbJFBe z*0Se1x^q6~Ub*$V_0KM2>c-sSILg28twVbc?bmpv6v}F?{5k!t{P{wMMLSug-3#02 z#bo4ig3e%D#{kuBxEiD1b8U#Iiumfi8gV$UftD9&=jU#X1AuE~}^ElS~ zu4ll8uylJ*T(?`%P&FoKGrU$FQ09gX-}ba+M%-NAv8_qla(#`3?~m`+@kjPqq_a4P zm3wzhP&#iR&a7BfCtE3Kg~8<9Vx}$pG2nUC;t#A9P^E4pXI2*dW#h2?yneieebi># zs~1`^9%tNjd?8eeZ)5UWnW%^1mOJz}E}kS8P-WgKDqAB#AbGs}@3qvdlO)dK#2ST*)=$tZ|y*HRKv~e65 zqJ{R_8dE*YHN3D%S&&c+kR<@BS{_@`_N)pix3PCs@A?Xwets3qYBZr)tlF(r+cD2Y zQCb6vY9eD*bjLBEd4ujx%m?!lUR>+Wa`PDB{TEl;0*!sg-$VYp(91H-s6T26~yA@)9H zQyC2mC1;{~Dzt$tg<%M#5~=}B@&8p1mDXVuRt73Yt73VBDVJOv2?QzmR$?Kh2_Vf? zfJ#b8E%+m5&@Q<+rZ2ki&s7o5*~TJbp{0vvgat^de)P=j@+<$>kut+l>752bY`{Wq(j!UnTSeO9siADFn`^ z0p>locL#QxfiQS}A!zB#>V~Vd!2WP&M!R6WRd*p+UTn5K9e~qpg;AEp&XXaci*lGV zS62u2C*|yH15C`C*={3a*jPBP<{Hr92AvLfl@MYBy0(>U-iKjov>}E@qT+z*RjJ9yue;@DpUH^j4KOEX3Gz^v06oy|S=tSIDE} zjhf-D05GIJw-IQ)w3CHhG>!9$4k*_xN2hc`^<4CdOs)ouqC9zlAZcLU3QXDeIVe#< zcYz_EY#*1RMM$Y!d@zrG&Y74KImc2p*a51nMkyUwr`wNX7%Je-DKRe#!!XuxdArz4 zc$V{g-PFC%6dg=!6o^9@dt3v}D7A2%D?okpP_4vFG2m#hR0P#Vixk%1EAwRmSIUey zCUOIECrb*C5}J$>+VZWjVq2AAT5X^Bm(9yozF;H$PKp z=_l*ytFoh?N43YcQLDB&Snb#1Q0T^2>n4=@X_<4&{Vi3C1>=p5GF|0R&YhG>>hCS}_s4hO_=Aa{+DHjC6t0^i=UWb+VIW{H>L8wpj#Af^PvhN z3Boi^ge4&2y@eVI6`@ui6ge=B12L59u;uq$LglQrgwvIn*RjxTFSx6Rv+fNV-Kvx} z6%HC2Wf<)QVhBhHVbfA6F@#cBLOU=T0?V8^9!?N4({_RkV~p1OPn6AB#PU%y%bXyX zCp4#pwRF^^#kR*jKRdPMoO7Swj2skg}V0%2>7WupnJ@MGnLg?_(js4b0gzI6VlWBZ`tF6Gg4!X^f;L za=crtA7c4mP=oTh(1u9nFzWVk74?G$N@&b7ZeD%#+{_@}cn%A!nyuCTGpBI*S z;qCRz+p8mKHf3cu4Se+UoS*#QlAEiUaTt&i@++3qYhKo(+^PtR3U9CONJ%-n*s(ItTN^7m+9w?E_>7c+;K+eE}5iZApMPZ&(sgf(JUVPSD^`0Opa-)Tab--0i z72%393;o3=TRh~=(+Y+#v|PTzEBeRvA-F|zm9pq6My7FUH%#Xm0xKPD^jbv=S$2BW zYOJogc?zC~>%6o-qAPio04Rl-x|6h|lve!JMOA50ILmwI8k+1_q}}GelBX`~`by85 zTX3j*=C#{^~rN_(I zv}l0ea_cJJdS0-84}q1Ffr@$BUEB!JdoQ6>tgw65)-upE@+h9sb+Um{d-gIA~GU3ZT`*d|J4>UAVqJaegr{Y$Aun zl+HON-n_f!c$^U#2og$Z^diWC5R^p@Y!*fKp;p%#f}(jwu`n;x%jrX!t~@Vt`Ct&U{N6*7t*rS zFpDUGIL1=0-jwKNp4n_B&UahRb{hs2mPJX)%GyimWf^1hj5^(dgS_S;cWYav0xg~^ zECf{wqjy8d+B0udlNII+6lKmWj>h~Gc@g%9M9L@5)V#Pu3``puTED_OWKsafR}A(T>dwdfP3e3ue=MUdy>WopWr^M>YSbR|~( zjQ}Bu3G$R?``nAFNNHyxCLp~^p8am~t}+lx>j9zV+7<3r0kTqnr8? z%LDT=x9I+`Jxq}dGZI_wT zY2lQV?PlQN#Tic?p0PU{(NU2pu${IHaX=)aCBK=xSbi*83K$s8?r#@{abXxNVqqM& zgqVQ^2_@tmVTidHTFj7jS`wQFXMFH*OH7%=VJ1#O*1$ZM{5P+M(l^g8IqNogUgpe0 zj(uLW(t;^>7Ha2V!zn8=X9h7)ZEcClp4Hq!z(}}dwCB-)@v)Uc<{FPwFR14Y_q)L( zupB>mo>R`9XQ1+sCLbMNhEkxZJgVH)2(gzhO$!n)2n@91Fg0a^;^pzZp?u!NfqCzn?h@93-(^wJEKBqEd!C|NX}KF?Vcx5KAB2c zZD1*rr`^3)ETg|)dCx|_rMqIuSv12!G2}S!tD9SKomr*LYQqbZyiuxgqP0npim81K zD}2^oE_KSBmId?m&DwZsw|Pa1o)G;Vwd2E~k@O1Fe1Ck`jz6NnO(ClCml0I~h(_Ir zlq!hoIXF#dLBT-Mh_naG)iZd%JhBsYh}8JY2MZOlI7OfT1jektdAaT9xmX18qb+o<0$-ulLm}2@^|BT;JUC zU^-{oY?-DV0Mis%mJ@T%NDPc)M8ab4lt)gd%<=BPG)8vYN2mieU>t01H6;`Lo^OVQ z##sqwTd(bQLt17~wVbIS3?tm_t#4jRnVb`+dFFJOt>{fwQZl-_xY*)SZ-|z!36}qw zmsD~&VcPCk<{5%AM2fPKNSaW|WM*76c^H|IMG2+$wNgcsRe?;!%I@K$A;eM<)@aE> zvw|u7Wep9eTLFpV>BQ-HB;`yTt)E#=nQ%O|DywP+gX7`Ib~~`$O)M#}KOPZX$Ql_m z8bc?r8O~VJiPLE&EtcyUqB0C;%qP$U+s(j9Gq-ow+#YAF>q4Fr!QmvMyC% zrjC_mO{Aib3X}ph4b)WLB<2mzsw_)l2!d`l{MEntU-@_c@^8qeBO9^tc(vm}gsj3T zMdEhHvkxzMa5?hsYR~54f`9eT|AznRpZ_f{-W<%cHAObNEzADM@pMHDwl6+;_L%Lo zA*IOmKEOPYG?O?%gjo!9NcO6B5zWC2EyWNq6wg^o8IhR~&G-~VI6L2zuuxM{ms4VY zllbQ4Ex-EWihuU=5BT8W#^x{%42;C$E%tgZD%#Py8M{)+3HADw9!VflL{w4c>;`5m zkfnHt!%U9Cf_a})wxSzSjBQf9jD5&p#jq6!m3(P@@0;S9Q{xFnrzP*F5L^$`3YB!A zYJD^hRr{|$ug6?fM{?lpZ83Z=>U{;&6&b1=_ai{{2Dk^+J)z?;S+S&?s%*>U-WFDC zgYtZButGpX$yuBi3s3b?yP@knbgk~ubc|pT9l^(2WV;p|p=IE!Q226PAVAa_fubUm zx*b)n*RVg#yX-uoS4dUOgW2p5QbUxzSd43`xfp!Su-mHRrJ`)AmT=+%&aG(3TCt*j z;#U`5n(u!@#SOW?hbty^US+M!6#lqYn(iq%ex+C0^!vC%L-UgRCUNDe-KXvvfv&95unt9ql6N53IbBTw4Xq+63_R4s2;m0y3( z`^%rZc_{a(W9R+zm1@NHJ?M1zK9~Fc_%0oPu(IgIzdBihAe+r$unu6VV-ey5bMCygjd2m`y_1;^vU z?eW0zG_$0@G)PtEkH-XZ$C9-0Bx`Rl1RF;Tv4o7J8qL0mB)9 zMF+w#AaNn)RN9-2WKpKGh={VB5{aV3xVIsI5DWiFWeZzX;`RPD^wR@jQ;mfznIM@k zC>M`@#Bg!Ve)(My`=v*v77vjGW(_>Oe8`V}@PwyNx7@rrF(%>Z4<7Pg|8G9!lSd0L zuJ#;qWZG=FxjXVj&RoB{;`(aO-R+5Cx8Wy$_9J$eJ04sp%W+{Y-a4bSgm#_~@56e& z+i;!syt_H@K+br4xh>(%LP{eN6d`dqC5tS`u$v~*CUbjxgA9RFN*v})I$1y2QTF6u z)s};Y60byq38he*)jQZSgHcY36wc+quEb>kCqxsPlzkQ`l>y1-u{KX;DE!N#WPGlr z@;Nv9Xa%a&76fKI&9!o-YEyLGW9cn|+?yy;LaCiE+*2%Do^3A{+<@7@IjbM<->3hs z-l4;QF0

auZ;KcI!R%zq2>`b^{B0@|1bt(yTWq} z(Lj)Pp1(!L3VQiz{+~HP+8R}<<=5W-S+GOWqA5Ey@F{`K&D&-4FtJD5IV4avXZvSLx~2dFlGztCz21(VoQW(XW}K zEtl)vN%bgHUNA>!7^M6Z-%xt*Vuv30$FxGJlp=Gbt=CGy_RTA}?DF7ib*mZ`mEobP z+Tq^1Y9%_x$KZ;m(1j7x_)dMkL)e1Xt6?0v*{hGMbsL&u*`f*WFW2|ScjNdYau&U( zVa@cZ1TRv8f3)QLXixYByq7<70nrZBoZ!?6T^bQqzFkFVMK0O)D}+Ril2jdG3MY5tR)oF%0YL@==IC;a0}sUpNc)UReN-XTmmra z2*s73KGwTDuqxZ@+?6VrOV!R+WI+);tSdUlrUfBb7^daeX-yul%DR^E2`r0M^~))f zbzuyVBnicuh)WEm1w|%@NE||GrmgkfV9d*ah`o18sWxv8!$=&Wh5A%xjD;O~6k z5$0t^Bw9fdwR>5f9Q3&|F?b$lX`fOgQBJKrM@EX0isfe(kAsv1^V;I2jCNo=m-!1c|6tLs}NL@u@#LR!a?7a%i? z6EY~HBwMH3GlB+oXCq+Dj@Q6}C{85J@tyBxMtYflOMC zWFoKL-VuUuww)L!3wtgTQV`KnY19s{?5S-p7t|sGAr6*$GV}37R6)~; zo0D*{yI_0qgokGj*j(Q-2Vp7m6B-*bIuppcFa+2=eM}bNZ+`ilv$qGH{pX(o3-4}@ z+}xbloGEAL!rg6xT>7Y{8I6gLKR)B#ZDJEgrZ8|4^AuWWb)oX2bfs(sU}C9uj3~=I zb2^=f!76RWVPqV%L@Jjx&bCjz@CagPClJwC zi0sCZX)~5Sk>&|-BV%6`)k9J58Sd|L8FOZ7! zwDT}lnkvth*j>^`S5<{Z`bD6s}!*ywVl6~}1>H*_?#QixXMy?$xEKMDOD zx;pnQH)`wGu&MUfI;QND#d^)XqgO~<6hga+N9na;NqfICjZ&3=|IGJ$hn1>r!ylkM zIBodX9ROVok(J>fw`t79xbFM6DxFYp9rr$OA2izdcK-GK@t^kiqxvjDb7{Lm7)q}r z4;IiqyV@0-;>vgW^wRdN=adr@oy9_{uX|Lw`xhx*L~@;5 zFFcZ@0SCLJ6zR#3gnC~KqbnutNWKzM+Qmf0JfUqd4 z*62GH50D7eV(FC^Q%Xh9ih-~K7QCpAH4^E7} zQvtH0HlI&GktHHAus^rp zKZl1$ru{ARi^R?T$o{Z^B$8TH+^~r}dUVc5kDhS5KX83}$KCCod0xnB4%1;8I6pgM z2m^O_w;YcrB5HY(VwGy2zk11C9+=KHj4>0jd{zmrEI>}m;-DNzDWcg70%6cn992*a z9OlgaWHdDAjEtbemJyg@1hEJQt8QAn*D8>${ecMl=Broy=BrztU7Yi?kI#5=IUpK& z_w_r%5ZND;2|}S@Zr-BxOnuEH~X32e(}}}K6rSp z5LJ<=ge*LI_>`xQo)H;X4hz#bA;CPOK?YP)v7!q}1vC*NOyh>rDKMWFWM@$YN@BOO z-kma-;UfrWw0BRc+%1Whw+lDNK%7R#Y2bJ|5<@~|GKC~-0X=|*B1?+FP0Z`8d0{@y z%=1!O=XihFP>QZ)LKcQ$wD}4Vh>(TJ?^l47=ZxiC=w@Clj9sM_N-AOHr{jrqILiKkjQ6{T`K;E?dekieBld^(W zL8f?a-cwZVJv~UjdW2}S(TDrFvQj6F2Fm-nYmHbu0%i?b3j0}Mn_BeC^#;FxIo}bJ zV;8A>tSANQ*rgbs#d$Iij5h1D3)XVsuLaL(IbVZzF0G?ug{Ov zhqv?VG}g!Y+PZ9}DngCk*C|GIW_pFr@p3f+7X+%^ck1ix-{mgUw~hV&;p1I-cq`#| z3UeJPErM5RV=ma#f-CA5t9@N-hPb7qJjb!1ueRUZ_woDG=J)co|Ni(c9)FawxDJZ} z7c|ups_Z+g+LokhGLM&#flPD(Gbjs ztC^7jk-#@EU-SCVczkij6f>#|Ng_GJ;WTr&3WOoC8!b08qfC;xJ0`wc1T`~px?+2_9GH#c{PL_VH3 zJR3F)Nw_@Q!W7x>XWm`ivD*#oRLFT?kP#Ual@nfsMb+0n7vSe$%la~&jwhyZL`OiZ z7iQL(cel!$(~kYJW7*Hx#Q90WFFp}n5N7y zMv_L-lG#iH8fWq`v)hgw_JQAjeaGhF0*zu`K8i)UdWQ<1cD{_~#92?mX&RZvk;C!C z@o?hyc(Q!xAZ)iIo6T4hx8ltg3t9F2(4b9$6A4V1VJk|sf?jj5zKR7IhiKucX<0ZP zj~q@XPVm8s7nc7~%=d#HCT=Jyt zuTmJUM(OlMWPh`w4OCJ~p{}f9_nd z@z!hg8LseX(}C(eaQR;xYL!kD`pUC~E}G9ms;ASwlD2m$4XoF(d#(3AcbT-te|ANW z%e&#X$*hZZFO;2IZ7{%oCZ+mxQ~+#D^`;&RlvD&ITbl72u9>%K>?-yh$(;}2FA zm(s+2Rh;IYX4b?^`}{pCR(DA*4TIBlF!f=5=?Fi4Tu=2z(Exr{kelJ|2d5aEoe zC2ETb(=fJ*d_J(k_&4K74Sf==%qqqWNKrUxR&QOLDX!nsm{`w9Z56zEe4PaP*mT-m8)as_g}u|m%qK{@q-=T}Ra=`-` zEDUij%4t-zzEubM2P>u>rfj|G#kNBs5K9SN)Ivu#Vdq>EDPoABTN0@Wq2On=4!pP0r zBe$o8-7d1(3d=kfelytKkeMvG7y^nZsCdsv10XD6AqAV`ocFwb3;*rE_*?$PU;Kiv zzJAW2=1E*~q2FKzhY+ma;j0%fc=PfVpL{SfJbcWTZ;$-qKfK`UudfO24Iz^?AsVbt zYqq_;-(PckcZ-IBVQXzxRJI@sidCaj0m;HtKu__7$tOnuv}Ng5 z;l1dol?K_?u!8=oK+5X$-v8t)(iCd4V9M z$iFszDPX878rsn2`gR^8+0#;a$~^_LzyG=?q`z;&jIj3Lw{iHhJ0+R+8FW}wN=0AC zLE*mP*spY4)s$hsSFT1vtyOs63u`a?*k-zTYdhTB4SPM-N-xb2>Hk7BEjbibY1H@h>G!sW zZ^$a_+b(a4vY+S5SvQaO4_Dw^v8zmsx=-6GNxi7#?KNI2z1PlXCfh>1pBLHQ&8@~} zneTG)q=nbn_bqp%#M{;pYMIMW`U%x4XeqIzRy9t&@0)n$OAX+uG}BgES0nBJ^l@nY z!;|Wr!i#`cErPauQiT61B&+iVv|<#BdsWL{)ezvoJq82+$Nh;k&un)i<7TwR<#{Hj zx%Ac20@%e0bSMx88=shRemfueA?mKYcdvi~SY<{I_p-{rU>oAI%eIIx1;~5Qah<*(~}e1x}on z*+NV+EIAiXhd{y#JOzklx?@tv)|y~c<@e8D^1uA@AkL=DOmuCx*kPJhZ0AZPxG+WrBgcGwaY^IUTC`g>GFoB2Rd3-$q$yOxE zLo0&>hAA*i!mtSQAZUPTS&*3d?6U_v{nd!Z%zVsjgRp2SVY6ysnmLwe2qDdpoCCu- zgo_K_eR;)izj)5`mp3H`a3pFr`XQ6DjcXF+)$?!oAODAc!w)V-{+oaLl;!FbDglW@ zp}k}Vv=A)>`Lu9%cjWE>n@Mg6ozTy&Fd@n z*Ef9n(IbX9a9phNsmMUi0hQSz6*LqjbIohZAAm9pSSy{giSuR4@#388t2=J4_Uvzu zJbrS?`NbJ|Scnq2xjFF7H!s<2Haz>_1I~6^az3%-Bf|vfh#Pv63Lz!5RK?cvI|xw{ zmk%~voHqkWN(l+(!3t5joVlLsD1C3?71m$zUO!(}-$|(`-9pw{m>Wew3n4HJ5!H;u zq2$*kLbSp`nxge(BUe7`{B9`;%VzfNhP zwMrk223j$uHSM-NC0)TI<0&<*rs6@n@;z^{It@rwu0-rzSBhvIXuZhpmzVWSIbC#P z^FgaPk60_Ay|X6gbx3$s#-uH$^kb1?9P3=7j$)ify?>|Cf!3F~uap`FYID*GLHWIN zH;-k0JGyc{b>ArQ{qfy6{$OQs80^yfN=kE&LluCoEZG?brwbwGeBXrA1MRRKjqKu60M~%?(u_*bPDIf8DmESp+cw-0#b}sd~lY-dnj)tj}(Y zwcW?9|x5GGe*bGFt1-t*CW6p9ErrP^Q3g++{!?KD{dizp0XO%T4k@8$W3 z+?(r?kyALStj=*dlY6u2OV_D-;+Eqsc*{PnJ)wGr@BNd!fqJ7|3yUIKc#IC#&{-lJ z)50=mf+V(~^wC5S%)7COc@3h>U_o-^lko1{iMOv0JbQY^Fa>U}k7yQ7x?$AF0L+II zFTZ@p7hhd-e0av?<^ku^M3z8^BVn3&^z4%1#T~!<@=Fdm6XHO^ip%)>EMomvce@=w z`}70;{Lg<(+V8o$JM#R+YhJ&-M#9Lln8J8E%^Z$L0|zNv(IF4R6BxvH;BUWr&R_hy zU-6S4e8`8NJY)&4fd%XH7fExgFq==w>huO>o?(C3gFw!K!;*+2Y`2l!I5C6)C38a2 zv{bNyX3Omn>z^4zs@@CDFfUfIP_vRE5X5?1s#U}F%5)(PAPEr&GS%=$E6`z8OT}}g z#JodjUIKcpeLd;ePRl+&r`A7Wx9}WEJ-(T~^ufHU*6sa4G)&vNNS%fSDx3|~4 zdij#;rw`Z-NA@qjVB{U2e7I#kMBcnPa!P)oLA6LG3~)#XUcUZ@uU>q~;q(yEz>+c{ zFW`VvKtkr~`o!m7zUJ+_8$SE&BQDP_m|`S~MHVb6Gfc4>=xzZuH zhTE#RlJdKD{R~UhRn^iH)^bN%Ynn1IH3~$mS~V2yL@>@|wf58OCz}Vgfqv&#c8vqN zDq}kZ$U$ZUep0`$09Q-2PG6B)SJ_!Bz^M1u(G;b|jeEoAd-hT-P2sZ;)b_>#q!0-c zYzN_dCx~uXG!u(gaak-Ubr`JQtYCc3a^;JM(knNMze7iIXjORM$Gs*?Lsx4+?#W+# z9!n*5g<1@#Dnd0Ppv|%O&ZAS7wC-siS&>8CwKkolDz7%+?ii%r%m0?{dUTcEqVK)4 zRK;k8q^f2?UGu8d6j@mDgg7mh{Ly>;5}QX#+qmNeeQEur$gIw==jDzpiy%^*f4NFjtJa4_&1S zgZgc^0lauYo0KB-%jWYi3R#s6EP&?zX4m%aerm-+&MeEVV^I=)K7IDuy!UTORSYw^ zG<6R?qujS*OLu@p%gaC!K=ra zr1_Lz!2J#Ho8jEeFirCtLl4FcOCaiIJ;!Ggmh==exl6=~(tqK-2(t z7!omW(1J$2`1)oDJUrhp#1RRR#}9Xm18hgBbGI3Vj~)+<;ga+74VPzj|5G}#WM$FJ zSMOf&tKWale7FV8rX;BlvV|WGQ)EsHX;H=@GL8eAX+i|fc3XxZ>^2i|+%V5Gh;lq0 z+3y!p60WZH+}vH0Q)Vc%oF(w^!8uRQC$3(;;Gh4Czv5?q_9-7;B%W-AZH#CZt5j)y zBbXCtUI?P3dBbA*7uWkEuixHrb~bRnjm(?GG)5pZglHbCT7}k>MZ&Wmuy1ZcGV@!ceL>*A@}7w3asru@sr{ z);nNEuMo^Iy3X~xFQ~EBj8Ly~1c;$$Os6y23pM z?27PNXs@0-x4!LhMP6&C-1rw|FV^eao95Xyz4Fr1 zQSKqM@{Bfb_gBLIC-VNq?}di?duZSvI(!|p5&6Ang!g%0kHP(@*XaA>rc?UwkJk+k zK`c$DACsTsWr^A&-_L`rbD3!=JpK3GGrvE+yT>2iXR(3{DuZl%OZyYo3P(|x)|EZo zdZBCOOIY=Zk?uZzxD8a)#bkGR?=1@!?&Wt|>4(KyX0mfFD=38w1(1ay%{^^8qDrO2Vsm3vqnJ z|MCCu-|*G*w_G3IarNd6?_R&-xFn|ShWUiGNJ&S&_~IL0zrJA@h4bBpvE)|8bYfW+ zYmuSK5bZr;h~{Yy2JUCfd-CazKH-1+XFq1U9k`np4%cr9+jAl#idxlP&4>f>5Y3~f z2}y|@lw(@ZeB^AWJi6SnEmcxODV7upoh7fPiy*4xWiCp*K!9O1&qH1;j4+_aBNnW} zrk0#U$*2_1r`WDVXQOY$s(Xfo!wk#m$Pi|(Z}x1r15YkDph}`#tC?{KjA6qUZ;$+6 z|L^}J|MS28d-gZCgq%wOsE((o^~w~9Y{r2Po<87%XO|qWzUCLd`5k}xx4+}JzkkE4 zS9_L2A}zV{Mw8{H1V&Hy$pdiCxY?0nAc?h%AQa_Dh12OkPBV`#x160#OmQMDrp9V6 zo^t_BfvjSRy_jEojDh1RaY_rjvw>%i&X6=0;4Ze06`~AS>m9`lKmqT86UW99a`E5} zXjbMWkxw%*28MBDceb;FN{h{bqKxCfg9lsYc}BB^J1%PH!>guz`{MKO46$I`0YnzAKC8+1k9=fTW;rT@;mqjXYY)Y13b>*34+{ z*31~b|2iZg^^!LAMG>xe)2Ck7>(|d;qgrXpS1&H_(J5>l==9sP%ldP>2lk2{_kM4W zYisR&5=Ep_QoD1rmZD>UM!JoL+j#Bw`+ad&V_S{$`{TQK{K3lNdpUB_eePBxL&4Z4 zzjuBi)>RIKZ_1v~-9PQjB9x!^`fM4^+6Kt|;g=(8E=rvX z!)}96ERtn!TZ&(KmoiWNFz+jH{!Gg&p$Pq^s3QVFilX5{rwP*T#+@ZwRv`sVPjjJT zxn}MAb@71^;z}_z#kbaIZH0B3W<(YXe_9FvXQ30g&gG;bkg7O(>FmNrgCKIknP*mz zWC~;rmsL|@RrDThH65)7Fv-8`fA&JSP)&%Tcu&o8XyK!Y_qKr;O~fp#xv1Mg6*LgV z@`fz8AyW$9;TBcTYa2uv;|R=r@WIH(pX>}Aoh-jjLaxG^G;kvE&8sT{8y;Qk7$@b$ z+l2?aGtzv+&Gjv^Y>8oK%1`MPw=9XnVIk|Gcu+<{9NFy7Nf{P7Do^2nL{Tr?6J4+@?B8ZZMk`U%>nt_yR!d5M|GE1VUy>3&SvS zm>2%)Z-2)x{{D0BZr&2f?P&Qem`@%J8`)^V|(!f{xARUU-199{SAn9UCQL@JMw(mi(kj|tFQH5!mc>c{b`@6)m$LCyb1Bcti^6x?*DUcQ3V&TULVPHfX-p=tnd8xGG za<>^*a{akh3SF-IV;Z`tIeBF^R*K+#h0#AMAg#6hC^`1^5$YqZ_$P!|dyYB|Y?lO! z+R8<7s|JHIwp?hY;HGwtNYAY-Pv~~oAflINzu3axZB$p!A8v}90r4e%pDeT)- z;GdN(*!>LM2JyVU$_Q49Sz$F*u!#?;8*5`)ZtZcl&_ZCEaO?$1eabz-*)u4655e}DEQ(jC)2b|nelz<0%h;P8ti8X#xT-SGO9eEshEuhPS%m~ir>Iq+;WO%7M zhUaA=Cxu+{I)ef3B^{abLJ;#TPSaqXB(b}M=$=du87uS@ECx=s6@nOKAUVycGDtM9 zPO`BZW)mx}60}q=?3mNNTo-Yx7`-52O{xVnq?{^UYf%X6Tm`2olf*GZBn(KfDv0wu zlahJMybXxtY=tgZ@WMP%h64CgVfcX{11Sl4j+~C57?3sEH1KSBYGOSR3H-C4KPBqG zl4pMX`0)W)jxplB68c9!;lPcpB*&j~)`txu2 zU;g?Fe*e`C3p0l~@#7CaV6)ls^zj8L9gwu3I+1kX?bRFp-CzDKSFhfh&Q!dVflvxB zq{iKfp-wb2jWCQO%OV_(3&+EOxF|!g79B=&g%@S(5TKe#rB~_Q{+eI?>R0^bUtIFx zgDs~Mob5Jj#=x6*Z>`u(Ogww`fN`97`TUOIZqGy60uj}P5EeAqep5}PY%L<9E+7-H z-yD!(!$%)HVc9E(W69qPwi2i!Iihm1eW$Hk+={`vet|Tvy(Y|{WV7QrhN_8q*%QQy zx-@Q)%QjVxr^WKO2Mbu-Y$mMOPVr7Ha{;r8rbHN`dA4h{Q1j}ENL6Gk(9UJbn(uq= zb6dzF2OJ2y(p2>(^QN70W?7V!>>0TQ|4ieuB5N&y}L56{d>U1Ptl!g{e5M0GyO zSaZ&mH`{z?a#Bu5 z))=a$IHsIBnk#)bp~};K4V%YJ>NNt*W2mk~=vsNISjO|#XkYe-q0CED$eNZ=^?6sc zR&(CnMZrUU+ts}SLRGl5-SOT%nkT9msA+POrX2XHIlif-PfFpMmSvY#Yp#whgH*#c zRlzSb8_K>4MNWGKArDJ;`k;AD)z`8hSy@$!FMLGS>xYIm8^tiw=0R7QkwGV^nC(7Z zY>Krjank0uTN~#qeN@HDXhVOj|9VeB?#AF}uG){O)kSD%y?cg2Y2aGkRoC?Cw8lL} z(OFl=y4UZ(_s4hi_``D+$+$VX36(LV zs(f45h*w=Ja@`GAx9*v^_c&{(S5{Va$#!jd*M6uppmP6s->cdwoAq6^Fp_dNY2)c; zt&Y734BQOQ#AZ9P86q(j;Rv877zb_+M}GVDTYmfH8|FL`VnlUjh>=H^XZ+}cKwu$+ z2^}FvCFI1IM{>xh#=0*(4A8>=6qUg|O_I2{JmbIm-~TB;{b&D(m#=5;Zg2VW`PV$! zZTajckC+BwK0$~Rx@6)Y>>fYm?CCRf`W!tSO~IbCwE*xCGVz?@1QC|B@b=vuuiv~S z&F}d8zx^dwS65^f3$Gjmk^!p<5=AZlt%QGWw;LWkyX4}@1^IMjIu{rhZuT?#`N$}+ z-Au$dalRdyJ{lQg0L?7UCv`wVYb;sJIGVD>Xx|6H zb^kWNAqXjZ2ze%8o=WRkXkpLJ;TOHfQ?*zwM93kRaQwg^k>i}0=abn#fcbc2oCZWJ zBzYqvF`6=olq%G8A@8X~xCHlrYB&7G-}}QnTzSR4oGFJ8A;O@RPn)vkbSoK|6$z&N zfUrN@@%HMLtGfh4WHThrHj&*lGRA=+hSJ(-s9qU28cGR`cd(bU%XO*}=*nzmsrSIE z<`TN?dv3*d3$Rq^qmgQn5OH~sIt(ElA9f|puMM`&5(#5qC+5w4ayjsmPj(E$1f_cK zJa1?dZ-s19Dn=d&n2paA3CQN{s_7@5Bii}JG#jltywNuPQXOWc2+;lB6tG@yX;U^j ziuZiJs!Y{QZ0nGHpU7J2UdcS{zU`w%d`@u!t94cGt*ftJc>yyd*Qb@wv|Z=Qmb9Lp zJ|`-mA+}3ZyPUf&A1^7IXOnx5S=8pqTb$VcZSRFBNEn*JBmwW4kNkaN%fxzqfQab8!!0-=~g}3@;Aud-uGQXG_UD>NFew*TNU61nQQlO7-P> z|Iy28GX^=8n;@!6u#1PTmtVWKfUT9_FN{s^c{Ixry7vlE${d;IriJnO#`Kx%t&ja6 zS_qNWO)5o*BEpib5?H3#BxGytU}{!^PPqE=R4ukN z8}E$(%>(SYRHa0Mzz`B4!0j>f_rH0~i#IpKVc*Ilxk37A6$Z589olllKm2%>6dt{y$ z@@c6c()VCWnd|F2-o4vHokuDVQi@$yrI@0WOki0uZ(n@FZ-4)YSMUA_fAZ-AG*Eij z4OA&pgqM3H1gnB55ymK7-JW>&?#M?UU9jD38KwxNl7E;{T^L5?>7xk=56Q(Cl1WU% z#O2u;4|mq~z=4gU*+gz(}F@ zV&oI|l1TwRDqLKg^OMg$;R{ak@5*Whhq3WWqQ z(rh`9ol(5}K1jBT$WRM7nJh5_M-98pLdxB^+oU)P?bcK3JFlm(|4rYc1>XzaPh0C6 zcAn6C`^B$)Pu}!TRF}GIrLZ?j+&}KI8yD8?hT`+t-9j3lz;Sz>q=us^-F0~VzHjvV z6N2TIWfL|=TfdUZB1;dZazRI+ z9wO@skcUM0efqG8S|AlFLvgE#6S7LxbPI*&3NEZr2B>BW#iVV32J@v9LvW?IjK6#@ z7*jN5F*HD3^Pj+#wZ`zewGn6yfBl|C0Sp66%Ips(l+4-rh9Dl|TG~ixV**|kPwIc` zjc>IpN&$wf2(c(Rb+YSPt22EXSdz}Ap-?P_3a)5I^VBR$LP?Cl%9*PuNg?{^Qm8qU zu1tH;QD;v<>YH28EjX05@|tc9FOwdVWENukS91uP^oCAU%oIhE>qC01BsBn|^H zW`-!&jHlzhWj zy--9N~^RQ0zg|J}=XsmTk)h}DN!_41_2tFp)IcS=M{W<{=Jn1;cOP9Y$SrtIWg z3#3^7acf0Dt_jKZm`*OPyaie~%RLLfT~j$^_tTDCLY-TSBYVH03V2mTvaGo)4K7vc zdMK4HsQs3^K*%DKTF&6=A6&U{Jkb=X%slrYqSW)eZIj7Sm#3x2aCvXl))UicsgHoN z`?(&rj*0@WjNMhwTdkYVi~rlH2CMrx8q$6~aNysVOm>f+bWvV)Zu-X-q)}wE=lE5e zCgroLUG%CP*eCdcj0!~EH8BX=*Y4WdY) zSs$S`RJq2<-yh$#;}6eS%pUGR$4sy=LZJSm1=LBWFu;mXjfmD8N2Mnm7ar{~BJG;) z({}%kIoB2zSiu=pMN9x4{K7?Qh(G(2_4N;olsq zxi`tYLkt5^6q0!qW3-&CIVDc%jxa>F;|6pwI?2J5j3VGehEP0fK+P|zW=?-UPN-y( z47|P0++AlLKicqL{pTN9{$!re1jprI;bB+D<<|W6&Ee|fvc=q%m=erFgK|^NA39{vd z92eoV2oH9V?F5IDaC;jFXOR>K{@uU*6)&H^LDRt1-ok~K6j%}*PnqN4*cC@Ipk<)4 z#A z2zSfOZ@zlT;p)JX#~1vUfBq@|__L2WJKLbD9FLjf;e_bPmb`?o6)4$uLU2%DcY@Jy zt;iaxHQITYhwg_M8N$GecYA*EvNJJsJEgfxuGocT!}y_up}tI{`D99tN-~w@ML$!=f8i>VSjKD-av!{ zlI(>7g*+G^zP`HQSHJp(-~aB0A3xne$Q+JG-d-QMJDBqO@WDCLc0(8j(9D<>35hK3 z*DrZVB~MF2Y3U#XOM?Buj0MvaOa7Ovl>;q2O7BB5pmjZf~q?#M^+F=g|4R`Y_xuSd@o^2&H$N=T%pk)rQrMs<`-<*+NgX zpA}vG46+czY=#6)H3}gsggCGpM&b}^bNQr}FTMh=1*qnnE1g?KX3Th^8Hfch8m|;7 zvQU~@{~j+C)`t{C6~QIiTn2{>$3JN zHf5oY^{+#(U*0{SV?Dy`^z5CGK|K97Y@AnUX z_5Jam@c4t3#Z*90t%K>7ot#$!)CFuSSGpDkRfKdKLS?10;GCmBzwoXOrcsz=VV|89 zMoJ+U#hHEgBF1wObiD;c$YuO>cpa0kBV1jSyP`S8Ta;TN03Sz@^re3d#^l8XmKCh< zoIfq!yXCD1*%Z*T)Mpg$A)&sLd)jQ6Ry1Z9g-1`eWf{s0=E6IxASkn4p6Au{8i)dK z@sU$$e;{tb1A>rHV)44BoQYA;l+dN{UJ-KjW+s=~_GJkLlN=CL1`)I9MJ1QtPxH*X z>ph#zz{Sq;q?WAcawHIIv4ngAWg=l7n?a>`8LJexxh^?P_5z7qsuc>EsL{g9f~{i| zA>_%5mZZeHn>${=T~J`!TKF2Xg~_G}S*&-N1P`t&1`%~{c0?F~10iI>RCboej_!+* zri4Xh?|Z2kAwvuhM>Iv=T`O0&d*0j~cz%6iBg%ME?&iSeV#7F2oNXifo0(-+#!1+o zC!!2&#%Sx2kFd*JJf8UNSFicSFMrFgzW9dYto-Z$^%sz>A$UrOoGgD*OX!Z#jFzGh zHqQ8V2l1NY-Ho;9E5cl{b+E8tQ<}#B zKX|g^^z$b?|K^StZw}?W5`vZ~52{e*& zi+pV$&WhStog!->esleXzx>O8&$8e1yU$;e78{EL!sb$>0_`Y@ssZBD>BwLI)vx$J zi}KHY{t}b z7O<^YCEOmCwI3mb5^VrP2t;Cx#;cPRj|n2B_=YLQA(%%i6oZ*nD%G-1ZL>7Jq(Nl~ zu>wKu-_=337KL3sx+E55Mqsg`G66`ZRE--!I@4j5X|@Kcp%fP}0IIr>5K5daT0An~ zh88odIG%4FEWNj_3Nz@&ZQs4WE-vrB?R}j#-iOO&eY&&}M;88k^ZK?L*~YU2Lm28E zOj*8fOjR5Z)mjN1$<@79pXDIDg%RJUKUXxpNqqIt*~Q&;_THhPpVb>Xf7Bw=gZ4wa zhi528KJk$53OEX8)9zd-TCVYTV2yl zQ}>?t|8iPv5H%?!w99aS&1&(a7roKF)b+8!qspXIWtY-=r-ZQ@;AjPQiWgYBF;tIm z9cbHkQeUPsWKk;1q800Y8{ccNPVdd8@0*TdT$Xfu&$p7YBAoJTGuAeJvl$20^WP$* zR6Fdy9?iFL;qQ;{!10HNp_bgYdh`~AYVj=SSQ{Cv7)@a+mit4ulXZ3P8oS;RS6|uE z8Hn_|SGqCP&7gRih=aT)Sn8e1FWM=+KJuQ$HjjaH%*$iwYp9DWh&C}5?6iC5jwu^6 z$+TXFE6(7r-+k6s26Ww24oLxWGUlGlGv{j%s%JA0Wx)KenUDi;BE-P$ zK68DY*li*Y9|(iMC(q9K_^A-Z+FYd6?BpQ_kc1|R+osWB2ujYDKNwIXCbDF}Dx)q- zDnP4n>`LcCP6-KCsAW;*beK7vPQ1Q4@HfAC&R_rX8?J8`auCi3<-u;^XFqzzKmGX+ zc=q%WhavIx*Kaswc=Y%j(#+LW;^Sve*$f+AzCQ5g?uyOpEuVk+f|sw}v1BDo6ERu! zPlkylWtNk9ep6mpmbuWL(Pn5Sr3&sU%~naKh}areL#No@8plWyVY}OLaej#$?@EZV z)cqjAg|{^v4c}t)+K`8+dAk=B`S#DVLG$u;pSmk#Zs)GY=kYd9;g+lF$@cN?VYv zfDky&f!QM>ItY`?s}I5WVlMp|MH3_o>AHIRj$i!UuX+9Mws>mGdvx^`JU37Zzs%YC zcZz1NZg2UEU;LKmUq9#Xe*F;-AD;8>>Xuh8uedwF@Uuvai7>!+``CE%g=|Q!qjZ45j$Zl9nnTa>~rJo$v2x=Z?jon2SLsRXMii z>n>}3Z>$x+ z6~(X<{nRH(PdV!~xbKm#ir(r)+*wf8r&eoi8?>#ltnSk*EoJ7a{P1^irOK69A>7OT zcYbX*HQX3zbxiF@+Izv&hu&ewV$3#|bRB11PjNc4&%6(NSIoPc zJ?%Dc9b@6}yBEoUo}nX{UgG}p{4YZKB5 znozZoly6?v^EIuJ5ea$|uh*nUi^2PdRa#7nUWE2BW2%0@FAY zkGd5UN~z^?rJOxQuJDSsAw%)Lnn3Y=rNw&-FJE2r``^9hPk*$r0!<}1Om(TnCIl?H zVE_gx749}XeEfjRTj7_Vf5p|S10Qc6L!LOEthL7wN6VL`83uk$3wOAAaNu|Fkpqg2h%(4`PGTOTjV>G_fg|;^C+~icRw}>lHo_vn+ zYOI=@^Zc6J@sGNww0+ycopX1ewW8O!2HJ4V`gyt@i_e)f{&4^3!z1c z;o!Z0f{n$Z9`0FN6x^%fqgYjf?O=>6q5X_iMX|yffnu!>;$fqTp?4F6id3&{V@gf9 zmlrXmE>XwoE1Oiv1!%h!7zo^AQy$&O)A5`z&TnaxyD!G%yuP zysR)5akRo>B#x!jNLS{Kh7*!c=T}Mi&rnXy4f=h8y-E_aC>vd^V>T#C(fq8VK$FY zPMMUjoVjSBw;Cg=R{1n1Yius19g3=!J_XrwhC6GMIC+aHGm2D2YgsZ&hPQ98`0Dv9 z{`4mw)|_T7;8|2k4w2Zs1B6W^>B8%mM|Kwv7&i}i_2%!mdwXD)HoUvu@c`IBC%@of zYV!vdj-zTGx_-OgLpTk%c7QfGIMEf8so*MPk|bmh&d)ZWaCOM+Q$WYa zq9;NaASLSyD1pPtdk$LgrF#+F9G8k)AWN!B5+$TPMq#rVAO<8aT?l{w9?o(L2$ocf z=BQ>O@Ze&@<3}UsyB)*!j1NL4WMy-{WfO&I9MB~r5la7y$~dI-@T6!7sz6SRU{Vf0V2IjR_)W#Xa3#pYB z4>^@6rDBW_FH)Cl_;UZIl?L!adfhlX#D5=M*g7~bT%XgwOAVLo@RlnSPGjrM*S+KY zuhjQ!H;Qgxl?`b7qf`6doA38LhU#D%-4Y|1GrPo4OyH%VFPjR@th)lprL@ z-M#F3kG^tz*oR2__(S&n#e3hiDQtLqonP4IY{mCh-}GN9)gVVdM;*^7=T(E48!`TY z!{_JzxP7nY{_Fq9eZD{b(;k1YvbgfGmCe=d-Fk+E#+ZA7@A30=-a1$_(aPvLmwRJM z{Z&#od3$~#A@+SPJ;C~Wc)m$*P4w|(KoX^w zTShgs`)1EkP?S)2dwrjKV>AA>eum$xF>_N2MHIq}hx`fFcd@tnipV|2Rz_X&Dy3MX zRT5bjGQyGtk~Mc8$4C&fp2s+VMuIAjE(5#mj@`6nh>@U~Aq27)MJ?{85UdzTN*2;% zSS46>MHvx^L{Th5j8Lrurk;ZSQaHOiAjWM z8_6ZFFpOq(pA$&Q6?A$W$HBrY#Xz9Mz&J#d1vFs|*-PFIO3(?FX!yCzWeCb~pZMM9 zZ~6S?J8rX*j)9LKUGSg(qo+K1v>~fi&deF++16ngymzA&1&P7JrBY5vG>_YM7`eT> z~tE@62cuzv5>4n45NiM-rf-M2W-v;GDlur?Rj_m8XX_9y?DZA z+Ck1(=M0^q=w7kH9}t+f8#ddKx7W}4)#rDJ1}@G9 z?ru&T7G>IPk@-Yk@Q6M(XFHxgd(03Aje#Z+$?u#C&uXcrR=t4)`mNGl+S0cgL@O_Z5fZ6CPep>@G6nlzF@ztXJP?d84=c zJI)`B#^X|n+X|tsv6g~eT0o9yW*Xt{cINi>z~d(mn2!stbTpt}W>=dfT0}@oYnK96 zxWv7A&ZDzBpjp|^?=PIMUcJ9x@>9vie!jF6B`Ix-&rW}EHDd+cW&k)P|U-}qneSZM7_+J35r zwSqmAA}id$*eP#q-rS&7IEzTDXW?V^6%Y&aw);3A^f5Y3+s$*Gxb=D%UHY82d2_t? zp7X;`alWS7LQGd{t!uitcYK?tu~*RT4)?-o{{gK1{qdjv_#-@v?U!E2*hg+-kwVi- zE#l(JO(B|~MPa;ezUeme%F^a0pw+2bK}A&RMuH?krWGqBU_Yvt7}4&tP46 zcu@s_VBR?am1OxdIh4lt#Zy^s<@a=^n{#7)AqX-?%g<;WhB!o~DKZTfmZ}Kzk_f6i zyVwDN+e6~FU%laQRAQ;#8pQI`hH)ylN=#E=iYGM9Y^H%c2stcP+4OW`l)x}WP7Cb! z3sV#xUPKPZnK@g9&oK=IDc;GP5OOK`ZUuj$W`-aPLtr6tI9f@_AXavM3}7wy1glsI zLL%p20YYvaECq97m@ETR3}}%pJX510u^2zHa#|L~De@;j{eaJY`~;DV=tv9`L(D9* zfqIDpIc09|?#QZ~ZO@43u?o&qto{Q5m4$FVad$j2pYC{g5%{y8eZ-T86H%217dsw5 z-f(q&$Ibr4+uIYjhXZp~#^K1-{+icsu1SXzuTcK|@4jMSWKJiB&1BU%RTwlf=Tt(Q zEuSJSnUofmlvtKT&gSh+i+LEbLQcg>>V-<=fFbmV-@3^8y+7pi0>8X+q&INvim9g4B+;pLW}{p1-x{oy12`qytb z+}xJ^ZAyGji+3F@xxo}KctlF*9SUg?4oBq|fA*lXtE&`CAUNJB6zM( z&ueozPwkJDA*?OiJ(yCxk4@fWH+u`zVh-9V*-kIrq8ocJSy5_y+1qxgmckiDTbQP) zct(|FUdoh?6HRzs}Hm*|4Tffzw^D)M768cIchu3pV1mmK`NLQ?^Ena7@f9DLtD zv|E9uEVOf7X?h=uN>_!sdEK;L)1I*QQc0WFDrdo4G;}r?niAQb?zicIx_jl!SX?Bx zC`-zm=A{GM%@d+{}B`^x!UecysV z?t}fx!`1hqR(kUDq)k<~N}ZA>wOYdef5!@lLG%9FGrbpMHBi<$U%f%aS^awZn1eq@ zOTM+dzm|3@3oTFB+C`rN8htdDA$89zxfGbHdsJ5wQ5Duw>%bOf9UkgBZl8zQ7cr_u z2mSt4=GITXeR8G4mcf^}$Fl$NpH&gP_g%w^<#$!qi}}66_+32yaAmP$^k)3(;;~l> zRL{m~7OdX;Rqpj|VJ2=(@$;&}6y8@bS0Y%&8a9s zGLO!-{P2TI9$rpd-yQhXmv4D{b7GialE4rG({5y%HoSg$N18Jqe|*8mA8eUoA`TCE z_ioSEuU_-&X6E{M1 z=ZI+Hm@~Wch-^pnHZmm3i^!VUj1w}%QiP{~bOy32%d)VfTtQ&YSlH^aFfU#et^*AI zvnvcCh3>3iMBwcFj7Lu&pm`|<4aH5KB7#aNV6W`K45MWBvgN27?oQ_Q{P{;u`0$zX z^x=-n&A^N)yj8oKj!lC-*WZ#rfhw!`BEydbYO{KVb)0n zk&!%4ynAhhh$NU2XCaSLUuh-3&3#8GrAAeRC1vi82T029Y-F<=I4zlBJFqH-6_o-~yDF60BDGMs*qt%P+4^;QQ}m*gRf~B?Fx3lD^4Wq%u&j7~ zOHNqn7j=?^`yxkIOI)F+eHf%&xp^wr5K8hu#}q4<5@Kh0?>;#}W|p9ukNFQcR?xz@}2gHJ6qepo9>a zb>PK|JvUdkJbtp}$)g?HVM`1XF=j+EfdOLK&n0;@mrBRAQl=YO>pIwa*WQ7v*=`== z^)h&Ik4B&3(L!dx^L*D(lsYMjNkt-sUpaQMexf%1npdfGwHDm-sl3Mq%YD_~ zqhhx{gx3kNd0`z_RZn?Qq;hTwtshPIXek3dzU$XFbU4mJ|J#i`WWBDVV=7m2e5;m4 z)561Y8DOt8*7>W4ZkG+0w#O{oMP?n5DV25LT+;)#fH? zyUuK!ofoj|t@3HXb>027h5gq%b{O>jhFo0>RXP1u&tjp1Txq~Lb)k=M+r-}=--+Xo zQWm9z)bxtiia(;239WMRU~Q4A0=mW6H*nUxdX)#4JiopgmIv2p;cS9bkD^_x-8i6h zPAcfLR2=tYXWY7>0pZ zK#J|9)Ln1)I4(0^eSXV!d(M-mJ2sn)Wng*^QF ztY|EPF?m(hK!{?VHcf;<8K%rqa%;vQoS%;jBODG#1m&|IJ>|G$u5NBQo)(0_Fh({L zJbSWXHx68!P3S4HmlMMabP^2czd;Q{$Rs)Gq5ZN-d!Cz zEN48p7zt5W(#+l6iDk(gmlMaknZuG9Brt9wAqY#JNg5cUwG>I&XmcsKx5FSTDUlZw zM$3}Pvw15@Hh&eIMpxx+LMw*gvcuY|1a7bPJpb}F|M*Eh{K==6eEIc(&pu0h^n(k6Xq|D;;u*1h>=llCfR%H} z=OZwVfnl)F_GQji&Sn^W)90hCJ@7bCJSd?=7sQR z$GdsvZ-4nU*S80T7|@(ZsTJJOGI=JXb8S6>Du?}%&%b`dH!mZH{h=%4U*1mcXZkod zOs(UQLeRwVIHRge%Se=oaXXS?=2u@lXMAzZCm$WS{L>$Bv71aGkX*B_MavxfI7?5u zeNwjDiE#+*Pcv!BL;|@~DYgvR@?M=hanQI1CH}JqvkvT}fE7bQ72rz8zgLqWRk;zL z&JL`$yZ72fkr6KE>cGn8?G?oekzCX0=|#y&p?J^d`NTMkrA1L>7zB;EDP2Vo(yWL_ zf4B^Fp3(5B0k*8Dw*e>s(kiifL7@S*n+p82gu~8hF>qUuZc0a%(|7hdVK>vFfqx26PXopU$zm}1aE z2i+6uhJbG~F1+WdqF?JSJtwqhX~)0r5gkU;9y)18hCl0D1W8U7=oDdSx*KJj= zq0y6IM&8;Aw}1+t2UAu$!%K~|?G=Hh%=BTS6<3AOLRn?4?73=V?N{iowUmRJmQeoj z{+Lz2>{h?sudVTFO}KX`-@118m7~M=y`mIjr9^7+?RI?`TagW-rNV@WRdW~2J4<_Z z?KNA3n^((rdb2<>Dd)D&yEiqt*)+fQjTY*YRwWy?iuXt?^iUL1JR-vljw>i$zLU~& zr#)vC)#3X=${afG4rbKyuc9B@_%0oPu(G(~Hyz=+#i@PYTVcBE z-3sL!&5>cX3fujf#oGmfyl1^{s+m;z=vK7$4V8J{8~uB~wl{Q7o)k}}o!G|A%1fCF zIFnc`dHr1VLZvb(E6gzrp|dJN&I`+u*xwyFzqqiTYdMvT>GAH~I95?fglGj45GCtk zUKY)zI7g{grw$3jN+7JlcniZc+p#f*P=&e_tXx2j1C4A_OiKZl?RMZNKYC)lIMw<( z1yQ!!kr0IAypWD?JS5&;pLq3V&%9V^{21YEqkQu086Q8pU=jnnSxn)(*i1aSoRBz@ zL*R!`CQ?!^&d<5n?I2mmYMN(6tcmVvNz99|nFh1c11cHSg_Pm2SHdw8CGv1{#<+oL z7kGR*F-m6MA4wu?#>j3MxflaUj-}Cjq_-eS7KBWUk<%<(UCjVoT$&Kq)U2-6ULuX@ ziVV1PltS-Dx4G^QDZr}&3kis1q9&$s;Jh^1aHyq}f^Ro+{JU(NLaC?3N;BY)~oHMs~CpP22l9l6eCP-jO+4T_< zLLRnMfpP;{&2k^`mMnd^pJJXs_ufz;feCR$IUJ5$zr98E15-HMErkm}1#NkSgP6zl z>u+9h@$iD_Eb`{+j^Dhw;`ysL{QT1+51u^XqaQs%IFx6W%7eHgs0){Kn5qs?&GR$Q znVbC)i339rs@JnP#~eV`FelB-rxS<6(LAs@@tben@$AWmeEjS&PtP~Zw|lZA^Fof1 z{eI@xzxkTm+hd~znt-qPrcA#STUZphyW8{S^K6EIrR6I3460+5oj%jqeKn)Y!s%#_ zdG~J5{+Ng{^3BU@ZtwPN$1PKsIQ{f7hp<3MMd{Gm7^kkNDxMj*WEe;5tGM4ENu>e0 zViip@B|KO|?Ty-x-_s3RWQX(74)D|!HKvL}_b!Of zSypmL1hL+aWH0V1Fj(koMvKu4K6rA@!;6u#vn?W!bVj6jhBD?IL?E?!kovPDx-#)~ z&lKL*VwTEJRbuB!aZjg37ntX)#}HMpR=L}-MCBdQ*3#F|Wj|6M`#wydVVKH~>o=>L z_9Aqp=hppO4s$Xo{y!-o+<>>!u0Ox)8K^>lMep!U{`(w8-g{qTdS;nj zu&|KCvYZeRD`rv)4%j;lVdO_YJR`(N)|q9&Ld`ffVN{Vpu~bI0?prvcj0XV3UAe)a)*2U#lBiIOcZ(i^x zKYhv%Ki>25^-G>UdBD@hmpnP&k#lC40;jz2=G~s(fANOrFK>BwbF!RHi7d;JWtmCt z9u#S#RZ1?a3oP@phNzs5GrFW=glSvO+pyTivi!7aohCDmf%EgN75NB}g;y^1+Td9l5(s9FL}Ae(}va&UO>WB@yEpi`)Vy+#-(OPc3f}tjepBEdNR@ zOfakP=62?*Z{85b4bL8Jx!grF0J;1WXib>SOFWBmdw0iif6EYs*Ec6V_+Z1M-Ncs6 z)iIMt<1<4HOfgzcZ1%9lwKdoj<<$6CMWD*@bmBOlYBgQ|dIe(dA4<*TQp^IL#foc8 z(*}qf_Y362^ZkjGmGEdooFd!Z$bLSsk;ouJ;U&2ms2s5L`OiZ!R?VdueewbyvL3Gk z%jWXzhpa0)$d2%PbSvGp&c_P9NI@#ODpU=KimbtCyZ(JJeLt_K=CQ8_TLEEtY1}3=dyDzPpJL?|&ZDYvuPPEQ zg|z18e_NR0YMshtHzQfYXieFXZY?^tMR%TAR9AG<)~K6xS+7%DL+-7S%cagS;fh{& zU6UtT@7c5=#iIobA5!Pg({!+}t0L?7sr;nSqz$p<&2}pBdLI0Y)!cPFU7e=9g-XX~ zYpb2&6_(UJV~vNw+AjG_8L#T^Up{lp>-Ui#5>!BlBZxk5Dfrk$#6lIxD z^P?^E?B>X51liDsvP-MkJVPA?H%P6w4d5N2l7G4GN%0ZJ;eYy$LwWALwVu z7TXf;V?9r>(A4>Gf&hoYAVUa5i3E)dB7E{-;M4!&68$gD^EreKLl{f0)sdVcX+EJj zpfZppaatChzqms+aCxz1J1Ap-&1j%&6k&=HWkklo3Zkg;_)^Fh!Y0Pfm=OtKK=P54 z_8fGEapY_}5e$*TVtp5nBv?-5WECd0NCCwxyIzne0~#Y>?E|)>@`H~y#2CoS%+1|Q z3Ih*%S*jqgeOJ=!i!$S05wmhz#=j6zP2{{3dTH++V}M|WiGJUcjieznO~U!b zh=`h!TG~p~ec5f@44fj|W||;x}LMr$7IgbC+Qb z`NA+lSfXex8wa$0(Zdy>Z=dk&^&MBdqNm-e523<^%h-Rn&Q_@labFL^_>kWYv zNTn#p{d^+J0gas;$PFB(MDHe!uABiP%5J-{@bgqo5^5SljW8$^zmkuB%av^OkWPPs z-aGkQ=D$px(@eu4_f`F}Kgy<$r2tX+sy@IYZ~Sw^!(9?uoxAnDTN|uyt^09;@wUnz znndt(YUdf;fUMP{OTkA;i#$>@tW?LHgZ(lF>Hkqm&4Kkf&Z}xAV7fW;z17XxeWlL! zqEm5y&x-JxSG$g|Q!M>H+&k`x$_D*9DcX^T_6pSMJLhywaWom_@0mL#xqrF#ezrl% zzU?rnjjNUnZOW35rRhlBI9NLnq&vTTw3>poQcm|CZ7s9XDjoaWcHgI}rYxUrJw4aMHxxRyThH|O&_5JbPJpN#1F{Q3DU=iXH+QzY3 z9`{(Nf~@vNBbHvscTll~f)#M%Rhf)2+0z^__~uwyEW{aC*{MZI%ylPGER}s=tJX33 z>s8BD=h9zc5xm0cdY(Kaz~5gfZ5jGpK`40{Ei6ZKE*4rVaM1X_S+bB^H~n^#3DFr{ zX9ZUS4`zj&5fy7K&6 zFoc0PC_y7C)?Pw25;gMS!v}o)=%QM+Jxn#FM9K??L=ha(8d%4|470V5h~D$VtIK8u zNh}M5A@JZ)G({>ayIrX_S@(f<|Cs`cv=FUofh%5^vXiF{*~AFTUEa0GQI!E&Y-HR9~DUU*Vz&3_exQE3ay*WmD-NVJ&Bd2 zt5sK=j|(vb#yBtz11TF%&uRr@q_j=RWq*29NuT#y-nz)W!rP#^7|PhwGLuT%7E0=a z%OE?wc(IC%wGg`%k*z>tlZa){bU?R5{dTW=^Sv_mV7%D!4x#KNB^#<4V@01zGT)uZ226OLK=Nm0c_1>HpW5Ks^pw+eaztgr>{+ucz z?_sgtFwvgu=jQJBPBH718mD{SM}?X*Jth4^(F9H(_&TY)_qo&0eQu^c9=J!`e!QtQ443ixT1e51Er_KnY_1UYr z`~LXO9e+fDo1SgkUv5yK0GyDWi8{-a_pVPXM(!^9avRmvHN_ETXX+}5ph2)Fl>h+% z07*naRP!LVzgGg^1^9Z<^?B`mw15F2)ar;{t*!{cz7nf;&sHVhQy6_8^&lbpT%kn| z@=ZqrdR>pAoUE8djQ=0@{;XM+lTRb8kmY?+D7yz5ya!re^ypsRVrxhN)Dh-{JTK;9GK;cly% z>ZfXIszsu1sgT%R?4-;B6%tw|**2j$n@FI60(CdhM)~-yta@^Gu)5{R+yKF%4EmTu zz_IM`kmm{#M!tdNeJsXQNGE_~3?u-JB>`B#+|j$7#bK5+kyW=sEYbS2>j}h+G7;>Q z^kNY)yC@X|#&)~GH!p7R>#yG8?S977M_2gb(`R^gMVM*>Q^(vG8&gD!xY=<(0w9gv z$$*_2mH!X}&f18LTiOVGx+5NRBxV62+|UcDiOg&4TRUVF9jpJIt-&_HK`3lX-0IfcwLQ zCz!Ciyux-n;kGZRwDEOEFi_)MLBFdT7%zT~qcE@mfKFJLWJiFS8a#~tyIWjaCp`Y( z5uSY_=VO=q1>6|NHiHS6YVoy$Qo&@Q@}+(Oc=Fi;O)y1!(|Wtu?QnH{32?{Ze(%6y zg^AN(`;H8($VIQ-Wuj(2TcWBCgAQK{DN_H&DiX2@bPcH!>3Pnc>a{J+Z1W9 zg!M(hBZ>7}6i^fb4u=D7_X}#RSmvWH4do{qp|7plDQm?*k)hd#!G`tQ#wU+O%(3mT z=?|T}P6Nwp3wQ>{Ss9KUir7&zAvri6I_QitL^Os6fu*1Eojj17legvIfJ^Q(FR&vA zwN{v~A9)%K+5P4&(TjWUs1%+)YnlKn4|9dmMk;a?0_289hNgIN;A?Xbi`!D(IM}wG zT`MhXCoZuFfKo>LW45q^#oO}ckJ`d*}BYp+n0*-(oou6aY^G2rqj0i8jE`J zS!A!9jMH(95maXTxTiTk^Y^@)@7Sk7Q8eC_3_iZdT-N5Yg0F=P;ep--f1a+NQCQd! zD&_6Wx^Y52H}Z2R)UNPb5eYZ1^@R7=599j&%A#4)3axLe5Kf?k!txSAm*VS*1t>Un zupj+5F&lTK3V!RwbS3@}FN92np8qRXpM+W=Mk7Q%GbAz3CZMdZ`Z}qC%k1S^c;ldd z0?=bT08k6IVZykmdu+IEQTU!ymw-FEi?=MADx+2qSlnh!$%VMCF+rkq>H;wYV!?Zyg=o1+Oq9-4$xGvv>Wdf-2);SAjBP?p5p!RnmvFrJ{2|Cjv?X zW0sv?+KPp&07L@%c_DNvYAJ7?+l+~H7oDVDO_|Y6?DP&QO_(MZ6jDo@44Q*KlUG?( z3M~c!iA7I#SLX)Jg$C^JX93vrjJG#$aXj8*LmeBc*lahrysTI{V>xzgn(Pwwsw<;N z+LG%{#k@2emf1sFcXZ5)>>^E5!90uNS}TEzDD)OzqZ9&4K~(_No4KSixP($*vdqA< z2=Fe(16E^EF%V#*C@ycc0Q2zx7sbBTcu3yeJ8+yCPao}YIRS6(8fHw`)r$FWkEJYl z`Q{bA{OUX0zI~3(bRot8>Yi)R+?hznyc;iI2B0*{MRskvWGZCcm6UTu#yi9rS6nK^ zMXwfdeWR|qW&w#DOa+^%YATijP(^3pet*E-?d|G}mC^{auM-Qz#TMkGbsX=HXuY8w zn~)U2jb>{Q5NukM0P`rQ3Ov;j4x$K1^~e1Yx3%DQ-!at<-X1=|r*(^7W;8tyMG7Fv z(oZDimLSoT#R#G~1x@>M-kX%+%#(t7pL8gcvou;KpvUOU6qEdb0Vo?AU9S#`qgn%E zKsYQrhd-%QX*9LZ=~mag;a`H`JXU&2y8vEqS?0Vgwi75GMqoYml4>aGCP*qf z3Kf-QMe<&PT$v<@XO7UE{OvG4ofV0uPiF3jKXdaWOI=YnI5& zm9-VXI@o+xT!+Q)Lejc$y2sM7>FL&*~D5(Frq zE}F}YsGygsOimMV%l3@AzIJu1ARK(CSd*lyTdq!)@x`{xcyvACgQp+Jah+B$_gUN= zxp>e36!CSdwgc)D-6d#E7bUkqgV>0tzMTI8bPNcZU_qjvse&)oGU-!aSYtIs-Xq!7 z&Th>rL|pL5ZWLJ`$u>bnSv(vU?C+1bzdz#T>pOh=-79SBjO&YvtKAl__j_PoM&3v3=pI73^Y5dSwt~1kXqE$8G6nMVJPXu z=!>ic30gvEB)gBblAZ--kK`M|UE0}L5_=1PW(}wTJ*x}1R{J`#9cKOBdc$TTjX4|| zdM&6Ep&tmF+A-hX;_b^D91k5AWs;nkyy!-fDoZ5v%BsPVf(Tj5Vq{?0zA^bo$_{x^ zS(zQ{8^9g6ukZ2p#XaUj({-*XGeDTT?#UScY>Z`|G0#V@#rRA@Z_cmWBF@0^aKzy- z>s!fsOQ%3BEXkc*Mnai>vDkP+>Gk@C`6LSdA29 zX?ApOOTjcvn5F=WVJsjw(0TLDqIKm)G~PRhK;CsW#wCL9N=3b9s5+;_m{JFX&&xx} z#xnrRO?72t^{mUkT%!ToB*RQm)Cc7IBDoT&6mYHR-3%OJa539bPP(d z+>J$dkO`$uih&r=^JD;_l$5Tftot7{9up+AFY&3#F`yLcg^L4MmNCqUysve4-7PZkM55eH8#&)p z3Sm>54_j+Mp$#fQU1HejMNVcD&^6j@VE|1d_f2kDV+wZ;cUNRdlK{1P)6#G_E;tm+ z8zl;DQ3Z|`0x+SK1w^wbH;{;by*GebD7Xuw*?C-Al-V&P1<9nrZ~&0xm4inTBuFA) z0RzQ%hzV3WMk>#OH(L@#@Xxc1RjH&=ErH{q;pNM>c>VS*_Qx5tDY(4c;>RC9!*?%d zym>W)8{_Spw>TaT_~e5pxVqTj{&>Wj`x#V$P1#^uH`r}}-HtHrwwNHvw29>0=l$!0 z%zq_JTS8kz5hIqIZ$&&(Rp@D?PIXPGRdOVDW=xQwBEFY3QDv916hhs|xv4_3E8V#1 zCbmUGmi&dwya-*9K~edq)~dUhdZx253U|DIbHJMgczHNVAfsiE-8A92Z+Q0PF+Tt7 zV_aQbV*lb53P@eEB#4ZVy`0195)#tS=bHOmckZCO_$&q5WNIgY`|vP;Bq4Y zooY|pkKgvba8>Fj~-!D3tBIjo4Lk|I#LXHHg+YXkO4P! zYiGdnw6f~1l*VwNMazX|Jdg!kb&dg=2wi{NG0;!B3+Lsi95r76Cvoh@Y z_2!}}ip(tMZZZBYG$Lc>%8-q%4s2{z1Slfyx3`-{Wh0B4&gRyd0BMo|C%}wC!ZESa z2t&L;j`QM*e~xq=b1&;Ma>SX-D#MJJ4wCI11HqP)7wYv2=uYOiV-&K}jxFHyqC9Uw zuw)BSC#yHjvs&`5g|w@;9)VoEC{yGxXs)K{=7$G5qgY$!@eqwn06i&3>kgR*Cxhd> zm_BWD%wEQ-1Qzd#?WVX45GACcHOXT7|@XTvp0hn*Ru!Oh%gWjohEGQ{Q)5tmrWV`>ZNWZ=>Zs|C8cP82ILF*NDuIvXXJ$1!q#X}pJg zgW@5j+hs^vPk!Gp^>7X|cz`R5I?Ckq-pAqM#Pf71yi0L@fBk8%Kl03?k-89$F%M45 z#E8a~LNbd&5Bkr--=0fn<1zzqg;NDIpzb{Oo1QNrMvfH_44i^3i*QNLc&m}P1`WRi zxYC`c#9hey8%)K5beMb-P!PdC7(GQIRS?l7tTA_sf)~nWDXJ_MV{RP( z6^(4!2BakJq*PSN<}RR?3&g%z!95aF6{EWhg3U=#=Zq^s9dW>VZm`r2QQW#Jzj3yP zRY-Owu+tu+Rf2^B6K^YW>uCc}%Ity_7HFhQAazLuW&jh2?5v02sjxC6+H&wG{S!Ko z04S2Cp`rDLrHQh?*=})leJzo34;_d58Erd(X+bXy4Gooni90HFpwB2&aj~1gB(Bbt zD#}Edb_Kf~P^mlUz;1)T{Lg=mpa0@>%*QwAeFm`6xz;nQ+|Dt;)2 z6(}`5V8{NiOnX}nxPG+7N6)u-`gntH-|o>cqs>RWef1Wbw#CzDkI->15m33|a<{?L z$Jdx@0a}&B=SX4s)qOWKzXV21kQ<$vB107O7ZN@d5o?ZAVJEPjO;*6!0jdn<2Cf~q z$6NgJ*Z+vO`zQGH!z+CBY{t{;YdpE0kaw4azJ&2jlgwGI6E+)31#{Tz*|SnyK@*vg z0Y{p14jz@yf~|M!{o8X3QKJQ`ve;ENO?s|h^j5-lst#(sY_jnVg_ptVO*1MK zt=WE?$_YQ)I0hnO9Wz(32lYM-Tg0rpu1a4{DQWF_!ODjbn2LKxTi}?92!3vHB4FBR z{ya0BazSg7@`jtxisf1C%;<}(-2!+l25U({nj57ZFp|<|ZBjm*#?$B9G$dC%D0fm7 zaA8OUQy4jwp$dsB7)ayy@Kx*pysekj`V#(=bx&oAEOTptkuvGXvtwL=P}@@7X$Qg9 ziX6WYPo)mV`daTcT8Dijg<{wC{EAue3oF;=$oczv2mJg+Lm!N;quz?}!eW)ytIsXFL4xf0EDVVtp-*%WEHDx!fJ)Z?P!`SdSF5qx zin<{%W^@+!*Qrd{?kaxt*)tsH5AoI4FY)E?UZM2`$Nd{D#|}aTV?ou!WlL{39QV3o zJz+cT1Yk{sY0@3ogk3~9MNksf5ZN{#WPk-36Bqy*tK0W(A&tVw3V1rBFCEiX zBG0xy14nV`yu8@r&%gK(fAO=AFwZxb7ddZLi_msk?97Zr;AIfFH+*n)jgOx{!)E&x zj!VZ?DQFAf^2s&+;)@UP)8|_pZf?+NDxN>Sz<=NyFo3tWN4&jX@br2oN0FLDmFvA>TN^%jya5O}&JEpy3OG<3 zMmq5*SDS(?+1BKW?}iQln;5dQPFlj!;ps4pcu9AnD;RBVxVt-|a=~&~u-`9ue8HGN zm{}9Su+Ebr4Q611DKHIFv30K}#&vhBwOEr0%MASlk*_5m6XvwmbAP>~&TmM=Z3lEG zc%DR}(=yW7SxJ3$FF(Yo(H;u1u8%#_#JIdg;07Cn|=v@2zpk`R1N#>jy! z;D#ulcaliljTy)L11zs0L8D%ivoAn-MYKo8%K)HByqyf}a7B#j?%Zld)pkY^o(}%3Q<{zDf+j)Bu zBU-m;kG42<>`mbu5z?+@t4~BxS^vt#QrxJr1`-lcBN6pyzIN^@Y^1(rtk#HZZQXZiIK*3}(TLPX{yI zCo>XTVI}%xUB|c{1N#VH2=`9A8~h_R%Sc#)xal%9rI*t>=(dTHu^vUg*KXQIM?~;5 z%`my-gFYZm@1qWZl4q6|?Det9utLf3C8b%Jrv|a86Z&MW@>h7kYLkXJa%|!(OMHL* z0Iomc%%WYY;4su`7G!D4hB1x~xDRw%b6TE>Yal?HKH|GAXTn`R-xnVl*x(wm!y!ct|+pN^BuJ$U+DP%OhfL zN+s3rYN;}3_QV(pPP%oDod%7bWZF25Q!s2PhkTv@8bZD&v69No z9NCbBf=}zEmss<^R{uI&!SR0@{PIJ6l{7nk+MKxaZ>_JAA!MF5o(Ag4DOo^C03+8&E> zNxX}#ufk`*#&h8YIi&T!hBIr|H%`y2Ieg|rzOIsNvT_F5$qd$1OSVfaym@qqi}Da) zH#fBhcz0Un=${zVn%1etI6b4hEE4g0nyS10cTJg*6;9#d>}ABbobqdD8|jA@-;d>XIlBXumxQDj=OuRgqq$!eV@|CwV?95&kA{IyZkkd8IP5X#aD zNwUs~=*N0PG2(=$f~I30lMK@lEr7ctW@CWm-79u{DgWxmoY)P^>j#|1GRYn>Ky|?a zJu6z;KVN_LSvryp>CuL9ZO0r4PvUIE0RUPDAd9&)Xlyvej8$$L7f|AD8s?0XJT|&B z8q)XNjF}e{5Ljl#55uLJ$KOESyv(Ccd9JOwpkTjmvVnn|5=><3*gR95tvzR8(fjKM zaQ#tksOw7zD~rleSjLV5`QptBz}{aU+;_ogj3jAl1eKW-L>K^o5;ISX*O(hIES$S3 zhtU^hAl+-x|0e-L18x~P7g-s$LuSAElEKNEFqaJNq6Oe#m^CICm*iJU{yhpxw|6; zrby#>8YIasaV6{S>c|X~BJ|jrq*qwlCBFLIOZ@t`zsK!<76qzyJbH48%SX51(&U^b z3b;+!)D0e8Zm?`8><_OpPj0?Z9qri#nm4qKACNY4uvXXddU2gL+>J}KRE(Uk<7 z0flLjvyN@)02YActmD#w4HeWP!GzRH5zGzS%@&(Ff#*H?G9%95={iHQd@_53dP%!} z1oXmarQ^}#OI%*tmWAbJ$KfG*aaUvdxXzF z`v6m|Ksn&6uV3OnT<-Ak$5(iCy~X2;f(F9j(6QM~`0$fw_~66G_~z9SJnQ*m63Ar) z8^9>fMa)y?f20vv=SBDOO<)i6%5Z-Kf<_7+xH_2STxTf-D8RQbZ?HcsnENMq^z<5! zmj$=`3Yu)Euz^TVd9s|tdhzxiZ}tc5wi`5bH8{mM7e|9;n1X|4@0%`EI}0XlPDE)_ zrU1rh)X&cYgX^?KF7&x~qsHlVa{Gi-IF0@4H|L8sp6Q)<$a&0(TOFl|UzIs5QUJDN z2!^|K%6&87l`v50O0c%O1XAH4yC^b;b{4^QEQLo}d*QB+`D|o&lo$={o-0)EnHC3# zEG0P)Ry9b=b~|BWOUq+X#v_GOTP76R;CQ&het(bFDr&t*aT8*-7t(-gI;IAIi|t5i zgjwIYwlzMiG?VYv-#pXmab+oEAl@5fbDig%6HR%T%fLh@ghaForev=3^4>ZRqRsgV z!G!LCz&hg<7$sG$seH~7x2!Qz?~@eFPv|LvfSINcQA;V6p?xy!pldkzY~V68g4$&b~cqw2y?D)>IK?Wn&DxK_56vcJHr0`SnKy zxB*Nc)5$${;j{LUHlV5QYnB6s-c2L6%LR(`0m1;1Jtzqxx1ch^O#9v*FxbnH788*# zj?vX1z~4{>-~h{*iJdL9U*QT~?C3e5T(_B`UVFv_Ubak$i(o8XO9y(xL=#ZuTv+c% zwa6C~E?|U0ao4g^T|X$W|rGZFb%Jm8)H65pdem=9V9p7+rt6B z`sQ1F^vfMCrwyJze}oSoZE?7}!}jVCzWDji@ROf>iC=yB7H?nQVKQ|mYdbOQ5A#z} z;9@~?{N5T>B;HftX*u#*07E0i3PbJ8czt_^7jN&-7`VQ^#I{bDo)=thFF|NPTfn8D zqoQ}9lnuW9_B-6&H9ULz7`-iMZ2@!9Gt3&0AtM=Wvjc0hUQ+<9)<+YU_Xi0mr#VL& z#t~F1=j&^L_zsDcf%#gKT$|3B2V>m&^7dGn>#`H@%p5xI#-H%o=)>-pczq-~CX*Ef z&;VAgbsU6f_U>0fot_nH0frR8jX`2agUT|5Z&N zg+i#MB61h9M9S7@rVZioqYI6c+OgSA*lZ+vxJ7PXG)Np$oJc)w7IMz}&(w9;)>j*wz zeWmCxd0?*?4@XTIf5Qx|oSGW%tUXsw=-LMY@2?-=^+zj<*}Ch$!Q}c`TN5&a6e~<| zo?z>aC>InTCBeC>HhM66pso@MktGBUS3q_pgS74LQc1DM%))BjBUh%z%iR@q2u2~1 zp3A#U-m#<&{qr*9&no#ZbPmLr!Jpyn*gomF94C-^qP714NALINU-Ho~U^Jlh$Fog;|M< zuAT>gC-+GcQKyj7gA$(V%>Y2g)@pr#RwyF4Ruq6MmL_9sf@qp57!8|^Slf?>8Qcr* z>k*|+K$A0p$KFuUu-SG@8-UT#H1cF2piUENt(YcB&mv&2yU`#E8lfEnCptd{Qxx&# zc{lLWn_1_9)+BNtp~O7v+!SE;05nG6 z3hX*OAKC5A4Zi&C@A2Z*TW|v^0Sf~>cig?a!_9Ta(ppL>!{Leu*89P4MrvFGicsA0 z*_F;+-6xCEJE8M}-Q^BXKYW5`m)Ds0d(Z~hZU~Q`Uf{FOp5V#V22_u@-_NLTcer@` z7(e^bBmA336>o1k8W&6)QT8}DEYaJ@Ekajm8Y$8v8#6nv8zVKs6)`<_8l{(lQYn(3 zqhs2NV0nG_694u;Fxqm!lShA!Cz~xUN<&+q^xQ$cqn3(F1y8Q8@xkNAprxatXgpcr zO$$qO$5P~8QNGPcyH*eKjbVl9@79L^J;NBKGR9SUo<9s%;-e?!6Rq+zo>vfr*CFvn z8s<`fc(iZbT?cJrvk*Im=Xssg*P19>rAqW6Dh1m*fdRC(;BY)zD_vGHGv;|w{#7&( zlF?T8KKWX+^}@mPiAW-e_0&!yMKxGT#PgyGE`Y|69Ksr~2eNxw3WKSmE#hW2V+nl)4aa<{0N;8gGjONm~%X(V#0!JMKb~@Q9h4E39aou>>NFdgxMAAvljC2^~TbtS2 zapE1ZdiMSG!@K@yH`Mh`5HJc!Pho)o!tzYwsOfcooXHQ!$3aJUvDG(F?eF<)%;qxaEq8{K(267dWKQu zQ>5-~j5Uyd&Y+K3c8F)qr$sb@ibhgp;CMWuRL1Sy4d!LWZo5UTTX5;<%Mrv2Hk*Ru zv4EF`zATvM8B5=yZYDI6d0ysOT?i{?G*q5Yx8f$n8U|ey)Ht^`49p5-k8(=x6pb+2 zQW$#^-twQgrW2s~Ls{HIQBWW`;ePV7AK}mc;z!u-7>64W+_s9#UBT05TfDs6;4shl=DS<`yTAPg&!0TU|LR};1f>JLRMbMad-EE<`-c~} zd%K`ELQ$tV*0Y;ua7UuH^s|z;(Qp|45PUU#M=HbEtSR|StO0Kb;0kcXL_(*%1Hb<2 z4es}Z-S!&)0y}(gHKA^RQYE!X0byAd+}+Pu7I6if=f&%5-FRhj*Lh~vo@*zP*T4ui z0&Jh>%6Xv1!5hJjf+^22`;KDtc|rnrE9A5;J9dQD>&Hu6(U|^|Lf0GcH#s#J1G9W( z@n{&8YGXQD8pHWn*GSULKuZa|r_I*;5=S3^QY*N3%(LZolwC-d51`mp;n=ORa?VBv z;+Q|{OV2QyBVk%E+aAcc*uS7ZH`& z??Z#fAiRxu=uSBJ4N8-*J(CYQ2Sy{wgJGOcoA10s7)q@xM{FD{>K|wk|I~|5J~<>w zPq`NpiTiowqRJG<2^x?hC)weY2+0IcHRP4*>PmCg^3m5xSIW>jZy($HInF>TJ8QONnx(URBjFNVtg<#kNg`O#DGQNq-e+lDdYd7U$!R5ll93_WHPVKUL*ns4 zDq%h!`nURfVs!Fx$YUQoByf3Z3mC1X{&*h~(^5R~Pp8B8*Z)7SKU!HFH=yE6CX>w7 zoq?|2Ik7TmE~k`8FNBJzWJ+lE=&;emdKio0x+WtLzganSCxg8_20Ej;!eUH`VkavF zc#$;`j4QJ@XP^!mcvu&1MN7gX3{`CW&l?)zdDNXVeM$Wt#?8yJ-$L-OS!6DY z(L%_Op1UQ|vxRcc+p3eB+n&dQm4XB6t=Oubzv=2qRSHQumEKXRx=k%J+FYEaY%edixZGXf?)3{W*BCTbqVh28 z1$B~CDZl^yD}4R?*SO#BHN^=5h4A#FYg}FxFfVDL&_Jtf{Dn_ph`o{j+BXA;*}@E) zbrtvx3~n7b&gd)(J6Q8CUT#sRhWpzCu67fqN|=byE93FyBvBoU%n!HGh0Kgg`QkiI zF-@*8dd!$uPGcW!&UBuc$>)*K!JSb^(!+pd=Zv_a)Cv^FzU}em_BE(|iZX4$1?Uap z-c)5>FWfNqhQ5Mtd`pK4$jiuevQC5>a6G7p(TCBo8Lk+% z8yG-8fm&ZfwjM^RF;_l|UTX$U8+e;{bDy{Q8WWMr=WcbTiCgc;gpR}hJ=e+hTUz^u zTk?6;Johm=iQhkXanu2e`piSUq8v#;vd)aTHCXC2BJmd6ZYFG|2>@##AyV>UWCbzS zjnS-)q0XW+K)d5zN^_rhAcDsmE#$$Cl^1I`iM>;PtL#3HNsLljvuS|MsAO%*9x9=D z3Eu_s{Ila0cQGCKz&LM4#4sK@5f*Pp2=o2r!U0MvIHkW+WVC z03{-U%8G@ZV|1ks3xJxMa4Q!l1!9fUT z#(&xt06-tzl81)d5HWnLGqAFAk5)cYoE;g)Dhc$gyq;@P7*C`jvmE=J|kWyTxWxvD-*Gkfk$fk@nAxF)zS&TQL=&mZJuBAU%>u5cgUsp9)Yk zA$?(}0VP|(F@TPYc>`pGdsiuvO9&R=-jZ|Ry=#M!N(u$@agjlJbHYAo5KO~zM*l^pdrBh+;BI~VkDpLfY>15SrufDg-f&$E<;b27&XqI4xvD#yIjA6!Z0!*p~*( zi#Dv?Q4J2umMZk7=$jj%kAFI!7eH+G>28NvP+c=Gbhw)j4xU#19#t)gU)Rl&eesW-t z1UOdh7+gPAOgSoL7jU_;5;UYJNNXNAqHAE6i;E4GSzJr!;|$Q^IV`7IvE7K%aRN^ReOazj}lxPcKm_aCe+R6XE&OYkcEp*V0OuV&jGM#x~M++nKOfS5(F2vuN~gnOAt4Ai!Mz zBLcORot7$Whs=UCg;z=1vGk^8fT{&Kzlt%<7{*^q#KC!zhB61z^*ga!#3!;L6pQuY zjC@7qYsG<_K4PaVD}~+?o#4D)?CL|uR(Nb}lu!U7vM=PHkzFa)7FI)$1hT1`liKos z9*#2(#|5PTRVQ^wYvQ?{V+Yvk8OLul^@xH5-KnFrh7)mHdskz%9`{jsjsY0PnK86) zc+W>$y)Qs;SMqb?OMvB?WduIPdI}g&M_zwD+B$H4#V-jNo#kad2)g0-fN^A?(8RA! z+BeeOU^IV!{U>w%M@yYylm8%ix6g88e0j);MfpLv`(e&kr)28N5Si;!oJq^eQ$&D( z4l0`G%Y;D!eo)`~i~@<|v|1Thhb}x*c7o-OLf7uB`g^iSGFVH(-$0rP6x$Ij#S}rg zZ%TrU1B`p%bZAt7uGgm zsLPT*n_v_MLp}!Hk8@+{?K~B37IAG{sY;bYu?_cdB;;KHay*q12K4W&-F zx!>c}>(}_*H?Qz-{_z!VUf<&%fAw!pOEt8EMLRI2QVrgKPveA(+m9i_k=Q6R0fWR zJzlKs21!=>TfiIK`0Y}=Z4?>>N|Y%@*Xc<+~R-tU;h<8e10K09vR|Z z+h@Fd{T6R;7Vx}yx+3lky)-b(SQ0TvL1qRt!AtbJ^1z|TfPqu!g( zTjwq*cU+#R2Zo&~FU8k%(K)yDL?SC9{mjX1@ydh6c(^Y%oBM=QOc{9xqs;SVvUAwY zVi~`_D$Dv2icK`#?#mG69Yj8P9%K?v<&d_iu^B^0I$Rq$Pdmi%9E;;AG>US891Y-< zn^TsmwDCAEIL-@}x#5WJWf+zzB%UJ0*FfN*HJ%ErBx7m$F^vc39cfC+*yuHFh8#LO zdwH$enbNbKPUqgyU3xa<&(Bd(c*uBU)CT9bCv~5eou?)%yry(#Bigw+R0;zj*4tV7 zUGvcd40-jSEA)oTlJaQ=0Y;v;6+V7{{UEOYczG5xRyTsol$#fHvgiO%qaOvh1f1eB z&|G+XoI;Q+A7i?_sxe_Qe1VR;hbMrA8irjquRcAO zej&<$3*g`iGEXhJ>U9&Un!hiX?+wqve2l3Jvun=0GN=iGb$)l1N?i(Pj0HA% z>)-PZxbX7q;%4VQpiwflJc_Y0x^-pF4HbmLalxybJ1~I9kFKyVq4h-~AJT+n0cawz=r07K zhDqIEMM3P^Zvtu5TNmEkldyH3mIGBiw6(MKCitnm8edt`8(FzvbUpyAN{*`ll@~naE)+gNG zGp?R&@n8QpKfy15^Aaz_Td$-F9`eN5y!(GA6#GI!{?81 zw=7_;V$5LKjQ~}kGl;u`TRW4!&I6lfF|Bj^hY+)sp7XV7A^mO4bO+u+D>;7&nIw7s z3|s;n=}cggzz&pRLL}7Mz)33(;|2;g*l7T%WAObSeB*{RVBK&L^Um-LZVbIP1Y() zG~KSCc4?+8hj+zPE2wl&yJCS>m^+qvL9GSb%?4Ac5)_N!iRpWqCqAK;G_AuAoOzeE9ROrImt7oq}d3sl!7c{e7>x9&ZX;IIo>HgS3dugX=%hz z-cM_mWszh#huC`awPgJ^kA!7zSe6Bgrt{fuHrQS4P$!L?+wJ`@vRYf$J9$#&NNXHT z9CpB&+rT>#0vnMD+g~$^$C?vT&aSQu&*REx3S2>}{9e~SdjB3!p4Kj|_D)9}pXy|D zV=ADn-L#3a!XI8floLe&Jv=WX!}@WsgH zYlB^6m>+euzsxPHgNu+gBzNcaCPjx#VQ&*Z`3}^&BrchcN zSt|=BmdcCiljpT9vb(u7ES?$NZR!l^7bN zOiv3i^1a+U|LfyRAvj%7Y8^>NKfvHPH$695{@9$bjhi)$ksq})qYOrGi;hD0Zl zWfV9|O@@%?52i5)=4d~7%#W*qL>qZt}~bQC;&^b{8r=!ZR) zrTMu>MhCZs-WM#LaKFFD*Dv4T?|$}{V_iM=mM|4 zdWm^yn5L}@Tcg);I!BKQzni{u?)RV!KwW+^4av6x;CPr(Q1ImPDIQ;3;3eH+X=32I zyKDIN|Z~(A8vga4w#K_1b|U@xP}J!HUM5q^?P!j zb=G%^&#C20q#k^*mI=&^rFFF4u`FGJ^00aaloAFG29|k2sReBTYSmq9^Qd9#qbXnG zJp1?yuukUuIV0Y%JG$?DF|JvAw zQF&NBt2G()zgkI&E;4U9KjSo~(+r&m!#Ly};(@=V zvLD(-b~%r+ndf;9pOnA;-TVBGQr=%bjO%+Vi+x4>rXVTKOAJh&a*%(HZd_Rj@>?@1 zU*>#DSb6(D+yTgR2rY=C5vd4Q5z-EuM1|~_=Q$Xd0(oaTu6fvEVlRwHlW62J5iWSr z;?=^S^e1lzoEfkapm1hPUC0|>rFhmrp}m;Bj0E3}fNHP^59U-YSb@FKK#VEE)dEHz z-N%kQCs$s$P&U`&LD^O&IOH|d-wceIu0=#3E+Nz$(!|hGRs;c143dKzX?haMe%6fQ zoTdYvG$dZZTG)?NYju(K-Au*-SjKS<8WK93wiB)&UEqE{W4^ryb3<Fh+2^GufSlR>Cd zlc18_g2Um6!=YBeu@MAgS$+SRN;M$cb3r8S0Q@Cnn-ogIFDDEPcTH+ZxPK6q{6Yg&s zZeHA@&lVORKvO{4Djr>2;j@pQ;`2`)D#E#M7 z=h(GYW=1D(_5fl`xR}zGm`WOm;ZOQ}+K+s>OB=(>A3P5-=t-b#T^paYH#a?~>7)t5 zNa2O&_kHQ95|5zuX!}WzLKfS2Js@Wugn6kQ#;Y?hd>ERDUJK{p~>JsA3GUHdp0?=~Kn zk<6K~ALRJ@GQR0RR=bz#9fU(JeW=J6-q~u3_KjDw#Kuo;3Q{pKe+5u)x?!r)z??UF zo@+}Cs`1(|W~{o!rzOO*=lRO``Jq97fBlfI@4vJ7uHViGAmKFx%PnZz`2ORW%M_Qb-~o4kQQ8~8yDe}PDkgUg{D`||Nr{8S74LYQ0gx+;A=tt{)WN==v0E`{ zTVyGaPptN2ozmMGyx6AdFeV9vtp&8*^Qs|=R94tbK$R$LC_kQ6rtXi#;$H*n%>KM* z_DnyW+iaZ@CQK)84N&1nJ|3C*P#UX|cM_nX{5cqW8jlbNNpMokMO?IEq~V$-{nEB1 zi?aM2Y(9h5gfY^meBeF`No2g5e*rlF<2WBtCw1S{2%3EnwZC=7vMfMv*iHqTsiL>V zL*UDvRv zG+QHKnUA=AdxP88cK}EJHN-3g*j`;cJY^F+_IY?%|K|A)m?TO+^916K9UXD8E2wo6 zFk2d!8}|1{{LTOTC4T>cPvmdMvY2d=L$aMDPhu&AS_>vF;7RFsD=w<7Gv>Bnp1ZR9;$zV? zI8TQ}RSi=vpR^MY_geGJ2?NR?fdT)j)o&k9S8FvgGV0Mc+S?%d0zAW`qN*3)S1PRq0z893>b#XNiYXv zq?s-}3^+oN+V|djET4n}e8EFRrT?ykYeejdDJ6KW^%sbXV&mp#BN&qN?dtkUgT17~ z@Bl2>f;Gf_u#p>}ZPUj*U!wt!l}2mdLwSKR6MrG4**!BDCzmqiB%@Nz>AfVbDBq3t zrOg8GLq5xO_M&udkOC~3TTU+5nRto>tD`lhwQ!=b{~qYQGE`Gf^7F$8aSWsP$;JMO z)PTE6Bb0QrYOi-zL?DS$kat@g9%P1l(s&KD1PdEp(KMf#CCP3Kyn6i>zy#Ea?QV-h zTRc&HA;NCE!NqQasTM3%a$I$goKBr#uW3m6rRCzR5_ zZ5A$53YOy$zy10<{EvVA8~o!}-{NpMpb*fAP)oyz0%;dDPWbq4CtfKyo7SeMx7zO1W7Xmeqn+YMovyG9RWo0e0GvZZ5lvO1{5 zNTL2&*65~6{@KnAy(8SroqV-24>}d=Db|wSEWk7s?4}79R~LBlD?z#CHpHD}aPC+^c51}Me#**^cbPOytiW$MA z_s5tno8(}m2jUrp+PO2Q@Hn0Q(dY8HZ-44UQH(am?!^jN;`DNI8{~d2FSRYp3gw-> zv!vl*p!WsLjA@!sYK>(+dnmsF>3Vs+Vds-=dIDTG=lFQe&>Wp53wNny1V z%@-<$iEcS0o$o_2fS$%93^LHpiU|i-BdCp&yG`nQrtnCMRwFwS(22ZEkDQkw<7^mD zwz3?naExhsJOan&z=JL<(^}_#YIsd@HaxxzgxGPFQ2vaHdJL4~so+;o_inkvhR6Dt z2*POoloI2<^*xWUk456yZq)R5Rc4kfX6};LF;2P@kDQT*i8Ub8Mq0J2Ha$?m`|D4BeSbI9 zl;a6FNA&t!3R#_v?m<)46@jjdA&7{(MqN2p`SBf_4 zyt*B4MGqE~!N9YPv8&R)1HKjz@ui1^Q(;4%hG3MxS{CdKUjPSZ)C1j^Q9^#zQ?pV0uo41UA_-4j8-!=4w(RD2^9RO84dvu8po@{XY_EuA5 zn0i>k2H^^B%#VSAcPfWzmi^yMW3Y2ZCj7g&#}c6(J1RGT7jcz?&~N7kKF+wlzQofH zpQCOcVcJ~d@h6N&PoH303Yvza|3m9BlUKrg9zEHP1WvjWU1}KV%XDF%e?o#;O6cI-@SN=&z@i7$@L|U%YwIWZg78hz@w{6)LPK{jIKrqGd6&$ z*O3(}Gu)g5AEydEpYrFlPP5TxD3gJdP~Z&8#K@~wSG1SM_J9Wda^lvSWX#am;dA0g zsqJBK9m{qX?}W$YWMn#cmuz+CXM<&2^za7&-T z%o6oContFh!BibL3vll0Rbe}gjAQTMz5t!wy_Hn!D1|@;*k~ujJ(V@U&g?;`j3)dT zDnYy?w7)daO2{eUf;tbTD|mT$5OJUGQX>jfv0*#cI@s@A_rv+Rv=%%C(m>xQGnQy9 zV~3!bZ1@O1AAODDwGWmX6Uy6@1Zk|nT^fVb_ua>huMevAp73e=g~CCsGAaio+3#n_xdb!js0{g7xH}J!_({ zxt3-Mod#VR?}A3p^%+aWa3Vu;+3r7a9+%w5SS!v?yiFsc%S6xw2E`aAomZ|3=mrZ64eGmBQCMyP#T^WA3py zQ5Lg;vyMDLFk~9*g(46JW*S3!j##zJ>IP!z92!k1)hY1~yB(^>` ztMOYiM1t*AYAM=cyzVHyH277gcb$GEf@f<0`h-FgCbPPe0G~ny^`hdd7jN+QfBz-^ z>aRWrO$D#Md4o5v7aSKtFB*{IpCDqbC#Dz{ggbiE7S>v@-A>p{gk_%9EtTDPVoR!b zar-m=m+=s@DeAF1)RqOU6PDv1zy5N;qumzI9$n$XXCL6(7jHmQ!}X&LHk%Fh_jh34 z1h8=|mJJl9l#Gh9N3311>l1L6=Y?DbMx*S0>`M4`b<`pW)3J0xjA=6*xXL)|oqbB2_F6EpaOCQX1 zBC_xF%;MTeBlJ+vAs$+`=4{7Sls1tA1>%BQYn9x>im&2qq|Kp@iKm&!+(C>3MhOGP zIO)6GG$qqIe!fpMyn7Ch0dZ1w%%f<{PJyzlJHzgz@-a>@xd(sA%iPkc3_G|(2bDkD zkeM=?+LHU76-#?P4YyXBzgyo1P&r7;*y!Qlqi1;!ul~Njen{6J?S?uCFjX3jjgnJ( z5_BV%(|;qyLkQT+`1qtA()V)N?@|~ubI;$Ue8gg7pzCf+t?`T)saR_rEp=yw`oOG1 zaJe8jhwmt@A?x!Bl(;LZf-rl;_!u#3;QH}g&sm^hyoHU4YWqvHGj(rhUv9d)wpcl5 z7(qP4C->sUX%o$2pPzMxep-oJen*C$b{Gc&l zalEIXacz9DpE_1_rfyUk$+MIN$N7NHjLmk!G;M&x5ru%wRI%GsY$mb3hD|4(l~gM; zfzcKTG2g2svS%is7m2Xi#GRA4cv+pT-R26D=bkVOHAG2mtzl^$$64G@k8|_0x#s3* zF;gF1Z1IaPKElLD-0ttt&@quHngt}g0DZ>o?Ja)$`OEGYQyoA2=Y^&OT)5?H&@<4haZ^j$z`%I{V``F9H> z0+u;h#gW#&#+oqt$>oWW4W2`j8RGJXhS#?TeDmFFynOizPoG`joA2&$cYBoIEe%F6 zC75DpUJryA%hVtrcaGTr!|L_X;y#YHdo!Hj znHdmzxmgjzs@!ys(`y62bu6j73@fFBDGX8TEAJ%5y+rf8S}E%JbVTuh(~O5h_pb4NK2!Ht#aqM9H~qQ@D(0iF>KZdzyU_LXq1MVgWNWLpjVtFehaY8Zz?uVcqz(Ii zHoCvgiJ$gxex`z(#xkVQ!Q5Oivk@@~&F02zf=VZn@_TtK<;S(cFm#hl$j388C8Dxf zm$YBT|DzAu58v^4Xbq)ZJE|%WI=IRFwcgQrL8(Hoy*2C)GpJQn$i%u%YQ=5yEcqCH z9YPp>7n;^gR_MK9O2WgM&{P2Q-qDKyaUVHTsJN$t{z3n;E1-RX%)>m-nCC?dFgho; z#KTTeadml#Po7@j{(g`BJWG;y?vj3`RLqA3%RFO$Y&b5O_Y{lvNeg8HYQ={iKEmgp zTw_~0mfqBztw2q-D{3EU?i^V1xn2RbQ2+-&IJLABPzqY>U^M*YUwn+8{_R)z=FKf` z?v6^DGUivCf~QwIP`$u`7JU2SC2nuu0==P9!D9aS53^()W&^{VmjbfEgP1jkUBkSz z*g^C$Npw6gXjy3PEzlX22!3pg80ZoScUcI>)^KbKUf(UaKW>0!!m^)n*dG8Y@SP1` z@5+;PEsz=%R!k~^G+V!Utz}RY{8^Kwp2slWwKV{ezdb*fo;RZARiUFy8(#3-j4KWMHKTQlm5zm`a=j(^5Q$3WVNVwktm?g-~kocKWzN`{V;W z%8+*%oI(hXYm8S@yPk`o2;);ZsilqessN+MEI+#|2<-DPj0~&sX9cB$x?_!>M``uq$t>aa{ ztZYIuW~4H`+|@hz^ZDIaTl+nY(K&v);?eJ~AJp~7xuG)LWzGmV7*{ZG;*|p7;2wYy zIvZ!kC`SXRjF!0v+vOlZ{>@=$>^-M{HfEFCM(Vl62QsKE<(zt zhMpjy;mVfEIE$K}x6Y5FWbca5$sjeJw&%v3!^AYbFb>3<`}PjSEth46j}S)jqqiXo z)l^C*TX&Hg#uSd`*txYSZsgC_s)CUj+?$7d@4f5UvWm7ev}Fdj1>5a}X|uu7j^d8R za@MsFL5~0Fz1*Daf*aV#75d@ql0B+`%7mB5Dv7`<7GMdgGan_Wgq(#dV&w;+bbzRe z31(AqarFpSS3C561fxK*s%ahQD7B#03mo3e`2BZpF&|l@fOLb{9Xfu425_7J6HQAb>l8XoC+v+~H?G`v8Cc^$WcH^%0c| z`qFW@KjOO=_xSRgBVN61p!O2K`G?=&_1iaS)MP|bzPq!RlRRlOmlfEAfnwWLl)B+?%-UDY2X4%s|XBFOuq`R_v~x;Q1$?1JgD3eZjM*JCsteEFFZJ zfK8GS29mPdmN!c3Gq7!j`T(@6c|HpWS1+acbr}#SQwPvoHg%vqGQ~J6P6I3LDg*S? zp`nV0=61MGs}3dLHyF-_K|p}bT&A-2HCTk-3mGFXjlg%^%0aO=xfq2dJ`zSuiy;8O zqce96@?}wzYpvLAw%F8)#*qZd)>rRc0%N&i0!iaT6!)mWasV>3%j*~ool9no${Pmo zHF$O!A-EgRAmXggPLuGld6xnHWJJAUod*rX7h@XA1%pl+k@@q<<#V3jTj3SQKI>yG z(EG7A;Qfnxg$Prf+!eTY$@$yVDA0O`#WCWh3T>C1n-(~(R*GHdYRbC#LG<%OZpH%U zF@nrWJ0IRvx|CPgA9&ZA9Clvw5BWJxRF>u^mdUtAeXi|=B$rtR1`Xy?oiH}W`5v*$ zDGl4-;NR>ejE0P04r{))HXfM5e*WEcJ06r|@2@}M_5F7iO)xVgrao4{n-UQK8t?!i zRFcFFg6;zVWyrzjY-#ZtR6tuGh3q_{WId=tA=HGZh@S~zrHROqMur_{%jdYNBMh4f z45to-qR$Bsk@we9PZ*oG`5AUD()e%^nxPOTL6(@N0c3NiA-3}!08sVpQIklMyDbXM zSa`wJ^@QVb!qOLPwuH;833PizV}fFKNmdPD(Y|b$Q996Ob>rj>Xxa!hF{2TqSD>pk z*IYrxs&0xOur!vOV=A;87)zIcIP-DAVSmK_Fw1k@l(i6Kg$NB2op@OexL=Mabp~~y zYXA#|1VPzM6*qTBeEH%vZtm{T`Yi59!WiUq7!}kCY^wm0ySV{Wr9KUSV7p;M4H&=s`W60% zfAe?vXMgz|PwHFz?O*>2FJ9e=;ta-OJd{t!8-~OEYeXc;j|>2XI|EgW65O4GJ3SUE z7>q?^XIVogG~J~sB(7u?mST8nyWc4NLOOA|KG`Qi>gG9>e1G-32< zcu=2bgIOak9HuDaT|mdd+I^}F4m+T1*n2E=U<;*qrE9N?_ty{m`u@tIf`6hACccZM zRuEAT>iPGH((`r?$kq&FxSH=ac)BxYM8}G00D|a)D;PE2MdmI^V+6i3{EfhHc7SOFyfZd zcOVsO=715>Sf0NhpR@2e_xt*DZbFQU_H||D^78Gsd_M`QlAewFqT{Ay56pJep66)Npw@VQB|oK4M!7u6LKX zn2um>06OXa^Tr~0^yQ_`}dLi(c7t~TfopC%IvCNEVJAp_NxdSXajCG4$DYz&H zJiP#Z`r~J~x%&>s{Xtz!fw?yT6<602oyHGcc6uko_p;O5l~ znl&;kk@^z6du3}wkeWD>Cqa!_!3Xn>Yf;|p{c>`aaqF#l6v^Np(rMonni#!R>?*LE z2*eE)2i(8C1#!irt4r*5J1mR1*McJYE@1T+2QPtP*xL!q&xj0~SAX+-LHaFhIKW|^ z-mKIJD-52TfAi{*Ch(o+^^-&kx>PgGp;^ zlH&mMOknzsP)Oe0kKqmEsEJOKMB*+#0o+;gD7J<^cX3@T1*9GY%#zPl1SrFH;2L+? zwe+d(stgv1%AEVzH7YeXkSQ8wpeAS_C)sskg9wS`JFZD{k7C9bfWX_-b<3dth;&ISBX7D;9f<3*cr%X`B@kBb_*BRLWHSQ)Ts(1D|Ql+6+{`{90<_+ z?DK)d*A1uIcp1J>{$PqTY}_zjevaFWQp(hN)8JDO>>Q{;$YI0Fo3J@ruQ ziFgP7i^{qRzuaxoL5;kZG0VUOY4shtNHX_!u8!4n?_d^b#Gr&r!-%%9IaGgz~b<|5C+83vf}Yy9rJx90<#m|$Rif<~f?vMDJP`p;UaOrrB# z^Bf$m?{(WP<8*F>8BC1LW(Di!j~5jc#GUbp$29~)g5XS#&)woDTLNoA`vc(rFG0pM{Bl&($JQsK_JY4 z(PKTrmk~M>imsW%;ehX6+~CP%DQh|`isZ5|ZuSTK>g%`o)$i``_IAO%$ZlzY>||f< zcKGPSXZXd>Kg7>|@*EYweC$A%-GojSVXydDM*?(U@D@0ong=dj`(?Dm%gv-bny{w^ zs*LT$gb$ux;?dO(C^Fwg&sFU%Hu(6{$N1>8$2i_~JbC^YyUQ*3%^lpJ-xHCfJn4kH!x1lD-(cUxReDq9 zJg$scak?~j^=^tFhYa!EM8Y^f4=8>Q&Ke^CR+djXhKa>S|4#}IFbC&@l-e?0X4LRD zx(CzHJfYfvo`obVt8MHcvITWgI$&; znn!AmwJ&{;dh^=J?&Em_W0+57?JtSkD3n5?CLWN=1R=a;xui8>M~QSU2D}KZAAm*; zhCUxhCIbUKqzC?Co_L0*dYSBVYHQ&@&uji-zn!b>{q;k-zPGa2G=ddr?woP) z$i$oFMM<@>5!2kqzRw z7drtS8PGUBjpbO_Z-19Vn6C%LSgJ6n^|*2yqtFpeuGn;^iuEJ;4rYn;TV?`GYWOt7pjr<+`d{g!)q_MsKnTLB;k zIxuHeI@{&|Q_-gNj@J6(Za`d~wWP+f^ViS;)XG3%yuEF>U5>ckPPo3f1hx&E?Tjb) zJACxy5^W~j+;<$7211jh^{l&!DwuWAf~bN@1(lB835_He3kX0Hf!nEpxuA0u_ns~a z>sXeKWsw|@vg-th5)gh_LW?F>NOm?+z$7`(Uc7vbPai!(-82vpS}&OA1Mcr; z{Q9fc_#gknxA@y%zrfwi4VI+=1avf1F1XlE_{nEa@L&DQKgZ`ETw`tx#FBRsU~p+p z&ykZ10>n&6{{aDZ3L41QKZCpsItQky`Fg&-zQ6|`T;uwB5`LlzkeuToOxq0}Ur)I0 zgx#YFw5>3T8+M~t&E=8E{d4fuk-A9@O0CH*vC-Y&Ey3&Zq|Zd+K4w@#9%TWZ1Z;^> zHwF8p;C^A;A7|Vhj(D>_V#@{hhXW4B9iZ-HUBRkFe&)_YU=!DJSAc9aLpZm-&hnmB zi0XAWAGE;Rv&I+t3i>FhMY<;}Ja#n9lV;#k=Cwlx$fb|{9sJ_tauys$z|&Wq>*JyE zde?Ol+53zl9iBd?3T!-M0~qZ#uJLF(5=hopWK+GU8;f5Il;;u+>#C%}VL=dcQw0dq6 zTtq3P?hLhZxW3!ihvG^}7TbW2b6~8xtMSHd#D>8*(TE#xMnzy?J)C=;mDj*)R=1>1 zu|3Gxt@W{8(Wf0TAr0E*NuVyWw$M#pa5rB_%Up zLeEEl%4(ce^sv5s*Pj!8*f`oh{+h^W8`UT;uvhz&g^eC5SufSn-#k14&fT!Dt#mkS5K=*cv)P+(N4e z%)$~tXERNrY&OVw5G`+6I=Y@moacta{s=~M0VVZzOM@u=SKQT$rGjWc0d~6$$_ALZ z0ZS8?%g#6)4%p8NUftf}=I$1)9nsn%ph=_Q9UJ5A{(x66?{V|;i2cP5yKTob5ejz+ zfe!*mT(j+*FZ);rF+7Nyhc##)WlVG6hkRB!+dvA*iJ3lk5GFat**Z!m5EB~98K~E9 z?(uhj^A-O3<44%-?(pqzzs3G;22i9gu6#Z$ZckkB*N2X`cLyv>L#g6^W#?Pm&{V{b zkQV8gew?4M(TGUn3;J8|wFClFS?1R0?t4il84qEd=ma5GJaN^&L191717pYL6p;U+ z-9xK1gU@#ty%$KDp@#@q_#muNvMJ*F( zGYQT1E@^+}1xpk6bE*Zk%I|Gy>h{M&zg;;e+l_>dq3|{{B(06)9FrJ0#QHQ01Y@L$ zpegp8jvDZ#H*go1Y!GAVGnhIy+X>t47L}^-%ZyV1z|L2ij7dBH&b3PMHI(U{Sv*1v zr&gQ-orCPFIiwg1ocX)HVplDv!+`KNS4zX>mtcW?l)o^8`r>OO zs^Ni;o!0pSTZzrO27LLOT%c(0aw~-GXIiv{taWns9k> z#FMKlyuF*Stur>0=ts+uG|ymzoguNaZ&F3LltaOef9=w~)cr~dx6X6kMZ%Z ze~Fr;K7PKFOe9><)DYzkWy7LjZ{R2+Pl)l% zG7e#G0L$oau(vUMow}wUD4A6)?9{HTyWzDv9>G&uir*fF?ky zlqXV@KPGZkpviEe9|G{g^Jzewv}e2|z>&K&p5b%ra*eK{ytEq`l_r`Td_RO&=Q}I< z9Y}3J4FozM3T?)a&lvh${+#$$;x#Tuw2%WXA|+4_m{^gi>@pxzj5Im&pI z5^k!Sjq~!>Iu3`U&^06#Ln#r+sCQM~YYJSh?)vLAlR}0pjc2%?ME}!xcR&Nmx zW(L8dy(S@)*1H>(jE|dO%xg{WnOw9!coVZ0Hy9Ptx+aP6EuJ|Y%uNh*wzjQDM4tYu z_?)iB&-;p#YurK1>pHJDIBv1E#pC1S9Q=XnoYBhb89w||OMHL*DX;IXEcRY}2QdUT z+%iT*5;6-Z78Qoc)eXkb#8J|Kse$2exl`ez7MN0s`r~KCY*cupQT;>-v^DP!ChN~y zXW_KC&*^$ro|SWcXVM??H%wp~_%=6-lbuRuN@o_5X^|^1V--O)%Ivp z)e6tV*la6Mb^sr(V11RkY%i5lyK*6(L)JQx0c-l3W`2-;X^?WME3SC9`6oa4_#~De3ZuO+ zQfnAi;EG4Amy!$dcFNbH3aBb(i8uD8VZj0{Q2AVj9K>Sin!&8HuM|vE#b&e7NUP12 z8$#q@1W3F+iBQUfT7*Zp)`osSk&mTF8WiO8ncdCP&ZvdbR;ujeZ?<|8n3PmWN|73CWL~?^fAG8Y8Za{k zCqfCnnUo)--!S5WXzsY1#=|%Z8jz2XBhxoCjJfo6|MPApM;~}J&KOUMmT2SLn4W%H z2?oQYjFRIMge0f_RbDsyp zfPFfh%i*KX_X9lg{q=*nzJD}ScQw_;$PzlKYg8^`WAX$-cQ*)g&k{EgWAZ?qCg&Em zevN5Hog^WS4U)7~Dgu2C(NJcV!~m;njMtvV&QEoavgQut)D5Kl>dqXMDbVR5Z`-XiSHBpZ zbLTHf-Q(yilj6k0oGJ4uE!8q#SHP?wU-teab%CrkBEquFxIZ4S5KwjnyO|^yP2b@1>M_3fyyA<` zfbU-2;IIGjTfF-67Gfj*8ZPT4Cf?$>EE0T&3AF%A2j1LDT8+Cl z8XC}N9Pb<>;9(ppEcfL>~|is z6VR9Mv6*$Ek85Qy^T7vQIEV5KSS5ZQoZkD=-&q!&PJBkrXZxkHc-^Emp#MXCSUu;8 zBI2)fO;2)DT2^O^P6o>}im%t_iXq$x9R`uq7lx<30W+E;^^qYf;>o~@O?q$W$2KTb zRI1NSnN*gktA1+@^E~^Un~QR!-U%5HbQ0La0QRs`2WaXamFK45kr={25)E`)jm9dt zSF~l){ITTGQ`c^ytja7AN$zN^Gb@zi&YtGswKJR)bZG@=vh_XeGby8dy4O>=l6f*t zBb|8pd_vY~AoF;7;X3%_T}p*;A^&Gto+ml2RCavj&U?a$y1F8 zQU(?Y492W;qgcBXJCB>9RHS!@HNX0NVia<0Cj2>?JMyo!j0Ur()5*$k#%|eYl3~=y zPqLdi;-T~4?)~)xxc-QpMG5B*cUK~G7HfUc!{hTJp{WgU$i;vrzy+~0qvBS)gnV4# zfJd(~ESJvX&#;5-u) zgmex?&HxE}vh%3|d+HW?-saDV?ySrQ>4O7gnX+>h;CSCeQJ^gODA5O?Vctvtv84hP zKCK3XqK1ghszNG|zrcbGCZI8v87P?W^zk*GKfSA1h&V^axzzQv0dFY(paH{hc%vPzPp@p3oe>C+25d0YWnu&`)>jfGdC zF(d+N7sH1t-+?{!1KYV5oHX_!S_TZ{=o&q{SPaAH59+SAzh7{Bv&X!j;rrtx%Hlj% zaA)jl#Z(ATcgzG8Mlg<%Zco~gm9R892D*uCht2xruqZvQ=Ny4JZ=MGMPz9@_`8m-F za6>H}yIRm&$G`cTU*XB4OZ=<9`W(}=!Qr@|M(}Ls-OQ2UGV`+axiRuNdN)T8#l*g4 zz!?0;exWl1NWcj(talL3T?0v-Q*2ERa&F^8z0eX@);0sLz&qsBndY6i()|;z(G$dL z9{~BOk~k_Br*+Z#1%IY<7apj2K!x^=i-kNTw%p0^olRCuDnMM))O1rAy97ZIuPHrd zq0f@;mJ8oh;Lh@Fq(A8@j&q=r@B{&+&$(~9cw?tAfpgw7DU`~8Ato>3>l#l;rWrpn4w_tVw^UKSLBy04AWzm$SXz_i%_OrR>v z7c9!91yeAkKmbfq7LfpqK39}FyT21k71De8dN-V~vXvn@vobVx{%zY)T zBS=qd=yPJ^`u9wG#bqU2Xaw}0X^Z|F%i6|FgP)AzrRPV z9oJV|ynJTlIwuPblly+j##z6v2m0B=OB`o%8kf9>)Ev_k=#Bkl&0B-DKJbnrXNIn7!ME-!cZ==l{;I+nR%cQN776C#=B^+{0h9s9QY8&YZ=fb% zSL8y$<#q!20Oma`5E42AHMv@ALp38p?%nD5EAw!p+n^+k;Kkg!hB9>Gl;p8uUtW;U z?GS>Wz0Fcc!8w;$V9h((=`Uu2Jy^#m0oG8e+wJJ&nRZ(H{(rly-j%VDS5Fw9JX5^! zw-}qm5C^{KtpspdP?o!_N|i@P&%jodxxfaI1e^+aI-1rydh2pd5MpTBY_H0(C5?-<0ab8bv{btGXtPDkHi9Mz&u0NJ~Kd! zQiU&9J^wb$k?lg2f~nLKxylSIt$V%UpJQHMM*W7Xx}Nn`CYHgy7Hqq{R+;6W^yt6d zI~xOS>q^4GKat0=# zr1&B*AZZGl0b;kflUf^<;h6H4%XTp1%u_!WTh)=_DO`BS57e(0rhV};eI;s(i!oPa zKCI_HwOol=8PNn~*DoVR8;5k?pAL(x{p&|%yyaeKVj#kxWe5mt;ot|UV4b9-K#jEz zH3g1xFk;7HI2Wf4Su2X~+;QmY0t9ur)cTDcT;I_~x>B&1&^*S@c8i+Ztw1ac0gaG(9&gxlo`ljIXuu|YLT&+ z0pM#pDJj82kP$13*2;pSJmq1`9ZW(m1!5>@+)=1X5GQ7!GQcx7y9wLf4y`Y^-5>Dj z^G|SfeFZLE&XgAAi)1DgZAUFDT}bC37Q3IbB!WjMbmm|)K!$6QOKX~|V#A~J-GNA0 z4))ywDk(P_*w1c;vG838Eb5CRN6GD9pJDIJieKg~A!yddBbURuzIR+}H?b&7_m8u@ z04I=trmR$_@rAtO$~p-rZOi$VhxTOtT~KRQK;g!VZj*)}Ru`=ZP+C?pphM0nn!>c* zOu%*nW=RFqEjU+OFn7k`kX`KvbrOR}t60aSQ1caEXkA1C2wt(iZ->6^zG+m+lE%461G9u-C(9Jk@w{RJtgH$K zGd5nVI;4PXakwqKwAdZ||rJNdh#d{6NnmDWg7N z7|cFb-Y_5^2OBZM@X*NoeW&^yu=j3^+;Fg?r7%DuFi>YAty3_!7^bH(Y*u#O;0tYrZaF^pnnALyRb%SqSAMv}dZ}H3Dyup`W-{bzSfffRFU{?u0`TPU??9V>I$4{^E?C}M5yDdP% zOFGP5TXQY4(dRJTC-a|3!y7IjIQRo)CX}XZ6(=gV4FNzwQ6trSY`DK&aNI94-Yj$S z{{_HUxKic8;rr_0^if>=u;(kBtT2JjsW7~m~{HdN2mQ(wTH8F&KsKDWv(qmS_ z?CQM>IO%yjRG}g{jxbe8O|mosVZt&Waol$a@IzubXXBEBaOn=YuZ6d3%8bvP*7DC8WUi7wwlt;x(jCbpcFA6B9tJ& z&eX@*)R2jaXVSR)+ToaP$Asx}qX((GY)QD}bkShIL=-##HU`dpQ%yYXY`tp@pJIe4 z1MAPGK(F6-xFGihmlCSw8Hc$LG5lNaCUnfBCEzzt7q9X||X+N0Z%8&UPU-b!$ zbr@_VkMY>86E|Gr$2PWXMn`tuYin@8vnv)ey21VdzWM(8lU(0Fbw+P`0Ga`AdgxZH zIEn1s+69DSXTO=04i;(FcDMq%^rmM5f?0~|Pk=5Du7C#!5_-^mWi1-iKqp$~m-3g# z{)|kbxv=!$^|}6BmoCoSd#^SfD57+KP|{S#3&zh5avZcXi@t~i_gUu0>dXQ&6wv6n z9IOw)V~lM$9|}%0wqn_o#xUJWV%&jgD0arQv^FN>;f%3+0QDH7#|Ub&Va$TOrf%wa5ydFL`z)lkJ|j zEJxN@o4{tX!SiQN@WrRk@cePba_BfNGfJtb1$ySgc#j$}czqu2{B?F7ld#LK?>faw z`YXvOQd`%fC}(Y1usq(&gy%XZJ`KO;~~DA3rb7;} zivpdl<3c?Y5G~;>-K>G;2@vM-!>|vbZ4M=$6wsd1-uhmgpNjh3OKoMiI`{q{pU%`r z!=u4VPt$(n?j%nYGlu0l{Ml3aeXgx}ck=9S)@LhY=!=a3qKr%<8HgkJs^J!s1GdXo zi1au>LGK-#Isrszy=!2vCLR|=n&(e>XPLlMlux#(#|^pT_(1{qdLh$r)7FFSRAG47 zQ%R{nWx!=%p>c4Tf*O`4GLX9!bYgz%d5VCgXKEJ{qA;lLonAH8zO1 zg<+lEI~K23caKX(*A5_8qX4|CJ8K2eual`ud`D?9OFU#lf!{xe0^VOg#OwPji%oVI z40r(IQo+>KS|ye>GQ^_S2&ioLBABn`a5JITTGQM^geWS36BX!G$kPfK@;OIzxqfzT zmRE`_Ub8l3g{Nd?BN{31^szRxuw(&63Q+uAtIY?IBEKIpvkWFg`FVJ< z{vmjT2})b9rDU})0i~6)JF@kpkev*0`k4E#Z&+R09T=xuE5^*D@GqsRA!1d{L;QWk z{Cu1_)n`h=TDoBTE;QVS`81Hh%IwXO3j}j@3tJLIl!YELQ$52pX*RL>i6^g72NPYefRohKd*!#n3M z8z%>_e7e>i1bnN4h9StH?yS+vz~NZO+8}K6;XL_VGgg!R(9X_!yvJRT*d62&*kCO4 z+}X;NbDXZbQi{9KohWoHM`l8IVLc|JXL1XnSMrn^of+Jkq#P?1rA)xYK)2t!x7XU| z+=oN0;`qVG(LAeizfN51^EhRejtOulnMvpn=UKZo(DkydN2Yv=iyv|>Pe z(k?O=)seTHtN;D=!@9n=vbdc#Cwh~E{9?)?fp|KddVdfw07GQqsv{SUJW6ptK_3ay z5muoB@(7Vo;jhi|>#TKlEx{=N!Xd+$26u{+E}gl@4=l{{XXX-@iuJv2ENqu=R34x* zMN=zSJ|X9XSQSVBG(y_C{gmB}QiqeGl$GqvGcric?HbNTdMD2@)tGY|a~r~LNrclp zol~CdH?J~v(4QN4ya6ohzRg4II9ouPTyHj3fLMakP#jjbu_W)K(m5OGhFkpsj;Ox| zMAIDm?j>hq1ELLnqW~<{YB9P<-ljr?xiOYQ!-gh2xw=Fxuf;`_OkEL$wJ?E73|gHe z2{j-G@NMmOmQ)!M96^(sw={;jo&iF~;tFG)k~|%;ld_01Lj|odzJ2o+|L~7r0ldfD z8eYFV;O&bUx33l)?q>8w&Tv4D2~?%Th4?z zmbPF%926WkbYAdp|J|=J??1#}{`5H>?Y3B!7GNh0v+>gbtY|xouH5}8&xfyFJI0`2 zIUtSm&|%Vs2~5?kodr+lnmNYSTFCK$)|nxdv;Lu9*8X>$vp)Sv+e8@0ABR843JOO%!+NF8d}aNxLS8oUPB>Dk97>j#eeD*B3s=@C;8qJU1izY znbj2)SZ3ix79gyYidr{d)^mXBe%jh1XTNJjDUyPy*!X&C1O?X}Vt}{a)2gjW(TJU+ z7^`r)92ZidNcUkoKzYiIhL_&a+ME;x`OgFSAmpUG(H1=?sJ}HZ>=eweyYE8>7O9B*^nfV5m=a z`ziW0OrulunYO&Y{?ykW5#XjNf$Q#qtwIvF1ye|fx&Sq^G%GL;W@yZ&q1oa}i^&qm zy7H)mWJ$Qi>y?#pDS2wdMq7YuCbeRn(1O$RCEOm=!o7btAD}5hF8o@2$^~0x+tM&>1=}slB#rDYywDNwIZ!HGq1L>>2Nb z^|i#iTC2Idn59wXy{GmY^HgSM%$-)_ux2on#ujj4l~|n*%^+kQ3z?7rxG1no%q*HF z_Zl}JOJ4_2!0nP)XQ~~gec^2)jHSrdxnz)(>VlfAR(oqXZ9!3DXh!S~RW-Mx5 z>9$?zvwph%Sciq|(0=cjk9&Ok>ISdg+~5~q{268}_;>&CJA8Y$$E(|W><^1XTO|Or zpisq=r;o9_*x_b>#2&zpKflCoQ^k#{i{jM5?!k~jZv0&`&+~?o%%K+@*8L zon#WL7#VJFZ^3=W#pR^uP8y1?hgu4@JHo~F1#WL=?C%%!Mrsb2Ppat3lm~i&1!{>g zPi$M(M26}!CIANhV~>XGDJ0jhB;~`f>zVq@Ds$JDxnp~~DSCHq z7r+555~&m9T$#%phNYA^r_hZGAD`Sm0i#H}8rt`F?NB6mK3s#b;dCV6UIZ(EY^ql_ z;1LnZq#jfocEu3f&|8C?B@=@iL81VQ$JB!3BGHYjDwd*PS_}wi{D!V$c&a!@KXgtl zeMbWHaKokZom60KmJSD?ni(zIbK3Lk&%|Rs`oJD^xj4c!Em~8x1WTo#xYutD7$x&@N}gCP4&UL zzCBn};(>O9{hpXM{b!EfZBoWlx9_hX+V%aF#jXi#EqOZygSCawdPjx$<_{_uL6|6l zb~-cA`w)o67&R+#dh}3V@JXnr)!G|7Q@7^>P8cepWCT$Gkm_7pgecV`{T;Q7I19K2 z191_Np5IC!z@H6;#ru5*+^ow3)a6fwoVjx4-`yI_jZBP#uh*=-0r} z2FL>RP#QlmBG|dnaM3khksRezk>fajMYc0yz^aGK@h~8Ob8S}8lDaa0c;ll+5~&~A zE157xam$d7R-lXZ)SrDL5+S(;e#Pb>6{);ak}sRm$z%JW<7q%RgoG@GLL$t1YhZPo zEl^{^Bxh=#K7EX`YxwQAFYx8pg#B?r?d(yBw-d14?r=O3_WOHDp`gO5cgE5dKf@?< zQm}MjVT%^X=uLEoZp!u(({w#c` z5U7?k$MT-J&=PFDgdxm$g|*mM5R-VU*t03Hp+KM03CZ<#6J~grHqPxpufKL$S-5X+3y&RABO|m@ylKX^JuE zngU?c}^@V&`sX=Zew#uGom+PVNo8T7eQuOgSvbJk&QVTxD3nlM;hafsvW$`Wf$o z0zW%*xL(9wo?6xPX6k3EW3}$XpvV3w1$Q3Wlm${j@y~!+q4I>&Fn+Ono$4lxM51!Z zBEe6lqAHo-6l+<4eZR7Q=kDgUAV~N+zu1qX#`ovIPXRq_%thB224rO!Fz z6SFngRpv2w?SKFi==^0k;q!y!3E+Q=Y)}y}6%nRy?~nN9Z@$I<^}jpd=I#xC_w^m_ zXU5^UsKLq{CmF2)uU_8ayKmp%gR2kl{G&@$YJRSxL(X5y4tW7{OMw?CwQK|&_Wj(I z@0XPek8h@pKCYDqul+QE+(^RqD%6V7GQ`cl8sj6FVW3=AT)OL@!6Ay2^N#SWY8Rtz8vG`2HOF`mu~wBdH|oma3F9~-2(@g1xc3>&6; z5GskU+4^2TZ>8~yC9dfymz@=?L>|^>`*oBs_9|nPN!l)7cNBkDir4zG@mL#6Pj~E6 zdyOltco7g@7CDu|P|iPLO|9=`_dQWs#*&5idxuWy#2**~|H%U=#rw812j~CtUt{%_ za^rOYbM|v3MH*NXi_a0ljxd0rd5)F79BAG?)9h zdhhIKeaCqQ+m0do`M%6O2D+t8V>t6%FqN?%>_w~_>PGz(Fv;IiW^s-z*Xyox_jF#R z6rZPfk%xN$NlCF^s$!KK03bgK6J5;mEavZIBg0=?tu@2g-XzLD4QuxO^~1lux3Xw? zwJhmiDd~I}ist9hg{sW54+2l#bCpgP!C)0)2Ag%ufGa29sf@rCvthj^64XU+^eR?Y zgYISt1jbX@?8=%e1Ar@BCkopjT&1FO?oRTz;2bl_?X|ar!A0Hc{7`mZ{uJae+?>b8 z3Z}fkqy7Gu(F*DMI3_fzSvq=14zhA9$dy5 zvnq(N{;i|?vKv*HHCixnxHc6+pF8dk3+{Qwwh*qawz$|;9PUY!G)Oq^d1u<0_Fy-1k)`~8C7ef<)>-(zk^yt!|< z**DzZFVN`osIW-Pz}4d&o_}05+OBq=Z~li<{8KR9rlNV;LL7k-=v;-?r80R)*B*a$5>~E4n>!R zh3}W~9YK|^WSyg8Gz#_{n?w*d*zE?}-45s-6Dp><0~N-?j7^zPnQ&Yd?B@fvn+>*g zgZ(mt3gOA)N7!r%DlslL6+lO=6<>Vu8GiBSA7jgmzRYM~_cAdKVrx*y{&W!!2C$Ve z$ouKfWMbsFXOB~i2@>#LD<1LAX?rZd+XK2#Y8ok!O)lx$yb*?q!qu%!7-f#!PBfrjq@=yBV@XK412Um8a(bCxT45_pF7v?hO#dYn5-Q8k>p2`tLNJJ08586 zoqnVFt%ZjU~q;a|h3h=a#iIi?$;=&*BnG7Rao3ToR#freR0l=b1Tp zkj+^#BD*Zoe29@k7vvdCh)H$aI8 z+VRfj@rXI{<0d~TKQBL+OX{kt$*>)3$04IJHD8mY81R%&y0Lr6dzNwJ>3TFegW;KV zf3!oa*varCYkHapoGW!clkbv`lMf@# zxQ;leuyLg{H|K_l<9Tmj5-NGnjM1o`A3#A30tt+8`q!Zl0dU|QG-EmH>}-Nt)U5n< zi}hCK<;+00bG0B3x?uey1ua3>%KT3(sT^ZK!Jy6H637f;SkRw}pDAF}Nfd_VX2HvE z_jvW{fZjW%4bbO`#sHzg97j5UrKf2d(3AW#3I;exGFK<8e$Uq$s*%;qqAhlAs3iK$ z^QTY2G~>HBcbH!vA$g_sEDr%wt+=}0;^#koj-UVeb3EB~+`ZZhX-)tNJ5aDJf`Ey* z*!|2vAPaR1nhao|spvpL!ghyF6-=iUB5+qwiGtRT*j`S!xY(jj8!#%E7lh}7Rn}b5 z%~ZV}P_va#f#%Bl# zkiTKecYI#%Abvw2AnE{GLgFUlPYA< zBwDRu}|0Yu2ia@OQgdQt;u<5Ga7}A z?>;t;)q3#!Yy@`ird!ZZ&6tYwYjG5%M$_l{nbE#QpN{n&Yi3QQ2{`#TJIB739kI6JH9x1#801~vgz&X# zFY0^d0pcW|iZ`z(SwB4dm|On-`r%#QTUo4iv$|u-1Q1Mi+}RR=Q~XThU=^bp3yS6R z*8synJioYuCks4wd?-;@VyR>VISLM8giwY@zQ7o|FbD{!&o2Ck;FiO#{jspcc}u?A z;>o6-JUSUTvH>}**sbXCtO<(5KlLxC@`Q2N4qPd=V`=>}=50X-cvMahWy%=|Jzpf| z$5Wu2l=Wzb=?!V8HM6XtjLZ~bEX=ZGyEkhvJ~EXgj#%f~xRU$Vb+GQdb)85mlcOC{ z`UqnKhR-oB!SJmb4CjvMWU908eE=$pZbzv<+F!P@^Wll{wBNlA=^T;Qs{r5D1C8|I zEfGIaTwQIky?l!AUf$s!fAcjOFQ6@g8I~kA}CRl?q z>kALFDff!3dlV2C4MfxN`tBZY7T{vH!Bh#modi@lvYgE_! z)Xf%6Q;v{6V*!E`1NwSDci9mkvZ`I7Na;(6U`ml4sg+PU3_0H-3VUn92WpXZxv3K# zU+wVZ=_Pt=nA;IlE8e^)I4(y_A8hdC$t5oCHdtn0w=Hj><;4SB~er6ZBH6WDpp z_^x~S{?*K-ZA-wm4}WQ{3vdQ#UP zH-$hvb`mQ#dECWACOjx?eTPz4YSmOjl6!G(9ewU-2Y?}XXsQ#YsbW%35GZZ;*3mRR zM6Fefy)ua63f{ZQYk+g4ZLNJX6%=zPRoQ-+fq8B?9%uB{H8s^FxpJGPUZM%dx#Ms= zI;4?Yky%Dd9fhQP4{Vc^ffzH9AW8tSW`U%5+I(At&%lRPf{giU=F{2+M%irVJuM)i zCAkm7B;pu~D_CQB`K+-SKpu3Vw(_YUHY^m+r8T*3ua%vVputJ*tZC(R+=>|Q2*A8F zEX$&O6oX%5z|Rx1oY0r%bcyKiN^$J)igAUt-2k)EnT$KD@nvw?O=~`XRZ?@@U>J;H zva37K^wP)-nkW9T@2?-o_5B0fw6+3zD+LaKGh_?F!hnVPwKI+KRD@}lvO>6oV2@`N zdc}RSB92wV7=|%z+u3ntF%jpf|GP!^BR`)d-6UV^Yk}+vA)i;s@^c}mgK-GnarBz? zr8LYV(6RSiRGOki@MP1{W^x5;C?l##<;AY9fdhcuEswHNt-K;L)FelI4%XM`9vk;e znKwp~cip5|0Z8P%!wHSpC(rYkg^39zB$s9$-y1ZyJW%UNJ44VqdMmEqe7 z8z%BIbYMnVclhkJ0?`h9qpLPfojXba3d^}kCRx|7?r!nl|J%PqEx_?`1owiuH!Rdq zA^Q8>JmcF}dwlV6$CIaz@$|_KZQkqJO#q)`MzUhTzLlKkAl&H)h_L1{xJlVa>(;xg zE@X)gM1X-q4Lam)Z5!OoQyaTzXM zqee@&TW_dPgAp1?)pi1*R>Gqvm-w?Ee~hP(H+XZi$Lsr!-V3g$4Sw+#KS9TgGA%e9 zX1sWL5ALGu?=E(@xGdOi3Z|*!>EjFRE_SE{>~<5Le{hXb7{mb}LV3u5@D!AUK43c~ zX9(-e++>S5pBcZvLp(Mi{rIk(f?;}D(`ky7tzjG+KlCRkY13u|JPd76G(XO zd^iYJDn%m97t)ksk+O+;Vh{ybI)e|hDo3JlZfnJEn!uMkmEF?O#*&YBo)@&Gp%KAz z(Hi+=S*q1EYU!*!BLWY?*P-AVQbSN1#8=)luyK--5?wjDk}G-E1PSi8cKZ$*B+B2? zS~;Pbac!U5{tL?B2TJpU)0&ZTR1Zq(#oM29%Hi|^xjMi|+c1|O4m%-ETY zKj=_1O+Oj;_ty{O`rgW-D+NTuz136l#}k8c5Z?-rTYl1f)1S7VDeAT*U<@qd8Yz}^UFkBim1^UdecdnukUZA* z?}$Cjc`((O#={?5&rxD@A=}tNsSI~!rEsM)6_SeMVRpP+YtM?IyMaN$#0dpipWU!v z^UtoNWhH%>J3mul3T*5S1g)G7$xy$x@5D%;v=t+hd%P~gON!^t)EWBhc&5RHt=~-A zLgLe|^seR|V9&>QJj}Q|9&tF%*j`jzUF>jwXt=)UxVqlr?ta1BnF zC2_R|t*v}=*PmOzk^iy+3WA=UW72>$4aeJi5X`#T(Mpl?KAmy7+u$c(e29Pki_h?* zPoLxZY6G-c1Y%MY#`!xlUxTbW16uz;Y;T5PBLh0ZUwqzudTdZ-_qS_g)cfOto11$a z?+zgDB0Q7VfqO%ok-r(_W1EviwE;iV1b~w%lKeztu@ev?Ktw5b7Ty1xFe6>L(!gf<|eSL}D zcB6U1n&(wqr%7@EpWq!hV1|u}5B$lP@NnZi1PMiDd}vj!f46!^fSa$-({$X^&R|>y zJZWXIkA6qZ*`Ta z+GxX|SULgT&dARE{sWT_?Jp<1qU~_mzrx93-xm4gODN%z)L3nr$iJph$C<^bC>}Tx zSPVtUo-DlvqqGh}g;@t>+9w@d_6WIMy-zxuo2|*@pnb>D4~&K3DT69D7kMQ_fZTJK ziO*uA_t&5P`rgXoxr;e_L$fogybDNF6~wIFXADUt!H2|t$%q$Yo*O9Zp%CCEh|Nti zn2<7iJ>0(D-E!tiaK;=F4pT>IT)-w9Sgj&Vq^=FIGm&aYp95H0yYepA;IibPH`%N> z3*KazHRU1;eyy2S5xE3ktN?%k4hI()1d6%$v-3)EQ?pl3~}EVuK}re{J>41*B; z9r~HxC4g0#0f}psWN9FD)~L$pSkM7%u%(K+VLW|yiNE^U$M}~&{|t4v!*V>J%|{i& z9F=+-l2<@(d!lVq%(B7h|J&Z5HA#{qX@cO#5YfZT+&zxGy0VLgreF5||D7Qk8k*Ur z-RbJ8tc=6m4pkBGKJX0@HIItuos6MT1cjTbCq>Ui5$p=Nuvu_hZ3aRP zmA%>i>IiDWxf8NJR+`3f<}{C_EOObpSpiE9iCrPL$?r`{b2xOK=!Cs~)`Bx@Tb?$B z!!<(4tbIT}A0RcbG|@#rhmH%Kv6cNUj#9@$hueRa*`W0M$#}jB6DvOHA+{`|62nGF zaVjgjt^}{NLhopA5?)C4roNk2DDshq%C)9!)`+Op2@9Z4YMAN0g|-3-Jv6D=9o8+v z%fF8i(Q8BKY!vSuXssW&>VVVd$3+u=sJnV*J?@n2*IviwXkN_IZ zV5GEu!<-EkifLm3SZovlZm`EZ%hZp~?(tL^E0^asYbqXlFYWIG&W2)3<1iGt(KoT6 z(V66&4ZFvPn>y8|P^5j;)2SI)I~B3VD{$>{_pvE7aXf_4FMA<@xPD0@h~!)& zDtN-iz~>zVvkI%T_Ma3#R$N&`^C)Z6*Y~mDJ^iE7uRq{MFL5o*J%D*;_Inczbo)kb z7#`)K0Y|T;J+s3#Oy1e7Bb}_pduB|GIIzJ5Hv!!D424*AVi%ySf^Y=?HEr?ao?^GW z-teHEfy(r*6~I=GDk=vJsY+{WE`ic%Z&@VTdnSZNXye|$1gNFZY6J%w$$f~ze6P%I zEv1XYhfJ%qdW*dJJ7~k~Nr&;2d9Zc>Co5hmd_pCws;?+78a4EW{XwvD<&c1uT%K7U zq3=~88gCG6<$d5hj(l#2XnVuU8R0xkglRh9bX+hu!qa)e>DX~PGWbe(ewG7o8h6aC z%YiqfhoTVNHtn?m8}eF8*K?1UZJ-a-fuss|l2FKHT>#d-der1-7h;@_2h2R-G!YJ` z3EzJEgm1n% z1b|l^{}Y&jm&=03$20!$e`0cs~44-*da z1jZF}Bb-m-sh+@?rX%KwfvKT)3uTj438D$FZwvTUoEIh|xOcyoGqpDQXmUlbR}s}#v+H=EF_f3rhIr90ccahr1^V~JM-2qd$c7yRo9ht?uZO9%wT)K zC=5>PA5C@Kl4DEClXjatZn{UVH3?&6Zdj>f?Q#cX@9aD%tD>s^2gb9*wXBbnu%OXH zTA*~M)rY!lA#lBx$(#9npm`dTJiGGg)w|n4YU==-2SuX|M$d+EEGL&dj@E3>CjJa~ zRr?fBi-D%s8WAwfgaew~Z@dyNZwnSZjn?qfsxCHPF(jq^b+RPexQi9$t!h+$>+p;6lvGi9gzU?{WYYqm9>{ zs^oM*S_VR+SwRT!6m5amAy31PYDR^D`DO-UDxLwqtB~w;H9Ppm=^37=ke_*dB~o6^ z*%Qng_3SG(B5lV*U&mC#R3WQTi6*s5y=r0LwJ=QKzf&Fnl5&;xQ{Su&$$##@zq5jA z^?Hr){+7-Thr}39pfsJw;yP8P41G8NJpaGbfG0ni~>444$eEIx}xdGGEahNA8 zow0!M{l^ndL}-n1IG^$T#}AmN377SP39>I|#e~k}2L|M|x6oDWq5w+faTU<^wwghh zdq@eL`hAUMWMXgcX2h8=Q9~of3c2|H?Xu$aZ56QAI@-)Q9%o!v#&x+We^u{xp4*M& zGW&TVOf9XOaBab1CVc#Gz~jRK#2pW(BR+jR=?7Qhpn#%Xfw zL@S}^hjFC=P=Ky9ZnuT)$)Cg0XV24hv>mv8C zwiZ`lP!pp~4L0sVb34gY4zCk~lQa-j9QYaFW1or7ydpfb+D;YgVE zkTeyw;HD>sch=S68QdWut(kAMgVtuks+iBBVhqFSBux6!r>=g_hN1MgiG0`%%P&3I zd45m-==AHuP>bx&6QvRGWa|21h~?M+J345sWk8lSrow2pT!_1Y;{2CiH|B?W4)B0s0* z%E4gdn);OX^kXcpt+vTo4?amJzeOLbFg79=YG%ODENskZm42_bQR&ad(B!0uZTy^X zDi0JOddrjO`%feM)Y_8`Ogqpg0|ZjRY@Mh)6Oc}no&8pU-A>nco@BlZURkv*t?)ro zrYhhY5suT03ocl=-6PuyTka7kEDYfe>pj% zQpI(!b742izx{oDHyguIG^a6@zgfPFAD!dL9*|00DCYxG`3eYg78#vHJbP z0P~uzb0ZtwcFu(CneIFCBA9!_`?DJ^I!jjzkKs8mdk?w_HSSC_DYzhI6aiqLE;y1kCv)~H~BY* z9rxbj&PpGjc)b`FTHYQQzvYzBATxBxexueVyuPk@eOb_^86Q7>z)zoFK-Ubwt=S}|bj413S)*GBt^3N#<2O$dNoEXbFZ2z`^0qW6S;9_KV&DQJDqico53be%0&u}jYu8F z({wS*k~O@UOWL~9#XLuobHP^THNuBA1jd|)7VXoS(YuD1_U2AwKSy!xarIZT zf26amHQ%3VwCEk^J^IHSR|v5dY%WxDia7D8VlW|-M*rCa9{XOLU-$HTOTXG!EEBaT zNp^)`wofn&`CkIS8jDW^O!JgV2mp{nayCH0+p?no{reU;@8OEQJknM;>!RmciE(|*&O=naXG%HB=s+l}d%KtL&13#(*}{^jSTIU8Vb zn{UFX4RA9SaSM#?^(H^F`y+F+B@bh3gpC3`+TApyC-)-_};AcT%sbUkrzlziH?jYqN=f!#v^P;e@BB2@j_O`oeg9dBe+F$F(zPZg~3e zfbYL~z~e-?zAR|hBaZzDzIMF4yyE%!igq}nwQdM;AhpuSgo7FhnZbHDr9AF+HjruM znRmAgVUi64Xx!mjxmQ*q9i$m6u9p?Bud*Wg;pqvTfgfL=!M;XnvLyhC&2yJ>-p(qq zVjmIV@!^2)Kb`T-;}PF{IN+cE>3jV7&)3B9{(4!_`y#8qG@Gvt9eR%5J(QU*%K7j+nvd1K+FeFiIVq7 zc^-eTMS=n9>X>cn%K&rG8@7T3e0|lf*3XEm8*CM!I^J^VJzIMzmB5I_y423Rs_Hzx z)1O?n@r-k@BJaA_D9IUX?}oQcevTlzMnUAyIqG*@5#FUJ1GGnL1+%-dwSf7NAlhDk z9&_Fd7kgTa3Y~C%T57NOzz*@t#$u7jn~qXe!RVYEP^M4BvX#5`h;;8_V5$z5{c0+o zZC{|t{nlEc-2|Y+?pIFYBjLD0H%^kB^)5kkirYL;y34n&{RglnCktWYj1zvtCKX=s zyoqd_+U)!%jo-+DMEC7Hs4`+NGRdBe&O*=YlaYpM*>#BX(U3-Q6_~)n>@8Fna%Z9t zQTRZ&gn^r^Dst@FURew=aybQ1k2onOCyDBm_Ss?xqEkd@cBPf_BJ-;CP|OGK=ct42 zLyT6T{f%+Cr{72V&Bo%!P?V>`_u(7srQd5uUstrLxl!hmJ1IffU1c^=G6U-;N}e0Q z?sAE+xM2AAdKDldJEiNYLN*4pt{#3l7X*G0cn*vgmDzPKW!x>vFi#tKzhee_*lB5M z_1t7p=POhk2E_2{Fn%gnlk)eFB2!>q*|3Vr!=yJWf)lm&Kn3Rv(a&gO&7a30+DR2r z0VNMOc{7s|_WBFE23WXhlyY4i9Tk!HJ@>(x$*c=)vw`JAsM`ueLt>q$kaT&jQ2t>9 z7BB_kY7`R@8aFg1OqlTD;e_MyjBmdsU|#Tap7H&MNBsQd4L^N(#p`*JJ!f>l=Pz&g z>GKPgrDNuf!_+VxW?-6eSvsCy-@uC)HVw8)N&xpnY6Hslnb6vdc|PLtbimVN!|Tfx zuP>5cLaPYvASbx~+s|*fbOtRAeE9*7j}4tKSk@yxeX;`)WG>0^^XApoyStbn$B?Q= z*5rzV81{Bqi+$frLGQtPri5k8ff06qs>~t)tJ0(k!Ubc69YSkI=ATazQU=cNtBWH= zI^@<$nc8j`umQTPVd6Yb`0IC1`0HPu@a=~qzWMNgfBMTG(WZvimkS<`C(Ny3KF&DJ z6HbSthL5QidFpzI4nR!~!#JKK?6fZ{790OIVQL3}87r^oa>*@v7y33m#=ZA74z@{- z!IA&B^J0i-VD|ks>7oBkVzSCL9Y=>SqgYDM1L9DTM+$R2)3(W3&~W)~2Upo@6>}WS zW!8iJn_kPk!#U7Kf$Jsd!@VjmE-QX6{U_I>s{UGkU@6Bdxy=CFbZMCe{H#`NjgAg7qazvpnF7+C2wx0qMyX2@O3E&nx|Yq3 z3yNWsv6{^R=M$4>_{~=${Q|c$Vbj$&#fy54RK`wzek|F0lE?edOkc&gcBc<~yF!(bjb8D13D5MN1!v;B(%z_l++!NerOkIrd19YRZRfVFL7z~l))uzOkqpup z7hhR~sS6`tnh!p{3KX1=W#vUe!U@yqfSEd;pH~nwo=yVczxnnf+8-L8UoZIE4`1-Z zmsfP|I3FMI!;jA(TJh7*SIopX&4j~Y0#B2KqCyT8n!J7jFd<*@QC8omfzhxmjO%s5 zbv@vRpI`9&e8uImqP2#H!-Vr;0tR032imv|qt}0@^IA zym|z^p>860n3sjVi`}lqB?m8nNG`YrG~5QR&`s6_?_hKIO~F?6gU%m@gypbS(J&nd zr}Gih)Noxc=wKYC16rHRf961R*5bNQIHsBQZ#9*z+r&EvD-k}NPWb+tCw%jGz)ZmP z4fyegXZ-wp#pmY>I#!&{6FyDH5W8x{HUf?Za(O5`$skNX7uY+`ibxt^#iGO^Oo;iz zumjSzbFL=BMqt@5JM&TaU7?K5EeR{+0Aq-Qin8M(%ie%Pc`x)nj45-Q?N41H8udoz zojA&0ACSDy^|f4M(u=80CK?E%|7@E#m7P~FDtL1^=P$&{%D$v7tB7RNz8V)LrRh}U zR5W=r_Vrurz%Q%6g8}&7N<{$bp$|pD`=H)bh$c*&^Yd7rHL?2a*a=C2Cag9#GnAo z5Y4pr6Gd&@%s};h>@C3&0?`CpClk7pp4yCLxFloHbh*VT9gY?kvb|0pwY#m!x+(S@fE}CWUAoClWeq#T+m&oFUN>`0B5|$F>mgE`B zYM|06&qmsa*Nh@1XBd*~wDBC|t=LdHKMSd!_=ioG*+|^d0r&KKNx%N;42yksz?%%R z1n4DvuMc_jJp~cwLCw+1g{keY3O^US38=d_&&4XiJt`J^uL`VlS8%g0PBJJrrZz!c z^5yF+#x{Bj){rkA9F8JCT+p@|TN zn<^4eyp?As|Coq$wSw%Rp(J_|JqXb*3X94?nSpU2czds|ksdJ*vY}Al$~rZy>Y0ANT=DvHMQaU*)&Ra@Wk#Di4g~ZU z;9r0If@yx0kkzLTczyW^U)~nHER1%!Vw$eH$AtmA^c{9L$pS;;!8x{Stw6qY%=3iv zX~OjdIL-}+;|!vP8D~5_0-v4^m>WRc@y*i-|MaH^eEaQ3yuL6#f4SgzoaMw#y`rH5 zXz6&e=QGQ}ubzm%5aC|u8fZO%dES?hoCI@#weLz989 zaoq9l{ImHW4!_iI2jN4g6++jTe)6N+IUN>5HWBMQ+pbXM@6n6fFf}qe?n3$Wd3PwMH$*rQQP=C!CI8)%y3tdtffWwx%DwsXuX)8FG5 zvexN6VCa@3qnA=II~NQea*SJRdhaDS$3qPEy?7qRZS4GxQy`}r7F;n6gJiEJi;N3n z-u@T*!cT^$bWfyY=?vWySaC-04CI9e(-&O#7`ubmY3f0!#UU|p1nlJ02s+t1cJk(s zY9zAK2B~(>x~VJPALUrmKQS>?P7ixqy*SIi)2(~@-K75kD~mQK#!y2G)#0+5HUb&{ z$Q5vJu1c`gf$T-HX`Jpyi>V+C-PD`IhISBbjc}jJz@`MUa<%(s+(To4-Gp{BkaKcR zsY#L{jfSFiSafyw@@Wt}UN@`IB&At(6-C}4WCczfD{f<(cKc#Q={p`3X<$PCnC!5A z*nOL&JnQvffN4m8%iCA|a7g0=z&ns9iU@afYN=BeTN=U4pv zcEQij7ySF*KI3oy_64uk1=F$NcqB|m;B+QjNsiwB@NmZYIN|bk!H?@JUKWniDoKoZ z9SS$dBhWxjbn6S@<$1-w(hq1Ltmv3##;3;ze0-QNQOCnH;oA=ncsNfu%ribcev7^= zxL&`Y&A>dLu-cxXDL6$APl>(JHs3AG+K+En8g39O2UM`thK5#vUvUEExpl*VAZ?gH zjRCCad=Vf<0?pM|MU}Ho?mrl5r*)biUF8?p_PWvXRqM#qP#%&{9z=hVuvzF4^k{x1C=`VuMh zg0D=OL75Cir?ZwB!FD@|fE?y(k&Xy|>#dR>8Km2lQ3*J2#>B+}LzXi{TD9Sdt;{XS1& zD@xmHGLLZTw;43qtr2=q4ri(JFlZ^E>%~AUG=HD(Z|Uv8MzXnDFpcUhJ=jQSsx8(i znXZ_|^h?M?t#f4{IW&As$7T-GfnoH5m&*(^JN$)329Etx{2k?3noS8$Rs%KT zGNbJ;06C>E%Jp7ZM5LI!F1*a%oL_45-_!ra=~o+zyQ^GDP&;@+9sIgb!iLfVL?9+t z(f#%+~ZXp1&s`&hT#mnV_pMQSC<$A?WKfhsW4bPw7@cHeEA70+@_n%*IdA(pJ zfR_oMUpp8bmn)+|jIWtwmHu*xi-3U!B3U)ujzLxmGHa#@m?t?9<>S)~U ze>{Tmip%ASE1vMrfA}5`j|X6C`22anPd{HlQ^V=3dvL&zQ&mK%ayeBl$rg9Q1fZzw z#WXP<9vhe!^u8jz?wa4`{U8$*q9jhYb`csi zoK7e7wd47xH*{tkPBZ4?jKe$wEMD>kImoG}WB2`DEs(D^h*(spk-_g8ce1&V2pcIt zN^WD((pIDX5oc9l`ugNoI1{;{sj{0#V5=@kXoZ>C4zqk#cX1fe0`iHw-{Q;nftDu`9NuilVRPPyY z<3!89z6k7}t%|~M`i6=}ZjNDmi61c*i4F%@0qME^|=}%1jlZD^{ zu`MO__ZMl)d-_MF-@LMzlK}yu>OoSUe4Oy}D{wv>aC$i4!^b0j{P_*fuL~~M z2{Y?uYSXHb2a_8wU5`0W6b&O{FajN?4m>n|X6GZMc~E(@$PbJ>Eh~2J1W++7r=Ajc zWh~1AUV(X%y+!NVQ@dkkGa;NnT6#-W8|M<_#Od!oeZb@CfW9tRR>tXkz+sv(w+XgF z*z~?c14!EAG!M*(5m{os95Yhvx`9H_mO$4a1A=3B2xs&&he(E*2GFSHjDpAChVs(8 zF+3qNZy6Le_WQrSlWyFLppyU?i_89=l;;W2BE8wKnyN&TOhmdyu{7t~BzAek zxP?Z0xM%Yy=75P$HkM0s!^KHfsJwX=4qDpa?|b_FrC)yr32p$$>mDXm{vIn1 z76P)@p|2;p@mHD@$}nJ4CXi>0ciFz$qz#0$hes^rcGIqmj(2`D#gnel^=B|po2!?> zbRM~#?1gk#(#>{7m`$}4+3U!UBRn=WZ0x3ku!=z30340k^4nf-bZkgZg+wNItX7)h zl|5qYeG>k6D@F7krFoc!*;k|?2YWO~_{{V)<3l^(bZq$M;~CfWip%99dwH4g<@F7p zFIRLNaJek_`STSI4>P{|=8SnF{LA0I;N`93?PUSL;&C=W#J18jX!1-)Q%mRy1NfJ{)m69f01^uPc}c zEh$q670qZ0SMZhP(q54rfXSJj7}z5LW;b8}*u`YDeM1#@mwlCx{fbN-)Z{M0x25Cl zZ3VaiXnujVz8#e0+GZ&gTBa&BAB0^#!jB<9L+4IZJ08NKU?8`-wYMsiydY`m}fct)I8_Ds_5hj!^94BsJ3$OgaeO)gLhGi?l&Jr)98fZ@inJb+3#r- zVyGi9wQVRs=$sD1Nd1krrcR9Lue2?XqVm#sxXdPd{O%H)gAc4UGQH|DiECMbR~edS|Tb70i$mvfJdRu=@X#4~#ZR>TX=lg|D<3^`yxU4b3;C!-#DKL91J|-A|mU zuEa9z()x;}cirZT zf543~C#nkcL<+yy4ss6zq=NhWmy2_C;|xt%-NV8N26N+1RmZsTaWE#W9eKsEs!)sh zx5-$0nZpzFJ}47F@1Aa_`Ep~n=Jsb2nHwSpCVV3)InY0PQ2Mh~B zGrpi+S07^Z5=i^nik_cQ-S->e8SP~nh)Ek}&8sEe;u{@oHu{Bk2O7L%U~g6xhwnv* zy2eicuH;R7bL~DfRY7ieQ_XMak2J&(y<=S~`7<@$!}wSzl>cmXd9`YYq-mlyo- z^9$ZCjQNj`xL)7z^UqiO``=#i^0t78ah&8jj`^%kX=GzU+}}< zfq(nW|=2c-ZPoxeb8}q zkzu%6Gso)KK*vmDBE&f|`p}$s zo79mT@_|~DtI-q-66rm}Ky0!9JE&M&q8z25LT)&P?CU-W}q3tAdFbqx}-V9Yt0Bd)w zL}#9UUyj_D6o-aXltX$_zmfqw?rFQl^tbl8MW_`VkZcmOde=F$&&Dnq zRbQ=ZY)gdi*ov*JDvZ6^194UpWg%jHNGn}q&8FvEC}w`yG%^|@S68Ovx)ZV}fNo5V z5^I@TuwUDft2Z8wyl{}~4uu-AK|Qoc2SR&?soXPI$ff7=Wk z4h^T%5o;$b*Eh`50n>EAx?Is$IevdS$bl7Yn&hO!Mt%yuoN8$DNBUeqM4m7zd)Jl6 zX_Xu4?~XENoXY_^xAMZGRoVLSDVHO<8gS$H~C#3-G*Md;9#M8Qg4UN;arFZVUSmu1YJ(_~AQtq$5iLX%N)tg`T#^VS6`qPDn|sV#9_;5>o4joh63cwI8$@ z-5328YH-hhxc$BzP7sK7*T8V$pY~lbk`R*jML-$NzFx01wABeuwZ~gSF^E)YY2I#5 z&n#y=ciOyXC~g~EJ~Lvxk{(EaM}dP0LA&{!Md3_Vr}Ix1p1I9k4@lT+(rp5}fL7%@ z?rXhmz>lq{$u5}}+`=$ti0og}%ajvX7X~%H6u9Zm4q^~Gs1dH$71xC@&nrHhf$u+k z!vFNACwzK5;7@;g!hD?Z)0YcgzC7cy5dQY}XZ-K~_22P-{@WL{(-HmUg4NF&>^pa7 zCy=K9_YS;WI=(!=V4{ZOal+%7a9J0u%MlB&=y=BS>lN+4f5s1AuK2J2?Qgg&jE^7A z`2N!)+Cu}k*qEQyQW#fTgC&pmD8gb4<5}23d2U7-dGCJRZ;}fq*j_+c^;B6kk*?q| zmZjtEa>3<#MZRaufvJInL4+o;m1q$yn&uN8pFZH@hX-6Q3mRQ*1;C1V zI^lRc>PglCgvgrDkQ4tLDCwz*MBA%p5)a%yfWpchWK5bX8(*B~2_Se&)XIwbU=mV% z$j-rdGRRP!PquQHfwciR*L7b5J`S!TQi5%D+4P<1p~}>|Qegyx`B^bEwOnRSMrb

0)c+{Qh@R!^npSVonvD!=%azR8-rlEV%tap%SGE^qcMk8Sc;0~8`lAzEz^ zo;gB3Z>R0}o1w@z&SAZ&L)h8{Z|6ogA@sP7xnTp-x77*JoaR0+^`9I8*0dYc2#g7N zI80kk(=3O*C_nYyaa|W&mMaR^HEi zDS0(|A{(1Sp5WU}bMEPPkbc_%Hyn(quuK>}O;!g=uE|5O`>Gw103Q@>UEbdQmC4iG zSO`|M!*rr7TO2G#*05se$|wm&W>)aMuQ)AS)xswB@&vd@lOp9Sd*AdQUpP!Fm|ObT zB(z#MfC!`H-K>}m->qG@R>wApR2l2%B0N&>_{RIe4OL|2G5@-uoqi7qmC7^;oyRM( zcIf?CyJ-}pv1-m6x^7oIYEfL8cgrL1hYx`3Gt{vNFcduJ;Eq$vbNO8lO``C+9}hE@ zWdT5#=NY`LSQcQW2}dH#3{3L@j}MPnmxkBZ3*O$YK%ep5;}K7X8O!B@FE3a8_zG2+ z9TE%*XfRZwI83X#Vwk5H-+nmb+s75HG2UKRd~OY=(-r5#0hi~Fzy17-r7u{oz?bI* z&zCnmJe=^zCjq^a?jf;LMH3N7tIVEFw^nWJxU_J?vp#kX_d@>Uv2lEGvH1{FdD-&Z}zF{b+7&G9M#I=@k?h`uP52M2Ek_%Ww@@TN7@ zMW(c|j#qR4mK$wKH<9)-TN_xnqBB<36KcDJtTvK}h0x7LSO$hLZ0kX6xr~XqW4~1T zZDfJbCgtNnwlLr^q8#7NuiOZ_H&Zeb$-R_(P{#pHf!~xq9kLI+_Z8f`Muce36W??d zD(;|3{F>*W@rh*1%NJ?&pW%un>meZXc>2)>5z+O`5Kgls#FB9ILNi>Tf!6&6Kt74IEwpeHC1dLLf22_Z{VCjS4g$P?F(A`7Py_ zev<=xzTl^4U?ti2cs$6e<4>R8@OHhR%?&iq_;h^4)6*HJW5c>GSbN9Zl&TD{ znyh~Js4G|lU@><4hDm@rg7Ew1fCi)S4VlG*T+ya^^3z0F_FS&(1ydtDKAf?x!0V;s z^>xL%x^P5e)^J-mMztNHQxk7?XU04?Or5c=-TN^yV_g>f^y6pDSTRpCxOc2q#v8Br z@Zp5xVFE$!zg(6T%*_w6ushO1UPdGW8tauB(c4TL(-ix(;^8kjFpH+7U3i$M$WI)?|^m&^2%Sd9O{stg}A7SVatDZ{P+LX!< zS+eIuD!tUo*yRE+uHHp?>02nXqEB<^o6|OxZ6)Mr3Zru~-9Z^2q$XH>PHU<(HQAN> z2BhsFNyhVbe11vVvPq?l)Q6EN0tRi$Gakx6wgAlp5RI!Ti7v^oDp}FxGWI3USLT-wob`&F|4arL`>(36W#6abFkID$lm&`5HOFVHr++iE1Ps8!_2v2z zLL7j@3{}&LGI!|WcK|0oD~k^l2e0`UgrG&Nye3Y`_{8O`1EVz3_H1-!`e=CVDOqnbW8+jO{io@ejA5K^VCEHEt{=0yAID%Xae1pW()lTex0Y3s zomUH>XLbQ-N`@I8LOP~8CRRc0H`-enryK9zE_a^~O;ISe%w*Wft6pDptgHOrTSJ>> zw06L{EO>dl0BCqy7j#}^UN%Oj3)U6*@bM!)eR@P+FSuMTxb_QvdM12+x#IO=;gS|| zl>3}duvH%AE~oN!!g3`Lj`-%ACmc^t`1hY)@cOpkIL|oF4ZSb;=Hm$~A2H1{&gT;j z^9){rx7SxZe||w@!ufo}VQzZpF@srF$|&;&gcmb7cjJ*#6GtKzeR+F4aycertN;gN zU|j_iFf~EuPwx#Y%RZLlVZy@^I7}KU-D5>lF-A3JSwo(*sole$*iU#r9B2IXKYfS4 z{?ikl&XYSFCN!L%j+mzjyvQ-~(>!CE$Q>x%jtGRIv4A5CuJ?v2a3G)10dR~?0Ynatu(BPp!#y8g>@7U58=e*Roi# zr^m%moEm{JdD|yaT6EzoJGgI;KXaMgaGm#UFUZu|&ztY&DDZnxjWkH3sft8r7F>px zvQl-a%LRX6o5;s9+Ejy%V^#KUGX6f(Z@y9w1Kvtvgi312#riXU+qZJ zh?!-BetO5e-Lcvf&uzHI)oaU2xlgpup?jphZRl-*S$g!vPO}{1cdgsZAgzto;Bq;JSAF?Z+4V{P_j1 zuXcrVQdA7cig#idHbtj%g@M=SSNwnezyFH2w-;Qm3)a43o+q5o9n;ehA3mJ%xB|;n zikv3kc$~l;I8H|Z2OQ=Dh{PMrY-`Slx>$-wC zuEAl*ot7V;PIx+bPyY-PqK&9L`O|+kU!+3&E~lXA}iIpmO~X0aoU%g zFO*H!SaA9`73)t&V6vGj1}25@V`p+VYTNZ|>FXd90<`7&tlI839!MLvVVK2zGRjZ= zr#w$zZbci6pKlqKGBtAaLewpL{J6^2y<}blA0;gdr)7#V<=83@5q{Wl(tp)6~ z`QTe~@nu77JR>eOGR?J})Ckns)NIUCP6jBYJZUVwdNV9jgi_$Gz!tk0hIkhbj=f0J z4l#2H;C{by@pqbj+sdK>vOM`RSWw7lZEF!i)+2IJGBlmb-@HNIJ^C1E zm-zMuHFh2{diE+L;YmX|o@=lCq;!6XPhx+Sx6*R&_dP=q5SrLdLLxC9+BD<94d;gg zmVTB~-qsbXo^l6nILtHFE=q1$R;UPWe|<_X86gz)xc^sKr0 zsXOL7&%8ysJp{~$hHt-lz&9VyK<`-AF7K^un;zBMFLdaGonQND^G*6=Mo2LV6=hVz zp%Ty~OV$%RX$*a`9){f7pKmt`OTSkDcB>3Kq@s@hIIg)PwFw~`_x58aM_>ZKW0+~} z!XS5c9815<;4&VGZfxG#@GoE^G44EkYyEzCa4K}CwhwB*Zv~f=Tu<%(p=+FAFwxhJi^qGqf3QWVX;)8ypzq^#EZM&6r$Js2NP22aV z$eVx51azCTj-7Fa^ZdXQy(}uo{f@oMs^hYBg)DY$kF82FxU-U}V}&^WW!~7~RRp!q z{Av$lt*~L!zh&SmzR6JqaY$Q?qw5BUUhEt+AT~X#yh=?CSaY_;;z0wz%3IxNR)w6m zDG63LW;ZF}rxBZbIf)12cM4fO^280y9ui1OG4#RsU$-{6ooCff|m-3!|2kAHL zS;U5UpwFD&RUi@x5V4JHvd3@=SebyC0S^D$%-%_p8L>}7csTNV<0#m%vTq#4KlW~_|yH-;{vq>#v= z{LyQd>%G2sqh`r^S=UWQeYf9k$%paXz4xN8D09}1pp*w z-CDKj3qdUgS0Y5Ym|Qv*rFH`s!OzY= z+pcYCq59hSvVeR42l>-jCJk*bVXnM=zt&&J;FpE`S>N{gv>L85o9zmh2p!!<>WS9&fjs^uyQ|^3-oMC-t>#M-6|^wUb=}m0}NaXF>$G5yM5mak3SU8HiqHg-5P7V)vx!A z&y;!h@h^IJr#*YWg}=c(h_=$WebbHJV$@WA8rx=KH08*rY=4^%$Ly))uK=C{jIRdC8VL^s)ks3OmbVqlwPT)H4DUv0JfWkZujFzFkkugXkoCjq7G--#aj85Z zCjdKlsMyH(a|6;b0*PPp+^7ALHqI=!qTh$a%rQ23MI?LFg-3GO+k54q@>Fh{^^WDU zPnAL5ZRYl#0k$I}N4Z+52+y;df43v)E$@1rTjmtz^6G8ySi|Uc^uh3bl)enqEib9L zr7n||X3%ZMAja5FWG$VDzng0v5*-+UC4Q+9zj?-^{cmnxDJpjpCprPPhvknYibSCB=7dFd+S|~r3UE(W{v}8;<3oP z)sJ<8p($hIJ&#o~ zS%L>R-FKuRqb(U}S;%F~<3fK69GYLst8HjGY^N#=+m}Ebc?j_H8W<1{Rm^(L{& z^^k2>6>?k6$f^de)K@&1fD4T(DypJ`(b^OpGh|Se~Sz-VTrv- zJG3h)Q~MKiv$3&|jvXnMnxmrH9kxZ7s8IHM3Wt)Y^efVP!hR#@zM>fR%H9ggpa6S6 zjAx@gPDKM6`dKcumvSs`E8`R8m%Ho|4f9{ZNQ2eeBnNDCOtW0De7P*>D`D;OTURAK z&4k10gmqo<_&5XffK?BpIv*R*FL-|GZj4C13|a59FjTh5?f}TL)tWMy%{=_Inf zb29;_B@GnDt;I=#?H;m$u);4NRt`J=$RJug_4EeK3O5aTt>fBb9N9 z@blwXJUj%{LqSG;)>Sg6(|25?+j(VHM6`1BpPJiyPx&;7s5~*$M3rxnz&|E>SVVY)4t%9dI%! z`YOxut*vO79iSjFX){59#u7q_`Sk}|CE);G4{po`&bFVGtyLtY zzGGk06nYHuKEIw3;BHN!sJ-u5I57KFk;SO>QYZ-wRHd2QoWXCtbI1!M7k;@ezX(># zkSs}nZ1idcjh(IN1d3RI@aPdHl0AZ3oo^l4+sk5K5^adQE4)X48qEJaVK^{LG0?4Z zsw|0A`8W@!6+$aOdA-~F@2qt0J|CNhxPHJYBC{Usa{{V>gza1}S9E5y!vto+b-4nV zFdq+Cmlf;U{q(zOYB-&b`0`2sUBI{?_cC_a+5K99bj*litoZQpg#Yqi{(?V!)3B}` zZSZ1}2F~_bpBVntRvK_6%^1mkdPYF*TXda?UM%hdEu8sqvf=nbf!) z0Xh{K7W_tDj^4r50bUvXDt9U_E93L?f@Kw2<*U4{SteH|n?DI4G-_D8$ksLij}K@3 z3*+6svngDG9RBZ3;l%2+9@7eC$;`nW|_w=1qjlz72s!unWXF0!t&?Mgh#Ob0y zfU^wp9n}K2S8#_ZIJ`POBM0v}m^sGL!$pS|$KqJu%AxmW7Mrdi4}C@urxd$0UNByO zZ*wqtTW~RR(tlY841FK&-t#bL(#RR(`=QfWmF``w^R;wSp69kEr*g$zJMU*OqlTd# zjINKjr~m$vdGhWmo6E(q9hFb*j@dq}2IfU#W?<=SS%BbLXu&Z}Hz}^`ioTj2n*lJm z1DEv*fYDk*YZF>)m|8<)2Dp3JtCer7v_k77?+Z{Gx(TR^3w&ZzShZj3htj}7PT}Ni=|5&w5`-y75qDZoJ*g=bDp1-71gh#%^uVI)rJ4wX`>21&7j()#9)*bInSjp zx$+=ys(V=F$S1iqBCHI#)HfNpl0Ei=#F_-kGb&^z->*O`{%Hj8q-Cr~FtAY4=IOF9t`~s27=$lx zE3PYHo*Jmh-H9@{jPF(u%`gvgVKuNT!PZ)un?^T7Oxsc21qAQ0Sy8S4QIC0wkWb+5 zPKgYFJTkXw-8_N2goI8FSS}a*{QQi*Ea}SXaFVUsshJ3KYq)lHM?<49pv=M2h;W!D zOzj}xvv-xsD+nu0;>muPmHth>v;y%ygnCqWyS5XZ60TEUVu8+d2g#OrpvOyQ@WM`le*wW6k-U)D{<$LH%1}zIl}NUX_a|^6(a|>f<^V8}o^c5{Nzt zlkGG!^)eeg#qikn=~lPLcYcY{W_6eLY(?;_pu(vOCUG?u?aVo;8VK)iPOSgY1LqU7U)Yx`(|2q&QTZiP zB5$u9kd*bc$RvyY>iT&rdrI`16A7*~%z4I!Id@LnZku+d`I(IMJon9*ul?uExY{cL zu{a(^BOHHcty&zDky&;4R<_;K?oH7-n2~hwWhf5L8(;hC=Y5woTbdAEOwM-s4oYD%t>a84ARB#1l>-zE+Nf5+xwf zlR=sKYyet{3*{?xjTO^qX%$?ydPXroUO+jeH1iNAQe-}LLdjm-P_-fLf~Km_k{F~U z?1lv{7w%qE@?36KuDQcb%QapOa1y7-2Dr*0C#2+df_P6T(T;!;QW@7PXlvIFUOPGg zhtmPQ6J9S@91l8I`>OlhfWLov#=rdg&-n6ukwa*-T=yz&P*5moxsX~w^4b|~I$@$k zPC0E2jXV0X0?g_ymdFI=zS*Kpfxu$IJ5m6Z%tLtz#JEwJ9O&WTge!GwO-wOXaisHYWyZQn8=9T|tT?M}E`>Kf zm3pe-TRSbQ&x!sBez5PkT< zH%}-N+JtpwtgCod$e_7juVAmIs}KBN&Zd*MWdpd8_jNG9x{`v-&Y@xrfN-uqp~;wH z^1T7Eia@GH$a|8hgbWcwsM`rxql7gY!OJ$K>o!#a1_gVRnzmzMVPnz4zA-XP+EoWp z72{c1aSU5DBpTsLw>0)vc`l43BD3pVWo95Zioz|7vj7{eZ8Pv@KV-f!wzP4#vO-`n zTBfc4Q|k*F1*ifTlO0-OAQE9@kP3LgA9-UsA+$|4uH`pV5KgljD>UxS8(3hw`e5I* z+HOKy=8GH{Wd;pno+iwXGdg!%FBcpS2TT*==Pwuh{l{0ly{%w0J@L&Bxsh{9$3*_0 zjBCRRU_omScsL($Sh^ap4cu*x*{OD>Xo7czY&q1Cf{tadf+!(pX!Bbza&0ps(bbh= zGP3<~mJRy83L0+-C7$G9FX^Wkcc@X20&_duQj)&vn zfbYI}!e9RQ5fd0oU;Xg;yb9_4P($0I9hgI*mpinQCy$Iq$%x#n&Tkwei8f`73aTAa zm9XZo-#T8BG_-lOgGBPIF49|_g=RR*qxYaplJn82?XPUIriRnoJGKJhlil9V21WT` ziXrh~p;?vMw_3i*=6X;VAdl;I4D>JW{Kj>)#`E*|E{9BZBfQp9>Txl!?OR>Frf3(B zOrU)OU|0P3yIO8GWC@(E*V!5Zn|^Z05gx|R#(#HC>9r$gNGVdfhryN#K;1G)*N(}B*kF+-2VhbG7_r~nLI+I-% z#gq4TIufq6h~#)n@dgj)f|!x|74dXWzmxQFDEm|k}N@R78ORe{5kZ)a#bTK6jHNNC_gVP zfWgG*S1A3gP%{vyskQ}(gDFPS637!U?PmcC{x)DnL;fTHO3ev`NuI9Zd8QoF814X} zO?g0~FQqXX_YuBB1s-HWMvU6`zUt}`!9857-{sc4v`h~H8swFQu#f)R{?@GA?FFYJ z0d{(|)noG1c*(#s5X!{>#MClasPs3-q`m(x^kgpkZml&p<*E~*W~!?h26W)gy->Q^ zza}S&PIH9lP-7g96BvwjS@3W?;M2zs`1$8A`1$jSFE0xSghm}anZlj`_S^pkjiUw+ zcexz++HrZg;Q8eR=qnf&7%8%&bC1of&{gA1V;bqACWLl!1pJv_wkxw0+?hh|120*A z=YupSB*Z9$i5pcT;BNvadY64RO=aQnaKQI}c*3_IkNEFDUhwiJC)2jZm>c2YctGzf z-mVMY761!yLc`&}=)B@`?EvXHdjvc_obdg3AMx><2icQq_m2_Krh4jM*Sj%{?|OI6 z_xTZYOoLh{H85~@UWF_2xp?Qc@8v!0nf9g4eq?q{G)|tK_un-H?Udal3qs~legB== zY@pGK(OD(EEkK$5H&;f?dS@&u|FFFmhfMgY=3unEo0PvX=FP^?JLQaq=_uP7BfT>* z;(IQ~t<)B1uF+ zROmE?0|g)B;r{A9*<*Ov48&ORB~nwBL98p!$2c@m=C0=nN5qrkB!d8s7)|4a($&J6M}5TXe-U@GrhipZh1Mk9$|yT z7zCk(X3_v^BIG0}vr(D(9oAK~bb+mqiZw)QIIw_{;D(OH&^A|Y8(Iv%GjG~TV00ZS z277p`gF{;-R7eNp=5L^CcI5`zWlQoeLg4Fg!Y<2Vrx#~F{G&UpIx zh{N%Kx7QV5F=D_PV67fkJ0>F=z+vC1$JzOTJp}OZS?#JHV|0U(g3dzb&hT=XlmIfIF_^P45Lzj*5 zmlRCl@gZBxy@YK_yK0qV(`;3EznS|#Y-A~H4oSnE|I)lDYj+eYWxX#cw6tM9%X_;i%wGj5u*_n(<@no;1ixSidq~ zb2xacS%P!qi<~en4%3Dv^{uP6!_GF40!0psE@1|kS#Lp=-7|I@z>N9;X85ljPF- zsoMl(OkMkLg_1W%srLQ~mDQ7l6k%+rlxO#tx3uX_KuJB%D@YjzzPE=fSC|e8&snXr zyc|d;+M2wH;UOG)mkl!?9_0|S@no!=oD^Bgaa|20vde)(0fiW|qcdc@yC07y&pXF` zN)EhPjX$E=dfF=9yjLrPbuucwfRUdwWlKF#`Wb!ITpqE9hz8VC(U6POvF zKYzjBKmUN~u;9bvjLY?k=`dl!1Y8MM4bN;?5W(ZDhpjM<06v~i`1t7wfB5u-V*{3D zO(4Nmky%dlEIo|Xy8?W*{T|XuiJqx{d!X~SlRdPkv&=AVoN3RQm3b&Q^0;kJjLsJj zA3!u?Y7^eBuXz6970cTT&JFl@Zdj&jXUhv!jadueUSa;GOeYZh8o0x>%L!E4g_p+9h|;Br3C;6dkAN1VoXkSP&}e# z>FRRt=0t@Wpbf3X*&cbJflV*zT&S1lNZ6=jYki*F!CFqdG3w@^#CBHhuAJY~?<)NU zW0A|JV1N+bl__iw2q_rvu$6Y`^O{>hSixFp0=k|av|VaZ1sF-tscch}BE5j^9G61zHu6*}*K%4#~b?FVslYEo3VG(MQ+UaEvuVlkpUl;-Q zhyhB6k%_yL%-H7W$EYA{8=@;wM5eQaedhjz;bG<1)sL)q!wc9QKpTKa^<=zNSdl{T z!hl_R&FbMq&lb$XIb*8v*6Pd1vcdbjIe9lSk>RTR5a_GlbtNF9dp>3cI^*r~hVvug z;WPmqxGapu;+0)p6ZJAXGqzsQa9J5&Uat82PcQiP;~B^EL-H1P*}IxAyt2-g{kExH z{(I!zTbYpeQdp(Vg+a7L8QSU!+G~rng6JUBnAnV$&IdN+!eEvYUVC2v5UvaG{CdIj z^BbOD-f&$Rmxb{5c>&2es2~uY9!^+S#o_HWg$g>bBZbH`vDWv(+Y!f^bB>DCzf_dR3dz48a+ zpQH8Ieh8)=SMv7iF=tg-Z7Fg*X-Z~nCuYd>Xr;ijaA{I$i#uaEwg&92lGoDp+omhS zcy3DAKC8}`R998E{zl4@noPQ^`~Twji_gn~?sFDSn6^<_^h**1hC()Z-YjqlbR z@(RdWn|`KRx3StS!#KAk(Z|$k(M%iV9EQ{WwFy-Eur(}m3wGM(ZMW+7X&tgMX)Gs_ zcf=Zu?MUTz>$_TMYt0SDsIY;#i5}GPFwALpb5D&hHON7H0M_2nSH`0AYVD#E%>mrh zfh;H0bCE%Nyku>4$Ok#Om6`o|BUcLy@WKGunH^HvM5`F8+6ft#j=mBa1HD0wS`EvE z9MaLDj&IgQ0%&Z4;q-JPa@)%Iczgf*o-v+ZU6&Q5_1oV0oeuSRp@u#FI z)KF|ujsdY+c6}zN#-@f4l~ZQ-`rwR4W7sO~=l9ahO3DvChz5QyA(NcMX>DTJ!+1O$ zai$}#E8)v)$J>>G)}#F-K1bta*mVs0?aIKHw*}7^S&{swKYxqk;egBA3%IjfP~W@U zp*T%i7CYY&SxMw&ni9-=a>iAw;%Fh-oSN%@DByWUw>IbUxciLcZK#cpa^^#35I6B8 zw=RbQ5Cd4T_6ZA5=<@-s9r4Wv;BY+P%j*SSUM^q;`nuxjFyVNZrQhoT^VG1c4R4nf zt#zD_2RuA9Ol`u_882TJ%&Xi5$*@&f>z7ipOACEfeP@0Y|5~Oic2Y9RoGntBd$M3R zly_V?$yI1rH1hZ+J~l(dbqkxkjC@tn?#xU7Mfs`6KEb_yL{6;zuj0&3@`%Jtr!bHox=l00SjRBT@sr`5yIPMXKF*1YbM~$JCaHo1g*WW z6RMGvzB#)rL@)y(#nRHv@M9gswkI?={MXVo#GV=+yJ^$wRfQ1#6AMy&j%h8@sh3p68T-c`@WSse-C3ctQb%@Xtyo1Mv9B6}W37Xy;Sua zLd^ud{BC#n)gru)rmXbRUEAy6;jE*c&mPnQta$T0<{F&O?DYhZ3z>KHyovLTke63m zQsfP0)OF9gJ_c4si8HBi<~KqNir1kW!ZifPVWUcWCszPNA`Jg9A7HTWAzR5M|){t%tC;K z_u{}RB|SQ?0Iz5?10U5E}il6dXZ~3Ac6Svd`4@G zw@br3&o~@AzWw%u!(qleAMp6$0G?L7TrP6uk;)Kjd1pQR$$*}VlK{v@lpNyquCeHO zY)-QRlSn~5sx%*f1f{XFvG;a4LgO?)YbDG{riO(j0I$cM^;?dtJzek~$cDAedp_jl z1h(w6<_$ixz9vDN!7k#^C0`jz6lLtX!r}=t#uWh0x~PmXkS)ux>w_)7tqWPEyRa&~ zvASG#ZuEaddU!X35lX*vU+fx!B+>QvEOQg37&}zcav5d(L#_@wWY9%XW_k`_d*58D zYp3q~Bvs&L=PV)fs%CbqHPCHr_ikOo)7>#2nmXp;Jk})-p?WVU{m(mX6CP<4jugvc z2Py(UV+J>l=%93;q8VdA*A+R)l^X<1O}4Pm)PN>Bt#`)KpCw9_>K4Fm*veh$Q=!&F^9XxQf z#b`aK-{M6Z`?E*mom9Z*M$pFFnV-BLWBUh#G5}}VluZP1FTCL^YEHo5AvaQ(Wwnht zg7zus8Nfr0#XmismZ3vgk z70c2wwHeoS@%@X`2-mkO?80)ICaiioYBS{q+Y_ntlyyI89=}Yo4ES|kZ&I4G_9=kL z0EiNOyUlD)Pjwtur1e$O{h4}A30REDWxe9%^##u_R~*ss?_Zv=EGrsK=saV6Td=$} ztSmsdHO2u8&W9r&&nG;d7{G#QZJ4Jc+R|{s0T0ImxL>g@a$r#-@g~b<)hwYw90$0R zlq_eHh4zeHP>%FdZcYYGS>a2R%{IK>KgcOBkw=o0`IyGWzbC^EAaFXHskW`k8~eVO za=E*|b3L$UfbE4@f-9=_a=Gn!$>p>YmttOLIf!OFmR4;YtQIPzvc2)OpQ%r5KMz8u zkU}TbZDTR_V|;1Q2AQ8qoiejFg{wfz@^;K*yy~<{hNJ7ZBxK9hhjHAD##sjNkTKVu z1bZ|s97tcaulMVWal!>KW}&Bl=!L|t5!Y}-zx@14~M1f%yRj?JY*G?*BS^E6?aGz@c^ zaGd0znRV@0y3kaW4$LD}=4Pf_o@&BzNP#H%HECITS{5gfnDX*%$S;B;<)9HkT2`47d{1KnOyyAMf0wAosU~UYoU9Q`hW;}m>#S2|9PYYUO zw25)zBfdGEao~>S^@?>qfTmf1C0Db8+Jr0$jP`LfMhz2;K)E+%)cp4R<>4BDOp?P^cOJ#v2J5@y%1_Vl<+kPbpuFI+ z**~VxbDP7-s2zbf^sYFsA@uSH?EUqPZitV?F_*#Hkk3a$KXknVuNoHt)d4f!Ffj4)yH)e-L$S9i@xfI*VikR}ieOb!r`pBLU!2qb2_9S+!wb1r?@z@f9bhB_# zkYPJT**XWh0rsM2lV`=th`x_2pRWFO7P9Sk#{RxP0^)Ex9;rEifbxq8xDeDkdM+M# z8^(u8F(gGCts4O)A!J6A90pF>Rx$bSeqtJY-;X;VkdBW?=*YpIV};Hs@Z3SFpILjI6!o~GDyyJ%4tm`xuXh#tIOVojAIv}} zl1=TL=%C>%ZjYgZuA zFdZ7^d6geKW$17F#%Y=h zwt7)OJnxKQyjPt|P3L6f%h41l<21I|N3sIrLIT^bUDw8$4WmIJY$(t1LzIDiT9^@ru^i=p{U~yj^(4n^APqEe?KdV)@342%+c>ba ze|D@=#eo@Kg5yo*CWp{1LnRT!#<(yLfX!7ho37;c4E1QAwmO?re^N(oBy*%^T@aBq zw;H!M2h(^A?TYT~)2cf2lPpQ2oy(SFj)272JH~}z9pNR?CoTap-{yK;=EwXobsGo* zU_b0jaxp`VvUo@K`bFK9E}X8}ury#y?m8Y)eif-kcfHD^G0?@hi!EGD?_^|5AoSjJ zwN%1a?S4jSN6?pvoIVW_-Q&0}PbNDWcW53ze+&CX@mSMf8jb1O5X%MvF9AW zr{72VjaO$_s^Z610`mDuKKE^sX&Eums>aKkrh}KreoXb6;wvIy+gy(K2(e;P1QIe! zTmAtE^zNSAv3#!y;=`& z@V2mtRov7qW_)45H}jI-Q~^p{>Y=jRh;@+ z4nRo?ow%wz6dp+Yk(6n{56M{dcaoxU{`6G>xGNllP0f zaQ~K)hM^=>>vw%Zy|`+OU0&bta=il6gm1q2h=+$0F1jknz2SOceE$4`AO8M=htmPy ze>&sC(}RrRvf|-%#Q8V_%Zj&`E8al9Vs2rau8=!B|M5WYVNiU$%K&J`2>sLYolf=i z&oNq|a$BA6C2@YXl|e){o>cDZ@&l^$wMK-~Bzruk&X}IgIyMa-9#3GFYevApJWW{p z2`hI@Q^Pz@m}fCKC%tpaF1GK^fCikjjl=a6`SZ;%G~WJ}GHor3(eOc%8nzgCLtyQ$ z$fWkEC)pmGgSo_9X?s5v-FoKg1U`yI5Y8?MVzyGk8Y=~SAZRsqS|6J_-7jTsCx z-g%}gl3Av}#--9bxKfl)l^I#iq}oRIzVV~C$(>xeKB==MIV&P6ndGV6oI14U6b*V+ zJxCyQ-BOTc0_(nI(`Qm=3b}THt@353POsZ_mKR^zY4duFJTeE?Ub_p+y9_huSCvGC zrp&vurO8HIrP!rvXh_7_dWxLZM^VbIa7^l@| zL$6>f{r0|v>PvOX8`>1{KZM?}?Nyf7go?X!6MiTwY5H3qM#lTqtuEsWF{G*KHDIKX z1tfbcXCg6l=Si>8(Cahoz#P@3UFFxpfOu#_X4p0&28Rq~ox|x=S?d9V;?ORbR7!X< zpw?y#GVS*kZtm&#lYX_anD5@(JDkR0a0Xyxj0At?Ai)`FN0?Do##FL!V!+@vQ6EJ| zr+>48H3i}9O$ZRbT1e3vE#r>vnzjl;<`kz*aHTvdcyB}jDh5QtbJbxh9y*as$s4_l zwi$E=WwvzL{uCl=M@N>>k^Fssm zN@${|tzMgg_Bxb7wyRaYBw2e>TM7+Q?>W)m-^(kZLGP@9g#O)us~roT>6BN${17Ri zI0~ZAMw?i*%|NB#84_gQTEoNXgwy$mMugYb7ref`%3&>NxLiBVM__IX9v>d?a6aL1 zko_Oibi&7{2mLODSl1P6H`tfE9{?bL<&HAZvG$MtYUY?~0*=7RdwYXn%}d{s9I-i^ z$8oGFw~>hSI*_3iCI_59m46yxnkMJLd42$(2mW-~Pulw=%AZB*H4r9hiSG$)hhwEB za&Zcc*l(P3TMCV`Wdx={oc&p|OLymGYq7Q4YZ*!j9*8!wm%*s=qVZ5KYgm*{6xhvu8)LERA?wcQ;M|sD@4x?B$mCl8_SGzhZ>6d`Yn`dUqTBR6 z{mBlWA)VOL-%RJ!Zq4gdPI|sP&n;|$d;PE+Afkwj<|OBOG}4HX-rXoHW$DRm#Dhi} z=A$bJ=^U6Pg2x@_1_?nD%BjZdJU4{lsfMGTfG>Abs;|)4lx-Z8Pf|oxT&aXmu*T~x zZw_bQ<%6_}8M@K3Wx&X&;N+fuZ|T>Ep<29H0je&F9E4{>C@uk)yyOfr3TZpCf`)Ph zY=wYG6K^MPQQB(27ExhWc2 zW}(>Sg4}ArM0g)kpL|UuJwQlS0NXU9tqgu+ysj%=UKd<09n-wxbZYqK z(;45jomV^@(AM^e61@abBcn$z!RWpB&ghKZ>o8Fw2+@0s=+TKz^lqZ}HW+;ny$2Dm zb9>Hr`|aPlUVB~cz1Fk-Pf)4Vqy}OtsF+8;IDSrInP>lTT{e>&}O<*m|OLX ze!oAUD0pMj4;Qo^@uUDH;De0X=B?)}SdYO4xW{_tN^~sE4l2CjBcwepSUPL~;Yq9v zhOSeL0g}6km^s^6fVQfwoqC2%MJkXa^jROCCC&B*99lOL85CRzZf?PmAwV)lj(;kk z6l>#v7%09f)A+QEibSp2u@>okQ;E^@FEIYDa?$!Lfs%LeUK0PA!F`s^2G-2Wpt^aw zZjPwTQE$O{3$MX-JakpzZYB4@vH`2rYyx>Vv~IRAb=u%@p}+DFFTM-wuE>dc;`8}e zv8!+Hs@#pSwq&Q=#MGGCG(O1smL5#abkjRmpTzn#R@tbn@B1HIPG~BZe!tgQyxA!g zsJ@UMl06E#w20Aajs+#0X(_m^e8J=yV{r*4v&XJHF8)e8REDa7HqH-pRh9RjBJvV%5TXk7rNmU%!A5RQ=F1pLi5luW{jq9AtGf2tG7%s?erhxP&!JV zx=StGIhcpHOt4c5EF9X zLzd332VB#9-Ppv71De(4q()m}`3V6?Hr$PSvHaGT)j{RmDP8C|Iyy>}fUz!2Z;#17 z?_SQ* zrgV_TV)ZdrfBF!Iz`E8`FqMNvpQrnE*kR3e(`KiqZ;@R+7G`^HVWV$g9qbhKgC8D{ z7GTS}rGuY(^>xC+IYPK!4i6K}f2kZ|HA$iBR-$Kuk>*$hW%!ygMn~Cm9Lh3#X?{UeP+>-_3ZGe(x`Sn4N7f3w>IfXKAp1 zYH$kQT8>?thc4`dicaM;g3h-tyCJqh>@uMNga+_}n#mLL!vgE!Lh4pxui+$7;2MEO zgzdW3sfy-woV2DW5A*0?b9~uL5noayJ{d-4-L2veYN9A+(nf zO!6Y%P1vjt|E?fgOFstw$BvF+*i_@8Ca@%lhImp`hEClEy7prZ%WkyNxQ>t^T=;;E zm~i(M7W6pEPh!_g2-`Zq8nl|oFi#RnF|Re7M;be9x4nbC=Rb*R{-S1Ddo&c3O`Kz=}t{yVPG~=S{XIZ$m_tc0Lbd4g-6C1Yk zU0Pg|psN8wItHC*6#QW#o5#->ptM=djAAfIRHQ~|f`tZ2sd{Sk19ze{j7?#1;nXLC z(l+hg_D|0=NW!CQhpMDb-fhL(y--zbG+LVCfheyLYMaSs%W)(^a9;Q%*GaH6n*v!c zxfsilm2_EUEyhg*IcG*ogJ9&^Z-9s&N}j-yPRb9LVrOAF5789)jn*PB1b~g$UcY22 z7IXBoZz$sTd@6n?a&OC$Ofxwz=%(_)Gvz>AQz`2<1tDPLYVhOyvbJ+9;X?4J=tzhe zsGV1YO;(p|>mT)DyVyVEV6Yii8ku^ z=Utgsza{>P_@z)pK@*>tk+Gf?kCP%vtNBn($osz)Xp`B}ofFOk5)E#tkPcCxGu1VG ze1R3h=c!%BYmgB?f>-Ls42t%utD=S<2S%JUy=4^jmeV8!89QY9e5Lm4r&+2+{?QoO z2rA?U1bD>0y|Xyh`Pw>{0?2*7otN1c?$z$=p*#2$m>X9&G# z11tUi{K)2_jP@uF1_*5{$;q4$S}x7Wm>(s>Yse@@cR_dMA++#?F|CFhGCAVbh{CM~ z$}T6s61wm9__G1&D|f18wkX^uMz}7<8UgbsD2THDZPExjpR|2}dW()LIsPPUY~>&P zHVJcuH@F5r;O_A9n;^RZ7+@=E8$zD2uip_qW37mF;Raurf0qDEfHttM96n?%UM=O^45Y7OJaez zXH1#D5UqS2@y`BvSH5Tefkz+z`2Jz&gdq(Q=~n_#IKpVf(3y=i$|lZTqC8$X-Q#Yn zvp)P)??U#K*JYx?`Xxq;T)$~$kL^?ICl2@~iN?p>H>bAtt=;v+N7kO*mx8XP=i0U_ zFxxwS(YG&))iuKKw)lcByi4(h^wwE10wO#S2~xGGu;#5-bS46l_|W%QngY+fVN@vQ z;m~c1e`S?IWM+kr545(p^qE-EV%o8cJ91bOBcyMn2smz{%05Joo)j0~R1>RFHyRZ3O~w%|3rgYZ9dMl4;eWJ-@e*e#!QZ5$)9G5;jeRR6>gY6s{d0RhDNj9Iu4%W( z3bFGz{9Ataz1b-TUkYR+fbxSHuuh^}{Ic^dH<;@-(t;Lxt zV1{sGP{?%9(fg;nkx#qVeS8htGy>HlbvP$P$YrTNzuC6p8c%Ddd80MlNFR+>FkQ4t zgiKNQHx3ogQ#C}Qq9|tZzP;7(vhlN5+8;%QIm#48ASf4`3ThM^9c8kwGTnKoNcj4x z)}o6FH7d|&A||GqC&90@NiFlo(sp{@DX3AN@E74M3_mOnLCI}#0`-EEJ3{j zTAe>Q6wBEyAg-pmMe}yDr*8nb-7CPJZ+0s~U8?<=nh%#%iFS&#wqFf%3N91bzcee{ zOt^((yh{qC&clJN=ln?XYl)*B>WVeJva+bRqm&o}W?#Y`GklqKGo^!2T7C;v)-$$* zHqiTm*&JLR=7(PnOs1bjtGgi%Reu9X_GC0X+8(dp>vpB z(-zSmx=QL~x|r_9%3tUGb={u~;glhA8EHXW02q!k))KGBmnhY1H!#DDoUi1FNA*I5={HceVQ$<^c*$MgQFN7J?f_ z)ajR35R?v7yqhewe6#{I8a_76)X;%E z=dQ6borGKedR}`3x^>H!SJ+GoMsA>cP!09Nfz5;H^Z80DK&|JN&)Ddu%s1{&ypWRA z$>1+qB)CP`Jz1Echq+`AkK*})$QA!TYqE*|R(arlhn^o2P^EN?wJU1H6NyFo;g1OH zL;45K9uAh;Hzr8u~kz+<$BVI;P@=yFh~ zKN$QFcj51jdzp3)FY+4fNBZHM5wV;fn45^R>bEU*ObVkfKodhenSM;6ec>^9lS=L1 z*#(SU`7*p7P%}5aeYz02uZo%UI=L&zzLd*xIsS+`kMZlBCQe233k3_xV)Jp5da~lq z8S(koV+U*2qbAl#4Jo>*x9J1`1Gsj}IDz!Ux`kP6sR^=o7I)#-ki3K`;|2k1V zvNSha)L}^YmU1?C;-x?^oMnxbJn?#$G;>Mgz<1TzD|V?aWAk*PXCSJ?*yi-ePf{f% z8B_IzGlNLliI`YBb!_+P74B^3j&Qv6b)m%eyZIi5FxKX{& ziBD6u%t5uV+JFnKKBj~=^t9MBdhNFOAy6rtRkwUJ{7o2m#xn<{Dp@k@p58`LzC>nt zk$xx;dl$jSr?AOk$S`H@o68!oQvC?M*t>PpJR{<0PIzCjap8u+s0|XJcV|i&0~sB@ z57Hj`9ua-780}dxsBAQmmi}d-0H(G1V5chHtOeOF-?i z)3aMXYiIV(=^@0AMWD30O#6Y+ojBoAP3EThW6tiv?C#-ukIxO`Jy*J6g9Y) zA#d5VN|IqtxZ+v|zU&`*LoOz2^wW1IWOoH>Rk^uq4k)hpB|BS^60Rf1oTq(g|5!WE zRgGo)d7E_5%0K@gF8_w2St0(ittj4QLFq@oW|CXY4gS6LTtQs{LjyG0stBV`)Si%T z47<{-+`FY6IduDU0HG#j45=^M#0iWd+TroA--f>-ub81?w?4T|EfNXyR_*MIdB+{6 zdK&;dLP_}rHoZ%u1%*L#`-rt^HpyL8Xrb9O1n{Sdbke|BUEJ1#a~O)7a-3Hg$?#ci zlkvTEdM$~duX7}%>Cq&2Qi#srI8sMV(Rh~sbj0gVrqBZ^(CK|C^hLE+pw$O;9{|+=IL$-uCy##ft6Fk&HA@!_Ihx54{J2w{yl5_hD5XQo_c*uzGw@cedWI}k?{7B zmN#nh67_e(!SKa5&*pMU-J7|CL=hl08#*^OfR&-TIJV(u*$?_*pI4SHIphH+DGJ>@D&<*mlcN@bEDjTB5}8Z1~GM#I(K!MHz{*l9~&c zZYiRDbY(bd1}ul$i%p{Z6e!{pRbsPzQ6hE?y`P40&D)xRoBOpkjz7~X0MZ$?7?-6& zII$x-Ftn(|%aFwzG1Z>r<~LOv#}cZQ* zHyW|~;Dxc^+bc#qVLv1t54t2_49GZqA79E^B|B10 z^5ccyA!hX4c)!@zsWeS+18INx%F*_v z;4Rn;OMMsy42BzoHuD_}yKy^a^}&j0l!DgE8|B8dAOn~|4^lOzZdHBR9lElHWZ2iM zuUSX^VOs2{nI%Zy>O_5c<5b%3rQc`JovQr5hUgc1ONkGBJ_r)mf?Y-Agd$LSmpVlk z-v48Wz$$mUn(vP=I{2N$BAvaITwK3;`1VSn#4#E4?678Zmm3^;06Ye9$f#kchpeFF zx+)5VqoQ_)tf3pHmMUJ_QlnX3@wZV2P@AhBz`!8Z9nb`eh9ot@1t3ruR7rw`ZbR+3NSdR87e{0;hzeJWPrEj1Iq;W$P%8 z_EF+QAN3jANiM!aX;J~iMRk*1q{emdYL1Y zrrL%Kjuc~YGYtIBI$$;doJOtpQwXBcbQs^~;)z$*vA=<5lIuw|+=`9I4Gb6CBjtSn ziFc-&^low=Lcb=dH+>df%c(TyG8rtGtC23}q(qGI@5v zTyUB0C0f~5!@qY<+t0(Z zyUo$a$wIUqC>kR7LQu9E6naO>bDW3CFi8}Uhijq_O_Z!Hu-XeKjz`-jSlJsOq8V^A zQaS!?7}*srtJsU{Pop9B;^%hNd$6^4<yZ5gibC*xU0`$PF3=cy!9~7EmEh(Y9T*-#D=_(U z#Nxr(=I1!+a#}rQhM#V<)aaz1@7MTrUi~{xIsMrD_%}J1uVJHOiDt%?@W4VpYE2c< zZH}Vy`P>l0iUtq6WPOPe<(`yjS<1}b;BeI5tv`hbl}nCt^&Xu@*hlixeFZzjf7JBP zo8WI`d#@@#tJ|Qi5+hoP%RzK)@+N3%bkjUd^AYUR0t$kZk{aFL z3Dlv?vfQ_8@Vp;+_&ph4xh{C9W6(-I+E&cr zZuXmB*N)!FQnji1h^2M!lEuEgHxs-s=M$?VR4Q*&6de$GrfO)t3j@7BEkJ7D!A4V! zsfIdn+g~VLME-oK_76gJE8|T(xZJ883yG$SvcngVGtBErg}ls!mK>ija|_`#*C*mp z0$ZR^d@54U=xqTmx13RR>oS4?u{$=2(UDrU9EbAp(tv}-Mn~rQ#;uWWvo(+OKZyG}nWOAXBGOhl3o|{vIdagK1IUvE-)#1y1nwRVmx#BjOIIOKY zZ^C_qmsGQI<`O4|knhh3yZBjs69+XjP{gz;T{!J|R{|qykDIar&m-o;oA6RcaA2C@ zE%p?YrSf4_R(cfkfp&*MKUmBD-4(h}8HYp4yG8_)%d=vFlx0v^$d`N5k=p)clI2!h zon2&GK7o6oqunD4<3WD8IKSmz5eI#ZSehdWXYsCz9@g$B^;;9Xd^h$MDyR6Wa3*zK z*`hF0*<_PB=KalM)W-Rxq$#EpvSy|pcsho@W}z(w?ni}kYK2jpi7g;z8RgZj9CY4{ zR!ZApD#kiNShSX2=!{G0yNZ{^vC8(Zjl{L-tCjl6IB`zrIWp5rVJ-Ec^h@GmWS8M7 z%6GJl!P(rh<45YDXx#>%0iE{fjaz&4@AJMj=1*PR1Mb34f=P7S6@Nc^eCBnin|J;J z5e_+CgunTW485T>Mpz&gR!;31qH~VBjrm@R26e{!{Sk>?Nzc(rI;6@@M>s)=j^4O0 zT%W!hyygi7?m}lOznLUb|4AcwpW#WnIT2vzsnf`m)#aZM!9}93VY5r4u6k+quX$l= z*AmrsA@RJ~b%;SBbLwY-UvxY9Gxy{iOYrNU)vwAj`;%z#9Y0aA$f>%LOGYzvgK4@+ zv5LO8jBPzNZ*a>g;yJsO7l(lIwRK(8@oZ0fxxu9eIa%JCw?6+JPnzlhiZO^;@wNYs zr)RygQAcS&+kc088+FY8Cc14@_5+{io*evl2p+g`{J-)uuf+}iZ}I^6_x3vf|E}`+ yx@;fd>(l>9e&U#NGPL!-#f!Vn{QoWf@d<^fytgnCXZIfE`6$b4$o-J94E;Zn(bazd literal 0 HcmV?d00001 diff --git a/application_example/maskrcnn/src/images/mobilenetv1.png b/application_example/maskrcnn/src/images/mobilenetv1.png new file mode 100644 index 0000000000000000000000000000000000000000..dccdafac99d892149bcf481f1d204f0e9daafefa GIT binary patch literal 96478 zcmZsC1z1!;8!jEvAh2{wcXy|f(p^$YEsdnoT_W8L(hW+7ba%6KcgH>a{oH$Zp2L|v zXJV(m`QCS4LRFMx(cTcgfr5fUlb4hF2n7Xw3dyC_AXffrU z#Qt+tZ>TqUf#(5#Rc0D%o$>atvS3KEF!Z52@##LL-QI$r%(Grvem5aty7^d|GHQl$ia;#X+s?hEg_^9>BQxpOlWC+ zTJMvZ2glMK2^C}Q)hdJtwX9iWiHqz=9(_y|vYamw`W8xR@?>ROYermBGqOIH{7tZ3yz_()T=lcbj+etP~Pfmi?#>M8T`cv51J$1 zK(h9+iO|eUU=CdqN7X_RQ2hA!!^DUI-Nyjh&-}B4w6xu5Yc~9ex#@a+i8l`#iwz7H zas0Z^M5b8welIRneDt`c3{aptxj1Z;Dwb}Uu;1NQk!TibOxwNabAJ<%_ivBLEyD9+ zvk85esPsr7=r{DrsD-;p6JdgII1qaAHH>ilICDAvIca!*YInkj*=tP0g# zup4v)HyO{>oTv+NQRw*RAF#if{y={)3`<{@1(!uX_lad&>1KcR2h$D~48G&vkibLqftO;+P-pW34R$Sekw9JXN?)XW z?KynWBp<3Va=utMME`Mpbw%==6aEa<9@D1ztdr+g|yza1HvEV2uoCCfkQEG+=Z-lv%+fXAR%bLc( zQKR)sIbzc1NLf%`#5#V0uSTE$K1D7{5gY^gOOQv>6uKlU5Ze}mK^HWkLNx{BA|{(< z^TS^zSAG|c3o-pWUM|YmJF9oPk;gIzCN+L* zOq^4&p%tONj*+8Qi({mZc`LgS|3*GPuP$#n&n)jl9{PkJ(891o@hI}b`20<5M|cnX zJGwjUJLIOs9ObIQTeS^3i2>(Z#u)!dsoFr4ttmL0E|h3qO$G0v2Z31+#8SA59KImsHG z-Z>bZshAMW^EGJe^D|+aARozUH?Hbn@#jQPMw1Uh4_XhB=z$ScqtjM2q|rp%zg{phZB&uF1|`02|*oWXWQFY-wob z12Sa~;FRL}G#=ATkr?!wo8U9HDJ2Iz=lmDP=}mw7L9QjPQRgOW|2+fFrJ)|1U-RlU zkruSW%|V1{XdniVE|2renBI0#Q@F?XJJgG^?VVvyCMIS|=1+KEn3c4hbvT$MnVgul zbV%zCYfZJ`b>x3(>X6iY?d7llYv28PugO@txUeKJplki7r+K(}ws)LnzM$KpV%R{h zgn5x?(KW#~+_oV-VHwnt>{{pAa7ce`<5~4Y_@H)ePeM%ck)+kl%E5i#YU8gHlj|>+ z-w-LcH?Aog>POB!$-6_YBTg%8UgPjCXRcT+>P`9%(gxo8@5+hv7lW~a?$F}VOG#aq zBe#3OjE#aNlkf0i$n8=6*0t@#`;|Hj2CQoWoz zoMF1Fd+49#dCIttoY`D@?QQM9J73s!=}KJ}?tSn)!8=hFX%%tI6v$LE5?obSy=tAE zmpOF5HodkM{ccpWO5E1vbMoZC?kwoi@b?whpY}? z^_|0?2eJ5jng3nKbO(lnjbs4DqGX0c8h=yTavFa2arXI`f3|(o^ODZeHX9QY$1kQ| z%u8%S{9XpPe~?l`(n1zOj^$4N62uOx1{CcUZK=+B;0Zxj1kDOBxLy7lFB`Aj?cQ}6 z$1v45-DFoZ8)MJy`$g`)6q^(?e$;@-M5J;b>!;|XP?xc%|Hz1I z75-!Cb$dGv5#;#I`JS^}(IJh^wlg`@0_TF3G&zqqRCG^_hJusZNo!lyhqx_eHNIz1 zH*=bK?ad5Q28v`rX+V08*!Y|A_`~)?+<9du7$?nb=P>^s+zl3Ft!kxn4qgT~wd2L# zjlW4eyzh$dJW>9_C&LHl1x*N9AAB0@pQLFR)Hl!Pn11_0Us~uqn7g%z8)EuBr)ms| zbY+w={l_Z(2|hfo2JWBK6ppKQE`RF@>z%?D1tYE}d9c)3H0LS7cLHY4GRu)v4_`dX znV<824}Z-wJK5|oB~7yPIv$UBOnG=*_%MQ5byUy4`s_azz~iB8v$)?HY`WFuH|L*E z9IPUGwOLcNs#I6n#_r_Qg^MI2503n7N!0q`tIwqEbsZcls{TCIKT&u zit3>+<;Y@ju)%kMVmW&uxw59Nx1qoy@vc0-&Z?}s-pQ@^INY=Inro(M+ID_$Nv{>- zQ0>_BT5Vf-_FDGDp1)m0<)-Fo^Z7d#iqqxmhX zAi5q|xqzwHr#;pEad_E>C|t4w>z~|iB%}P#mF6D@k8mJL`qm_i3$7gZn|nr7KEmKI zr~SFT_Q~MU+f07vpWgNBX`@Z|7b`m$&)ZLn9Xy%!_b9FSgsk@lHlN9+eJ($q=0g&@ zSYEycx@|2@&y^m{##JmgW`GS`B;6r z?jSob;`?)ZHyR^4>K1))>`w1He>1zGRZ!vj`}*th1kS3{iDF0UN`v`{!s?ONsE_Zy ztLb25<*3UpFXk~I_(_b zOF1bY$*zf-4F9P#@`5VzPrq**u|+T@vq5*F;I-M${rV9}OjsB(RrBq91}Py6;qNod zm8+{i)lhy@aP71nMn)$=t*y$ZQDMt)Ssr2A<;8fEzlm(nKjxOwbT+LKjW0>I4V*2K z7EztTtX{vs{O%2TL6VKZ20%xcxwgE8q9POn5J!T7gC>N62V&5`B?3+KpSTP(9Te<8 zp2I*v1zSVG{VR7?7!nM9Kbs$aWzSK zdEl;Q=4fti=VWE?jG21%S`V^=oQ@L|6yCen3tIjo^(j#PjJ3M9v$mpwfSJ85i^(T@ zQ*#z~TZh+jpoH87fT*pxvkAGot&N?NfV(i|KT-$)@z=+!l;r1QT?-!f0rX=?qud@?ci)}Z%6)Gu8FC=i?c8#DqeAnWTJR(2LP*8h|ZWEFaSDxhNRZf>I^Wo--e8Bm7^HxGxW&Yon|H>%D`r7jU>4|@K z^FN*f{VeiEi1j~XCi2F-JZb?LMq+CzWp&^VOtRMxGy(93?w|M9cw^jrk<$nilo*t} zl(@P(^kF)3qk(j+ACY(f78(_07!qYT8z(dxf=VobJZc=&Hxmt1@()m5a&Tw}s+0&J z$l^bxf@7d0;E>4`oWDa;izy_5xF`qd*s?ah6EW=XHl`Q1Rib;33O+2K9Nf3wj0k&w zEh|6XFDXCPWyN-YhC%pmxQBr~fbU(#e|pP6z=rv+kOe}D5X6*d7yEZ0Ga+X?7TN!$ zGVS;6-=Vz`77Y&d-{BGq0S0oMJMu;Y4TSXX5Ft4BpCa1D{{MwM#2{pNU+diTi9T0V zZWGzo#x8z}SLA>^?J4^@x~+OQcn*Itgt#tP7Y?~Ai`?ZsEX=lUNAYch4Do4*2weTelax?9wLNaJE*m|c<11c#$N$~_=g^#WP~l}q^kx2OU#l&w&HndU?{N>S z5BM?T22xy@;rMc8^scQfZXL@~ORsO`bi zvuZvlZ(-riP-q-aVmIR&sb929B`kcO#df%RSTj0vKa#>-`u=02=eRV!G>7VEZ>v>* z43VVdzCe6KP@m_4-YTK@S-8nP1i`r$M|@FAr@miw63n5+|RJKn*s)yYzR$mXea*NRn5@guY)IS9eB+&r7yZBa z-X;2mDhXdr?PB=e`r|qD5?Jm^!B9aNL(!%=NH~v)Bkp<5w0&UxqdsZQZug-tV1)_t zd{yB~;(h8*7J)AM=)hcq4k-}%GV^Qvk}b_FiodsH?)0rS$HLcxGKl-?-H01uEB+sw z`gx0iq4N!I2+?YY$aPh;bQ`eDHmnq`r%IV1H0xTe=LwA&vLr6*X^Bs_z$7kN4b_5w zhKN2>@!mtCMa%E1Z~dc;r`E39VKJsonU=OKQf}!8v4=~iBOb_M@JEB=&+c|I$(B8K($UNx*APWRj@w?IgDNeI7Gf=HT;A-pM1N~P7{3lyIn6vH<&;J6s9 zj}&@qZdkqdJ}mfnDtkTy^J4P+`S|3ye4SGlD~WQw?d9o&s8z%J?!f4!#Jn~IoC&Pq zSQ}-l6)Ox~J_Ps&8N9#maf!`{$t8%iLxJWOvF?2lQelo|u4z%u# zz4w8hPxbB1sPD5AGi!fiHZzDf966~GL)x8+1srqT@zT)tWXs$I;=P0sxs%iltb)b6 z{!10T>$xHdIAF}kU3GI7-FMWJ*|=DX5pvgEbs{21qL*Wm?@zRhyj?b#roq?qllvRx9XSV)gj|V8IaKOg8{KKf9sW;LYCRdCQDkdy;*XAQn?^6NqANk~RZKA%o z!={}KBK(w3OL9&2o{NhcCp&3QQA#vwg-VfK)jpsuTg?p`UrzO|q=7Zz6OU-6G*k8p z7t=US`G9NoeiEK@r9M53hS}ld8=a`xxcB2+Ql?ksW>QL+R;0a+?7!mUF`66Q9~M{3pGMtb#>UzY zBf&U9GJ(yvCFeQdkLroFLW+~d5vkSe68Sdqoi(rhdH!aM3~)+XMDOVve(FS|N)<7w zrb3r$RcIENO!%`Of2sJR*>*8HmD<{469+bnj8YGYCHAG!F@ZLKD+Bu0RzX`%h7Elx z@eq;fD39HanrXwx=WYva+H3V;rEvXb$tgOh>oTU(yRv`$*WZ5s-{&A+J)Can#2`lg z^L&#v=u-mTlSA`dTnZ9wzBSHc4i8O}rKz27h@>H!WxBYpTbt)^s}8wgJPz~I`cM7X zWt>->a*Gg)FW=xh?OKj3#wnA|X4{^xZiNpJQOK>v)ennuhvQz>gURgVf`XuktBWq7 zb96!E#O;6MINN&LKRYq5TVVM6fi}|y(tqww-KpNVl?Pe zJpd2uOEa(ATx-clz`NB^TZ}OTud#d9M^@2OzhZ0?t1hx ze#vwcx$9T{>_E_q29dTsg8cO%x{&9v<4APst_sTtOdM?-+ywRs+MC8IxYf_4Wwm7m zxb*%F(O#QWDZQ5M))A@K6wBW~P&-Z?v>aBWbOibp1OyVC9gX5i&}O)sN`5sn)b=H6 zPou}zaK+1GKjwGZwi1|3i>VI*<44AGxLE%LKiIOCDC3DpxZ9fohHd3A@qOKZ+0x-3 z_Wt?LX`#&_VEdY39xNGA1QCb~<)?GOy}bBCr^oJF#A!#;+BmRUlwwJd^*Bt@W@XVDl-i`;#){^B2E{L)z2+cZ+4H#)F`O7U5OoYN;brgh%ZqkB7D(Na zg;GtHe%M-0MJf%f9l?^_`pr!8ZVs3(eVHwvZY&zpdFvq3hSUmp1Tv2Dk=LvbL)VC$ z@S;pysxL&qv{PTb?2DBpwH^-=((7pq??r}G6|n&GQ~HXYut5?N7p6JvbsrCVo_XtY zzgKv$xpnd(zUGMCwDME?N}A$dYwU)yq4{twU^d3H50RNMPwgYH*+yl)V~#y)5l%H< z(q6l_9H=raU{P3kKI6>;ciwUWkl18p^(@Lw+vT#KGQc6i*N>|=GH-CDmLM|0WJ&JV zW~%gA#%}k#rI2j;$@=^{qeM4@XSwp;d%2q zw8z^)yg?E2Vz6+K&enFkgnqtfLD_Z{cjqKN$DdPYeZqQJ=pw{3gqR#e(pad?zA6*im0^~j4?O8^$MHM>b zzeI2Kk=87WSVXiaWYorT=)A4O5Bn;DY%%Cpl|vHWi8O2l7o_wx3w4F^}^5 zwIxBm|80NS2KE+*#=-DZ%%_y@7$mep|xk4=Bi;I&4_zk!qs# zB9-HnzilxHrrW+TM;u)XpLUpHF-Jo~!o8ZLf^!otzx=~8=w?`1(IFOKpy`nY7X%Ph+u~i50Q0_-6zalALo370z*o9|*-i+?c?s zqLgUt^id>&n(tJZtdiZKlHh`bx_2<@1Wni!uj%IHoKF2p5*r4E_5>3Iu~$9xDzV8m$qJP7VhiAHKuz#YaBlfC{%Tx(dA{kx zTj~}!A8`ZmJ(T?D+33Y%!Pj>Xw-J+BVTv&(tzV5Ak6rgivHXi7G>*vTAo%s?H0i#v zUrM^PKf7J$#rdXS1dgsB{R7^O7c5d2`OrNsH)l9!hTMT%JsT3)z*;1ic2_*>la=gX z7QMp{xYLAMUb$Wq3}OWN44b?5Q*S7I*UNA|Hj`QkS7;2)r`GF`TBcv^XlJpv!($(g zk7lKb*O_37IG?Pz5bf+*?<|DTWr&|Eb1Y5zW>9Bmuw_Vg8#o};r7TmN%*vhKil~qn zh^>u1xCFNJ;@7|Cus7;2S=_)m7*sk0scNUrtaQ0PB^pMT2@32ooFJSAZE8WG8OxoRl<&(*Vlv%dYhxTkH{h%LE zfBF^8j^)94lqjPVtBWL1M+2sEed3xgT4k`_opabU3o*4;X`9pU7?pc#nHtlH-JGh0 zw>HZ?Xv6b^9BT~2_Tv*+0&dV>5q^3r5;rmk?S`eai+FbvO2W^N-Kvm2^U;fQJ2V$Y&?N zk>}%g)fQ+atHOp{;{>h#_a!uJ`s>b^-seHbZcP5Kki~<*z-~A4(r^2|4h01n_J8=0 zw2Y3#58j`%bFd*liR#jp-fNU*#n2hI_xat*xH{teBzxNDhY8Vge{K9>A>Gqyp>SqC~3+U#bn z@jR^ROXI_K0Pev!H-7h?m%HP|*5@!i)`2*|&`QLg8UfJcU98$fbl>`L?6hI~7wjdL z7LeC_(9q5hpT>s+-Y71u4Bc=LKem=btb%kkaa#A#z-DpV2= zF;a|oHhloj0SBXd0iewfQ(j1-e<*8%0*5R{fK$o6^6wjvG_G82e4D z9+wK{gG1KBvqe6?ViZVip@oEyMW({B4fCV;x0B|=aZiHDd>X%wQ$%@u{QN=sy+s%; zss7WuWhh<8CA^IcOnVhhi=hwz^($O4Nj;sRY9MC#+*@A(%7s#<_QhzATMkwk9qAmHg$DML7olYAlDG8?EnRZg^ZE4l9m-{f zj2M=%+TG^u!5+dDcxz#M2FG`_Q959qfDJ5>r%-@^NbKO(tWbMnCw#W0uzU=R+Y|%a z*}3<0iN=}R*;sBlaiMZ1Y491<@T{{W+{qRIDLzwUXXA5R?tF(wsXbgDXzV~L7wBj^ zX`N&XT>Y%ivf=nvu8V#(KH}lkue57iM;I)~SN8G<-=Q&|@#)<@(G|+JW)m5*)-qla z`FVfghTE%%lC5{2(I!N8ncgllo~H3Lqxj3h?ST|gkQ#xl*^=9`%WO|N=2;B5Ll5vc@(B2`ee=%QDZzVhe>+&iQIdxT#z>0ta$1<2HRUl{i<@~Gwnut zVu^Qs6h1-}2`~a^F@Dw6mb;6cLTT`c@5@7aQFppRvr-7(HG!hXRN#|*Y{W9)Crq`m zc_smjTD~CQK)d)}0}R^tptf!93UFu0azAb6FD1OnUlyx!G{=ql6cP=9Cr=wrX3MHX zASHYf0A^$f(Jo8}Lkpkg4)~By_ZXUX1|Tbe8uVIRZ6#4g_;-kJ&Z2$wyXMS3bnOwX z-pcfWWgdfHE(=Ace`jHh-!?Y<-eO+3$)RBAX1oE7`RZ%P`AUxZtm^cf21k;8-oGeT z_8w477nl~|zvh*VA}+q{SP`s8*<`m{;zLaTy(`W7@!pRHEo*$bR7-FiwTbNcH29u` z2*tm`_vzsHl`PsYIos$7%YB6!gwbH*O1ou&WwRH6W817`HnFj7To1bD7fNjx(?}_x zyU31Qb@ciI+bGgg?hjTb(DSG+(dSKVa!__erBb>21ht*|=;59G6=fa` zH8vD?0q9Z+pw?8cxE}_)#dTwmRo@Y`)&$cjC{2<}pFP!1DuoBkQ6&>oCI6sIrn~Z- z5sm+nZtLZeIL!Zz#HAW!}dN-)Hp7+4(k%jh_o5B9_!F?ACGTlp!AfyPp69${HtlgM0JJ;7J)Fb4G`qzSqD1Cd!VjKK!OFdz#DG9subL zt3I(z#6eP=3%Nd~jd(`@8~6Su0@tczEz2MMqrlh8aoL2GY|lw`Rn`^y52$O-tHdcA z>B7$H)ll`+j;=;%V4@@?vy%E&%l|<%?~yTQ=hqo6%CH<>b}W)K z7NO?0#e!_=r;g%x@Cyp!?n)|)>RZ<41?+Ykp|}mM)XK0)Q-F=Js)&`-Ckzhlzebd< z9%GAb^F3`3p}qX$C38_ac$tT5$8&hZN`p;yE4>NRED zx6QH`6ysCJg8;Wt>U_$fK2Tc$CZ~Ur4VCa4$3=FU<``FRqdaYj7#e4LavoP{HOF^TX<%JXA4>y^r32_yR6 z0h@kA^xXuRWuH31LE0q`?&3VLO<(I5h`q{mi=;QH=Ldz1W_3<;)ZoB_xIyR_Z1kZy z%N1*Xs4{35O9>?y1g~EiXs&Z6h_=Djq)0b6jmVb9>b8YjtBj*1@oDUKzR^UXZ*wJT ziAAWv0}YhD26z>6qL=S3HSv-@@kfdYJXZ$svh^OFfPJ4YGH2bNb71=AqA2z$P4*`8 z#|I6stC4isL4vNo3fT8jPElAI#kxS8_2g18mNut|%i^;52F|hOI2nq@KyRu27!Me2 zWM6rwU(dd=P-#Uwgm)r+L4m@%8^8q&nG~vt3#dVZCORWDp68i~8Rf%(r5%qhTCMdQ z{mUV8ucC{p{bY8ck&g%UgFOTELrEu>#JluEjL!l!BZ}|2y8B`0&89Am?gq5ZbI|UB z2=%Ygxyue?dsi<&H^Cy8*?bvKr=i4yit~eEF|A$z%Kdq`R{UA;>GA8j+q67OBv?;y zgb#xHP^?T=c%2;rPV6aVKNgbYW1RHGHaaA)J=qn-BNiisSaiH6o+pZ~FaD2eD};Jemm}ns-ADnAog;q)!q2S@8=9Om|@qI z-ELqs$Fem)QnVB6E2i@pX+Nou_?vG$XgFJ$!d;E?ZcKJ}3bs{90> z0EZ$a6I=q@HojO8i}N5&?YFt_HX1;)IxZWQ4bhZ6xO*358rCV>6SR+YVcxd^(FZ(z zLbZdUHjWr)+vgDb9Gv9sQtxd>DJ?uo>P9MbyXLPOCE6ImI+Llp8p*Rj$3vaNa%g^E zVyBjXFTb?e-yKD0X!i-C(E;L>krtbF{hUMkpyd+B8To#J|M=771Wgn*geM`rqKVEQ zXy-$WBzox0>EnGrn#X(20z%fV#&HC8JByJt0!#Qw7SpAoc6nL7Bi^8B5nIQh;GQpj z+w6ehq>p`GAI;R8P~YM~+$7u6Qgyk%`xXFnLD2DZLvPKFba7FkS zWvo4M+uzy2YfEexL)}0tXR|(ovoul2VR_o*yf_PL;25Ug51{Q z=7Y=h9z=vMY~HQ@D7z8xdBp?CgH`L3)mTw zul;7buAJ$0k-8eeS*u6;bhq(%F*@7IIc$`CcM6=0PH;J1YVN_&(Dzw$qY9!N+|=?j zmJhA^{K&V=q3t7EkUOMLT5P+ntLV|WNUeso?WF?@Bvk~FnlA_oZh)*;YO+A_Lm73i ztaZc;Qi3pc#PHlA4O!GV$av0mh`nzYPLW@3wTRjqxohM6Q+4;)ARf$f!=^nFM!0K~ zEBjehNkDQ}?bG6V5e5!*JWm9aBsv26l{og!F8YI{+?0huKW|iUm4RQ7AEN+;V<&+X zao1YEA!fH>U3!20Wv6F?Ji5??@|wTsglTF_09V>~)+lWq-CcwNG(`|jP*mmlXcyzz z9_s=A?tI~&PX>IweORCZd=syoLQGjJTgnohb85 z`lx?9fm3y{rT&!j9wI?pb9mnSpr3dLeG_OV=Hk$1=Vl zRg#od3IM_%W9CQ#;+A7EID-zcq|N5<*D6*-?3h-~k$=&2c#Q!f1Hm~UQOSf{!7;tl znXXXnl@Op;2zG>lpmUAkq6Wy9Gg@H;)?>kbD_9I!ig5wR2*@ihu=f_BlX~_wr9j{} zvB}rWv_Lhm|KDn|0Jg%jIejT|DMs8K8C2vC%^$pvF0h*=ATOEX_bsDaENd_0@MlKZ z6rc<^=uVU=yVo#Xa#YO02_~(3^ClE>HO6<;i0^k=vG~L{n9)APhX!)Wk*mhC#vKbH%p7R3zf}S@< zkLnx&4!tmUIYw5D#Iu@$tLfcxDeoO7TA=;v5%fb}Q{4E+_8kEvTT9#cG z%h-GXA|lO^ch#!~$G1_bT-=$@FUE5&emv;PGhH4Xk#J5sq=AaoZL#Im8C6=+cSVif zkX#H+RVhby-SC+S9UO^DP!wNgYC}El;Y|JqzoD$I^yqhRdrbGeSzntZg(aNx?Coy1 zasy6c+Oe&@XDSYFTT_`qvvcuCS@#hf>U+U~F%Q~P9c`HwR_iSm^G9$SAS6)}UAQ%R z8nP70^{GaVe^b)7?>d|N{yFo0s&LAU34Nus6WDipkVKnn2cJK&Qek(smgt~4KbG7G zKo0Q9T5Bvvqh3#1tuno@Lr;gJJiCMCpzL^jNnYCwxA;7fUCaJ>nI874Ij_!LHlMmir`^x2L`R*gj>_m4BrW z?SulWWMB0boRHe{uB_Tz)bs{y`{B)LS6V7cc}CbSkFRl9&%3gsVXp_YCGoKqgyZ|Q zrhE9ITw45kUdtP7=HofiTKMr#4&FdLPwPrI&n<_;K>t&k`|)3;tHo~z-8 zr{D3VDm<4Df^G$)snF)4OSlXWEGhYAHxC}bqR+RGgzNIw`+arP>LT-zy|)n3AFe;L zFVq9vC@RY$9sniCOvh{CGQVIZ#io460SQjZbupt!&WdJ`O7Lz)(>7rO&tn+pDM%_u z^U6Q?>7*oni6WRd$K4CSV`fXC7&jklB{R37%Rjx`&$d~}#2%64L)-xU1~~2YtjU|D z^>%}g>8S6OKhRfp^?ihpQK>Q)zKiTip>Lb7R|}A5 zn#aLvwcSrw5PB(A=ryo7oxk7sSq(Vb81MYA3=SD7=Xr^9(B8}V>}Cg>T4&nh&?-&A zlPYjyWVMymFEE_r6XTHyNC?~mA_N=phMXhmM%noKvtAWXER7pf>eiHF@+ zK@<|%R3ZbH0iLBzEL-q^Y7NM?$Qjw};4k7f)4XN0cF6f3REXVA5rlk_wW^R2Z+*81 zH$4L0&t^!w6CYTarg5dcEGp2#vD-}w%`KY5k*@-9i%wFC#Bz(g zVaetBdLL8iUr<(t$*&vK^V`C6v zqO9-D1=6#r3S_aXuC)bkLf@$-6b!DRiU)~YLI(|b1#=yD0c)Fd+4tp1facaP2;A`f zwM#@;YIc{RCx=%7;tr5Jj3zXalhgd=VDr9rR)jqxAeWCv9GZZ#4zBD8$Nz#^Dzc(j zVon*5+;$qs8u8AO20Nl#W!Ms$;ls7!&TwiX?z?+{iu#3pSvPA~3QqbJ7Z;Ry3y8s@ z>Q}xV?7nK|$b=4k0kk0oiU%#ElDN)Md>s!rd|QR9hL?qv#EXrp5^OCQ4y?M0iN7r? zSLGB73BQ}!LJ2R*2Wt<0u7=fX_56v{!)xq<-yf@uPUYY;vok}HP%7rK%CZB%J`xp= zUk}rT34n4QHOCO|K$lK}B@<0`O_QVbz(HuYwy1;{=t}}LXlXmuex-61sY`k~B>x() zUbMpqgYVC;w9e&>9tpC}X-44j^|Qnk&gCvV9QxlS(y7TTXTY<4X5yJQ3hdyFiTORb z)`3Vi)d-MOMhiP8Br}K9eTJk@;jZ~iY~tC5-AMUSdA3{RCdTT>26#uxdW0DlJEPI{ zOOAs`kUoL9`YnyZN6or)fw$|V^yuL)07|Sd@$A?aEgH43YGxXF#UHk{<1*vtTZ3j? zl+;ImZdR~#rL!0yG>WCWW-1HNN@2Tce9PZ~W)TJi3~mb8F4T5jQv_lrno-NgIE~$- zUGW2_$XhG32))BT@Iwhy^lZLS$8(0x9KN1?=LRFf3tzV5ri%VSmg*7RAJ#`J;x_^1ja}zb{4*oY@=h`X~?B>^N-x zu^5AvgajJ+mcP~~fF)HFK04}1`@c<}*4ErBYIyp?vB7~AgCYCNk0T=0ow$QCT|X#i zfB$zVoT;p0)RX}NUylE#)H9V#L`a7FMkpV_J{|~mhXppzENg)J2AFUqJv+Es`r|PK zJSb~zf2$X3H>EMu?yFq=gkeq2&3Eo8G=W@WZx`8KMTAV+aGk&TqYdByu-@|1o(H$vsP1z@ z&`~2KO1l5*5_XYmtc;zjUT1*g#A49C;7G&ar31sq;jd{3cTG8 z?xu-7Pty1Xd635>v#8L+Xm2krV(BMHLtUn?R<`v5(CR~BvxhEg{H}vM`FP5K4ZHy^ zv3$cI9{EKk@0dRF+FYje$rVGtdQLmSP%z#QUIKa$?vh`RDi$c8)c^;-4!y52#D9xL zIb?7RC-XL78`{Kl812Gxt6$KUIOpcu#f)@AmPtgf&X;SnaHw81vtEhYDK+Kk-~3cV z-=Q_ir>X8fwUHDHwmX4}1p38cmF5Ju&)txOcYk90BieX8DIH_ld6kJ5pyAU>jW%mJr_cyPaPmOIMrF7%Y65B!v z_3*`WnAY!{Y-az*kAVe)8xd-6t=-=-DPp$Ep(&zYplQA5RLbx=?^meh{XphFfsUyz zwUaD&*cp69rxub$MUG$=HFz%VecbIZXj|EVki0b@wckD0f$TpNp|%Y>98aaM6vEHh zd??yn_hq(OHCKi|c7p?QCJw5_LC%Da#`)sd0Bo~Xo{l(y(UNTBC1$igpCvmlV7mRr z`zck@wUH(@Wy!`q7K%}u(Jrzo;bqwYM~+I=*-E%&Th29)c97QGka8Wsr7qV|mz$wM zy+lcO`vGo1o~2k6=?37?edVM?f)fBH1n`B|%}`!t2q>`x)eO2

=QfD)&19FclV*aT2RnvScZMMYpw@UI|7gw2e*C_Qrw zE&X6uHv}M=p#P3Iz4S37*l||2Y+D_GLwh0doTLANL!vIUS_${!>u&90MrPz=&PHxV zeT=NU-vyd>vNW3#KyGE&5;=a~-lD?QnZEfbq4MuUMj9e)$F2M29mO_Dn+S!hk{1i;rYtoX3K%4W{Gf2F6KukpJOc2WMjTH!um^dPc=U5up{@V9|7aP9Qvp6^G`b5j zV^uvycXLcAi$AawoRMleo(a`r`@^j)w89VmI8jwiU!-uiq(JBPEZ9V~)c^FL}Yo~Vm02G zDb_vhKK8Q7{4(X_u7Cn}iimh?!FJ0GcYMmrnc`CwZfSoEr^L#oB^VSLue*ZV3;vk+B?^{8f4M0Ye^S)@q`&p=*n%g~Y` zgbMvJbu>d*u=)A^pl-PF+tH7mV$KmhNdwQ1*MKIv!c81f&vSr&u1Qs=aA%p}Q6P}p zp3bDCn8iqZs}8-;FsUR+FU+i4Tl9Xygsg!<5pso+SQer8n=Zp?guj@t8;$uQfX(G7 zu~x2Z_o3EnFaQmJe?#mTfF7J0M$>tKzHnE_??63G$z{RCb}>C7X>kys2fiRVbv7X$ z@1Mp@m9_^y9erBj)1`O(9v4U?^y5{0gT*4RV~olH5n1ztom!8$Q}5&DiDH&=iVw{A z83;ikc)UNB1S7tmL*rc?yc|4Dx_wdY20q8vkGeJalpwO?J+?Ky>ZJYNBidVlky8CfO> zGu>7H#vA-R9r7sWH{R`u^s7l+D_5wWQe_X^PdgCxREl>jMIUq&@j-6%&ONau9CjZ< z7AJ*zZO_Iu0l}fged~Oci3?=@lld8-vdDQsHKs(HHagR$=wo|?b8oK;|=PZ zR2EIgm0k?_@^L{fqjkzMGzb=gP`I{eyxi>aUe7!U8;7A>YZ6M!=Qg7E1WYOfXtt}O z-8U4|_*C%?*rtX2p6eGrmj=NH_XPXQZ?|h$W4%p?W=O9JB2tC5ie{?^o%?~!xO(ws zA_zFSNFrLMxiYn)eO_jmdzTef8%%Aq+qefCTb848_=EUOA(6bAZWA*W8M4ISfT+Y& zyXJljyMvQ@4mz#dK`5MLkh>Hn4$cK2wZ^su{z)N>4!}-Kb2YFYn}QZYpsW0d zl+FS1?^U6QZ7UnqYLgUq5oDrk{M-r%QXFJ&(CNc_ zkWSdX{vWR1IxebqecvXeqyz+pPC?0`Q$i#qRgjWS$)USLU_b#u8YC16NeQL98|fTE zx;uRD@!8M*?)UdM_|aK2&RXYnoX2&a>f*?lw=;LqNu(Y;uwVU>aQ3UZL31YMw7+E^ zJzCQ8CGVF^zaP7j(?Z?^SRHnDt2n9~-j^61&+nX1(~3CdPHUdSjHibtHpdHZ7F!mM z`E+xg2On2Mxrj;+ni^!_;mhYkqI%5WnZt}(P9ElwOlQ4Xv8Zx+Up^lFHDjzfDk4-C zyJ4rfwIvjn307UWVKiI(`J%`R?}_k{7L8Tn()f<|=5$XPGG24*IO7E+LrRHc18e=F zIID(aeG;{%ma7h@1UsU=-YW)6{wGpJgYkEho^C9OpD3UG;@gT?5 z_O%4bDr#XxI|ZY8#-Y(SCJs$T&!)#nE_HS)C)PjlB94SC7X$upz{= zq5x|XYG(yo@I4#%Gi^K&YP?XHT4qYh=h^$A{8Q-yj{4HWsaq!aGoy}i#k>7+AC7yU zEMFv4N3O-26Ha?qL)?kqnP1J1d^fRu|EdC*9j1f!l{uT#rq?)21@S}RH4_nO72n=b zA1ehgLv$LH_o+^)jBD~Kg{I6%Uf;xHkyWg0l{gxGlL(f@S4l(C!6@@M`IJGlBC!a6 z5V!cBD$XEih3wNhzTargkUZVN5x?55Ad<8591&d2Vv+xz39^{TKn__S)B~HMTMVZ) z6n3>En3nVU5w5a&el*XMuT0i@B1J!V3PQMa0un+&MT7md(R*$Akt(O250YSmi&ajv zU}PepKiT>$_c=~n46RJ&T`e+y{1;-UBgxk1a zFt=?uz4FGGy*JlagwRgjE>h;d!v_GQ)R zBT>-}gOMEM#;cCFfU&7_2!Cd{(SY=GxsfLD!bh#0I*SSdefefeaT2E&@L?J|p#~~4~M>xq55YO0a-%2V-0?CGP zX>qB6*8NrD*;A_E4>7qm^yFn$Q|3j}is+*jCgE-y?)oV$IGRpV(w862MVTA=3Inw*hr|a=i z1d^&HH{W=>o6VX}G+(_Y6+%bIU#7<6DnmR27*Yl+Iqh}U`sv&KT7=}pz<>SksunWF zo-CPA)uK+{&vr1Q`LP8{a4+yre3bcEsZuHJWfL^65txIri^)fgI#M^yoVwXqbUsiM zqPM8b#%TrgeOVMK)#8{JI-#F^#p#O!_v-u@8*l`>y-_z$AA1Ul33jz+WzJ~0#Sm5h z>KU|!ADGR{#=qhxq{z@cuoXjmjsugPOkJNG%ub^))8|P;t#v*dDK+`$!X2{I9PXZ% zS{qRL!+@b=Bcoe|`*la*O5<1qUlQw+w?P7qcwfrN&BC?WZ6^Xf$}LFu@wI3{^^J+Y zAgMDX_p6{cVrZf@Cu*wEc~5_k>9zTFnjn|f9~Sh~zH{lVH;_S%?6jQ~#8dMJ zxb!AlGE3*Glc}&sua95sw-OG*I|IxalEjr(*Ren>q(bK;%cMR*C@|Jk$)?gR{OPZK z!=YNS47=F_2Glw$#ohpd49P#4%?+W7VDb>RWHei5lOR4d?42%e)# z4WE=gi{YN165U}gk~e&EYBC|eT8yTM z#}3*IPg9U-*zn+jr*G@A@P}1 z^P$pW!z`sWPKn$#RCn?b@1^k|^hcb*Q%t%L84lB$7L`8YVt%NVm&2Ru#@TE9=y`et>-}e)(4D9D*G` zyLfisXk(nUvGfZuXX5}|!Pc8nE)iv?)*n|`oO;bVK&m1L-o)N^)mhRpL+WKT|1aAMzuzhJX`*?~o*zhZ~8{dzPu$l}r zh1UM@eEq4G$?WoVYxmO8?zrFwaVVtehrz%pp|bZA8DLPWU{U4=q1HGanQB9N$VkWH*jZq-d;Ot#p|d4lbr%&qI69Qy?+7) znfP&C=t~t7kZx5Nq0D1`({J+TY-zyob`@ZM3lO`fs?DvjyR@(F<(4&^+#ChEEVu{V{*b%w-Y&Z zmRBfyVm@-dS`@7fdO0&t3|nS4SD;yufUzQDq1aS+`nl>iE*j!5>8P`(tY@iPI{~xw z!r&2-_0_cnS*^>)^K|rln?{+R)<52!{+K&EHcT#?>fHf3L-m`ZE3)99e$EOi&?WJO zxl{@-{>g_fvx^U34YJYMyd8=lPez%!J39=wgzoOI4cKvwtovDr7u{pAdnr$8SNycS zuU0;x2CY^lK~zm2vO%1IiFS()|dmDv;j3#^7hjmbF>fW~$TF>-vxJ>D^`{s`&`pp`~d)Te!_dGpCsukRl?stv1c%2Elrz3&` z#D;1u#c<7>#>9q?cApO_%|tEjWN+|RPV_f$iwSzy(+FQRx9@CERg8bV?=1Z7vu}wZ z$c3es-;my*3pEfCsg_D7o$FK{ksbwt#(lzvs38UhP8RN>T>rP zOkU|RvIty!*8}y71XDPSczv_5#NOL=HD>*-qV3^IH%tfaNv7kMzWna6m8`lo0roL( zgK>JxZGlipj6ir1#r2K(K(60KuVKLpqG5tgv#8duV!Jg=e&lq-oBVg>)f$ez2tP^n zt8~T8mN^Ld{ui%(8$}`11{uS8`pdVFr6pWKXum3p;1p(rSUpuCuYGS`(V$_}V7x>> zdfn{@8W$^g0o0z%Nl^&y_j-RobLArqp$DAF&?_Ao4iU>y+`qQriip>Pi(q&$DhzG~ zr5Je6;>t54Gyc555b%9 zoyH?EgchduW`CKyQFu*lF>)`Q#x2SB7c1=?_D8#*uzk0N$^;nS@DTm%z-sf@*B6Mv zqJdb(|I3I)Yxw6en?ZXahR*#0qNs}{soms{GP+xC9YwIRmP?_2mZ&5Q@hku2zTWoN z4@n3;FXP@nxC@_w#@^bVF|U7A(y5VALD#=ndM5N0Un%OD_OIM{Qo73-AiGhrphw}} zFuE=mRASQtaT2q-{4YskQKpef7|?Ew&POefY*GKSD$Tz6_L)*H(W09FK7| zQh_@(3ofH7evW$n;8`gL?Td7NG>Cx|=#(aC*4494&zQdnkZPFBe%2|q#5(MHg=aYS zvHT+EGc|J(1)s%l_iL}-JnR&LuO`>$2S0RM8ewFm@(LH80S*>E962l^H^-wn=|I_5 zIBu#5&&p-U!tTV6t^ZgaAN=vDuid+UNSR}j;PH2_lQ)vWXYRjNl0RZo5pIjMc|454 zEUut&2Avc+lOhs;#{%En=lq2fUF9vMQ;#1J$e5+k$C66(x!y-t<_vGYBhh0$3X}z^ zbkOzunu6ye)oZRAn}-YkDS`~cGJM69ROX!)zaX0lZcwd7s(o@E^%tVw4}vfC@g}!5 zH@yD_J(ol+k(k*QI)Kmev6A`EO@lblN57~|oa4PgXSO~J(4mA%->dRCFu^x@&~_!Z zaH0C&l;Q1&_gV60n%G}_EX3reQXX6%I~(7yYT&{n&u~hEk6L5F$0k@}O@cr0iDT%RSCSo!0 zE{-~u30o}np-qHSIn?pAyuXVLzY^)=@7>SnUA_3DdDWn4YI<+Fc^MV|0PLj5I;F5Z zTMIn+!koUIXWd>6_>$mx*&A~xH<)ITA5DoI3x=f?c03sfI2ZXgi7%R`n`Mh<9%Eo`f z8k@D=&K9rz$Y7?VV31^>nJi-v) zoE}DEkBDf$p7-9P`E-MZhVUbJU2Ngudf7l~3P9O`e#uiJH^>k-7`RF3ru!X}$z4hhBNIRO+?#bvuGdLa*Y%E#43p(Eqa&RP=Og#_OYr!>`Mwra6c z81VTnY)?WyxIyrl_)UJI+EMM5IoNgsSx(U8&rH$Kjvi|U08Dr=Rk0^rDRH{RR$di;o8E8BZc5GIsm z+VxBbB7{s`44^Ff;7ukp*8~IAl|l$FR#4{W5G2lhzAD-ff1o7ifz*iL`zY-Xr*W*j zSz=^Zid#<4KAsin$#1p`8`WKug4#R2Wo)2J%cPvIgFow(RFe!XB{Tgl=Im3r zvg^V0jnp(p6aJHG$K!O$lBuYt1em{=POV&br>jP(d_q3axsGWl?dAVMJrW@Y=`USy@ZLH?1I_Y1T*KG7 z2)p+bq9b~=z2tm!2oIin^SQa4kXZ1j1IuNLEOPpa>hk|GLnNc~>x90acYH zqK~<}`im-&Tr}mXS!e>qJ3`=tDnIA&NYjoNqkc4$fieyqg3E-xd4R8K8{0P?5zG;g z&cT?bF!^|*2Dx5jQ$d03n<|S0E7)22EoP@cJ!`|wxXSsWCoz^p`UTBf>`^!2qmA~9 z`W*OA=ih`6PDGK-!L7&lH(!wg&Q)l_(N+=#wDK(zu3VeD=*Dq2cYPUPgeD+?5W4jQ zXgz}NqV7x@IB0=vQXl^0rU3a9O?c?JE0Wi}?hAEMLDm;lK5;YeN+YvLvns_98?ryh z6WMCT0X95UK!gw4NYb_K1yfZN=%7PGDK#6&ah+62fO&@CmbpZp(s`&7+#1L|LH zVtaKJ@mtF2`mZ-u3Pe~xR-RG!w3#OT1dQ!iOQ6=dp7SIJueNZm+cnl6>^3RX57Q^v zSjliX1DIH()@isq59FkkqBONHBxA`d(3lTfr0M6z?oRI2@rAZDn6&9=wN(JWan%dF zqe^H~RQwVd(@UhLzYFe;u5bp&BzNy=z zpz7hD@jaLCDQ+n3x>aW}sM*`kOXtXooIdhqG}pXKx~hkHG`;Td z&}LAk{H!WA{rX+O1!6E2cjYS`0qr!#?7Iel+zQ<*3(OZYh&u_!hHv-nkB&#xUiB9s z4hrYD;7kOyEJ7)dz1>`HPA25RXy~12+1>~FjK6r!=0AAO7E$$U_wL>uv|35e!s4pP zwZTlfC6bH-=2!5~WSmi{z_jbhsJ5cZXvq2^8%374MuRqrtfwD@gz_=+s6Xe91Pf7A z-*mv8*Knw-hPbUALGQ8P1-W?n(omQP#=1&+fV4GMO^YId1U6U;hJBI)yFTcYpDoM4 z@F3qle!M#NApLIn8y%+ES%Y2Bg_21k8F=g{^Y$#k0E3#LG9HGo%Im^WqO{)+#G6mj zhkamRhnd^rZRZ-UR36U}6pD5)y`v20TYHgy>b%ql8jth$orgDno|-lVZBg0ReA-!k zfzn60F1mI`^D6m6=4w_*DE>keH9S|-59}yP5rppYZ<~c{=52t`r}sD~!s6*cdV38_ zH)Mh>jcfReB0X^ZqZA+nuoBRGG&@dg1i8)8F3RB?)CN0+gB+GpraOy$_3OR9FMBLP zglHlsIAQ$v7*KOj4JriZTt+L^9utKL6#!jD!-4(iD_^YvNH=U37YgM#D3YV~1mL^2 zu7QVWNpuKh@VU7amiRiVfxpk5eRqvVR&dNs!WpPOR!Wc?`oMU-TE%t^kMsi~nbM!o z?OXW^&e&F9(luqXP2hkuquA8W60i2UL&a+ZnPhEmy){#+W>Zc~?UX48BQeX{zxe)x z`Zg=3%9bpr_ja0&R=`TIqM-NRquMWvbSkz5{1~Mcmk6#2s1X*~rf5w&`n1aFq5`*l zJ(!QeN*}%W{1hy&vTIZ73fRk+zfcv%gDc+shvU&tBU76A^?oZ1(pa$whGQ>)d?Qk* zsb$nrV=gH=5PVJNe+|=g)zJ};y_0Ok$uT&=8!v&!p!Qvb3Z|k&)jgUkF}-+Y`T6lZ zl8dF!46MzvgFE-39}@} zW^RL8mq)7=I%}Jkm#~d0kE<~1s7p2(Ep-S zI<$b_&I16dvS=AYM8VycTci$2jbI5sw4>ukrl#D@{ z4Opaa_mkmoCVJG^)d&`C^hO(WAbv>)&Kz7%HJ45P@Zh#VWw!$PC%2^NCNLb87DlYl+x{7eGdCI#VB&v#l+;JvyK{% z&fh7)8fARC0H6j{1Zw|#v-4LCe{QcxxpNr+|g!7%T&NXft5`cD+ZQB zdxz+nM>;WZWAuxS4-4(z^cP4Gpx;7QZyNpJMZoH@27Yjnd;ozfLR&h1Xu)q=YHb zT1()T?lMcfQKTC=t?7)W`T|qAvGxwie;jC;=_}Zh3nL4SQD8TUZO_+u$MV|o| zUIuE!N;;;3VH+vyzICQISJ5uBB|gu;D3E~1r4We%ZNrgG%yJZVTu72MIfOYewvy9u z%zbE0(7iaP-D03aADxrSHWQPW*Q%C9C7j0Zjy<9H5W_tcxN z8lQ{9k>B?1lfT#9O7YtvGZv|Kl#XH0r#1bf+rbr9f)L>jmDcx;*2jPf7NsYv<=$H^ z|B`k`M6F;!Jrms;F4k={MH0FM;-#DDBbZC)X?Xm_k^M+RTCCl9THnWa3W8$^z61e^ z)HrmC@Os%?>KKm|RARBXmqhAhBM(-0z}`iT=?oF%IxJJS8#Gr|5gR&q*yBh0CN9Pc zhZ*_Biori>DWvRF{wZscIsH@CjJwFfV2mz#!%7epK;u5Ekt4HkJ6yvHr&=3a9wtlE zvZwqP4;DQeEjIH2y75o@GuUPp8^4&~Wi5?W8pPCU#HW;mY@eWmBg&5sGY-a=9Dr9_ zlx-}#Cp7z~-+*V+j#-6na*&BG<}oVRXms#iPJxyDL;l^V7~%s?oP0=x_o#}HfR7Sb zpM-0o_;xd1lXK@MSR={*_$mXcz0gv@AmeHLJhYoN@5)TvdtI3LIpqlzkI7RX=C^zK z?~I@1Z(ZROC_7m}OWD-y9~)Jms77-9#OIz=HhSB!N!fb^=4f*gs}jQ9mgN{Z>c1>+z8kiseFob)uF6VwPgFQd#jSg_aFE$AVTtF%5zD&_Zj`j;IB zJo?KH{pzt!+(}bTVMAhDH-^a29Ga*A- zr^BxBVeM=7`I$=bI5jcysJo+B5FtEK9PLM=pYkbU<=&&j{;=kTixW=13W1S-)oG@) z6vp3Ht{dD}6J82=>qsZe7J~Wd=$yWL=EK7_^PY=`&-E#!fC~n z?8o*aGEogIoe+1YPh)ufSFTiJ3!o<2Da{U{{g{81yQS10U0k72Ta0u9{HzM3d4eE^uj5LV$!&-ddg9^brA~m5ma|WbpAB{M|hL zFfXbx#4Lb_()hDz2(l)+wKq<*fae{VOO*>deVg2-tx)YSAw4~o zXFp30Pd%na^BP5Jn?ho-AlVnnGs}tQ^NSQ$I17;e(}upVmP2KUWbtG?5S;%4$4uLu z)IT8&pZH?lP)v%<<%V@N;+~=G~{p49VK`&VdO6pj) z=1oG?N^60CVdG?`9P!GByK-gMDk=PrvL$4Z=<)jU)LTruwB?I(1x5+lmsxE~pI!&< z#^lbaICHog@iZGuPX?M4G?hJoIAx7dv@2^To3=9i!6Na7mgC}Ws~@`B0vpYm0_{Cf z61=`l%?EqepPrwfT0f|bJZ!vbjJ5g?evE+K>l6R_hSe}L*)bWlfW$xO>}XvG7mW-p z-yjm%MwMHZ1o`aKCYnD6aHj+AF&gN!WzcKn{e^jzn_ zXnx4zP&hi1uJ2>LEncOzkJH#YrilDfyWzFYGk@nQGE!YF@onOAdCX@Pf3czsvd zQC!bOdqrcyVkt+&T~Hne6|!dfj0|$!M&C_ilCe&)`6NG!ZV!zxRc1WkJ)L za?AW*2ASpbc((>YIdrF$7Q}R}mnv5Z$dc(BaaCRBbrf%I-6kP1!ThGIO7yi}ZF8dD z8nfGV=182keqS6%u)+o)rZIB5mIlA?7s*SHbkm^nKt`kXWz)CK4Eww1r7UUzCQN>r z1}*LrHkTL@*O3-U?&^8!&f6@ip&^#MpZ33CGU5ZRKY5`8D~auO#x;X?x|ioozD7=( z0=#<=e-C8sdn8fpmKQ-krBTZE-Ay(Ozdp)#(!zq2w=afRi&6W!5YsVIh^0O3LL2LT znzFT+^So6_uA{80CxJbkgE>ukcGD`)Y^23X7?oIYAR?@@yJfU{S^G~M&eo6*?>lMV z5}DE9$S6PikF$SD21?DgM!T~ox;LUTY*ghb+y}o)yv(-&oq>4v?)Ib{iTBe2iv&$6p7(m;(4z z)i5kkJRJP-Kw{u6#_-s4d1#lJgwoosGe-P{m&I19_P9%lqvbLbZ8z3Ie5HKBYV5q>|A6 zR<*~YBK|Ug2K0II=iM}uUftm*IUZR~PN607GkanDB}xl~iu!z6N;I`lrEgv1xSwl6 z-T>i9)jpy~$LYjObHDY0oD*R!iQ&C*+|AJYyr@;AHJe0OO#1a*tLC- zRM>=djV48>ztcnas>*5Ap+rVAg-lw`8po?ehv=21Q@V4COca~%f|7VbG1Hm1Gd}yo zs#CPU#BV1}n=e^xevVvY`0Mn=E%Gy#^hZ{qk{dFIahuzWZt3#@Z9P`&N-^jf_f0gjrI8wM|DZ^&A zG$@MSQURcl1QqTV@^uSK5^hMyIox-~QF_x5BUyDWuX$Z$0QyTnx`oFWK@sXQyI#@n zQASXnaBhtXbNUvxI^GWoFSTG5uj9bzNS_k}3Ap!b(U#O-Vi~;WclJ}JuE)Gx-t=WC ztm6GMFXzLfj&Au_?^hbH3ZAZA5q3u4kvyP9#07k0YS0+ub(xJ6)ulPS>`ZbQG2}l% zZaomdtwUK>?y#KokrL%bBz0~MM_X#9ggsj3XC*8+tX3gTD?{N6M^sUfL`v~zqB%hoJ`9F(?_1P-@OGX zHKyl6_C5NaM1~t}6AlUlY}2$GUk?ODaW`m_Q>jVbxMlj`tebMw(i-f>*}|F?(J{F6G1M*c$6DP3UZZs59Z+7Pv5Z0 z_3;kze}*3w4Kd2vrXmi%RYD$h9yh?PB8uiQ9mWB)jp_WnNG^%o(be2&|`MRHqLLN z2>Az9#uKF1+Ry#?ov3H8p%`3G^0%-`XzD88U~-+sMbRGhOrLXo zFTSm@t^*O3i6?T5-<)|@Yizh@aEp#?PVwyP*t;r*Xe#J8oL0;=5U-<70T_6mg8pow z`0u9xNq;ZHZFDaAAKiJmab@;XPx?&Om0vVf7?%B`HZ-F>3EE=#IOru2zg{QXx%4P{ z0~pTod10Q=2fzDoJ9V(lG=N!!7WxeRZOA{u-<3(7%r%Oirt#YOAHi-4#yIr7uigqN z3b&uipQ=bW%!}hv9=2hlpGc;lpd`@ZMls(3QyK+?_qgJ~^K~A~sQA+mIiq<6Un!c; zDnCR)#)UpKo!3kfv~EAt-O%GIig-Y|{ZJ6}2gjL-u$qkU5!_8IW99Hv{{FGpW2uB& zzQ|c9ubN(d3Kn9qsZ`fHqB^GWjh5uGtH? zCd(TIs|z-s7(OGXHn$aIhmxMGXM66G4%#NzraWHEWF5$M!{@xFEKsA@;B(;|@#mDT zA5E8IvnA>Cj+NX<6%{41+eIFm3SV`^-cguttG@cE~)= zzmBOk*F=Z#5Ee6-Ub)xeVo_%G&|HRpvL^~&Ey{1I8N%Qn@SpZH#k1u%&R09tg>2%U z$2gpnrWE~TD5kByLQnU=dMhnuHHpFz{+cIE2hH%i{Q)J)3s)NzeiO(ywrLL_Pb~7ATX4XSGkUEQY%PRw6R4gNz$glG} z4%5=}Tar{9yy5r6!cHrC)>j9IeiOj&dpeD`^TZT7SD7PeZH`}CJH#@HEt1fRj?h;OoJPadnT;pnwCDH)f3{*t*G+E}qE#kHeF z>cv6_rrI{E;G_{cK6~Lvb=65rMe%yg)K8x7592Q>v)*Kgxqs6=0n`-h9RGYEU=AE# z!IA%=O~p(P->EEc$F3up+0RG{3&ACtB9kgSYGbrM7LO+hwQp6wtmt80Usn&~IX~DD z;&0E`|8HYe`ZWgl%<}yRu};1F!7j19kBVKJ<;Z)tmh~IkMX7H{;zN8ZR_mT!n2?@) zA$UkKq8OONZ%DlR{SSzX{J8uE`a>T=64+mz&dREEi)wwce%X3V7*;7!8u~;y=#KiA zy_@TlPgmuxW_swPjfDE8GGcL*q>?c=_Mc;14}$9zgb6Gjzdx)42=#BYtepbUau8W) z*HkfmG++>^ADmBoM=O_wrs59He}#)-a7VB5yg_G@I$T=m;OV5! z@sDRwiOj;-8l0-I+&Ybq=I$kT6^U9g2m`&#G*eu~>2^P;yKVqUFsSlcgYR?m&8~XX zzP-;xCNW>$)tV2jc^AGooU*0aS`M$xD1JF|##E`fEEwV_NMaEs`fet3CFalylvLE^ zHl9ti$@_-MGQuW>mK4`1jm)HIm6f!eTd#GBj|L2%pR`4C)KXT~ZFdJWKP-mpVs-R0 zqT(8VGiLr@lsYCNi;Gp*>*%SKzEY~4*Esd(DS9v}AzKNU`F^`+P91y5svwElM>VZX z`{EF>PZjpq>)7fwbqeO&%c9pm1u4ESrStXXFDsAOpFiYQ_^4Bzc>zN%^ZAN;uP@a` zO5-FQd~EzaoD0dlQ8-doZbS48fpExsn{f>;UE&7au5&3Y#V5rAMI2VliMU0s)Z8H> zzQkcoQ}4PHx3hT+*g!`whUOk z@&1~QE6PCbkdyJt zLuSF}R(E4Bu|cZ4%CESrD*#niPpng$6OaW<9+PjTBX_~*B;hO-cYv+7#T`~%CCEK7 zukNZaJO}6N47t#`YGuCqPK@X{)QHJG_KcS~@kT{=8mx=wtFKp2P!A6XOf&+&_H0Pl zmN)iFDUI5>XnbA?uE!1!RnZMH76jPfDg*L$L3bu&fo&jJpA+m z@*9Hi1L$rR)LD-$XzXj3!su&%4RwzvsD9&jbs~g)nb!Y7UHf~XJAKG2IR5|VJ@O7k zI83oAQY`~?S|3xlk}?^#Z{YituRCHwnDv#7=qYinfbzFgS0_8;&Xk7}zeH;dG#vU7 zg4}9X(`lWY^}*U+V4;aawOA;kHuUO?F!rYgiKFo@K_aF9NGs?16>jn!jBT zFe|yULTO4z6Vs|mP2G5DEPbyVbU9I8d32!HsOnk;xOw*9{=Zw zc@)HDp{SahU7YTO66aY1A7>wm{O!ytR+kE1=#WO^+f%QsNyC`)ga}*wzA+Kj2Y z6M9tZwjbmicl>-=S==<&>Vb(EFxx%rNJcrEa$4s#4hqdUz6_Rhpk`2)G$yudB|6LL zy;Cqhym>!}a1E5@`W#0QS0$JhTjmJk2qSW;XE z_thAu2xmY`VCSeE_=Q&X9nvhT;)eLbFu8<4bj{_2qJLvSTbF6ID zsgDrE-->*qq@(GG#{?gAA`@A@#ayCv2ac$%(LeE( zV(@S^f?fWS3A(#p_BM|@`MwIAEYtGWN(ftKSy+@RQr%>JgL3wx4xCmckzv-(mvPB{bUGaXeQZvX0Bmw!#as?7@@c&{3P!H}1=<^d7PaIQ+e63lbX^Wr!y5+ z9IP|wFOXX8$-DaTGSf~1oh0NCA<~kc5&H?0YB_>PoA)QfUU3#kAiTF(tiNRj%Ge*b zqJWc6w)Hs^HLFNnE9=TTFc*mOuQ?glesfk$J|SQDjNbrA^>O+s^sIt3u*VQSRrEH) z6WD`*8l(P~8ed=SHA=?BAQL$BzX_b3ZJxm|AmX0IE%LyuM2n4lP#=|WC5+&QIdP$(;zGB|=R_`g;tQ!<)sl3-<5?$gGI6Tc9iXF35QfA{V@Vs~&l+-iYHkv=3t z;HTUjE8>7;y}E6RP|^4E`cplno}?7(z`>~KP;jUfjoS#$GkOg)I&2fw@_L*9#PVY8 znN_oZWzWCh*=}3+Z{lavtt+yua4~!-&#xr+?DL!%m#kG>Jg?698*GQFm_(haGHD+K zd$(xzRO#tHhwhl}RJtFyWTsC;Gz%qbq9|EAsXovfmt$VbjblrvrgY^R__qZ9FHk0p z7a#E<1Iv6Q3LgD0P`>j0e}FP?!3{@%MlX!^yHQv(9|e;qt8op~zHu(hxsu&H5C`o$ zPnf+cvmJZ*xR_kRka@zmu$O*KL{lV#Zg?xslmP{Jd@H-cOF zl=^X@_Ye7M&_oY+AC!a@(8FHr)m`+f4Jp%bW|o_xKceG&6ve>j_JEK~-6{(zE-RIF zdtDEXu&QSCS_8VV3a*aI$UZnrhg1;qD5Pfl5v%k-Kn2 zlhMw9vWM5&aG+ZEy+r&4aTg44)9aUxr8PARjM;~o2QOVa@2`wnk-~-6^JMc&9kS=F zG{Z+115cGO4?^dbBbTjN5qo1ZlI3KJX%qmu%|VferVLn*H!(SY?oDQk@ z9&tLh2nG|+{o3jp+;((vcOxu8$F?s{wO#jJL>0C+#;5tyGe!mU?C#DYvR*K4DPw#v z*Dtg{&Cq{E)9y|ujQ&iY?`5e2I5$W&QOrW~B;u*e)o-(riang*?}3&V=W3^+^kG0? z?L6>rO^O}q@^5=fRQ9HS8BY`;7aXYR>9mEKisAU&Y|74~#R5%+Kle_I>_y@aGS;04 zK}@i7Xy%`tL)zctF+caW5$ufYDc4!c`*Zv$vK(Hy^H*RUjPYV1V#0ZVYRdO=(;CIu zQgQ}wmO~Zbc{hFS`J2n4mKx)?lbcc#5=QyhDteh^4t+m4t2nr(Y1e{y)j#g`j>Ymw z-^7hby4?%;__!F1e*CVYIxxk5=jX(X{78{QS0M>Yw#A{RfABrmY7Bw^Q2Hcl^YX9Q zPlzPdN`O?;V`xU`d~yz02-s6*%iluwtM%}E{?%Tmrxac$Ni@|=r7ELo_1t4&d&-Re z7VT^5X-n5pz+)M(!6=3F8YVZ~G|rF^OwvUXUMOu3 znieHuLR?bPHKxz(L%xGONA$I9FY~Oh@xx57#_rL{TPG=(-VZT;Y4j;niJ0Suc?Y_JGkET*#^06*5p4+T^(q-?B95A<>dZabG>@>7LQ>hCsXsb_} z^?Ay*sFSRsx;_cwLfeENo2@$8$6pWApBr5rb<2j+eVOokmAqn9UU|jlkV*KDC98n> zKbEYKrR3zoyUNGn6`xAQzRTLdQk zDY5ok(|`2ZQUzv$D;Dt$ee@(IPpCE2v*|kap~pJ+S1*(H6n%VMgKpMBU1rh_R4CM4h<$}|0UHrP?rn6gRqbeY8(9i;Y0XS1h?w@E(VTGW&M{n zvQhU7p9vucd{!tMWSWf6X`e$$QX~(|zpwvCtql>3m;ZWQ2N?rLvAwZ4=+=-NOIw^K zv-9)$BeY&nrr#eKen)=|lY=F1I7fcVq@7=VsBx$MqJv+q@sz(;doy4M!*mllt*|2? z{&9Y1Al*nK&^fmcuA;MO!qjvGstM7Pg8QEaYW7FZwt#aR{ppeKU3;CE(t}`xakzlB zA9X<9M}^r&{bKE*Nrj6VP0v_tI|lzi3xSu#{7PjI7-i`F9c5&f1WmXaj0kjV@}Fc>ntrTvZ7(sA<7ln$SI0ec13Iqs+xYs5J|}ZVS6*XbW8Gv}k586o zIk8K2A_vJ__sZH+*&Q=SVU1uL-Pp+IqjyQ%d`Pn2HsXE~qcHpH;(q%5;5tVx+KG{e zMN+5^H`tB$p|-wAFZnD!+9I5jLO>wBoh?m-Qt%A^#m%TsyyFZ zvQ?b>aD)w&(5a&qub+^`Zqm!}OIZ(3lWBd9adQ758cQtwgyzfJRqvV2(Qj~BnZ>8B z-;RnQN`*N@I=R(_HPaVvA7B&T%oT(kA^Bq6_|%L~f-#X>nXo>ydp9tEsfQ0az6A!@ zD4TR6nx;o;9%wR_%hAj}4nYUBP*I6(^+42&( zni4v}C&h<6Yyn)G5ifL40&@lJ5v%;Oo2-#WfWJp-!``BzV?eM+6j6g()*FyZof@{v z8;TtP{+@BYd3^xwK5_pOI!)LPe)35ehhe7~%xHF+ZMwdrfYv>`l=}IsJ8~T4{`yxn z=`IAZ_A8H+UF&zh=qy?rzO>UxHpvA1&*1z`$oz}fSSXqAE2%1QQ-)MF)^KQC1Gg{hI$2L(i26(fIZb|J&v#QW(Wi*m4ZH-E2DdN1~^4 z7Ylw)9MztP@45RO&G*&$FP!-{itOJE)Fq3Zfun|Iok7Kje`%l`$FSRbG-7G75$Df_ zO3i^y%iKoK$=z3;(RD4Z^F5x_o8epcMCN-v;&BbT#P(=2wln;1FIZ+dcI#|0P7~X_;4rx%9=yCtDAyK}*r_1k-&|32qB*YoOm=>?1B z%-l0`e?JMkWt1}R@D}YpaK~f5c0aTzF0w)Q_q((!$}#5JPL%Sm*6f?Oc6vtor<#|- zAx`~|Za5EeEZE?WP)i=|S6Nx^!791uV(Tzl&31Td?GtrD{1GEmr3gegoh7iM@2>@O z=3nl8_uvAwfkWFrtp3GA9Hh`ieNQ!%s{_5s@ zZ%zCTZ-YMv&F6yl-e^zU7ncR5#8gznR0&9=WUK{%*OK0a-4r4NS#&e8WhinvN$9QD zoNCt#mRpntr9ig#Md)7~q&}>Nk--6BlvwcoY#c1IEvppFf{ z>&Cn=-T}!OWatndesebfS$pri`^WRVz*YGy9o9E zfEVMChR+_51Iqfv6aDcUA1#BWjC<&U+dKH~3f3o?|o z+yNirc&*eK<4-%^%#P)AMN*}YO1Y(w5G%u)^^ZY<2os5-8Sn`wEcIfr;oE|*jz*3R zLroZZSy*GcR*>3P{v~A9(3&M&^bL8cG*D@sZJUxQ=vZ^9dC0>oQa_m-hSZWH%!P2; zg3Mb*Y1QJO^(g9L>19={ia4lNiSkm*NdJ}(oPU`h8&#F^eS;LJa{O^AW37)dXWM`B z?x2-fcO|cm^2w5L{-0xVZ$uW;G$_2_i>cc;NiAgQ7&gZ86fTUR0CH%w!`pk$A+6IE zv-D?Nssjw>lglcw>ExHXD0nq{zizZhq&u@7D7dE)jz0RHw|8mbb8AM% z_%pLBa6r<|yrX*@2TU>ZtI#ee;!kMJGTFG7$RquQ0 zz6YT0_%@O1d_Gx@^rA{wU*iSR`olIKf}x1MxAaV@3ccY5Za=OW-j(1QBT3QOsUKqL zsICs5ifLBNXeW)D7EjG*sp$vt;a&GNRxQ;bw34a~{8XpIJo)=5+Y!lUnSncs@_DH{ zh^_J&5_QTSlmGX2EB%*`9m)u^LrmbaMDK^C*r?UxikrQy?(1OJX} zj;l55AgH_5o0u-2knldXRL8~^zpT&Gf%GaIE&|KCZ9D5u7y*tj<7TVqE-Ip@CibuA z--L=StRA-|R=_!M!T_>O_VeFf$-iW@USjRDi5|h4@(kkL!hebfigi5QH$rhy=a`7) z_-mNC{D`BbQ#WU|jSOCnEB%2KQhrJJri0>)Ab4#r*^)u3x~3` zByGb_o6|j3$mbBUwXkndg1D9vXB6eE=jT~OapZSM@l&g{wmRW6;CUF?a*z7xNFOv5 z0Fq)jsyR8D!{fdogW5m~B!U8LYgV$PB#XO$WT!4W8L-GAtpLQr-pgEahkH8-Xf%HF zhDS?+dbD723ydC)?soW*gi8)GEH98t?;v0YD!sMQE2)tc>0Gp(UDJlP3Vd}!wNslF8_P2+F3GOOPRJ6hzxe{!mOY`-V{N5B7 zVLE^r*IHw+ujC&!d#-6qr>FK7%{XF$;1xqM$bUK#*Mjmsi$8ADpYToDoBQa`udt0a zJ3KaX_5_Uf2F`s^r zxb1?(v754%wF41St0RV{gfzedKCYl+0Q2{=H*r5B+M(f=)J_v3GBv7!*HS}Z?2wVA z)#QzX5TV)&;44tm*f=qhuer^CUY^5D#d(hb0KLqGmx?Fb(I;Wi==HiDv8)<>ZLPFpr14WO@DEO8lldCqAIwbt^;bf0Ai9J&E8cuJe}xb4q7 zbx1rTfI@h2sEb04irGyk(iZtnA3KpbB+!^ug&p@_`xfWXrZ+hO<9?{H>17)?k= zSm^c%co>c-SmEiEmoeqq&VAINwh29b11NhVhIscf6JlXymofKjzncXwFJ)RyHJkhm zbGgH(uuk|KjNqlzHhNCmpCvfsM=ZX5NTg-4>^#)I4y0Xa*3`oHwwCqvi;w~bO&`s~ zdP0SF{6WiPb$Cen>%C+tr^w6?Na0c$jsxbNv;(}dYH%hQ@Q7PHS(`ay<%wR+i$b=s z`x&~)3pC)iZF2XN!SI+LeGmJIHrMr(=T>(!b?eiG@ZGzyUdZ6apd`l4e|R_S3r^`t zAK&9iVm#QZ-`1crm)#+~d6jga7C1zdN5BW8QfM6!_IpQ&b9*Zemeu5=Bj@`nf?>KT zA#u5Z+kLV(WcH&WJ2RMXQ7%5KWb)r{VEszsZrFfFx_N zghsQ1-w0C|J)xEpF?jXh1^PJMPz^ld$=#lThCB@%%rb0|tqpSKVA-=Jx8b#nQnTH9 zYe&y%TBEVv|Nm*c@jx5iG-mgLeWwYj^vfW#9Wh*_CHk=q#0YjnG%qAQ#k;+Y*D8C;~%S zwBs(_rJ4*`z7JkSq}R%WqdiL^lfR65zoKR1`yeTi5Ojob&phLqz6C zQ@=ac`X&BQ+9FYHS`R`R+GODrIh=01+tKG7o=vPR@p~ z9#n0IG!?kTk3A`_gTM3X>UX-_3Y{;g(v@JV{XDE#enR6`9ccgE)rIL`>tlHD2f&x3 zii&Hn%&w;&hlOe-WH@NP`zb9$O<(ZGsuWrp;^BZ%EFD8~KodW}w5GDhXwY09dN@sV zsn#Dp=m|aw)Qnv2a_gPR4L%4&C_%IQaMwDNVZ68L&chzH*%B*`e}6-ek&t`i+J^UdU}|3# z#7|Vf;c~pKL&t~hts{s&H>#L`3!xt~?htPFZGkDl+Eai?&FV^35UUp)hUM62;v6HNi+qb(?y z^tlj@hQgzeznBzm0vbz+w396RJIyi3TWZ? z0#*z6#x5%<@$X9oJfYW&^Ooh1oC6xu0aC9sIOU*?{$CG3k;SsU>mTZZi%^d;XEXg> zMqi|qUnPkyd_s6p(*m+m=rNlX49_DeOi}+covJspP`Ci`_`*p^Ynk!R!D#(6akTA_ z4vJ92%MbWnyy?!=ZC#5D<3F4n&-n(P^kL%ZR`si#e#`?c>?0&QimN=Ug!E|s6B(+1@WU4z`1M+#XhZ=|C(h6PZT>KXlrK8|XO8s7 zZE%l6yHuS2qtk;ONC9^5{C=WF=%1oYad`<~9*Jf7~5 zQzUu|0DgYIKgt<*W-fd%X%DU7zXL*AreqO46WFRp;lj@w3jfTtUv7bYOX0+nGi&or zJF%|xTdDg~+&#l*gqQgT^tE@$X@tMX(nF0oT7W_i%U!1?c1B-mi8h#vgFZ&|d<_nk zm)A)m$Xwg}u@lxV&4f8L7ptojwo4F(7oFV3NOZr?fz2^c>oF+z%S|*-(<92p`wx_b zKZDF8Z1}kx=kEr<_6%`79Pb7OOI;S3okgr28&(sMCm**+Up)HJn0__;CWXUiRGYLx=Rki&_Fn8N(t-Zg7Eq|` z^tc3}@<95dI0FeUghbdgK)EhP^+|;pkX{xJKUbEw)6# zBF+}-jk}2uew&Q~sle3;yTy)9K(J@VM8s8lj}8UxVMYVOQ5yOl8QeyUzaeZs+|Kri zoK>Gg{5)na_-@VU@M=OF&CQQ3fF@+O20a%;ri2^zS)jJ*6Odh&R=4ksfd6sfaBl?Wru?^XmIqoQs$9B1R;RdK5Vd|y zd=U+8nT{;Y7S6KJl{07QrsMp$Oc0HpkRFa5{^S69a#=&Ys>2__W$C&WTaoXon`ZJvxdEAZ1rLyXt-|kc&yp(tv;&R_2$9#knviY++DWL?1&aj zbEtzD6A-l<_S?ZkG|33MzWw3*zvt^2T@H@<Rt?Los0?Ao)*u~P`HQ2MEkjuLB%4gZ%)T2))N_opF`C@< zixlt$g=%P1>+Rx3Eh)1`IRrjiK{nTcI!l|-W;~q6i-l>BmM;HgAE!*4xUgP{WPC!j zTVgj~(?YF6l&`vINQ#PTADiMxGm?wL;OcycT(;B!}e# zqyfG-7QVhM@z7UD> zr$WtnGeYZGdBFo*&iVjg;MF?Ehi(P7=*hOfYNr0PbyLp$(HJoSDFfcJxX4;u=U(+J zc%CDvThoF`3c#zi!0`FJLaQD)aDi^zDyM9usE? zba1+nv$X1iQp z9A$ERiwvaGqwQnu*7CWAS8v>aoaV)3O*_HgPXyryA~FhGU4ojFAxfO8a&4SlUHW#g z@+g(ZfNHPNJajN&7x!&aP+e3$DbFI^1h0w5VC*KlbjlJtysm^>>g$< zcaf4h4-(x3#{FRuxy)1G*szzJ3w+yI?o`|WS^MK<$CzYme zG8PxPHDZq5z<$Wl#hOXU2_^EqUSZ>pvUorySE_Eklv53DjK!W*>9R^E`fBr&QZ;8B zXc5lpGsVP7{rzE7!T{uhbwzO{90>rYitJkKs1BCHrUFxg-(e@tyfY;EkVL}5#7#6I zi-r;OI4Lswy#zIRa+$B~N%IIeJ!ymue)gRE^UY_19=4&k92-Ca3;i>^LBRio5mXyi zGTZ*vM89!w!zHhbNscvBHiq9y9{V=qv5{L?`u!;IvK`jSxJXev)OWtG3FQ(n6=`bZ zP!XK454Ja+MRx7>4*MRK`;iY$B%dB}+_Y`U6mmS&IxEbkb7<|Rszf{AG(LF?hYd~| z|DpoCup)rXXeK zn?v$I{Mx}A26pX@XK#wp!pl zkf~U9WHtT^kbKT_)e8HR$^rj`Y!~~#U68BpZ9ha(939}nKm3Sk@ZN+SpIZhQ|P*7~tl9Sz`)6M`+7~E-oZ( zgN~KFiAP#)T`u#4{E;}pnw;ssp$WgG`}mxbY$~*vUr0;Y4?YgNIjX;Kz`wz?<=)K-FnYO6k5(fXFDt- z9vmk*aT`x+HzF7aF=(+J;d^8PfL0W+f-t4^*LmK>Tp*n$xVg3Me%PaGvGmn%I5|jT zTxN=WuCYG!itj3)>56JKw#(*39L|;efID5hncWe=nvg*KACSZ0#MnP!-tEFr2v~R+ z;q4__Z=%D)Tc4@h#`)^2A@9lG{{?YGQ4#Q5_XxPfj?J&b(*-irx81aCwXX4P&GEph zr&h*ny&W_Rnnl^wl%JncyZ9xO*xw#m-lf<{v=eAeMv^KV+3ghIFq?pF=fj!mRbQ=D zPjx(kq^hP2OOfiuM03giFgMaG8ZcmQ3zcJYW$UU7kE}{=vW&+b`C4uSwzYwa?B5J2 zOt`T(Iyp&bzQgawV=!zpGb->`i8pqZ5->%g4xV_|bz zRoGU^c0|8!_Tb28@5iSqCOK&+lFheBs?88s#FUy-8ZJ;)b>q*V#LmH4{5Y47D8yg2nBDT2 za)G-W{WgzPJcgnw>aO2JhM19Qy(yH~SBg7JOQy?q!P7B6#_x0R3PxasAoFv>PTJRG z^u!Uklge5;#(yvnm;!|2dX~}exaqj` zT{JWC;_=*~%jqhr+^oFmD#0mE;&g}4T&d1m24sEDeq`QQ3HC27epo&q`Vd|p_Hx!j zdjI@B-z`Iht071mZXrWk>@3Mel&S#uYUyk3v@cU z^7xpqxsZ$GbK`Uhoywb%u2w#78U9Y54u_kEF30>Gd=yb83O5Y_6h>4|{lsbd+wR1_ zq+(}AEStm}9W4I<@QJ<2HHRhI{(0CB44Dq+%70qQj&wOY`%Cm? z6hJ2?dVF-b909Dv^=~X72EpT|tmaAaV8G5o6s#bDr@x@_9V68$D4xrl6J!B^7s2NO z!tn^^n9=B$F*xA2?Iw9vYt%%irPa}91ktTjGtRN~h0{+`0xtA zG2Y!F1~;8!c-(s^)g3S1yt(6PZ=|6&y2>Kqm80A8oPRf!bKNCl`3Ge<_bi5R=hCzm z-xM1qk_nu0Tq2?gM8#(|jL(z1X68D}VKHHQtOgKm3cNmFDSFy1dMzLx(+jt1a&GW7 zA>2hPHkI3Vw=8_TF)xSW?!nTVuuRt3vJD$DN57O4}-i)q==7#!9FreWl6|a_9|of|O%c zS=!%xT3hD%c!D=0JGr6v&JhQoxQk8HZCv3Hk*OqQiy@AuKTn-xfO}Vog_qwO~ zb=unmy}pvUb&u|Ww42*(MI14gTrTD1{ooD|%{!*lA}Yb^+4WlEvcie{(I|vpDF2=3 zIw3J?6toJo(a2-=kwSp}fNMz$J)WBM&Gdji)o0!j0}BQgIf2LKZ2h%w@zf1XBEtLf zo|AeY%PHPR}Nm5iF?BvWq{XG{BW?3y|IfT1fjnR%%q*Sta=6& zHWHmM5yR?N?}kX_87TW9UNHmXa%oh%Mg-{z#OVEVRdN0QVO3XqortA)9Ajx_;b5cJ5UO+rIXoTXXJM? z>*aR;4tGFAB?>wD%d#0)VNA$R_e36yC(s5{u9IVFkF51TYWpJHmXtlY>3u~O_~owS ztRh8(K-`SL!}8}wI8><4hLv%cW-YF$jp=ffj}t@OaHhoNWVIPyBdY;y5IR+!e)3pL z`$XW$8RPb1TWxfM73|!=X4vm{DVQWR}_U6LsR6j3IZ^ zAZ?mN-QV&O>lOI0@#P3T8tU^hkZi?{aUFxyzs`}#!4>pv=IeqN6BVnD)yP~Qz(Kt4 z=fMqMz)`K2I6De6uuSr#h5p)A6a z>pf1=>rHh)8@li0AZ7?sAB@b5NTN^&GZ3ijmD&yOtuB_`Fk71@ZOHx4Nyxs??QfE_ zo<^lpn@H{-?lHUPhAr91fd5R87w95`-JNEZER+PJ$9=d)4D@z`#QhG`NIvf9hV4+9 zOL}>_L#{F`LDNr+0w20zWRT&Lu^sU~CR!Q19%Il2;KN^h01?k7Yj%iS{)a$4J=!WL z6TYuU+`_3*PwnC>{zb%k67h!H2at0Jf5_c)#BkBM#n-F`&-0Ct>o*cp(m3PIGCVyG zwn*;iO*DunOcA8PQLVsy?q|QH-W-L@^}+S>M-67y#17?v2Ah^=OZ-2a`5exy-_p2t-$8}; z6rY$V$`NRx_+03ywlt=WG*Z3Ftbu@Aa{wUE^%^E)jtdO*fylG6W}SM1UfOI=Qx(0< z57KGAG(~PjG*+jUfhl_@4(vYl%$6I}lUTNd`&Nor z+TIdKaF8-Nk3jp=f`YZ>csDq?2E1$m)_m%}So3;PaiYtNR<_b_P3P?Wv1ZgKBWBhQ zko$&p)%#&5gm)c$$J z`=~NF+!V`=h>siR=7wgGwW-UFW|?41iy5=(Z7X1E^)8o1jN=MQ$%(%`dpSKD;y?Th zK)J#Xf0Ri~mXUQ>v%gtj`-c)e*I>tle$GnMTpK_Zjy34R0$mdflDM@CaHvz`fnV(;O zWv$)J1@GZVg3e-)wEAq)-~I4Ev1LC|j9zH=>?n=N4i}Dbg<*XHLk8b3nYWh!{5dwz zHt%-CV-9)9wV|wt1VM=7DHt<19r?+qLx(=uwv`6&(3#7J9?};TA>!^P>bl3+l8m(Us)3}x5vHNVvDvLv9`vt_uH%Fw&zTiAw#X|5igFW9<|5(7Pw=MZ6bl#Vw)#iZ*y_^{p?+8f z%WKAK?F)ksl=o!Yq&3C>6zrik545z+z41w4cXd}FVGaeFkG@wZ7}3Gik%fG`tP%gE zx2ZO~xw;&km$!1LX(Lf^0*J#e*BGQgzbalOg!b#rqp#*@4r!FlTu`m(ZcRyw{kw!z z#VMjO_}^T4tTw=vJLD7lxov|&5IYRv_104dKvQ3_i2c>`X!o_3Z0an5CA?lIsqXVO zvY3Y#dXBgj;6H2l_#8TOtB~+!ix^erpL`o4`G)Kkme2i{PE`7Xr4Zp!cM9lz&tQrZA76SSUH$qE(1(Z;KI3R?{4)7)Jn%__HJSZdTOr;t=oEQL||# zs1g`94_KUNnQf&q&TtHHlbkl>%eOUpftE>?mny*Fn&v;&{s?Raj2hfAJ!+8;T}Mpu z?emF&$*{dvv^4O&(wo7PcULQ7B;-o#BCv+rtUr9)hmUkJ8?2OjQnz-#8BQR6$_)bE zTv!n4k7r(cYs+jWS$v?gt?ZG<4S;H=J}{;et~#|4e+oA+XdG+e?ENG$f)jt~Zm!%* zhf+{cWM@-$PqY;umO`f;oN> zT0Q*@jETGP?) zPglaPSKX}`76VJ|cWq~0ZuTs&CA{E2lo}@&d_bYxuET$JIfZ=`Bb}7@AV+p6lz{sy zcZTLqjWL%e8H6psL*>@t=po#kD54e%KKR#Wh>+H}BC`EeT&%CT$!}4a3>GTuAW^Lv*R3T)b2Ur{s>Nz~fgl;51*47J#mJ|3RnhuPVr=2ou7p z@9zi7R{ov*I9-6X0t~4+`y2eKNjZ3TkpxveWyccRs8$Rm$6g_tJJC(N~f{w(Ev-yV)K6QF<{xb+u?Tu`*q8iJfw7u(^M_oZelb;~707JafWWF7*r$ z$7=a{C%tvEffms88>kiG6a3@m*BEI9!8NVnh@w9@LS)!2k@;|Ylib{%Cm@!_Q7fUV zG~TM(1;m{5QJ{F>OCb@-y8xii3b%Qj-4aILrknaUj$`13lFzribG~ZO*cagn!i@(s zK*4z85dRl9p7~OqV=cJ^^)hM3mb`CWo=E;}0w|VUP*e6VRYn9|991Ynxts?u><4{? zU1UJEmr`AHZ;?#FdKOy%_;=;V8z%b`3exS2s&Vf2i)c)dkXOgI^6Q{=0nUB(dper0 zI&XYU;No%+hE#jd03&o7dTK0?x1(V1b#)2c=fX!+@@F?)M$dgli8YY6`yw0Vk`yx+ z-HAkuLmVL*|_xGS*f#7%Mm6{U73^jY#5f& z#uk4SLga*o&IQ>4!}2mg-mfPir{Yk%w~;|{_)w~I%D@> z*$hOH??4zf6NhfesuTP>{$l!Q50D%4akDsnSq@^adrR%9$bX*jvmQqopbxKF)9;f9 zzuYWmbO`ikRI;7E-p9Uvh`28acr2+^adPKU-$Q6>uO=gyZNT#&BKkTnRt-2owEzS9|rW-SMdD#gutb0_<2QK}$$L>4tUK(I$9;PbxQ^5=rI;Yfe3N zM@XkJMtl#pA3W;h|JlY(A{)e5M42bUC<0NI7p)Nw3mG)mgMvTUVClxol5R!Z^o#ZLgjp?oaKm}pLt1gwhYgs{r?IxHr zHJmDwhw~tMCaRjX6a)8#%sdH>9?ZkKO10`Mmky>?w90}Lyp1Tk6D(Z|`ZBb+%B_jt ztRXH)*a|&w`bVPMxg58^fY=_Jr?6m%7z+Lqp6B}z@l*(pNI@=g`j6UtKKT3+r691T zG5%LIpf;Dyr>Nqlf}^w zBNb1=nL51A8i6%`m6uMNE>cbWHz(d7P+ZdxO9abt)w9H2deCWW_gmA|ap-pQ+P#5R11pU9 z#_doSCvU?qTAMHey&?TyCH*U*q`9ZK^5#^!-ORG;K6Yo0g;^hP1p++NJ)lHSl&s*( zPirt(H^p1NaUW=gj94tE<<;%Y&kM2PclGEYF{Q!+u~+vNhPvOE-R2GC>s{JVmeqnP zSsh`-rSHYb!aD)o@u#Vdt1fp2|ze1vOAnj%pubwfXAu0Hy`Ux`>h%e^(J(49diCTQ?l5;c5Y4gg$ULC#o z+rV61%l(FLfcpKr7>k4_uf&hRGrX`aB-luCs*~p`KS+mCRNw-@%K2_%x0VM|!IXTW zfVLIsfHa(5E(!NW-hP!lr}(KdWpvXz@>0EbOS9XT&zBjp2WYS3X-BgpHGNuw!$OKt zUUFUfCp@XZ2S*u-8{m9C)3CZX$XtvSv*T+(zx1MZ{lk;utjpx`*OrsehCcKgoRC9%Fg3rO|MmJgjm3no35U8J2p%aBhksym8jVl$qVj*H@MIkM~c zVWo(4UK`I}ruXQLDc%1~gtr3qjFJ|MLj6Ja zh3+3ar0s!MDuQ*wbCu?8ww?mZ*Fz}K3KTnTQCe}7i<7CL`3vnuGu>7Lwy2w(@1jD6 z76wYbA9O0(66qG+-W8n3^uOkQ{u9xo)N?=ugUuI1(hj~|dT6=>pgq7+^KQWFMEx;Y zN=}&Vu~5-fIYCQ2J6orp|M0q{c?}qh8QfsYd%Wx0OI@@wXO?c-W9z=_3PDm?hDyZo z8bb=<*V@jzk=Unvebf?1R$uoRa_el~$DcLhahnSQ6UVp1gqZ@r@3VKef~Gqd`IkwZ~)rrtDqlqlb$a8H>$) z(_aj1%w!IzPC}e})rLsCDWImM{%%yc3^3q2ESck^e7j4#tKm}<#bQ`oluZBdxo2(^9e9Th?*iU@CPb97K-JO*W7M>z)1`FUTcYf{ zPv`Rwr8JF) zPh~82olPf-4S`8DZ;NUuY(yN@8gEUvhdZ;$`&UXVX9HfJ$6p1;>Bf5jh#`;t^!!Eh zF&(xfY^E3a6H3oVpWjYxH(GzX|3Mj!pi!AYZi^Z+uU9#*tpa*fWpiG|lhmz>oAyU$ z$X8N>HtvV&h=m&vF8qC8Bpj!0TWKweij$PhSIwq1jeUeeGr}JY3xghBH>mA%7PMQA z%*AtQxSv*K+p4;oSl4f%rUaA+#Ohp$wCc%Q6O$zMpS+&#_&jsG7|RR5#;|S%ouy1C zpPN_rYTb_h0{#RX&$U%8@gqTHXzeA8nLW-zu$o?vW(jW$#F&8c4=*l7#FDvOBE>>f z6qw4;$J*|^r=#_9E3d{!GkK^lh4Bv@kwgl>5eWp_>f!|3fM$QFHU}i~Nk)aehDjS$ zHtdcf`2b<)b}Wb@^4I6D*{anH&~6l>cY%BfKWp@@9Cnn0fjr*vMqFaIbiWo-@okn* zC;mScGc2C1TeI|k<{SPGBOZdSUU4_*dPeW?fo=R2`?Dl6geqrox~axDZ7;8eM~jYA zhvyENEa*6@?(i>0^P+$OJS-w8h0aKSG=?*1&#}ps2Cvo~6xG{3W~IQ&3B6D&VsUYW zRx{`InvefQi<|j~^rV^{+M-S)QY&4(FI`K3HSbVKF*_eNHfT-pFe2V)e9VvK|wr;y&mlMnSbx+al)9|U%2sj1z8n%V!be~VFUmvUYeCel2?%a+*deB*t zz4qiEs}*l0DyCSfb(@ou3BFV3aNH8=qc}qCen69ezUX|GC5Gt!#bxkMG&Oc-+v6o< z{-)vP7iNRJS+4XIwmmK@(-5qnV(e#Ngr;|~yLA9oyv=wShl=W@+W)4!h?pwf+eM6m zTXg1=?%_ncq}<#NPqkSj5fRynnp51ROjoLkAU`? zMofjfy65!kRi;p{bKV6YMx;5CR*|Yjilk?W;DNAdugTwWu>Smivg4)yV#irk(^a^+ zL?`}Fc3c72#)*8Vf!})ec%r!t`gZmBkBK1i7x;1T%y>ePEaBhm_*YFRwveIUFpUw6 zVKg*`2-m-cU*P{VMV_S4;N&Wz2YUSs@*{}-31=<#=qQ$ME%td9A0%ds@s`|FR1Hcm zgv&$)3kDHUQ5s94IkL|N!5lMcU%lPH!Z0)b4}$McL?tu_OO{D7?un4U-{{R)u9pl7 zkq+t*Zv6AqO^o%SqI);paV2BvD3L#9Oz3m%SBq#Hp!+|`vs9o*$f?BhxJ@P<>*Smy zx{%t*mvrC#fNPN5zWtG>ZlRO`(e&5hADTJs_cq1)!7Gg;DoC7O6WxhB-T-X4K=adV z!z=WgH?Oaw`E~C9X%{}uLU^W@bh#(ww1#=15`B*nG=zcu*5FgnQ^lNR8Ibm-9W zGCIkAHrnEEkTZV9?d0w4-CSPY()^>md~Og%KPV*dt=T$6#kvBR@C4VZi^r*v>%s#i zrcXAwl9ra)i zdPMRM=2S8eQCU=?T!evwq0?S0W#n%%jR?>;tiW55xyfzrQ^`xzL3BtUMj!CY7$>P1 zm2+@H=Wjg@%SyO@7%=v)>?0i%g#;2IQyoyjef(%s!TR0WyQ0OZf(}4)blm2*HMkUA z6Q)zjsF_X4Ccor|h?E- zX*&ft6zNZ-FX!QeDXeA8w`_m>Zpw|^GEIH=_}6%yuYtGHbF3baqyN;l_S6;_@RalV zkh8J|URnD+-@40r3NgR0ygmiIR+poKsZT$9+`C z-=sT0zMmH?gdcU?Cq?KmbJIGSA!{QYQ9#21p3Zrh0j`nXDZs$T_>B9k7JN3l7Va{H$EmvnyTB5&5@vweT}}-DwZN3uUO@zQfhe4e0i*0ScYw#-|p~Qu)5A8r}j%I~IOm zk=H`5+@L>j_Jn-~_*dg1zt8EmJqMXt%i+}Xap92y3O&QyL+uW}1W8Alk!5DOgm-E* zNTv3#;Ja}M^LmW-vW~{~snBBwKa`LvMN5>*M)EIkQQJR)&LL})Ee^E?;vKJ?%X8f5 zxFGC^1CO0OE3M3Pyav4N1z1MmFb**Ru5Jep)8z;23jRNlwaNAy-JuIWT2qB5F~`=+ zHmz_PqhTu#)=8wlaEIne;gschAI0CV2%)mpf8wc=6C>YeN7f~@?Jzq1Sp^#6kAfZm z8>-hHudwl)f)3!#NGxV|Q5^$p@(W4T(U1j+;dnU3@lSf<{`uK!FYJ;()e)kjtV5v^rD zib~kC^6Ry-fhHzO5>qx%78s$#=ZhrTMe36kF8(}8w`ExqiVl2y^ceVm{BfWed@3?} zELyhek$DC%fy($Hz)_rYbN#^VcOcJ4PSc+i+uxj!nMCn}vCodUUoj`S3rIU29ibVj z@f8p^gDHr5hvN#s46lZ%|9GF-RTFT8_5xWCAZz?=+ia?s1hC9%)1qX)%m;wA_k^Cw z555j@!>SKPHLHGMz{-I5o z+XJzW4Vue;^Z^=w`5$z?W&&xVSx>4D7{bt;rL1(Y5$LnB_&};;$yI97=;h8Z`&10? zE}mxFPfWIT-XGT43GH7F)UrIuoN0^-J<%NkAXrIxb^hfq4u9OPP+Y^(sOYnR*C)wO z*DX0u%X`-?iL!fP-|;*m;!dCV5;9*cvHC|Fg>HYvKJIifslF zK8iDf0kwtThmY!frt(F$V!Rt6SYL?1qifHKB_IeqI>SN598A~mHz|pGz+VauR3T_| zy{t-@ifL`Qp|3<$q?GNUQW<{y`Yo9kg22yj1Id>vXCA;EiYgAU#{Th@03G(JRPAnf z!vk`{q#Mjs1lgSkS(r(HdN*xO^e*n4YNf$cy}WYAL$Z~chFwl?c#Ad>!FBu*8yJY zu+Ve-U9_lK!Srz$Xff~*1Y(o@T@TKHLgDV87oF|m$ku!o;z#xaM9!UW)o*k8(+nTG zOq00oze>TUOK-A>RC)lSnIC@dfO?^k_BsdvcEm4Z%kaYlvvj5pec;=NHYGWJIl_gW z9^g3z8)OjA5fr{ab59_*%lk;cpC`}sn+o85PipX@jfMAxierG+U99cLvMm70tXg84 zFioOC(74kb`1|Ya)+!*sxQ+#T?yurD^+xEpv<{H?m;+&>nKAM>R3%yNx^-Mta8qSq zTfjGf5FE1|i@*lEJDO4Q&?l}(%OB5S(aC@!!ej$9HBVD%g)L8$1LzXVXV4b~S4$Op z;7RtWsXC9j^%_mACl}I@c$3iLZ`S(tk(3hoE4bKsR>9kJ**FjHP{~zG4Om|-6YwJ$ z*nATqHdltgKYbMH`dg1!99B`@K1vnQW$ytF?eS0W5E2bPN_(Fen}>_4Vc!BR)1?Lg zyF926k6FL34%Mk>3C+vegs&C*gB|6jZ~Zck(Ek@>Zygm?+whG7LrR0d&?zP0(A}+o zASpN%!2B~-D@UdAlr;%I723oE>;B9CT;`%Jx3yLUcr<6qF^5U`Mqfy(m1Os1cn^w2Ue~~)2 z@MzCQ<#aqT8%3`Mvj?V_#U$nf#q$v;O5A;KYU`&BpHNB!2X4^HSu8LrH65mFIIB|% zn_30R)ZgY3`V==5*w;G_AUx^2s)d_Z@hN*_c;gy;_?vkQs%7wp!2fGQr82T0ct$dg z2#)glC5k-r0Y${eOw@Q%A$9}wzE1G%)6i1$J8fKGliAaux&yPR_}>2g(b$|R$l;LF z8Dm;r^L}!3(?!t1;4U`50`5^CxIs%dbA4}p&hqJp%QPGe+jb2EgjSdh+HTq{u+K%F zedU(exJu4eeBdzmte3RO1Ujk?-ihnaow;M60k6W2;2E~3C<$@kmCKYBSV55Jy#u`T zmk1|#8076{F=b}2Z$uRpPFsiME^R>^=L$A{()&qd(Za~ABOW8~0TJ`!r8?Ue6R5DD z%;J-_Tvi9P7MMeWeU5S~{lnGwuFZgs(Y2(agPWi5?#H!sz3gh#G)05fIvtknsao*{ zpz3g`Jr=i^r%tcpP|s(Sb$#+TSdF@Z=`D4d6v|f6KH(kv&r^8WH2)&S)JK=&zTCe1 z6@1{apFFZ|{b-Y`?t#9E7j3#CJcy9rF&Lr9j6uhH-3^Uh&Y(J8{qV4I^o(<9wT(Y) z8Q}7i2jALvN0aj+sCqw;o(nyzAS4ppOsO};Ti^02z+U>g`ktDv;CJ=ZJoAz3vf}q;HuZ0&?J;Beq&VtLoUz%gTy5aJ4 zF1RR_0%?)XEHm&%RT+Qf(J-MQUNT8B9nWlFm)I>+%hP90EK@foKmrlC>z$yNRo|b{c+|sL0u`5`ZF0cd6pnG%OsU{HdPjq~@ z-C#og_Y7-1%>zNph0*(7UkD}7V)eol8HT9OO=ztStIYe;*si?)tP3QtS{Z z2bMss`TDiMdyUbLr%+IPtWO@ERk&uyj(r@eU zL47nYJm`?OZ9Xs4tKs7)HY^$sh{4~tnWhDv9dY*3ERjSxK3_67HL_X|i2WP}GYY$3 zrM?$l{WwVLdR)*`3u4i)Om{(z82^Gv6ZZ*^)v^4G`5zV9g;R=B`B=VA-GoF-eKBG| zc%&Hmzf%bd1kZ%5g6}XOBwuK?m>+Qtl!gRNSvI}+rQuw@x8rzmGum#Z6L{|mgk>uf zegI%HBWQg`kz$ZDe1u5M4qb-rrSeFJlfg!W*v@bd7IQBzo>NN!Ymp5^W9|w zNjch8`INSA$3~pQo^Gp$^BBC6Ly?GiRL+zSst0xgc+EbA6>^o-?fKP(YQ&$!`w>czn*~e3Uv3dO7;l z?42Hiy7R>6WwtL<;YDm;+?C7h!<}OE{M6Ft3RE4yZ>+Pi&fBq>n38w2wpfrq4BUAh zAkeS=-8Xwfk1Z{0V~Mt+VG0!fL3_e~-&xl)OugdbWk{;k7`ceCT+}Wk#XJH3pcvsp zjtXqZ+K-9;lIXm?!kv2PB>-bv-3hIA?PoA^226-Ede!8(bWvmio4Hv6@--&BgP;9k z>dU2#Xki6(gz#^fcWmYigb>w=l+eTkp%JKxfaFMvu!$=$95-LTwy;fS{Sv-2Fd3VS z{0BdF=D=d1mpQP^)`<}Cf?ac&7u8TONz|XpfMH2e%w9yc*MVrG^XB7om7t%j&C_Aj z(rlFvGZB_9YwqqFnye!~Gq0TWViecjwj^F3;~!5QbWdf)d-T`09fOs2@#FY|R^VV3 zclxr;f^J*cSU!i*cqwZvV@_;=Indr|5_H)Ulco_bEqx(T2 zoNJt74Y#GNyq3E8WjHlhPZ&){L~;*G*=Gsn+BDCs_GkoBmr#grbxXA0FyEb@B)2UL zgYB9exI|I3M_d8zXfcAx&B(r9*M#5jNf{Nj$9{qg<1WsywXye=_%Y65187&Pe7Bm3 zBoL-NO&1{II7w^W58U*#a+k3?jWE3TNhtBMzg=CjvZMK$9Ve=#F)(lrsFx)Uab$Qb ziQIkiRWP>2J&NH8(#p@Dy2D)Mz*&-`-H(B8o4?p<+9Y7|qiq|R43(j|lJ5NuL&bNS zH4lx1Rg){0?2C~aM>EiQ-;{qI88dyR}ht)S_kNQ2oYf%HWEJy?NW zE3j;A)%<(GCU)^oq}GL;*pKNP!sv0AQbcePYAky0(Q>I3nXCP1z6{OObB_zMA+her z>mBoj##=iWI(`VTM#itimYHbS5hktPo@^Br^hmi|W8n`|08Yr^qvy2+r_Y%fh&@73 zguAP)I%t#x1E2GoKfij)$}>=M&t?4gw-K^ufcrzn5Ahdjlj&cE(LICpsdX8sbd4g7 zCg%sdZ?T`&co;OflvIx2-4gM}!yrDBxd$xDlfrXK22UZPSd@z5D_`)!0$-9^nn%-H0)Y+^rW)lqO!bRl_aN&fvQ^&J9X9a|;F93m`iv#khp?Zhqo%ARZ zqy5!!c6fBRf}+Qqm<+bUH8Z$sgMVQB6|-C-AxwO{?Ru)pmTxr@X@%kG9fs8L=#Jre z72eE>4K!%Ypv7GiPshUsbw^**!uv2IZ#Lqe@>CFfWV3uy^6)+fZY)sTzn-<2OMp%Z zqdf~9HcOb*NX7_UPe_HgfcP!>6z)StNLD`Grsxg~#!82s(NDoar!Y^y%7CgPmDGF4 z1UyV^I@dDl(E?rfhM>ZzGZlE1L~KrtcLFT3tSV0)M$``#5X!S_+fOLT#g8iu2$aMK z<>Z|NsHUH28bygsrfyi{ieM~bl58roiDWzd_8eP-;pg+s8yNBf>>3{UXo>;DVV zW1H^1&Q2+teOwx7@(U_1WC0b<4IG1^xb`aPQqOxVfrLyV?wB#KkZ8GDF_A(DABeDS z0b)|?0eYBGabqp0>3Ml=>UYcTa_^UZG4Vq4@x9<#uCW`HbJNAVp;Q z{`-M6pO?HjI|=v|pB0_kQL)s11RcD5w}TZi1v3#bq_QRm??S1k^Z9P!FKs=Ud_gFE z`^E=LHA+!X4K1+=x@JK9MZfnxE?F-l0vY1r!|5-x>_FT|@_><7%y3tmG{x2`G^-`p zJi4hoPQ}EGkgzIZnoH@)3}I7D$vSxP`4I-Y-!l3eaO>DH-N9hwzn@L7Y@drUX>{uC zrCg$}j;kM<C-;vMI;Nss2?o!2Dqp z0>g(v*KUdl@ndJZeCWM;$?}RaK;P-)(}U}%TyzovLo9z;y2{Zz3I@KKl%eit<4@_p zG98;JRR==|C7{S&%{{W~=|=OxIeisEAYeW>$`q99djkrBBox=R^e9*j;Y+S5ZYHUt z!kkk`Vc`jGhujLN7@FyMcov<6NljvOR*OZDc>o$CXu~bQQVwTJqD`&=(P>tRV+m=5 z%D9^DQkB!knI$LH*K!lS^LCZ-q^!Qqy>6I3xUIjDd6xeX#YO0pSIP`%l(aSCGL?Oge^C0q z(`6dug)7MjNQp|7V(oTu9rufUl+es zf2TKpC_jLTEc3<7Z{V{@KWtCX+NVH`G>pD2#^A@J%TqWRffTTwf#2l0fwuG?sq3*AJ>81aW>Z%#D(X=OMEy4;w}2La zsz1{esRp_%;iQ^I5lB4~yhch}L@3m)dM9$=)X zarDig>n8Te5xm=I;lpVx&j9W}W8I=vUUF9Y37#J}YC_()=MVga!o5r_pNd7`;N_g4 z^p2oSkQXMg#W-EUUl{ye_ppCFVW*hWROlyH6s7l36nmc<<+S4>)HmVu_n7r=;z7i& zir6Q~Q86l{qf0D?pT5$tejx5)Rm*gZwcU|NcXGX zSm$2>EdPv7X+V2jcAnQ;v!>9pe|Qs1kyk_$Es4q-neMGZ+{{MsSSN(Wjm8sC1Xsm` z|6a|RL@#~~vhY%OitQQUevpA@w$D>&xg)Bb<&VU>`(a`U2m78Ln<6C7s5apxHoJ5u zyyjiOw*jQB(jP8eSw&e?%LlqDu*X=xrQ3YVEt{B-ouF`S{w@}yrA=`AEV+|HE_|rMJGqK_5tO$ znlDlD^39~@g#*`HBzhNrA*!zT~_9$@mzKuE}JZdQ>u^vYk0eLaA;dv?pc*t0V$=!_HBw{1c8 z)*;cU%S_GirC=gfvER-Mod>T%d?(a}U29Kh&=ifWhz1e%WFbBI`}T&Et5YMN^E%H^ zdxw`^VjFNwK$DIqPkW)Av64v@(&QTl0F_lyezDV zlqh%AoY(H2I7MOhVNG;*m%q>DXfOw}vy9w<{}Lc%D@TE?Lh1KTmO%(FO^>DI+A?kI zfy?W7ek1yS_>eT(zX@pL$ST{??9PAq5UsvW|99{NOf#|(Nlq8YZkJGk<7e~ldjtI2 zQ-2$PYo2#%5K(;?_3yi9-oAp&c6`8YP)ZXxRvO-TI5_Wl3ha%I&EF(oc6L9b=?&Etc<6WWL`_U7597=KMT{&J($Ehve0top>a|CV+;fl_4s#V< zmW}K1BIdM#v<~x=-xs2MOAsqC`Os1(Gd8EpUyRxOhr8(OC%>(UP%tI--+Rt4GltUS zxt79dp6SL2WzGDv?BG??C>(Ljd^g-5!U>na8}lx*-w(H3TA?i3KK%G&Dfx${LF(#% zNfpRx(H|-KI;%g4;aE3>8jLhtN-?*?S(4(AP!A?_D4R8gx6C~&MjKntUYxUCqnUZn zBh878WO?ci=`L1qy!tIfs4ZsvKT|?{sIBdM7>7;Lkl0h8Aj!KMkUDSCxs?AR zJ9S0PpP3qrJ9zHj>!>CQ(`so)m=CGkf&*W910?)?4^CY46n}GVW6Y%FfF?i`n6VC8 zj$>{GW+}1K(1^LO0MwCf!7T!Wc$+!USlKRWwTx=7Hj3#>g>}9+SU-H1jO1U)H|5hx zPYk!HZ-agIAC1Pc$3}l75n=7M=%E*%Bqo!_6oEOiT5i|x8c=h-8Q_O&lOycDzp>0! zNtF_yr1*2Qe*Kj|9gZ6mOLW0@Y1c(5BRo3@Bg_Iyb!mY7X{X#`FvB3V$v>xVK1^a* zG3nV*^YHXz>qqyeV{ZOAIKp-_Mc)>U^F}ak5kzC&oU-5=^>X4qnCrNW!Dzz?^E{{5 zo1^kJ02B-ZCVV&8qyUAD_Seh9@}sYOAH`B(8L)~@30^|$tn!?U;s@|raY}ZL$tVq0 z0XEw=KKccD3+^E};#vJDdlD3APJFy>2VL~F6a^!{tcFrn6)f=R-50^8gPa;yWkw?I z0V^utXNVF%V>ZTeW3oZM_a_BYvq&lMxz*mSy+qx8Nm5Lf0@nm1R45t+j%?$>q{F%n zuzRWH0t~@iDgxCZ)}(o*$~nNN{7oqx#WW(1@BAOye}?8ZRkw{kmLEPj%o#Xj;!j&q@qbf zZV`Th6JdSf&N_2QfDqf4kG9sOLvU^WfQ<(~e<+npEA{AfGD#lwsvblQdEz>EAx2Rs4uls<^odhLBD?3Mx+e){FB)*1 z^yQ^16~$%X#WDv+?P>!)=UVO^hdBcllFtcBND!Dt@;TFs!g`5-&na(u?aT@Ioc^7` z$v6t&AQ967d=3oO8+G~~Z0PQGxY5YGxiW4>6%9Yyn58DU^a-+kyXoHTUO_5cuFR7}I3OjXv-HI-=halX)B z&94x;pD50rhOA9@T?)p;#Hm>)=#yG&`L3D~5};f4f&9&%5T7KE7ki^k2sF1f!)bf4 z3}$@Z-5-TG)(sUFnIOsjrO|Bcwn=#%rRHCO#&d%W3w*8k!hOw%(%l*Hf<>K(Xp^gL z>M>@>di4Fv=&KHUG<0kRJSO|Hdxt*?ZdE-#MSH2tJz+r2a|w8Q>-are+AqhNArI;j zuxxSdIx2G}cFVdxa=-28D4WzDACym%_%oe|-JZfNFf1q#{WY5~xkdq|a?L2XgcT!%VTeg2~%K7Y>3Lf{jK&?K^ z^`Lf5L|m_{8&m>adJ{3;TlnYz;dK7ws07nPW(DppV2tFqNv4d`eJYI{3se9a4V5a5|G!CoFMLHi?A5;789CxX;5s+B(U!B}# z^5<&CJb04iQYy!QA?HD|5TJ?RN|E=QhP`IxieT#PRut9!GcHcQbF8dJTlR)FB8INa z@a9~0vff>x&cBh ziqg8((2p$N&`8NX{v61m-_N-%6}xt2?{wvox~;`L{%W7b`i{&;v8`|D>0QB1iWAm; z_}p_Fz9c6g3IB5uImLL`W{O7)(s`7OLCA5w+L`w!T)vpLnvxM!>gdUQDg0I%KY1Uf zZw@9~6%aQ?dsLPO<9S4Lru{5e)Be5OeNm19hjh!_0Wi-(Qzm`W=JuQY|}Fbv=!xdT`AP;F_0t z{(H^o4T1sCqHo?TUfYxrLk7L-KG%wuysi?P3ED0uEPuSX)`9F%Q%BT==vjKqEIS?w z_=b3?!}ClKU*UWchF9-|2m2@s_KX#r`W>2&l@f_&-x940aR>TH>M15X$#Ik8%cH6T zbOX^+tXF5yV*wr?!f@FU{MYQlodV>jH(}mwc-Y4(SHf~Vj4e67IRBA6bwv(FTCRCs zp*_#M=`ju7W0Az~pn!a1b_uV% zKI<3NNbzo!OP}=k7njK<%|S|LOXZ^htZM0(A5w6>5BP^qr?}G=W$Lq@4Vzqm#BMxt zMkSMr3q6eb`x@ChW#(Y~aPD_MOkZW}{e$w+yztiCl5KLu=ws-0}QN+v8je-lqB<(`L1rP?B zvyJKYvQB_f-=-#!qY|zXGTKk(2=)&9VkK2EtnHRnMcX#gsE(<2FFS4s|BLL)Z8>I^ zh5L^Dr6D>?8yz_~W^J@Kt$3ObIuoK$PER_EH=!C0(}u4(f-?oh^f5iI#Q%O7;HN2}SS&-M7&Vif zPBo;rTO*x53lE`<=J2c^=+kn13L{@(CXrt%E!HQeF7Ep{_d_bs^xJV&rG&~tLGp2M zB?YF-1nA@ZQ~t*KY~jn>hv`B0??+4;i_d>#qw+1{t=U*qz6zzwV9HlJg&#clTvFAe6fv=3l6RM=%mZZ?!P@+-Y7S3brrJ(WXRF1@X-He?x&_R2s8Gs$sY}#Q zL=trp$z=Y>Nz3RLg&~MEvwc+ad5k%x3-E^`Hd^lp`yf+>U z1k8e9w@`&Yksj<8Moz9A#>6k)Fc%c(QCbKQQ>U^F=Bi0I|Q#mNJ@;QfnkntJEY^1T#ED zKwR$J5u73@MFb>Z8ghvbNO*9qvRD1&8i8T-S*N*5;EUZ^W}WV#|6c_$KPCJjGV_3Q9ga8RE77V)9hcGb)^ zm1m|Yo+c^lOt=Bh+6=}i%k93M8>*KVnJ@4s=iJoa^D_}%jL~n;D}2&a0PA=N)FBE! zdKHFbulAdM?g{S7#n*kM8^AyCD{D@2Dj(byZ@!MBAi;>^e}>lAZBTv%4|SBjJ?gUc zhn)6Wj59>IoVuZ*K*`Bp-3QaGq}NqidnEu0H%1Ye(PX`EdDYtyOzCl z?WJY2H*=nh@g&5#04v|z<@AK_D&Sn)|LXi1Z%0I%{EQS?Di^gt5w@`3A zJ1c`>s}`bC_Q6X&DE7*>aqNo1y*Cz%zh2T8{DU+_r`LjI$+yBiWlmpWYzD93ejaSi z6idkFg})~)X@Sub2Fr@?n2}3pgmr|I-IlS<1!db#7m^QSX4}bYf zA?;1x7w6hppvm#$OQ26h9tvMZMkr-=_E=6h?V65x2bCr4lb!X-&+7dpWb^sxz77Kqg^5p9%B6)MFi>)!lDGo_g8C(Dcu5#L-lWBX zGu>qP=Y--w?V{iSK0Fngr2r%TW+J7y8)bG?99M@x&7gz5tEE7L+i6e!^p2=6yr~DAfiwe z+a8*Nf`S_4>#8|utts`kSb$F%$7}xp#sm%1qNL_908qn8Fhc^uEf>B^US=45aV~t< z-l2Wp#JSt2lvF=eV?jm?hk%crM%hm}V^RE=w!&ngyU**)%a!j0{}}(UyFNSqYRJ`O ze*ol2FU1B(8taUAYJ}BUMZ>9nc4Oqni|jQ?^HkbpBJ?8fUVi`GZC^o}oVzRdlxay6 z=h^t%)EW$#!L{8P)g0oM$L)mfgWQdXMYs83)s6g0i=(|pAO^El%6}c-$2<%np=ehv z5MYza$m~vTRMyfzp5N<^s)=UC`SPpV(r(f#KC1*romzv1A#OYofmdJ9`3q?bKZW`T ztAtfB)BWz=uOyxM4kbS~xD5H9TPrGKm2p)w$;XS4I8|x5RDa;qk&33I=G|w2 z#$fYPYVASSgEb!H+&_$_+K4&ODzl8bHb_wqDbBV%HQLM#7!2pk;%I z9{o0@-+89nLC{|Nh*#1GHO;8jB@n;|Loqq_lq~E2T!+66a=VK5mN+GNMLSYdI!uSH zi^xyy{(8|{nL3e>?*^$`s9H_fKZQzV&dM6V?!CU&tC?Rp!b(Caz3P*~tiqkRR74@{ zMUQOUDZRm92^VdOLQYU+n4#sH{|f7JPX=0QXF2|>t82s5I>@=d(4UZu@on-tz{eF< z_^Ye4fNMVafub=^z&GKz?iMOzSIWi~O6p%!8T3xw#2+qGco!Zn8r>m!CyB3F0x9e6 z446-}eJ{dG|lqL0CC%H7*gM3mlU-U@GIOwSh7?ok%I4nLJYQ5bfxv8>57=Yuhbj{ls>xnZ+sxz9<8Zh8HzXp;tWy(p?~ zStjq++O!WwgDI4&f9hYITstGKC{DWN1C}V7pg-xn_HrW_Qr=O@5Q4cQ^O?Y|lc3iu z#h~)zN8G(CSJqEVy-`is$FgA>knIqG2F3vtL*XW~`S7ERW~}uC;mo8dctUo4KZ5de zZD>}_H}peZa6EN!yyCI&xXAd$@hKxufXOO8pVD1=*TBl|em!KreD;I&wpp9{&0$;H z+E-4KmcJtmzCa;U!XVJfABaL_)xd<%5;7x>d#OKzrt_!bPk~mBeeri&b6^pCLD?E}~m;ENTpa!~1 zr}TY^$EJ8TMe{fF0e9)k8{Z`?oO@4=2F<`1T$-UJoc%M74y_&rr<42iN=|1lx0;cuKL1q*Z>y z-u=l5Wm0VobNZ};zaHI%lJlV8n90BQc`=b6%?o4KDc#iIjj2nsg}b7OymyiB-c8MN zmiiI%AD@yoUIV17_3l%f1=L-7r?oWN+6jCf=qsFQdlzHGrYWf{_hqn2AhQH>srtiN z1u8-F{Sqtm01T#fGg$vgiTxMbW}}+>v#3+TU=UXB@g#1eBGvK{1jTE^7B&>|A(}46 z_*Xk;>cWcx@`Bk|u(zylO)UyuMCwF3oh|_ICXiL86eNoYvC0i4Nw|kjs+SyI1}%MVAya+ zw7pG!lRHv1Lb-%IIOq$7e<%s9xm;+nhbHnaF+~;+WCTz{PjsX z@fLqNrm69_JOU~KUC*{{f!hm_#l{{4vIY(>U(P>-(<8=wVdD^MQCowu3%-i!ljnoJ z3v)ODbP%`)%V{Tju+}l0(fXd!g)f75=7(vA+;p~DDXe)+iQ01Qi_!zV!NGzsTkYmK zmqG4j^B^KW^5(b|Bw((EgW{ox|GL zF?Bwc>|i!&P+sef7i49jd_rJu5IJ8Jx{6}2%mtIpA?Y2h2rsZ-Hn$|02-Ywl>gfa# zuA;l(0JHJ}d&`MFsRdA%^O%(4#hZZa@-{f-WgrGFpQuF=cv9MH4;+yium?QqeIKy8 z3>DtF%h7)5M^j}Fb3iA#h#Ff#b)^(OJOi$H=n|z>My^tsH*WDD!t+z|zaJFfv$RGV zwL^LbjE!Dic+bv+n=des;8460aX(mi+{|7nr1Ndw$iuMmioJv(S*=N-Drb+tw-mTUIOx5S9Tw*2~WXYusw+s?x`b@Yegrs!A?PgCOfTR ztFnDu!9Ku-ojzT2Fw1TmYUZ?uYt^!K#;2^T{UgHubXvqQXj&raH9DzM%%EBQurDDDXEX0ACkJg z5J$tZ@ueqUE#+9e*(BqYh*spAd47kmXoL(OiR%q7)J41YDQSt9S74)K(Rt*IY;xU0 z5y;GUOY+Kt3g6hVa@TeaK_=Vw$nw&7AD$r#V&W5j?)}cC69}_hP%Bp}S{p9=oNQ|u ztj|JwlE-(B+KV4VfLdmKl3%M(8_*uxWb-Jp8E-Z}*h#;{wS(R&0Dn)-``Z!LFrr63 zrGYl;17Q&*$Aq1M?{$j(N6?m}5^s>u(VXg0Y6jL3rw-GjAiqJAlCSzaXz?vGnVG=0 zOP5g=qO2w(9&C2P?r6ZfgQHA@(#1N+vBMYCWUTGH)$ct!M~ zv|C1Peg?s>^OqyV3GqiC-O+vRTf|+wS+271@HLqntm*6Ur~r%sh8uf@JV>&okJ;}ZYYdKLiyzzcn;IRRE3}ojs2cE7*~)TekZ-2t ze!B@eerOba<&cy0PU%)ksoTYk=dVa=i}#~4VX4!hl~gy2?8o`#(tSz$M)C* z$(6r(N?D_wK4LvFuOx~`9s0;;4T&ckqTdPj`lGpe-Tqvkbr;&+j*T-vU_nxl<#7~{ z8d~Z$aGpw`0nvQ&8}Gp_4+xu~?e*)SMy6xnko*PXp=J9rfhQDfDjRMz(aj(d_F|Li z!Qoe6#=1t|N#g&m;;GWXWuX>0a`V2>DWQm+ekeVJ(zc(;|95S2)G=9vZ1j?oLTtl4 zQ|Y$xh*~}m*FdQF60%o!`&>gz$wQ?zgMDS29G5s-qaV8~3yJEj)n20y1LMo%!49Tn zYwqSG)i=fMzl$jSYFE0I{C@%QKd#1pMV?gbe3^b`8Tj7#|C|xNMY#(Z#@yYMCzKSR zz<`$I76x$e9Z*7$;N8K5#H-M2pjca3BY(vq`I=XFg*>_D8RlIvd}y}V7OO!HTWb}u z(i(k{Q(kfB-GCXQx@ibu6k>xc_jhl<>~wdY{@%~B@{+Ki-qEnb0=A`q_J%1{>N%;Ju75kwdqt`aIGlvSDZ)&R!6rOCntaaQs^28uTC>MCJ z8B(%EDB`=xt;7?hjoKLWiYy7|?l{@~WS{n&g~LZhY%-nXht!00Nx9-{XsS5uq$7jF z$E^%QQYV5w_Q|AeD78jB!+4EM)T;*e`dTb5>S%RElJ?n8?_y`m>Ju0dm{O{ESV^tRy(bJI%g7*e zt^Hf^eV8=W%tP%&hrHfL2X;mtt5$1xN+`b*4L8 z3J733%M;AIox4jW?tMli{fZ_GT2OJ0Y~gONr16J zbyx-Zh6fZ71j?G{==O3uNa}8KOSNSpb|-*4OiNOU=_gsHh)n9ZhN#tkH+4e%>43(_ z-fmW7hD}!7qX&_~m~k$AOLxh((nxOO(;7=*T~L4?Wur*eo3((U@O)xjp9%C4-N6oT z%aOI?vNBzj6_AbW=zJj|Su&R)>8SGyhZPG@Ea@4oYTTa0;O`)PfQJVWF|)zlMdWwk z>O6Ab=n`7tz)g#t^AKXUR6>XOf3PYQE zI8oaI5nep?ScF`4N*y{A<%9OncjbPk)k`a9V82S6{+HTb`~adyvJ_JF@KUiraaPe~M=_~yHiRTs3}(pYfwHE^uQ=+Y z6q$dh?ypxGDWg5sYLn$VfTn%0!TL8`?^5CMYf^*|;CT~yB%a3$b|NhGQJO4I`QR^u z$BQcbVd>CaEI{s!!}2c~mUs6dubxphuC{P;WpAEVtswBQVMOAvLAh63K0zw4%@cT} z>5*b`MI3z*5oYG`;ISXY)L2R#eOIc;!f2F%!i}QZZ%K~*l<{gQ)=A5SiyebBC8+3H z7;_%LpF1F2JjxcJnNw)+A3UYFpF4 zU$OK*tMUGQVg~^H58ghSd|Q_bQ9Mmk=G^=uWYqn$wua~f=7M~h*AraUB$|Em*#^U} z#SUZj9xNgY>zhg+!V$%9u2?zQp%S^I{|IK^cD*o#v_?++@8mi!dK|Rx^Y%2?sxota zyjq#54l}3Qj_hG2{$83hvZ15XN2(zr%f@(dgjaoIHl#vC2Pg~>r*@{E`J`}NjB}rt zw2f;Ei`RG1;N`d}FYX;6%++X9sZ))@iRu3jF%jv<^oO`&7%Oij;1JXuEj^{XJ_K+8 zrb48K_-bIb_7XOF3>EMHvZlu5V)Ij#g+)+9#>awmKFP=-m6*kZDZPY|RxKN&D}CvV zbvQ^i2(_2Fcn^oy5OYuXHRvkirL={LrBBup6f<1--W9ikHn#|$5nXh@r;=mT})7Q9_ly9A;bZd$7UiAx! z9AB3+wG1B{{tm4{o%P2hesd}=;0(Bw-oq+B@rS$s{ za8W4@)58stzVN+B|!+ToAym=6H64uMiNylDR~Fgw(dj}&}yW(oLxz`QCn3SOWe zo%8!9{Z^^|3!oz(ets#J|3VsZ2SVNzHZM^1Y|4jNG@LI$-HOgc>;`ZxKvIs7Ehq#X zKR1n$Zf#r+-0-Lq`I7KUlJ$`;6L%_7bWZa(y87b{aTck0o0nBIiU}h7l)Yg!aSbi> zRIVQ!(F<{p9nGGL&CH5{U^hd&#~fv!(69D_x_pgv_(?+tVyv{t_~aTyey!XwU&b}O!9$>c_nBk?Xg;KL(P=? zVjE7O!X%FlsX#{gB1d(dvJb1fU(H}I!AnQNKp_d0{P!!DMi3O*O?C0hH9utSwNGJh zo9jors7#aL(jIzv!zTS(wfC508~tmDflLqWoD9RFW;B8z>zSGwt!Pwx!#HT16y3Zl z4gM#M`%B6($cY}bGW=|*|Td69ePgTItN!Tu9WI!3)(FnHk1nk4x;MZ|WP&kUvZo6Iga z?)R0tRn$+9ze7gXGfy5{ENE-;JwT-fwPhlQ%{}BsFTq;nZGwa@4zC(-6ESA*Bx8e^>#eDwE#D4v`K=C?a&u|AI~(HOk58mK3=C} zZ^Lg$XU66Zv1tl^`xxl_^&Ryg?&>llA1<7Vd59~w=YK_8_R7JquL;Rpz84S916=Gs zWiaA>tTk||`p*mCBPT2IP?D8DoNHR^xl!osIXGqi%6PtM4gK9C-6W|e&vF^VN`UMDqh)=$<@i{IB6VD9x8C-d0z~JXVo->)K$kIV;HP(53JvQR+hS zw1z#%lmB=!fU_t?pL~wCLBniL1slZ;zh)?XJ<1MM@_bS|bItsElt+MG?m2BP<3(=` ztFYM(hLxf&jAOsp)@tJC-Kz!9^LA#IJ34qq?+uVmIp6=BA%iR#l$`)KwY!~8Jp?lS zMix06-TdU&YNM+Gk{0-!4A)yJP6luDF@Z@9RAId1G*R6Unp^=0rXPTInb8WbUhZpe zhoLeMUWzQi+RF%Ra&?A3royUPNKLdpex7-bu@~~;>7|BH`4isSdjTPs%h8EzotIcX z%Pw)B;eN1B|63+)DGf>WffR)uM}Du{ryRNgwIe>Eblj57(@wNQUlm`}Jh;D|XfWhRJFJdBu5kGx#p_QnQuMyyPnvEOQ{ha!e3zNPkm&5sl>Kg|2Qx`!7bQh|EJHqK-5R7Q%W^r z*E)2Ifh^zaolaK3bNz}Gf1%0@)oKF`$y2sJgT~%ap5=q|cYY~tMvT=jJ{pRJnK8PA z`ugnehEW8pQFNSPXFCdf&gqV=Ur0BSrxh>aGoTMdL~FIvs&;etjP;WkZ-O;gz1bqr z*hu_rKIXByuR&#)3;XlB!w2dF{vssqPt}l?-8ccEZ&JJ5DpLijq47v$j70RgOr%1~ zuAarSIpPNKF_*B99g9yn)yd4?fJ25>zV`JIZ!GJV)l1n@SwAGYXuDD?B!h#FFN=i& zHf{@`MRGFubx-k;X8S519u80+gN`F;)TmzdSsAt1?XeQTJLtv_1a3cnheUgLUCU+ ztPvVXYxQSq1sQp$aEAk+qMb+z3T(9Mm*IOVdvMnHn`Ftn_xj%W(fki**gxeA>zLYY!HfxH9d>m6yqDlTsUQe5)orZo+nAj*~ORCcZcRUg4_v!$|yAf>Zmzp_Q0agMLM+Z#TviM~d{M=%}W@{~yxcGA^sN;o_u2KuWqpLb{Re zPHB|x2Bo_@L_)enq#FdJLrOZNySv-DZqIq1_nr97hndfugKpW}d#`J)^!PJ!x}PSI>iJCmUE zWV#{dIqq_s&tI)(QjLif1N{V+EF7MFpqxdZK#2GV%7|)zxCwaTox@2r@WNdYKv_8A z{Y$K5c5X*S#@~NGVvOXGp-ch}t%Qf7a+vL4PfI%Xxn|x?+`dS_wi^7*a$Hb%8??d( zr{OX9b}8?4O$Rk26~Wc_7aLcrvEEcm z${&TbbmzG*^cF;fTadpMor?t-zrjy=<=MAG78l^fTPweWS#dsHgDsDVj8_=Qo)^b# zAEYXr9hNr<)ueY4kjzKlfb^&|m;j5(b5%jdB?f8Zie+0p#sucQ%km4O<=TP9)E!IC zRk*=_9ZOhH_5H`OTr(A}0FI?E`Gpp=O0;f<*O_?6oTIS5tGfXs!hERbu28_^T_ zBCx3&zu`dIZ6K!<3_`!r(9>krq86PzNH(u(J8$hP80jojs8b{ozWzR9MMOVQAT&q5 zE!7-pwxU8xAtFrz7)vWJyotPlC9gRbX~gTjZ$fsT@?*~BWiZ33Yf1epU|Uu(_kRCd z{Y5F%M;IkrHF$&%+x+SfpQ9vnYbyV$WjZw@5}#+!x0i~74=qP|d^VI0wl{fKr%Y2_`>RWQY%CF$t)21jY;03DP?srI+< zyDq}IdDOTbJ5Znke9Di8wr?nY)d!DGUVrokJ$^hr)d*-YdmojA%71FVOS=#X)+XV) z6xS^T6*!?C?TDUlQIT{^b;{mxDow1b4r%_PL&jmI>bC@IY9a04_1F3Jub*z#T^z=; zLbTX;$34l>V);h<6rnT5uP;zQ5P;g$rXC;`iuFRW@e0v=a)Gf4>Hk95B70nubF*$3 z%ZpID7Ev4jSey0Rt4U=vcQ{fbWEWc0{UDcz+w)hZ)kbmZ!$s5MzUn4J)Y8&((YT7# zY7tuwa=P|<_hQOqaw2`)8CaY1@(b2Z{$DPX{Ca>;8~4#58H0?b3F&U~L9&dc9NYtQ z0i!PwDoJWN;?f0W<9izuJlchI!HNGX4E+DLdC>z1$^TY){bhq|%?6XLuu5JYDUQD= z(OpF8{@7Qb!w22Pq<-!J#bNRO@+I#;k7YML&oSg(@|Be+BLe>2iI2Jtg3N)IzQ>nE zrSEy9W^q@LiSn}{EXY6LH@KK-X#b)Vfv6P_9UkPKv!v3n!Pz88x&RNJXvEMukfpS0 ztHi-Zxp+AQVt$*IOkYUX0}Ujg_8YP=(cd86#QGza3gqWgZ$;ZFA+ zH^aO}%kPvZoUJ%Iy%}3_9e~qG`H534>DuO9@G|Mwdm2u~`vDLf{(rJNbx3p?MYApW z1NfrTA3*C3qIMBoPCMM=GHy;2q}SYRqKWF5a7&(6%B|THEFLdsW+M8}*kyCAyFCeE zpdntT=>PUQ-BLEq}ga0!B93nU)x@ zKdxjCvl9Evc0X~o1Tj9H14NC1@p&w!_K)!y^#5*r0v5$z;}aiG^NCj<+(`r+qW|ak zZ)q%Keh$P~D22X2q~{x!f9|DI<3odoI2tI$yfly=Ex>C-=*5T6qv*+!Fj+82h=jo2?%&W42eq75K1TD(^G;E?^3;p!a(M zI;C56hAN^8vBx@viqy=%JC@57=Y*-ix3vMh%2;@KZJ}D@WAz>M!lx;{pBB1P_l9yF z3lU^!&Z|fGe4uv;L)@H4Y=EtgG z_9%D>Fibvkii7`) zQuPGIg^IZu?I4vukAJ(P;?4@7MVV()r$5Q6$y?O$=!0+;C^4`)iw%kd{e4w*OW24n zi^Z7t;nY<(&|)yo@Oen0rl^aR3vlM#zv zS!7X;hgb~`o-&igD%Hv7HViNw0f?kUEkWOLL}~_JpQr|c2F1NT@I==JA)e@B?yLXh ziFV|cb3i;%X9fE;y^@*+D~KnGe)hL#3-Lr5%+B(~B*t^P;{WwTIUt^>4)8=j08g}K z3< z4%|2!U~J}|%MJ`@R(R?u3s)+_F3y>@PfIhN_fo*ki;M*@2 zKsRrZ=lyS$wq{10@E84nKOZE8>>|ZpeJli?U%Ensa8NM$i>wa!{2L#|Yn7^Cn~R^@ z306St(T@Fp?NLysg-0+UFbv-UATpxCmJW{S31Qzb3UU{AqGt>oEuAmevQB|>8sMSk zmrXIp@n--ZX)0cZkP+)#{iq)5dD$-=Vk#1+v{gg4tp9C~%Df$;Hj)qMj*X|bD%z9f z*fD#jO|b4+CO+Xy6u;AMrbDLfThD8}6Z`OE{D)71O(q|ELzQBG%R3NMhNKc~5U(gL zd2MYSB|nPGYjO3d*VQbK0JB*gKZrhsNu~oo)Z|Ud?}?69XGMK=Vd8a4^yKDuyYFCA zsLVuK6i8Y93gC}!#lP&qS}3RTnm`4SQQI;^$wqjtsUn(_7SGYoSkMr!Nh@wBpRBs+ zU{qol#??METwpb)egb4E&G`U{t~EH>zC8kc0#2F5d{kgVSVBRp&{`7u6v+hHQ8T+u zIz?5X6rS1$-D)Jm)&nyW@1C`Ud|zT&0q}~#7ge9<_L?K6X%yGZNaz6Tm%#ZDtH*#K z#0<5KaCD9e2^VH|hYl6|u%)0knvxvJR&71?iU~dH;iKk3t8H%BvkZr{DteT6^%jlQ zDyH-8VKnQVetz%#X1-Ycx|t9jdVPV%O;q$5ko892y)Y~YO%6RB7U;rvzuW!#;r!Dq z!=jp0Cg1xzc(-N{WkzXej80xUitk^%p1gB-Om{SfutZip|u% zo3W0>XSH@j`EBgjS<5xrM}A82sS1JaBYY7y!mfm8nZ_S|jzRr4Y~-%~)+X$-$@ZXr z3_2Nz(Me7lrS`AU868y_?bHHjfa|lrR7=k*`+9Sn*j0K3cY41Z$1p>HwTjc}Uj)A7s)A?Jj5WFJ!^@#!JQ2;YuUb_S?>1;-Zon_}b>7Iv-_i*-1_ zSL{O@E;M~mseARvEOujr48h@pkBIRr;{wPbKtYp99s_8iMwz^zH9y6U`8e6wVJH$? z@ful^EhX+t1vM%v6!?=7{Wp;Bg0+`Qa;*|*0O{<#{sf>d(=5v#Q=>W?LCOE2w0SI# z-lZ`zRDgU}1wLzuV)~~S8N@ht>goUAQp??qh#|Wdnam*6U5-MsYYqeX#xQ(N3TcoE z?93NXf#q{j-Rma#>NP*VwAG#Y4V%YL=^YQB(}oZ`UBZr@(!%{TXbenP%U7Q<;%I6o;0V}mPR z{zMWQLH35p#NMz_!BCSH+h^CpxU}0H|FW0=1hQBA#l{J)7|7*{Z4)4_0EK&DwPax1 zILllx*;uvn-eZ}Di6&VrW@OVm^F`V(yLW>TWg{ZEk)NQDDX6Gd{t@$XA}0y6?bJp; zA~xzE;o{LuRR8~0Td~`=2qX5l(j7Ego~Jos>nHiM!?orbAfibmQbEDznnWm%7|&83 z>gW~kAsw|hlbr;wP}EugzPF}A$xJa{q**<}!ijjDFVKY3?E<(%1+x64?kmuC+jMO9 zTS7a#;Z(6ZcT~w-(EM|7YX;cu5nzgRWPx^WR7s+fd!Ln_bCD)Ca=_jN!MOS*)-;&2 zNEJLE;`r`jxH)sR$9~-fA0crgmPQ|ytbSsx#h#0fy?!JnJEN%AYsaG1Gg0RaPOh0? zDPcoa4WrIJ_cZ)E zoLGZ%L{>VfH!|LR5z=jaKizUJ&CBE8*pr-v*ERdfaWw>Qulw}z*l+n$;k#SrRk2%U zv%B#CGo|Qx)_6Y>>h-O+!Q#WPVkTG)Jd+5Un=i}4S6^&~J#jBMipN+GZw188zM)XJ z!nrW{#1GiniL&?D+*R#5hH|y7Z8I76d^#UtT;`ny=)dl` z3xaBkbg0uH=?7N;kawHwLywS4vHQN6oGPJuAUD#yn^dUN60#b$n}Cnw(Pn8h%b6KA z0{}-5G`7VX5j$d71ykdd__5rgK9%k8)!^Pz97wnIk=K|)?I@Q2sHiGYm23`3>+q2Q zL0G*`%RR4BEC`v~7M#cphgZCVQ@{WP*YIJ5Xfx!xR1#nW5V~;>W>te?{!Jt?x4< zu|_k^jZNu_Bh+4-%Q9J1rPA#fqF@Jh7I#yE&M-ZtD$j2 zFrGO2k02h$@*wy2kH9dGrHGULC9@7}0IN`IfM(LkqmkCrf;;HQ9jFncbAl~FiDLEp z2kDI1-+0T;33D!`3!4Ta8Vts~0t~SD1#HJn3hD2S&bG7te0w`z=t|9Zk$z*ce01oW zj(6&8z5P#{)fY3Q&C4zf=bd^V1W?cC%9O1qe36U3i;sSN>7hUQ{49{C*0G(A!+uKu zm&ql^fOD8<(^-s0^Tx4~13%%5+ok z&%^nZTE%;Hx!rp(B(o#8O;aC>g3I`GBU}d@A2%q{=QHMhcGdna=@RVZ06__tedr;N zJGK2FvK{b1XWa*h;)doWyCo7_gL+~no5fU!@94!$>lN1`vsi*Eo@Z`|YTjN~2J6x+X-LTE-x?|zi2EZH-Rv|xUN5&bi^aQ1qS9`;{N+*`m|I{b z_XJy~QF-;QeR@BO{Tw_IAWD<84}9?Rcg-*yr`LC}G#14YHw>o3)-SrgCHde>@W5=1 zcw-i@)m6l9zlC1wK6}I&pl?NJ!iy`Vm_yGLO{mCYb0`BLC-vBfzk37)0}AmpmYM+^Y5HOs>AhHJe2!1phi?JgdaAP9 zkA=;ij7ZH7v3xd=0bWuwgBez!nM9|STTQaF`rmEBe~fAS!G6x7tLPb;mIIFu}QoWp>(2{Y)dIg#&7eXAhP=|2RP}n z#y+Vp%cF^fReCurCc7OKZo-y?b~J=JO`|AG(O8NzcGq+p4oOZXFC%JD!#`;l0gANw z@$;lOo!n*T3B}A(0SokBWVKb%=@GFG@;9}=07iNRf{{LO&>|VmRm_m&s{F7=(FKYN ztciYheEnQ(O8E$*FXmbQ%aKk;ZhiiOEu)%!Xa}o_%Z1wYMb*&#PJW!G9agPHJ2ko; zm1L-jrZn;IN}eN|2-ax`YOBk*aN&CHd0TrPpFU{U%rT#)Y+1~}e;%<-uQdU~bfg3& z@7tVQTZZAV|LFWa_8sNy8_1!uEPZ|iUpQg2>2w~j6nbjXN!5;H#)j#v* z2kIFVFk$Jlt>!sWcxYL?X{<*c7);33?3*qw2fXthwl{RNw9kcZ3?I`4y{O6wECda;VXi3Nh0vGRQzD^L0@6Ahm-;T2Gw7MAmuV?|($I9LP6-F!3v@G)XpM0DT1mb^Bg2M* zZe?hMb4-VS#z&|3>@R8d69ww<8{F|eG%UOyOcZ+~)+wTgYDgkzGhNzL@#O&-mMRMT zFI4kfR61-PH;sM~3x)lsN@T3u>Jpm*I5u-AJNAgXr-3C*QfrQ-LQ$+*~??b^Byt`wck?gk?nhDMSG-~c|+{F_Pt-0x~|G`Xv`GIA`T^i zqSwgVd(>DN*m3Sk0!CB4Ium%^Hd$U^(PN4}9PXFX+J1|bYRq!i?Fhs^btfNWS_i|= zRS6%nmArjQ)X<#1@x3Hd`q=%Wl8>w7dqnWJ%ujvF7Ju;n%Zzl641S>E%;h!f2m8_$6`U6^_?N*0XF^)c~2pOptKrJC+Hbr~g$+jUP2# zR(5>98H=KL??QU#An>&gx$%^$9VyMbM6Tx?6|oss82r@W@opCYC0~;8f`o>_hQK`p|uU5L$pPd|I(8l0?u9{ITD}eT$$D0|jlIuBeE~`)^ zKhe!r=|rU8!>?Zgz&9Um6#oeIK7OdcA?8Uts{8TiE$oM|vyR8;iR+szz7-tjNQr}K zX`~*2q-4i#|4^rO`(~sIZ7czBf+?TsC7-GF_O4K6>_W`OSaPD9vIY^<+H6bvU@u!D z#&IIlF(`9{^3N;=_OfOAr+#hjr^c7dBW~gt4Xt}!ixpI-`==c&x-i4O;H=SNWzoP^ z+q4(}hk_;d9wBwj!&1;O`c3KcvNtnIH}gKc&k@2#e#G>A@n_EtW>thh`J(NQ&lXj0 zBD|_~4S<0IjhnCZTg}3s&p~SgvJ~sGru|`s!;T0bNS7#aJg#8A6OATj* zqM}$vUB*|4m5t*YcKQ3sT;_EecT_tnz7%LtDq~ATfzN-3kjlx~jP&znJD`w18X2-B zA_uA>DEOPjcXyNdnbGOAJ>)s2ND$`72EV-sfFgnW4jnBU=G53xLOgtKFtN<|Ng}3X zB#rfG#CwZl&LYA|S+tBf>kRjR)i%Wg=R$5`hy)Jh6k0dwu&KQ9`02yFV5ZfaBkO@p z3FMJ48(=B)FABK;x&Z(0bdjFNT>|EaYTQ|dGd@0pRHrXiE((2Ck=T{AI=%l%SaLGn zv$0nvkS=E}4d`-GD0ufanh7_lA(%mkFa)doW$(&m0*ih#l`)!9B?u+hrCO(RV|9da zzbTYeuLXKdztVa?DI)nS+?8t&cpX7%CwBgvI^B+paeBA7myqUFN&N6PZFFq8>5l2+`sx7|rKX zFSi8J*Npd(73kk7%FANz!9EV+@?sEgk zrlszcOAVyXSwhhLb{P!9xjgN7e*7@OpjhLMvW;%ZASEf3X~~CpNfkc{fg%sK|F~I; z$|oF@pg|xdkm&D@=95OH<;=(j6GsFGeGwF4$<4rXf0a;;k>-tv+zZ$}j1doCj;rJr zfR9uS{^~qbS+=AL;K|$cA3k#b$2+2Rnq=Plz<=AG`V3YwEeiS%nA{i|i9W)|UJAvv zb*NVhAC%Eh`l;PO>1MyxNY!^ORSmtMLlqQEK2MST^+%(=y&^ZI#iktUMoi(p2;pmd zK00CydK~a))Tk=c9ahb?><9e4amaAh9ys%FI|#v97{L@lHWbXAE{@Ca5z&GZw650t&b z$lml}`W|C0;zqN>;N4O%$fZ{zgwI?oRr=NLjO`o197*4?_oq1I{M-FhX78sO#)C{D z{ono2L2+v+>R#J_{ZPXJ?$@q={ZOt?h+f}W-Dz~Gj|JQ>#-zDe7`C1K0cmf}f>*j3 z3q`@XDA>qck=pM5`8)-_hS+DucH>om6IW|$hbk%u%}`KkW3&`=hnRJ>)+T*^t%e4=X_7A^ zkxvv=g9LMVeVNX!A(QC#+VR_msZ@3CA9>Arm`4YxrHN8c;wRgq#v~QyRZmZUf%O2g zgdeQvUIB^gHi6GL+AjPoPJ{lMbLZs^RiO&?E^JTTD+_NyXxmcu;@@mc3x5ABvLkOB`F8kBqE=fgU-a z>R!vn$^o3vSnbn8{1VqCqriL!eK=OC&~m=FHQtTMctNt)iue%urPEFXe6VudFysmrH#pLX3}8+?4h*+5jqvJi1w~7|Jihg|m|5RH#e% zpt6g7+y~=Wr&#o4Lh8^hQ&tIPp00ds<;E~Ag7QS6Z5H7eomr4w2N+raPwI?C0e%-B0PXI&1BmP zJ|W&&X~ZHRr(F$l^^!0*R(2R>u(}#vMU#{cbE z{Z7mPdn`@nQwwMhUttxcDU4-O!R=8Sp~3ZrvxE=8g6r48k8G zckv@|JI@d~q$~?klb8WSX{Z?}vYR+K@8XY}x8V*uy#F zkVlmQDcv8i<(wm90oi@NQE}V9 ze2L81R#lWUu-b>Z0wli+aTr}j>W*cvl-V{{lN++fyki3X(DI9|W;U;gF(de!oBe=}y! zNRB6x1AX8jGRbuGp5+qv^lH5I2KMasl zWik~Ilv0wj-`(>JCzxm`O@2~69$0b8%X97Y&n!B-(2I}!x3c-hbNjotPjd{d?)oBz6&35R&J38mOH zdlH@`-^($)plGjf(FhO zk=@pU%u@b_b0mU(U?Bq9kXzpHq(5ghKFP&)ek+e{T5R!#KL>=_+i17@fhsznFku0S zhhD=j4MI5Lr1gj97G^twrsVgr<^q0a10mk-jHw~`lIg`dZ!IO;k<-o>{%O-cu%p%i^}Wp-SSxq0K@4$>&MB+ z*D|uQCNV&{XUG3YkncDvZ9CR?R14N`|)v$ym|@c#-} zM^|=b&@6Ra3v^yt-U`xK#?xw0T8Q97=FVHHJZpJc{h_i3Q>4Y!QWEiYe7rt

XhK zI|HtTet70M?9r0Jr44Mp5-(kKOP2n6ZFYI^rOd_Z?mYWX3pQSr5@r7DmgHMf{BI`d z`p_L^H}f;EpQFcPEta7$EvPk!iU{9%yt8a_xJg8=)M)?19N%%W8Z%-S2(rz$KeEM*a9udB*vMLpKr z3|?4?R^Ut2OuF$ujpcr!+<{z6noRKM_#cO31(V}f#ZW@{6i5i+@uP`}a=DhB<50Q} zA`c=u1&m+b;Hp_->O^zSsdT*&3AZJj7E>^_(g`%QiV8+jq{khwhL)rc?0r@s6^xFB zDJ=8gDA*RX{rb3--|fEb{^|P1pNx$^e%ByfHkkTh1c2YRGD_R3SB=FV>Evjii)sEy z)&%ycDv9LCJ=d=;kqODhqPrHS=cc)I$oHRdgW(p)yU8&>&B00R(-WmoFWOUjlxbH{ zQaIC+iN08{LiO=BNa}|~8G(fgp~SR2*LD2YLN$7ah$eX%CG3mlw;#sq1DGwGIWh1c z9lx@OZf->J61gN59z5DxuG~HbHk0{$VL>{)+@Eo4da1b_8D}+7cqxHNJ)wQCn^d^! zGdckxrmeiQS;E&9p=f)TE6A3lQQe|sX1A@IBlr7w(NPrLTw2h1V&0Rd zFvVBag9TU9{pqsQVY987iv#wWH4#e8R;0sJ947h`IdgU+wEUG{5-~KIX74qzCD%feP<1OV6&o69q$Bfrt_Px!taRR|D>2R_-(%{2jXw# zpZ~b2g%qX=m@z%am_<6L#Ai^<4liDkHsc*LivV{c_PteM)mM z_E1ny6rLNY_$Y%`xq=M;am%^$)-DHCR(|Bx>)j%_R5q-NbjQ!7Ysfa1er;f&x6XFb zJh|5e2`LN-)*FyL#dT`+J6Ba%%#>bS&s%T9k{yWVs~mpSgF)qVhxcoH^i0$6RUJkAykxZYV4ns8fBR9~ zhLyzn8*DXTN94^WWw~%@rkS55KNm)|OHz&h=lU5J8Ys$CJ7S(?#KF}$5%|YP1W3cE z=52{*QiWpQoklpN<97HGlTmN}O5>6@q0hgo_SEix@J2n+yFRg|-I3OG|E{s19cquL zAcnywxulkW6@`LggOZgHRo{lLN{y(B-c$T#Z=JE`{6yC{0Y->fAS1+omZvZmy5~YE zjI~x_#fa|2Bz1Ac0y&O-Yz1b$aADJwxGghrfYfF^t;Q(!>jmSa1+odAkpWw``cO1K zb|Fsd4RGUbpiHuP9I|MVa28DM5XQ%*sA;e>h0&k zL!Y%yVUS#PO~0R4PAklV0E#ff$iHwY+YxMwjyfNSL{D_}!tv~h;=}l{{$zJN?ZLBo z`fT9)Js~rR(~O)E4ZJGkTY;Z*HVs=d4SFzoI}+v=+}DOA4zfdt=a-X)4*g1ga-)bu zyj`D?;r)D2AX|aOWeX9!8&VM2*BP_-E^s_tVpK>D<~t%Jxx-!*9sM-|A|h!gs(X7e}BZ2K;7y76_n*YD{(`-19GNrfbeD%=!I7iVs7n7s+OdR9aUAi%w?8YmYX<-n@qp^rk6_)V4gE0C1qt1CEy&BdNDj4Z^I3;q4C4 z*i@$@>KYh`%1K`5=!Y2YFr;Eeo0*~i{8%dnH};;{TZaLsRVqb8&+6^Ic;H0V_T$q{ zpRf{*a#n^Rl)B3oyUox&X-DO3p~Y$!U$7u`lC#nZ#-ctQHY^M2G}!CW3gbaS+JxG= z#u^>NUUvHo4CBC;w;U84CoDA^kwySuIHwZ5RP1LIn<60?W=Hxv%!9SS%530Rqa5tGd4t&L*AWPx z>NV!8r`wgAKGM(lKTlZlOuc1-m_lc?$(Y z*6Q;R*S0(BM$kVw`D?6B22_o6_ByV7eO~+b1Bvg(YA;g?o~ILw=CX&yx5@^GWDk`C zsMV*|7an#~C*V%oEir@RAppPO@5=lDWDvQ;<4^unV2j_Hv*gr9Y11H7U}_Tf<2*Qy z#zvL*4iB8~lR9?Mqv65rh#7_pwag%cKtQL2avRKU=_xu=|7hmb<6c1QRc()LyZPV& zlqoWHrFBbX&zH~b*aKwVepaL1PPx@o;h7^7!spHF{!wB6ybjZRDY=#13UCct&tTrF z8q@vMIr6=j>J!yVYXwRW$93>cAf3Y;Puxr*xxoQhgKiW9d)I15M|8D``QDLCfP z#aqA_7M)5l4|zK2LU*e^%Mj$vzD>kgAhyXlB5|F~t!em8&+8HZO>#dkDg9vwdmA0? zAj4C4MY_Wdf8eR??=5E;X_umy&TSQx0!P_mw4?!kIOhYb`SLr{!H8g{H`uM{34)oj zA_-z7ODVeP#0}`VH8PM7uG#{znf115ml)6QLr$#v)@lY;=m-(`AMe_Eh;+d@M2P{- z40w%?<^0`At!KZ}O2%o|x8?Xo4StUEm*RvoP7CTQhy1{Fr3G*V)f8#28Rl5yV~wBE zD6BEXnY=a>-Gi22u3u$eJH>YIfMkFwkIE`WHC*b9d4y!4`LC;rJ8a(H_pAwtE^O+V z=AM5r-_)7T)V=>_mc25Lgv&vKsr@E}*eNV`N&h5xFdCC%q(aK?H z(X+krZ23Kv> z_7u$ZgVDw+?6yh`G0BYwtCUIHw;=*4IGzMJ#$Y@q-2$@@QnT5tm6Q!s)*C(0Qe)j6 z4kHqcBz6d`+8LmVTF5;Og@*$X;WUpc6N%DZ6u<}3ua^||%pWhTT_ zy=u7_m)|YbyUs{8@3CPxEDw7hbiWMz7QW1d4+e$4aGaqTH@NMi5rPiEpP`>#9PrEj zF@H_GwgKn0jbyiTgJN(a_8zcUwVedpz%Q(l%V^G*`+lF~s~l?sFFqDz4Xe2UsEU(b zj2La9KMiD@iXJD@j%Pt+5A7^M*G+$K@@-0EVzTFqKf^J?u!GpbINUR~qg))~OuWwU zk*HjZ)z>6Mbl;R2bd)7fy#wN|Q5? zN}e3vzo!3U+fzTXU_wUo41oz004N{kb7!!Dyl^1o?^#GN9?aSP1HL zF8zuE8xL8(U5bW6pj3=&Cx0%Bhrrx;suGIGb#WgAgG{`}ZND(9k=ZEjye2ep2$J?n z4@GW*`+YGtB(9M6=C{qRW!TI6O7E(0aT$(SrUug+$ry)-22Majls5vDMz5Vqu0NKr zLds}EvM15y%r(NX*Mhwts}6WtfElYKrr%_d<ak=R77r9hv3%kDH8=G@sz5IUdJ z{ywc+`Kr~4gL^yB0=wO9e%q;fEAeW^dPQGF1Q3oued&tsTB+<)a1!f37_?@dT+XrHYR9Tz`Mrxx8tKgIt|Df0hZ) zlC%6D6NP26{WWDcS4x~hA~uZH zCbTMajra8SkBLHy-?P?5A;I0j1ne@(p#LXc7aaAHnb!roYZ?q(l8$o1(1&Xjy}aJU zGtO^i51h}t_&HRqx!5wY5tPF?`C2ZJC>Vnz)^|9CEkB4XHNqwbbDX8^;Y`W1joA=O zGLT3YW?KPn1c;+wWYEsxA$F=8cTQ&8oCeF4srdvHKZ!;0@ zDcvpE9?Yrw63x`>jYlUyQZRixm)}wUttsb@3-5-=w2ETf=)1*{Et^8$fl7d({s|#? znwmKG5wjQb1`;=wT_^NUWkWGB>o7G0FIaMPSep!5Cn0b=L+D#^#qcZn;7G)*+WmBG z18Dt;B>6P=fem_wM%4t4T#5%1q@rvL?+XIr+ZvTWnGrONV=An!qlrCH%pBZiXNi~# ztkJcF2vX`&lF##LscmsF25{5JmmHCHjsa$K<`TaQ_bsQf^mr1fLt38*PKV%h6%oT> zbcp@xaBy5wk-4Buh%$KFFiKkU3WK{o?IX($e^gZ_=}w@%;DCs*$EU}Bj?=?cWMkNg z^P}-E@=0;kDv^QBh=Msf@@h<0Gm#)l{14<}r*$U8bLHff{^c`aga1k*~4B0_MK3| zY5H;~eA}<=e5@1Q$)~s4Y>e5x^g}U^AN>QfSYWyxTkS_H5mLi_7*=RRJRyv?q*?9O z3y3%T^=#n7R>=H)IRV`KTVK#T#HlL%H2am)u=1;7dZFm1;?&@tC+N~Cu@*ud=*>?^ ztQ=Q%J(rWvRN9$=L$Nb5O@lPNf>TpF4F3`Uu&j%yg2P3(uY-$yzEJs56G zo7K|XegzZBm=klDXVH?D;x(;kBIY4%Rcxryl8!Ury2q6?n&2aleuCFwK~eV^oVi47 ztOZ-Y(;r_u+=G8IzUzu4e%+e|a! zeB@bjH<=-VELIm90El$j69{1KKAUC#okbJQWB76ebx?C7IqQk5BPJda)lL}778b_* z{Gs2$?|xoMQ}Yl~*qVuq=!Y$)nB>L~NfmgZE#)X~Ie86==Oq)N7x00EDAuSuv)8L6 znoBx{5_Z_xr2=*`B?B9_ap`RS{gu-2Xb_+*$sy|FE68tzil#=#BjAb`d-8Ka=MORZ zL+4MM9PE|X(rd*M(|8MG_9DW9cNqt>#j1V8!^tmi=UAkb6Z#WqX-}q$8SM7`vR1N$ ze45Pm9|+qo*Ab!CjQ**X(&E{^{yP={f#>sABlU7k#~nx;QVd4UK5el2^mPi9=?Z|Qnk0I7uf^TTdUX1 zarEHYo-Ql+6XGE7p$-gsG;AHmpeWy11C5RtZhsAF4MP-Uan4_Lpzqyk-KA0&4KZBX z2D1e%mbdJW8pt??MNjaWr|L&^5v7V$ z#@YG1ylzjmtFcQF=Z$>M8a7BAjRSa`oOpu$jA!05 z+3mOBTsp&%X33zXO2m|(6OPw8Qgajfz%d!U?piP4e2f?^==W)ZQCDdB8;q@juMtq| zoa%vq?5u#V9X(W;hjw^-7m}y{RY6^z0;9nLxkQIC$nJ}S7%UYRo`AcD%x>l2lk`=F(ekP^%VZe@n`GaTZd43BSt3EZZDhB#81j zC&A~#opB7M{4qm@yOg<-*AlxmM=@B-a9Au_4q;lM zrpy~kw>%|RW7VDDvDc@vOP5NEL<3l>M-otoQFP#8UyTGy%OOM?{9+()mokToj2Ck_ zFrCk(nCNN+Qv;TLgOcu~67r0}rfX%;NlC$uiAE45pY6*L%`oB(WJ97NcAlzg{bK~s zDRJAgF+7XO6r}DgmZmzUd^#U3$>Z6NW8P;?KRaS97#x`FuVSb5+KQFY6$&T(?Q>{j zptkkfl#{0Im%APrtV`;@O?`cnVW_XI&@+N{tF zVrj=}=~YvQepyQ%+NHi%ROGF!LO}P~d!LZn*gc1hFHG;UWBg78D^A(_<~bYmK;#ku@;JodraGw?ZP(|MNq@HDQWuzXbeY8K1+lDyinT3G=2B8 zb{+p~MU9dZxj?V;tzjiGgXvZS5#Pt|80872on zK<-fU26(a$&dL8-C;L-$K@W{GNtDpdKXT~bc%VVp{b7O}dc+e8Z6w0$=aBW_MV$g^ z%NyAnaoX|^B+DDQVWfL`RQU>th}h``yM|wU+*Kq@e2OR=!t?G1M;)e)2`bWOZDdah z7wYS-a=j~KpoDr(aTrKugek1iwA`O=w@c35VEV9+Ci3W4uaj5Eg5P%a@jPEU^^kXF z8>b5sA(Hf8c6jjHew{MHAil8w&A`d~s~YWN_^2PM`sKa?Tu%1W#aHB~#Rz%d+s)4w z+}1#W$qBDv@q7n0mIR~4oi%+cfNweACo69y=INV=$TC6nRW(d`-nRKkHW4ptjV_TgG@@0;S@%L=(q*x z(IFrqH9I%U-{O%|EfEiC-XKeIPYRE?}`zecgC3VU)Dm{dL282T0==(EL`uCvQC8bpDiM?C0 zNE*`q5hHA^M`zc@Xu%|91GWC%z}jt$lxiEuYCe4l63Zhc~cprc==Hq7AKnU&gf6fZ($=nC_ww82`z$-!oh;}%xpj-!Tr37uI z7*7AHW6Z^T<%cUQ_VID{>HrahT~xP3hsYqmBxHk=vD5ozd}9KU=$%!*d^NESl-#&! z@CH2VRgIYnNqZNftW`|_fJ~kSv$3Of{ z#3ulVHIB1()pSn$1ltXgn{QebU`RF`6Eiq!&O9<&2SN!Q9TXmDW6D9JnN#Py9o|{d z#1WspW&4lVxqg->J~kmNh#=ufV0^2f3HF6Z;3UhBLw|N$D#hL=JkZhZ&!$?t7xIp5 z;foj-+Lr+Uk+7umw_^AuU~3(CHd$jY7h6-+h8Cu!90Z_6`LN@o)5MTZBe1l*I;q3W z6+#hYh{knl=N>BIQ4xRs#PBkbCOMj8zc_RG^Z?@asqP(V3NmeiJIbR0tLk0723ezY zp1CpzAK1;MMP|F0{q$X)vR#Pzd>!07=6~M#!luvJC8||Y-yPvlg_A>IZ4HiDNGsq6hswx8S8md2B^l;mLdOn<^d_U=S zT}8thZ9Ip@=!}0@vHut%H{5Xzc*k( z^5+idA1yRcr3>H~JS0tJf0Y32!Y89_bs)R#)o3sKy|#2aO_rD&dT-et1&Faanc}Xd zu4~gvZJe~x3g%!?H$*%KE}x(NS%D8_cQDELb4~Wjgat`@*k%354Obf=z#AK_nwh|~ zQ2ib}aO_(PK+H%luezh4=n?4Tjs?(;s6xKxme1K}MsUXv(lg_07kJNJraGiGC3o)u zO~dhYh~YPIWv3Qeb#vsglBegciiqXczU)9r{dglX;k%2mE9J3L{o*}bH(NkB?EOe_ z?~sccq~Vypap5;@!*rFr7b4!)+%C9~|3(a)me(1pFp@eb7%Gm`gOQ!bwdvSqfKL~F zm|IXmr7ct+C(NLhHN^MajwCO=RzQuVX0vt*cfxu@I*@`D9W+Fpcxmg*OX)#y-eBkd zAqgoa-5W|;AGFNAE>STRmHl1+=rr?bwBi#eGK&%B-$% zF>9`9&VCH;DAUf{PFu;Gm;sQxp~)Vxk@IJXM{ILy_Pq9nD6)AXo9$%W4?OP zIw>IS|NE-!uNDF4XzxcFucVe!%MUkfh6}Y#T+$ZJ8(Xu*$9_^e%dqr~(KzhkzWnD@ zc@=7L*|qaW=>XBG{k~6p>K6FKvv0T0UZO!N4*M8j`7L~*ClELvMj`}9jj_915mQT$ zbS^!S+v^7`30ql@qB3QnRvK2TqD%TWa5@YpUG4ON7SwW3Ey50qBJ0xiw+)5Tk-6;Q z7Wus0WT}XfyHlV101NW_vzX)9eq#r9tVoH-WOj(95`uh9MCz5Xuz*kovZd~qclag- z4`_rk^2m{5|C6b;yZ5eF*-2^@c{IK!_Xb9tUD>3zWu+usO#`F~y_(>QXoL=94UC8`PE_%2|xebjqPFtN7AN0=J zPCL(i-ahs&=B4=e3-M`*+J)sz@sg`>_P}C9?`QksMdIq?-O-8wgUga*E8c>w8mzZO zKhcl^gkY0eN%!MErRFcU4+l>`T1&*JU+E-~^p$Q)SJ`(hxKK+3Xs^__cGK#YBn=9p zpWWfj)iurWSx$RGdtaeC#M< z$6%Sv=p8|S{4rYJwRQ+~uQPTVAc8E^R(*Kd`@S~At7q0X)h~z(c~LXiri3aj_DKzY zH8zhoCMjV1w;63VPBLm0>2S#msWNQ**N)R4Wrv> zFqQFuUvk`6B(KWG@bJ`HaAJZ#P@jXoSjo(e=#%Nl_JYLE5z_}C6y%7qL7~WRN#s!4 z^{J(_r%!8VNgJ$p`QMRuf{=;4`^PeO{K3S6>x}bwWw81?awxrl5BKkyJi@=u*e0i$ z#)>>gnZU34=XPk^|IAz8!zIe>>Oj>gFd+O&q|ls|p|BI~5A- zIaqcY)QOtREl;ZnMIf&*Dr@@*6#(T$u7FGe)AuUGmy*KydOB;`^j|TS8=GPG(eXYMyqrKp`jPnq00Uk;pm3qgc%qJuK7GhD_WAyJ-}q9kg#wC7lIm!v z)~5YHnP!A2olF*I#0mCLG4b#eI{f~eFvsxiHOi9l+rMXag;#Gth3W!N`+7w1e>9k2 ziKl=2%hVt}auept^%VVhEIF@`>6WF2C8dh@65nlazQo_ouS0z6Ivk&wu%u0Q(O7SE zT@YbJ0&%N76n{qCXBNd4eszJiN1Z^yquVfj*nDwja(2D*X%xEI&VjL>pN0iQYs+@I6#BHoG|a=9nU!E%+*|o0u#?$wo*$H(qb6&W6$Xt`$=h z@hxa;@9@s_Wh$S!fpld|qS0`yS5iY;Yc>pIvJlN*?t$rL@+EK)jB2MN)jv|^PEqEE z1y>RFL2gdQ1FpZMjH8N~Z(IYCkNbjpS>(c%uXk}5fKNxWNVvFP3vFQ|rZ1++58oIg z=&q*SdXx&=PTeA!=wyJX^PM2gl+cf)uFJY*M9Q^N4zdVsmfVZjnyYi$Y3NMTS||0Z z(my%*W!UtwsQSl(0^v6j#3l^06#_s^m7(UQkr20V#|9#fwJ&Q6qNFF9no z?#}bv`(kI2%d35VK-p|j2GKPH3RvZJFwi5a0L&E~J2!$(VL($6kqxZ}ty80H+hD1B zzFV6sn29+8j`AAjI{Nr#7l5sxNZ>>GXqjt%ewgSBtS48ge;p9El61}i(SO<<_6?%g zQgy!29xWy)@52N!2R$PvQwM=ZPk1O**f=Gr@pG>AKN#9)m9I?$i`A>4Yg`iB^()!z z`^H+9A*1kL@pKw!V(k@kOdFj^5S^b=)HS!UAa%rfPsvczXO6(B=wMuk>EGuLbLndA zKFZB2idS52-X?}hBkeXjRM3p07ohZ5yV(p=i|4Co#KPPL8|)vY$v*otbJ$cgi{-da zthnq3t=5hzbfZARXR+PyU1|b`E-$XjFIA7EbZtG~GJcQC*&Ra78;8Me;5L7yH2+Z% zgBauQ;%c(StLH3kQn?I^EM3M~i1$%{2})|qg?t=cy%3p+8BTiqbd{%boxWYc0Pk#f zbUJ%c?*2#xec#mQ7Z~omE50(0cs6EJU$ujlYe=Owq)o_e zyvs)XkfNPauBaXBs3ge~p(<=&@nPQMbLc`_lTFf(R^nH9X(3v0Oenv!t34op51u~f zo9lwzqW8-FLq8c7tVr#$cJsXj19UeLzHj|;F{Z*MDJh9Ohx-!8tTl740b+vjiM#HJ z?k{=$3!;bvU6!K7EG5Y~XbU8UyM}GYm6>o5#u8rLg^SziqeE#9Y89^rLIiEicxY*A z;hwjk+&HMP{IF0KMp*eWRSRWB{W3E@#f@^bab5Lpu@y1YNyw3hK;6qKZ+Vv} z(w@te27p6T^yE3H_S6JvtZ!5@JsN#M1T5ydiutf1f~xJhtsxEcAWFOPG*BKJA3sMT!+~;k&t2JBOzm+qU;%A7Ja=QI88U=Ea^t{cv|N5Zjqk z!d>5i)kuDK-?eu|hEe~p;W$hY!pj@> zrZvjV#*_AHBN0GaXERj&TJW8d;ZLOCzk57LI5GD_e*V3-V!!UO7&0Y&K5q5;PJ$w5 zVDU{_qlroiJauc3BZe1u&8olvz&Pf$9ouYBBtk$+Wm}EjB91GCiryp+PKH|}0}e0d zzl5Ezu0P~3`mHBlvJ-f=Zg!sE>xdyyV&X1=auyr!&@Zu(4ixZcia9|fbPwvZ=R($b zJaMhm=s&5;<3$ zaHB$&D<6-ZbKzx)&H*E)!Pm!oE2n*1^&Onld9AolG@Pkv_($TWt3+J(%@L-J79AAf zRtx-!y>f?1!XE#`#wkycri<_*=wcg0EuY*D?4!yGyOhcbq*D%@rn5 zEppXOG^@z8rrDv^Mh1Jp<4K=DKe>MlJRW*8FV8N+7I9GAy=UGX^qQvDDcvv;RO?)t ztL*1%6_e*XUBJ^U4>rh(jzTwXhX~0atV+-}s^pa32ieX+59p{|Xndiy=b#|X;3=S& zNTDVCGTXK#a%SlKfE>VhGnaC){=DM5%cZ~;H76i_GdRd5$rcT`Ec*%j;Cq7*i6coM zw%uSX9?-F{CH*pxV^DP2YjE5xDkxuo#CIU3Y65jVHkN7&E4NjHWA%{SZyk$%*qqr= zxi_newvF{X9U|win@@2PR^lMJ!ixFWOlwT839N{R0_lP@QS_4?d=oPz+>Q5t|Kkwu z%DrhG9Z4+$`71GeJ4%INQjf#s^KZi+Uu%W-b3U9k=;Hh8r3^LXMODgZ7Q6tj*S|p% z+}o3|H?y4jg~rV<*v`I#KvQ2_!(?u#KN7|jFZ^PNM#!C;BYB0q_T*!}J)9>#JYTMK zYusyzoecUs=N+#{pV9in-&S$(e>fYDb?oS@-Ja2e-ipAC3fnIn znjFq|-%me+fAhCpn};*EJZGcn>3Z!MG+Idq&yT<7|LXgI)i+8C1XAl#Wx?`d?!9x3 zm>W{b$s=k{ZQ?yf^bA+L&&Dj=imRlo`ZQ9{xl_}W6(8E^IhnpxhqK3bwQ{(3I>@>@ zRmG_Yi6mchK@zuLxi?S2m1o9@jgDG^3GFX ze+WfcmF67%2hc&@Dtd#fN?9y$O{} zhJ`s(a+mZh)qY~TYcgs&Q6ol8`+_ia!$u-FwcYK0K6&#my?g#kQ**bj&EA-8U~)D& zw%#QeuC>CMHsQ1Mv&QiZBWre3+v3OvsVdx@wv}0>xmiL+Jk>~^-eIce(iX}njIm9Y zk`u~C1%-LMyr+XLZOEj2%yUWR&0F_|UfB<{H7vOtH)XTzs5Me7n5;P-kXd%MwMQD_ z6GQ{w-LIug)sm`0c-_p+gyXE2*$&#OAkT8QZ$4mKyyc>u1*c3_Rht=)Dr^O=8q@~l7?FE_UnJ4#DWelw8;i;vRg4+F^aE#bQ8Z&EUFYLP}(MXUknSuWkb zz_Llil%B5#{`w$5y`{_C$F-*U%H;MTq4N%#6MgICcYFUz1|UET)8&w<~i0qm?E#w5}o=J z4y`apz0%QkN4A~6h7!Gg1oNx8do#QCfED9d+-|Hs}FgR|p@LDO-ll|xFvjT5;`8liO|Mzcm&4N*GW-Xbj Q+$7*nT?M6Fu4EqaKXOb}DF6Tf literal 0 HcmV?d00001 diff --git a/application_example/maskrcnn/src/images/resnet_block.png b/application_example/maskrcnn/src/images/resnet_block.png new file mode 100644 index 0000000000000000000000000000000000000000..35d8ba8bdac9431e7f78e252979c6e822eea4522 GIT binary patch literal 19688 zcmcHfb9h}*w?2UGSdH0OZEQ5QZQHhOyHS(IXl&bQY&&V}#=fiHIlptxbMN1GKhIig z?zP4o6Jz2X@0gJaa^i^axbPql2vJf(LNLO2BnSlClLPqi8{bl?IiBkS8b@$-q*(xoAQy z(dTQ-sG^Fhs|zd!MOf=%cyDPaC@v1F+LUy_!5y_#`&{~Ltv@**jQdNOU1Wg?$PcEC z{8jV?!54=94f(CG*wWyFb&Q$|PLPYN1J;L4Y4Y>&5eHhS~D-14f) zFS8JmejpZ27}b0UtvAdA>25{kqC@sdRZLmG9V?2<=>V`9jt?X{wC z3wnPZ;3hFM_Z|Fk^XQX9&P*`y;jZshxAa2`mrWIsq52ro6sIE0r-z0Hr zz2h07+6R2N)^bo`8c~CA8YPm@5NhcM#G*O|EMgJOlxYu!kd}X^z@0pv6PraBCg$P# z(UNHsCgwJ#VNyc>9h4eG)2qNz$BO!%&wAJE2KV@OohhKhkmQsE;~^5|$OO>}D{8ot zv0lrb$f}vi;3ltzlaZUXMmH9}w7O@a=vSy^4^jIgpHh(#9^3V{C^58yAdUgp7aL6j=HF0BO;us^kJ2n?V2=VwP64njmTV9#N-yGtS3h8* zdWldX1B@K>EIvwLF$CX!3058)L)X2CM?ahY2^>bj4zNf-_NRFcHsWB4!4Zui=Grs!Kp_km?lFh8A>_b&z>Bz#=G|e+ z%eo41NXaE#|4B}j=#M^zlNdoQG;AjQU zs&%zxp|$>9HaqyUkE(Me!C+R9Qka4erQFu!yz9&zp^2jU?dh|H(FASJ~$7Fu~;!HyJT#baMMcZINE{Gdc=vsD;DuGsH;bfvk+Ei<+O7>hWcuSbBLB;75CzYj7(dGJDi&(9ghL z1R*#+#Rcp4ayp>uKsE0?AA_a@zj;7-p+b_7xP%0zld47V?nZeK+mOS;i5n$Ak|U0Y zIH6GGiBo zAbAAI3X>ItRe&)4#o~)r?1k9r%-#{_Ep?etP601Yj|<~hv)EQco0#Z9!($Ehuft}> zrW#Ocu?vQ>S2d&fA<`^2(88!Q!8qby-;4gBIYD`1KT$rR zJ;Al6<;&OpdQ{$}6dH9IRT^cNLf;233Z9i_%jHsnD3zSoIpMMT(irEJ-r;JP{Y$&#Lxo-Vk!kS^~$mu=2&R&VCm1;z`OH%m`KU#L1S zCwHr$d(QL-X=(o$-u3WE?RfE2Z`L@N{ai zdX~S?U$=WWz>sm4crv%gpthGjm<3uMQ8ElEY$r^pA1X{6Q67iS#Nd-QbQ+1lxVeq- zPZJj$)L8sj53yFUeKGHt)tI(e#MsUl<(OZe)jtz4sWCAXLwp||H>WqfFxNBo!!cqC zVG&_9nMr6PNek;>`)q|~M9NIXvSRJD@F$pRjCGxL%B9sZ_*j=^eSFZSVnwAs){J7J zEesbC5r-N_i{0g8TKk}+HQF=i>C;W+!Qq5AEiD}>oe7pTot%b?CNrHdtuvjvCSl`Q zgOLW5reuYhCPBT|5VM)1##4oq8cq4y>N?k`mSyK)+eF*a(9GAB;sLYj30>_nx;6GS zw-noG+vcp44V?BLZjEluXH@q#-nDPIFUt4!1o#9>1YPbH4jv~KyT6@j-6~u=_C(y_ z-7wLwCXsB>iX(@slwA)3r7umLi~$IN5oDr|>AY&lkfsMcqo6g6j~bK_>Cxpj-slEdltcT%D(*~edpYZMO^ zPo3*RZ!wR_Ynxl2f zoIbjbov@h^KOiG3@JG(*;ich#Nq*~4qM_~b-%5cshnvz8aQ&DK{nDc z`okn^Jk3-vT!HUQvB;-}yM_X@>)}YVcQM30Bp>-Hm4t=OS^YrV55GHO>-*rCR?Y(5 zHvA%NHiB?Sc}P~izzqD%_p_ce%oTZOaA&mxm#E-D%w2jo^*Xt~%-^Wpl`qyhS~>_k zeVPRpwDzHmFAO~p8iWKW z&ni~voNW$i)90AJIbBS8&U<>^_|Z5rXe$2o@;iAghQdNPp!ayx{o~$P)K>I&_H+xz zr`wXGOQEjDHt{gOF`6$8Zfr8OJxx8?Ux!x1=RQ1cpamhPnM5+ z=EA2Qb2wd6eVcZEPPIPYY#t)NAH1#gvgb5CBXnWoGCb?rSP?Dw-6~xb?WOh8e|Uwu z@2@W`m!B^sRd2LpJLdNSlU%Du6FCV_u806-*Uc`?akb5HocVDI`^6K^FI+j38&~( z=1<~N^K*KizvX2W)*Q8w@HI_p3I z^N>9hp8EQiVO?GFS8-7rkhz{w2UVq5q#bxRNJ<6eU;A3O@n+VAyGO6r2usMWz_;!{ zz&nN_K48TY&;X|+%2Y$rOjZ^|4WwZ~kYKnVC?Ev}Tzp`7|C1I2qXa?x=RG(G6mAKE z{BIdK;Q8;D09^m_{MQpADGUSy{QIZhBNzPtNrUO+Lj1ops0;W85>ytJlmwp2#!jZD zcFq>|E+TW}|8&ARNN75PKv-Y?U0{+*KmK<{9)^D{|35wPU)}tlw?IGh z!SgWukInetA#ncu^NH~-MdVe0CostV^V0|Jl)&}x30$}ay47s%z>`)|L{P;8>`WIX z8AElBPQze?^Vb&!G;;ctFC~8{IjJ;71O*a)1`p^vVT^p1%r{{KNnr>oD8L0tsW_qe z_-{O95t^Gr)N}LJZ*bpD9-m(GFRD(mW2Q)lmrBte1+3ZS4scEkzrkmyt!(-Odf z2L%x4qN4Przz6~#Ai;=8h(k`va*Oc(BN*ba|M}lr!5(o~*qvusi(|3>NRjAxLjOnC z6)Lz;3m>>v8|ptP0a*3y|0=;JBmku_{~KIr~lCVQBL{tRfV>KU+B-^VPQwqEjoRe7l+APi8a}8ckp#^S!+Whetw+yS4~*F#eRK z((td#*xNK~ndT9&=@s_EVviOpwN(lwP_-J}VhP1gQ!9@qv$z|4_Tfj9slE>jqxaq6 z2wC<(1C3eT{yKP%f=s|8QQd4={$({y-!t^xG^MXp`Ip7Uvpgl9bf+0Pi4KcGGJ8cF zV1b3p1ks^~kv7*`znm^FRs}Mf^^QpRuB#x+0`xvML@CSPeSlW2#{&&pi%RXLLi_F~ zHDv48fyntnOZ2%g$`EVZr)=90R&`-gRR4NBjbp8BHm&mxi^7d=^DfSjB)VT^fEL{6=v=0ATIxR zo=&C43_`W+4o{2SLdj$jVd!|i+%MAEI%^MK4}DGGimhs(#6HLLy9ReU%oa*E^46U4 zY1Ww}bE#5Geg7J}d1Y*f|4TMAmATFmZ}mGltOq(!S^IqJy{4&bUTIhBg+<6;$+IRN zkIRa(ZrXfr$zBg<+Y>M*A2Lbn1v;dUV9QJvEcww`8iO?^ z{5<8M$J~qa;nA-gzu7;w4RCjmSYgSunn|M}AqueePk;AW=*RR>rh)vU!3J=U6%s8| z5YV%XSOG`px0Y`t*N@kGw?{K%x|rmjcInis@KsIq(U*l`=tlg3v2nNMZD0ChEzyAt z9K|a7JB9r0PJj3@iv69 z$$m>Nb7j>Suf4Uy{W6=~yj-`Pz0r0q%xbZMY7wO>cQDbJWSzr_?3@qLpH%128%n<~ z!Rwptrc92{U$|Z)@M3#9&%hD9>h3E3KF+i>WAA@c`|<_bTTB~;o^b;{fA~<99#Ui-RggN&F1?4kz zNp!#6<8}V_PFFT8`poX5Vzt%9JCVt~6vo2h{=3F5pv(QF!O|<9DA#?{GyM7fxS*D~ z`J3g$8elRnJVQ%}T z^jo0qYm4K2l`ePfv1{*0)GwhHwGJ9T*01VR>V?`5_U|(V;>TGR8^^@q0@V6lJQF{e zf}^k*F8m;rW)FcHKI1zbPk#ner)oAHj$`%Tq z&JuN4z>>PyM&!qdD?A#S1D0sV>kXN^biQ5`eGkL4-;Z31KqOs<^iQZ2dq<4f@-r`a6aHRWVdJ+uO@s0Wjgb_vQMcHM!Z#*IJz^I-d?QS+itEukMMd?tzgW z`{s>u3@cS*zrg?g7%Y`SjcNJ0)qo#TAjJNfG|W=@mzV98hjoCS``eYTFq{i z%jaH*whwq%eXc|_IcbnPW>eW&?DngFZn}zuFG&)@j7vHv{m?ojTZWF(Xf=g&HAY1} zh#?^+63N0HCGTqk0#NK|11{{+gjz00O{<-{$aRS8{XhK5l$)!NGFr_a?1W<2C2NBL zv9s+9wQ8XjyIzxap{}nwAeTSCQOkP$XmTmS3!~F*l6>L;b6+yKw~LeLH0RZ+_AV0x zLc0TSUi%B`t~gKjNcg!Gn)R#j%`J=?BsvINqW^CA$YEI8A<-oM4;$_nqeL?(_iv}w zUHQpW%3h4dQD0C8*;7*2mOWdn=89vDI&-y+#}Zk78Ik!kkBYHx*>^pO4Mr2` z*AkSApNlMZRsU5klB;ZcI6^&@*BzG2V$II{W*>J~`#1(d>C#LRMXh1pv0H7B{HU+e z>RhG!3$gQ;d5&`I{$xSAQm_8&EHexeK1v_kwWjamRo-qhWeU44*I@aajE!bS)F&`S zDvigYffMS`cK1uAC=9A~A;yTT$R(rtLQdxc5iLIBVww3mQG^WK5%>!G?zdEGwK5TI z4sh_ks5LfC!6E~La0PLXNt6?d{^vWfrnAma0TUV8r`q^{A7~d{zAq|wxNI2Q)ov0A z1!D1wR$zOo&nxxjWs-BnR-3O+ZR3sBOY>{?-Ia_;>=a7)`eTX@hdKUgHcO>)**wR; z_c%hIpLprhXOWC^jxc@(t_&Pw`~aB#gtcpqv>jP<6R*l3vSOS3@ZQ>wDG`VFV&lk6-zRk zD&anp{LX`Mqnl2jx`_3H2mhf&~*WQGbl=ZPS1 z;QM3_|E0w*vq~*5x%8JR-F6j$Ajr1YBPL^&z-@yRMnzKB=UYqNF89k#YCnO1zI4W4 z0N&(WbtF)CnW_|PkNI{f1Pxol8IZ*f`K_r3;Avk6VF%Q&Pr=34c5{;1ztU>YSw-Uv_l|| zXd?MizyteD|NZsk@BY{`{w!TpwN9f{PJztxr_T*4k$VyBOMLd59iNNw#T!(ql#1s) zZS2d|zWEUoF9h+xAmSEQcVpm|jS&2a?jrtd%yZfKkj)3Pv+Hxw;rYyye?7oDWfc-_ zzR}}$l|Z8Aal3bh6XHPUV?FV8o#b^260H{oO`2VhI56CytKg<7J*VpQK1Nu@0g`##?~qNLL7 z2yuyens++5z`1Yt1h&PFs+Li@xtA2VoATE zLzq*9WUw6}qi?|mx@$GmJK5%U2!1YYwVQfL?*9-EQdMz-75h#QW&Pprypx6M>PW}q zI@3{)JG+&-qOTMv46yn7-F{j^Y%1VYg*#F$)6Qxo8j7cSd2x>?<<)%&Dcm6loebpG zOIG+NQGxAFfd89`}fa8xn8B-hT>9*@!4CV!}YY= zHgfzU7_?i`xVQl9l8=n6^^8p))Q{~wWO8X61v+8|?fbK5e4^Y>eSvY<Baa$9lt|2JSNes@6YhYSt6K!KN+ESm%Q&eijMCG$77NED+=T>tH*xJNPV|Dmblx zEr1+jZG&EZx^2xrdEJX>rmH|^5Uh!FvZG40WOyDBuf;JmMB;jTr&({#{rABCHZfH~ zvD*1?GR~(U&N>GHn{L($Ia&S(b&Az`VdPie0-k$D)qdBQVNN17oFj

6SP;>BWkZ zXojxoea3K?lPT+b@dZ*h7E?oT?K^G^`>GpkT;tMYWf7Vl`HLo=?isu68l^rzlU!olh8GTG!*E(hkIYs3H76Ieu8t0W9X*=bGW(%8M61E;N+~E zajqt=9U+ElCgYUv5x@<#Dic-u_cX}~|ZF=+i|N7Lr+lz>jGlT)KZ3u-!U!@*> z=Px`vF1H(P7MHJ9_>mZG6PN3W!lhm(rQhpgR{)I;5pkSQD1tIC5(A52Ux>q!F-`wT z2!f7SJfW;`IAX!g;p8#V^l~3{)g4WU^$xccMPDOhOe$Um0c;vSxe{Z0?@t~}wCgh7 zF++jqdennCMUBo`G3T=WLRl=_6iH#iN#TWxln02sI~Fn2=NMGSjv!J>lPrnA0sVYa~AeggF}!l%%5Ns zlm3BVuedyQ?SSMRk;GEmuA)u!l%hjoXHK+-vJ_Uv< z#CpGdPu$qp{15{dS4tX-;l4mq+rR9rIemEqndGOJ>!$SIPkeA$-C1_SwO%iqh}2Nizf`w1((}aV&%M^mY1(jH^+ns zeAl~!ECrGuw*5MX#s^J9v!xjWhK;DkaFYc)$z1XZ^mk%wOA8C->UVDECv2|A&C*sF z!}C^)g{4N48twDe8r^{zyw0gq5N-W-u+do56-a0N22$R$5+0D-49#@nW>;oH+Y%xv z2^hSP#m>uLTC7EKWhJvo3~2mYh!`|-;jmvyW}7P4<`JNR8snErMnw--E!-wIZX1VY zN=Z!%0t2{1q8%>iI51F*>N^J$X;4Hxn7Adsq2;p^6Ji_vY_wcctJH3uY$<%G3W-kO z>Ev84auynZx$P~3Ikf5K+iY_!|Ed!roAl>1coXURJ^n2U8hu}YNQ&3}QQoF`{F_;E z&eVIwOPC4Wh!5mCi4Iu<7enkqB8d|;R4F}vB{*CmN;*ev+-g7sRKzGk=@|r)mnFG+ z-+qb@ye-Es0Kgu3tu@=bPu`#Ip;O3N$f!9-eEHWtygt#EbD>@+)gpMzf}c!0ci1#a zDz+Nkd@`IO5X;X`YK_4kiT7ull@Iz(9GK)H2#+>nSc6!I&#Q}5{OSNV0;^0!Q6!zL zGL{;J{p!$@o`6cwCz>EEkuMR^6D{%SOiICY^rt4t(HAsQeqsf3a9P|3C0KP~^mG0m z41PW3UvjZ-x}_*sU~4GfVkC{JL9MTRFJ}c!XR@e~;A&c3DQY4Sa+_Yts zESx6_`Rw`qP>24WgL}9TOvoMl9>e1=o?!vDu-HU{0!guWY)TN%cgXdEMr^ZAas4X9 z_Iz}AIG&R)H-}T@NrO?RO(#pGZklF#LKg3&3Z#DxzIOuUZ2X*&TS338cicDu`?sYr^I z+70t+@I&Lv5Z|d)J3<_BcixG`f3lIUP7-jJ#+|R0JCT^q?@OnV(%PF$rnBp6)8HJ| zeM1J5hkf{+NS0x-wWDwzb{AFK?YI|aoB#|i;xq+e4vLu_u7c|=CKYzsOtu#W;W(p^ z06JJ~G}^+omHKS^12&%{M%C6?=_x4Vjn&3B*#?Bap`0r>v$KQJE(Ax2Uw%XfPyplf z6hLkmu&iZ&q*~al7U%EmHakko1shfB)#zk5|IX0TCiP(D9sKJ@I@o66cDL2>=p|Qv z_olrezg+5Mx`%Zq%IPvu1eoJ0-TM1hSA)1ze)&y_1)N&7NmEp6ojBt2MfG_9s%b7pgR+n~|xo%fd=#=c$w%tjNlko#@P9TZCJ@ zA1)R`IK1!A9J00xC}jrFzDoTemepXXA^Ie)nGjYFzr)U8QL0xER^YQkDvEL2PppH| zRQQ2n(A@%W=90uC+~X92;Cnt8jZILGJFYJ#81uNiFK5&ZlObTg)ka|HnC`znmL)D| zGzi1u!xL-;Ml^Rd$X&;3(IcQ5uFv`9NBqB~LQk-Q5h9vaa3dHB?J+MbGS}Jb^|7{J zWSo=8On!0-|2Y8z3(PI7nxn*IS%x#39XyqEeTzYV@vCM6du;~nm?y#kL+*3;*3@}q z9%2GTDj4@KabzMYA05pOi^QhG!7`=-= zP%L24$7R#yDO^(%B5zm&Cds_MP-A zBM7nD?9YE4PP^J}9&er{VLOLnfBG3rjl2- zP$s%2JTrdGa-IA;x^Uv#1))sPyf5teO_~ZEEA>JH>}W?d~9@bSmutLMF%JD#J5w2t|ma zf2{_SJ|f-0+W@L0?>K8N5~W6N0GH2^Lb{K<+_vv0ER>{i;eaiZ+ga_UL3k3=(e$Or z1`~Mjn)j~$H%%&J39zO zrt&Xtbgm1NjxmTv&kPF#9z`r6hb+PjPWX8z?oT2rxuimpNgO#El;8+wga{Par5rgt zB_|v>Uq6H(Gdy+fWn``XTT%UFWxG3`nZ5G2Ek+jJjRjsd?~i#Ebz;nX(;@3Q)y&k& zd4S0{xFfLJYSLA$(vaNf^j@;o$`CL@8bBhdQYw10V*NH6NP)+ypjxhaGloyh>Uuh>3TgrZ zHC8)8P-P~yyH>07rG7u+zXgZUZU<3q`95S>t#q_<`MtIb^H^Y?9@O1u5;1Z2-C=i>$rdqk$sO+O-+(YE|C@A_ZrcSbr;r85G2foagdOTIAJrzn8r3M+`(J?dcLv~q zwz7-PjR7r(BCxp^m5D^6HTdm8k0yPIZk6mI3g_8|enpos3Ic)$UtfRs zWy-&h==7SBm43;cr*V2Rmq6>tx15ij2$?MZoqF9sWMqK`5NX?UtXp}x-uvTV(`hi1#q=ky%#HT(;2@0ATbu}lQue`sV-dp z+5LP%)8=!GMyJ^kBIw3nsnM83YCWHD4TFdyaqZ~ngwJinp<1q&B~^!!O|RRAk(omQ zVcByRVofy<6OhTE&nFcTFQ12c$4J#1c*g0Z@JlW$2-@Ltqh0*LbW#SLLMAtnOuQH} z+9al{^JV%%x1G{=kc10IvsmIJy)H zZ`<#7MjVnRR2J`B6yZ{|Hu6gqt^>p)MehG<*{Cx`sQvZhNU>bC{9rKa^gjaM{*M4) zI8N8o&8*2RUTJ{bzW<+MV88V6x?kX%PGqQ7(DRsbV#)EnoUv%e%H{BN{xW&pWLO6M z%i53v1sn)07#nc^t`@}AGG z6OQEQUk61?+h%Q?<_U+BAM^o1$Ikq{7(b~6^Y#zFh09Rvpo69La(DYdhREC>_Qdk6 zg~n8n%zL^&w22|?e0(|rwzN+dTOs{G>i`Mxb;S*!N~|`X@8s6-c{~&#s%ZG}qt`^f zSruMs&kuSdS)>GE>%(+i;2u#!x$nwgP--OP7vx(QqGe095_&~s+bzYJaXP{Vl;5By zCN>zqxRt3_XIHOWvOM<|D^U(!EJo;FO%}`Y?MW`9+!NNbLFqg8NWr;(yubY;I8VOI z^VLcwpnsLaXbiZfdV9I-E(aiV`Ji;FMCLzY`0jX4yfE`wp0D&^GSmDN*wHl?7^$Uz z(9Dopv*VsvDUEj3&mfgs6`7b@7+;ANfFD&?=F~aZQ!O98(`|Q?+`{{2C$V<>nYjdT zcE_$`ez4fO#6GP^x9Iyl6?p~nPn7e#xAdiNw7Dv)SL>zty*=M4pM6e=fZjbbnuLXe z%XqmzSEkcyQZXg;mT9z`6B9HwjJbRMyARKLFpN-u&OELgr``MsMM+wH4R^ZRkOo3CE*97j}UOYc_+;))$ zvud@&`ixjC-dJNAg?wt${Wgq%IPo?6CmkG!hI$c^63gl?>T|G`mUoBE4)7!!iRxut z6`*~xeHP&ObH&mWJ&}8j_FYtO-4?Nv`W$AfJj z7Yyfctpq`ob|tNWeaV>%w&YFt921lhfDqtOVWSxe+Tu9K<@g&O!e9KO-b`|%<$4dw z1x4Ir@odFu14Mjl$nTb@;%I~H2jZcvsQD5&4GtT`UTD$)vyDZkCR4kV^i#NP@b24| zm-OV!K_CnfMk(5G9Qz9s5L;UlInVZg_ry$OE1%Ee@l-m(V}O-t1l=kYh>f@oxQD8I zx*F6-h+)bBxPmcG5cXj-7DKAD_|0_#eLCntHx3GsZ#%Rs`T>7B;FK5HSFG2n$M<>= zdq4gVh*gp{3ay%Cl?45Pxe^fZFF|s6J*%IJg8a?*F}fV(*x>tmO_CYL`xr~`O|D9C zA>bWE55j-h8EbvZ2N==ZP4e=LiF0+Dli@W{nRHKZNjq$ z1#UpE)KGH1=@6gbklAcO0+{f@e9ErCbh^QaNG5Y;MKt-%xvTeUV zeGjW5$h9_odg%VBT>c?6FReC<2(9&Rp{CMAYyn}?z6;b1Kreuw{5=?>IMfJW4uIj( z3&2pjbBq~8UtXX5!L7cU-iz#86NOxgY85#on-OsbQMd%uS#q@*}`*0k=U*qARL@<*pP(RV)BOJPoYs>vm6lPsQsP%F#eE=cO((+felPmEs zXWEutA6P3$8%6|SBA=5zt_p&hl2BtCU=DZc^~f7DzL?Ksum7U==pq83Q49+}Uq+*=pB*JBj6$Y0kCkiC-w`Cq$rH z7FGrGt?oR=aA^%w9q|8n+48>~=3#95@%4mb_JjW(<#$$K6mdBRnV00v>(?GPL7;3Q7vNJ?8D{DSAbtnVfaGo}@1 zYO=(6akAy2yc4LM<05!l7r4&eu=zeA0!;!eh5QdvFCB@9$BuBlg;B@#BB*kRBQIa5 z?2Ad5^I$LsCi#*Kql|CvPidbPWVrPZ0^T=uu2dHS_w44&_4Q>+^* zC*;^QK)%Js;*CJqodxcWx!iC10U)6h+}NxalpvNDaigon0`+jLm_Svu@b1U?i?z6) zOyNK1V;?amS7VK(@#3QH5Wtr65P5L?t7X2e;8fQ1)s2?*d{j|NqJ^5?js zu1_=I1*4RI5!l_gsn6fNN)BUqhJx6}#iAQq$sb%WT2>SGVjW#=wB8>?VBygS-Tv}P zV89G?u~?}+2nS6~;PIYER|SC+3*K&dbk@r)XHojDT9(|3g!kIo|XrQ zsO|r)UL$n4?&}}J*2lRr6X^w~9sl^$GsrR|jYuh&`AJgzh#2ax54( zjs6@Qr+5e};W&ZWBg)<40dZ7&5D;`#;&F|`08x6o%a7Qi$2hg5%eHORb9ZMyj_TWA z2jT4=#k<|tfE)nJ+tr$mJrToaacHsUV>P=#$f($AwLpCg@e8lO1EFOa-I&nYBN3DS zqNXG8M}aC(XVss#U<8OQxDLKo^-`(iScSO=u7kThGUFim07Cde)qtghJmHCnd3kQp}FeJwF3kP3dQaYz;b_2rPIaj zsc$f|IwKa8$o&3Q7S|dUnh_HTMpC!UC2vJ;_x;)V1ivoHqZjbzvZU~l`zuRp`r#dE zkutc=k!mA}Yb)7myHbIZYQhxqKXU=k2elkBf=)c*+`w{eu~H?p9<1IKA%#IdJC2C^ zz=g*TZW{3QY`)k~ERCozby#br51zKre;Mjt=vby^_m8(&IlYrnituI52p z?DQk^7tZ3tq{~7dpW=O^R4$fb*U}@<2wl&JyTk9HE-#p()jfQ?VM%{vPB3PJGzxTy zhN2Y?Kc2)t|Dtot=2AAI$xqlRvHdD!QRqfK1IlBj%|m_Z->9~;J%2IwagskF{5zM=sb)h zT_0`HlQNwDaq|sk*)9n<86`=hUUBuH(&yxJzfBfrDhM1XNSpGPSLFsx(Q4L3Jok)C z#EH`yWKhTxmWs7UM8G?uyy8W@Vcpyq(-aeV_pC8BQzgqu?DmTJr`W{MP zDo>Eg|NWI2Tl{TixQpNHaXp0;->+o1^()OHy`LT7=F55LLq!H*I^PDKu~a z+&+&EUY@h$)yGiWU~!BT(O%|qIjNy6G?(HKRVnN94Lk<{&^qy&hpOW2W26<^!10D3 zZk-=pK9k;}jF4Q;9ngw2JkLi3savtoI%Aq;a9({tjj|mk+WGKJV>v83(s>AWL@UEN zWIO4*_5oE}f7O-U6CrRNbWM^)Czgv+InGfWIb^tM{P|O8HD^gjGh~ziK$wZ)e%pw# z7XZDEVa(=8{Fx~$$P|1$n;KXTor1%kByb)2UtzYZ*TR1w@r=b7A-6C-1Q6v zf5>*;p3V~m z_KXU{oA=i7WnkF4r!i>7f5rniun~G#;|R5kMW;0{bdr%w^AD%Or@7$eI0W?Hqqci< z724jbIV}sQw~d3j%@qN`CKOOJ{i*E|(-dlfa9Z*qQ2XS=R>ErrB!@N|A!6(oaQniW zjv%B5Io*yukd75+Tp*-jAj!u79C{zAK!Ur@jjlanOV?gy@fkP_hXGvY%_MiE)?_+g z*7L(=!y_dUkLyv<78mo@coSG+K++t1mn4f0~#HwU-mzqn@h?U8yuLze2N)_P)7cqDsN1M{GuHyB#+ z(;AER=jOXh#k<55z=GCazOm7zarBHli7de;_@6XS5VO@W>&F)taVB8Ea3~gf0qA0c z^G?L1aF>-b$~7TMeG%Q(qS@qF=?-uSseyA#Np)OQZFz2p5Ai>>A)t{|&i>NAN~Q62 zMn%P`;kT<@FA0`xI4!Tor#e6!pJVqq?{rfpjxN?Gv&T8h#Nu)?uZU*-JMpB|Xeaxd z`~~3r=jz->ABLl39az?==|HHa7Bq0|~v)u+7-aG(^ zxUG}&?-EWJYUOb0$7^DFpRR{PJ|TE`;uHa#UJ?&*&JwrI|4*WLjI4cMZ$M=Z? zMJ=E`>ihmg2GjR0;9yG{A>D2xA@?;Z376mSJ^sqc`5k2BKqj-tHZc-mQbuvtbJ;hO zpfUz0v)<;9KauEihgtaB7uy0WGqJdl^Z=PMByLz;b~aC zCy?G+6hDCvi`T=p#Ts`#tXKM))3&@vA)qVZ{(>k68(67 zB;N9E2r=7*LP9S-#V>g>`$HT12sIDmD5MqK!SDy8*F5ECN5pa!F2~In#4(D{`07cE4AO9ud?n0}%BS?nGRp+^AWXiBux4|dvRL9YcvvdV2Ak6Bpl zo=`s2B$_q$*$$|iEI!`=Iu(TKn(8*y{q+^+`Gn3A(C%ZfTl4GVUcAcv471Bc-;;@K z`FfG9t2c;jEn!w+aYxRu6a#9OQ(%d9XICo^Aj1LB-$W&#z8UP=oZvz-QYTA~Xo?Wd zYB?*hEchbt8Q|F6T~%hBItY5PcvZ2ft0kXK`^?)%j&g zW}2Xf{s%$!u|a~X=Oxv)Q6mvT*zw%2@3nqU`|8x%RTb&RB-;;~eyH2H7hnuQ!=tIL zo^q0GB3;b1D4i40dXrL4Tsq^Of4bjAqp|5oX>)hx{IP~n(+8(ehbbR_@{hrxxz6Cj zY9Q52GSf-}Arh4tp-{|fM()m!x0i=kBFcdV|Wyyz@BQ!rC~U52J=L z&40?W67V22o&SFVLkYb0RS)LMCD+*uE75g*qB#&q9H2m&OiIlKAX}_(5dp>#vBQ;l zdvVk#`J=~N)~sHwiWezrJGY|^b zeUSE&Dn||a&jw(~CbdqhHUGx@kSp_2VgoInN zcyYCG!2(sXSaCIN>QrY#dR@=)ZdIO#A69HF;t+JJRj;mMV`Cj&LtF&__S&^;y`G0A zpgG`A4uqu+H>PPb@c=q_vs z7*$~tsiX?@z-?N!7I#^+Ytpm{%}TF?8DG_A6V#SKIm9slw(aKy{ZQ#&S z1n#eOIMeLod_Ukvs#K}W-Sn~MKu~cY>;M-)#h?7tlifsPM+{H$VZAbW3MFvbk^_ei zCD{%aJ8-zX!-oz_J6JS0TZl6VE$5h~lPA3_fa?rIU>ADk^lAPIF?#*EhpAPcUcG49 z^5y>kAmCB?3Kb|KA|i1o2WN0IZOfpG0*4NmsrfS7!g^jbLuzz50w7g)@xN@J9ZXHC z5a^~GyFz0DkG~|u{?%DqU9UM16ddrUcQ&p){DXAt-uX(Fd0AXI)R}Jewsh+G?Pt*!fFF+jveW@?Y zwr$(g{n@iCc05r%crk7F?%j$lIc%x~%!^%kRqZ-;M2*0bdXl^=Yu98Ej6KX;;v>gB5CFY%`;OE09MDFr9bR9yOvb_D8NdsRY3vg0wBM)^ zBUNLLZ|X_$7I0xL(6)6ORkv1c#erp1LVSYE8S|bnZk#7ma;py(6MOgRBe8Cwn@yc2 zjbf(;bzkPp0kpYAFC99Jvecte#cQBt*T(NgH6(fRY|ZQxbEZe7Lk0~{`(0hq^* zc_|THS5G_zTv%1?{qRH8vBNVm$9;SE+J=PWk9)<&?zQUl>C=kcVr|!balm?H#i?Qx zr}S1?A|e#KS1a~NQydr8=aRNB?nl$q97v7>A+5t*IDY~0%Dbp`5ZHt*KxrBWjX}af zSIbjPno7_Va~uV>1*Im@jl{Wu87z(h2yz4c=Vs2)HE6&<@p6K07S0oJnwT>672A;T z?T4q>@|7zjet_+QiwB-MKJ@L~M;4yotbuuT>Dtw%$8J!+z64@Pmo}X^av%o5zJq_p zsC98#UNwVrL`@FQ$QC4C(b1hX2LhP`Aq}`#`NpEx{(bw!2ftC{M#O1b+Dt4tsp5@5=fAkoRx&L!Qgs3X7r0RY4Xd?ngm^aN&qfgui5L5 zzTwDmx@Zpgg993HUEn%mE*v^|kk+nyO9H33(8XyJ#9%)mC$GMLK8a^RFTXDiLbhT25C8_*;6!!of)cDtLl2kFlea(Hw+%K zzC{XYD~04%4Bfeo_zNwYHy7&!clw#zwr|%?@uHf!N+18l0g0uMOfVk=u4(u5)9To< zW2#s0-YT+24aF&WY&_)5w_{!K#EsayzbB16U z!%@JYL=E+c=70wr(17a((_j+{lQ2&UB3tR=m;8sDnrJM60e~}%a$r4YgTECNMc5@2VC~ZQ=nlkoEJ^{A>fWKngdpIKm)GT9M$wZ z;($AV%Yn!hBvBN+1QEWmM9Grsq1?F@=O2@Lu~jZoMC^MJ!3{+NuCPJ>=SL1`!1W{Z z!+Gd4XU-^m(sQ~T0ZapM;pPi49Wr#NLdZpPF(llP975Av;K%~+v{tQKs}t;KVr)&D zHIsUbg`xr1%r$-N4-RO+^#|AWn8E>sYy?np&NIbncx-#r4IeS$A6zm3ciy~tiLM#- z=;vtr=%bIMy$0MwY||%x;D82PKQLVn`6maUcXb4ih^b(x2F$!NfYlyw;bsjwef#y3 zc)N(XYize}-LjFe2i%GrJP2wCbJ03nGdJ|H)f~`(Yc)qTJ-0Xj(6a~KfrA_e7jg!; z9L7=t;DAX5cGz(r%^O#^VZY}HC7aN3}q9K~(o#EA-eT%*_n?gUPAggyY?WgP9zP;sD6 z1Fpd}y|}%taZ`6H#8I!=lfM{%G;o!4}aJCT=;CPJ~{7?`AeCd z=Kz0^?@t@PR`dmeDGt338B&;UZgjyoLe2-l&qve&?!lxo$$osq0y542Xl-kOKyvk8 zlKpcxarHqHCY&e?1e65qn5sZb70`?g)Fw)lj0y4uF4$|OB9w(4L&SzG99Wo7Io6rY zBLm0W^75BoRxubuUo239rB4SRB+!~#xj8zt6H)v*X~bHIa3mTKKWRiTm{AAPHd#bC zI+~2yP74yRkT-T8FR_`qZ-2%O=X;fqpMan_lJ)g5rc=5o@#um4hoJOLX94Z*IEMcpC9 z=&(h+Z754Wn;5mc6#B?bAvkqd9$BR!>FIG@Dy0xgEAE9+O3FU?O&jjCq8#nPw1*ef zl_r{-ByO#DTq9)rfDhMtE^2fm8X&BnUz1Q^>lymQquTl`V&Tn{>GlT@7Kc)xj~~y7 z%%Y1E3vm4CNVN$P^M9tHQ$bw!OZB7ZRbi-OL?sup-F3S`KfYaMebHe|a!P{q5RGzV z25o^7Gu+Btt>;K&)68OYlUKva%+Fb&AB|sF-Z4@1E7r0HthQP35yJaWqF8)zF{JFv777jq1jSPT)*j+qA%LBL>_Ig||n7w!XY z#CL^xz&@1wC%#V(7Ecbxybq^{6s3l_7@xDI+xaZ(+ z4wnXpOSo1o%gu8wKi*|?gRy;7ovZQtbApt@6ojedHpXXNr|t+$6xDA}o-K_2;8fAL zJM3zItkxdWh4|h!r7jAe0=dEP#^rP)7{dpI;`idz-z*}t6X=MiiV%{OEvf~hsv3mj7hcHi%L184CjYsE= zsH-WEU{$fS3uO_6GCdLU5*U~WEF^e}2!Sk+jR|>P6K>%Lo(wo^H=hE`NHLB@uzokU1F{Zy)7JA5(1Z}D2dEb^7%{O+NMJgNS_J=gln0Rw85FdH zQ34nl{IIAK5_O@d8OcqelL>eO!cx#Iksxt+!p;zOF@8(rssvABX96Ns*t7!aEQsqD ziF})H!Qw@dhhS`wIYAgju#@B#*&5TVoz|~^s3}r9#I$|p77*6@+`mniR-Gi;UVB`nDAJKd`IQpF>s4Tf;7sUzO z6Z47c3FQg8C9P1tzU)zXn@V`ZWkhL&Lke{dq$GG+nmwOK3A93TR_B<{iu`AsSCUuw zvy_Cyp!lG?c~zXKd5v7jxIoSf&x7mw44fqc8v}iCX)%4lSw8!W-L&4+kqe|36n~E1 zSAF5yg1r2VqRtu9LxhFBBN*3%L$#y%6TNBQ0*R>~3pT?X~t48g1r^6-*j2w_`c!oA>O+VJvN0wxA<+7M~P z24m(n#@Qw=Sje$>u^!?r;(OxWG0QQ(W8q`lW0Ygcu+^~%nbnw?OF@$d$IKZ_&&~CW z{jiLfLs&)GOr{ck6Q_l>v141I7?H40vo2XX&FuzLkFu?@O}MmJ1|R9Nu8#HFR4u9e zh&7}9^E(U&9v+JZON+zhV^Vv+yd~N*=n3wodjH^$Hys^43B3u1HNBjMizW-b2%R&% zx+cNT(?%l=a81c7HBI~fJB(ZAw#u1Hf5zdM+qm=krq2|(>y;aFt4fQGgP5+b4tWi(&Pq6P*b{s*LM4IQ zTI~LSBdt@VYpY;3H=miu@MYK*qxfR%SHgOqz6#{Lwf41}wWgL00!uEZ+o7aHS<;Vd zhbtrx6;GY3VsCMe@hh8KpQF8F^6TY8*WRox{(%?o3yceSferzuJf1u`eclb3jk}J8 zCGk^_d!u_x!65ze4ZO}?zl%5DSJ=0Qmk;bsj0DU&+RY=XLB&GF6>)yJM(ABgJ7^W~ z`XH8I4#fopDxo$*Z8<7y=6_H$rZ0?rqwQS6S^MdQi-~#)W_f^f+eI`0OmMXd` z`c)=AZXeypcBrg~?1<%v^RE{}*ol7>L&^`!_Y@aAG5COM!xs3L-EXU=s;3$c`wm^F z5RG(!=^Sld7r)oXql#0E$#A6% zea-&XOnW7(WHCKmyfQ2|JhGdL*8VN#TjsZ>3d0IoCDk4Am@M{lolMP4vTEj>Z@Ebw z{O#sGkB@UZyew_3Qmi$y4%tk$JsFW^s5g`Z8O5BDf=6E{h*{a4)%PX*@H#U$lKV%s z^5*C_VdkN7VMRhJLvjkgOujzZ_mnPx$9yJww$&+C~K9`XM2-$6upXPy~GZ}rf01-AJ6ji$1tBy zT^c&ATB3KhIiO3QVdiu?ANQQ~^t|z-b!603y!P@tek}#ZfZb>Cc+}l>|5@_8mq0Tn(pzvq3KpOPucxr2!`Zs?aIt`!u@I*nC_sJ$QZ^;#up7CYInL$YgbWHvEgqllK>%M!3jwdtrQcarw~DdO6%wmn~19p6-9!+S^i zGMIU0wldn}zf8PVu$)o%V{v=?gQu1-aYqh^DT3>OQWmW9f+sO z=ic|q`|=C-5*PN|T>=UZKi(!z5LpmX=Sc5nPFivM;J*(v4%~|rA^v0oXTyIrePrZC z&?ce(<912){k4@n(eiw=et`JC|F+W2k@xEvwgVG~@mbf#ig3>FR_U^2C#{#^ z!z-8FEBeFOh3d!o>x*7W z{PECR-OB+XnLzWK!sX=?X@5~XJ}kiup*ml^m(tDb&e7I*#CY_?fZ&M-gZKK1>T`HE z;fX$1`{UC@g5ZRE{K>fowg1w?!nS&8ty|l@*V;7dhVzANch-87>4nV3na_lu|FOt% zIAy!CV3L5EpVRy7E%)SUUBS{4(Cbf7ATJ!CnCQz_COzka6HHNO z`7?=4LBl`ob^1O)<-s}6&EvKZ281>U&cvKH$3CINZN315R{54DSBEqai>;AI!CTn2+Bz> zK{oC`K-vZ(KA|S9RbVQXXO%;UjN@>dTY!2M@6BMH%8U0kgBNi<{?h(zq2Oo=!c zm>8Hy1Yn4Wi1?gL%y^VU#s5VPc;Y9qaB*?qVPtf7cV}>CWw3WLXJqE)=4NDKVPs*U z2lSwK_Ox>`^q{wMCjFbqzxjxoIvYD#I=EQc+Yx>8H8iq!b>Sx=`5fp!zrW{c>S6iM zNOsQuS{7h|jGrxx%nVG7|KSZF<@>DVQLywdwb2x{v<18~z!(DT92|Uq_5U9&|BU!w zlp6m<$gQ8|D;rPHgyuQw*?I8BJj`W`WNwkH~x!|kMVQm|Me#Re$9W?0^YL# z3?JivzL@|_wV+}N;4|V`ipr}1O28)j`~fx~5D?Yh<>$S#s!LV3ClJsVAW2an6%XK3 zU&w4ciIj(Aj)Uyr1~u-{B%9AaZlk(b_>HT?INnVzu1&~vi}OtcX9qk8IDySBVC}_$ zcRbT2nAEE5AC1e|&f`bkA4w9ttSdiO_<3h$+FwQlJ-y9-SL(g#yUulf*K6lAjX;$| z0RsaT`htY?S#&`_$slhVfzn4t1O*TgK|z54ihLxbZ4!8)zk7UkvwEgDyX)OKEfLx`2uZwWFc28Ve0c z#I=)=g{fZKe)|f-f|8?Z*}na`K82&_0)u4n>|^5IJjcVNHl$T~nfv5hJ#t=fP^p5Q z7T8)di))|#qtQeK1Woy2{(49KP0w4CevVv*73Vfej^3eoCPSj)RJwg=-8fqesf02+ zEJ#@#nEupdV`5_4J_zh4K0YMKr&caiVC!U5evE6a8P0DMjdfd}Em}4QZKCI==A=*J zV303mN}b@x@0b+Dlv=4s9-U9N+k7CWWDijI^+ep`r98Y-FBwLNx2-5EgSG=_eRS;o z<JlUP$5i*&{~7`Yqu{$3up(vll;?|Y+Kfrh!a3_$hFC-85V8pek}i1qlo zZ*080QRf{TBJ%a>=gguyOqXX|^IzoKb%k*~5?qUk&*NJ*@DmlN;nYU?fbQ-Kw7~iF zj_Xk%4B%L(ar(gFx8Nxl=vSNh$iri>OeT@+E-$aocE-=?l387pj7t7X!&0a-gU9+C+6_qIwVvYc+zyE!LQ21J)NBT18>x9P%#FVS!9R7 zAcmz4=bxU$}I=MWSO%tX1H6+ok4632RbgcaJ1*9_An}B^)1DNyO>PK z^VCax;xtO{QK@Q0=2=^mq`Kbfi5Tu~ zS6laP+vUfc|48njev8jgZCg3*b)?n98B2n6MZ&E6qhhyv4iDp5Q1pGb?YAHn7T%Nf zTYnTRlq$|aNy=o`RNa6Tlm`YQiy7QGKBXV%$>3PCB^pcUOF}8jNv{+bPOBOSZS_tY z9%$Y?|M-SbY4AbTYz%5nxp7!XHy-QIF*6UfgkBdOOUp#WrMF-wTNhr#k>oI6rECN= zej=tye4N~bL5x#?E6f3SLw*Vos+qc%o&XX?+n7dnDb8f1vJ zFt$DX1+jch?b*DeRC?et1z2`j8r?HC2W^EBb7K6Upb(%5!7c=ijVNXb3D#Ab$ho2K ztjQ!$l|bjHXtU6sN91!wKP&8N2$xIO-Qs>hlbp(pO_qM)s@pE7G<1u_Zg}YmFfZ^Q z3UTWQj`Y&Br3?(Qu72ElAGM{i=^H`w6On)~tgVzSxY&IVi&i16Jsu$V2~ruJ4@!FL zu62f&ZVWWHQo23mZdC;#Ofgs5%ztvkD-=*q0;P1CJ6U?!k?(sfSx&gzQj`ZW{CMe( zIN3xnUL?k9oT8(#G?z?-x*Y7yE0F~uyBe!0y|sL&H!S~3jDfr4StXev_!XGFp79v0;ACD)u`YC=>sB3hs5 zmwu_R&S?QFF~j{NYBAcj5uz@%V|{pTNb{nIe5n+5U%yIoJA+I_^ulDudp;884DrMF zFT@Ob-Db}s!a6eHtIyytj`baJL7}XlEz7Z2Ml#1BBfrK_|=u0F3+W2q5s6zoGtN%s(Ij7_b083_cyINS( z?QM3KQbDS|ewU$k8bD|Dx{UXP&lxrO1q$m_)slV%v=Mj(efuP){fqc>PQxnHTfL?a z!(MysQ(FP!D!|1|x=>wD3xw-bitB0p@zD%JAa1A;u&WvNIsmjd2`+;~?V$n|(i{U5 zZ|WBU%JUdUmH_ghwNxv#rU?Hh@@w-mFUXOn-{#`=2=!%@zUYv zfpl&nKPp1w5{^s_?>R0u;4p#6Ii*z-6N^Uo@JtBI2G?BU*4%UNAE^|i2)3!Wvh_>% z)&z~;`Ql;+7+En-RDOTku92-xIlW&Z3^Lwf&7O_1Wup@+z(iR8yjy#aW{$}bn^xpW z_aEE}2JBBv)Yq>+B-QZ`y4`dJEc+2pX;|T(j<2Brfa_08`vmiefB%NT6Ua=WIuJ`y zrLE=(%S)Hk>;hv4Jzv8*M1aZ&d0HW<=uEz2DZL=5m$*&y|jZ!#9^H9HkQC_`RVcO9{1S@zD7@OF4!{RX9+m)at`sg*y#1#cV=ASOlyb zsxF;Fa!<}};mT`|ZNEZ7?Oy|5Wm_|>ucuPvI=73BzaI2C*F2?r zD;IL*-$1b6>JxXp#V0to|qIsPX0F*s?g?in5KnLXvZrYo*6=bnDgxFp#vn4 zc2UOv>!+A&cLH9(`~osrmECFSpgvu3o8{DPSE&um9uj;~RU}Y^w4o`atwyFyll^jLeyDkD~>!%Eeu;=?och-GU$$i}z_z@iZA)tTw}DCo^@sv2(g#jSWB{(CGe_(P z=TiYLxEoqzHs|AlN~t=H+WV#uWO4)x=I~ruRTJ$XZtCSlCYwW3rs@+|DR@m)eWoPA z$@=IU1&4Soft*x^h;&GZRS0^3V|f+B6}69=axL`)q#|fCwIC=;&Ylw@;Lv@GB|;9c z33Jv!UFbS9)_F9f1z%@HO8zmIBH)Yr-7P6RbD42`=?*kq0eb~>p_%jxMb}^5R^%mM+ zHkwjez~V&ww^MaQlyFEG0LB>@rHrz1)sW=Ur6fnOi20EOOl`J&g45lTgim3ob-e=d%))$ zAp(>gzEdp>+V(cOO{pN+r?RWo2dK-F6DX8V-I_~O@<}Z9NepNu@M2K~uq^F4b2Sv! zX$u>_g#^q9p+y~_m9JnpW(ZL}<#L`8pf2xR!Jt2Nt9*hIfY^onlNiv7$e%$2V5z)y z|GN$cVf3rYUMjM==#>SL|r=Tvc?dH%w+sMSApw%f8;M%v8dqmXvjFC(dPY131DhhjGH?{ zZz_hgLi!$gD8?d#iOGD&@?g&%*gJ zQdJGf;BzFzLgr9~5E-?KRPE!jvN|d8NWkzcpsS)*GDZtB8W6|cK@E$DEm( zOx&-gy8MROR!4`*5P3$~*1G&c4Fu;e4hdk8s4-*!xgH#&!SyPyYslfCmuFUrTeW5Z zfv0a*(OHumzA9j&r=Q-PF5zm2GGOACzhje zFkZ)rDPb^4S%1X7;7w*kH#L<|L%P(WO^uCxb^LNbA3?!SiEtT`hssP~E7WC&fJmhoJ-@yW8%okrs z_g&1PEyVV1Sg{e=sT0rr;-dMbsYF{0F@H!~_^_PY+6@ z;jBDU(G!mi7JhZ>5CtkzUFLbA26(o_B*0!+tcOR#p*D;4q$N5>n2C8pN{67K2n$bE zsqsFD+?SIsbAE&`t3<8S+u1{;X33`kLF< z{yvWxca2DxKN1M^xdCc2d?Un13!qhIY5osTlS}~fSH%1|_%HLf5@5V~fM*>cW{B%- zN<9f%^5XMth~~8z|2{%b0l6bp=pzu2$84Iqz5S}i$Ex-b>{M0(#g)w?9tt_*DxFNl z_0?!I{ZneY_xw@AEi}d%K7J^Z!tqfzWk!CHzaV-j;BwWiY;qIYo4qh!(_X|r>4?H>0Mc5Z$a#ZhdNj9RNQ%Ia~1XA}+O^gGGdt_3v4%P%bf)=2HyR3xuyUE)`osE&7Y-g?aYu(hNs;ADsiK+LK4i6( z)BDj;E1!6zVa?Aw#9kc-n4&Ujcw|hp>9N#1Q&-)_n0T;H6aLJnu>5y@xX~k+sFrYg z30S+!5z52QsWjpgn~GkNc9zE{!ujW9N)qs(2XzeF%I0Y)lTP!=#TV`=3V^}uuu z^;vgi{STr)<5AOhF*_81V?%(_Ew8*R?LlQKSzr5nNaS4$DX`r~zz^WI(BfwdtkF+2 zqK5teOl(r#|5=&G>$W_z+n7SoH0hop-PS-j;8@$%6fU;3vs3>q*pK2RD%#i$YMW)w z=nS3Kcv4kE1Iu=~F>>8w2VT1U#tdf1;mbp>JVSo}4ou8cs_vYe=8Ne8Uzl-vE`eC>A8IDV?KwnK`Vn!3^DNa?4k z34`!F6}3HMV2{=+)B;FM_{fTnV2YRXkZazDk$sg6SW4y1fsUe@+uF0(;y!R zQPNRy03y58AyezGOM-Utyl8)zzVQF>p5TdpADlv7eL2U??8-c&7QqB$K zF=H@pO3>c}gFXXW!mwbQ+Z_x4L}$)%1CsHz{WRp}=3$(TES-3wC4yQ(Yer0hfn(+^ zs{!t>v$88RiGxRZR+yEw$P#)mCDW?lOSG^~*ov^WIbpkdRoq$<@qc#!9} z7E!=izE(G_p@AdP7b@~yffI9na=8-Lx=$|>2C=aDFai02R9u?$0Cek)tS>7f9(pP} zF{s{fKZ@^;tT{j~ZYJ*Q>gu|Lh83Qu>EKr=^&kWpS`3J`aA=2*r(4J%iVOHY9 zA$(Yy&(DLY(5A$B+uIa0l@>){srFiKc)T94dzcohdYnF3}cOYtA zdh)_`gBEVq@l^TaeS7mOc10T>SC+?R4*W~y2l$>Xfv-r18=d<$uD(4#dmYsiegx#c&wMDjxS&~b=ZoaCHBy4z%_fWYwk5B4RtCDo zxdr&2Gv_K$?uOo1Py(N5j7yBN^Bsr3%h~g)-|Zv-5!(fmFDtrV>~$!sXKf!`b$nr{ z4*7MoI&OY7#!2fl__g1im58|!t8i?S#P}Edv=CYUT9sLkx(u;El z-=viIvm9R@3gLICR__^-$=qe`Wktx*5Jz!&5CIG2A$eLuIPl2HWQ9&L#2xf!o>_T$ z-tco|DAZ0>G_~Er24_j1pBd-O0;?3G^Ksk z04)@0(N{ex>#~cFt84}ou)XSW>3n-WKKBrr$8CB06qHkuOcxig!~&t)oX#u>*wT0x zb$x(A*y&%LE{E~cDs|_5ukfh;7F>^E^eX{(fW4qrS?Vm(jJW*s!Hb!qsUm+$DhH}w zb4atpNLI3FB( z&T4!#<1SNXX_-jsC(!HlvX#fkG=-L**&mympY@>Cs% zfKzz1noatcBZkz=S}miNuH*OdF@B)wdmGWVY4?uUR_*fJ1oD3ZK`#(2FG*q`db*p^U-R}hSJqkCo^zdDgA_?1TLqYOH2Fj`YgQ_ZQ0suj;P$m zZ%rBko+oUXxy&dxYm~T$PxyN(11rp4)4mI)(*P?=LPq$@h?|qlPr)|LLQ34sEd1&o z`l<}U=~#bqiQ2bXOa@0@`-PMRmYNOoi)=YfYGj57k%w?@qpOLJ%nM;I9XqGzfQa)Z zofL7xZ62!ctfK1rU|opz@ z*;p8pFP6VrOi1N&Lbt($1o!jv2A3e7UnmuDUx53a+BA>MJH|bCwYzgB@)NJDcJ;|R ze&MF&LKG@q)$@wNS={AA zOlzV^L^F{w(_%D_zR{QfAPA6=Vfmw?@VlHaWf3L$H4L<#S@n{jT43D++!7#s%a9&w zW`zXCr`?aQ3hKW9#-ql`^fDwFJDFW!7^c=Mw1m^#eIi+p*C-qPZEI;@UO-Rrcz=$; z*TzH64K0UTTRJ>mUD;UqA!WO_8B|&}wlwC{+o0Wd71yyey1)q#2eZW_p|Xs$U{^1 z3gz;P2J{&pH-n6GUC$2<%_@SJEy&xv)9Z{Ic-5k!npaC3pU2(w=qnAfZw=yjxQ{v2GR8Y`DHt@~v28t< zxSe&1l<(PE+(RPW{l!mMQ@29z zRKXpNzH#u^#0wS5C4SFaezM#o7kkd1LO-}l-g ziPjAU&g%D2%yjT!`C6O`4B5hbsEHujLA3zf!t3a{pJ7f-Zo5!NS(6 z>P%s=+2^8lqhRCx9y%&&dYwktcM1XGE>^W@As)B+dmcsv&PMD!0^D$)r!n|+@Ux14 z8K(2@Rs}v0V!JP;7RvRM*8@Regar{e$#dWMsc#j^3aYh(z3g>?j!0e@< zC-kR`F7Ag9!wP6K13Zg`YK;JVTo@be!^`{`)vR;(jC|N%7hLOtuwbR2AVDows}tcF zlqfW>XTBlf5OyUy)&JFa{qE?DsjBi**-(*Hb-}f~x&(@X3A!yjClf`oWvTvHpAYx` znMaml+bI#6L`_SIR?Bm*GCm2F)Uvyc%#T<|y`Z}6;KJJ0su;0| z{z4OReCLX(ALzG(_Ek)OyM-_6+23Bua4g{S=(-~@A3{{Is=8*ctiH(FhT~|^(yUbc zsFbe;>g$DymnSwYl~9&bqbn(kM$5-B81s9wB;flA*MI~9!PPaLmT!WBfZonQ9$@|DbT$nO zSt5q<{*S}CD`NEHJlF4g^+~amUSJ@yy{m2OvUt#*s*DR(GA0F6TkN;)U2=Zzpl$g6_yVn#Zyw@d0M^Yl=p$NhBsWRiD``MR+*PM1&@T8 zj?+=l-za-zQ5k{h3F|a!MX+}QeB`q2&C-C73_h~8AI9esmGJz<92I!zz4tPP=T9!A;wHklG#?MR4)hnMT_!Ml4QGA3Sf-!E-NN!T1N zW$6;rY8Xl^UPiryo_o5;sNI&GfC<2u3ibQ$fQ*R>O!o@Fh9fol1E{R3NDGi+C)nPm z^FYiFQvEeWE`Y4uUCBhm#>CQZ06)zV3_a%ZYwfFCl!`><)~;O@TVe#Pnkr7ltgeA} zsi?&U_gVthKRBX;FajRSW;7Y78y^4U6_5(T^SdsF ztb>Fh4kobNAV9#mCKo2^QG=1UDHxdMR~m`uC{$U(wHc)nhYi`+ueNO9Q{*aE14A#nzzM0aynMLKJ#a~~9b@1rNp8fwTo#fvkGJRA`^DSPF z{=J?OaUSoE++!Rb=t>qYcGR(Y8Kp%==u__f23^S4UIWgVowsCH2=^t zGp>7F6F3|d4R9=W(g1QB4Yk^#eA8%U{HC}k^@!1QB+Y#YVun=3{_-He0?`RZUjadI zmhW|OMDJt_aatt5EumMOv-xz3bQay~*##k7;a(MGv@q&@2d_(xd~VZ7m4E1)LlW1~ zI0m|Fhp2VIB$a_VfqJLB>QIeOsc4$#VF)npBXjSj@c!a81sG~RV!ZX5CE zSV)rfiNT_u_)_-ud+|Uwi<%)}s-S3pO^XL|zlMUjES;BaisAVn%IBv7ph!kVf|>OR{=;9lOcc z5+GtJ|5f|K8}KD(B2z{G+C%G~d#EfqK-vVu(NP6Ws22&dA~x1tdPM7REYyqUK!^Z( zMa;0EdxVtn)F2awVG6bLi4g(rfrOZ+5#0!#_;4$*H|1M8l28_>Z1^H6N}+8p5T?X{ zkc(4;5!x^?bFZUgaJJYUW1lJ5Sn8W_M6{{u4hbOqgULnr(#^IV1mU!K#TTKdcTdK5%hHTZCF>Wl110 zy58pan}tdIeev09N8zINAypAMIg2BXJw!Dn^b{DAmVOau+BsN6WT zORdD=(CY)T<(4e^y#OQ=&n$;VeoNbFy+6>3a?k5?K4-GiUH$Oc!lXRX zKhKi|WW3Vd$-zrgtN&T8?QqNwdA_#{17hCg#{6*%$m{)nu<7I6P<^+J^Bv$O zz}~{nY&I0VfzAuTn&7~F4+8l`Es{*hK;v-mL3;J@x7XQuMQ;f zcJqz1zBaj$IT+rE9TK_bBm=2hKdmTE|3&yc`PAD~u=ZD%_oWX7!@`ehDPf;xC!+A8 zO~`n)?{lOcSaH$t>H|$0+&%m|v8C|5#LXQDJE|2X2tPLee2-;hnj8@UxSD7HDcm7k zT+nz4Y)SEL+SJgF*z*tr6+ilI*^+k}#TvXJXxo*0l}1zry|HVJe+2o>t0Ty-e#Scc zzYaLn5^a6~;$ZqizcxGR!d++lUc#dndt~H|vV95MN10eiP0t=yy4Oe3$)uQAkeLIo z=CrwK`%wUsnU^MGt!^5Z)n)*0KA4NLR|X-Vx$od|3ctWaZM1^!(aGQI#(PN;!_#H{ zheUvx-Pwz;`O;M^4^cV*z)~GJf>q?)F&w39Y{mSkH2yYRsUvaXk@=={>k@ z+UeHhrxte5W1V&eCuL+Eedy5molISw?~i~TIC_JIkPSlvKI|lb&au#pi1u|MPm245 zKRbg8PD~L%a_Ic;l^fH!5AidfZDD3u7X z4Q9s9#9AA95|SXx{v;QzVTqa|&!_dn$XuBF&g=2e+NKY;#75dc-RamShevmp3SqF?u&UL> zFzVd4D5%iP%UB!O&{T}pa1XqajyAOvn?zL0bLo!vb9LE(w|yu@hA#*LaLdH~{^bs@ z07|%(orui+K1~kUNgO~LXq)qf)~$BOoS4?6`Kp%Q9rH6H`o{6_{hgSG!MZdWPc8rZ zZ;>3)o=Adh6&N#=;149qA@1&#vsm2Hnd}VcW2zsNy_&mIy`Jrl$KXGEf>ZFT!3I5{ z9k+azsU^jF;&!k^6%~nXWZ)3HtaQasn0q(6#~~yNMVj@lWKw<7e;R785(0K&6jYqO zus(B}7&eAgj`0Z~lVh~5hDi=x#ZAG?DI}W)C#>H|o$D>s9R`vRU{Avhn@2Qv#g7KE z#@?o#?cMG!q~iXSKNmP7R^51D5`4YW;AffC5*n|#tkKv1balLpz%$rk5G9p4hoQun zjNl@pMe4&xsJiZ8%aEM*Nb9GOebe)^SLFOxj+hnu;G28(1QDvU8O3!Z3CFnU!n>kO z(yg7O<=(-oE+}FB+i2_Fw?sTScfB0Bg6+Y6YyxTBPC(St>gn+Lr*u+^KN2l8WuK`A z?j`K?l|Qe{#dB z<>i;740>}9^fGnqN3Rjcjo>;1S8y_Lf8;aIyC@f}hJZ6mBVh?|l?Quq{(~Ok+#RZ1}C&#m#NHLb*((t!#c? z?f2CHuH|qNIU2IzSm2BX*0wuqaS!K=dC?zGO+X%~Le(^|Y zO-=0fkN205PUnO164#S?MXT@cLtElBfIKKHdSZrN4UH#2qEX6ERH7vc7{`jO>cU`& zN~+Gf$S(#=q=dAxdvl5VrP40DT^on18E;k!;aB$B+K?rs6J;ysPdv5xF^!5{G*T3K zWFVTuhJ`4Egr%>eV9b%wFu(DboT?gP-|a%0(a_PSYW?4=5fU%Ikr-K8TB_*k%4Tue zm)iT?WPM9ZGjDuUyxe2ZliQhUw0MZv79X?wjMy$vRO4ZvW~DOV#G78WiqEDUlxTNZoR z@E7#mM$OAVnkjpcG4V&m+>M{BgCy_>xNDS|qvher1cZhT52uQbZv@|F1gF|OZ+z6s zu1t#4nopO0NF*}bC>q^Cg@Bu!-X6`!bhI9Je!O&AUTyd9Ae;9602qtJ$lEM2p((Y1 zxRE9=aMGXizLMfL)qY6fav+cTvt9oPf$Ega@RH!OTD(f;Sa|f?^LffAHdV?s&x4$A z2?_ar)|Qq9_`Gh4rmCoK=fh=Gq@aUkBHxJZx$-(#g3FsnYtx#)efu`~8LC5TeFAu24 z!E`GM-{7@3M|kNV-Ui{!N~$&VG!}SR!^d= z;*se0(l@~cST&t+6mi$srN=_bBj*-uulh&!*z83tr5xiY>o|xMB zc-u(+v61zE@%7emQMT>Y@KDl7qf*j6q;yCt-3SaIN|!@RhcpP%(gM;YJs?sN0@5j+ z(%t=@+|PcV{q6mI-}}$~^LD&q<~q+K*0I*QbdB7D8oqzun4Z7o2jkvuCPx|~u)5Zl z-I}i`Z_c|U@_f%jeAU>Xc(L`KXZEa|ocSSC9--n#$phylD$Ct3I2|sQsqbE>iXNbH z=vRk+17DT?Yd`??K-_X>Jja475R4|+daeB4ppFX_>(gnf*j@}<$>#LgAa}mv(5-N==NkzAqo)XoGg?9>;C|ax)a#FeK5C5-swgjyKD}v*ANi^R zjo|TyNc1@P1_eYaB>s^m-?2}H_Z2@h3u57ZSoYkl4?(e%TORjg0(X7*lL}LYXxbzz zD{He|>-~E{L(iR>fxM#YZKQb>g%RNj23nyI{6`@iN{UVlE^e^w&_SIj z?@?)G4wHCZZ*DWwe$dj6Ovb>la`RxPeM^NnzP`pk9d9;QrB=gEfVzbBt6x5kgFQ3G{v6YbsWmU3fD6+Ge6GmxN8HfaH;Xzx%lgnr_vhT zeamtSN)Bx4?3THWX_orja!ew-Z8+v!;7Pq19{QuGysdnup-z-8q&q<6a8;JZ>KIBy zO(q9$*}*q>iSJLn#D1LEXDu_GxGgrC>i5TF@{Z(a$6F;)D_{D(qBM9ot|6s_VW*#A zTgW_WPCyp-h02ZlyHMbRrD{O#k{=oNs;hiv-zta#9vSnSw9BCpumJ^D2Lb;_@n3xo z+xP3P{^w+wq~80Nw$grpI34Vmn2Lt<5aYcf?7@Qvg{dFp-vq6C`JkkW8ZyOHSw3;P#cDQU6y|y z+I!9&Pk}@GIv(*_5u=sBX6w)F%^zVBXM!dJImM?>*^XUKpFkEb7%pz4&z04C+YoFf>Ib0KY{YW-He=4OkJ4_ zJLTM2t{KXeog=-mSzNhZMDlpkXXT)IAmi}d7H2-%j&8E4{gT-)yQ|Ii@B=a7U@H*d$so}QHn2&viT3yp}9bT~o zr9X75j%$i}+^?7-vU8+H_iDVfE>|Zwi*^|M(9ab=kpa4547sX}jv4;8F{2ZRa@0H6 z4i(X5GQ$V=%;4)s3V06)xTIidRXVj$+b`4ormIpubUPl+k(b(!AQNhkPzls&Qrjz~ z)nENDo(h*Yxr71CFuiKD@qv5mOFCQ1#g!q`f7&be|Fl;)1Y~J-(9(^s*k(JA4T>rxcd)BhuufJEgQj!T)>l_=qCk>VYD)B8V0&(r;rw!ynpHNa!wNb&Pg|gvm zBzGLV`OAFj;|X@OqPp{gvhNx-pXXkeI6cXxA;A^qp$+`7Xn1-yI5JYMH{`sWGBl#R7QQkz#RYOMoex3)LfY--%2uB+ldiI=`hmM7XfApja z;tMz>C4NTyE52Z!XlIn5z;ck4=#d|s8($3Fy;32oQGYiNF{~2o#(x?ds_3aJu_G}e zQ%+rwm+3oKXYvR4C5J$CSc`v^vh%(dQR(YUB02Jo&&kn858j1gM@c8?R1Y+ti0g(zU^YR8vOakkZ4r40UtrXAo!cw#N-do1q2F7$LJ;q{s zfLf=#KYEUvFyT7XARAU~8C+9K07B6gR-FHUxNBt7bYr)u*v zig)kckq{+GUe3(&;+UC)BC0FbW!4AH|ZXO1?^W6_r`OnVX?E ztBxqmM|1Dqe8E>6`ddj3cALsV)Os((TkJtOjl!8TqxV zQ*LV64dZ+A!(ev!aN6!gF|t$Ex*4vx1$f!FugUwiU`lZrX_xmK=Sase5FyBCdD9H4 zy?<-`{^5luv#!d}Kq+6bm<&4tNVwI&-k$&a`dUKF;}O`08SOFW!CFe$o(+o7kIQ^9 zD92QDXZ;rFu6KK-UMbxJb52(j{M)!XG^lfb^xD~kaC?64_Lyy0uQIgL8xYYz@o@F- zKur0M?Bc)lkU|7NkA|Nvs;L;_9+6*In94JGi^|5D5ykwr11<0Y^m>+veIi0p-*W4e zwqdVKv_^mVsX(YF>W6u(IqMWLI{&ieoKf>X4Hym%6Y(y9@KsS}pT+#$KRGkg<89AmoRzM zfa95@rydUtwBPd88Hf`uE<{}2+hAlKc~v(7t^81rC#zLv znA&Fq*Ths=x=#4Ed3fuOHRX#42vg?bSXmwwFn;&D&QG8ch{zt)w20ERGjJiuIe;)# zy&c)989%9I!G1$y=LPH=?QloFuaUOw~u=oJn%tncyMLzuk9v8&&+ zp%uEs@dx5=%d_qW|3$T2s`B!ViD4S3H{4FX_-Kcw)q;x5_Vm6&2+y_ZnH)EHu@!MB zw(3teA|Exef3VI|Gt8TrK0I6No|ixEedx{M*?;qMivcJORUX>*{M|>HIu#OU`Td%4 z$*-S;3qNV8NM-7qXtJ2b_Y7;NA0yYQOMdo`oX{QIkK>N4x=REP(nN4R=9Vo8x%Eal z2IMc_voSx}28*uIele6*7)ve#>=X1=TaPd6@fqv zkr_0aD-!ak48Hta?Z;PQnEuj=B?d|bztJNoX^2m(Dd5PVjS@|dC6=t4=ZgUIuxlOm z8ACuzWoe6zAy(16sV_18Mk)n^A+fFblowlk8YXOG=4YM!cjSjeYTk4A2wl&pe|l67 zi#%h`g`GGk74qO^4Ru}i^m6|d>BV#Lnb!5&UdZ2V%-s?tnIvQEOZOOYLKU#abQa8FxH?w&vY*d z(bj#+$sde>ysk#FfL{^t8-C4C8e4Oc&Kmffd%8g;Fl6w1I3 zOT*BJ@=wRU;y@x8T@nA95lkVS&$+xM{W<4n%v=c7*5JVA)a;HVlOFplK#4&}R* zZNYa~)OI3?FAGAMUqlV0-=ZBH5h;jD4hmAq{q-#-;|&VK1-^mX-mF`I>TbLvSM{Ut zsHm0m=Lglv-gz|nK#pWwT{e&qhFbLTILbJY}$n4yzWhLmWlY^bz zk7_4Xn)H=8ksm*98gB@d+-5{G9i3vuB#6HlFDT}HDF`!iUnV?xh*MO`{{A4SwX9sj zMqa{BLPs8xo5r~>n_e+J5WuiSs~}($CNSCUdU zH;$ZVr-kqx#kFL>)(~irRb*c+ z@B?Ww62m%v>!RQ8e=(;UrOeYwEGU;$Qw)?&((WaUJ3Zm;W*`L%cjEok*Y_+y>Z z&jf*Cr$AtyDbV2%f8Nm!9SiLZ)2yLr`4+oL{{6kk*ND^YYwRBN4uy*Q2z#%bY!bec8O; zL1tWy=HNeWQgC%Q*RzH(%)weVctW1%BnWvl615i?1DcIS&HtCp0E#jUZd;w38!|Vi z_tjQr0qT1aj-%fom~hCM1~8+mu+mWMc((%$I=g8-r9LkukD&l!WK2cXk57_}z}CYS z*Q5rs|NnMN@CK^QLilvfx95ap=jxVrJGo+B0qe&X9^&N>(e16Ot@VT%7~}>Qe}=3x zNmNifZ2VP&yb^18HCUh%U8WbO+)J7p#U|THBD%=Buy0O0LfqTu0b%RA5Bz%@0)qz zix80oBEPq=z)WwRd~UK$jXZ74mXxQ7k;#9^_Iq{3?S9!)e+03X^I))9ceRI6z*aQUEq#Vl2nlHU?n~=2 zzSD2K(~g@aZbZi3@F*H};MK6RP4(sNMc*;-3c74%TKo5SWqbE-GM6+Zle}+^?qw7;5iL8fLeV20G28kSP9Pp`?y> zEn$8<{NvatH~hwBWK&DAo{0=ZpY9#`EsXRXh0{)9foYNK&6J!yaWHP^BrIEL zKKRai+-;CQbZy0*n1X`?hQ}Cghj<|mH%-00xAQ3e!5e$4n{F=wLEDkt|8Bv4a1I4HijpEO-QU8{=ISF{L^KG zxi5l94h2PebaXC%N?yaZ09B9gMtR8iwdVAyAH0I1PgE;_eG|QZMMV2kM}vLO!g~!# z`#8op*_fry=MW_GtM}J0R+9|O`&HhUZ{gFwX|zSkWRxrq0RoZbW-uYajEY< zZ&Vx-`6F6Vp-WIoQ@q%EXiWdyIDv0W5y) z&nm1>b=~98oMtr1l8hH%im^8tChVEW7?yboEif=~sG52r&7PB1@~UAcFF8Jz&*xo3 z2AuZ_kQ~hEcD>z!w6selqna9I?CpHs-WM}Nf8_VLt%SU5qb`LWnNX1z8TrmSo6Ym2 zd?E@0H@GV~M4J~C~hNf%OX<8#oz|i7UG-t0K$KRGHLNbuLpe|;{EL(*OZs% z?EA|+ur*<(DV$m6pENTx40@Vfxz1I@^O1%yJ+)5tWEK|= z1O=d%e*b+dx$^$mGd>rVJBIs$cv}w>m7Gk>ik5(^q(Muob|?d7wdXGbH%;1ZlO3MO zOvJd0R6!EQCffxn>H)2`y>(!2q-PKUQTz9>0Vx z-7@$;Bz$}pEFA{Lue!gA)!n! zS$<{Lq;t*Y8{*V3&^m1fKqBA$FpxpsCi{T4>cNk!0HCc3uyLFbHChT7`*1`?ZYd%!xx2ZUkC^0YI6JMk z-ugM6K#G1yl#K9OAaTU-YyRQtk3V2JR_Uz&T{!LsW{619-l1-21U5zDE!e5UoAtD5 z_(^PPuPyUHk50Fx?%M$y+~AH8essC7vZ2!+{&^uLBuvyV(qWN-Rk8ny+hhX_jfAf|N&~ z%`Pgj2OS01eL)m0o*%u@W6UW9Xq_!z>Z=Umem0#WOp2}45r!jTvBFc&O_eY>^gl^WIN)RtWs8xQuE;P! zTTmpKj6F_hNkE10Y2oSWC%l-dSvyeHJ+c$?|85+rxbRItqY|Ht&Ju0chz9EabFPxX zQyNzEC+x|KUNj?zR?@EPMtT=kM#ib5!bk5QpK;pJ5G{{qQ}>AXyGy9_8<-Qy^kWKf z($cw$t+un~8#P{3Rc5dID=Xo1tgLDRCZ|m}Mtd%zC=U23*1~=ffgZX9ctG8cuzP^| zthX~5_%b>-Re!WMPO>*sV*Ft{Ci*mS%(X~Rw%#h{?GlnP2Sysk2NFw0DI^DrO-CPZxt(U#Ew&(WsSj5O;znS`z zstIn5o=LQRdKCPIq%|7-iL8LzF9-F@w}s>|vas<^S-5iaC#0~00a#PJkKx>`w$ur3It3L?(0Jt!HGS(*62Vu> zr~x0IMl4c%)wmiwPMB8y0Xi8hH=s*vg;VauC15ZD`!Ajnwn$CD*iwQ@2Ug?!eACSa z$DGs7FW4Uvi~NrLE);=~V9(r%hD2?*(d|~mJ+oGPD`%e;E*YrFmE-P3soKXxmF+58q2Rh9|u2P0A}QMI5}g>;&`a-_QRDm;sSLZd7c97@$`H2a*d}g)|?b zRwIWqfHdX(wRept?fc3QXFd>mR>)oUeLpS?@n!cSNcnhfj;E-|Ue{H6qNF>|IbWO1 z&8y@PtXXY7?pg|v^*dkeeij5Hie$kCJ}sh8q_%IjCk+*FKN@Zp?CQ@^rHF{c06G-z zs@d^hKn}2bg%&4T6fCcD`PDjtTy3_4=mB|~Ut6L~bR zGgdt^z7wR?`=C*sLJ_@|4Ery`$0xe-yu6%EX}0ZX`2O^}X7hskd&u%W7iGv$x~;w&50q179@*MN|-UKst+$zg__MlRB+bcXLTIju!sB=GHuAo*HAb&J~Z ztYL>%`+>8R^oIn4%LH3Df?g`ez87&Z_cg}uk5%VmnP)*kXd{OVh1I)7>}H~qV<>di z8pYgzHZO;LTo$?eFw*H~yWoTfMA-vtS?jGqx$yG zt*jY3!8eR-s3f-(;6X+zFw!JVvJD`DyefiYWePc(a4{n4?~^5r$VYh&TyjEqxCQLV z{RcyRuHtxNALjE{1cmVIUNTgu30_=oi>x}2Z1TCH6Id6z^%Q+ZlY%Ohsgl$dxLM!C z(o55V*%)y5xwl@m`=c(YDponHCh1sJkAV>R@{|2*O=*ZqTA6lm_P(88LC4t~w|xCc z=9{Hz(@H|Jw1s<=@n%&^O|ZOy-SD%5(^~#8rx8LX!n`vaMcB!h;Ad{w8tmsMv=tS5FI=!IcF zk>-9ku(PZQL$f`KO{P+|8UH(+>F&zh&hWZCd>5pS^AQy2psi5*>-P=CmhJBt)7lAk_q z4{(ur7K}(i7pSTy2)I54MH=Oy5ZX%hkT@!;Dg_`W)0k;Sk)qNL_V1C?lR z`Hk&S< z3RiDsCbbkO7_jW$+Hg+9(3x($DD-0IrawRY0=P!E$D_P_&lelG9%8TZcbpuI=J^ph z3l>P13{4S7ZDvuf+iS+m@ATz0amXAIUl>^tUM)wt*HH;roUi~X{VdF_mAVadwK2UJQItsaQMH4 z=%LdDzpKjhj8g-YaxVO=7Z%>{CuK9`G6uTaqVJn%m22j~?KR(@iPo}o7RJr5mZIAf zAR6N6{xA+}%uS6b6c`{ve6R$OoW#5p1)Du9ME~s56Fsn~R+UfnxEV`Y&%Zm6wzjtY z;wf>hemR$O=O8P3teG)IJSB9gQaw~bcr7XGWV9YqqrrJu$UPOmTtA2}{#JrS8#XHQ;6eBz@#7NQKx{0ON2giB9)Ht$8e9*4IZgD3XmS;|L#n(~(z-s4mG6}1 zfst&{vTIDw#s|8Ajg6RU6DyvqDo54V_MA<+g-?)ur2k|P#tU!?r0|z3j5V4uQJ;xx zjur{CcHw3mN*hr(MCC9ug^1YyI3yc-S+S|EHRir5B5$}Ku%08ll$yq4$#}qe>E9#i;T5@?`tT$YHm-(S)q;w4qC`@*IY1sVC$hdTkb5^yXthU>2X?cFMzKuRJqh)B`H`VmeV;QW~#@%K9 zgc!a`VO36?9Dmi(UD;lO9Q9fGFsjIst z+wolEBqk$L9+0@Bu$x&|fITOUUacFG7$+ZvLex4o?4JM{yHxhE89E8`(>5x#_@6Mx`mg zfkKpbL({%DXfCw^BZoG7*&^bn$}ZH0N^dfG-Hg+-ZW}CuU2pqigc&n_dPgudav!|n zqw9P-Uk@zIuU0L!KO{OCRv$`BxXcH$kJTaKj)iwc9y(IHjr%{OJ5zP?iw=-vT7~>)?#V4@sse((-m6n$&D-%9`duNk zT=w-$k+@G=_iKVIm!m3Y_ncPh9qo~$vkvIes{NnBm~C?GX8O~+gY&PsFb!Lm55nuG z>^6f86SVY4gx-jb_i)B_1&fU5+SEEVcI{CV<}&8L{GJ1i5~fwf7ic5`w$bNFh}Xe4 z{BCW&fBO5qMRBh2TKCB)d%RqWYJe-%(S&ZKQH4AF;aA@c2?}!d#71K;tYh>UCFzM-pD^4b|F!<+=b*p8n#G zp~q?Lmg-f{)+|H~ml?#J^5iJ%)4QYk%k&Z??=^N8Z8dqpO~;@!GgK>{fbp z+iz-=W`<7k^MT*n|*GT7dbS8!O7W+JBzR!PC zB)?uF5}i~f>G)_(N}ihhi%oTXke4MLUH(k#C*>^AV=KKrF?p8$5_wLuRPV}U_qXIA zH}7Hm<<-@CjfJnAXRWwm1yv}vFjF;)pv6esV1N1I%V<))-)m>PgBRwz`^RJNF4ErX z^RT(fghb&H5M`gKT0P|1b(A7qL8EM7DzVQZDl_5HZt*73K^nBO*+3u2_UZpn;Nw3ruX|oBLviS zu=KT;ALcGgSG`F0Kd&|wp(024oC7!W(xT{dJa4QQZML{Pk+s#!ma`Z<&uHTwHu=5n zd3Ho3SMBt^qWRT$)+MUyfUs{g=C~ANM)4ZM{bIf>7hxOyy4XXO1AA?D?wVowR=z{b zWGVD=QH+8^QuY1X(fN;~t?-C*hsVme2f zi~H-ykGS!INE~%3FUOaCg;YUHb{yvUw}5UKiR4!yyu!f&`2%N1C#ds_eZYo$RpH1) zqm$rS*=?5c5&H>hVxaN7u5$Fv&q;o0oHBt<(Vofph`Lc*SLEnOxbBw~5`YMKi48zA zJ-$bpA2^M;$d!$q4gGdv5$@dp{c_w^3NN-2SD3Hy_ej| zhEtKq^PW0UqwJe^NU8T^j`!w2!XDG*fSb|aaq))sUJ+f+;kjFGt%jLx0n~58!KG-A zEUfLyFG^oiJ_f?N2bi38ES#lpbUr5&_IIvL1v~vz{pc z{XN0{+u5XdWk%f{q1Ii#%a^zJttUP5q@%d`-|K@UxPnq@>rAcH!bDa$`XaI5;?;HJGYGu{T!+N%sAG z@+zYt*Ht#dMR7Sd7da|mROw%|Vx@KFm<4Ju@BM+x4>VyHBR--p%7bj1}h`h{Q24FbJu&pA~inhCxNb zSw<7azBhxZ@0x^0$H)IV5da=?aMSHc`NN9EV>J(t%fbG15pSahao@6jc%I>j9S=%N z>*?tg8BG{@mJSfxll29##X z6bav3HEZk5!KCJEv*vi3WGrMI$>%ySc10GZve)J%2+@m`xMRRlk4i5%8Ty^f%fiYU z&dSO<+AMK<5MAwYVvU9Q*gbxrs33<5+&Y!m;V(LC7g{E!kk1G;GY0C2(xU8p*89Dc zQPG~4Ho9*)puGoSGR`{oame zU-^KY+5OSA-&E;lYkmF8@UVt{t?lD`KP%G^AG&CxXn9gShsO^+4ohb58*hP+$`E(J z&sI=SSRaz7&INW_EUM*=`d?}(H@CJnP9}_*GH! z>(7)>mAGDfIA(hrC9;dCtPDUp7|fEkUR~N>{23n`O9+1j*Lax4`Pvm_%`4;gJGFeK zjQ3LAw}qam9<{n!~W)y&D1(d#5(6NehW9Jq0DD#y7ss z*XItb%*;>MAGUX5VR}eWhn~IcEzFee1X2VTK_%cH4+Ca6rLm@-Uh?pKgUiR zoizgco**hEf3Zs0)8Y5s>HFgMl^!gN>U|M3c@KR&7WudVdSr^+{k-`0`)Yd_QMK=# zk0L%<`{O?z-x7bE1+zvMX9!PSUwd8dyz^Cj*Ld*2`}Qakh;yfF?KBP8K6k&HYt(C| z?L>^sw+Gp|u2*zXX||)S(9@Vq<}m%kr4HSRUB9bxbFI*((4~;zp6r~M{M#FYBtPkg zMq~GeJdmD>D}4f&FpM4Z&CR# zikPWC*IlU}TC2&+i`>IA5_-fQqoMr$Q)Lm>8g$1%=0jL;iHSy4cnj^0<~@{Xk?sAZ zDNb?cf_}5_$%(d4%OVgPMaXcwyKF_vNQ~I$V`7XTKsgcuJ zm0JS3lVaaEtDZ^|E7+r0fCaTfOiYa0(pKJ#80ZCj=K^3-SFbpAXF(1-$9(i*68M){ z4P=OY6;68K9rMU?l8H*&`F!7G>bu*!skPWJ6!>45iuAmip~Cd2mtG<1n4a+arLJ`n$)0Zw-Devo(lc$qj*ucI}*`kBSJt4A-^kGskCu9`2Tl!sqk!{Ccf8aWjKOvHwUhF|4gs`u3N!$6?paZ#|M zv}j_vt0xj{#Yah8T>95hfBn5_bUoI9;yIw@Z*VIuhyXD6(#~}L4kA$U-5O$ z*35(Q%bn@E5unis7-GBD%S*KVfZf&Iw7*5 z1uU5CWdtUIe%buX`uaMCjyr~fy1KefY|S4?(u&Z*9S-zbfng)AdU2C+Ay$<0c6vEq zLG(H~GuUj4g}Q~I@cnyNOQp&Jmlz#n#0w{x=b{iYB*x!#fy@g$(Lc?K)W4{%c+ARdLTeq(Lv z$U4_ZeSmo3!bm~Z!cY>j^2{&7)XfcJAxJp)P0ueP>os063XCHB z-5_5}$8+`&Z6qjON758ui)<0^A_4+65u-0hg3*7^d5eOuK<6Zl!x}^ zypv;|%CX$V#j$tFGj$juINl z2zAn#^h}%2Jv`>>y%`dhIIcdqKd$?z@*O7^HW3}`W8_Kj%=*ypKn2e`n*Sn zAN*vBB3xLC)(z$JMvH6>5)o%0hoEZoZHDK|J(2+J& ziGQ6l+D3`VzyV46MjqB}rQuqr&MHK|9gBLQ5U3tt`FXJ?kQi8)evu8q|ioA z36^j*(u?Q$VE;UM&nHRElKALx>Q^`N;z%hp#G~$2RiJe_`N?+wAMg_=JKgMKEi8qo zf}pt+7D4TcPr=aA@vs~M1-*bUjg<6I)^h`^g^iLu40r|9{p$lHXpCu96F7Ur z${{%_;@4Ry9qRq%Cr|Pp zN^Ioe+9VA>bWIFPDaQagM-_JYwKTfnN^bo`S4Ztc&a@x5n9jn^)Hd8__}I;3t@PvZ zR50Q1Vy3PXHToM?r`_Cfbk@~7;v3t6%fZ@uok*TFm4cU@;4zNjI((YD-Bom=B%h{a zg*W>~3h#AUo%A42A!-Lr=WZ!M+d7jYViJ<;@t*5_$u zai^{R6FPW|Q%`8S1sZtri2t?!AkYn)P`XE~koyp<4ni>9A{`$#JnZQc*8?4}nd`_V2a|yf@~eMQ=Y1DBUd4TFSsBIYW6t|!Xv=@tivdPr`31}NX}81NG7{cS z>0giJ*;W4u(Dp78c|Bv?9=Vn0g{AhoAS3%y8C`8ipcf$E+;+b1LCpW!-^Xtt+{KB5N{nW{nx866=8;N?q!%rAI zPdp^Ny;jA&-+vu1pwX%=ZW$v-87;C8bpiUr*&6e=D^-*r`?AfP!PCSM&Z*<&VTGJi zjy;;qgt_b>k`bi|)qQshd{P8BfLNI8ZJWRJ6wUj^E_3>{N(tf6)@dZ6zrVv*6i;T) z)D=}B&^>;gz9}BJp+~SX*jBz%QN`c0+J0~6QFtCi<5nbYuE6B$wLomImD$&8H`cpG za@By|f%!R^X@1Te-0L+aD1^-27cvlzv2e()z2f}<9<%ncC=>!MjE^}H zYLQK(F3d(keAO^V@`XNzO-)S|6c&a-VTk75VcE{^J8{rs6)u7~z< zdMT$y*_Y#$xVSjy%~6(y_Xo7AYilD1%Uy+edFGOr?Myf5Cn?vvNjaO(hIpnl)aeyM z5)(;_4r zh;28iDP=PbOnMWlY^j1~+p=0NXFIAloNd7jNHou_4r3*g^1(bh~k0*E-w-yBIyZ3H%hUay-D!oh zl1K7YUHR&w#s)7gSw0z0Js;p!tcH`nU$c8l@p$s#!qN-Qf$b7rgy_+4-s1@4>j2li zIpv|DAvp_X%H@vFQ;+bTq)ajMWK(y@$bV8{#XyWsOlShNG7>Z_EG)PgDksq`B;bHD zJ^nYR;1|Yieq8=!Z64!KT~HZTTMp6ce|O#K*knXTy#ILuA$xcJvM@pTLvO9!^g2+i z3*D@8`euPAKXSO*%fipEQz+g*tYbJYm3o?_t|G^-Oqu)!5(%xXsi_$Pu*OS+I(vrt zxaOVO=}2`l!);Bwt}M+lEsZf5x(D=wpSItRb+{SK0X$`Wr*1xPd|YSQJ_2UjgPUW;AG`1yCiADF$mS(fskssCZ{W!S+|n)wvx#SI*qnpj zXS3*VlLQEKR)@sS2h2GKuhvw zVhAf%<)BHVb1N6QWaDeg+;YNpu|f);sNQ#zohT<5^pqg!aMRqw{jIoJZs*{blOwY* z79BL5wNj3He24X~K+BU01>T5ho9!SCotvPgWTD7QUmZKa+9i%7 z%4QZ55?0cAMFwhomzaqx>|XMZ0@{wlZ<(cX>WcRZejUfzVpj9jokwoHtkbncg65U$ zU-XruFcn#jevttV4NEpX*SH3k%!6&BGEW+d=+v^FmYnpbJ?bYz+R@ znuQD@3ke9aa`RLC9O$Ob-qI0dDcD|xC5TL>rz>mpthmG~%U{nSLu@0Wbzk^Yld`#q zike6=tdTiQ1#{tzhqU>4uZ@4@sj_vpQ3N|OOi7|!N81j&W}h72QLMw7m|4vh1rdrx z&9sreEqK|XMqEQ^AIBnN%yi^zFrPck88%1fc64U&0Q8y!EidrY)VUDg|dNlWm&9dyx-wh4qL zMy1v`WctVch@{&|ugvs&tY2crIJulCS$vO|?N9h(PJS9c_$2SEHk*Y@EpleH24o>S zK?L~;3LKO9qpJi2R_zp)D+wV})T_QCT*yvWYx<~6B@l$=YLs6m1ct1TGy4!iwgY=(h2PSlLAuifHp^Ppe~DT8=;+08G4%4e_#3$!J>7?wCK z3}5)BZXocXeuhMF7`xfft|CAypqR~)kfi;qmMAm`nF#Af#lsfahZ4u8Xf3%+LC5EY zj}cl<6iE+H6CA6*I~}(-(?ms3?bg-48S&?tdjBQfJX$e_fnq~5Kk!$5o&Z)a`9?*O z%J65JFz4QEN#Y!JX7|8rfg5@QPTxvxvcxnQ$d?VL*KUp!oyItmf9Fl*a2fx#5>Q$^m!0Th}Vio?6V zK`4}eRxw}{tC8th&%t}zp-6#4+ctg?=6D;O6n=^VOAGnp`H+^}fqJbwB4ot+9$f`! zA#f$a5+G!I=U9mk?#s~kxG^8@%TPQt?2%na5*OxP_A9>#>>+rl1=!y2$6e;0QGkQy zkzkFBOckK-q%>|FUH~7VmeV-G3m^bzcx^I8xj@LcXh@6=cc6KKcTfVh_drAc_h1xo zkjVdv9Z@a0h4ml%iN{B>M#h|f=H7hZq!c<%L0(fNUvIzAfAZ;ZS2-%4^ z-E97zQQB&bZ}^lc5|v^IZhlk$Y(#@^Z2Nu4FM9b#@8gQDt<&%uk-JBKRUu>}NXi^` z)tBi`#~VWR@#&;FW6#X=!%81S%~#&ZkUZnB8#dGAp~PImfLU)ESoXF$dYCzh-~2Vu zr2OZ>ecOQx*$HWxqxLj-6;&w=O(%lb5){GqWFt(VA8zsa#f0&2<{Q3nAtX3ASU=_V z&@a5QC(auyN-4sux%cY_70ylhQ~<^J;sV;RRm;t1C4&Xx(dZC}{R|1pa%%EON$+O( zhGU+BpCNpYpMRSr>)F>a2BJZ4hW#uBOk^7TNlhGAvXCB3AhVM3mLoEo1O^zSLns z|5PU>s32ME-v1Hve(|u>5H3i8VTv3F2gm5tl)}yBNls`e26(fA`esN5mJ=3KJaa&h zNr>}hOiTul;o0oX|KaYf!>Vk% zc3(hHL_le2B&0!FI;18DNY@0Uq`L%36{Wjn0@B^xB8_x+cS$$wYx=y;`+o1<-`@LJ zYklijd$0ds!cENk9@iMxIDhB3u5KE$#*$9CxGS8$@!yNvx6r#vU}a?N;c-8=oi8^V zcAu#sUa#@GyR{B=Ix+<1=01?fPBYTe&o9sR_dlG?y3864@3NswH3C&;yAkw{iSM2( zBw3zsCs-67G=P~yvt)Uf9Zij~V1~Sj(6JS-#+2dU+1!UBn~`iqfa9PyYvU6T;<2{M_U%OlveXa zNy2L%&L`7C6fo?dj*>$ZmUVGb(5J6AvV?Ew8!pzqaT>Ox6LGu?IzUa$&h~q1x^a|z zC*W~bH=ohk`dbROl7ETPWtX+_obt~!8eWIBfhc$lSI8tB#@~unj>do1F78s|} z@t%qI!>Ogg@3h)lKEC(ADIlcRpw2c6qVqlE1O;2JKNf-VBUsf(LOVNT7Nuw0656`0e*VmF~a)eiLYdjz2MYo`xzu-30r! zFWiK+w*0(?6-u4CL=G; z?LIX#^BU+bU)Y3Kz6xJI>st1ElQDOn;Gn}WR8aD<@O3ew&b|BSFW$cHgKSCL*|E*K zZ5JG8uzJv|WZ|j^A+f9nY?~b%TPCox+pa*#RKL&P-JZ2lQBW^XIyf68jr!xzn)bvn z-_Q0~=bwMrjeqwEl!}ztye@68_)S*{+J~YPbNmu5WYR{}>?Cj=lnF|m1Q$5cO7S{J zkod@2dbFr=f^DRNSEBZh{M@QOVaI;Q~V^9%rW z&`VzoxQZGEpLI(I&DboC?(v!Xs{dtcmwCx8oIFpCQ=&2h(L(G5=ZZf^&qxJ&- zdeD%9)hdm`^WRf?IsWWj)0YYCq0MS9ala) zQuRY(&yxK80wSN&R@4D1jiBIcvH0`KZo_CW2gz{7cRc{P_)Sw$Ka5`rJ|;;J2)?aH zP(HbKkIjr&zxA{M_=G2|QX@!b(7u&zPC-FNR+3u)T<5-A_qsJ9dTG0W(itV?X5XiG zy+p8?r*~uC*$0u3^a4s82Ka*BE)~n+muX<>+bpP>OD%F=WqkIP%{vgSKNVdEl<^y& zN!b|!o|*W^Ks*i&bKE#Q_n|E%DtgpImFjVII!Nj=BkD5iL_kBsn|5tmD=itg5*`+m z`&(Si@b+sxJ&gm@NZz-e`J~szGZM&01ne9ih@mS^i?6<75>`GY;`Doe$O-mgVF;P$ z5VDFHFcPdaQtOqoJOlew!-uLx+W0)G+prEdBr`C{IsD)ZNVZhH-*{NlGZCO-47BXS zP|y!s!`up7JK?VOd&eI8wl{%G@&R44afr_^hwwf{J}=MV&bSX0O|CRus1Y;0McP$; z2yFgNlt-fJ!?CWcLqB9Y$a6=g7bu<4>N}Sy3H8lPO<%ZE&mT>{ZME?o4Ca~3Zlg9Y z>9UR(EHX)Q{W4alV-d91#oH}FKzI?^AwGXORuwdUw7X_vBJ3SV8eOcQr--mHq%N@e z{pbxM3+2~e^b-{pu?L;fd=mcO*}QJuiTE6|zm9BK=Kh)vf7mV+O2##(5B<%^38YMdXd zC4*ot+bc|F1FYt@B)www`8VL#^IUJ_l)XV=Ny3(RWvJ>C_$6zPHxhv*$$=0ZQw&jR zp@nJ}^fzRmW~SB~YuHXKZL>g%%+Y?O z%qUpC^{RGxOP{me3rSCzXci;xo$j%=Y6bIgU!lSB{j1Zw`}{*cv8q)@D+ay@(vWaI z4^65yQR_#s^VrPkMkSq=5nM6mCuhm0MS85ND}RXfy>_@etSeK^-g8!>ufj^*&&vF) z46mA+_5tR`s3-Jle(!o+oVKfIy54eYR$1uq14Zvq577osKY3ag$-s`<1}VbVXnA<$F?HaoF?aw)QC3s1g&CabU>My{0>%W#%$4@ygb5PKs}Gow`W=!KK%R za^c?`~qkCU|E}Hha}}Kw42Y6Vrhke=SWfIO+CO`eQ$; z(PcvD6PX5RPc^h_oVbw4*Rk01B`^>WIodEZ)eTndG_a{ zoNVh#rjENFWFgir+43_5Y`;8j#w1f4+6+6=&b3;KaDD!dJ)^R*gZp>u^tl$5XB%uW zR^c5{K40(^2*#8#?p4C5*SY+t#@gE)PxP3DF{7Jpos~vtofvpTVAwE*>Ll5>On1~i zNXgnRF_M_CQyEPT{A7)ggP+EUJj4$@OB|yoYzt3uR?A7;_8vibh=fPiMJ#)F()sCl zX4os0T9-_;+4x{d0_M!Kg)7w@WzjA#6BL?$ONh9oVn_@ze7k+oar$0PL4cMGV+V|Cug^Skt2;H?@v&Ib2v?vdYI`PwfTW+ZiJONK=Yh&$Bn zs+cR`O1V}RDi6&;KCpxi@1!e!!e*YvFOk^F43eCJfSx8bC@J|zv7nOng!arlRmg?w zq&-hy5jd3eL#(E-WxlrYqH<+ygnnTNteY{XYBtFvz4hsdK*IKCuZSO?%VyRlAxc^7 z>7JRIXCAbDGBwBm2G!ZIQ-@{N$W=y9`2Obe0 znx1NKbQ@C)VpofSuA_{4e?`cfOA=O6+t1{JlaPC*OPf1^J(c{iRp4TH5~-G^q0tNp|T7?tXF7=oxL=yJE*t%2TI>dRvN4Pq%twz zm=$bO=>#{em!zZUqkPv3$_r=YSjIvvnX~I-w#$VSL22n#lka6Oi+Zx0F~(V8(KC3- zl@Ceo)yV63nR%sAod|!8ydWXj4d%Gj)Ao$vukC{N7r~M(F0PK;)$NWggY8Tfn?7+4 zb)2*4QkG!$K`6{vo7{J8Wf#J1kBY45%XPAz+pfE9V{g0NvV-BE$QV%AqBSZ0B_)s?A8oBxlCdR@z4c=1f2-1#km|maF_l9x{Pw2@QN1u8d za)-J>`FPWMxTr|S8<(Sx*DA&CD4B$11)GfQGmW2mZ3f*nUMz2GRH6u#RxkFW+H!Dz znU2X@UsHPS!hO4$=D>CQOWWk8sq#88@rfKqb+8WmPd@3?a+jgKimXrkbLl6nw*;f( zF~cJlHx^e4QOyonjqgw1$oBTzW}RJ*i8Vef8JC9$-tDCN5FGARKjS0i)9i&M zHxPfFE+lDbW(l?Dn}6DcvCFqNAb-GRN*hd;D4v`Eb3i=g`xqFcCM{T$ZCx4}Jvi5u z=H&A|1TxiE@U`3QYOyp#@4-yW?bZ-|JbE=bYww_4N4>!&@gZUUZUxNn>+@lyLgm|g z2t&@&f?lvIBYt{bwuE;M(>1nQwDaY6HNxO02IVpmtHCM+3wtsXrBqct zuv$Orw3oM#PWdl0yVPCklGsR!Su_4J%SLB~qLSA6dlRejY7BKV;g`vQ(J=cea3+Xo z_JlCxD-(A`DAGw(@fy*oE%NM=$eN6K zCq65@u0Lp9c5c^~lB=2}DW{E`uzDKV6^oNjwltEbkHU-zZ})r4I1~2KWBYozi0lYg zOY_&0M{@QgAyY@uO-ogY2rlYNb>@xQk5u|s6Th7+0tV?6$L%twBUpnW4+VNXCKkaz zDbv^!b7@A~RYB?Eq2^+)#G2tLBUllcE}vl!J8XKllDJY>v=bTLmUK;9*(ohX>GJy) zQqHott#NxOvrSFqRyxzAqI<7{p-cR|57Awp#%XkTx|sD*e#8V_&dslk-Ke87B9w?5 zwCaX!jeflks}h%^KOY}%uNXTH_f`!y2;auSxG37x#bQRQ{pL*T$ZpPv_c(mmboQ8iad&}Y->s)j?~uN zw;yYuEuiV&o07lKv96rHV!W8qNg4`S|J|80N*8vFF@#z5xZX*CpsPv{GF|1Y9nPjS zmPf@xx?Y{H#hcgQem(leXK$_g^Yl!}0%abNY%zDVrvEq`Yu$VEK&FEUT}deJ%!c01AB+>cR&iTu$ro|G)r)NMSk&M z0bArLM$`Rj(+%85pc2GSH9f~`mUxx*d79c=wp#FQk-K-GAk1+B^hrJuxK$!943$ap z?I79?{&Uz?{X##}-4bNcwNC!C`#~Ex}-XwL|z)X|D#Dh((c)zZiO#Z1K5(dG&D|8)d zHXaEd3>l$l(uo=CW62zIms_JH%9fBfHu4RrJT!J2tU!+2b(RPFtCHQ%D16vQ{ zctndN@fQsE-sm>Pz85|W_zjd7CcQMSGqpP3ssO%i<{vyLoG4nzoK67K8YVuRx_~ta zi_BmCl8&HoQ7g*)_UAXM*rVt0TsUp;VG7zk=pY2et?zYg(5lCK{}4J1=7>2o>0gNc zxR!XnT!}HDoIRl#^AR_WramCLHq?sykUNi5?KlQC7(F(8pxL&zQJ-}Q+KkE$4}DnK zjH#1CT8l-8)DiucpJTPrIEO^8JcTA2g?N1Tjs`7IM%Cjh%!Sls1td+-R!>K7+z$jK z&txTZ;~IsRJC$Ts#>q4vNF8}*`T4$XIF$ivu<0{vzl zBd)PwU#DvcVIX6D@5wD+OWLYJV1aQ7|MZN&i(hrKzr+_`PZYZY@{2jc&BzCm4s-6N zN*2bh?c>ZOGn&d)g{((gL3lZ|m!9yLsOk_)NDYVo za`i6>5`wm^Y1YCZy=nK`*&|L0#*o7Jz?Uqi(aKHhd?9*Hy4F+g+ZGRA!MMsBteBhI zR5X^VXHF&%FE25ug5LA9DPsNU$RqmepRAoy-j7wgG_Yy6%UPfcX%6Dw)$XOXSQH zKDt+39V36?1MlP3F@Scz4EO2-L}-+3p%-}V#)BFk-WUGU$j8w8)6<9lC+QHZD^gw^xzUq?_LHb+qO@oa5XYpw%vQ%$!6-l@dEIR!EFpQ!;nf<$jmF7Y zF(mr#p=Qx;L>FPmj(xdW_{z-GTAG`+Wh6G3RSOqh2D-y0oAD?aO3B;I9SK+&5TL(m z2i6RQ4_Z7Ts5xuo<(MSlT44-l`OG!pc%(J#S##Slo}Q9QZ_jY2Se(Y&!4ZiLW=(aO zI7)wlpNKjD9ocqpMl?C@ zzfJ5!fC_B$?Gs^w`v~Zuf85fLqPJ$h;W}v2kvKCmdwlU|+&QlMLFe}>T+?^LTn9Us zrb&r;!;F>ojo`i7W}hqzFQSFmf!uOUiDWGJPaaU_Z8$?aLtB72W2rUY-u?&TW1N9+(UZsn%Fl$zdaf9R013m^+{yfzMOGQCaVLjPTrAubN z7Q`!j&)yIW}MfP2-*&yreRA+n&gVW!e~%RX5;83mus{RVn6u_rbo{6jqWhj7#a;0DOmbkWmJ z`UnK$L-fK=7E+=1>L^H1XjkSn1w7bJSix)mCU*aqiYEUBu??V%l)K9wJ0fAG_!w5g z{Lw>nzr^Xu0)*H<`td?)o(bP{20A#|PTTY<91Wan^6X|O`T1W0^4qI$`>8frj@QJ| zGDoz=rpCl#x8L^Y3d~d2$6#qb@pg{8A8)C@-#J0Rk4w_1EAZ>XA0MoLNXThyB(qNb z^ZH>RQvzo8x-ntn&4$oryBwA2(r?^=)rt(TfTpCE`s>bXndax5MH~MlA>5!_@nS4O zRac!BGoG0USvuhhJ6268sR<6~CZ_ix*z0*cYN3PY9jIwzq=Q#;M6o6Hsce~!QY=|w z5hSBzBiXUL2nn_aMy=*t?9VF^q2j)wk;lp(Le&SOu)4HnQOl>lHf19D8V9TN2mZp` zPk!rZX4r#OJ<<8NPQ-@{sFTNZ;rRSOCAa;=OohNwY1AU`Ar7LI+%7#<{vOb=Z2rsi z%>QQ=q8Y2Y{J_%6RjM(!F#f)A+lSM1*84xdX}hba3`!rAU`2%oRRuVnxXOYK`$dI_ zXO3U#umL137QkggHDjG8E6Y^@>`Df7d`ihxO>mB4lW{XEB)KRJtgCb~9K!Kx2C}$x zYZfwd-lU1UL9`@3f%W8Gzg4)bru1ay8;xM_JvXmz&RISzl{M7q-dlD;VC~S*JAObjA`$sfL4WlOxnldGA)!Ryy^vW z*0PbEHBBA|$ic?V;w#W9hFo6EaEH+i5=(l&MB@C9<{|3%yaWrW?ccxCp)6pd;e8N( zT=U-R=9(?xSGWcuOGA;%3mOFIM@5C%5(EM#tq023%`{I>E;qnuHZSr2*0gQT0j`Sy zx|<-uWdK+us(ZKgg?FIEW)wN9ts+ZJ9ugu;p^>uZ6S(4eNq}lQI4@-YGQj_j)(Uv8 zrMG1&iUA5$#+}Qo?J8{m(k|og!5SjqcKq@xl6GJPi~jVnN--^nZc23r&aJc4m^U(F zxXf{hIiphys24WiE?1J%X91!qp>=#XCBM2)_{#+j_;yTyueh+nQu?9XVfWWtEu7@Q z)0LOm=*vycM5UR!cqx0ykKL-+>81HLKV+Pdp~#$_;d5Fr2iqYl(R9X8z+0LbX7QoM#HbWcP;{K9KDqJ`A>SG8;p7KVafp6B$_BiL>_ zu#Db)Mqs(Tl4gRd)d~gx$L4SRnDGN}^$&Gltt`N~`d2?%%K4jVUbocIfk#G+lVnK~ za1TjNFc*vm;3AiQs@)yx#hmX^K<N8gP{t{0=#lcj#0WG%fxv`FdsyoGX@mV!k#MzS|Jc9{&;=(F8p=MSg%5+?*ul= zNe8M%PWL`M^jO8#}+Kbwu= z=hkogaYu<^i*G!gI4H%)-y_0*RYCodo4MsF;kdGryV0Ko8tj!s=F}!{6lvhB#KE;1 z%|hFVWES(mu%`7DGJ6LG#NH?Y#Oczw1<&8$LAPcIT1%ffUiHMifs3c5z(1J-Y)tzR z!eoPh#Z1Z0rX%wi${MC;vPl=NcaM;?t%t43-amU8LBBpSGvmIPcxjhMLQ2}(Oyv^$ z-Iq*tVQ6gZU1H>QH1+!6Ue=pr@GzXBT8@;5faFRW~AgRx0Tdv!ad zJ??OQHIyI6CH}NUab0%H|won*OzFP7@0U8$7bk$ zcjk4s&dA8PeX7AD%+1Yx2|qAMPevx72q^K5F7qDaa@@0IKPlFxtL@VE!PPwO)a#rc zmyYvkp+Z|d{r&r=8l%FuCk+Dg{mHyr)ArdW1+FTCE*+#U=l9W{zCAZ@^}}ie$K_l# zILrTEB=^xFQ&qAD+(*m}7HRtpf;5eQAuF)_#FmLPbb13^?u}oQ1m<1FBX8g_j=WL|5XXVl~e(r zsI>vesliEp{Zfntd*LoRUjb{sz^nJ70yRHlLtgEkaUyh1&fO8@uoH|KQ0(`0NZK(i5M2Ck!Q4hlQBjL|)?=2Vvp#DeTXSxlY1qB5K zxUe4&uJwL1JKdRVr$UY2rVI^x|B+rUfwOCaso^*~yS_eg1*`SbVjbFS6+5lGh8+hCl|*kMBqL z%@QX2pSvmp386-m+l)o^VtHx>?9au!snrOb!lk5!{5ul^z}ecv?d}0DYSzU{oTcF3 z2wcmXz#SZq_?BH?wOK+^%cyj3yz!JP?bG8`IwhM=f%ObbX$I_z8e|v`rP1DYQ&C^+ zej&DgK^BNX^78jb-Nl*WM=XaEdw`^7BU|(jMQ#U9Y>f9pk%}1KEx>|?!Kqcx?LoFd-=AuHcsoAYIz)|>9dDzdUy*%gYvE<&tdhihcHgITS$BC>UNQ# zQ$1mdLaxU&>p0zm#i!TPcSz8wXbO;s!IKX5K`)CR1IkIh$g(eM-rXX%F9CX7X&1&c z`TAxfYh-bfNlhjV?W=2`#e2tp+-R$|S*+0X4f<)9py+ zOBIjrF50m|m>h6BB+xn;ty4n#MhCLiKi{b;Ntw8X??R!2;CLV|m>2pH=pt?+fUya_80(u` zfOl;795TIN9hSCaD?Z=&onxMBW1ew=14D^-L}nQvLi;QRDkwUYof`oJP*U4v%OF&L zmVvA+qku9<_qP&x85Ss?|8Rr*z-R@luMWsEBr#h&hhZD!7baENtS-Cj<0lv~-Ja*mE& zbp<(kEaxlawnX) zmYc6KNulVQRG`&26-Dv4DgmbitT2x7RyB-2Nf4|qX~p&7x4)|*CG+7WmU58fkJ7(3 z!<6euFZJN9_2C^mvwz-r@jfoVO6K`Z3+X>3d{T2%$rkb&rTS$=4?jQEN)wO!>hqPR zT#kFyj%rhKop*h_$8&J{0(4X1=s6%s*_KirxHc?_!TU;93#!+Rt@uJ`L};yf>M{=k z0cpd~=yPvbbvc$x8_=D~2K{VcRrya~(EozI#{XE)^1iJdGwkplB50Ais8TeyMO$`1 zMyjTZh2DYv-oI@Lh#UWOg1Va}#Xo)<&UPiXbb_mz1S=XT11rqeB&FVa9fD7`@q8YzC2$nh*#^0Ca;wPBp_GX&Ts z!e-Xq#qzUDukpuOY@cxG??1bfv*VnKSmhYAX5^$?_uNd-hc5-Z>iDm6^UX4kGB7wb z%T8=aU?&pA4k%YS`MLf|uHQ?3jXW*rd%6I8Bsm$uz+>>VnVo_ohVng@uns&5XwkZf za{R}Cgm2Tc^-ZSQ!W__U;I}sCSotbMeTeQ$Px`rZK_UIHj3rmq`TN$IB(3+0YvK2B z{(#T_1Gu<1mF>ZW-`4qszP{$Cf`~LqDmogrfT4&~<}=on@8eTn@O$R3o1#=5jLAgu z+qP;-gIp1(N4j6h3ubr<;IjU#=iMxcsf#&Wj!wA5*LH>6zsJ5zCseszTr!~oJvbOB zH5T>MlOf}E_Y4o$A;(iW%AEoHZTpLgdHoo24rRmOXG5KSeXd+bh7VmoQ(sI%Qk~pn z&}oogHUTze`63-wAAuuO_<;Ru8dWt@!#l#8{$w@9$o?tvTUS}ZunxV5WH0PHg3>h% zsMIbsZ&N;klT1=%&k7qq#65djn<`%Qx9ep&$!xhk z-!`g1b0)Q*cJN%W3xY)@k-VaZKE5s@bX9rt(+OH=%nz{)=VtIfIaFW|V!n;Uv)oPp zTump`WZF|BGvti_GDrF0U{tu}taJBrTL^cl^?w+2F_HVJn-B(`DKcIsq zB9e(2YY|cp^*Wrn2!fF+U~P#C%vCU}{3h6l-c($fX*={*~Id zs#&?!A+oy6GpCafdkooWgHh*hEf03p7Ws%u8ZHr-`O0?n#1AK?UDyiV>Ntt^bG-KYKS=k=R!2|eCteremkNDU9L{Yi7r^sO2+wmx0i%gc*?6>r?-qWA7m{P+uM zo}|LW_@7TkDt_|WXC^p%shIuJJP;n+Isy(I&V+upv7)2MM+!+dd#nC+&Jm`bUFqmO zM~sCFN7L#Cbq>kw?9rK_@?0X7RMpUvO^b~mU+=y;lU2DKK(crYUlRorPdV8ec^DGI ziMT$zQRQzK(odsE6=D^7Ir)^l1Xn0Mjg=b<+*n|v?<-9ZEsUdqH7s*^-NMQVbLf1| zb`t@hBbdhx9vPL^B94$FD(OkB)9x3%j)lQ9#s4g4@>o>T#Tgi+xxLP+BZJtLEv zaG~_Qorx{hlNkSn2MTJMFt^zKFDukf6STRKOwhJXkAB$S>#HR(J!t#rPsr)1!A^7D z%Y)U-?^gI_ZeH8KPG!7k<%|B>1ZNV?;0f;sCl5x2Zf5qiXOoBu@#-aSm1+^kNo6Cp z-Y4|$V_0YHaBd)>Mpo}83bGU!auZbEHP(3d$q3%1J4`fOIJuon>M2_}@%CyuQq5jx zL=&9i(bc`vEu_)tac?`Tk)PbWraYH4-C0QYwpwq$XY6=vSutp*LnqMur5rZS{Ir?J z)4goXbwKFd}dy_^E zVAn05U?a)XeVRM`CB4EA>AJ;jY95wEW(Lb-5JH7-)>XSm!VPD zV<)j>^RTRhl#^#ud>7x$Pfsh6v0<;4Zrj=`EV`-wUPI3FUd`w^#-)WeT8;gw`&T?- zQix%-fi4~bROs!*OGg=&#-txKAvwx?gp9V}n6Yn!A6LZo=({?j9NE?Te(fO<+wTCw zOZm}HG=>Vz!Pvg-{tFt%csW*=o3HY!gOWm0{1Cp=w&5}+GY!AX*;$$>^&yTph$e8V zMnb*C#z}vyDy!?gdVI5FH|1E}7XpcDOM?tiyk5ZU0dNWp>{r*dmSIcm-TrNI2Zmhc z1v>F2RN)46F&K#-@y(82?hoJchW{`IE&E!>0Iur#s;Vetq1}<3^7N-#l@vS_DPGO6 zAjjW=G&#y?HB`EkP67Iz!n>E*A5ZPqDX3h1lq_T)HB??=O&yPwMYSv(l7v>De+ndN zI@7>w`k_Wf_f392^y%*sId-L`@aEzfzX`~rEMvlxX0KLdN&Zk+UPjgV{T}%U z#o-zpc3_SwgavuWj~tb?IaN}qiO3+R?M3iEui4~})-&<0n5|SUBtT@yD|aTIKZX_6 zApHDLRWDj3+_9jfELz4|=VM*Job>1`MrTl#LVs7u&IHQ9>U9948<|cNAD7*GcAXzi z-3$<78XgJN*=E}-yQQ-2i_9Xg`wG%k2(hGzvV)RzTtaT&uLtcNw%O>biAa7h%7#kvA?sp7pP9jpe`L7Qt&vKcNq}Wduk$JT}EWbdDgC0 zjT^R!3vAznN6`Ixs~{>4phpO-PZwu>PFikJD@a_;rr60>L-bFqi%;h5Ndtp^w02=p z&vCrHj#})j-$nw9kvQ+k6m7(m_R#X4 z*zJQc$t*o&sCA7E<1EzzyHM|8fdXu&LBlG%QsKVnN-(Q;Pn*`G>ptRzC0f5sa$t(( zYj0ut5A+QFbKp`GubF59m1Np|Fqh^3UQ7RPu1o(^*g0TdlVM-Sg1)e%#kcwZs2H+) zxj^`5oQxtzhN~F2K(jnP3)evX+gZ!wjspMikA$qm=yX38?uh#NSok$-!!b5M>;oI` zZuXVk-Q%4;@FE}(%fJuItXJ}Iq<{)lQiTIF-3-&W#b?2paAZ z$f!j4OLqazYQzmA*f)at{w(1c-r0&DFN@Fco(MyZq5g@C+wV7`biHnz?m@v>;6;(( zbZ4~px<0L~;##$iIVH&6>k93w52aUT@E-4`kk1LlWFBa_sxcPS{UZA6`vy_d@HcCH zaa#WUTbQ;aZ}+6)%8Z+CjE4zY=`*Bug78XNL7c%(THy346n<05$2UB)l7D%$;B{rG_goU%!{3tXmtllg|4B2r;W(l!x?|YL% zjH2stqUv_B8XMe(S5{V_{%v>7_BvhK=gXJ-U~(9pv60amdHIk*HUJ|L=*8DVDMHf8QAilIaUUq;ADlj zSh(IuZxGN#5dW4)eslfvm6T+#Z@Y0v3QR%x$7?!o*BTV_;qeJ1#r>2cY9FSI_T)+sO85Fc$q?F4m%xO%*Q?VYySEGmmw-?zT&a;{x} zgze3Ofw%RR& z^eGOVUcp9ab@Y5is<_T}oE#$S6#<-)4EbvmD_$C_RXWwBVRr}w(?SogLckc3y5<-} z1Ojb#vl5(UiAOxgrpV11QvT%=hzqH{#K-JN3#qZfNSeU8ogU-~=%M2y|7eN-K!>$h zV>Q$4uoN2uFKx_gtsMZ9v|tDl0q3?NC9^ZIY%kt#2m#P=Fi~w)W8^+ zNM!JC8t+watVb4W1H`QEktHE;Zqr2KgP}v^wy#1Zfpa@bI*=4twyQ;1fe`*rj%nje zuvtPlSp$%1B}x)a06@9Cpx(g;&h0%UZLqFccBQw0;X}+b18G1hzd{>&+ zYOS+|qdk47#Y}VU@x+jfPwJth+x4h2CpB#nAQ@h>4f-YKMStRZO0_^KYbO2vFsEMN zUPKZa@PaKq^H1at$qbRn(10py@#WUn#@}Afx#~)$`8GQA&`ELg1td-nZKWAtDtfXv zg|NgYF8)a}K0~=+=Ei0hThuqQyh_`sciM=WMavqx7;PQmMEZAB#cJVJyDIzdYl}n1 zRn0Ph{umX5TTuHx%0wAFxj+Xu5Rv7(dN>{>w}`txHnT)klbN7BW!h3~B$WZ=yFZ#F z0?OZU^;rY-*8ET;od1eM@CA{5xH2hd70&U`XnbM-I&IJJaVJF)>HcwP1Kgl}RxZ)^ zuj~BqKsXAKD;hcw-&tggi2urcT*4}rpo7ytVr`%&AtkZk)Eve@JoRhpJT-zx71&Ir z4obpDSj#7=s-7?m42;NFSsB%rlHom6@O?8C_KxO8Mbilbqaq4BsO)b3^-@MQ z1XI7SlOYO?(?R$I_)0vj1V6FA{3SwNnDeHaxU~K=ZOHnll7}**964-@P7iENisE(` zUb4Vtldnxe;B=J<%>tx4;oKJnd#}m5?4U1ENx{+_rN%`l8uw+Tbr@jTPaMP)cnH-R z8q)j@Wr$4s&K(n83TPV2vRV&MEmylAWrlP5+^ig{P6uiWI+?KAL3O8F?4VDfjYHq; zpt)OG(v+n#<#nozAZ5S;VX>dX?)tbMbzq@hkYkR{M*D}|?KvuYsC-zN`Jfh*Hn}`Z zm$Y0%v6L3u|p586;j=G z*>HL|=ME{(x<;UQJY6cP#OV;7G>EJO_0x!3m@gQA~ z52y|w82H+aF9k?a#TAJ2HNsT{COh22rW(+B#^V_PvydEzjqm+qu1V6X$YlCl!0ME6 zCXP3Y4k;s=8Mz#?6LmdQB(-3 zvq$CcC1Vz8^HtMLqD?KW(_Ure=J>q2WsO_0)Fc8AUeet&7@A-HEA$jV$ZihrwRQcSjW@L6cz%qq9rxeK z__7>62WeL~k>u~{xiJGY!NVa6%mr5M=?YnqW|uLRm&w7e`|$K6B*ov_7q;(3SmgT8 ze+c2#PcK4H_Hjom`Nb)t+e~J9((>)0!sN>l{$LT+@ z&Hs#E|6jA?Mr4s$b=G;>+*aY({TMLDu`{XwwO22t7Y4(#p!PS9kpF%3&VPm}7Jn=a zy*D8DH0kwU$#q=j^wtN7rGo}x7DOut8RCYUo}CL|AZIo+FX_PEdRy3%A1V*JQt5i` zhNW9a;;xvu6QIH4OjeMxnKrxu7L~ zC_s`*J<2$dlSYUu)>Ax>XhiD_ z)>d}-R+5>7!$|5A7#Rc@{J%H3AdMD)G&&MMDg3Wk9*3vVg!0a(|4O43Aavg_23-GL zp^NzFf(`SK#So?8Kd+-0fur{E1v;wZV(MM_TzLzSN4^0aE=#qcNr<2y!=oNZJYVDQ$@mLDhPr@A=f4L`Oa-~MaM0@gze zJuvYI@VB{tmD`DWzMjU0LaXmuhwwPcusYf*?YCTJz>F(2LiQ}MCmQ^OJxc72ZADK( zx~PzJ9d^4o{K^#fivE5{xaDT1Tb4N)va5@NKO#%Awm_%i0cdqgYIEC){$n!ZU(338 zXN~!Zvo?{~ZJnz8jUA|jbsczUDD4Z0M@PuhnCyWqt-)b723S$@5~r5IVDA&mOipjv z7h5^}_zS7>+izunPbN*5To6v;0xs(Rb3L*D&IqNyN8o>W0SrcNr!WUV$IpK zEZ0cj7lPd{KE2&^hkOce0v>$1Wz#gkF91w*{U|c*3`{)Z{b*1Ev!vrGJe6-{%-`nR+P%v>@%fu_?}RI@4QjA z@?hLOFHS5~GBmv|Hj1b(jE|L_%x~~wSPVPTejFQaI$%~8Hmn8;K9R4RVt*j-#5qOdkT*q4T9 zRF$Lv9QQby91pkW*dU+x4P7hBSKnxM6y394PwyB)@3WvwPWH;pjowIVqyFBNp+i?> z#_brkJ<5Qw$VW2{HCI|U=59SxdH~D8q)8Bf!nxF7vskEk704hYyW`8?QUDU-QcI5bC6G3hLGA1GNOHJfa>Kb$HI8J0aI zr?Nwbs*>{qFnXLW6uYZMTy(7!HNiT)}{JXhLa3Ww_NXn zUV^D`(dk0xSu%yn+b=KOAsG#o$}!{NryM_ulBy~%H_k8kri#Zsr|GS1Q&!z{*M(Hx zw#dV}~neJ}f_+s}JOc1^&#oFTTeaDV^8<;XNB zIBb0AVW6}Ft)ta|L}JA>n&!Ed`F1>y=~H$2nz!jbU{1rAE1PeJkg@em`mQ!w{gl|g ziu*;u54wW_tZ7+uq{r<(y&d(7R^u9cfc`G4nyoT2UHN=u2YNrYFSwZG!?|O{U`p(i zDb(oBV(pBUeES1s)7XFP9iF`7^m+0s3k##n zD3x1Lj)^!=(^+7N`kMKP-@J_;O|K`f@E=&<-V>FyN2h6*8p4Q``820`v=s0>qWB2u zN-zV}+C|Flp8H863AV?fZ88zxgpQ`ZT6AKTO9J3I}{me;-!wg^& zh4iDWcS;H5)u?4jOK!JB<0v^zAKFi#(0|C5)tBN06vtD~(*aFSivX5~g}d%qnPKnLVcli}?*+R{|Q(VE)aDiv>y4e%yN0ud9v972;bJiTrWJ zTIKLqA=ZHOx`p!5-c}UUQAv2$5j{M= z0{WO;%sBe6+9A8p;(4Qd9d*t7ZwbP;qJ46Ogqt(VO!x;ly&0cMw6j*)MYpn4Blsws ze)L^*9ekS1q$U$R(JPjh{AGmO!lEK87+c4c$49eHGafYS#*(I#TBiz&a9*wN9h9%} zq+#_!hyZsvolM%}$xWMH>1nW6d}$H&Aasg8@5FB9Ivoby_H)O=bwWgZX}oXL!g+kF z$xRb{oV4F%O_;8_I!mD)!S2?AG@1x1$1zS7`4LQFnu{s&82`r-XS)>tw^IE#{a47z zw;SfF%sS2CzS}>=FhO$f7q}UW3yglP32ZxV194 z=xj$=XHr>mdK II;Vst024#Z!T 341\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mprinter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 342\u001b[0m \u001b[0;31m# Finally look for special method names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_real_method\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_method\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/IPython/core/pylabtools.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(fig, fmt, bbox_inches, base64, **kwargs)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mFigureCanvasBase\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprint_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbytes_io\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbytes_io\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfmt\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'svg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/backend_bases.py\u001b[0m in \u001b[0;36mprint_figure\u001b[0;34m(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox_inches, **kwargs)\u001b[0m\n\u001b[1;32m 2061\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0morientation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2062\u001b[0m \u001b[0mdryrun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2063\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 2064\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cachedRenderer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2065\u001b[0m \u001b[0mbbox_artists\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"bbox_extra_artists\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mprint_png\u001b[0;34m(self, filename_or_obj, metadata, pil_kwargs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 525\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 526\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 527\u001b[0;31m \u001b[0mFigureCanvasAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 528\u001b[0m \u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 529\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setattr_cm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdpi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 386\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcleared\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 387\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mRendererAgg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlock\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 388\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 389\u001b[0m \u001b[0;31m# A GUI class may be need to update a window using this draw, so\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 390\u001b[0m \u001b[0;31m# don't forget to call the superclass.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/figure.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer)\u001b[0m\n\u001b[1;32m 1707\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1708\u001b[0m mimage._draw_list_compositing_images(\n\u001b[0;32m-> 1709\u001b[0;31m renderer, self, artists, self.suppressComposite)\n\u001b[0m\u001b[1;32m 1710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1711\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'figure'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 135\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 136\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, inframe)\u001b[0m\n\u001b[1;32m 2645\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2646\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2647\u001b[0;31m \u001b[0mmimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2648\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2649\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'axes'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[0;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[0;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 135\u001b[0;31m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 136\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# Composite any adjacent images together\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[0;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0martist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36mdraw\u001b[0;34m(self, renderer, *args, **kwargs)\u001b[0m\n\u001b[1;32m 617\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 618\u001b[0m im, l, b, trans = self.make_image(\n\u001b[0;32m--> 619\u001b[0;31m renderer, renderer.get_image_magnification())\n\u001b[0m\u001b[1;32m 620\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mim\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 621\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ml\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mim\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36mmake_image\u001b[0;34m(self, renderer, magnification, unsampled)\u001b[0m\n\u001b[1;32m 879\u001b[0m return self._make_image(\n\u001b[1;32m 880\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_A\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtransformed_bbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbbox\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmagnification\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 881\u001b[0;31m unsampled=unsampled)\n\u001b[0m\u001b[1;32m 882\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 883\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_check_unsampled_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/matplotlib/image.py\u001b[0m in \u001b[0;36m_make_image\u001b[0;34m(self, A, in_bbox, out_bbox, clip_bbox, magnification, unsampled, round_to_pixel_border)\u001b[0m\n\u001b[1;32m 502\u001b[0m \u001b[0m_interpd_\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_interpolation\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 503\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_resample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 504\u001b[0;31m self.get_filternorm(), self.get_filterrad())\n\u001b[0m\u001b[1;32m 505\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 506\u001b[0m \u001b[0;31m#resample rgb channels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unsupported dtype" + ] + }, + { + "data": { + "text/plain": [ + "

" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "show_data = next(dataset.create_dict_iterator())\n", + "\n", + "show_images = show_data[\"image\"].asnumpy()\n", + "print(f'Image shape: {show_images.shape}')\n", + "\n", + "plt.figure()\n", + "\n", + "# 展示2张图片供参考\n", + "for i in range(1, 3):\n", + " plt.subplot(1, 2, i)\n", + "\n", + " # 将图片转换HWC格式\n", + " image_trans = np.transpose(show_images[i - 1], (1, 2, 0))\n", + " image_trans = np.clip(image_trans, 0, 1)\n", + "\n", + " plt.imshow(image_trans[:, :], cmap=None)\n", + " plt.xticks(rotation=180)\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 构建网络\n", + "\n", + "![image1](images/framework.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "前文提到Mask RCNN的模型骨干采用ResNet50(原文),通过添加与现有边框检测分支平行的预测目标掩模分支实现扩展Faster R-CNN,完成目标检测。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 骨干网络\n", + "\n", + "Mask R-CNN骨干网络的选择:ResNet, VGG, Mobilenet等。本项目中,使用了对ResNet为骨干的Mask RCNN进行了框架迁移。以及扩展了Mobilenet这种轻量级网络。\n", + "\n", + "骨干网络:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Resnet(Deep residual network, ResNet),深度残差神经网络,卷积神经网络历史在具有划时代意义的神经网络。与Alexnet和VGG不同的是,网络结构上就有很大的改变,在大家为了提升卷积神经网络的性能在不断提升网络深度的时候,大家发现随着网络深度的提升,网络的效果变得越来越差,甚至出现了网络的退化问题,80层的网络比30层的效果还差,深度网络存在的梯度消失和爆炸问题越来越严重,这使得训练一个优异的深度学习模型变得更加艰难,在这种情况下,网络残差模块可以有效消除梯度消失和梯度爆炸问题。\n", + "\n", + "![image2](images/resnet_block.png)\n", + "\n", + "2. Mobilenetv1是一种轻量级的深度卷积网络,MobileNet的基本单元是深度级可分离卷积(depthwise separable convolution),将标准卷积分成两步。第一步 Depthwise convolution(DW),也即逐通道的卷积,一个卷积核负责一个通道,一个通道只被一个卷积核“滤波”,则卷积核个数和通道数个数相同;第二步,Pointwise convolution(PW),将depthwise convolution得到的结果通过1x1卷积,再“串”起来。这样其实整体效果和一个标准卷积是差不多的,但是会大大减少计算量和模型参数量。其网络结构如下。\n", + "\n", + "![image3](images/mobilenetv1.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "原文中,使用Resnet为骨干网络。这里,我们也选择Resnet50作为骨干网络执行案例。" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import mindspore.nn as nn\n", + "import mindspore.common.dtype as mstype\n", + "from mindspore.ops import operations as P\n", + "from mindspore.common.tensor import Tensor\n", + "from mindspore.ops import functional as F\n", + "from mindspore import context\n", + "\n", + "if context.get_context(\"device_target\") == \"Ascend\":\n", + " ms_cast_type = mstype.float16\n", + "else:\n", + " ms_cast_type = mstype.float32\n", + "\n", + "\n", + "def weight_init_ones(shape):\n", + " \"\"\"\n", + " Weight init.\n", + "\n", + " Args:\n", + " shape(List): weights shape.\n", + "\n", + " Returns:\n", + " Tensor, weights, default float32.\n", + " \"\"\"\n", + " return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float32))\n", + "\n", + "\n", + "def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'):\n", + " \"\"\"\n", + " Conv2D wrapper.\n", + "\n", + " Args:\n", + " in_channels (int): The channel number of the input tensor of the Conv2d layer.\n", + " out_channels (int): The channel number of the output tensor of the Conv2d layer.\n", + " kernel_size (Union[int, tuple[int]]): Specifies the height and width of the 2D convolution kernel.\n", + " The data type is an integer or a tuple of two integers. An integer represents the height\n", + " and width of the convolution kernel. A tuple of two integers represents the height\n", + " and width of the convolution kernel respectively. Default: 3.\n", + " stride (Union[int, tuple[int]]): The movement stride of the 2D convolution kernel.\n", + " The data type is an integer or a tuple of two integers. An integer represents the movement step size\n", + " in both height and width directions. A tuple of two integers represents the movement step size in the height\n", + " and width directions respectively. Default: 1.\n", + " padding (Union[int, tuple[int]]): The number of padding on the height and width directions of the input.\n", + " The data type is an integer or a tuple of four integers. If `padding` is an integer,\n", + " then the top, bottom, left, and right padding are all equal to `padding`.\n", + " If `padding` is a tuple of 4 integers, then the top, bottom, left, and right padding\n", + " is equal to `padding[0]`, `padding[1]`, `padding[2]`, and `padding[3]` respectively.\n", + " The value should be greater than or equal to 0. Default: 0.\n", + " pad_mode (str): Specifies padding mode. The optional values are\n", + " \"same\", \"valid\", \"pad\". Default: \"pad\".\n", + "\n", + " Outputs:\n", + " Tensor, math '(N, C_{out}, H_{out}, W_{out})' or math '(N, H_{out}, W_{out}, C_{out})'.\n", + " \"\"\"\n", + " shape = (out_channels, in_channels, kernel_size, kernel_size)\n", + " weights = weight_init_ones(shape)\n", + " return nn.Conv2d(in_channels, out_channels,\n", + " kernel_size=kernel_size, stride=stride, padding=padding,\n", + " pad_mode=pad_mode, weight_init=weights, has_bias=False).to_float(mstype.float32)\n", + "\n", + "\n", + "def _batch_norm2d_init(out_chls, momentum=0.1, affine=True, use_batch_statistics=True):\n", + " \"\"\"\n", + " Batchnorm2D wrapper.\n", + "\n", + " Args:\n", + " out_cls (int): The number of channels of the input tensor. Expected input size is (N, C, H, W),\n", + " `C` represents the number of channels\n", + " momentum (float): A floating hyperparameter of the momentum for the\n", + " running_mean and running_var computation. Default: 0.1.\n", + " affine (bool): A bool value. When set to True, gamma and beta can be learned. Default: True.\n", + " use_batch_statistics (bool):\n", + "\n", + " - If true, use the mean value and variance value of current batch data and track running mean\n", + " and running variance. Default: True.\n", + " - If false, use the mean value and variance value of specified value, and not track statistical value.\n", + " - If None, the use_batch_statistics is automatically set to true or false according to the training\n", + " and evaluation mode. During training, the parameter is set to true, and during evaluation, the\n", + " parameter is set to false.\n", + " Outputs:\n", + " Tensor, the normalized, scaled, offset tensor, of shape :math:'(N, C_{out}, H_{out}, W_{out})'.\n", + " \"\"\"\n", + " gamma_init = Tensor(np.array(np.ones(out_chls)).astype(np.float32))\n", + " beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float32))\n", + " moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float32))\n", + " moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(np.float32))\n", + "\n", + " return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init,\n", + " beta_init=beta_init, moving_mean_init=moving_mean_init,\n", + " moving_var_init=moving_var_init,\n", + " use_batch_statistics=use_batch_statistics)\n", + "\n", + "\n", + "class ResNetFea(nn.Cell):\n", + " \"\"\"\n", + " ResNet architecture.\n", + "\n", + " Args:\n", + " block (Tensor): Block for network.\n", + " layer_nums (list): Numbers of block in different layers.\n", + " in_channels (list): Input channel in each layer.\n", + " out_channels (list): Output channel in each layer.\n", + " weights_update (bool): Weight update flag.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input block.\n", + "\n", + " Outputs:\n", + " Tensor, output block.\n", + "\n", + " Support Plarforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> ResNetFea(ResidualBlockUsing, [3, 4, 6, 3], [64, 256, 512, 1024], [256, 512, 1024, 2048], False)\n", + " \"\"\"\n", + " def __init__(self, block, layer_nums, in_channels, out_channels, weights_update=False):\n", + " super(ResNetFea, self).__init__()\n", + "\n", + " if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:\n", + " raise ValueError(\"the length of \"\n", + " \"layer_num, inchannel, outchannel list must be 4!\")\n", + "\n", + " bn_training = False\n", + " self.conv1 = _conv(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')\n", + " self.bn1 = _batch_norm2d_init(64, affine=bn_training, use_batch_statistics=bn_training)\n", + " self.relu = P.ReLU()\n", + " self.maxpool = P.MaxPool(kernel_size=3, strides=2, pad_mode=\"SAME\")\n", + " self.weights_update = weights_update\n", + "\n", + " if not self.weights_update:\n", + " self.conv1.weight.requires_grad = False\n", + "\n", + " self.layer1 = self._make_layer(block, layer_nums[0], in_channel=in_channels[0],\n", + " out_channel=out_channels[0], stride=1, training=bn_training,\n", + " weights_update=self.weights_update)\n", + " self.layer2 = self._make_layer(block, layer_nums[1], in_channel=in_channels[1],\n", + " out_channel=out_channels[1], stride=2,\n", + " training=bn_training, weights_update=True)\n", + " self.layer3 = self._make_layer(block, layer_nums[2], in_channel=in_channels[2],\n", + " out_channel=out_channels[2], stride=2,\n", + " training=bn_training, weights_update=True)\n", + " self.layer4 = self._make_layer(block, layer_nums[3], in_channel=in_channels[3],\n", + " out_channel=out_channels[3], stride=2,\n", + " training=bn_training, weights_update=True)\n", + "\n", + " def _make_layer(self, block, layer_num, in_channel, out_channel, stride, training=False, weights_update=False):\n", + " \"\"\"\n", + " Make layer for resnet backbone.\n", + "\n", + " Args:\n", + " block (Tensor): ResNet block.\n", + " layer_num (int): Layer number.\n", + " in_channel (int): Input channel.\n", + " out_channel (int): Output channel.\n", + " stride (int): Stride size for convolutional layer.\n", + " training(bool): Whether to do training. Default: False.\n", + " weights_update(bool): Whether to update weights. Default: False.\n", + "\n", + " Returns:\n", + " SequentialCell, Combine several layers toghter.\n", + "\n", + " Examples:\n", + " >>> _make_layer(InvertedResidual, 4, 64, 64, 1)\n", + " \"\"\"\n", + " layers = []\n", + " down_sample = False\n", + " if stride != 1 or in_channel != out_channel:\n", + " down_sample = True\n", + " resblk = block(in_channel, out_channel, stride=stride, down_sample=down_sample,\n", + " training=training, weights_update=weights_update)\n", + " layers.append(resblk)\n", + "\n", + " for _ in range(1, layer_num):\n", + " resblk = block(out_channel, out_channel, stride=1, training=training, weights_update=weights_update)\n", + " layers.append(resblk)\n", + "\n", + " return nn.SequentialCell(layers)\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct ResNet architecture.\"\"\"\n", + " x = self.conv1(x)\n", + " x = self.bn1(x)\n", + " x = self.relu(x)\n", + " c1 = self.maxpool(x)\n", + "\n", + " c2 = self.layer1(c1)\n", + " identity = c2\n", + " if not self.weights_update:\n", + " identity = F.stop_gradient(c2)\n", + " c3 = self.layer2(identity)\n", + " c4 = self.layer3(c3)\n", + " c5 = self.layer4(c4)\n", + "\n", + " return identity, c3, c4, c5\n", + "\n", + "\n", + "class ResidualBlockUsing(nn.Cell):\n", + " \"\"\"\n", + " ResNet V1 residual block definition.\n", + "\n", + " Args:\n", + " in_channels (int): Input channel.\n", + " out_channels (int): Output channel.\n", + " stride (int): Stride size for the initial convolutional layer. Default: 1.\n", + " down_sample (bool): If to do the downsample in block. Default: False.\n", + " momentum (float): Momentum for batchnorm layer. Default: 0.1.\n", + " training (bool): Training flag. Default: False.\n", + " weights_updata (bool): Weights update flag. Default: False.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input block.\n", + "\n", + " Outputs:\n", + " Tensor, output block.\n", + "\n", + " Support Plarforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " ResidualBlockUsing(3, 256, stride=2, down_sample=True)\n", + " \"\"\"\n", + " expansion = 4\n", + "\n", + " def __init__(self, in_channels, out_channels, stride=1, down_sample=False,\n", + " momentum=0.1, training=False, weights_update=False):\n", + " super(ResidualBlockUsing, self).__init__()\n", + "\n", + " self.affine = weights_update\n", + "\n", + " out_chls = out_channels // self.expansion\n", + " self.conv1 = _conv(in_channels, out_chls, kernel_size=1, stride=1, padding=0)\n", + " self.bn1 = _batch_norm2d_init(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=training)\n", + "\n", + " self.conv2 = _conv(out_chls, out_chls, kernel_size=3, stride=stride, padding=1)\n", + " self.bn2 = _batch_norm2d_init(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=training)\n", + "\n", + " self.conv3 = _conv(out_chls, out_channels, kernel_size=1, stride=1, padding=0)\n", + " self.bn3 = _batch_norm2d_init(out_channels, momentum=momentum, affine=self.affine,\n", + " use_batch_statistics=training)\n", + "\n", + " if training:\n", + " self.bn1 = self.bn1.set_train()\n", + " self.bn2 = self.bn2.set_train()\n", + " self.bn3 = self.bn3.set_train()\n", + "\n", + " if not weights_update:\n", + " self.conv1.weight.requires_grad = False\n", + " self.conv2.weight.requires_grad = False\n", + " self.conv3.weight.requires_grad = False\n", + "\n", + " self.relu = P.ReLU()\n", + " self.downsample = down_sample\n", + " if self.downsample:\n", + " self.conv_down_sample = _conv(in_channels, out_channels, kernel_size=1, stride=stride, padding=0)\n", + " self.bn_down_sample = _batch_norm2d_init(out_channels, momentum=momentum, affine=self.affine,\n", + " use_batch_statistics=training)\n", + " if training:\n", + " self.bn_down_sample = self.bn_down_sample.set_train()\n", + " if not weights_update:\n", + " self.conv_down_sample.weight.requires_grad = False\n", + " self.add = P.Add()\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct ResNet V1 residual block.\"\"\"\n", + " identity = x\n", + "\n", + " out = self.conv1(x)\n", + " out = self.bn1(out)\n", + " out = self.relu(out)\n", + "\n", + " out = self.conv2(out)\n", + " out = self.bn2(out)\n", + " out = self.relu(out)\n", + "\n", + " out = self.conv3(out)\n", + " out = self.bn3(out)\n", + "\n", + " if self.downsample:\n", + " identity = self.conv_down_sample(identity)\n", + " identity = self.bn_down_sample(identity)\n", + "\n", + " out = self.add(out, identity)\n", + " out = self.relu(out)\n", + "\n", + " return out" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### FPN网络\n", + "\n", + "FPN网络(Feature Pyramid Network)同时利用低层特征高分辨率和高层特征的高语义信息,通过融合这些不同层的特征达到预测的效果。并且预测是在每个融合后的特征层上单独进行的,这和常规的特征融合方式不同。\n", + "\n", + "骨干网络和FPN网络结合构成了Mask RCNN网络的卷积层。" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def bias_init_zeros(shape):\n", + " \"\"\"Bias init method.\"\"\"\n", + " result = Tensor(np.array(np.zeros(shape).astype(np.float32)), dtype=mstype.float32)\n", + " return result\n", + "\n", + "\n", + "def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'):\n", + " \"\"\"\n", + " Conv2D wrapper.\n", + "\n", + " Args:\n", + " in_channels(int): Input channel num.\n", + " out_channels(int): Output channel num.\n", + " kernel_size(int): Kernel size. Default: 1.\n", + " stride(int): Stride. Default: 1.\n", + " padding(int): Padding range. Default: 0.\n", + " pad_mode(bool): Padding model. Default: 'pad'.\n", + " gain(int): Gain. Default: 1.\n", + "\n", + " Returns:\n", + " Tensor, Convoluted result.\n", + " \"\"\"\n", + " shape = (out_channels, in_channels, kernel_size, kernel_size)\n", + " weights = initializer(\"XavierUniform\", shape=shape, dtype=mstype.float32)\n", + " shape_bias = (out_channels,)\n", + " biass = bias_init_zeros(shape_bias)\n", + " return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,\n", + " pad_mode=pad_mode, weight_init=weights, has_bias=True, bias_init=biass)\n", + "\n", + "\n", + "class FeatPyramidNeck(nn.Cell):\n", + " \"\"\"\n", + " Feature pyramid network cell, usually uses as network neck.\n", + "\n", + " Applies the convolution on multiple, input feature maps\n", + " and output feature map with same channel size. if required num of\n", + " output larger then num of inputs, add extra maxpooling for further\n", + " downsampling;\n", + "\n", + " Args:\n", + " in_channels (tuple): Channel size of input feature maps.\n", + " out_channels (int): Channel size output.\n", + " num_outs (int): Num of output features.\n", + " Inputs:\n", + " - **x** (Tensor) - Input variant\n", + "\n", + " Outputs:\n", + " Tuple, with tensors of same channel size.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> neck = FeatPyramidNeck([100,200,300], 50, 4)\n", + " >>> input_data = (normal(0,0.1,(1,c,1280//(4*2**i), 768//(4*2**i)),\n", + " ... dtype=np.float32) for i, c in enumerate(config.fpn_in_channels))\n", + " >>> out = neck(input_data)\n", + " \"\"\"\n", + "\n", + " def __init__(self,\n", + " in_channels,\n", + " out_channels,\n", + " num_outs):\n", + " super(FeatPyramidNeck, self).__init__()\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + "\n", + " self.num_outs = num_outs\n", + " self.in_channels = in_channels\n", + " self.fpn_layer = len(self.in_channels)\n", + "\n", + " assert not self.num_outs < len(in_channels)\n", + "\n", + " self.lateral_convs_list_ = []\n", + " self.fpn_convs_ = []\n", + "\n", + " for _, channel in enumerate(in_channels):\n", + " l_conv = _conv(channel, out_channels, kernel_size=1, stride=1, padding=0,\n", + " pad_mode='valid').to_float(self.cast_type)\n", + " fpn_conv = _conv(out_channels, out_channels, kernel_size=3, stride=1, padding=0,\n", + " pad_mode='same').to_float(self.cast_type)\n", + " self.lateral_convs_list_.append(l_conv)\n", + " self.fpn_convs_.append(fpn_conv)\n", + " self.lateral_convs_list = nn.layer.CellList(self.lateral_convs_list_)\n", + " self.fpn_convs_list = nn.layer.CellList(self.fpn_convs_)\n", + " self.interpolate1 = P.ResizeBilinear((48, 80))\n", + " self.interpolate2 = P.ResizeBilinear((96, 160))\n", + " self.interpolate3 = P.ResizeBilinear((192, 320))\n", + " self.cast = P.Cast()\n", + " self.maxpool = P.MaxPool(kernel_size=1, strides=2, pad_mode=\"same\")\n", + "\n", + " def construct(self, inputs):\n", + " \"\"\"construction of Feature Pyramid Neck.\"\"\"\n", + " layers = ()\n", + " for i in range(self.fpn_layer):\n", + " layers += (self.lateral_convs_list[i](inputs[i]),)\n", + "\n", + " cast_layers = (layers[3],)\n", + " cast_layers = \\\n", + " cast_layers + (layers[2] + self.cast(self.interpolate1(cast_layers[self.fpn_layer - 4]), self.cast_type),)\n", + " cast_layers = \\\n", + " cast_layers + (layers[1] + self.cast(self.interpolate2(cast_layers[self.fpn_layer - 3]), self.cast_type),)\n", + " cast_layers = \\\n", + " cast_layers + (layers[0] + self.cast(self.interpolate3(cast_layers[self.fpn_layer - 2]), self.cast_type),)\n", + "\n", + " layers_arranged = ()\n", + " for i in range(self.fpn_layer - 1, -1, -1):\n", + " layers_arranged = layers_arranged + (cast_layers[i],)\n", + "\n", + " outs = ()\n", + " for i in range(self.fpn_layer):\n", + " outs = outs + (self.fpn_convs_list[i](layers_arranged[i]),)\n", + "\n", + " for i in range(self.num_outs - self.fpn_layer):\n", + " outs = outs + (self.maxpool(outs[3]),)\n", + " return outs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### RPN网络\n", + "\n", + "RPN第一次出现在世人眼中是在Faster RCNN这个结构中,专门用来提取候选框,在RCNN和Fast RCNN等物体检测架构中,用来提取候选框的方法通常是Selective Search,是比较传统的方法,而且比较耗时,在CPU上要2s一张图。所以作者提出RPN,专门用来提取候选框,一方面RPN耗时少,另一方面RPN可以很容易结合到Fast RCNN中,称为一个整体。\n", + "\n", + "RPN网络主要输出项:\n", + "\n", + "1. ROI:对应在特征层每个特征点产生4k个变量,其中4表示[dy, dx, dh, dw]四个边框平移缩放量。其中k表示4个边框,k=4。\n", + "\n", + "2. scores:对应在特征层每个特征点产生2k个变量,其中2表示前景和北京概率。其中k表示3个边框,k=3。" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from model.bbox_assign_sample import BboxAssignSample\n", + "\n", + "\n", + "class RpnRegClsBlock(nn.Cell):\n", + " \"\"\"\n", + " Rpn reg cls block for rpn layer\n", + "\n", + " Args:\n", + " in_channels (int): Input channels of shared convolution.\n", + " feat_channels (int): Output channels of shared convolution.\n", + " num_anchors (int): The anchor number.\n", + " cls_out_channels (int): Output channels of classification convolution.\n", + " weight_conv (Tensor): Weight init for rpn conv.\n", + " bias_conv (Tensor): Bias init for rpn conv.\n", + " weight_cls (Tensor): Weight init for rpn cls conv.\n", + " bias_cls (Tensor): Bias init for rpn cls conv.\n", + " weight_reg (Tensor): Weight init for rpn reg conv.\n", + " bias_reg (Tensor): Bias init for rpn reg conv.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - input variant\n", + "\n", + " Outputs:\n", + " Tensor, output tensor.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> x = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> weight_conv = Tensor(np.array([[[[0.2, 0.3], [0.4, 0.1]]]]), mindspore.float32)\n", + " >>> bias_conv = Tensor(np.array([[[[0., 0.], [0., 0.]]]]), mindspore.float32)\n", + " >>> weight_cls = Tensor(np.array([[[[0.2, 0.3], [0.4, 0.1]]]]), mindspore.float32)\n", + " >>> bias_cls = Tensor(np.array([[[[0., 0.], [0., 0.]]]]), mindspore.float32)\n", + " >>> weight_reg = Tensor(np.array([[[[0.2, 0.3], [0.4, 0.1]]]]), mindspore.float32)\n", + " >>> bias_reg = Tensor(np.array([[[[0., 0.], [0., 0.]]]]), mindspore.float32)\n", + " >>> rpn = RpnRegClsBlock(2, 2, 4, 4, )\n", + " >>> rpn = ops.SingleRoIExtractor(2, 2, 0.5, 2, weight_conv, bias_conv,\n", + " ... weight_cls, bias_cls, weight_reg, bias_reg)\n", + " >>> output = rpn(x)\n", + " \"\"\"\n", + " def __init__(self, in_channels, feat_channels, num_anchors, cls_out_channels, weight_conv,\n", + " bias_conv, weight_cls, bias_cls, weight_reg, bias_reg):\n", + " super(RpnRegClsBlock, self).__init__()\n", + " self.rpn_conv = nn.Conv2d(in_channels, feat_channels, kernel_size=3,\n", + " stride=1, pad_mode='same',\n", + " has_bias=True, weight_init=weight_conv,\n", + " bias_init=bias_conv)\n", + " self.relu = nn.ReLU()\n", + "\n", + " self.rpn_cls = nn.Conv2d(feat_channels, num_anchors * cls_out_channels,\n", + " kernel_size=1, pad_mode='valid',\n", + " has_bias=True, weight_init=weight_cls,\n", + " bias_init=bias_cls)\n", + " self.rpn_reg = nn.Conv2d(feat_channels, num_anchors * 4,\n", + " kernel_size=1, pad_mode='valid',\n", + " has_bias=True, weight_init=weight_reg,\n", + " bias_init=bias_reg)\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct Rpn reg cls block for rpn layer.\"\"\"\n", + " x = self.relu(self.rpn_conv(x))\n", + "\n", + " x1 = self.rpn_cls(x)\n", + " x2 = self.rpn_reg(x)\n", + "\n", + " return x1, x2\n", + "\n", + "\n", + "class RPN(nn.Cell):\n", + " \"\"\"\n", + " ROI proposal network..\n", + "\n", + " Args:\n", + " config (dict): Config.\n", + " batch_size (int): Batchsize.\n", + " in_channels (int): Input channels of shared convolution.\n", + " feat_channels (int): Output channels of shared convolution.\n", + " num_anchors (int): The anchor number.\n", + " cls_out_channels (int): Output channels of classification convolution.\n", + "\n", + " Inputs:\n", + " - **inputs** (Tensor) - Input variant.\n", + " - **img_metas** (Tensor) - Img shape.\n", + " - **anchor_list** (Tensor) - A list of anchors.\n", + " - **gt_bboxes** (Tensor) - Ground truth bounding boxes.\n", + " - **gt_labels** (Tensor) - Ground truth labels.\n", + " - **gt_valids** (Tensor) - Ground truth validations.\n", + "\n", + " Outputs:\n", + " Tuple, tuple of output tensor.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> RPN(config=config, batch_size=2, in_channels=256, feat_channels=1024,\n", + " ... num_anchors=3, cls_out_channels=512)\n", + " \"\"\"\n", + " def __init__(self, config, batch_size, in_channels, feat_channels, num_anchors, cls_out_channels):\n", + " super(RPN, self).__init__()\n", + " cfg_rpn = config\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " self.np_cast_type = np.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + " self.np_cast_type = np.float32\n", + "\n", + " self.num_bboxes = cfg_rpn.num_bboxes\n", + " self.slice_index = ()\n", + " self.feature_anchor_shape = ()\n", + " self.slice_index += (0,)\n", + " index = 0\n", + " for shape in cfg_rpn.feature_shapes:\n", + " self.slice_index += (self.slice_index[index] + shape[0] * shape[1] * num_anchors,)\n", + " self.feature_anchor_shape += (shape[0] * shape[1] * num_anchors * batch_size,)\n", + " index += 1\n", + "\n", + " self.num_anchors = num_anchors\n", + " self.batch_size = batch_size\n", + " self.test_batch_size = cfg_rpn.test_batch_size\n", + " self.num_layers = 5\n", + " self.real_ratio = Tensor(np.ones((1, 1)).astype(self.np_cast_type))\n", + "\n", + " self.rpn_convs_list = nn.layer.CellList(self._make_rpn_layer(self.num_layers, in_channels, feat_channels,\n", + " num_anchors, cls_out_channels))\n", + "\n", + " self.transpose = P.Transpose()\n", + " self.reshape = P.Reshape()\n", + " self.concat = P.Concat(axis=0)\n", + " self.fill = P.Fill()\n", + " self.placeh1 = Tensor(np.ones((1,)).astype(self.np_cast_type))\n", + "\n", + " self.trans_shape = (0, 2, 3, 1)\n", + "\n", + " self.reshape_shape_reg = (-1, 4)\n", + " self.reshape_shape_cls = (-1,)\n", + " self.rpn_loss_reg_weight = Tensor(np.array(cfg_rpn.rpn_loss_reg_weight).astype(self.np_cast_type))\n", + " self.rpn_loss_cls_weight = Tensor(np.array(cfg_rpn.rpn_loss_cls_weight).astype(self.np_cast_type))\n", + " expected_total_size = cfg_rpn.num_expected_neg * self.batch_size\n", + " self.num_expected_total = Tensor(np.array(expected_total_size).astype(self.np_cast_type))\n", + " self.num_bboxes = cfg_rpn.num_bboxes\n", + " self.get_targets = BboxAssignSample(cfg_rpn, self.batch_size, self.num_bboxes, False)\n", + " self.check_valid = P.CheckValid()\n", + " self.sum_loss = P.ReduceSum()\n", + " self.loss_cls = P.SigmoidCrossEntropyWithLogits()\n", + " self.loss_bbox = P.SmoothL1Loss(beta=1.0/9.0)\n", + " self.squeeze = P.Squeeze()\n", + " self.cast = P.Cast()\n", + " self.tile = P.Tile()\n", + " self.zeros_like = P.ZerosLike()\n", + " self.loss = Tensor(np.zeros((1,)).astype(self.np_cast_type))\n", + " self.clsloss = Tensor(np.zeros((1,)).astype(self.np_cast_type))\n", + " self.regloss = Tensor(np.zeros((1,)).astype(self.np_cast_type))\n", + "\n", + " def _make_rpn_layer(self, num_layers, in_channels,\n", + " feat_channels, num_anchors, cls_out_channels):\n", + " \"\"\"\n", + " Make rpn layer for rpn proposal network\n", + "\n", + " Args:\n", + " num_layers (int): layer num.\n", + " in_channels (int): Input channels of shared convolution.\n", + " feat_channels (int): Output channels of shared convolution.\n", + " num_anchors (int): The anchor number.\n", + " cls_out_channels (int): Output channels of classification convolution.\n", + "\n", + " Returns:\n", + " List, list of RpnRegClsBlock cells.\n", + " \"\"\"\n", + " rpn_layer = []\n", + "\n", + " shp_weight_conv = (feat_channels, in_channels, 3, 3)\n", + " shp_bias_conv = (feat_channels,)\n", + " weight_conv = initializer('Normal', shape=shp_weight_conv, dtype=mstype.float32)\n", + " bias_conv = initializer(0, shape=shp_bias_conv, dtype=mstype.float32)\n", + "\n", + " shp_weight_cls = (num_anchors * cls_out_channels, feat_channels, 1, 1)\n", + " shp_bias_cls = (num_anchors * cls_out_channels,)\n", + " weight_cls = initializer('Normal', shape=shp_weight_cls, dtype=mstype.float32)\n", + " bias_cls = initializer(0, shape=shp_bias_cls, dtype=mstype.float32)\n", + "\n", + " shp_weight_reg = (num_anchors * 4, feat_channels, 1, 1)\n", + " shp_bias_reg = (num_anchors * 4,)\n", + " weight_reg = initializer('Normal', shape=shp_weight_reg, dtype=mstype.float32)\n", + " bias_reg = initializer(0, shape=shp_bias_reg, dtype=mstype.float32)\n", + "\n", + " for i in range(num_layers):\n", + " rpn_layer.append(RpnRegClsBlock(in_channels, feat_channels, num_anchors, cls_out_channels, weight_conv,\n", + " bias_conv, weight_cls, bias_cls, weight_reg,\n", + " bias_reg).to_float(self.cast_type))\n", + "\n", + " for i in range(1, num_layers):\n", + " rpn_layer[i].rpn_conv.weight = rpn_layer[0].rpn_conv.weight\n", + " rpn_layer[i].rpn_cls.weight = rpn_layer[0].rpn_cls.weight\n", + " rpn_layer[i].rpn_reg.weight = rpn_layer[0].rpn_reg.weight\n", + "\n", + " rpn_layer[i].rpn_conv.bias = rpn_layer[0].rpn_conv.bias\n", + " rpn_layer[i].rpn_cls.bias = rpn_layer[0].rpn_cls.bias\n", + " rpn_layer[i].rpn_reg.bias = rpn_layer[0].rpn_reg.bias\n", + "\n", + " return rpn_layer\n", + "\n", + " def construct(self, inputs, img_metas, anchor_list, gt_bboxes, gt_labels, gt_valids):\n", + " \"\"\"Construct ROI Proposal Network.\"\"\"\n", + " loss_print = ()\n", + " rpn_cls_score = ()\n", + " rpn_bbox_pred = ()\n", + " rpn_cls_score_total = ()\n", + " rpn_bbox_pred_total = ()\n", + "\n", + " for i in range(self.num_layers):\n", + " x1, x2 = self.rpn_convs_list[i](inputs[i])\n", + "\n", + " rpn_cls_score_total = rpn_cls_score_total + (x1,)\n", + " rpn_bbox_pred_total = rpn_bbox_pred_total + (x2,)\n", + "\n", + " x1 = self.transpose(x1, self.trans_shape)\n", + " x1 = self.reshape(x1, self.reshape_shape_cls)\n", + "\n", + " x2 = self.transpose(x2, self.trans_shape)\n", + " x2 = self.reshape(x2, self.reshape_shape_reg)\n", + "\n", + " rpn_cls_score = rpn_cls_score + (x1,)\n", + " rpn_bbox_pred = rpn_bbox_pred + (x2,)\n", + "\n", + " loss = self.loss\n", + " clsloss = self.clsloss\n", + " regloss = self.regloss\n", + " bbox_targets = ()\n", + " bbox_weights = ()\n", + " labels = ()\n", + " label_weights = ()\n", + "\n", + " output = ()\n", + " if self.training:\n", + " for i in range(self.batch_size):\n", + " multi_level_flags = ()\n", + " anchor_list_tuple = ()\n", + "\n", + " for j in range(self.num_layers):\n", + " res = self.cast(self.check_valid(anchor_list[j], self.squeeze(img_metas[i:i + 1:1, ::])),\n", + " mstype.int32)\n", + " multi_level_flags = multi_level_flags + (res,)\n", + " anchor_list_tuple = anchor_list_tuple + (anchor_list[j],)\n", + "\n", + " valid_flag_list = self.concat(multi_level_flags)\n", + " anchor_using_list = self.concat(anchor_list_tuple)\n", + "\n", + " gt_bboxes_i = self.squeeze(gt_bboxes[i:i + 1:1, ::])\n", + " gt_labels_i = self.squeeze(gt_labels[i:i + 1:1, ::])\n", + " gt_valids_i = self.squeeze(gt_valids[i:i + 1:1, ::])\n", + "\n", + " bbox_target, bbox_weight, label, label_weight = \\\n", + " self.get_targets(gt_bboxes_i, gt_labels_i, self.cast(valid_flag_list, mstype.bool_),\n", + " anchor_using_list, gt_valids_i)\n", + "\n", + " bbox_weight = self.cast(bbox_weight, self.cast_type)\n", + " label = self.cast(label, self.cast_type)\n", + " label_weight = self.cast(label_weight, self.cast_type)\n", + "\n", + " for j in range(self.num_layers):\n", + " begin = self.slice_index[j]\n", + " end = self.slice_index[j + 1]\n", + " stride = 1\n", + " bbox_targets += (bbox_target[begin:end:stride, ::],)\n", + " bbox_weights += (bbox_weight[begin:end:stride],)\n", + " labels += (label[begin:end:stride],)\n", + " label_weights += (label_weight[begin:end:stride],)\n", + "\n", + " for i in range(self.num_layers):\n", + " bbox_target_using = ()\n", + " bbox_weight_using = ()\n", + " label_using = ()\n", + " label_weight_using = ()\n", + "\n", + " for j in range(self.batch_size):\n", + " bbox_target_using += (bbox_targets[i + (self.num_layers * j)],)\n", + " bbox_weight_using += (bbox_weights[i + (self.num_layers * j)],)\n", + " label_using += (labels[i + (self.num_layers * j)],)\n", + " label_weight_using += (label_weights[i + (self.num_layers * j)],)\n", + "\n", + " bbox_target_with_batchsize = self.concat(bbox_target_using)\n", + " bbox_weight_with_batchsize = self.concat(bbox_weight_using)\n", + " label_with_batchsize = self.concat(label_using)\n", + " label_weight_with_batchsize = self.concat(label_weight_using)\n", + "\n", + " # stop\n", + " bbox_target_ = F.stop_gradient(bbox_target_with_batchsize)\n", + " bbox_weight_ = F.stop_gradient(bbox_weight_with_batchsize)\n", + " label_ = F.stop_gradient(label_with_batchsize)\n", + " label_weight_ = F.stop_gradient(label_weight_with_batchsize)\n", + "\n", + " cls_score_i = rpn_cls_score[i]\n", + " reg_score_i = rpn_bbox_pred[i]\n", + "\n", + " loss_cls = self.loss_cls(cls_score_i, label_)\n", + " loss_cls_item = loss_cls * label_weight_\n", + " loss_cls_item = self.sum_loss(loss_cls_item, (0,)) / self.num_expected_total\n", + "\n", + " loss_reg = self.loss_bbox(reg_score_i, bbox_target_)\n", + " bbox_weight_ = self.tile(self.reshape(bbox_weight_, (self.feature_anchor_shape[i], 1)), (1, 4))\n", + " loss_reg = loss_reg * bbox_weight_\n", + " loss_reg_item = self.sum_loss(loss_reg, (1,))\n", + " loss_reg_item = self.sum_loss(loss_reg_item, (0,)) / self.num_expected_total\n", + "\n", + " loss_total = self.rpn_loss_cls_weight * loss_cls_item + self.rpn_loss_reg_weight * loss_reg_item\n", + "\n", + " loss += loss_total\n", + " loss_print += (loss_total, loss_cls_item, loss_reg_item)\n", + " clsloss += loss_cls_item\n", + " regloss += loss_reg_item\n", + "\n", + " output = (loss, rpn_cls_score_total, rpn_bbox_pred_total,\n", + " clsloss, regloss, loss_print)\n", + " else:\n", + " output = (self.placeh1, rpn_cls_score_total, rpn_bbox_pred_total,\n", + " self.placeh1, self.placeh1, self.placeh1)\n", + " return output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ROI Align\n", + "\n", + "ROI Align可以计算不同proposal对应到不同尺度下的特征,利用proposal对该特征进行剪裁、resize、pooling提取特征。\n", + "\n", + "Mask-RCNN中使用的ROI Level校准:\n", + "\n", + "$$\n", + "k=[k_0+\\log_2{(\\frac{\\sqrt{wh}}{224/\\sqrt{image\\; area}})}]\n", + "$$\n", + "\n", + "#### 解释\n", + "\n", + "1. 由于Mask R-CNN训练数据的box和anchor都做了调整,所以ROI Level的计算部分也需要 $224/\\sqrt{image\\; area}$。其中,224应为输入图像尺寸的一半。\n", + "\n", + "2. 计算得到的k即为ROI对应的level,level一共4个:\n", + "\n", + " 1. $level=2$表示映射回特征 $P_{2}$,大小为原输入图像的 $1/4$。\n", + "\n", + " 2. $level=3$表示映射回特征 $P_{3}$,大小为原输入图像的 $1/8$。\n", + "\n", + " 3. $level=4$表示映射回特征 $P_{4}$,大小为原输入图像的 $1/16$。\n", + "\n", + " 4. $level=5$表示映射回特征 $P_{5}$,大小为原输入图像的 $1/32$。\n", + "\n", + "![image4](images/roi_align.png)\n", + "\n", + "虚线网格表示特征图,实线表示RoI(在本例中为2×2个bin),点表示每个容器中的4个采样点。RoIAlign通过双线性插值从特征图上附近的网格点(最近的4个)计算每个采样点的值。在ROI、4个bin或采样点中涉及的任何坐标上都不进行量化。" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "class ROIAlign(nn.Cell):\n", + " \"\"\"\n", + " Extract RoI features from mulitiple feature map.\n", + "\n", + " Args:\n", + " out_size_h (int): RoI height.\n", + " out_size_w (int): RoI width.\n", + " spatial_scale (int): RoI spatial scale.\n", + " sample_num (int): RoI sample number. Default: 0.\n", + " roi_align_mode (int): RoI align mode. Default: 1.\n", + "\n", + " Inputs:\n", + " - **features** (Tensor) - The input features, whose shape must be :math:'(N, C, H, W)'.\n", + " - **rois** (Tensor) - The shape is :math:'(rois_n, 5)'. With data type of float16 or float32.\n", + "\n", + " Outputs:\n", + " Tensor, the shape is :math: '(rois_n, C, pooled_height, pooled_width)'.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> features = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32)\n", + " >>> roi_align = ops.ROIAlign(2, 2, 0.5, 2)\n", + " >>> output = roi_align(features, rois)\n", + " >>> print(output)\n", + " [[[[1.775 2.025]\n", + " [2.275 2.525]]]]\n", + " \"\"\"\n", + " def __init__(self, out_size_h, out_size_w, spatial_scale, sample_num=0, roi_align_mode=1):\n", + " super(ROIAlign, self).__init__()\n", + "\n", + " self.out_size = (out_size_h, out_size_w)\n", + " self.spatial_scale = float(spatial_scale)\n", + " self.sample_num = int(sample_num)\n", + " self.align_op = P.ROIAlign(self.out_size[0], self.out_size[1],\n", + " self.spatial_scale, self.sample_num,\n", + " roi_align_mode)\n", + "\n", + " def construct(self, features, rois):\n", + " \"\"\"Construct ROI Align\"\"\"\n", + " return self.align_op(features, rois)\n", + "\n", + " def __repr__(self):\n", + " format_str = self.__class__.__name__\n", + " format_str += \\\n", + " '(out_size={}, spatial_scale={}, sample_num={}'.format(self.out_size, self.spatial_scale, self.sample_num)\n", + " return format_str\n", + "\n", + "\n", + "class SingleRoIExtractor(nn.Cell):\n", + " \"\"\"\n", + " Extract RoI features from a single level feature map.\n", + "\n", + " If there are multiple input feature levels, each RoI is mapped to a level according to its scale.\n", + "\n", + " Args:\n", + " config (dict): Config\n", + " out_channels (int): Output channels of RoI layers.\n", + " featmap_strides (int): Strides of input feature maps.\n", + " batch_size (int): Batchsize. Default: 1.\n", + " finest_scale (int): Scale threshold of mapping to level 0. Default: 56.\n", + " mask (bool): Specify ROIAlign for cls or mask branch. Default: False.\n", + "\n", + " Inputs:\n", + " - **rois** (Tensor) - The shape is :math:'(rois_n, 5)'. With data type of float16 or float32.\n", + " - **feat1** (Tensor) - The input features, whose shape must be :math:'(N, C, H, W)'.\n", + " - **feat2** (Tensor) - The input features, whose shape must be :math:'(N, C, H, W)'.\n", + " - **feat3** (Tensor) - The input features, whose shape must be :math:'(N, C, H, W)'.\n", + " - **feat4** (Tensor) - The input features, whose shape must be :math:'(N, C, H, W)'.\n", + "\n", + " Outputs:\n", + " Tensor, the shape is :math:'(rois_n, C, pooled_height, pooled_width)'.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> fea1 = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> fea2 = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> fea3 = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> fea4 = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)\n", + " >>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32)\n", + " >>> single_roi = ops.SingleRoIExtractor(conifg, 2, 1, 2, 2, mask)\n", + " >>> output = single_roi(rois, fea1, fea2, fea3, fea4)\n", + " \"\"\"\n", + "\n", + " def __init__(self, config, roi_layer, out_channels, featmap_strides, batch_size=1, finest_scale=56, mask=False):\n", + " super(SingleRoIExtractor, self).__init__()\n", + " cfg = config\n", + " self.train_batch_size = batch_size\n", + " self.out_channels = out_channels\n", + " self.featmap_strides = featmap_strides\n", + " self.num_levels = len(self.featmap_strides)\n", + " self.out_size = roi_layer.mask_out_size if mask else roi_layer.out_size\n", + " self.mask = mask\n", + " self.sample_num = roi_layer.sample_num\n", + " self.roi_layers = self.build_roi_layers(self.featmap_strides)\n", + " self.roi_layers = L.CellList(self.roi_layers)\n", + "\n", + " self.sqrt = P.Sqrt()\n", + " self.log = P.Log()\n", + " self.finest_scale_ = finest_scale\n", + " self.clamp = C.clip_by_value\n", + "\n", + " self.cast = P.Cast()\n", + " self.equal = P.Equal()\n", + " self.select = P.Select()\n", + "\n", + " in_mode_16 = False\n", + " self.dtype = np.float16 if in_mode_16 else np.float32\n", + " self.ms_dtype = mstype.float16 if in_mode_16 else mstype.float32\n", + " self.set_train_local(cfg, training=True)\n", + "\n", + " def set_train_local(self, config, training=True):\n", + " \"\"\"Set training flag.\"\"\"\n", + " self.training_local = training\n", + "\n", + " cfg = config\n", + " # Init tensor\n", + " roi_sample_num = cfg.num_expected_pos_stage2 if self.mask else cfg.roi_sample_num\n", + " self.batch_size = roi_sample_num if self.training_local else cfg.rpn_max_num\n", + " self.batch_size = self.train_batch_size*self.batch_size \\\n", + " if self.training_local else cfg.test_batch_size*self.batch_size\n", + " self.ones = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype))\n", + " finest_scale = np.array(np.ones((self.batch_size, 1)), dtype=self.dtype) * self.finest_scale_\n", + " self.finest_scale = Tensor(finest_scale)\n", + " self.epslion = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype)*self.dtype(1e-6))\n", + " self.zeros = Tensor(np.array(np.zeros((self.batch_size, 1)), dtype=np.int32))\n", + " self.max_levels = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=np.int32)*(self.num_levels-1))\n", + " self.twos = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype) * 2)\n", + " self.res_ = Tensor(np.array(np.zeros((self.batch_size, self.out_channels, self.out_size, self.out_size)),\n", + " dtype=self.dtype))\n", + "\n", + " def num_inputs(self):\n", + " \"\"\"input number.\"\"\"\n", + " return len(self.featmap_strides)\n", + "\n", + " def log2(self, value):\n", + " \"\"\"calculate log2.\"\"\"\n", + " return self.log(value) / self.log(self.twos)\n", + "\n", + " def build_roi_layers(self, featmap_strides):\n", + " \"\"\"build ROI layers.\"\"\"\n", + " roi_layers = []\n", + " for s in featmap_strides:\n", + " layer_cls = ROIAlign(self.out_size, self.out_size, spatial_scale=1 / s,\n", + " sample_num=self.sample_num, roi_align_mode=0)\n", + " roi_layers.append(layer_cls)\n", + " return roi_layers\n", + "\n", + " def _c_map_roi_levels(self, rois):\n", + " \"\"\"Map rois to corresponding feature levels by scales.\n", + "\n", + " - scale < finest_scale * 2: level 0\n", + " - finest_scale * 2 <= scale < finest_scale * 4: level 1\n", + " - finest_scale * 4 <= scale < finest_scale * 8: level 2\n", + " - scale >= finest_scale * 8: level 3\n", + "\n", + " Args:\n", + " rois (Tensor): Input RoIs, shape (k, 5).\n", + " num_levels (int): Total level number.\n", + "\n", + " Returns:\n", + " Tensor, Level index (0-based) of each RoI, shape (k, )\n", + " \"\"\"\n", + " scale = self.sqrt(rois[::, 3:4:1] - rois[::, 1:2:1] + self.ones) * \\\n", + " self.sqrt(rois[::, 4:5:1] - rois[::, 2:3:1] + self.ones)\n", + "\n", + " target_lvls = self.log2(scale / self.finest_scale + self.epslion)\n", + " target_lvls = P.Floor()(target_lvls)\n", + " target_lvls = self.cast(target_lvls, mstype.int32)\n", + " target_lvls = self.clamp(target_lvls, self.zeros, self.max_levels)\n", + "\n", + " return target_lvls\n", + "\n", + " def construct(self, rois, feat1, feat2, feat3, feat4):\n", + " \"\"\"Construct Single RoI Extractor\"\"\"\n", + " feats = (feat1, feat2, feat3, feat4)\n", + " res = self.res_\n", + " target_lvls = self._c_map_roi_levels(rois)\n", + " for i in range(self.num_levels):\n", + " mask = self.equal(target_lvls, P.ScalarToArray()(i))\n", + " mask = P.Reshape()(mask, (-1, 1, 1, 1))\n", + " roi_feats_t = self.roi_layers[i](feats[i], rois)\n", + " mask = \\\n", + " self.cast(P.Tile()(self.cast(mask, mstype.int32), (1, 256, self.out_size, self.out_size)), mstype.bool_)\n", + " res = self.select(mask, roi_feats_t, res)\n", + "\n", + " return res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Class/Bounding Box预测\n", + "\n", + "Class/bounding box预测时,RPN输出一系列ROI,RoIAlign将ROI逐个对应会Resnet输出的5个特征层中的一个。再对该特征做相应的裁剪,resize操作得到对应的特征。再对该特征做进一步卷积,全连接最终输出预测。" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "class DenseNoTranpose(nn.Cell):\n", + " \"\"\"\n", + " Dense method\n", + "\n", + " Args:\n", + " input_channels (int): Channel size of input feature maps.\n", + " output_channels (int): Channel size output.\n", + " weight_init (tuple): Initialized values of weights.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input from the upper layer.\n", + "\n", + " Outputs:\n", + " Tensor, dense result.\n", + "\n", + " Support Platforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> out_channels = 128\n", + " >>> dense_notranspose = DenseNoTranpose(input_channels, output_channels, weights)\n", + " \"\"\"\n", + " def __init__(self, input_channels, output_channels, weight_init):\n", + " super(DenseNoTranpose, self).__init__()\n", + " self.weight = Parameter(initializer(weight_init, [input_channels, output_channels], mstype.float32))\n", + " self.bias = Parameter(initializer(\"zeros\", [output_channels], mstype.float32))\n", + " self.matmul = P.MatMul(transpose_b=False)\n", + " self.bias_add = P.BiasAdd()\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct Dense No Transpose.\"\"\"\n", + " output = self.bias_add(self.matmul(x, self.weight), self.bias)\n", + " return output\n", + "\n", + "\n", + "class FpnCls(nn.Cell):\n", + " \"\"\"\n", + " Dense layer of classification and box head\n", + "\n", + " Args:\n", + " input_channels (int): Channel size of input feature maps.\n", + " output_channels (int): Channel size output\n", + " num_classes (int): Number of classes.\n", + " pool_size (int): Pooling size.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input from the upper layer.\n", + "\n", + " Outputs:\n", + " Tensor, dense result.\n", + "\n", + " Support Platforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> fpn_cls = FpnCls(256,128,81,2)\n", + " \"\"\"\n", + " def __init__(self, input_channels, output_channels, num_classes, pool_size):\n", + " super(FpnCls, self).__init__()\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + "\n", + " representation_size = input_channels * pool_size * pool_size\n", + " shape_0 = (output_channels, representation_size)\n", + " weights_0 = initializer(\"XavierUniform\", shape=shape_0[::-1], dtype=mstype.float32)\n", + " shape_1 = (output_channels, output_channels)\n", + " weights_1 = initializer(\"XavierUniform\", shape=shape_1[::-1], dtype=mstype.float32)\n", + " self.shared_fc_0 = DenseNoTranpose(representation_size, output_channels, weights_0).to_float(self.cast_type)\n", + " self.shared_fc_1 = DenseNoTranpose(output_channels, output_channels, weights_1).to_float(self.cast_type)\n", + "\n", + " cls_weight = initializer('Normal', shape=[num_classes, output_channels][::-1], dtype=mstype.float32)\n", + " reg_weight = initializer('Normal', shape=[num_classes * 4, output_channels][::-1], dtype=mstype.float32)\n", + " self.cls_scores = DenseNoTranpose(output_channels, num_classes, cls_weight).to_float(self.cast_type)\n", + " self.reg_scores = DenseNoTranpose(output_channels, num_classes * 4, reg_weight).to_float(self.cast_type)\n", + "\n", + " self.relu = P.ReLU()\n", + " self.flatten = P.Flatten()\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct FPNCls\"\"\"\n", + " # two share fc layer\n", + " x = self.flatten(x)\n", + "\n", + " x = self.relu(self.shared_fc_0(x))\n", + " x = self.relu(self.shared_fc_1(x))\n", + "\n", + " # classifier head\n", + " cls_scores = self.cls_scores(x)\n", + " # bbox head\n", + " reg_scores = self.reg_scores(x)\n", + "\n", + " return cls_scores, reg_scores\n", + "\n", + "\n", + "class RcnnCls(nn.Cell):\n", + " \"\"\"\n", + " Rcnn for classification and box regression subnet.\n", + "\n", + " Args:\n", + " config (dict): Config.\n", + " batch_size (int): Batchsize.\n", + " num_classes (int): Class number.\n", + " target_means (list): Means for encode function. Default: (.0, .0, .0, .0]).\n", + " target_stds (list): Stds for encode function. Default: (0.1, 0.1, 0.2, 0.2).\n", + "\n", + " Inputs:\n", + " - **featuremap** (tuple) - Feature map.\n", + " - **bbox_targets** (tuple) - A set of bounding box targets.\n", + " - **labels** (tuple) - Ground truth labels.\n", + " - **mask** (tuple) - Mask array.\n", + "\n", + " Outputs:\n", + " Tuple, tuple of output tensor.\n", + "\n", + " Support Platforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> RcnnCls(config=config, representation_size = 1024,\n", + " ... batch_size=2, num_classes = 81,\n", + " ... target_means=(0., 0., 0., 0.),\n", + " ... target_stds=(0.1, 0.1, 0.2, 0.2))\n", + " \"\"\"\n", + "\n", + " def __init__(self, config, batch_size, num_classes, target_means=(0., 0., 0., 0.),\n", + " target_stds=(0.1, 0.1, 0.2, 0.2)):\n", + " super(RcnnCls, self).__init__()\n", + " cfg = config\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " self.np_cast_type = np.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + " self.np_cast_type = np.float32\n", + " self.eps = 1e-5\n", + "\n", + " self.rcnn_loss_cls_weight = Tensor(np.array(cfg.rcnn_loss_cls_weight).astype(self.np_cast_type))\n", + " self.rcnn_loss_reg_weight = Tensor(np.array(cfg.rcnn_loss_reg_weight).astype(self.np_cast_type))\n", + " self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels\n", + " self.target_means = target_means\n", + " self.target_stds = target_stds\n", + " self.num_classes = num_classes\n", + " self.in_channels = cfg.rcnn_in_channels\n", + " self.train_batch_size = batch_size\n", + " self.test_batch_size = cfg.test_batch_size\n", + "\n", + " self.fpn_cls = FpnCls(self.in_channels, self.rcnn_fc_out_channels, self.num_classes, cfg.roi_layer.out_size)\n", + " self.relu = P.ReLU()\n", + " self.logicaland = P.LogicalAnd()\n", + " self.loss_cls = P.SoftmaxCrossEntropyWithLogits()\n", + " self.loss_bbox = P.SmoothL1Loss(beta=1.0)\n", + " self.loss_mask = P.SigmoidCrossEntropyWithLogits()\n", + " self.reshape = P.Reshape()\n", + " self.onehot = P.OneHot()\n", + " self.greater = P.Greater()\n", + " self.cast = P.Cast()\n", + " self.sum_loss = P.ReduceSum()\n", + " self.tile = P.Tile()\n", + " self.expandims = P.ExpandDims()\n", + "\n", + " self.gather = P.GatherNd()\n", + " self.argmax = P.ArgMaxWithValue(axis=1)\n", + "\n", + " self.on_value = Tensor(1.0, mstype.float32)\n", + " self.off_value = Tensor(0.0, mstype.float32)\n", + " self.value = Tensor(1.0, self.cast_type)\n", + "\n", + " self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_neg_stage2) * batch_size\n", + "\n", + " rmv_first = np.ones((self.num_bboxes, self.num_classes))\n", + " rmv_first[:, 0] = np.zeros((self.num_bboxes,))\n", + " self.rmv_first_tensor = Tensor(rmv_first.astype(self.np_cast_type))\n", + "\n", + " self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size\n", + "\n", + " def construct(self, featuremap, bbox_targets, labels, mask):\n", + " \"\"\"Construct Rcnn for classification\"\"\"\n", + " x_cls, x_reg = self.fpn_cls(featuremap)\n", + "\n", + " if self.training:\n", + " bbox_weights = self.cast(self.logicaland(self.greater(labels, 0), mask), mstype.int32) * labels\n", + " labels = self.cast(self.onehot(labels, self.num_classes, self.on_value, self.off_value), self.cast_type)\n", + " bbox_targets = self.tile(self.expandims(bbox_targets, 1), (1, self.num_classes, 1))\n", + "\n", + " loss_cls, loss_reg = self.loss(x_cls, x_reg, bbox_targets, bbox_weights, labels, mask)\n", + " out = (loss_cls, loss_reg)\n", + " else:\n", + " out = (x_cls, x_reg)\n", + "\n", + " return out\n", + "\n", + " def loss(self, cls_score, bbox_pred, bbox_targets, bbox_weights, labels, weights):\n", + " \"\"\"\n", + " Loss method.\n", + " Args:\n", + " cls_score(Array): Classificaiton scores.\n", + " bbox_pred(Array): Bounding box prediction.\n", + " bbox_targets(Array): Bounding box GT target.\n", + " bbox_weights(Array): Bounding box weights.\n", + " labels(Array): GT labels.\n", + " weights(Array): GT wieghts.\n", + "\n", + " Returns:\n", + " loss_cls, float, classification loss.\n", + " loss_reg, float, regression loss.\n", + " \"\"\"\n", + " # loss_cls\n", + " loss_cls, _ = self.loss_cls(cls_score, labels)\n", + " weights = self.cast(weights, self.cast_type)\n", + " loss_cls = loss_cls * weights\n", + " loss_cls = self.sum_loss(loss_cls, (0,)) / (self.sum_loss(weights, (0,)) + self.eps)\n", + "\n", + " # loss_reg\n", + " bbox_weights = self.cast(self.onehot(bbox_weights, self.num_classes, self.on_value, self.off_value),\n", + " self.cast_type)\n", + " bbox_weights = bbox_weights * self.rmv_first_tensor\n", + " pos_bbox_pred = self.reshape(bbox_pred, (self.num_bboxes, -1, 4))\n", + " loss_reg = self.loss_bbox(pos_bbox_pred, bbox_targets)\n", + " loss_reg = self.sum_loss(loss_reg, (2,))\n", + " loss_reg = loss_reg * bbox_weights\n", + " loss_reg = loss_reg / (self.sum_loss(weights, (0,)) + self.eps)\n", + " loss_reg = self.sum_loss(loss_reg, (0, 1))\n", + "\n", + " return loss_cls, loss_reg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mask预测\n", + "\n", + "对RoIAlign输出的特征进行一系列的卷积,转置卷积,最后输出mask的预测结果。" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def _conv(in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode='pad', gain=1):\n", + " \"\"\"\n", + " Conv2D wrapper.\n", + "\n", + " Args:\n", + " in_channels(int): Input channel num.\n", + " out_channels(int): Output channel num.\n", + " kernel_size(int): Kernel size. Default: 1\n", + " stride(int): Stride. Default: 1\n", + " padding(int): Padding range. Default: 0\n", + " pad_mode(bool): Padding model. Default: 'pad'\n", + " gain(int): Gain. Default: 1\n", + "\n", + " Returns:\n", + " Tensor, Convoluted result.\n", + " \"\"\"\n", + " shape = (out_channels, in_channels, kernel_size, kernel_size)\n", + " # xavier_normal\n", + " fan_in = in_channels * kernel_size * kernel_size\n", + " fan_out = out_channels * kernel_size * kernel_size\n", + " std = gain * (2 / (fan_in + fan_out)) ** 0.5\n", + " weights = Tensor(np.random.normal(loc=0.0, scale=std, size=shape).astype(np.float32))\n", + " shape_bias = (out_channels,)\n", + " bias = Tensor(np.array(np.zeros(shape_bias)).astype(np.float32))\n", + " return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,\n", + " pad_mode=pad_mode, weight_init=weights, has_bias=True, bias_init=bias)\n", + "\n", + "\n", + "def _conv_transpose(in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode='pad', gain=1):\n", + " \"\"\"\n", + " ConvTranspose wrapper.\n", + "\n", + " Args:\n", + " in_channels(int): Input channel num.\n", + " out_channels(int): Output channel num.\n", + " kernel_size(int): Kernel size. Default: 1\n", + " stride(int): Stride. Default: 1\n", + " padding(int): Padding range. Default: 0\n", + " pad_mode(bool): Padding model. Default: 'pad'\n", + " gain(int): Gain. Default: 1\n", + "\n", + " Returns:\n", + " Tensor, Convoluted Transposed result.\n", + " \"\"\"\n", + " shape = (out_channels, in_channels, kernel_size, kernel_size)\n", + " # xavier_normal\n", + " fan_in = in_channels * kernel_size * kernel_size\n", + " fan_out = out_channels * kernel_size * kernel_size\n", + " std = gain * (2 / (fan_in + fan_out)) ** 0.5\n", + " weights = Tensor(np.random.normal(loc=0.0, scale=std, size=shape).astype(np.float32))\n", + " shape_bias = (out_channels,)\n", + " bias = Tensor(np.array(np.zeros(shape_bias)).astype(np.float32))\n", + " return nn.Conv2dTranspose(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding,\n", + " pad_mode=pad_mode, weight_init=weights, has_bias=True, bias_init=bias)\n", + "\n", + "\n", + "class FpnMask(nn.Cell):\n", + " \"\"\"\n", + " Conv layers of mask head\n", + "\n", + " Args:\n", + " input_channels (int): Channel size of input feature maps.\n", + " output_channels (int): Channel size output\n", + " num_classes (int): Number of classes.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input from the upper layer.\n", + "\n", + " Outputs:\n", + " Tuple, tuple of output tensor.\n", + "\n", + " Support Platforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> FpnMask(input_channels=256, output_channels=256, num_classes=81)\n", + " \"\"\"\n", + " def __init__(self, input_channels, output_channels, num_classes):\n", + " super(FpnMask, self).__init__()\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + "\n", + " self.mask_conv1 = _conv(input_channels, output_channels,\n", + " kernel_size=3, gain=2 ** 0.5,\n", + " pad_mode=\"same\").to_float(self.cast_type)\n", + " self.mask_relu1 = P.ReLU()\n", + "\n", + " self.mask_conv2 = _conv(output_channels, output_channels,\n", + " kernel_size=3, gain=2 ** 0.5,\n", + " pad_mode=\"same\").to_float(self.cast_type)\n", + " self.mask_relu2 = P.ReLU()\n", + "\n", + " self.mask_conv3 = _conv(output_channels, output_channels,\n", + " kernel_size=3, gain=2 ** 0.5,\n", + " pad_mode=\"same\").to_float(self.cast_type)\n", + " self.mask_relu3 = P.ReLU()\n", + "\n", + " self.mask_conv4 = _conv(output_channels, output_channels,\n", + " kernel_size=3, gain=2 ** 0.5,\n", + " pad_mode=\"same\").to_float(self.cast_type)\n", + " self.mask_relu4 = P.ReLU()\n", + "\n", + " self.mask_deconv5 = _conv_transpose(output_channels, output_channels, kernel_size=2, gain=2 ** 0.5,\n", + " stride=2, pad_mode=\"valid\").to_float(self.cast_type)\n", + " self.mask_relu5 = P.ReLU()\n", + " self.mask_conv6 = _conv(output_channels, num_classes, kernel_size=1, stride=1, gain=2,\n", + " pad_mode=\"valid\").to_float(self.cast_type)\n", + "\n", + " def construct(self, x):\n", + " \"\"\"Construct convolutional layers of mask heads. \"\"\"\n", + " x = self.mask_conv1(x)\n", + " x = self.mask_relu1(x)\n", + "\n", + " x = self.mask_conv2(x)\n", + " x = self.mask_relu2(x)\n", + "\n", + " x = self.mask_conv3(x)\n", + " x = self.mask_relu3(x)\n", + "\n", + " x = self.mask_conv4(x)\n", + " x = self.mask_relu4(x)\n", + "\n", + " x = self.mask_deconv5(x)\n", + " x = self.mask_relu5(x)\n", + "\n", + " x = self.mask_conv6(x)\n", + "\n", + " return x\n", + "\n", + "\n", + "class RcnnMask(nn.Cell):\n", + " \"\"\"\n", + " Rcnn for mask subnet.\n", + "\n", + " Args:\n", + " config (dict): Config.\n", + " batch_size (int): Batchsize.\n", + " num_classes (int): Class number.\n", + " target_means (list): Means for encode function. Default: (.0, .0, .0, .0]).\n", + " target_stds (list): Stds for encode function. Default: (0.1, 0.1, 0.2, 0.2).\n", + "\n", + " Inputs:\n", + " - **mask_featuremap** (tuple) - Masked feature map\n", + " - **labels** (tuple) - Ground truth labels. Default: None\n", + " - **mask** (tuple) - Mask map. Default: None\n", + " - **mask_fb_targets** (tuple) - Masked targets. Default: None\n", + "\n", + " Outputs:\n", + " Tuple, tuple of output tensor.\n", + "\n", + " Examples:\n", + " >>> RcnnMask(config=config, representation_size = 1024,\n", + " ... batch_size=2, num_classes = 81,\n", + " ... target_means=(0., 0., 0., 0.),\n", + " ... target_stds=(0.1, 0.1, 0.2, 0.2))\n", + " \"\"\"\n", + "\n", + " def __init__(self, config, batch_size, num_classes, target_means=(0., 0., 0., 0.),\n", + " target_stds=(0.1, 0.1, 0.2, 0.2)):\n", + " super(RcnnMask, self).__init__()\n", + " cfg = config\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " self.np_cast_type = np.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + " self.np_cast_type = np.float32\n", + " self.eps = 1e-5\n", + "\n", + " self.rcnn_loss_mask_fb_weight = Tensor(np.array(cfg.rcnn_loss_mask_fb_weight).astype(self.np_cast_type))\n", + " self.rcnn_mask_out_channels = cfg.rcnn_mask_out_channels\n", + " self.target_means = target_means\n", + " self.target_stds = target_stds\n", + " self.num_classes = num_classes\n", + " self.in_channels = cfg.rcnn_in_channels\n", + "\n", + " self.fpn_mask = FpnMask(self.in_channels, self.rcnn_mask_out_channels, self.num_classes)\n", + "\n", + " self.logicaland = P.LogicalAnd()\n", + " self.loss_mask = P.SigmoidCrossEntropyWithLogits()\n", + " self.onehot = P.OneHot()\n", + " self.greater = P.Greater()\n", + " self.cast = P.Cast()\n", + " self.sum_loss = P.ReduceSum()\n", + " self.tile = P.Tile()\n", + " self.expandims = P.ExpandDims()\n", + "\n", + " self.on_value = Tensor(1.0, mstype.float32)\n", + " self.off_value = Tensor(0.0, mstype.float32)\n", + "\n", + " self.num_bboxes = cfg.num_expected_pos_stage2 * batch_size\n", + " rmv_first = np.ones((self.num_bboxes, self.num_classes))\n", + " rmv_first[:, 0] = np.zeros((self.num_bboxes,))\n", + " self.rmv_first_tensor = Tensor(rmv_first.astype(self.np_cast_type))\n", + " self.mean_loss = P.ReduceMean()\n", + "\n", + " def construct(self, mask_featuremap, labels=None, mask=None, mask_fb_targets=None):\n", + " \"\"\"Construct Rcnn Mask.\"\"\"\n", + " x_mask_fb = self.fpn_mask(mask_featuremap)\n", + "\n", + " if self.training:\n", + " bbox_weights = self.cast(self.logicaland(self.greater(labels, 0), mask), mstype.int32) * labels\n", + " mask_fb_targets = self.tile(self.expandims(mask_fb_targets, 1), (1, self.num_classes, 1, 1))\n", + "\n", + " loss_mask_fb = self.loss(x_mask_fb, bbox_weights, mask, mask_fb_targets)\n", + " out = loss_mask_fb\n", + " else:\n", + " out = x_mask_fb\n", + "\n", + " return out\n", + "\n", + " def loss(self, masks_fb_pred, bbox_weights, weights, masks_fb_targets):\n", + " \"\"\"\n", + " Loss method.\n", + "\n", + " Args:\n", + " mask_fb_pred (Tensor): Mask feedback prediction.\n", + " bbox_weights (Tensor): Bounding box weights.\n", + " weights (Tensor): GT weights.\n", + " masks_fb_targets (Tensor): Mask feedback targets.\n", + "\n", + " Returns:\n", + " Tensor, loss mask feedback result.\n", + " \"\"\"\n", + " weights = self.cast(weights, self.cast_type)\n", + " bbox_weights = \\\n", + " self.cast(self.onehot(bbox_weights, self.num_classes, self.on_value, self.off_value), self.cast_type)\n", + " bbox_weights = bbox_weights * self.rmv_first_tensor\n", + "\n", + " # loss_mask_fb\n", + " masks_fb_targets = self.cast(masks_fb_targets, self.cast_type)\n", + " loss_mask_fb = self.loss_mask(masks_fb_pred, masks_fb_targets)\n", + " loss_mask_fb = self.mean_loss(loss_mask_fb, (2, 3))\n", + " loss_mask_fb = loss_mask_fb * bbox_weights\n", + " loss_mask_fb = loss_mask_fb / (self.sum_loss(weights, (0,)) + self.eps)\n", + " loss_mask_fb = self.sum_loss(loss_mask_fb, (0, 1))\n", + "\n", + " return loss_mask_fb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mask RCNN模型\n", + "\n", + "我们将卷积层,RPN层,RoIAlign层,Bbox预测层和Mask预测层连接起来,构建Mask RCNN网络。" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from model.bbox_assign_sample_stage2 import BboxAssignSampleForRcnn\n", + "from model.fpn_neck import FeatPyramidNeck\n", + "from model.proposal_generator import Proposal\n", + "from model.rcnn_cls import RcnnCls\n", + "from model.rcnn_mask import RcnnMask\n", + "from model.rpn import RPN\n", + "from model.roi_align import SingleRoIExtractor\n", + "from model.anchor_generator import AnchorGenerator\n", + "from model.resnet50 import ResNetFea, ResidualBlockUsing\n", + "\n", + "\n", + "class MaskRcnnResnet50(nn.Cell):\n", + " \"\"\"\n", + " MaskRcnn Network.\n", + "\n", + " Note:\n", + " backbone = resnet50\n", + "\n", + " Args:\n", + " config (dict): Config.\n", + "\n", + " Inputs:\n", + " - **img_data** (Tensor) - Image data.\n", + " - **img_metas** (Tensor) - Image shapes.\n", + " - **gt_bboxes** (Tensor) - GT boudning boxes.\n", + " - **gt_labels** (Tensor) - GT labels.\n", + " - **gt_valids** (Tensor) - GT validations.\n", + " - **gt_masks** (Tensor) - GT masks.\n", + "\n", + " Outputs:\n", + " Function, return a tuple of output tensor.\n", + "\n", + " Support Plarforms:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> net = MaskRcnnResnet50(config)\n", + " \"\"\"\n", + " def __init__(self, config):\n", + " super(MaskRcnnResnet50, self).__init__()\n", + "\n", + " if context.get_context(\"device_target\") == \"Ascend\":\n", + " self.cast_type = mstype.float16\n", + " self.np_cast_type = np.float16\n", + " else:\n", + " self.cast_type = mstype.float32\n", + " self.np_cast_type = np.float32\n", + "\n", + " self.train_batch_size = config.batch_size\n", + " self.num_classes = config.num_classes\n", + " self.anchor_scales = config.anchor_scales\n", + " self.anchor_ratios = config.anchor_ratios\n", + " self.anchor_strides = config.anchor_strides\n", + " self.target_means = tuple(config.rcnn_target_means)\n", + " self.target_stds = tuple(config.rcnn_target_stds)\n", + "\n", + " # Anchor generator\n", + " anchor_base_sizes = None\n", + " self.anchor_base_sizes = list(\n", + " self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes\n", + "\n", + " self.anchor_generators = []\n", + " for anchor_base in self.anchor_base_sizes:\n", + " self.anchor_generators.append(AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios))\n", + "\n", + " self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)\n", + "\n", + " featmap_sizes = config.feature_shapes\n", + " assert len(featmap_sizes) == len(self.anchor_generators)\n", + "\n", + " self.anchor_list = self.get_anchors(featmap_sizes)\n", + "\n", + " # Backbone resnet50\n", + " self.backbone = ResNetFea(ResidualBlockUsing, config.resnet_block, config.resnet_in_channels,\n", + " config.resnet_out_channels, False)\n", + " # Fpn\n", + " self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels, config.fpn_out_channels, config.fpn_num_outs)\n", + "\n", + " # Rpn and rpn loss\n", + " self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))\n", + " self.rpn_with_loss = RPN(config, self.train_batch_size, config.rpn_in_channels,\n", + " config.rpn_feat_channels, config.num_anchors, config.rpn_cls_out_channels)\n", + "\n", + " # Proposal\n", + " self.proposal_generator = Proposal(config, self.train_batch_size,\n", + " config.activate_num_classes,\n", + " config.use_sigmoid_cls)\n", + " self.proposal_generator.set_train_local(config, True)\n", + " self.proposal_generator_test = Proposal(config, config.test_batch_size,\n", + " config.activate_num_classes,\n", + " config.use_sigmoid_cls)\n", + " self.proposal_generator_test.set_train_local(config, False)\n", + "\n", + " # Assign and sampler stage two\n", + " self.bbox_assigner_sampler_for_rcnn = \\\n", + " BboxAssignSampleForRcnn(config, self.train_batch_size, config.num_bboxes_stage2, True)\n", + " self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, stds=self.target_stds)\n", + "\n", + " # Roi\n", + " self.init_roi(config)\n", + "\n", + " # Rcnn\n", + " self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes)\n", + " self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes)\n", + "\n", + " # Op declare\n", + " self.squeeze = P.Squeeze()\n", + " self.cast = P.Cast()\n", + "\n", + " self.concat = P.Concat(axis=0)\n", + " self.concat_1 = P.Concat(axis=1)\n", + " self.concat_2 = P.Concat(axis=2)\n", + " self.reshape = P.Reshape()\n", + " self.select = P.Select()\n", + " self.greater = P.Greater()\n", + " self.transpose = P.Transpose()\n", + "\n", + " # Test mode\n", + " self.init_test_mode(config)\n", + "\n", + " # Improve speed\n", + " self.concat_start = min(self.num_classes - 2, 55)\n", + " self.concat_end = (self.num_classes - 1)\n", + "\n", + " # Init tensor\n", + " self.init_tensor(config)\n", + "\n", + " def init_roi(self, config):\n", + " \"\"\"initialize roi aligners.\"\"\"\n", + " self.roi_align = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels,\n", + " config.roi_align_featmap_strides, self.train_batch_size,\n", + " config.roi_align_finest_scale, mask=False)\n", + " self.roi_align.set_train_local(config, True)\n", + "\n", + " self.roi_align_mask = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels,\n", + " config.roi_align_featmap_strides, self.train_batch_size,\n", + " config.roi_align_finest_scale, mask=True)\n", + " self.roi_align_mask.set_train_local(config, True)\n", + "\n", + " self.roi_align_test = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels,\n", + " config.roi_align_featmap_strides, 1,\n", + " config.roi_align_finest_scale, mask=False)\n", + " self.roi_align_test.set_train_local(config, False)\n", + "\n", + " self.roi_align_mask_test = SingleRoIExtractor(config, config.roi_layer, config.roi_align_out_channels,\n", + " config.roi_align_featmap_strides, 1,\n", + " config.roi_align_finest_scale, mask=True)\n", + " self.roi_align_mask_test.set_train_local(config, False)\n", + "\n", + " def init_test_mode(self, config):\n", + " \"\"\"\"initialize the test mode.\"\"\"\n", + " self.test_batch_size = config.test_batch_size\n", + " self.split = P.Split(axis=0, output_num=self.test_batch_size)\n", + " self.split_shape = P.Split(axis=0, output_num=4)\n", + " self.split_scores = P.Split(axis=1, output_num=self.num_classes)\n", + " self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes)\n", + " self.split_cls = P.Split(axis=0, output_num=self.num_classes-1)\n", + " self.tile = P.Tile()\n", + " self.gather = P.GatherNd()\n", + "\n", + " self.rpn_max_num = config.rpn_max_num\n", + "\n", + " self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(self.np_cast_type))\n", + " self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)\n", + " self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)\n", + " self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask,\n", + " self.ones_mask, self.zeros_mask), axis=1))\n", + " self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask,\n", + " self.ones_mask, self.ones_mask,\n", + " self.zeros_mask), axis=1))\n", + "\n", + " self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.np_cast_type) * \\\n", + " config.test_score_thr)\n", + " self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.np_cast_type) * 0)\n", + " self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(self.np_cast_type) * -1)\n", + " self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(self.np_cast_type) * config.test_iou_thr)\n", + " self.test_max_per_img = config.test_max_per_img\n", + " self.nms_test = P.NMSWithMask(config.test_iou_thr)\n", + " self.softmax = P.Softmax(axis=1)\n", + " self.logicand = P.LogicalAnd()\n", + " self.oneslike = P.OnesLike()\n", + " self.test_topk = P.TopK(sorted=True)\n", + " self.test_num_proposal = self.test_batch_size * self.rpn_max_num\n", + "\n", + " def init_tensor(self, config):\n", + " \"\"\"initialize the tensors.\"\"\"\n", + " roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + \\\n", + " config.num_expected_neg_stage2, 1)) * i,\n", + " dtype=self.np_cast_type) for i in range(self.train_batch_size)]\n", + "\n", + " roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i,\n", + " dtype=self.np_cast_type) for i in range(self.test_batch_size)]\n", + "\n", + " self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))\n", + " self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test))\n", + "\n", + " roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i,\n", + " dtype=self.np_cast_type) for i in range(self.train_batch_size)]\n", + " self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos))\n", + "\n", + " self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(self.np_cast_type))\n", + " self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(self.np_cast_type))\n", + " self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(self.np_cast_type))\n", + "\n", + " self.argmax_with_value = P.ArgMaxWithValue(axis=1)\n", + " self.on_value = Tensor(1.0, mstype.float32)\n", + " self.off_value = Tensor(0.0, mstype.float32)\n", + " self.onehot = P.OneHot()\n", + " self.reducesum = P.ReduceSum()\n", + " self.sigmoid = P.Sigmoid()\n", + " self.expand_dims = P.ExpandDims()\n", + " self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(self.np_cast_type))\n", + " self.value = Tensor(1.0, self.cast_type)\n", + "\n", + " def construct(self, img_data, img_metas, gt_bboxes, gt_labels, gt_valids, gt_masks):\n", + " \"\"\"Construct for Mask R-CNN net.\"\"\"\n", + " x = self.backbone(img_data)\n", + " x = self.fpn_ncek(x)\n", + "\n", + " rpn_loss, cls_score, bbox_pred, rpn_cls_loss, rpn_reg_loss, _ = self.rpn_with_loss(x, img_metas,\n", + " self.anchor_list,\n", + " gt_bboxes,\n", + " self.gt_labels_stage1,\n", + " gt_valids)\n", + "\n", + " if self.training:\n", + " proposal, proposal_mask = self.proposal_generator(cls_score, bbox_pred, self.anchor_list)\n", + " else:\n", + " proposal, proposal_mask = self.proposal_generator_test(cls_score, bbox_pred, self.anchor_list)\n", + "\n", + " gt_labels = self.cast(gt_labels, mstype.int32)\n", + " gt_valids = self.cast(gt_valids, mstype.int32)\n", + " bboxes_tuple = ()\n", + " deltas_tuple = ()\n", + " labels_tuple = ()\n", + " mask_tuple = ()\n", + "\n", + " pos_bboxes_tuple = ()\n", + " pos_mask_fb_tuple = ()\n", + " pos_labels_tuple = ()\n", + " pos_mask_tuple = ()\n", + "\n", + " if self.training:\n", + " for i in range(self.train_batch_size):\n", + " gt_bboxes_i = self.squeeze(gt_bboxes[i:i + 1:1, ::])\n", + "\n", + " gt_labels_i = self.squeeze(gt_labels[i:i + 1:1, ::])\n", + " gt_labels_i = self.cast(gt_labels_i, mstype.uint8)\n", + "\n", + " gt_valids_i = self.squeeze(gt_valids[i:i + 1:1, ::])\n", + " gt_valids_i = self.cast(gt_valids_i, mstype.bool_)\n", + "\n", + " gt_masks_i = self.squeeze(gt_masks[i:i + 1:1, ::])\n", + " gt_masks_i = self.cast(gt_masks_i, mstype.bool_)\n", + "\n", + " bboxes, deltas, labels, mask, pos_bboxes, pos_mask_fb, pos_labels, pos_mask = \\\n", + " self.bbox_assigner_sampler_for_rcnn(gt_bboxes_i, gt_labels_i, proposal_mask[i],\n", + " proposal[i][::, 0:4:1], gt_valids_i, gt_masks_i)\n", + " bboxes_tuple += (bboxes,)\n", + " deltas_tuple += (deltas,)\n", + " labels_tuple += (labels,)\n", + " mask_tuple += (mask,)\n", + "\n", + " pos_bboxes_tuple += (pos_bboxes,)\n", + " pos_mask_fb_tuple += (pos_mask_fb,)\n", + " pos_labels_tuple += (pos_labels,)\n", + " pos_mask_tuple += (pos_mask,)\n", + "\n", + " bbox_targets = self.concat(deltas_tuple)\n", + " rcnn_labels = self.concat(labels_tuple)\n", + " bbox_targets = F.stop_gradient(bbox_targets)\n", + " rcnn_labels = F.stop_gradient(rcnn_labels)\n", + " rcnn_labels = self.cast(rcnn_labels, mstype.int32)\n", + "\n", + " rcnn_pos_masks_fb = self.concat(pos_mask_fb_tuple)\n", + " rcnn_pos_masks_fb = F.stop_gradient(rcnn_pos_masks_fb)\n", + " rcnn_pos_labels = self.concat(pos_labels_tuple)\n", + " rcnn_pos_labels = F.stop_gradient(rcnn_pos_labels)\n", + " rcnn_pos_labels = self.cast(rcnn_pos_labels, mstype.int32)\n", + " else:\n", + " mask_tuple += proposal_mask\n", + " bbox_targets = proposal_mask\n", + " rcnn_labels = proposal_mask\n", + "\n", + " rcnn_pos_masks_fb = proposal_mask\n", + " rcnn_pos_labels = proposal_mask\n", + " for p_i in proposal:\n", + " bboxes_tuple += (p_i[::, 0:4:1],)\n", + "\n", + " bboxes_all, rois, pos_rois = self.rois(bboxes_tuple, pos_bboxes_tuple)\n", + "\n", + " if self.training:\n", + " roi_feats = self.roi_align(rois,\n", + " self.cast(x[0], mstype.float32),\n", + " self.cast(x[1], mstype.float32),\n", + " self.cast(x[2], mstype.float32),\n", + " self.cast(x[3], mstype.float32))\n", + " else:\n", + " roi_feats = self.roi_align_test(rois,\n", + " self.cast(x[0], mstype.float32),\n", + " self.cast(x[1], mstype.float32),\n", + " self.cast(x[2], mstype.float32),\n", + " self.cast(x[3], mstype.float32))\n", + "\n", + "\n", + " roi_feats = self.cast(roi_feats, self.cast_type)\n", + " rcnn_masks = self.concat(mask_tuple)\n", + " rcnn_masks = F.stop_gradient(rcnn_masks)\n", + " rcnn_mask_squeeze = self.squeeze(self.cast(rcnn_masks, mstype.bool_))\n", + "\n", + " rcnn_pos_masks = self.concat(pos_mask_tuple)\n", + " rcnn_pos_masks = F.stop_gradient(rcnn_pos_masks)\n", + " rcnn_pos_mask_squeeze = self.squeeze(self.cast(rcnn_pos_masks, mstype.bool_))\n", + "\n", + " rcnn_cls_loss, rcnn_reg_loss = self.rcnn_cls(roi_feats, bbox_targets, rcnn_labels, rcnn_mask_squeeze)\n", + "\n", + " if self.training:\n", + " return self.get_output_train(pos_rois, x, rcnn_pos_labels, rcnn_pos_mask_squeeze, rcnn_pos_masks_fb,\n", + " rpn_loss, rpn_cls_loss, rpn_reg_loss, rcnn_cls_loss, rcnn_reg_loss)\n", + "\n", + " return self.get_output_eval(x, bboxes_all, rcnn_cls_loss, rcnn_reg_loss, rcnn_masks, img_metas)\n", + "\n", + " def rois(self, bboxes_tuple, pos_bboxes_tuple):\n", + " \"\"\"\"initialize the rois.\"\"\"\n", + " pos_rois = None\n", + " if self.training:\n", + " if self.train_batch_size > 1:\n", + " bboxes_all = self.concat(bboxes_tuple)\n", + " pos_bboxes_all = self.concat(pos_bboxes_tuple)\n", + " else:\n", + " bboxes_all = bboxes_tuple[0]\n", + " pos_bboxes_all = pos_bboxes_tuple[0]\n", + " rois = self.concat_1((self.roi_align_index_tensor, bboxes_all))\n", + " pos_rois = self.concat_1((self.roi_align_index_tensor_pos, pos_bboxes_all))\n", + " pos_rois = self.cast(pos_rois, mstype.float32)\n", + " pos_rois = F.stop_gradient(pos_rois)\n", + " else:\n", + " if self.test_batch_size > 1:\n", + " bboxes_all = self.concat(bboxes_tuple)\n", + " else:\n", + " bboxes_all = bboxes_tuple[0]\n", + " rois = self.concat_1((self.roi_align_index_test_tensor, bboxes_all))\n", + "\n", + " rois = self.cast(rois, mstype.float32)\n", + " rois = F.stop_gradient(rois)\n", + "\n", + " return bboxes_all, rois, pos_rois\n", + "\n", + " def get_output_train(self, pos_rois, x, rcnn_pos_labels, rcnn_pos_mask_squeeze, rcnn_pos_masks_fb,\n", + " rpn_loss, rpn_cls_loss, rpn_reg_loss, rcnn_cls_loss, rcnn_reg_loss):\n", + " \"\"\"get the training outputs.\"\"\"\n", + " output = ()\n", + " roi_feats_mask = self.roi_align_mask(pos_rois,\n", + " self.cast(x[0], mstype.float32),\n", + " self.cast(x[1], mstype.float32),\n", + " self.cast(x[2], mstype.float32),\n", + " self.cast(x[3], mstype.float32))\n", + " roi_feats_mask = self.cast(roi_feats_mask, self.cast_type)\n", + " rcnn_mask_fb_loss = self.rcnn_mask(roi_feats_mask, rcnn_pos_labels, rcnn_pos_mask_squeeze, rcnn_pos_masks_fb)\n", + "\n", + " rcnn_loss = self.rcnn_loss_cls_weight * rcnn_cls_loss + self.rcnn_loss_reg_weight * rcnn_reg_loss + \\\n", + " self.rcnn_loss_mask_fb_weight * rcnn_mask_fb_loss\n", + " output += (rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, rcnn_cls_loss, rcnn_reg_loss, rcnn_mask_fb_loss)\n", + " return output\n", + "\n", + " def get_output_eval(self, x, bboxes_all, rcnn_cls_loss, rcnn_reg_loss, rcnn_masks, img_metas):\n", + " \"\"\"get the evaluation results.\"\"\"\n", + " mask_fb_pred_all = self.rcnn_mask_test(x, bboxes_all, rcnn_cls_loss, rcnn_reg_loss)\n", + " output = self.get_det_bboxes(rcnn_cls_loss, rcnn_reg_loss, rcnn_masks, bboxes_all, img_metas, mask_fb_pred_all)\n", + " return output\n", + "\n", + " def get_det_bboxes(self, cls_logits, reg_logits, mask_logits, rois, img_metas, mask_fb_pred_all):\n", + " \"\"\"Get the actual detection box.\"\"\"\n", + " scores = self.softmax(cls_logits / self.value)\n", + " mask_fb_logits = self.sigmoid(mask_fb_pred_all)\n", + "\n", + " boxes_all = ()\n", + " for i in range(self.num_classes):\n", + " k = i * 4\n", + " reg_logits_i = self.squeeze(reg_logits[::, k:k+4:1])\n", + " out_boxes_i = self.decode(rois, reg_logits_i)\n", + " boxes_all += (out_boxes_i,)\n", + "\n", + " img_metas_all = self.split(img_metas)\n", + " scores_all = self.split(scores)\n", + " mask_all = self.split(self.cast(mask_logits, mstype.int32))\n", + " mask_fb_all = self.split(mask_fb_logits)\n", + "\n", + " boxes_all_with_batchsize = ()\n", + " for i in range(self.test_batch_size):\n", + " scale = self.split_shape(self.squeeze(img_metas_all[i]))\n", + " scale_h = scale[2]\n", + " scale_w = scale[3]\n", + " boxes_tuple = ()\n", + " for j in range(self.num_classes):\n", + " boxes_tmp = self.split(boxes_all[j])\n", + " out_boxes_h = boxes_tmp[i] / scale_h\n", + " out_boxes_w = boxes_tmp[i] / scale_w\n", + " boxes_tuple += (self.select(self.bbox_mask, out_boxes_w, out_boxes_h),)\n", + " boxes_all_with_batchsize += (boxes_tuple,)\n", + "\n", + " output = self.multiclass_nms(boxes_all_with_batchsize, scores_all, mask_all, mask_fb_all)\n", + "\n", + " return output\n", + "\n", + " def multiclass_nms(self, boxes_all, scores_all, mask_all, mask_fb_all):\n", + " \"\"\"\n", + " Multiscale postprocessing.\n", + "\n", + " Args:\n", + " boxes_all (tuple): All bounding boxes.\n", + " scores_all (tuple): All scores.\n", + " mask_all (tuple): All masks.\n", + " mask_fb_all (tuple): All feedback masks.\n", + "\n", + " Returns:\n", + " - all_bboxes, tuple, output bounding boxes with the same shape of boxes_all.\n", + " - all_labels, tuple, output labels with the same shape of scores_all.\n", + " - all_masks, tuple, output masks with the same shape of mask_all.\n", + " - all_masks_fb, tuple, output feedback masks with the same shape of mask_fb_all.\n", + " \"\"\"\n", + " all_bboxes = ()\n", + " all_labels = ()\n", + " all_masks = ()\n", + " all_masks_fb = ()\n", + "\n", + " for i in range(self.test_batch_size):\n", + " bboxes = boxes_all[i]\n", + " scores = scores_all[i]\n", + " masks = self.cast(mask_all[i], mstype.bool_)\n", + " masks_fb = mask_fb_all[i]\n", + " mask_fb_all_x = self.split_fb_mask(masks_fb)\n", + "\n", + " res_boxes_tuple = ()\n", + " res_labels_tuple = ()\n", + " res_masks_tuple = ()\n", + " res_masks_fb_tuple = ()\n", + "\n", + " for j in range(self.num_classes - 1):\n", + " k = j + 1\n", + " cls_scores_x = scores[::, k:k + 1:1]\n", + " bboxes_x = self.squeeze(bboxes[k])\n", + " mask_ox = self.reshape(masks, (self.rpn_max_num, 1))\n", + " masks_fb_x = self.squeeze(mask_fb_all_x[k])\n", + "\n", + " cls_mask = self.greater(cls_scores_x, self.test_score_thresh)\n", + " mask_x = self.logicand(mask_ox, cls_mask)\n", + "\n", + " reg_mask_x = self.cast(self.tile(self.cast(mask_x, mstype.int32), (1, 4)), mstype.bool_)\n", + "\n", + " bboxes_x = self.select(reg_mask_x, bboxes_x, self.test_box_zeros)\n", + " fb_mask_x = self.expand_dims(mask_x, -1)\n", + " mask_fb_mask_x = self.cast(self.tile(self.cast(fb_mask_x, mstype.int32), (1, 28, 28)), mstype.bool_)\n", + " masks_fb_x = self.select(mask_fb_mask_x, masks_fb_x, self.test_mask_fb_zeros)\n", + " cls_scores_x = self.select(mask_x, cls_scores_x, self.test_score_zeros)\n", + " cls_scores_x_next = self.squeeze(cls_scores_x)\n", + " scores_sorted, topk_inds = self.test_topk(cls_scores_x_next, self.rpn_max_num)\n", + " topk_inds = self.reshape(topk_inds, (self.rpn_max_num, 1))\n", + " scores_sorted = self.reshape(scores_sorted, (self.rpn_max_num, 1))\n", + " bboxes_x_sorted = self.gather(bboxes_x, topk_inds)\n", + " mask_fb_sorted_x = self.gather(masks_fb_x, topk_inds)\n", + " mask_sorted_x = self.gather(mask_x, topk_inds)\n", + "\n", + " scores_sorted = self.tile(scores_sorted, (1, 4))\n", + " cls_dets = self.concat_1((bboxes_x_sorted, scores_sorted))\n", + " cls_dets = P.Slice()(cls_dets, (0, 0), (self.rpn_max_num, 5))\n", + "\n", + " cls_dets, index_x, mask_nms_x = self.nms_test(cls_dets)\n", + " index_x = self.reshape(index_x, (self.rpn_max_num, 1))\n", + " mask_nms_x = self.reshape(mask_nms_x, (self.rpn_max_num, 1))\n", + "\n", + " mask_n_x = self.gather(mask_sorted_x, index_x)\n", + " mask_n_x = self.logicand(mask_n_x, mask_nms_x)\n", + "\n", + " mask_fb_x = self.gather(mask_fb_sorted_x, index_x)\n", + "\n", + " cls_labels = self.oneslike(index_x) * j\n", + " res_boxes_tuple += (cls_dets,)\n", + " res_labels_tuple += (cls_labels,)\n", + " res_masks_tuple += (mask_n_x,)\n", + " res_masks_fb_tuple += (mask_fb_x,)\n", + "\n", + " res_boxes_start = self.concat(res_boxes_tuple[:self.concat_start])\n", + " res_labels_start = self.concat(res_labels_tuple[:self.concat_start])\n", + " res_masks_start = self.concat(res_masks_tuple[:self.concat_start])\n", + " res_masks_fb_start = self.concat(res_masks_fb_tuple[:self.concat_start])\n", + "\n", + " res_boxes_end = self.concat(res_boxes_tuple[self.concat_start:self.concat_end])\n", + " res_labels_end = self.concat(res_labels_tuple[self.concat_start:self.concat_end])\n", + " res_masks_end = self.concat(res_masks_tuple[self.concat_start:self.concat_end])\n", + " res_masks_fb_end = self.concat(res_masks_fb_tuple[self.concat_start:self.concat_end])\n", + "\n", + " res_boxes = self.concat((res_boxes_start, res_boxes_end))\n", + " res_labels = self.concat((res_labels_start, res_labels_end))\n", + " res_masks = self.concat((res_masks_start, res_masks_end))\n", + " res_masks_fb = self.concat((res_masks_fb_start, res_masks_fb_end))\n", + "\n", + " reshape_size = (self.num_classes - 1) * self.rpn_max_num\n", + " res_boxes = self.reshape(res_boxes, (1, reshape_size, 5))\n", + " res_labels = self.reshape(res_labels, (1, reshape_size, 1))\n", + " res_masks = self.reshape(res_masks, (1, reshape_size, 1))\n", + " res_masks_fb = self.reshape(res_masks_fb, (1, reshape_size, 28, 28))\n", + "\n", + " all_bboxes += (res_boxes,)\n", + " all_labels += (res_labels,)\n", + " all_masks += (res_masks,)\n", + " all_masks_fb += (res_masks_fb,)\n", + "\n", + " all_bboxes = self.concat(all_bboxes)\n", + " all_labels = self.concat(all_labels)\n", + " all_masks = self.concat(all_masks)\n", + " all_masks_fb = self.concat(all_masks_fb)\n", + " return all_bboxes, all_labels, all_masks, all_masks_fb\n", + "\n", + " def get_anchors(self, featmap_sizes):\n", + " \"\"\"Get anchors according to feature map sizes.\n", + "\n", + " Args:\n", + " featmap_sizes (list[tuple]): Multi-level feature map sizes.\n", + " img_metas (list[dict]): Image meta info.\n", + "\n", + " Returns:\n", + " Tuple, anchors of each image, valid flags of each image\n", + " \"\"\"\n", + " num_levels = len(featmap_sizes)\n", + "\n", + " # since feature map sizes of all images are the same, we only compute\n", + " # anchors for one time\n", + " multi_level_anchors = ()\n", + " for i in range(num_levels):\n", + " anchors = self.anchor_generators[i].grid_anchors(featmap_sizes[i], self.anchor_strides[i])\n", + " multi_level_anchors += (Tensor(anchors.astype(self.np_cast_type)),)\n", + "\n", + " return multi_level_anchors\n", + "\n", + " def rcnn_mask_test(self, x, rois, cls_pred, reg_pred):\n", + " \"\"\"\n", + " Prediction masks in an images by the bounding boxes.\n", + "\n", + " Args:\n", + " x (Cell): Input layer.\n", + " rois (List): Region of Interest.\n", + " cls_pred (float): Classification prediction.\n", + " reg_pred (float): Regression prediction.\n", + "\n", + " Returns:\n", + " Cell, masked rcnn layer.\n", + " \"\"\"\n", + " cls_scores = self.softmax(cls_pred / self.value)\n", + "\n", + " cls_scores_all = self.split(cls_scores)\n", + " reg_pred = self.reshape(reg_pred, (-1, self.num_classes, 4))\n", + " reg_pred_all = self.split(reg_pred)\n", + " rois_all = self.split(rois)\n", + " boxes_tuple = ()\n", + " for i in range(self.test_batch_size):\n", + " cls_score_max_index, _ = self.argmax_with_value(cls_scores_all[i])\n", + " cls_score_max_index = self.cast(self.onehot(cls_score_max_index, self.num_classes,\n", + " self.on_value, self.off_value), self.cast_type)\n", + " cls_score_max_index = self.expand_dims(cls_score_max_index, -1)\n", + " cls_score_max_index = self.tile(cls_score_max_index, (1, 1, 4))\n", + " reg_pred_max = reg_pred_all[i] * cls_score_max_index\n", + " reg_pred_max = self.reducesum(reg_pred_max, 1)\n", + " out_boxes_i = self.decode(rois_all[i], reg_pred_max)\n", + " boxes_tuple += (out_boxes_i,)\n", + "\n", + " boxes_all = self.concat(boxes_tuple)\n", + " boxes_rois = self.concat_1((self.roi_align_index_test_tensor, boxes_all))\n", + " boxes_rois = self.cast(boxes_rois, self.cast_type)\n", + " roi_feats_mask_test = self.roi_align_mask_test(boxes_rois,\n", + " self.cast(x[0], mstype.float32),\n", + " self.cast(x[1], mstype.float32),\n", + " self.cast(x[2], mstype.float32),\n", + " self.cast(x[3], mstype.float32))\n", + " roi_feats_mask_test = self.cast(roi_feats_mask_test, self.cast_type)\n", + " mask_fb_pred_all = self.rcnn_mask(roi_feats_mask_test)\n", + " return mask_fb_pred_all" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 连接网络和损失函数\n", + "\n", + "MindSpore将损失函数、优化器等操作都封装到了Cell中,我们需要自定义WithLossCell类,将网络和Loss连接起来。\n", + "\n", + "Mask RCNN的损失函数被定义为:\n", + "\n", + "$$\n", + "L=L_{c l s}+L_{b o x}+L_{\\text {mask }}\n", + "$$\n", + "\n", + "$L_{c l s}$类别损失:rpn class和rcnn_cls的类别损失都是交叉熵损失。\n", + "\n", + "$L_{b o x}$边框损失:\n", + "\n", + "$$\n", + "\\operatorname{smooth}_{L_{1}}(x)= \\begin{cases}0.5 x^{2} & \\text { if }|x|<1 \\\\ |x|-0.5 & \\text { otherwise }\\end{cases}\n", + "$$\n", + "\n", + "$L_{mask}$掩膜损失:\n", + "\n", + "只对rcnn_mask计算1/0交叉熵损失。" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "TIME_STAMP_INIT = False\n", + "TIME_STAMP_FIRST = 0\n", + "\n", + "GRADIENT_CLIP_TYPE = 1\n", + "GRADIENT_CLIP_VALUE = 1.0\n", + "\n", + "clip_grad = C.MultitypeFuncGraph(\"clip_grad\")\n", + "\n", + "\n", + "@clip_grad.register(\"Number\", \"Number\", \"Tensor\")\n", + "def _clip_grad(clip_type, clip_value, grad):\n", + " \"\"\"\n", + " Clip gradients.\n", + "\n", + " Args:\n", + " clip_type (int): The way to clip, 0 for 'value', 1 for 'norm'.\n", + " clip_value (float): Specifies how much to clip.\n", + " grad (tuple[Tensor]): Gradients.\n", + "\n", + " Returns:\n", + " tuple[Tensor], clipped gradients.\n", + " \"\"\"\n", + " if clip_type not in (0, 1):\n", + " return grad\n", + " dt = F.dtype(grad)\n", + " mf_cast = F.cast(F.tuple_to_array((-clip_value,)), dt)\n", + " pf_cast = F.cast(F.tuple_to_array((clip_value,)), dt)\n", + " if clip_type == 0:\n", + " new_grad = C.clip_by_value(grad, mf_cast, pf_cast)\n", + " else:\n", + " new_grad = nn.ClipByNorm()(grad, pf_cast)\n", + " return F.cast(new_grad, dt)\n", + "\n", + "\n", + "class LossCallBack(Callback):\n", + " \"\"\"\n", + " Monitor the loss in training.\n", + "\n", + " If the loss is NAN or INF terminating training.\n", + "\n", + " Note:\n", + " If per_print_times is 0 do not print loss.\n", + "\n", + " Args:\n", + " per_print_times (int): Print loss every times. Default: 1.\n", + " \"\"\"\n", + "\n", + " def __init__(self, per_print_times=1, rank_id=0):\n", + " super(LossCallBack, self).__init__()\n", + " if not isinstance(per_print_times, int) or per_print_times < 0:\n", + " raise ValueError(\"print_step must be int and >= 0.\")\n", + " self._per_print_times = per_print_times\n", + " self.count = 0\n", + " self.loss_sum = 0\n", + " self.rank_id = rank_id\n", + "\n", + " global TIME_STAMP_INIT, TIME_STAMP_FIRST\n", + " if not TIME_STAMP_INIT:\n", + " TIME_STAMP_FIRST = time.time()\n", + " TIME_STAMP_INIT = True\n", + "\n", + " def step_end(self, run_context):\n", + " \"\"\"set the end of step\"\"\"\n", + " cb_params = run_context.original_args()\n", + " loss = cb_params.net_outputs.asnumpy()\n", + " cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1\n", + " cur_time = time.time()\n", + " self.count += 1\n", + " self.loss_sum += float(loss)\n", + "\n", + " if self.count >= 1:\n", + " global TIME_STAMP_FIRST\n", + " time_stamp_current = time.time()\n", + " total_loss = self.loss_sum/self.count\n", + "\n", + " print(\"%lu epoch: %s step: %s total_loss: %.5f\" %\n", + " (time_stamp_current - TIME_STAMP_FIRST,\n", + " cb_params.cur_epoch_num, cur_step_in_epoch, total_loss))\n", + " loss_file = open(\"./loss_{}.log\".format(self.rank_id), \"a+\")\n", + " loss_file.write(\"%lu epoch: %s step: %s total_loss: %.5f\" %\n", + " (time_stamp_current - TIME_STAMP_FIRST,\n", + " cb_params.cur_epoch_num, cur_step_in_epoch, total_loss))\n", + " loss_file.write(\"\\n\")\n", + " loss_file.close()\n", + "\n", + " self.count = 0\n", + " self.loss_sum = 0\n", + " \n", + " if cur_step_in_epoch > 100 and total_loss < 1:\n", + " print(\"End training, time:\", cur_time, \",epoch:\", cb_params.cur_epoch_num,\n", + " \",step:\", cur_step_in_epoch, \",loss:\", total_loss)\n", + " run_context.request_stop()\n", + "\n", + "\n", + "class LossNet(nn.Cell):\n", + " \"\"\"MaskRcnn loss sum\"\"\"\n", + " def construct(self, x1, x2):\n", + " return x1 + x2\n", + "\n", + "\n", + "class WithLossCell(nn.Cell):\n", + " \"\"\"\n", + " Wrap the network with loss function to compute loss.\n", + "\n", + " Args:\n", + " backbone (Cell): The target network to wrap.\n", + " loss_fn (Cell): The loss function used to compute loss.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input variant.\n", + " - **img_shape** (Tensor) - Img shape.\n", + " - **gt_bboxe** (Tensor) - Ground truth bounding boxes.\n", + " - **gt_label** (Tensor) - Ground truth labels.\n", + " - **gt_num** (int) - The number of ground truth.\n", + " - **gt_mask** (Tensor) - Ground truth mask.\n", + "\n", + " Outputs:\n", + " Loss network, Cell\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> from src.utils.config import config\n", + " >>> from src.model.mask_rcnn_r50 import MaskRcnnResnet50\n", + " >>> net = MaskRcnnMobilenetV1(config=config)\n", + " >>> loss = LossNet()\n", + " >>> net_with_loss = WithLossCell(net, loss)\n", + " \"\"\"\n", + " def __init__(self, backbone, loss_fn):\n", + " super(WithLossCell, self).__init__(auto_prefix=False)\n", + " self._backbone = backbone\n", + " self._loss_fn = loss_fn\n", + "\n", + " def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask):\n", + " loss1, loss2, _, _, _, _, _ = self._backbone(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask)\n", + " return self._loss_fn(loss1, loss2)\n", + "\n", + " @property\n", + " def backbone_network(self):\n", + " \"\"\"\n", + " Get the backbone network.\n", + "\n", + " Returns:\n", + " Cell, return backbone network.\n", + " \"\"\"\n", + " return self._backbone\n", + "\n", + "class TrainOneStepCell(nn.Cell):\n", + " \"\"\"\n", + " Network training package class.\n", + "\n", + " Append an optimizer to the training network\n", + " after that the construct function.\n", + " can be called to create the backward graph.\n", + "\n", + " Args:\n", + " network (Cell): The training network.\n", + " optimizer (Cell): Optimizer for updating the weights.\n", + " sens (Number): The adjust parameter. Default: 1.0.\n", + " reduce_flag (bool): The reduce flag. Default: False.\n", + " mean (bool): Allreduce method. Default: False.\n", + " degree (int): Device number. Default: None.\n", + "\n", + " Inputs:\n", + " - **x** (Tensor) - Input variant.\n", + " - **img_shape** (Tensor) - Img shape.\n", + " - **gt_bboxe** (Tensor) - Ground truth bounding boxes.\n", + " - **gt_label** (Tensor) - Ground truth labels.\n", + " - **gt_num** (int) - The number of ground truth.\n", + " - **gt_mask** (Tensor) - Ground truth mask.\n", + "\n", + " Outputs:\n", + " Float, loss result.\n", + "\n", + " Support Platform:\n", + " ``Ascend`` ``CPU`` ``GPU``\n", + "\n", + " Examples:\n", + " >>> from src.utils.config import config\n", + " >>> from src.model.mask_rcnn_r50 import MaskRcnnResnet50\n", + " >>> net = MaskRcnnResnet50(config=config)\n", + " >>> loss = LossNet()\n", + " >>> net_with_loss = WithLossCell(net, loss)\n", + " >>> lr = Tensor(dynamic_lr(config, rank_size=1, start_steps=0), mstype.float32)\n", + " >>> opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.91,\n", + " ... weight_decay=1e-4, loss_scale=1)\n", + " >>> net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale)\n", + " \"\"\"\n", + " def __init__(self, network, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None):\n", + " super(TrainOneStepCell, self).__init__(auto_prefix=False)\n", + " self.network = network\n", + " self.network.set_grad()\n", + " self.weights = ParameterTuple(network.trainable_params())\n", + " self.optimizer = optimizer\n", + " self.grad = C.GradOperation(get_by_list=True, sens_param=True)\n", + "\n", + " if config.device_target == \"Ascend\":\n", + " self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16))\n", + " else:\n", + " self.sens = Tensor((np.ones((1,)) * sens).astype(np.float32))\n", + " self.reduce_flag = reduce_flag\n", + " self.hyper_map = C.HyperMap()\n", + " if reduce_flag:\n", + " self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree)\n", + "\n", + " def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask):\n", + " \"\"\"Construct Network training package class.\"\"\"\n", + " weights = self.weights\n", + " loss = self.network(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask)\n", + " grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask, self.sens)\n", + " if self.reduce_flag:\n", + " grads = self.grad_reducer(grads)\n", + " grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)\n", + " self.optimizer(grads)\n", + " return loss" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 训练\n", + "\n", + "### 模型训练参数\n", + "\n", + "在这里,我们列出了一些重要的训练参数。此外,您可以查看配置文件config.py的详细信息。\n", + "\n", + "| Parameter | Default | Description |\n", + "| ---- | ---- | ---- |\n", + "| workers | 1 | Number of parallel workers |\n", + "| device_target | GPU | Device type |\n", + "| learning_rate | 0.002 | learning rate |\n", + "| weight_decay | 1e-4 | Control weight decay speed |\n", + "| total_epoch | 13 | Number of epoch |\n", + "| batch_size | 2 | Batch size |\n", + "| dataset | coco | Dataset name |\n", + "| pre_trained | ./checkpoint | The path of pretrained model |\n", + "| checkpoint_path | ./ckpt_0 | The path to save |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 训练模型\n", + "\n", + "模型训练需要定义好优化器、损失函数等。同时,可以加载预训练模型以加快模型训练。\n", + "\n", + "因此,我们定义权重文件加载函数。" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def load_pretrained_ckpt(net, load_path, device_target):\n", + " \"\"\"\n", + " Load pretrained checkpoint.\n", + "\n", + " Args:\n", + " net(Cell): Used Network\n", + " load_path(string): The path of checkpoint.\n", + " device_target(string): device target.\n", + "\n", + " Returns:\n", + " Cell, the network with pretrained weights.\n", + " \"\"\"\n", + " param_dict = load_checkpoint(load_path)\n", + " if config.pretrain_epoch_size == 0:\n", + " for item in list(param_dict.keys()):\n", + " if not (item.startswith('backbone') or item.startswith('rcnn_mask')):\n", + " param_dict.pop(item)\n", + "\n", + " if device_target == 'GPU':\n", + " for key, value in param_dict.items():\n", + " tensor = Tensor(value, mstype.float32)\n", + " param_dict[key] = Parameter(tensor, key)\n", + "\n", + " load_param_into_net(net, param_dict)\n", + " return net" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "本案例中,为了方便展示效果,选取了数据集中的部分数据进行了1个epoch的训练,由于加载了预训练模型,所以loss值快速趋于稳定,在1附近间波动,这可以作为判断模型收敛的一个标准。\n", + "\n", + "训练得到的ckpt文件被保存在checkpoint文件夹内,可以作为后续fine-tune以及推理的加载模型使用。" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Start train for maskrcnn!\n", + "Start create dataset!\n", + "total images num: 51790\n", + "Create dataset done!\n", + "Loading pretrained resnet50 checkpoint\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.151.285 [mindspore/train/serialization.py:648] For 'load_param_into_net', 307 parameters in the 'net' are not loaded, because they are not in the 'parameter_dict', please check whether the network structure is consistent when training and loading checkpoint.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.152.591 [mindspore/train/serialization.py:650] backbone.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.153.274 [mindspore/train/serialization.py:650] backbone.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.153.897 [mindspore/train/serialization.py:650] backbone.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.154.534 [mindspore/train/serialization.py:650] backbone.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.155.199 [mindspore/train/serialization.py:650] backbone.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.155.833 [mindspore/train/serialization.py:650] backbone.layer1.0.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.156.486 [mindspore/train/serialization.py:650] backbone.layer1.0.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.157.094 [mindspore/train/serialization.py:650] backbone.layer1.0.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.157.696 [mindspore/train/serialization.py:650] backbone.layer1.0.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.158.289 [mindspore/train/serialization.py:650] backbone.layer1.0.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.158.879 [mindspore/train/serialization.py:650] backbone.layer1.0.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.159.538 [mindspore/train/serialization.py:650] backbone.layer1.0.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.160.129 [mindspore/train/serialization.py:650] backbone.layer1.0.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.160.717 [mindspore/train/serialization.py:650] backbone.layer1.0.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.161.304 [mindspore/train/serialization.py:650] backbone.layer1.0.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.161.927 [mindspore/train/serialization.py:650] backbone.layer1.0.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.162.514 [mindspore/train/serialization.py:650] backbone.layer1.0.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.163.127 [mindspore/train/serialization.py:650] backbone.layer1.0.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.163.719 [mindspore/train/serialization.py:650] backbone.layer1.0.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.164.311 [mindspore/train/serialization.py:650] backbone.layer1.0.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.164.897 [mindspore/train/serialization.py:650] backbone.layer1.0.conv_down_sample.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.165.493 [mindspore/train/serialization.py:650] backbone.layer1.0.bn_down_sample.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.166.080 [mindspore/train/serialization.py:650] backbone.layer1.0.bn_down_sample.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.166.671 [mindspore/train/serialization.py:650] backbone.layer1.0.bn_down_sample.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.167.315 [mindspore/train/serialization.py:650] backbone.layer1.0.bn_down_sample.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.167.913 [mindspore/train/serialization.py:650] backbone.layer1.1.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.168.507 [mindspore/train/serialization.py:650] backbone.layer1.1.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.169.097 [mindspore/train/serialization.py:650] backbone.layer1.1.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.169.685 [mindspore/train/serialization.py:650] backbone.layer1.1.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.170.287 [mindspore/train/serialization.py:650] backbone.layer1.1.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.170.873 [mindspore/train/serialization.py:650] backbone.layer1.1.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.171.481 [mindspore/train/serialization.py:650] backbone.layer1.1.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.172.068 [mindspore/train/serialization.py:650] backbone.layer1.1.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.172.654 [mindspore/train/serialization.py:650] backbone.layer1.1.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.173.238 [mindspore/train/serialization.py:650] backbone.layer1.1.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.173.822 [mindspore/train/serialization.py:650] backbone.layer1.1.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.174.403 [mindspore/train/serialization.py:650] backbone.layer1.1.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.174.992 [mindspore/train/serialization.py:650] backbone.layer1.1.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.175.667 [mindspore/train/serialization.py:650] backbone.layer1.1.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.176.252 [mindspore/train/serialization.py:650] backbone.layer1.1.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.176.835 [mindspore/train/serialization.py:650] backbone.layer1.2.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.177.419 [mindspore/train/serialization.py:650] backbone.layer1.2.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.178.005 [mindspore/train/serialization.py:650] backbone.layer1.2.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.178.586 [mindspore/train/serialization.py:650] backbone.layer1.2.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.179.188 [mindspore/train/serialization.py:650] backbone.layer1.2.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.179.781 [mindspore/train/serialization.py:650] backbone.layer1.2.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.180.366 [mindspore/train/serialization.py:650] backbone.layer1.2.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.180.949 [mindspore/train/serialization.py:650] backbone.layer1.2.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.181.530 [mindspore/train/serialization.py:650] backbone.layer1.2.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.182.112 [mindspore/train/serialization.py:650] backbone.layer1.2.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.182.694 [mindspore/train/serialization.py:650] backbone.layer1.2.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.183.296 [mindspore/train/serialization.py:650] backbone.layer1.2.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.183.884 [mindspore/train/serialization.py:650] backbone.layer1.2.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.184.464 [mindspore/train/serialization.py:650] backbone.layer1.2.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.185.049 [mindspore/train/serialization.py:650] backbone.layer1.2.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.185.632 [mindspore/train/serialization.py:650] backbone.layer2.0.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.186.213 [mindspore/train/serialization.py:650] backbone.layer2.0.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.186.794 [mindspore/train/serialization.py:650] backbone.layer2.0.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.187.399 [mindspore/train/serialization.py:650] backbone.layer2.0.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.187.990 [mindspore/train/serialization.py:650] backbone.layer2.0.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.188.576 [mindspore/train/serialization.py:650] backbone.layer2.0.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.189.157 [mindspore/train/serialization.py:650] backbone.layer2.0.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.189.737 [mindspore/train/serialization.py:650] backbone.layer2.0.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.190.315 [mindspore/train/serialization.py:650] backbone.layer2.0.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.190.898 [mindspore/train/serialization.py:650] backbone.layer2.0.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.191.496 [mindspore/train/serialization.py:650] backbone.layer2.0.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.192.084 [mindspore/train/serialization.py:650] backbone.layer2.0.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.192.666 [mindspore/train/serialization.py:650] backbone.layer2.0.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.193.243 [mindspore/train/serialization.py:650] backbone.layer2.0.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.193.829 [mindspore/train/serialization.py:650] backbone.layer2.0.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.194.414 [mindspore/train/serialization.py:650] backbone.layer2.0.conv_down_sample.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.194.995 [mindspore/train/serialization.py:650] backbone.layer2.0.bn_down_sample.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.195.598 [mindspore/train/serialization.py:650] backbone.layer2.0.bn_down_sample.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.196.187 [mindspore/train/serialization.py:650] backbone.layer2.0.bn_down_sample.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.196.773 [mindspore/train/serialization.py:650] backbone.layer2.0.bn_down_sample.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.197.359 [mindspore/train/serialization.py:650] backbone.layer2.1.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.197.943 [mindspore/train/serialization.py:650] backbone.layer2.1.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.198.531 [mindspore/train/serialization.py:650] backbone.layer2.1.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.199.132 [mindspore/train/serialization.py:650] backbone.layer2.1.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.199.722 [mindspore/train/serialization.py:650] backbone.layer2.1.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.200.320 [mindspore/train/serialization.py:650] backbone.layer2.1.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.200.911 [mindspore/train/serialization.py:650] backbone.layer2.1.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.201.496 [mindspore/train/serialization.py:650] backbone.layer2.1.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.202.079 [mindspore/train/serialization.py:650] backbone.layer2.1.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.202.661 [mindspore/train/serialization.py:650] backbone.layer2.1.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.203.268 [mindspore/train/serialization.py:650] backbone.layer2.1.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.203.854 [mindspore/train/serialization.py:650] backbone.layer2.1.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.204.435 [mindspore/train/serialization.py:650] backbone.layer2.1.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.205.018 [mindspore/train/serialization.py:650] backbone.layer2.1.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.205.606 [mindspore/train/serialization.py:650] backbone.layer2.1.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.206.191 [mindspore/train/serialization.py:650] backbone.layer2.2.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.206.776 [mindspore/train/serialization.py:650] backbone.layer2.2.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.207.376 [mindspore/train/serialization.py:650] backbone.layer2.2.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.207.981 [mindspore/train/serialization.py:650] backbone.layer2.2.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.208.567 [mindspore/train/serialization.py:650] backbone.layer2.2.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.209.152 [mindspore/train/serialization.py:650] backbone.layer2.2.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.209.757 [mindspore/train/serialization.py:650] backbone.layer2.2.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.210.346 [mindspore/train/serialization.py:650] backbone.layer2.2.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.210.937 [mindspore/train/serialization.py:650] backbone.layer2.2.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.211.548 [mindspore/train/serialization.py:650] backbone.layer2.2.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.212.173 [mindspore/train/serialization.py:650] backbone.layer2.2.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.212.772 [mindspore/train/serialization.py:650] backbone.layer2.2.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.213.364 [mindspore/train/serialization.py:650] backbone.layer2.2.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.213.951 [mindspore/train/serialization.py:650] backbone.layer2.2.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.214.542 [mindspore/train/serialization.py:650] backbone.layer2.2.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.215.148 [mindspore/train/serialization.py:650] backbone.layer2.3.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.215.744 [mindspore/train/serialization.py:650] backbone.layer2.3.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.216.438 [mindspore/train/serialization.py:650] backbone.layer2.3.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.217.045 [mindspore/train/serialization.py:650] backbone.layer2.3.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.217.638 [mindspore/train/serialization.py:650] backbone.layer2.3.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.218.232 [mindspore/train/serialization.py:650] backbone.layer2.3.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.218.824 [mindspore/train/serialization.py:650] backbone.layer2.3.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.219.437 [mindspore/train/serialization.py:650] backbone.layer2.3.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.220.037 [mindspore/train/serialization.py:650] backbone.layer2.3.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.220.631 [mindspore/train/serialization.py:650] backbone.layer2.3.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.221.223 [mindspore/train/serialization.py:650] backbone.layer2.3.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.221.815 [mindspore/train/serialization.py:650] backbone.layer2.3.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.222.409 [mindspore/train/serialization.py:650] backbone.layer2.3.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.222.997 [mindspore/train/serialization.py:650] backbone.layer2.3.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.223.608 [mindspore/train/serialization.py:650] backbone.layer2.3.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.224.200 [mindspore/train/serialization.py:650] backbone.layer3.0.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.224.789 [mindspore/train/serialization.py:650] backbone.layer3.0.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.225.379 [mindspore/train/serialization.py:650] backbone.layer3.0.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.225.971 [mindspore/train/serialization.py:650] backbone.layer3.0.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.226.562 [mindspore/train/serialization.py:650] backbone.layer3.0.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.227.172 [mindspore/train/serialization.py:650] backbone.layer3.0.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.227.771 [mindspore/train/serialization.py:650] backbone.layer3.0.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.228.364 [mindspore/train/serialization.py:650] backbone.layer3.0.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.228.953 [mindspore/train/serialization.py:650] backbone.layer3.0.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.229.541 [mindspore/train/serialization.py:650] backbone.layer3.0.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.230.127 [mindspore/train/serialization.py:650] backbone.layer3.0.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.230.716 [mindspore/train/serialization.py:650] backbone.layer3.0.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.231.318 [mindspore/train/serialization.py:650] backbone.layer3.0.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.231.931 [mindspore/train/serialization.py:650] backbone.layer3.0.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.232.518 [mindspore/train/serialization.py:650] backbone.layer3.0.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.233.106 [mindspore/train/serialization.py:650] backbone.layer3.0.conv_down_sample.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.233.698 [mindspore/train/serialization.py:650] backbone.layer3.0.bn_down_sample.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.234.286 [mindspore/train/serialization.py:650] backbone.layer3.0.bn_down_sample.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.234.873 [mindspore/train/serialization.py:650] backbone.layer3.0.bn_down_sample.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.235.479 [mindspore/train/serialization.py:650] backbone.layer3.0.bn_down_sample.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.236.069 [mindspore/train/serialization.py:650] backbone.layer3.1.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.236.653 [mindspore/train/serialization.py:650] backbone.layer3.1.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.237.243 [mindspore/train/serialization.py:650] backbone.layer3.1.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.237.829 [mindspore/train/serialization.py:650] backbone.layer3.1.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.238.417 [mindspore/train/serialization.py:650] backbone.layer3.1.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.239.006 [mindspore/train/serialization.py:650] backbone.layer3.1.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.239.611 [mindspore/train/serialization.py:650] backbone.layer3.1.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.240.203 [mindspore/train/serialization.py:650] backbone.layer3.1.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.240.791 [mindspore/train/serialization.py:650] backbone.layer3.1.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.241.376 [mindspore/train/serialization.py:650] backbone.layer3.1.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.241.961 [mindspore/train/serialization.py:650] backbone.layer3.1.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.242.546 [mindspore/train/serialization.py:650] backbone.layer3.1.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.243.157 [mindspore/train/serialization.py:650] backbone.layer3.1.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.243.748 [mindspore/train/serialization.py:650] backbone.layer3.1.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.244.336 [mindspore/train/serialization.py:650] backbone.layer3.1.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.244.930 [mindspore/train/serialization.py:650] backbone.layer3.2.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.245.515 [mindspore/train/serialization.py:650] backbone.layer3.2.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.246.109 [mindspore/train/serialization.py:650] backbone.layer3.2.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.246.693 [mindspore/train/serialization.py:650] backbone.layer3.2.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.247.298 [mindspore/train/serialization.py:650] backbone.layer3.2.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.247.887 [mindspore/train/serialization.py:650] backbone.layer3.2.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.248.477 [mindspore/train/serialization.py:650] backbone.layer3.2.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.249.064 [mindspore/train/serialization.py:650] backbone.layer3.2.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.249.650 [mindspore/train/serialization.py:650] backbone.layer3.2.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.250.234 [mindspore/train/serialization.py:650] backbone.layer3.2.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.250.817 [mindspore/train/serialization.py:650] backbone.layer3.2.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.251.424 [mindspore/train/serialization.py:650] backbone.layer3.2.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.252.013 [mindspore/train/serialization.py:650] backbone.layer3.2.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.252.599 [mindspore/train/serialization.py:650] backbone.layer3.2.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.253.184 [mindspore/train/serialization.py:650] backbone.layer3.2.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.253.767 [mindspore/train/serialization.py:650] backbone.layer3.3.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.254.354 [mindspore/train/serialization.py:650] backbone.layer3.3.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.254.959 [mindspore/train/serialization.py:650] backbone.layer3.3.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.255.561 [mindspore/train/serialization.py:650] backbone.layer3.3.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.256.147 [mindspore/train/serialization.py:650] backbone.layer3.3.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.256.730 [mindspore/train/serialization.py:650] backbone.layer3.3.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.257.309 [mindspore/train/serialization.py:650] backbone.layer3.3.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.257.897 [mindspore/train/serialization.py:650] backbone.layer3.3.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.258.488 [mindspore/train/serialization.py:650] backbone.layer3.3.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.259.090 [mindspore/train/serialization.py:650] backbone.layer3.3.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.259.688 [mindspore/train/serialization.py:650] backbone.layer3.3.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.260.277 [mindspore/train/serialization.py:650] backbone.layer3.3.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.260.869 [mindspore/train/serialization.py:650] backbone.layer3.3.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.261.454 [mindspore/train/serialization.py:650] backbone.layer3.3.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.262.040 [mindspore/train/serialization.py:650] backbone.layer3.3.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.262.626 [mindspore/train/serialization.py:650] backbone.layer3.4.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.263.230 [mindspore/train/serialization.py:650] backbone.layer3.4.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.263.825 [mindspore/train/serialization.py:650] backbone.layer3.4.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.264.411 [mindspore/train/serialization.py:650] backbone.layer3.4.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.264.994 [mindspore/train/serialization.py:650] backbone.layer3.4.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.265.579 [mindspore/train/serialization.py:650] backbone.layer3.4.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.266.165 [mindspore/train/serialization.py:650] backbone.layer3.4.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.266.749 [mindspore/train/serialization.py:650] backbone.layer3.4.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.267.355 [mindspore/train/serialization.py:650] backbone.layer3.4.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.267.941 [mindspore/train/serialization.py:650] backbone.layer3.4.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.268.526 [mindspore/train/serialization.py:650] backbone.layer3.4.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.269.115 [mindspore/train/serialization.py:650] backbone.layer3.4.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.269.717 [mindspore/train/serialization.py:650] backbone.layer3.4.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.270.299 [mindspore/train/serialization.py:650] backbone.layer3.4.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.270.884 [mindspore/train/serialization.py:650] backbone.layer3.4.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.271.491 [mindspore/train/serialization.py:650] backbone.layer3.5.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.272.086 [mindspore/train/serialization.py:650] backbone.layer3.5.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.272.678 [mindspore/train/serialization.py:650] backbone.layer3.5.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.273.266 [mindspore/train/serialization.py:650] backbone.layer3.5.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.273.852 [mindspore/train/serialization.py:650] backbone.layer3.5.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.274.439 [mindspore/train/serialization.py:650] backbone.layer3.5.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.275.126 [mindspore/train/serialization.py:650] backbone.layer3.5.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.275.727 [mindspore/train/serialization.py:650] backbone.layer3.5.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.276.317 [mindspore/train/serialization.py:650] backbone.layer3.5.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.276.906 [mindspore/train/serialization.py:650] backbone.layer3.5.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.277.494 [mindspore/train/serialization.py:650] backbone.layer3.5.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.278.077 [mindspore/train/serialization.py:650] backbone.layer3.5.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.278.668 [mindspore/train/serialization.py:650] backbone.layer3.5.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.279.274 [mindspore/train/serialization.py:650] backbone.layer3.5.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.279.868 [mindspore/train/serialization.py:650] backbone.layer3.5.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.280.462 [mindspore/train/serialization.py:650] backbone.layer4.0.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.281.047 [mindspore/train/serialization.py:650] backbone.layer4.0.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.281.639 [mindspore/train/serialization.py:650] backbone.layer4.0.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.282.227 [mindspore/train/serialization.py:650] backbone.layer4.0.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.282.816 [mindspore/train/serialization.py:650] backbone.layer4.0.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.283.420 [mindspore/train/serialization.py:650] backbone.layer4.0.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.284.010 [mindspore/train/serialization.py:650] backbone.layer4.0.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.284.598 [mindspore/train/serialization.py:650] backbone.layer4.0.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.285.192 [mindspore/train/serialization.py:650] backbone.layer4.0.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.285.775 [mindspore/train/serialization.py:650] backbone.layer4.0.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.286.358 [mindspore/train/serialization.py:650] backbone.layer4.0.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.286.947 [mindspore/train/serialization.py:650] backbone.layer4.0.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.287.560 [mindspore/train/serialization.py:650] backbone.layer4.0.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.288.155 [mindspore/train/serialization.py:650] backbone.layer4.0.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.288.745 [mindspore/train/serialization.py:650] backbone.layer4.0.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.289.334 [mindspore/train/serialization.py:650] backbone.layer4.0.conv_down_sample.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.289.921 [mindspore/train/serialization.py:650] backbone.layer4.0.bn_down_sample.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.290.506 [mindspore/train/serialization.py:650] backbone.layer4.0.bn_down_sample.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.291.112 [mindspore/train/serialization.py:650] backbone.layer4.0.bn_down_sample.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.291.704 [mindspore/train/serialization.py:650] backbone.layer4.0.bn_down_sample.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.292.290 [mindspore/train/serialization.py:650] backbone.layer4.1.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.292.879 [mindspore/train/serialization.py:650] backbone.layer4.1.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.293.467 [mindspore/train/serialization.py:650] backbone.layer4.1.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.294.051 [mindspore/train/serialization.py:650] backbone.layer4.1.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.294.636 [mindspore/train/serialization.py:650] backbone.layer4.1.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.295.235 [mindspore/train/serialization.py:650] backbone.layer4.1.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.295.827 [mindspore/train/serialization.py:650] backbone.layer4.1.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.296.413 [mindspore/train/serialization.py:650] backbone.layer4.1.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.297.002 [mindspore/train/serialization.py:650] backbone.layer4.1.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.297.586 [mindspore/train/serialization.py:650] backbone.layer4.1.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.298.171 [mindspore/train/serialization.py:650] backbone.layer4.1.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.298.753 [mindspore/train/serialization.py:650] backbone.layer4.1.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.299.360 [mindspore/train/serialization.py:650] backbone.layer4.1.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.299.947 [mindspore/train/serialization.py:650] backbone.layer4.1.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.300.526 [mindspore/train/serialization.py:650] backbone.layer4.1.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.301.112 [mindspore/train/serialization.py:650] backbone.layer4.2.conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.301.699 [mindspore/train/serialization.py:650] backbone.layer4.2.bn1.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.302.284 [mindspore/train/serialization.py:650] backbone.layer4.2.bn1.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.302.871 [mindspore/train/serialization.py:650] backbone.layer4.2.bn1.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.303.471 [mindspore/train/serialization.py:650] backbone.layer4.2.bn1.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.304.061 [mindspore/train/serialization.py:650] backbone.layer4.2.conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.304.648 [mindspore/train/serialization.py:650] backbone.layer4.2.bn2.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.305.233 [mindspore/train/serialization.py:650] backbone.layer4.2.bn2.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.305.823 [mindspore/train/serialization.py:650] backbone.layer4.2.bn2.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.306.411 [mindspore/train/serialization.py:650] backbone.layer4.2.bn2.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.306.999 [mindspore/train/serialization.py:650] backbone.layer4.2.conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.307.619 [mindspore/train/serialization.py:650] backbone.layer4.2.bn3.moving_mean is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.308.212 [mindspore/train/serialization.py:650] backbone.layer4.2.bn3.moving_variance is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.308.800 [mindspore/train/serialization.py:650] backbone.layer4.2.bn3.gamma is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.309.389 [mindspore/train/serialization.py:650] backbone.layer4.2.bn3.beta is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.309.977 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.0.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.310.558 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.0.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.311.161 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.311.754 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.1.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.312.344 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.312.931 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.2.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.313.515 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.314.103 [mindspore/train/serialization.py:650] fpn_ncek.lateral_convs_list.3.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.314.689 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.0.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.315.288 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.0.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.315.876 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.316.461 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.1.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.317.050 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.317.637 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.2.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.318.225 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.318.812 [mindspore/train/serialization.py:650] fpn_ncek.fpn_convs_list.3.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.319.414 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_conv.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.320.005 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_conv.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.320.594 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_cls.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.321.179 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_cls.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.321.768 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_reg.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.322.353 [mindspore/train/serialization.py:650] rpn_with_loss.rpn_convs_list.0.rpn_reg.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.322.940 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.shared_fc_0.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.323.541 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.shared_fc_0.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.324.133 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.shared_fc_1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.324.720 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.shared_fc_1.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.325.308 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.cls_scores.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.325.897 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.cls_scores.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.326.489 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.reg_scores.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.327.092 [mindspore/train/serialization.py:650] rcnn_cls.fpn_cls.reg_scores.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.327.684 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv1.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.328.270 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv1.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.328.861 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv2.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.329.446 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv2.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.330.032 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv3.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.330.620 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv3.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.331.230 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv4.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.331.821 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv4.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.332.408 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_deconv5.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.332.997 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_deconv5.bias is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.333.678 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv6.weight is not loaded.\n", + "[WARNING] ME(53783:281472933222272,MainProcess):2022-11-16-13:07:05.334.277 [mindspore/train/serialization.py:650] rcnn_mask.fpn_mask.mask_conv6.bias is not loaded.\n", + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-13:07:10.258.620 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[ True False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]\n", + " [ True True True True True True True True True True True True\n", + " True True True True True True False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-13:07:10.261.831 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[[[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " ...\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]]\n", + "\n", + "\n", + " [[[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " ...\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]\n", + "\n", + " [[False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " ...\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]\n", + " [False False False ... False False False]]]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.596.063 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:11, name :top_k_d_7508351121019375752_0, message:2022-11-16 13:09:23.595819: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.599.058 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:12, name :top_k_d_7466765207923139055_0, message:2022-11-16 13:09:23.598865: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.601.986 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:13, name :top_k_d_17452859244373013215_0, message:2022-11-16 13:09:23.601810: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.604.934 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:14, name :top_k_d_9871390996356273705_0, message:2022-11-16 13:09:23.604756: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.608.086 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:15, name :top_k_d_7508351121019375752_0, message:2022-11-16 13:09:23.607906: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.610.983 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:16, name :top_k_d_7466765207923139055_0, message:2022-11-16 13:09:23.610807: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.613.924 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:17, name :top_k_d_17452859244373013215_0, message:2022-11-16 13:09:23.613746: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:09:23.616.869 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:18, name :top_k_d_9871390996356273705_0, message:2022-11-16 13:09:23.616689: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:09:30.871.298 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:09:30.874.818 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:09:37.795.319 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[CropAndResize] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:09:38.712.492 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[CropAndResize] don't support int64, reduce precision from int64 to int32.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "245 epoch: 1 step: 1 total_loss: 2592.00000\n", + "247 epoch: 1 step: 2 total_loss: 11584.00000\n", + "248 epoch: 1 step: 3 total_loss: 7752.00000\n", + "249 epoch: 1 step: 4 total_loss: 12256.00000\n", + "250 epoch: 1 step: 5 total_loss: 6384.00000\n", + "250 epoch: 1 step: 6 total_loss: 1470.00000\n", + "251 epoch: 1 step: 7 total_loss: 11616.00000\n", + "252 epoch: 1 step: 8 total_loss: 4980.00000\n", + "254 epoch: 1 step: 9 total_loss: 1314.00000\n", + "254 epoch: 1 step: 10 total_loss: 5428.00000\n", + "255 epoch: 1 step: 11 total_loss: 6796.00000\n", + "257 epoch: 1 step: 12 total_loss: 4022.00000\n", + "258 epoch: 1 step: 13 total_loss: 6060.00000\n", + "259 epoch: 1 step: 14 total_loss: 5004.00000\n", + "260 epoch: 1 step: 15 total_loss: 3418.00000\n", + "261 epoch: 1 step: 16 total_loss: 5192.00000\n", + "262 epoch: 1 step: 17 total_loss: 3436.00000\n", + "263 epoch: 1 step: 18 total_loss: 3482.00000\n", + "264 epoch: 1 step: 19 total_loss: 4928.00000\n", + "264 epoch: 1 step: 20 total_loss: 3746.00000\n", + "265 epoch: 1 step: 21 total_loss: 4328.00000\n", + "266 epoch: 1 step: 22 total_loss: 3620.00000\n", + "267 epoch: 1 step: 23 total_loss: 3224.00000\n", + "268 epoch: 1 step: 24 total_loss: 3640.00000\n", + "269 epoch: 1 step: 25 total_loss: 3890.00000\n", + "270 epoch: 1 step: 26 total_loss: 3048.00000\n", + "271 epoch: 1 step: 27 total_loss: 2412.00000\n", + "272 epoch: 1 step: 28 total_loss: 2638.00000\n", + "272 epoch: 1 step: 29 total_loss: 3576.00000\n", + "273 epoch: 1 step: 30 total_loss: 3140.00000\n", + "274 epoch: 1 step: 31 total_loss: 2780.00000\n", + "275 epoch: 1 step: 32 total_loss: 2264.00000\n", + "276 epoch: 1 step: 33 total_loss: 2598.00000\n", + "278 epoch: 1 step: 34 total_loss: 2160.00000\n", + "279 epoch: 1 step: 35 total_loss: 3186.00000\n", + "280 epoch: 1 step: 36 total_loss: 2262.00000\n", + "281 epoch: 1 step: 37 total_loss: 2064.00000\n", + "282 epoch: 1 step: 38 total_loss: 2476.00000\n", + "283 epoch: 1 step: 39 total_loss: 2638.00000\n", + "284 epoch: 1 step: 40 total_loss: 2468.00000\n", + "285 epoch: 1 step: 41 total_loss: 1935.00000\n", + "286 epoch: 1 step: 42 total_loss: 2432.00000\n", + "287 epoch: 1 step: 43 total_loss: 2112.00000\n", + "287 epoch: 1 step: 44 total_loss: 1336.00000\n", + "289 epoch: 1 step: 45 total_loss: 1803.00000\n", + "290 epoch: 1 step: 46 total_loss: 1526.00000\n", + "291 epoch: 1 step: 47 total_loss: 2080.00000\n", + "292 epoch: 1 step: 48 total_loss: 2644.00000\n", + "293 epoch: 1 step: 49 total_loss: 2174.00000\n", + "294 epoch: 1 step: 50 total_loss: 2512.00000\n", + "295 epoch: 1 step: 51 total_loss: 1017.00000\n", + "297 epoch: 1 step: 52 total_loss: 1112.00000\n", + "298 epoch: 1 step: 53 total_loss: 926.00000\n", + "299 epoch: 1 step: 54 total_loss: 1865.00000\n", + "301 epoch: 1 step: 55 total_loss: 1866.00000\n", + "302 epoch: 1 step: 56 total_loss: 1537.00000\n", + "303 epoch: 1 step: 57 total_loss: 1398.00000\n", + "304 epoch: 1 step: 58 total_loss: 1460.00000\n", + "305 epoch: 1 step: 59 total_loss: 692.50000\n", + "307 epoch: 1 step: 60 total_loss: 722.00000\n", + "308 epoch: 1 step: 61 total_loss: 896.50000\n", + "309 epoch: 1 step: 62 total_loss: 1724.00000\n", + "311 epoch: 1 step: 63 total_loss: 224.75000\n", + "312 epoch: 1 step: 64 total_loss: 1126.00000\n", + "313 epoch: 1 step: 65 total_loss: 401.75000\n", + "314 epoch: 1 step: 66 total_loss: 758.00000\n", + "315 epoch: 1 step: 67 total_loss: 692.00000\n", + "316 epoch: 1 step: 68 total_loss: 1184.00000\n", + "317 epoch: 1 step: 69 total_loss: 956.00000\n", + "318 epoch: 1 step: 70 total_loss: 613.50000\n", + "319 epoch: 1 step: 71 total_loss: 401.50000\n", + "320 epoch: 1 step: 72 total_loss: 329.00000\n", + "321 epoch: 1 step: 73 total_loss: 199.75000\n", + "322 epoch: 1 step: 74 total_loss: 255.87500\n", + "323 epoch: 1 step: 75 total_loss: 108.18750\n", + "324 epoch: 1 step: 76 total_loss: 607.00000\n", + "325 epoch: 1 step: 77 total_loss: 531.50000\n", + "326 epoch: 1 step: 78 total_loss: 535.00000\n", + "327 epoch: 1 step: 79 total_loss: 598.00000\n", + "329 epoch: 1 step: 80 total_loss: 504.50000\n", + "330 epoch: 1 step: 81 total_loss: 1024.00000\n", + "331 epoch: 1 step: 82 total_loss: 373.00000\n", + "332 epoch: 1 step: 83 total_loss: 123.62500\n", + "333 epoch: 1 step: 84 total_loss: 441.50000\n", + "334 epoch: 1 step: 85 total_loss: 54.93750\n", + "336 epoch: 1 step: 86 total_loss: 86.75000\n", + "337 epoch: 1 step: 87 total_loss: 4.78906\n", + "338 epoch: 1 step: 88 total_loss: 7.96094\n", + "339 epoch: 1 step: 89 total_loss: 6.01562\n", + "340 epoch: 1 step: 90 total_loss: 5.78125\n", + "341 epoch: 1 step: 91 total_loss: 5.37109\n", + "342 epoch: 1 step: 92 total_loss: 26.62500\n", + "343 epoch: 1 step: 93 total_loss: 1.47656\n", + "344 epoch: 1 step: 94 total_loss: 2.57031\n", + "345 epoch: 1 step: 95 total_loss: 16.39062\n", + "346 epoch: 1 step: 96 total_loss: 4.41797\n", + "347 epoch: 1 step: 97 total_loss: 3.37305\n", + "348 epoch: 1 step: 98 total_loss: 8.80469\n", + "349 epoch: 1 step: 99 total_loss: 3.15625\n", + "350 epoch: 1 step: 100 total_loss: 1.19531\n", + "350 epoch: 1 step: 101 total_loss: 1.85547\n", + "351 epoch: 1 step: 102 total_loss: 2.41602\n", + "352 epoch: 1 step: 103 total_loss: 2.27930\n", + "353 epoch: 1 step: 104 total_loss: 29.39062\n", + "354 epoch: 1 step: 105 total_loss: 3.41992\n", + "355 epoch: 1 step: 106 total_loss: 1.57520\n", + "356 epoch: 1 step: 107 total_loss: 3.26953\n", + "357 epoch: 1 step: 108 total_loss: 2.28125\n", + "358 epoch: 1 step: 109 total_loss: 9.93750\n", + "359 epoch: 1 step: 110 total_loss: 8.59375\n", + "360 epoch: 1 step: 111 total_loss: 23.15625\n", + "361 epoch: 1 step: 112 total_loss: 64.93750\n", + "362 epoch: 1 step: 113 total_loss: 2.15820\n", + "363 epoch: 1 step: 114 total_loss: 3.26367\n", + "364 epoch: 1 step: 115 total_loss: 1.33984\n", + "365 epoch: 1 step: 116 total_loss: 1.49707\n", + "366 epoch: 1 step: 117 total_loss: 1.06250\n", + "367 epoch: 1 step: 118 total_loss: 1.42383\n", + "368 epoch: 1 step: 119 total_loss: 3.01562\n", + "369 epoch: 1 step: 120 total_loss: 38.87500\n", + "371 epoch: 1 step: 121 total_loss: 3.65430\n", + "372 epoch: 1 step: 122 total_loss: 15.10938\n", + "373 epoch: 1 step: 123 total_loss: 8.26562\n", + "374 epoch: 1 step: 124 total_loss: 7.73828\n", + "375 epoch: 1 step: 125 total_loss: 3.43750\n", + "377 epoch: 1 step: 126 total_loss: 4.44141\n", + "378 epoch: 1 step: 127 total_loss: 2.40625\n", + "379 epoch: 1 step: 128 total_loss: 2.77344\n", + "380 epoch: 1 step: 129 total_loss: 0.91992\n", + "End training, time: 1668575608.1557152 ,epoch: 1 ,step: 129 ,loss: 0.919921875\n", + "epoch time: 380117.420 ms, per step time: 7.340 ms\n" + ] + } + ], + "source": [ + "from utils.lr_schedule import dynamic_lr\n", + "\n", + "set_seed(1)\n", + "\n", + "def train_maskrcnn():\n", + " \"\"\"construct the traning function\"\"\"\n", + " # Allocating memory Environment\n", + " device_target = config.device_target\n", + " rank = 0\n", + " device_num = 1\n", + " context.set_context(mode=context.GRAPH_MODE, device_target=device_target)\n", + "\n", + " print(\"Start train for maskrcnn!\")\n", + "\n", + " dataset_sink_mode_flag = True\n", + " if not config.do_eval and config.run_distribute:\n", + " init()\n", + " rank = get_rank()\n", + " dataset_sink_mode_flag = device_target == 'Ascend'\n", + " device_num = get_group_size()\n", + " context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,\n", + " gradients_mean=True)\n", + " else:\n", + " rank = 0\n", + " device_num = 1\n", + "\n", + " print(\"Start create dataset!\")\n", + " # Call the interface for data processing\n", + " # It will generate mindrecord file in config.mindrecord_dir,\n", + " # and the file name is MaskRcnn.mindrecord0, 1, ... file_num.\n", + " prefix = \"MaskRcnn.mindrecord\"\n", + " mindrecord_dir = os.path.join(config.data_root, config.mindrecord_dir)\n", + " mindrecord_file = os.path.join(mindrecord_dir, prefix + \"0\")\n", + " if rank == 0 and not os.path.exists(mindrecord_file):\n", + " create_mindrecord_dir(prefix, mindrecord_dir)\n", + " # When create MindDataset, using the fitst mindrecord file,\n", + " # such as MaskRcnn.mindrecord0.\n", + "\n", + " dataset = create_coco_dataset(mindrecord_file, batch_size=config.batch_size, device_num=device_num, rank_id=rank)\n", + " dataset_size = dataset.get_dataset_size()\n", + " print(\"total images num: \", dataset_size)\n", + " print(\"Create dataset done!\")\n", + "\n", + " # Net Instance\n", + " net = MaskRcnnResnet50(config=config)\n", + " net = net.set_train()\n", + "\n", + " # load pretrained model\n", + " load_path = config.pre_trained\n", + " if load_path != \"\":\n", + " print(\"Loading pretrained resnet50 checkpoint\")\n", + " net = load_pretrained_ckpt(net=net, load_path=load_path, device_target=device_target)\n", + "\n", + " loss = LossNet()\n", + " lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),\n", + " mstype.float32)\n", + " opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,\n", + " weight_decay=config.weight_decay, loss_scale=config.loss_scale)\n", + " # wrap the loss function\n", + " net_with_loss = WithLossCell(net, loss)\n", + " # Use TrainOneStepCell set the training pipeline.\n", + " net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale)\n", + " # Monitor the traning process.\n", + " time_cb = TimeMonitor(data_size=dataset_size)\n", + " loss_cb = LossCallBack(rank_id=rank)\n", + " cb = [time_cb, loss_cb]\n", + " # save the trained model\n", + " if config.save_checkpoint:\n", + " # set saved weights.\n", + " ckpt_step = config.save_checkpoint_epochs * dataset_size\n", + " ckptconfig = CheckpointConfig(save_checkpoint_steps=5000, keep_checkpoint_max=config.keep_checkpoint_max)\n", + " save_checkpoint_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/')\n", + " # apply saved weights.\n", + " ckpoint_cb = ModelCheckpoint(prefix='mask_rcnn', directory=save_checkpoint_path, config=ckptconfig)\n", + " cb += [ckpoint_cb]\n", + " # start training.\n", + " model = Model(net)\n", + " model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False)\n", + "\n", + "if __name__ == '__main__':\n", + " train_maskrcnn()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 评估\n", + "\n", + "完成训练后,我们可以将我们训练的模型保存在checkpoint目录下。\n", + "\n", + "在COCO的validation数据集上,可以评估我们训练好的模型的准确性。" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "eval.py config:\n", + " Namespace(activate_num_classes=256, anchor_ratios=[0.5, 1.0, 2.0], anchor_scales=[8], anchor_strides=[4, 8, 16, 32, 64], ann_file='../../coco2017bk/annotations/instances_val2017.json', ann_path='../../coco2017bk/annotations/instances_val2017.json', base_lr=0.02, base_step=59633, batch_size=2, batch_size_export=1, checkpoint_path='../checkpoint/maskrcnn_coco2017_acc32.9.ckpt', ckpt_file='./checkpoint/maskrcnn_gpu_coco.ckpt', data_classes=('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'), data_root='../../coco2017bk', dataset='coco', device_id=0, device_num=1, device_target='Ascend', do_eval=False, do_train=True, enable_profiling=False, epoch_size=12, expand_ratio=1.0, feature_shapes=[(192, 320), (96, 160), (48, 80), (24, 40), (12, 20)], file_name='./checkpoint/maskrcnn_coco2017_acc32.9.ckpt', flip_ratio=0.5, fpn_in_channels=[256, 512, 1024, 2048], fpn_num_outs=5, fpn_out_channels=256, img_height=768, img_path='../../coco2017bk/val2017', img_width=1280, instance_set='annotations/instances_{}.json', keep_checkpoint_max=12, keep_ratio=True, loss_scale=1, mask_shape=[28, 28], mask_thr_binary=0.5, max_instance_count=128, min_pos_iou=0.3, min_pos_iou_stage2=0.5, mindrecord_dir='./MindRecord_COCO/MindRecord_COCO', momentum=0.91, neg_iou_thr=0.3, neg_iou_thr_stage2=0.5, num_anchors=3, num_bboxes=245520, num_bboxes_stage2=2000, num_classes=81, num_expected_neg=256, num_expected_neg_stage2=512, num_expected_pos=128, num_expected_pos_stage2=128, num_expected_total_stage2=512, num_gts=128, only_create_dataset=False, pos_iou_thr=0.7, pos_iou_thr_stage2=0.5, pre_trained='../../maskrcnnr5/checkpoint/resnet50_ascend_v180_imagenet2012_official_cv_top1acc76.97_top5acc93.44.ckpt', pretrain_epoch_size=0, rank_id=0, rcnn_fc_out_channels=1024, rcnn_in_channels=256, rcnn_loss_cls_weight=1, rcnn_loss_mask_fb_weight=1, rcnn_loss_reg_weight=1, rcnn_mask_out_channels=256, rcnn_num_layers=2, rcnn_target_means=[0.0, 0.0, 0.0, 0.0], rcnn_target_stds=[0.1, 0.1, 0.2, 0.2], resnet_block=[3, 4, 6, 3], resnet_in_channels=[64, 256, 512, 1024], resnet_out_channels=[256, 512, 1024, 2048], result_path='./results', roi_align_featmap_strides=[4, 8, 16, 32], roi_align_finest_scale=56, roi_align_out_channels=256, roi_layer={'type': 'RoIAlign', 'out_size': 7, 'mask_out_size': 14, 'sample_num': 2}, roi_sample_num=640, rpn_cls_out_channels=1, rpn_feat_channels=256, rpn_head_use_sigmoid=True, rpn_head_weight=1.0, rpn_in_channels=256, rpn_loss_cls_weight=1.0, rpn_loss_reg_weight=1.0, rpn_max_num=1000, rpn_min_bbox_min_size=0, rpn_nms_across_levels=False, rpn_nms_post=1000, rpn_nms_pre=1000, rpn_nms_thr=0.7, rpn_proposal_max_num=2000, rpn_proposal_min_bbox_size=0, rpn_proposal_nms_across_levels=False, rpn_proposal_nms_post=2000, rpn_proposal_nms_pre=2000, rpn_proposal_nms_thr=0.7, rpn_target_means=[0.0, 0.0, 0.0, 0.0], rpn_target_stds=[1.0, 1.0, 1.0, 1.0], run_distribute=False, save_checkpoint=True, save_checkpoint_epochs=1, save_checkpoint_path='./', sgd_momentum=0.9, test_batch_size=2, test_iou_thr=0.5, test_max_per_img=100, test_score_thr=0.05, total_epoch=13, train_data_type='train2017', use_sigmoid_cls=True, val_data_type='val2017', warmup_ratio=0.3333333333333333, warmup_step=500, weight_decay=0.0001)\n", + "Start Eval!\n", + "loading annotations into memory...\n", + "Done (t=1.91s)\n", + "creating index...\n", + "index created!\n", + "total images num: 2500\n", + "Processing, please wait a moment.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-13:13:37.483.470 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]\n", + " [False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-13:13:37.483.933 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[[[False]]]\n", + "\n", + "\n", + " [[[False]]]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.440.004 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44661, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.439764: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.443.323 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44662, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.443141: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.446.531 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44663, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.446354: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.449.743 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44664, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.449572: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.452.948 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44665, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.452774: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.456.184 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44666, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.456010: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.459.387 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44667, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.459213: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.462.559 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44668, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.462387: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.465.923 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44669, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.465746: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.469.096 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44670, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.468925: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.472.313 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44671, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.472143: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.475.464 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44672, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.475293: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.478.611 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44673, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.478434: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.481.787 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44674, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.481617: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.484.961 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44675, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.484791: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.488.174 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44676, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.488003: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.495.595 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44677, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.495335: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.499.053 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44678, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.498866: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.502.311 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44679, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.502134: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.505.620 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44680, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.505441: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.508.973 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44681, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.508791: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.512.311 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44682, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.512133: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.515.581 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44683, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.515399: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.518.797 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44684, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.518622: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.522.262 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44685, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.522084: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.525.501 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44686, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.525324: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.528.727 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44687, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.528553: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.531.929 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44688, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.531757: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.535.161 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44689, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.534973: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.538.358 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44690, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.538182: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.541.537 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44691, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.541365: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.544.867 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44692, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.544687: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.548.083 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44693, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.547906: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.551.311 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44694, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.551136: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.554.516 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44695, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.554341: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.557.705 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44696, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.557531: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.560.906 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44697, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.560729: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.564.123 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44698, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.563948: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.567.320 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44699, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.567145: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.570.699 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44700, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.570520: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.573.865 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44701, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.573687: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.577.455 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44702, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.577279: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.580.669 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44703, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.580492: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.583.820 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44704, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.583648: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.586.958 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44705, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.586782: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.590.159 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44706, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.589983: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.593.332 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44707, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.593153: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.596.706 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44708, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.596526: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.599.908 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44709, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.599729: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.603.059 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44710, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.602875: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.606.238 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44711, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.606060: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.609.408 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44712, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.609225: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.612.557 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44713, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.612380: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.615.714 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44714, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.615539: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.618.881 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44715, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.618706: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.622.241 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44716, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.622064: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.625.402 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44717, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.625226: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.628.509 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44718, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.628326: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.631.596 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44719, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.631422: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.634.694 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44720, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.634505: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.637.839 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44721, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.637664: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.640.948 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44722, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.640776: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.644.057 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44723, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.643878: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.649.076 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44724, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.648888: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.652.297 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44725, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.652119: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.655.806 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44726, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.655621: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.659.961 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44727, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.659771: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.663.862 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44728, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.663674: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.667.498 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44729, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.667318: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.671.131 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44730, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.670935: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.674.854 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44731, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.674661: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.678.382 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44732, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.678195: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.681.974 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44733, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.681780: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.685.576 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44734, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.685393: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.689.080 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44735, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.688898: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.692.633 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44736, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.692451: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.696.142 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44737, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.695960: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.699.636 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44738, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.699451: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.703.248 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44739, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.703059: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.706.668 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44740, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.706493: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.710.137 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44741, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.709958: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.713.591 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44742, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.713406: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.717.043 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44743, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.716864: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.720.471 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44744, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.720292: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.723.917 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44745, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.723728: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.727.359 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44746, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.727166: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.730.894 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44747, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.730715: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.734.341 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44748, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.734161: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.737.772 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44749, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.737593: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.741.202 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44750, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.741025: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.744.615 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44751, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.744435: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.748.027 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44752, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.747846: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.751.414 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44753, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.751227: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.754.696 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44754, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.754523: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.758.154 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44755, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.757970: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.761.542 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44756, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.761359: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.764.896 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44757, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.764718: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.768.301 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44758, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.768122: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.771.687 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44759, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.771480: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.775.061 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44760, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.774870: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.778.421 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44761, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.778244: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.781.822 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44762, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.781645: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.785.287 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44763, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.785103: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.788.682 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44764, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.788471: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.792.022 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44765, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.791842: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.795.317 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44766, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.795135: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.798.534 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44767, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.798354: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.801.756 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44768, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.801578: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.804.906 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44769, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.804732: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.808.078 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44770, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.807898: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.811.336 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44771, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.811158: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.814.454 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44772, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.814282: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.817.584 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44773, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.817405: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.820.736 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44774, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.820558: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.823.863 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44775, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.823686: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.827.020 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44776, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.826846: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.830.160 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44777, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.829986: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.833.318 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44778, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.833146: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.836.581 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44779, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.836399: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.839.752 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44780, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.839573: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.842.894 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44781, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.842716: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.846.061 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44782, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.845885: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.849.234 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44783, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.849057: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.852.441 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44784, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.852236: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.855.612 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44785, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.855428: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.858.731 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44786, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.858554: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.861.984 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44787, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.861809: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.865.148 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44788, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.864974: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.868.320 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44789, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.868138: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.871.453 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44790, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.871277: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.874.568 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44791, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.874387: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.877.671 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44792, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.877494: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.880.769 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44793, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.880598: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.883.872 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44794, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.883693: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.887.065 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44795, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.886876: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.890.186 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44796, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.890004: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.893.301 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44797, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.893124: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.896.420 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44798, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.896243: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.899.579 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44799, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.899403: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.902.687 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44800, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.902510: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.905.804 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44801, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.905630: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.908.917 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44802, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.908742: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.912.137 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44803, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.911958: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.915.248 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44804, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.915069: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.918.359 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44805, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.918186: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.921.496 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44806, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.921322: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.924.581 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44807, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.924407: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.927.669 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44808, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.927489: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.930.740 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44809, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.930566: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.933.817 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44810, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.933639: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.936.976 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44811, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.936797: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.940.098 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44812, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.939891: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.943.159 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44813, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.942962: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.946.231 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44814, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.946054: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.949.339 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44815, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.949164: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.952.417 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44816, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.952245: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.955.486 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44817, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.955307: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.958.532 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44818, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.958362: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.963.393 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44819, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.963207: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:14:59.966.497 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44820, name :top_k_d_5043579305982986424_0, message:2022-11-16 13:14:59.966321: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.008.518 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44831, name :top_k_d_13999888294925708646_0, message:2022-11-16 13:15:00.008330: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.011.647 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44832, name :top_k_d_13876671179693792995_0, message:2022-11-16 13:15:00.011465: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.014.772 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44833, name :top_k_d_13928381274987235808_0, message:2022-11-16 13:15:00.014594: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.017.884 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44834, name :top_k_d_9871390996356273705_0, message:2022-11-16 13:15:00.017709: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.021.192 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44835, name :top_k_d_13999888294925708646_0, message:2022-11-16 13:15:00.021011: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.024.351 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44836, name :top_k_d_13876671179693792995_0, message:2022-11-16 13:15:00.024171: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.027.508 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44837, name :top_k_d_13928381274987235808_0, message:2022-11-16 13:15:00.027303: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-13:15:00.030.690 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:44838, name :top_k_d_9871390996356273705_0, message:2022-11-16 13:15:00.030500: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:15:06.728.745 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-13:15:06.732.330 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] PRE_ACT(53783,ffff8632d780,python):2022-11-16-13:16:49.292.540 [mindspore/ccsrc/backend/common/somas/somas.cc:294] UpdateTensorsOffset] Mismatch size of tensor 593 0 vs 4096\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iter 1 cost time 201.93067073822021\n", + "Iter 2 cost time 0.381087064743042\n", + "Iter 3 cost time 0.37433290481567383\n", + "Iter 4 cost time 0.37767982482910156\n", + "Iter 5 cost time 0.37535786628723145\n", + "Iter 6 cost time 0.3764312267303467\n", + "Iter 7 cost time 0.37731409072875977\n", + "Iter 8 cost time 0.4235191345214844\n", + "Iter 9 cost time 0.40209031105041504\n", + "Iter 10 cost time 0.3951232433319092\n", + "Iter 11 cost time 0.37851643562316895\n", + "Iter 12 cost time 0.4024662971496582\n", + "Iter 13 cost time 0.3763906955718994\n", + "Iter 14 cost time 0.3807048797607422\n", + "Iter 15 cost time 0.37706542015075684\n", + "Iter 16 cost time 0.40575623512268066\n", + "Iter 17 cost time 0.4049263000488281\n", + "Iter 18 cost time 0.4000437259674072\n", + "Iter 19 cost time 0.406721830368042\n", + "Iter 20 cost time 0.4007854461669922\n", + "Iter 21 cost time 0.4026055335998535\n", + "Iter 22 cost time 0.4041905403137207\n", + "Iter 23 cost time 0.39791154861450195\n", + "Iter 24 cost time 0.4001796245574951\n", + "Iter 25 cost time 0.3960442543029785\n", + "Iter 26 cost time 0.3771064281463623\n", + "Iter 27 cost time 0.3795924186706543\n", + "Iter 28 cost time 0.3773050308227539\n", + "Iter 29 cost time 0.37631702423095703\n", + "Iter 30 cost time 0.37659239768981934\n", + "Iter 31 cost time 0.37523770332336426\n", + "Iter 32 cost time 0.37642598152160645\n", + "Iter 33 cost time 0.37662506103515625\n", + "Iter 34 cost time 0.3820650577545166\n", + "Iter 35 cost time 0.3776404857635498\n", + "Iter 36 cost time 0.37567996978759766\n", + "Iter 37 cost time 0.41228222846984863\n", + "Iter 38 cost time 0.37882184982299805\n", + "Iter 39 cost time 0.37426018714904785\n", + "Iter 40 cost time 0.3798055648803711\n", + "Iter 41 cost time 0.3745293617248535\n", + "Iter 42 cost time 0.3935048580169678\n", + "Iter 43 cost time 0.38555240631103516\n", + "Iter 44 cost time 0.3785693645477295\n", + "Iter 45 cost time 0.38210058212280273\n", + "Iter 46 cost time 0.3777649402618408\n", + "Iter 47 cost time 0.37603211402893066\n", + "Iter 48 cost time 0.37601304054260254\n", + "Iter 49 cost time 0.3779432773590088\n", + "Iter 50 cost time 0.37097668647766113\n", + "Iter 51 cost time 0.37497854232788086\n", + "Iter 52 cost time 0.3735172748565674\n", + "Iter 53 cost time 0.37395548820495605\n", + "Iter 54 cost time 0.37637877464294434\n", + "Iter 55 cost time 0.37922000885009766\n", + "Iter 56 cost time 0.36884570121765137\n", + "Iter 57 cost time 0.3783555030822754\n", + "Iter 58 cost time 0.3692631721496582\n", + "Iter 59 cost time 0.3653371334075928\n", + "Iter 60 cost time 0.36832404136657715\n", + "Iter 61 cost time 0.3671286106109619\n", + "Iter 62 cost time 0.36827826499938965\n", + "Iter 63 cost time 0.36727404594421387\n", + "Iter 64 cost time 0.3704233169555664\n", + "Iter 65 cost time 0.3669896125793457\n", + "Iter 66 cost time 0.35829854011535645\n", + "Iter 67 cost time 0.35999631881713867\n", + "Iter 68 cost time 0.3618292808532715\n", + "Iter 69 cost time 0.3611178398132324\n", + "Iter 70 cost time 0.3651120662689209\n", + "Iter 71 cost time 0.36377978324890137\n", + "Iter 72 cost time 0.36620140075683594\n", + "Iter 73 cost time 0.36421823501586914\n", + "Iter 74 cost time 0.3653838634490967\n", + "Iter 75 cost time 0.3620288372039795\n", + "Iter 76 cost time 0.38013410568237305\n", + "Iter 77 cost time 0.37515783309936523\n", + "Iter 78 cost time 0.377103328704834\n", + "Iter 79 cost time 0.38051414489746094\n", + "Iter 80 cost time 0.36678314208984375\n", + "Iter 81 cost time 0.3666045665740967\n", + "Iter 82 cost time 0.37074899673461914\n", + "Iter 83 cost time 0.3623988628387451\n", + "Iter 84 cost time 0.40106868743896484\n", + "Iter 85 cost time 0.39893603324890137\n", + "Iter 86 cost time 0.39612722396850586\n", + "Iter 87 cost time 0.3789389133453369\n", + "Iter 88 cost time 0.3729698657989502\n", + "Iter 89 cost time 0.3754606246948242\n", + "Iter 90 cost time 0.38001465797424316\n", + "Iter 91 cost time 0.3858215808868408\n", + "Iter 92 cost time 0.38005542755126953\n", + "Iter 93 cost time 0.37850236892700195\n", + "Iter 94 cost time 0.3786354064941406\n", + "Iter 95 cost time 0.3755331039428711\n", + "Iter 96 cost time 0.3766934871673584\n", + "Iter 97 cost time 0.37760043144226074\n", + "Iter 98 cost time 0.40958452224731445\n", + "Iter 99 cost time 0.37283968925476074\n", + "Iter 100 cost time 0.37374424934387207\n", + "Iter 101 cost time 0.37468910217285156\n", + "Iter 102 cost time 0.37029266357421875\n", + "Iter 103 cost time 0.3773505687713623\n", + "Iter 104 cost time 0.3685617446899414\n", + "Iter 105 cost time 0.37119054794311523\n", + "Iter 106 cost time 0.3723728656768799\n", + "Iter 107 cost time 0.36971426010131836\n", + "Iter 108 cost time 0.3833432197570801\n", + "Iter 109 cost time 0.368624210357666\n", + "Iter 110 cost time 0.3631591796875\n", + "Iter 111 cost time 0.36660170555114746\n", + "Iter 112 cost time 0.3689558506011963\n", + "Iter 113 cost time 0.36130404472351074\n", + "Iter 114 cost time 0.37946414947509766\n", + "Iter 115 cost time 0.3753845691680908\n", + "Iter 116 cost time 0.3756523132324219\n", + "Iter 117 cost time 0.3781321048736572\n", + "Iter 118 cost time 0.3801882266998291\n", + "Iter 119 cost time 0.40009212493896484\n", + "Iter 120 cost time 0.38155484199523926\n", + "Iter 121 cost time 0.36853933334350586\n", + "Iter 122 cost time 0.3962442874908447\n", + "Iter 123 cost time 0.3662431240081787\n", + "Iter 124 cost time 0.3723635673522949\n", + "Iter 125 cost time 0.37029051780700684\n", + "Iter 126 cost time 0.3708014488220215\n", + "Iter 127 cost time 0.37578654289245605\n", + "Iter 128 cost time 0.3734002113342285\n", + "Iter 129 cost time 0.3780333995819092\n", + "Iter 130 cost time 0.3723881244659424\n", + "Iter 131 cost time 0.37340283393859863\n", + "Iter 132 cost time 0.37245798110961914\n", + "Iter 133 cost time 0.3664555549621582\n", + "Iter 134 cost time 0.3901968002319336\n", + "Iter 135 cost time 0.37714576721191406\n", + "Iter 136 cost time 0.40308618545532227\n", + "Iter 137 cost time 0.37287449836730957\n", + "Iter 138 cost time 0.3713035583496094\n", + "Iter 139 cost time 0.4033689498901367\n", + "Iter 140 cost time 0.39397382736206055\n", + "Iter 141 cost time 0.3755316734313965\n", + "Iter 142 cost time 0.3732743263244629\n", + "Iter 143 cost time 0.37342381477355957\n", + "Iter 144 cost time 0.3725299835205078\n", + "Iter 145 cost time 0.3896200656890869\n", + "Iter 146 cost time 0.3769197463989258\n", + "Iter 147 cost time 0.377932071685791\n", + "Iter 148 cost time 0.37417006492614746\n", + "Iter 149 cost time 0.37856388092041016\n", + "Iter 150 cost time 0.3765602111816406\n", + "Iter 151 cost time 0.37637782096862793\n", + "Iter 152 cost time 0.3753397464752197\n", + "Iter 153 cost time 0.3739278316497803\n", + "Iter 154 cost time 0.3742654323577881\n", + "Iter 155 cost time 0.3738248348236084\n", + "Iter 156 cost time 0.3748757839202881\n", + "Iter 157 cost time 0.3748745918273926\n", + "Iter 158 cost time 0.37139058113098145\n", + "Iter 159 cost time 0.38527798652648926\n", + "Iter 160 cost time 0.3789033889770508\n", + "Iter 161 cost time 0.3729255199432373\n", + "Iter 162 cost time 0.37237024307250977\n", + "Iter 163 cost time 0.3716576099395752\n", + "Iter 164 cost time 0.37761402130126953\n", + "Iter 165 cost time 0.38120579719543457\n", + "Iter 166 cost time 0.3781580924987793\n", + "Iter 167 cost time 0.3661515712738037\n", + "Iter 168 cost time 0.3676419258117676\n", + "Iter 169 cost time 0.3677232265472412\n", + "Iter 170 cost time 0.36655640602111816\n", + "Iter 171 cost time 0.363400936126709\n", + "Iter 172 cost time 0.37315869331359863\n", + "Iter 173 cost time 0.36124515533447266\n", + "Iter 174 cost time 0.36632490158081055\n", + "Iter 175 cost time 0.3620874881744385\n", + "Iter 176 cost time 0.375441312789917\n", + "Iter 177 cost time 0.3733675479888916\n", + "Iter 178 cost time 0.37691497802734375\n", + "Iter 179 cost time 0.37807774543762207\n", + "Iter 180 cost time 0.38099217414855957\n", + "Iter 181 cost time 0.3966939449310303\n", + "Iter 182 cost time 0.4014015197753906\n", + "Iter 183 cost time 0.39302945137023926\n", + "Iter 184 cost time 0.42181873321533203\n", + "Iter 185 cost time 0.37218689918518066\n", + "Iter 186 cost time 0.40105414390563965\n", + "Iter 187 cost time 0.41343116760253906\n", + "Iter 188 cost time 0.3992769718170166\n", + "Iter 189 cost time 0.4001944065093994\n", + "Iter 190 cost time 0.40047216415405273\n", + "Iter 191 cost time 0.4087045192718506\n", + "Iter 192 cost time 0.37706637382507324\n", + "Iter 193 cost time 0.3758111000061035\n", + "Iter 194 cost time 0.38027381896972656\n", + "Iter 195 cost time 0.37857866287231445\n", + "Iter 196 cost time 0.3806781768798828\n", + "Iter 197 cost time 0.3769090175628662\n", + "Iter 198 cost time 0.3767368793487549\n", + "Iter 199 cost time 0.3774435520172119\n", + "Iter 200 cost time 0.3733856678009033\n", + "Iter 201 cost time 0.3732154369354248\n", + "Iter 202 cost time 0.379166841506958\n", + "Iter 203 cost time 0.366487979888916\n", + "Iter 204 cost time 0.3746969699859619\n", + "Iter 205 cost time 0.3805520534515381\n", + "Iter 206 cost time 0.3800227642059326\n", + "Iter 207 cost time 0.3802347183227539\n", + "Iter 208 cost time 0.3717927932739258\n", + "Iter 209 cost time 0.37680673599243164\n", + "Iter 210 cost time 0.3767812252044678\n", + "Iter 211 cost time 0.368971586227417\n", + "Iter 212 cost time 0.37422800064086914\n", + "Iter 213 cost time 0.373964786529541\n", + "Iter 214 cost time 0.37317585945129395\n", + "Iter 215 cost time 0.37225770950317383\n", + "Iter 216 cost time 0.37295007705688477\n", + "Iter 217 cost time 0.3712286949157715\n", + "Iter 218 cost time 0.37372255325317383\n", + "Iter 219 cost time 0.3713035583496094\n", + "Iter 220 cost time 0.36214423179626465\n", + "Iter 221 cost time 0.36824870109558105\n", + "Iter 222 cost time 0.36949801445007324\n", + "Iter 223 cost time 0.3688852787017822\n", + "Iter 224 cost time 0.364804744720459\n", + "Iter 225 cost time 0.3762538433074951\n", + "Iter 226 cost time 0.37110185623168945\n", + "Iter 227 cost time 0.3738565444946289\n", + "Iter 228 cost time 0.3757636547088623\n", + "Iter 229 cost time 0.37354350090026855\n", + "Iter 230 cost time 0.3717055320739746\n", + "Iter 231 cost time 0.37299227714538574\n", + "Iter 232 cost time 0.3758053779602051\n", + "Iter 233 cost time 0.37486839294433594\n", + "Iter 234 cost time 0.3757767677307129\n", + "Iter 235 cost time 0.3790321350097656\n", + "Iter 236 cost time 0.3768799304962158\n", + "Iter 237 cost time 0.3778076171875\n", + "Iter 238 cost time 0.3730952739715576\n", + "Iter 239 cost time 0.37473130226135254\n", + "Iter 240 cost time 0.3757929801940918\n", + "Iter 241 cost time 0.3763275146484375\n", + "Iter 242 cost time 0.3763730525970459\n", + "Iter 243 cost time 0.37320995330810547\n", + "Iter 244 cost time 0.3737354278564453\n", + "Iter 245 cost time 0.37621355056762695\n", + "Iter 246 cost time 0.37649059295654297\n", + "Iter 247 cost time 0.3764801025390625\n", + "Iter 248 cost time 0.37435173988342285\n", + "Iter 249 cost time 0.37195587158203125\n", + "Iter 250 cost time 0.373035192489624\n", + "Iter 251 cost time 0.37708234786987305\n", + "Iter 252 cost time 0.3765087127685547\n", + "Iter 253 cost time 0.37607741355895996\n", + "Iter 254 cost time 0.3713095188140869\n", + "Iter 255 cost time 0.37563514709472656\n", + "Iter 256 cost time 0.3712625503540039\n", + "Iter 257 cost time 0.37474489212036133\n", + "Iter 258 cost time 0.37748217582702637\n", + "Iter 259 cost time 0.378403902053833\n", + "Iter 260 cost time 0.38125038146972656\n", + "Iter 261 cost time 0.3848392963409424\n", + "Iter 262 cost time 0.3761441707611084\n", + "Iter 263 cost time 0.3791983127593994\n", + "Iter 264 cost time 0.3748044967651367\n", + "Iter 265 cost time 0.36744141578674316\n", + "Iter 266 cost time 0.37195348739624023\n", + "Iter 267 cost time 0.36289501190185547\n", + "Iter 268 cost time 0.3686714172363281\n", + "Iter 269 cost time 0.3655059337615967\n", + "Iter 270 cost time 0.3788418769836426\n", + "Iter 271 cost time 0.3782012462615967\n", + "Iter 272 cost time 0.3796381950378418\n", + "Iter 273 cost time 0.3773233890533447\n", + "Iter 274 cost time 0.3777730464935303\n", + "Iter 275 cost time 0.3631477355957031\n", + "Iter 276 cost time 0.3631863594055176\n", + "Iter 277 cost time 0.3692610263824463\n", + "Iter 278 cost time 0.36153745651245117\n", + "Iter 279 cost time 0.37286901473999023\n", + "Iter 280 cost time 0.37370967864990234\n", + "Iter 281 cost time 0.37303709983825684\n", + "Iter 282 cost time 0.37268567085266113\n", + "Iter 283 cost time 0.37766504287719727\n", + "Iter 284 cost time 0.37239599227905273\n", + "Iter 285 cost time 0.3719303607940674\n", + "Iter 286 cost time 0.3766469955444336\n", + "Iter 287 cost time 0.4054253101348877\n", + "Iter 288 cost time 0.373309850692749\n", + "Iter 289 cost time 0.37540149688720703\n", + "Iter 290 cost time 0.3706068992614746\n", + "Iter 291 cost time 0.37901949882507324\n", + "Iter 292 cost time 0.37361621856689453\n", + "Iter 293 cost time 0.376140832901001\n", + "Iter 294 cost time 0.3755824565887451\n", + "Iter 295 cost time 0.37848424911499023\n", + "Iter 296 cost time 0.3791797161102295\n", + "Iter 297 cost time 0.37836599349975586\n", + "Iter 298 cost time 0.36469507217407227\n", + "Iter 299 cost time 0.37453246116638184\n", + "Iter 300 cost time 0.37117910385131836\n", + "Iter 301 cost time 0.3752005100250244\n", + "Iter 302 cost time 0.372225284576416\n", + "Iter 303 cost time 0.3734273910522461\n", + "Iter 304 cost time 0.37508511543273926\n", + "Iter 305 cost time 0.3781437873840332\n", + "Iter 306 cost time 0.37584567070007324\n", + "Iter 307 cost time 0.3766653537750244\n", + "Iter 308 cost time 0.37826108932495117\n", + "Iter 309 cost time 0.37713027000427246\n", + "Iter 310 cost time 0.37605977058410645\n", + "Iter 311 cost time 0.3743159770965576\n", + "Iter 312 cost time 0.37571263313293457\n", + "Iter 313 cost time 0.37463808059692383\n", + "Iter 314 cost time 0.3766632080078125\n", + "Iter 315 cost time 0.3770570755004883\n", + "Iter 316 cost time 0.37757229804992676\n", + "Iter 317 cost time 0.3782808780670166\n", + "Iter 318 cost time 0.37769556045532227\n", + "Iter 319 cost time 0.37554359436035156\n", + "Iter 320 cost time 0.3766791820526123\n", + "Iter 321 cost time 0.37992429733276367\n", + "Iter 322 cost time 0.3693501949310303\n", + "Iter 323 cost time 0.37491440773010254\n", + "Iter 324 cost time 0.37490010261535645\n", + "Iter 325 cost time 0.39716243743896484\n", + "Iter 326 cost time 0.37236881256103516\n", + "Iter 327 cost time 0.37004685401916504\n", + "Iter 328 cost time 0.37565183639526367\n", + "Iter 329 cost time 0.38019561767578125\n", + "Iter 330 cost time 0.3748486042022705\n", + "Iter 331 cost time 0.3754432201385498\n", + "Iter 332 cost time 0.37856054306030273\n", + "Iter 333 cost time 0.3760089874267578\n", + "Iter 334 cost time 0.37974071502685547\n", + "Iter 335 cost time 0.379772424697876\n", + "Iter 336 cost time 0.37158894538879395\n", + "Iter 337 cost time 0.3751199245452881\n", + "Iter 338 cost time 0.38042259216308594\n", + "Iter 339 cost time 0.37412548065185547\n", + "Iter 340 cost time 0.3809635639190674\n", + "Iter 341 cost time 0.37821030616760254\n", + "Iter 342 cost time 0.3760511875152588\n", + "Iter 343 cost time 0.3782820701599121\n", + "Iter 344 cost time 0.3806169033050537\n", + "Iter 345 cost time 0.3785254955291748\n", + "Iter 346 cost time 0.3804206848144531\n", + "Iter 347 cost time 0.3786776065826416\n", + "Iter 348 cost time 0.38071322441101074\n", + "Iter 349 cost time 0.37823009490966797\n", + "Iter 350 cost time 0.3825397491455078\n", + "Iter 351 cost time 0.378826379776001\n", + "Iter 352 cost time 0.3789982795715332\n", + "Iter 353 cost time 0.3779170513153076\n", + "Iter 354 cost time 0.37616825103759766\n", + "Iter 355 cost time 0.3770766258239746\n", + "Iter 356 cost time 0.3785266876220703\n", + "Iter 357 cost time 0.3761615753173828\n", + "Iter 358 cost time 0.37952375411987305\n", + "Iter 359 cost time 0.3777918815612793\n", + "Iter 360 cost time 0.3787407875061035\n", + "Iter 361 cost time 0.3791978359222412\n", + "Iter 362 cost time 0.37647414207458496\n", + "Iter 363 cost time 0.37444448471069336\n", + "Iter 364 cost time 0.386232852935791\n", + "Iter 365 cost time 0.37995314598083496\n", + "Iter 366 cost time 0.3808891773223877\n", + "Iter 367 cost time 0.3744211196899414\n", + "Iter 368 cost time 0.40493297576904297\n", + "Iter 369 cost time 0.39954423904418945\n", + "Iter 370 cost time 0.3959658145904541\n", + "Iter 371 cost time 0.40335845947265625\n", + "Iter 372 cost time 0.3969907760620117\n", + "Iter 373 cost time 0.41298770904541016\n", + "Iter 374 cost time 0.40517544746398926\n", + "Iter 375 cost time 0.37670350074768066\n", + "Iter 376 cost time 0.3830854892730713\n", + "Iter 377 cost time 0.366391658782959\n", + "Iter 378 cost time 0.37128591537475586\n", + "Iter 379 cost time 0.3632845878601074\n", + "Iter 380 cost time 0.36876392364501953\n", + "Iter 381 cost time 0.3845555782318115\n", + "Iter 382 cost time 0.3768622875213623\n", + "Iter 383 cost time 0.3759171962738037\n", + "Iter 384 cost time 0.3783133029937744\n", + "Iter 385 cost time 0.37920665740966797\n", + "Iter 386 cost time 0.3745424747467041\n", + "Iter 387 cost time 0.37900257110595703\n", + "Iter 388 cost time 0.3782072067260742\n", + "Iter 389 cost time 0.3764030933380127\n", + "Iter 390 cost time 0.37541675567626953\n", + "Iter 391 cost time 0.3777480125427246\n", + "Iter 392 cost time 0.3775629997253418\n", + "Iter 393 cost time 0.3751366138458252\n", + "Iter 394 cost time 0.36963582038879395\n", + "Iter 395 cost time 0.3781144618988037\n", + "Iter 396 cost time 0.37059807777404785\n", + "Iter 397 cost time 0.3784983158111572\n", + "Iter 398 cost time 0.37296557426452637\n", + "Iter 399 cost time 0.376802921295166\n", + "Iter 400 cost time 0.3740987777709961\n", + "Iter 401 cost time 0.3762977123260498\n", + "Iter 402 cost time 0.3718380928039551\n", + "Iter 403 cost time 0.37729334831237793\n", + "Iter 404 cost time 0.37159013748168945\n", + "Iter 405 cost time 0.3763313293457031\n", + "Iter 406 cost time 0.3717660903930664\n", + "Iter 407 cost time 0.37462949752807617\n", + "Iter 408 cost time 0.37259960174560547\n", + "Iter 409 cost time 0.3753173351287842\n", + "Iter 410 cost time 0.3724203109741211\n", + "Iter 411 cost time 0.3722872734069824\n", + "Iter 412 cost time 0.36937689781188965\n", + "Iter 413 cost time 0.3748452663421631\n", + "Iter 414 cost time 0.37630248069763184\n", + "Iter 415 cost time 0.3904693126678467\n", + "Iter 416 cost time 0.3949270248413086\n", + "Iter 417 cost time 0.37609171867370605\n", + "Iter 418 cost time 0.3686373233795166\n", + "Iter 419 cost time 0.36179256439208984\n", + "Iter 420 cost time 0.36699938774108887\n", + "Iter 421 cost time 0.36751532554626465\n", + "Iter 422 cost time 0.37154316902160645\n", + "Iter 423 cost time 0.36634111404418945\n", + "Iter 424 cost time 0.37296080589294434\n", + "Iter 425 cost time 0.37032508850097656\n", + "Iter 426 cost time 0.37261343002319336\n", + "Iter 427 cost time 0.3718428611755371\n", + "Iter 428 cost time 0.3739969730377197\n", + "Iter 429 cost time 0.3777310848236084\n", + "Iter 430 cost time 0.37314796447753906\n", + "Iter 431 cost time 0.37334275245666504\n", + "Iter 432 cost time 0.37296295166015625\n", + "Iter 433 cost time 0.3730635643005371\n", + "Iter 434 cost time 0.37398719787597656\n", + "Iter 435 cost time 0.3738393783569336\n", + "Iter 436 cost time 0.3755059242248535\n", + "Iter 437 cost time 0.37705159187316895\n", + "Iter 438 cost time 0.3723945617675781\n", + "Iter 439 cost time 0.3730342388153076\n", + "Iter 440 cost time 0.3705780506134033\n", + "Iter 441 cost time 0.3757336139678955\n", + "Iter 442 cost time 0.3708841800689697\n", + "Iter 443 cost time 0.37503504753112793\n", + "Iter 444 cost time 0.3730506896972656\n", + "Iter 445 cost time 0.37651681900024414\n", + "Iter 446 cost time 0.37580347061157227\n", + "Iter 447 cost time 0.3661949634552002\n", + "Iter 448 cost time 0.36830949783325195\n", + "Iter 449 cost time 0.3666541576385498\n", + "Iter 450 cost time 0.37050294876098633\n", + "Iter 451 cost time 0.36492300033569336\n", + "Iter 452 cost time 0.3698873519897461\n", + "Iter 453 cost time 0.3679647445678711\n", + "Iter 454 cost time 0.3716120719909668\n", + "Iter 455 cost time 0.3627798557281494\n", + "Iter 456 cost time 0.3679039478302002\n", + "Iter 457 cost time 0.3623836040496826\n", + "Iter 458 cost time 0.3661837577819824\n", + "Iter 459 cost time 0.36225247383117676\n", + "Iter 460 cost time 0.3682255744934082\n", + "Iter 461 cost time 0.3689100742340088\n", + "Iter 462 cost time 0.3727588653564453\n", + "Iter 463 cost time 0.3675203323364258\n", + "Iter 464 cost time 0.378023624420166\n", + "Iter 465 cost time 0.3682096004486084\n", + "Iter 466 cost time 0.373049259185791\n", + "Iter 467 cost time 0.3679475784301758\n", + "Iter 468 cost time 0.3726348876953125\n", + "Iter 469 cost time 0.3671886920928955\n", + "Iter 470 cost time 0.37844228744506836\n", + "Iter 471 cost time 0.3652791976928711\n", + "Iter 472 cost time 0.3690173625946045\n", + "Iter 473 cost time 0.36118602752685547\n", + "Iter 474 cost time 0.37632131576538086\n", + "Iter 475 cost time 0.37012505531311035\n", + "Iter 476 cost time 0.3776814937591553\n", + "Iter 477 cost time 0.36707592010498047\n", + "Iter 478 cost time 0.3690791130065918\n", + "Iter 479 cost time 0.3662989139556885\n", + "Iter 480 cost time 0.3645443916320801\n", + "Iter 481 cost time 0.3617823123931885\n", + "Iter 482 cost time 0.36907529830932617\n", + "Iter 483 cost time 0.35919904708862305\n", + "Iter 484 cost time 0.3686559200286865\n", + "Iter 485 cost time 0.3668711185455322\n", + "Iter 486 cost time 0.37057018280029297\n", + "Iter 487 cost time 0.36873626708984375\n", + "Iter 488 cost time 0.37064170837402344\n", + "Iter 489 cost time 0.3881378173828125\n", + "Iter 490 cost time 0.37201762199401855\n", + "Iter 491 cost time 0.3705778121948242\n", + "Iter 492 cost time 0.3709700107574463\n", + "Iter 493 cost time 0.3671886920928955\n", + "Iter 494 cost time 0.3691227436065674\n", + "Iter 495 cost time 0.3689765930175781\n", + "Iter 496 cost time 0.37010765075683594\n", + "Iter 497 cost time 0.36499786376953125\n", + "Iter 498 cost time 0.36667513847351074\n", + "Iter 499 cost time 0.3618032932281494\n", + "Iter 500 cost time 0.3644745349884033\n", + "Iter 501 cost time 0.39038801193237305\n", + "Iter 502 cost time 0.39806199073791504\n", + "Iter 503 cost time 0.3834810256958008\n", + "Iter 504 cost time 0.40372180938720703\n", + "Iter 505 cost time 0.3909127712249756\n", + "Iter 506 cost time 0.38633108139038086\n", + "Iter 507 cost time 0.3888437747955322\n", + "Iter 508 cost time 0.39450883865356445\n", + "Iter 509 cost time 0.36598801612854004\n", + "Iter 510 cost time 0.37552547454833984\n", + "Iter 511 cost time 0.36809682846069336\n", + "Iter 512 cost time 0.37251877784729004\n", + "Iter 513 cost time 0.37509846687316895\n", + "Iter 514 cost time 0.37363696098327637\n", + "Iter 515 cost time 0.37067174911499023\n", + "Iter 516 cost time 0.375948429107666\n", + "Iter 517 cost time 0.3769209384918213\n", + "Iter 518 cost time 0.3721466064453125\n", + "Iter 519 cost time 0.3715968132019043\n", + "Iter 520 cost time 0.3707876205444336\n", + "Iter 521 cost time 0.3689298629760742\n", + "Iter 522 cost time 0.3707101345062256\n", + "Iter 523 cost time 0.37655067443847656\n", + "Iter 524 cost time 0.3699045181274414\n", + "Iter 525 cost time 0.3695693016052246\n", + "Iter 526 cost time 0.37148571014404297\n", + "Iter 527 cost time 0.3664131164550781\n", + "Iter 528 cost time 0.38515567779541016\n", + "Iter 529 cost time 0.3712737560272217\n", + "Iter 530 cost time 0.37267374992370605\n", + "Iter 531 cost time 0.3739340305328369\n", + "Iter 532 cost time 0.37814760208129883\n", + "Iter 533 cost time 0.3729887008666992\n", + "Iter 534 cost time 0.37513303756713867\n", + "Iter 535 cost time 0.36515307426452637\n", + "Iter 536 cost time 0.368274450302124\n", + "Iter 537 cost time 0.3602328300476074\n", + "Iter 538 cost time 0.3621981143951416\n", + "Iter 539 cost time 0.37227582931518555\n", + "Iter 540 cost time 0.37444210052490234\n", + "Iter 541 cost time 0.3746771812438965\n", + "Iter 542 cost time 0.372239351272583\n", + "Iter 543 cost time 0.37506628036499023\n", + "Iter 544 cost time 0.37190699577331543\n", + "Iter 545 cost time 0.3707106113433838\n", + "Iter 546 cost time 0.37526655197143555\n", + "Iter 547 cost time 0.37120819091796875\n", + "Iter 548 cost time 0.37659549713134766\n", + "Iter 549 cost time 0.37363290786743164\n", + "Iter 550 cost time 0.3742401599884033\n", + "Iter 551 cost time 0.36817002296447754\n", + "Iter 552 cost time 0.37451720237731934\n", + "Iter 553 cost time 0.37178921699523926\n", + "Iter 554 cost time 0.376220703125\n", + "Iter 555 cost time 0.3750462532043457\n", + "Iter 556 cost time 0.37770867347717285\n", + "Iter 557 cost time 0.3747899532318115\n", + "Iter 558 cost time 0.36381101608276367\n", + "Iter 559 cost time 0.3680412769317627\n", + "Iter 560 cost time 0.36443209648132324\n", + "Iter 561 cost time 0.36406564712524414\n", + "Iter 562 cost time 0.36502909660339355\n", + "Iter 563 cost time 0.3626892566680908\n", + "Iter 564 cost time 0.37207770347595215\n", + "Iter 565 cost time 0.38102006912231445\n", + "Iter 566 cost time 0.42340540885925293\n", + "Iter 567 cost time 0.39580440521240234\n", + "Iter 568 cost time 0.3853302001953125\n", + "Iter 569 cost time 0.3668062686920166\n", + "Iter 570 cost time 0.3991813659667969\n", + "Iter 571 cost time 0.38694047927856445\n", + "Iter 572 cost time 0.3927149772644043\n", + "Iter 573 cost time 0.4051234722137451\n", + "Iter 574 cost time 0.3696248531341553\n", + "Iter 575 cost time 0.37131476402282715\n", + "Iter 576 cost time 0.37381815910339355\n", + "Iter 577 cost time 0.3822157382965088\n", + "Iter 578 cost time 0.3747239112854004\n", + "Iter 579 cost time 0.3768482208251953\n", + "Iter 580 cost time 0.38582873344421387\n", + "Iter 581 cost time 0.37944459915161133\n", + "Iter 582 cost time 0.36345529556274414\n", + "Iter 583 cost time 0.362720251083374\n", + "Iter 584 cost time 0.36794590950012207\n", + "Iter 585 cost time 0.37673425674438477\n", + "Iter 586 cost time 0.37903904914855957\n", + "Iter 587 cost time 0.38130807876586914\n", + "Iter 588 cost time 0.3791382312774658\n", + "Iter 589 cost time 0.37391161918640137\n", + "Iter 590 cost time 0.37254810333251953\n", + "Iter 591 cost time 0.3642880916595459\n", + "Iter 592 cost time 0.3615255355834961\n", + "Iter 593 cost time 0.3622279167175293\n", + "Iter 594 cost time 0.362152099609375\n", + "Iter 595 cost time 0.36180806159973145\n", + "Iter 596 cost time 0.3610715866088867\n", + "Iter 597 cost time 0.37674951553344727\n", + "Iter 598 cost time 0.3719050884246826\n", + "Iter 599 cost time 0.3741018772125244\n", + "Iter 600 cost time 0.3767893314361572\n", + "Iter 601 cost time 0.3811452388763428\n", + "Iter 602 cost time 0.37251973152160645\n", + "Iter 603 cost time 0.3736612796783447\n", + "Iter 604 cost time 0.38836097717285156\n", + "Iter 605 cost time 0.3718736171722412\n", + "Iter 606 cost time 0.37398433685302734\n", + "Iter 607 cost time 0.37204980850219727\n", + "Iter 608 cost time 0.3729248046875\n", + "Iter 609 cost time 0.376201868057251\n", + "Iter 610 cost time 0.37284135818481445\n", + "Iter 611 cost time 0.3681068420410156\n", + "Iter 612 cost time 0.37751102447509766\n", + "Iter 613 cost time 0.3748342990875244\n", + "Iter 614 cost time 0.37944698333740234\n", + "Iter 615 cost time 0.373934268951416\n", + "Iter 616 cost time 0.3772425651550293\n", + "Iter 617 cost time 0.37737441062927246\n", + "Iter 618 cost time 0.37705183029174805\n", + "Iter 619 cost time 0.3747987747192383\n", + "Iter 620 cost time 0.3788611888885498\n", + "Iter 621 cost time 0.3769550323486328\n", + "Iter 622 cost time 0.3769967555999756\n", + "Iter 623 cost time 0.3775515556335449\n", + "Iter 624 cost time 0.3777458667755127\n", + "Iter 625 cost time 0.3743712902069092\n", + "Iter 626 cost time 0.3763542175292969\n", + "Iter 627 cost time 0.3793938159942627\n", + "Iter 628 cost time 0.3787424564361572\n", + "Iter 629 cost time 0.37219858169555664\n", + "Iter 630 cost time 0.3776280879974365\n", + "Iter 631 cost time 0.37105560302734375\n", + "Iter 632 cost time 0.3780388832092285\n", + "Iter 633 cost time 0.3741323947906494\n", + "Iter 634 cost time 0.379514217376709\n", + "Iter 635 cost time 0.37406063079833984\n", + "Iter 636 cost time 0.3789851665496826\n", + "Iter 637 cost time 0.37641406059265137\n", + "Iter 638 cost time 0.3753819465637207\n", + "Iter 639 cost time 0.3763115406036377\n", + "Iter 640 cost time 0.3728320598602295\n", + "Iter 641 cost time 0.3742194175720215\n", + "Iter 642 cost time 0.37810826301574707\n", + "Iter 643 cost time 0.3755073547363281\n", + "Iter 644 cost time 0.37888169288635254\n", + "Iter 645 cost time 0.3746926784515381\n", + "Iter 646 cost time 0.3762850761413574\n", + "Iter 647 cost time 0.3731844425201416\n", + "Iter 648 cost time 0.374727725982666\n", + "Iter 649 cost time 0.3749275207519531\n", + "Iter 650 cost time 0.3794548511505127\n", + "Iter 651 cost time 0.37297987937927246\n", + "Iter 652 cost time 0.3762929439544678\n", + "Iter 653 cost time 0.36899709701538086\n", + "Iter 654 cost time 0.3709583282470703\n", + "Iter 655 cost time 0.3764328956604004\n", + "Iter 656 cost time 0.3734140396118164\n", + "Iter 657 cost time 0.377612829208374\n", + "Iter 658 cost time 0.374035120010376\n", + "Iter 659 cost time 0.37386655807495117\n", + "Iter 660 cost time 0.37709498405456543\n", + "Iter 661 cost time 0.372387170791626\n", + "Iter 662 cost time 0.3750929832458496\n", + "Iter 663 cost time 0.373582124710083\n", + "Iter 664 cost time 0.3867683410644531\n", + "Iter 665 cost time 0.37270665168762207\n", + "Iter 666 cost time 0.3729057312011719\n", + "Iter 667 cost time 0.373546838760376\n", + "Iter 668 cost time 0.38066887855529785\n", + "Iter 669 cost time 0.37242698669433594\n", + "Iter 670 cost time 0.3765227794647217\n", + "Iter 671 cost time 0.3745279312133789\n", + "Iter 672 cost time 0.3752126693725586\n", + "Iter 673 cost time 0.37438464164733887\n", + "Iter 674 cost time 0.3763408660888672\n", + "Iter 675 cost time 0.37487292289733887\n", + "Iter 676 cost time 0.37332582473754883\n", + "Iter 677 cost time 0.3711869716644287\n", + "Iter 678 cost time 0.37796521186828613\n", + "Iter 679 cost time 0.3691070079803467\n", + "Iter 680 cost time 0.37607669830322266\n", + "Iter 681 cost time 0.3761410713195801\n", + "Iter 682 cost time 0.3734598159790039\n", + "Iter 683 cost time 0.37527894973754883\n", + "Iter 684 cost time 0.3757154941558838\n", + "Iter 685 cost time 0.37163877487182617\n", + "Iter 686 cost time 0.3786463737487793\n", + "Iter 687 cost time 0.3714921474456787\n", + "Iter 688 cost time 0.37612295150756836\n", + "Iter 689 cost time 0.37209010124206543\n", + "Iter 690 cost time 0.3772408962249756\n", + "Iter 691 cost time 0.3722231388092041\n", + "Iter 692 cost time 0.3738586902618408\n", + "Iter 693 cost time 0.37389063835144043\n", + "Iter 694 cost time 0.3717374801635742\n", + "Iter 695 cost time 0.3703145980834961\n", + "Iter 696 cost time 0.3712470531463623\n", + "Iter 697 cost time 0.3727881908416748\n", + "Iter 698 cost time 0.3765237331390381\n", + "Iter 699 cost time 0.3592865467071533\n", + "Iter 700 cost time 0.364743709564209\n", + "Iter 701 cost time 0.3621242046356201\n", + "Iter 702 cost time 0.3689277172088623\n", + "Iter 703 cost time 0.362933874130249\n", + "Iter 704 cost time 0.3695037364959717\n", + "Iter 705 cost time 0.37505006790161133\n", + "Iter 706 cost time 0.37418413162231445\n", + "Iter 707 cost time 0.37354183197021484\n", + "Iter 708 cost time 0.3744833469390869\n", + "Iter 709 cost time 0.3723909854888916\n", + "Iter 710 cost time 0.36931896209716797\n", + "Iter 711 cost time 0.3903782367706299\n", + "Iter 712 cost time 0.39823246002197266\n", + "Iter 713 cost time 0.39491844177246094\n", + "Iter 714 cost time 0.40733838081359863\n", + "Iter 715 cost time 0.39652347564697266\n", + "Iter 716 cost time 0.3963165283203125\n", + "Iter 717 cost time 0.41301417350769043\n", + "Iter 718 cost time 0.39778780937194824\n", + "Iter 719 cost time 0.396561861038208\n", + "Iter 720 cost time 0.39701390266418457\n", + "Iter 721 cost time 0.3990201950073242\n", + "Iter 722 cost time 0.3980238437652588\n", + "Iter 723 cost time 0.4005706310272217\n", + "Iter 724 cost time 0.39182329177856445\n", + "Iter 725 cost time 0.3959310054779053\n", + "Iter 726 cost time 0.39333510398864746\n", + "Iter 727 cost time 0.3770875930786133\n", + "Iter 728 cost time 0.37349915504455566\n", + "Iter 729 cost time 0.37494635581970215\n", + "Iter 730 cost time 0.3781626224517822\n", + "Iter 731 cost time 0.3790013790130615\n", + "Iter 732 cost time 0.3685116767883301\n", + "Iter 733 cost time 0.36217665672302246\n", + "Iter 734 cost time 0.36939454078674316\n", + "Iter 735 cost time 0.36655592918395996\n", + "Iter 736 cost time 0.37308287620544434\n", + "Iter 737 cost time 0.3640899658203125\n", + "Iter 738 cost time 0.36583471298217773\n", + "Iter 739 cost time 0.3607621192932129\n", + "Iter 740 cost time 0.36356639862060547\n", + "Iter 741 cost time 0.36152124404907227\n", + "Iter 742 cost time 0.3696448802947998\n", + "Iter 743 cost time 0.36288905143737793\n", + "Iter 744 cost time 0.3681669235229492\n", + "Iter 745 cost time 0.361297607421875\n", + "Iter 746 cost time 0.3696432113647461\n", + "Iter 747 cost time 0.36123061180114746\n", + "Iter 748 cost time 0.37124109268188477\n", + "Iter 749 cost time 0.3677103519439697\n", + "Iter 750 cost time 0.36998748779296875\n", + "Iter 751 cost time 0.3708674907684326\n", + "Iter 752 cost time 0.3664393424987793\n", + "Iter 753 cost time 0.37486958503723145\n", + "Iter 754 cost time 0.3735978603363037\n", + "Iter 755 cost time 0.3665003776550293\n", + "Iter 756 cost time 0.3722660541534424\n", + "Iter 757 cost time 0.37702393531799316\n", + "Iter 758 cost time 0.3704965114593506\n", + "Iter 759 cost time 0.3678607940673828\n", + "Iter 760 cost time 0.3683180809020996\n", + "Iter 761 cost time 0.36878299713134766\n", + "Iter 762 cost time 0.37279510498046875\n", + "Iter 763 cost time 0.3659098148345947\n", + "Iter 764 cost time 0.36989259719848633\n", + "Iter 765 cost time 0.3683788776397705\n", + "Iter 766 cost time 0.37041687965393066\n", + "Iter 767 cost time 0.3612198829650879\n", + "Iter 768 cost time 0.3714332580566406\n", + "Iter 769 cost time 0.37454867362976074\n", + "Iter 770 cost time 0.37082386016845703\n", + "Iter 771 cost time 0.36600661277770996\n", + "Iter 772 cost time 0.36925363540649414\n", + "Iter 773 cost time 0.37654829025268555\n", + "Iter 774 cost time 0.36841511726379395\n", + "Iter 775 cost time 0.36694884300231934\n", + "Iter 776 cost time 0.36963629722595215\n", + "Iter 777 cost time 0.37177515029907227\n", + "Iter 778 cost time 0.3700120449066162\n", + "Iter 779 cost time 0.3830451965332031\n", + "Iter 780 cost time 0.3692779541015625\n", + "Iter 781 cost time 0.370105504989624\n", + "Iter 782 cost time 0.3732151985168457\n", + "Iter 783 cost time 0.3699347972869873\n", + "Iter 784 cost time 0.36984872817993164\n", + "Iter 785 cost time 0.3700113296508789\n", + "Iter 786 cost time 0.36834168434143066\n", + "Iter 787 cost time 0.37117910385131836\n", + "Iter 788 cost time 0.37004542350769043\n", + "Iter 789 cost time 0.3679041862487793\n", + "Iter 790 cost time 0.36938953399658203\n", + "Iter 791 cost time 0.36633944511413574\n", + "Iter 792 cost time 0.3648099899291992\n", + "Iter 793 cost time 0.3632845878601074\n", + "Iter 794 cost time 0.36749768257141113\n", + "Iter 795 cost time 0.36292481422424316\n", + "Iter 796 cost time 0.3649256229400635\n", + "Iter 797 cost time 0.362534761428833\n", + "Iter 798 cost time 0.36565732955932617\n", + "Iter 799 cost time 0.3646414279937744\n", + "Iter 800 cost time 0.3672521114349365\n", + "Iter 801 cost time 0.36414289474487305\n", + "Iter 802 cost time 0.3710751533508301\n", + "Iter 803 cost time 0.3676114082336426\n", + "Iter 804 cost time 0.36832737922668457\n", + "Iter 805 cost time 0.36642980575561523\n", + "Iter 806 cost time 0.3730621337890625\n", + "Iter 807 cost time 0.37241482734680176\n", + "Iter 808 cost time 0.3750295639038086\n", + "Iter 809 cost time 0.3715932369232178\n", + "Iter 810 cost time 0.37414121627807617\n", + "Iter 811 cost time 0.3693692684173584\n", + "Iter 812 cost time 0.3744316101074219\n", + "Iter 813 cost time 0.37571001052856445\n", + "Iter 814 cost time 0.3724050521850586\n", + "Iter 815 cost time 0.3659017086029053\n", + "Iter 816 cost time 0.3712799549102783\n", + "Iter 817 cost time 0.37139892578125\n", + "Iter 818 cost time 0.37464404106140137\n", + "Iter 819 cost time 0.3702054023742676\n", + "Iter 820 cost time 0.376359224319458\n", + "Iter 821 cost time 0.37027549743652344\n", + "Iter 822 cost time 0.3760221004486084\n", + "Iter 823 cost time 0.3705439567565918\n", + "Iter 824 cost time 0.36642026901245117\n", + "Iter 825 cost time 0.36643099784851074\n", + "Iter 826 cost time 0.39656901359558105\n", + "Iter 827 cost time 0.39278507232666016\n", + "Iter 828 cost time 0.3988020420074463\n", + "Iter 829 cost time 0.386181116104126\n", + "Iter 830 cost time 0.3693397045135498\n", + "Iter 831 cost time 0.3736553192138672\n", + "Iter 832 cost time 0.36566996574401855\n", + "Iter 833 cost time 0.37282419204711914\n", + "Iter 834 cost time 0.37084484100341797\n", + "Iter 835 cost time 0.36268019676208496\n", + "Iter 836 cost time 0.3676798343658447\n", + "Iter 837 cost time 0.36724162101745605\n", + "Iter 838 cost time 0.36591148376464844\n", + "Iter 839 cost time 0.3684654235839844\n", + "Iter 840 cost time 0.3634989261627197\n", + "Iter 841 cost time 0.36979055404663086\n", + "Iter 842 cost time 0.3654959201812744\n", + "Iter 843 cost time 0.3697090148925781\n", + "Iter 844 cost time 0.36443614959716797\n", + "Iter 845 cost time 0.36559247970581055\n", + "Iter 846 cost time 0.3660271167755127\n", + "Iter 847 cost time 0.3688056468963623\n", + "Iter 848 cost time 0.3692471981048584\n", + "Iter 849 cost time 0.36846327781677246\n", + "Iter 850 cost time 0.3699491024017334\n", + "Iter 851 cost time 0.36785149574279785\n", + "Iter 852 cost time 0.3675062656402588\n", + "Iter 853 cost time 0.36762237548828125\n", + "Iter 854 cost time 0.36830973625183105\n", + "Iter 855 cost time 0.3645505905151367\n", + "Iter 856 cost time 0.3738129138946533\n", + "Iter 857 cost time 0.37476587295532227\n", + "Iter 858 cost time 0.37260866165161133\n", + "Iter 859 cost time 0.373992919921875\n", + "Iter 860 cost time 0.37497520446777344\n", + "Iter 861 cost time 0.36470746994018555\n", + "Iter 862 cost time 0.3604245185852051\n", + "Iter 863 cost time 0.3882615566253662\n", + "Iter 864 cost time 0.36138343811035156\n", + "Iter 865 cost time 0.3654661178588867\n", + "Iter 866 cost time 0.3797602653503418\n", + "Iter 867 cost time 0.37258386611938477\n", + "Iter 868 cost time 0.37325453758239746\n", + "Iter 869 cost time 0.3744380474090576\n", + "Iter 870 cost time 0.3722805976867676\n", + "Iter 871 cost time 0.3714783191680908\n", + "Iter 872 cost time 0.3740992546081543\n", + "Iter 873 cost time 0.37425947189331055\n", + "Iter 874 cost time 0.3669273853302002\n", + "Iter 875 cost time 0.3761599063873291\n", + "Iter 876 cost time 0.36814308166503906\n", + "Iter 877 cost time 0.3713381290435791\n", + "Iter 878 cost time 0.3669276237487793\n", + "Iter 879 cost time 0.37032556533813477\n", + "Iter 880 cost time 0.3656737804412842\n", + "Iter 881 cost time 0.3638956546783447\n", + "Iter 882 cost time 0.36748790740966797\n", + "Iter 883 cost time 0.3661971092224121\n", + "Iter 884 cost time 0.3718898296356201\n", + "Iter 885 cost time 0.3659539222717285\n", + "Iter 886 cost time 0.3732113838195801\n", + "Iter 887 cost time 0.3716614246368408\n", + "Iter 888 cost time 0.372805118560791\n", + "Iter 889 cost time 0.3719172477722168\n", + "Iter 890 cost time 0.3730473518371582\n", + "Iter 891 cost time 0.3725240230560303\n", + "Iter 892 cost time 0.37147951126098633\n", + "Iter 893 cost time 0.36632871627807617\n", + "Iter 894 cost time 0.3659079074859619\n", + "Iter 895 cost time 0.37500810623168945\n", + "Iter 896 cost time 0.37580180168151855\n", + "Iter 897 cost time 0.3724699020385742\n", + "Iter 898 cost time 0.37911558151245117\n", + "Iter 899 cost time 0.3756260871887207\n", + "Iter 900 cost time 0.3766918182373047\n", + "Iter 901 cost time 0.37557029724121094\n", + "Iter 902 cost time 0.4079277515411377\n", + "Iter 903 cost time 0.3765089511871338\n", + "Iter 904 cost time 0.37827610969543457\n", + "Iter 905 cost time 0.3780853748321533\n", + "Iter 906 cost time 0.3682284355163574\n", + "Iter 907 cost time 0.38569164276123047\n", + "Iter 908 cost time 0.3756098747253418\n", + "Iter 909 cost time 0.38242650032043457\n", + "Iter 910 cost time 0.37549853324890137\n", + "Iter 911 cost time 0.3792400360107422\n", + "Iter 912 cost time 0.3772251605987549\n", + "Iter 913 cost time 0.39400434494018555\n", + "Iter 914 cost time 0.3660292625427246\n", + "Iter 915 cost time 0.39356517791748047\n", + "Iter 916 cost time 0.3877248764038086\n", + "Iter 917 cost time 0.37282395362854004\n", + "Iter 918 cost time 0.36627888679504395\n", + "Iter 919 cost time 0.37590861320495605\n", + "Iter 920 cost time 0.3707301616668701\n", + "Iter 921 cost time 0.3739478588104248\n", + "Iter 922 cost time 0.37927913665771484\n", + "Iter 923 cost time 0.36940574645996094\n", + "Iter 924 cost time 0.37233471870422363\n", + "Iter 925 cost time 0.36970019340515137\n", + "Iter 926 cost time 0.37160611152648926\n", + "Iter 927 cost time 0.37001800537109375\n", + "Iter 928 cost time 0.3750185966491699\n", + "Iter 929 cost time 0.3746929168701172\n", + "Iter 930 cost time 0.37612175941467285\n", + "Iter 931 cost time 0.37300658226013184\n", + "Iter 932 cost time 0.3734114170074463\n", + "Iter 933 cost time 0.37188267707824707\n", + "Iter 934 cost time 0.37468719482421875\n", + "Iter 935 cost time 0.3734767436981201\n", + "Iter 936 cost time 0.36668968200683594\n", + "Iter 937 cost time 0.3695030212402344\n", + "Iter 938 cost time 0.3607354164123535\n", + "Iter 939 cost time 0.3687891960144043\n", + "Iter 940 cost time 0.3623831272125244\n", + "Iter 941 cost time 0.37007808685302734\n", + "Iter 942 cost time 0.3610036373138428\n", + "Iter 943 cost time 0.36619114875793457\n", + "Iter 944 cost time 0.3614821434020996\n", + "Iter 945 cost time 0.371274471282959\n", + "Iter 946 cost time 0.36642932891845703\n", + "Iter 947 cost time 0.3746464252471924\n", + "Iter 948 cost time 0.36696887016296387\n", + "Iter 949 cost time 0.3701505661010742\n", + "Iter 950 cost time 0.3681759834289551\n", + "Iter 951 cost time 0.37245631217956543\n", + "Iter 952 cost time 0.36992931365966797\n", + "Iter 953 cost time 0.37323451042175293\n", + "Iter 954 cost time 0.36998462677001953\n", + "Iter 955 cost time 0.37296605110168457\n", + "Iter 956 cost time 0.3778371810913086\n", + "Iter 957 cost time 0.3690755367279053\n", + "Iter 958 cost time 0.36937451362609863\n", + "Iter 959 cost time 0.3687877655029297\n", + "Iter 960 cost time 0.3668398857116699\n", + "Iter 961 cost time 0.3685431480407715\n", + "Iter 962 cost time 0.36876606941223145\n", + "Iter 963 cost time 0.3688199520111084\n", + "Iter 964 cost time 0.3689403533935547\n", + "Iter 965 cost time 0.37020397186279297\n", + "Iter 966 cost time 0.37136268615722656\n", + "Iter 967 cost time 0.372943639755249\n", + "Iter 968 cost time 0.37427401542663574\n", + "Iter 969 cost time 0.3725576400756836\n", + "Iter 970 cost time 0.35941219329833984\n", + "Iter 971 cost time 0.3750133514404297\n", + "Iter 972 cost time 0.3631105422973633\n", + "Iter 973 cost time 0.37021875381469727\n", + "Iter 974 cost time 0.3657515048980713\n", + "Iter 975 cost time 0.37079906463623047\n", + "Iter 976 cost time 0.3659341335296631\n", + "Iter 977 cost time 0.3722398281097412\n", + "Iter 978 cost time 0.37161707878112793\n", + "Iter 979 cost time 0.37247347831726074\n", + "Iter 980 cost time 0.3741772174835205\n", + "Iter 981 cost time 0.37203502655029297\n", + "Iter 982 cost time 0.3710653781890869\n", + "Iter 983 cost time 0.3730311393737793\n", + "Iter 984 cost time 0.3724327087402344\n", + "Iter 985 cost time 0.3700277805328369\n", + "Iter 986 cost time 0.36739230155944824\n", + "Iter 987 cost time 0.36618876457214355\n", + "Iter 988 cost time 0.37534141540527344\n", + "Iter 989 cost time 0.3744230270385742\n", + "Iter 990 cost time 0.37589430809020996\n", + "Iter 991 cost time 0.37082958221435547\n", + "Iter 992 cost time 0.37430882453918457\n", + "Iter 993 cost time 0.3740825653076172\n", + "Iter 994 cost time 0.3714287281036377\n", + "Iter 995 cost time 0.3717823028564453\n", + "Iter 996 cost time 0.3723182678222656\n", + "Iter 997 cost time 0.36890721321105957\n", + "Iter 998 cost time 0.3711988925933838\n", + "Iter 999 cost time 0.37141871452331543\n", + "Iter 1000 cost time 0.3710505962371826\n", + "Iter 1001 cost time 0.37208080291748047\n", + "Iter 1002 cost time 0.3703954219818115\n", + "Iter 1003 cost time 0.3746950626373291\n", + "Iter 1004 cost time 0.36852359771728516\n", + "Iter 1005 cost time 0.3802802562713623\n", + "Iter 1006 cost time 0.36769700050354004\n", + "Iter 1007 cost time 0.3742365837097168\n", + "Iter 1008 cost time 0.3638134002685547\n", + "Iter 1009 cost time 0.3707540035247803\n", + "Iter 1010 cost time 0.36226820945739746\n", + "Iter 1011 cost time 0.37212514877319336\n", + "Iter 1012 cost time 0.36423444747924805\n", + "Iter 1013 cost time 0.37169551849365234\n", + "Iter 1014 cost time 0.36724138259887695\n", + "Iter 1015 cost time 0.3750312328338623\n", + "Iter 1016 cost time 0.3683173656463623\n", + "Iter 1017 cost time 0.36821460723876953\n", + "Iter 1018 cost time 0.3643040657043457\n", + "Iter 1019 cost time 0.3755180835723877\n", + "Iter 1020 cost time 0.3741111755371094\n", + "Iter 1021 cost time 0.3696770668029785\n", + "Iter 1022 cost time 0.37693023681640625\n", + "Iter 1023 cost time 0.3698585033416748\n", + "Iter 1024 cost time 0.3631100654602051\n", + "Iter 1025 cost time 0.37458086013793945\n", + "Iter 1026 cost time 0.3657689094543457\n", + "Iter 1027 cost time 0.3788185119628906\n", + "Iter 1028 cost time 0.3672211170196533\n", + "Iter 1029 cost time 0.37408900260925293\n", + "Iter 1030 cost time 0.36580753326416016\n", + "Iter 1031 cost time 0.3732330799102783\n", + "Iter 1032 cost time 0.3646268844604492\n", + "Iter 1033 cost time 0.3693094253540039\n", + "Iter 1034 cost time 0.3599996566772461\n", + "Iter 1035 cost time 0.3690016269683838\n", + "Iter 1036 cost time 0.3607354164123535\n", + "Iter 1037 cost time 0.3732473850250244\n", + "Iter 1038 cost time 0.3623490333557129\n", + "Iter 1039 cost time 0.37047481536865234\n", + "Iter 1040 cost time 0.366741418838501\n", + "Iter 1041 cost time 0.3645038604736328\n", + "Iter 1042 cost time 0.36717867851257324\n", + "Iter 1043 cost time 0.3659539222717285\n", + "Iter 1044 cost time 0.36691832542419434\n", + "Iter 1045 cost time 0.37142515182495117\n", + "Iter 1046 cost time 0.3675873279571533\n", + "Iter 1047 cost time 0.37224745750427246\n", + "Iter 1048 cost time 0.37151432037353516\n", + "Iter 1049 cost time 0.3721938133239746\n", + "Iter 1050 cost time 0.3823060989379883\n", + "Iter 1051 cost time 0.3707561492919922\n", + "Iter 1052 cost time 0.37037086486816406\n", + "Iter 1053 cost time 0.3806743621826172\n", + "Iter 1054 cost time 0.3738985061645508\n", + "Iter 1055 cost time 0.36132359504699707\n", + "Iter 1056 cost time 0.371701717376709\n", + "Iter 1057 cost time 0.3682985305786133\n", + "Iter 1058 cost time 0.3742859363555908\n", + "Iter 1059 cost time 0.36785387992858887\n", + "Iter 1060 cost time 0.37197446823120117\n", + "Iter 1061 cost time 0.36739468574523926\n", + "Iter 1062 cost time 0.3721907138824463\n", + "Iter 1063 cost time 0.36713457107543945\n", + "Iter 1064 cost time 0.3765392303466797\n", + "Iter 1065 cost time 0.36299991607666016\n", + "Iter 1066 cost time 0.3706858158111572\n", + "Iter 1067 cost time 0.3634190559387207\n", + "Iter 1068 cost time 0.3675510883331299\n", + "Iter 1069 cost time 0.36409449577331543\n", + "Iter 1070 cost time 0.3716261386871338\n", + "Iter 1071 cost time 0.3609790802001953\n", + "Iter 1072 cost time 0.36890697479248047\n", + "Iter 1073 cost time 0.3702096939086914\n", + "Iter 1074 cost time 0.37289977073669434\n", + "Iter 1075 cost time 0.3666515350341797\n", + "Iter 1076 cost time 0.37744617462158203\n", + "Iter 1077 cost time 0.36441826820373535\n", + "Iter 1078 cost time 0.37259411811828613\n", + "Iter 1079 cost time 0.3605384826660156\n", + "Iter 1080 cost time 0.37096309661865234\n", + "Iter 1081 cost time 0.36278510093688965\n", + "Iter 1082 cost time 0.3691141605377197\n", + "Iter 1083 cost time 0.36206960678100586\n", + "Iter 1084 cost time 0.37014150619506836\n", + "Iter 1085 cost time 0.36513543128967285\n", + "Iter 1086 cost time 0.37063145637512207\n", + "Iter 1087 cost time 0.36857080459594727\n", + "Iter 1088 cost time 0.3708517551422119\n", + "Iter 1089 cost time 0.36829662322998047\n", + "Iter 1090 cost time 0.37191128730773926\n", + "Iter 1091 cost time 0.3654205799102783\n", + "Iter 1092 cost time 0.3706064224243164\n", + "Iter 1093 cost time 0.37077927589416504\n", + "Iter 1094 cost time 0.36425185203552246\n", + "Iter 1095 cost time 0.3668534755706787\n", + "Iter 1096 cost time 0.37587738037109375\n", + "Iter 1097 cost time 0.36560940742492676\n", + "Iter 1098 cost time 0.36083555221557617\n", + "Iter 1099 cost time 0.37323784828186035\n", + "Iter 1100 cost time 0.3641519546508789\n", + "Iter 1101 cost time 0.3733358383178711\n", + "Iter 1102 cost time 0.36373186111450195\n", + "Iter 1103 cost time 0.36657023429870605\n", + "Iter 1104 cost time 0.37518930435180664\n", + "Iter 1105 cost time 0.3702433109283447\n", + "Iter 1106 cost time 0.3686959743499756\n", + "Iter 1107 cost time 0.3611762523651123\n", + "Iter 1108 cost time 0.37125372886657715\n", + "Iter 1109 cost time 0.3596920967102051\n", + "Iter 1110 cost time 0.36895751953125\n", + "Iter 1111 cost time 0.36153459548950195\n", + "Iter 1112 cost time 0.3711569309234619\n", + "Iter 1113 cost time 0.3686680793762207\n", + "Iter 1114 cost time 0.3752882480621338\n", + "Iter 1115 cost time 0.3689849376678467\n", + "Iter 1116 cost time 0.3780179023742676\n", + "Iter 1117 cost time 0.37650251388549805\n", + "Iter 1118 cost time 0.37706708908081055\n", + "Iter 1119 cost time 0.3834812641143799\n", + "Iter 1120 cost time 0.3775327205657959\n", + "Iter 1121 cost time 0.3775005340576172\n", + "Iter 1122 cost time 0.3762669563293457\n", + "Iter 1123 cost time 0.37805867195129395\n", + "Iter 1124 cost time 0.37748217582702637\n", + "Iter 1125 cost time 0.3777899742126465\n", + "Iter 1126 cost time 0.36939549446105957\n", + "Iter 1127 cost time 0.37311244010925293\n", + "Iter 1128 cost time 0.36881279945373535\n", + "Iter 1129 cost time 0.3807361125946045\n", + "Iter 1130 cost time 0.3772270679473877\n", + "Iter 1131 cost time 0.3752431869506836\n", + "Iter 1132 cost time 0.3775925636291504\n", + "Iter 1133 cost time 0.3752584457397461\n", + "Iter 1134 cost time 0.3749091625213623\n", + "Iter 1135 cost time 0.37317776679992676\n", + "Iter 1136 cost time 0.37729883193969727\n", + "Iter 1137 cost time 0.37178683280944824\n", + "Iter 1138 cost time 0.3630225658416748\n", + "Iter 1139 cost time 0.36893606185913086\n", + "Iter 1140 cost time 0.36112451553344727\n", + "Iter 1141 cost time 0.36874890327453613\n", + "Iter 1142 cost time 0.37346434593200684\n", + "Iter 1143 cost time 0.3650238513946533\n", + "Iter 1144 cost time 0.37177395820617676\n", + "Iter 1145 cost time 0.36693716049194336\n", + "Iter 1146 cost time 0.3670079708099365\n", + "Iter 1147 cost time 0.36208224296569824\n", + "Iter 1148 cost time 0.36951303482055664\n", + "Iter 1149 cost time 0.36139941215515137\n", + "Iter 1150 cost time 0.37191247940063477\n", + "Iter 1151 cost time 0.3781893253326416\n", + "Iter 1152 cost time 0.3713397979736328\n", + "Iter 1153 cost time 0.3752906322479248\n", + "Iter 1154 cost time 0.37053537368774414\n", + "Iter 1155 cost time 0.3621697425842285\n", + "Iter 1156 cost time 0.3728916645050049\n", + "Iter 1157 cost time 0.3589301109313965\n", + "Iter 1158 cost time 0.36864805221557617\n", + "Iter 1159 cost time 0.35721874237060547\n", + "Iter 1160 cost time 0.3657398223876953\n", + "Iter 1161 cost time 0.3618478775024414\n", + "Iter 1162 cost time 0.3669271469116211\n", + "Iter 1163 cost time 0.3574051856994629\n", + "Iter 1164 cost time 0.36412644386291504\n", + "Iter 1165 cost time 0.3636903762817383\n", + "Iter 1166 cost time 0.366025447845459\n", + "Iter 1167 cost time 0.3680245876312256\n", + "Iter 1168 cost time 0.374086856842041\n", + "Iter 1169 cost time 0.3636436462402344\n", + "Iter 1170 cost time 0.3747870922088623\n", + "Iter 1171 cost time 0.36485910415649414\n", + "Iter 1172 cost time 0.371401309967041\n", + "Iter 1173 cost time 0.3699991703033447\n", + "Iter 1174 cost time 0.3671743869781494\n", + "Iter 1175 cost time 0.3619711399078369\n", + "Iter 1176 cost time 0.36924290657043457\n", + "Iter 1177 cost time 0.3695824146270752\n", + "Iter 1178 cost time 0.37038159370422363\n", + "Iter 1179 cost time 0.36777639389038086\n", + "Iter 1180 cost time 0.3722999095916748\n", + "Iter 1181 cost time 0.3653275966644287\n", + "Iter 1182 cost time 0.37278294563293457\n", + "Iter 1183 cost time 0.36574244499206543\n", + "Iter 1184 cost time 0.370882511138916\n", + "Iter 1185 cost time 0.36470603942871094\n", + "Iter 1186 cost time 0.3673667907714844\n", + "Iter 1187 cost time 0.35857558250427246\n", + "Iter 1188 cost time 0.3709142208099365\n", + "Iter 1189 cost time 0.36032581329345703\n", + "Iter 1190 cost time 0.3888967037200928\n", + "Iter 1191 cost time 0.3655083179473877\n", + "Iter 1192 cost time 0.3710601329803467\n", + "Iter 1193 cost time 0.3890106678009033\n", + "Iter 1194 cost time 0.3976404666900635\n", + "Iter 1195 cost time 0.38902878761291504\n", + "Iter 1196 cost time 0.40204358100891113\n", + "Iter 1197 cost time 0.3603670597076416\n", + "Iter 1198 cost time 0.3716738224029541\n", + "Iter 1199 cost time 0.36382126808166504\n", + "Iter 1200 cost time 0.36762475967407227\n", + "Iter 1201 cost time 0.36379003524780273\n", + "Iter 1202 cost time 0.3701343536376953\n", + "Iter 1203 cost time 0.3683125972747803\n", + "Iter 1204 cost time 0.3703486919403076\n", + "Iter 1205 cost time 0.36138439178466797\n", + "Iter 1206 cost time 0.36926841735839844\n", + "Iter 1207 cost time 0.36484766006469727\n", + "Iter 1208 cost time 0.372211217880249\n", + "Iter 1209 cost time 0.36957669258117676\n", + "Iter 1210 cost time 0.3730795383453369\n", + "Iter 1211 cost time 0.3681144714355469\n", + "Iter 1212 cost time 0.3715035915374756\n", + "Iter 1213 cost time 0.37116408348083496\n", + "Iter 1214 cost time 0.37049245834350586\n", + "Iter 1215 cost time 0.3617069721221924\n", + "Iter 1216 cost time 0.3704383373260498\n", + "Iter 1217 cost time 0.37304210662841797\n", + "Iter 1218 cost time 0.37473106384277344\n", + "Iter 1219 cost time 0.3652188777923584\n", + "Iter 1220 cost time 0.3765699863433838\n", + "Iter 1221 cost time 0.3753201961517334\n", + "Iter 1222 cost time 0.3745133876800537\n", + "Iter 1223 cost time 0.36383056640625\n", + "Iter 1224 cost time 0.36971044540405273\n", + "Iter 1225 cost time 0.38539981842041016\n", + "Iter 1226 cost time 0.36222290992736816\n", + "Iter 1227 cost time 0.35869336128234863\n", + "Iter 1228 cost time 0.3800520896911621\n", + "Iter 1229 cost time 0.3769876956939697\n", + "Iter 1230 cost time 0.3666191101074219\n", + "Iter 1231 cost time 0.3575289249420166\n", + "Iter 1232 cost time 0.3678297996520996\n", + "Iter 1233 cost time 0.3579277992248535\n", + "Iter 1234 cost time 0.3658442497253418\n", + "Iter 1235 cost time 0.35799670219421387\n", + "Iter 1236 cost time 0.37087297439575195\n", + "Iter 1237 cost time 0.3617537021636963\n", + "Iter 1238 cost time 0.3659946918487549\n", + "Iter 1239 cost time 0.36105799674987793\n", + "Iter 1240 cost time 0.36933064460754395\n", + "Iter 1241 cost time 0.3633153438568115\n", + "Iter 1242 cost time 0.3682560920715332\n", + "Iter 1243 cost time 0.35758280754089355\n", + "Iter 1244 cost time 0.36696720123291016\n", + "Iter 1245 cost time 0.35901904106140137\n", + "Iter 1246 cost time 0.3667447566986084\n", + "Iter 1247 cost time 0.3616509437561035\n", + "Iter 1248 cost time 0.3724534511566162\n", + "Iter 1249 cost time 0.36542534828186035\n", + "Iter 1250 cost time 0.37148141860961914\n", + "Iter 1251 cost time 0.3706042766571045\n", + "Iter 1252 cost time 0.36782312393188477\n", + "Iter 1253 cost time 0.36425137519836426\n", + "Iter 1254 cost time 0.3724822998046875\n", + "Iter 1255 cost time 0.3635213375091553\n", + "Iter 1256 cost time 0.37082934379577637\n", + "Iter 1257 cost time 0.36609721183776855\n", + "Iter 1258 cost time 0.3706166744232178\n", + "Iter 1259 cost time 0.37007737159729004\n", + "Iter 1260 cost time 0.37145495414733887\n", + "Iter 1261 cost time 0.3655714988708496\n", + "Iter 1262 cost time 0.37271952629089355\n", + "Iter 1263 cost time 0.36482977867126465\n", + "Iter 1264 cost time 0.3746967315673828\n", + "Iter 1265 cost time 0.3642246723175049\n", + "Iter 1266 cost time 0.37122011184692383\n", + "Iter 1267 cost time 0.3585777282714844\n", + "Iter 1268 cost time 0.3667566776275635\n", + "Iter 1269 cost time 0.3630971908569336\n", + "Iter 1270 cost time 0.3693349361419678\n", + "Iter 1271 cost time 0.35805583000183105\n", + "Iter 1272 cost time 0.3696019649505615\n", + "Iter 1273 cost time 0.3625154495239258\n", + "Iter 1274 cost time 0.3675262928009033\n", + "Iter 1275 cost time 0.36030149459838867\n", + "Iter 1276 cost time 0.37015342712402344\n", + "Iter 1277 cost time 0.3592185974121094\n", + "Iter 1278 cost time 0.36921262741088867\n", + "Iter 1279 cost time 0.3603184223175049\n", + "Iter 1280 cost time 0.36601805686950684\n", + "Iter 1281 cost time 0.36270618438720703\n", + "Iter 1282 cost time 0.3679685592651367\n", + "Iter 1283 cost time 0.36263275146484375\n", + "Iter 1284 cost time 0.36572885513305664\n", + "Iter 1285 cost time 0.36048221588134766\n", + "Iter 1286 cost time 0.3727400302886963\n", + "Iter 1287 cost time 0.3956005573272705\n", + "Iter 1288 cost time 0.39462757110595703\n", + "Iter 1289 cost time 0.38468003273010254\n", + "Iter 1290 cost time 0.3748009204864502\n", + "Iter 1291 cost time 0.38115930557250977\n", + "Iter 1292 cost time 0.37577319145202637\n", + "Iter 1293 cost time 0.37322402000427246\n", + "Iter 1294 cost time 0.40952157974243164\n", + "Iter 1295 cost time 0.3770265579223633\n", + "Iter 1296 cost time 0.37567663192749023\n", + "Iter 1297 cost time 0.37673306465148926\n", + "Iter 1298 cost time 0.3755979537963867\n", + "Iter 1299 cost time 0.3752455711364746\n", + "Iter 1300 cost time 0.378007173538208\n", + "Iter 1301 cost time 0.37601590156555176\n", + "Iter 1302 cost time 0.3750801086425781\n", + "Iter 1303 cost time 0.37610960006713867\n", + "Iter 1304 cost time 0.37635374069213867\n", + "Iter 1305 cost time 0.3764486312866211\n", + "Iter 1306 cost time 0.37743639945983887\n", + "Iter 1307 cost time 0.3787360191345215\n", + "Iter 1308 cost time 0.3761625289916992\n", + "Iter 1309 cost time 0.37789320945739746\n", + "Iter 1310 cost time 0.378115177154541\n", + "Iter 1311 cost time 0.37728238105773926\n", + "Iter 1312 cost time 0.3770132064819336\n", + "Iter 1313 cost time 0.37723851203918457\n", + "Iter 1314 cost time 0.37709784507751465\n", + "Iter 1315 cost time 0.3768343925476074\n", + "Iter 1316 cost time 0.3720405101776123\n", + "Iter 1317 cost time 0.37362122535705566\n", + "Iter 1318 cost time 0.3781733512878418\n", + "Iter 1319 cost time 0.37786364555358887\n", + "Iter 1320 cost time 0.37683749198913574\n", + "Iter 1321 cost time 0.36974334716796875\n", + "Iter 1322 cost time 0.3773152828216553\n", + "Iter 1323 cost time 0.37300539016723633\n", + "Iter 1324 cost time 0.36568212509155273\n", + "Iter 1325 cost time 0.3721461296081543\n", + "Iter 1326 cost time 0.3654472827911377\n", + "Iter 1327 cost time 0.37145566940307617\n", + "Iter 1328 cost time 0.3655409812927246\n", + "Iter 1329 cost time 0.3737905025482178\n", + "Iter 1330 cost time 0.36162734031677246\n", + "Iter 1331 cost time 0.3730909824371338\n", + "Iter 1332 cost time 0.3789808750152588\n", + "Iter 1333 cost time 0.3742947578430176\n", + "Iter 1334 cost time 0.3751983642578125\n", + "Iter 1335 cost time 0.3763604164123535\n", + "Iter 1336 cost time 0.3753969669342041\n", + "Iter 1337 cost time 0.37614917755126953\n", + "Iter 1338 cost time 0.37725400924682617\n", + "Iter 1339 cost time 0.37236809730529785\n", + "Iter 1340 cost time 0.37133288383483887\n", + "Iter 1341 cost time 0.373349666595459\n", + "Iter 1342 cost time 0.37485313415527344\n", + "Iter 1343 cost time 0.3745899200439453\n", + "Iter 1344 cost time 0.36985087394714355\n", + "Iter 1345 cost time 0.37639689445495605\n", + "Iter 1346 cost time 0.37307047843933105\n", + "Iter 1347 cost time 0.3733196258544922\n", + "Iter 1348 cost time 0.369809627532959\n", + "Iter 1349 cost time 0.361358642578125\n", + "Iter 1350 cost time 0.36637115478515625\n", + "Iter 1351 cost time 0.35881900787353516\n", + "Iter 1352 cost time 0.3684990406036377\n", + "Iter 1353 cost time 0.35860610008239746\n", + "Iter 1354 cost time 0.3690512180328369\n", + "Iter 1355 cost time 0.3590106964111328\n", + "Iter 1356 cost time 0.3691689968109131\n", + "Iter 1357 cost time 0.36188673973083496\n", + "Iter 1358 cost time 0.3660569190979004\n", + "Iter 1359 cost time 0.3580639362335205\n", + "Iter 1360 cost time 0.36542606353759766\n", + "Iter 1361 cost time 0.3594632148742676\n", + "Iter 1362 cost time 0.3699069023132324\n", + "Iter 1363 cost time 0.35889363288879395\n", + "Iter 1364 cost time 0.3700449466705322\n", + "Iter 1365 cost time 0.36168956756591797\n", + "Iter 1366 cost time 0.36803722381591797\n", + "Iter 1367 cost time 0.36082935333251953\n", + "Iter 1368 cost time 0.3735544681549072\n", + "Iter 1369 cost time 0.3736298084259033\n", + "Iter 1370 cost time 0.37244582176208496\n", + "Iter 1371 cost time 0.40304088592529297\n", + "Iter 1372 cost time 0.39830684661865234\n", + "Iter 1373 cost time 0.3929152488708496\n", + "Iter 1374 cost time 0.40169644355773926\n", + "Iter 1375 cost time 0.39719176292419434\n", + "Iter 1376 cost time 0.3992297649383545\n", + "Iter 1377 cost time 0.4013550281524658\n", + "Iter 1378 cost time 0.3999061584472656\n", + "Iter 1379 cost time 0.3986399173736572\n", + "Iter 1380 cost time 0.401630163192749\n", + "Iter 1381 cost time 0.4019193649291992\n", + "Iter 1382 cost time 0.4063577651977539\n", + "Iter 1383 cost time 0.39905571937561035\n", + "Iter 1384 cost time 0.40314221382141113\n", + "Iter 1385 cost time 0.4028358459472656\n", + "Iter 1386 cost time 0.40207552909851074\n", + "Iter 1387 cost time 0.41689062118530273\n", + "Iter 1388 cost time 0.4043889045715332\n", + "Iter 1389 cost time 0.41394805908203125\n", + "Iter 1390 cost time 0.3970603942871094\n", + "Iter 1391 cost time 0.3974134922027588\n", + "Iter 1392 cost time 0.4019637107849121\n", + "Iter 1393 cost time 0.3975961208343506\n", + "Iter 1394 cost time 0.40357375144958496\n", + "Iter 1395 cost time 0.41094398498535156\n", + "Iter 1396 cost time 0.4012439250946045\n", + "Iter 1397 cost time 0.4055142402648926\n", + "Iter 1398 cost time 0.3817298412322998\n", + "Iter 1399 cost time 0.39621615409851074\n", + "Iter 1400 cost time 0.3675956726074219\n", + "Iter 1401 cost time 0.3680684566497803\n", + "Iter 1402 cost time 0.3625059127807617\n", + "Iter 1403 cost time 0.36923933029174805\n", + "Iter 1404 cost time 0.3663322925567627\n", + "Iter 1405 cost time 0.3653755187988281\n", + "Iter 1406 cost time 0.36019301414489746\n", + "Iter 1407 cost time 0.3687167167663574\n", + "Iter 1408 cost time 0.36122584342956543\n", + "Iter 1409 cost time 0.3689584732055664\n", + "Iter 1410 cost time 0.36925745010375977\n", + "Iter 1411 cost time 0.37314605712890625\n", + "Iter 1412 cost time 0.36813807487487793\n", + "Iter 1413 cost time 0.3727457523345947\n", + "Iter 1414 cost time 0.3658134937286377\n", + "Iter 1415 cost time 0.37157297134399414\n", + "Iter 1416 cost time 0.363250732421875\n", + "Iter 1417 cost time 0.37224674224853516\n", + "Iter 1418 cost time 0.36539149284362793\n", + "Iter 1419 cost time 0.37152862548828125\n", + "Iter 1420 cost time 0.3675270080566406\n", + "Iter 1421 cost time 0.3720517158508301\n", + "Iter 1422 cost time 0.3659048080444336\n", + "Iter 1423 cost time 0.37128210067749023\n", + "Iter 1424 cost time 0.3672828674316406\n", + "Iter 1425 cost time 0.37250757217407227\n", + "Iter 1426 cost time 0.36545729637145996\n", + "Iter 1427 cost time 0.37278223037719727\n", + "Iter 1428 cost time 0.36779165267944336\n", + "Iter 1429 cost time 0.3724195957183838\n", + "Iter 1430 cost time 0.3686838150024414\n", + "Iter 1431 cost time 0.3737211227416992\n", + "Iter 1432 cost time 0.3652462959289551\n", + "Iter 1433 cost time 0.37575244903564453\n", + "Iter 1434 cost time 0.3680133819580078\n", + "Iter 1435 cost time 0.3701350688934326\n", + "Iter 1436 cost time 0.36946582794189453\n", + "Iter 1437 cost time 0.3767426013946533\n", + "Iter 1438 cost time 0.36202430725097656\n", + "Iter 1439 cost time 0.37128305435180664\n", + "Iter 1440 cost time 0.35962724685668945\n", + "Iter 1441 cost time 0.36781930923461914\n", + "Iter 1442 cost time 0.36115550994873047\n", + "Iter 1443 cost time 0.3636438846588135\n", + "Iter 1444 cost time 0.3600482940673828\n", + "Iter 1445 cost time 0.37337183952331543\n", + "Iter 1446 cost time 0.36028385162353516\n", + "Iter 1447 cost time 0.36770153045654297\n", + "Iter 1448 cost time 0.3639507293701172\n", + "Iter 1449 cost time 0.3672776222229004\n", + "Iter 1450 cost time 0.36612462997436523\n", + "Iter 1451 cost time 0.37129664421081543\n", + "Iter 1452 cost time 0.37122392654418945\n", + "Iter 1453 cost time 0.3748643398284912\n", + "Iter 1454 cost time 0.37311267852783203\n", + "Iter 1455 cost time 0.3732566833496094\n", + "Iter 1456 cost time 0.37406301498413086\n", + "Iter 1457 cost time 0.3741414546966553\n", + "Iter 1458 cost time 0.37705349922180176\n", + "Iter 1459 cost time 0.3738110065460205\n", + "Iter 1460 cost time 0.3718757629394531\n", + "Iter 1461 cost time 0.373262882232666\n", + "Iter 1462 cost time 0.3672497272491455\n", + "Iter 1463 cost time 0.3732726573944092\n", + "Iter 1464 cost time 0.36772656440734863\n", + "Iter 1465 cost time 0.3754396438598633\n", + "Iter 1466 cost time 0.36574840545654297\n", + "Iter 1467 cost time 0.37236690521240234\n", + "Iter 1468 cost time 0.36936473846435547\n", + "Iter 1469 cost time 0.37558960914611816\n", + "Iter 1470 cost time 0.3674192428588867\n", + "Iter 1471 cost time 0.3716249465942383\n", + "Iter 1472 cost time 0.36509037017822266\n", + "Iter 1473 cost time 0.37694406509399414\n", + "Iter 1474 cost time 0.3684248924255371\n", + "Iter 1475 cost time 0.3729727268218994\n", + "Iter 1476 cost time 0.3671994209289551\n", + "Iter 1477 cost time 0.3736562728881836\n", + "Iter 1478 cost time 0.35953640937805176\n", + "Iter 1479 cost time 0.3734452724456787\n", + "Iter 1480 cost time 0.3623218536376953\n", + "Iter 1481 cost time 0.36725330352783203\n", + "Iter 1482 cost time 0.36127781867980957\n", + "Iter 1483 cost time 0.372725248336792\n", + "Iter 1484 cost time 0.36178088188171387\n", + "Iter 1485 cost time 0.3681316375732422\n", + "Iter 1486 cost time 0.3613548278808594\n", + "Iter 1487 cost time 0.37474679946899414\n", + "Iter 1488 cost time 0.36197996139526367\n", + "Iter 1489 cost time 0.3714737892150879\n", + "Iter 1490 cost time 0.37200188636779785\n", + "Iter 1491 cost time 0.3810303211212158\n", + "Iter 1492 cost time 0.380723237991333\n", + "Iter 1493 cost time 0.3781733512878418\n", + "Iter 1494 cost time 0.3796420097351074\n", + "Iter 1495 cost time 0.38051390647888184\n", + "Iter 1496 cost time 0.37635302543640137\n", + "Iter 1497 cost time 0.3711283206939697\n", + "Iter 1498 cost time 0.37509846687316895\n", + "Iter 1499 cost time 0.37521886825561523\n", + "Iter 1500 cost time 0.3743886947631836\n", + "Iter 1501 cost time 0.3750913143157959\n", + "Iter 1502 cost time 0.3746659755706787\n", + "Iter 1503 cost time 0.37629151344299316\n", + "Iter 1504 cost time 0.36763954162597656\n", + "Iter 1505 cost time 0.3740551471710205\n", + "Iter 1506 cost time 0.3653440475463867\n", + "Iter 1507 cost time 0.3718454837799072\n", + "Iter 1508 cost time 0.36612582206726074\n", + "Iter 1509 cost time 0.3734142780303955\n", + "Iter 1510 cost time 0.3750283718109131\n", + "Iter 1511 cost time 0.3755223751068115\n", + "Iter 1512 cost time 0.3749709129333496\n", + "Iter 1513 cost time 0.37337660789489746\n", + "Iter 1514 cost time 0.3641190528869629\n", + "Iter 1515 cost time 0.37340712547302246\n", + "Iter 1516 cost time 0.36676454544067383\n", + "Iter 1517 cost time 0.3763618469238281\n", + "Iter 1518 cost time 0.37394142150878906\n", + "Iter 1519 cost time 0.37219691276550293\n", + "Iter 1520 cost time 0.36283349990844727\n", + "Iter 1521 cost time 0.36877918243408203\n", + "Iter 1522 cost time 0.36252880096435547\n", + "Iter 1523 cost time 0.36913633346557617\n", + "Iter 1524 cost time 0.3619537353515625\n", + "Iter 1525 cost time 0.3720285892486572\n", + "Iter 1526 cost time 0.3625833988189697\n", + "Iter 1527 cost time 0.3701212406158447\n", + "Iter 1528 cost time 0.36122560501098633\n", + "Iter 1529 cost time 0.3688046932220459\n", + "Iter 1530 cost time 0.36671018600463867\n", + "Iter 1531 cost time 0.3711543083190918\n", + "Iter 1532 cost time 0.36364126205444336\n", + "Iter 1533 cost time 0.3718850612640381\n", + "Iter 1534 cost time 0.36638784408569336\n", + "Iter 1535 cost time 0.3728458881378174\n", + "Iter 1536 cost time 0.36493825912475586\n", + "Iter 1537 cost time 0.3720564842224121\n", + "Iter 1538 cost time 0.36480283737182617\n", + "Iter 1539 cost time 0.3693532943725586\n", + "Iter 1540 cost time 0.36649250984191895\n", + "Iter 1541 cost time 0.37339162826538086\n", + "Iter 1542 cost time 0.36770129203796387\n", + "Iter 1543 cost time 0.37081027030944824\n", + "Iter 1544 cost time 0.36798667907714844\n", + "Iter 1545 cost time 0.3680238723754883\n", + "Iter 1546 cost time 0.36642956733703613\n", + "Iter 1547 cost time 0.3745415210723877\n", + "Iter 1548 cost time 0.3660542964935303\n", + "Iter 1549 cost time 0.37168025970458984\n", + "Iter 1550 cost time 0.36539769172668457\n", + "Iter 1551 cost time 0.37180161476135254\n", + "Iter 1552 cost time 0.36971473693847656\n", + "Iter 1553 cost time 0.3747694492340088\n", + "Iter 1554 cost time 0.36721110343933105\n", + "Iter 1555 cost time 0.3718547821044922\n", + "Iter 1556 cost time 0.3663296699523926\n", + "Iter 1557 cost time 0.3729219436645508\n", + "Iter 1558 cost time 0.36380863189697266\n", + "Iter 1559 cost time 0.3695511817932129\n", + "Iter 1560 cost time 0.36379408836364746\n", + "Iter 1561 cost time 0.3661983013153076\n", + "Iter 1562 cost time 0.3607137203216553\n", + "Iter 1563 cost time 0.3624131679534912\n", + "Iter 1564 cost time 0.36542606353759766\n", + "Iter 1565 cost time 0.36113572120666504\n", + "Iter 1566 cost time 0.3619227409362793\n", + "Iter 1567 cost time 0.36363863945007324\n", + "Iter 1568 cost time 0.36441946029663086\n", + "Iter 1569 cost time 0.3604240417480469\n", + "Iter 1570 cost time 0.36798524856567383\n", + "Iter 1571 cost time 0.3663616180419922\n", + "Iter 1572 cost time 0.36788368225097656\n", + "Iter 1573 cost time 0.3671882152557373\n", + "Iter 1574 cost time 0.36728811264038086\n", + "Iter 1575 cost time 0.3673851490020752\n", + "Iter 1576 cost time 0.36546921730041504\n", + "Iter 1577 cost time 0.3684365749359131\n", + "Iter 1578 cost time 0.3687865734100342\n", + "Iter 1579 cost time 0.36811065673828125\n", + "Iter 1580 cost time 0.3704679012298584\n", + "Iter 1581 cost time 0.3671255111694336\n", + "Iter 1582 cost time 0.41579580307006836\n", + "Iter 1583 cost time 0.40014076232910156\n", + "Iter 1584 cost time 0.38933730125427246\n", + "Iter 1585 cost time 0.3867015838623047\n", + "Iter 1586 cost time 0.4067859649658203\n", + "Iter 1587 cost time 0.3954200744628906\n", + "Iter 1588 cost time 0.392733097076416\n", + "Iter 1589 cost time 0.406207799911499\n", + "Iter 1590 cost time 0.3789212703704834\n", + "Iter 1591 cost time 0.44145894050598145\n", + "Iter 1592 cost time 0.3783724308013916\n", + "Iter 1593 cost time 0.3786792755126953\n", + "Iter 1594 cost time 0.37898874282836914\n", + "Iter 1595 cost time 0.37758588790893555\n", + "Iter 1596 cost time 0.37871384620666504\n", + "Iter 1597 cost time 0.3801143169403076\n", + "Iter 1598 cost time 0.36488771438598633\n", + "Iter 1599 cost time 0.39589858055114746\n", + "Iter 1600 cost time 0.36342716217041016\n", + "Iter 1601 cost time 0.3639028072357178\n", + "Iter 1602 cost time 0.36208415031433105\n", + "Iter 1603 cost time 0.3628697395324707\n", + "Iter 1604 cost time 0.3771631717681885\n", + "Iter 1605 cost time 0.3778572082519531\n", + "Iter 1606 cost time 0.37955689430236816\n", + "Iter 1607 cost time 0.3791027069091797\n", + "Iter 1608 cost time 0.37811756134033203\n", + "Iter 1609 cost time 0.3759944438934326\n", + "Iter 1610 cost time 0.3777596950531006\n", + "Iter 1611 cost time 0.3672032356262207\n", + "Iter 1612 cost time 0.37091064453125\n", + "Iter 1613 cost time 0.3690497875213623\n", + "Iter 1614 cost time 0.3727748394012451\n", + "Iter 1615 cost time 0.37125158309936523\n", + "Iter 1616 cost time 0.37370967864990234\n", + "Iter 1617 cost time 0.37740325927734375\n", + "Iter 1618 cost time 0.3760545253753662\n", + "Iter 1619 cost time 0.3662984371185303\n", + "Iter 1620 cost time 0.3699648380279541\n", + "Iter 1621 cost time 0.3654651641845703\n", + "Iter 1622 cost time 0.37075233459472656\n", + "Iter 1623 cost time 0.3594992160797119\n", + "Iter 1624 cost time 0.3773360252380371\n", + "Iter 1625 cost time 0.36040234565734863\n", + "Iter 1626 cost time 0.3623814582824707\n", + "Iter 1627 cost time 0.3609905242919922\n", + "Iter 1628 cost time 0.35927534103393555\n", + "Iter 1629 cost time 0.36515331268310547\n", + "Iter 1630 cost time 0.3675220012664795\n", + "Iter 1631 cost time 0.3643989562988281\n", + "Iter 1632 cost time 0.3635108470916748\n", + "Iter 1633 cost time 0.3713700771331787\n", + "Iter 1634 cost time 0.3668227195739746\n", + "Iter 1635 cost time 0.370776891708374\n", + "Iter 1636 cost time 0.37076282501220703\n", + "Iter 1637 cost time 0.3717195987701416\n", + "Iter 1638 cost time 0.3634965419769287\n", + "Iter 1639 cost time 0.36211538314819336\n", + "Iter 1640 cost time 0.36292457580566406\n", + "Iter 1641 cost time 0.36197400093078613\n", + "Iter 1642 cost time 0.36144328117370605\n", + "Iter 1643 cost time 0.36011743545532227\n", + "Iter 1644 cost time 0.36591219902038574\n", + "Iter 1645 cost time 0.3636758327484131\n", + "Iter 1646 cost time 0.3616633415222168\n", + "Iter 1647 cost time 0.363614559173584\n", + "Iter 1648 cost time 0.36208510398864746\n", + "Iter 1649 cost time 0.36356663703918457\n", + "Iter 1650 cost time 0.3679625988006592\n", + "Iter 1651 cost time 0.3667721748352051\n", + "Iter 1652 cost time 0.36838221549987793\n", + "Iter 1653 cost time 0.366349458694458\n", + "Iter 1654 cost time 0.36859798431396484\n", + "Iter 1655 cost time 0.3672921657562256\n", + "Iter 1656 cost time 0.36545276641845703\n", + "Iter 1657 cost time 0.3653225898742676\n", + "Iter 1658 cost time 0.3658285140991211\n", + "Iter 1659 cost time 0.36446237564086914\n", + "Iter 1660 cost time 0.36526918411254883\n", + "Iter 1661 cost time 0.38823533058166504\n", + "Iter 1662 cost time 0.3633859157562256\n", + "Iter 1663 cost time 0.36263155937194824\n", + "Iter 1664 cost time 0.36371612548828125\n", + "Iter 1665 cost time 0.3678281307220459\n", + "Iter 1666 cost time 0.3659381866455078\n", + "Iter 1667 cost time 0.3659701347351074\n", + "Iter 1668 cost time 0.3652186393737793\n", + "Iter 1669 cost time 0.36364030838012695\n", + "Iter 1670 cost time 0.37160825729370117\n", + "Iter 1671 cost time 0.3649332523345947\n", + "Iter 1672 cost time 0.36711764335632324\n", + "Iter 1673 cost time 0.3702101707458496\n", + "Iter 1674 cost time 0.3645973205566406\n", + "Iter 1675 cost time 0.3706851005554199\n", + "Iter 1676 cost time 0.3685576915740967\n", + "Iter 1677 cost time 0.37149858474731445\n", + "Iter 1678 cost time 0.36421704292297363\n", + "Iter 1679 cost time 0.3703796863555908\n", + "Iter 1680 cost time 0.36353254318237305\n", + "Iter 1681 cost time 0.3631172180175781\n", + "Iter 1682 cost time 0.36560821533203125\n", + "Iter 1683 cost time 0.36547064781188965\n", + "Iter 1684 cost time 0.3620951175689697\n", + "Iter 1685 cost time 0.36081600189208984\n", + "Iter 1686 cost time 0.36219120025634766\n", + "Iter 1687 cost time 0.36235857009887695\n", + "Iter 1688 cost time 0.3657200336456299\n", + "Iter 1689 cost time 0.36245059967041016\n", + "Iter 1690 cost time 0.3675510883331299\n", + "Iter 1691 cost time 0.37001562118530273\n", + "Iter 1692 cost time 0.3674497604370117\n", + "Iter 1693 cost time 0.36819958686828613\n", + "Iter 1694 cost time 0.3668797016143799\n", + "Iter 1695 cost time 0.3645181655883789\n", + "Iter 1696 cost time 0.3667447566986084\n", + "Iter 1697 cost time 0.36263346672058105\n", + "Iter 1698 cost time 0.366455078125\n", + "Iter 1699 cost time 0.36238694190979004\n", + "Iter 1700 cost time 0.36811089515686035\n", + "Iter 1701 cost time 0.3621642589569092\n", + "Iter 1702 cost time 0.3621511459350586\n", + "Iter 1703 cost time 0.362379789352417\n", + "Iter 1704 cost time 0.3603053092956543\n", + "Iter 1705 cost time 0.36414480209350586\n", + "Iter 1706 cost time 0.36217784881591797\n", + "Iter 1707 cost time 0.3618893623352051\n", + "Iter 1708 cost time 0.3618474006652832\n", + "Iter 1709 cost time 0.36182260513305664\n", + "Iter 1710 cost time 0.36739611625671387\n", + "Iter 1711 cost time 0.36322903633117676\n", + "Iter 1712 cost time 0.36725592613220215\n", + "Iter 1713 cost time 0.366732120513916\n", + "Iter 1714 cost time 0.36655139923095703\n", + "Iter 1715 cost time 0.37108850479125977\n", + "Iter 1716 cost time 0.36554503440856934\n", + "Iter 1717 cost time 0.36504411697387695\n", + "Iter 1718 cost time 0.361954927444458\n", + "Iter 1719 cost time 0.37417030334472656\n", + "Iter 1720 cost time 0.3758859634399414\n", + "Iter 1721 cost time 0.36365747451782227\n", + "Iter 1722 cost time 0.3739817142486572\n", + "Iter 1723 cost time 0.3703269958496094\n", + "Iter 1724 cost time 0.37328624725341797\n", + "Iter 1725 cost time 0.3728301525115967\n", + "Iter 1726 cost time 0.37273716926574707\n", + "Iter 1727 cost time 0.37708067893981934\n", + "Iter 1728 cost time 0.37288546562194824\n", + "Iter 1729 cost time 0.37524914741516113\n", + "Iter 1730 cost time 0.37557387351989746\n", + "Iter 1731 cost time 0.3672153949737549\n", + "Iter 1732 cost time 0.3688836097717285\n", + "Iter 1733 cost time 0.37267255783081055\n", + "Iter 1734 cost time 0.3668184280395508\n", + "Iter 1735 cost time 0.37368226051330566\n", + "Iter 1736 cost time 0.37341856956481934\n", + "Iter 1737 cost time 0.35883569717407227\n", + "Iter 1738 cost time 0.377103328704834\n", + "Iter 1739 cost time 0.35782527923583984\n", + "Iter 1740 cost time 0.36800646781921387\n", + "Iter 1741 cost time 0.3573634624481201\n", + "Iter 1742 cost time 0.3733675479888916\n", + "Iter 1743 cost time 0.3591761589050293\n", + "Iter 1744 cost time 0.3614332675933838\n", + "Iter 1745 cost time 0.36217308044433594\n", + "Iter 1746 cost time 0.3588712215423584\n", + "Iter 1747 cost time 0.36089491844177246\n", + "Iter 1748 cost time 0.36028242111206055\n", + "Iter 1749 cost time 0.36303019523620605\n", + "Iter 1750 cost time 0.36572933197021484\n", + "Iter 1751 cost time 0.3653438091278076\n", + "Iter 1752 cost time 0.3671081066131592\n", + "Iter 1753 cost time 0.3701610565185547\n", + "Iter 1754 cost time 0.36514711380004883\n", + "Iter 1755 cost time 0.3850541114807129\n", + "Iter 1756 cost time 0.38179731369018555\n", + "Iter 1757 cost time 0.3840665817260742\n", + "Iter 1758 cost time 0.36528539657592773\n", + "Iter 1759 cost time 0.36284494400024414\n", + "Iter 1760 cost time 0.3652458190917969\n", + "Iter 1761 cost time 0.3622462749481201\n", + "Iter 1762 cost time 0.3612072467803955\n", + "Iter 1763 cost time 0.36476802825927734\n", + "Iter 1764 cost time 0.36284565925598145\n", + "Iter 1765 cost time 0.3638026714324951\n", + "Iter 1766 cost time 0.36308884620666504\n", + "Iter 1767 cost time 0.36113977432250977\n", + "Iter 1768 cost time 0.365048885345459\n", + "Iter 1769 cost time 0.3662736415863037\n", + "Iter 1770 cost time 0.3884100914001465\n", + "Iter 1771 cost time 0.3906123638153076\n", + "Iter 1772 cost time 0.38709402084350586\n", + "Iter 1773 cost time 0.3982388973236084\n", + "Iter 1774 cost time 0.36962056159973145\n", + "Iter 1775 cost time 0.37657618522644043\n", + "Iter 1776 cost time 0.3694779872894287\n", + "Iter 1777 cost time 0.3650240898132324\n", + "Iter 1778 cost time 0.3680391311645508\n", + "Iter 1779 cost time 0.36359095573425293\n", + "Iter 1780 cost time 0.37044715881347656\n", + "Iter 1781 cost time 0.36498570442199707\n", + "Iter 1782 cost time 0.36496877670288086\n", + "Iter 1783 cost time 0.3642551898956299\n", + "Iter 1784 cost time 0.3719503879547119\n", + "Iter 1785 cost time 0.36091160774230957\n", + "Iter 1786 cost time 0.3796563148498535\n", + "Iter 1787 cost time 0.362396240234375\n", + "Iter 1788 cost time 0.3634519577026367\n", + "Iter 1789 cost time 0.36249208450317383\n", + "Iter 1790 cost time 0.36554408073425293\n", + "Iter 1791 cost time 0.3674345016479492\n", + "Iter 1792 cost time 0.36604857444763184\n", + "Iter 1793 cost time 0.3668529987335205\n", + "Iter 1794 cost time 0.36548590660095215\n", + "Iter 1795 cost time 0.36264920234680176\n", + "Iter 1796 cost time 0.3612499237060547\n", + "Iter 1797 cost time 0.3604569435119629\n", + "Iter 1798 cost time 0.36005282402038574\n", + "Iter 1799 cost time 0.3593459129333496\n", + "Iter 1800 cost time 0.3622703552246094\n", + "Iter 1801 cost time 0.3570828437805176\n", + "Iter 1802 cost time 0.3612983226776123\n", + "Iter 1803 cost time 0.3582725524902344\n", + "Iter 1804 cost time 0.36025071144104004\n", + "Iter 1805 cost time 0.3598201274871826\n", + "Iter 1806 cost time 0.35732507705688477\n", + "Iter 1807 cost time 0.35883283615112305\n", + "Iter 1808 cost time 0.36141037940979004\n", + "Iter 1809 cost time 0.3617217540740967\n", + "Iter 1810 cost time 0.36155009269714355\n", + "Iter 1811 cost time 0.3621506690979004\n", + "Iter 1812 cost time 0.36205101013183594\n", + "Iter 1813 cost time 0.35947322845458984\n", + "Iter 1814 cost time 0.36754846572875977\n", + "Iter 1815 cost time 0.3646836280822754\n", + "Iter 1816 cost time 0.3687398433685303\n", + "Iter 1817 cost time 0.3611149787902832\n", + "Iter 1818 cost time 0.3652200698852539\n", + "Iter 1819 cost time 0.3637657165527344\n", + "Iter 1820 cost time 0.36725878715515137\n", + "Iter 1821 cost time 0.36695432662963867\n", + "Iter 1822 cost time 0.3623995780944824\n", + "Iter 1823 cost time 0.36623048782348633\n", + "Iter 1824 cost time 0.36472153663635254\n", + "Iter 1825 cost time 0.3624260425567627\n", + "Iter 1826 cost time 0.36281919479370117\n", + "Iter 1827 cost time 0.36310291290283203\n", + "Iter 1828 cost time 0.3624534606933594\n", + "Iter 1829 cost time 0.37834835052490234\n", + "Iter 1830 cost time 0.37561869621276855\n", + "Iter 1831 cost time 0.3770124912261963\n", + "Iter 1832 cost time 0.3784458637237549\n", + "Iter 1833 cost time 0.3759758472442627\n", + "Iter 1834 cost time 0.3757753372192383\n", + "Iter 1835 cost time 0.37740564346313477\n", + "Iter 1836 cost time 0.37825465202331543\n", + "Iter 1837 cost time 0.3758411407470703\n", + "Iter 1838 cost time 0.37392544746398926\n", + "Iter 1839 cost time 0.3777890205383301\n", + "Iter 1840 cost time 0.37799072265625\n", + "Iter 1841 cost time 0.3750169277191162\n", + "Iter 1842 cost time 0.37445616722106934\n", + "Iter 1843 cost time 0.3764195442199707\n", + "Iter 1844 cost time 0.3760042190551758\n", + "Iter 1845 cost time 0.3755373954772949\n", + "Iter 1846 cost time 0.3799426555633545\n", + "Iter 1847 cost time 0.3793015480041504\n", + "Iter 1848 cost time 0.3815317153930664\n", + "Iter 1849 cost time 0.3762378692626953\n", + "Iter 1850 cost time 0.37890148162841797\n", + "Iter 1851 cost time 0.37970566749572754\n", + "Iter 1852 cost time 0.37923669815063477\n", + "Iter 1853 cost time 0.3753948211669922\n", + "Iter 1854 cost time 0.3791782855987549\n", + "Iter 1855 cost time 0.3775794506072998\n", + "Iter 1856 cost time 0.37914395332336426\n", + "Iter 1857 cost time 0.378251314163208\n", + "Iter 1858 cost time 0.3879818916320801\n", + "Iter 1859 cost time 0.36414647102355957\n", + "Iter 1860 cost time 0.3813040256500244\n", + "Iter 1861 cost time 0.3772871494293213\n", + "Iter 1862 cost time 0.37534356117248535\n", + "Iter 1863 cost time 0.37576913833618164\n", + "Iter 1864 cost time 0.36343860626220703\n", + "Iter 1865 cost time 0.3620147705078125\n", + "Iter 1866 cost time 0.3620760440826416\n", + "Iter 1867 cost time 0.36602330207824707\n", + "Iter 1868 cost time 0.36404967308044434\n", + "Iter 1869 cost time 0.3674290180206299\n", + "Iter 1870 cost time 0.3687455654144287\n", + "Iter 1871 cost time 0.36251211166381836\n", + "Iter 1872 cost time 0.36778783798217773\n", + "Iter 1873 cost time 0.3673691749572754\n", + "Iter 1874 cost time 0.36929941177368164\n", + "Iter 1875 cost time 0.3616940975189209\n", + "Iter 1876 cost time 0.3614194393157959\n", + "Iter 1877 cost time 0.35958385467529297\n", + "Iter 1878 cost time 0.3585219383239746\n", + "Iter 1879 cost time 0.3577589988708496\n", + "Iter 1880 cost time 0.3779788017272949\n", + "Iter 1881 cost time 0.3751096725463867\n", + "Iter 1882 cost time 0.3587796688079834\n", + "Iter 1883 cost time 0.3614523410797119\n", + "Iter 1884 cost time 0.3605024814605713\n", + "Iter 1885 cost time 0.36304640769958496\n", + "Iter 1886 cost time 0.3629484176635742\n", + "Iter 1887 cost time 0.36175036430358887\n", + "Iter 1888 cost time 0.36293745040893555\n", + "Iter 1889 cost time 0.3621647357940674\n", + "Iter 1890 cost time 0.36212611198425293\n", + "Iter 1891 cost time 0.3619558811187744\n", + "Iter 1892 cost time 0.3641941547393799\n", + "Iter 1893 cost time 0.3598136901855469\n", + "Iter 1894 cost time 0.36382198333740234\n", + "Iter 1895 cost time 0.36535048484802246\n", + "Iter 1896 cost time 0.36694884300231934\n", + "Iter 1897 cost time 0.3621211051940918\n", + "Iter 1898 cost time 0.360882043838501\n", + "Iter 1899 cost time 0.3593738079071045\n", + "Iter 1900 cost time 0.36563825607299805\n", + "Iter 1901 cost time 0.36156225204467773\n", + "Iter 1902 cost time 0.35683679580688477\n", + "Iter 1903 cost time 0.3706095218658447\n", + "Iter 1904 cost time 0.36181116104125977\n", + "Iter 1905 cost time 0.36437058448791504\n", + "Iter 1906 cost time 0.36849117279052734\n", + "Iter 1907 cost time 0.3625984191894531\n", + "Iter 1908 cost time 0.3724703788757324\n", + "Iter 1909 cost time 0.3577144145965576\n", + "Iter 1910 cost time 0.3782162666320801\n", + "Iter 1911 cost time 0.3658113479614258\n", + "Iter 1912 cost time 0.36455845832824707\n", + "Iter 1913 cost time 0.3654954433441162\n", + "Iter 1914 cost time 0.36314868927001953\n", + "Iter 1915 cost time 0.37372517585754395\n", + "Iter 1916 cost time 0.35971784591674805\n", + "Iter 1917 cost time 0.36519551277160645\n", + "Iter 1918 cost time 0.3620319366455078\n", + "Iter 1919 cost time 0.36261844635009766\n", + "Iter 1920 cost time 0.3596963882446289\n", + "Iter 1921 cost time 0.3578031063079834\n", + "Iter 1922 cost time 0.35887885093688965\n", + "Iter 1923 cost time 0.35947346687316895\n", + "Iter 1924 cost time 0.36218810081481934\n", + "Iter 1925 cost time 0.3568534851074219\n", + "Iter 1926 cost time 0.35925817489624023\n", + "Iter 1927 cost time 0.3586008548736572\n", + "Iter 1928 cost time 0.36352992057800293\n", + "Iter 1929 cost time 0.36064720153808594\n", + "Iter 1930 cost time 0.36014580726623535\n", + "Iter 1931 cost time 0.36120057106018066\n", + "Iter 1932 cost time 0.360990047454834\n", + "Iter 1933 cost time 0.35899949073791504\n", + "Iter 1934 cost time 0.364823579788208\n", + "Iter 1935 cost time 0.365114688873291\n", + "Iter 1936 cost time 0.3664848804473877\n", + "Iter 1937 cost time 0.3593463897705078\n", + "Iter 1938 cost time 0.3601968288421631\n", + "Iter 1939 cost time 0.36288022994995117\n", + "Iter 1940 cost time 0.3661525249481201\n", + "Iter 1941 cost time 0.3619406223297119\n", + "Iter 1942 cost time 0.3599975109100342\n", + "Iter 1943 cost time 0.36101865768432617\n", + "Iter 1944 cost time 0.365344762802124\n", + "Iter 1945 cost time 0.3668787479400635\n", + "Iter 1946 cost time 0.36344003677368164\n", + "Iter 1947 cost time 0.3606233596801758\n", + "Iter 1948 cost time 0.3606431484222412\n", + "Iter 1949 cost time 0.36247992515563965\n", + "Iter 1950 cost time 0.38319921493530273\n", + "Iter 1951 cost time 0.3700106143951416\n", + "Iter 1952 cost time 0.38440632820129395\n", + "Iter 1953 cost time 0.3874211311340332\n", + "Iter 1954 cost time 0.3843193054199219\n", + "Iter 1955 cost time 0.3601863384246826\n", + "Iter 1956 cost time 0.36427783966064453\n", + "Iter 1957 cost time 0.3626270294189453\n", + "Iter 1958 cost time 0.3625662326812744\n", + "Iter 1959 cost time 0.36487555503845215\n", + "Iter 1960 cost time 0.36783504486083984\n", + "Iter 1961 cost time 0.36414241790771484\n", + "Iter 1962 cost time 0.3640730381011963\n", + "Iter 1963 cost time 0.364879846572876\n", + "Iter 1964 cost time 0.3630516529083252\n", + "Iter 1965 cost time 0.36484503746032715\n", + "Iter 1966 cost time 0.36292552947998047\n", + "Iter 1967 cost time 0.36858701705932617\n", + "Iter 1968 cost time 0.3636300563812256\n", + "Iter 1969 cost time 0.36489295959472656\n", + "Iter 1970 cost time 0.3645007610321045\n", + "Iter 1971 cost time 0.3603856563568115\n", + "Iter 1972 cost time 0.36300182342529297\n", + "Iter 1973 cost time 0.3768763542175293\n", + "Iter 1974 cost time 0.372478723526001\n", + "Iter 1975 cost time 0.36533498764038086\n", + "Iter 1976 cost time 0.3614490032196045\n", + "Iter 1977 cost time 0.3558337688446045\n", + "Iter 1978 cost time 0.3575870990753174\n", + "Iter 1979 cost time 0.36028361320495605\n", + "Iter 1980 cost time 0.372448205947876\n", + "Iter 1981 cost time 0.3601841926574707\n", + "Iter 1982 cost time 0.35871005058288574\n", + "Iter 1983 cost time 0.3591477870941162\n", + "Iter 1984 cost time 0.3606390953063965\n", + "Iter 1985 cost time 0.36352014541625977\n", + "Iter 1986 cost time 0.3600142002105713\n", + "Iter 1987 cost time 0.3604445457458496\n", + "Iter 1988 cost time 0.36119937896728516\n", + "Iter 1989 cost time 0.36122870445251465\n", + "Iter 1990 cost time 0.35931873321533203\n", + "Iter 1991 cost time 0.3637735843658447\n", + "Iter 1992 cost time 0.3600459098815918\n", + "Iter 1993 cost time 0.36067843437194824\n", + "Iter 1994 cost time 0.35970139503479004\n", + "Iter 1995 cost time 0.3594188690185547\n", + "Iter 1996 cost time 0.36225414276123047\n", + "Iter 1997 cost time 0.3605477809906006\n", + "Iter 1998 cost time 0.36269307136535645\n", + "Iter 1999 cost time 0.3594481945037842\n", + "Iter 2000 cost time 0.360414981842041\n", + "Iter 2001 cost time 0.3599662780761719\n", + "Iter 2002 cost time 0.35770082473754883\n", + "Iter 2003 cost time 0.36421775817871094\n", + "Iter 2004 cost time 0.37648820877075195\n", + "Iter 2005 cost time 0.37363481521606445\n", + "Iter 2006 cost time 0.3739206790924072\n", + "Iter 2007 cost time 0.37613487243652344\n", + "Iter 2008 cost time 0.3638608455657959\n", + "Iter 2009 cost time 0.36132001876831055\n", + "Iter 2010 cost time 0.35843682289123535\n", + "Iter 2011 cost time 0.37175631523132324\n", + "Iter 2012 cost time 0.36101770401000977\n", + "Iter 2013 cost time 0.36258602142333984\n", + "Iter 2014 cost time 0.36859560012817383\n", + "Iter 2015 cost time 0.3656597137451172\n", + "Iter 2016 cost time 0.365708589553833\n", + "Iter 2017 cost time 0.3615076541900635\n", + "Iter 2018 cost time 0.35936760902404785\n", + "Iter 2019 cost time 0.36128878593444824\n", + "Iter 2020 cost time 0.36571264266967773\n", + "Iter 2021 cost time 0.35940003395080566\n", + "Iter 2022 cost time 0.35862112045288086\n", + "Iter 2023 cost time 0.35993170738220215\n", + "Iter 2024 cost time 0.3645510673522949\n", + "Iter 2025 cost time 0.35991978645324707\n", + "Iter 2026 cost time 0.36165714263916016\n", + "Iter 2027 cost time 0.3614799976348877\n", + "Iter 2028 cost time 0.36100149154663086\n", + "Iter 2029 cost time 0.3593559265136719\n", + "Iter 2030 cost time 0.355863094329834\n", + "Iter 2031 cost time 0.3830592632293701\n", + "Iter 2032 cost time 0.36198854446411133\n", + "Iter 2033 cost time 0.3606600761413574\n", + "Iter 2034 cost time 0.35770654678344727\n", + "Iter 2035 cost time 0.36235976219177246\n", + "Iter 2036 cost time 0.3596348762512207\n", + "Iter 2037 cost time 0.36266136169433594\n", + "Iter 2038 cost time 0.36270904541015625\n", + "Iter 2039 cost time 0.36129069328308105\n", + "Iter 2040 cost time 0.3638434410095215\n", + "Iter 2041 cost time 0.361391544342041\n", + "Iter 2042 cost time 0.36341261863708496\n", + "Iter 2043 cost time 0.3611440658569336\n", + "Iter 2044 cost time 0.358731746673584\n", + "Iter 2045 cost time 0.3606579303741455\n", + "Iter 2046 cost time 0.3597702980041504\n", + "Iter 2047 cost time 0.3641242980957031\n", + "Iter 2048 cost time 0.3589212894439697\n", + "Iter 2049 cost time 0.3643338680267334\n", + "Iter 2050 cost time 0.3616468906402588\n", + "Iter 2051 cost time 0.3607661724090576\n", + "Iter 2052 cost time 0.36349964141845703\n", + "Iter 2053 cost time 0.36112046241760254\n", + "Iter 2054 cost time 0.36588311195373535\n", + "Iter 2055 cost time 0.3659634590148926\n", + "Iter 2056 cost time 0.3666653633117676\n", + "Iter 2057 cost time 0.3636758327484131\n", + "Iter 2058 cost time 0.36077451705932617\n", + "Iter 2059 cost time 0.3706021308898926\n", + "Iter 2060 cost time 0.3649871349334717\n", + "Iter 2061 cost time 0.3700540065765381\n", + "Iter 2062 cost time 0.3630063533782959\n", + "Iter 2063 cost time 0.3632686138153076\n", + "Iter 2064 cost time 0.36144161224365234\n", + "Iter 2065 cost time 0.36278820037841797\n", + "Iter 2066 cost time 0.36373090744018555\n", + "Iter 2067 cost time 0.36009716987609863\n", + "Iter 2068 cost time 0.35877370834350586\n", + "Iter 2069 cost time 0.36165475845336914\n", + "Iter 2070 cost time 0.35863232612609863\n", + "Iter 2071 cost time 0.35955071449279785\n", + "Iter 2072 cost time 0.3647589683532715\n", + "Iter 2073 cost time 0.359605073928833\n", + "Iter 2074 cost time 0.3582918643951416\n", + "Iter 2075 cost time 0.3599708080291748\n", + "Iter 2076 cost time 0.3610682487487793\n", + "Iter 2077 cost time 0.3604397773742676\n", + "Iter 2078 cost time 0.3609280586242676\n", + "Iter 2079 cost time 0.3615570068359375\n", + "Iter 2080 cost time 0.3620316982269287\n", + "Iter 2081 cost time 0.36343884468078613\n", + "Iter 2082 cost time 0.35886669158935547\n", + "Iter 2083 cost time 0.358295202255249\n", + "Iter 2084 cost time 0.361438512802124\n", + "Iter 2085 cost time 0.3600044250488281\n", + "Iter 2086 cost time 0.37970542907714844\n", + "Iter 2087 cost time 0.37448692321777344\n", + "Iter 2088 cost time 0.3743596076965332\n", + "Iter 2089 cost time 0.37626147270202637\n", + "Iter 2090 cost time 0.3765299320220947\n", + "Iter 2091 cost time 0.3790700435638428\n", + "Iter 2092 cost time 0.3797647953033447\n", + "Iter 2093 cost time 0.3746299743652344\n", + "Iter 2094 cost time 0.3790891170501709\n", + "Iter 2095 cost time 0.37513113021850586\n", + "Iter 2096 cost time 0.374953031539917\n", + "Iter 2097 cost time 0.37418603897094727\n", + "Iter 2098 cost time 0.36225152015686035\n", + "Iter 2099 cost time 0.36736416816711426\n", + "Iter 2100 cost time 0.3686330318450928\n", + "Iter 2101 cost time 0.35800981521606445\n", + "Iter 2102 cost time 0.37273716926574707\n", + "Iter 2103 cost time 0.36156797409057617\n", + "Iter 2104 cost time 0.3682587146759033\n", + "Iter 2105 cost time 0.35817551612854004\n", + "Iter 2106 cost time 0.36946535110473633\n", + "Iter 2107 cost time 0.358811616897583\n", + "Iter 2108 cost time 0.3659238815307617\n", + "Iter 2109 cost time 0.3619403839111328\n", + "Iter 2110 cost time 0.3681600093841553\n", + "Iter 2111 cost time 0.3645472526550293\n", + "Iter 2112 cost time 0.35951828956604004\n", + "Iter 2113 cost time 0.3691902160644531\n", + "Iter 2114 cost time 0.36818361282348633\n", + "Iter 2115 cost time 0.3700244426727295\n", + "Iter 2116 cost time 0.3621866703033447\n", + "Iter 2117 cost time 0.3689262866973877\n", + "Iter 2118 cost time 0.36076974868774414\n", + "Iter 2119 cost time 0.36918210983276367\n", + "Iter 2120 cost time 0.3589606285095215\n", + "Iter 2121 cost time 0.3631293773651123\n", + "Iter 2122 cost time 0.36025166511535645\n", + "Iter 2123 cost time 0.3652153015136719\n", + "Iter 2124 cost time 0.3618896007537842\n", + "Iter 2125 cost time 0.36717796325683594\n", + "Iter 2126 cost time 0.3614320755004883\n", + "Iter 2127 cost time 0.3723440170288086\n", + "Iter 2128 cost time 0.35932111740112305\n", + "Iter 2129 cost time 0.36994004249572754\n", + "Iter 2130 cost time 0.3639709949493408\n", + "Iter 2131 cost time 0.37039923667907715\n", + "Iter 2132 cost time 0.3683347702026367\n", + "Iter 2133 cost time 0.3729410171508789\n", + "Iter 2134 cost time 0.3848721981048584\n", + "Iter 2135 cost time 0.3936326503753662\n", + "Iter 2136 cost time 0.3878669738769531\n", + "Iter 2137 cost time 0.38594746589660645\n", + "Iter 2138 cost time 0.3641810417175293\n", + "Iter 2139 cost time 0.37189555168151855\n", + "Iter 2140 cost time 0.38683414459228516\n", + "Iter 2141 cost time 0.37380170822143555\n", + "Iter 2142 cost time 0.3646199703216553\n", + "Iter 2143 cost time 0.37767815589904785\n", + "Iter 2144 cost time 0.36115097999572754\n", + "Iter 2145 cost time 0.3729515075683594\n", + "Iter 2146 cost time 0.3621962070465088\n", + "Iter 2147 cost time 0.3708932399749756\n", + "Iter 2148 cost time 0.36078548431396484\n", + "Iter 2149 cost time 0.3744385242462158\n", + "Iter 2150 cost time 0.3654041290283203\n", + "Iter 2151 cost time 0.3744170665740967\n", + "Iter 2152 cost time 0.36545491218566895\n", + "Iter 2153 cost time 0.36865997314453125\n", + "Iter 2154 cost time 0.3676869869232178\n", + "Iter 2155 cost time 0.37096524238586426\n", + "Iter 2156 cost time 0.3633103370666504\n", + "Iter 2157 cost time 0.3721804618835449\n", + "Iter 2158 cost time 0.3644380569458008\n", + "Iter 2159 cost time 0.37270617485046387\n", + "Iter 2160 cost time 0.37442469596862793\n", + "Iter 2161 cost time 0.3771693706512451\n", + "Iter 2162 cost time 0.3744492530822754\n", + "Iter 2163 cost time 0.36989450454711914\n", + "Iter 2164 cost time 0.3617103099822998\n", + "Iter 2165 cost time 0.36515355110168457\n", + "Iter 2166 cost time 0.36020469665527344\n", + "Iter 2167 cost time 0.36398983001708984\n", + "Iter 2168 cost time 0.3576822280883789\n", + "Iter 2169 cost time 0.36658716201782227\n", + "Iter 2170 cost time 0.3608438968658447\n", + "Iter 2171 cost time 0.36841869354248047\n", + "Iter 2172 cost time 0.3626675605773926\n", + "Iter 2173 cost time 0.37390971183776855\n", + "Iter 2174 cost time 0.35900235176086426\n", + "Iter 2175 cost time 0.36856579780578613\n", + "Iter 2176 cost time 0.3594191074371338\n", + "Iter 2177 cost time 0.3665196895599365\n", + "Iter 2178 cost time 0.3615145683288574\n", + "Iter 2179 cost time 0.36869359016418457\n", + "Iter 2180 cost time 0.3605012893676758\n", + "Iter 2181 cost time 0.3710513114929199\n", + "Iter 2182 cost time 0.3590831756591797\n", + "Iter 2183 cost time 0.3748493194580078\n", + "Iter 2184 cost time 0.360487699508667\n", + "Iter 2185 cost time 0.36641693115234375\n", + "Iter 2186 cost time 0.36156320571899414\n", + "Iter 2187 cost time 0.36782312393188477\n", + "Iter 2188 cost time 0.358992338180542\n", + "Iter 2189 cost time 0.36487698554992676\n", + "Iter 2190 cost time 0.36681652069091797\n", + "Iter 2191 cost time 0.36699938774108887\n", + "Iter 2192 cost time 0.359940767288208\n", + "Iter 2193 cost time 0.368471622467041\n", + "Iter 2194 cost time 0.36424803733825684\n", + "Iter 2195 cost time 0.37055540084838867\n", + "Iter 2196 cost time 0.3630707263946533\n", + "Iter 2197 cost time 0.3690645694732666\n", + "Iter 2198 cost time 0.3628661632537842\n", + "Iter 2199 cost time 0.37576746940612793\n", + "Iter 2200 cost time 0.3591136932373047\n", + "Iter 2201 cost time 0.36780571937561035\n", + "Iter 2202 cost time 0.36345529556274414\n", + "Iter 2203 cost time 0.3782200813293457\n", + "Iter 2204 cost time 0.36028456687927246\n", + "Iter 2205 cost time 0.36898207664489746\n", + "Iter 2206 cost time 0.3585829734802246\n", + "Iter 2207 cost time 0.36693596839904785\n", + "Iter 2208 cost time 0.359722375869751\n", + "Iter 2209 cost time 0.3680236339569092\n", + "Iter 2210 cost time 0.36488771438598633\n", + "Iter 2211 cost time 0.3636898994445801\n", + "Iter 2212 cost time 0.36175036430358887\n", + "Iter 2213 cost time 0.3635375499725342\n", + "Iter 2214 cost time 0.36246347427368164\n", + "Iter 2215 cost time 0.36487889289855957\n", + "Iter 2216 cost time 0.3646237850189209\n", + "Iter 2217 cost time 0.36579394340515137\n", + "Iter 2218 cost time 0.3606247901916504\n", + "Iter 2219 cost time 0.36615586280822754\n", + "Iter 2220 cost time 0.3648812770843506\n", + "Iter 2221 cost time 0.3637218475341797\n", + "Iter 2222 cost time 0.363847017288208\n", + "Iter 2223 cost time 0.36699819564819336\n", + "Iter 2224 cost time 0.36408114433288574\n", + "Iter 2225 cost time 0.36740660667419434\n", + "Iter 2226 cost time 0.36188173294067383\n", + "Iter 2227 cost time 0.3653697967529297\n", + "Iter 2228 cost time 0.36139345169067383\n", + "Iter 2229 cost time 0.36763668060302734\n", + "Iter 2230 cost time 0.36257433891296387\n", + "Iter 2231 cost time 0.36652493476867676\n", + "Iter 2232 cost time 0.36118054389953613\n", + "Iter 2233 cost time 0.363450288772583\n", + "Iter 2234 cost time 0.36676692962646484\n", + "Iter 2235 cost time 0.3648664951324463\n", + "Iter 2236 cost time 0.3610036373138428\n", + "Iter 2237 cost time 0.3661346435546875\n", + "Iter 2238 cost time 0.36307692527770996\n", + "Iter 2239 cost time 0.36609816551208496\n", + "Iter 2240 cost time 0.36125636100769043\n", + "Iter 2241 cost time 0.36565375328063965\n", + "Iter 2242 cost time 0.3649938106536865\n", + "Iter 2243 cost time 0.37166881561279297\n", + "Iter 2244 cost time 0.365154504776001\n", + "Iter 2245 cost time 0.36804652214050293\n", + "Iter 2246 cost time 0.36420774459838867\n", + "Iter 2247 cost time 0.3629767894744873\n", + "Iter 2248 cost time 0.3615531921386719\n", + "Iter 2249 cost time 0.3659951686859131\n", + "Iter 2250 cost time 0.36459946632385254\n", + "Iter 2251 cost time 0.36862802505493164\n", + "Iter 2252 cost time 0.36807990074157715\n", + "Iter 2253 cost time 0.3711991310119629\n", + "Iter 2254 cost time 0.35964441299438477\n", + "Iter 2255 cost time 0.3670768737792969\n", + "Iter 2256 cost time 0.35892653465270996\n", + "Iter 2257 cost time 0.3699984550476074\n", + "Iter 2258 cost time 0.36356687545776367\n", + "Iter 2259 cost time 0.3660886287689209\n", + "Iter 2260 cost time 0.359877347946167\n", + "Iter 2261 cost time 0.3666234016418457\n", + "Iter 2262 cost time 0.36175107955932617\n", + "Iter 2263 cost time 0.3710479736328125\n", + "Iter 2264 cost time 0.3620762825012207\n", + "Iter 2265 cost time 0.3659694194793701\n", + "Iter 2266 cost time 0.361419677734375\n", + "Iter 2267 cost time 0.36549830436706543\n", + "Iter 2268 cost time 0.36176013946533203\n", + "Iter 2269 cost time 0.36786603927612305\n", + "Iter 2270 cost time 0.3579559326171875\n", + "Iter 2271 cost time 0.3649270534515381\n", + "Iter 2272 cost time 0.36128973960876465\n", + "Iter 2273 cost time 0.3646550178527832\n", + "Iter 2274 cost time 0.3610713481903076\n", + "Iter 2275 cost time 0.363478422164917\n", + "Iter 2276 cost time 0.36050963401794434\n", + "Iter 2277 cost time 0.36791324615478516\n", + "Iter 2278 cost time 0.36109256744384766\n", + "Iter 2279 cost time 0.3659813404083252\n", + "Iter 2280 cost time 0.36060261726379395\n", + "Iter 2281 cost time 0.3688192367553711\n", + "Iter 2282 cost time 0.3600316047668457\n", + "Iter 2283 cost time 0.3658277988433838\n", + "Iter 2284 cost time 0.36076903343200684\n", + "Iter 2285 cost time 0.361295223236084\n", + "Iter 2286 cost time 0.3580198287963867\n", + "Iter 2287 cost time 0.36276793479919434\n", + "Iter 2288 cost time 0.3624458312988281\n", + "Iter 2289 cost time 0.36286211013793945\n", + "Iter 2290 cost time 0.36360836029052734\n", + "Iter 2291 cost time 0.36517786979675293\n", + "Iter 2292 cost time 0.36069297790527344\n", + "Iter 2293 cost time 0.36659717559814453\n", + "Iter 2294 cost time 0.35819029808044434\n", + "Iter 2295 cost time 0.36426854133605957\n", + "Iter 2296 cost time 0.3602166175842285\n", + "Iter 2297 cost time 0.3630402088165283\n", + "Iter 2298 cost time 0.360759973526001\n", + "Iter 2299 cost time 0.36860108375549316\n", + "Iter 2300 cost time 0.36272335052490234\n", + "Iter 2301 cost time 0.36510252952575684\n", + "Iter 2302 cost time 0.3603355884552002\n", + "Iter 2303 cost time 0.36536359786987305\n", + "Iter 2304 cost time 0.36229991912841797\n", + "Iter 2305 cost time 0.3648996353149414\n", + "Iter 2306 cost time 0.35857701301574707\n", + "Iter 2307 cost time 0.3690958023071289\n", + "Iter 2308 cost time 0.3593144416809082\n", + "Iter 2309 cost time 0.3592209815979004\n", + "Iter 2310 cost time 0.3638651371002197\n", + "Iter 2311 cost time 0.35895824432373047\n", + "Iter 2312 cost time 0.3656322956085205\n", + "Iter 2313 cost time 0.3613853454589844\n", + "Iter 2314 cost time 0.3658733367919922\n", + "Iter 2315 cost time 0.36309266090393066\n", + "Iter 2316 cost time 0.3608722686767578\n", + "Iter 2317 cost time 0.36510777473449707\n", + "Iter 2318 cost time 0.36132359504699707\n", + "Iter 2319 cost time 0.36015796661376953\n", + "Iter 2320 cost time 0.3617517948150635\n", + "Iter 2321 cost time 0.364727258682251\n", + "Iter 2322 cost time 0.36457300186157227\n", + "Iter 2323 cost time 0.36252546310424805\n", + "Iter 2324 cost time 0.36433863639831543\n", + "Iter 2325 cost time 0.363325834274292\n", + "Iter 2326 cost time 0.36156201362609863\n", + "Iter 2327 cost time 0.3614926338195801\n", + "Iter 2328 cost time 0.36508941650390625\n", + "Iter 2329 cost time 0.3605530261993408\n", + "Iter 2330 cost time 0.36272478103637695\n", + "Iter 2331 cost time 0.3642537593841553\n", + "Iter 2332 cost time 0.36489176750183105\n", + "Iter 2333 cost time 0.3682515621185303\n", + "Iter 2334 cost time 0.36417388916015625\n", + "Iter 2335 cost time 0.36266016960144043\n", + "Iter 2336 cost time 0.35941267013549805\n", + "Iter 2337 cost time 0.3644068241119385\n", + "Iter 2338 cost time 0.3613927364349365\n", + "Iter 2339 cost time 0.36649513244628906\n", + "Iter 2340 cost time 0.36338186264038086\n", + "Iter 2341 cost time 0.3625471591949463\n", + "Iter 2342 cost time 0.3631629943847656\n", + "Iter 2343 cost time 0.36160731315612793\n", + "Iter 2344 cost time 0.3618142604827881\n", + "Iter 2345 cost time 0.3634915351867676\n", + "Iter 2346 cost time 0.3618631362915039\n", + "Iter 2347 cost time 0.3598771095275879\n", + "Iter 2348 cost time 0.3585026264190674\n", + "Iter 2349 cost time 0.3596019744873047\n", + "Iter 2350 cost time 0.3603065013885498\n", + "Iter 2351 cost time 0.3609802722930908\n", + "Iter 2352 cost time 0.3666708469390869\n", + "Iter 2353 cost time 0.35840678215026855\n", + "Iter 2354 cost time 0.36054229736328125\n", + "Iter 2355 cost time 0.36417436599731445\n", + "Iter 2356 cost time 0.36487555503845215\n", + "Iter 2357 cost time 0.3619523048400879\n", + "Iter 2358 cost time 0.3625376224517822\n", + "Iter 2359 cost time 0.36109304428100586\n", + "Iter 2360 cost time 0.36141371726989746\n", + "Iter 2361 cost time 0.3624274730682373\n", + "Iter 2362 cost time 0.36260247230529785\n", + "Iter 2363 cost time 0.3601243495941162\n", + "Iter 2364 cost time 0.361865758895874\n", + "Iter 2365 cost time 0.35963988304138184\n", + "Iter 2366 cost time 0.35997509956359863\n", + "Iter 2367 cost time 0.3616335391998291\n", + "Iter 2368 cost time 0.3618340492248535\n", + "Iter 2369 cost time 0.36463236808776855\n", + "Iter 2370 cost time 0.3610858917236328\n", + "Iter 2371 cost time 0.36217713356018066\n", + "Iter 2372 cost time 0.3636057376861572\n", + "Iter 2373 cost time 0.3613321781158447\n", + "Iter 2374 cost time 0.3633894920349121\n", + "Iter 2375 cost time 0.3620872497558594\n", + "Iter 2376 cost time 0.3623318672180176\n", + "Iter 2377 cost time 0.35947155952453613\n", + "Iter 2378 cost time 0.3622441291809082\n", + "Iter 2379 cost time 0.3678264617919922\n", + "Iter 2380 cost time 0.36145925521850586\n", + "Iter 2381 cost time 0.361361026763916\n", + "Iter 2382 cost time 0.3587508201599121\n", + "Iter 2383 cost time 0.36490654945373535\n", + "Iter 2384 cost time 0.3601677417755127\n", + "Iter 2385 cost time 0.36396336555480957\n", + "Iter 2386 cost time 0.36493420600891113\n", + "Iter 2387 cost time 0.36304664611816406\n", + "Iter 2388 cost time 0.3596682548522949\n", + "Iter 2389 cost time 0.3588588237762451\n", + "Iter 2390 cost time 0.3598802089691162\n", + "Iter 2391 cost time 0.3633699417114258\n", + "Iter 2392 cost time 0.3612380027770996\n", + "Iter 2393 cost time 0.36122918128967285\n", + "Iter 2394 cost time 0.35913825035095215\n", + "Iter 2395 cost time 0.3619081974029541\n", + "Iter 2396 cost time 0.363431453704834\n", + "Iter 2397 cost time 0.3631632328033447\n", + "Iter 2398 cost time 0.36403608322143555\n", + "Iter 2399 cost time 0.3656806945800781\n", + "Iter 2400 cost time 0.36679744720458984\n", + "Iter 2401 cost time 0.361858606338501\n", + "Iter 2402 cost time 0.36063075065612793\n", + "Iter 2403 cost time 0.3618447780609131\n", + "Iter 2404 cost time 0.36205339431762695\n", + "Iter 2405 cost time 0.36208057403564453\n", + "Iter 2406 cost time 0.3619351387023926\n", + "Iter 2407 cost time 0.3609733581542969\n", + "Iter 2408 cost time 0.36565518379211426\n", + "Iter 2409 cost time 0.3637101650238037\n", + "Iter 2410 cost time 0.3611290454864502\n", + "Iter 2411 cost time 0.3629179000854492\n", + "Iter 2412 cost time 0.3633413314819336\n", + "Iter 2413 cost time 0.36127209663391113\n", + "Iter 2414 cost time 0.36380743980407715\n", + "Iter 2415 cost time 0.36223459243774414\n", + "Iter 2416 cost time 0.3612642288208008\n", + "Iter 2417 cost time 0.36361026763916016\n", + "Iter 2418 cost time 0.36151552200317383\n", + "Iter 2419 cost time 0.36072301864624023\n", + "Iter 2420 cost time 0.3689234256744385\n", + "Iter 2421 cost time 0.3595263957977295\n", + "Iter 2422 cost time 0.36403989791870117\n", + "Iter 2423 cost time 0.36246585845947266\n", + "Iter 2424 cost time 0.3639054298400879\n", + "Iter 2425 cost time 0.36211729049682617\n", + "Iter 2426 cost time 0.3622586727142334\n", + "Iter 2427 cost time 0.36180758476257324\n", + "Iter 2428 cost time 0.36919593811035156\n", + "Iter 2429 cost time 0.3753476142883301\n", + "Iter 2430 cost time 0.3695945739746094\n", + "Iter 2431 cost time 0.3742814064025879\n", + "Iter 2432 cost time 0.35943174362182617\n", + "Iter 2433 cost time 0.3662137985229492\n", + "Iter 2434 cost time 0.3603250980377197\n", + "Iter 2435 cost time 0.3651120662689209\n", + "Iter 2436 cost time 0.361875057220459\n", + "Iter 2437 cost time 0.3620181083679199\n", + "Iter 2438 cost time 0.3632183074951172\n", + "Iter 2439 cost time 0.35950231552124023\n", + "Iter 2440 cost time 0.36191749572753906\n", + "Iter 2441 cost time 0.35969090461730957\n", + "Iter 2442 cost time 0.36065125465393066\n", + "Iter 2443 cost time 0.3609325885772705\n", + "Iter 2444 cost time 0.3573911190032959\n", + "Iter 2445 cost time 0.3628673553466797\n", + "Iter 2446 cost time 0.3597702980041504\n", + "Iter 2447 cost time 0.35895442962646484\n", + "Iter 2448 cost time 0.36231470108032227\n", + "Iter 2449 cost time 0.3699021339416504\n", + "Iter 2450 cost time 0.3602917194366455\n", + "Iter 2451 cost time 0.36194276809692383\n", + "Iter 2452 cost time 0.35837650299072266\n", + "Iter 2453 cost time 0.3585019111633301\n", + "Iter 2454 cost time 0.359804630279541\n", + "Iter 2455 cost time 0.35939455032348633\n", + "Iter 2456 cost time 0.36446380615234375\n", + "Iter 2457 cost time 0.36127495765686035\n", + "Iter 2458 cost time 0.3605196475982666\n", + "Iter 2459 cost time 0.3600139617919922\n", + "Iter 2460 cost time 0.35962581634521484\n", + "Iter 2461 cost time 0.36607885360717773\n", + "Iter 2462 cost time 0.3592686653137207\n", + "Iter 2463 cost time 0.3709137439727783\n", + "Iter 2464 cost time 0.35889530181884766\n", + "Iter 2465 cost time 0.36893177032470703\n", + "Iter 2466 cost time 0.3588988780975342\n", + "Iter 2467 cost time 0.3703751564025879\n", + "Iter 2468 cost time 0.3608741760253906\n", + "Iter 2469 cost time 0.37291383743286133\n", + "Iter 2470 cost time 0.365476131439209\n", + "Iter 2471 cost time 0.36651015281677246\n", + "Iter 2472 cost time 0.3614623546600342\n", + "Iter 2473 cost time 0.37264418601989746\n", + "Iter 2474 cost time 0.36060667037963867\n", + "Iter 2475 cost time 0.36958861351013184\n", + "Iter 2476 cost time 0.3616161346435547\n", + "Iter 2477 cost time 0.36926913261413574\n", + "Iter 2478 cost time 0.35965847969055176\n", + "Iter 2479 cost time 0.3682701587677002\n", + "Iter 2480 cost time 0.36342930793762207\n", + "Iter 2481 cost time 0.3686714172363281\n", + "Iter 2482 cost time 0.3586106300354004\n", + "Iter 2483 cost time 0.3682258129119873\n", + "Iter 2484 cost time 0.35993337631225586\n", + "Iter 2485 cost time 0.3708980083465576\n", + "Iter 2486 cost time 0.3619880676269531\n", + "Iter 2487 cost time 0.37052464485168457\n", + "Iter 2488 cost time 0.3644845485687256\n", + "Iter 2489 cost time 0.3704373836517334\n", + "Iter 2490 cost time 0.3622314929962158\n", + "Iter 2491 cost time 0.3693716526031494\n", + "Iter 2492 cost time 0.361583948135376\n", + "Iter 2493 cost time 0.36986517906188965\n", + "Iter 2494 cost time 0.3623836040496826\n", + "Iter 2495 cost time 0.3687863349914551\n", + "Iter 2496 cost time 0.36101222038269043\n", + "Iter 2497 cost time 0.37028932571411133\n", + "Iter 2498 cost time 0.36310791969299316\n", + "Iter 2499 cost time 0.36850666999816895\n", + "Iter 2500 cost time 0.3617856502532959\n", + "Loading and preparing results...\n", + "DONE (t=3.74s)\n", + "creating index...\n", + "index created!\n", + "Running per image evaluation...\n", + "Evaluate annotation type *bbox*\n", + "DONE (t=89.05s).\n", + "Accumulating evaluation results...\n", + "DONE (t=13.31s).\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.374\n", + " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.599\n", + " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.405\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.234\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.475\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.529\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.569\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.656\n", + "Loading and preparing results...\n", + "DONE (t=7.09s)\n", + "creating index...\n", + "index created!\n", + "Running per image evaluation...\n", + "Evaluate annotation type *segm*\n", + "DONE (t=97.04s).\n", + "Accumulating evaluation results...\n", + "DONE (t=12.76s).\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.329\n", + " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.554\n", + " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.343\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.163\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.356\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.476\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.284\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.434\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.453\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.281\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.488\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.593\n", + "ckpt_path= ../checkpoint/maskrcnn_coco2017_acc32.9.ckpt\n" + ] + } + ], + "source": [ + "from pycocotools.coco import COCO\n", + "\n", + "from utils.util import coco_eval, bbox2result_1image, results2json, get_seg_masks\n", + "\n", + "set_seed(1)\n", + "\n", + "def maskrcnn_eval(dataset_path, ckpt_path, ann_file):\n", + " \"\"\"MaskRcnn evaluation.\"\"\"\n", + " ds = create_coco_dataset(dataset_path, batch_size=config.test_batch_size, is_training=False)\n", + "\n", + " net = MaskRcnnResnet50(config)\n", + " param_dict = load_checkpoint(ckpt_path)\n", + " load_param_into_net(net, param_dict)\n", + " net.set_train(False)\n", + "\n", + " eval_iter = 0\n", + " total = ds.get_dataset_size()\n", + " outputs = []\n", + " dataset_coco = COCO(ann_file)\n", + "\n", + " print(\"total images num: \", total)\n", + " print(\"Processing, please wait a moment.\")\n", + " max_num = 128\n", + " for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):\n", + " eval_iter = eval_iter + 1\n", + "\n", + " img_data = data['image']\n", + " img_metas = data['image_shape']\n", + " gt_bboxes = data['box']\n", + " gt_labels = data['label']\n", + " gt_num = data['valid_num']\n", + " gt_mask = data[\"mask\"]\n", + "\n", + " start = time.time()\n", + " # run net\n", + " output = net(Tensor(img_data), Tensor(img_metas), Tensor(gt_bboxes),\n", + " Tensor(gt_labels), Tensor(gt_num), Tensor(gt_mask))\n", + " end = time.time()\n", + " print(\"Iter {} cost time {}\".format(eval_iter, end - start))\n", + "\n", + " # output\n", + " all_bbox = output[0]\n", + " all_label = output[1]\n", + " all_mask = output[2]\n", + " all_mask_fb = output[3]\n", + "\n", + " for j in range(config.test_batch_size):\n", + " all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :])\n", + " all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :])\n", + " all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :])\n", + " all_mask_fb_squee = np.squeeze(all_mask_fb.asnumpy()[j, :, :, :])\n", + "\n", + " all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]\n", + " all_labels_tmp_mask = all_label_squee[all_mask_squee]\n", + " all_mask_fb_tmp_mask = all_mask_fb_squee[all_mask_squee, :, :]\n", + "\n", + " if all_bboxes_tmp_mask.shape[0] > max_num:\n", + " inds = np.argsort(-all_bboxes_tmp_mask[:, -1])\n", + " inds = inds[:max_num]\n", + " all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]\n", + " all_labels_tmp_mask = all_labels_tmp_mask[inds]\n", + " all_mask_fb_tmp_mask = all_mask_fb_tmp_mask[inds]\n", + "\n", + " bbox_results = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes)\n", + " segm_results = get_seg_masks(all_mask_fb_tmp_mask, all_bboxes_tmp_mask, all_labels_tmp_mask,\n", + " img_metas[j], True, config.num_classes)\n", + " outputs.append((bbox_results, segm_results))\n", + "\n", + " eval_types = [\"bbox\", \"segm\"]\n", + " result_files = results2json(dataset_coco, outputs, \"./results.pkl\")\n", + " coco_eval(result_files, eval_types, dataset_coco, single_result=False)\n", + "\n", + "def eval_():\n", + " \"\"\"Execute the Evaluation.\"\"\"\n", + " device_target = config.device_target\n", + " context.set_context(mode=context.GRAPH_MODE, device_target=device_target)\n", + "\n", + " mindrecord_dir = os.path.join(config.data_root, config.mindrecord_dir)\n", + " print('\\neval.py config:\\n', config)\n", + " prefix = \"MaskRcnn_eval.mindrecord\"\n", + " mindrecord_file = os.path.join(mindrecord_dir, prefix)\n", + "\n", + " if not os.path.exists(mindrecord_file):\n", + " if not os.path.isdir(mindrecord_dir):\n", + " os.makedirs(mindrecord_dir)\n", + " if config.dataset == \"coco\":\n", + " if os.path.isdir(config.data_root):\n", + " print(\"Create Mindrecord.\")\n", + " data_to_mindrecord_byte_image(\"coco\", False, prefix, file_num=1)\n", + " print(\"Create Mindrecord Done, at {}\".format(mindrecord_dir))\n", + " else:\n", + " print(\"data_root not exits.\")\n", + " else:\n", + " if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):\n", + " print(\"Create Mindrecord.\")\n", + " data_to_mindrecord_byte_image(\"other\", False, prefix, file_num=1)\n", + " print(\"Create Mindrecord Done, at {}\".format(mindrecord_dir))\n", + " else:\n", + " print(\"IMAGE_DIR or ANNO_PATH not exits.\")\n", + "\n", + " print(\"Start Eval!\")\n", + " maskrcnn_eval(mindrecord_file, config.checkpoint_path, config.ann_file)\n", + " print(\"ckpt_path=\", config.checkpoint_path)\n", + "\n", + "if __name__ == '__main__':\n", + " eval_()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 推理\n", + "\n", + "最后,可以使用自己的数据集来测试训练后的模型,完成目标检测。" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image ID: 1061\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-15:24:20.977.673 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]\n", + " [False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False False False False False\n", + " False False False False False False False False]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] PIPELINE(53783,ffff8632d780,python):2022-11-16-15:24:20.977.958 [mindspore/ccsrc/pipeline/jit/pipeline.cc:173] CheckArgValid] The data types of Tensor:[[[[False]]]\n", + "\n", + "\n", + " [[[False]]]] is bool, which may cause SelectKernelInfo failure for operator [AddN]. For more details, please refer to the FAQ at https://www.mindspore.cn.\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.815.348 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200061, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.814849: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.820.559 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200062, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.820325: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.824.000 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200063, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.823803: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.827.391 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200064, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.827193: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.830.745 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200065, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.830555: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.834.104 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200066, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.833913: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.837.571 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200067, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.837376: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.840.912 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200068, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.840719: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.844.215 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200069, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.844024: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.847.507 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200070, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.847314: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.850.784 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200071, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.850595: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.854.093 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200072, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.853903: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.857.441 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200073, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.857215: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.860.770 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200074, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.860572: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.864.223 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200075, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.864024: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.867.350 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200076, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.867163: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.870.379 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200077, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.870196: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.873.410 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200078, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.873226: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.876.438 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200079, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.876258: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.879.463 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200080, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.879272: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.882.479 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200081, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.882292: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.885.528 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200082, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.885343: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.888.671 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200083, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.888482: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.891.694 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200084, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.891505: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.894.702 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200085, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.894518: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.897.721 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200086, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.897510: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.900.744 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200087, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.900564: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.903.714 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200088, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.903531: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.906.695 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200089, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.906515: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.909.673 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200090, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.909493: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.912.745 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200091, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.912559: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.915.718 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200092, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.915535: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.918.684 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200093, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.918500: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.921.654 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200094, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.921472: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.924.646 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200095, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.924462: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.927.614 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200096, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.927431: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.930.571 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200097, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.930390: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.933.561 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200098, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.933377: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.936.690 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200099, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.936503: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.939.723 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200100, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.939537: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.942.670 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200101, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.942489: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.946.551 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200102, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.946370: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.949.519 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200103, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.949339: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.952.500 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200104, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.952316: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.955.478 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200105, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.955292: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.958.438 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200106, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.958253: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.961.557 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200107, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.961368: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.964.555 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200108, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.964372: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.967.538 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200109, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.967351: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.970.492 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200110, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.970307: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.973.470 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200111, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.973288: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.976.444 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200112, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.976260: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.979.431 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200113, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.979248: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.982.366 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200114, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.982183: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.985.433 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200115, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.985251: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.988.390 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200116, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.988208: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.991.349 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200117, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.991165: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.994.310 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200118, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.994122: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:31.997.271 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200119, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:31.997087: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.000.253 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200120, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.000066: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.003.240 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200121, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.003052: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.006.217 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200122, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.006032: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.009.335 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200123, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.009141: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.012.300 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200124, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.012117: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.015.247 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200125, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.015066: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.018.205 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200126, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.018022: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.021.161 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200127, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.020979: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.024.116 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200128, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.023933: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.027.069 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200129, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.026877: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.030.027 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200130, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.029844: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.033.108 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200131, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.032918: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.036.109 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200132, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.035920: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.039.072 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200133, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.038883: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.042.013 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200134, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.041829: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.044.982 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200135, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.044793: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.047.941 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200136, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.047759: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.050.873 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200137, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.050693: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.053.822 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200138, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.053637: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.058.719 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200139, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.058522: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.061.707 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200140, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.061525: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.064.704 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200141, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.064517: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.075.994 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200142, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.075763: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.079.350 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200143, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.079154: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.082.772 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200144, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.082575: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.086.106 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200145, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.085903: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.089.453 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200146, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.089257: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.092.964 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200147, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.092757: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.096.286 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200148, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.096087: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.099.608 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200149, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.099403: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.102.897 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200150, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.102700: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.106.011 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200151, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.105810: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.109.111 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200152, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.108915: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.112.183 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200153, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.111987: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.115.243 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200154, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.115047: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.118.446 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200155, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.118250: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.121.463 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200156, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.121281: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.124.451 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200157, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.124266: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.127.421 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200158, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.127232: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.130.372 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200159, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.130187: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.133.328 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200160, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.133142: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.136.306 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200161, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.136123: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.139.303 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200162, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.139114: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.142.445 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200163, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.142253: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.145.420 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200164, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.145238: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.148.421 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200165, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.148240: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.151.415 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200166, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.151230: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.154.363 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200167, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.154182: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.157.348 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200168, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.157164: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.160.356 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200169, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.160165: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.163.333 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200170, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.163147: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.166.387 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200171, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.166200: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.169.341 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200172, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.169157: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.172.312 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200173, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.172129: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.175.279 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200174, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.175095: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.178.216 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200175, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.178035: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.181.158 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200176, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.180975: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.184.104 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200177, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.183921: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.187.077 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200178, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.186883: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.190.108 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200179, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.189922: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.193.069 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200180, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.192885: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.196.030 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200181, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.195848: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.198.976 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200182, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.198797: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.201.927 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200183, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.201745: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.204.873 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200184, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.204689: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.207.841 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200185, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.207659: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.210.905 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200186, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.210705: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.213.867 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200187, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.213684: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.216.836 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200188, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.216652: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.219.865 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200189, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.219661: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.222.802 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200190, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.222623: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.225.763 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200191, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.225581: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.228.709 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200192, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.228529: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.231.651 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200193, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.231467: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.234.679 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200194, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.234495: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.237.647 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200195, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.237466: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.240.607 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200196, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.240424: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.243.559 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200197, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.243380: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.246.477 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200198, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.246292: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.249.409 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200199, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.249226: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.252.356 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200200, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.252174: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.255.299 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200201, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.255113: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.258.350 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200202, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.258161: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.261.342 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200203, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.261164: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.264.335 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200204, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.264152: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.267.289 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200205, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.267106: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.270.252 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200206, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.270067: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.273.198 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200207, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.273015: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.276.154 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200208, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.275967: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.279.085 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200209, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.278890: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.282.121 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200210, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.281934: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.285.078 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200211, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.284894: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.288.090 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200212, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.287896: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.294.709 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200213, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.294525: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.297.824 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200214, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.297637: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.300.930 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200215, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.300745: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.304.047 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200216, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.303859: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.307.137 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200217, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.306941: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.310.309 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200218, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.310118: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.313.374 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200219, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.313188: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.318.091 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200220, name :top_k_d_5043579305982986424_0, message:2022-11-16 15:25:32.317899: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.368.402 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200231, name :top_k_d_13999888294925708646_0, message:2022-11-16 15:25:32.368154: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.371.854 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200232, name :top_k_d_13876671179693792995_0, message:2022-11-16 15:25:32.371654: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.375.278 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200233, name :top_k_d_13928381274987235808_0, message:2022-11-16 15:25:32.375074: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.380.453 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200234, name :top_k_d_9871390996356273705_0, message:2022-11-16 15:25:32.380229: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.383.954 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200235, name :top_k_d_13999888294925708646_0, message:2022-11-16 15:25:32.383755: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.387.337 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200236, name :top_k_d_13876671179693792995_0, message:2022-11-16 15:25:32.387142: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.392.357 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200237, name :top_k_d_13928381274987235808_0, message:2022-11-16 15:25:32.392155: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] KERNEL(53783,ffff8632d780,python):2022-11-16-15:25:32.395.770 [mindspore/ccsrc/plugin/device/ascend/kernel/tbe/tbe_kernel_compile.cc:143] PrintInfo] Job id:200238, name :top_k_d_9871390996356273705_0, message:2022-11-16 15:25:32.395573: Unsupported reason is k is too big, k:1006632960\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-15:25:38.329.469 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n", + "[WARNING] DEVICE(53783,ffff8632d780,python):2022-11-16-15:25:38.332.872 [mindspore/ccsrc/plugin/device/ascend/hal/device/kernel_select_ascend.cc:330] FilterRaisedOrReducePrecisionMatchedKernelInfo] Operator:[TopK] don't support int64, reduce precision from int64 to int32.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost time of detection: 193.36\n", + "Class Num: 5\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4sAAAI7CAYAAABFrg6iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9a8x123Ue9Iy51t77/e7n4uNTO4nt1ElKJZe26UXiIhGp3FqpBSEqtRLtH9L+4/IDCX4gURAtEhKgSvxCRYIioCqVSEtoSosgkDgNIREhiS/1Ja597HPsc//u77v3XnPwY1znXOv97Bw78XGYQ/q+d++155pzzDHHfd6ImTFgwIABAwYMGDBgwIABAwZkKN9tBAYMGDBgwIABAwYMGDBgwPsPRrA4YMCAAQMGDBgwYMCAAQNWMILFAQMGDBgwYMCAAQMGDBiwghEsDhgwYMCAAQMGDBgwYMCAFYxgccCAAQMGDBgwYMCAAQMGrGAEiwMGDBgwYMCAAQMGDBgwYAUjWBwwYMCAAQMUiOhTRPRj36TMR4joERFNv0VoDRgwYMCAAd8VoHHP4oABAwYM+F4AIvqHAF4GsAB4DOBvA/jXmPnRdxOvAQMGDBgw4LcrjJnFAQMGDBjwvQR/nJlvA/hRAH8IwL+bfySBYdsGDBgwYMCA7wAMgzpgwIABA77ngJm/BuCnAHyCiH6aiP4iEX0SwBMAv5OI7hHRf0lErxHR14joP8zLRonozxHRZ4joIRF9moh+VJ//QyL6p/XzHyaiXySiB0T0DSL6T/X5x4iIiWjW7x8mor9FRG8T0ReI6M+ldv4CEf11Ivqr2taniOgP/tZRasCAAQMGDHjvMILFAQMGDBjwPQdE9AMA/hiA/0cf/RkAfx7AHQBfBvBfAzgD+CEAvx/APwvgx/XdPwngLwD4swDuAvgTAN7aaOYvA/jLzHwXwMcB/PVr0PnvAXwVwIcB/MsA/hIR/ZH0+58A8NcAPAfgbwH4z3+j/R0wYMCAAQO+GzCCxQEDBgwY8L0EP0FE7wL4WQD/B4C/pM//K2b+FDOfAbwA4I8C+DeZ+TEzvw7gPwPwp7TsjwP4j5n5/2aBLzDzlzfaOgH4ISL6ADM/Yuaf7wto0PpPAvi3mfmSmX8ZwF+BBK8GP8vMf5uZFwD/DYDf++0SYcCAAQMGDPitgPm7jcCAAQMGDBjwG4B/kZn/1/yAiADglfToowB2AF7T3wBJjlqZHwDwxW+hrX8VwH8A4LNE9CUA/z4z/2RX5sMA3mbmh+nZlwHkpaZfT5+fALggolkD2wEDBgwYMOB9CyNYHDBgwIABvx0gH+39CoArAB+4JiB7BbKs9NkVMn8ewJ/WA3P+JQB/g4he7Iq9CuAFIrqTAsaPAPjab7QDAwYMGDBgwPsNxjLUAQMGDBjw2wqY+TUAfxfAf0JEd4moENHHieif0iJ/BcC/RUR/QE9P/SEi+mhfDxH9K0T0EjNXAO/q46Vr6xUAPwfgPyKiCyL6RyEzkv/tb1b/BgwYMGDAgN8qGMHigAEDBgz47Qh/FsAewKcBvAPgbwD4EAAw8/8A4C8C+O8APATwE5B9jj388wA+RUSPIIfd/Clmvtwo96cBfAwyy/g/Avj3mPnvfSc7M2DAgAEDBnw3gJj5m5caMGDAgAEDBgwYMGDAgAH/v4IxszhgwIABAwYMGDBgwIABA1YwgsUBAwYMGDBgwIABAwYMGLCCESwOGDBgwIABAwYMGDBgwIAVjGBxwIABAwYMGDBgwIABAwasYASLAwYMGDBgwIABAwYMGDBgBSNYHDBgwIABAwYMGDBgwIABKxjB4oABAwYMGDBgwIABAwYMWMEIFgcMGDBgwIABAwYMGDBgwApGsDhgwIABAwYMGDBgwIABA1YwgsUBAwYMGDBgwIABAwYMGLCCESwOGDBgwIABAwYMGDBgwIAVzO/1xR//Mz/GzPKZCkAg+Uzx1z6vnoNWv3sZAogKipYDuHnXGi2lpPei/lKK1F2KlpU6/DcQGNzgu42L4NE/B4Ci70LxlboJTFKr1cfMKPo+Z9w26gTIy5LXOYGZvc/b+GrfpgJm/7rCg5kxTcXrsr9E5HgBBOYKUPX2pmlq2t7CZ6aS6pR/MpZCk0oFEy8yrjwDqFhQASo4cMXVacEVH3GYCy7mgs9/4Rt46YMv4fnnb4Gx4IwzuBTMyw6VCUzSRuGKifaCE6qkPor0vR53KHMFcAIzQDSBJgbVAnABF4D4CKLJCc7MAAstwYyaeG01BqX4ONlPzOzPhK5Cr6r1ynh0o77JC+1Y11rb5xtljLeP51ODb6Ei/O5yZzUEH6xlSmTEgBkoFHJDRelVtQ4tO0+zE4PB/juVEjKncgVvV58XAvMCKiUISgQdPH9GROCloiS+DLoQKlcdh5AR+w6G06IZT0zahxrvpfGXdkuiGzd1K5WcpvbudTpuWRZM07SSpxiVNLaFnS9rtfGehMJcnU5EBXU5+3v5r4xVRWXGPM/Ck4mncl9MZ07ThFqljW0WNRmUsfXaXCaCRlI0xjHzlulhf0aJL8G5Si+L2j4/u34PvmSIni7afIXYKa5o2i8g/T3JQT8u2o9aa/BwITCn8a8JX+cvkTeuFYXEaog+kHq2dOmKyqLIUWttykaBLKdbfNmWZRECLFX08TRN4Aoda3tf9VZdAocEBCFq34bbPNU/pvuM1zb7d00d1q9aqz/L8rQsy0YfS9P/yhVU0PB6gdjUivbdpi6VN0BYrVDpZCb8CnmNha9yFapLjIBbdlfqr6hLbcaux4tFabru48pZKARVZh+oulTUWt12L0Z/x5lURlp+rUozQPocHVKac030TfxYQ16piC2qShs+VyeZDavLqdNEVIPzoPIWdf6KtwHlUfVXzLaxynA/lj3trU9ELZ9u0b6pp1LQO4+P62/9vZNJbzHLcWPjkHDvkWh1YbIyKx3FEP0m5YKHezkRuyEa0uqtNWpmJtSlOs8ZDXs7YfVWrWUyXc7kz3zQjT3NP6ppXBA6hpnx9/6vr2DAby7w6Z3rHc9r4D0HiybggCgWCw56RzY+Fw9gAGAKrzoqisLpTxgIc8Dtswmn4OARluLHTR1N9aBwqLvg61lBrkGxfhI8QPR6UtkIwtq6siCbk2/I5iDPHFyiTJPeAe1cTCUn5UffQv880CMJUq9roq8rCsQwkgaP0psFE59ReEalCVQuMZUJhQhLPeG8FMy3JuC4x1QKyjRjwQllAsQnnjDVC1WEZxRiMEnASWAs0wICYVLFf14YE1VcHM5YQFgwi6O9TNiXK1CpAPZgKqg8Axw8S9BAlApAjGIOX4ky5iZk+lgQ6C6EfbDf8ncbZ6NhNw65TjNiFsR9K9JtgWPjlCS7JJ2QYMscsUIFVMSQlVKkuMUhRRwLoYHhTP5bbjcCAnGGyyzOCnMkZ6wf1AXg9ovwbeJRd9xD5ss8r+iVDXbPoyLnUPaOBErbMmALLYgITEDpvWSEMx39lufMUQuIUNK4Ne3kAI4jbPGgP+HmzgXgekDKhfF2XAkAl64NagLKkugylQmMnv7w/klbfSAjwSscb0JB0SBKiUE23hBP22RDEzwrPl9jIO/Y+Gw4epnv4KE+O3dawqiAgCrPzW6gJF70GIJD7yISJb2uLNMUTh4LbsXHIJ5XFkedDW915Mw+FFvQM0UA6cBbo5LGNNlYq7unpdE/srnk9ZJkdn1JEREJTRL/Gp+VMnmgnfEzXnxW0sFpRoSitDAC5e72stjgDHhSiNTplCAlElvrdzUY4u0xDB2WupS+W0AFsuTAOukTAazJiPFcBJHygBK/WHIhaMwsvEBTS7f8N3yGTBtsAnN1XidEMq00uEcdfYJfRGTaSAZs0bK4fsiBr3NvjeSgNCZ8M00FXCtCLYl+qJXdv6v67pZNzAG7Sarp9z5Q7HnJazOctA6gtU/2bgT7DFY5QYoWjR59MreFNb8DYv+06tBdDGTHzf0RTm0iAsatZKPrg8zUHT3MP2MwiKVG0Y/Bh55c5VRnVOR9WSUFE+7ZB/IEhxUloWlxA7gOage8v+A9B4sGZgATbyhvtYETJeWkpRqFxfEiir1H4dyln73dqIbWDG24XfMcHT5bQeG1AVZ0aPV86/1V/U3wsA7eGpxJXLIseIFEgxEcLXKTl95pFTvcIUwVqdK9js6AGp4+Ymp8FmrpahqiTEApqKIVPIs5lZ383U2YS0EpBVMRZWI1Vfs8VQCEqchMRq2ARJSS3SIC5okALqiKpwR8BZh0Zqbo7BqzOEw5yFGbZvzrDl7nWfTfQdw6HB3LUfrBZSM5EqtxCOIpPiFj2FLeTVu04in1HBPKnRHWQJCc4hIcaqjsKwe4f7vj5VSh42LtN4ZALeOaTilY2zBITRLlWf03B547nu/4upn9afyK7OhcB12w6c5j+8zKWrALtDPVMaTrJExOGPXyv+UArxRx6nTuIyBjnrvQ49604VWyD7kF3jGO+ld5tQJA0aDERYxafBssKTLRgUDXi5SISU4Goe2L87+KvvWlmQFQ/GSWUvGyCKq29sEc4AJqZtko/yXFnxhUJQFTU6CeZdf7sma8begDH3MwkxPMaGfQWvtGQFEKd46uvZ91VCYmBQnhswPg5j1XSZYQQCRoMo08oZIzmakDpm+ky0pzoiYVkJMmphdWct5QJT+JZx0LNcHsGkJP21+3Eavho40321pXwXL3cOWEK+7G+02AHWRpWYjy+4ZnJLtW3Kb9sXgIQApoUjDirfFKnkxnNgm17G+0Qqo8wc478f72KFh1ObTLdT7LLvSzipvd799JjUYiwLiIreLN9qO9DT5MOjyXo3XRxj5YvRvF1v3pbe4GKpEY62Q+jVnbl6by6APacWidJKm7UJptTHX0/XjWGA747sJ7DhbLlGY7OgeVELNvFsitskRphjAeRnadkIVKP2fl2TtNvYNl5TJeRC5E1JUtqY5VPW3TLQ5kPV47v605yvjkNmw54zXZUKJVvY1NMA2jNCs2A5T7qVmjrfqlD7G0o1ca2cGTLKsErnmJ2MrJjQogGU7pZ6UKqnvM84R5RxrtTTidF6CcUZcjnl6d8eYbT/Hc8xWFJjAqCAtAVWc8BY8CxnkqKJOqqio4TlSwcAXrmrNSIZnzCWDag1HBbPwqM6i2vM9wtk7kmZjUpS4IWNOrXzK1RffifNNCdhIIBEzxmcHxSlr67WVBKBrotc9blWzLQ2PGUhi8+e7PA89udJ3/fVmNya8tM1L6lMx/yWkx3RH9LupERMaUis/DKH7U0L0fn3Y2z5bOonnmbqnyMRnNLAry/kX2t5FvTs5CpkyS635WIMvJFt79Mh/jlanrj/3etF/E8MZ2gHWPswfWB93msPXaSmgi+qHBy0q56qFYKaJtFZDHBFXHNi+zF5ZpgxKwxGnStkd53raVs/5szWppg/GqR3cpKdDYktroK9NtTeACiH6xFQY1jaeydPWS1M18xlJ+w3dSvrJgkkqsuqk2K2vROwOgbmkdhVxbEE4pMrYkSGcooD+qTLb0pZKL98u0lTeMFShmX6eSAiZIAGyJk7yszkylTP5tSSR3+iAFxBp4wmflNDFj37sZObOJlaVTExX0IBM2Nq8UOoI46GZJHREDHQvVZwRLHOQlppl+9rkdNw91klq2ftP6DcGDYpWJ8WCtnAZFlt+rUdGZz6Clz54RAZiQ54pdl1SzMYJBs2RQZ0VT+hBMMavMOtMKCt3S6nx2VLnq8kZL1Ghnp5JWkOjacUo4hnz7JiDRM1WXVHIEVdcHUtT8QeaxFfFby2niGEvU9S8Fz2Sd6rSxvqfERjuDzMiMkG26vEugJrlCTcAYNtp0wbN7761txJHyIdkuIl2/T+BlibJEHXWaGhDbmLQMu6Fo3sl0z2M94P0J7zlY7A1i+2PLfH1AGB+peSaBYrtsIpzzNhu2duKTk25IoHXac7Dodee6Gkc9fmv22ISU5u422R8Hs9nJNyGCv5wda6+wsbzRTJuFiueSsYH3OwfHUbZ1HHIQHDhF6c2gEgDYQkYzeJxm4rbHhHTnEAEovGDCjLlMuNhPIK44nRhlmnFczuBasdQTHr57idM5FB+BAToBvFcaiTKaC8CQvTcoBaiRfS1EYCrgUt2A7KaCc5VhmVDEMSVbvw93JqMba169ju/kc2losRUcBD2vUYo2VOoUxL4/iOIucPrn4AXXjLs5tM1zXepTsgy7c5o9mBb368BdVQs23VmzOYHYC9mtj742gHL6iYUOx7ATkwYPMpqYLoAHM20whoYupEsTLUTwWZGWwNG28f+zaJL7ooPay6GVy/ooz8ABrS5kw7+m9k1RAb7cuZ+dcb2HCAzXY2pGXT+TBhTqvUWgj4b3Fso6N9q0hF/MMMlYhj5rWy/afNZ33wy2gmuY88tb9A4Hv6spuT7U8I2RA8WcPf1cQ0H3UleKq6igVwFsCSJIg+m0L4j8udEs6+htWlgSI9pdL6/2st3ffgAyvT150MU5jY3zZjubulFXnsHfGtae51eYUyKDkiavtrGlqehk3Pu1qrpdCSIGQ9/X70SaywSAYgEKt/V29bSzRGHXXRc5heB+RTvhFcqtt/dOCyg/eUC3rT+b6qxVikA+63tKhX3cU0LKW2Xo6lpRJqbvKy+pZxkXcl6mNItk+qcqP3A1XFJr+TfVTQ1fIc+w6Rg7D8Yyy+ha68cFwlKLmyWyoEttFnPL9/6Z43ci71PPxibbHshytjVJV+fMQSd3+QfHJQXgALlc9Mlro5ai6rptrSW25C+Wo66Sm4nzfcuAN9d6N71+FNxGYPi9Bu89WHQHCB7UEEneJxsMd/jsvfR85UCb4WzsZDAXkBzSbj9QoQImlo3ZCMEsyViYQJdJsOz39eW+hbMa373eEm1mcfQMZmqzpKymGzJ39qN+e49QJMtL5PsLWtys+sCxsLazpajcQLDvoQylydDUUfNOMeNoKT6WJZtMDJLd5660NmffjDeIsBCDccYBBftC2O0Jr735Jl75zBuYy4Tn772I73v5Lg6HG3juxnO4eecGfu1Tn8OxPkEpL2KeCHw+A9iJIi+EUgvAMttYeQ9iQiFxcBcANE3YzzMWsISpJHsb6xPBnwrpnoqYefW9R2gdcU89NIo3ghIgOcgbM7hbvAUAFVXbbfnYXQx7F+w4ldn2QVXNNFevrxQRwokhY+T772wcE/9x1SDE+pKNnO4ZSf2DYtwbTHa+s36aYyj9n3QvZE+DrT0WOaDrZ2ZB7UFPMsO8bWiyk2UzA0QUGW1qA0eglZFmD4iPgRn7dmyug37PUfCB1UbIB0T0yazcF532Tu3bDLDwOwCZfWTAFZP03vuS9Y69k+lXfa1odgKULvoKg3zmAtTyfA5OjWLBX+tVG4GhFxE+UfuRvG859AKtQ5vpQyQHegCCZ0HR/gRdbY8ZUaQtLMCopPizOozGLyUcHnf4dG+mBH+KSwVQZN9ktd9AqKiyj5rgM76zHhpESuHdtDa/Jj1Ndp8i6Oq53pz73kbk+vw/sqBU/vMVAY0tNU/SEjTXBJ+do+ezQs0QEUqpjp8HIuteNH2JpK/qNirNITnCx0ZteZ1rlaQPCcGJGST7DhAbo7CSuSzvgMzQWaAT+r/dW6xINf5DK+t5ZlFkNbeXgz551gbmXCPA3Fq5InpsaoJjfROA7gtkoQnQ7++05GiKGFICiS1jY4dpQQ+eoRywhX1nZkzpYLPK7PuEAU1Iml5hQpmL8x0R9DAc24cqdbvfU2RPNDODa2tzrburIIbZddtEaRwofu/pKXmwOIhH6N4eyhSvRYBvdC0ml3J6VgoIEUGd/rcO6C1pkG2P8WgeVqnHViTZgo8KSLCmNmIrAGttayujbf846XBZgWVnOqz5bJ3MWOugWKMB6DJ+cyndqoat7OsY8P6C975nkWVpkRlxQhsohl+0Hvw+UNx0qt1Ro0Y/RAGEo5HLBoIwvdaDHcjDtcYSguT0oFMo+cADU5LRPf3MgGWMiAKX/rARUyQeyKETsGRQWyczuiLvlaTgORk2U8yG4BbNU4vU0i1wYmRhNvq6gjWtinWwaPwgZYuciMpHTBOA+YSvfO11/E8/9StYjsDHP/4x/LF/7vfj7o13cP8RAa/v8dprj7HghE/8yC3ME+N8+QD7fQGwx4KKmRYwCCcuuHnjAIBwdTyicsVuIpxmCbjfefsh7ty+wI0bOzw9Vtw8HFD5DK6MUoCFF4CNjvBxy4FED+7sEDXjkSgUNM/jkcFmCWHGLdpqAyYNtprldlGWuvYcF2olId5x78APEvAxp+zw2OEF2dIa70QQKvUG/hl3QGfF0vd1oJbpF4FrPCOEHFAKcPoMbhikLR2SiNA8j3Y3yie6sbr/v1E75rpxVW9aPrhJi/jMPp6sFTIoj4t2wdraNOBWZkMh5gDKOdUiU7ana9xcR6X64gTreE/qp37lYTi6WVaIZAYidYEAXzJoA5CTAdKu0tNJ0vKC69rmfXL9WVTpNjOxWq6hZqIJEUFPQfK+Fu2Dz9bY6oBkP4rvk4yRWLl3jf6Ukn56Z9bdPWpehIIf0C6V4+5dNnq1ouCVbib/Ozl3eqB9LvRN3OW6Dtc+c12lIm2BfoMWbGlz9IXUWQaRLxs17uSG0p2XoGbMTmHOSVU5oIllSwPQ6uEsK95/5UmGjte2PLaPusAA0PgyeE3k4nrd2etdwcMWWLd83wSEydJHvazBR+5T0/VEOwsuks5a1Wd9JLR5UUvAcPCOj2XmK+VrTQ44j6tiWAdza9sg3ZGxDCwzDQEfq+TbZfSJ2qCvr6cXn6YW1y3JZ3AtvmEbbSw5SiQLh2QuZUUGYmFxq6M7P9YTEGgVRk8DBmy5L2vrtgTZRZPY9Zh2saWpVWok9WC010E25hjwPof3PrNIcXiBMXHsSdke+d452naWspFH87cp5/9d85s5Y/6E3bkmxbUq8v60bzA5MjkgZYQRdyilrUsdpEYIrQba7jtW/TbHI+Oj7zev9UEnbeCuKodaekrA3+PRkZaiHruKoVOHCb32ZZuxozqBagHhEo+fXOLVV9/GcmTcvP0izpXw9rv38eYbT/D222e8e/8KF3euUKaCec9yFPiyA6H6kkSiCdM848nxCeZpAqYJBXLK6jzP4OUJvvyV1/H88zdw5+4FvvjKu/jHft8/gj2A4/Eozp2e/EmgJvvajksY1DZwXvM5gTS40+9+lL+8678DPjMeXNVQUendORcNf7Sy5vsZPSCIssJGESjae1nOeifP/jJT1x78faMXqzFd0WRDcFuHPcm60oaI0iyC/pKso8mEOSTh+NslCS0OZhP7Z5kWK+dBC+WZYn7GLMt1fYzxavvsBj/14Vqd6fs/U7CsjrEt/+l5J9oMB8VO62SEk9CpOVWT1CwHBYWTEbwGdZ6601tTv3hVb+80e4q5pVF2o1gdf6vCJNGcEKMfxRHwwTOIt0wI8nfAs+gmC1X3P1kyzN8wHG1ZLgd9zfGS2dcIS3wWFrY2wGyDUUfL1I4uVobMNgUJiciDECVBG67rh5LL2DH2lOQnaTPK8p2SGIGNqrMmgqdVwJgTqO3YuwJCD16un+4welHGxaqzFQ1SLzUVtTxNMYKpP20CQOgYNPdkG5m8UTCB2bZ8im4ivrcmpEz4KDbkryUsIlGXcUrINfW3uG/RJkKL5oTLyu17+tX2mKZMg+PoshwiB+8OW2KcWqQMbxNVwybJWEgBwyYdngWtTUk4oCVI89wQ3yq0ocZXOjrRxG1Iqt+Txk0lcN2Q5TKFVA2CGZUtG+BJ//RWy29hBynjbQheI3ci6jaXumUDA7OGNZIy4tyVZ5CXTBao7c8WUteYwAHvE3jPweKcrnxoHbF2OWS7jyk9t8MsiEIYKf7ZO5QfJOgDHLJDHkyZqHDHstS449CyJ+1djWFlYibDBB9uHKVPYfYJUX5yAx44mqBlOkhxWslyKa1B8ONGspSu6L0dgCdx11VGBYxFla3hHhY2ZxbB1beRhyInTFPxItHvdgz64Spkjv8ONy5uo+wJcym4mGX53K0bF7hz+wb+zt/9dXzxC9/Aq197jA+8cAvfePAl/IHf9/346A88jxc+cAfnp+LILQDOXHBxY8YL9y7wX/zVn8SLH3gJ/8Qf/t24d+cC9+8/xb3DDXzmV7+An/m5z6LMO9y8ecAv/sor+NBzL+MjH7qN3W7G01PFft5JJlmQhy0NdAOfZmyFnhQr8Uo8bZQjyA+fcSNcgto+M2cHQ/TOVlKugDrudnx8eIjOm8afvr+EarRtzqwNWuYR0Eo2g5fybF5q1+2QzkDa7KRmTvPdgUpBcRByH8nkgqNOyvSyID5m4BtDSpmWgbfMlGa+K+muw8yltoc1nCqSSzcbWmx//ubWbGs5TRtYMyZNUngQZBn6NJ4+y9Ecqx+Ovek4C144jRcz+52CfuiNGXzzwhOsAvjEK6W0SwB9pkd1zKR3wWrvk38W3qafaLmiTeu6Z1sARzNwlZm+kBNfMpX0V0gkhQi7muscdNiyQ3lvmnTWxWire5B93Ih8EZ+JhO/bskNv7P8ifN+sJHFjoPQmilNKO+A+iDRactAlxREA6QLDmuyeMBeIIcvzfZwVDaVV2MWmRR+EokTMy6vh9DaFZZ+1fBozAH5VThMUaf3N7JsNndJ9mkQXyNVIQYvGXOmX1X20dkBTpisyX4nsUOJLn1Vs/IHAuFCRFSmJnvY534XpSUE7PC1tWamoHlQY3q0tjSWoPi5uk3Ctwy3vrGcaZbxYVz9pNcZPKiQ+M6Vjm9Wdk8Lsjh38Y3esGk4WKLGtxVgn/Ro9nhJwDS0httheJuRAqptNDKK2ARpvLB1mazZe7FcZ5GtXMm+uQ/X1LHmbZYux09uG8qsROKnCawJ46yOVwNkqaCqKBGI+YMwSWJkGzfYaaPf1Pto2iUnBJEg6NtMx99t8zaz3Aa8362WwJbLSzHuqdzMAH/C+gfd+Guq12SATvnDkjKEaEG9Py8D/tnxIjSOA/rcGn8R4yUGwsvmfGa3VPWiEhHe8lz2OrPAoiR8ROQ5+sEdydCl3snHYuGk7lEZypvv+hl5RPGMJTYNjVnTmTD7D4XXa9eOX6myWuqSMfuDS4xMxG3cAACAASURBVCpWhHaM28/dwJmvUMoMnBnEhJuHG9jvL/DFL76Fr339Pp6eznj99YKHr7yDf/DpH8aL9+7id33iA3jwxgOAD7g6PsH9coVymHD3dsH/9n9+Dh/96BX+8R/9Edy6BbzxziX28218/nNfwzvvPsTDB7JX6P7DS3z+c1/H7cNH8OHvvwNanqag1zbEG71bpeh3DSI5AR7IpDH04TFC6LdGvyflmamXZMTstE5ItvzTgTlucZl99m56A6fj5sv32qPR8x4/M6BhOHMXkmHXoJeqnPrIyVgQZN8iozbvuXFQQSXtfxtMkPe9cXp4nYAK546b71TFmMbyHiD23WS+jTvDtvZ8WOevGYIVNM4fEVaznlMBaZDd6kbBO0rDxyDGQpYmUyogS7mKOx7CeyxBCVGc5AjEQXVN94Ink9oQvtPTaHsH1Glc0l2BzOHkJeiz5jk47XXKis9J5CnzgCfD+uDD6NL5Vf14Z4fTde1GyJZtQHshuyCW5bIUmX02fSL9ksPi4woCTeRoKm4xQc+DDQBcY/upBfw1zeRs4CkzxlX26lFyfknGvHTvrWzFRp1Z6K8bIw/MOeiqHgBs5mjrvVxvk0zpkgeSjKiyKpO5WTrPlRvS5S0fcBzWwClQs/v/bBmQ02OlW7TGDXp5gsfoRO0qK+OLHhrfKOu4vgza/aCMGE/rSyScwv/KSR4AYKqatJG+wP4kecrtUjIpRuMcqNs4T1D+I8gdijCzH0GX9a2VfbEZ53MbfBN38pjonV22JsGhd4VySg5sJe4cca8kBYxA3Jvd4+t8viU37dJ57sayb58JusQ5eIBry/uA7L+2PQI2viJmpuSu8eeIE+kjeO9ns2VhgzGW/Yv3LInAzS/pd8BppkimHmQ5jHdaWX+WNzrg/Qbf1j2LIQSiKLKyLiXNCqAVmFJKc3Jb66QiWMgUjr9KrqwoCYM4D6Jcit6pZwrQfjPIQaLNDuU9JWH8SzIo5gBIveGwZIMQexum0jrh5gS2OiNndM1pkk3FExVQM/OaBIzlEJ/IaLfZ9Z7OAhWMijy7qi9DNmWnJbqTZMV5OaDiiKKHBkk2cUGtE+bJMuczCp3lUAkJk90ZqlhwmifsiDCj4PLRfXzylz6DN99d8NnPvYZ5uoEyz3jtza/i7//8L+LqyJinHW7MC+7evkJ5UPG//MKv4tOvvorf+6mXMBXg5Q/exP5wA7/rd/4OPHz4AD/1K5/Da29c4v6Dr+BLX36CD33wQ/iRj93E/s7zmD/4EvYX93H1xtdxmgh0OuGdBxWXywQujOPVJfY37wq+ZQFAmDBDjpCRo3GAWSYByhkT7VB5cR4QAyG8WZKiLVPxC4YtozuVuCA5GNt4U+qT4/Vbp7YAWLh28qGGlGOWSpIU6tTMbQIky1Wb+Q5PwNihX4rbOiG9EfY5FGl3ajP7BJGvin72SfpdSnHHwp4xTE/EDC4QVw+YA5uDMZeNyt1KAQCzOLH5ImyUSZMEJl9he68z7u44i0eFHmQmT/e+AkDVa+I9cIt+yQuA6TJzQ5oL34l0lUHBspzhgWCaGZOlbrpsskg9uQmoHFoQ50/Lmj88aG2WRgN1WYC6AKo3wIx5t2vYNIJE4RG7RD01sMpq9zxl/B2zvSnRhqC5sHfMUE1T6GgPHAkoc1nx7mrWydreCGBIeTO/YzxYfOYxvHeRhjgJGZBrMajIqcsuT7OY21q3+kmyNIzlUDbfMVSULukuVKejDYJPwkywu9jFdAb+xVlL+G7hGvJGaWWl6ZhEV7DMqtqyfVtWHzgw5JRm39kkVzkwo0xiq5ZaUc+L80jVo/hLoqGdoGv6DfqPQFiUh6ZJ5WYJ3YFAB1zIV/aKrY+92YBe0WD6E0DaKwLmRfbVCdNhmnWmmZOeQ3LAfREVg2tFKe1MMyCHzcR4t/6HUK+C9LCzZVkAFBS1F8G/SEGg0gcW5FpnAZnwDH1uPLtKWCOCrJw4r+kQsForeDH9JeMiCRFbucJYqp5CS+FDlckSWQU7TKi6WifLYrYFy7IkX9BskyTYmFlm2PO7NtZmh7VM1FGdh4WMJPs9ddzkUBg9IM5wzgGh4luKrSpoVb4nx/Igw1iD0+c4TdV8RqdBFHKbEqclK2+ZPeIo5jbIjVaMv9G0xpD5WxkIwLlWLEsV30H7U1n6vjifWkAHoBQfDzDrlSexTL/CkmLKJ2w+EezMH1SfdQ25tllGg0hkDHg/wrcRLBqzt05bn23ZysJt2OdGmeUgrK1zPZvVghpWNudJNb/L5Xa9WzNpQBdYelCa+qx1kzpvXYeS30at3LoPSXG/GyGcBttr0EmO49AEtWsqBI3D+fQ+Ou7WD0rvEMAEXmQZyETARDOA4pmv3U7uaRJH5CS/aRBFNLnyK8yYr87YzXvs5glvPDnh0595gM989i3cf+chUE6YpjPeeJPxv//sp/H47fugumC/m8Bn4GKecf/tB3j6+Cm+/tU3wATcuLjAbk/4/g/fQV0YD+4/xXO3bmAC8Ku/+kU8ffoAL7w8494HXsD9d084nYB5FkNbAFxcHHD7zgVefvkWbt5YgPMeT56edFkRAZg1iNA+YVGaJMVpM1NUYMtjmiweJEDMtqDldzMo2RiFU2B8ZyVXfJn4SvaDrk/B7SE7C7Qaf/+2ASGr61mB7RkJ/5WAvBclB3IxW9lmFi2geka1MAe7QX8TvxaXRpTc2ofPz40OiN9WddkSwuxAUPvMZNuchL5ZdxgQjpjh4L1kCB+VHIR4Df7VrhTZGsI83tUc7w19nJeWemCGDZomxzG3x9hsPvV73ebmZ1h2vw3am72AuV8pwM/lCUF3S+r1q0i2ZnBcDvW3ZqZKSW/tNjqdwyJ5kkWd+SbRovR1ftOKS8JbDzV29W96u3GSrS0dey7huAUtAaq6nDuPY6aLBQbmwJHMahMVdfCqOv4xgoQUpCKcUsPRZ7OAdnkox32rANzuUaKhdVE73o66PvOZmKRYm1NJIfo+B0OBK7n89T6E6Z5GWm2I8zUKGtQQMTJft/pNcOjbdxw49ukR9EResjra5HCvWzxOgu5FTePZnDz6DGh0l7wscp1sg12iLrRMcm8FGD6T3/t51Osp73vQgPKvpi8NP4ScmbjFewQm8/MiOOOaVhkorxgKzXZz05lEmmyLurcVWdgj8wGoI6InOrs3LZDeIoLLUcMfylvJr/ym4+k6W2o029PP0Oe/csYWN2Oqb7f6BQBSAOvtUdtbOY+ptXV5ma3o33gmtjaVbWzp9V0d8N0F6pXZtwr/xp//oxyOTqdMrPLkzGbno3Qzeq5olQfNaSCd3WuUMhWEaISSNCXczm52y9UsO0u5OQIKrTLMOevtfclCnOtFWiKUjGfUlRwfFgfQr/RYtWs1bhweka8hMI8ieoHolSkCCgO70TdiyQU3yqTANbQYilkyyXTCvCPUOnuPJ5wAugDKIiveyg5MQKUTCgoOS8XxTFgq4eZNAi038dmvvYKf+flP4ec/+au4ezHh8jzhuYs9eFnw5Lzg8emE3QxMdcHTpWKa97ixP+ByOWI+70B0xtPliEXpcqA9GAVHlnsTd4eC3TyhnBYQCIedcNmjK8aLL9/B933fPbz43A7L+YQf/cSP4vf8yMdQ+amc5Fu0ryCgLErHCYUm1GqZ8DRrzECZJyx1gWXRgeqZzojVsyHNvqbIxrXLZcyomvNU8742mfF9lvz6bAvg76XKsTbmsgCyuWqg2F6h7QCvMRrUPRe14DOt4RgGDVqiJJRWlrelS/9jlun29dQo1oZ0C6yHzaIa/Rgnfia59LbZaVVg+9siMLTa4iTHgMnXfGkZ043aBXcOo8tSYw4urumLzXIy+pk068k2PTIfCA02rHqX2e4hz2zGckyjndTjx9RH1zx4yTTp5SQy79zwxFYAueXIdNWnpI05XjZLtLV2F65f86wB0M2U8po2VWfUbe+q3UFnM/Yq9I6LzfpkOcxt21Mfx8wkPdRwUptfswwq79a6iJ5Jx+d7X/t6Oz6wMYxvkVANepKOAXt/2XDpq7frUXSW2+vgkAGXrxREZR83f+cVX7VjQIm2hBSsJ8eZO74IHiCYbC317IxmlnpZWrmyvjjfsOgRkT9JFlXmbh8rr/hKu6GJoRYvx5e5CQqMp4KmlARD2oilv6Xtt+K/LIvqldhfGcGbahjFja+R6Wa2UZMU8f5ahmzETP/Wc3OxKaB2R9o1xkurbFQ+G5EzgjB8v2XWSssidzobPzQ4cTseWVbkZ0sSAMZDm8EVAPhe0NBvbrf0kSXUXOStrrScNbSs9HPF8244AhfbZ+2oWELKcExtIun2TA+zN1K72p/a703eeE///uQnfx0DfnOBT+9saNlnw7e3DNX/T0EjwuZoDCmlPCDRlwtSVpxSfSlg2gpycoDKfdn4C04Z1T4r1reX6rf62l/MKUzfvb34HSVo4eVK1GPOkd9N2Dl4qxlPCzhY+9DRI8xSB6nstc6ekmHVL1O+bPdYMagwyiz3Uxaa9B7ICvAOpcjyTLem6WLvaS64mAtqKbh1MeO523dxeXEXv/b5CxQq2E0zFmbcvHHA6XiJy1rBLHeTVXW4L+YZd2/OOJwr+IpQueBYZeZTFL4EdafjCafKuHwq2c7DtGB/2GPCBAZhKgXfeP0tnM8n0OlF3DjscLpcIKc/FFnmRUizGnHoCQC/wF79ODGOxZIaulyJgn49r/jsXjMA2+Pe80O2aHlWJWYc+nGlcLbzM2vfgk/u8VQO2EhguNMFpCWsHWwmPrLDrs+yZ5d43ZciNcmQwLelS8we5GZNAs2wdRjp/8/Wk55lVpBEUCsrBdn4W+2t/pBkTHIKtS8l1dUETsmJi2WD4by298ICcJ5Lfv5Wf6wtbO8SuY4exfWZK7kUTAUi7QzImheNR/O4UeprdMib8Tq9thwoZv3d6OuNvm/gRRxtr/IOMHq0OrTpo+HT8feq3Y1BYf0tbBg3AmaHASG1HTp8vVrHE5XaGUErO4sd2P5HaumslQWO5oijTTC0Yw/z9rytvJQ9xr2sgsBV4koUk/dDK0lqwuiB5GtYzzUQM/PDecz69joa+hhR4zP0M7KtyqKVHNiqINOr3i0y2Usynntu/LzSp8IDMTTGJ+G09+03pFy1lXnKKQ2bOWyTiWFrJGBlfw+woD8U+aYYZ9ZO+PirXdzR+I7cPst9iYRRltOuq8IgrWznhEygvrId3HyIaptednb82oRtZhqvbGP8EbzrNtBe1/+yvs+QJARRkT2JwWgCPerlOGjr8qdJBef1je41tOIOtVx/HlT3ZULGezINeH/Cd2TPYq+QTZlb8MVsyyWzAdRjHIgiW98Zk/UMnsVj24oN4NRmBGQ9vgZ2/Hbg1CtNa+Ga5z0uZbsdmyX0Nv3lvDcsAhLeqFvVoiq79lm+b8iX/rkyXY9T/r10ZaB0l7oLplnwfPL4KZ4+ucJutwNwQpkY026P4/FdFBAOhxnLWbKh80XF5dUZP/trr+H23Zu4decAOj4FCPjqw4f4wpe+gWnayZUX9YSymzFPO5Sloj5hEE2oXEAMTDzhoHtQH58YXAsO+wOmyjieFpyXIwgL7lzsMc0TSpH5nCsGlqsFjx6cUErBdDjg3QdHvPzCXfwzP/ZH8EMffRGn4wNMuzOAnfS/VL2zzZwuAMRgnIOXOJZ/FpK9P1OJPVJF3/FAoFPOzp/dUea9UxtBoQVPtmdI6rQ9tUWNTH4/OyCbgWj6vDoRmIOP83NzhnwvB0K2N2xg0074adq3HGwqH7qjZX1PFbLJSnZw4Pl+b7zhYc16+h6iHJS5MWydlDbBBGSjG3LK6RCRbk+nOxEyW9Y7+nHSYLtkzWZ6KE3N5kNxrG8lfc5ZXDKnrcc9OZa5H5szEmjYQn8o3TPr3bbDAyAy3rkasOzp0i0EpXDzKxJ9fRmjn0ppRWjlUG/uv3QsHTkA28uge1q0gY7SNQUW7eXmybakoNBkKAcbvT2IJVspGDD9kVbGbAXeW4Gp40+6RM/2FHI/TspvhWVvP4D+1FWgJXkv2NZ1l1v1cle4QnHp5M4oa/cR2jyIlE98hAgFpXPcOKSGm/eJ9S2Cr8gRWm3glvSl7PmPJI8V7Wd+5EVGXNaOONUWDKrkNOlXdABoDoKyU8XDtgveterMlT6flf9tppHE+MD3IvuYmD7Kz9rRYCZJXDPrFY6WbEu2zj672Vkv35ZxKs2TRrbUPhGhWXpI2l9fyGkuU8c7MgzrrRWmn71oxERuD3023+1B1MmAHf+LSgjDleSbY/BXvlO2JR7MGc8kHdbQKusFiAXbTtBm6xbkqbZf1mUtArra6XbHS21QDjqtHbeWq/62z918uPuiS5IVQzb6eWm1yWlsol/Rn5Ax01HaFvUWZcD7Eb6Nexa3DVfvFLujJB5zX3j13nX1Gccl+fPn1JWPTOu63gbvfAVGg29ba36nd7rtvdyfVdbc0RcamMCb+DVtu0GVmQhCbBZu2velu9z2MwkerejbKpd8iXZ+H6VgnmYslTHPE87nE9568wHeevNt7HYFp/MJ845x794O7759hZsXL+LFl+7ieLzC+XTEnQ/s8fbDJ/hrf/PncO/eXTx37xbu7O/j6dMFrz0kPHjIuMFh8HZzQZlvgC7PONcjgAsPBWQ5xhlnPuEKe8zMoIXkhL9acIQuF6sEPgO7w4IFR0y4jUosy0mVGc4M3HruDj7xBz+GT/zuD+CLn/kSjldPUTCLIq8LfPcPL5JVncxJrOAqJ6sK2asepMCwkLvYHo7EMz5DYjMHFrx0x1Ju8qnpe6sz7W91nvScSzvWfea7d4zXvBGyk5e39kkUIuMxjr/GNxuQA7+q11ZsyscGLg4cUh/6BKtgYauuODXQlrj1mX6tMydhrtFrW4FWg3Pz7raTCqA53KuNd9d7CtHLZ/rczBT28ReyQ7ilemn1QjgRhssmJqv+tGVyHfEel6KXe6cl+wniiqPEi8weYPaB1HY/cm/aMpzLWnRh426/pXHM45J1ZMx49h1sx+WbgclStasVGoeztXK9Lmn72s4WU+O8brXcyrUdToGsjnT2ceWw90kGRKAVwZcF+yLnzaFahh+RnpLM4ZCawVYM8/E1zV3qXRDWYhPQ+A0bEHzGDSvE3+0Z89b+h/POUXFy1lM9qe3m/kOujT7IdMg4EOk1L2gTV/nE0xgeG3t23MmGkyjsiSP1DH6lCAarnp6yCjbsnh4AsrUiEmisd7mQ+SW9nur5eYPHjSLOBhxJhvYdDUI0KA5KJhkjwIJzKRNnByBe6+yP/Mm6KGO2Zc/6ZJCoVFlW3NZvCQiVjqznVQdvHDC9AWu92AfhvvUpt8CMZjaSOl5Mttff4k7DKc/auDTomP501at84f7PNauUBrzv4L1fnVHKOuuUFIkZkP6k01w2Qy5jMw1tpt0+S46jkKEes4lUgHTGCkI5lGDaFZ7UfPf2tBPr6zXI/5rshZNgz8OxznJgutF/j5a6tlsHUf5SSvXoBnuyrKDV19JsTbve8VwHltKnRU5Wqwv2t3Y4HxfU8xEvv3wP9567wNdffRdPHh+B5S7mconj8YjHD+/jja+9g/NVxe957qO4t9vh+PgKbz1+Gw9ef4Dv/+AdzLsZD956Fwzg1p0bmMqMqzOBygG7Q0WZCpZzRaETaplxPjEYBRN2wBVjOi2Y5oozTXLKFlVMpxmkd1idF8byaEZhRp0rmE/ArLOCOKJwxdP7j/GVz3wWF5e38fVXKy5uz9jtnoAmuf/RxvXixh6FJiznCfVcUA5nnM8Vp+MRAGMqNsYF52UBM1Cm2bPKOQFAtJ4t2OS5jt88o6yzTO4k6GxA3lP2LPnKzsUq471hmOMyemV3Ij3RtTV+2cFuuckbdseJiDCXOWjALQ18GVeHfx/guixgbRD7flEq43tqqC2X38uOWQ+yZyhmkZUsINK7JZH3FHEz5oF73Nvnz23/9mZwvz0+q0Arndy8uQw0jXuttT3peeMdw18+oXHQr6sfcD/U/8uOV+g0+KyWOcYy26j41HCm8nI7SzRst9vysuxVEgfMV2us8NbZizTL7U65HfjDsk+wPSVYg4mUaDS6GjyLvo0MgoApXVLuPBA28zp90QQzmlWyfUEmIyvWIfhesoZmTLHuGerwlSTPafuWjZmUg9NuM5jC9oyu3cea+9H0ySvXd1zpJCc104Nl1n49Yx42sn2eeaZo7qA/2dJmqwQZIsKknLswR7Bi8kwxIy7ks3ERfjSdKgeQc2rP7oitOtsaPktl0/HANCU/AOz7BqfmHlZ2556Rn2u/m8ClpQkRpSt5tmXGwviiJ8qi2smhaVYJ5HvrQQRaBK/iuOfaWKXfAk2hmfXNZ/DTDLnbVbZki9Gh6OGkFozostN0Em0pssWl1CyDSRazz2afK8AU2wmY2fczSh3VeWhN1KAlwLr8PcsLpzHN75ewWQxwUfnmSOCVCjATWO8X91l5Ow4VcBqsImFtym14wqsHs1eTyiEDYO4DPKVHsXFpdV8kFaTCRrdRDRycLgPej/AdnVmMAGjzhfh8nROkb/cH0/h3wNfL94azT1uRl7MAyNqmcHJNwXrYFn896PJ2tBxlQ6NYNd/7blPzuiMEXEsr8nY2+tQooEzH6GQ26KZcAVEu0Yah0zoVBGDigmlH2O0PeOml5/FgP+PVVwp4qTjsC27f3uOwL3juuR1u3SA8eXKJmzcK9vsJYEKZd7h69FQuJD5UYH/G2+8esb81YTeLIjzp0ekzA1dXT0Gninp5wo4KZppwBoGoihIrAE2EUo5gmsCaDecFoONZ+GOyE/wKQDuwZ/Ek01nKTk4/4zN2hXAoMx48eAVU7oBuHXB6esTx6oRChMPFHk+eMGoFltMM8IT5MOP27Ts4XBzAtWJZznJQCRj7eQeCHA8fY7CWDd+LxHG9iozLtqNFQFxnkGSGE188MwmTHS1nHTWKXfktHMj49ZntrOvqy1w3G9fqkGTQMk8S/DR0ctrGclxzntq6VYZ7vDrZybK/hVODtzqIlpjIS1EFx8AjZ4/DKUj4K5KhEtrrQBp8Vr3r+uToJSekG/dc5rrkwkYDriPMqRCVueHcd/pDfa1c1fbnVPdmga6/lH53583dYu2jF2lnYAL/1ERH3z64Z9j9m0lfq2PVzyb0+3jjYxtMifGzz6R7X+WbBSchElkWul6mCyWlD89OGMX9GlFXDvI9OSAedlMPayBJda2fYp9V2+aKlsmZDnmUAbmOF9lkJNuzlHRoBq/zPViDLvvc2Mk0O9TqvRY/S9Z5RTUFZak2EIFsaSlIl3kGFE1CArJydUm/Ce0Tr6aKqdEbcdopWC+pSvo5gpGgwsLN10TDJv4C2544S1JoUAvr6ZZtQFQe/kXqlH8kPZvC6GuzaIozyYtJqpN/JXwTsUzUazN8a/uVehrZqtz90A9ogQGZcFA6SpPdklTmhgfzOGdzQQ2uQq98REdT9ho76TyKsBM58Or9w6C/PDbt1uCY6vIZQqdv0vUNDqLrPKzOS56afrc60X5sEkIJwczvGtpvjMqA9wt8x4LF3mm47h3AGKMVp2bWbxWU5b+hFNoMYQRDuZwJlWUvXDh6w5qNbf49PBrrRAhEp4SKG7dWWUafeyO3zv6a/rcmN41sartHpVXUVmGW4fypdcD8VwbKzDidT3j85BKPnjzFOw8e4erqhBPOuHxyBTCj7AjnhfHgyRNcLSe8/fAJjlcVX371HXzjzQewfW1UGI8fH3E17TTjCgmsuIJQ8PjpE2CpOB0XzPOEyjZ7VrGg4ljtGJsK5kn3RelMTmW5bJht6S4DKKC6AKV4xo1I8sIFwMVuh8Nhj6vjEwA3cPn4hEePnuDRoyvM04Rbt2/gfH6K86lini9wOBxwdV/qeP7inhzAw0WP3iZdQkcoKHIvWjZiSEreHd6WL/qZZE5GLtcDfzd4Pycj8kwMGOtZNAsAeuOuz3wrSu/to5fWtVLvZTU/X//GAJW+BpBlQvMeXJBfUL4d5KwDvvw59tCsBCH5Ep1z0zgrUkj8NHLausH1AU1BxUr+u3VExgdd8NYY1cQzeaDWOiA7C51z1EHu11p3Z8Ik+q0CzB4X3qCj0WLtfPfoZbWV/PvmmZRL+o7y9609T6mv3Zi3dcJlrMmAextmmZIM2lDnjnCauU70iFZiRtLRYaMvYI5T0DfpDq+nxc2ctaafIHfum6RH4y6qC7nFU0TI4be3bY5ks9dUX6k9fTNftWbTTJnzVaJh8HrQw5NrjkvmqaDFmu/ZfljhaxTgjjdXZdwIw3VIrjJaop5a8CAIlhByZpLZl3xwZyf/Rouc4PCucVCgEMS2JV1O1MqDvRNuulXWLV+nvi2hkKstbpddt2waOPR0iJnvRBnOw5T0RLIHjW0hONGN7Rnt0G75W0BOZCX5TdTIuDdJJwLspKQ20LLRtJqCEBY8Z17Z6ELSwUh2SdvnhGNStdQQDfG+0aPjDeM3zvS1tntdab92ToHrPNc1OYBsUEn+iLWX9FeyacklX/Uner4tswO++/BtHHATxsqNbl4C6QLD7qBmZWQnAubydqmnTKN0bRGpkhPGNH82ZgDleyTxiiuLRkApZhsnsnuNwhGIQ29CwVsHqCmTjICZ6lLiRDagZXtTmkYEXcbke3WyAbOrQFDDLzC83Cokp7Yxluyzr37fn+Grh8bYfsfiKW3ZdwfI8o1KwHFi/P1f+Cw+/dmv4fLyEq+/8QaePDqDloL5MGHez5h2MiNSUUC14vLRCafzguPP/AqOl4Q6H2QG5lhRd1d49PgKF9MF5nnSo7EraCa88/gp6plAE2F/+waOxwqqC6YCHK/OeOOdK1navuxkzMok9zjuzsD+plygvZxBAHY0ofIJ08IAM6odtc4VhWaU6QLTrQPmu3scbt/E8y8/j89/5kt48+v3cXxKuHP7Fng54bWvvo3T8Yjv+74XQQTXfgAAIABJREFUcedDO/yDz7+CB+8+wsd/5GOYCmHa73D37h0sdcH5KKfBznMBClAXoXvVLKolKvLSJE4WL/OoMXPYPHLnz5xpP3018XTOeLo8IGYtmovbVX6EDcwQpf19ZA4yyUm3yApeGLy904scPynWGoJpmtqMKIrv0zF7VkyOUkBjf/uleJXZkw49uBMKE13dQ6PPbKkXcxwoVZP8tAF42gsDnTHQMWgPO0h6xnRHlkl1gK9dAkzdagoLKkyOM+65r/BdYwDi0BJAdEdWQHaHmx28Y7SSZWTdMtaNg7qaIBq987geM69r43vGP6phrIc0t9+StIm+YOMeOtuCDRkvmyHUllypIijY8VnUE22RLUvk2OdmNTU80zt3Vr6IPjCZQW1ptkp0OL1SP60+9DPR8n6BLE2LchH6hX+vPGMzCxy0QLFlwiyJOE4XnnPDUgLF9tQrfvlWBTLpYC0qMlSIZL+30onTlQaiKuVzyac/mkvA9p8F5awH2uTxCD1FvWwB3pcM3HndDOgBPfB+i9yH7m3jZKGVXftgdn2pS2PzCwiY+sbtqqWYbWHVKVPp9smRmXMpZ9crFLch5H2Tw8+CL53nWQcOgF2U2AfcRIRpFn6XS+zlN/OToOMXLkl7+Jolb5GWgbNjrW1MU7hYbq9Yh4CS7YMfBFp9GTUcTyBWZmwmAhK+DQ835pJcFwLKx2yHRikJayyXNbky3StklyecIzfFhnvbUiuaa8qU/WzfH4FgZ5xxi2gbrJHNELLa0TjgMMacoiwZ/4dtC54Iteo0TPRjb9IHvcXLl1evzxLobYBdgQeu5kFIO9cshx3w3YdvY8+iBl3uLJovGUrNmDOcQQDu3oTyIiKUSV/KBs54XJ1aYTiRoFJS/UDKjqsIk26uRt7bYTME8jefhoqEjyLV1G+l3GS3Mig9InNM8/KIMILZAYxTz0zBJAE1pWJaNDu16gyTRcUqtI6f2+12tkCcFQZVoJZJulAXFK7gaRE8VUnP2KPMFa++9gCf/IUv4XQ8g/gEmoB7+z3Ol5dYuOJ8JlkKugMmALPtAyLCoUyoUwGw4AwAPGGeAJQzpnmPw2EvOoiA3bwDHcKxWEAAT6gsdxiez3JX1X53kGU8Ve51unE4AFRwPp9QSfb7TURgnkDLCRWESpPMTJUFBQt4OePR1SXuH3coe0K52GG+2GPe73GxI3zgpQvce+EW3n5rj/MJwELg8xX2teDpoyvcf/tdLOcTbty6hXvPvYDCFWU3gZmwgJ3PmVnaJQLRBDpXEOmsKC2gqpJg4+WaONkwsqSB/cTpOdoTVUscvBPAiS/I+ZdJHMEM4WglY252sJMF5y3nO5FL1sDSApP+/rCq91Fmx7ANAtoZtrxUrHWM2Y1s4B+zFSbXVR18AKi67DlOFI0P+fRET355O5kuwFSkr+Yk9HetSZXW/0Vtdpu0cuWWnZgu0AoUEg3yAS9sQY7WEcpF6ugPKDGd0i8lJIqDglZ0RtAj1Z2DvK1Zw2bCADkIyoxuOpMdf0p0jmBpzadWn2zPiVmYIhlILGejWfCZxxhw7g6nXOu2K43MWbLVc7KEjCEpCvbT+4IurS3r+dXaCHxMT8bYZsi86PUWsXt2R2PDpRo8lqL7Z1mTeH5yp2JrmQ6TX5YkmtuxbowqRbBoqweziY9xDFNl42e6yfd2VnP4hVYyMwYfY856BtpISoA1e+88WMiBRUs/ZrvsvpOD5KyCUr1M6rzb96Sf9T1i6JJKw6Xx2qVeTU750w25ps6X5kW2M9hVTB6gejBG5mTE/YVkWjfLjOJk+sWWl+r9ieR38KmeK3G3Yq2h+Vnx9aR41cDUShBJH3VZriz0qR3/SJ9cO7psJTq4TaJEzfWd14YvAD3tPA5O6pOKq5kppwkHPTQwc7E1/s92wAK1FJja3kWhrT4Du90JPRNzju6vuT7r0VM+BINQexWZ9JOPTF8kupACuvALWx/ZqvL7LhuUsg6PsfYWXXYINY3RkurJOkvajAB1tdWFuT2NmVq9NuD9BfReN5T+O//6v8DrGTvXrMgCLjonNGR2Cvtn+bNnDkscUBOOa2p7ow7ADhoAjAXzhb5StoTzoQaVzBFPTGuKICuVaDv6srAeRGJ7PPRC98BPcKrMGwoRjTARESoWFBCKHgjAtfoGZpr0uobKmqDSgH0K29g7crwQ5gngSRTiXGVh5hlnUCU562ECllpw+xZjP9/CNN/Dk6dP8RM/+dP4m//zL6Gczph3DJoYS2UUMJ4cKyaSZZkVsrTULiUnmyWWyxlRQNjvdO9iXVCmSTenm8M3NUbgvCx49OQJjpdHABNKITQTLGTZ4wmkLZdSMM8HMJ1QcZKntEOtjKurKzx5eAnUgoubN3Dj9g6PL+9jng+4d+cmbt6Y8dIH7+H+2++AwPjwR17ErbsXePLmER/80HP443/yD6Eez3j0+iU+9KGXUXnC+SxW53AhS13reQeazuCqp9cVwvksBkj2KhaZweW4TiB4rZ216fnDsqdEhKUu4TgvNQVAyuupLvmsB/G44Y2DO6xucQ5n55/+YnYr314jkAwt5D5OAGB1bC2IjCGj1A9bCiA0rLU2ZjHuX4y2Jz+RtjU+7mSqJ1UTnt6PUnwm3rP4qf/mrIrTpullIPb4GO7Vgibd3C+NAFRQSuDXOAkUBreXzUyb3Ne+n73Tsbmc8Jrf8nh6IMZwGcqoeJlVZEDrZ+BGZreC/HXAv42njYXNRq+DhDaZILNU6sToWMvl2c9wOjhJmDqE9t30aDWfu2vb+5b+b/pAMfuQqBN98YYAwiw8po6d2IYKrktTd5882ewSwvHaGodtMmzXmRMSJkONjOhzMX9phQBMN5CzlgeDlXV1A/l37x+KhBbcBgASFNVrHE2hVXZS+wQTa2C/FYynL6vnW3JnwSu4lcPKjIXZg65SWr6rteNh9H0hGe/K63FWvoAHKP3pp9wk5CyAshjIHH42E6wBYWXLJYUeaJPtEL3GjjTAEiyyykZ29Cf1Q2TME/0bnpdVVEtKZnKNxLrhUlFjpQeC7DbuZvNMvqryDKckmNNX+dBolGU46BzBVyOf1odkjWutcoBL8mWZWWaPZVBc6l2nGC9Re9Cjt08EbOAXepbTOGZeanGo1pdKzRisxgIxRtZGTv75cHs7QdccoGeeXmo7Zhmk3QgO2+dr/VPB+Imf/sJmXQO+c8Cnd37DUfm3ec9ifGiNcwRQ2Wj2weBWFrv9Pery35vfAvIhOID5QJoean6Jsq1i12BLH/kMkfWAmioiwNQfGdCMYcbba3Y8sv6NljtHzy/BXTUq57VQpklLh1bu270rxfcFSNC58CLXS9AMmqSvYMIM4Hw6otZL7LDDfGDce/ECuxvAaVlwrAsmKnjh3m1MhfH41fuelS2KFIH0QBnNWLriXsBzwTxLIC3LJwi8hMKsqnw9S8W6amMiTLsd9rsZQJUZRnV2q2bTz+cTqBRcns4AMeZZs7ZcAJzBOGN3MYPrhEpHPL2sunSD8ejhJR4/Ah4/vsJyOoMIeHT5Bso0gc8VX/3GQ7xzvMRyrPjhH/hBPP87fhDPvXgbOF/h6vEV+MyohcClgqmAJh0/Kih7CTzMOSSaXDb6bNq12bX0uHe+SWdV7F1fjpKcKV0ItulYWZk+M+jBPlp53ZLdPosuMzDswVMG1nEzgyriRCs5fua9c9LYM4MQo5PXu2XUzMhboOiGOsmYKwETz3bPFQFgnVHdoolipHopdETGNcrKGBgavV78VmFrvNq2yZ01w69vh+0/02XkPU/vbAWQob+kqnUwuYXns/rQ0kL6QEWWwPfv5D712fk8q0AxxRX1kmp0z4pDaRWHc2QpiZmtNu3TB3xNCSLIdJ15w0qjVRgqdibPYPd0NDtbya6pCFvmMSxs3Laduk0g0q0KkrQxpzbT3O2g45dm83Kw0gVRNlPqAYPWVXU/uo7Upp6xAKe1y+x6pOGTxt1vWFm/G0/YrB4jDqhKekcYP+kChmyLsWRtgZ8vY9HaCufMK6GrOT/Ljnhn4zn7QvrDtTrZA035Q7L+1/tYLEggwA7926JLVB50a/wbDbB6xz/rRtcrRU/xRKNe/QUL1oQG9jpHfQhez0DqFznuixOshU7NWDuu/13Gu7bUp2IS3iCOiQyi2EoUtLMglH1sexXX6LWNZ7aU3dpZ4eycTOGG2qMcCyLJivFbrpOovfICMXaeULSnhBXtDafsaa8TUFkJhQe8aQNXtQ94v8C3dcBNKKOt4I90WU/zVior33N9+ZqN1hFuhdEcy2wsi156a3xpeyOyYHjQZPWF5ndj1oSWVkfPweRINA5e7D9ECFb/MvNKcURdQQvBc4JpKhdAO7rf60gOflLoYZDEkIFkCd2ySOAkdwLKUqXCmjUrhN10oUt8D1gWBj96isNhwp0LwmG/YCHgeAlgV/DSi3dwcSj49S+/gzJPmPfmDO/kgBk9xtIMUYxXwTzvUIpl5XLgsujfKjOqbvgJ0zRjnibsD7MEoYtm46sEscyEhQHUioWPmMoOB5oxTbJXs/KEaQLmQwEw4ep4heUss7f1vIBpARXg/v2zHI4DxoPHR/BSQDOB+Cm++o37WM4L3vj4Eeda8NwHL/Cxj7yM5+/cw0sv3MHx8gonPgPLhHo+g7CAJgZNeuHyMoMwyYaS+s1PRG1salgV9+L9SHJqy7dBnwZjKEDpsvqJh/vZQjOG1PG5GMi0PJZ0hhAkDpZ6bEWTJ15vymSwewvZIUrOoclPdmLM6dGOevIo0YtSH/IR/VM3w7iC5IT1AYnhxQR12tMMAvcBV7t/qvVQCohiHyuB/BL7uGsrOwSU9nayL52zMtbP1rgrca4xu+asugOaHOwgBaW/hPaiu9aJ83ZK4x45D5gnQ7XoLHHiTV7VEno985z1v7T0Mb7s71/MNobBeroh4OtK08xD0BqQPeKsRdRJbJaycsMTjndyopizrSLvoDQf4220L7Ifwp5I2SkucAd0f4/NWOYLy5faOHn9NVUWg1KhNPMUNG4CE8eAm/OYGqc22eG8f5YAoMiSlrh2BM5nEftIXXINjbQTs43SuqUzZR+j0JVofXVKjEVXL4K3Sb/kWQ8/g4OLjK89sKsWfGipxdsDetLWw5EugFxhkLCzGwx8Z3P6vV+aZ/3MtF0nyLS/JWQHsP2k+p44LHJhewp0DW2uIZsVsXLA+SDJY+tM5J6luKwowbjF2fkL0UcGoxJj0RbYkt5cvF6ov0TWV4KfhG04FTulVQMc87mYwoeYJg3utE8mrh4SZt1pPAqI9kpjHkG7VFEoth9YeEWQJLbJegS88mK1gNy650mDaDcuuZd6mhOYKZbu5kSBr1aAruYh0b2VOelrthpjPyTDV2O41BGB7PoLZYLQ4YkdjJxJfzgbJGbxsWANvZOtyT4JYPZaC9R2n/2A9xd8WzOL4Uyuf1FxRL/Ztc2ex7NvNbvcMJsrWRMi0wrkv9nMVV46kKzMdntZS9p9hi1C8c++c2S8KM0MNso3pPAah7V1Pmw2rldamSaclBGpBmpqpkQbYjDJlRKu+JixK4QyF1ABKo4ACFwLCipKhdyVxDWW72HChBkTEaZJ745KVjqrBOtrrLZKCYPc10QP2SKTjgp3coeitsUWUlfsGSC9A2qiIv+KLHMlIpRFlztptadpxlJPwFkOPdkfCNO+oKLgzAVAxYQCqhPODHBd5HshvPXWO/jl//ezONyecf/+ET/8g4yXXr6H8xVjngtomlBmlmCiinKWvSdTjEnHAq3fljK3abxbdrIgra8kVxTa3gyYL029Ru7C8LOPXzjJyZmPmlN90apn0X3Y3BOLQKTh1mv6mtvx+tukkhlNyvxuKKM9qbgPtDK1yGWQuvFI/Uw4unGlvi/buDNTgwMZPTtHxgxyoeL3eoHWhjrwTsaaN56ZJ0jb9DXndev5dr/c1Yg2TR9v6Ne48gjRX0I702t0UUejQ2K7v1p+kx66xyjculYXtn0P3evP0ht5tsqDBB8LBA02yJT5Jr3e/CaPk1yCwukixBU6uZ+mH72/BDTLjBHjrf8a3t2iG8sMpaPZ6582E5ICBPj4EVGzX9JkzHnbZk1K6Bfhz7UuiK6q7nmWjkj2MdfQ2vPktDa4pZeS3o33Wh+AmGCrjoJPopHwAaypWPK+UuUdH2RYz8JDbIodfpfG0tWttxlBWJtMQTq8ueVAOzG+lXv2QNL1peJMkFnZ2NOqSKSgTvYVU4RYVrfypCfK1H54MpONvt0qmoRW5mX/XWdQfR8mt3zTLvPUd4Brl1LmMkHToA5pR1s7Qt1YGw5NKVhg3LTc3LGRcM6IsBLAD2Uy/eZH2DbljaWNN/wwO8NM66E85gmV6Ff0b+t50zTRaiVPT+FWNrdlYMD7A76NmcUIFGWM2ylkaniAVs+yc7dW/NsGwRWhsnh/gqLMJiajqsqrlBIzDnnNf8LvuqC3d7CamQ9XtqXpXFa27fIb0o3TlGZLzahz827o8vU+CKKWNn7Sn5aVIDD3QZyOOgE0WWapYqIJu/kCwAkPnjzF08snePzoAeoCPHp0id1+AfFNzPsJX3rtDTxaJlRc4eLmARe7GQ8fPsHTq4rdLEsuZc8BA3WR/k+TaCjdu1YrY5qnIBVJZlHGVZclMXRGcZGMenNIA2TfH0kgJ3fwitEsZEu4KgoKpjqLal4KuBRQYTCdMBU9jGZZMFc9vW7agRiY9wX7Q8F5AaZaACqYiVEw4/HxCpenM8qpYJ4K3njnXXzlG6+D+AJvfL3iqx9/Ew/vv47jwnj+9gUuDgfcuHmB/XzAc/eew83DTSznihOfQYUxQfoANf75oA4zPMaX69l2NaEc+3n7g1ZCqYc8tAGFnYIZNjOWZ3d7lBL988yQlMuy3TokSLLiL/vvJkAl/VZ8KXcOgWPnIHSsA6eILVRn2ExF69MmR2pNR3sOwO9PbH43CwsAfohIZLKFjj3GSM8y7dZOf66vf14mAqrIAVGJy7tTX2ws68ZyTAe7H5AEBzZnI0F/2uqWIxa/wfsUuJSG5v1sX9BAKiB/vy1HtHHvpM+AaHlLWIQB8r+tJlZnLF8zaKeFgluadTbLZaPqycFlUl0a/q451/1yZ+t/XhZqKOUEn+BgLn1rs0Sfxp60TAt9uA4xGtmwmd5usFIfe2ACil66bXLn0mBLdhGzEw3pkmw1f01+jHZEGufavlSbFUsolqL6vHVePXzwewADh55/hYdstqjVXx4wcsIdiD2OiWd89spl1FYpyGE21Iyz9jUty808Xr1tHR/fxxzjxIlZrL6a96MSgDSD7XKkZQrloc5MbR9sxin4UHiddMutWlLiOJiewsPzaqqOD7McSYAYc5/llWlXTOSNoAVbOm0dsXaSP4Tw1fysh4LmsCHi1Bcrq6cXcwqGBD9Nhk5xPkLem7sNZFNoyVeUluTQqZaWxlPWXwtakyXxeovSxpqu3ZjlJGivU/MMNBHSeQ452ckaV4YMOa8xr3lF0XYeUZx9pZ4deJXw6VdGWdd7fVhrVVNkCaIs4wPez/DeZxY9wKJGSbRFrjEe6ff131gaoP81DsikXypF/Y2jttFOj9MWHuFvrPtgtoY6bRBsbrNAsQwrO7dNO2gzUFJgHRx7kIDo5/V7ffQ5t0qxIYn5F3rozpllo/h+v8NXv/4N/NIvfx5vv3MfF4cZFcBbb93H6XzE5ZMZYODdR49x+QQ4nBfsDgtmWvD46SXo8oTdbhZHlhftv2b0SYlkxqmYYZN9iUQFXFkNCycfMD6L0iook8zIzWXGfreLrJ0pexAKn0FHCcZKOaFyAejgDkatJ8gRbgW8LMCJMbEGpCT2fTkTaAEKKoAzQBVMhB0qrvD/sfcuvbYlyXnYF5lr73Pura5qvpqEaZCWRVmAZMAWLMAELNgj/QBPPfHYY/8CT/xbNLFHNmwOBBkgZBmwDEumSNoS1ZTMl5pNdndV36p7z9l7ZYYH8c61zu1WlWFeA3eh6p69114rH5GREV9ERkZ2vL4+4tIBGgPcN3xy/Qy//J1vgZ7e4H/8b/8u+sMnsqLZH9AeHvDptz/D3/7bfxP/7l//ZdDOGE8yBhbyYiteBmKIMmyownfhphDQ6SfSObNeme/XcLXMf6crNM6PMjYEBYrrnDDBHwdGAUSRxKeZcvAOwWdRms/wtsm4BY3COAsnjpkEQZdSvL4n/JhozEFTEzV5LocBF7JhznlMrpNoZKDw6ByrEoENSKV3E8FfUJ2hyF0WZIMJcT8cWsuqQfrm4PAFPb22i6ODp21dnW0FkCPzVZKaaSzWul/WJQpu8jMnOiXarPfjCf1PzajcrjSRsvwN3jyuHgRSP/LdSm85zYRd5NtWybIqrt9XY9koPVOCkMMYldWHtEorPx50Xw1ZzbJEzbTl91gdZxHmPHwOvbzfSHnfHV4pq6sZ2KQhdEt4vNGv6j3FBBpOv64aZlpknokfK7OVEbW2mAHbwqA87Znzi8q81IhKY6URWESg9avQrnCoPh91tFaT22S6uIMlLecdsAEoJWKIeSnXDNxgPHLSX0NZk8SqL3tBF2PB5oXJ52ZHR6nsZrBnds2rXGJ0WbnRdm+pzpvCi8gOTiD2Harzqlmfc7G1h4czstmyv678kstaZRtQ2K3Uac6II21DBtTL5R2SzkI4XKRuc1Rw4jUcPousPmLIY31n8y3Jy2Q8nr2b3yNay4LP92ly/BQpf7w+xOtrG4u9t8PG3lXJZ4+8AbACKPQfW6UUmSurbrkc2/skIkL2XXQX0g20MJoB4jlntNEmjK7ESJr1BCwCPWoHUxuYEzit76VKtX3Z8Ew/N5nYriqI0+/HFdYVeGXvUqb1akjahuom2i6egawmbkRg7mhbQ7sA1HfcWsP/8lt/jN/+7T/CK2yg2cDbs4Dj2dAZeNgYr153XB8/wTNPvLvf0Z4GeA5cHl6pJ7XLXr8J2Q95n3ruJalhJOedPT8/493brzCH7v/qrY4xEXrvaLc7mBn7LkcujPsz3s4d9/1ex1oB/ADJKiIRngej0RX98ojrY8f1MvH2KylbjFvCmx8/Y9+fMccdrW9olwu2S8fsAxtkNXqCMbnhy+eB+9bwH/6tv4xf/eWfxR/839/DP/iH38Unj1f8zf/gV/Bv/crPYZt/C7/6S9/G//5//FM8vP42/vTNM756yyD6Fj792Ve4vXkLfjPQW8ftYmNoq3tZqC4gQLOqBjL3R17wNKa9bvOo1Ftr/r/dM3AVfKRtaOHuFxbX94ZlgMu/RdtBEbpnwNcMrdzuDLgKYNXfmGWvrW5xkncJniXV9H5PYMHeDRCiezRIeM0MLau7M0s/1UNs5w5Kdsaga+yZU3CiQiE8+blP0X5agKSNVX42ZAAOlz0r+4zDG16BvNHkaAjkMvI4B+2P9a3OKTMiDryaDJAz+bSC51zumXMsv3tow0KcF1cClPBkDgqfMAlAO9/aXlGV63mozLgjOz6iQyIZKmB6adysTuE3bQOnd5SHSUOTW5Nw/WwQtmUbR/5+AHcEX1po1Jx+58bnGcCLctnKZfbV7OyMEENU+Y3ivUOWZEDBrkWODACtZLuNjJ7V2RFjG44Hh8+k+74zbF32WtpRBxPVwF7ryFECK++V/+dEa3IkTqaDyXFm1pwAlbb+rMpwX822+YTmZ1rCDCFo1wzkU23fGCOrAZfrmW7eT85YQ7eGeXxhGIomr2AGibbExHqE/nMxhPq2ub5w4w0WFaR0HlPox6xnDjbMNp33M833Edmz89gAig2VB2Yas/x36pEeEqqrY5P2NHp+CtMXnHWV8pSz9TpH1KxLc87HNh5x+eryGNDM9c0/++PEJYtpM1llyo2TAx4JLyzyu8hQVPlUVrOZEUdsmdM9vXB6ERrZUgC8DaJnm4rLMGSzXF7nFqC6eeaZqX08F0kfrw/g+vphqO/xBBiwOBv5MwAT9ygkUy0tPr3A0Gde1gJgyJLgHNb2/H0CSSjMewDUmbGoppxkwDwAxgQKTTlM8rj6F7vEEoLmgDhTglJ/Fw8fUaJ/ap+/p+BnzokrNjyg46sf/hD87oZXRPjZ1yLkJ28B9ljeQW/adgZBzg3sfQP31FcSrxGxGmVau52BpuIcrW3griDKFJD2e6oQ3++yUtmIYtc6Ee734UqVCcA+AucZvfqGOSeent9hTMJzG+DZQOiyT5EmduwBJAYDgzGbHAlCW0dvhIaBeR+4tIZxZ/zL734f251xe97x/HzD1u/46ouv8PQzD/jsU8bb5xv2eccnj3e8ur0FJvDJ4wVbf41nuuPe7qAuIagrj5ThDxiAALeZn3Wsc/gPjMfi/+kKs9YRyS6iDQ6g4NUp6KLIhJjmgNBcwrLC57ioV9dapCIhFHp1wiRO1bKzsiYd71yGgdoKfMNaNAPRQMFKZgNGMveP8zDHCJjneSrgN7pn49TKMSxhzrJD25Y+yS/ZMIuGHgBRw+lZifE5SqnPnN/Pt16S6V43COvZgHksVtm+hiC9zzhZ/64hhSgybtEhXCV6sFygoIN+sH99358RIQHTckA0i/ONNemYWJKnuuTQvzxDk6rzJq7z2nii6LC8ohBtMv5zoKmr+B6pgTROSg4Djis1apvtw6qj18YfgaA5iNayMmDNfY2xPjMUT3j3J5Dct37EIX/p1+oUi/JTvYVO0femXiGJxo25LuMws/0kMkwhdBnTBV0Y8AZV+Ytk6AUPx95NkcvwhECnwtey7BwppP/GdocIV05zK93Jq58EeGZVbazMQbNxsnFnPNHVYJszwsDZzt/NxtBLV8hQYzvLvC6VZgeLKBQbS2+iy3qqRVo5DBBFbJg/6TpLs+2o3gpdxi/wZJL7lTmU9laHhSNbU6i8WwxmBzpIcq/KNxsHchmwXgwfcZV/BGgCN7wwB7OD0fg28QNXzhG6Lyv/i7wkopqJ9QX98PH6MK5vlA31zPMxlIZeAAAgAElEQVRbGGh5flU8RQEZ+HSmqwrNJ3lmSlrqceEaX6PO+L+cW57bBwDLvpt4ILVhecDBuIPiRYFq36CJWNBS7D0QiiGqQha0OZzL6lseLvWZEqtGQgajYux1EK7Y8PTmC/D9jguAbz02DB7gvaNtXfat8MRgxp72pwlpJYHMoBn7RQlAG6BJIE9LBjWQVKlAs7E2BnOD7OG0oyUIvMsJzu5x7pKu2s4+G2O6kmUkj6wpUwJa2zB5Yr8/YwyAaODSriBq4uWkO4b4wvwohLGLATd4SPKF1iRp6WBZaRw7/tWf/AifPlxxfSTcn++4X+748sdv8eWbB9B2w+35Ge9udzze3+J+/wJzb+gNYHRMbJitYXY1ThZjTVnBh5VcGxvIqqwX4CFzjb+NrETWVZjwLlaHClkj8hxVb3Bup+kzqymATeiz4qSw+ePvL7CJRIEaMI7dWKkPC6/7itpiqNjvMylYd+LgBWcRsoFxVLA29y1br8Mo97KnuQeGJVdZBaH1r1SM5bH8JT/q45THMd55yZDIPFbC4jhocmzEsd4MqnPjiiNtbetSzmo0nq0ynu2/zMa3fXb9c8K33lJnSypAB8Z9pU/Z+A9HRIAv8uddJheAtwAsqz/d8Gy+gDszQjdl0B4dD/BYuVLEXnYmZj20OhEz7xznQMgjEzLJOHDdzIVcuUVEEV7m9DtZJXQdzEHPGNf3WYG5nDSW+ZD31b/gbavlFJ6xftt5rmwA+4R2rKuV6V171leplEA2FjyrC4b8fA2k5CGBGRgqUhYsY/0o8yTNuXHijHkfNbValWkMOxx+NWoJMU4e3kkNnvQausLnq5m5vTG+ef46gJj2ZwY/vNRUev/fuawqa/fkt8SvZpwpkTG5OlNDj4XsXn/LWBZKrZWu1f5Zwz/ZHwNRSjaEcj8iZTiNh40FFE7FvIrxk76xtyU9Y7yF0J2AOZUR8jLxwmnH0hz09k9tq5LX5Ew4QZK8XOjjdPmJTPvx+ou6vlk21NAUaETY6Bi6yd02qlWFUIwlCi8ENTvSPQmEJMKodU/Tbu/C5y4DPYCDhSxkyW7hZJwAKUMnXYuVi6K0G3lYTzaQo6/6WDMvYqQDjix2Nj0tpCd1/wToEkUa8iaHIBZjwZSLGEcpbXU6py71TtsHEB5k5U/DLe6N8fDpp+gPV3BvuA1gzgsIjLGbOSVFNDCoA52BzoTRGDt2jJt4WyeZOGliXN7uMX77IgfUG3e5yJmLr14/iFE6OM4DVi++GRX7bcdg4OHxUejDA+AJ3UKRwAmBaMOkqYcAExgX3PcB4mcdLICo47E1zCYJvZ/ud/Dd0rY+KwU1eQmLoh/tju99+QX6VxvatmHs7/BP/+DP8Mc/+hH+5I//CJ9/MfDX/51fxI9+dMMPP/8cD68e8IP7a7zZ3+Df/M7P4dNXF9zud1wvV4AZY+4II0mpRYQI25oesrUafPloiBxKmpmygvDgCkmM46jN76NRAbQrXzIA1r17BGiYK0riFdZRa12VcEnZnr2kKPPcstTahG7GtNq/Ex9PGKHaPk9GAUbrFh5lSi761VukQR8s/1NriNgAC3GVtjAk3HRrF0weuiKtMqI1dGgYLBLASn/LWJQ/VH8rF2PTsbfvDGiSJgUQFHx/DD2tz0q/616oUlsyJIEI57KkWRbOKMMSY03p+3F8zmSb8fYxFD/a8RIPtgKaDaNkHoiD0Cdg4Zh6dEckCpHfIxwrxsG3MLQtDCTogeDv6Vumi/UD0EPLfaUIJcnatCMiki4JGU+wvU4D9cqyruc5paDbtRfVdyysFuBYhWQgtnMwRKBONw56pzJ7KI1dCenTmS/hv3AnnOtc7kpv1ggeeYZ4ejsyMA9DgMv9fAXc4PhLJAlPmrUXEuaZwEJvDTyngGQLtU+6Pev4rFsJy7EWFHqWVlrz1OigVF7zF9A1/JEJ4LbUreO4ynfHT0vSu9bo0GZPopcaJmNR9z8yAZ02vaflg8E8PGEYdUD9ZGia9Wbm0NlsQCMiInLfWwfmjJXkgaF4b4NJEmbWY0ai3/mvbWWw9kt/gNZ6maf2xbAds+E91r6h6C3K48Op/ZP1N/L26eCIQZZ0WRAZCy9kvtVye4p2mfaOuSBVL9nYdtPVIjtMJolOUv3koElrcRwqco5I+oJGaNzAqcF5VdO2R+W9u6Wf2rqeoy5UbNheUtO2oq/iuXC4Rh80e0Ng8I/XB3t9bWPRmLR6H9MMUcaX81xsZS2exwIuPJuVzssCCJayzTu0slYBQKHZlmdIAXGAZEoFEBAT15j7Pe6OME6sj2oomiSg1BTrX56btJZVv+fVgPzdPE5YlEb0iP2zLfhlYNm2hsmyP+AXf+Hn8e2f+RZef+sNto0ANPCUEFATwfucGNPydJEfQGxgpzXC1tVQnVM3r0+4mynvHU19tz5drpuerTXUSxjCVPaDyBEd+32X/bKtidifu5fHAMac2MfE1qbuU5BfiAjbtgnXKDE8jMfGWx0bIsxikzxAmPyEtnUADV/86C2YGx4fPwGD8d3v/hGIgNtt4r43/N7vfR9vn4Dn+w3jh0/gf/C72J9v+I//o38Pn/3aL+L+dBNjETqPTN8kg1FIZUArnDC+ckDVQJbzQBdHRp5Pi/Jd67P35ZVk9DjPxf4TJCBnK44NiZdNadi7RnPjTZtk/p3Kb6Ew02WGLYQfRFdHXzKY5WXGxmyo/bYWxBSi8i+lNjsp7V5Ob17eOqNvpbufjZmuw7gwikKPlqzfOORqGuf8ICUeWylTakjjD+g+0DA7vKxCT2YHlNlhkWW2JTPpehZfdbZVXs/v5TENQi03HWDV/op/p7nBE7ImwF3weCQtyvrM/jKrYZXe9bqKaljkd7qTWH7pDMr8jnNmUxnUgGl7hJMRuMiNbGSb7l0B2MofMR+1RZ6xcRkHQ9epDU6vA5uGfvUxheqBdHw35U6qrD/bd2fhnyALX2Tw4DoOrie1zUleCJETVlmaC85JVk5WXenwxuHKc8RWGl96L6/orw6kWq+0zeT8YdUZ8WrurxSp2bY5rTwbJkN1anTIPkxjqZiHy/7TM3zSY/t67j/FkMFWg/lFJ6TKOp/bKv9OdRWKnHA+UQZqpM51sOZEiLab49IqItLcCO40YV/5XVRCzGM/zismYP1k8jPJTL3r9xZ6amv80xnatPnDMF4vKrHgAn8+0dMWQ2w5uzhBTo4WWWX02cqod8UEHdcn1n4cy00UIgbmWs/H60O6vn6CG01Icia8gDQ5eRYAsCavsWf9HYgn9mB86lXOS2sxsai1kjM6C2IDztSyV1pDREiU8UANL8irFHqjtjO30dJYk4RXyqKZgChPYkCacXgS0sJjKFKsE6iGDlo7Q7woiFCwHSBB6hSneoQuEJFtrcb0LG8dwIa2AYQ7iO9o7VGMRDtolsT7fXueGGPg+nCBwbPJjDufCGRBKohU+lWwI7rviVYMUDJPbFuHSSALXWBmTB4YY8hKznWTdNws/DRZDkK+3Qb2ccPT7UlAoHZjo45Xrx6l/wq8TPnOOSQr6+A4IJe0XyxLoo/tAZOBjTt4MOZ8VjqJUmYGLg8btleEd7cBbsBnn73Gu2fGmx8T+P6z6HiNDeQe90Oooo8juRQmimNfpNFh7BInb7wBNC9KeZmqYjgcnqyDkY3DPD6OZQ7JrJp7deuIpk+CPLxPXiao9Mk9qZwSHqTnTZH5sTjeP93zklaHwntpq23yy7TyKJd8bHu+ms0eAmxFRLyncfxLVtakAKIe92LvHxVwAKlMV22PskVeQVrnmYEwZQfwCRBYV6PbAgDts9HYSiQijDkwhszHpqvrIt/YO9599SIAmImAAlLtpvd/GYFVPphBoq06M4Iz0Uofk/EKl3o635rNOQLQ9X8zfIJLTccAeoQAyemyxVMOKokz7J7RxoB3woExH0gTe7ncqyvu5tlvJCsxjSP0PuoxetjKnchRC63rdqwOUlIV4ws1pBt1TCtb6STJoXk5Y43qMVCLMUb2fVmlyzwAkEYPiLx0wwRNI1NitcjeMfqxyhIb/+YrmirmGslec302123zxOgvHwaApONtxX2GTLZ2RvuVkyaOjhyKugiRzIu1ke8FwWz0Vpma20rBxydkj+pZVuTCUPWGB09reSYHvb3UQBxOVyJb/RPZyiNkSR0f6zjDVp+qwyUMJ5nPDdzDiO7oMZ91zCw0FDZUpqDssYO81Dk6dzCrnCfBDz60pj9A4MZgPVIFJJEWUJ3MEChHgO4uEAOr+hzYGgLPUUNVo+TnXXTPHE1BLhwlrJlTFxmyl1M+O8uCl3Ip3Qu5AYTzzhwN/jxTysbK3h5ht8rP4aypulXuZV2U5lmS7+RjV0r1cg4yj6W3P+msy4/XX9z1jcJQnemMASl+YeXXhmQcUn356MW1FQpT5kt9GXQaQNYmOCjWJwJQemWHIk3YHUCNXqbyGTVstnrOl0m29M33Kdqjbt/lvi9TdZm8TcNjTaCa4eg3/bWk0JuBvkzn5spV2kqu9OS4CTjwtBCT1tsy543uBElyY2FMpmQImA2EmjEuE935hkMoNSIMFR62Gi2Goqsb34/oill7kDBWoouEj9pqAAOuAEORClC533cMtr0XQu/WLbZ1elsmEZ7vu/SZJPPdmADtHUQMahIS22YD0y7eWlbnBxrsOM7Yj0dwLeWCVvtGBPJEJpyedzSU+CeT93zu5GfphJcFOFk7TBEpbzpAqcaKDOFLwj2Mofa+NiEbBaldJ88l8wamDOO3AEdn7zcoTRfDwvoT3v5Ep9qA1MbK0/VsxqUfSYHWOrXlFAZhjLLyufG+v1vbv66mCG8fxzhfpe8J5JiBbe+aDJia5djBPsIQDoecOS3qyocF/rUFcDmP53v6wykY9OFOdOIIbX6pf5QryiDJ5Kd+PePh4uBcuNN1DAGGvqLe4woQmT7M7X1Bv1UjOfpkx0tEL9awxyhjzaBK+qyyVJQtoRX1vLoyF2wfH4oeORhzx54g8+L6S6ZknmsWHpff8yzHiccrjtDIpYVqbvCZQ4V89OOZ7IPTf7mxnjVYf1k7kc/1A1Y6BHIgN1WqlCvtsBvGGqYbKWhvpwXZ91ODcZkrJl9yw8+NreP2Bf/EeZwrLaOM4AdZuEudcbxxIo/qhDKtU9GQ0qbYRMnQrf2w4mwfYirkvUZIRB8AizygND56wx1AFHPEHJPsZycfp/hKN3NQHVbB/TxEFOPO5i9gebkIS2iDdeCU3AfG81tUeOqMviE/TdtWnfnTmHhZN53JDQKqY/zj9UFd3+CcRcCEjAnmDHiMWcXQyYqTKyAjCmHCFajZ53WFD+rxifpsFcuelzN92MpeFLUZdI26K/GmQtD2crkAmBL7n72q0uZmCCd2UOeMn94/+cc9WSZlDkK3Goy+WkSxcmBABI3QWsTuuzGYMqwaOnAvDwIgyasNmA2TgcvDFZfLht4ati6aaQwxFi6XCwYDT7e71LU1XDd59na/Y+ehIasNrRMuW8c+JmgnTF0FbA4o+QDS5hwYo2GMjjEm9vtAm2p0mthWA9nO9mPofho3NjmMRF/haIi9N6xOb/XuzRmKmWQfxOQB3mUVfNs6+kayaWsOoBG2Tmij46svnwBMXB8brtcGzA6eXdsy8PQM0AS4T2zbxNTkOohTI2Sfhh39cHbwko1/0/abUDZvutLE+EO+cuEZu1fKS3/zfWPjdcWqPHOi8P28K3kKnKII3J/tIOBcocT0JDlDlZZ5kP61y+aqt1Jlwkxt8pWAmfuBU/p0okjgs9LIVyh8YmtZMqCkXnyXD3y2d4lDtiDjAgra8nF/B4jQTpIQ5WwOq+F/dhUgdeJkOOcNiS5obfMwSQIw0+ql9YmZ5dzSBZzaXh+TXyvdC50WvWBjm2Wph7E57wMxHgHiVi+5/DZUhujvXnkDYXqmRkKVoeKwilU+s1Wyg1NWNPSVVG/TOWyGdIw7VzqcASTdr07aX9ezMJBpjsEIUzQam+ffDD0gn0+86tmYoAwJt0Wb/putnFr9DJboDqzyQkBvIzsqJ7Yd+DM2FwycYu237g/LfKIyXOgckRQesYO8ooUA6ST8QqmdMnU4+mtt8jHRFjWTHWmAE+vZQAdvkkV8+thGX0weJCNMx3WN8HCWtKnuR7dQ9FMTco4RvG40yatWpLrQbTdk/oh7biA0zfLrssXmYwOTHK8RQxPj46uV2uam4CrZlvWaQQt7Z9r2Fpf9QlziWI3D5LLtwGS88XhPe7u116GZGHGWc5KlUmck09JZo29zTTptn71/7IvockwI6RyX47Z8tVDphmRQBx1s7JPkV9YjQlnBJtL9zUJgwa5gMI+kWznamPABsa3iyXgKS6fjW2Bzzdp7lKN13OFRTVlDe4RuHtx0Zf9Klh05oqIfGObj9aFc3+jojMMqhjFefMVynKHfdyCA8AxymuC5njPGg9WdvDxnlUiWzgAgIeupJsrJZVISRhpKuvbTERCgESIhMKtxLP9UD94JOCiEK38Q1l48HnJYFedkMWz7sR0VGNpfS9gjfZ1Tw/nT760BrXdPyABX9E2PIdFma9rwOe3sIxWWppUohLFJQgKpbhLwcb9LyNs+hiYLkTMZtVoALFlQXfBJOVU4kQvKEGg66irYRB4mMEVwOmRQ1DQsyRTx9dowdsI7BWNbJ1wfOjBIDRLCfQC3oVlVWzgUmFiMReOjhZ8PYJ7kPCbp35H3A1zQoYy8MvHTGA+HR/ikPe8pq/6mBoSeBXVcIzl5Vypx5fHeK7WFdO772JssMOOb1EmyeF6NLutKYqnZFWMYO3lqcv4tKVFT/OXk5eKdtRmrBojJERCAcSQViQCj1D93kKVGZaDIa52oz/heJeaT6gIRMQO9beW+hwOv+8197LjeQyttORiLJrsU8NVVBdMLuaIUdr2Qya8SO1lXF4gQIVrxQpRHhxoP/XyJpTMIWvur+B0Wtyb7s3zwan+cDqljyYAqxtdyL+qs4WkZmJ3rhDC8BFxKP8Xwg+vDw/O5fxztWOt4n/MqXxI6mjiAw4EQ/bE+H99d5R4lHg+VbTogilGKeQZHfUOPqYlwXDesrT7TOX4/9IypIkrP5ysPrY9T/Cq/uXhIc1+NELPFCydz0mHGI8zwaAAti8gMkUpTTnUVok2bR7yMpRqgRcTF/F37bU6ClQZlXHWyGK3dEPYkLFkf2cgF71qdzOzzaPpWGXNSVF5u5BVVeQWTeUdezf30tiqdGgN2vutqYEPLTCLHa/MQXoLPb9MYRO47NgjlTJznvODoSmOTNybdqpM3XXm+aDuyrrShYjdvFzm8fj7BEexzJM1TxND+JAjw8fqLu75+gpuy91CVS86GuAC7o4I/KnxfrctS1h8IBuf0m4D65oCqaWEh4GtZLjD1mwmZCVkd4NylRtho8/4h9av2wQCd9bkqdJ/MyOGsWWpWRWTlNn9Lf2+kWUwhWbGge/6oYWBomGNetQoPNBnw7Iyhhwq/vj7g8XrF7/7eD/Dnf/YOX/z4hgeSA39hSV5Iwmj2Xfpye7rh+d0TzEgXj/sGMOP5+QnPT9JaZsbjq0dTpYf9DgCJwtKVv6enJ8w5McYEYWrmwgEiwuXSQSQ+p601jPsOzCm7TnzFV9szJxoxtk216RS+6F3OjyQiT9zBDMmA2ezMw6ntaSBs2vcJTOBpSB2zEYANtF3RNmDSQIOsftPOYNzwbgxs1yse+xXP+xBH/WAAHa1t6D5GtCgFSdAjdNI+KcBvFPH87zPmmGvo4oo3MzDmfFB3EuZlJR8GsOI90no61XltXnAvP4MOOKwqv1FuOx3pYc/kPjZ16fqzlgFYz8EyQ9KfXS8SQ43TCt25lkpz0jM0kzsijOfkddtPSb7vRW6Y00N677ikx2qd2ErWbquWjDjRNqOj7wurtF3pBmRQK7/neUjy4QhkBSXEilc2bJKxEqumeW9kgFXbQ2s86aBX2380KprzVkH59tHxnLVnGa2W6Zn4zcdBHAgGqMwxY3u//RB34yNtW3Maq0uT4VkJrf3vd8wwiLqs0DjNyYMNrL8TsnpJIgFdN3Fn8JjHMbFjXCiTKeun5m1Y28rMElFhGbd1/PJnA+qEHIZY9XwA0OCjdZ+s06GdOw8Oc9X4hKqDgznKHSmrSq4vR0U0OyaElXcQblodleIEAlWgDRDQ8lPKO7o6GUZIWrWj7vdW2seV5U5MY2bTQ6GvTf/bubTmxOw9yrX9rYadMownIt8vFz2Vftmt1hrmGCBq4BbHWBC12D+YxidnUgX0COQiR1qMnY+Z8Injn4TnJk3PJ8FmaHHFWk3jcOccYTPaMSYsdUoblqgLzvyqc505MrkmrBkaScpdRtKPuslX8LC9SpHtjSsWto5TGg2fQYtT88zp5G+T4SYnpfIeeQKfleUoYUcgnM1HZ7A4+uV2SNB8jqg/2jTMOo3VQQy5qJZ2WzZ0Tr8xHZ//eH1419dfWTx4aPW+f1h/W728XJmPjIVFybEDtWUyLgAjl0sAYCteqfrAHQvost9dcC0e2BWoLcArylyNxfittDPR68zDm6gjHxqW/ROIpD4z1UXkRlPQgryD3g7qAO8qMCd6B7ZLx/PzXZK7TGDsu6zu6fjOaYkVOrZN6TNzOFHQqFEEETADUw8i8GFMgsCMRPHokoTVmFfUVqYIACbmbCAlxNY7wBNjH2Iskq3mZJoCG0nCA5PYcw48357FUMurr5ieXMfumEeWWI1AAjou2MceIR07gy49sgSSGKkNhK1toEkY9ykgz4Wu7GBxwJL5W6+sTJGNCKPfi6A0uOfcoZHBVK3VeWhVSsfmlbE8guQY5OpRrg0953mERXtoO2L+LeXkZ3xv5PreobIweurtl/ZgycjBvMjgRbmbQjXa2nhzxOboZVi2NjHgnR/27TJg2cNjpLCnEtDJn2vLos8CCinkN4WBpQgt3nNj0J6z8TFzK7csAHMZcZOtvJT9EuhaPpd+nI6l0bSG/wah7TGZ88SRJGlpZszHlsaAsFIfBE7jFPMn0+sAECm4p7bR3heMbOF0NcSvuZWT9VOJOkgGtAFoE00/dXRAnagw0Bx9cndt0DAo8sL8iffd8FxlBNkcMfSY72uoqZ0vgKTjkgww56kPrBkoRHrMjdFC3rVtDgcBp+3ImOEIvPXvPNLTDJ78zrlIUX7MVXPuH0dhhVHNCVMxlBn2MP1se+c8Z8TRKRR1ITldbX57K4VvzRh1mnD5XHkrmzHRPtYcB/bEC6JW3iOXcPW2Riuw9keyohu3Wh+9oS6nrFKTI0QSiWXYbzqtq1TLLeClr5WeSXcZI7pMOpkXFFoi3wt6ZZpmrJznfG0lJb5NQj1p5USHk77E50PhMPluvzvWyk/mqA7fb1tpZZlnJ/uhbCltQynt4/WBXd9oZRHIE8aAW6SiPzeaoKCi7i63vQryrM2bpuVFOQaKKCqp+wlbeIRj6Rvxl5AOsyVvd/aqRjsXQah/7RmVwQHUWLzmMtcYrfdYBbD3+Ci0HZqsx2DMmfaziOFjClfT0cIU49Y3lBRUJBPTPNURcqnhZaSZLPmO3q5gdExuoE7gHZK4xUAsx4QfQ1JsR7IZ0tUwzUrJ4r0jktj9ri7dse+JJ8iTZ7TesW2b7hmS/8eYbqSJoJ2Yc+g+zeEGGLWGoR7tnviJABBPMcwuArYIwP78jHucHOm8IPql4fpw0X4MPD/vUN++tJffQXfL6argxLt3dzB3EDZQm5jzLfY7Y/AVzAN3esJOEzsYdwCDGLMTeGue9CM8+Do2PbIz2rjbAlieQxmAZX41YLBeAazCJmOu79uK4vS9h614aq2c1kgylx4Av1H/2N78e17dSL/q+V0x11allfd22VEf+WKvRNUmkZ+1ar71HK6ZAeFKW2+/G1MMk0W8enAcDBiIC296T3KS3fHirUm06d4v43lZtV+y1zL7+ysdz1Z0XF7au8uPXNpAxcsrqxIhg+ycLuh8cVBrzzqgNLlqJeu5Ws28+nFWY5Q9gzEX2q63bHXQ9mTNJZOjwlI0nd9gOzetwc4cC15lpTfQ0GWP/Vz5Svo45hR52ppnRSQFRJbheEJWAPMoTOPFpVSTLTkSJFZrNQtqlyOOmvIHUtZo6om3vFjlK7J933DnlxJIihknK4oUn6O4GF/joTlX/kc6SkZhq28hUKCbgG+sVKb3m8xSi3bwOeT8bbpX6T+XkNfese/7oqulnMZVh5qRkZ2EhjGmyWMgnMhuR5hBDG1LkzmB4zzKn4XtK64gIq//JfkDsO6vbzWLdbN9duKMLUYmWQK1BPyL3JV70/bts/DC1rvLdPEls56FnORl4hk5J5OLqsmyaIyhn1vMVQb6FvptTgZYswKTnVObcE5eRFe29tVNfbKx7kNVvpIoHNk6c58jjsfSNlEjdMtvQTZyymdEkkU+8Wbkn9eVRpKMCXmsfOwSOfyeJpAq51q6XiM/0N7MWiY4T0Udsa+T0hEwc07fw2iDL7wmdUw7z7BpGyflBhZeK/M7ZcA1/ne8ru3z481Qn8ttptWhame3ku7z1Nt2zTHBR9Hy8fpArm+WDbUYXXYZ82jazzNPgU0WNwJR/poREtPCvNvsiqiCTapFezlWfvpb7qW20wJKTOEfwMtKBHvEEL9NHBMgIcxr2IMZfjLlFljt32MXRxCneDst1AaxvyO6QA66mQhdcqKLMhiS+pmp4eGBsDVGb0BrGy6XLAT1/TE9PMtoY568SNlvoSSMoYpwknfXh4TBmLvQ4vXjBa9eXbDPqaEhwNiHhkjlsCTgdh+Sb2bTA+FZz4gCO9AUhUOagVQHiLMCDg41g0kMgFhxmBw8wWgAa+gRWDKeGthnhmQc0GQ7IFBv2Igwm80BKB83H1fx+gtRPJEPG7us80XCGI3HDMhQ5lefL8g3Sm+j/BUoZ25D+W6hJzLkMW/cs+jlmN7lw9EcgJ61mp7N/bQxILwVcYcAACAASURBVJ03k8UgIT0Gh4fRKGuiMIIMqvl4QghMkqPf55jUzj4a9uxqn+R2FrkhPQnHkM1cA45JXpCGnoYjIEBeHaMECpVG1n5WQXYwlFLb1rl+Gvp32g+v9XTsM/Atz6lMBp3xKRZZmceEELIu2r62B+necbXCSrTRMd5N88xELthyjUX7yUVXKVC82lGWy6naC8hc9cNUnAZFBxnvGCIHarlp7h27Hv2W76xgOQwcvxrJCqkyjOsPl/eVqWOeHOsrBpe2zYwz35dk92FtP+re9Z6NUZEwyUjKbUitSrpOCeYrZEXcnIaX53tBgliRzHhWQCu7QRL6KcbPm+fJS4IvPbTSHLxzJJoFPaqjJ1WEOgYrPdyI1ER2MTZI5bH3qcjXHLWVbkfFGeATWstHp8g/JN1WI0N/pKay03hVH+aow36rocwq2ydczhHp6i6TGAgpA2jmwTQcMKVf+gYZm6mGrf/QsquXVDfp/FAyFH4x/qZCCXjnONpH2mdzvpFiuanhs2T8ou/JPlN7B6nOpW82POqQOy7ELDPLxsd0Ub4PuEPaz8vM+z456Cdjqfxtv+W5mecGQp56exFORncgeF25GIK7bcmGM6/iA2fnhn+8Pozr/xVj0ZgxzsrT34rwTIDV3kcwfwak9ltsz4iJYefgmdGRNQkDddJZ+xBhMuGVi4cd+J6BE6oe+aOCcx0NOGipQt8u2x8SsClqkp40/41aEyGq3vxqlJuhw8mQ0P4oKCttMAXL7F5u1qLRGq6PhL4xWpN9LAS4R9ME5ZxqAHY5mF6E41AhDeSEOXPIWV9jj6x5IqfDEz7HBDHweLng008e8LRP3UPGuD13XC4dY6qwa9Km++fvsE8JRW1aTwMBKaSBwRiTsF1UERnPmdGhh+46qIesADsQgISKmnHH1DEB9J3BbaA1pbmDYdljKVcHtY6u5101CnDZ9CiPBkk2aEo07wNZw1ps5S8Myhjrlsc4yeAwMlbQlctewEkyqICs6ANUnPG9g3tTPGYszhmaUO+viIU5jEBraiPCvuturQY5pFfHwlau2MpzfvJE6drd6YBPMgfWNjQFLgG6Vp1WgXyAaQMpWk6re2TCWLTMyVTkYS3L5IKFUAsoZqdZgJqDLFnk5Nl1Zgi88GBBL5n/Cvg3g2QxQM7e898zMgfKPsXCdyZfl3vEFn6Y0VWS+CbsaT0P18AcO08GLZS8it3sBdv/E/NVCwKnLpBnFF37zMu/rYyx8Rt7u3312Of0GhKmhgwg/GwgzJpl9EQGZ2GA5xVKWL9s9dINNZxexSgxJ6BV6vy/8Ic9YUaWtjMMNm2HypGa1TLNP2ZN+mSrPYCcnCdv+2AsTinji5ZWqW0axb7CRDeT9RR04Bk4xByO0M8WfWIjHOOUiTgj0Vzic3OwRkZwmztHOZPlrr0vexOPtAzaJWzEMZ8pDRmV4WPHT6EHejgYIowl6tJEgHYGbjaUUiuOfSkZTEWPzRnjIcdTSZirjwfkBExJW5yDSOsCAdnZbC7eF91pbbb3mTRrKfvKXc67wZp5lj0QjAp/JQp6LgniwHMmq41/mjorB8V42PTJ2pgVkoCD5HZWdzyoeHCROYpAar/VcS20bOoEbwJ7eMjccobS84K13Kyms0NgXRCizBuwYaCyyp5lQMw3SjfzuHGh38frw7y+trFo4XIh7rO3mPxsQMlqqSFuLyooA4zZ+MweTwoAqIqCiNCpqyFlcdDFR5wmciDDLCCo5XCEACveLvub36H0m4dinQO4M7AWxmJc4rGmUjdriObLlxmKYaASImQ31ehCWDKlEtAIbZPjHm7PNzxernj10PF47diahI8OLc+EVNO9Tq9evZKxJ8J93HG/7biPHY0aHi8XUCPsc+J+3yH7IwlowBy7AhXxxpJsPcSOiX0O8DCBYW2Oleltu+B62fD27Y7b2xuu1yuu1w2YwPW6Yey7gAACPv/iDW5vb3imTYTUELDResPlcgURsPGuvELoaHi+PQOtS/iKCtKtEXhODL6jtw7ob61Jsh1RJhZai9CrYsV624EiVmEKLozE4XxSQ7tNcMbbdvQHHEiF4J4K7sKgNFUSStWMvtUoWI2ADFZsH+AargLIimFXUDA1RM8cIiAfTOcXQzyy2b6uDHQiNGY8XK8yNlP3f16uPobUuzg5LLyOQnlrhQo84KDIV/VTXQ2sGr/FmCXrMTBp7rM6DxaDp2kCKCZSAH+kbw5bZxbHQLP57kk4MqiIlW7wOIwPvL9HI+2nucJLrdyU+in0aAF0T94LoznunxqMWZ4F2o3fk5xe3/akRYEG43uoHK07vlt5dZWpGk/WeSuroRcAk2kjf22OxTFFkq2Y/UicHJK30vOlaz1/MnSbGSIBarMRsTbUzlV043DZIlIcPwtd0pdarKlrNuPJQGZ6xvW1gUIZCDfCvB9UEoq0dP6t1X2QL4ckJ2bkQeRRNnoptncQAX6QOjF66zjjzSMNLDkWbFI4b7EanDZrYgy0jWB3EOXkP5haPzhkL2U+DOMiz/+e9P4cI97N46MrNxPmhFHATij5c4Ac/RC9kGyd7DJQW5O/xnEwPr85xnq5IodX4s88TxG8Ym3iMdTIj9BUZqArm2Xncog9K0NpN+XztgWUnXOCJjsWaotR6SYNR7KeulK+zF8TOSk8ncGgTvHuomdMB1q4ZZaR8jjJXFDjaYIxmAHNKF90iOnvgk0j83xpPy84Wxgx5KfKRgbAjlN0bBoBkBBey1XBPPDSdZD7JyrJ9NmaK81k2Sqn5xlzfbw+iOsbHZ2hH/TiMonJmTu8DeU9KycBr+zBiHmagacxXQpT0NJDSeW0/TqpU/kCaiP2xDHGSQbI2sbyo7+fZ+aZYZjBZ/SfPVENeR8rYAWFp/GICTOtA/i9ZLiStsHOoTM3KRGKt5w4QlmP8C0Eqwkp8aJOkdiWuU0VrewznKr41GhpFB7xMQASD9rIXSRNZtNIojsVmBavOLQOrX+MHR2bOg6MEPJ5JoPlcukinMwo1NF4ut/ADIwhFW694dXrVyDSPZoEjJvQZkwNu6WG3q+hJIx2poxYMxtSClWBrCpYBlsD0Hk1wOZNBZwcDo+FD5RoMU+W8aP0RGKQxDN5vlGAaB+Ok3mhvOoe8qbnms6hc0nLXMBwrhcL6GBAz5EKQAg1VmejokhaMg8zFaSK5kqLZzW0fKxsTuafMk1QV7QyWAmDyRBYCzFA+hnrPqSQH0Zz4xEjS5n+S3ujb1U2OhHfY5Qc+CiJGHn1+C45fTI4yW0w33HIv1IKp7do+e34kJdbAZIBxpDwpQ1koiYZUQ72k/RKv+d55oadddPHxHPJxDzg9C3Nj3yY/Xs6+p6L02uqF1yu19X9gx6h1DZCoV3oUE4rXVm9BB9xogP8dyuLbULInDDZXroQWRLlOeVH3z/PBxY98LefSQeAY674CoU9nshNeX+z6X/T9XlYXrrSfHc57LRR3ZCEBEG2fJkpSETunC4zwOYVECF1yXhrraVMrgH2jys5tZ3xYzZqkBLPkEAYpthT7dtD7A0bl+AdPiSSSTkWvP+cW+qGfOxTDTnnrQtgJfQyRrJy0hmQVbaGEAyZFffzmFgn8j2LDkpMVuWK8qa1yPDFKgfPHQym6+tda6dpJdl3iMQI8VyUm/SLtr4T5Kg24y3TV5ODFumlNdKTVBebfGObg0QgNE+K6DqqmUP+3IEsTTcHdeLWJE+kT1TeXelYz5hNdaTyKld/vD7E6+uHoS6jWo0+u3viCUVlKPFoxOrYIRQKOpnYFGtaHVGQZcYhUwh4spADwFcGXfmalwNZUNqBUuR1uDJdJvz6ef17+L2A7xCeFA/mlyLDV1aGRDgh5ZG+J211IMXqXSTpe9sa+vWqXq7YU9Faw76PUP6pvH1OSXoBYPAAMzzEZo6J1sVoMG+bbMxuqrgaeAit2b6jY3KXlUcwmhGcxcCzMFtPK84MHhPcBZj31jF612QEJgy1DEvQQgBTQ982yQuk4YsiyCREaw5LT06grePh8QFbJ2DewBjg14+YPPDFF19hv93x8OoVPvvsW2BIQp45B/ZxA1FXI6Xh9cMDqN0lGYYeZOnUbCSG5bSvuprDsZ/H+DBWNPI+mqI6dFUUIIoEHmSIOiuDZOitXj150jyMMeZ5RcN4yb2pZnTrUSB15QJlhbx6VuH1gQC0Bm5qUvteLXFMtMsWySA0PFuaUTMgBOBVpxJ1p6OvjCxzw7+nz2zt8u/sssLeGw7q0rzUOer7yRAGjdVBjSKdvGEaMpkAf8/qn6sTK7U1g9yzPgVgyG8HmHrpPZeb6b0qotxcQkLvqU3+lk3lUgevQnWpG4A7i7JxbrxlUSpjpKRZlFd1Zi096SZ3crguqePDiBBHdziq3ujJPX4wvBBzZQVG5rCsRpY4ushJRyDlV0OCcU5s8MmLxiOg+i/ReaZxpgiFzG9Z/ysL2NFCNWTVjYM033JfCYAdHUD+WDhx7bvRzcMB0zaWpBRBBEx0Hysk3Z0+uKPOBB+B/NDwLLsMmALqJE2YYGahhPoeqdLsSsvpmcjhQDhCLGOWWd9GE52JJqGQU6MFzAXYWsioyeRDRFhl9GKoZEyjNJXxjP4WLlHa2OGZrP/6fLazF6nyP6xtlL4l2Z/nshk5bHsGVSgbH8yUOKX3LslUVF+aQ9N0NjV9r3HKCp9oBXZdNYc+MHXF3ufuLEdOSXnGx1jcjkHnOY8raiZL/WnTrcj32Q1low6DnHYgiJGnCWIa1DB0rCvtK7kKFbtJ1Mx5tAcodJyFWjf9PjTMnlrX+Tl91dvHzPVrd1nKzIU+pheY7F5azddDQW0FGuW93F6TNREyzg60T3TYx+uDub6+sWh4HCjKuICKRZBUb7vf9N/yXwDF219KpRwjTrUMZbqJGSEg/hzEGPCMfgE0Mkgrhlyqv9z7KZk6SuKTe7XUDLTPwI5UqSKeq7fcnktILW6lMoPOoQxsa+Rk9nP+pm3Y57zqZWGGJrg4aAgBab73AzE+rsgR/1uz9n3H0xNj6v5GEIOHKtQWK5mjBSiQFUyOMUvHE4QxEzR30GCg1zebn4TVFGMIzuPM00OrrYOtk66GmRKWnxoRWu/ovaP3kbvtK4umYrJRiEIZpH6YyonKybR7pqmPKXsWt9zgdT695E09rJ7l59M7bf3eu4OgMh72/jpO1l+fmvK7GFzpPe0HaXciVErbm40xB2kKzq0eNe6K4ZI9mid9riv7agh6uxWK5fm3lDVXGmZanMkPV8JGrzgyxtrrIgBwWld5EqBI6Ho+HsYni10T7SyGNU77eX5RamBtDy3z8uxdouCJsretCLKgvZV25sTz3/I961vm3bVfRIcmCq21b0TFecnEvuBjQ1jMYbZxOtbB6avRh7SaFw/PXtplz9YfrHuZLvL9OI5H/vH7i0XoM03pmIelOEDs35S5159BcEl1MufCXHo7DUIHRpOcr46EOVCOYMm2jDhRnmdjB5VZQcuHjHOMnjZ2Me8M3KuhzAjjieq7LqsbAZPTOo6SmWOeioxMP4YK9D7D5xkHGxdmzLTX9ludzrxJz8aAOo8HD8BvrHJ/rewlh3pDwzQZl0XH+pzxLmwcpWKX6eDQlTb2rNKR8soVJeeCEyHaToVU75HT2twsixdnZBGjLh9ouWEV2iTm+DWPWcYkiFdLg9Y2Jqah/I7mbQiqiIEX+DL/lc/F/DvTBYkYK6by74m/nIuyPMYRc3y8PpzrG4ShhlIPRRyT4SAcVDhbUovTZW8yEUXlXl1B0Tot6UsysHrruN9u0JwruLx+gB9eauWBQD2n6F4N2NWLnvuVlEvq13GqUsgAmxSW2FPpxnmyqNS3vQq+76vQpyr/M+Fb2nQAC6Ex/PRDYgww3u0T7+4Tz/vEbd8xx8S+75oYQbOaTj3EWfcHumd0JqNTvUQMAQ2X61VqUjAVjkg5dBpM2G83fDV2xIHLDJ4d7ZnRevLuYwDzgtYJYww8s6xOzrmXOPc52QFKTeYgSXAmJ2+itie8s8fwRlHkG8Z+l3MkPYGJyNw5h4fD7vcB5omH3kBdPcbGCPa3NVkxVXBARG7YsStV4QmLGpG0+fmwYThP2ipNS+A1MZp2UMdd23EwbtI8diCVQFUW6M5jrcXzLMb0drmUfW7ZyZDn2dkKH/MUrzBIaQw35uZgPaqANeGT7l/SOeR0BvzA7LI/J5ig6FWPKygTOACfe/yzMUph+ND6DmxccFhFcTaw57FelP6NJp+BlUVaHX63OvMzp2Zh0uoVqNexLsbXT/QAV0PurMpTcLP8RkTgdkKlZC3kxC3lGXUIyupDvEdExYCvRmx2KpIFH8Q8gGkmLa849siPDfK6Vpq4wZjGRZ2ZvvoGQPbfz3j2JTLnyxMMGkBlpx8hyzd9vEXUjRl8R+xHIIr22bPRJWufMTxAsFWczDfZ8KqRRr5lRO/lpDUG3k1nr9eKC3K5LoMOuj2C6lzGaxF2viUR6fbFyhdIdBTYIXJqnee2EjjmVJ9GHlv9v0efaDYPV43xZhuBOHbFVjDLWXbWfpsT8HJsLuUNDG44wo4pincJUF2ubO8OEH0/O24kW0rofZePkkBsPf3AVo4IFhXATnsCHMOZzWBHvuSOkhJwlK0o0loCgN58Nc5bStIec3irkgseE4IGcRIZT/FVcnZGVEfGKCbXg472mTBhq29eLun46taqBoCn6tWk/4lqn8B82O+skMvPgsxz3o/jmqJnpeoGO+saANrW/JmgAUAWDZUnjY7H8LlRNKHid6NTZGI1XZr5w3SqPIuP1wd8fX1jkdLMwsLQ6zN+Sfz5CoKKYahcyoCfh8ilTPlnurALViUNBRlT1TpBALnmUa/e6XNAUx9Znl/uv+QtK6+VRH0mrKJdebXo2JYFcjCf1JUnalReQgmzQkiuayYCGuF+H9h3xj4kicO+S3ip7W+00KrWxFBrIN2epcqT5agAmDBQQ27bOggDjSTcUqJfJNNf7032ng0ArWEflvRADM7JDIwJW8Fk3rF1TaCz7wAmxmDc72kMSHLnyUdZdWuN9KxJOZKDG0SxGF9lTSoDA6Cjt47elambKNecdZEaJFPdlFVQWAIH1PZkKWv1mVBsrUOS5LBmmhNjd2rbDYysAjnGNFKer3OK/RX7sBh7tbDgwxf4i5d7dfXGQtIqKF0FQjZkwwsfNCGWUL8ArwL693S2J8+ptiJLEhiCgA0Fj/u+i+GKjk6LQiULmdbhzuDf+2OgYqGFg1hRyPksrtUAsq/hOIvvmZrOcst1MkJekXvFlzqkiYvRlICR0fSwwkMxJnm8XjYGo/JKnlremYH505f9/mdNzp0ZrmLYKIBb+uP/4wVdldruxlEQTliC/YV4ORmc/v7JwK5GjztasPSD6bx9qLRc63zZQK+8nQ1u56mTd0tdqc+c6QJbjZtBoxf6n0G43flpOeGoC63EM/378li44+uk/KPRKpwir4QerDIj9F5pS+E9IOSwrTDq2DfEXjJ9kUxvrPLT9PYL81zVtWt742PjL7a8Apl1Cw4LjFEdTEELWNnp0xoB0GCaKZ71dikZ3DEMPmQEP7IiI+0dSjov+LET+cLcYHbedB9eKTTGzd5faXw+l4yOy23tmDuJmCUyK89t5VfHgF4kwzIfEwhsyRQZmoDGq000JJ9r0fYA4rECrIZgSqZnT0oVEb5tenEon3tIv86XHBIPRIROHS9KVC3EqXMydT2Pw7+GWvh4/QVc3/joDPmr3xNjmPLlZZXMzm5raWWilGNGjk1+A1l627IPZoBmjNt6x5wTc4jB2HvHzmYshoIU70orwibaEuVmAzYz8vuNRfbFTve8ZpqpELbVuXyGnE0mC3cMesYkLfRdPpe2pD/NNpGQfqeGSQLML9sFDZuER6qSoK2DoCte2vemYaCSnMXaC1Br6LCzoAyohVfcQls7BNBTa2AMMR5ZM2QPo4y+SRuILJbdFFAHoaN1Aih4qDVp69RxbQAeL1cw9mK8MQ+8efO50leOsSAQeteStyaaWxH827dfgkhXDBrh0ghoQwVcw32f+Oqrt6H+qeHh8RFjHx4CaUeBXK4bHh4fcble0boe/K0HlXdVMnaAbusNnTY3vmL8ZcXBkhCZcmjOB9bVusfNmIBpep9XMIWFjzkxvM8BP1D+CErN6TFdybLT1labw6SM9oZzSLyfnXQP6hhAJzl0vDV0ukDdougA2rsdsg+E4q/y9oX1iBIijDQP7DJwdBa+Gf2N/U7pB9/XdJBZNiIzTFCm2Mubx4FAnmG4jvERuCjcKTJkBb/2qSVDcO2PVX4mw2of13eO1xGY14PcMz28jRxH6KwG7GGA9KiBDFisn24o+8ry9N9g8hsSUTBVxjYLox+Z/+r4UeMEYKOfM9YlAeiqjqsRA6T6hJ2hmQzLupqXdWDIedYzXPO8lIzKLYH1pDcO9D+R/SeXGA61nrzyn68XjXuyzJHRKn1D55Lxu5UPd6pkHWv1ZiNhrSs/d3AG2D0+yqJchjuvsjxrre4FXeZTLafSg0hXqvR3MSrl9zEGujkhmWM1hyOCycqK7MiiJyZGHJG1zAeLqDD6WjbVHMlgeo5tSBiHcvwnijkL6Kqg6g3WpNWmA63NEgWUt00oD+je8XJ0jVdUj4KKrT9cnFbBNxbxVC+RuYGBOJenesl1itND5xXrWl+O5Ke6GuYGtfGg8kqs3Fm95txv3ojVOZr3E0rGX9jR8y/IeVm9nTPd4ylRO5BEe4SEk/LYMqvOle9T6TNsu4zmg2CWXBKOkZU/B0/Pk2BGrfDP9HtZ98/EDxbWaqcQeP/T+Bgp9RBNKBhcZJitnjJwsoj08fqwrm9gLIY1EspkRWYRyrYeorsqABKpEyVnUNqgGQwFHJqwMeBghpV5BMVDBQGr3JJglWdmCU+UGkOg13bZ/jKXRP58/F3Utz3h33j52c6byn2nVJD8Fm08AwjvAw0h8Sk3OfbAWPZKiJK7XC64Xq/YmhnbACCpnFlTUDdqnnyFeUoIpoK3oWf7NALQZPV4zolxv0NUjaWDhq5IWgY9AUUiS4ZrIA/LIqNBQ2uMXRPr9M5K+4YxGKENFPTBlItUSAQwd8wpR3lIqm7ho8lTQ5CQQN7E07snUczC4LiLdMQ+GkASxvzu3ZPmYmlOX3fw8cStA/d9R+cI5ZgstLgYYLAkD2pgCDFm4h92JWvzAlnxmCHGKWxIlb82RMvJ/JG+n/BSOcPMukQVfrjy6xES2luT8zOpJSOWdMW/lBZNSYUObe8goG0ddL0AXdKi32/PuN9u2FpD//ZrgBr69gBTQpgTvO8Yt3ew8JoDCHYwYopRp0exCQP0rqs2eSUh7y3yuWz84vVFTI956412q2JdLw8hMpmYQKqlb/H6l6m+lpH7toLkFSxTLoidUqWf65XLMHPMysrj8BPlFnNJ0vJiffqPHz/CMe/1ReVXHUsz4LLO0fom85oI+2DY2LhHVsIDAYIG7zFejkZP/L6Ce7tXQKYRd2UcqkbUGY2ZObY4n7Rt7T/IDFxtJ/OB38vzCAeLwwGwrjpZ7zS8PCUrAQV9jxwcWCDXRT6+di/mmp/JmtqazzeObJHViPWCTq6VfyXTt+kg5fI2YQY5IFEnADBG0vUwwyd6Jz0XnRyYAPBBzsclAaB5nJ/F+EFOiFZJ6s4S13Nc2MnlExY+XuRVyEx2vXm4kkEldJMXLcGNdM1CH6sB6REnOMoCyy4eiViFPjOtzmb6SkU25hBHgZcFdzLGGZU6IgtPGv/aFzZ4scjP6HycsSz0rEZjcTbZHPc3RKVZlIQ0K6+sSl/EtmSdQ2KWNjP+XL7YfEGcocnhNIKaiR5KrA4QOT/7PIzdedEEcdITTo/MH/aOTHd3btRxjW1IH68P8/r65yxuAVqDeVooaRt3PTKIDIyHJtF3RHiZHmv+TEY/WiYRJjoYu2Y73GRlBgOMhrl19PvAvO8YPDEvBB62l4RAuKJhA2/vQLMJ5CPHFgYRkWuVw3ZzaJx17Ggo5lVCuwxAOOBEUmx+X8v1duo7bU2BfSY8pU7zYPrxEd6+EB5NNXXfr+BGuI079qeBf/tXfgG/9quf4sc/uODNm2dc+obb/S5hm7A9doyx7/j2Z596qN/DdcPt6Y77sDPxGlqXSX8fA2/fyTiJobmDJwndXZoPgCceHzb0HkB1siSOud13CctUA3byRGsNl8sDeiNsnTDuqqRJVhZv94H7sGxzrorlSLR+EUOCzR/XJEnp3EGtS6ZUGTSwx3EqfVWzdFMiPDDuLAaOL4Er+IHs7QRPPN8mHl8TNr5IlkywHAzfLEW5I8ZyFmmEOibNlJj1oMwotbewodFAjGvps54b1jYFoWL8d13tHiPOfmTl4c0mSYwcYPeVfWlAz+mUls0m/WI9EsMNSIZ7btnINxuABr7fcdke8b3Pd/xf/+L38T/8xt8D3vw5vnx7w+dvO77znV/Cf/Vf/5f4R7/1v+JP/tXv46vP3+Grz2/49Nuv8eu//jfw1/7yr2CbE23XFf45cbdU7yAQNtCcIJrgNvU4mQwISP+r8D1PUbK5yNXLX51m7El6ckg4A34mJfmzuaI6vychsubqo12FUcI2MIOhzH3nkVy8lquuautLAXUwAL7sm0uAzuRhhI41v+99XehyZjRZ3f6sZSJ94dgVAL4Ck6NWzEyX9vYyXVgzDzfSMCsjJXHs3WIBonI7nC+uy9TQ8CbYqtiIfT8OypSv81mxOvKQuWiHxm8SVk0dBqwkq+a5USo8V8P+hBwiSwYf97pn8vl+8vR66wY6Y8wC3IeeW3GcjVsOHXTwaG21FxmYlqafU+g3FKQ3a9eMeaorUSaLMt2DL8nbzLoSK0PQVI+o0dSMF6Pvh5WeaZEdQhDi6WfgHnS+jjNj+vYD2bEQsjzaa22Mfq3nl/aSLbqYZMZICZCnOUnL48a3zZ6TLOTFCEuGqu2kPQAAIABJREFU1Srjcx3OMyyOMQK542raubd5ZdhokuayJ0BjiIGNFN5Y5rwirakyM5HHozCsTMNYzK7Ho636jvPpUCOKvO+udznmm8x1cyCaS1FplTCu8bfTz6KtiNx5EPrcXpP5lIfcHTuWtyDxCGsyHssuzmDJPm9Gsm4KtQUMOxrMjfGd3diOozECCYkUMiM0YV3XgSpfGqVjd8hCy8KAhcrACWTntvfRWNTkodMXkfypvDHLGH68PrzrG6wsnsSWU4ZYCtCSR8SZByYDVVjpodjuMcwF55cgYSADkSVQFJKs9jRqoN5AQ8KPOgjDDU8TZkcjL4AVnFursjbkEcpmLSM99f5Li3EDNXeVIgyD/F9OZKDc4GIP+EpUAny5Tg8dAHmprN3dLoTrNtOKnRp4ukoIbxfhoklM5mR0C5d1YGZlJ4WULBfSjdwMwM7nEqOvY9vIyxiDMXJCFy3VI5RBaF3CHP3EExWu+wDu+4DwZ1CRQLhuF2mdH/khvPl8u4HnxEjc68mGFMCIMW6HdxudSI3PUM4mSicmxpD3GqiG+RZmCGHvnl3jLUqrFQYakOkc8yIDtTLuOsbuWU8AIenyIqWtbiINwy1zUJ5tdgaLz2d5tlvSBzWWpPzkFJHKpO0U9TFNNGLYNo0xCV/++IY/+P3vYfzgT/HufscXT4S3b4G3by/4nd/9E/yzf/JbuH11w7t3E5/97M/g137tr6H9GkA0MUmz1auF52GAzHqYsipjsvTg1vFMh+izj3qad9YHp1d6thhZ+XIwXtVrcNXpEIYHXO9y/tGMnMwf3t2jsVhX++T/OeMdqv8cGlNlp3w7JqXIHSIIGMgUkvsvrjRaf9lC8EoQ6aGqkH/Amn3UVuUELMXeOpesaigyKD3PZf5E27gCmjRvE4OXfuX3y6qNOpmK4yjxoM3pMoZa32E1I8mWc7xlEoNUD67vO9dCjC0uz52t1MPeIBzG1vk7AUMHi0h98GliWxBMR0W5zrN1Eni7kMs1mtnziWaJVDEW2taavj9xaJGhSOXJTVZMUOYM23w+Wbl3VjkPfz0DywbgiVOb02SMFUsXxmm2LMxq/cs4R439/KTaU7DOUby48Lb28VxUlDlj+scEwxpm/BJNSplEaT5FTeaw4GAHbRPDDGbj8FgQCJ4/tDzNB6dlkQP1HfJ5G1gpM82ZnBPs64SGOUEiJJR8kcXHC7rlQsOYGpGfn825Hkp8fBAVgUJeDMFO/1g0nkMQTv+/T9pQpp/Jc/uA/OHj9f+D62sbi1V4kht68mMIGl9N8DcpKYi4JwbK0VB0QQ6Zhr0RGBuo3YLh9KD1jSR0jUDoA9hax6ALRhMPE5DOjkkJckpLUv15Je+wepDfKSsHNSzk/DoKW68vGSKiUKtQpJWexYA0RbiMj/9s3nGG7D8hAB1j7Ljvd4yxw8I6tq0LeT3CU9rZ9XgEk4XWFtK+MANjDs2mqv1oBNnJL3+ZNSx1Sj2tN/StJ8W8Y2rmLqGvJXqxtH+ykhFAYvqxDf3O4HnHnANt21yYEgHX6xWtAWO/Y0yg6Z6A+75jTHYvdtdMd4C0cc4hewV17yARoVN36Td1T5bawhhjYICxbcIRsr9C96iWsYsVCgMcpjZi3NL4pusoYs14DUgtrJSNkygrgFWUZLzoHmHVNpSYyjyEvaunUUHXJMkA6AmGmGUf3SSALlKBni0lZ1+ZzFDVSAxqd/Btk/2VIHR0bHfCfr/isRFuDzc0Gnj7bsPv/s738Vt//5/j2oB5ecTrzxlvvujoPEFtx40axo3xcAFoDvS+ATRldZo2DCbskltIxinjh/xlkWm2Ny3AYA17A3PJtHwM4Qm50ohKJt8zibHem5kXFjBChxfZZUjhKQjdCfBMhK1Ndyp4Fe7wSaSJbup7YnTb6kC+ElaH7Z9Ze7XK2BICugDdI0SrstHKM7nhTgrlz1K7nmUWmac1bIzIVww8VMz60cjPRzsP+aTD/AXqam+V/an/jnSNd6DzlLFygeOtla8MjDMvtFuvVftmI5VcPlgZvm2jnfA0IfY+rW1iwBOfwT7nFug7igdsj3w8FM6t1fZxWae8HWVzAFolaUMrq7EEQmsn8zJvlUlju2IC+x2un+B+5ALQ09DFa0cHyfuuvOIDQFeWlrmMBMiJPPPk0UiQN0xH5DbZdxvr4H1yA8UKMd+GrSrbeYkWURL0CQOnUfM97VkeHWiR2nSQnauMA2D5be35gnnymZWZ7sbmSWdm49toZPox5F9REvpRnaplP69XWtti1KD8e+zt9CQzVk7qO3ubrS/+C1xUk2AaO7/UGm5REtb+Zjk8OH5fV7vDqdZOeTYbm0cJZX1OMpeojGXwwfLOTz81Pl7/H19f21jM6epdUXgWR131kZthMIR210KEaZsyjpUp80QEFVPsRQQAHgzQkPTTLCGEgwauDx3fen3BP/7jf4bP/5zw7svX+M//xl/F928/wg7ScEjZPzfuDUQPoBYrUKdGYAJ8WWhTe2HiwIQOHYQTxS+arrkCp3i+fn/JeHXJAQAsiVHMWMRKZv1BwnUIW7tDtppdQbigbQTaNhBtAA+01rDvcQg6CJj7BE/Z3/fw8IAxNwCCtuecuFwuePX4Ctdrx22/Y8y3uN1UEI6JwQNOBeMD/TtJw5ohY0qXK8B39I3cIzmGhGJMZuxjB2GCZwdNYB87xhzYLnIkBTXgenlwZdPIoigmgIbL9YqL0rO1htttx7gPzxZGIFyuF2xb8zCV2/2GRg1PT3eMMbFtHa9ePWpIqYTE3fY7BiZe8YYdEw+PG27PQiO21djecdmuEdZB0BU4RTi68TzZejEXFiPEBTDFKum04z+cAcQQkzkkhXYL9UsCPPNW1/2pc05cHjbwZOz7QG8d22WT3/apoanaByLQRTKQEsk4Nj037NbuiWcpzkBkW6WRxDtzAO3xitkIn3z7M/zML/wivvUzn+Ld85eYz8DDfcNn2yfgnfB6n/j24wWXhw24fIrXn3wLnzze8Bv//W/g1ac/h//kP/3PcMENGF9ie3fHvD0BvAO44zbvIGp4vAKEBswrfE8JIvRIIp4UMEPWpUw5TmSjRhwkRstO5wp2nedTSfKSI8pDnGweGwDT5/yQbEqOAATokD3GYawgv29K3uQq1/olCZYdkq4yKXnAD7YIH80TD6fUYv3IhhfsmEwz0miTHKGQV7eYVdsk4GR0sOMxRO/YPiMNV2d1djXlwTH8yIBiKCOAp4HirXdMqok7CgmAkgjqSCdt34yEP/5zAVLeiEILu6fNgx2+nnB5ocOxfQl8quyjE6fp5ARgWztkq3Q7sVE5D9X7lAzJyTJyCZuKzEeq1x9PjgPzzvgGlWoMSvIsC88W514NCTeyTk9EI99F9wpbx/NbtyMvxGEoxo28TxrmC93Swqa3NMyVTDa3iNgIY6hYv0lm6NEvJPPk4KhDgPjiUJmsW+QTf0D4DrYflOAOODAjpcYGEFEzNqY2rnkMt940ZJYxxq5bCbrzLJEkIwOLk9Blnx2rNRkSpaurr0ToKfJGDPYISbV6M/4jwJ3All1UMqEHPUSX6L5UIOaeySoSR4LITq2fzemsYd/c0dpQGpnBliLXtD3Ca3U8fZy97nrfjW5tsx2x40bWiZ7oath5ySQrkOucYa1QxZmUOZLhZ80wo1/1svfzRPfUFWdth2IQG5Pusk1c39bW3I+zENeDoMk0+nh98NfXD0NdDMW4TSpAW5oy+luyZkzgHgygpXxYGQqmiYBOm4Y0TvTW0doGcMe2New7cNsZT/vEpTFaS56hMSS74kbQ3WZR98LHRRgnQ/Hs97V/ToP4IcAIvfT+Wt/x2WxMgtIEL2VzeUdfVOFMou8WWCfpkjuobdguer5cU+VlXqgWx1gQyerbGNFy13EmvADMsavh4z1wccxEknyUZS/k07upXRYlso/pT5tRZ4bf1jv61nDZGjD0fifNjDoEsKnn2MANUSiR+10ypW668ih1BJ08nHQy9jkwx8C2aQbVhVfHFCPadESjhssm50s+XDcACrZiOBUoKFCc2W1AgGZRs8ljexhsHJnUWbGANKbmtA1eQRRkpzlS/T14u94jar5Xxdori9KipbquyppXVg5CMUSoq8cETViiKbtZVAuUwuR8oQYZEe58R5uMP/zn/ye++9v/Em8/f4P96QmTB+7jjs8//x7+p7/73+DPvv8HACTBDfEz7l/9EL/5934TP/rBn+HVJ5/gj77YMS6MX/z5b+Pf/yt/Ff/GL3wGHozGjG57ybQvQ3y5iZnNQEwSzIBcGf24JBEWOcViyF5aSeA8GEfjy+4DbjCWVcUY0Yqlc5uIPBlOLrMRYXp2QqEDJZBa6mfOTCV/zIsB45lzZZ8NubqaULsfv6dnOL+jgGQBlS+t0BRwnYyH8rzyYm99AYBhpFu7eqcClpDLn/mQAPsNbrys5Ge2bNmsR+ewO4NOuUTBvq2M2XwUeVINzGoQVXr459T+I/kC1B7akMoxAwd8DjKLwdjgIXOlvCx3zKg2GlAk+DhzmJY+Fh46gs8s085WYlddeCg/mD/mqU/blqaG/G5vWdbJGh6ZDF4AdTU0tnwgAfS1X2sfGLwcvQHXo0GjatCoveztXmlTDCSe6VntQ3rWyWFjZzrXEwDVukxfnIU1FxlANt+CV6J91g6IQ4ttaIx/1NCEOJuDyjZXMy+ueKjip/gtzZfcnCRHMy+sK3UG3Rpsby27UVxpkOVcGNNEBJqsDsJ412hv/RRnQ+wfz/21f8VQNZ4q1et4CVjx55PsdR5XvEmAO9vgNCPleT7QsSysuH45Rr98vD686+sbi8zutQ2Di8JwAJyBCPCz7eBzKwElU+QJlAjPmuK1Z5tm8mTs3ND0PDyCgHKA8fvf/QH+8A/f4Uc/Inz55tcVkJrEkOeIhodqVG+mzxOEsUde9dKjaL9Nbt1QHLKtCpCq9CrGs35WwB7lINNLW1LqMZql+gJLWlksezo1ofO2idH1x3/6Bt///lf44vMnXDZgv1OAGmtTaxhgvHnzY/fOMgbGmGhbx+SBr776CvRWM35OOaSd9Nmtyb7SOcIQBVuSiDu+fNoR3kZp+BhKlxbASNJIT8wJ3Hcpt/WO1i28QkIxgFDSRCJEN403HGOXdrcAks0NJDE6zcC7Pd+x7zd86/rJotxs4/r0MFRZlYKH5bRLQ59d9/dBQzbJUL+OUQVoNZAtI2pb5RVeME8iFh7R4FkHDECAAwIhs64xjBtt+tu0uF0ChngXcFEPrzzbxMvaCMySxZZ4SN0MTB6iuJqs7LRdyrMVO26yCtdVm8lRBxPYCNdPfh50eY1//Nv/EL/59/9n/ODH38PVgMB2wfPTDf/d3/k7srH/UdqzYWDeb/jf/tHvAJPQ8Of47X/yL/C8P+NX/9Jfwqf/xXfwS9/5DMAAmuxlnhiY6JJchEd0PtGoJWLZ0A9LDpTGRd7alIcACbNVoGVzEZV38pVpn58jwA/lXl8LXrSw+lKkSypJnpKHW5wwFhaWO1eNYWeOUq6tfBzCZ7O1QscQW6QU94DjmXSt4ByH72Ek5qoiHHE97y2Hkvp7qgtYk3K0poYYpyAztvNL6/h7Yqykk2xfjtUpYMxWdOu4S5kMc/RIVuZYPT1bYZZbC03YwKIm19H3mh+w9v7VW3lWZE8ZI1SdGPTQhFcOygH41oBa7kmF8seArbW7GCfNMzlbO8ye8e0GS7HrkVyup7IhMJUWNn2ykaO84Y4jvTp1mbtm0GkEiIy57Fm3kObu81KclTa+DEQItxtisV/Ujsay5ljmVC3KTo/x962fUzOTU6I3M4cjgRS/2EHoZ4ZkpgMFyplz6NaQnF2G0Llh9ljhBKCOWJ0PExppldqjeimRRxO8MM6yvMuWE9PXYigKrWQu8YgkWl23x7gRW5wUyjfpxBvnZ6MHkuzhcIiLWB+hK81pm0QkNTs+KWVzB2IOVXYECHri0xIeW/gxnKbB9Uob7Z+tKBLJHnw5H9vaqfUaHbDIcS8m5AQS7bUl6bPwpotrwxEUmb1hx5JIZSEnnVaGtxOTw+SvEtX3KMRpA9mJ8fH68K5vtrJok9ElW5qctvG7hZdjsXAOQAQI6OUMvQpNMuUeyn/Oga0D20b46qsbPv/iCT/8IYNpUwNAlSBZ1jE7buMndlL+PUvekNuvSupFhelFhVDPKzqlf8vnXE+9V5vgkiOBqHjUpF5qI0vSj74R3r17xtu3z3h+uuP6rU2FnwEG9fA1oKPhfr9Ffak/gISDmreLWkfvTVfd5FgFEGmSAtKM4Ab0psuUqcduSIa/RD829iFNRqNHfHT1qg0NkxpTsrap8KHEk5YFFF4OizFUULgJ5QQKycbEVo/gnl+iJiG9zNhHWq1ORVaPMKmSjjOKwpinLM+9CMEriSc48UQZY4RwTxelD1oN3M4sbKb16zyVfgyfK2Y8pVZr+Kve0VAuUk+jnWepmhY65DEXSPZXeHbg/4e9d+u1LbnOw75RNedca+3LufZhd4sURTJWYsWkKEVRJMUxkAR2ECRIkAc/5x/ECZCX3Jz8hbwGAQz4xXCgODEsIJAt6K4olqyYFCVRlBVRTZPdTfblXPfZe605q2rkYYxRNWqutY+kNmD1Q0+JfdZea86adRk1anzjGiNeXr/AvmR8772nePr0OUpZQHFEYFUCEOHwcsZ4vkGgBNAAUASHDKSA7RSBAlw9m7EcFlw/PSAn63WGpGfWg9NQFvtYJTcp3Vz2YCboZK5lsdNn3Zov0Ct+a1d1Qe2AoQgs1SV1JQhVl9UT7Zqo1lskPWBcj/UVl5d2j5lR6wOhr9G1bqO+jit9dl1y4zhlMWuKPj45k7TuFzdeLWTI+rQDbJ6n+osd/Z9UyZ++jt2s/Jhs363BpeunszDYu4gZpRZAOnaZO+pf3dhoZysafVvkkc2LeNw1XtnlHqD+KK8WDv86GwXXlrsz0M9FTYTlAGPjie4sW1m0uo6cANoGOgrBza/vs/HiJlATaVF5tx7Fj7dYnG6BBreKYkyVLyyv1YQ0qGWDekWxtX16n1mm6LX1187jeg7qfPl5O/rsPFMMnNRVd2ARQcIGSoDbf/J7LoxQnGtnPav7WFAbuz/HjNVaQkKUpoSo9B4KzKXarJlEBA4+btG8i3Qchl16Ax7EPV3OdG/vYobgHW7za8RMqgVhDi34jwh1tr14wIRSVOZgW6+jJaxfEvWJ8wxDgUnzIFCbi/ZqqIkDZoc1makWiAkWGgGlvybveK7soFrbsH7zok5EkwlkBeXfWuKrPctVZOoYdf3bx+8KLfSWR38vVt8fBzN8cn1cro8MFodhaAeuFUf2tAizSMF/Wf3tO7nXCFkpjKrrI0wkdcKMiK1jlI0ojIVxcRkxTAdc3TDmOYA4ApsNdkNCfrqXmrdjEmLkSbSwldO0A83YZ7CaULXz7qpMxm10/X69KQieIRgTOBaeXgk07WHXtO33Zp3yB+CpNsXKI+lk5dSTQwtImbBksYoNMSJTYyBLEitRDEFjLVusQSlZO6IMBeq6SABRQE5JP0cwZZuNyoi8/DAMk6w9BXCSUhakyR4snTwIGEgjH3KWeIo0i3DDSWlhQAxRS2lANccAc8H19XXHJ0vKmJdZY0ZEayfezQnLIodKCIRx2CCn0ukGmAtySpKcJ4g2mrK60gZSV2mj2xajEGIADYMkamKJRfALe4oMglO4iJa2L73iSYTX/Ltr22vRS01D3lx1w5GAFsnqlMmzGRIrF6dJngkiJKVSQNMgkKyoK3AR8elmljjPec5IzMiFsZ8TcmJJNBQitrtzbDcTfu0f/u9469vP8fWvfAvz8ysMJWIuAPICIkYYBlzeO8PCjHzIKGNEGSYACdvAKGlGCAH37m/BhwFjHLCkBFBEDJPWopCxBY4QBpXaVLmzqnRF2AW4VaUH5ESMZMIaudO5jz0yQBmorcWpy2uoDdC1+rRcXUrXYE9eGbo07ysZyl3BuaY23gG0NOxg006Te8pf6puw4km9lQoitLWCaNq2u6dpc3q+ZS/kJrRIE8c8k0yzbTQM1MyWvrZvdfV0ybHAcOURdDq6d5hwrT87t1GRu91vbkh+tmoLq7lp7Wi5Brd5q/tdfXs53tea4t+J/kdzs36fl3BNCPQF1auwyUBQCw8gSkI7Emw8NrVF2yQ3RpvrGsu00kyZfNBAgxNYlc9XmnDzy/JC+bkKq17h6AVflpIDIFWw6CnvzuxK4UTHZUf8+c5mca3NOyDSgJeTu0VmiVCgzd36V1Aa5Dy0sh12nndWw8qb7Vn7zdag8W/rxprH2G+ndQhiQgoUgMiacdVGqCEIKK4GcHOxrMpDRk2qQsFqMqtVsL5blL+inLW+WihGqHPHaG15IGxlEIuG0bCYI1cKFu2LyaP15fJ9TsmBxRZTLGy+la+R+9V66uCL8Xlm9Qhg12m9oZ7zyv9LzjV7fCXs2nb/jE1W0R+pMg/LR1CEziGimOX6AKxuNkARCM6LQ7eGzB2cHKHz0ssMXN3/rT3AKbLrwhWgeodx7Wc1HsP2qynlzMtEB8XtxrUC55Pr43v9CyS48brrFjBcXS2UTZsblTEGL3ADRjt65FlSHCdAyMHeECdRREFBoFnZ2QbTZsL91wY8ffE9vPP2Uzx5coOSA95//ASffuMurp7cIC0LpjEgRAaXBCALQ3eFVh3rb1YH+9Hx315Ad24immE0nNCadAcB98LRul2zoJr6i1wb3TMkX7a6NXRC4LFDl2B1rAKFGgtXWILIg6qm0rIgM4MQa4ZDwTul88OXw86SAAiDl4B/uGLODCjIMPcNkwVK5tqX3hOIm5tOFRoY5AFxIAREIErRYwDqbhcqvZSyiIsyRa3VmPQQKOpKKGuRtcYioFlQGUApmOe9CqNCHyklEBFSkuMjomDJCyiTS/YkB3dORbLW2eqF0IRafW/TLDst7Anaqut+C53437y2+jblg2mkW/yl0kW9nZBz6hJbMDMoGqvQWKtpwoEDKA4oOWGeZ5R5RuGMw/4aOS1I8wElJ3zw/jX2+z2ePH6Gm/0BNzczPnz8HId5wZIEAD589ACPXruHX/vl38Nb33qG/cuE87MRFAdRXiTGwAGRJqSyoKSEpTCQgU0aAAoodIPMEO01EShGPH15hadPXwBhRAgBeT4gWY1HziAUSOIbd63zwANICMhEkDQNJiy2PRHCUGvDrV3ken7g16Z3F2yWxFsshE5qFPbA7r7uDUf997+Ji6i9UwUR5vouc8KsvbB+nbiiE5a8A4YTxVevd9LJ+nsPznh1HztZnPo9UTMe21lTnHRdhWwTYBwfrW2qdYlLPavsGajwadY1S6rDzqTcWfTQ+Lxp1Ndzt7Zy+UyFzW1RzwdutQz9u9aXCNDsnvdT6+didTYYr4YTTrmfXwNmluxMRytnh7zA9IjwbpE+1snmssoI7urmx7oa2vrb2jWhE0eKAIuT6oRPo83a57VVq4GSrq0VeVa3SvTr6oaECpjRj7FZvt0Q/Xde+YA272z/x8d9arGQje7q+b+6TrneMpTWgU6TVfus7y8l13OdofG99X2NknziI2JROplrOEKzVntlhI2xoRY4WcayFPdylIR8iAxTKlj08qHNYUDN9qxJ3Zi5JrWq1nNu44WBY+1czrrfjG/YHFOzgtcsAWRTyYqH2IhC+mFyhfVN77V9xSsaCBYmWnkUN1BmfbUxFANlluzHdYnEql0sPZsDz57HNU5t6ieu82I8wfyH/F7tLP7tSLPlQlMIUZ3DU3KvKQQqiP3k+lheHxksliKWiVbugjoZS5hFBqurRiHbpCumbhvC2lGmAaCm6q4MhguIFmzKgHw4B20GbM9mlPkp/vb/+jv4ja99E++/f4UhMHY7wv/0P/xv+E//ox/FX//PfgSZGe89PoCXASUuiDwhmF8CoJ5oasWEdc310QO5E9fabdQON9sbVVNJ5lbQP2ube9WoCi/tz9Yl+RBI3TUUAAXLRsYtOUAT3IyZmG0hAjzg7t1L3H9wgXv3L7EbIjIssyMhJckSakLxdrOt/cwlydqqRW0ap5pJ87A/YF5mQF0RC2cVylSDV8TSeHl5ic0UQINktys5I8QJ6TCDBxFgxZNxQMkF+zkhLZJgpWb1DCTWRDBK1liUGJGLxNIR9PdSVCBUwAxgmAaQJmQxEB8CgYs6eDEg7stiJZFEcnpwzS0DJmCKDcYHL/ZIyNjsBpTMePjoHpSbO3Ly9CQEbiKWB3xETZNrh60l+zklGLYX2PcWc0PyGWJdMcAIoFpiJNlHEPfhKpCoOzEKMgNhswWNA/7O3/1p/KOf/RV89+0PkeaMw80B6RooGVgygRFQwohcGMOUwWhJcgiEIUiGu1ws+U0A5wGPXr/ExXnAxfYcKREmFOQSgM0GCxVcc0bkLYYh43xMIMoodI3AA6iMGENWdzDJenv98hrf/uZbePb8X8edO1tguwE2W6En1XYjlG5zmRXVhEAQYeQFY5mB/YySFqBkBFArqA1JFAWo5nq9j91VBfMqcrZ1i2ufpiz0YDIVIMZR0Vxb3U+gEPfAEseWvkDk/Gb1OSeAFEatByrPiojQsqty3xagCZp6QdU8RWJnYXP3nGChlknbFPBRFVre2kr1s0oVKqQ0JdYr2rds3CZ8qyAXLVUyAHBsYBLqzqZaK1EsOWWZltfx8iwzIztFgbdMeRqw7scQkXOuoIqZNZFWAwGAxED3ruztfX3sX3vvbVp6O09LKa0MSI2hboJ8BVlk/FC/LOyscOolw0B1w1GBUJwWXIZSajF9NREWtVcxhBapCH8WXYHOSynqdi2eDoTqy6RkQA3QOXmhUAZlzQQNabNmOzXhuaggHuWcWtKix25oSdVCqPQWbBQk8cshABERBtdM1WLW4DWw68Csel5YOSq7V8CX0EnlxaVZuEJVdrW2zT3dr/OtNACnrBhYqyWIAAAgAElEQVRUPtN5rkoLTczGAaDi3UG5i7EszBK3qHTSv4h1D6uFVzO2V8xi+1DQS1W2WZkqO/uYGWGIiJEQMco+y5KULOo5viyL0AOjnrMl69kfR5ixwgCL33MwUuwURW1uTVGE7KyASn/CUl3G3tqmev8E87cS40Q9z1Veq+tHAVnlLIYCTC+XaP9H9Yk2uS7RgqJeYQyuWbvtnhgBcBC+yv3ZslY49Jf1C5BwIRmiSG+6l/UZVloLYBQNEbPLstVWxdkJHtaRzCdw8WN7fWSwmAsjRs1YWQYAhDCIkCAEkNqBakCSmkhhBwiAuknJQFllqErI+lEsPQPyGJCuC7ax4OXVNb777vv4ja/+czx+do1hChgQEXjA4eYZ/u9//Lt48427+MxnHuLy7gb7/Q2mMB35ulMRocEYiW2WKsSbVkQPi16LKUwiavwWcTu0GmBsG+aoNhu1sXaCZZ2T/hb/YGM2Tdj1TK61z2pFyCIca5R+QQajSPkMy4XBLlsnEZjEdY0pYCnAOEbEEJDnIkARGYEChiFiHAbklLAEsfQFtfaZy2POEo9IEaoJF3cV4lDdQqcpSobWwkBUoZNZmVQWcSNEhGFAWfYITCAaQACWImUaCtv8AKQul+MwqlBqYose67moMCPvybnURDHiFsWS0AEMIt0yZYHlywxhqHNPTOBQEAMwhBFLtoMQsAwRFGQ/BANgELoWwJEQdb0t0UJbd7NcN2GqWkVWcrIJ7Cb9Nncd6g4JWWKlG5JZKZxBbIec/C4VFAsCRTBtkfcbXL8YMNIG46YglgFxZ/UUA5iitFcyaHCCnIghYJJkAqW0PgERMTI4E8zNLoPBQcfNBSOAISooo1jXsqhwL4IqAVRQQsImFPzu134Hf+t/eYlpGsGBQcOAYRwFFImEimGImIYJFAi78w3GacTl5TmmacB2M+H8fMQ4ET7z5mexmQIw+/3INSufOvf1i3Hqaqzk5FWFGBPA2LuxmoBDzponc2AO4bLf2+Fcwd2Kt9rfoVKS8Wa7x1sV7V7XT/1vpyh0txvPLHBquB4fdxNils4qsuoN1eWLXANhPaZVx+w8YZ0XVt4LgxnUzf9abJFzy/rUBFMTbv0AqlWA3NpX5UFzJbYfTRln9VzrHiZnvSKC7xW5Q8BbGo8xweoZDTeQr0sddw0Lp/VwuP5PrNd9/2MFijbHCvbZCXsKrmyu65mqnWIFEAW8nniZM6Aal9nFr9dExoXbWnKRuEcYkDKXziDxcG5sfn1sfVn7K+00PgUFkyaSVCFZ24uWDZVQ329j4urSz3UgBlZs3ShEBRdqJdN3w0qFka2P8ENPdm19+zPfPq+zcdq15v11qQH1onFQyDRJrs82eRVMwSnMjoAAdFxCby3h17pPqpyrmYjcvjDZEE1pXuWS2htIgqFC9RkdkLavnkTB+JGeQ8xVGVfA/doYuLcdYS4flV4bnXdKsOoW37wyANQ8ClAendU1NVQaaO9upeKM4lRugNI0DKDKOymqZR+oSeasc8JmVEFj+hz72ZRFoFZiyIW41ItUQY3myWIywfqsAKQ/tQfFzv7eGu0/tbH39PfJ9fG6PjJY3Iw7xOEA4gAupkGcAUQFByPELbCd2UA7wyszJWUMWlsOsO/qxxbDCCDnhBEF47ZgmCJiGLEbB3z43h7LoWA3BK3FtwBDwh/8wdv4tV/6Jn7ipyL+rb/8abw8XGGCxDhZ9lIuUqewZUGTdxWW2nLNrcD617aG1+B5wHZKk9iYkAdyPec8ciGl/hZy93msSjbXdPx+D2qJWAuLB81amjWZC2stSkbOerBpnTwOATlLhsdihwsRYghIrGHWRWYtRlaNVkSgoQFmNEYublxiDQ0AhmBAj1FSBibNzqZ+TlFTFDGL5o2i0laIJtKAoriSssafZT14ra7RSAHnF+dgzsiS8aTWB7y5PiCXlqAmRsIwjdLjJOAyg5FRcJiF5rebAcMwOA09wbJq0hBRwJJZjxiSUGlEoEnr1xGIorjBxIJSxGGbgiocisanaVKYVJJmcxUwJi44cK6tSgSOnnpFQSMeql8e02WjLYvpkjULNTFU0bMyIpYdkAMuzu4iEHCIBxBJjU7iUWF0wkABTCMKJ1VqSHxWyjMIETkHjeeQemiWfVDqaTFAYkEupYCYMYK0lAHVOJAQB4RIoExIOWmciMQnn03nePLeh/iVdz9A4YKcEwpn5JyxJFmv7Tg1gZ4IYRSt+jRGEBjTGJE5YNpe4L//m/81PvuvPMSOpZxHiLL3QL0l7WjuT10qA/qrsxSBKj+ybMwMA3buHmWqXfZWtHgjTw9ciqRf9/RhSgXA4bCe8RTPA72AVAGHWQbZvnZWSyG86jJb22lAQfrb7os2KBgNor6/tbPilTpmszr5Q4TaTRVQr7MYEtw0KI9rJRBcbzopVebO3DHN4mNwtL52BfzsDKhWIkLLGBpC1doXK81jZ5Wjj65OnZPEmFfvo35xq5KBj5a9oUcT9I0+CLrfuBfcXX+qMhT9RdawAq/i1t9cEUMHNK3vCpBgMJNh1SW4s2JJf9ZKjBgDKFKV25mBSC2TJQVUq4hrqR9AKG69uWa/rfKxAgd3i1j5bH65zbm/TywxejYrfy01Q6/ODfm1tX3gYgr9/lwrv0+Mi6l5o3TrBgBav7G7RNuk+6cRWI8JvazWZI1syd7qGA20eZdab8nrY7YrKRgoZYtBFkqoGUz1GsJQS3Gx8ieKSq82TQrMZF3knDPLOFWFhlzNu8bRRCmVR1nfZKtQ9zfIgGtbB45ucokwINaEe+pkpV4lwuGr67nOfZ0zdc+2hDOBqNEJADIrN7PWuTX2zi4LrNJfNFm0TXrJLvadudYxDTZXOk4iCQEqxrOgbr2rEIxiiY0sOVHpXW57Gujh5CfXx+v66NlQAdWMqdYHxsBNExIAjgBy3UCAMVmnuVFqJmpurOTvra2rILAsWHLCy/mAs4u7eHj/HK+//hB/4QuP8P9987ugZRbAExiMiMuLc7z++l1cXk5IhUE0etaOeoASuexv8lvNyqW3eQGc0I/B/NlPuX4Ys6muMgC6093uU6baCSTrdqyvJ0Hl8ffdeNStityciuAQqgARQlsyJmGaYCCRZTXVg5lYkxUBFitopQOE+/bjM1dVG7sxDUBKVTAVAWnDUO8htS4R2eFgB4UefmzIFe5f/UsZbbUeQlxZODNy4ioIDsOAQ1hqUXXT+I7jIAJvyJpUQTSk+3IAmBHihM1WrKhFy/SVIswwTgHIEcMgh5NZNUT2KWBkOXwp1PIwYHHpDTyokB1ApEl+uMViVi09ccvqBj8fOEkDgKc7gOh2xtzqOHqB05Q62gYxAkn5i6qkUBpnS0KAjKRBH6ybKJtlQ8X6nFkzDzJQgHEQ0I/U1rCCWVeEvGU2BsyNhwODk9BVXgqWlLHbBKmnGTJKIaTAdZ3AYuW2+GujyXkRoHnDBZwzYgx4fpUQxxfYH1gFgQwgaz88sAGOEOBt16tuq9I4apkfOfWPeZcJjh3PIFJjxGqNiWo4dlWWV6Zja0tHpOFLYRQCLMO0CbGvvto9a3n0aMzK/Kzf7b8OJDmBzX6x7hIM6HqwevweggFarn1qaSHQQJJ7r7f4NWvVavyOf7/KFbCujLW5OpW80mftalo9CkzIcv89shpVMlp5E2i/TdlQIQi1OwASF/XVXPPRjPsx9nzFK189wKyiQkfT/qlXX/UNBqYC1cyrlScGA27WY640YRkwad2ibefaDwktcGyw76nfN3ZDBbhc96E9F+Divlb82tNVBWh+mnW/VVpxr/R0cjv/F5oppaxWCT34LtwsTYEUJHWjhoEwb8WyIXk5pFmeIOfXEWBEJaGmHxLeTCSx/n4j2xhroh+0vWCqNYuZDe4Ms6aZUJMk+b4Z22vKHj9clSWOaKA9zGjyGfh2+rU2xNPKwklMDmrj6pfQra3+p3kDaUbk2re2nxuIX7+/gUiqjeq9QayUFbi5NCLteDBFl/INfTfn0pLxwbalAmCd2wJdXgPiRreV+f0pz85Prn/p10cGi/v9AZfTAEUOCIEwjFukbAKg1CwCWTkBPR6NQXsq1T19xOScoGi38TLj+sVz/OEfvYNHb76JR699EY/evMBP/tufw3c+fIz5gxkUBoyBcLUUfPb7H+Hf+6s/hIef2uH6sEegrWyuMIFI66Ep++5iQ0hiSoJqJitzVbDVGKD1zY0Nq7G4e+uzBNRTxY9X7+9n4pZ29Ze1IIAT95obAKBaLxZFG0WxckUtAREtro4krizEAaEw0pLABIyRMA4a15bt3og4REybEXEk5FmEbUsmyUANTLfYE3BRoY9U6VAQY8A0TTAgZHkqQiBM0yhW0KDWK9W+EotLLWetBUY2xuq9D9MaEghZwYCsd5BakLoWFXhAAQYBRd2aos7ffr+gFMI4jtjtdkiL+SMSlnlGmgs2ZxFxCdhMG4SQJW6gJDDPKDwi84yJNzLuQiB1YeTEIEjCnZpAqmiNSgQNZodJB2jR94DFVa3Xvj/4TECyf08LFYBZbSTWtLAeAkFSqwMFKc/IqSAMM4jF8jzuBvACsRpTAUJBTgMoAjEqsNZYjTiGpn2FAPeg+89fklGv8QEDkEHra1btrNX8IovpBA6HRWp0RYktCoEw0AjmEZuRsdvKnIyj7TCLqSmQeLYI5iL0PuxRMGG7iQhDBuUkcx+CSCDF3LJuF3U74Wy1Tkf3Nsm6k7+PwEDXegMgt721ljKBZnJdw0lqQvcrL/K2hnZ5a58oSYzfnQAFRMdDgCWscS61zKAju1EDLkbHK1tedcM9tkDa66VV61p1ee3e0ywnkuVRvq/gytbHLCB6c3Ml88Nte9KUK17qb7HIrZcCIE4oAd15uV6vBiKpCl9VrO1wre0/RwX1NQwgmMn0JBAxrFfXSIHRbVc7Nx34BTra8PcIrzMx3IR1AwL9eE7FALNa5xQZwKaDK3rzbv6Njtpk1QdaXWY/frOqHPEsC18gUCnOaUr+W2B0Y1YW3YfBt+3fYe9VimdYCH2j5QBnsl315QQdrpU2xI6/OhkAQItb9OtWFSdtH9he4CrnELxLrNG3B2SVr6PNByyhzkCgEiQxDRMoBOS0OFo1IG7zo3NUmetq/JpoplniTDoAzI16DWQtVpQAN489DRydWUZX7hlb76YucxZZI2bCis4bh+3prvEQUh5a40VNJKC1Ldv2mut/Ry5Nee8fqJ4PsHVBnWurRW1KVkvkw2iiCWxrm9gXWNaSYToBxxO4xaV/cn3srn+BBDcLrq5eqoZehLPHT6/w+ptvYHe2RaSMkvcIcVSmrazYErD4ZAHoBQ9zr6sWhQrIAu689mmEz3wOIezAIeD582vkssHDN3aYzkbsUxbmHAYMmw1+8C98AZ/77EOUUPDi5TV2mwVpIYAsnX5EHCfMy+whGaJmsCzFx0F5k327fD89qLTfuntNpep+v81K6Ns/uuxwJOqEIZWlQQq47Oam8QuVKQ9DwDCNuLne4+r5Hs+vDijbEcyS/ZPBoFSUGWR1UV1QSgJBXUW5gHPAnBc8zTc1V0QqrLEMsvmnOEitRrNUZgHh+/0N9vMBKAkxRgzDoAxYrbpckHJGzEGys3HCECZM44gYCTlNIBC2241YKPkGh3kWLlSMjkwwUo1YrYlFHdO1+QPUEqrxMdEy8wUtk1Ek0hORQDkgaoKFQ14wlwUX8TUAGbvzCcOcEKcRm+09DOPriNtzcJnAOUtJh8MBiAFhGjSIf4eFi2pTC3gouj+K1OsCIUJdo0tBVCac1R3uVTRTD9RKw0atKuDqPGS4epE1Y3BLPkJjxJ27Ozy4v8WzJ3MVAN5++z1sQ8TZ2SWGacIyZzx9/CHOz+7g4vICL69vBMAx49GnHgDq+gwIP1mWXIs/D3HAGEdQCHj65AlKKbi8cwdnZ+eY5xnPnj1HCALITZGQcpJMrrpPSxbIUZLG5JJl7oMAzXlBKQWbcQdAU6vbaUtQd+WCxAFAQtBECcgEzoPuLKnlGmMBp3Kr4uZ4/3aL5T6Guh7t7/pQFXKOeIxTVHXtHX3H7jNVIcgUJvK7xm5XgUr6Gr0vaB2GjeOEzbDeruBqNS/GwnzSAyt0XltTmrX3WOzi2ip4/Gp1w71VKaLtQTK6erfNCBOM5TvThgM+bpRaf6rs2oRY+/sYTKikDwgfJbPMt+QXhDYnRFTd3Qkk8c42F76EDnph3nXD7XdVm3FzF3VGs9o7EwiPyFgVWOYsV5MgKRgjhisFJK1Vb4CGwNop66crSBbxBnSFZmzc7OhQHlK+jaAKpdLm21gha+IPPRSpvvMWGjYQoeDbexKJrFy67zsgsJpDKO0h1pyZ9b5hJRuklFC41BJMCgkhrqrh6F1B3fL1iwY4g91TJ0nfIyvmawqv3YePysxo/7yFyTwKPb0bra55nmUrBUo3512GbeW1lc1oeEFOucpSbalargF/fJkF1DyDZCytD7L0GkluQNYAI4AWzxhkM5RGl9XyeAt+OQUU5QcoDa42Vw245bpIFmHFXETJyoxAkgOBXXOmSPV8QZps/I2ZUZJLUmS8Lzj1l5N3cvalTfyep9pFkydDEOWuxRITSVkQ6IpI1lSRL5lbH9itLwWRXZhLdSEOJOCRWTHBn+bs/OT6c7k+MlgcpwlEGWGQbFMliwVAmLNsbCJIsGulVWqbaC3omFBhwMuBxXofAEZCygW7+xMijbh39xLDZsSz954h3cwog7pDasrn58+vkLIkHEFhlIVB2EJqNMpuKJq4wzO8xjxNwD6h3cUx2Fv3t/tcAd7p++Rvf7C+Suh39wfP4I/75J5UgUNEIAHVhLRkzEvGMhekQTVIXDT5gCWlbwxG+sit2LCzcMntQYrGBntjVVCb7IcBUbyUybS7onCoyWacT1hBwmFfkEuuYG0+zDIODaBe5gUUpNYi2NJ8O5ctADktGheic0xULVMirwiQdEq66tKGEmq9oiooan3G0jH/QWk5a3azjHl/he9+94/x1h9v8Oi1T2M7Fty9fxeRIsI8gymDBtFsXl3tQZEQCRigoDEEQBNC1FThKoRlPXD9mbamPW/xaAAR2l8HADrp0g53stPBUREwRMLujPDkwwxmiVOeD4w33rjA5d0d5gwcnkIT99j+aVYt1VlIj/RQjiowEyTmlYJoL2Nsz8mBWZBywkRa61X7KMoJYWlhYGx3W8QxYD4cgMwYtc0lLUjpAC4QV2EUpJQwL4soIVRhgZJVKxq03YhAo34eYHVKQRIjG8iqU90iXdx2mUDm92wHJv3NdOK79Y0rCccrk+puWAu4t9mZV7RRQRUf39P1u6ez/l39FWCWRPrTzZxrtrBm5AaaVltverXY0eZAnvFQ60QvqAe13hVWfv+zCDnUfTytGEUTuE5YhrD6rvK0o/u1JTsftK8+Dr8mFqH2XptPAL0Fy/3PO8+eoilp0NOBCvsEKW+ifREWJgrlvtf9XBGg9/QKPvMFrVZdUnfTU2tCXkGyPnsdOKo97nfGn6gIcvNc7+QG/mQtTp/pmUtHY9wY5PHMVnmovbOLYa3/msXQK0QbwISjJRt/tYJVxY22WxUBfs0B0ozWp/rnQejx71z779mLxPed4FHMLdO0nsPSjPfocOtXFQrkxowGsK19ctPAng4aCZ1SAp723tF7tX9NEdF2TZtB+dC5Yfa/WvfAJVc1i+1hTxe3Atd1fz3rcXJON7K6d5x7q3sngJUHAdc5tFv6vcSrxtHaqD/zye36yfXxuT46WBxHDCMjYMBmGsBccO8mYwgiZIUYIIVYWbRSNTOVEGyIoR5SVR4D3CFwfIACQMoJoQBTucbTZwkLNnj4+gNc3r9AjAPmErChARERJS14cf0CL65v8ODhOe7fvwtOBft5RimDAEjT4IW+Xk/TNAf3t/utnq+uf/rPOjlE/U21K7692zbISQC6EgCrJhUO1Jxos1mUgrjvDCYo6OFVgHIoSAdG3hJKKjA1omk6Y5Ai8ynPig0N0BdkKmrNibK+TAgRiINmqWPAUmG3cg3SN+YMEKMU0WYtplV0zNoSFIQQVMuekTlVEMpEAggUOIRA2EStr2jnBzOuXlxBwKmmNSdCygtK0sxkkFgsLgXLPMs8Bpm/gSWZT9FaZiVl7F/ewGIZpbMBgQrSzACkVmNOjMfP38Mv/sLP4bf+6T/Gz/+jB7h3b4M3v+/7sTu/wPd/7k08eG2Hz37uszi8LPg//+4v4Is/+mV87vOfxufe3AH7K3CxdO4MiRUU+krOQqCzid4S1da/hX44gdfotAMT0MACpad6Kgj9QNdmXhYs+6XVFswFwA7bzTmGIWBJCZwDKEyIQ4Amx+0xB7imCpd42dhZlGzvh6ixz1CBgcTWkHMWN9kSJa5GtbJEwNnZiN3ZDuM04uXVFXLKwNkO23FEyBkMSXRT9JRbSpJMvJtJXKAzg4ZBBBFNvU8EcVuOmoCEGIgag1MY0FqUzMfCExjdgUyaHa9ZzNS1zoTZnqXIvNcvVi6gZuGBWyv3sacFH4TSBBkCa/IEL5ybCLZmLPa9CQmOfqzEQgcvVIDoOtOD4aD9L1w6/lnvcv21eTIFVM1+U61C1M9NB8L9B+oUQ6cv954TVy0rYveo4Fe9PVi9A/l4QSxTuNUvtGGuhfG194PdsQYHdmYVy67ixrDCp/1nmz79GCDKVlIhvib18IATQCQpCACjEOqtkVWxZkvHbs6ofUHad1r1mZyAXk9jQltPE5ZJ5rK6Obq2iFpNUetaI3sDUk6AddOlUKvNey2xshLmV+vieXIFJQz3nqJHkgNp0LO2A2ps/1+vkrMkPNL5XrsHd22WNj9w02ZfePrx7s/yT8vIugZJvKJPUsDvIW3QUla+Unun/FAgwQCYNCaSzLImYRgpNauklPbgmrugAhEDxBxgJVRsLBGDyiNBlYy50kwFkdWfWWiSSWIl11lBS2GEAf042ZK6uLnhlruio1x286xr4bZE47K2N6g975PdNKTsLI8sMotD0d11ZHBRQ0p9HSrb6hW4cG6o7NyHub3KZOHblC9gl1uh7gHnburYM/tz65PrY3d9ZLAoAuigm1QyK+02G8QoQm1AQGJIdqQYGp2jMWnR+ADwh8It6KltLnEFTPuEd995H1dv7/EDVwfcuXcH0ziCszC4EE3UWfDtt9/HkhLu3ruDOBISH5CWdrC1A6MAcCmv1/2h1eGxmo9WeRXHQhrQMrn1chJk49++yVc31/lo37Ud1x1cdQNT7bv4WaAKWMzQepkS2w8AVoNQXJ60PArZYYbaZrXOcSdLiFtKYYkNcUyinrWAHmSSJCWQxYpx+9cNt4KG0NBGsENM62Q1JixlOgwgNWZfpIYWWF1Q9HAosjBN8yqMN6Xi5pvAISqD1aQQqWDGoVrmSNsrpUjMZmQsKaMUYJ4XPH3+HN9973189523cOcs4rU738R4vsO/9uUfxOufuY+bG2D/kvCrv/p7oM3riLv7ePTaJTY86PoUcC0e34Txzr3Lrf1xbTylzxNa7eOrp/li7VFAACGDUJaMeZ9BNKigMyPEATkD816s1MzqKmgJZFgsrU06ZQdF+pgkL2zJWgYV2+XvwdxySkZOqdaoGuKAEKQ2JGkyJtMKEySZ0jhJiYzrm2vN2hcBVkUHQj04h9AE5YKMSAUUGRRUmVL9skIn/J5KWl8TetjgKiAy1yLW+omrGfBgZ80P2P1j7Ke7hbp/joDTihfVe52wepuymruX+udP8EZbWyf4tzbsa7r1XUf9W0m/FVS57zph5uh5oFqj/LNOCO5jffTvlUuwdfhEqFj/Pjf29pWLRev6aHz8RFNrYLPi9bW3ts/1bPDg+dYpXi8K2rzamcUdAbuxdX1z4zQh0m5cD5PX8LAHHH4sLWawvaKs+0saq6702x2R3TvW5zqtibHd64VgPnVKt3fbtXbxXN/DNhU6P8Y5aLXP5T5PmdpmKS0mzYFDc7sEteRN5sraQJQBKjdnbO6+7T3CaRvQbfe6fugPkqHVgzcZHAE1wyrbN+Z/6PdxCOoVoG2QO/N1fxCbB1gAgoVkWFIqB/ptLDaHRDU2Xko2lQZc2spoH9u7j+WpUsFPaUNEYM1c7hbJ+tWfbRWF6euanNnWnirPouqe2c4V62WlGfY7G3VPndrl5Ppo60+u26xdO7ZKN17qrZcGMvskarczcFkfLRGzmhPPuz5Bix/f6yODxTgEhJAxHw5YloIQgSePb/Do9bsYhwEUCkIk5ApBFCBqTZ7qGgGAuMihoPEPQU0Qza0Eja8ACOMOu0+/ge/89nv4ez/9a7iz2+JHvvgZvHh6je20AJRwKBEDM95669v4m//d38aD+3fw7/+HP4bP/6uv47OvP8SjR2eSkCSJr/swjrDMriLAicVjHEcFI23sJtw0QKnfHVkm0f/N7FId23OWxqHXEvaaZNnOnbURgLlZNAHDuzFRnbMWOF8QSVPnc5D/ZcLZhvGpuyMe3xtAU0DAiP2yiAsiCR5bloRlmcUibAeYvjqGja6h9rswcp6RElW5uGSGpE/WxPYKvC4vttjttmIlUi7cUj5T1ZqFGJHSgiXNkngoRJkzSa1VLQS5SF2tlHNNDGHzLJm0iwS6k1gKiQWsUrDalxIvWaxYvAqxHDKIgGkcACaUsoCXBURBraIkyYJAuN4/BcIA3AgdbTcRr33mEhQHXJ5f4GI34RwJz19c4yu/8lvY7xf8ffyMFOSOO/zmz/8DfOO3fwlf+/JfxGc+/Rl86UtfwP27O9zZTghcxPrCBUOMgPbTDiyL0fIHuV1y0JqF0R+IlaLkPi1CbfQYiZDVIlvkBkzbEXfuTnjxMqGkjJRm0Jhw78EG48Dg5zfgFwsoFC19wUBBLZ2RixylzV24WeNEMQDlCYzz83OQuimnJQNIODs70+8YNzcSC1lKEYUQEbKWPIkRmMYJmCRetj2lRWAAACAASURBVJSkcxG1PmaomvoYJfPhNA4N2LJYa2McEIIAdxRGqFZELVMcpFxHqGN69WWCDREhrkBAd19Yuya635oUJ3vFYxkiTe4S6t0C+nt3ShPjQGQhutbBuhZdn6HgqPIU+TcCjn8CBqQNZDRvDB0F91YoG0Mo677Zz5rIwQRSagKQd/Wi1d8d9HDzbAqQ9h13KP9ICAOhKVpkzqyNCMBAM9f7+7GtvpBb8kqtwGi17ryQSP3ZIG9fgxDjXXqfWx+RIUs3N/Z08/Do15sIkowC0IQw2hL302D1cyXfWHN5b/TcxmG0mBX4sVmRpQPCqyveVFHbu092CZnM9XA1syHUuFdvyfGKCknw2UOFKq7W+ohy1cyhROIC66Ts/jw2uherSVlZpro+qgQuVlDnSohW09M8KNjmRp8Lw1BjBMVVvtFQ1Fp4TaFrMoH0sAOxSmPSRKkAxN4lOlTnvnk0ClRr1jopCbvxt/dB9mMXN9n/7p8oKg90rVh5D2YgW5gMKp14MMM6xupSjSolGSbTysG2X4ICUnnY5FRrxZKdASJH+LkMoVndDNbVjKK6lQurEiOs6IHU5aYCON0HVWtIaMBSxs7afo1fRJMjS9D14Ar16yjamd5qOXrA1il7dFOYFfeUMcdieO3g6dyb3boCUsJM8ptA94/1sY6g3v3J9fG8PnrpDBahmgi4uTlgf7jB2995gss7Zzg/3+HsfMA4Rjx5voAhWnMhCQdilIkRBRR1aBG3HA+UvFAhW5y54M3v/z688f1vY3MRcHW9x2/87h/jZr7BDqL5SUiIFLHMBdMU8PL6JX72Z/9fTL+8w099+Qv4q3/tx/BDX/wBvHz5Ao8fP0YIhBgGmBpFy72h5IQaJ2Y9MqEEfgM1wcMY9Fr+6w4XPXxP3XsaLPZMxuuL1xt5rRnz7QQQMkGfDggI2E0D7t+7wKMHd3BgwrwABUXrVGlCFwXV0zjWNrkULGUBFwJRxDhKuYi0ZJR58YsMIo1F1FVmNjengCFGEEltppyL1tEDhhhU40Wa+TKDSsEwjBgHjTFVt1Ap8VNws7/BkjLGYdCDMMG0dWMkFShVmNAYREm1LTpKyWXD1ZIGBOSiVlHSmo/mFhsHWUNoTKe5FuYFzKMe/ATOwDIXgGfkMSGe7fDw4TkuLm9wJx0ARKQDY1ky5lQwP3+Gd558iO+89Ta2F2f445/4S/jxf/OH8RM/+SVQBHjZAzFKIhp1o4ncu0tXwQ4dYYnAcURPPW2RJa2o88JemgIAzIeMm6uswF6SJYVIePlij3GYkOaAYYyYsJF5KIzd7gzjVFByUXcqSCZbU4YACGOUQyrn1rcqQLX9EaImymIgDAPCkoUfaeG/wzyDS8bF+QXOdttqFWY9tFPK1d2JQsF2O2LcxJo8ggBDRZo9ONT7OWQB6TVhQQNk7b+rmV2vhVftrkGOXoVZa29JSybgNXumaaDbvLTmuZWyUYWHWdoNnJbaB7XC196Wvn/aXyLhHYBzezfk4M1r9Z0uCQf1PL2jKf8dOWUU97NZBWQyV7ljQdx/1+Sr4zbqHrBhcBtC5J6/6ozIWpgAiOPkOVwBOfU7arWutqJF+xoUeIIMzANd5hnltdZ/GXvLtmpniLnIr8dqYLijy65GY7/WQf/TSuAYgdm51dKN2JQ3jtLT4Ppcs5ky0NsWSRsyQVLnrTsC9TuuZ6c8Q6VovTcCViRB1NeC610urfPOwuxkZQ/KeNWmH6N075jP+ns7MFa/a0CUSGrEGjHa91jRLtxYuu+tT6WtTFW2V2CgfQqEUDxAcHKCL6uhvIFRFBBSG6ttbQPtFXTIt924jQ5Wck6lS260wAwBFa2xNrMGQq09p7Uo9T3spkLPFef90PeTqpKVLOymrHgft/kUi6We6V654mi2t+G/2hPgqA12e55RFRcd+CZqyg6fwdbeYT1xtOJ5Jq/ev7Yy2z1c2nfra31OeevzWllUgab9Dr9Fyb376DWfXB+z66ODxRmIlwPCSDi/eIBAIx7ee4Dd+QZzvsHvfP0DPHn6Ej/+Ez+MeTlgOYhWBmEBqGAYI2IcdUMwBopAYURMYEpgSIrkXDI28VxF8oDtBrg4z/jZn/tl/NZvfAucEi4uCPP1ASEX5HABUELAjMIZGxpqTMhyc4391Uv8zP/1Hn7+l7+G//a/+uv44o98Hl/60g/h97/+R8icMU4WlxUx0ABkVydSfclzknqDYxCf+MwHjHGLFGzTeGZt1rXGaG0sgDtQiTRusjHZUAUCsb6YFyap1ZNVKDsKIicAZK4YXN3xiALKEiV7Z1jAMSFrofcHm4IHG8a7+4KSF0yj1rGrYCsCPGIctthspKTIfr/Hcp0QiTEMA8YhqIte0jlUUYNINXOaoVXnpRSu2XQDFWRmlJwRh6H1GwBzwDgMWOYE5oCkNRvHKEoGzuJ+OAwDxrjBcrgBDyYI6RoQcPfOfYAL0jKjgLEFUIjx7OpKVHKQLGRgY/kFRQr+YUji+pNZM+jGAeXQ4uhAkvQloCDQVg8cY5yExAIplyIxs4eckaeAyxCxmSLi/Q0WBuZ8DfAZCBHLYcHN/oB3v/FNvPxLPwqaIgIvKDOBCmHAhBy5E1LhDw9qBxGr305LNiM3dIKQHTCcq+CWAiPmhIgBGQNAIxKAq6fXeP+DGUyMOA4YeYvvu38HL25mpHKFGAJ22y12OwYvBEbSkjYRPGgWtLofZP4oFBAGMFjL72St70cIFBEHKZkSg6wBUUBKC4gXxFBAuk9yyXh5c4OXVwnndy5BzJLhkoGcGcRRrJ04AEgARoRomdq4CnEF6qIdZO9nFMQwIGJEIcmcGoJmSwaDtPAyrzLqVUzFjg8QAHU18oKZXwqx1jVhv/IUXd9CWtg7mIsP6j3kLIpN5GJkAwfGTOxvA6OVfzSpWWpJemFUE3FwsyjaZdp0SZ5l83HsmGvCoXfzquNDnbyjdovuq6B8NRfhxdnS88O32QtKICeImnDciL/FL9resJ4xS8urDN7deHRAmke2vdtdob0aQCvCLcsrFFfYJZ0i8wJwiUJMMOU2v5KQzAn8buxV59WdNyvAsQK35lVBgTCiCcc+0Y0pHNauZOYCGHUvtPiyNtVU0BQVtidicyMEkeP99p3MeVHlkreMFBJ3xVx8FmcHlrqFQpdR1sbP4Aq2q5ufn3edlwZGyG2flTWFjXt0r2g0aCBxiIgg5JwRmLEZJBN5KbnuRVKLVgNCVGmcqdHoGtDWsxbQrNBGH7bd7XPjLcwMjlRLsdham94iKO0FBJTA4KLhI2Q8pD1Tcu77HEz+aSISr5SA4m4McCi1P/JvYwVsrrarsXreyax7KxTl+eUIFAsAy/XstvADlAKEgLIs9X7AFHeEnFm8l5h1nhpQMtfTOtd65pRSwCXrWawlsZSfccmVD4sltc56tSwbUGzjJBCVNqcG+qD9r/TfEsYJfZeatRQI2n6BZFpfeXNx4z1S37nRYJ1H2xu50d6pkkHeLdiuml268noHcj+5PpbXRy+dQQXzHhjGgO2diIEiDtcjLu+cYZ9nvPvec3z1q+/gL//4v4G7FxPmswNyITAiirmzIQrz0NSXhcRtr+QMCozdZkKMO9y83EOIO2AuEd/8znv4tV99C2996ymAgpKF+CMRAi3V5D8OI4QZGSMjBGKMY8SyLPjZX/oKvv3BE3zpyz+Iz//APbVKSUmNwFJQ3TSgjFBBRIySSTTDXBQ28lmD97oMk1ARoh7y60DgJlyQCpCwp0lcH60YPVFUAcLuD0AtCl6bw7EogyqQSE0f6V8gY0iExMBcGLmIls606+Yyy8pWQgxasw51TGaJEbDL9f0KVRtD0LWudlkTCoK6qUIEIAuItpTfTUNKKjz7cRmj1INJM2i66sYKknRuneAxDDKfUeunmZY0xojNOIgwbxp9ZDAFzEkE5ZKzTaouK1d6SCosCOAWYUvcoxhcMg7zjKdXAxICNilhHBOmbQBFqXVJIAwhgEbJMvx9b97Haw8uxBrCAlAQ2Gn+paapF5K4nyRPHN3nNRNnkCRqKQASA5sBhRiRBgStn2ruv+OGMS8ZJRfMKSMvezAyQiQAEfOScHOzx2acsNlEHOYDcpK9eXl5prQsh1V0lg4RNkWQQgjYv3gJUMBZ2CEOAblkzIeEQddomjaIcRS9jg5HRVUdU9siQWt2BSIgy9cUqLlrOjAWo1PeQIQFib80YV7W3wT1Btb8jHoQ5sGgWdn/5Mtb1Pzl91V1PSZzU7T1bHe4Bpt1y7dQhcfTF3NN99XqIDqB9fg9OOZ3XpDvBHb3ofI3f4vyACko53sF42XrTJJHcsftQ8O6O/5atw060RS3OakclsyK2Y/x1G70tcfLqY6szoxTgzllBVhTgoqaXbtHa67gMawG6ltfAyTfh9P9WN9zYr5PggB09Hxbe3/S1fZQ+3wkwJJP6GFr2PrZFBmmbPMr6XaaKtpWg2l3U7v/aGz6Uh8KLJ5Xa/BJXZs2gLra6711zD4gZ+tqfArYesO2G48DbtXV2WUut/EYaDCg4Oe/3sRAP3fmMty7PzbFm58/PwqWJHPUf+fnam3t8t9382i0v1LAk8odVRlWp7a9d8152d5lIE9lMPaDcZ/rLJjiRWUamcN+Te3sx+qZ9XW8t/077X9teS3Du50RvmenLOr2MOHVPMH+PaJL0Rqc7Psn18fr+shg8VMPdhi3ARyAr3792/iDb7yN733vBq89OgMNhN/+nXfwe19/D//gZ76Cz37+IR58ijCMEZfn9zCOI8ZRapONQ8RmuwUAUIxgSKH0UhLe+96HePak4Id/7HO4uTpgSQmbsxE3+SV+52sfYH9zg20UsFhYXBmRM4TpuPqDLBoVCoQ4EAYKKLng//mnX8dXf/8tPPi5r+C//C/+E7z55l0EBpb5gM12J/s7iuuR+KBLsHRBru2BCCUQgIyI5ue+PpSFCVJlLk6ErAyy2zKBJReNaeVYmAdRAILEfXHVUqEJWNa+uXMRYO4KEpvHyoTauzMGPFsYTw8FKUGyhOoNkizGsmex+OejT5wiZ4x837m+QaxGFQzDGK5ZWyWGcVkOSLkoo6IaT2JlOoIydHPvGmLAOA4YYwSWggIt0q59pVDArBpxnaB6+AZo9jUGRcm+OZK411mikYEI59tRD0PRNCJnIES8vNljWRJQWMvHmAsMKtPb72cBzUEA3LIkUGLESTSCJSWkJSIzkDjgkBLy/gpDHHB3G7GkBYUTEpLUYouEzVaSSQERJY4AFQSta0TaTX9Vxu6Fc5jGkJ0Fxh1wOr95yAhpALFalAIhI0EsxgHADjQAu7OI5XlCLuJCe319wDgM2GxFgZEWxvWLhHgZMW1GLOmAwyGBmHHnzrnJXfUQljVUOBIJIQwYxxFPHz8DM7DbbhFjxGFZ8Oz5c5xfnGE3TdjudmAG0lJkbThjsxmFlnLGzc0eAQHjOCIEYF4EtBYuGIaIUoDDfo9cEs52Z6JEYEbQbKg5i4u8WJRjLTtgYK1Aa/OpUHAslDmByANGrIUatxp1afz6KQn7F7B7uDvMV13QeY1ogLy2pcJIEzYZoFCtcNKWb1DBte75QkBQV9xCjRANTFocVyc4rSXxWo+vf88RRoJq68GImszKmluDVwPxx8DOucnVho+laS9XBaKViapdZu30HLwKhLZ+OBbcLOrO+GUwxR+3JBrGT+uzOvb1xJCbz869Dep+SHUpYFQm3I6P5kjCE0xYZDWoeqFdFSReUK79abGqp4RMOY6otuP/7dPONitfR/snMsA2qnXCM9p8WZPe6mFAwQuwogRtFsv1epnFvndlbH3trnXdQgfkGjhogrrQh1rHbS2BWnsuSJ7u+j77X6eH0cYcdmt9WAGpRvfoYhNJZQpWOrSaegSWMGTdslU5pR0mkISErMbv40f9ejK3eNeiXhGWoROAFnj3o5A9xqpM9UsjiWsgFmvdS9Y/kZ96mvE0YBY5cWt281Cfkb4JXZgrv+0fA0kyXwauGgRT8gvGH6klYKoDdXuDxKqb0dbeRLsmU0EBZ1vFY35mX+sO7/iBB3W0egL1ezuDHIkfg+7CKiO1fvmxmMzm+1VlDl1flUbrGrxKWfnJ9ed7fXTL4pwRLwuuloKvff0d/Pqv/yEeP77B2fmIcRyw30uc16/8kz/AZ99/iE9/dofdZsJr965xttvg4kzc73bbEXfvX4BCwBgjQhgx3ZmQS8E777yPf/5H1/jJv/JF5LkgpYwhBNy7d4ntEJAjpDRDJgEABDAHEJVae9DSk0vJAdQ6a1yA3dkWh5s9/uB7T/H733gb9+6d4/5lVBcEYdKZxLktQEBojkON7xEmRWBIwXrLOrbegPXq5feOoVelpf5AQBXWYxBmWKyAbKfpO34X2f/V9lRbpkIBqdpQylowUil4MTNe7BMYUdwtFag1YCiMISsYD0TiDorGGHJKkjenuENQwVpXM75Kw+KiMM+LpKDWO3LS39RTLqqbnQllFNWKqYeUMPAWw2YHXXdg2vw6hleZVFAhqrryKejUPocgSgIE0mQvAMWAzWZU+awoYJQDZlkKiDLiIJFR5VB0XgScDoEwaj+GEFFKQslZD4kRKRcccsIhLyAkvPu9Z3jx4qDCoMT0icOKWt8AMNJJbXk3306A8wXNya2HMP4FJRKiWnblvRkMy2Q61Hkyy7ZZG8XXroAVUMQ4NM2igkGCCfFyRAR3AHk3mG48ftMQIWn2UxN6DIewAp9pHBHCAC6M5XAA0Siuq4GwLAuWOWGIA2gUxdHhcEBKCzbTBuM4aKr20vYzmcLFHbB13nqgcPpqh6Zv4vRdNre4ZX/3f5gwsRKtTj8j0nr/vWc+fnhkgOZEPzshwIOX1kAhtWDqnuzyLTpalL9VYF+DY6/V6gaNniZw+/hp/fkk/yR05pwT8tytCnBjFLU9GacfrwHZro8mdJHzxFiRUtPKG+iAZrpcd+42IUv64M8Cm7t1YpITj9VnyL1KX9jxmmYFIn9La2v1ZwXyr+RZvWDv2zi5LzwwqUCIT+619s7Tc3BkBekgwJ/uutUS011NmdqeA4B2RhmQsT1jCtA1LDHLZ0Df0zV3kqWtO1f352rMeqZ7TiFygx2Wbm3slkDt7Le3aDt+TrzVXxQYBuzarRYT3QFzcl5bpZ9TY2snl7vjaf2arOmrvsvNjXXUV5GyO9zHFbmTjkNW0GpVFk+jK/BMds7UtbF952Q5nYeexqEKTJ3zSha30Fx3trpngNqXVzzd6ITsHO/X2N3Y9no97f2s6TdGz3+27fXJ9S/5+shg8ed//Rs4/9SIDx7f4CtfewdPnmZQJNzsE25uMlAituOAD549x/UfHvDWtyVOaDvtBBTGgmkkbHYRDx7cwRhHbKaMcdzg4Wt3EALjD//wXXzznz3Hj/7EF3B9/RLpcMC02eDl9R7LMgOFEMKkFJjAyKAhKWCgfpNBY5AgQmDOjE2RYtoRkoBk2k147fU7uL66wdX1guubPYa4Q+EEBjBMERdnEy7uXKBkxvWLBcuckSGFySVJj7mqsW5K7UeQeKsuCYHj4p0V0gDLEAUgxYgYCMRZs4lp/cJOrdiErPo/uPaVExdmKQcXJBtkpID9fMCHz27wwfM9LjYTaCAcDrNYToJwnlKkzf1+L2UcUJASI6WCEDfIXMRqBIk14wwMcQBIco6Zm585dcIxzbwsKBTrMKrrimacKHKiIOcicSmZkRep4yegVjR22Q49y5RqABAAQ6yYBMv2qXA/BFAcwJy0rhNhDAFhHLWmU67rhwpkuMayyTDMpixZP4cYxFVV3ZJjlOQ/0ZImMXC9JFzPB5ztxC17GCN204S7lztstgU3+xnP9gmpBHzn3Wd4/ORK3Nx0PY6FaQdGsBKqnCxPRA4kGv2EBnwIoEJVORI5g8IGmUYgQypGcEZJjMM+o2a1DLK6AuCovlqaD07YkR/YCQLmbgyg1ZSCWERSSihZlCSWettie7kITSxLkniPJBrhQIxhjBgnUbSEoGUxQkCMEk+VqQFMCpLIiXKGCWmlFGSNu7FSLHY4drItufk7WWwbdV1qEhMAx3f2D9VEG52EfdsDx2C19dEJ2SbQw93OJ54mgiUVevUB7lCUfgwINUuhxPySghtSpU/zSgiVDzAKhJZqVl8+NUdUkUZNqV/7yy2mcKVpb8LbyptjfXXZTvvlfNV69Y6xdLxWzDV5jo+pLA4Z9jRRD4W2n7mNwf7tazw26Vvu7wX0egsXVCuou5e65qkKlIC4/pIDCAZmvHBv51dnvVAA7oVh/0wPoLwFdQ2eji0Ot7meeiHc+lWBUTcnx33w7nLwALu23e5buzWeBoM2oSuwBAUGBqluGUsD38YnzaKLRvduzOtnTwEhALBwC/1DSZYcHegircE8r9x0WeWZmq5ePltZrG7Sap8qeTXORB6UyrydAtrdd+7vbk+vlUvcaGDtDtm5ddbPjr6hsocu4al+rPfaWulVKpA65tG1LfUCszlrSn1vgT1+R8WH0pDvkayp1TFXBlJHSBaf6FQG1PfOd3ktaqznQAwrTi5xQ22u5M299dS50tboE8T4cb0+Mlj8W//HbyFOYimhlDCGhHFgFArIpWCZJSBozAHL84z0HAAYz/DYEWEEOGDJ3xF5I5AcqnESmioLmAn/zf/4d2DWolACqDD2816tbVlj70agRCBIAXNL/59Lae5tLOCmFCDQgGV/QOCIy90Zfvrv/QJ+67e/jv/g3/0yPv+ZN/CjX/48Lj8/4GUm5CRWkqsXj/Gdt76Ov/8//yYePnodf+0//nfwxpsP8fjdl9hOG5QhqhWqVFfKqC6jxjNE0DUXB5mT9VlhAv08v8A4RszXB6SUME5nuLhzB0mzhorgKTFYdkn7gNeS10OHgRDF/TdnBgohMiEVxtW84HopONtAgDhLYGLJi25iyW7LJVVXDxAQBnX/hQmiMldS53IANEG1XWZhYBUOSC04OSUgaKKCnHsBxwXHT8OIojFrEitpgrwyWxJXYyoKMKDZNTnj5YsXwjRN8KKAOEjQOjPV8hkZBfvDjYwjSOZNAEApSMp0S2HsD4cmbJFkbBWBqCAoQwYRIkUAEWlJ2N09w6dee4DzzTW+8a138d41gxAx0IhnYcb1xR7QfTDEEbuwwXcP15iXBWxa3XCQhBAYa3bKoaub0IS3XoYhx/zXTFt+kDkcgTAAYUQ5HIRuxog8EHLMSLRHyQOGMGAON+CSkTkhZ6mBGmiLgIjEM3K5AeexgrolJQwUkJcEsMQmAowlL8hLrhk7Q9CsxgzcvXcPIQQJpSwZAwXcubjEECU76cvrl7i52QMccPfuPYzbAcMg9C77sFkrjQpzZkybiGkYxTWZZc8W3bussbvmciTCORBiBEhApSTWaImFyKT6EwDeSfzitkr+B7j7+lObu799JlRUoa4mRTgtc7rlFy+JU2KLgUm5LfhOV0GiHfaObLj7C0QkLrlg62XrcFA7uJYkKUQtw6garb2LLcO3rX3jlaDihSQFG+sEJm0FTWHonvUCst3fv7K711++py1+lOvcBccnG4AU+7zwYihvcuuq/Qjo+18zp1oQufu9i6k0QZfgPDxI3QJZYp31RjsmmiOn67+CPQu1ALeMjM0NzU0CHYMom/kGeNocNR7kp7cBO9/WEdhZKQP8taZrIuoyd6ICJR8IYvHwOPrOwHGredfoz4Ofrn9o1kB5pCnDWr9DpY+uFm4FtjZPxsfteaCWE/HWHba5brOQs4z3GMj6/dqtSre/q/useoNY3GS1Kul5TY4ImLlqT9jAo9uzUmait7Cbu3OTi7irGUlEmiG9eZxIdSLbCwSrSd+SPvUx1R4gNrfjPhlLncMAcNF4Y+VPDRQ7a6S9R895cvTLlQ5a2yaX2viMHkQ0cwC5onFZjsLc07nxLep54RHNGPjUOFQDjIFISgu7MzHqfFruiAoeXZK+NZ9fz2elPX9+OV5lXSWmLga3Us8xi/3k+hhdHxks5uUAVuFwClLsWjaOLH0JRTLUWQreYIeyxkFpNkFm1uxoUsC8gMEZIAQMgTGOAVdPrxv4YUltPm4CMnyq8oIQza9fNzUJcMlZslGFKPX5MosFgllSVY/jgOcvXuCtbxb8+maDb73xHp4/f45Hr19gOptAw4jXXruH58+f44/eeg9f/do7eO21GT/1V2bsvrDDsN0hQ94hyTNQrRFEjgmRZyC9hcJ/No170LGVNOPm6iWWKeH+g/sy/1pP0OvKydrp2m1WRmEipRaptTp2FCPiKFYXExrr4cn9Rhfm2w4HOmIMVdYAkOthVNPoK5OxBN2DJg2JTtiwebOU55XJ1P844Ta0d5v2kCDZVaV/YvMrNhZWYYjUGrno2kBcQkFCasshVbdlyzomh1LWWkystfwstTYBueh7AUuO06JXZSKGYcB2s8HZLiNA4zIN0IaMlzcM8T4mDMQYCiEME5acRSS1eqR1/k2YcJNT11oZcJ09J7Cp0GFxZ7pj9LeAzAUl7REpatxuqm5rDLHIJytKBRG9AoUuZhUELWIv75RYQN0bYLT0/+pSs1JwQOl7GIeqXeWSEShgO25AUfvPxR2+4q59mDNQCOMYMU0TGAHDEEHEGOKAcdKMipA9No4jzCtAOim1rKqiRfeVKQDa5TZc/Z77n/XyQr0JMMKncHR/dUbqM13U07SCniqI/xku6unArH92nRbAb3mP0VHty/qZ9VMiXBnA9darosC0f4hWT/OJb9f39lYv65sJd5VJVtn4dGvde18pxXjXsePmquLGdpoHB53fHPVg1uZDf7eQvuqd0b9EyFbHVTyIoZZkzEAnVmSFKtPpH9RCF9a5bL0wugYztWcnvvfPVwulx5BVzuz52JFFaT3sfqFhAnPzAhE+o7YiWJyaH4s9ysWtTdfn/t5Tls763WrIdZ+v2II5H/eumR6gHrffWz/du06QmP3BMQAAIABJREFU8PEeWNNie/54G5DKSMeO6J1ljdBlf7ZnDTDrUSuv8nLQLXRh960B+G3vP2YTLLH9/nnuPx4rH9r6mgLa4ij1B2k3oAJdA8z+5VTpDo3eSN+6Wstjy3hrz9jzsdVb2zT55dScdaDOKV/a5loNvA3h6BjyvHhFB2xdtvOQUQFpfbDjCboH7F3U2vDXbR4Dn1x//tdHBosXuwljYJTMKDkANKBwBhYhjDEExLAgLZJ211IVjsMWQ5zA4UYLZDOmcZJYo+KZS5GU+cy4nAJCEC1/YSByROGIOS9gBYmFi6beBxgFlpF4mjZY5j1yyZg2hDiOIEpgLsgxg0hqCN3ZjOCXB3z1N/8ZvhKAf/jz/wTbzRYP72+x2Q544/seIaWEt7/zPp48L3jy9EP84i/+Pg4p4Ie++KYkVZmBtCzY72/ALO6Ipi2z4PlcCqjuMqA7GEPzQycAcXeJEAlnIHAJWJYMKqIpCgVq6Wgpm83CRg4xHjEmygBPqs3LyEy4d3kXjx5c4nuXG1AqmIYAKkEyfqqgnDVGLIRY9zerwF/r0hHV2MRcCpa0gEgzFRZLkGO1EyHCzTQiDhHnmuTItF92oNhhRURIqWBZFnUdJdAwwFwTzZWnMCPlghgjSsejzY3RH7QCHgOJ9a+Vyysoaenq0DFlXUvJuuvdg+zoB0ue3xDGlk6cGYCAUAZwWGa8vLnGEIHMA2KEiuoZIAHROUmJjWV/wBA2+M//xt/AD/7g6wAncGaEMqGo604sEje7Tr7RCUN8i4jtTgSLLSnMCNu7ePH4Lbz44FvI1xH3f+AvYrebQIW1hMaEvMzY///svduvfUt23/UZVXOutS+/27n3Od2dTttu9wVicJAiDARCIh4IKBIgJKREiP+EJ5QHJP4OyANCQJQgIRSI4kAUHBu33XGM3e3udJ929+lz+f1+e++11pxVg4cxRlXNtffPjo6Dch7O7P6dvfdac9asy6hR4zuudwuSJ7Iocy48fTIhqJWxSCvznHj85BH7aY9I5fryiro3xVCA6eouS2bFzaQ8u0DYQbjRcEK1mH5AhN1uRnKiFKOxacpEfch1Wbm5eUk5Vd559y2uH11ii2tJbXb7C3LacVxOrGXhcr/nYr9H59kBpWxzbbggkSSZO/iw9CFbZheaYLACjWvgV3IabUK7bIFagAVtwOFhkDIm12mZXP3e82yaASDsDrNEbpLkuKBSz91otfcv9mB7yyDYpAfkkA1wVMs4PJatCM+qcMVMYgojlYgbHoQcho9C8A7BDB3wdAB7o+Uti/UXpj7v7bsmFPk7u4bFPx73+cNgtd2RziPQXgE05aE/7md1HS3IsYypPROmPTWLo/Q1atluN/QVT+tm+ODRBk0hu22LKCguQ2jHYFGwLnahNRrfcMgz8ChDBzaWmjNhsSlvRgH0FQJlF+Bj/WXT75Bo7UzRsdXNmsmWcAaA5vurJX66H6c5lgnYWkVTf6fTaHcxHyyF5/0Y53MD0h7Yq3QQOPbtVcA2FKwhjjRZH/+7WcH0QaBa29l71kdXNve0JTE3HVDEHuvv3/Z1TErTLGDSt69GzKKaRVKktnPOnMrC0mcvNjrQDd8zd1k2CYUiD0KwgAZsI8u7eNvDntS6ZSE2l43hYhlutlb586Q79C74YULLwBosSmOFRcxauFlTnJ/S7o7/anNfDrdnp4/kPiCD9S/lmFvv+rBf+pXaXg0erO2tZ3xhoBcd0WF0eDwbgx4+vz6T16e3LOpMqosLANUJOoR7s4AkgTonai1YpQElqwGMKc9mGVS3LFYl6WR+8LqwaqVgcXXoypzVkshUARVy2pG1WB282ol08np+lWqZxNTr46i7hxYXVFXRZHW6yrrwOF+zS0qeZ1aUD2+O/PSjF3z//Q/Jmsj/8J9aPUGEd957xCc3C//n//0dXp4O/Nwv/kVee+MR8/U1dzc3HA63lLKgZHZR0sAP2ZTkPHFeu2wDBmBUdHdB0crjJ8+4vHrE7Ysb1sUL16t4qRBhudfIA4cJzsiSW9u0UmthBa6vr3j66JpHVzsOLw7Mc4aSzFrqde/WurKWyuyJZIJ7GfAzjpbyZMl4VFEp1OVkArymdgiFIFQdRxW1Od3NRortsH1AaJDjkWW1Yug5J697ZMXYvZgYZVlY1oUsk5cB8XpJqky5C0MhQvX6ZZ3ddddWo2pLXW5+cha/k5qwC+3VnjkOpPYophhnrRWqubd+8tIyjZYqZM8AUrWgUpG0N2PDWilV2F9d8J/953+V5fBD5O771AJZZrNgqscMaoapC8nnLngx7+kBjWYXXhzsqCK7a9bTiduf/YiPf/AJj15/l/nyHRLCrInMRKpLA8JJYEoz07xz6/oJxAD7Pl1Z9mEXbJPXCKh1cXDVjjAkJc9OarGIoB432q2GRt/qigtphbOnydJQhUBX1sLhcHIrJqxr8ZpWGP177cRwb49izHG4NVchCf2/vz8lhPXe3graqX/MYRdAtG4/bGsEdDA3Crx+jcLO2IYBZXv7K5J2+qsSSfu42Ny/fU8by32stG2z/efs3vh74BchcMVXRv6y4Sne0fMuPTweRu35Qzc0hngmi0vv1x8TJ9MFwYegRRtWe0+/P9aTVmMR+hraedkfTvd4tgzKgF4XRlrbI6jZumuaEPcwLWze0qRiF4YVE/4fuoInDuWdRmvpBiSxgXhtbR9yKeXsnvNXhiv5q65zq1sDrBvAFMqn8WWjK1xqbZl3SqerJGMmUqz8VO281Kbl1S6zrY/2wf3+D+86b0PPePYIrpoGZWjbfKyGxHMPXPf6dL7P41mRJtON4LON1YX78/eIiLv2s0mi1KrexDqh90peDJPi8c8dZHVMJ20eGtDd9J0R6bWhnQOXZgkbgGuc/ecuqtZUhL2kPl2+dx7SB+kG/HTeocpmHu/NXbvTRnq+HTeKDo0x6PC8P6ndi+2hPo76iQZyRSAptdDo4byfrTxa0L92TrBpd+CFbUQDmG03n93y+fXZvD41WJzKHWvTn1SoK2pSI5bWH0QTMwuk5MlHlLIeuTke2e2mVqtPWckpcXsspKRMU2KSzPV+Ykozd7cY+KCgIixU8u6WWhQpisUQWRKLnV6w6orqYt8TMWexoSrTZNawXK5sMKlQ5cgtUMoBVHg8z7z5KFEXKxCvebUYqpJ4fmvZT3/0+9/je7/zXf7O//L3efONN/gP/sq3+NNf/TK/9K9+k6urC7SsHA8nSims64m1mBuiVV7W+xvFBedIBaPrHUkLL17ccvvihio7nr3xOofTwnFdqKm7nopGPSMwwYFBp+eMJBtQ1LoiQBKzxui6oMcjkyqvPX1Enip3twvMOyRlA/vO5FKyODMRWOvq8X5KzrnFkK2rJRzJKZtmS6W5Im5iUrxrtRbmeUepK+u6eHbUahrDZEBgnmcvbmuCrtY4SH3WzI+VXCampJzW0kRISZCnzMV+Bq2sJYor24l2dzp5AiKb+UmE/TwDpkxQEWadUCwDrFmxDbBqqebn71NdFe/jaBmbEFHmfaaUlefPP6GWyQTyk8/JnJFsSpRZQItwVEGWCw637yPrT9lpQmSiZKHmYtZqtbjfqrVZrQbO3+Lpkno6/jPg0QCYDqLTRz/g9dff4+nbX+Hmqz9g/+QZ+6wU9cQwCBevX3L1TLi7Kaxr5XA48vKDj8gp8+jRnnmXOSwHPvroltceX3P9+IJPPvmE4+nElDJvvfUatZjDgaIULbCuRp/tHDFg/sFPf0JKmddee8r+YuZwt3B7e8vFxQXTLvPk6WOExOm0UpaVqkbfVW2fr8sKSLPu1zqckoStTb3mpwmWkeAGGfgH6hlikysNzB1XFcKkbvJQBwn2irFUSQC27opNPM+wPufAZhDK1OmsBY1JCMhOhjJChBASBrGwKUgaZzB6IJQKlswpNYfH3pmIkR0eA5oynBEw5+YjHutpgK3U6tZIm8sNm4qUhvFRYL3hc9UAYEbnoQgpPk8WCti9NEKQrk1dHo3r2UQPQkxL33y+Hg/zMW3Lp60/bW5S6s+rUtzDIfstkSF47OvYJ1MiJG+3zyW9yUEA7+5zo/Wm96mPMcdzZ2saIHa0BMtwX3P5b8JfeLVsQWNz62uAna6EGV/pbQtiluVhXCIxPxLYwPb2A220PRCJPRpo3UrEqSUrE1MgDYJvGkDjaCVlfKcIbUnd+jP25x54IpJ3gJWGGvw2Naxw4snvRvfF+/G1jWX4GowKhPa79vQ5IgYe79NV79uoc9hujbDUNeRHQ2j4XEtq1qcGdEUQVSsDUUqfEyWYjJNoisUk+JSFGxjfXuraAEzOBt6aElEEslBbGa4zWKKVVjImJ4ujrl6moeWTEDdGdN5wHk8YY8rZjBBG8sO7TJth+z+WNYAttt4xh6p2zonEwpqr7/m6nIP5HobZF0pSVwpbPG3Qy7BPfU6qB3SOFkBJyePzbawp2ZlWavFtoq09o6FeUqYBdN/f7RwbeGIbyyAYic+d+ASIy+R6PqefX5/J61ODRVJqgRFhGQjBVEOacSuW5xppzH+afGdhTLtWRUvxmjzKlPfsdjsuLnasy8JSFnP/8gQJCUGqachLO7D8kMvmGlvW2kCN+qbIkowpF7MwZEs1gFJJkpl3VrbAwM/EqpXDcmDKiTiDwVzDajXQOc8ZauVnH3zI//Q3v83rr32X73zn+3zlK+/wla98gW9+4+eY58mTcNxxOhyRmpDJ5jB5DKekCCK2eLtE5VhP7LLy/h/8v3zw4xc8e+vn+YVv7TjpgpRCThO1piZgJclWQkQrllwmdFDagcGQRTXcx7SmpgVTrWhR8HqHitXRq/7PSs8VWuxl+N41mao6eO2arJGPNwEumA6jGx0NeGqhJevJUXLBmUxgnihvAFhCG6HFHPTA7K4tnOYJtDbgmnOm1sphMQapLglrSuzmC1KCdbUEP5NcIkm4uVuopZJT5vJq71ay4sUiFKqwVCX5PNQKa4k1yORkpSTKmphUYdqbMCdGn7UUt0ZW2w/1jh9//w947bWJ3X6mqB12U92xTjckX4eWGEO8OPh4UATdNmEx1iVOlfYBpISWhbKeWE9H7n72AfPlE5jMkmnHxsrFbmY/Jw66es1RKEm53E3M895dmOpgRU+NH6Q8UdVAWRxgBqZSo4voT9SRNFnDXaKonJYTec5MNZkG2iQ2xEvY7C72pDRRivLixS273QX7ixmtlcPhwOm0gCR282yZje/urLSGJMviO/CVzl/8MHbaa0InlrQkXOZSNb5SO9JxbheuZxmoZuHzqzbckhogaK5GJgluYI25TpmrdcRt1wZu7guFXQwegJjSMpd2+kkbkHUOfBK9BmB7ro57XVo5l76O/acQuYO1fzB0WYJGN2Us7IYmRCUhYy79AYwqYiTmPK/HYTbxqMfftSyA3rWYZDGhpap6NtZ+l6JmUWp9knambQYpvs4MIKV9LZt7jYdZf3qsoW7AW/INFOWLqp+5bb9g4Dy1tZfN8wHCGocdaSyS3ai/g9BZ+DydmSU7GYhbjM7epSPPhQCZYzwe3LfatH4KaHXhP4V1v7sgRgvdjXQrYAYw7S5+tQEUW49oJACWEIqVENo3Xhkj8MXzMgxz0WMfHZoN3dENPUcL0p7r3RBPYOLulECPY+1zHHqN7t44AHRooAycR6Vzy5W2Ei0b91m1eYykcl0hpS1nQOCZcL/dADMZ+kSc6+Eivr23W0Pbo7b1fR5iPpKjrtQUzDQGKdrXL9po7x3e18fiz4lQIuncAG43bpN++8ZCHR/GZm0luhxMiZVXE9VuqUwWJoR4jdJRQTu6n0qETZmSINxtt2OJvtQGFrd0draPIn5C++6IvciGp1nfo34kdH4lQtN0jgrmzqa3CpLRWisbC+boRaKtZmcA13Es2rJlbff059dn5/r0bqgeb2Qmec8cpUpOqTGBJImyrpsYDJNH/SDQiuM1i1dyV7XldLLYv7s7PwD8QaQzxSoOYhiAhLDUdYivS57FyjT5kjMpZ47Ho1sRzPWs1ELOM5TK7BYl28ATaTY3TG11GZTL/UzKF2gtrKVwPBzJknj5s5/x0U8+4Dvf+T6SJ/b7ma9//T2+9gvv8e//5T/Hl770Bl/48lvc3q28+PiFbQ21moZlPaGrld5YEsiU2M/PmKeJL/3iL/HaO89RzRyPJwNSTEgVcjUhScXSz1uikTjcukXEpUuDWpK79l8SOe/J0w5JU2MOVf0Qq+EH7yUJPPtpEs+2pi6sJMtYlnKiio1JT2sDZmgEvAdnqg4EpWmoAHKegIJhaQOJOWdyuPPiTG5y4T3nVj7Dvi92qGUX2Tzepq6rxcV6X6wLI3M2wT+C1Kd5csHJGWKy9+dU0KrM88TV5d4UE56ZNmdFC6wqTAnmnChV+eTlLWVdbY6S0e3dcSWjXF9dQhJKtay+z5485rQcWdaVlG45Hj7mr/+Xf53/9K/+J/yFv/jLZDmZe69eMOkF5uKrZzy2HxMtN0/blX0fjlf7JglVstVHRHjy9DHztKdEgKxYUY0XL448/7hi8Zhm8Z12lzx7/QmwspaFlJV5zgYc/aDv2lKDuarVLC3Jsslq6bUTLezTrM6STCA6HsxNc7fbIXhpjVvPZKoG4vM08+zq2mlKWJcCujBPmbSD03rktBR2895jcE35czqu7OYLcrKdsr+4ALV43aKFMoFOQPYYMUyplElQVroZzHhibu5rdSMsd2FgiEh0wSTi0cKVayzncF8AhRzxKCIOGLYC2UgOIjYWMBdu6LLFRuDryHUDFO1Xjy3Utkpo6i60aaCrcL8UoeddEFppoA3hbeiU/oDHQ22G5BaJRHrg+Xjz+LF1QDf90/YaGTT2fcyV3mgI5vf7u91HSsv02MIJtt8HmIw5b7DZb214NOLjHCVsFD1NoO8xSlWsAHpY+zqQcZjiZ263VHkCMGoT1iPnJe5mb7VYxWe0gw4IF0EdPtJR8usQ/QwsOD45swTpdmgDaAurW088Y+uj0tc+2mollwbA0MoyyBl4ctDQ6MzfaWemPZ8HsDwmXRlj+LpV1GfzFRZPGf7uCXdiPAOQteET7vF4u4Gz4r3n4cXJeey4JNvYsQCrMtSgHtxXR6DogC9tgMc4r+7u73Vug7fZlPY2eu2/4XIwJTUAg9H2FrTJxj21gR1AiNjE2A9BJz2Sd+QVWmvbQ8Fjx7HWGgGHbvTISr/dlJlRRkiTDvMeMmxfp9Z3ESK/8agswBUCPVZ0u6fC/bmyDRNAIMnknlWD0szv3yilxo00gs4mI/jvTn/qALI5rDrAjiy2Iw+JPWOZauvmjNKBpwd9qyu2EZBsarxaov9xEFhOE3VZUwbDwefXZ+v61GBR6YJ2I36MRuOf620eevh+a5sDxNpcV4sNyrm7Kt2Tg/xlI6Mc92EPkNZ2Jjnma65GIaKVWmC19qpnXRQRM6G398BaCpnYbF17SbIMl7oqp9PC3e2B3/mdf8rHH90wzxNf/OIbfOvPfJUnTx/z5HoyZqrCPGXYT/ZshVMpFCppVSor+6tHpJw43R44LVb6g1RduT2BFLMqEhrqAEoap9jALGIWXZOZhWVdOJxOHI8nMla2YFnccicWyB4F0MNVRsVjQAcasLTLlVoqESMS4Au64Na0qNIX63C4A9yCWeIYqX0da7W4M3UbnqepzvTDPeghRMvhU4TuTtMEs2TurFHXKKykglmo7GDtiggRPzcMXrTRxFGfHJCXADzCZoydXrVZ/0rT4NncoYWdl2A57GZOS+GD9z/m9nmhSjKXNhcWZIgFjfEGKdq7+j4Yf+93n12D9BKuJbv9TMMfTV6W5o68LJ3RZxGur3YcT4W1VPNOd0HESrwQkpCtqQYdOmgs5iIsSNt7osI0z76u3a3RFD+29muprT5jWG5FkmnEm7KJeGmLB9RI3KF+Q0gJ/pLOQ0BJKAlS7PyQHLUJ9u0wNmognFIJoOHtVh1xoNFVOlvHGOf91X1o0bSdvcOZ/fC9jfkNe1LbfzYdCLE3nX/xim6lB76u4h4MzqNt7P39rZl79Dn2cBBsz18cbW8elgd+feAF/mIXIR8YWFw6fPZQG7SJl829w/ObOe5WFNBupWuPCQ+g69bfV18uqLf51bPbgw613ScuAI5nRGcD/Ty2Hy6Ye9vtewkL6Shw8kf+HoCy/x3dc44aYRUpIarU0WIRfT5biwYYBnq4TxvxvvF58f9vwY3w8LMNHLXpkdbUufAe947gsM3FQ/0ahrj9Zfv72Lc29e5h1D0MglvLWRNbYWp0Ex6nNCF2zo/gpClNZBhDW7yBzcorNrXz3kQv7bKh2zgjex/1nI4DObezo8ue47i2Hz44RAM2tbYM59GfTYzrBnT3OYu7O9AiRKt7V+vy8Lw1re2nIKazrpuFts8bCA135jNuOAD/83cQNNnYzDALQcswsKlBhhL7T1cOdhrvoUXxfV+3Nr4mupvcNnozWW6L7hn1qnqjn1+fjetTg0WRZEk5qmlTwRd8ICoTzE0LFS4MhCUqS2cSTatnpBhMP2rtmADsGqHcYwlS1IBCWFaLoIy4o9g8rQ3faMWtS02DkoWcJyv8rQYYg6HWWizhBl3GFeB0OnVArCb5lbqyumby8YWVERFNnG6P/Oi77/Pffe9HSEp88Utf4Mtffptf+NpbqFaSCNfXF7zx5mO+8O4bXF5d8vprr3F5uefiqnI8rEiakFQpurCG/Ilaki3XgItMqIYriWvCBubXA6A7881TJufMJ5+84MOPXvDR81su5x3CiupkAJDqQrWt+bouNI6o0hhFrZXj6dDkYlWYd7P7wotb9SS4ja27gBZlXRdePD/YvTn1+l0LI/8hLGi1ruhit7QU/LXSCsOmzWtAzMpttBoWcefeVcmC1zozcJsccCYSk5swVa3dnIVFPBMcmEucH4wpJxBFitDcc50va3HLmidhkVRRnbi5s0r3khZyKtzcKpcXl1bnqc7s5h3vPHrKnC7QZE6g1JmaIXtc5+aUHpKydO2hts+00X6/AmCMwmGtQC2sy4GpFiRN3RUIm4d5lzgthaIGLSMLKqrUImjNVuwec2mecgKdmvtvLQ4qPU7wtKycToslL8rd5Ss8B9YS7p1qro8VCtWTHNkGLbnCUqjlCCj7i4nr62tEsvOOypwnyhSuNIWUdux3F+ymarExFKpW1mUUkiaSzsx5j3B0jlRpqeOSO0moNjfMfqCPUowyWnvjMO6HqA636sMI7Ozqwl4Xzs6FkXEuH/o8ujlQSe9LtLV9KaCbZCijTSVtbt0Kjp7XaNsvZxzbTK7d0sqZIN/H6OJL64f6c8P+wxUVG6VVf8fDKs0AkUHxMTcdDGzAxfkynQmu9wBEU1j0c3G0eFhZGSyRlbhr7L0+bt2Po1fNnVRGyGC/iCtGQlEDqS9Nly1tuodBuP5/+HoUCntMrp2Haaj76C6rZ0Ls+LpQOocFbVQMiLdx33V1bCGmLG0+EZcRmrVPtWX41GHuRSJjd9D5/f6GQmu0KMb5X4czJYTp6kAmEr51g6Ormhqtx9/jmGVYtOAaZ2jD71PPrm7xf9G/cS/cJ82hgU7Toa3ym1vitwD1Tg+DrN/kjC4PaDtfzHssNSVezGPvVl+/yEBqRsOBbpyeJIAFg0U31snncuhuu+KZRtYPoEmRBCmRanVeZm2Xs8lutN36PvBx7/95H0PsaqG/6jQjEXKEy1d97s9YZT+/nV7blA/vI2RjlDLGezdlwrhvXXk3lDtqhh/6O229g4+E3Oy8IglSB/Cq7o7rjchwZgWANqPK8Pkg2MVcVXSzfp9fn63rU4PFJKkJ3uAbXgYGE7hAwkQdhGuHbBCeXYN/+ubUcqZaa8sKFptWDTGFLEBoRYMGm6uru6NGLItGXIP3n2qxCKpKypkpZXd9TB52qRSBZSmNCUQh8VqLg9zs302gQlkthiQn5XquyJQ5VuH2VPnN3/oDvv3t7/Ho780sqzJn4bVnO9778mt841tf4c033+DP/ivf4ItffJ0n712gaUJX5bgsHI5HHs0+i0u28hkcUfZIM+fTGGkDxGLumqpmwQhhTbIldbFi6ZW6ApNtessANzD6lMhipSosZbbVBwy/d4FWCiV7opsp7xo9NI90ZwxRI1JLHHDJ//W4y+JWoaCTti519XGKxfSI+FqE9io0kdpISbCyJtUtWOIMO6yYMU9xUGtVNNWBiQZddnceJKxCnhDEs6ZaGQgLymdwk1Y6Q4zuraUChTRZ+rGlrKSlsCyF5SSkfMmbzy64vHS/WxVMLStunho2ZUghg9IGbL3z2a3nJ5JHENuf6oXVRTjeHUiPLAvuWJOxLCunZWm8INlQub05sC5WyzNlYbeb7P6ykqfJPFlFaO7B7lpDwrMm254qYXLFXdtH8OPCwtrWpbs4r+tKTZa0QlW5vNpz9eiKdakuTFn5l3kXyYpMwbPf701J4P0Ium0rr24rDOvuOsw3HjtWPW71TDqLtd5O/StFuE95NQk/JLnNGPq7Rz571oIvbnP3/iPeFmAgizycPVP/CJx7Bvo2QOPevdFer/fXi/dIvyES4GyQT9+zm6Q5iP+5FWLHc2oYBgQAGw8crbzyCroYujEKt9Fn13ncnyd/h8X/eGZxtkD6XumTAUxE+Y3mReh3Ve1JdUy47X2JnzViaUV4aFk3btLDDD14adTU3I5rq9DYehWNYHkE0+PZb02PAn/vyihTNDASzw1gvFlypHF0czQa9ny/zoTf+OlAeFyJ870TgHu0i4ctKiiU9nsHP6ONuuOnM4vpiCYbaT6w6QJUxPZoVN3XfgTj93jE+RJr/2zr2tuJbTO2837Hdkx9jhroOXuOmJfhnfEC2azvyOqCRmjeFls32648iBjE6Hs71xXjKbXLLWFlPVda3PdK0JYsz/JHDJ972z0hljQ63E5wzCINhA8Db9TRgCl9nDFn96yP99o/ov8bAAAgAElEQVSIfXB/iTc0jYXORGm3mC4/xonSIxYKoliySfcOi7hGj+SuoXCxHefAsnsnPuiJ+Pn1mbg+vRtqaCaD2W5VTu2ekdGdM432gOLZL2WzqeMKd4fQUolII8IQHCev/9esR2rxUlZcvpOguap5zEu4QqonCCgVlV7AN4sgqXJawke7i085Z2Yv9yCSWEuhnBZSToiYZaJKclAqJBL7SXh2PYODozTbxru7q/zge5/w4Yff5eLqfb79Gz/kyaMdf/7f+pf4+td+jrfeuuT29sDzD255871MloLbwKhFqCmsobHxzWIaQkMw0rYesT7V6wJOyWpCTh3MVNSf1bZGxQEVXhuvyUMOmjLZlQTiQKi4lY7mclLNvEaXU7o7k7myFpcn7L3ngoQxmNQYfsSpVHcbSTm3dbIDtWvRl2VlPEiWxeYtt9qP7nqiyvFwZ8zNn0juCn06FaoW1gXu7u5sbMXeNRezKC9VyNXWwtx0BZLRwfAKBCVLdcu1WQiWBdCV4/HEcYHLPPGtb36BN96+ILGSKNTkayiZ7u47Bths904afh+vEa+MAmspmZR3gHD78oA8WZmvzDJbc0aYWJfCuihFIU/C/mJCinA6gpAtq3GqXE57ZiwbbLeWxHqOB30xZc3UYz1kUERshSBt34E274GUUxN6ltORZSk8fnyJJdlSEDv5U8rkJJZ4qCmArI5jb7fa/IaQRSGnitYFtKAeOyNJCHVvimyBXvOrx62diYUyuCFupZxh4c7HzJlA8fAlbMHbK0HYA23aNhn486ukCD17hoiN3Qqv995x/lPd/dYFWJFwceT+nEh31T13VxI6LbfuydnLhmcMFD+gxW5+vP8sl/EW+WOfGQTpEbmpKSbS+PUApOIdAUpwL5Q+t/GLNj5fN9MSdEejxYRZvwNEQrhH9jM3OShPwzmBx2E2HrEZy/3xN/dEkeZyXc/XLMYLWzIf5GYjx/v02AXkM2FYzn/vgujYt3MwJJt57fJML+NE4xMwJPYIACNd2T2O47xvXTd3f9yb7T4w5rAqxZciY7/H9wyqiHECo4tngOTcstpIxb681/cRkDZLWevQcLb4vRHLFzSrYQyoHZx0+6Bu2lM/dcOjKdo/f4eRXh9DC2voo2QElX08thi6oaGYrA7CYsxD7zbXhq9uaGw4i+MdbY6k8x7t637ex5bqAd1aLgdgLpx7igx9aGiwt1/pwHXs+3AytfCIPtc+h/4+776DvdgakVEVotYxcZaEO7KfSyln9zSz54rX6Ojy4OfXZ/X61GBxWSLFrjRwUKqVtrDMm0bYpY6Hk10hHDYi8QMgu9pzXbtVoTEJB3aNgfu7I5Nmq0tWzX1wnvDvBEle28zT4UfcV3KGZq5pVgy8lsKyrpyOR9MOiVkjc5o2LizNvdWBn5VjEJovf4KaYZnCjdPmaZaKTolaYE7K1YW55VEzp09uOH3ykh///o95/qLwS7/4DfI3L3j65ruWsfRQyMViEu7KEZLw7NET8jyBrAiZ4+FAWRdgQimNQalKA8455XYe1ao8ffKU1157yqPrK8ppZZp2VJK7TRhTWJbKsqzM8+RZaf0QcEtNTkJOswP5wmlZOJ2OSGjuBk38yNbmnMnzzKPrK8Bcekzg744gwbjXtXA8LWa5zJODUAOKmdzoxNKTnxizh4lrvqwqQHJ6rZbMRJKVREjhnlQ5nqJ6penwUoqaTxMpZUpVXjx/2VxL7SUKtVIkk1DmbM5wpxWohboWluMJEeHiqluCjevGVpyskIMIkhamfOLdL77Gk6dX5lqnK5aAIlM0rJY09X0HhINwfCaVtONUWvoe20PO/kvKaJoRhP3lBWme0XlH5WQFfoFpl7m4FF7cWA3VUuHu9sQiwv5ixzQllnXhxcsTT6+uubzccfPyJaelkFLi9defIFV7wH42C/80ufXfExvtdvuW8jyEtCdPrpnnqe3Dw+FEWc1yuZxOHE8Lp8Wsz6dlZZrEsx3aPrByLMkS64Rcmy0Zl1TfqyIWO5oTh8OJ07Kw2qblpFbiR4BUVyqFnM01VxG0REba7TGs7rIqxrCMZoZMovcFmyYd+1+xboPkGX9vnrr/dxMlW2KQ+yKQdhvQ/ef8PSEwnFu6WtynCxfj1V8nzT0SXCHlvzfxKn55yHB31u75LZ6MvbU9PtBrG/p/dHShG1+gZ3MC+PmxsbQ1wNHPqi5NbZ5uf3a1jQvIcrZSA7CX8e/IwriZgxHsmodFHXhsGm9u9GL/zE3VzraqofOPWxNJS2sXnxEhVGfxuWzHe5a5N59ZqvIg2NdgesmF6HtS4hbc3fvY90mzrun958b+j200UBz+fA3cDMpqnzMdzL6u+uv9daJubo7S32kAPFz7at+/fmMocyJEZxMuEhYW3Qr04n0Pi018pkk2rGCMn+xuitsrPCjGbyw+0feNGKgb+60tE5Yg0s8t2Q6emBWbMQUHD83VUKNUSTTv7r21x8Dhylfbwn20ofhs42piRQd8o6Wt6TrOpqCHOfk7q6KD4QBXGIaLZZ8jUFI7s0a6CkVbfDTmOWrATbb3hqImZNiwBnZlqitSfay9TfG7Nw0GtW/Pi8BuClRxDBdhOCNvb1PY+zvwrwjt8hWztY2yJcmVZp60KJLYqMv+YY20+smWOX45raQpMU+RUNJyHPxzd7j5/Prndn16y2I9Z0LahIegM0sJbUdMyBDN6e8eD5P2eWQxDPC4if3ppxrNfYCzY2I4TPo//8JdBtszg0pDRLw8nvtoe6asiKdpjbv7ba3FGERkXZXct5dYVlBxs7tqZ1Ca+0bLoswZ0pQNsEihaGI6wI9//BG//dvfhSmR1gOX1xdcXO1YamYttmnLunA4rsyXUI4rOSd2FztOh9GFM3WwOGT/Uveh3+/3XFxesN/vOCyVaU6UIg7gjdusZUG9vmBY+FqdHr2vpR/dhZrFwtclUkyrgkzGLHe7HYpS6kK4pMYiuXMptd5Rq7LfT5YUyC03tRiwFBFPAKQb7WcctCl5KRWnwia4avU8JXYchNasH7WjRi/+08GLZWW0ZERUNS9RVbd+ey0oVWeE5qIqkixNvIjF7Hmr8zyRs1DrxFpXqlbef/8T3r71Q3ZM6BNud2cCaszFsBj95OzkToivo9AtIlaAzU/Ji+s9ac6eoS2smDDvMpd74ebOaiWWVa2eYRLmOhnNFTgcFx5fWp/WUlnWZZOCPg6vDYDx/RrZY1Wc1vyZlGJPGy3mLGg1F+V1OGjzZIDydFyY0tTinctaKBV3UbfP1rK2Wlsh6JkdRqhrpayVWgWZdlAjLSqN/hEsI7GXv7EkRpUwAschrCOYauvSx90mhYfXa1io9tyD1yu/On8u2hylm4dP7PNP7xeR96bvyf6NafvfNgcW9dnPjD9iNPc6Msgy7fLE0AZA/xkaC2Fs0/kQUh8CLPcPLbaD1c2fkRg/37tdOs3Ag+6e4xo0F/ENfcQvg1UQaWdwi1vc3B/7fYQbw/vauI2nDNFeLpren9ih6bNfxrX259prh3bGPg639fCH8zG7MDv+3gDXtn8GxGT4vLfV7tz06f7vcZ/pWe/Te1eo9Pdv5fCHHeu2rs/DVITVa3xDsPtGX0P/Nu0M3w+y2Kveb8dwP+Ns8rc03Po0zt+4fmd74tyKu1mXZmXSgSecrfPwnHgCwhjahmvFPW1utoqtUBCHQeOhfoVYN+Z3ijF1xdwwNhn26hnvu29lPKOVIIpz/vKKBTr3AmqvHOdBcUXScLY8yPfawO4pvDr/GWfvfiP3rbPeHn2uiTColEIP5Mm7HAhWK7mGYorZNPkaq49LX8FjP78+C9enr7M4skl379LQLPi3tYprHXDwFq55fZM30DdosQIkpjNLXgjW0JPgBHOM2EQCEFHJedr44u/mCdknTqeTxUYly1gY1iQUt0Jm5jDvezerF4O1eEWzngVTCOtiyh43JwnIFrtIaGUtm6LMmZQrZh0STmtlKUcQs7SKKJoSj19L/Ld/42/Dfy985ee/yDtvPOFf++Wv8HPfuOPi+oKnT5+QVfmN7/wO3/vBC95+95LnH6/8m3/+l/nFb3yJP/zhT80VNRljVvXkK+LB1WIMrmJlIHa7zDwn1tlqR5rALFZHUkzgrnVlytm0SAJSihdx9RgztwraegBeQ9Ju9hiU4C7hxieJad5ZqmYHX7UsVsJEsJIMIkzTxN2daasuL67Y7SdUV+Zsrp9rtRjHUk8c7g7gCVKEEGqFq+s9qpV1XU0ASJl5ynzy/AWqBYppF6ec2V/uDGgsq9XozBlJcDqtVLV75t0ONDR+Q+wmCbSSYy+skNLEbkpcX11aFtH1RNGV/TxTsVi7VSuiFzy6uOL6YuVnzwuH48Lf+dXf5c0/8zFf+6Uv4uIwNXkingivG/ZTVbUajb7GbY/FpdavcL81X1nwqvUkKQgraOLicqImRdcjFFcWkJFSSTVqIA5MPqtnG5gQCjlbNlPFeEHOE1POrWxJ9DkKl6dpakCxC6dGt5PH3b58cQNYAiURnPbMSpnzxMVe2O3M/TQl5fbuQMlWFke1cjieqMUSaqU5s/oa7/a5H8haOR0rtZ5YloVIs397V8jTBHLhcYyuNSUEhuQKlgIspklvZWF6Bb6N8DsovWI+um5iFNLov28EkkEQGdY42nJ52mnBt+N5inKVzePco5ut29o9IbV3vstBZ4LvRnhUT5S0Efx7U3+kyBDkeiZP1YGeooVIANOtoNKys7Z3bnvQOqJ6DqAfEKI2ykqPFUwM9RKlu8gOcnOsueJKJZHRiNLWUugxnX34w9oOfRexghYNMKo2ZVBbbbeoheolLJDFEbbFtDciAZxPhEugz1FzyYxtj1DQHkbtdFeLEgViwrqUN+Tv9uyYnDZt2/eM7oawpbvRDU41/rlbc3Nr8j0yKLmb9QrtQis0mcPO+cFS5XOicmaB9643bhXrS3hGRZv9vQ+5h8eetOdDRrK+90QxY3uDC7GoZ8fWs7nq+1q1107cXvZMT0JIB6Yu19lVW5ttnoa1on0z0qvx71gTy3rZ+wOcWdboY2oNdl4X7xNMVqtlWIv27Hb+o6GUtubUAKTS+uKur2DZ5e+tj1t2XZ6F7pI8jjkygIc3U8/Y0GXcjVtt9MXHXf08vcc3vY8tXnGcHqB5tQ201WhZezy9eL3x2Czq+yCJUCJIMwhZ3QK7OZ4G+o1tVRU0WW4E/968uGymalmZsBAWVczDioj2V3BDBPeMUJ9fn5XrU4PFnITVaLcxtY3WHOiCAbRsnNC1CPG39I3XaybS0+Hn7IzOYahvtl4U9JwB943KkKQlh7+0b+Z+9vkG82yLEgd3CFoilLVAS6BizCLnDP6enLNla1RtmVu1KuRsrnvFatHt5hlJmZps2xedXJhcKFjGqTllssJ+n7gpld/89vf4tib+8W//gPe++Bu8/c5TvvGtr3Kx3/G7v/cH/Oh7N7z2BpwOE9/85tepayLlPchK1RWhWoKbWhwgpMZujFGae25LEjPUWCwmx7gltZ+KcZgZ0zaQlNylszOo+DBBLU2hFme0xUVKE2AakxdbK6Vahi2/pcUU+hqWspKa26qX64iDFHe3UeNmpR10iZTtHfM0s9/vefHyxpKdeOKbKSd2+0t/14FSC7tp18FiraR5YrebqFVZFlM05Cmsocb0kh9Ea2O2nhQJOC2FWlbm2Q6XUipa4O72jjdef8b+Ys/t6Y6XdydKThRWl4YAKmSoC1Y6RNwNxK9zt+/Yi134CGu5tANkZNE5JbOyqlh9SBWqOADWREU4vjjx4qNCFUWkILk4XWQkuZJAV0ROLa1+xH/aQvsxoWbxvdjvXDDTVuOpK5Bc4HH352U5gip1NfdUASTn1va82zHPe9ailHrk6bMnrMfV4yPg8uISHDQo4dqevHZjJK4yWjm52/CUgbry8QcfsH9k1ndVYZKZlCZEPTFWElKqiHj9SDVhQaDFgmyU9yGQhCIlLMfthrOFlC7U3rvOweIZCBXM9drAeXw3tNea1RGi+idd2GluTN6XLsDf71crlzj0oydfGcapUbNN7t1/r80zK8H4WcTbhQhX7/XJy3c0YTSAwL2X3H/x+dyf9bEOCxtxhJsm2yvP3j2u0VYqo1v07s/v+dibkD3c1+IPh8s971obDXipg0i1eN3YI+HB8dD69nW0Op8bwBuWpAa0+3q3ZW+gbzuX5+v/KnoY4/fG+TgXbkO5cg46e286/Y1tjkOOFoaOxwtIRJ3DxuXug8K+hR4cW7eERfPiANL5R8haIfsoXnrA/heuzfcUR2N//QzY7G1VkmQnFN9H1cpHdVjSf4TstPEui6Ud+NuWXqLt3PraqGLTV/PMOfcxH0GQDIqfcQz+dGc67b3S5i36HC6frVxWyLDxjK9pgDZ14LmZ77O1bBb+VqszzuWzvSNsYlxDrjKZBXfH1M383lMuqJ9faQSS27nUM+Ltqy5tnWJdmgeej7lrtuq9fd/l723/p8lkv8PBqgWklHh8fcmUJ0pZXDbMLEuhFovBtvAfG8eUp1cebZ9f/+KvTw8W50wKt0SCQZs1J9wTp9Q3Z3WhPWFCdKmRwVCgOJgbLImC1aCzA7hnMM1qabkPhyMiME2TF2/PjT+mnElpZl2LuSg6gCirkr2ovDBmXATUAY8LKwXT+LZg3yiSjKXGV0AdLTcNl2t2TFdSkJyaa5spNStaVsTBpSRL5w+ZJBOTDodfglUq+0l47/oKkcTd3S2//msfUKryt//mr7vMLaQpcZnh+aHw81//Rd588xlvf+mK082KamKXJqZ1ZZmdUUsBKrkKWWc7fCxsEotZMWAgYtYbRUmT2NwlZZ5MS3dU6+hyPLLf7ZmyZeysRZmmicNxsfMnVbQW196K5Q5RELVg9jQp05zNLbMIZFMYpJQbUzW3wkyaLCvXNClTErLMKIUkJ0iQslAkMUlGa+VUV1IS9nmCYk7RqfgBmSqTVsvomISK/Vuqcnt7YwmOVM1YlgFRNzAJmhKSJ+YpkVKxuZpnylLQnNGycL3fUyp8eHwJ1QD7UgtlXUg1M+cr1uVI1UzOM5KV05J4efeCw5I5LpmcLnhx8xF3L28oKuSpkkuBYlayktTGrdUFQ5cERSwwPvmBrxMlErzUibJWpmky4KALUCi5kCvUZSJlRXIhpwtPoZggZXOxpXD1+o433t1x+AmcVmFRQeuJWq/MaihWF1KZqOuJtJsop5XleIIZ5jlBXVFd0CpQBSknVrlASiFLIYpvr8V1DmWhVCs5kiSzlh4zlLQY3/H44900kaS6YmAl7ypSFdHMlKeujCgry2JCw/FwNwhuiXk3M+8mRBLluHK6fclf+8v/oQNMc1tNsyW6un58xby3+58+fszV1WP+q//6v+HikaBptT2EuctKETTFJnD+I7UXeFZtSrNSaIJfbvnh15B9u9A9FBO3m8PFcyskahWLvQ4wo7UlMwlBwWI5tyU+2LY+CMZOGy7NtiypHhdunlFboSc/IPhHYQhliF161aUOOKWJ7t3tMgS2wfkzeLB9rv0z76cKxp9qpaSJpF7uJZlAntQtwrFeIbkP4BlcOSWpCey5LU7ZCFzNCyC8ZXJqVp+Om5Sk2pWWI0CnP9+Bu6Ks9v5q69F8Y6R67Ta/Lympzl5cHmpd7EyYZ+TyMeXuOSwrWTMwUZyHyuz9C7+9IgiWsK2w+jgFSdnT81v+gOr9y2HJYHXF6CUpLV4rd6Jwsv4OYz5XTDRQUFaXCQT12HB1mSK5IjYUnuZA5CCq0s5pWztT3mVJLct38PmE/ylKt8R3y171MlxIgHSjMJMAxpwGHTQG6LClsDUJ0gjvKUm5jbWUQrjUh4I8FOixI7VG6IFZj+oZSG3K91LMPfAMTPaath20i5czsv4kt5ApuDKYoQ9lXdqy+QsN+EyeFdPBxOgphssuoxLC4ZmRFubNU33OtCn+vTyYPxe1kwNIRpz4GPtnNF7o3TMelGRCS3U5NKzTXq86paHkSt+0tnQRelPJSe7JvehwLrmpvdYwTvh6e8K3aCcUHLV6fgT3yjNwXJhEWYHayki5E38BpEI2fq1LLxWHmKybqEime8OtBaqy7mbbC+puojpRdSE7fUd/DUzmLpuLdICr6qEcUNbC5ZVw+MmO//Xb3+Uf/N4PeO/tKy6vdzy6nLm+uOD11/bkXWW9WXnj6QVvpj0vjvCz20q9+5Db9UxL8Pn1mbn+RAluUjI5MrJTLksh1EXqQsK28lFnKNL+M7ijERamdiI3Rtsb6AKWMYHQDMnmpzGgKCQ/aEcKnpzCUvtXD+QOBlo37Y9uHi4saJjtB/cO6R3SGEdTboVUJ5ux2HtLs2amwQSfknibdqgsp8jTD9ePrtrvPntkEfb7ykFP7K+fcvnsLS4vK3JUlrpQc6GqZWYtVTuTnidq2nE8fsRyd2Q5LKxrQTRKOgiHwxGFXm6iVpYFLzHgbiMxpgDGDHFzIWMF4xPXcIkVWxZVTscjN+7aY+35untaZbPYZAtGcqZUspDS5MknJrLuXHg14CZRImWazN0wi4WrakLsxMSclXGG2AXiJJBd4Kll9dhUuy8SAQh+SIe7kB/kZV1cm+jArKcQ9P9KszzTPjGruagw58Tt7QGkcjqeyFJ4982v8dqTN8klhFwhY2sQJStqmsiaDEgkPCEBgLkNl3pyIS9BLnbgUVCy1dVogfuZnHYm0NWFLIpZGTJQqRSgcDqtHA4rVE8r4i8UqYgsiGSSJKY0k3Ki1sJutyOliZySKXKqupInEgRZrcrQk+PCiWUY1rafTFavTPPU5rdWy7QWzOS0nKy9FM8IOWWy2PtqrU1AmCYvK9PlfG/TD3+8RM6cePb6Mwes6gdqtYQ5eYYKp7uFD48vuL0sGHst7cA1/lG9ptk5IDLbRKULcsoDt4G7uQ8JDVxS67Fow3X2vHgZof7BAASdjrMnKwk+HLJNB0q92aadbmBMzr/0X7cJIWiPDSeC3L/nIWsWdNfyaOg8fvLc7bSJIENN4OhiRB6TE2sS9ouHPkw2luxx7CboM/B1f4MI593cWD/P4rPO72sWCWTIaOqu4g5MR2tXAwn9A/9sMr1ruKj7PbV6Ddiga4UqShLzJmG3Z5kuOa6Fu49veO3qGfOU4PiCWm9AZh/3bO3XAMIVUgjzOI922mx1ZlMjD/PKMT4uyRSW1qGKVkt4EYA8+NxmWWWwjeREYOs4soOuPdeG/eVAsQG1aKcJxC6sRIITJ/L4Pn7GCNwwT4Cfh9bblCQe9rHZa8O9bv0a3VMbLWzWuwO/c5fH+KyfwSM4jL9Hd3+2/RmuzfwQTDA48SiL9YFYfwdPkN5YB8/t8w6KOr8I99Q+Pdtmhj2UDExaLduznSQ9hCXmpc9H7/tD7bYX+5iDHurYMWD0jItZeqhm7T2LePt8WIc213rvmQ1dxvs0sZowQeTLgNX4cDZZFM2uu1Mkg6hSSyTp63JaBdciJVNcSsJCpFZgYfJQsTJMS5oEvCyUsTJtc6qKK/2FkqKG+kxOE1l2HF+uHG8Lz/OBNN3x/h8m0gRShbffrnz1jS/y4sUnfP8H73NJRfOfIDLu8+v/1+tTr0xRpRSlVotrE8msTpwpDXUMhysUWqGNAD/MnGFa3JrQD189E6zbWd/rKBpitHigyLxJMOTh3VVZtZBUmSZLipEw4KC1Ut0ta63FvPxcg9O0100m054VtW43e2l/O7BqHYjPPTeUiIEQ7d+K+IYUWhIZrYrkFgVCzpk8maC7rlaVfr/fUbVyUBv/b/7WP4Zd5Ze++oyvf/VLXD7ec8qwrkKmkEXclRAkT+Q8cXxxw+2HL7j7+IZCYkmKmpmR4ymCkg2cnU4rsNraSgjZiVIr9RSV78xynKfJNHgJrHyBsaDkDMoO35XT4cB6OrlmXjpjbtpc1/R5qYO72wOnY9R2LKbFTibYLSvMKdE8QiUECWtHBS8UD6RM0WSa3ALqbSVR5t1MSrCeTBKZ84U3coRamMSzZUpiWcMaXpEs/fCMxAuiHUBqqEQU1dXiTKQ6WDTtiyosa+W0wm664l//5s/z5XffIEtBaqGQKAikTCrudpcrOrm7rVrcraDNFTLJ1A6n4nRADjfdClIQnShAZqWyACtkPGGPHUqiGWXixfOVjz5YkUnZ7wBJ7Ke3EVGymNZ/t5t5OmUmL9J9eXXZBaPaNZcVc3ee88TtaSUn4WKyWVqWwmE5kkTYzxM5zZSyEJ4MIcAIuAa8UtbC4biSZOLicu6KJBcEw+U6zt+cty4+JicodV2bMAYVSXD56JJatPGGEOwCcK6lcnO3cnN3C+ws3iPfEU64VYtp5D0z6yBGG7gdUZn0eJ7tZfcOchjwUMKZUfxSf2zgm3Rwt4GvEnlFpQPDAcRsAMoAfLf3jd146MPR3jiAoEFw7mN4qLnhTBiErgZehx+QSE12DCGsC+vJ56MgBgypkKpZ6RGTVLNA2ZbqHlZgO8SHAO6QHaNBx4F+QrGWtAOlOHtGC/EmxvMeQPYY2iwUP+sEc/UqYvtYKuQCSqFME/OTN3nxyR1/63/8O/zar32HH77/Ad/6l/80f+aXfoF/9y/8Co+uv0D56H3WcgLZOdCy2sPg5aXAlDAFSq5mvVVXmErUqjWvjSx4SSlBdAYK1MXm0hWxkeDflCf+e1PkhqA+YftJm4U1ztGmTFGfchf8bVqt9FKNPZ0dEHlN38iQ2WgpdZdPRDz5WL1Pg8M6huPisCsaTYQLpxDyUADTga6k32AgqbuDmqXzDJA0Ab4DzvBKiP3QXAzFxt0INvIE1LoBkuI8QIIPpXCRHeW6UVkc79/SZu9rAIwuB3YlAv0e/yyl7oItLk+knFqG+9i7kJqyNsYf7x2tq5E1vFa10BZ8//p9kZAlAhukWpGZDqDbzBDuqD0qZnt+xJzFhEQbfdkGhqvB7UM92nlErEcRKMknVwtCYRLLzhv6zncAACAASURBVJ6qhV+Umr0vR9dT2zyVUslz8lAXtb0x286q6wkt5tMxT+YOupwUVXE52/ay4KXJYj+5gUVSclDqcZo7k1dfvLxlOZ2YWMnVSlQtZYLDgfLSMrnf1BXZzUjN6LJyfPmS/aMnyPK5ZfGzen16GC9QC2hSsqe633zZ/g0HpIyMYbOfNsxyFIJEZLNZw8NuvLZHcHwi/v8ArrQC8JHmO3RmpNAEgpYtyLQP9V6fdPhsYLGNSXWOeD5aH0e4dfg8hWuHAtkPnqpKClWzmBtrLdVLgKzWfJ2oulLrDFX50Q//kHk38c7lz/ELX30XyZDdoiS5Et5vSYMNw7qsLGuhVEWTUGpB1Mq4N6WqeFxG03oG87dDSImYxhi3NAadBgsh9PfGGildw6rBFDELMGBgvnZrY621vavWxQTeltrU4sayaEs6oqKoJkrprig2HjhxCiVqy7KJCyCRGENlOEzjgIv18tgCVYVs5R7UA8hrrRTX9iXw7J7Js6M6/YkpLJLiWvlKWOW0ZrRm9jthnsRCO8OdrHFucRo366R6spoaGU2ruUcT5VJE0fVEWQr50VM3M1Qgk1JmVTsyzRpjoGSsjWmzZvUMJQtKaQC4IG7hs7IrUapminVbe/INdmbGK2thrZU8Cbtp5u7uhnlK7PMeEI7Lkdu7hXkSdtMEKVn1ENcml0Hg6t6LfQOXUq28ojMgUWm09iCG8bWtVTf3hbBmFkkGCu6xHiKY6z0rh8ORP/zxH/LWe9dcTH53WFB9Xs2VavvuALS9lmBDOQOg65/B4IL54BX8Y/vM+ddn0/ZHtLUV7zaCUXw/phfcyk3bPkifx3/W69X3h3D6MFYTxLMFulA5AEzUE7NEMpOWgSXWIhrpyquzA2H46Fy4jIGOVDM8u7lNnIM99Pz9Vtv5E4oDDWtFboKlhjSq4L5m9p58SZXMH3zvp/zw+z/i13711/mt3/o9/vDDF9y8/IQXz5/zxttf4Etf/FO892iPakbrYt4gSbak4AASzwLcFSGYKy+YS6p75iQZ8sN6DVpbkaES3AAywmIYgDG1OcGz38YGDaSi7YcMH0ecNiHcq7/6VRPbZl/Oapc20t6Qwb1GzojRAEGnj6bYJs4CaWLTQ7tVEPdcHNpM23cMu63JKQ2wydgS27k461On594TOetbH7gMtOjdGcbez/qBd2j/5ry13sNxXOaF1FxQ2YpYMoQ8bcB0kx8H99+zMUe/AS8XNpwP2kjcnznfh8F3+uctt8Y4gs4CbM7P+ER8tR1/eHjo0FrMgYUExcPCeKaFjBCX768oieNyAFS0VNZquy/PFnffKudsqFB7k9JpweZeEZ/7nDJ3t0eWZTG3V5nIqSs9JxJIRnRlysKUTNbIYsnmZP1jD6HPr39B15/I5hvWr6WsroWNS4d/EMQ70JrfFYeAa3Sa2UEbjerZNjKQ9pDA4ExLLfdb0zaJNG3UmNkMNe1KgL9kFUX7m1LymmubyB/rT8TeNa1gd2O1ovDSsqcGiG61eRwQNveRNLKIziRqaLbc1RHV5ncvQk+uUyo7hDQpL0m89daX+drXvsVXvv4Ou2czmk/o8xtYTxyYuHz0hDztrQoCClKRi8zuasf+YmZZBbysg6prcCX673E5kcCE7OeBaxtDmyeCVBesxfFKNXe9lHrchQn55iaZc1iFPVZinBNJiBeg795URiM57QYKsJXKyTVhTZNqFp3jcT07JFJ7KuFgxBaL490Bxd0xRLhZX7qsaPVAl3Xl5a3F1VWPKyvV4r9KUtDK3XpqB1ieMrvdzG7aOXkXd9WaUVksDrJmMovV9JSJORdqOfHt7/6QP/Xxx7zHO+53upCkgBbIk5WWIEFRkjyBVKl6A1RSnkjsqXUFsbkqx4/Quxvyoy+gnMwlLU2IKlMuSM1AIqtQmAEhZ7Ocq6/HxaOJR28lPvmpsJ6U00l5cfcBMPPo4op5lzkcb/nwk+e88+br7NLEy5uXrGthyhOXl09A4HA8cTidyFm4vrzg5csbdruJ68s9OQl3hxOn00JiR/CRnCanI7csp0SeMuqlT1Ke2CWPNVwXkHBdDYErkzPuIWeuZU2LLRHrZPSTspU6SS6kadRlEHeBD28AKU2hUeuRly8/4u//vV/l3/iLf44vX1+gWqkytYxziRhOV50EztpcntQoXExNneD7MATmc21bNDZcwVc6MxO3AOFCh2z2VRcoh6aDPw6CeaS3bzfHTfHhyPS9/Elq7qZjn6IA91bg68lB+vkxnir2wfAefza1NiKGfHRNo1kX4nwwJWQ2d3VWWGsfU1XPMJyawFhd8utut7GGSrhXjkK6bJJu4GvqIQivFNCtDYsh6jGdcYUOPhQFKZmFPhfcmmgADKq5fpLJ854V4Z9890O+/733+Z//xv/AT378M24PJ+bdzDvPLvn4Rx/zd3/wj/j2r3+XL33pbf7yf/zv8eWvfIFf/MrrzEnR5ei8S1FM+aUiyKzGM1QoznszmameiFDq5grPCnJrsaXJYw7VrFmJcJXdyg1Ai3ctansv4TkEfG3NMNzPD5FQMMdZbXJADuBVsfPGAWzE1YUlpa0frmSKzLXSRfJwV4XuBRU2MfzMUA+huG916qvdauY2sNL3gMRg3B2/h3TYe4MuTT8YdRA9yZrv0TEcR1tpqrB6yb0995CUZdY49aTzHaBI306mRKz2R1ghRXyuo6EGFsdz3n8OMaWjAlSrx3Jj5/sW6PtcazAs71tIkD5ZJrqFgq/vtyZytr2srT8QnkOjgSAIIKSHZqQ9m8ughv55TWpKX9nyMl+yrvyJYVVx+bqiTAhW5/nj2yOPro0vJV2pgp/XgMcpzhFioUpOmBxQ3G2/KFl2HJbCJy9vyZeJd197BMWSV9qZ6Mrmyc/FoB96CJhqQSqknNilC+6OheKxk8X3TC2LzVEGZUGysNsnFrEs8HWFu9OR6SGi+/z6TFx/IrAYhUuNGYYrqX3XrU92Nf9mwQWq2gCdbdytcNM28bnQI2EZ6Iz23oP+jiYY3bupH87R1yZMSDAK2xwtDtlu7IzU4/4CGEbh8K5ysXtzO3xcmIyEQDG22Hz+aMtSKaltzuRWs8gW24GWH9RpQnaFesj8yq/8Cn/lP/oLvPbkRyy3n1COR44vfsLNRz/h9njFF7/2dS4eXxCsp2rl0eMrnl5fcjXt+OjujrSzNBAtBbSqWzTD/cfnUIfYS3ELYgvoNnfAxiAj020Tuj3z6GxgJKY+JaEUP/hrxHNaoptlGRIOEQdm7pMH7lJs62nu0BFz5e6YSBChab+luxjhQmarxakhz5tiodSC5OxJAgqnk9eEdNC8LIuDxQkRZZe75SiJ9SUlS+WvpdDcYHLyjWMB/rv9jGIujWUp/N4Pf8ZPf/YxRZIJ2p5Qp6zJYoZ0oRZIec90+S7oEW4W0APpakKmS/LhRFgbyryHtbiMnUmyUOVEWv1gcICIC3KtrmFYFIBTKe5+W5vwYtlKza1X3N0rJbOSSpTpECsh0ZQlbo01xRMWd+jWS5JlHN7tE9PUrRFj2YeRFlqMEWbBNbqxjV5KaZ4FKdl7rb5m11iP6tLmROb0Jo6aUk5E4gf7sjZri3rdxt1kSW9CUZSaEIMpkWZLPhN29sa6NkWw+ndj/azqc9ji2R4U6WwEm78GC4O5XXXGGIIQIs01fkweM74i4pe6qyAdG9L3IS5sMAi97f4mFXZeGW6abT6ir68Ym9nC+3gaLx3G2H4P+owGR2CtUGSi5ozsduYZcHdL1ZPZuVzRkCXcd8+6EufMZq6GVY3vpc93u6/SXe+1xyl1cEJTQrZziTNXW4csgmXfVZmJJC0p+/lwWq2Sy/4Srt9gOS38g//jb/F3/7d/yD/5x9/l2bML3nnzKWutfHQ88eT6Ash88P7H/P7v/pCffPwx/85f+rN89b/4a1xeX1Ce/4h6fOk9mEgpc8og1eqsUhRmgZzJpwplsXDzdIl66vycCjkVtCZT+uDlehrvaYezCff+O8O6Dsk7bf95TFcJRafz76qF8GepxfjOPFmSLONDgg6J1GqtD2aiNB7oCtwz2SZFDOUA7LaAofPOSPr0ECk12YXtnh3lqdHF8jxngzqYG0hx2GbehrZOnUtXPEDM9y+n11H5Mm5pgZZ9PEBrY/7j1jtTcI2Ou41XabfC2Q4a9vcwR5EIKEWywfN9PnRj467v/qeqffQbS2zQl4zWyAFsKm5Q2Pa981rrdWrgK+zL8YR2umhtBzsNubgiUlgrFJ2ZssBS+OkPD1y+m0mXEzpNrAWWshI1vC92E/OcqOUIWtHTakkdK+Q8QVKXvyY+ur0xBfnrl1xc7pnxBD9xZkpmVZdzfRpW/25Zra/ztENkBpe7vBIxXRAHwWS4TIIivDwVTkWZ8wSrstzbFZ9fn5XrU4PFJELOaUM8eVN92DbJPZaout3Dw0HeDIvDl40Bv0omatd4g4PJ6oyz9gDo/gZtTE+bYNO2a+9MqG01tGgPOAmJ/6eplmI8nbm3+4LlnQ0ohNJ2yIiYGR9LUABe+iNPPufmQlBF0ARltTioOd0yy8fo4QjLjAD7p+8w7Z+SPvoEEtRk7nhVLVYuX+6Yrvbkiwm5MSE7AvktZkJaHIfFewwHlB/gBij6epm1sQySpLsQ1dDzh3LBDux5N7d0/rPPnZUwsPenlCm1sBbL4pmz00mlHRQiYgKTdg2zNiavTCL9xGiC5SiYOEBGKasnRwLLoirFRFQLkGzghCb2x+Es7Twuxd6r7r5bauW4nKhVmad4Z6WsK5bwZyIlmFJGknDIE6XAUo8sa0Vlh3BCC6YZTtXcRmUi7R5TdeL/+Uf/O4+uH/Puu19gt3/MD77/Q373n/xf/PKf/be5uoB5J1BXhCNVDyQmKhNKcdrW4d9KaE61yeJ2fD1/sfDxc+ViTqRSOJxWSk3kFGC2z3u4fFkdpeoCt827Vu0W/7ZfYq/4cRpWaj/VRwEptqnFs3Y340Jh1cK8s4xwpoBom7CtUeiXG9jsIcL2dzWpM9xMg0O0PjiH0xKp9yOuBvI0NeWKYm1bDrtKVFx89TW6nd6/NgleHrxpyw/vtTeQvRXs6e2eR42MvEqjHIJPfEU98+X4ug562ntdGhv8SzrAtJe0tdh2v3/Wzw3pltnhc/1j5nS0mITAWFUhrUhaufv4Iz765JbX3/2CxbJpjyUt9dxl0frl/gv33zWOdRjqMJOdFvuot9e57B4fDJ+3CiiklgdgdRd9WRf7mSe4fMrx9P+x92axtmRHet4Xa2Xm3vucc4e6dauKVSzOZDfRLakltSTDatkPBgQ/WYANQ5AAw4YF+dUvfjBsA4bhFw/wg21AhgTrRRYsQRIgtGXJaKnZLVk9kN1NNlskm6yBxSJrvDXc4Yx778y1VvghYq3Mfe6lAbENuB4qC7fuufvkznGtWPFH/PFH4btf/SY/eO1HfO03vsmDhw955qkjjjcDmiamKfkdmSN7tI5IWHP2/kN+559/h5urX+LzX3iBP/pHPsPRyTOQt+huS9FELD1Ij5Y9MnQUjeQEGgKrzS0b9zF4UCWhKZJTZX9YSyuj4du9NcqpB0oraJaDMUPL2DYgL84kEuaWIapNKVcCs4idYDXiCyBwkA1uwMTfYZ1AXiqhi/dZgdNB4JmlD7DwhBrm8Be5HAqyPN68qd/H9d8t7aZy+N1DMLb4+ZqtnQFfhbDalu0ZHrWdzR+QQxGiumJcn3/igTKlUpWXl+EBqeabmYHVJnY3gwwLOHrG8tpsmRlp7scd+FuLfWSeOtI+99Me2Jv603W66HWb6u7lE/3TJ87oZigfw6PL79dxLdAy8RKtjAhAClMaSXni1u27ZBJX4x5RuNFZ8EZiZEqZq8s9u/2OoYscbTase4xVpkIiIfRc7SbufXjF/Ysz3n73jM1qAyFYVtB7EIeuI2fzF0uZ2XFFCyk566wz1d733r3gwX4PfVeVKax8RC1pooAW4f0PLvn6995gSO5nZGH/cZ/Fj+z2E4PFbqE8WLdlLV+NotStNTud9/bPD8zTbDgXRqxFV+0f7Tvt2EUpUmYg50ql6vVFZugPDe0ySqTVqXHZ4+W1xa6j5NyyZF0XKbkCGZeWxkAUWhaz/3CrGcVlXUK93+tbA89e/1UNpLd+QyRYpk8tk7FPSgxKykIqW6Z8jsQ9RTsIPZtbz8BNowAUlClbNsRkTbPdUx+ZOnOKokTrYeiZHXUaU5QIMZAnyyiuogFCiYEQ7TsG3Dzf4NkU9YVa1ehDEiqloVgNX7YWKGAZIGueri3jBF4zGCIlQTd0rFc9MQbG3ch+Z6eTIKQSvAwvk8WMk4jQhcBmYxnVnHMD/irKfjdSVJtA09B1rFa9U5Nr7aE5GttdsvYMfUe/GpxiUc9PFby0ulAx57r2hUopk/OIqtIdD4TYsd1OjGlPiIG+F/oYmfJkzLE6N5L3gCwZQiFrJmuhG24QwxHb/cjXf/NrfOub3+Wf/spvcuvWMV/64pd59rnnuP/oIf/4l36V/+5/+MN85vMv8NzJDXS/pXBGiGsye3TcIyWQRdAY6LQDtZqDqgQb8gwIVOHiKnF6njl+aiBrouStjRMBdG+BAlUTxClKytnpREou2SPAjkAdBAax3plmWiy6P02T0VBlsDlQCi2O267HAlbV57DARc1e2iJlVFLLWpRSSJPdUO2NaN9XdziW2ZvqmKqPTxu/abJ6sBhsXKQpEaO1v3F2qlGkw2D1pM0OCNYmI5jA1vWsktukun+Nvy2j4U4sPAQpS/B4aE2u/X1wGvd9D41WWNjax77igZL5eq7tc3AbzVUAnSmEh/tXb81qpJHrUPXJkPnwUG5k5NpTrF+VFhJoX5aDUx8xnZ/z0ld+nVe/+xp//r/4z4hlD+UKgFydenGhnHZNNm4P/ddZ+Ci3a1w82/aR9xhb3M/hMjdfa93mej0b/2HRtsruN1j5RPTSif4G0DEl+K1f/Trff/l1fuvXvsGjh2cknehi4PbtARHhYj+x3Y8USeDiWOsBVl0PWfngtXv8nR/+PU5un/An/8wf4Us/82m+9OXP8aXPfZKOCdmfoVOPyojIml/8e1/jh2++zc//wk/x8z//x8lj5iu//M958513+bf+3L/Oi8/fZdAtEWNmoEpEyVrHtsxUa3tc3i5lCegcXCQXKHIDECvnVS0wqmqsv+DKnab2m0gK2YN/MR+Of/G5aXFPq1dPJZOKOkNkBpM1sAm04OocTGzDYn5XUt2bGfTWdz/j28qUsCBo8Pu9Xl8oddHx46l/Xls/XM+G1e8d+D9L0KsLHynbODNwfXgv4BURRZvf1eYUlZo/U+Xnd+g7tVu3jPAyYTADWLuwsGC0ELRlfa21krh9nwO49edFiu7Avi5bAtXAZK17lVpq4c+l1bnak2olC+2oonNQQqrfa2vSvDkTQ+aH9zjNHmqRgSLez7F+25goebL+vRKEe/f3vHTvQ/aD8sKzaz777G2iBh4+vORid8X51cQP3/2QB6cXjCkz9B2ffeE51qsBEWVKmf2USWPh7GzHS6+9y4PLHWMuRCq7x5yZoste59ramaxWAyknyt7sr3Z2z2EsaAwMffBAOJb1lwxi/RVLyjx6cMX3pi3Pngx84mSgC8GFhT7ePorbT05DXUT4H4vK2b/mn+SQcmmfLQ41IwpAWWYMWlSWeUGtBnF5qqVxPnQtmsfga8t8EL1mNErLcjx2CwdGupRCydnAmlQhlzDf58IgLJ/NARf9CbE4rec5uBdpi4mqUrJJ8VeIbSIsEDV77chA6E7Ylwe88e77rPoNzz9/F6IQh6FFnUSD9Z1DvCanzPQbxbKaoWtupLKQY68G36+31kMVxRVc5xe3eBr+/haLjv8YRLz+IXtLluA1n3jbBGmOQJVwqIvI/Fz9esSimKVkp0TXdx+Ife82Wbz+oQMt7JlMJc3PKb3Qr1b0rnaaciLnzrJ9u3NyKcQQWa9XBl6S91ELHmwoYr00PTo+JXsKVTClCscogVyyi+DUhTK0lg0pTYBwa3PCeugJjKAZa/oIOXdcXU689/6H/Mav/Rpf++df4+WXz1mv4Ucvvckzzz5NON7w+g/f47Xvv0LsImjkSKCjY5AjrLXDiCnlFa8T8ttQy9iFFjmV9qeK5ZQcoLgMdzBq7TJb2MZGzQweTiun54Y2302NttYHaVvMTUGXA4bA0rFejjMwUFadcXO6LGNeQaEFNarAVe3RugAB7SQVh/kcUaMyF81+fdEdXjtXyTZHc1PisifQMoGqrWaGxTyazzn3e73e1H0OvtnnS3fkeouix78zf+9JR30ClKTOuEY1rd+QpSmfaZTzOaQ58suPqJHARSagHuPw7ydvj2HN5bEWjti1nea//DpmKq0CHTGuKNMlZ+/e54O3PiDEI+tFplh9kTfAbk+q2vE2XHQ+/5Me5BNoxOCg5uB2nvTl69sMIg++7cE3IZhwK8LlFq52E+ePzvmdf/ZVXn35B7z79n3WR0fcvXNEHpPVMIXoDJXoQhXBx18mpcLx0YrjVeT07JJ337zHr//qlntvv8nVZeJoc5NbNzpurQZKBokD5IFv/vYrfOelV7j7iZt8+oX7nD645Jf/8e/w2us/4k/9qZ/n+eeeb862qHrg04DqEj1Vm9HmwiIo0sZ/1QWob7aYY6/qyUqJoNmZLfNYWHgjVGGe+V08Pm7MENVXPRMK58FAA07q7+TgeDXIvTx0XUfnj69lBK9dz7XfV7vcahblx3+nXfcCqMz7XGN8yZwJrMP3+ux67Cplng7Xr6UFZg6AmyyHs7/yOc0wX/PynEu/SdrvrWyoHBjF6psIj1/7Ey7dLsdvoNlnkcV7EqSWrVz7ou9KHTBLpetmM3Qxxw/spx6MyeonzEczJlnaJfpYiEPPbgq88+CS++fn/BzP8vxTN2CE194949HZJQ9OL/nR2x9ydnWFYsGNi62yGnoQmHJhGgt5TIy7PRdXV2iGkoWck6N6mcvKyvxMFa/hXkcQJavvr9HfT23NVWtBFfd6WrIkAJ1UxpiwnQqly9aN4OPtI7n9xGBxnBJKdewqSNDm1F3HjdL+ozVdrhE4cY659bALbUBJmSNUgM85+zk653WmKlRQ4AuJWhRRVGaRGcXT+8Uns5+3Oug5t8iU9SOL5lRiPdqaWa9993yRsPrL2cCUYkBSWNDVKqgplok7dLj8gVVAiEdzQtdqO5vBC8wZHwBRa/C9PaHPwvvvnvH73/4Rr770q/ytv/MbfOq5T/Mf/eW/yCc++zTlfEcchJWOhAB9xFpExBVDWLHu1vRDsgyALChODmDrtLdInwnsVPn3GASN0Tr3xQ5VZRI11VW1Qvcgsak82ru2BaXvOwMMmOonKoxjIuWJLkb6fmj+mCCkMbGXgpbIbjdRCsSuAkeLVAuJKJFGeS0wjUbLQl14SAQRUwENqBtyu/6u7+g6b3xLoesGa/B+GkCNY7/urSG19h6x7uu7t8+DQE6F0/Or5mBK6OicqliKErpIH1btekqB9fqY3W7LdnfBar3hz/6rf4TPffpFJFjGMafbpBz5za/9Gr/1m1/jO7/3Eq9/721WG+HLn92g2nNxseetN94iZeETN3v+yv/4X3PrzjM8ffdZ/sQf+zKfeeE2z39h5PZTz3H37l36QTlagyRIcUJCcUVZJeSMDtX4D6Q8MBXIRch5a+1oorIJGzRPiK4IGokxsd4MaDA7sR4Gah1vyYVcCl0fCTHSDz3TNHL71i0bX2q1DTdv3nSaZHXx579r3m1pamKstZIeGQ4ChCaGU52Y6Flxo4zZd2vwQR0gNGeqjn/vYTVD07nH2Wa9ZpoSqGVO05hZDZadTiUZAAzeDCAYPcfEKRfOg9D6LIY6R5Zu2hKkXNuu5+NqzuoQRAvKojl1BXV66JCHZYrjseO0S2mfgzrtUp/wDZmZ/G405eAg9c/CseKabVycr145Ou97nbL3xP1q1KHaaK9h1uDtZlbK3Rfv8NPj5ywYIAU0YfLMRr0P6AHwq1ujtPq/7R3SskFFXZZImANu/szqC51d2lovVx1hAzJairf/qPexfNTWiJ0IWrYQe3Ra8ZW/9cv8i69/m3feeZez80ccH635qc88iyiknAirnlwExChmWYSuG+h8nuRhoKwta7YvO27dWfOUbri42PG7v/4yX//1l/lHf/cf84f+6M/w7/3lv8CY9pAFGc/ojyY+9/m7PB1v8dW/+xW+/coP+fbvvczR7RNObt0k9Bsk3bbb762nbdLJqraVVk5Qx01AG+XPaiQwKr5EUgdjSUxqc36fJ4yZAHlrQcgbxwNHq55YJkI2VfDen3+BBjhLLo0FVNfe7OBHu745/FIKpYogBaGLHVRVbPd0NMxDpQaOg+pcU7cA/KGO5cV41sXvl4GjJ9FMRZa1brR53aiUba2uo3QOxLVA+xyJtzFqi7/T6u2+rHxkBrjVhIjI/HvU1soDHL0MOC7AYhSaYrfPyVg9xUWAfWYs4XoRPqVcOyIXV9mNVZW9nXgOWlYnYjF/DzK2fu/1viWISRr48wmLZy41QChCjqO/j+DnUiQWtzNUl8Msn6FB6sMRqf6wrVEB80dzVQNS6KUjhshYrphKJvRCToXd6Y57j7ZMV8p3v/mQs9M9907PwQXUVn2gi4P5TKq88vJ7nnB3MCodJ2vh1qbnmVsnPLyYGC8mVv2AxNEflJdRFLNDNkeUXJQu2vXmIZFVCZgwYugCGQsA9UNv5VJuU1IJFCn0Eoko24vE9jzzrkZy3NE/idP/8faR2H5isKjuTOWF4QhFKK4NEhq4MOdaFiBSHTzUrRb5Z6d11rkuYQZVllEwR36+htlw1b48VACqTkt1Y1iLn1vtQ6j0Tl942z6VQmnnyiQEoV/1bZI3wZlqDKU6XnZdU8rkXOiiSxFrMedXFXX58tLU/6QZ2hp5TJ6Z6Dt/gm4kc86mEacBLAAAIABJREFU0IqfFHOXO4WkkEri1/7vX+HV73+d00cPeO/tS8aze/xf/+hXeOa5YyRdEoeBO88+xaoXbt085vbtp7jzwpeIYYWErvkhq7735yWgARHLdnVB6KoaLC784PTdvgtEr9GaUiYEf+8SUU0mYtAitsEV1Qp9sLrMEISu69Ci9F20Xpf+WQyR3X5PlJGuWxElUrI5PUYPXls9J5kpZesh6W1ALKhhz2yaJmIMrJz22lY7tNEb1R0TipJLsixyKHSh98yUNDqGUFpbjY7OFpHsara9Gdhi4W26KFbYrbioCmhOoCb+U+vFShakOMgudqxCIUchdmuuHiXuvftD/sZf+xu89eZ9tpd77txeE7rAdrsHRobB1FdraPBie8k7P7zPmz94xA9feYOhC3zmCy/ys3/4Z/mFf+1P89TTd/j8F79Itwqu1vYAnbbolCEpZeVZAI9YFClOh8yEGFkPG7puIOseSXYfoevY3OjpxBzg1WqoE7fNHVMb9awfiSjqgRlvEaPd7JzUqH7No4k5GhJCE5Kqx8fbk1iwZpnhN4Ebyy5bRrHO5xAs8GOxEPHF36xb9pYlPlSsN6NnJFWVVJU+QyCGnl56D7YUc2odGRQJ9s69fss8UXPY7YlkzK2wDMtBZ79rCGpJ6S8cUlXF99dmFd35ui63qtcpsPX5zY7UDAkXx67/qm2IFhkK+/9yb20UQqDd01x3uADMfvSyyLIFFhBToPX5amAX972KVxALBwBSTQ4HkaawaQeumeKB3Q4+fO8BDx6cUkIkSzGVQc+rltaiYH4elQFTx0BztqlCWuZfNdGsep8CIt5gXMr8Xv0Ys/BRgwrtVpaiKQe2FJBSyCVA7Ehb4bVX3+K177/BsBFefOEZU0E0YgpZrPeqhsoAMHAsQPGxKCGb8xoEdbXQgrI5WXN885jddseH737IK/FVvvZPf53t5Tnb3Y4bJ0fcOFZONjfYpj2PMtx+9mk+++mnyQGONmtbG7qNBRh6oBP61Ym9p2L+gUR7dYVE0AlJSjq9ZBp39Mdr4uoYiStOHzzg3Xfucf7eIyhwdrllzImrMbG9mFDJ/OzPfZnP/dRnuHPrBL28JJ2fEWPvbAttQKJ2t4kYFT8HRXNEOuH07IKHD8/45AtPs+oGxNcMRZ3FMJfISD0Yh3TS7M0PLTg6z5aD1mPu1yxnVLV3hxTSBXiRRWBJKjOhDke/IpG5BdWiODs00Z7SfBHBxsh8yAVVtE0tae7TDBSvha3KfEx7xLNNLU71LTohRGf619Agjfpop3UtBReGExdAm/kP1T2z9SOXjIhJYKmvAXYdpWXNQpBGU6ao2cbObErOI4P3g86AiumQJgIJAz+ae2LsENn5/QklW0Au+jgSbFyVbHO+lES1ZoqSiq2BFVQPUjheb+wcU0ZV6MLAKkTKWHjj/R3n98955Y17aN5x5+aGq9Mtp/tTAO6cdARXiDf2i0uRCcTOlFKD26uJgVtHgVubjjwlrqY9XQ9ojyUDvNVaKeTUoTGjktEiZCLnF5dE1RYcq350WbTOSSW5WJq0sRhU0GAzx8qpsCSKwu7aUvTx9tHZfmKwaDV6uoim2VZ/LNhCmZsYSj74vX3GY98z582P4WMwLByWUtKBczMfwo7f9z0xChID435kNn31PErsOxM/qY6kzBnAWgeSk4GQKSdigNg58HTqWasjoPoqipa4uIeqfmmR6Xb92Yxh31mWpaqzqdfyxRhZrY8JQdhtd1YH6CqL/TC0e5im2pi8R3VgWBfWXeFHr77J6y+/ybDquHG8Yr8/4xd/8VfIVu5m8srSU3yp63vhi198lrOH99lvr5AcGXNHKlVdzCiCRtFMUOL8DnV+btM4UpvQz3UErkJTMn2M5q95K4A2TtLIHiUlXwAq2JfZ4Rv3IyFGF/bJJO/hEwQDlGIZ21Qy05gazdDq1WotSU8/mIBMSok0jouaSIM9AaPaxhDoYiR2gT5a/WTSBFXkRJSu7xg2G3IaQVydtBQ0G6UVyWaViyLBVAJzNlpXCJHMCqEgg2BK/SNFAn0/MOnIJJk4WJbrt7/5Es/83L/JF/JneeXVb/Lf/lf/Pd/4zZc5vrni1tExN55aM40X1sewGJCxcZIp2cRzTjYbbt1QuiiI9OzGie996xW+8Vvf5a//1b/N+qjnZ3/2i7z4qU/zH/ylf4dnnnuG23eeo/9kT9YVab9D8kjXXxLDkS3XIvSrgbKfODu7YK8FicrxakPf94xj4tHFFbc3K4bVmouzc1JOdLHj7rNPk3Ph7OqS/X7PyY0Tbp4c8/6H91kPa+4+c5sQ4Oz+OZdXF2yGgTu3bjGsBijGAEgpAdBJBMGi+0ssVGC3G60qqu/mYNHC9uSU2e/3CNLa0dQgT7U61XEzbGpjvOts7FgdarYaRlXQjmlKpDFRS21axtuDBUqgkLBWEj0hBiZ2dBidlyBevZIIZdmTTh8DhYD3sDv8LB+Ajvn7c0qwuqA101Va1ssO2r70GJhckrseo042D/cwRLysNVv+5no5Qf1trOf29aNUb6rK54tTit3JN7xvT7e486+eOUQgEAkqxLSzc8UODT0h9wgJLk/pFD7xpS8SdSLkAKHzMqLsgkTSLrQFHe0mEIqr0/qNLNe5Cq/dmVWp12T3Fer6IHY/JbhIku9fnfHm9bWDzVvBgzkxepDTxlovgSEGLneXdg/ZgnsjE0Ej/WowgFjqOPW1BeYyNbFg1mq9Nufe+9UOwxEnTwUudxf81f/pb5MzDIOBimHVIyj78evETtgMKzabY7Qo//Ff+k85OT4iSIeICeWFGDi6dZPNjSNOTtbcON6gCpfbC04f7Xjq6af5uT/2Of7cv/1n2Dz7HFcPTvnh7/+AV777Gr/0f36VDz48Y5sTZ2cj9x9sAeHZuxtu3VpzMXaE//2r3Ly54d//D/8N/sQv/CFe/NRnyJeX5MszDyB1SB7IujUnXkZiHMjpgvVmw268yd/+m9/gH/zDr/BX//p/widfWHEUJkuGScc4+iBfmd2Io43dZS1dHe/BlZ1bRnrRSqqNq4PAj7bxVGmAQcLBfloBqFo5RcGE4HLOHqzEn/VgoIbsw6knTQqMSIge+C2ELhAxfQZNps+AZ/Eq86BmQ7UChhpwr5k8jMdQWqA/WH/faHOmUvYtE+mBN1fVN2VphSCNPxKiuhJ5QHNdtycD62FNKRW8jya0ph0FIXY9EWE/7uhCIK+DZcem1FSl+x5DwUkgKFPoKF4/HzWgpadEkFwo+8T2Ysdbb7zDrVu3+dyXniJNE2fnE/t9YXu147kXT4hdj8UGFM07a1GkpgYsIRODspLIVEwrIcbAfoRX335EHLLrVWQiEIdjfv/VN/mHv/oS9x+NHB+vWa0jwjmESLdaowhJ9/6+tNn7mu3WUrkd7ovGc84uA5KOWMUb9FMk3twhkxKmSNHAqKbvEDoT0yvZGHdRJ/owoFEIrgiePYPoIXFqfbsFxz2wITWjbWNltbIkRfT3P02Ji/GSj7eP3vYHyCw+HgJobPP2K3HZ+AXTXOqiNB9j6cNc9x1kuQBf24TKi5853i2y5xm7ZtzQFlWbr3eu12niPItrrQ6OGS83ykUp2SNqC0MNXidXz1lphXlRqyU4wFqAXb82y1gpIsWbx0fLrBarJauRsRhjq2krDnijBDqJ5A7ioNZsKyhTSkBh1UXv5W4RdlUvihcQKZy+95CUMlKGa89sdiYtcyNUOWf1VyLRdR1lJpkJ1m/STmPGIkSZX+HixdZMR83u1PNZJvo6Dc/ApmomJ1eC9Qa4rbeU15HOVex1jBT2u53RH3MmiRBjduentAVNUcZp5HJ75U6MkWIK2cAvCp5lLVnJSdtCHRfUVsTaNpRgNOawiPJqtpqGGHvKuGUak7V6iKF6lJZZjT37XDjf77j/4E1+6R++zfe+9xLvvPU+N06ETW/ZuJQW8/Fa5FkcIJkMtkX3qmz9yRr6EMmlI8bAB++8z+WjLX/zb/x9nnn2Ls8+8zR//E99hude+Dw3btyFOILcRPKKPlsLkezUyxgj69ghnb3BnDLTNFFKJkZbDIrPQY3qjoI5NSb4Fu3+a3Ta3yvBFtHgQjIWkCgHwYRcMnm0ewoePKhgry6N6r3yELdJdeaLUcjMybLxkFSdylqdrHmuz3Zqpj3X6PYsXmXvsIvWesQy1QZ0MtYfLJQaRLKAQh9WNnv82goKS6BYT/5Eu3u4Xa91fHx7ki190uZ2a57xi31lsQdtv+VnTYSnZv8W89ge/RPOupjuNneroI79uxzu0I5VRAjLeiDxdyW0+VfE5hmYtH+VfI5pC+mM4xtPs37hS8CISLYMqPpbWi5S1+5fliAOqFmq9iBqYKztZ47cXOlaP59tZCW91Kxqkbk5/fKZ6+K44iwexZgm292OKWeeOrnJbveIVRyYdGLKmRc+9SIPP3jE5uiInApnVxNTysQoDKuBnK1mOsaOvh/oB4fv3i93Xi8tmHrr1g1yKQyDU709UHi0sSBhlEDfByLCEAeuzndI7P1RGFi6/+Ac+p5+6NkMxnIZx8R2l+jXH3DvvQ/YjRMvfPJZ7r3yBm/+8B0+eO8+F5d7+r7nYjex6k20B2AYoJSRuzfXXtYx8dXf/DZvvPkev/Cn/xDPP3OHZ28GNE8QAypWp49nZFIplBRhs+by/Ir333+fD88u+dH7H3DnEy+yFkzgBCEGWz9C9vcYMmERMHms5lCkzef6LJflNvbX4k1fe+l1Si1HZB0rVrfvQm4ehGgjrAI59UCMtxUJ0tks9+Nqmee8VEXaxUitY9gorsFEXmTep9K8LXBeg+W1P6MHcLUG53ob8GprZyXPUkFynYMoISjWj9PU3zPZ6frizeHnhyVigFYr30Dch0lWNkQPIXkm0689SCZQCDmSkzDVns8S2ee9XWMIDOuBG7dO6PpgLa6K9SE2hV8BrNRiGicLJKvRN7UqvLty/JQSKWdWfeRqX3j1zSt++3s/pBNtytyqIHHgw/un7MfCqo+IZsoEO2dkNQG2olTBt+pm5VIzmXZpaTKhnhefvUGHZUPfP78kCZTtRCgwuY+q1DRMHSdONQXI2QG6nWvWMJkDfDIbSPeN7LjB19caJKijOYTliP54+yhtfyCBm/bjwQ/ayiqa/1o55tSl8pCGUX2s68Zv6ZjNETVTaquAs55YtV6AGnVPjUY6N002+tncp8/bI4hRKefMlR+nGmOpUtwLvvw1h7zxMlypMTQnclZJM7G+GXDWG21RxlJIydREd9udR1pmOoqqkqbJ6yicrqkemSuJccyErqPrxTKrwbKwBtwCEqxWLCJGHZVAERMxGK+uCNGamBd/E6VGtqsITl2AGq0EpyWaY55zMifeDXfQxcJEXZi0NQOea7rVgaYZc6MszMsF1CYDDpbFagjraIrBMn/z4mTXY738dPF9ZdyNbVAZgMrgC0kIQh9swaRkLi6vfGTZ+AlFQQK5JCQUttutAdaSCcGKDVQr5ay3mr/eoqfTVOhjYFit6PpgKnO2mtMTrHdjCHQI5EKHURSDKEX33Ht0yt//e3+X9z+8z25nWbCbx0domNCcTdDB01hx0S+szg3LeAohu7x+bzW3Q9cz1LZmQM4jV2f3+a1f/g2IgdAH/o9/8Dw//TM/xV/4i3+eo5MVV7s3ODs95fXXX2fcXbDtoI+R1bonBxtnwRdKATbDyrOA5kSGGC2KX7NtEhFXSFNR+sEyuorTtYJaPWowz7kFm5DWwiVnrzfuu9Y/MIiPRTdGKRu9swuWMbJzz/M5FyXnvTvABcmKegQ8+CKnWHQcaP0Z7VmHNhck1CrXwrBeW+abyqpYAI5g2f2QJ3PYikWcS1WUJWABo9JsRm05MvdCdLPDYbbucL2d6T/139eh4Qz+ngQy7fnNOOzHAdHmWvo16eLaFsit/v9aRnK+uoUX/IQsi5dCtfKHxwAWy8CTG/yiiAazHb4WBQk280/vw+pprrYbzjnm7vNfAt2Sw0QVXbPloxw82HZJUgGbzE7tYu4t14lw7acqwtLKEBw8FgeJhWqd6jOF2Na5Q6DYriVZTXwpyn67Y9zvic0O09ZRC+B07Hd7XLi4OZfjOLYG6LVUQKR3G6/Ezlpd5FIoyeb7jZMVqYz0naBZ2U/GthiGlfWHK5lxGglBWA9rdiU51duF2TRQdGLaJ6b9FbtsdZpSOojK7vKU0w8+4K3vv83JyQbZ7tmOe7LXRUWBnsRmiGy6NVlAozAlNQc4RoIWfvj9N/i9b36bk5tP0f/J2zx354g8GXU/lS2qkS4GuiFShhUhnHD6SPnt33mZb33vJVarwld+5as8/fSf5eanbiKYcE4cnN6Y/S0fqJTOAAkRD4oJaJnHvVwbU8qBjzX7R9JohIs3b6fxgHYIlmUu2ZlBbku1iFN8xer7XDE1SnCfpJj91oBqMOESnyuwZInV8RaoteVtui6v153AyuDWUuj7AQtYKyn7MVWBYnXkKCVlLOo4Ig2Q9kjpCGIBcOuTG8ED3KnMzyOGvvkPYhxHexdRQCIhWb9BbYMeejUrPQVBNLLqAuuhcz0DA3eTA9TOA+Q3jzbs9ntuHPUU7VjHnmks7Mc9Tx2vgcLUg4Ro9PDqE4klBlIq3P/gnN0uc/LUmil1fP/77/MrX/8Bt/pIF5SkimL1fRKg6wN9J0hS8giiHTlADjsLXJRZPT/ESJSISD4IhlIiUgI31iuCdJxfJS6uTlkP2li6UqPbKmgU0mTiU50Iq1VgHOFoiEgfudwXpjE3X7Vo9ezd1qnXM2JrWLUpNQted5dwMOQ/3j5i208OFp+wNZzVgJZNihBluTziySb/hPZThQfLuozlNmcS5WBBBq59bueItQChRfKWBjkA2YNX5liYwTaTXByQllKs55apCyCtXqreq7bzqobmQM4XvbjO+sX6AKrfGEKrd8pa2gSqqfoKTnM2yluMkdi5wx2sZUVKk7UzFqwezh0dA0XulLgQD8Gij5MoWqDrglf7KFnDTBlYZKtazZVqqzWqyZ/SRBkMQFIK2bMzorjB98Wyfdk/l9IiSyKlyWgvo01SY6burBXPGs8KkLaPenStgvza48kWMml7SrDzW8+fOQPd3mkFt8xS7l32fooRd5QS260BXRFz66ZcqXwJkULXObAoVhsRY2QVBxc4GCkl0cdahI4bVdBsDbZzMrrt1TjyzvuvkyZhc9RzdNST90rpC52GBuTbPSy3xWuk2PEDYmKPallrZUJEWA8bYgfS9+ymPVf7Hb/3ey/z3nsf8IXPfo6bTx1zvn2XR4/u8d7776AlgdrCH0IwUKqF0JnibteZTmgpBdJEy7izHFr2/ItaptECBrHtozo7uNVo1EzXQTRefA67FTlcsJiPR2UY1Hk7H7Fms9vkdIfNsvJ2vFrjVPIiWjsrlbSHbkI+cXF97X8INVpbY94Kmvw3LmyAOerq7+1fbpsHQXv1/vcSeNA+u/4tWsCm/abexo+9lFlM48ddy+He9bdLO74Aslqv4UnHWAAwuf545OBnI7H53ZYOwt6PKgTNyH6E4QYTN7iacouiG2ALNDLyIhPEtTMswbjR2pbBRFk8tGv38YRH08obBIKWx4SLlmcvB7fq614buyZyIbmw3+4ti5Gdth0ijx4+pKTMfhpNhAxvLyOBfdoZuA42t6cxOcuinkbn7LVrF6S0Z8qJPBXSVMjZ5nsKVkepKNJNSFBStvVLxUCMCX51ECMrzP6SioNFQSIUMUrk/mrL/bMtd24fsVoPFApX2xHNhVUolCLkEq3OTA1AnW33xGABrRvPdCCFEnuyRErXIy68pYKxPmKghMA2TxA7Tj/Y8eaP7nN6dsatTcd7b3/I5dloQS9VcpqcraDU1sIiulCEhmq+RPBAeQ3+VE/5cDCIf3agYgrN5j2J2dXGh6i/z1gtittPaeuBMSeKrwHGnGk1iz5krW5eHzuBtXXwkV+phizHH+2+D2mIdS23fYOYSkBKyW0l1BAJUnxdbYuAP5d6l+Z81KRD4yAFIYoF0g00uTBU0bnmPYqN+SyUISJYbR4qjCIo0SmwxXqUqqCaUIzKmf05ZbU2VtVEhCj0XWCcPJsnvsY6icFuwQOcpZDGzNVu4nI7stkMpAly2tEFZb2K9KKN5dIpaFASxe8rImLB/+zhSRsr7vP6swnBnnnx/sZCFYGLXG1HpCuM2cqRoijdumccC5totu7Cgz5djEzJQOTJpuNhDmw2PavNisJkyu25Bj9qgsHto85vSKnmyQKqufqNSgsqfLx9NLefGCwWN3qUuRC7yLzARypGc8ecQ4cPmQ1LdQjNkFagOC9IS8GCluqmGuX5mupiVx1Jo2GKKXXW70pNgS+yc6VQpDou7p5UxFsNbPYIVwgG4qg0HLsaVaPi1XqZunhLrVnIRm0J0Rares+U0u7TmngrWVzU3RVfK7ipM8mU3mqkO9DF3mkOc99HdYqV2X4jPBUmlOABNjP2ZkQieTSTI51iEU/1NhrSsnXVgbN61NnJyyk1wGAAtRaA1/oFz/KJZVBtHxogQ4To776BxMUKa4/J6sRiH0lOfxCUkvF+kDXjU5y62Jux9Exlybm1ZHB5u6aYCdlrKW1pbaNALAsb8Ho2AioGiLx4zJ61KBAY+t6fdx0bjqYFpjyx2wmyqrTV7OtG8YXSrx/l/qNzpjSy2yVyiYSonGwGwo1IVmUc93RAmNak6L2L6mIagrXzKC7ksgRQQZnEKby5oAm6Tlw0StjtR3RbIGS6qJwcd3yqE9LpJf/zf/NX2LtDNUjgZB24e+MGXZcaJdqiQ9ZzELH6YZVgokxa6LtIcnrbg/v3CdEULGIXLDOYhZKjiWSpZ9w1EOms91MxwZ/sUfoDMEYFleKKzJZ5rMIPBlTtvUzTyDhZraPRxWnPruXC1VRNq3MWradHRZzklNt3qr1Y1iahmBNMPX8zLWiBqHsAsgwULFMWUaJ4qlcTMJEJ9h7LITBaZg+v1ys+aav7eDLg4Du1uXales0ouD1YHv/Qn1m7v0qCk8PzNfduJpDq4ttc/7naf2xOHYJKbe8ytqCgLrJ5TmN2u2JZ2kzoCiQbVwRBQweXF3D1CLnxHGGzoj/qeOrOmhsnPeTJ7f8szCNx4e3Xx7J8vgcPZQ45mOP9Yzygg3udQwnia4hqzVQGAubsFbn2FOuPqkStKuHKOJpCYwiQph2DC7TFrkMQ9tstnXQcbQYosE1bqwVGOVqdAJDVewmj5JTpV+v5zUgkCxTJqBRCtD68Dx+OxE7og9nFRGqq5BQ75mQjnrTde4YhopiCYu1RKRKJIZLK3mlvka6D9ZH1AR51pOzN6YwE4mCZeqvVEyJqvU+7TAk9JU1cbUcu3+rZ5Y7v/Na3ufrwEWf/yk9x686GO7fvAJEgI5cf7nh0/4zf+Ke/w3odER147eV7nMTIeqNI7rm63BK7CQmJkhKkHjTMVPpS6/cCGgqddG3MFFe6DA7Mis/HyhpqpTQibY1qtqUakoMowsLfAErp7BkG8y9EI0GNwYG42rokAw/SG3CMwfsM26DTUuiq72LNBW1t8etv9FY1hsWs5l3aHKVeUQDUGDVXV3vOHp6SUuLuc3dZb1YWYAziavTQd531LlYBBjuv7H1uC5TefifJ7ZnShx7Fr1dGmzth5QAvE1XpCYyq9CEgfQfaUWIkl5F9SCiFTQebbs3bb57x3dff5K1Hl3b+XDh/tPVSCDHhpWyZ8dtPHyECacxMY2G3ndjctLDHfqxZzIwQuLrcec/hQogQY8fVlBAC/aQ8fPSIpzeRVRRCWRHFQCu5g6xE2ZsP0tt6W7JCUdZhRRAhVeZX9S1LQbFz916TX4JSmHj3w63PXehXG1I65lN3Ag/uX3Hr+BgFdg9PoWSeu32LB+c7+i7wyedvsX1HuXl7ze2jI7a7Cx6VnQchZhbDwtB57WnwBM6sbhsXhrOtaePH7TM+itv/JzWLywj/0p5BpQSZs++BKAd50qJt10UnqrGsmywcD63/+cI902scgEkFGJapCDEQuh4thWlKZox6o3JV5zF7wf6yGH15TzktI2aZ2HkbjbqfO6a44zkrm0m7anHPIUglpVVbO58rBBPBQA3Y9qveFo/aczCEBkar0Ibg9yidO32+ijQKVXVwszvDkS4MqCjTtKOkwqpbmfKYi8RolPasK1gUEVSwiNxSuQ0BVzkVrxcrIoRSI0pex9eygtCgvgRqBLWLXeOxm62bwVYF9AaoPDfmPfLEi+DVOQwW0fPsaP2v9i30hU/w6G60qCYKsXdlPBbjs43NYlQpW2YBiNJ5H8UWMjSQXIHBws0FmMZk0bRk589SDNQIwNTAd3RQXootwKveeiIlLXTOpvG1lxwTUipQdLDpC66d2iKIwcdTdopkHif6GClpj+hAkK6BaoioFKakTFnRHDled9x+6oRRjE4WSqHTaNHRlOdzicdWnI5cx10du+vNBi2FnBMXl5eQk4+Z0EDbauhtUfPnuFpZvVQnlVo9O1TzOJIWETexhVpFofN+bivaMuahTPVnVt/1ch9jMnigpGYOitN6F/bheqS/Uo1iCAubZo5+G/6u6qyiZFF0dMDmapXa2zNtDZ99yoXrqab5VT+26RP2fdJndWstH4IYMMfBYw2ILZzAg3N7QGQJYuYMZN3/eidIOfi7jr4n0Vzl2r4HcPMAKKvfh/gRBaG44GikyEQXjkxd2DPd8eRZYEUsgUF7NsMAMkHOgCswokCCxTsO1959DS79y4TGq7UO9V9CO9Y8h218zxqR0mpvDx6lA0bElHuTwuQUwdXKxLRwBoi1GrLa91prZjdgb6Bkz25XpVSBrpuz/TF2Jom/Hz2oYWyAIAY6ori4GUZ5FC2trgwCXW+BuV5WpJTY72twqzOmBIVURlIZCWFDIRswcPAVJCHdyhQVVZFiomRh3VFKavWtvVMw93kv9i0nAAAgAElEQVSymvligbS+RL761Zf5xjdf43d+9/d54ZNP8/N/8suUrKxk5MH7F7z31im/+E9+l+N1T+4zYcrc6oVVF/nwvQ956403GXmBVQwWNKxB0RoAhQbuatCgflbXJpbvmGo3Dm1Jiz0tsmtu8hYv306Z1ajTQu/zYjTwmqOtWlqQWAha8MiJMTRF0SxEjRQmQ68IKlavX9kgudbCtSC0B1S8xYi6SrEBVTm4vFwKOUOaJh49PGXcTzz9zNOmgt0yUnY+zXbc7AHGrhsompAQ2e9zy1QFEYpkui407QAzPAnE6Lq+2vszyogKq67j7GzHO/fu0616nr61pjuKaFFOhg3P3rnL7379jG986z7f+sGbLcBW0iIbpkLt3xl72pgrxfxFGew5ley+WrE5kT3QXev6OsxfEoSjoAx9YbNaEanrWSEzEnu7v+y+saoSMeHAEufSiljLmby9Wg2Y1/rVLnZ0IZiAYd+RiwkE5X1hP05I3Fjgp3MfWYRAIKVMjIHe29wAdENHLoVp3HubM6c9l0qid/uhQM1aL8Z0XVvnQEi19B+DxY/i9gcAizA7Y/WzQweZg4Vf5o+Xa6pb0pZRmo9mu8ryE/8MgUqFaPLU1aDOAMzWwTCDLD/GYb2hG/Bg9VQl50WhrmfLPLpcJ2nwjF9x5x0BkqlrhRBanx6tEbd6Iy3zUFd3Obi/9qTM1zEw0epv3Ej7tcfojrGaoQ7B1a4a7bLWhaoVqxesXkdMVawUq8uKatExRZuMurHqHqf8Wt/igxdy7Z0tr18WY6S+/4UjeT0j1AIG4o/Ks6SLNh31ydWIrK1YZY7QVvyghxFZqEGLYIB+Ac67CGMyifgKxGPsGAZXWa39utTVvrJdy9BH1quBUhK51qkEaUGR5ZaSgdgyZjRZBr0Ea9VQb6zW8PWxKt0ZwQR3EsviXubxof6cHdz7Wm3+5SJQUJ9rNmqOlEC/srYwNnh00Yx44fCIU6WCMgzGIrgaMyUX4qpDgTHNCnjzG6pkOH8WYpkCS/4EonSsV2trcu8y5mihaKYbIn3sMOZBIUZxMmAF6+3ILWBDHV4Vpqs5QPVZ1XGIyrLv9mIuLkDHE3x9uwU7Y3Lp+8NjtH8cfK++h+bdeeay5OygTwzMO6XIAG9GcQVDUxFo1xiwd2X8wydc6AII6hPA43Wc+Pgu/gwO+I31CSx/vi52UX/Sg08e3w7XhUPgKYuRc/1TrgGxJwOyx8xRA1FA8NxmzrC/REuirE7oto/IXFHSKX1n4kfZ6XK1Psp6O/Rcf4JWQ9g8n/+X+37yJteeR/15BhfLe1/se/As/CZ9/+xZmhroqOOqUm/F1QitfM1q8W09rXX5C5vhtrua2mqnp2QK3eM4klMiRLHaQgJS2RT1sfi8qZliqTWkgq+j4qDVarjUs1YiXvsrJuNtcz+iEinedgkXNAnR71UrELL7D0RKEFYqaNAGuPqu4/Jyy3bc86PXRh5++JDTsy0lKz2Zq4sdl2dXkPfkXSaNhXUMxPVAlsh2p2hYWT9LlEKm83sttVmeSFubW4DUbXg0FGPPxNf0ZdDjxwo/LYbak2ZAHTLNXmo7OSgkzQQtFr8rkdrCrIqtgLFBCJDSZIBCPUB8cCE0X6YG47Saeg9uzEE62ngKATbrFbdu3mS/Hz0InGyM1nG9sC2r9YacYEwTEuHybEsM0A+RIQQ0QSoG5IIL35Xazxn1MpM6kgWRTC+wXg08TDvu399yme5z8uUXeebkhHE/cnq6Z7d/xKtvv8/7D84Yd6OVWCRj8CBCyjP4ExEPmC4TJrPQTlN31WBjecFcUrX56iqQjKqIU1lroFVRCNHXtNDWdInVWurMHdLMlC0YKwLr1YoQAuM4IkFYDSu62JFysnvwWalF0KSUMnG17xhLYe9K47b2CeM0gQsBXWwntCi73ciY9ozTRBegjxb4tdIWW11ModczidD8YW3+ZTWd0pIDH28fze0PULMoT7Ra1Wg0p9EnzaH9kwPFvlkBSRd7yAG+XDqGNSu5BJgOvRrQExFv1E4DgCJGDVtOagOPQgyRruuYFt+vf0AZVgNFlXG/Y+htkagFwxKEnTfiHgZz/Eqx+kJysahnCJ51MQNq/ZaqcbX7zCUt5ooyjXsTuqnPwo1wzcCpIyQJQgxqWEi75kxUgRxT9bMIU4346VSstiZERhLFwXdAvB6rgnG/nBmJze9/8T6WgG8J2uu9tIyyfaG95wrQcilt3+D9EbsuOIVYqH09BbU+jz5uMjRAnYHsDlKUmhmt57OWCAgWyVSjf2qI7NPODHcBLcrQC8N6TSdG3s2lkBC2uz2peFS871lvBoTOFNAk0HVmiFWTv+dIUeHy4sreoy8KxQU3ctKWsYouDuPFE7YYAylboCJI18awCaqA5IYMZ+exZR3MSDfVXMN+Rl/tIn1nLWZQ9YR4DW4UxCO9Jn6rJOBit0Uxuq/EwHacbMypK8lVsNnmYh3bCqWKCZnDGETYHK1Y1tPmnBnHPfv9HvqBfugpZLZ7q8ftQuToaG2l/n6vRd3x9fsLtXeB1gyetsczZ78MdGkbs+VAga0Ol0ZjxSjdxkafwUJVvkU9W+0Luag5L2jNZNZRX7PiAlLIYWX/fvQu6cM3uEg9oUycfPLzdDdumeODEGoz6qYoCO1GcP++Abj6XGwYtbkORlcClkWHlq2as2TWxmH+Gbx/nBUcHYC5iidDxSl13P1YxLb85Mc7BNfd0kbh1ZndsbT5IP5WLKjgDVIbyFGESQJd6BFuwHROyELZvIiu76D3voMSCeM5q+MVfefsgBChOFgUgA7EBT8WDnN19u0SZme3jqEn15b5mFAHmy3QYn8sw+sVk/67ZfuooO5yzgbVTIYDIonRugDkxH7ac7XbErpIEKUTgQCTmtLouLUxPmYo0pswVGXn+K2f3Dgh5cTVxVULmplglDAMHR2RhELIoBOqgUycx4sHLSMB0YiWHSJKVqP2r9Y9aGG73ds9ICC9tUzwusaSAyXDdmsBrS4mirMWogfWyi6B194ZMO6sXVMOFhALClj/31u3jMqYUuL0g3PuvfsSohmhI0Yldson7g4oHVF7IJEkMU2FnAcfp9XGdojTceONtc23fbKWPkHQZMwVAXRK5P1oGRtfFBt1U+oaJ768zkBvtjPiSRsHeGpwtfoVIqB5T07K2ek5F5eXvPCp51kfrQmyseMVIYSaDbSa3hIuCHLCS9/5kEePTvnUF+5w97mnES3szy4oU2rlQA2UtjXNsllWaiKtZVoQWy9M9XoiBOFovUGfvsM4jnTRAMZOjJUUaq2hjkjoyHngO996nTffep9nP3mT9999yBe++CmeunPEzXUk7zOPHk6cn5/z0z/7aRBhmjJBNvYO2KFYz8w+RlIXee/dB6y7nqHvuXV8zOuvvsXrxwPjOHJ2vue3f+8d3rp/yVv37jNebbm1tn7TRSNJd+57db5m0Rgxxk6ZwY64ardlzAUrF/YWLWEOyihQvNQpayIVJapBLXM1rHa4CkRUzo0pu2Zv7abEkslZ2Sdvs9b1dH1t01HVxCNTUfb7Qp6EKk5ko8x6Q753/5KcMru9M6AmC76clR1IZDdlLrcTXS48+OCcKVsfypNN55ZRbd4tggkiVu5ittGsZyrpsSRBE4H6ePtIbj95n0VfqKqfugSIMP9VxSuWTuR8DGn76gJQzp8vwaOdtCogLmkcLXPVJuqcDbMapWmuIah9+Q4W8XlgV5Wmg1omsbousaZKiHcLrpmD4DArBKs77LpISpU+OUedlpRZ6wOoTkV0B80Xg9hZaj5NE5WuIFJrLEujMVhj+EIssTYmQ0WsbQieMWwvR+k9epzAolUxkxVyo2nY9ap7OzXiQ40SLp/Z4kVKCK2Cuzrp6o7SEnDPPqM+dpjQxpLXJSzHAYZ0quNPfd9aQUkFrDT3vJ5bqeDV3h14k/ucCUP0rKvnq/wW6+26l2rvLxjQnJVu7Tgx2L+DBGvU7vdQkhJicLozdL0BzEoJERXvZekQKkCISgxYDYwWTEa8tuuIBmysz4TNqaK26AOqloWuEuDLd6UKKWW6oTOQ4xQVKa5eqlZ3YouW1SumbJQaoQOJ7Eere7p1ewMC7719xhClAdf2uMSjnP5OUAedxQB1COb01/raruvaWCm5cHm1pQzKet2hIuz2BiDX/cBmsyGEjpQnao3nct4ezFkHgqq4qmOYHTCpYwQapX1hC2rOrWZn7NOFM9cG4vVvLEZ0G4uLMVyPg6CyQlXYPXiTs5f+GffOAl3e8vn1v8vq5DZZRrI3lUZBKnOsVLAihhoes6qPb8Ki3vGaNLnPNIuUH0T0rgE+EaBQ+3QfHkGf8J3FcYRFjfP8uV35tc+l/c+FsZZHXYIyzF5VsOUgCMQVKY1KWRCyRIJ2JF2TplMCRyh30f2KMQ1IgTxFxhJIaccQC7kIUXvDnhGU1OokHxc0un778zuXH7OrRznm11f/LF5nEbx3ozTkJiarbc7k4tEFzH7VurIM7KaJ7bTnar9nyB1DHyheQpEVdmPi4urKAh1xbe0jbHQ2GyIiHB+fcHp+yna3NXCEBRS7vkckUqQKqWSKOE28BjGK2O9lAk2IdlQkmotC6Oj8nEMXKdIZFiq1rs9pimIAdRwnO2d0gISQg83z7H1eNU5u8xOShJzVabJu+wNE6enEMmmrVeB2DBTZ0+maynI42+0oAusgwGjBghKQDGcPPqBM1v6jlpZoF2HVm8p62rNer5iKMwMGA5hBYb/d0kdrV9TWqYVCumHFuiCWts4deCzVGa8ZLKUFnnMeGfcT52eX3L//gGdfeIZh3dGHwTJxQBz2BFFyWlEUYndFJ8e88up3ee21t9jcOeL5zx0TKYxXOyuFqbZTQCR4T+toGTxV8zeKje3ggm6NDQGUkpnyyH7cstuO9OsbrNZrzi6uTHymighKIUa4f3/ku999h2/9i+/zhS8/w+npOeujm1xeZZ46FkKZePRh4cMPPuCnf+ZTFvQMDoBFLOOMWrsWDNS/c++UIVqw9JlnNtx4Z8Ubb93nlR99wOU28Y1/8S5v3Dvl5Chw1AmEzg4aIY+FEgv9EAkhMo6FlAt9byUZ1hvSMraIMZKKBqQIKVkNcRXymcV7AjVOXrAAaEliLV5rhhFTDi7ZyqiCBMhWPqMpm8ZF9JpsoIs9IoGdZ/67zhTjL6+uSMkEp4JY+w3RYIyyWIgSmfYG2Haj+a0BiNpZkGhKpJIQ6bjVCVNRcozEzjQYrCXYXN6lxZg4EgPDYMA1ZbyFyKypMY/n6vM9yWB+vP3/vf3EYHEIkew1WrUflRCqaCAaitcEmVpUjZ6Y06VLu7iQPgjeTNp+n4u6WucMHCqtKzgIbdkWP5KEHrDPUzJFyuQyycEdngoY67Hqscf9SM7m+lXndRgGFGU/7W3iBpphyN5XsVSHslSwGVvUD4/wV0czu2xz9YJqtDzUPoZ2d6Zu2vfgmnx9F1kfWZPdq+3Efrs3kZ5+4Go3Enp1o7NzemWHJqXvA/0gpDTxKCVqKwxVpYoTdRVxISAzJ90uceH4+1OuPeMUjHqZrQePRK9ZzCaM0LlypKrVudRehrX2ZOkmdt3CqSeAhgaMwbNBapSf6lHZwpSQGh2tjnyl8WELGH57o9cnqggEEwVCa28+XxN8oaufZa1tOYSj1RGX6YqSE0KkkzVG40kUsnH+1QILKgZ6tRTL5sWO9dARIyTPNhcV8qhuwOt7t+ijJUstk5pVQb2dClA0eRBTKKXOh7kOwt6vpwVqvyYigUAXI9JZ+5lCQjVY4EAKmgtBAwlvBREKUROaC8frI8Zp4o0f3COVzFNPPYXVK2WX5vdst7cYafNBbQGVCKUkSrJxU2umqrMUu0AvPc/dudUWmqLQhx56C8IANu50xgs1s1hSQj0LX4M9FVDaWJaDeMdcd0N7bi1CX+cj8/y0HWavvqRZ0EkAYgWSSizWyFmOjNIljIChPSUR9Rbp7JR777zF//a//n1+/+sv8ca9B9x5+hn+yy/8RX7+s3dR7RmymvpuqcGJPans6aQjRKCYcALRHOxW14gtyHF2+43+i/Uli6UjB8+alUIO1nJEsLlRQiBSyNk0jOdsY6gPDFQ8wOP2341GnAkCOIeNylnQJK4sO1pGUjvDQZJBvW2NJpBAUiVKh+jk97Dy+r5sCoRY0/DYJfIIhEwuW6NglYG+W9ng6EzE6K3v/ICv/IN/wg9/9BbDOtJ3HTkpZVhxNAw8uv+I9998g09/8oT//H/5a2S9pLBrGb06TrN40KhkghQTIHKnvrhjKlqfR332C4OKP7+S0WA5sBCsJpGixNARytzkXLGsS9HU5nOYB36zjTbuI2R7WyUPXJUNZ2VgnYQbArEPRAYTydqPIIHh6NjBowKF0HdIUcqUzMle9cQIXR9ZHx25jY100YJX4g5ewGzktgSrQ84zoA9iTm4OYq1gSg9gLQDEWAVGx7P3HwGpvyv2/DTburTpoet7VgOMafS1xeueiP8Pe2/2e0t23fd91t67qs45v+GO3bdnkt2kOEiRbFlj5ER2YgRBEgNJgAB58kOC5MV/Qh6DAAkQ5MEJbAMx8hDFgYUkdgIlkSzLGihSphhGFMkm2c2ex9t3/k1nqKo95GGtXXV+t2khoB7Mhz5E83bf3/mdU7Vr7zV813d9F44GYTGBQCWD90LOEWwEiOKaltRK1sDeYpghb3Xfp0yJmcYnsiWji25J2zZs1zve+MFDtg9heU1o2kh0C0rv+Ef/3f/NgwcP+dKXPsXTT17n1dff5uknn+TtkzWhEb74/A2e/6WfIPeZvNOqaZSMNEIrqiVw9mDNts8MBw0H/TnLgwNktWLcbWm7zuycxUgGGjsX1IaT8RxzIJ7lM4Un1xsuHpxz+4O3ufvBHQRH7xwPzkfOznd8dP8h4wgvPHeDT33qOnfv3eX05IIv/9Pv8erLb9EtAy996UWefe5ptttzxmGkz4WYRs4+OGV3seWocbz03HVWC8/FkKEsye6M4WTH7TvnrI6XPPPsdcZhpD04oikdH5485P/9o7f4lV8VjpaqlzDmUWn5uWV90jNcdBxducbVW0/wx998hzEH/ujbf8Bq5Xnu2WOefOIq//6//Ut85gs3J9sVli1xN+CbwPBIY75tHrlzOvDGm6e8/No7/OH/8wOGOHK2XtPKDd6//YAHj04RKbSd59mbHU3TEFMiRhW+KRmy6TqM2x5xorFBzozZWaWYSXwt2/xGcVotrX2keYpHFPQpORKC9kY7EzdLOTNGjSsEjS9TUkaTpEStMirI2hgIqvWC0LRkKXYdDh9aXBGViGsDo0vkElXZeA+FcNLiXcNxuySXTMwjpSQkZwVzSiA2qtLeZ9ikxNI3OEZ8ahBp8SGyalvOxpHOFRpgM7YMWfuog4OuUTuw7e1+KtkGyFksPf2kwvjj+PpzVBaV9qNyy+YFp0hsH+3eT/L2gdMZFa9BnSCXgG8xNY9LHP4aKIoNOt8LGuu3aXVoRuqs1nH5OspMs6wBp9JrlJYzNWhbwFtipaxqxa+OsRBhagDPplI6jiPJaBkVMZm+075wn1o6/2MUFFsaH1R4RAyt8U6TA++E0CgFJHhP8hlx+4Guono56wyqENQh56QCB949Nux7v1pSk2hLZB+nUe0/x2q0Hq8QI6asON2r7Rej0tUet+mpFu3LqzSXiVKDrolewvQETfFPn2nK0faEzY8M9flqIq/oot5jSlWprYroQElKvxB71kz3rEmPoMPik23cbPth3r/F0EQd4hy8J6aRAgQfEGp/a56FABKkrOCI1IGTk15wrTZYgM2s7it5PktigG2xa5ZQZTLqmVJgpI6Zyrb/KLpPSp3hKfV+dTZlre6KbmzGcZg+FdFEWFVM979n7/nbfqko976SsdIp6xrr+7MBLiAUD23XmQhAtjmWe31i0zlhCjJlb3/t/zmdBevBrElTTV20t2V/zS7v9UuU6v19b/99iYZasiXtlgcUKOIpLoEMTATOkkhkHC1jWXP3/kO+/rVXWT/q1VmLMGxPWJ9+BPQ0ocV3QZWanUP8EcFdx7tEKgOZM72ftEOk1dlj+tRV2CJXYS0skATndB4qSdGR5BqSFLJkgrPUN88JGZSpWlUp9QVhYhV7rAFuP6ne/0OmEliWqIlsLuRiynioUnOp61Ra7WX1Gqj4yUpEVZLG4SyWSBJxNt8VHDIU/K4nMZCuHFLGHWXcIqsj7p30fOe77/PO2+/gGpRuXaBIwIn24a03Pe/dWzOWJ0HuUc4f6P0fH1KBNL0pBbG8a0F20/6fKr7F2fvqtU8IBfseUEqdm2hWojAngMIkSoIBnZVVU6GNamerLcSrz/EkRDTZa6Rl0a2AHdsxsjPK9nro9TpcHbSq1PycEsE5AzgdoWls1pvYc8PmoDKDMQJVLGqfKlzbPFTOf16KyjSqNG/nnPVF9bPdLpWRZLL/ySybEwoR8QskJWOJFBOyzow54UPAiwKmBMcwbtU2eN1zzsEwpmpm9aLMHoj3QKKKr7kw00VrxeT6jUP+wi//BVY3jnFtgpR4/60PcGPm+6+8z5gLP/vzV9huHN/5zge8dvyIt+5sePL6iptNYfXqEsmem088yerggNRf4EJAwoLiA9/59ht8/+W3uTNs+blffIkXP93QhC13797l1tNP0S1a833CvTsnPHp0pvbB4pDGO3zwOiorO+68e58P3rnNO6/d5uDwCh+dXHD3wQUpJaJEMoXv/en7vPipK3zxc89x6+Y1vvyHr9CtGkoovPDtOzz99BOMacN6s2HcZVLxPLh7Qb/Z8qu/+iWefeomq0XLcHHKeAJ/9PIrXD3oOD/d8tRz1/nUp57E9SNdGbk4GXn7nXP+9K27fO5ffoFPf+Yp4npHXCecC5xfrLn/0QMOn3qGX/jFT/Ppz1znb/3t2wybTAkRH4QSM9v1jtsf3OXgmaskCSxXC1bdCrmmKtO/89W32Q09JThOzgdeffs+67MdH95/yG4YiTEizQDRcXB4YCdLK8FjTORirUQI+Nr7W0sZSgNVUNtm34qeCalmr6A9tGJzh52YjZ59jfrTvSFgTlWFq2/MZGIuU2//zMCClCIpZhbLjkXXTDFMxTQLGh+I/dk5HQkSoyqjKmCbzK/rzMWYozKenI7e8aItWrkkypBU4E48i4XDSyJF1WpzPjOMmV0snJ33HC0E31rbTSmsLyJdIxwsW0QcadwqCyoqq8o/5kI+ef34vX7kZDFlax7eS4YU3SlTkarKxuvPZM9NYqqR+x09wjyitsbLmlRcpjPO30UdXVAUKdzPKZRbrocqBG8JoL4hmUoUThPe2hfo3ez8asL4eC+B9145+ClP1bWY6pwgpRjmMZJTmtQ1J8rIVBLZ77+Zf67fbTCL6FriRX0XNgcrgAuC2Mwb51WUoVL8EFSRzml1yDmnylaDTJVEWzBDzYWSrX+yhs3V4PyQVzFHr9eo/Wu1Sjk96/2kc+/3sHuoCUkVANJnZ0miBd812ajJZd0VJvdCRdZ0aG6YkntvQ9grgucwyyqZ0Np2tyC1lAyNp3E6ZyvlDMWRxoFHD3vbRx7vVcWs9ho4Ebb9Tp0N2jNaAYDooiZYAqHRKklGJe2db6hjRUKnn7u92DKmSBH97zioTL1zXkV2nNXdXQVGdI3EgnhxxRyHqi1NlfZJzMgCtYhdpyWXdlTGMZHSqOtZlI7qQp15BWOMLBYdwehr3bJDRGe2Ne7j3WcadjIBIcBEEfU+XErIMnlKOqt3y9n6wry3vLLQD4Om0TES94CGmgjuj25x4kiTkwffelx2U6Ctz9TZ895DeffO496m3bsv3be52BLWfsBi4xVymYMJB2OOBA4Qjq2XUvDuiJAdZw9e55033+bV77zOOOw4utqqmAPCf/Wf/9e2JJmShbBYklLEOfjiT32Oz33hJX7+l36WJ249w62nXsT5lly2ONmQh3NKTuQcKT5QnMM1QROKrNXoTADf4ohkEYoL+LzEuYLktSIZqPe2sLnmR3tnEN1rgLdh0xMN3t4rBkDkvNeTLhHhCGRBKTtS2uKKYywF77XPMpdEaTI+1nmDDbkUSuxNqTHhkgfxxDAQRAjL5/WMBGA14LlA3LOk848owwm0V0juJuve0TpoPdq/VlRCPoijbYVxzGzPtvzJV/4hn/nMS1yTraoDyjUid9juLlTEwXmQVu2FeKuWesPER0sAf9irZtEGRIhMfcyVlumDKeha75L2SSbEBTwz9Tqb9H7Oc/JVCmxjJoyROK4Z0poYt8SdMLYLijijuEcOjg4YU2TYqcCIc5rklsoYEccuRvrzkbsnD7UNo9Lb+pE4DgiFELRXu1t0kxCYAFKEZDS00JhfjJbmWh9XyYXQBNq2mUAuLzN4XIqOmkopQtH5wk3wFDLjMCAoaOOdJzQNbRtsNEGc7E8R2O162jboSAY9zMaC2UsWjc4ZbC6dSCYCzmUFEx20LuMznAwgYYMLI7lZEcNVrj54i3/2J6/irx7z2S+8xF/6K79C3u54+Po7nIvwb/0Hf5FA4s73X+cPfuMrvPgTn+fGtWvkktnlwr1vPeS/+dv/I7FtuH+35+LRmkEyX//jV3He0ceeYYgsFiu7bq0kbzcjfd8jUhidskmaoLMBc4qWiBfIGScR7z4kZE/XFkIDXThQzadxw7sf9Jxve8YMJ/0FXQk4cbz8p2/yp9983Z6fzoIOPrDd7siS+KvXf4HwwpMcPdmR/AGP/JK/9z/9Op95xvG5zz9HWhzA11/n9mt3+d6Dezy6yNx9sGaMO/7pb3nuvv45GLYsBSQIdx+dcOeDM1595Q+59vSKxVHH0TXHRdzQlAU5CY/Otjw63fCP/vE3+NLnX+TR/TVHxy3Xb6x48tYV7j0852tffYVHZzs2g8YmQ98TmKnhHiGPeU7oKAxDNJ+glq4mgeYiet4AACAASURBVE4b+LGltFZ8E/GroxZFjJ3kCMGTc7Gk04Tkso7wEufousbAWT0HY0rEOMxxZM40IehM7az+XQsU0WJDQbwnx0QcI7lpCE7ok7JYZs6LiuvFnGjbhcZ4Y2QcIkc3jg1IhTEm+n6HbzoaB2MeydFaVVrHNunMyeA9Pme89wxJSCUhodA10CdlJW2GzNFqRbfsGNY9JSX6WAg+I9IjRTg8CnQmwOOcrlc/RDabHWefjM74sXz9uUdn1AJerbPMb8CqF0xgqiZL5bHP0TfXGY0z6lqmZKHMb/xYpetj17WXXMz9h/5SQDhV7zRDmqsgj/Up1uRFexbnapw40blvdUiMBbzeEgedO2RVEDf3JNaVqtMWLhVMS/khf6d9a1bom8Y2TAvMnFDVeFuY76f2AFR65pRwF6Y/NYHTRv0ZabU1quhUfYiPVwxq0rdHJ5S991xWt6rPbQ6ywYxuziyadgparL1tvkf7J+dkBroaE+sTLGjCSwHC5aTcEqtaUZqvRSl8zmhkynaqHHoNFnRNhGTrpUGyEYCK0pCxERe1gpqrYmeBYgpqqaqnjVFpoC6QYybFZM9cqwZxrMIR87pqgWgWPYCq6GnUtf2VFU2eNZ8sUwI7Vc7YgyX3tlE9g1KfvGj1Z6rciTqrOeGyHps9pV6tVooBONMG/liFrv7747Ty+uNsSK44BTzariHmRAhhru7lrM7S9tvHQQlsFAhT0rj/s/3E0e4YrQvtvZfLr9r7O+2gKn5j/50NMKliSyE4fKPJ/G6z5eJ8zXtvf5+TRxvu332ZD9++ywdvv0fwCmqlmEhSOD3ZMPSjcUmxkTgW/JbEg7v3uXfnPk8+9RQvvvRFjo6OefGzL7A88LTNAeIK3hWKjEb5G3U/Gl1Zex4z4hvy0NOvz3j01mtse+FgBQdHxxw89yLBC+ljq+AuJY6PD8O4tF72M4eeZ70Ez+bkISUFwqqhOwiKuF96GIKI0cop1u4kiD/EyYoyPoDtGnEdcuUamcTd994lF2UZlLQhp57usMDZfRgewm7k4v57uLxWYK2yVQSk5KmffREaZFn4/X/yZXa/uOULn7qC7wa6w2t0h4f4VpkATiCSgYgjaDVscoTukqXhh61R3a+lZiuV0l9IJrvtUF+pvZ5V1Clbcqn2RtvhiqoiG3gUmoCUa0C2/uVsgIYoNa7ovFqH4Iv1OqIKklVfoPoCM3MMQ6TtvKo0mq0ahtHO2J4kfr3fwtS7XUrtUar+RWjahmRJpHN1Bq/oDMiq5k3eA4UEGp27WJXNy94ZFoEQHE3b4PueMdY5xp6U1ZaV6kP2GBF62XWYuT2SUiZ7ac50alHNWZ/62BfeevVN3nv1BuKXnGwDxydrdrvIjesHHB963nz9NT788CPOxsi1J49piezO11ycbghNx+r6EaF1EG3UR+zZ3j9jJx7nAjeuLThaLnjt/UeMOdK0CoT1FxvKpJuA9mPaA3PV7+WoHi7lCVAGyIlp3rDzAR88zntNUkQYc+bOgzPGlK1apJXYkjWZHr35yKRzkSvD57VXP+Qrhyuee/qQK4sFaYwM/cjJReLhoxPGOPLaGHl494Tbjy7oc6EfIoXC917+kPsfDJQUCV7AwcV2x/Zs4O7tc25fbGmXjrHX5+ZyocTCdqPCc9sIsXzIyemWbuE5OGw4PjzgYr3hwcmO3S6xG0cc2mYxekdwqgNQhfwiWftti47rUK9Z2xAEKXrWVG2Vyb8+3u+e9Qgri8dan6b41075FNbWmC4bxTXrWUvVV+dMlGxAX93DUOd2KwBrMYe1RVV1YxUzKzRe46lt6u13A54CMiooJ0KM2VTJFRgXiwWC80hwKg4ljmgzmRWQ1Zssxaqr5j+pwn5O1yAnbbkpOZlolJiQkVN1YRsfpfGGfY77Ifbyk9ePxetHThZrrGj2FKgJQj0bpcbk9ndVqKVMsu7V3tckUsckTL89fZj2D81Vk/o7l4txc5WxIm8g1h9ow8uoYyZmhLY6hSouU181OahVSO+9oUpqbMVEaMAqqDnbcHbtxwqihnRKpO0+UoxTUrbvoC5Rbc2xxZhoQkOtTqWkh7rO7nFijs2+t/aLlVyQoFTVQiHlOvNNVbJijJNRACbK6r4S2/wQ9HouJemXct8yUfqmxDgXyqRAW6mllhSZIYRq+CDFTLfoaJqgjdwxYpnonMwXWO92lKhzwwBitGdrnwWZcVBaqmsava7pci/TZc0NkCmKkkutLNckugZAgg6Fropz9chYkEOBaujsc50JEamktpCiUpN340jbNHhmOknXtXQS6GNkGEwEYkpfPI04+qyCLmLCNmOs4UztUYRGBI9MiGZOGqFnS1anIK6o86soqLiow3L93Ksq3jMOAylpVb4U2PY7rcY9nvTt7drZC1pSlufKYdkHiS6hIjPgog5YE38BxHkWywVV/l/EBlfb+1PSftPQNFNlODid91a8JrQpaUWifp/OeUyTDQAu7U99glMGPSfdZou80zNVbBZZVZmDYsivItfLVcPX/tnvIN+Ajz64z+nDR7z1xps8fHCKxA39oN+5WgljAQah+MiisaTFN4QCJRWlCjrYPDjnjTun/ODbrxMax8HhktXhki988Uusjo75yX/pixxfO+b4yhEvvPg8q4MVTbtCM0RT60sDKW0Qf4XtduTB7Tv8nf/iv6QvBzxx85jP/uRP8tf/ky/RtJkSd5NEO7ZnJ8G6muRXI2G9ZRnLQLJMyaQmKzDulrz38reQMXP9+U+x/InnybJW1D55MkLxmTRmWnTm2yCBYdtzcvsuY75COn2HbjylWV7jLFzw5puv87Xf/G3CoiPJwNBvKalhdXQTJyMlXlCy4/zhKeuH7xNJjIMD6zPKTlkiUoTgGlZdx+/+9ld44/tv8tQzNxHneOqF53npi5/jxRdeIu16xMOTL1yn6wJp19OsFjQtkBJOApA+fjbYW7cp+chahazDU3FaAS7oeIhSg7C6wNXGM40L0nOmpY3NLvLg3hlDytx9/y5x6PGNJ4eWMmSCzxwfdyzCgiGNus7OW9BaJiL8aDbI2dkvOzG/YyJSOVuFRAXCUs7EsQJDtfqiGaMUA5bq3F/nWSxXbDcbFgulnEdr5xAD4nLJRlFVhchcCiFon2OsoGCp51RpbLnsJYVio47iSCkGoOHIlZUy8fRmNowzHzjmZPaz2GcyQUJDSQiZhoZvfPl7yKNHrA47StPymetXuPfwjNsXPe+9/QG/9b+e8vbduzz/xPM8c2tJ+ubLHCwXfPrpm/zsL/wcNz9zA+chDeBa7d29HgJbv6S5ccyNK0s+deMGb9z+Y7w4nrh2TGg84zhCqePAdMyOVqcAwuSDdIxTHdrq6PuBzbpofyewGTI+gZOeHCNOhNhD3/ekkvGNZxwT2RXaEAys08OfNolSEiEIJQl/+Fvf5Ou/+zIHxyuee+Eah8uA70Z2Q+S9dz+kHwoPLxJiIjHea3tISvD2a/d4S26TiiMVb7GSgi/d0iGPBuQh+AYET3aFIRVyr08uDQOnD98jyqRRrOq1YeSg0Up4cHqduQgZR0piVXBBT6v1BJds62WaGHsK7ZS0p9huR3myb7oXpc6nFW05UIBRDHQxhWZTE4+pQEymh2D+rBTtSazfGhMlJksGCyFoZU+DJrUFNXlc73pNxIKCQEUE77Xavo06I1a814TXCcV51kNit9sZC66lCQ05KrXbez/Fa2RlH5XiSBaHBO9pg40TKS1xFEiJEEYOV56SRy7WiV0foXVcOWgJXpPOlAsZR96NpGhJes5Gtf9hRvOT14/D60cfnWEIulCs94O9AGuK85k8I0yI4yUnWvYTz5mKKoZqai43ByU1zqzfUV/yuGcu2vgeo1VrRI2+q/Q8EzCp31GrKLUCNfXt5UxxKhhS1U0LKg1cjcmktFjFWFylF9m95npPjyWEfwaIoois9saEWrXKej01saM65b0Fqf1oeh3sKYzp/cx0XnO4tcL3Q65n/pn+f6F+ni745GjF4byfqq9ZFMGu86O0Z2WvX3P6CEuARJOcEBoVJNrrJat0YAq4QSkWy5X2F2w3W8YxIjgWi4Ami/10xZSZRuwsGSxlTs61QzAzDDulWTWNqWgWNY6A+II4T05Rg7ugHP5aSZyTaE3UJ49VZErmVIipkJKKxXgnLLuGtm1ZdCrIJB6Ct+pp1D5g7+ZExkQQybkQU1TxJ6PrKlKsFQ3vLZmpl0Q9MzUQU/TTSX0mWp1V5wC1elHBEVW70+S/gPXl2pDuwg/dM9Oa7K9NufwesT20vw8LRlncP3tl5hvkrEhwHRCe7cz6EKbkEa99vtWxKxLqtU6191nztYKTfQL8x/d/BQ/mynyt1oNWodUW6jbV8+c9fOX3/gmPTk54/QePyCmxWGjy/MTREauDFhzEcaCkTMg6eNqZmqQvWjHIXntmnRO6IHgJZIS+3/Hgzn1uvz/yynffQpzwy3/5Z3jm6Sd56pkncO6vcv3J57h28xm8F0IYEAayj6RU8AUGhK3z/MF37tMdJK49iOxWp/x131LQQLuuVSbvVRKtv9jZ7Hrb76ZAoy+rjOrKaW9sig2np1tCEQ4HfZa4SEkOQUeJpNSTYo+EA/CZ6DwXmx1vvPwNLmILF3dZNZ7u6Dp37+/42le/xld+/084OD7GmZCXKysobyKhUPLIuIs0DBwcBZoDA9Oy9kqKEzDV4pwzThLHxx3vvPs+33r5TeKYeeGZm3zpzdfZ/uzPsrvY0jQtP+3/IleOr7M5O+XaU7fori/17BRtB61L8DETP6GZhWxjPrxteY+BA+zZ2ZIpLs+VpFzBTxVuSUnPI85zdr7jjVfe5HT7Oid3Txn7C9rWUxoPm0R3LBwdLQjSES+s9aCOHUpR+4edUvh1/FCwhExppN4ZiIP28U3K4lmmHn1Qd+drMmtnY5LRLbPi+LwktRJou6X+fD/IFju/lhiL+MmOlAJxTJQy6EB0UduVUvWD1uNuySyiS1hbZkRqv6XRerPu6yr6M11bUfXy1WLB6XnPN7//kGefu8JnXlxy++4JH915xHd+cJv1LpHxZJdgfMBrb67JoefzP/Ecn/2JZ7l16xZNKPTbnY6IkMA6Ojb9jnywYBF0rmcSVXrNxRGzJ42V7ZFNvTpRcoSiIKKjRZF49VnRkoxigCVWUcwCsewY+4QvC0ITcMGRx0Lr9fuGJGQDPZz1nCbvrKocFWj0StNlC+fbnocP17z71j2CH+muHuosvlG94PGyweN5yFYrVji6UuiWnrCAkjy56MiXMap2RCKybDtaCaxzr0Cp6FkNOD03biB0QnHNdNha15FdIcWBnB2JloInyg6XRwoeEU+wcWYueYubqAaLOtKpzJv0435hD8gu9h41gXnCTBX0mOOOUPsRU54+q56HYq0802g00cNUirZtZfOtHsE1yripjJ7dqPFJ2zq6JuzFN5ZQpqTzUceo2hXOsR0G4lisF1n9gtSYMNrIGrLNQ42kKKTicKEjNEIIEfF6tFPS/szOwcEywJgYx4FcHK0PLFyg5MKmH4hjJBVHTEmVg20xFav/M4LiT17/Ql9/jsqi6hbVnp1LB8sOkaAIx5xsGBlkQvDnKsTjiZ8gM5VFoBhlZ8KPRObA9NL+qtVENY4hCG23JKdM3++mdyk9zU+HtVJN60iLcRy1YtM09l36e7W/UeezmfqnlUhTVFVQ7TPUgao1YXIWjGv1LU/G41IULfO/CEIIzdQz50UNc1Ww9r5RGokTFkuttI1j0soa1tNWhOAcLsCQsYBAxydEUywVdNbUFAjXtS+Xz22pozFqNRijxU7Jp/19NXpV0IW5/63InNCCUq1ElE6yvxa1p2wOVUVB96SbzDuZgjsRR8mZRbekaR3bTWa7G+ga23M5q/8Ub6NH6jgTVQ5DhN2gXdaVgNJ1gYPDqzhxmpiliHMLUirce3iKIFy7ckTXNuScWC6XeO8YRw2m1tuN3Yen5MJ6s6UET9sEDg+W+ODw6P4qaUsuhTa0LNqWtmnodwPDkOjjyKgumyCocp+D1aKl8R5coRigMEYoqEOo58M5SyRdUUpITKq2SqFtTfSoJn4Cld6bxlGr0OZ0yJnQtKScuFhvSCnSNIeWdNevq4AKc+XYwIEqlFI3j8y/BOkyTZrar+ocKWXW6zXDoEjn4cGKpmlUcr8UQqs9D5OtAIZxmM5nydAtFuSSOT9fk1OibRudmZqLUoLFEHoLJGXap9hYG793Ipmwr0pTH4adJvDmrEvR6uNq2fHqq+8QGs8Lt64SHPgmIi7Q73bk0pOj4GmBCM1O5f1Li4olJbKAk5FxDJTiIYwgESkt4oVbt47xXhj7QsTxrW++zte/9n36fuTo7/1DFgvHT/30F3j2+ef5mZ/7ZZ544ime+tRLhNBy7doVfMkEv6DxR1xbrOhajwsOJwOpXCDBhGMw+l9SAE7JUqMGWlIFUjD6kdR/RepojyHhMvRxyzun58ABvnc8jSfFrNLuWRe2pYXQkCRQxsC4vcK733+XX/tbf5+P7j/UWbiiFaala2iaFT/9M09yfHyd5aojpYE0eJpGKAm2u8gQI+vtWm279RfJQi87Zq3gI4XiIkKDy8LVWw2ff0Yt6emm8P1vvMrXfv+bBNHzcvX//MdcuX6N9dl9/vV/86/x7/2Nf5ej4wVxOENE+0Rl3yGqcZwFdVF2igOK+RqcaPKAMkj0DDfav2jqi3rGFIhKESgB5xeMKfC1r77C3//vf4P333qXwwPhiSePeOqpKxTx7BYDm77w1vsPJnZN01g/IEz0zILgvI55SDFZzxXqS0zcqgmF1LVTNS6nzHarM+3EALPKAPBW8dHeea189bsd3jvWmzXOBwRHSolxjMoM8E6TmpKZxnxWkoJpv6axTGDVLg3kvJvWtVYnNN8uBiSNl4BRQe1iMNXVmGs1M5Cy9nnlrJ81PUYL4Pv1higj129c4fOff4Zf+pUv8Tf/5t+l6zqevLHi2RsNy5UnMeDGwsn5gpW/ipw5vvp738NHuLbseOKZqxzeuo5PLW/94D12Qbh1teHGcsdue8rLr94ljomuBZGekgXJWh1VgCUgLCkUPJmYI+PYs9729YLrldtSOeI4qtqtqWWr0ufAZjuQcXQrTVTiGiQXxAvnux3DOLBaLclJxa8WvqWUREwjR7eOOYhALgSXacOSzXaLc55db1Wk0lNiT1s6rdra3MpShGHT4HwipAGSIztPlkRbOsYIfbFERUZ88XhfFKjK0MdM1zlSbNC6YSTHjQI2rrYuZMgQXIdLiVgGE9SCFCrAa32e5rsqzbPGlxUcKUbZrH5MCxkWG9lap4LFZgoQ55Q0/iswDiOgP/dOk+YaPNdrFazymawX33t826ivL4ngG0II5CEjTaMJoddrLykTI2QnKrS3GTTWy4XtZk1dDmJi7Eelnjrd80MclbHmZ9acCBAjWIVeEDb9wKbvOTwILLoG7wsj0WiswuHqgDhEohs567fk3UAclOo7ECkIbQu+CYzDiBMtFIxJwSpi3b+fvH6cXj96spj5WE/ifmwP7KGoFY8EmOkq+l7r8TNU/nK5wv5+qkTUH1tk6Ob/3heM0SB13vBzNQ4zrMbPZnYEE5pTK4aW1FTqWzKqoXNCdtaDZnFwzpVGqvdaR0TUylg12R/r29pfq8v/asixm5LuisrW6Lz2A0pVLLSvr9RIpZ9qQ74rl9Ur61WUuv45T8n3VMWtIKx9X12bem0VbRX7jHpN8yOX+dqnZ2t9To+BR5VmeOn5YVz8+nxwEzhQrBys/aHWm1aiIoTTxmBKOmbFUczY5/qomKRQrfJWVHpWwwkp1lNmCbYrpqApOt7CK5AQjFaDVWKaYHOeXCDnRBsCiybQNDo6Q9Um9WsbZ5rCpnyGQLsI+CCMsZARdtue5DMhtHMCX5scxJDwOirDqm3OqJGgKP84IZZQx4WMo1UDqnrjFGTpWkxJfrHdYnswpWJwxPz65/USy94mv0TMU2WOCSiowAuW/NdeRHHBpMXFAtwWH4R+11MVZu0KyCkZ9ddMRQHM4Sdb3yHOSV0TFEAITbhkw+ZLnq835qjJRs4678qUji+ptdY9J1qJXbaq2pLylhQFkgpUiankiCXW4gtjHvDSMBZdW+9aYim4DLiMkC3fDtNZHcaCSwr8iEtcPRQ47IAFuQjjGHn1u+/w2g8+4lvffJMrV4/5mV/8Ka4dHfCv/LV/gzZAmyF4EL/DlWN8UrGnmEdCHf8gASke7wWyU8oCmmDUtm1tUmE/PtWnYrTJ4j0pwsXJmtO7d3ni2hMUPm39PQUfGnKB2F9A7inLJ4lnF7z+7S/z2svfhzZw49oVfONIRsVq3ICIY9wlhnbUYNiGYxej4293PcMYp+RCJE4sllKgQ9WkEZAclPqZe7Jk1mMmF0G848r1BUcHpjoonvsXI++efsjpozM+++Y91ueFg6MlwrrK0MxK3dMOnW2foGNGlEQhkw1KTih4nG8VrCgt0AA7HCPqsh3gyakBadjtej744EP+6A9/j5PTBzzxxBUgst5EykYDxVhmgLJIoWs94j1d1xBjoh+2xFhMhEpBm2pLndPzMYwjLkbGaOdguhMTC6vnbQ/QRXSPlyzWF8ncz29VevEO7xoDbFGA09exQNW2zH5OREjRTXZ80qUTFdXpd70GpF2r50b2YwBlUzhLFn2dAVj/z4lVRe3uCnsJowXQTvC5cOfOQ958fcGV1YKj446mtJyc7diNIzc5ZOwLF7stoe3YlZGLk57dHXjq1j1uXut46vOf5sZzz/Po/pp+PdD5jiaEqUgvOHSska1h0XFLCvwNOOdp2oAAMffan2k+MheTVNDBg3aOk/k53XhFrC+5qMhdEWEY0TXLQnFCLJgas6gQW0k0LmgmXpzarF7nFlMyJUB2AUpgLA6Kq1sbQsMQMyWpr3QSEBKuRBxZgSaL93LyFBdIZSSWSDYhO4AiEKd6VKdZY4kUVMHUea+xqThL4iLFQY4GQrvaFw30TlXUDQioyv66dR3UijYK0tQdX8Oxuj81FqoOpDAO45RM1uNdzO7UuEjjxvp7Fi9KVQG+5F1tzmVGJCgjxWIj772yfrJt1KjKzt47fBsmjLYqf+s+UGfv6s4vek3eycS8q0UJjXWs/aBSakWFBofeE8eRxUKDqTEWSuoRF9RviU5QTVmTXESV+MX6lPOkaaEx8xhV0+GT14/n60enofKYAYXLSVspc5BpBr7+pwZmc3Q2BVg/PN6kksdqIqNiAu7ShI7p06aqJbNs8F41Syzhozoq+47LTfoojdQSr2wBsia6jtDo76aSp56M2q9XKw41Mf2Y+MZ+wjhf/j93gbU6pE3FwXt8EIYhWeBaTOugJpFVlAejWBSb/1Pv2b5wT5BmtuTzWtckcKqmmAGsxqKqzBWjwNb70hx773NtT1TjWj/q8l1XlDDpPLk4XcWUfCJuj5ZlFc2aINt3aC/a3IOCJXu1MXzah06MalEvY6bHTkn0XkDnpPYHXR7rohXVOck132moPZPxjTaPLnhH8A4vRh+y/VCluEtRBw0KZKgiqdJahkYrYIIa/liyKlnW+YClgBOCV73EyQEZzUqVDvO8Twxgmehg9f5z3UYzxVakAii1P3bvwLGPX8y7eRZPwnLMjx/ssv8Z9Xemv9PzVayC6Gy+ZEzqUFIRxnGcAIxJuCanSSDI2XWnGE3oQz+3wFSZ1Ab9+rVGed7bm7V3sVB03lbW8QLJktlLlYqJ3m57P0PTBIrV2qp7zqVY30ndg9UguqmyWtcwF03kRfTZlWziJva9yQYcK8uj0DZuQsDjWCA5Li42jPGcR/cf0HaBze4RV1aHOLdktWwo/Zqm1b0m4nC+wbkFwiGCshQURFKV1JgSUkxlt/JMp9NSLiWMBQsInACe3WbHvTsPufPOHZ5/8SXbo3X8UqDfDnz07m1K2bI4LLz7ytt886tf5aOPPqQILFcLJKCzDoHG7PEwFsYxgnhSTDrzEu3bjePAOEasgKYK2Q6resp83XbZUoRSVEEy4qa17RpPcXCwXOJcw8P1CeM4sD7bcPrwjGE36jONkP0e8oISTairVSoYY4dHy7NWcTQGi3jiZmBzvubevTNSCVy/vuLo6gHe6diHOGZibOj7zJtvvcObP3iTN77/OuM4cGXZMcZCP/SWqEF0M1Cn+zkTx0TbNOSsPiWOCe/1ASrFHUSCVTL1d8BaMQpT20W9FUqBnBFUVKWYeJiyi4rZoCoiN/vGakNCCDS+Knw7KmhZ+x8BnQ8nYjoBei+VviaiAigxKKDXBG9gYlE8rAjaw6hjt3SO7dxfWgHXKdqQCjDYkRZ9ik5lQrjY9Hz44UOCqbG6JBAh5sJmN9JvBi6GxJGHDSN9H+m3hfc/eMBmu+AXtj0LCjFldmMiuIYUVRlTTZT6EMxm5Zwo2VmPV6GQICrFO6akvqRU+3vZ5kpdaFuzKkZGzqRiBktEabzkSf0zWw9eVS0XUfAkF/0Vh4qklKRokepojbjoyYZXStH5jwkd5F5KwmX1nwVsTA+YRCBKulSlzVzbfygGnhR9joL2UyRMtkD7N3XyqQ6RF9uTiRkMT0VFsyqNXkpt85ijzOoLppWTauvLFPvUbLHALEA3HYbZN1c/VFsgpnh1zwHWqGW2SJWDZ7FWQQF9+5yUlRWWTRmn2D9SCk3jJ4Ch9kM60bYov1f9lAJS3GTB56S1niWMrSNTO3X1887pfY0xQ1StDucdKUJMCddmQmEacVQMvHMWE+FEhW+MJj778Mt285PXj9frR04W/eWztJcU2Em6nBftBV72azVQqsHpZN9kev+lpIM5OJscLTNiUkzERvZ+XoPoqnxWA2eRGZXcP7SAVQxUEKa4bA6SKWhWWoAj4UiDUhmcOCTPtNSJh57VAVYHDTNldeobZK7gzPepQWmtYoxof0rnA+K1uXhX7d6ErQAAIABJREFUtGcrOaWXh6aZ6LQuOJq2JY1p6j/rFoK70BOfJtjITNOegmVBezTJleKr1bta46vrLVQ1NHNcJvhBTSJtDasB8AYkyGPjFkQEL47dtmfs40T9qAjgtN/83CO322xBIBo9QhAbMq0JpnfgpJjKlyZmztXkSXBWSas9oVPwgRrglKI6sFITxGLiQmXap0rhHNVYJ0hSq56WXKJJvFjQmilkP1fKnQG+k6M0ikelUAs6tNo5aK+tcC6wvtixGyLjmJiGxhely6zaJW0XFLQw2XQViinWP6vVALmU/Lop8d7nFysYbQ4oaNA2jBZto1L19fwK8/NyNeKqe7vUCrdSYFUUwWslz06qc7r207kpCh7o2cxGB9Iz1PeDCjBkpU0vFt30/ZRKJ58TeKVY6/NXSXKm3kzvvNFQlYadU0J8rXZgAFG6nNDaftVKiJ9sBVRHqoExaLUwl8ZsXJ5GS8Si/SIUHfciAXXyHOCAYAPCVfOkJovac4WrPdf2vZZ9eKdB8BirQUs4gW7RsFioMEimMKbMO997h1zg23/yPZwpaS4PFpQsrHdbbt+7zTe/9j2uXTnkhc8c4TrwPiElUeLIo9deZXXzGQ6eehrVj7Uz6pJG00U0SJBCcoXCiNCBX/Hyn3yV7738Cu+98x43nrvF+uJf4+DoGuN4isuBh/dP+N3f/QY4x4vX7vPr/+D/4u57r3N00BIayK0KVUQLZOKobQTtItCPW3a7HdoxZMGvJTY5Z2IR2nZBSV5HHVFwwTGmAkkD5DoCIxJoJBA6G7nSj4x9Ykg9oVnQdMLhFUd3dIXzRyeaSGelFKe8onhr5MHWYVLZraCG2SUBl7MKxVg47YaC7wIP333It/74T/m1//l/4zyO/Mf/0d/gqSeu8/prb3LnwQPONlsu+sT56YbXvvsqF6cXrLoVyyaw3q21MkDWwM55XE46nsTmSZVYWA874ogpMRdiUtqc2Nw3PZeZMaWJUl9796tPq4AOk1ewemQSnMt61vfAo3pWC1gvupBTohRhuWjxjdUQsyYFCGbPNUFL1ofnw/ydteMwRgWQlp0aEB80yfTeGaVUkyWng4ct6VXPpnYXctQh91MebOCiPkpNeqToEPWCcPfBBbfvneKaDpHIlaOWNrT0MXEx7hDf0veRXRlwAY6vNbz74Uec74754OVXuBnP2TY36OOA+My2HxgQhlTYrDON2YBdn0gpT8rbeCGWQt8PE4XYW3uLqr+XOWkpWGwkkwie7O3PTNI5gvqA9Bk6rM8bRLwq1WYVsotKZbGeXLH2GyjiSWMiDSMyGo2zjlIrhZSdnYRElkJBgYiIzox0yamia9DkYpd6XFEafG3dUSaCASwuAz05CUlkSviqWJMnmRvSOEecEMRANgEvnhJUlKzEGovV+BMrAszx7ZTwlWmZqLEuwhyvFp2xPJ2Puu/3TsikmzAlnXNsWyHLfeXTGniMw0gU3Zc5F/Iw4J3NTXSOg2WHbxu2fc/p2TkUaEM76Vdk2wtOBMlFRdSKxc8o+FYr/PqkdKSIhIRkQYpVYEPBl0Qunu2QgETrW5wXNmc7vEBwOsZlLBEapdznAiUVnO2fsTIRSmIZHNl9kiz+uL5+9GTRF0oyFTIACq4YpdTeU6sUZTpd9pdTM8eMp4glTY9XIeZk0JIVg63TRIKRKTYVhJxjPd0Wt6qRcKUmpJWmkZXaaMF8CA3eetpiSkTji2uPottLYrI2dosj0Nh9uUsKn1UkRQM8N91XrT6wZyym2Hp6FeZkSYeij8OoFMZGE1BFjAvFOWKMpDFTcKpq5bQ/crSG5oaGrsOqE7Pjg6r0Zt8abCpmUWdSLIEoppyZq+OmiiwUXS+KOeNKKTCxICc0XmmYuSS8a/ZoS3tbwapeih4nFRZIqoZaBXO0v7RMqpPb3TgZ3eA6ckn0vVZBqL1oJcOkqqnfWSmKdS+WmBWqThn8nBjmrMNnEW+ouiB4ch5sH6hxLcUSrgxlVKCkSCFbZqBJmbP1nHY0FOsp3aMwTwOuNVJSp8fcK1srnDoDTB24kE0YJ9CaUI5emzqwut/Vn82y/16UZuudU6TZlHwVRCnYWMD5vNi1pJyN/lKmhKaCRVOF0hzkvL+VOtWPI2nsabuOpmsvV7eRCeiwJ6AgRxAbxC62XtY/KHWfqYKat3BRigqvFN0GOpIiaRCp59tbx5OuZU5VtCoyjhEX6hlXRxxz1EDJ+73zjyHsRSsbuaLCM7pcRbxEtPdCK4QaaOr1O50P6B1dWCAuTM/Aeb3GnDNeGtI+9KtGTgPVksku2zMysKPMiHRCA6YKpngJdMFxdMshAfohMY6j9TiPxOw4P9uwe+X7/Ob//r/w4qef5erRX2Jx8yrLoyvIKOQ+sf7uNwlf8Bw++TS4SHGt2hEXAYdLNhw6JZLzZBKBDCnwg+++zG63Zr0+5c7tjzi533N85Vn6dEYJWk1J0eO7JYujmxwuFvinrrA6aDk5OUHySMmB4A30QgwgUqbFOCRsmo0m6PWciBB8w/HhIdvdlqEG3gJiVYyC0f0KlBKJ2eETVnlRuyXFVD1QimseCrl4XNvhwlWQJ/GrhU6pLkaHpZBlhyNpUklh3PXaO9wYaJdVQEIk42OCLoIETteJb71xj5N+5D9tn+Ct1z/gH/zab/Le7YfsiuNk7AkObhx4jhYti1VQtcxczLO56QzXWcN1z6vSYWa73WrS6qAxUatqM5AZ/FS7WGmOs0CNVFtqe68JYWLiqEtMKpFfy3YwJWL1tM91FSwoz/Rj1DUKjq4Rgi/ELAyjJv+LZdBRGhZOiIiK3Bi7RChITnjnWa46xn6gH0Ydr1KqD86T/UpJE2mV+tdkUaZzb2c4q72PJErWnu6cMyQhpR7vHGNUevth2xKbkV0p9CWTku7FUgL9sEWy8OBkw9vv3WW5SDTDQG4GFqHjIsPJbmB9Fkk1caitLVlhhRpX6RgvTQLSHhjvnJtVsKWGRHO8hSUpFajPWcf8OCu9p1KUxkn1O6ZkXrSK6Jyo7wTI0SpZNjw+iaqLJq1o6fQXp/3OexXQbLa8Qdcxl6h92pWtVctZBvCWUocbmU9LWr1O1c9l9HdQxfpSafRmGycTKmJq2AJ4kDTtwRrzUQGRGnc6MZthPpg5Vp2UtcuccM6g49xmAUxtC5dYaNVq7wOmltDV76jMvJTnOK5qhYgXmq5TQcfiGPrIbpuINt6xHyNt09D4gDktvTeB1gXIMFibhnidReqzKeYXpY0mGWlo8MUzpMwQR467joIQo7LsuoXQ+Y7x7jluKbjO0TQL4rnFpySSJaSLrFTzIVStg0zHHNd/8vrxe/3oyaLzunHBPCzTprdc7VJPYX3p+8VoQPayQ1UPzz51E5ircTXREMExVxDmfilVQqsXoIWtYv0KGgRWimDwWq3IhtbV7659SVUMRXsWawVhvubL9TF9pZQIzuGbZha/qUIylrBIbZqerlsMDdwzMvU7RHtTgtMKZQiBvh8pBbwPhDYQgjCINk1nq+hJyvR9zzgkE7MRhmGnqn81IUTwwWsiU+aRJLWs40KYEa0pv9dwpzr+lFGJZqfN3LXH0Dc6fD7aM/XSsB/z7t9ntmeTXAavNDpsxp72jtb3O2ovXqWq1L0xiaugPTdKZ8l4F+y+9PmNo9HqKnhRrC/RzcCCx5HGyNnJ2fQeZ/O9bBo7ghCHkW1OJjBzUWMrQJ9Nfc4pKrrZth3OV5drSn1W3Su2d7BErliVUhNJTUKG1FuSiVVLCotFQ9t1s0BN7YFw1ZnpMuVkw4CboKM1og6yV8XT+Xc06NfB3eIUTR5jJqXM+VrFKNomGKoZ9xyuaP8m9qzqgPasZ8kJHB+uEHeg/VNDVLGLlGwUQz3X4FygoFLf5q8tkNBgyTmvM6CcKKAjlR5WJsGNlCuFziOBaVxMipFWGtoQ2O12DMMAAsGuXdFlDLh3FAIpZcZxUOqP1GAAhMuJ6yzmU1PHGR+r91eBLTfZmky/U2EQVXgt9IMmEE3b0ISGYbchNI2KkcTIGCPSdXiv/ZbUJNUAsKlvpgZ2ZmfGcQCgH7NVs5Xa7ENg0WmS0DQrNn3Py9/6Np1zrNJ12vgMko7BJcJh5oV/5z8k+sAm9/iSae0OQz6y6x8YUiYsVrR48C0xedbnO/7g9/+QlAcWTce9Dz/g7Tfe4LlPv8SiuQFcIcU1zsP1q9c43dxnW3Y8Wm8YiIw4KA14jysFicmABE/O2h/UtqqoiqiiZ0pRA0jnKTkx9lua4Gn8gs1mw26zYblaGX6joKGIiqLlnBh2vZlEZSJshky6WOP8hvVmhwsty4PAm2+8wv/x6/8DT9y6wfnDO3TZIQ3cO3nIxXbLz//lf5WbN2/hI6xPT/mj3/ltbn90m//s7/xdjg8dZfsIFyKuyeTjKwwsWFxfcXTzSa6uFjRe+Mmf+gzfexmSK1y/1vLUU09z7fohQUZKKmy2I299cJtxTHTLhfqslOZ++r3AFT7eoy+I2V6g5GkIeHGZ4KxvP0WWqwVXrhzZZ2liVT+r343ce/CQJrTTCJ9+iDhJeO/UdtTKu/mQMvkjTa1T1Er5wcEB4hrOzk9VzTirP2y7JWmMjLsNvlsg3ms1VGRSIM/RVDyNun//3kMFuYpSLvNahe6apqFr3ZwgiK5LpiBZY4FsSqP1MLsiU8VH/Yn1Ylrz7vn5mvOLC7quVf8zKiVvEVpVBz3bgku8d+8u/+1v3MY38AuffYqj5gpff/eCm1eERePodz1pM9IEAQIpqd+rfi7l2qJRQbrZFpWCgfZ7DcQypR265ntJS7VTCljNduuyPI7+vasAr11LNpCggoridIQWCTD/hSU6OgBeJtVP/cy9kWVSq21uSiCqvYX9OK+icVx+mbjSDwMyHh+Nlo22Oc/itiJESpMy/v4r5z3mSi2P1KTO1YJGnpV8H7u4Ou/XTWs3j37aTxD3mWlZasI6xwf7lc/qT3LObDZrfV/Ms8CT27+Mwmaz2WvLEZpVANSPLxcLmuApseF8s6VrGtrWs40Dj852vPTCNbpSIBY+POshwq2rC0pKNJvMJgreBZZ+wXA9kkXba+L5liDCznrJvQPnCtuioHwYtcikorpO58zuxdmfvH58Xj9ysljAOO9lAqxqkljzw/L4Yd7//b0fCvOh/vj7LiMN+3TWeiSn3zNAtNJlwCh44qYkETRBVJrrXs/TlIfuH/45sdI4sCZOsvft+4EiFuTmqdHcOacUQ/vcFOMecmsGx1bhsdW9jOgaIuxkrw+z9nLI/Al17SslolaQnPeQRu0DSHOFTVB6TrbPFYc12O9jZ2rgppC3jgUpxjyrz6huBMdcXS3a31D2RHQmUyeiSW8IdO38jEKxGT+WLGL3FFMVNJnBAZgrjzPAp4IOisy5aW/WxvK6NnXtXbBeD7XGOhzY1kd7yZx1XCitojqrad/tfW5Be1DEWrX2E92J8mry34YSmIOze/X7iYVRMs366wiFYuvmadtmEkGi1IRPE8GaAM/7t3bkac9OfQq1V6oizHo78/6vPa+1d2YKKuv92j6WUiYl1jqjSdfT41ymkEij/b4Flylr5QCEfrcjeEW364D7lCsAMSdmeo6YqGXz0ZOpCiC270PwxJK1Zy2ZWptTYQftxyg6BNxZT6zZgRqHeNNeNubWPIdS6vfsAzsfN3bT6Al5/D1lspMJOxt2JCfk2c5ondVZG0prlcPtrQf2p+Q5uFKgSqnxOWnpu5QyqVsWsWafDFcOj6EUnO9wwXPj1jHPfvYG98czuL1G7i81Uc4Dq3DK6urzrK7dQnJPTDstMMgB2/NHvPuNP2Bz8oCjF17iuS/+Ik0T+PDNN3j91bfYnl1wdO2Aa1efYBgyH779Dqd375LiXQ4PR2Q4x6Ut24cfcvveHcbNGY1XJyXiKGLDxg08cG4GEct0XitgWTThd3NwhRSWphw9jD1Db3hQ0UrULOJl53QCUyyIc47duKMMKpTkc6FpOs5Odnz5d75O23XEuKNtIGfhYqO08ffe23BwuNKZgsPIh+/eJsXI7bffoH3hMxwc36SUHTmt2T56l/bKSwTbFzkLDY4/+N0v8/qb79LHDb4B0sDRIhBQoKFtPXzotTqTJ3WK6dqnNYJLdrLut7oOFG1pEJcpeaS2nAoa+HsPbaeMEVDFYrHn44ObwDkRDYx9qYrjah+cAYFlL+jdOzBMlXCnAjzqWow5IA5vEvw5PzYGqRTarmMYIzn3lFIYxpEyqiCPnhOr2otM1cMhVqYRU8BSx2plU0afEmw7a5NipgHNmcoMmcGaiSljsw5d8WYGHG2rc3hlzLS+5cbBFVbSELfC2mdKJ+TRq0iTVdlSqTHLfN4xELQ+6zq/usZBFUgqVCqqGkcptStw72Xmr+o81IR4tuOzrakPbRIYq2AEaH+q7F3TdEEy14xqDFUuf3/tZzXux/7GmPbypb+pYV+xD5g+Sz6eSDLvFV2fcimxnK9FJpBytin1Y90Ut+0D3vt7ZIoJeez2bO3m+IfpWuq/70fE1YZPRYr6HC4tgH1LqXoRde32bJb9b6pCijEksJ5DUbpoTECOdE1L1wacMxYdsOg6tpuB3sDdAUd2LQ/PBgXVLE5b73r6MjLKSC5OFa5HVaPPTr+ntTVsOg8u0LVBR4FkyFIYc+Ki33784X3y+hf+kh+WoP3/eR0e3ig514RlPpti0Za4onlM/jMyxukqYJrDJJeNwuW3ydwwzP4hhlp1qWg7e4hlCK32rdiIiJqUOGeDeMeRrmuVhlKTOZTm5n11SvpdpWQWywUYMgRmWLMisU2jdNZcCjnGKaVU2oZKV6c4UzYnR+T93FPmHDEmFssl3kNO2qx/eNySc2R9saPfRULb0LWNBsMlE4eIOKdJRHD024HD1Yqjo5bdsObBo4HgPY3f66vEhE5Q4SBxULz7/9h7t11ZkuRKbJm7R2TuferWZDfJHohz0YgCJECApP/QowB9nx70pF8QJL0KhABhXuYmachpcmbIrq6uqrN3ZkS4m+lhmbl75N5VbBahYT1UNLrOOZmRER4e7nZdtoy9/sLsmhxm7caBIPoVBGSW0cuRqap76xnTcO91Wm9JEtZlhZrhD37xOWB8F+vl4j30Ul8fJRW8vL6wLcZlQc7iyrp04hEzw75X1IbOMhjOQ86pP3f3qAHAWlc2PSBoTszRo7PiTgz7nSUJN4LNq9VBXyyIEVKcwxCkQFkKrpfi7HvOqOtNfpeoadURXHiwoAhJzBlNE+73HdthuFyuWNYMWKPiF5KOHHvF/XXD9bJiWdiE1xT4+FpxWRPWMhrURxQ1Z88ye42LCCHNqorlcoE2QvGOSvheTnxqMsU6LBYJr7c7RND3krNIeHNsz646dOmbr19gUJTEiP6+b8i54Hq5gt2d1JkND2dFjL1RkJOi5NKN4uBtFHdCo+hfIEASNCUMWuA1TyArWzjprEEkLJvMby47MmG6qsGm6iQ4SXrwozvqCGPE15ZH3MOR7RIt2se44EopQbV5neuMLKByT24siDhhTuw1/zwMSEkyYO5CaFqsr9YUdSNzaHW4azf61PBP/uEf4PXlFftWIaWgXFfszXBfrshRaqAGaYpPnxb8yX/xJ/jv/4f/Dv/0H/8jfPiDXyLZBv32hn/1p/8bfvV//i84quJf/+bAr14vsNbw9V99ia+//Ihte8Hlw4qlfECrOz779Iovfu/nuN1foGlhJuf2gk+uz/irr/4DbveGp6WgSGZ2XKrvRfT6WG2K9cK2LtqGARx9QmulbFBVXK4XPD09Q83w8nLDvu9YlhWmAXP3IEg6G3HMOjZ8PAiRZyN5f0vKd8EsVGMAIy0wa14vCEBcljlR19EqWlP8/A//CP/0H/4S//k//iU+bnd8+c1HfPPVl/j9P/oMS834y199iX/5z/8M18sF92pouiEvF6xLwdMq+Cd//AVMgUu54L43/LN/+Sts247LZe26ZTg6eVqfc6bDMxuBd45gqWFkXVzWtnbgw6cf8Ps//xlp/d1QlSTQZthuB3795VeEkKeIQwdqR/t4GOwSLKu3pfL7rEtBScBlXfD84ROYFHz15ZdYFwZ0Ui6QvEJbxXZ7wVIKW4rogdYa1qdnwsf3HbVVbNtO+VZKl3nb4e5L1Pd7TV3JC7MuIz6J+36EZOnrIDJhDDBEv12OIYLMSQRrIfphq2RS51U4X588XbEuC47KffWLLwo+XQV/+q++xnXNWBL3dlqS13r7u0TYLYF2mhSFeEAJDn5WQ0buttV4jtTfxfTjsc494JSdsTKCJgx2EhQbrYZ6a4dUeohGMRlL4dwi4Pt0uHpyQMOBCYstjqn0qD/3pLIx22PWZWGcIIhSEQ3j0M+Td7y4rvL7ujCXH4/9QAcke9ioj9/Pn5323wRD7QFNeWc8/fcR8uLgRvnL9LotbIY+3ejTEeMFOuIkZGMCAwabMAyb3cE3NVzWKwM59aAOToloq1ZhHjjn1lZIzZBkWJxBuGbWueYCLLYit4TfvN6QkuGXv/cBtRm+fb1DAPzxLz5Bzgl/9puPSFCsCfgHn1/xsjf86b/5iJ+O/38PO776HRyz8/F3aJ0xNsJjhAoA7L1d8F3HLLg86vNdDmOcNHJewyGYFTwvO2qM3nOK3a6czrU3gujReAPQlVuPQttjhMmFXPxbou5t7PY3wqYLmHgqdGclHi0cih4hwnjeYJaCMfOwYNT8RbNkGJ2V62V1A8rH1iU1HRyF4q6komddIz+nch1Rtez1QESLMII5MPYJ1ZrfY5DVDKU73mJALEwJ7VnW1SEaI7IZETIzwjyXksg6qIz4i9ARrRWAw5Kss5J5Ri0TjhbzkQRQicxLf800tqMeI+YmJZKvqWchcoJI8Rgoo6bNr5ud4EJMO2PfDJWOYEfvRelEAPGOerZ5Uk7x2ySCpaQOW+yQWpH+CkcU2F/ppGUjohqnQqbxvQcF8N8Xp9RvbUdkHCe15PveaBD34E9MnjgJC9nSrLHvGcAov8ADLiA006CQ4qyF6cwmZ5Piy94PqnlPU8LHM1IusEq24OSF/4SVA7bTcS2JBqia9PmOulALFl03lqIep5tcPYrLZxagZ4p75WIw9mHO6liPifnL6MG2MZOcyzAQu8EA38c+7Qx+tbGn0mg/4v5Af8HaGvZGCNDAMch4dW7M18Z2Gcdtx3/466/wTWNWGWa9OP1SVtzvO375hz/Dv//P/h3+y//2v8HnnyTYr/4cH//i/2GfvMsTvvr1v8X/9S/+BdrRkA7S5X/y+ZVseWmHiOHbb36Lb377JW5bxW1ncPGzpxX7045vX16gyIQIJ+6t6sGsNSeHefsj9Hl+QKF0cct33Zrhtt0JLa40fppOLRUCUukBtD436utSWc8lCcgIohc6mYVmF8wSTNn0O3sPv2bep8w7WC8FqPXAX/z5X+L2zVf4zb/7S9yPA9+8bLjfDjz9uWGxjP3e2PeyZHz8+hushVlENeB+HPj1V9+iGbAIayABN0rjnfV54DiB2P9zUMLnp9dVT44jYiH5JEtCq4qXj3dyA8TqFOrRnsEzJ4yBgLXyYxw9SOljkMhEcbJ96Iptu0GjjsX3VmuKVu+8mQ39HtdptZEjIGWkCWYJ0I9Sd/pDrkaVzLzHguWby93cUB/W+EACjbkZksH6h6E3Ax6rLQLHJBJKEh1JFV+9NhxVvOejX8djsa0jq4bTxRiZ+Z19P4dsB/rcaLC5YrbHbOiJ/vmkI7pUwyzkJhnsdYnTs45cPlw2+addEI292N/1pA/7debP4ncxbBky9NGs7HMfCq2Pd3qGGNyDjpP+73718dtp3vuVJ50823epr128OeKa/Yrvqdk3NvAYEyDTdSed2387O55n2zm5HcT7jpdh7jACvi98bdlxIJeM68rsf5GEBUBtArJPZRRUJBjydQGEHQEEgksRSFLsreE5JVyQ8VIzkBt+/mHBx3vFxz0hZ+DDyiD863Yw8H4RLAnIeGdyfjp+FMcPh6Hq2EADR+1Cc3IofrdjRLYQV7IBL+lQCATufZBJjAGhM3YiolBu1LV2dhZnJzAiPL0/oc6GGo+A+lE4JGf0lF6jRrZC633rAjJKeAszdnQuEplUW/MNPo/pYVxRJ6KANRJq1EZjPXo+qrFGyFwQBnSzHQfg9WkADRNTQCzqQZgZZS1lcqKQ7JF1g9oBsRtYkM93nMMG8fGmLHh6WmgAOdOceqRRAexbRUKDSYaJoHrD10dHvvfXM7KbHseOeizYt4PcMB7pzrm5AeLEJomOa3XoI5uJJ2bIKjNT8/IL6KbCuqFDxyah7iOjG0ru6cMFSQTN+/KtywUKxddfv6CZ4vn5imVNvg+44FQP1KN67ZRCMqPm99cDEeVUM9bGZfT6umADBdxYsXACWb9BhnP22cqFTazZTLn5uHl/C3hedqjlrAx07Mvq9UhIbl6bOB/IqOtIORqxc01biv6jvN4a7RaA004MJthoO0PHm737Xl/vzFganbiS2btPBFjWAq1kH25oDuNlNqYUAXwtAr7uEgli1Awvrxu2YwNEsK6sScw+j8Gi2zxg9PRUOrFVHAFrDMPu2A8clQ6WJCF5SmusgfJ3QTSB9Yh377doAUlD3+OCgAJi+vxMeECn3YmG3GHM7uCIt+OoxsBULnxvEQYBJOxnfupOaCkZ2YR1WpOTKL5Wwgivyt5kT0/PHmBq+Ae//wG/jydAKopV/joJjpbw+u3X+J/+x/8ZZcn4r/7rP8F/+o9+js/+6q/xKg3X5y+gTfHvv9pw3wwJC56fV6RkuOuGdGRs7Y4lF3z+/Iw1Cz58mvF63+jAqeHlfoMiY1dFqhXVibKaB7DsyGhCAiQEw193HPmcTUkqUg19v9RacdzvXEcODd93D3D1IF5oEd9/rhPGQRKlnMmUyiBY80CR+Lo7IELyM6IMos9tpQwGM1l/8LMFtRn+77/rrXteAAAgAElEQVT4NRIMSwKKLfj4FZ3znBLSorjtOz77vHibph1tAw41/JuP38DEHS+QoGZZMmBz/1GOOQJ5IQeyM7AGzJnylIbl+beDQVFSwbY33L/8utdvhV4gRD5jWdZTQJDOJ9fwY3nH7r3ociAUIH2/vb6+4GiKy+UK+PzVY8OrY4c/PD0hWniUUpBLxn3bYAiSq6hxTjiOA6bhzLjTpWw/RNIswX1j8Crq7wK18BjUHXXa3IE9uyNe2whDMxKGCJi1AYAc90XCfT/wum9YQDI2Kwt+uwNrsQ4RNQjkCGBrOENuF3UGye5JoQf8JPZ46nVw8H6DdDxbh4DOMMceUHb5NNBGgHnfmajl61lK71Xdomnw5GQZ3EbU4Vzr5CQGBwJEXFdNjmx4S93bnKV1OM2TcyXwPcr7DX6ECISfHbV4p/GM46rzlgldGAkHXnd2FLtjGmtpMjjmDKQ8/Hs+IhA+/wY4ZzBFnLfDIpgwO4/o/7aH9Rp/z2m0PeF7ALOHBrYwgaCJwpKiCVCy4Ze/+IBLKXi9HXjddvzR52wZVC3jy48boII//L0nmFb81TcHtgp88ZTxtF7wz3/1FZ4+A67PCz45CloyfFIUdzHIknB5FkgxbHfFy01RsmBZEkwKzCp+On6cxw92FtM7n5nLr5MB+V3hlvlzEb9iGFwIaXJyFOcMydx0nPce8Mgowq5uINYWUdARzWTGYro9bMrcWXc0VJWGs9evAHQeKfcG7CRk0mMGM2ANpgbJZHeUFPc6nTlNzYMJ7kotpUzj0Z02bYqjHsiSsD5doFoRmbSm7KNFQRFkROI6x4CoXWwJ234QWpkSykKWKtaPZeS0eGaGYxzsXsDTlcyAaCF86eQ0A7QduF4XLJcnpLziq6++wq67zy37RgJe15IzCYcWxbKsg1wI6ORDIl57mYCqDXaoM566o8+AMY7KTJPA6MhOMxnrozvkvlK5ZlKU4KK1iqNlvtdGCNGyLI66fenGVEkFKpxv0oTzz+wkPOtCB+fYmhvnVAxqhpISUErPns1jCvpo84hdSpMBF5TZTb22ciiY2FKtsU2HOcmOJ3778wKsB8xBtuQQRrSA7cSaS9Dj8OxLZIO9FtizqrPyi9rMiHSmzFrZY1fcbhvUSDq0eNK2FHdI3bBb1hUpCba64ah3308svidhBp+tLAUpAQXsEyVpG8oV4m0xgIACAuj9tGjg5kl5OqTL4Ve9MDEJ2l6BlGCHf9SLvZhNtpldEPPe726bnzuy8n2cYThH/ZPS+Ew9KuMMxLzwMGkimDBeO9dJvN9urM0BsbHmW2O+Bm7IRS/TXDIWDy7dbxu0Vex1h0jjuwBgJaOkFctTwmfXC477gf/1f/9n+D+ervjjX3yBKoDaryHWcLQbloWO2ggyCHJxAidp/t4TYA3SGpIqjtpQ9YDIimQHtB7uiBlEuI9uO+HfH54vJKNpDpOd1iGbPjOLAwBVGchigCUyk3TmRgaY01Ib4fzBdNyURBQF6u8FzlRMCHygJgyGQ3dmtCXYwRmIscaAC1KCinXCpGVZ8cWV61glwzThs7RAraC2yrlPgtxuUCkoqUAsA1ixu/GPwnUhXh/XguAljb3Ze9b6eq2tIcp0zbSvoWgtE/s9svcht3stlBv3ixOvZSoIbNuNPQcldV0xfovuiJlZr52PPdFaY69YSVjXFUUNaSk9IJaQsVqBoWFZV9Rj871hUBPs+4HWKsfjUGVVdYcl+Xv3+80OrTniwQy9WTsioDM7JnRuRARa20lFzwR9CgDeCsmsOXuo72uXoJAElYy9GbZvvoUq8On1E5gCDZXSowJp4XszHeOWWK39/U0op2mMQxhE7o12R3KSto5cCDkjAAsfDacevn0N+flpPj8cw9l2c/sIBjR1vy9kp/TT+jyfNPQwyvo6+46kwymRIOjM1PPvwxGOa0W9fKzB7lTJGEMPituwB+fkBS8/auRn5MujjXHOKJ4dyjkZcn6mKeftv5EwrCdHMsYKoJf3UIaNOmSxeabdrhCDivYWJAKBGDkERBLaoUgqyCa43Sv++rc3/CdffIo1A3tVfPWRtYq/9zPqwa9fN3x8bfhs/RRpyfjmY8Unl4QPlwSzAtGE7VDshwFmECgqBE0ykoljMgCkBSn/5Cz+WI8f7Cx2chi8zegJwtfj4jMAOEFb4qRpk2COiqALIcAeNl5k694aaBE/hQHiUX8qOwHcGYioq4gil4zIOLVmMGt902UhdE29/mnEmw1RhxHGW5tw7gBYWD/BYEKgqSqL5h8gvGf3cjyXmbnBzRqP6KlH5yR3QgHVweK6LIyyNs8IxXSzSJ71dcwkusOpDftxQNXrypaCpyc6O7fXO5IcWErCUiiE8kIGVajh9ps7YILttmNZV3zy4YqSM5pWaDM8XZ+RSoaJoXqD6OS1LJHJZT0eW4SYcfwA67O6cRIOTs541QMfnj/FUgpMD9y+vWNZCp4+PAEAfvvNRyzrArXK9gjUVJAk/j6lLz8zBhRaO9AQ9XdkVL2WCwyK+85m7NGeAUaIUjV1mC1JQvieFVBlRsi0O1mtRRN3vjcavf5cJmwYLgE9peMUijkJOrkBAK+NdSMnZzfqFCmFYZVwHDc8XS8oy+KtEcYOiT0Jad47Ukfa2L3NgNMCnIsMMqfWprDK/o3VFFkS6lFh4P6qBtSj4bbvJMXxFiz7drDX52XtWYR494Ngw9Cwo3qN8+VyZUBHgdfXm5tYrBf95LmwFjppDxLlaLER0WCXEyl5HzAZjeRr272mkfvNzBlurSJpcguMG1MsIUtGk3bKuPQOgx4lYpNnb8zhJYXpZCgEKQ28hyKzMeLkSmwx40GLqU0PRHoT5qWw7lIPrkkvbULTDQqjI4HIEBmObcex7RhoD0Kpe9wBrC2ryvrQVg/ef1kBE6y4Q3WBlSeYHajtQFoK9BCUVvCcC7744ye0PeHXX/8GxdjGBTkBGViOA5KUtSyNmaeLFIhuNGIOgdoCLYJDdlQzaHqCpme8vH5DuvyyoGVni9ZPYNKwN6IpnkyQ0sLsTQNqOzyKuaAehr1WMjL3iIGgLCvgstg0WrRw/bPm0VBAlq+cE2QRtJbQKht+I9Egz0ISmKPuKHmlXDOgNfbnZZae2rFpw5IXwqPdOQMEYgVJAcsKtQZYBS4H2ZSV8rvZQseifuqNrdnKSSzhw5OibgW3jecmb49xvVyQMwNurEum89GDI4aTTu1OjjuISQSyJIdPNq/RHYEF9RpPALhvd2ALeS1eC6ko60KZ6IomDNiU2F5DJKFpgzgUOLJWAjp0y7ISUgqBHhX1OADJeH56Rs7AfuwI6J1qZNvIyhyInZITrAhS8brrZthrkM6EMU2UTE6L990dezwhiHxGQGDUscnUT1fYasL3e4LAqqHpgbxe0LKvQ78fTZ8EtlhKuKRntqGoB6oZCJAGMihzIlMYxzzG4bRE8DucI46E5zf30bxeUeAQ1SmIdMom+7XHtuGfJYe/251+AKex8YP4cTgjrnksuACmcy3sKnTnu+cEpprBx8zcKdcYP5jyDeKOFYQ1tx091us3x28DkQUE0mm0ArPpvcb3MZ657nc8zmBN5V5Hd1IZyNXpNzw3peH0xTuMMcX+nMsx0GdsgmHjPK2RGIkxiYwe39FmWxKzzc0Ulkjs93wt0LZjWQ2lAA0Zdb3i6ekTLKZAq1hzxnJd8bNLgmjG81pQ1fD0tGBdE66r4Gld8HS94ON2YJGE3x47PlZDvSt2Nfzbjx+hLePDmpFEoUfD16/307v56fhxHT/YWYSdX6rb5H5MIafpr3gMEk2CQvo1ZHiLcdoE15SI/NjY9NL/O5zWcQvrdWZIA54y7n8WHAlDAcTvwynugitqh8JaPG1gv0I4iaFQJhiONCWBjBvo78fNnJSlFG8ozlR9ygm17ri/VjQd0MycM5q3Ocil4Pn5Ga0yk5NzwvXpiq+/fQU882MxxuRtD8S6YwUkFuAfipQyyrIgF4PUwx0Nj22mjIQMtYOR6RS02daZOa0BkY3qGTR30AXu5Jri5aN1Rspa6xxg7A7ycTD6e7/doEvu9ZMACDVyRdkdkHhXDHSyUD8FrIcLJVnClkaDewAkcEmMtuWcqfCEfckgQASJ1TVTimh8a6ybKVSgjNI7REkjsp+m9z1gQBEd5XqiI+nq4KxQEXV1QUYTa8znLgx/h5qqZw34faxnagubjK3WGnJ3rGlUOI0t132HZflohePbjqjdGsoI3pvTQCPxcrl4djqCLEPxx7x02JMUD2IEEUBCKQsI+eLa7PMC9KBMckIGa4om1TP6gtoOqLVeX4sOYwfCjFEjxFRbA4LgpilaVaTEtRjEPLEmY/vb9CxhvPYnnIxJjhx8q4YeBCrL4jJNJ5Zm9PfJOjjP5qbkZCzwzwPRUCa5yQGscMPEvdMe+TbPcOoY87btHsSK7JricBFnyev1DBBbcByx/Q/C5eoKlYan1Z/QCDvP0Ust+pQ6qU7AjHMSZM3QKmgw7IdAK2DYcPgao4PLe1dt3qtwQAX340AWQ17WkWUQASQjZRrcCZRh8MCN7zo6RDn7nFA/kKgl4Mj+dpVlBFkSVIaTZIpO+MGtsrtluCB5/TTLUZmBPBqQIpsR4EJ1+F/ZQAs+QQ9DSgfMCob1q7whKgzFdYmgvhJCzPUvPbPSVPp6MLS+nsRle0YsE3G4PoVab8Tt64b+heCyXqBKFAtXZO77bll4TvSmy5a7fo6ejIQ9h74WVJfbkUXR5ms/J1yWBTDKc+qJ0csYYLucQMlo1JmAUOGn6zMDBladzZF7uR7NmZU7LsIh3toDJ9GAnu+WYw2SPlckfb+FE1HrWHPd6Ra4/EbvQzxkgAcqXQGLt7xqlpCQoCAUNslCLeEQY/P1aRa6cLJLurPvcxo6JQwudP/J95O4DUCnLXTRIyIq3uGcTYuLnJwWAaKOPAKp5rqlZ+x8PrpP6QGznuF9dPxORuJ5fCFLgzk17DIDqM+S9fIjs+b6+sHZssh2vm95PaLL5s/f+83buYtzZifQHr4Ltd4NyTE3k96IPyNQ0wMSQUzVnW/XZqEDvmeMBb4GfK5Ci0Ugy0AuhwbApCFnw602bM1wq3y3ioqvXu+ALThqQtOEL183vL5sSGXFrgkfb4rXrSILcDsMt91QFbjtgrbvMCQnNqvYjwO//XZ7H7L40/GjOH54zWJfk4+RgNgdcEFi75wzPgrDT9xQ7YvaN8BsLM+CuWP0+cV5e0z7JYxxGqC8W9/AJzHFH4UwlkmhmSsjiwumd55nulf89gQ7mKJD74mobuuFMULN4N9Fj8GEkh2DDiO8CWfZGk+0LCvEm9PmnD15NN/Zjbsgn4nX5PfqGVlkh8A2BLFtcqWYNDvL3njG6XF9QG7siPTnCGdDXNFoa9gPwiJFkkfC3VjrClJ6DUY9mN0qmRmA1hp0U18TnBTaev6+/eUEa+p4/nAiw+AbNXjWAm7JOWjavGFsKLiAfpjLN7+GkiAonBHxOT1FNJ2RLqW+tH2uHhQH6K8NUAq6MmHk8twPKhzBnpmaDOSzQhgvKHYO2T0H+2zsIc9zng0Ef8GMlDYnfwknIgIuAadsWNfcAwVzpDhgYHQqOHaWGFpnBg72WHivNfq5Dhn1NdHXpD9HkG8R8EKD37L0dSAyweLU0Mw6iYqBGQgSmsSb5J6LeeyOGe05NyzDGHQ3X2IKpcuDBEMwCKfEZ1sXZkQTDJqjdnIypj3HEO9FW+yxYRgKaDy0NgXCRJCiX5jQcFJVJDBgYr1ht+DYyHwXG5zR5oTsqZAeFJHC32XWuMAUrRokK9bsxrwJRAmbUndoxa1DU8NulSx7JUMOEn1oVRw1HIqKFmvc35WJZ1NEHVrOBarRC7AMRwQmntX3WEesC19fzdlLexsEawxuuTGvHYqdvCbOdY95/70wwNW8fYevXe8Nyr6sdAd5jkAkShgaRrCSe6OqIclBaGkTd4QM5kyWWZyONhkAhWrlWisAKuFk7CfoWSM11K53MeDVLg87CZBxnfb+bilOi3O1G/6xhkI0QKTDtQPSm4Tw4ozY02GYDx0fDkxkyyjYzJ3mc01Va+5sags+apgZWlWYNSxrOGLWyV1yyVCtvowZiKpVURvcWfR9IV06u3zwGveQhSEz0si29cSbTM6a+tynsdfDXAn9NoJgIRsw2QDq80FBIlCYeO2mS/1RL3vWW+Pvk2yWwWiNeQ342cEgPD48W0DzVeOck30RMhtd/CFstPEb61ex/m58yaQ0jWm2805T26/x5tw3J87369bi+fMH52mGi/JSZ2d41k9nOOn47tFh/K7P4+Ee4avjm8kWDbENeTOmx+v15xWZxT3HSOsK4y3E/I2xCRyi7d+x+5oHmlyH3A5FbYTLJxi+uR3QSihpMwNqw28+7hAjl4Yg49vbju1oyHnBXoFvb4r7Vrs5UdVgJtCW2E8YinJZoSZoh+HblwOSH+fwp+PHcvzd+izGWg3BMa9QgCs4cORhtPQLmFO4hwKyKQRGJdQvZmGMTYaixaYIQeln+6aONgdAw2Vl5Pk4GMlLyckyvANtRHjmbKLqqNEwDUOSm7ss3q5BQ9FmN0JnIp2I9gW1sTm1ej0pxumJ+wR2wZKA2+0GrRvrufKC233D/WC2JCFhvV5g2ti/UdWhsIbb6yuOo+K6XmGXhLrvNC+N9XzhBBO+43WABqyJdOC13rFtO5ayIGdAkjd4VqAQIYTD+GwtjGNtUGnIAogaLLPWURKwlAsOVUimNu0F7gAkZSzlMqnqSufScmenA5yVThIMbPnQDoNY8fdvrpAKLkW69F0yl7ip4uuvv4aZN2sWQhyRHCodbS1A9shvvv6G7zaztcW2f8ta1QYA3opAM9QUu7G5O31uxe1+Q06C46DRU5s7hqDRzr1AYyxawajXVqU8MlimgRdxjrCUybBqkeEjhIvOB120JSekpyvhl03dDSHMSN3gVXNWxcYsUhKgZJKkJDFAo8um7y/QiI1+Xw00hk0rkNRhle64mTOQimDNCSlfvE5oRPEBdIcuzCJIJhlStDFwY6spM+jimT2DwlqGrSsaEtQtNTGgCGviSmGbEtWGlBbCXTE1HncDgs6EQ7lD5kiCoRKq5ylkEUNSGiMqXay5XPJc8eSMJnPjFjTCg6BKnJDHshvnKZo4c25TyShOPAJjbZHZDnHooRn7kjKnol5Xl3s7m1IibCFoaFjyTHKx+DVZJ1i9JZAIsO8VAYM2CGAJGexlh9jPiZT3QUZhrQBQZNkgmgmXhC9t8ax2cuf4cHfBDEmAnAr0AF72G3qNTs9C5D5OimjWDnb6flPkFO1OBKVc6NRBoJbRGvCybbjfyT6JHAZ1dXke+8uDVZ0IK7GGxxpSAUxTh61lDxjpsNz9vQjq3oBU/TMAdnA9ZieWMnNkSIZ55hjumPKqANriQzISPbhTR1bOBil0Xns22AQ4nJk5kR016I4MwL41wGHScR+LNQvr9eJ8HOq95sGylMKH80CdCG63vTs8DJTFdwOyHQEM6ruE4gRra1ldZ3PdqQHbtkGS4HLJgBp2sGcjRHBodYIaZhhfb3c8XS8wY+340QTtEJiwVj95wBNWcb9/JGGPFMAEr3dFVQYc4n2XRBTOth2INMZYA9wD2SfBXE9Z9AScVDZ1gzt0iGCVOepIek1sh9d6QJZiI4I8fGbWjjdUu/jbUjSLGsqwSfhnC9bzB3slnM5ul5lR17hcY9wn+dXFHcvQrcOJEQxLRC3WD+WR+efmhlwES83E28S6mytg9km1s7mm6E306AQNs8e/cgfWcHr+87PiDedDZFenD4Yzq8FUPgzQOPUxCBqw0BlaeiJmwkAujfueS6UGrFVO5z0+Nh6eKYKEnWxxdoSHJz2NIfajr0Lfg/GrDv3G2LMAIciGePeeqfXv9m2HCPBnv/qGPZbd1v5//+LbXgceeuOrr3bkdMenH674sCTcX3fcDShSsb1W3BU4jGi3iIxzbZC13ACyGwNIa8ZLIxLtp+PHefxwgpsO6Zx9xGnhOXTPBIRdPDpHs5PoC5JwKZCMomsgO92hy2yRLlRm+CidNO09EgMOODto4sI0MOesm1v6Jg/h29pUtO7CcgYRxtGb3OOMX/dvu6APBRx/PxGbROQxjDEzWM8M+D0TEHUGIbiWkqGacOzbSbhs+4ZjZyPy7QDqsXfj4fFFsFFy7g4x55S1U6lMZBAyBI8qFUBelpMCMDV3XKlgWmtA89yEahdgkspUa8F5zg79ajrVhLrBTYNeO9QqnAmSyQAwGrxuw3vjeIkUoytniZiFO1+xvtgnKBQMs2wulpU1eeSTXFyxC0wbjj0gmOOdUpUG2MkDJUYyG0uuBN0oCfIkjnnU7s1QTTyuifj/OzUm4yWgv5PYK2xIL6dr98hpKEyL9RA1SgboAMPF3svuLbXaTkqLgRWH2klk2FmbNB5n7EFgQKLNjY5ey9Fri5k5TgCyFORU6Dj6/h+EBYTbrcuK4oyQpdABzf58p0jxbGz4lFgh1PNIDZJ2tPsGwGs8/J0FdIr1lO4oCzO96u/FMBAK430HFEtiusAtwbmJWpl4fa1FRsmzF+JZL1hHNiRrVPzK5wkSLjMF21dO68aNCTr5hC8y05EYzQ35g0Qylt5+Jta3TWtRu2ESjk/KDKAFW7Vvd2b/tELEcL1cEJDElBKWstAodVi/AajbgeOoEAEuqwd64MygJUOiXQjg9b8UDgzCsP7wSTJUbziajqx3osGcU9/9fiRPqEc0h3BMTcOZzvTscbR5/fI6lkcwJgKYYuq1Wtw7yZ0ac4NJUjjG/ht3hPv2dQeaxF3iwUYBckKREgoMez2GUSxDsmcd+78vcPE177DUnkWz6NnHoFHsv6Gn/D/9elzNZuQHYHsgnVa4AaiUISXD47VcHwD0UOz7zoDO0wqIIXmWNkAQIoK8ZAgyatv7OFLOWCCdMMmADvtUVdTmgZDKjDcDvhmtsb9wyZkqNGSbEE2RTizlQ070Psr+biILOQ63D7jj+5aIdxjXCqbX2BcBFezvfH5Xj84U5q8evzt7sD1r5kiWR0xfL8/w7GVcYb72vA4HlNl8v7lma+OXQ09PzpSLDBEPzr33nH53C6fQdTO60/cW8nly6sxGsP7Rtnw4N3Teo2P4+KwjqzjgvvP1QnbNjmEkFqLucFzn/d+/d3xXRvI7n6df27qT148JpjwCAC5cZ/b98eYxXEZ02UAdPhzP5LXdqsD9zn7KS8lcE6ZIBlyuVzRV3F5vZMrNCQsWAEeYFv6ek+v7QUopvZ/599g1Px1/r8cPdxYzGyXTdhmRkZHm9xhZKKY3gmIIBxh6+xsJ5xLTgo5FNgnciCR1xefKUoRGRM5UGqpUThEVSW44mzUUb1jN2gVCH6M4PHvT79xp24fiSIkZndjAbGxOCMy6rqxVUFK119o68Y2ZjlYPU7Tq8Qjhtiwra64m5q52VI9+UeDv+0FB5fWCkjKJXEwGZXnOyMQteXbTiXIMaLXh2N0hmpQDjXDBcexsgl6ErTg0sgAB90xQPaC2oOQFS064q6EsAikFhtHHrLZGunug1yWWpSDngk8/+wTZsxfq4aVwd8II2fYNr68HlmXphD9iXowuXMr70VCrIS+EKWn1CHtkCGK9mbrwNLQGzw4PpTIblUJPFQJFKUt3VGnAkEkS4UQDQDNmyKIuJJHSnsHVhiCBBAS10iiPzEnzf8cNVBVIw+DXbrcFdA7diVE1NqKuiufLFakk1MboemsN2gofUQm1i16CJgZTf/fKusc4cq9DVTRRqM9TO9gEPTKikgbjHxsvezbzRA5hfX67epoUmmp1EiajsZ0Tck5Y5Upin7q7kXhBq4QvEzLt/URbQ9OKrGTN1UYCopQztlpRa0Xz/acKrOsFS1mQJlKhIgtyYqY1eWShGWDNnB49e4bVyWCcwKvWoz9HSiSB2g8S+yRhVqoe3uMxmHWJ/3EIqWHb72iODrher90xC4eq+n5e88VlECHAOQuqbB3W54sOzbRDBNVItHJJFzRpWMowsqqZr0samOHYmPC5u4wS89rGyBZkpMSeqMd+Z3DJA3Tqsi6njKenC+WZsxybNIhYkCZ64M4JZ0Rwfbpiu29oarhI7rW/1rzBuRPTHJXsl8/Xi7cYSchZkExYJ9sa9lYBI7GWVbYNGEE6kl80dZkoDEyVRCIsFScxAjOll7xQnpl5jZt1fVR8/5JBmYQm2QMZkeVZHNFiYk6+5S1skB0mqWgHDc+yLK4fGuphWNeFATPbCQVWvvcecJmCaI+BGX5AeUddmYDGnoSpCERBsrTkVZ7V59h7SKZ06Vexk+OIgTaPPaKKZV3x/Pzs6IbqTiWDQWaUzSmlEdzYK2sWu6PgOitl4BY62d9bSige6Glew1yWBbCGbXuBpILjCJ1Dx1csoaSC4m001MmiFObkdBTIox9zrA+2XOm2Ns7tP0Yd+hQ470Y65z5abXSiHx0BaNovo7xCZA7avedEjM/nwPP7p1FW8a9RohHL4Zyxe3TC4l333sgup4YTZN34R7/k2Y4xwlT64ujO1nc4wxEsDB307vNPAQzxAEh35B+yfWfn7+wofte8vhnT9Jvze52cNRFEXfV4H+n0TuZrPN7/cU7mIMPj73/XMXNkfv3p7+fzJscQw/4GRnY6Ajhqiq1Wb3WVsF4KEYM2gjzNDMd+Z3AQXivedb2eiIPUag+gwh1HrdHO7Hd7Nz8d//GPv0PNog0tgcc4CjDHLqa9hRENs4e/YfwrHMAIH8YF+kfWrxUY71mBMVJKivScM5aFULTjOKaoUGyssYG5mN/mwQM2Es8dguEcqRqKpLpDxxqs4q02qCzYKsDw3v4fUU06rITUCJZC5tPoI5iqAWg9cpckGBMN8IzMyMy6IPb5i+qC7qjraQAuiMGeZx5tjv1LGvLWqbebNti+9fdTlQBFOkwOl8kAACAASURBVDUGdTbEMHaDElp6xGr6rztw2nNY473PWR0zQyml9xMjlb369JpHommgzAo5p4zLJU/XiYyQ4eXGYEK0QkgCJx5Bj2KnZYEZUJsbCs6cJwn8MKL3bpwAbIKOU1QTPfrcmV5dGJvqmRTAj+6AYV7iI/o6vTxYY19BUusPBRo1n+dtGLsPQ1NIAmywJvaA8PT/UIRUctkjx+iMk8l7knYH0QhdflTg/bo+KT3gI4zRW19z1tdqYoEYYANSnjMN8BFQga9BfyT/Ld9Zw7YzKGRq3hPOW+GEY27jXfUxesYsi2c01SHZToBhho5CSE6W1JpOJB3JDcVJXhg6ZN6E7X32o/ZMWG1R3+b1cao49tbhzMx8OPS8ZCdbGcy3EeyCr3GA2+Uunj1J6J8rwLopBPvwlF0KGndB30uY2tn0/oI5d+NNRJBLweprFY5YYGAE7kB7hNkiAx334tpM0z3mbLRAprYWlLFHVdRWYaiQw2uYlS18eiAGgHpmqa9r3wMp+XhcH4RoDLp6gTj5Cx0Lwahh1V4/O3RCSg5Xd3RD3G/UCU0QMYfWwzQSjdNvjLXjD1kOERC/2t+NZ7W6Qa6OIogg5aizDd1jPbAjCAIk4sT9feSQAWP8sT84slHnGQ7OkAuGuh+Ivr0hr+Yeq/PenjM/4ezW/cBhR+xAAAxsVq2oVZEzs80iCfu+Y9s2eOtYOp3CfSsQbx81HLXk0Hz1tWtg8JKIDcBSIATG/gfeGvbBeIlY50CfL399Xf4/NoOP42/nxLz3fcjuYQM9OhcjpNjv+jfcw8b4If2nw2byz23I8BFQwjDx/EfvOTunzFe3yew0tDcO6IMT9Zjh+12dwDf3/I57vTdm/zXmgX6fE/x9x6OTGDJ36Of+Lcb6mr86TfRkXo8XZjLGOl1lvNN3xhK3l/nvErrcsCxMAuz1QBaBOLqrOkt7zudEiKT53zGCsw34t3l3Px1/P8cPdhYZ1X8bCHh86TL/ReClFeaKajrR/HOMa0b0KLKVtFkmYYEO7oJhjiwBAcGg4ZqcLCGiyl7z5Ys5eVuFEP5zJm9cQ8au8Qi6TQq/KwkZTmPAEwB43ZIwy4A6OYaPm2RsqFoV65oBZ/7szcBDOeeEZWEPxZQTpLJOLTXFuhYI8oBpupci4j0XI6wP4HJZh8GL6NGV8cUXnyOXC3IGluKvrwFVD2ir7hCwQf26lD56IKFZxXVdIM5kCbt7fR6N9RSQLBe0c5YBMguvUEKeZbEBPQT4SpKNTEH2SK7FQnBHJi8LrtcLr+HQSWZpEm539nJrbkzkwj5fAjolZnQeVRVVG7Qp9hoOAzNiZnBLpSFJQcnChsuAO5as5Ujgn7WR8e/p6UKYZ8ACZxpumda7L7+o/uFz29g2tPWRPRtnnkl3Kc916P+3FnUWCSbR6yz2o/Q6H4Gvp8Sef82NBenr37ozm7yNR+77YJYFQ9ENiTDVWhi81QZha5LIkBksrYR6Jix5if7cqPVMBMN2MBPky9O3IookhASrGZ8NctrfccwQ2DMcxidY8mT8eEYnNpczwI7nAqoqsiqspO4p0FiXc81uGNiqMCRkJNRasd/v2A72/OvGTTVsUXvtjihbggRskjKl1qlmxqzvnd12nu8Mp6NhOvdP768HdIc/LEc1OAx7vMtgjpyzin1fRp/TZL0lSEoJJQ3YZdOpB52JZxhbZ8496sHWE6Xw+mBwSEHW3wRgV0KFa90BCDNI9eB4lxVA6qyhPWgBzokqnGPVWQLh9U3CkIM6KUNOGUsa8xnBqKNWlFwcKsyv1aQzUyMJVu9fqUYz/KjscVtKQsmEVZs1KBRliVYeUeIhzHK25m1nXKa5s0120AiM8rPsm011BCiWxfVe7D0bAcbIiALUMcULzSOLWLLXayqcCdGdxtm29713HBtUrdc+Xa5XrMtKBEtzts9MErOXjy+jbENCkxMRc7/fUGvD5coMKzMXG/aNtafrJ089Y36/b9j2A1UVcjSv/S1QMEOaWYTaS+YUAY9ubock12e+dgOW63XgYXvMqKbYGLP65nly+veQcvNv+Y2GrgNlUp6M/PePKbtlwy84Bbbec3JOVlOMnGPR6XwJLzdYXwX9ncCs6xRL0q84346B0rDZzvd5lLfvOYrd3kLs0bfO3PtZt4f34OfOpUfj2udz3sv6zc7f/K7HZz7KsF0e7Li/jfN6InaanUcM3f/ge/tn3e3r59g0Xr5GGWf5sovK9Hk2prTOyfWMMRhYIqRGG6mY2xbg3mkNrmN4LtdJXHEkX8YzzaOO+74dy0/Hj+v44c6iOf04cJJYZ+gLHjYxutM4fz7DS+OTx89PwtYmATRtG8G84cPpG3VU8/EmQtU933kxD+dltntFQAhPGg5pZFoljSi7HfqugHxPF5yNa3+GbpB63x7MTqx0Ya9T5PNxGs+ZVH6sqqhRb2GA5NKblltzpzElJ9UpEDGU7L2CEtC8r5cIvAF6HkZMqEcD1nVBXujIT7bx40N3hRTQ2BBVk4odayL0qf/H4mbTo3Maem56TMbp3ujO6vhI3vyt39ONCqfz4aoT0KhyqJKAxkvUBj5G8/u13Cg+jh2Xy+L1Do8KEMOQ8H3T7ZDTZE7ws2n9h6mZxqcU9n39OIxEacwHkYMIcLRoXE6IddLkQQqOTU0g6jVGXVHKKQBjFs4G//92/6Ffj9kfEhcRaiY9w59EvIY0MtM8OuMrznMb0NHTYoh36qyRkYmZc610gtP4d38ZMd2p77cx39LX2SkjLK5inQDEprHEmgiSiL5OKFSmcfK+rTXk2QnubTDYA3NZMpbLMmppXG4cB/uM4mGOAoIetWoxlyJejwPKGxX2ZBxy1tHLYQL7OoqgD7MyCpWARY4eYTlRPkQLoLMBNxnKvoYbC90BM1RHg4gA2RJawOh9rVl/ZwIDe+nmXFBpwXQZEu0/0pL73oAbQEfUQZbi9YmDLKY1tl6yknApCbDEOtHW0FS9vjIcdi69hiBEA6CE38aaMtBBr9UDOO4AB2u1pOiz6eM3MhAmOCR07CCuRwVaVTrkqYR17gGVyucGUMrFlyDldvNxqNEJXcuQFHBnurUGWKAVJhljcNbY1JEnQRrGAKl2IpYlgjPwGsKovzQicFKKFkPj2vMhHvwL5zS2NHuJEhIsiYRdxx5oGK63ZGlI68kgj3ZCNmf7Bh0spmjIGM7D5+8eYcgb0BsqvvOzqZodYwegt+kIMyl+N+vuh1sNpyT04LvjemtdfddjyDQHDxJ7/Bmv4r3bycNfH73Zh/vapO/7CP4mJ8vG3D3eYnZM3832fYdT9zZrPP9bTveI799e+u21H7//rnH1d97v+LscZwvnvW95X5zX+ju/O9kn/XvX32LTq4t2Z5RfBkfAAQikQwseAzvb7bNV9bi6fnISf/zHD4ehCpilABy+c7Jk3xEK739++s07Rxde06khHLvANevLm9Fiw+hBF/cP2MnoTdc3t0ivWTGLPmzikXA23I1RillXnEFYEGNYSkFKJNOJfmhdEQpoPGp9d4/zMiMbEAZoa9Wj/2z8zJqraMMBvL68TCQf6plEw7bdUY8GeXrGsi5o+9EL+1VDELrZVLWPQYQ1fMe2Yz8IrxQBLkvuzvFRay/+RwFUKyFyYtCccRwHaiWkriBsQFeLiWbY3JsJwloS86a/kSWejewe5xJhW4sszpCbHL7p5p1MBrjBCRgAaxWtpeGYGLPjR2QZRSBOJ5+M66hDR52NUcUhtQhoJ/H2odUj67IsxVn3+E6awN/RWYmkkl3witcfObGJP0MwpVo8E2jQRzPrMAoZhQ1CBnFmUw+jF/5xaEPbFGk3ZK+9ivrZtbDCAKYwq7gfJEaKNSVQ74vpa1UVuzNwhkNrSkdPm55qqSDs+6ZuvEf2zy/ktS0kZGhm3l4CrFtRZVZDKQe6EQDWiR770Rkiz02LxeHegCAy+pOy6oanN79OBS0cVRHU2noU/URnMcm52GuA15pZkFyMuueoVyIcjs/wIMpO6yGcOjNDWVZcRZEvDuacDM4klDG5JCxLwdPzyj1/vyNQB09PhNg2d7aWyxNyStj3w+vKFgAkzen7zAwMSAGw0jNPrdcQDTRFOI2RLVRt2Lcd99vR5WYwYy6FRDQkOpJpTv26mGp8UkJaE46Dhn9QuQe0EgBrlj1wEzISANaF9cSV7FtIFllkoFXCYEsp8LgWkggONRyHOctqQi4r31Nm6xGD99vM6LXUzHwEaoCZP+nOljGjKsnnlk69WXPGTIGhojbDYgmC7PpLUCJzyImAJPaW3bY71pKxSnKyG5cfqcDQcByEJy+LdMe7muG+HR74YR0oAwJEtdQGvNzuOOqBp8sF66dXrt5MEqR92/HtxxuSAF98nuH0LgCAY2+43TdISrisC5YcunBAsYdqJZNyrKHQeyklR50ENNeDDTBkyXh+foYIvMaJey1fn3C98vdNj76K1nVBWRjkAoBslOF5TVDL2O61j529iR2C7iUhAJ1S9thElxfBZBpycDhx79gr3kuwB2X84whgN5ucx776hb/z4FEEb2bDPoXRbWGVhMkeMky6DvouK+rNeMUhhZgG/HC++TMZnFkeoVfRWa/DFpszggibq9cfjlpOM3PiOcRMYkZwPAbTv8vhmh7jzTHKFtB1wvzbR6cwjoEGe2Q6nZzKFAH8GPfILMZ4v8/Rfe++/XzXLY+/HmtlmuPJcX9MlsxQT15/QKW/a4WcbexYY+PcLBlVK9mHBaje2qz3KoXrPhk1x+Lyy/zZ5ucMVMbZMf3uWMdPx4/j+MHOYocoIbJ7Y8MAMqBxbpQ9HqdN7NGL3yVt//jbM1xgimKEod2L1q0bNnFeh5uqegbNnQz1onYX8F1QImq2ZbCiecgpsg4JLqSUsJ9eJ5Gdoj8Y8Pr4OT89OujXh48llQIRr8mjZdz/L+4kirBGSJ1gIHkJXfSvgupJgF4uKyn/E+9Vj3a6N/dw6iQaEfWG0OiP+TAQhpV8rLWTBXG+7/cXNA0H8MGJE3f0DDBteHl5RSle39UDDp5l8Zqeo7Jlxn5sUGOtpnpvuCDOCeM3g3Cp5AIuxCx7VbL/Wwt2BkldqUu/NTMMfBTFNWV3Jjn2wOVHtJxGhSApeh1fyjItf2eJU4MpiX3WdSGxiNGYiqDCcDLOARE1wgt3j8jTwQvrS5y21HBo82CFou3m5EzRxBd9jseuHY4nM6aJxsvwqTrkNjkfbmc87nvQuhrLSB544b9rU2htSMl6C4y+f91IbA4LW8WDKxqwp4hiemZPvQ9ga25You/lEacaRkvAz2O/dcbFXiA2AgxnZT9gOALPKPoDnYwY4x5jRgXeosMAHZnPvrd8fbHmbvR7i4M2ln/mJCjbtvc6u+y9DJs7UakBQMMzrjBT3F53BmlU8dlnDAi8frxBBPjESJry5W8/IiXBF19coI0QvtoUl8sFT8+EXrfjIDvyVp1QBk4ekx3eaigl92BGSgnLssAUUN17qwugOVEU308Y3+FkDyfZYb825ETOGSpCBSXA9XLBsq4wbd1swhFvikDSlEg01VoFIkMYxos7aj2AaGH0+TrW1PcwW2iEjqEMyikhiXo4LwKN1mUw96z2Nf8Iq5sW/Lh3kKcYnVL4ugEofwQZKVkPAHJNnB2x+DOl5ChztlzxpdKfIUlGFuv1jwmZOq96ScK0BnOQz7gxmnLupCM0UBvIXyJ+rmfqhY58a0SeZN+zTWtHCnCsmSWdESCb+llSzqgHA4CqJEI7oTWAacwjw/38/AytlXBkU4gUQEk+5TsdUZ7SCYrsHdul27Vjj39fVijsjfGKh1luEeRheX13Ns6ujn+m495x/6g5G+OPewgel9V74/oux9ZcjoVjcM7284LBNDvk5HBSMGmP7kU/OHt4mK+zfff+PH5nRpAnnJ1Tt72GQzUG8ybJ8Ob+eFhPb23P4Sj6XNmAxoazE9fQySn+Xe3YcZ937GNgjD9SzogPpf/V4jv/++PKsmntft/x6KaGPdtvCRepIkBz1IV/TdHQEFaUuKxC6DiL+XE7XAY4u9vWEnricaX/dPxYjh/sLEJotMGCyX0uWI5MSkBAp8hICBQNaTQMpC6k+7YfhjI8ai8pDGc9LTKe50pW+GtmbTw66f/nGKIX1OKNnQ21NohMhmkCtDYc++5QGO0CsbaGdhyorfaMRSkFx1EBh/KFYdTHbwEdi+biMR9jzIohDDle4PlyxbpeIGJYV9ZRaH3By753Nj1xx9FAOM66rvj00w+otaGkgmUxHA0AXt0ZYY2MmTkL54BOBhmK7RX7vvEZUuI8GJDXgqWsWHPGUhhxXVIms5z3EWut4na7ozj5jiTBWggNS9lZR33NEG7FGrtaSWLQdO/CirbcIIooOaEeB47DhbNGXVQII2Yx1JRZrpjb1vDN1zfM+i0J4WH3Q2mY9bVDdlwDSAGdSo/IA9GrLgx4QXb4lRmzUwnMkJW0IAE4Uh3BhsTathaRyYCwRhCgGzDoiilu1pTZwG07kLyGiuQrNCo6e13AwyjSyQqMhVcUEg8ZGpKwdcFWD9ihEBXkAogES3DF9XIhC65nAVs7WAPoUdseDElnYwkqFAyu9cydcuuRTsqLkot/R5mSCw3TnNiaou471ssF61JwaMNRD+y3gwZ8Tl635nDHPJy6JefeGzJqHgcLpkMuQ07lhOJZ3pwzmi6oMKxGJ/q+HWRrU+ttIIgYwCRXXNYlr4dTQxAwhcMYRoY2paK1XqiL4yBbq0HQkgCWkRKw5sXnasxZOJvaFPXQ7pxdr0+43W7YD/ZHpdi5dfmZUoZWyu2CBXvb8frtDbfbHZ9/9ik+/+SKlIEDrHl+efka27ZDVZi9KQnbdoOpoXzyjFwKvvrt19hur/jFH/xhZ2E2r5ElPB1cO2a4rBcwU9mQJKHksYZSWlir2lqHkKYkyHn1gJ+SYRkLjqOh1dadzLbXAccXAELSoyTA4mMQE4gCrVWI5KDwQckFRyNxSmsVVqKdkoVt0/dgygKtCtWGQxP2vaJWQvRbZgZejX3+yGJtHhCLsbkp5XoT1sgi7IEzwQh6kOE3Ue2IuBPIvqOxDpbMtc9siiIn8bYdhuzzW4OtGGMfmIg79oCI94A0yiQRdAInIHswy3uwJkFKBSk5/NO4B0v2wJIqcmF9c4YgF5YowGV4bQxk1H3Dtu24LivKsqC2hn2vWFae21rDy8ePUG24XC9YV8+cbxuO/UBKCetlJVrBgFwWysfjgDb2Vc7JcH+941YNUlaYs/iWkoEUGXJDU6ITciZyB5MTGZmppnPGdLTXmss/hq53BZNHkEQsgssDSt/lUJcLb+UodV72df43NaCL6w1De2ZofTvOEZycHQX1tanaLbYRkGuNmq/zAhiCFTPI68zb1cS9HluJdXTINKYzM/xwXt9kFTGRLLlzdLIBu2eO6XqY5vt9x2weV58HL2EKO3ac4yzBXV0z2DJQQ5GdHEGd73Mge0CxP+M7583PNJ1n0//SZDuG5veQwvfe93FcjwEus8gkeo9P5zLojv0UODOXH6v3NVdlex8R5yPoIQ8Sd4kjs4LAjY/6t3O0fzr+4x0/PLNo1kkaJATOFMwJQ1cjAnOOd8RFEMIBYITi/bUiCIghJsczhIPE95gF4yyQrUe7xsYdIx1CSgBQGUfiIeB42Sl+qXANyNKzkaa0TMLRMMjpXrNiiHuOzCy6szCC2QEvVDQ9cLsdjBqXFfAm5RHpY085n1+L6FKQKChSUo/wTP0SvR4Gxp6IL693BIxgXYv3NzPsB8kOUmGdz7EfuGaPWqth2xS1NdyRvQ9avD8+99EqtOUYKkSSO8msdxEha6ABnuakH5nEs7yK/n75ihy6mvqkORvmpABiAaUIL/QpdiX3qCwES441zDkBCOHyJwGsQauvIWuTcLSu7AKRbF7grwZs29EdP54vp7u7n+B/mbJ8PgbWqUaT7pEZzTkzixKPamDGQMRZFq3X7agJJPVJBsJP9+tyvhhoiCBlAh3gVAL+63squUkr4sXzAz4bT5Q8paFiGMBV35cRPJgc9g5pymnIk5RgqKTthq8bMOOx5IVEFpI6WRBizgEn0VDUWnzsDQWKQ5tnxdXHSaP9qBsMDWwJY6hSsbeGdgzUAcku0NkX/YG4Zz2AxP1FAyGeK7ujZ/7eOsur0BBRU1CFUkZEo+Lg0sppgdm9IwBoJxmY5OczJAH248C6LtzX7iSFEdH98D7n/Gy0KiL8MedgiByGcM4FJSs00YkvpUC8Cbo41DKXgrJePSDYlxN637Fu8EY7Bu+9Bm84j0lu6ljjNAzh6AhDTuhrJzkB0rbvyClhvV795nyeptoZqUkGpd4iAb0npbkMMVM6Ek2hJWCJro/gQbvG3++Hj6kvaspnswRJhc+iAUF1CH8Gxi/E5R7AIFHuH1PfCIDCgI47F2okhqFcccIyC+CmsKbSHbewYANGyFYEDsMFADRASTJjLSOCruZtNaI3XxLiMmzKvofuiOAI33f8ORn4EmtAeg3waN5u7lAWd9p86/p6CTSBCLPgrZHsJsQ7dbH2GnBxnQYxD/QwSKZmsKpoLuySJFgyB14YxGlTLfRmGrr6rErODobZBEX3wGqgNc6SHY5DjZKVqO2NfRnXHLZKCPP5XtzzI+s6f69TsLmTk8m0ps37g7o+Pts45+t1x9iXardbJjOLWnsS3GGPwYVVfC5D555RX2eH7NTo3nrlNzCdMztZJ2fuHQfnvd88ngMfrjzM9Xf9PWyZ6So+3+OZArHQ36bbtKcRdJ1rp29mxyzuEjL05CxbzPUYB9dQvBEZn7rsn4TUdJ9xj8dD5muc5mN2DM9Z+AGB9V/6P7pDH7aPOYpiHkPo7BAxoQfeG9xPx4/i+Ds4i9OWODlfAPrWCUx1mhbq2LT9E68VgyueYGYb2cj5utOfItPmE0TfvLi4EBc2CZOAEY6i+SEj3mY2eRCCRMiMeY8vEI7n2bieRfSNKrQIMeomh5DtGzdNm1pwEnDSx6+odUfdKnLJuDwz0ksWN8+A5oJWI7IXzJYkD4AptLgB0htiufErbkQ14Ha/Q4QMeAA6s+lRDakkSKaxd7SGVWk4myrud/Y5U2OD7afngpSGoGqq0ObCQLwORCuNzWTA9B76mqC16Eaku3syonUxYZHxzG75diMuGRvCxwV1rvTw6KeN78l0aEgp4Ca8Tj0Ofy8JpnD4nRv9EkYQnZagqO+Gr9AgJXHGiCZ3hS1gne9stU9v3kI5GMDMxJnJkW1Ucmgtzqe3ZwlDrmeKkdFZhpH6dSMCPv6bYMLGAIUPyulDEJUAsGEAmvQndmXgARB3umIdikNVQ3HMq1y9zQtEyL7p1wpSC9pDqf8oScJSwKbQlpzlVCYWUvZePOJFwiBi7A9pBpjCW2I6U6e3XLAGbU7ShIajMVhE9lL2ywwCpxR1iq0Nw8j3b5DrREac/focNpm8B5/LRsNQkgxKCRYPfAzi5YJgdQ1NOomrPpd1P7CuuTsYwWwKN2PC+IgrpC5ruMdyzp7xH4Yss338XNT876lfR5yMJ2UiF9RlWUTdc0ZYT77evXlzhygbIyr+aAE/YhDAZbSw0bo2gxU6xhJizED4fAGWT0jeErDH3b26w6KWNJiBzTNqI4jH+vIwbqI+XX286DXCpoat+joWgbiuMa0wLF1WsH4/4LmB1JiMy/7iIqM41oMq62chCtWda9sUzSp3pUTfxqmtStRke9CGWcNR8x3TzOdXUCBz/4AruTsw7nf1dxvOYhjz6vs8HJ1Tuxpz5ykMyiBNMnT0weyYFC9rOOl4149sAO71p7V2WcX+yUCrR98zw5lQiEcrW9291lFOQRHKRzrISSLIKH2/xZz18WD6LWJfCyKLljrp3AxBdP3kG1z8nYf8MGP94mzQP0Ihh70yaoRP9olZl5shM7tO9DXOzThl9UJQIeD2Md+jzVBfMHG6/5c1Zg+Tcrouui4Sn7zHTF2MO57zzbNGlO2d4zEb+uiEPl7/vfuN4Q7n54xKG89+/s38WTzmaXH0eek2pgc+4tfUUTj5fI/OV/9ccJ5nw+m8GI/5ng6Yf3/2+DfQ+5XPzxTyvT/Mw/MKRnKlywTE2rU38zZdvY9tLglJNDknxS/d/grZNJ5/yIOfjh/f8YOdxZwlgmf+xkM4hdQNwwRdwfSospE1L47UDaGHxR1LaN7sYkgRvpz3bBiW04eEzbnyyRP9vDtxBkIKchYIglqbY0hJkJeMoB7PMjImhOQM+vdcWBzvA8QMK+mCKVNB7kfrRkqfJ1MGmfsjmdOkMzORC5u6Rx9Ic0WfUsbz9YL7vuPYd5C8h1ZaNB8WMezZe5y5oCMroTlEyfDJp58yQt3MjR46ietlxeW6opQEqOL5wzMbshqNcjNBWVa8vm40lNKKZUneCFuwrAVpzTABjvoCNIGUs4A2N8Rv246Am2WHp1kL4c7VcbksLKpW0BAAcHjWR1yYHQ6fkbSThVEFURMU7SDCQA/iBPehKSjDrcz+r7BOPQlgTR1+TfbBM+lHYPYTfy+LGwVe0yaAuSPMRuwNuZRukHW6dncEyaiovSa0N0Q384AF16M5rFdNfW+M+WXvvuEscDhxzTSUlkjPnqsbQKZUSJoMl2B0pBZihvgUrCHED4a+1+I7RessiApAJqbM5Mo2QZBK9l6oDCisS4aVPCL4vca4uRLzTLUYihM+fXh6IgFKTjRyGp8lCIHgMGvW8hK+x31c2Fg+Z6Sq2A6FtYrALdTWIMK1GgZHwMeT1xDGM4uFqxbthSIDEYZR6kqSpD6EsVuO4BWfdTt2b6PgGZvCXG2tkSmm0bdtm8PyADg0KyU6mpTRHpALZkmH2RuUNWEeGGC20GBWYU161FeNtcD7VjvR0X7sOOoOsQMiiuO4+3N6zWZePXBCmZRT9l6Iw0Cdg3bRr5BtNdR7tsKd7AyRgv3gIBGOfAAAIABJREFUvtz35nW7GWqC7V7dvjLfN5XkR2aQQpQC20rE8w0iDJJL5V53aEYYPf+dUZbSHYRa927dlLJiKSs++ZBIFuStKKLH7fPTk+sDBhySBzOaE0E9PT8xQ9oaa8pBtMDR7p1hFACulxU/XxbAFFkazCFhSQBtB9alsD5Z2JuziODYKiSxnrc4NFuPDWkRlEx4sgJYsgDOIMssfQHAdiVs1UHHs1XuX+7V6LNqgDXP6HHNVTcSY51F5nLo/QE3MyOJE4wlIK0pUinM+PkeS3mBOfRcXN+hJCQwA9+cOIoZx4JvPn70d526oZxzQfOWHbEOqOtGn+KwOnpdZsjSifSEFkrqOlUkUBxAFunQy3DExBmHwyDvsgtuyE+BI3R5MjsE1HsaNAUue8M5zCl3g787ABb6GzA4rDguh2GHDS91GsvkIESwcrbGxnjfHjJgNSM+NNk+MwInmDTj+xlCOtiZB/Pzu/eTuJ0zcn6PkxlwyJDD8S7gzymYnFHE67I31/iuowdmwqEL9RvPdf4Dw6qNd4kxr/7FTLIDgfcFDSfR+onvOW0SetlfxBxgiEcTxJq3vl5jLffr+nO85xaenh+skeb5GQK2EuvheZn6xMpwVKuXaKiNoEf6nvv8dPz9Hz/YWSRsBKRyx1jAb6NPEdHmQomm65d1Bfuoed3dBMt8I5Ts/I++d9/s4TmaZacNcTonJHCHVD0yGI6IVIfetLMRzsi7R2d1nO/9BPp35yiU126AMLQpKBUXPkVCCQ2JPL14xpLniQwG1HhGygff4nEdhy2ap0riPPHnYH3YAm0V6N8QTqh6oB4Hci6sl6kVWIdzk3NCWQpSOtChti5zoo5qRD6pQJMk79P1/7H3dk2S3LgW2AHIzOqeGe3u3euw//8f84Md4bB9P1YrabqrMknCDwcAmdWtXYf24epBqdDMdHVWJpNJAjj4OIhXsNQEDMXATC2NmlgKE7IK3vbqRDeGNoAxurfv4Dt8nAcVbOnQrbAvmNOkMzJBUNHHwHE83CCEN242GtyuYQlCDb0NnA/WBBVXjEHd75WmBFlEVwhWwFAeZSVnsLlfeidYydcGZ6eM9wNkGnc6R1bhb36v+EUYuqKAljxnVYDi75zgPq5B4wDFHOjYcm+Z68sMFmm48X6W8Yh7h1mrLNMYcQtmGjVzyRfh+6+1XNstCGALf8/qJS61su/TQQCmRXKOZs1yAG8FhgR9SF5QBdDCKLFUhcoOMxq+Y5yIb1zFWbAmq3uKnR3X68pIcBXjnBGZMIRmBIJ/dwP6fWUanMaTeP/LM2t0JsskjVfBVpn1YADe74fX+zKa/3a/I9hEVQWtN8gDCYpG6zCYE7dQVh0nZcDjceJwFlABI7ijG45xx3F0bJWMu/4Gvbep11Gm3TNrRMMpEYnhI/eATXDrRjvlUyz0iLgZ7o+717+w4XvvrBvleotasvlMvRDsRooyHTRY9lDUi1EmCOZ6GPkexHtQcn5KKZ6csNRZRTrriAgdn1drmUa6wbMduE5LrR5JZzSe7MYDipniHgJSRbAJUHSPFejzTkdIrQqAKek1opgOdLe9QivZRLUUj9jymYoIXl52bL0486eDEaGRrgrcHMyR+ddb2hgj0y+3F0QanJk5ejW0KF0Ih5HP9SpDRu/ekmc6WCGz3thsJAFL7PnsxZlOVsu9bkSovKYu9xUCuajbjAiHqExG85SPbvAHKLJFpiHVEKajiPs6gIECQOhjB2vPoCNRzuXw6y+fr6eozOuIWYJQAefbEOVA4M+h9xc5HvZAXEl9HfLnT2oDQ5cv8x9RqU8H+fFxLnbPZ2BrsRjz53muAPIxMnm9SayV6/x9Fr2UpzGtAPA5hVjEfv3RfgU45mfiWWVyffd5jlzHKvI8dn/0Jxs612UCxVh/U0pGFP+yHoC0M1MZu2yRfOqP74kZSZL3/rUjYS+FwOIoWNitY2pE5noMW8D/HfcZsa7/wT3/OP7njt+ehioCkZFeqGlYzcLb+GkuyAAFbC9AgEbFQYNpIckwS2/HuulXz4qtV10EgniPoyJL7YsbKAQxnmLn9QDmBm7cd02hEI/cHMeSCug1Dkm1f3rhvFHhbVtlqwUzEmO4wc90UaabdfTLvdbrEcSx7mbbC2TTZE683XYcD0M/W447ss5omHp0ripTAnUaPuyjZt4PbZlAeHrOMKA4A50wBUhLwQ/bjh9++IK3n+943L+jbAVSKtDo0e9mqAGO/PWUUtBbo0ddzRlI4Ska67uCRxIZPVEY9tsG6wN3O2kMOgjftorbq6J2wXEMyAl0BWoFtp1GgRxMMaxbwb7daOx0Rh+H9aypExk4nQnwtju5xhl1VIqqYA+7fcd5NPztp59gHagv7G3HaKvhbKevfQLJ25cNBva5e39nK4PX11dMAc+UyD6Ax+OOPjbUWpMIAm7MGcBaKoDPZd2VmAPTMQkP2BBdIKZ43Bt0u6XBXbUm4FSNVOBlSybojH3EetI1LaeoYt+8R56RmbGbZV2vxW5cjKFhhubvThC99hysRmorBJFCLADqtiGgArw3Z6b2gIov9oYWwWM0jAHsWl0/u3fcDMdx4HF2N+gE+7ZjNp+nMUWnQ8Ojnyh6w8ttQ0T9Rz+9qTqwpv21dtLwFsn0LDMSS4WnOkiiRvcyWRAgJvHDUk3L9E0DMBjdUUbuVgcU54H99AxA74c7i3aIcH0/Ht/dSK9AMdzvDwCGbdugIrjfH/i5/YJadwiAn3/5GQLB6+sLeidx0s8//TxlEYKBc4K9MQYBauVa6H2gn+40s4GB4inCA00GU1FFoNF2QYyEUSOis1dDMlKgujWf6wbzuisbyOyNMIDoLDOc52xYH73+Ih0Lw9wBM9NzzVIEZTQDcAIHY8qtGfc22w2BzrSsRzL0wyMkhR6NUhk9RR84zhO9OamVk6mYW+ujD09pdwZrr0eF0btf6w2jHzCQSKe3E9YNTbnGyErtQNydrVwgwrIBYYSQ+5IMxAqmq6kElzEg6B59jNi5IlgLDQNSCCZjDdZafd8QDJalHnF0d545k2vvHff7AwZgf7lh32/o7cRxkCTs/e2Os594HCeqp5vC1wOMzoC3xwM2Om63m+uiE+fZcDT2tfzmrUAAuJOpzXpC3zBFqBu/3HY6Zgb7YnJNl5QX8Yzz7/QoXH43fB1ntonzEwjW1G+XUWJTlrlMp5kkF6fYCkA+BUcuUodnvoQR79JxMdBDNs574vJMH68fcvtzUHZNNxwXwPJ0po1/eK/1swsQCkAb3AT+fxKG2bQpn274q3P2+bNOcBnn5HsRfPIurt99wm5Pv1trC5Hv3GSmD4dOyveyACJb3yNm1ooh1uZqO1/Hlo6S5Yxwvq2fJ4hcYHE+/zq3l1ezzO8nDoBwfoifM/xvRZBz8WusifY9YzGKp3m26ZzWX53rP47/6eO391lcDMxlWQKYcPEicCnREpwltfmzIIjzRa57dv08hPmTQBBMADLPVwe1SEMuF70LIlHDWh+wKsfo27hGGSOgIi6kM+0uBKZH8xDsYbmxwhCdjGvIMT/l4sdc5SYnO6X4mOgd8sgAZpQyPLOCmSbbeye4kAnI5700nO8pmCl0uMGrG2T39wfBnxZEJC2ef/kW0nm1TLGAIKXFmglh9kHQL++PFjPg3x3+fA57kR4yMZ+JGa0Icg34PVRoaLXWvWoxjBOvR5W4pteiusNBRPj8nmYlqpliJaKQYtCh6XUHzCOtJLt4f7/ns4XCiE1DNt7dwZQ/roTxFdFi/y4MQVTxQTl6LQxB0axtWAkQMqKwKKphVyOBADRSUuZ91Oco36W/1+LpYmNMwBRXC6A5ZKb1Ynn3s15o1vd1A3TMXnrI+q+1Zie11qLo/DlVYd2wbAS0s+M8vPG3VlStiBQbeC3a6a0m+vFwYicgab99bkWjv52nLIouexQ5T1Ery3lSMg8JkDwTA2lozjchPi/mdab+/YwSLcZkBhm3lDvRx5WOI95IfY4E899MK1xaLxgBlepU4sh1Am8TMwVD3EOwppABoub1x/4Mhc8kCp+P4bH3CfQjNTGYYkNmQdiahXXhXtu4qoEwLqeNwUyNRlZS8UyAAPeRBhg6xywkxfOe9GOYN3GPLAPXG+JvKt67AcMIfGQFHFfTK28yBrK9Th6pTywdCj6IXE+BY0uJFFYndqqACUnMqEujHY1lCl8fAxgjQUVrDZACcafG6aQ+fKcCKV7/DXiJQYqVucfckM86z2UvRg/f+aomy2H0p9y2qLUQlFEz1bM7eIJ5+xJh5HNoYfmHMVoSxFtxz7FENsdYgeIcA8w8TXIk8IfrrlWSZt9BLLpx2ROx/vg5Fj2G2JT+y89BzOqUWK/9KU5bjjVjiAb1MpRcT1dgllH7lJn+3CFHrkbbxXaZY7q+y8vnuf/Mf5Rl7q7f+WRHLNdd/jAko/s1svbx+/bJ7yLSe5nOfC9TF8aef7a9nqN5693+2Tv6/JC83z874tWE7A8Zd7GgP9H9n41tmrafpw1/9j7+acT0k/Of50vyj5lGO+0NXOY7xz5mWVBYZX8cv9/jt4PFWBCQVHZOH8Lfu+oUDSN3CnJzIJJpkcPItI9nQfF8zJD6s1DSyza4eqhEi6evOJgorOdZPeasH+EppVRs+47eThowA16TFEJTUOuMApZtQ60F53GkIIqm9ZnCFKlSnna77owYAw0HzRoQgNT4RQu9xRjoZ6eX22gUjU7WTi2zXYR4TRocUPfe0Z2gRZbopU8VnxMEVcVrhM7jgHUyOo4+8Pe//R2jAz/88IUKMVLqHLBGDVQCIrPsLTnTMh0oTZM6hoioXaSxYwlgCfRYq0lWOdYpAbNtAwCIeWY/bWCWGI7JDnnbKqyfXuMg7PMFsiwWSduZkdj1d1VQO8e+VXWGT8PojXWtRRk5FEE7HyhKRtlhw9ukkJnUBqkkSgAHFdxebxitXVLwWg+2QfNaqkWJBzOgzTq22IvniBpARnC7pxnGO6ViIXgbNvI+E2z43hBFkQLzHFDVAMnTSDKbYMbtMAzz/nZPSsEM2EQxxGstheyboRDT2LOBdmKyq6bi4bhWBTUGPCpMUE/RQlSmDvK6sD3M/WgQVbx+Ua/Vs0xDNxhJkkrB++MBRP2S0ZistbDup4fRuLQ0mG/F92/kL1u8YF+fMwqQaZhBfrDkC5kBspAxBfNnbz0BXjhoqnh0tw/fh4yq9dFnn9DC1MRhE/juui1jDAeTTWAWDoIyUyhXs0+1YvQz8Xgp6qnl3DEhmyFO5e4RVv5Jp9MlHXhxXgS4nXfjXGfKapmAJECxCNPl29mccMhToDOFeJIOEf8rSL8c4DjGHe/Q3EHh90LgEsn7Brhup6eQdjLadrNMkVRRnMPnVpDZDPH/MMD6AApBddTXCcRZVAEtG0QMj/NE841einp9qUKkYtiB6H8qi1zVouhgOnJ3gFTN0IQgHAJni3XDz5gOH3t9HPwemcEZDd1cHiWITkPV5r5w3d4HibLE5X9vrGFSjyKKCKoggWdrrMW2QoetqOD15SU3ho0OUcW+F2wBCGzWP4aOrZWR0OFs30UrSmGWRxtM0U7Wz3UHG/co98BIB0v8Mr4jZtmKKfqlBpgTiRRswfwz7IVxMerTYRUnfmKTmwOoMT0N/qnLrgtrCMeQ9Xtug3wAASGTA5wtQOkS9XOSnHVoM2I55ywQjZZrRtjy6HM/h56WJWAQ4NXX0XM0cgUYKx5frxdyI58vrznXyaUkyOh0ifsWnbpsGcwn4GY9xZ5P/3CuhONinQw8zalNaUc+hWfHazjlZ31sPOZaUrRCwKj8i3c8Ow78NlAYv5fl5WcpQ7bYuV47MwIzyjmdUnwm5wuI2y7b4bO98Mfx+zh+e59FzCUaL3otNrZQzpED/iQUI/qQHhSz9Hh9tqg/eptogKXXPQ1nc4a9KWBUCA7So7Re24FKPE0YEQH4tIinTnHB10rGtVorQdh5ohTW750urHprGMI0oyBN4PxQ6GsJw2EttvYZlRkhDfIOA431WiqOSJ31Z2dvNl1225wvtah5gM9V/iv/zmhpKBA3+oLYJ6KCqnACjTB845pec2WG0DDBFBjCeXq4JhCYHqX1mh6BWNYTDWWFalxT81opgEwQCTriJC2KxfhMo9Rro4QiNVIsMnIAIBrGQsSNaI8aWihYXikiaiIgCIn5XPnGL8p4qRcV+LzFu+ZcjsU7n5Eb/3t82A+zV5gNcwKWJY3Z/4MJwWKyaq6GDPdCAj+f86DnH2N4dMhyHNZ9Hw18OGwx3mLu4HMajcjnuuNzF6/LbefwOeDczfJcdwAEuyIiHZEpZtkDbEwacaGFDlFvMQIa2EBE9jsj5KIetVGI193yNfu8QGmw2dUxkc9rNv9fDDc6PeKdAJIgojA9bQBSLIHymgYVBn/UzfVGAproHepPCAN7NTbx+uB0yvn66Wv9G51bJG3iulEti8G9ZhvwfPXa3ogycy0+G4XTM7wagSLMBCgWUXsHbBJPF45EDeQ4Z89rYsOhGIa2KquD1XstrNkhGimo4ZAzZlLEPUKmxPsNZwC/7Ht/dYD5JlXM9jRXuceviipGO7N2PGqyIeFcJBjcs4aHYx+94WwdLzG2LPR0GRjnGjDawP3o2KqhbrcE4IBgqzseB2tVtXhv4NGhnv478v0FIRsWeefstCIJNkO+0iHX0SzS1zV1F4cm+d5mrX/sQyQ5UdQMzz01U+cDfIdjLOZ4dK+v9Av21ghUCvJdkgF2EqXAZVMtheB4NERqaFHFfRzTua3CCP2T/ZDXsZijacybuF3h63Z1iufzIFTEzA6I5/4VWzyW0Sfg1eYv59VzGYqPZ+JZl+Gx3//R/VIXLiMwINmxBdOYuqx9PssSQ5xX0GvZwrzPfJYVjJqBfBeYcm/KwV8b93L59YcnFPlsO34Aqc/X9EeJfz9HXZ+Pz6J1eb0F9fwaAMuFkt+Z/5pa5EnP4Hn+Pxvkr0yc4cN7/Py065g+rsmwfSSdHSEzYmdcR+P2rY3Le419kT/Fmv24rP44fmfHbwaLVQounNO+kIIAbKZDuhfMxMEjTZPzODw90uvrgA8bZd3o/Btzd/u5YciGGcMNNYkVgDnEiFKoDifhmMpi23e0o6W3pB1skv2ys4eXakGpBS+3G+6Pu3uEAQjro8JLOsbA2Wio3IQsrHEwWqTYtlfWuvjgDEjD2gx43B9obeDL11fc9oLomVeK4iY7Hnd6ZvZtQ6lM17OTBjnPK24AFNRaUCsgDuqytcICYvZafOwAwGfYbxX/2//6g5PCGL786U80NDFwnHe0di7P1TEG0/O2omjWcfQH9n1nrSIMrX+HLamxEvJBo04mCCk85pfELVPwHkfH6G8wsI4P4myPXXB/DGAA1cGdKNk7WTc68Pb2jtYPdNsgUtBBmnqBojWCom6zdrNWoA2yMpKiejLsrRGGMQYejxOiim3bWdvnzgpxoMGIz1IzNXwNh2E9IkqGJU0vUl5diU58DjNPLbYldcPXszpRTHT7LIXROtJbuIe6AFudZBWx7sRoONYiaIORa0bCOo7D0khibULJseX+FzjIpjUQKZTN2WGLzIiVqOHldsOXL19gZvjll59RtJBRstvcvz4/sy2OYSusbfz29QYRwfv9wPFo3j6kAahsTj5O3Pbqdn4HzPtCWoAK4DgajrMnb8YlJTAMa0NGDgPsp8FiIX+mkwOiMFEa7U7mtMqAtVF1sItuRadBP2+PL6+vaeSHR5wXmqk+IpitPPz/iFBhkZ0hD3vzWmrQSCxVnGWX0eh29hyzGbJZu6qiHWRELYXAi0OiUZ6GvwSZ1JT54ZSItgP80CNUyaaNjFKO7gDBZU6kNBLAOwlU6p/F2ADA5upsjQJ1MGB0FqgyQyOxm00Qy7UcEexp3I5B9m4tcZ54fWiZ85w6rtBxGGybQ1Ku0CfDKFUfHb111G1LnVgQPShJLtTHwNEMjzbSWcL31oBC+djOhu/3O0qt+MufvrJUwVPz394fuD9IULb/ZYcqm9BzfoH724EOw+vrDXVTtHEC7YRIRR8N39/eICL493/7C9fNeTrZ0IH3+wOlVvzw7Qtr8DsZTVEk20ppiTwMHsGEqaporWPbKk1fN+QjMmfDcD8f6GNgd4drOzvMWuDkxQkKWO/O+Mz9W8z7trjD97bvlCPgfgfYkoqOyFkrTlAdO3lx4oSzw2Xd6OZAx6N7RoDsfQ+WNXQFSetnl0herr2PRzptIsPCZeoaubpc15GPxOaN42k8IccB8UShkfID/s5k3mJxzixWWoJh+/B7jKUlhx/DLHkkLCij12svQ56OxfhwmcMn0LcC0s/mk2J6OiWipjwc8/m86fR7qq1cjtWZfZ1eB3u2zi2W9TOduDFNYYddnzfs10VtpIdgRtFjrUZ2APLaK1BGzhuW3/jTY9Em/lyWYFDCUeLfKlryedIIie8ugNRgM1Ucbm+CmtOtH97H38EaSOC6WEf6x/F7Ov4lghvkfrfYbek5CS9OGTo3C5B1A6reAHkYCSuyVunXPXE0aP00rD6NBWCm3SAIMhEK27Fcx7376RGjQdq9ViO81KpePyNsnT2cvECLpnH0bAhCZNbBCdIgTxpuY60IxtLA28FC1AOKeiTA6bG1FK9PImvkbR/oMlC1ImpcAgSqN9iOMWx1wxYEOfI+J8/Hp6LY9xeM7u02WoM5e96+VQdGA7c9CHMMAyeGNdSyY7vtOB7diRWiBqoDA/j27RuYAdwB/DcAy/Q61qC4UFFj9NZfcnif6PUO4E+4k3353NMcyw4mMGGqKDQieX49mYbgLJ4H6wtF0EbzNeNAk+YpWut4e39nCq/JJExqnP8wcvrj4HPsCpWGWshKmlGn8ALLFJeAJAjNtQM426ob1a4ALAiaQoAvf0sCD1myIyUNakikQZfYqW5MFNSwbVz2F3hksRbgZGuU4eOH6pJC6CQ5ydRLeaBOxY94VEyDo3uqedWIuBtqqUGi6JHeSEWekYUECTLT+awrRmtOauKZeULVMwmfBkQGtm3jNaw7AUdhbVZEPCwiI4LROoYWrktVyFoo60q0KBl2+QbZE5Cb2DLlMUil1OtbzSJqzZ+LFDICi3k6u2LzvnMhydZWDnHUTBkONmXeQ0UwqhNwhaHqGRC8hhsAShA56obWWz5T1R1tNNTCd2ijJ+kEsESKRHHq4WCR8u84DgAEdsWbwIdwYfSn0yCXqG+dZEHTmRf1b/AM64o+DGI9HSytNzeYR1gUBAZFGX2FoBQDRHGeLb8nucZLOusILqeBqYsuW6OncJAQxaJj+GK2KbdX9mwzkvL0xSkWc5ztoSz0m2QKuIrQyHTng4Ep/Ga+Z4fvgz5Yd4rIwAjjVxH9X6Uqxmgw78UkSjKyMPKiZQ6BdIViAbswSCkYpzu03Em5rkuDd2ZM3WVMMV/2umGWhWSkxj6CpJi/mQIf5gPT5PvoTvwlef1uTL++bTUd0vE+ztaAILDzNdPbwO32mmu5j35xlnLMYbAPGCbQjP0URzoysu2KiwddfgghPCbLcayNqMFfoU5mOy3nrkcCurwGZXvKfTNfpoILPAsAEfN9AV/IZ8yU2MXRFNe19VrXQeX7fD43sj8Mect5jAEsLcx8ghNoYXkvMLuAmc8AxAewnbrM5+yCXz8797M44T8HKp8CyQWwrff/zCGQzgPAs8fCnl6uuwAwPF3jMn0yT7+MzcLKiAutY47o9/N7XdYrpp0hT2vjCoTXGePP4cQWuPNlGCBjOjhk+c4KOkXx/2f+/zj+Z47fDBb74qmRou4tDEYyZEpOj1QsT7BiUEWAISReBHIdDxuMPrhxH4ZPGFsQcZap6V0LAR4RvNYaFAbNBe2efw1PeEd4d4OVDIBH78iqBu+PVmsl01thTdIwBwEwbPsO652kKS64tRD0YCsZtRQbJAJxAaVFUaWgavQf7J5eZmgne4OpKm4vLziONxwPpBERhryIYt83dBtoR4cq8LorrCoNmt7xeLzBTPC437HvVPp1o4H30893nxvO799/+jvEU9mKKs73geN8AHinQlHBVukF3qqmQCz6cEZIQzfgOIA+gHYMnGZ49BNoZBmMWjprLi3E0IzGpBZ6mgOgPx6c/82ZBqkQFe8HPcujc+GUUrJ1wOjsxVWLJgtAtBfh/I3FgCQ7oDEYCbNZWwkjs+sw1sWdjcqUETAyzUYj7Fi4YTB+fzvx83cD8E5gUSq26hEJB12m8CgUx9Kj9sRT8kQNZepg7rXRUUXRhD3kejeUukHBaBCAgC1gaqW54W4TSEMgxeM0w9lrzQGMRHSbz3KMjm7RI614ndNaQwJ+Z8zogQAYo0DKVB9i4a0fHvkEsna5dzR58DsC9lYTdQNyRiHS0BaFmO9bQfY7pUEboFHI9qmKYYeTecD3ckHZKsqm6B2oqigyGIF0uVB3Zg+UuqEO9vAczjZZPLU2UhmLK7burS3KVhFWMZ1avubhzcIRRr3XlXaugH3bmLVQFEWZKQAzoDeoGPbtK8IDpoV1mGc7uV98D7Cet3i2AtdyLTuN7tbcIedybmc3rK28co137tlqlemyQ4CyAVvHtlf0NlAe7izRin339ew1K2TbVDQAipL9BLkgHCy7ddAGa4b7IGOwCuuQewfE1J0/bFUTmRTcW+qsmSQrO84T1gwvLzfs24b7+3dAxev8WNsmEs4o1wvjZLQygVzUEC/WltIh1Hpze5iybXQClBJ4AJYG0f3RUEtFKRsdDk6kEs8yFGDmBds4MIJGo7KPjjLYgB5w0hixXLNaABRDVwJQiGKrEdFn1D8dNCbUdSgoZcfRu+u+7vv2hfLQDVMpija6M/vy/2jD0xF9MDlXw8lymLGi0JPrbcAzQIRZGlYKztYgw1tkiRuACUZm6rOZZY9ZUYEaU0jrLjiOhre3ByCF71Lp0DvPgT4EpWyZaBCg3QDcPAop7uT75yH7AAAgAElEQVR9dLJ+d9Dw6INMtCKCInWCqKj7Fcn+iwHyz9Gx+Tz0GLsvGVWBiYPp4b1xow/mWieXC8ztmahZnirkYqjPnozGPT9stjFyW8o9q5gCGVD35gVojNTaCTrcnDebLR5s/m6NiAFC1rEnnHFJ8UwHuJcqQObY7VpnHo5NW+ZhvaZAcjhrC5RLxFWu0bk1onjhL4jzYk59L8OiPlufnpU4Nvddkoqt2Wkkagrn3AcgHO9hBXn5sUcjVUgqhSAakw/j8Bm5ADDI5N3lWCgvYUC2eMpvLpFP/z/6SxumY6W7F4d+A9exxnFlr1zh+s55ziih+DMwKXuymy9PELZCvgM/D86Y6v1vj9Ny/MxWEQAdfxy/v+NfY0OFL7dBf+OwuVcoKCzBXPg4YiWTiIALKBZUbIbFOTLv8eQHSa/GIjAAJLtkKKHZZ4be1IuQWoUqwjl03bhR2wO/rqi613D2FFMPuxdveBz3NGd7XZ8nFNEkJpD0wMRchKCMhuXhIZxz4kBZC6rZZGEsiiEesRUCmz6ExCHVAbWRlGGdr2g4LiIY7vnrPSKW9GTFz+cpCLbRLoazOWEPFO/j7s/HqN6PP/5EwUI3FaMybjiuaSaRmpDPuQjRVdkMY3uBUrx+RqZgLA4sWYejiHo0LWzEDQdrcEFvznwoYjN1dbmnxVw7ULE20/pUwtsd4JPnq3sJcx3mj+aG07qKr0kjdIY8KWtfm7EeVhnKNCi40uf54aHnT5KKT+DMig6yxXw7+HvgGjSEx284aJ7EJWHgzLeVhlr3e8WdBxAZBuueVh++5UYDgsk1HL2xt8yzDdKzGQy8sW7CUPJXEP4EM7L2qoKRM1OO24x9OZ3Uw0ZH04pgUBTfP+0kEKfTq6eTZjX0YvYv70omQI5NGoYggUOMk8DI0Ekk5ZE+G4bHMVBLQ902FBU6SmSgg06k0Z0pVoF937jWwlAvxZepog8+a28HIGzKLipkijVgSERsB4YopPBeNpgNIACkKkznHpJ91hoOj/aUqugDGN6I2RwMidEkIFGUG1sOjksVOoe0xgqFoaFIgRidhB0jQQUJrdzQWfrSFhWMqp5iP8FrqRWigjIkNm8ay9orhngaq3gtKkZGGmVuuTQQMwuh0pllNmVf1H32Po3c1VDr7HXgWbCUibKsoee9moZZ7C8uHgLIYaljLumIsHScUZ/m1kskoqpONLN6/WPdMtNlWAFQEc61aIk1bLBGdEy5vB4X2ey6LjKHJlAwzM3AczOFNOS9O97SyA/5ZpbbKvZ3oyBDLylZEaRk8O/11jybgDKieUuUAJWxNNSvSSAzbfyL3sGsp1uGw/VhPt/8w3WzXKcpDKInFDGBQi4Dpirn+nq6xMX4wZQxgPM9hAy2y/c+Hrb8LZ+ecbnPP/t9Ljb9+PtYMxfRaPkCVhtglaAfQCKWtYapQ9N+W37/yeDyn5ZjejpTnqOQ8xqxhm2ZtjV18uMcz0/W9WSfrYkntfHhOhbKWnKeY/i/dt9URU+LyJ7m4vkKn8VYsczJtBPiq3J5l8/X+7Bcl0/Tf7HIIi7pX52MP47fwfHbwSJmsW14Xy8NxMF1FFTeY1yXI3sdGszYYoJ50rJs3AjpLwtV6AGKovxMQwk2VaHBEMJdwyL2g8owH2D5fC7naLrN8bN/1nBvYfFUsQAq8d1oQFzr5tFBNzgsUuQWi9bv33rzNgtOyKJMn4Snx8LgbJgljfXh0bGIPpbK2qHWD35PWJum4HxAR6bgyZAEvq2Z06Mbhka6Iw2g8KzONDqCrG4NMKYTFjdA4ameEXE5nEhg2yrqtuGn//rRo4UCerwJsnqf7UiweBsN9KCVUjyNky1AwqMYRt2+bW44eeqtENSPMXCeB3QrKMrI3n7bUnKZU8+31nEeJ1n2inr/MmW0MZZHAoECA/D9fkAL6/novaanf3VWyBAUnfU0/eAzmGkaASlEL0rpWXDzz0jrldAZELDucKY/R0Px9uQ0CcNUddZjDU8BZPpyViCmsUqdNKNQkRYivjbCnb+mxIrNlBOU4kQSNB5UmVrWzRBptTE2eBQ7DRzxTARXxvFuzQx7sBz2SLVEdLeYz+bv9vv37w4yBJCdntxhaMIaMYDkFyInrAkjWiDouj/uUGU2RNLsD5C5TaYRE9GhMNpFZHr+bVk7gw6b6SChEd5NUW8bVJkyCXR8v7975G7H7bZh+/oFEMXZG97udxyPB+fiVvHy8u9Q7ewLCG/zIwDAqFhrJx7HA1UVtz9/pSfcvcun97V8tAdEC8q2Y9s29JNgsahAt41Ro07m6H2jPOrWgeNkD9O9onegmcI7D3EIY0BtMI0XYE21FoxzoOwVx3GgmHrYjJ52rg1GtgDDVqpHgR5c8VLcs+4RNSGjbimatZHqAFZFMYLsx9NWVQXQgjEiBU7d6Is6RLavMKOjYNu8trObR30rzvPEcQ7UpU1S3cgaHBkhqa+GYYzmZFkl9eTq4Mz1Mlc0Iw+rHDDKLPYVpR49R6fDTAsMzGwBLFmEDdQTI3QEPDNAGTGI2tYwupmpQHmi3hYm3Do2Oqs7HSVd9r3QEWAI0DT3q8F1tOtKs3h34Yyb+pWtNQw2AK3BCo3pwMp7+7O1gVMMbfO+jzKdq2MM9GFo7cza81I1sxQm4LMJGnK8874zNZQOjeG627BGmuCMuYuRHjJT5s8W4490w8v75TpQXxuUeYoEnGljAGbLRXHVGAGCPhjbzwB/KjcXxZ/UGn52g+W4ALkECvGFDygsidAmfgmAfNVXtoDsiPyt94xo1vxwgkaIQJ+e/xlwr/cKOZ3/Bt8b/zk+TMU0IJ5B1Sc38fvo6n0AljX1dOWPN1tsj/mMsnx3xhh9UJ9d88NY53Msvhp+X5C1lh/Glen67sRze188SrqO8zK/ecdpJ2emkOebR+ubOD4jkfvj+P0cvxksBqBaX21FKJHVaxT/+bIRFoi3dmIY6xIACnmYs7lFEZJfg60jyPamOlMdCEAdOIritA45W0Y4tzqVEeMrPvbCa5YajXmZ7iF94PbyshQRM/00vKzWLY1JWc7JwwluVCtKKWgNMOvebFsx3MIVZRocxFtsDJLkaCmsVRkD7Thc0QXxTChgTaOsHSce93fUTfH6ZfPaFiBS0frRUbTg5bZDdWC8s96PgJPGO/vBhWKfRAvNjfUg4Ailv3laJwGrJBg0ozGvVbA5QCt1zygfh0wDe9igcVkU1YUDyRccrDog3sJwrgXHeUIgNAhp6yVwA4BaN5+rgVIqSQ96BwbT88zrq0opGI3phez7ZajFIxi6CNIomDASrtTK9RcOgwGD9SDj4fdqKShKpTnGQAsmMN8lw2sPIWD60nLEOhrhADEwpdibfIzecZz036vXH7Khe14g75s/qqCiuJMlotzugNCKoMY3VxihCG47wThBWThsZo/Cgan8gsIiHEPDjJEMAKPRmN3dCCRjJKO4t+2Wjg9OCZ8x5Adp+rmmojY40pRbO9N4hivmbSPhyA/fvqJ63V2A1NVmCtDH+jkBjJ0AqeA5me/v7zhHgziTrKjSueL/dRsoXs+pIP16a22mntlMQ+tunKszs44xcL8/uO687up+f4eBbKdvP3+H/sIX+MMPX/G//x//p0fQmI7248/fAeOevt12zlszvD9O/L//+Z++l8LobviP//wPfP3yFX/9619hJvi//u//hnjLHQOdNbfbjh++fcEP315xPxv+6//5D69hfkBLwe224fZyw9fXF5gajnaA6frAbdtRteLeThQR1EJgb0rHlQUoeylo5zvKyw4tO5jebABeMVrD6MgoWG8DpRYcx07njxbUuiXRUe9MQWbmgOLrt68QURLJGAkialEUBaz3LIVQB6jTEQYcx8PZbukY/PbyNZlMo5XC435ArOPr6wuin2ofQK03tPbGVF8Ao4dzUrAX30PKaKxFz13E+q7JVHo/Hilw2DqpwFpDHwNVFa8eSW5ny1Rma4LzZC0p+kA7Gvpto+PMnZ+jN7ST7Z/6vqOoklAHguP7LxjtwLZtjGL7Wm3o7lRjj9kAfer7NuRq72zToi+b1xU6gBKS/pyNdYfcP+KpvA2Aob0LWjvR+8BWK1QUDR3H0aCd7aWKh+Nba+jGSK2ANfvDgF/us5RiK1u+q+61jjACfTNhVNg3v3hNOOgy8jS74XWv09A1Yz05maSXmroAWDJr8+AOsxldhLvYZgZP/v1kSCtmenrIuciqMSDJvsLegl3++vyYXrRcj/mCnr58zY74CF4C7KahJwtQsevfa6YWk3kmyBKVi7z/7AHmHA0Ee/aMNq/OBrmMU8KwXK5BB96VUyIzdD655zx3JKidUMdgS1baYs1e1svluqtuBjJLbAhTMZNDYwW9y3fTASCJ19IOA2QS3i0j5FfG5XN+FmN9nvRnsA8Maz6e2a4pghPZNUDVZeTzPF2PdLTkXTywNBYHSJbPrLjhjzTU3+PxLxDceIoi6JFMz9iyqfNcrHLFoAXYbjtrbU42Fy5B/46lgDc3vueYD6bNCKKv07h6aD0lbxqGTvDQe9bj2dLfpbc2hQsIgMNwjDS4SJGNHHNRhXj9BrDUJmCm/QEh1PzBJSJ3Mze/KHuIDRsJZuL3pShGKct1phIabgBLqaz/sQG0ATManhFtGBg4j4aiwNhiYw+EVzE8w5FCGXOoXreT5DEROemWRBLiAu5SlyEG9KXZuxv3kBkZHGZeYwMydo4JfC5eKZle+PTK+jwCNEJE3JAXuLEXtTkUxJv3+GKaE9OP0tsNTKHlc7wSIKUXzJHRyJYgkgKzD2NqH1x4+3htMM2Oe0NyzfAci9Pjj9wV8VdGPkKJ+BoKQ1Qkqn+R953jjt5+0+vn07n0evM/HUFdPZRM/QtmR8gEn+kpFWEPy8U9yWl3EhqZfcwY+S6A1xmH4QOzzFblG4BH/ZCGAe8XBuMJmF+7RKZC9xRCGgW9DzfgQv54Kq3XCzOCN2WV2awdWvds1DxFDS8E0KYQNI+icl4i3f0SNRL3gFs4jSQB7lSElpFAMxKu7PsOgOzStXpqjv/+2w/fXI4Be91xHAdm3ayzdAp7LG777jJIse0bAMPb9+9s4H7Q6bBtgr1WjOGEOlrxfr/jPB943Flzdp4NtVZs2w1Qwf1xJnDZ95pOOxHF/TD88v4L7ueB15cX/PD1FdFb9+df3lnrt214ve1og1kD339+Rx+dUdSX6mu2oPWBx/sdGILXr+yzx7kBWmPUsZSQC54zq+rM1SceZyMxitd71lrx9csXbFtFbw2P+x2nE+UwOlmw33YUJ4DpfeCX7wfO40wdU2tBLRvrc8WXJGgs3e8PbNvGzAsnR4uj1smyGfs6GCf3raJWr/WVmbqZ61OV5qgIbi837C8kdApZTUdHg0Dx+vriBFpc56MP9lgcxjpPLbNOywzn4b2DIdjqhlII6Fs7E1+EXg/yrd4a9330jVU67UQUow+cbqpSjxQni2su+yqqCLQAKjXlaPRspPMFvvdmZoI4SBtmsDZcVwN0z0hMKwBDtw6DTGcc/EXJ/Oya2jgzluIonhWRpHf+7kL3ZpLn4nhKWYops3G5x2L5yJQRFwAZoj9kvwDp1hawENE+ApLPjPNMdfzsl3HO4rxcPg2ePH+MBQivh/yDC+etl3o//8RkPu8asb2OYHm2nKdrOupnUdB83+vzBfBdPl8B5tqzMMHn8oxTtS3RNom6Plw+m8/9ZMP82vws1yDo/Ji+G7NDZ3Cs56lvaT5cnQfxzvL8BQhOcLuuoznjE4QuM7mu8WXdpl0bY5e40sdnHjbbpoUtBFu4SS5jg2eU/QEUf6/Hb2+dUbf0pm9bzaLyiO7QUy/0CIp4hMIA9XQXZZQjaooi2gSAJAuI5W5poMON0VoLto33P44TUSPHI1I4PP0N5m0NNk+3arkgLfYiaExmuqd7TvkbelPhRlhEDzMdzY1ptmtgOlNrHRC2BthvXzBax/3+cI9t1Buqp9UJ6kaDKa611YriRf3Da5BgBqii7pUe4ltFRlcHMBk0fS6kQHVD6x3n2bxNRDjPeJ8gyzlbm89hiiZzvsXZ4aJp7GRujb5es05QlQZX7x3bvjlA9GeskW5b3KCXBNPxnpn1OoVnCjMHGADfwW3f3BtbMAbHToPLxw1G+Uh4wmfsFsY0OSxpIDVoEWxOXw+R7KklboCZGAL+rIpLhb3k6HXm0VtH7ydeXpi6ap6K3BrJLFRCDVjK+nzWVDTzMxFLD20me/p6ndHAEOZIozSMjvydClRG3n/0Aest07mnSTNBb4B2rRV73dK4O9rJveHj/eGHr4iWDz/99AtrI93oen25oVbS+7cxMHqYICQMkRIZBJMZsW6bX5/j0aKwky1tUODvbiDYi7XUTNXNTR0OgW5s5g7D9+9vaM0QLKixwLat4N//8g0GpieHMqbxHdFwEKCHQWe+hsI4NKBqnfpcNSO5RWevzpAbwcKbKcaiqFuBlpJjUE/zuRVJ2bNvBYqKePUWLB9FYTLIUKwVdfNeikVJ0mWCn79/hw3Dt29bptwZFAOKdpwoynsfZ4cJiaOO0QmQSgFU0RFgBZBSARP814//jfNxoJSK3t6xbzfstw0//fwL/vZfP2JA8PJyw/ttw1//+hW//PzA3/72E/rouG07bq87vn59gVnH29sdP/74dxQt+Ev/E15fb+ij4/3tHT/+/TtKEXz9+gXfvn1N2aVacNzf8f39Hfejcay+j97vd4wh+PbtG97f3vH9l3d3KHi0zwZebjv+8m//BhHDf/7Hf+M42yxDGANb3fBvf/kzbi87rD9QywaI4sfvP+OXX77jT3/5axpMBnHA01GXcohI2wrDUJzkKA1MmezZ+7Y7Uy3lz1YLBIqW8kKXaypupfo7Gcn0SdkgeL3tCZoEYFTQaylfXnbcXm/Ubb7Xot+qYGBXgumZJmoORoQtkTYSSdXYz66HpDwlvxlLF9T1XLQAAYDH/eC3R3PdwHcj5qRX4UwyeIRi1vEP1FTgo5PwKhrHh2PLIRxLU/y/KL2OeQrnz4Cn7o4ZxSKxjyYYn6DC3+uShqqL0T8x4DWtbv13pOOShyxkS1nO9cnzUoDVmble6xLB+kdYzp87aiyng33aBCHbDGvN5vN1ZiAgh/gM3uLZcljhLI57IO/xa6mZtBmXetH1OQOcPAH++PclgviEY0IGT2DOX6rrfi6vSD3GrNU3eJ0wJir/4IS4PkPcbx3bDBhIrr1QwPL03XByA4aPQcF1Pdhlrq+fG224y9qI97cEOnyagtE7nkslCH2WNWGevRLPfQG/KyD9CKC53439hhe5on5u6Ns/jt/f8S+1zoioE6IoWzzVAGR/pGE+DU8zI+OegB5OePqPJtE2gCnszdm4JIWbG9rAk5dj9dhFykgI8mn8Rj3B9BxGTyVv1J2GhmTaKzCfa0bfNNNR48hoGgCCVxq6+7ajyQl53OPMOYe4XjMELVxxkrfQ4HSBCAMiUqF4nuYlp+cM3qi6JJlNCuAELMthRuHj70ngjGQOEELRRHpbPG8IXEY7413B31EIwY9iTHw+ETEyQ943cY5/TVU9GjS/G6mgq9cqBA9f60x3oTDy2jG/zxx7rEuk4ObMWtZhppMDPYVo1AL1tcGQr1ezcvFUmk9B78NJQ9w7HWslraL5fv1yqSgARTc+bQC84T+nNzme19a9skxkrBHfP/PdL9fwn6WUXCck8ph1OvlAvgZKKWTK1VC+c4Wrt3oBgPForijjmT8xfkQy0hyESmYRHfR5Uc10cKaGrs8ce1dYayVL+bzNtCQan+4wsQAGK/HGk1KXxdC3+VbW5R01vPk8KZPmuQnk/QPJz5F78Nmnn+fAMuqy1r/yVdPRwkgmEC0ycuuaoY2B3jr2pgj+l+EEWDF/YYjzHY5cHCHvUlaJAlD0Mch+KQIpvE4f7A/4OI/AIGh9QM8TA8DjPB3U8Nzz7KwzOxuOx5EOhePsuL0Ax3Hi8fC2GWbeby+iwS7TETXdbP8SBl98zn0h0zmowprjwWg3I7XA2U46w1wPDPN+iNYhsk+D3bxFxrimuc21HCuE/8d+T5POqeRZo94T+IkzsYZe4bozCKYMn2lmfLnD183VYJ0yF8t6nRpx/j9SX2IayEadG3McxnrU6YaRHQ4q5Pd8jdrkKpAw6jHLEKZPLy7Aa/URsmlGWmMWs6XJqhz81hJCzOZ7jwvEfph7GinHQ++AryHunHN/vdOc2zSE13F8ODONgWWsa50qB5J2j616y+YjrAL1evXny1+F0odfxi0ln0EcIK3X/xCFleWE9aX82hhwOWV9VJ8SzvfH2Yp1hQsI4RBiDT3dWFar4vl2Uy/n9ZebXqK8l1MjU8aeBjmjop89rT1de/F2zLOWdZP64XncCchmFs56ztWyiH/9yiKJ0crzuOe/0zmckxBrdGb4icjirLjqpzmGz+//4X5AMqxSP8wsgd4Hnhum/HH8fo7fTnDjlkr0GJo1UST5yN5eEoyU/F7vTHN6e3tDNJB/eblRWXgqWvSfil5gwwv8VRgVCUNRBB458h6FwhqH6dFFLnyA9ZBhzLC+LDx5ljWIpRRYpJ+p9+aqmukpo3W8vLxgc89x33am/3j0bgzxfm6MVh7lQO8tyX8W7JXbKyJj0bTaPNWnN0ZqLXidFZl6GYZp3QqGt6MwYxP5PoAdzjwa6bMuWGPOw2AjEA+9SeO+gGlJETEKJVu8JUj3vmui1VsxuEBxhRz57VHLGMbA8wISQTL9TQ8tgbqJM8MK03JZM8B0r/u7eRqrU99L1Ey6ZxkcR++sG3zWbtG3jGamk4zITEcxGEphn7rRB5p73yNSpcIWJps/WzbMHgW91ayRbVidCZOcyWBoo08wAkwCmyxQEDcCh3uf4WmKBbfbDpjh+/2xpP3aNMYiOitTAdCQc7JSN5ZSly23HMOwldknrh1M3zybk3iEsSoCGSSRyt6ZtHgceLCmdK/spdhPNgsPGZHpUDbXMoaRgt+4Vw0O4FTZCseVFh0mNK6710WKROqop5HqQHXjWgWoO734YxD4nR2eDk9mzt7ZbD483qVWdGNUk9kQdGykg8jHk8arzLTWFcnx0Tx1XJiK2D0dUWymFLNmyRZD1vx75r1TazpEdItK0ZFrX0Tw5etLvqNtq6i1ojvhlg1FB9vmiFvMnncBxQnY7vu9Y6BhWMFWi2cusBWRgsCkeBptaw0iA/utooNkRsMaHsdA6yf22+6GIcd4nKdno7hTztOzzQYejwfONrDtN4RlOYbhcTzQrePLly+easy+iiIl215M9miFGPeseO8/9Zq4onRqHO6tr7ViKwXqc2ye1hzOKRgA722rajCda8xMIKa4bS8utyaAH52tjEZfjB5xAjjAsyeGz+kiFF1XHo+H60xNvaCFGRuqdYKg0KvO2itp4DJrgeuADK6rKfkh4uHz0Q1ABBkXY9zgHE8ApHukww3ZMRbGWER6rLe/iX0rUetEhwDgTLEgq6+FQDJDbyeC8C15CeC19VEr77pw9kgOnbqazJbjNAhUXF+k4y/6zs6HpOyYoI3P5xORr8kypXKu3xAHi0HuOnUl8on7jgtb7PydgVwBMcY03i1AlOSzxZjWdxXPm7LcMOV/yir/2eXUBGWL8zQ+j3lALLmY4Q8YyPfECignUMo/RdKBsPziCiLnbM5MJ4k+3XO86TC3mJfpKI5jLA6U1UEHTGe/lnIpRYr0zNnrO5z5Ara/GemcWscawGolIbJPIsG/FoWcn30EmD4KXB7gw+/552pTyuVzu5yZVw1SH1vA6bIG4o5R053OJt8DQVAz3c/L+vEjegvL8v5U2HYJmGVcBrYFuzpT/jh+T8e/FlmMDeD/KX+RG3/19udG9GNG6sSFrm/s+J6Q8U2UxkHJ2osBrRXRXy7zur0XUlkWakYabTZQj2gY3LiAF5dvG/Olo2fM6N29MhGN9FRHDK//YnrLLorj/nCiHr+20Th4PA4vWg8FMaOAMRvRQmOMwSblGptFcT4eaQirCqpUJ0CIlM/OTRc9cxbFw2s7MUi8o8GebwEcL+8xe+0E7bsLwbhaGsXzZ1Vkio6qotk5a+bMjdkUICPnPgwbGwEuBU4Dm4qgpNHQ0cds5dH7wHGcaSCNUqZSxvTG1W1DH8PTYC0NMGAaK2wA742aF9me0VQA59nQR6cTwAbkrGlcRN5KEbIyAoAUxf1xJhAS3xOhJtW9iR0CaLZ1z0ijAUuWi0dF/P0JqMB3B+0YXruGiNF+olBk3pNrJAR0amm/F3+MHnARWSy1EigNTSWRRooGk2z1bDed9VfibKdFgCBpcCPcAjn7s7Lh+KyFehxkLs1+fm0qkfNs2LcKG0Ddd9hxwsYDQdwzjT+OJ+qCDQOM0ERfKN83xtToWi0dDKVWFCm4H41tNIaDPTe6BNN5lPYh5EJewbTaqHWN+ll/QxKqnEQprZ348uUVrXVvYzMjZsd54qXcmMkwGI3beFEHgQMK1lttWtHcGff69QYtBbWSsorp3STC6X1AnHBHq6J0QIqhjwNjRFq/QJVJhlGrWURh/YSVCqgbsRLRzoJo9SASadpcjyEfuOcKRJqn3SN/P4myouUB9z+JMaKmm+zIwzrJUYoA1rNeWcVQpipZ5BudD8MiSo0knNESL8YAZ+xmhoD5c0W9vDnZl7dMEgVkRr/JE8ayC1tAYDor3Q4TdUCbzsGYn2CrLtxz8Fpc6QiCUlEsjOFME11TXUfrgCJTYKe9Go6IMGTJGwBbyKpcTsXIh9m1ybtLoIxCB+PsqusXvTKM/WJjbJFyzZpHdTCigDM0cw5Df865G54ZE7CM5DXAVmbKZjxmsJZGfWbuZ8yIXYBQL7z2nSt0CC3ZQuk2NK7/VS7H7yMSGPPjg77+/HwEcEFEuieQlFCvoZMxZcYEqf8AMPi11whyTqjN8a3gycZ67mqr+VP4PkiZ/xuBtf0AACAASURBVHzP9d/2fIrkHokbMsL3BBg/PIsscnV+xtT/qZsiGhnPHOP/cDyBxjVjZDnJp8+d2BLjV//+k2C5fC/2RQxWLmDx+V52mczlmgHqcV0X8fy/Ml15Br83MF/vvFY6CC+ycdqGczjmuiX0ODwddmD6TmYW05QZz/M+AwRrtPSjhbKs0nz+f/ykfxz/M8dvBotRM2Q2IB5Js2DqhMx1L6wPuT8eSw0ZzyHDqJPVwDJaabRaATjD4rLYxuhAD0OfBlwfHa09oFq8Po+e5KhjU/cY161ilx3yTkN2DEMRKtce9Rxg/d12u8GG4fXlBSJAG84CNxTvb+/oveP2+oVNoT2d6igEMQOSzKXn2XDbd+z7q/d/GtkTsPWGYQO77kAR9LPD1FB2CpuX1y943O+Ipqn9PPH2S8Pu7IX7vuNeHrgfD7zfB+q+Q4pAutdGioH9FkGCBvfARw+5WnaSbZihWQesY99e8fLyilKA72/fcTqD6LZVGrPNI0QSQLegH6cbxIVe9WHYdvXG4FRUhgUkmKCWiOgEmNMkETpbZ62XI7Bo8xGGSa2bE3DsePv+xrXhAs9s4NG7097TGAyvFuuRgCycF96/ewriVgqNXBuodeNCF0HpBb3F54panSXP6zXHGCABH0kl9o2N3Q2MLtsgUAFC8cRcTCNgympLpWuupMI73/sJGxq8L+7Zk0yfnPrI0lFgNre4uUHXzPeFeiuZSczmyoMGsYCG++PxcMZHvm8tBC7oA3/78b/d6GDDay2b15MBb2/veDzuUAhrghE1oSNJReAG/HbbUMuGx2OyAoeDIOWDzRYBAUDqVqGFazMBKAyjC8SQ9cCbvgJlYAxGIhUVVRWCgtYaWmMTeusDZzsBdGfdjFpiAtGRrzHmeLBOOYxir/Ego/OscY4o/XTcGLRW/OXf/oz7/R3f3+4E1vDog8u+sm8kAGkNpWyopaKNjooNozGCZ9sOWMXj8QAEqGXzJvbw/Vvx9euf8XJ7wff7Ha9fvqIN7gOFovUDgpsTUnGNFI90TiAjKFuBikErZQgZLYFNBdYMKgVmBaMLxgl0Z+8VNchmGK3hfJyM9G1K8qjWcByC0SkbBUBVQWsHRmf9n42O19dvuO033B/vGNaw6ZayQQudDNHz1cCME4LLBkFHVUCl42wkQ6nbRrIcr7fmTiuopcIcbAjMe0cWFK3o5x2lbksZAGteITse73e0QWIgWqQVzsjGHnglrVpEWxgSPsEdD3SI/eUvf8Z5HDjPg+tc6dy4OdFPROlEgMdx0EHqDrOteiuMcYIRxXCkudHuepdAr6dcFdeX6Swyb7jtGQlM751EZHQGFBgGSt2gniYvrdODeNIBQoZzGtntbJk5E6RTzZ1AJM7BYtQzeg4VjIevC6EzghHL+V0apUsEL3SBcoyIbAOXgWMwgtkNCTrouKSzcowBhZK10rGIVE1wteILsys4iRpas47WTzgV2OIckmvED/P71MuuK416QUWyviu/s1r7T0eklU5cOZ0D671ij8Mdg2nEL2NZLfpJKjodw/zRn2t4e6AVsKXRP8d9iar53CWwXwGLOx2ivhYBMBP3BqHdjEytz5eOqUK2+5ArquQuGJ5ic5n7cCCHIz4ik0/lEhNw2fV5l8/jXuFsAIBovwQJEDVt2vjpCqqeUpbtnyWbSjoMLtfC+irHshaX9WDRw3qSAq6vapihN0BrlCqQ/Oo4hvMI+LwkZF9GtjzTApcXAM21I0BGsv84fp/HbweL3SNmQWtowNC1hsOjjmKXmpfwSIioL86ow5hG9FgWVlDPh4BjaQLTU8ZSnG9PHiNyvYw0dMjyGQJnxIXAhRu03rF5LZngYNfccVElGyfIstoB/HDbMLaCU+BRUKaNqQa9uRfvO2EaA1xshl1UsFX2BjuctllBO/Pbly/UvUd3AaP59/v9dIOy4OX1JetL2EeOz0ZDa8Aw2z0A5mlF5mldHWdvLmToGT97hwkbuRdPI2StUKRhTIXAXmxrvzxfH2O4h56MWIJQ2hHd43zXrWa9aGTPqwxEbZ8BTp6jTDGGp6W6wnh92dk3sTWXmerCz9dopNyk2DQM4h46LpT91OgQoDDtvWF3D/5x8tpbZWzwcRw4TkaiRdnuQDoNstENeno0ZDS24Y5WHUZ6kOGAQIenHMf6yjW21i1yvKwCjtQaJ5EyRpnY4Bzpvfcly0dVf3Kbho24k4bvEPmzDUuwIuK1smaAMyvO5sAGc2r77H0O0Eh0fBSGwdEADGRj8lAlbLHB1hbV92SAerbOKUmos3ptGZHwvqGY6W0EX3wWQ8esTzPY2XzPdpztxNnZg3Q4WN6UMN7ECRhU0FunI6lW1ELm296a72kl82gtnqbISP3b+8OJuyJ7QNJoUJhHjinAqBTpqAoP9OgEsIsZ6WRBAJTgcoBR7r1sCTyLsQVQGx1HI3ioteDxOKEqaM33oKfvI4CAdVgfGBB0r78rpXC/tAMdlfMIvhsDMnKFwr1lw9i2oAh7VgKolf0H+3hJQG1C5k1z4pY0pITtLzYteB8HhhmqtxcJsMJUXTqh4LqkQjJaxD3oUSWV6cgIIAEC4ObOzMguCOIXU7ZccR+Wfz9SEllXaGA2gr/WNLDVSWsKCiOBIV+HQaQvbxLsJ+nzH2uzlM3F1axJZPr1WAw/ZjB4fIwZDC4YRWtm1miMC+AaQ2TsiJejK+DpmOGE4vNEOjjHnvW+4a818QySkU6M0PUCOlHF38uwwXRxjNT5tTghlZgDN49aCLy2dqB3B3np4DKPNIfhahAHu5GJMdTcyLzW10VNsYTx7vWoEuDISZvCQM2oKqLFzoxYJtnHOk+A78WwV0LuhKyM71J+jT4WI3g4iJeU0atxPTwqlMk7Ij7WuA/oOLcwsVcgsFwsHO21JFCav7epa2wa7RNcXFCCbxXJFkppznvJQwJU1/0WY1udopgyL2tPExi6w8Tm/gE0U+JjXL3NPcG/PrKoh2Mr9uAKJONcAkw67ibR4YRUlGvrmppTNs+Ne8ZnknOx3I3vwAHiXGcLIs7XEZHkeCcxzwu8sqd3E1dJ/RjlMFNvjsFIfBFZbOoJ6XLvuPwInTLbeoTjeECrpBMhbD1RL6OQ1RDAZeTTUWGeyDPtMdrri+04ZE7qH8fv7vjtNYtjTFDi64StBHiEh2JgepSYFsKNuTbg7L1REPrXZ766IHquyJBUpqwl6BdhZ2EwwMFkbuoge3CDOJStG6iMOB0YrUFrQRDNBEhNw0DEm44DUQM2GmsRv355xb5V/Pi4A0JGu1o2HOcxDfRU0j5G99ApPD0PA8VYi1R39q4624miilMaDIywRLPl1rz2shber1ZAuisUCsTXlxvp6qv4szUHpxVdWFujAtZD+fge54mzd+zb5s8Nf8du1I4A+wbtSLp2KW5UBNGJKzUqPMl5ndGKyFs3ggxP8zDQ+BiD6cbiaWOtMXo5BlMRz/MEAPzlT3/K6CSBVkFxcNsHkcqaFpv/9vrB133D/XFwPr3msY/udW8Fj7Pjfr/j9eWFzcK7eBSNxmn0BwWExvfo0MpIWPEG3vDUTNLAt5yTdERgRk8jRVQc1Ec0Vj1ye3bD2/sDgQannTT3AWCo7iGNz3tjHptK1DQ5iYxSEa+puQnsIq1QJyOgelQcQbZSKmrdoLWwX2CnK0IgCSat0+BA7AFP99q3LZ+0txMdHfv+isfxwHme6WBSjfYbXu9gButB8jNoyHjtq3o6oCnlyX67YYyB1hrOo6HRIvR6sAIxw60Ao9AZsZcNR604TlacDhVAN5gwRbTWAhl0WNz2DS+3G4YZjoOODGIWgpJMZRSmUTLKJg6yWBNo7tD49uXVwQQAG4yEYeDLyyuy3tEGhha8vLxwvXv9oKri9qK43+nAqNUBUO/48w9/9vochRjwv/z131BLzZoRRjS+oCqdNS+3G9eOqKejK8zI5DvGwGgNmzLtGEXx7es3qHYch6C3A7Uqvnx5ZbsJ33MB5Nr9DbWSrMgM2Kpiv22+Dt7dMQRAFLfbCzM+2ruTdA22UIGk918dyJnXVfbuUQMRHG2QTO2FQMmGOSkNDfmBgaMPRpPdVuyjA+cJAeuZjvNEGQLBDRFeYTYIAKE+qbXgtm+oWnCcDxwn9+ZxnChFvT48GME5h+fJOimFQjcNAYuoLwxZ1ofh8WgeRSvY9w1f9pLth+53Ovp6I7Pxy+vOuvnONN3j/nAABGcslwRKj+N0dmD2/N3cGDRE1tDA4fJw34tHL7l/WxsYzXW00kGwbRWjNdxeX/D2fkd7tKlnlTXe4vXIx3Ggx14SgYDRdzphXZaZOzNdX44eUSa3NVxKpoE+lqiJBcCabJLxLQGY2TPCgJ9JmwFSo/SC4NcjVJAEzEyfcXPXQfqUv5MtvPe+MJ0zW2bbNpbUCHVHG4MR4sXYppzzUgx3CtpgRBxVl2kw1y1+f3dcRSlBch08T5zvkbVX9Aq68rN4LtiHthyR58M/R3gekY51M0zSIXdWLGAngY/bCAnKQQcrZZR/z1jjP2Xq8jgffp6fhz6l08zT+905M4a32Nq25cFscU64Xl7SScOBOcbzXPm4/SEuKaQquZ7mcQVEAa7M7awZ/ZsRPnEb6fl5lydPR2GkFo8R/NVuxPl91cfJOQnQxrWbJfmYXxnpjMLcW77uJlCMHRnft+sjB6CNSLK47sbiPPhAxPPH8Xs6/qU+i//sxeZvbQoGfh5pgPMzk7m4Ur4tG8NEHFAaVCLaMaMN1LeudN3zZ8MwxKOdA0CZSmFem6mwkRqG1ZsJGtRDXQC73NhqTfAXkThgaSsh6p606/yYcaPO20t6byyiS3BlbcB5nlcRIxEdnfUy4dUMco6g2hYRQAt0uHfOPTgkHlFeR4WtB6STzMMM0SPLvE9hELLE/cVTYuLVrbJLVi+czbSJ+J8pTh1FairlYZF2M3KNsPkzo8LRz3IYxx3spOZK7zzP6VzAlGgxvVFzOp1fruD1yU/n3ooUiAYqcH9A9bqzrRaYKdkl+3APJlsNEFTR09paZ2NyZ3IdHlW5egtX5Tl/5t6Y6UFwkQ8Hg8EaKCthAOa8mBmkOHDyWpxwJMDBDGR6wbF4lrunbicDsXltVXj9JFLMDWLsBzfMIJ5al/73MBww65NT7Zqn98X7GrasI5l1j77mSPZhBK/+/Q/6199674OKaLAtBKQgaPddk/tKYR0mhtewIQB9Dn65v2Wz8IieG4J4psB6ex4KovfhKgKG00AGK3Oeq4p2ntjqlmRfVQ37vuGnn94I0CNiPgZKEXdsSMq/4lFNAgJGvod6unQ8txm+vOwOWDXXEGzuw1oqbhuNzhZFKgl6PfoxS6+hWrDdqvd/hNdVdjyOw/0JjM5pnZkDF+PUaaamOe/rV2JdznWUZyzGWcjprdZ0NpLi3oDue93TF7daoX320ozvRk/OaC6vgqx/JMOspBEeAkJ8M5XC2sHD58bVUuoCkfh7MUZjPYwBtTBg47lnNHTYQG9k6h5gqyNEaqMKej/dyeXRg0EnkbjOay2I1QisKxnSAN8nPeUmUG32PRtjoA3z1k6G4enKEVVnmw4+RXFDs3gkMdLL+Y4HhrnecfAy0rmGbOwNj1DomHsuQYmnC16l9RLls5mFJAgZmsKexu5Y3oELp4CIEyrG6VPXRV/MBAWr3kOKiA9HOInW38+U10h1VEabQ8csDlXY1F8ztXbdJTkN/J3Ev22qmPXvpy9cxk5Vk06FORNX3ZQTvMzWZUy2noMEThdBtwLJDxePc0OuCcSzZiKK+Xz8GnCyp3NseWCWmdjl97RVaIfNoa7GqeU6SJnx2R2fnpfL7arzn481qnudxBmNlFjTLhMDeH0GlEn85oQ0qz2Rz4Rpv3kkO8YKSJa2xNsVl8ErEIyx5s/LhPgOftqv6/Py95Pc62nh/Mr3/jj+549/ESwC/2wjqM10iehLRmMlSDm4PBTivVf8y89ycREyUfcUCy9EiTlzKIGnIDW3C8IJBMZSyI70sI3RZ/2WP+BxMp0rmgKzfm9H7x3tPNFHw/e37zQ+ykIxn2B4bhuDQWqFBcslQhHGDElGKQTeJ9INdEHUaRZIUdjoYdVkA3YAHiHkdUenEUguitjGZKhkGkGBakXXIIlgasbb4wAQkaSSxrsIoDb7mPEcWzyUc97IVmtpQAELsYy4R8kVufELDoadCAH0AEfdQRjZKgYpfIc2SK1vmMK8d2c3U6Y5p4AFGGlYVu2wjrNH3aQDGptpGqHHVQq2wlrBrfqzHsb6J6NhvlX+D9CL+XZ/R60Vt9sNGIbjwWbYJb3UfXo/w3vra2SlsA/gF0ovQa+Ye57nZnn2ekb6rqrXg/r7LyIQqehgBHUo6xVQ2BPRLEiVFC2Mdp31T6snPaIQscLppURoyqVeb8qJcKbo2jMOAogmI9okekLuAZJOhfr19JVIh/L0tuN+eHrgjdfr7HMJFKj0rFVRUagVjCF4tPCiO7uqZyKoCCqLXBkl9TpniC0GKLzeuaHolhJNVXH2gZIVHfx8jMF1YlGzJqhF8cvPd+z7jj//6U+seVXDtlX8/MubrxsCszEm2AqyK0ap+GaCPGqvFVbhQDwIa7iGixagR3o4ELVa8P2rhQCJnYs0rzmsoxeClqN1JxsR3G5f8NOPb4iMjLe3O/7+95/SYNn2ipfXL6iAe/S5hv8/9t4m1rYtOw/6xpxrrb3Pue/Wqyo7MUEOcajEwcROKZGCkJASpUUjLUQHGkg0EJECJUAmFfIjTEhADqAICZx0iCIhoYTw14AGvxIQEpygkCIRojAStgV24rjqvXrv3Xv23mutOQeNMb4xx9rnvLJTZaTXuKtU756zz9przZ8xx//4hp39o5MDAPbOXp6ToZmq17aVit725Ewwhb7UgvP5hMl7uxqvV2jrmIqlQU614uHh5FFBN4y896l6BOt0msM4AQRLnUKxz4pileK14VbbWQqw7Stu19WZpNEtnVjL4vWVfZx3FaZJuqJK2ShMSfPzrJYtwVrCrt2cNAqL8LFOVwEoI3MFit0jUt0zICaUoh6F7270Idar6/D6792AsxjRmvuUau29nYi3Wq2LZcMY4mxOMbRIqaVBqpU19B6ZMeTVpRqqbUdFrXI07IxLO29GugS5Ybs43TIaxrxTAubkJuysT43WQzFgyuxcAy4HvhURwz7OH/lu89RpnzmgVte1u94wOQLwtu+oU7W1BNdf4tm9e8ouzPFCFEqLtubxZgXJnSJBC6kmjI4dnjGe+YDYHnMDqC7p8fEY2xpZVq5QuWRG/AI5PC8/SDxLIT/RRFl+9zCGplo9I8PP9AvGYY6EjtUYb80ylnKGqdCQkXIZZS9p7ajPHIxruzlkqR72wp3pB5340/Xjly7S/TDXhv4oAkjXcABxfnmtGf00JOShK/DZOfpZChDReQfpyyjOfGqBeISUb6GcJy3gUCsb9JXWhutostHOLy9mquEwl3fXZ+36rtBQ7aIijwMB8J6pDIKm168w1SM8TYMRG6HLs/eQGfCega7nxokbG0GIqtEnUJLiCSHT0iBgdRCK7K3hoQPgOewuxEsx8AVXdEqpgKd1VZkweVuKfTeFEzCQiW29ed0TEfU8rYaNyeFKiEk3iCp2enncU647sCyCFqlJCEP4crmit82N24rHZY61Y09DhSmANgZb033fIjrH/pZQRZ0WtG2FzAVSHPbclU3xmrKpKK6XFa8eH6y1Qm+YasG8zNi3hvfffx+39WqosMroR/X37ii9oC4OLqQWeetqjbCBCV6MFIpi23ZXep3pFaJxWg3ctncHYrFaGqZ0Uggsy2JKkjZLTWkb0HfMdTEQka6BeVYnWz/ZNqerCewBVGv19jBUXM3gb22HNuD8+IB1WzFPE149PKDWCZenq7Vt2Vvak0HPAkttLFIAbZFGbQZZQ60Vu1pKo0WfBB996yOrk5NBQ6XAG20bcfTWsfUeDF5Vcb2tBuI0M2prys7UK4gsGRFyKdi3BinVFNXudXjVIoB72yFiETaC4Jxma5mw9c3PZmp3AXPOFBwFg0jxKHdFqQpxwKlt2zFNu6dWWt2bpcJ6tKf3QKqEG9oWBd0B7LhcnqC94+GseHw4Q+piTKB17PsK1Q3X1VJnLbXQDGapBQ/LCe22AvsOQYm0Yu2Cbd1wvdzQtg2324rTZA3QqZApQZIcFEmEPR0FKBO07Z6ib3vz6tUD5lrR22qK8wSoNGzbimVegGIgPto1lE3xtZ2nCVOdcJ7mcHYI4K0IhpGzTAv2fbWoJ+tWnY/WUoejpRs/7TswzwNYRVQNMGfiWhRcbjc87Avevn0yuqzVSwUQBgW2jlI3nB9OST8lEmwHltF+JvNftmXSZtE11NnqRmfLn1/3HbUWPL46D8AkKOqQSuYA6zsmKKZpQpdhXBdBtFoSKXj8ni+EA6R7DaeqYl039K3hdLL2IirA6/deuzPEMwbU0s7rvNg5EHNuhZEpFiFXGGqpqmKe7ByVammN3R0WIjCQHa/imqc62k5AAe2oWgLMBy6bzE5yoJZmbWh68dqscD4BXQtU7d3d6+9rrSiewtZuFiWuU8W+91gT47OK3sUAf5JxNdWK6dUr3NbVHTgezawTarGU5t1xAR4eHiAQXC5PfoYV7HNqSOcuW1FwdaeuAQeZPmC8poF1a72ZQaHAIbLJ+9soQzRDMbc1MXFn/DhF2bMBR4Acku66r2AWThj3d8ZKdf65u3Jsc7Q06e/5ns+j94a3b55wu23Gu1TNeQcCernOI2460CnYqVS7Uj5+CONPktFOQ5Gfs/xB/Tng+LPx4QbFveKu1JHQh07VEYay+FqZ3GmH7zKtdmuMXHGtGARwh4DaOm37huX0CvvNUpZJg7ldyf2483VvTLFNRlemGgsqy10Y0cWoqWRLmFz3OPpqJ+eFJkObe5H001i7RI/USZ5fgowJUah/usFLkJ+8KwFa6E7b2/Xqjhg/Q35eQpd1olBVA/PyZ5vTzdrJ2bt4bwvU5hywoQE5Ur3Tmvfj+RqOnOP13PhPKSvvrs/c9Z3XLHKjxf0rL3miXj4Robwc0vAO97508O8MUQxXhggZxzAEx0FPRKpJMNxdB++xDCbB9LTsYaYBE/zSo3IPiy2nKXXdPf817hmNrUcqWnj9oB4IpQdRk6FrA+/NlGemwCqAvm0mQyZP++nmVbo+XUBPtG7ADeal7NoCAIJ7QGOHigfgaXSAp96m6KeIp/laDVbrzdfcjK1eDAyERpsBGLRAXd1uq7UmKAU7Iw/zBNevDBRhqlgmi+au14vVX55OzgB9V9Tmc344m9LWdkhpUVA9wWWkC0xVHFq7kAIEhqSou2Jz0B3tBggCgjHAFYPiioQLbmsP4KujjsBYgMvlyfr2lYJtW80YV0tJjCgsBnOV+P+I2gXlOlpjFXhaHCAwNLfq9XlCzVcB0YouFq2yHnGmqNTKCNGQcub1T8KpmBJIwKLu6Xm2h90V3AmT1Dii27pH1ON8WsxBA1NG9tUajHePLFKYEqhnwmwedplQdxNKtRRsu7qzhc4aCnUXtJ0OHio8tqBF3HmQPKh1strYbbca5OihBsEkFQKvU4a1R8E0AWBNkeCyNmxrQ0dHqeQf9veuGutiNDYEpwXq1HuEep+91r3nbIs1c3Uf67riNC+Y5wXzXFFrj75/vXdg37n5ZiTkum4FtFmvQimGEMum8QEoAau3u1xXzDO93wpp/RDlANxH0xv23R0102RnprAHLu/v2G4rLk9Phn65T0CKmNvaM7VyJNGRV9dQLuFZEB1w9F9DrTRrc5oq5mkeUZppDh4a3nOYgk6devLU5dasFcg0MaoqY+6AOT88Lutc18ZWi9fZHhU/i9LamYcC27qhVPU9YRq/KZWn84LTslgtrw5nDXBM7wLf6byefItXb2b+06k6oh0mKzw+Gw4jRiSVHE6o/PP7jOZjKHHpzFBm6nhk0Lu6jOIlbqTcVstG4bmtzGbgeHX0zru6QpsdWAY4Nbm9xtTqErXzub5u1P83N36dT8ig4chYuDd40ufic7V5KA712r4m5mzoacYaxsCL7/DNY2+6KtXX1xdTgaenp3ge08djTi6Xw+ClcUd6FXj7FAo2vHxR2R+/RgnH2LxBL4dopC3IMDb9B0YU1WvdRUqgtuYXv6T3qRsocVgzHaf7Ioukd+zbhq0NXeKXFXVyej7uCUZKMQfj847ej5KMGjKRu9HJsx/SPqV1uv/eL2PQd/ffvTeM0buX38+T36ZhiqNBbfJeDvdlGsnlPCqaItnZYB3OhE8dfh7f/frpOGOxbKT5w93vrs/a9R0bi3bdb27s/t3PLxiGZIIvMBYRPPucaQGWxjAEDYUrlSYqgwCZuKTRaBgkekf0Vm8WUGb+PD8cIhG5IGqqKU+jKH5aFtRSDQChjSgnI2m9N3SMNAHhWEsJpCrOAc6wqjdHzwJp3/YkTBDGUUZzVe24XC8ASigGejVkU6Yd5f0LYW4LiFIq9ta8brKFUStU1P0djMhGLY+n/eytIdcFCKxeSFVj/KVUdLEC7HmqWK8XLPOMh/MZtVast5uhtu4dXawQvQgwLzM2h2WvxRTY9Xaz9OBpxl5MUXv1cMb1coPC6rAggvW2WoSqTJ4Sa0BC0zxhnoFpKmh7x14K5sm+Y8AQwHwy5bSgOWCD2v8hhgA5GWBSQcXlenFHgrWdaF5/2RwURkoJQAamwrH2rDWLIpY6ehaaz6Ojtx3TMuO9V6+gXfH05o21fygWhYDTnJbqW0HKtyhDOCLqAIoKyHBXVKUIljqPPVbz/O8exZhTxKe74rY3cx3MrUbdUm8NfW/Ytoa9Ks7LMs58tz29tRW6msBqrUMUmKeZ+ioAi7Za5FtxOi+o0xyGO+cKWISnq6DUk7dEANCBZZrQ2o51veG6brher5aiLMD7rx8xLxVFdzPu6oRSZtxuBhyyXH3BkAAAIABJREFUnE947/VrrLcdqh21Wp/C3uiNBT0QHo2gQmvPK9WidQUVy1SBecLttvma2pe7Avu2oUvB0+2Gb374LZyWimX2/q/LOXghldneLVW2iGCaJmzrBp3naNfSWg8wrG13p1URbHuHlNmiVqxHJDOg3S3weRTMixtRrpDvm7fOWQu6FFQp+Nzr9zAvgi984X0s8xxztvRYoynrY0kgCYROZZEnr40uEhFrOPppKcDpdLJo+uOM62UFkT5zc/N93w2ZmgaAALIh1qoTHGNvENmT8UIlme1pzBgMwyqiCxL3EdmyoljdqCv6zXleIR+H8e9pnoCrv6NWVAWauFPB+aUSPVQqsrSiW0sV8bfqpi3TObUDogOsqEjxiB9NXxz+Zn0e1cs1HEBKLELQ29D6GF2wdDM3xPkZSUaNB0c0AlQm+Rinne7gYf5Fq2/V0QMUI4on8JQ051WneQJUsDsgE/uyTh7lZBogyxpo94vdaPy1eM2vG7Yq4pFxAG6Y0pG7MwrrvI5ZMICBBJVSMXVrGdJ2Q64Fs13K6Ldr9exWKrPvzeSIVPResd5WPDyccDovKBubvdeRHmmL604Wl70szxCBFBpcY5nN8Od/EEa4OcJcT3KDtPCQGGEc9X4arET4TMY4I4fb7un81Wm9invHujnceA1CMfrqGKqhv4couqPg2A2bZgB1+95CnxqpjEf9MOswzH7MRlykTfr3cpQs0Hn5HNj6MrttGI4IdOEgkGyP3umrQ2fzdUx/C6NPAUkAfDzxzCoa0cijUWggbzlde6xDYQNV3AHxUNfms5J9y+s+u07cuQqYsS3Kt+T58SESYxiP1vHnMcLYB+qUEt/leh2j0u+uz8b1XRmLIgd+4J85MTljfukKJqaZmHH8WZ5/J/3mDIK/jbqPOz/G8Jj5gCUPOCKMzogkE+0QtcGoXZkYKQ52d50mzJ6KakX7FEZMlUvzyafJ31X8AAcP6TarEoowowhwpipDkLiySpQ7Nk63WwfT6V1RKFzDAWZ1SiOKCghG+4jeOxp5o8Lz5fvB0FcgGidzy5kywbQjppjltaSCGOxG1dfXxh8GpxsmlnJFJciROIu1T9m2PdacZEJgGcFIJbppRxFvywBDV53qhN466lQwzxMAS0ubZ2tIXjaD969TdWFLjUT9PSUU3t6snpKRp4hO7JZGJd0RMUUCwn/vHVOdHb6/o3R1A1A8simuZAxhyogmFRxbWkvhiJGlteT6F09zplCo1UFn3DmRPZKkB/eXhPqqPFOg4sgovP2NvcLyWIkGCSrjTr+9Nayk1eT1VH63yFBsZLzLohB+BjzaRi9prRZZk65o6w6qAIao262foUevX78yhaV10r79r7nD5+HhjMeHB+w70207prcXPD1dsEZdL1O+hpPqyKpyeh2guiY3mtH2vlnbl3Xb8cknn+A6T3g4Wz8/O0KuQHkklZFf0nUDW33M2NtmUUU/T9u6YaoTyjJ5/ZPRL5ubs/5yqhYBMV5lC2K9FhFKpjWc73bezSrC6bRgXoB2Jkop0B39lmDHVF6IRh3OpbxQiT4Hf7f0Rji67LzMQY8ZMVtVbb4YipU1nveopX+pe/sKKitU5k3J7G40Dd4pSZ70bsBq6i9R7m3UsQ7+Td7c2o59K9zsUO4OyhrpwN9EdVTA98sYB+WtAOhUxvjhkKV2Nixajnym/XlsVwDYPkW7AR1nMJ6onr0gPB0poo10zj2zoftgswnSE6ppVnDD+CwCaIlVYD0i0x5FYGmeYvOCDONBVC2FV0e9dJSmpCwZCh2FGaGsrxzyMisySS9J/xbnmW33fAx3iESEyv+eHsHl8fMqsFYo3QxspHUpnirZraUNdRE+gBUiMWeBgyONWjAlOaTVpzOgq6ILDQZBQsUJMD5mM1Ee5GdQvofwPg7v4JSIvb27lM+iQgHSur/bjVMSJ9esZxkwXpSMwfEcX4nDeyknlH1F87hD7nH9xCO3JIecUsnP5dk7OOdsIPIdQNIt4+848IRYs4N+OCRFfv5L8+NtZvzmVRh6GnW/b3dFpgEGvdnn412UtQd5rcwS4MjH3ty9AXkY2dj9tG+8uz4b13des5j+yx8l35AMwZxekVNAMjN+VleIoaBCk3ATpi5Iup1eQg1GA0gYdpI+i3MaqUU2lgEzjTBKoNZrjQoFMjNQYxkQ75cIxZvrBVBgWRar7+gDzt8MhFE8oVAT+B4plYTOSeY76jPH0hx66SG301BoN6U0iqwdbryKoegpmvUto7eI89V8aG2tqcASvESkYPcef1ZbZ32RigjW9eaero7ehtD55M3bEL7ruvrkvE9eKAmGnricTlBVvL1cvEmztzoBEQmLg1E0V9IGUqrRmEU9SUe97w4Mq7B0pW7KEyq6wudhtHR5ejKDf7F6md6sRk4KcLko1n0F8B6u3rJinia0XtCaWJoUJqzrjt53PDx4dKAUzMsCUaBhN8j0WnF12Pj3Xj2g947LU8PDwwnTNON2vaKK4OHhDIUZKKVMqHXB7bY6TQPf+OaHUHQs50f03SJMp8WipdItrXb3upplnlGnyZwYIDKhRQCX5YTmQBZWH7hh9ohWbxqp1KUoijs86KUsRdCLpWd3uGe4mLF+vd48Si+YlxnYWrQ6sX0r8axoBl406pII2EQl53xe4hyPVElGc+wsS7Go6OOr13h8PKFvN3zyycdA7YBopJFT2bH0XYVDKUUtmng9bynA5957wHI6QVDRWvPU4k/QW8fTmyeLjM0n9C7YLtfgL3SIGG2a42BbN0shV+uQVmGGUHUAmdtq67NvDcvecVpO6HvDL37zQ9QyeUaCgcq8//7nUEU8hc2cVbd1xbbtaG1Hax0ffvAtSC24vL3gfDrhPXmNdd/wycdv8d57rwwpszUAHeu64Ytf/AKkFKzrFdu2WUqkVFemrEXP48MDJpyxLLOhaW4rdrVo/bpeMNUJ02zjhLJXrUX3btsVkyy27pPXxvo+skaw9w6trG9rmJrXn/cdbVeP/Fs9Mo3m08nORtMB0EN9tjfLWliWGdf1ZrV2jjRqVl8NPhYtgOgY7J71K+p9TTt626K/nvX57VimxQ20ilb68K7AIsbaHYW4d2sI3oejM5w5ntbdmXkAB85x5lxqgbTm59ayBqAj5b46OAVprkhx0CwJ4JzRRseNCa9zFjF+Yenq1s/XGt8nJ6cDxbH1hj0LKA6+wvZYJpv2MYZS4E1MPdJv0cypUu3onp0DpxNbb4GlQbdtc0C5OTI1BA501CnbDGl3by2MHjrMSoE7By2rJWC4xP3E/l7yIrYHChXYZWwYglPFPBWst82j5zNUvGWL7zPRfdvesPeG8+mM6m15uqd1n+YFvXXc1g3rvvvzAe1WA58dbuKGmcoYq2s8nlnjmUldUSrCb8DWIyXxOwhGP2M6e/3/UpLFB4CucmY3NTe0Wm+oM+uDjbaslyrcCWeZIdu2gSmdo+TGI3nuDFftiNx+5Ii0rdO8LJaNwxqVnvQzHNFjPf0GVN0Q22v8cZomrF6XJy5b7Fh2lzOILypMl7o3XNhnOhyoDiilyIYiovTjoI5ifCcb66xrTiNOzxqZD9T3spNMhLXEDppHmqkV8OyXmpXHGAcN8xKymEjfRVgG0MIIN0e+jymWRIJGWNoyEt/HdCJ+GLK7x6IkU9OvHFV5d33Wru+8ZhFOLnr87HCPahwmoXfjBe/L4f7keKGvcdxlTAUKRwR14iwIRn8/mqOni95HifQhESTjxJsjV+tV1huLn3vUCZlQnDAvxhRZmE8PlBRxtDhjrhtozGBYeByHM/3w0tKLxTz6GP+xuDh/ZpdA4WlQwhoIB/0Q9dRRr9/HMNxpeFoBOZAPamGPwMPZJYPjrZlhkzmnfXBmodqxOdS/QqG7Yg9IeUXfDeyCkaNta6m+yJ7bmqWS9a1BptF3ztKbLG0F6gZG79G2wPibpVPW6iiGQgeFFXQPI551K/Y9S1GtwIYw5gudC9qhaoAFe3eAIN/LbV+hAix9gWCkCNPQIioswKgsLI0ueeC1K27XG0QUj6+mKLhXMMKjWKYS6x2AJ+p9M7WBICuz95LU3VKeltMS4ykQoE6o1QVnLViWM7bNHADzvACyo6k5D+Z5xom9qfaGrVo9pXRT4kopqBD0UjB18Ub1Hdt6Q6kDYr+3DcvpjOW0eG1Zc1q0CFl1gBvSnSnZzYS9FPR9dwNh8AgKx1KqRcRdUcAu6N70vZTp6EBSYCKdCgI9Ek3wrW99jLTr0L7jm9/8FrZdo18p06bfvHnrRmtxRa1ZWqh2XG83TLViniv2XbDtDVJnTKWYwVgMLIb8rtYJ8+mMbb0ZuA1MSa/zYimo2watFZPOqH5Wi1TcbpcwXHq37DDWunnnEVdseViN1tgOAb1hW1esN2vjoWJKwt52LPOEZTlh8qPP/89TxVQLlnmB1RsL0CfUyWo9zeFmKeLmgCkReRmpYBbpbcH+Un24oxTSmGxNmRABdbCofduwbquDfslwzCnw+PiIx8cHXK9X631YplDQRCxNeTnPaL3jerugyjSMqOp0It5iqHd4sBK3627rMp3M0QBva+KOT7aekcL0V/HyBiqNVtMZzKZ3c4SBhsJQFksphhZEviXDkQgpgchKhcz0avISGYoe5ZCZ6eh9RAQN/dieVzBQoRXd0+jNehzy3rM7aokzzbpS1rsHSIgjpSqG86FnRdaV0Rp9Y3XQgZcXCCxDgQqtFO8DCovS1VIBsUyN5kZvLQXihN9phPnV0nssw8T2Zy5DJWIq6eBDlpVSHaXTWvowdY+9+yyboTWrEcZ51FJTXlc/86UQ+bmEs478jkqPlRjQxyVAao1Fw5YKPVV1yiFrb+S80XtZQkebHZtjizTqo2PdeCFTT7t2L4vomOdTGCra1fSvQLPyVlKewsuabqjraTSCMAwpBgDyRT2RY5smOv8JgnJniaXvjejoWKcoFwq0UF8tOmz8HKjPu3vZBR0jMd873gXJetiYj48GR5NojI0yq1CTTmM6XrbDh31J86KDifdOswHzaVPItsc+P3+qv9/3d9fdMqyqlQxs22pR7njXcSzinzcGZLJu6BMemX5ytyZ5749jskydI0DOu+uzcX1XaKilpDoP4MBsRsh8HJ7x31Erxb8dUKkG7SOnfQ5ihfOK8b4cmbRnuNcSTD0aKUDqXhdU87zuXocGtdYNpRTo7rDjwh5v6syv4dXjYxTvqyrWzRBFp2V24aJRh0aDeYJAitVfdPcGQphiwTV1dVGtUXI0PlWfu4w5sCG1eVgVghkGqqZobRil1DukKKTJSNuD75t6PQr3jcII0ZxgjA+AlBEdLbA2JeIeYqurMV4Y2Xlaxi8Auu6IhtrBcIESfRYFpVC5KeFoEFjaYldFc4j6qPUD0NGxby3SNS+XLZjyYFOC7bZxsaH7hqd1A1xJWW+mrMlc8a2PPvA5C87TCW8+ufjw1NHwgIfz2VMCNaKY27ri9ev3TfC7oJ6WU5yFAoPk790893VeDFBEBJNHB1EGmIUZPBXzaYaum0VP4d5RuLNDTLG5rZbiKN0AXFoH9Lqha8Hl7RXbegO041c/fh/qVPHJxx+HodxbC2Vwnic8Pb3FRx99jPfefx+oBVYKoYF6t603tK547+EVeu+mrLtB//D4gLbv+Pjjj1F6w+Pr15CLKcTzMuO0mLFqvfHMKz9PMyCCx1ePgABPbyds+4bzspjxreo1cQXrrWEXQS0LAKtf0i44TxXXy0fYt7fY946np4a//bd/Ae+9eoVaZhTZIbg6mq+3CWgWrSulQDcBivesU8E3fvFDvH37hMt1x+OrR7z36oSPPnljiJ9QyFQwnWcHv1GINJznCZ9///OYlwUffvABqgN0AEDfG9q2YqkVUhStbxCc8fr1a8zrDbfL1QyOAvS2mbKWvK0WVSF/tXqszv6X6Jgn8keLGvWmmOvkPQ4binQ8PixQ7YaoKhOsmfsrNygbpnn2+sIRdXg4n7HMM86nCW3dsTuSrEjH68+9wrIsELmgtYbLbcO+OV1OrkzDIh/L6QHz5YZtb9YSo3h/vTrjPC/AfoGK4vR4wjLPaJs5PEyxZs2jYt13bLshxe4d2LYVIoL3Xn8OUy14+/YttnULZ2BrDeu6mUEzG13dni7mXDmf0HGKs9ar4unprdd62co/nM6Y5hmzRxFba7hcPkHbG77ve78PIpZdIb3B+sgKXr3/2hwbpaD3HW23MwJ0LLPxNuu1R8ONJQwTlqWgakOdJkPU3DtOpwdzPu7GJ3vveDzNTssWOdvWDa0ozucHj8ZRtprzs05eS9w7Xr16CATjWido79i2hloR0byHh7NF8RRY1xuenswZcZrMuXp+9YDHh8eglcdXryBThUxXyIWgPooiitPpjK4dT5crtnXHw/mM03nB5XLBbV0dBbmjTHYut62ZIloLzp9/jdvTBe1yQdsaeqFzR1xmmhPtdr35Hht/2bY1pdybAWM1nX0ge4qi6YZ9F7SdURqKCENzbe0GEcG+dbzdr7hebpjnGYs42JPXA9sxtciiGWQm71W99t8N5Pdfv4f5tEA//AitPRlarCoeX78GAKwO5DTPi6GV7w37brXOUxVoKWj7bqjAQNTL0qnV0A0JWcQcRhaytfd4m6g6edo5dBiyqlFSIhCgK3RrKKeCZZq9bt1rOHWkJ6MjnNS1WPmHurOOkeAiNubu7c0AoEyTaRqun9HhazX7FZ//3OtIM257R6kLtm11BGHzuogqHJoc5ves2LcN0O58vKO1DVJmc1i4ISjFwAdXB1uqk4dlCZA3JwhdABDvw+qOlarmECi+pnQMuQpzwJtQte9alprNk3WwvE88NZx6M/tMMl0eioiKjhRtYD4Nvmio5MWRghXzXOKZltEzB08bhqbX1hZgFmtfA/j3pwG+dIgm841KDI4O1u4av8klMsOoVQggXh7kBvehnKDQyfXu+ixe30XN4p1HJRmJdg2vyuFbw2k2Lncz3RNjGIIveJC+/edAJPm/cF8YtOGL87oDEeS0i5HmaGMkuin7UeX5Dy+fnYSXxh4ewjsjjEKVaTRhGntmxfAOhqtmeMbu557GEzvgY3P0BVi+uVl0Nh5NnqBReBxrc/f8nDMvoLIK6N3GhqGavly0HAz7wVAGKpkmpyHXlKlF4kx0fB+DKfv6QZjQkJKVaXPrmGE4NA40i1EXgcG82OssUpnI1JqtZRj1CkBWZ9jOlC1s6h717orZFu9nnz6iltLbq76I++Ypg9xzko8tjkeATHgUB824d9yUUizKBsXWdmx9x94bJk9Ps1JM8dqZEspV6y1StEMZcK9+ax1yMgfLrDO2zfrjETadgjQ82SKorlS8efMG59MJyzKbQt8bSpmwbiua9/CzdDOb6EDOFGz7ju73g2cdFk3am0K1GViHemPy3gHpsd6mNFn9mUXhDCHYzrC6gV6wTAsUguXU8erVI86nGXWq1v+sNdRScLtcob3j8++/H55rKg373uIAEECkTm7IuVPput1cSWsgIBYAB0YyYIw468w4cN1o3fZobE6BXsCG80aeZbcIfXOjuLqRRgXbjFPLQCjuoMkHmMp272pprtsWCoRqx8efvME0VVyvqxucx/Sn4unjpQBPlwsghhoMIXDSjtvtasrJMgNSXCnjYbL/EmXTGtQrShUsZbF6S09f7q1hp1PBU8FsHzYzlryWeKoT6uOjl0MHYwDTrE6nBeJ1neRD+755KafVXi7LDJ0nXC5vzGDQjnk2A4FVUdob4IpUrYJZK7RWiIPVEOG3ipjRjx2Xy9XGxEwGTwMnYm11Z58BZlUUGeAyxWukzcC2dF+jveo8Y2S/mPPU9qIUU3yr1wjL3d7T4bsshNr3HriwdFEqfW/fvsVt37B7uyEzJDzNr7eoXZ6m2XgDFeZpDoCh5kqwtZupQO9Yr1e0to/ximDvnjpJPUStn6V/AsDoADDaH3XzDkJU6cRUALaG0zJkO5y9lio4zaZkV08X5ZqZDLDIjinZ/g5HF4+HwGrW1UF6Lrcr1n3Fvq1k4e7wcr7pTJ5PqQVQ33+HKECdqtfzwspPYJky7IVbi0V/ai1QGjHuSIpMJ4x0TMuuGnVoojB5KiUisqwfzz1BIcCE4k59DRgIGiQEHCwCgAaUGxJ0yBifEBSZhm6hDZent9jXFVAiYZthy0xyQAJkJ2S4eDYJ36/qLSG8Ttv5ux11PTgHqHjEGTjojcpJ+Xk3DAgDvRqRvvia63mMOpMqQ4Y7XkNuc3If2eUYmCGcRxNO8qR0qRoaMbPanht38aJB4xyzP+vQDkbksAYvRz5jpLEPBGJ7rndzXfJn4/2afn93ffau7yKyaP+qR73IHOyz5/na+UAL7oh4sNbD/S8bi3r8OVsVd2ZY/j69ZWxLEV/xU8goFWsoIrXSU7EggmmqOC8nF45U0I15WoTJmaIk72QoiyktAlaczoHaGSoO+f/C2IFDa2/WiIz7Rr5+3othmLtxdDD8LD5Fpsu73P/jRmRa2rxmeXaS1pyRPEoMB0wY0V8gUvpokgrX6O5ZPhPShnk6LfXn5cQK91R5eiuBIvhA5dgSjbIpegGLtoeBfWhNwLH1owLLHPwxXkDRHNjDVtKea/WC3b8vrrxztpam6tFTQdR3ilh9B9EDtQ2F1tLDWijdrCsqItj3zXqPuaFF45PK5NPlAqbmtnULwaUKoDV88MEH2LbdaxdN+Oyto/SO6+1qUcRthcB6EiqGUa3dIpzhad0bWkoPNMV/9xRbS5uBWE2PFMXjq0dcLhdsq9XC9VJxu10xzROmebF37jtUBLsq9nXDulofRMiM1sUiX2vDulvt6bpbxESEEeCOaa4RRWtierSNTzDPS6ydCLA44MzjecG8mFK1rTu2fcN6fYKI4PHhIZQn8pvu3m4ztkwYV09dg69F23eABtY0RbbGtjVMU8XDw+ze8SOwlsKf78q1FEH1WtQinqKnCswWPbT9Zu2aQqQHNHohYrKfAIUZn1OdHJ3U/r+tPtbolVZwuV4BjPo2OgOqVGAjArQ3M2+bvSNSuwBVwfVmUfvihqJ9PmrISVeRtho8xtKg6LhpzQzGUgWn08nGvG3WQzScHM2V88mN7Abc1ecsdYEIsG3u7e8d27YC8x5nvU7m5b/err4nZqAVBziJ9kbiRt9kPXjtXFuEYhdPqRSgyoRaJuz7FoomipgDoFSIR1JA5NMi1qdRDFHXeqCa8dC6pYwT4IdOm+7GSPX6Lot4MDPDjE0D+RpX8/MvYmtKg50Oj+iB1xrevnnjNagaTlfKqm3fTJGvFdob9rZjYqubYumprTH6JpbS6qn16/USTh4pLCVxh4QItmbow8s0W59Ij77SSXWDZ0QM4RrRNEY2Dj2iea8r18UBzAywrAyFV4hC22NvkZ8Dr52H9zesxfnjzdoR9R7tUsx5YCmsoQW03dLMi6UaCw8/BCLVnEBdMRV4TX9xuQQUrws225VyyDKWepp3cRTZqVTsaIAOdGLI5A4gT1+d6p2u5rpGbWjNWy9Z7jsKjs4nIT2WY5CBqZwAAqzPDFHg6e0bczYWoMhkZQTTNFKDqeBI0hHFZpX1Dqb97l5KIV7gqwpUL6mIHsoSmoN/Hh7giNAWsUwsgi7RQWfyw9JdGaG0MdxhVRSv1fexaTc+QT4b6xLTqWHIDoexu0TuMvSa940FRnTvsN4YDoH8Pd6fSwNCB6ezwZ9zcOYfjEmnvahDRug8vNdQ330dBI66a1cFj887NNTP4vVdts44GoTjs0HU8TuG9+CXfObfyR+PPN7+9egRFesxpnSjJjQntdYCdviGIUZ0OHrK6Zlu3lxXk0EAoZrFcfDzPNjBAI4G8HMvTP4OV493FDcq6I0yASHjXsnGnsZz1NeAxlc4jlQ8nXQc3niO71p2KnGoJaSmjyWMv+PIx9zTPJ3hDNoI7nPgRkLhgee0Q09xniYF6jFXnxKF8/JZlUEXZPRhBJYh5MbYysHRwMpTDi7Lq+GZA7QfvbnIY1CuEh0VblCm7wcoRjybsijRcForMyTYi8yiBvle1kwWcb94d+AB3+fL0xNIRMMpYe/Yti280VJMUYPPgwIm0nJgCsK+mZHBqMe+2+fmCd25IGDKeS0VG+A1uG7IdPV6wuE22bcd625pkZNHC01ZZ31SQfWWDUUssjo7CsSynKK2T8SU8U504Go9+faN9UqaUsJ77EEooEJDC3aW7jy0/ALLbcgWItohEulftvt02Jji4j6goJ/nTjfyMYenL/y5Dxrkd7uCXQZ4Hml8au8eJ/G+lpUVm9SbB9gCabyA/HMYJpyTOg12FUNuFPKSwQtErH7MFCZSMiAozq+Gkw2+JjxnVicMbFSY3LDtrUHNOwCR0c4gZ4OMHIEjXyH/iDlyjRN/CUdcGhf5grLOJ/bEv5zq/dQNPvW1YBbEAP9IAxMEEBh09HC0qIyGnCO/5jmK+aQzfIw2jDIRxOdWX2hGpozvKmvMeO6dnzHFOK8HCB6TlFp3Spiy6OvSB49jNLpIAUqPyA7THJlObPyNchlBS6qpVir20Witp/MqhSUWw2nj7DbOZpZLwevNxvGsFjeIfN26mBwc8xqEJM67IYpi5pNHxeyPxUNkPVGg3BkMpngPWcgxkfcw+hi8KB7lWAp5L4ImSOdcFzpqBUTKzVElyjiS4ZCHfI4ELysyHK6Svsv3Uk4dspMEAc5KmhnYARKZEAVDrjJCel/OZPuWomPx2VhhSOQWpfMwZJqdIU0y/S4Sdzhv/Gw8JW9DDnpk2U5eIMDwL+g4c8/0QUmLOKR9bOYzF3rWofKzFJ/6bDGCPT4mzSN/em+EHh4Hw1IgP/iU257RAT97d302r+8c4CYp5IeoGQ+GyOEeAIdTlA/QSxHE8RnwIv28cC9/pvckM6r8FR6y8KbrEMhE/8zzFMDTmEzBzY24DychfuZEs6LEwID1AAAgAElEQVTtpogoWA347S4TnnxCLJr9o3eGWkzK7j0YOGnRg3/I+KsqAoobwHiniDPT47tBwe+PzkwvyRf7rNwffiqbg/HGPvcR1wgDypVFOt1kWEn2vpLnoWFU8vcsCMiWxtgtNe5e0bDVGgI8xsj9CLr1seEoOPidAqT6UHM69DCY6cUzQBfIaPXBlgYC99CVcQBqjAdQLVZLWNj0vR3HWqiY+PxJ796fMow7ZfozU4lknAcZ4BgzQW1Uo7gdOKKzFYIHuKdUSsFUCvZtjagg0S9nT+263m7ju+h4evuEWivO5wd0h5h/9eo9O3ddIaxF7ur9Fy1S1Dprwiz1rJaKaapYV1Oa5mVG2SvagymKp2VxRM+GMgmmeULbvOF6KW78NEzzEoauFIFoiehV6damo0hBnavXnw1+yLpcAhLhHqwCrjSHEa0o/c6IcVAP1ZEyFvKVSp4rePu2mxLlTq3h1eW7DJK/aEFLSjGjbdqH6M5Rl+5anqpi8j5eLfhrhaCD/WSzkuk4megNWFvDNNmeE2WXNFk9csazFB7ortjp9OhjXNHPEm5gpIvcbt+8bUpSGm3JRk32wdmULvKSInGAMM9z8M4AhXDgGlWPJqh6WiZQU6p8B7A3RrA4yiGruEVdgd2jOEWplJop2dVS6IgCql293tCepzrM+mfRBDfO6fHnn4rLvMyH7VmJyETCOKShGvvgkT0ax5aZUyIKbF8vyQliV51qzCUrzgGqBjszxns0+KRAvX2T8a7N0+2672fbk0Ge5XsZc2C0n+sfuAKHNeAknQ/TYEhj5lUB6GRGtnZDdba1ZdTI5s3Io9XwWrulyFrqlEFHdcxYho/PGQeN0dgt8ZY1MpyNvR8NiWGQSBgLHgB0fuQpzsL/5Cgse2xKnK3DMoVOJfGcoIUsf4X3CIcRuo24fI5+jn7G2Wqku0wRp3uuS6Zz69Fpg+u9HPZ2pFNn97Wbi+E8orpBHt5jLlxnlBJ4C+a0uI+4uatNxyuyszXzGo6dDsrQEA94NUlhdV4toO7hzybdFjvY2SGWddNMswfDN9+frpDrTveHdN30nCOfoY6Z1zW/azi+swPrYFi/wI/fXZ+NSz7NO/BLXb/qC79KSUDZWIxc6j5qhJ691AUQryh4rqm5L5ncC9/N/+brfi7BQJJBE4qMC43iEZ1QjJKgY23OMhkSINNpNk+rgwzjRlUxe80HqDgkIdQdAa6Ugqo5FbMfjLeYpwJlElfghuD1wSePTAnPdPbSRPTnsD7xR7Cuw+3Xg5HvdyMtV5i3PTHDkp+ZmFnMgcqYC3xxo+hALx6tE8Kzu3JBY4XG4r2HnM/PZJD3f/NamejTp/TiU1nwsarGnO4VBu3qNXCevod4lCPM3tM362jy87gWADNnTNhwnjoMcF9DerypnNoaUJHm+fHWJV7H1hytLjtwBIh0F1C5A6KmsE4GbBE073OjU0ShDiIxkO+sZUN6Rzkq6xoRlLHHdfJap25GxTzPVgPmRqJgpD/zuXTaWL/SO4Cq3lBKxe4onsu8WA++3nF5ukAKcD4/QCF4++YTzPOM89lSS683S+k9zYujaG6oc8VpOeF6u2FbVwP4WBaoKq5eQ/bweMZSKz76+OOYk7jhEWiurvQzyqYgimdiQOoKI+sGdURk2SQ+c73BVyVFWo7PI92zx5uq1wXGmRjPlVrinQglTJzehrIOOTrNeNClDLj68NhrViZGlInpilRyVdXBcwzQhXWlUgTiKYdMu2Nd7KgZTgZQapgtMlIdeWimUtHabspbcaXRa4Ar66UAbwNRAkCCmQY0imqdgq+KCLS1OG9O4WA9EiPQU51hnLGjw85MT/uW5aSlCzd/33BaBZ0rG2sP5Z8OnVIrtnWL++z8pnQ3pp1LRuxMz8s8kHzPz393EJTh0O2HdYno0Z0CSrq6N1QN4dp6f9YEmrH6+I3/KQTVjWc1cBsgGRA4PHOaKtrePLW7QmpB29lWaRiGihT1g0caddTSJsvR9tyju501eGk+doR4PhIv9u/2pl4NYBkRUASAHZfEfvNavcHwMJSULNCCpfgveoxCikDkruYumWBcqx6wlJ5KCfW0VolSGsviGPKYdGoGDM8+wtGT97ylVELSU8106XzOWpYMLIl7YyOsIjQ3CCfXdQaPC2RakSgpCoeNf34vl++DGdkRTJoePnE5jIt8ms+RejRSRQky6PXadITREFW1hcvKUjrfh0u9DUlChre9dOdrjGRs9UvzzL/nf+/3LffXpg5+/z3+zLrwWIfQU446R2t60PF4RX2q6mE/Yi4Y+/PB04531/+/l24fPjegfonru0JDvf/9PsL3afcersSUkPxN/s273/8Ox0gNnKkoNKjcgqzCxkRDub6/amVajqedKtM0EGNzeRdrIABUigmMmInEGPj+5+bcmDUF96fOLflgJH12sIzvvj+2QdM3EmMN+0zTfUM1grsEjwZh+kXduMivYdoN9BlN2Lo9X6O0RGkiruyGlE6RlvQEuNFDQzGPHjBhlctKiv+RnlfuEY3Kw5rRAKdMGzL4YPDR0JP0fTPw7jybkmhfjwZrvNfnYFO2F5nRUDDSzayOq0OjtpXeduhIBbG0MVf2XLDlFUakhnEtx5qw99rwYHOPhmBh64hKZ4kbCxPrTIAwuudpDmND1Y3QqUQtz+zGGNNpaykOVW/nr04F0qyrm/h+N7hcTtEm8fVrzZrJR0sbceAbN0xv6zoUEQynUWvdhbiil1GD0bVBSh8KNo0AsH5z7CM90aELMWVIaLwwhXPQMfck6CXTgfAcHG5wVEymn9piSDrL9EQDjITZswB4NJn1OmP891coOclY/FSnYEzIFURlOqFFVUR6RKd4vEaNpCtq/YUzbiw96M7WYUQlbZysIzIOk+txALGU1XQ27az7ucmOzFC+cVDe7iMpwtREME5iURHLJNHYO75PYOizyjXxdNkcLYizqIjvd44fcKcNDVUZhjzpJVqEjL0k+AQvngHWEg0n79hr9qKLNUx0MPbdf35BYeW5qjTQ7MBEzaHRk0sjJ/pC0CodPCo2wogD3i0DBM8q1Z5DuVC48jFW518hFRJN2WCDvqCUT1nHL+O2w2CGzKT8UDdkODfuCeBpwncRca7p4QPey69i8DPSwfH+LNdH/1COintXfBIqw0FRfLIqjIBnXUyDZmO/YkrkS3JcBzHaj2Jm+HrAHJ9IesY9HfH+MOTGciThq2EoZqGbdZlsTNEB7afysE5IX+GcDnfEnEfWjOrIaiD/KAC0VM9ASbNxearUp+50ZePNdiMzhZwhDT0g9kPGWPP2x7rfpczeXTnYcr+P93uRDcL79/DvMReRqJ8/XomG8DxuGHpgbPC767N6/YoYi59GgKVEtQueUdGdN43RkkxN9DoGa5cR1XpJQTn8TiYWonoIafWTbK9jmlgfRzFkh0Utigha211owqM6PkcAjIYxomBKozNon1AX8RYQ9mlxI0ETA+CrOe+Yx/MTNu7lAZT8hPRjGMFDuelgcTs/T8+926bQLXy7smAIIULj486DxZoi4K5VRhqnxpqkK8giq2oUZpQXgkxTxvSHF3SKNJUjI0VJnmY3jmqK3tqYhv+WKHedkU+OrSLMfSon5g0dnvx7AZqNWxo1+V6uzyH66ksl8f1xVmofymFxwTgiysezYItn85q8nUOkVBVBVUJe27qyiXNv1vx7QHxLPPLgGVUN72Ol4ukgIgprk1GXxREwNzw8PAAAtnWDAlhOC0oRvF3fokjB6WztDNbbBnVAGoigtdXSSucJt7YGvbTWvLjfUh/3bQ3DrvWG7bJFbRQAa8fhUWNpDTujYACW5YR5nnC5XqFqnuKHs7VP0I8+iQge19mMnDqMQiMEQ2GUakZgWqsRhLN2M1BDBS0CFI9mmQLRIQ5uYPxOTUkuPKd23zA2C1QLqq+B0dlIBwtjmAAzxY3sQIsssJrLYegcWY9zG++bJ4LUiysZWAoAHVkuWJpzCZlQZIJWz75w/kA6jSgAJAzoAOSwXHDPyfb+q4wWUuHVbs6E9Dz2y1VFgMooOqRWMFZozc171D5mBU25zgdjTDBNSzheaDgD1msO/rvuW/DRiJJDoGK01bq12ygeEaWhNLRX/54Aqj4G8X6qMNmiANjWqLVmSmsyEIMGdPBENoMP/uP3du9nN1o/aSiy7EcsIRhsnRRWE9x7h0QKKSBSHbE2GUfUoD3KRGRSy8hjnSunPxwr/KeIZdxgGoAuAFDL7Huh/rvPGeTVGqn5wcf9v2a/WNZE1wFkYg+SIAURQVONPeR8jI96FieNua6Ysgwo9vzm2Rc9DELPAnFnmGanXYfLcAnHijlR1LNCvIdn6ENjL+kA4jhpkBLwysi4xt+IbGvtkYZ+Id4Og1cjaqt/Lg0pU2L0uRTI8IBR98j1tIW9ge8cybCze1v3IDFbVkWtk59xnk3/bhl1tlHj6q3IuN7DyZp01GmKNFdgqBSZd3H/ujuuWCpS55Led6c4+aWRMSVQLeFoQhkp6MxKMLleoIU8MJ3NPpwz90VMOdNEU/bCwZC7M8xFJOEFDJ3t/hrI1/dK6FgnOg8pb7ODw0QhdS6xPrmJrx4j90O/f3d99q5f0cjiCzchIPcAWkJwaTVu83ufPfPZ58PTBiC8SZ82HnqR6NvKXqeIMCqJeygBofz3HnUd0aTVD1+BQt1Dxs/CgxmDRwDGFHg6EobwFUVKiXDmTlUxT+eFtQ1mBkRNnw16yGKNHyhkEUIkPzqvncazj97w8bcjA81juWcoIbRC0Xr+3oh29OO6xX15/nL48dn6cHUPX5HklLh7MG0oULDlObhHlsX/A5RivD/GkJXixKA/bV3yvfe/5xpAo4cRDQnBybkVCTj/oMP0vDzR7IDI4wwDXlwxp8Lh82bK6r3xW4ulP2fav28pQ+fJ1nYDiJomoO3QvQ8j2M8g+x621iCTGzM+AzZGJkImIyibI79p0WgNYRFM9f6Niu7pj70RBKUa6p4rpnDjR4rVItJYZ08swFKnDTl1ciWb/5ZwgnCN6HYoVCoLJ0p2486RYgoyPyMvo1LE9HN5RjuaDryOzyARdWVNpykgx++K86CDz0YbxFqih/PKIgM9jKA4LHdKDLC7QW11aDzOqkfeQeAMiKWcW6NvWEuEMvoo7k5veuche9E5Waze0nUvZ3W+F0iIjxFVHGnZNEqosNgyjDRLW89+ODtsCs76RO0dZbbeugq4Uu9zpI6s3B9NCM32/FonT8dt0FjbYYQc+cYwBgbjwqHenP92uctgQKq7S06oAkXx/nLDuaRorhQXl9fd27eIP6PD+Kop49YjUDrBqYqlXnoNNYpDb4in2DX7XhFGVj3dtxbsyjYbRvdMd40l873nPWPIjJiZ0ddd+GV1I9QOB1KiXI8zp4BjXwXfhcs/c+qZMqwOZhUGogtF1g0H3+qCXgxtVkQCubp4hkTbd2gjvfo4fFspqy192s57iQwd5x3o1keXDhAcI1YBFkZ6ORx4IKLijiuwN+c3fldJ99VKQ9B0Ambd0AmhyZHTu9Ok9mSousFUBGj3Al4gnsY5xmaam4Qzg3J86DDdZfZQAYfcl6ATxB4KN/nwal+v3tGTY0zEU0CpFyg8CjvqDMNwkxJ/u3+2OQg4H4mIpI/K6mop30mLL+p6hgKsqrHPx6ujK+JZ3y6yeH99WtAlZ9m8ZDjn72djMjI3JO2HUH4f3vLLGsu767NzfVdoqAcj40AJZHxDKRFXcKgohdFHpdWPKmWrCAIN7zBgpt7EoXt5PHxQsD8yDOcmohL1K9Nk/d3u52Npb14H4XLaBtY9lQ/RVmMYVmS6IzefguvYUMMEW9GUw89xOoMN72LSC0M3SPYD4PXN42N7xp0SwbfQ48p5xq3CyMHRUNSDvU/Qh7Ev9OQZoqYr9WS4SAqXK3PZWKGXv7hAsv0Z38kMnEAxR1ITF67OnCYCCewxxoMQJew2WNMakuSwoJVpiK4U1mL1NKPwe9AqWBtFI0uP65sjrpIWlYZJKIlSvLegKa0GK19CGT2cBIWlR4u5QkpC6qWhy+GF8knvbh/1sxAxz74rPdVrqULJXJYQdjQMu9eSLbX6ftu+LicDg7ndbgA8WiiCfiHYi/ed04592w2KvXfsbcO2TihTwXk52R4TTlwbtgTfLyLY9g3X2zWcNfvVjEZrtJxQVlUdoMaUD4OMb75d7Kk6+EYpM3preHr7BnhrZ3tyMI5vffghRASn04LeBuQ9l5pospbFZc+bl+WopLlTygyrlOJXC5bTggPMeDGQFNVBv9Eiwus9R9qo7bQcDCzWESbQFcK0o0dkEFAsdXKeZQqveforRCagcN3Je6hEdKiKI1i6Myw7NuggAtdJQwEH4IAtwOxw/K3vQUfp8IxU8uJ9wLSb8uzPWeYZ67Z5XaBTvD+iQGglgT0NrY7QlNNaCva2Ac3onTSmvq9RH5iiu0A3+FbYeVkdoIl0ZN/tHiVzA3Wqg2+pQtXggfp+5If2yGDG9j9nt3bm7hU2V9r9XO90aNGACKHVYRFJ459TZUqitUehkyWcRx7pYAawRZ9sXatHoNve3EK3PeoC7OtqxifSmNugn4ICVOuZ2buG0d16h6ii7epjNdCjyetWhQYdzNjrLo8pC8M94HLZWOpIb53pSRDB6tEUM8QQzhBDhS4uN9xgAMzJ5OmuKMQhcIO38O0pU8hptPe8lxhANthT/0sNx1udxJreazfn1FQ8ggoUqQGQs7cGgUVqdyiw03A1BOdSfN33FfNyDtRpKNC7uGwRrwV3HQbA3tborwsI0Iacoz6ye29ZiTNlK1fEkaS7WmzAUlQwT8XZXg/nVU1npTE6qs0B+1zOFEO2ruqtskpxGAgNXYPniTx82xs5jc0tfhtALV0VlfxezSExFbHjPCxK339N/OhowAQyN/lBdydSZaTb5joe5+nAg20gnB6uK1K3GUEApy0RiNIJZ2dPMDItmPGD1iLCeHBaG0M4RD+NRj2rKuGOvGQg8sq6yzESeI88fzT6+HPO3bL5l/Q9Tbz2+N5312fn+i4ii85BeTAOBDMsnKGy2mFR/okFr/YwAIwKJaKC3a/OjAvE0BBlGCQ8+FANRkNHDSGXm79LQ6EYnqMQgiRo8v9g8n0Uwov/qVbQjKlhlKqlayib2NLDgmCCMV3VWB0q22GzUEAnY21YJUiCk54o00E1mAziPl5hrDhgDvsDqcDrB5hW4+OSfIgHhxO+jKNhvVP6ex4FHQRkoFSMaOCNVCAbgwaDtXuObgIy0GPEgpES0tiYPyMdtLK5F5XwAl7TokNIBEMX20uTsMPzBxzqbGjESd44PUZzpDDidjT26PGNFRMK7z7GIYqOHgICQKSB2QRKpAIpDDFRxGiB6b8UMlxB+xoRAFmDw3nEt0ILo/e4dQWkGJCMKq7Xq0XgHFjitq2go6G1bdBAKehthlQ26y1YltkMKRGUaUMVQdOGtW1ovWGSCbpuaNqwbbcYW6RMBQ12iCYgAFU3DG3/VLunLTt9d6DoSNEip6muPNdSgWqpr0xvhJTDvokg+tfls6oHB8GIDoeV5fdbOuaon0F1hUps7XiGhkPkaADGfgrPgqS/Dc45DFIA8Nq97hEvKtKQ4eDhOwWApyIWGc8lSVZ/X1PAIpKjBqr4AjErStWmV1As2ssVT8clmG0oGBYRKE6DlAzkJBJyxPmrEmlSDkYSoz7da83FDRtmCBRUa+eRGK+UHgYIFZqx71TUjspMOMHEeITNj7Sqw8h0RajHZwgeGKlpab+Fssb3ODcw5xKGWNCIBwOARyzHc2z/Pa3YI2Rc291TD22/nC/WCmiPcgUT19wJox/bshG1KUWgUoaSPUjeoviUtf6Mno6G+FpUp00UowG2coFq9CAWSBhptuS+ei43DjquWajxbgUSrxj3ZEc3DSgzohQoBR1DRpLGxTePpDxP5mhq2uJ+Qz41FaukM7vvLfYfYg6BWiv23Xrbsqa8a8QdY2yzO+gGMfBBGmfYjIAJVRDjhQh29Mg+MCPZaLrAW6YQ4VsAqaYrlGqOXOhwSoCo2WXwPbbu0HY0JkLysPRDKG8V5hho0Q9zOFU5D4Vo99Qwr7Gm3uNcgcjcgh70z2IbbrJF4yp2HemdNOxbZ0DB9QdhKxfyzqyH+blJwDDmGyyeVpr2KnZnnEOXTGR3fr6YEqzpS3HyY4sHwWrSORAGG+mDwGVxBe9JMlI86uqgeZzgwUAs47zxe4esp2SM3kcy77NAGJEe4pArRydoTBI5pPLu+mxd33lkUVpw+XtvZxCSwgqhFNHYtqN5M/SKGnUYnfwOAAWqp2KIRTIqGR571vmJM4FVIt2rO4OK6JmncNhFhmrE7U5EF2HTYBniiom/X7pJDwpuiSaHChPEfj5VoCiYQsmRkOrZY67SE2Og0MiLyzWsyDeyMNwG7Ae3CCA9YLOPz4hkksHkirix6ik7roDSg1+QaggEh/UCEgACEDUyGXk1mIvkkeDQPNYUTGcUvCcL7FT7Gekc/oYStQlIz9NQFHkx3SynSNBzFQxWHSRCSEsa4+VsWNeq2g7RbCJTBjie0MvH2qgh7MULQPIccx2RAiYU1ZSZ+XTCMi+QIritK/ZtC4ZfpwroAHrhaIvTyzRX9NYD5a6WChooIbiYHrpt7tW2uqvWGqZpwjxP2LYN+7bj8dUjAODp7VPyXNt6aK9QBwoJBa4Izqez75GitR3ztKJLx9YWU8S64Pb2E6ArdLKoxLruWKRBb4BWxV5N/GM6Q9GgvaHCo21wyPx9Pwi6bJwNzz8Fqis4jr7qX3IasV3dNjNypRTMbCreRzP47Hl9UcBSQU6CdNzjRpGMr8v4itPJHRvwvRrRcBf0dUrz0nj+wWlxeDfS52LAW4lvwxWZyO549ky7Cgymn3xdszEVipq4QUpFV90gMUQ9Rr+5J/kdIoZkqtqPwDwY+k9NtXjW79bqHwFAUxr0SN02AyZ0dS1pG/wed5YUqS7TPM2Uu6P6PMtF0kbGxg+FkA3mLRLaLYOkEt7f7zX4VVRY5NEibZ3DHiST+Ov9+3uHOQHgirTtMFBSBkTsbzdFPPhnMn3vFTzDCbc9zWAsapG1OtGpwbPRfJ2MCqzfqYTOnqMNlAEiJr+qG+KMyCZS9fs8gp34bydlUL4qYs+D35sCMWq6gOAJYUwXAguN7zMdn/Vf91GZeBbSPFxfqKVEew8RwTTPxr99HlaP3rHvlpY6FWvbIyJYltkNTAkeXao5yi36qzjNs0Xe3JAKxHeIg0MZPZgBaLveGufqLcCq8ZRG2hFzpEmxpvSlumxjVNet57l63arGxpBEwyCA17cTSIj0K16ORLoD4PqfeOQ9k5ha9DshcEYdvBtxBJSyDJKCyXmijbs5Mngdv4tCOh2JsDkxuc2zgXjeaazzefGvG2J2pmQ4fDxyzcCFgjpRymxThP5IvtiVWQhZN+JzNerNM1/ONZ9GzyX+JU/NWmAA4QUDhBN7DCvGnHWtAdCjB5rPe/TSdR+RPPzNz5aEu34Y0i+15nh3fbau7yIN9c6D4QLABHs6IH44OgBRUwDpN3HTchAr0n/8X7PT6K1O3ufi73FmFFEiHecijNfEisIrE4MdAkloGNiEQhBQuIO/57vib66AZQ9R/OAzTsaB40c8G9uzJeAgXYcxI8+NV57/xAgyk3vx3PKd/neuW/JjDUPIvyBg2tKoC8lXVkcjChCTYd2oIGRMKCvJQLxT+pmmEdoOyISPqxXLf8esGcWskYajg0ZFABcOUZ/KBdfxPFUEuqvU6ukg3GczPO6FCo1QrmcIR41fYvwatDo8jkyNjVFRsXTFika98dbhsWOaCOds7b5MgXBxYoX+UEyTPbTt5sSZp2qpU23HsJ01IpX5CHD/mMaYazBa60B4lhWWCapQ3aC7usddojZOATMYBQbYoIJ5FkhVb4uhMGeP14eoQrQFHQ3HQaL1e5rnfjw7DBL/DEVBxn6QnpwOetPDw8Mwe+GM5ej53R8Saxg8kv/K3fPtHCX60uMEKdxfrFHR7J4is7sbR+gMg6YPTq1wnmjQJ4EgqESUiIjz1LkDLzi8eNbDQYUBqEYFA03ai97ff8djwngasiTYuViUmjfbO0YLJYmWIMyjyC9JjB5pP/KyHn/1h94rTlQoEeuT+X/MLmxMHjIFI+Pxdn22FM+GnLo5uEj22l6+d0haZ0OaVozv5fN8b0TCOTl2aDyHfIGRP873yMcp98f44M+luihweVPEAETkGDkRZcrxkS4Zqcp0Trl+j5Kdf6O8GzV5zrs45+NWQMEazXT+UpkGn50dmiZX3aBtTK8bBneAmjl/L/4ZUaQprygDxW96RmZ8N+AgIjQuGDWM0R3ojROnriJ3/z/UvnON1T7P7UZ4FhiNG/LO6dLXkcRhMvnYZ5ngX3nPOeKsf9BRN3xI/mBNByQLgeNR9k9tjEx57YfMqCP/RTyezx8AWfyOvPSOYOt5sTXoh/rDGJM5Srjulpqatoo8+G7vc3rn8XSO9QidpA9OR8PfhXcax5E84vm+93lu/Pv4fJQGjTKE43cOTv872fiSI+bd9dm7vmNj8XxaDgQXvBSDVDLKFVEKJ5kQqkS4iyvQNfLrJR3c7uh0w1sIAEyhc+EV0kwDYcu+y9Fk0nSjQQRIHkemz0j6nb8o0fHSHOPe+NNQLA4s2s+OMMVMBOglmPThCz48e78M6RA99pJJpyUMxaj1T7VmLyms5mnlMCUsLxo4MYC0jupSJnLug6toGI1jTIn5AiFUAYGUrHiO5wwGFAsSO0bF/SVAjyNjkeH99uflVgaQYeza+53GiuUoEbkvbwSFaxFL++naQ2l5ppwr0/RIozaWQ43qcYlAmHzOgvWzFCjrtkGK1XbVySw4Jr9MdcK8WK9Ce5ZEX731drMG9KVaio0jQwKCtlp9xTzNjuyrliZY1F84CxYAACAASURBVL3RLiTQUQugRaDdmpsTEKLtu4tOQLWhbQTAAfZtdWMBaX3UlcXiq9/RSkcvhvRZIKgAzmcb75d+8Ifwo3/wD+EHf9MP4X/+n/4H/KHf989hXQHP1TLDrVuf0y//1t+Gf+lf/iM4nc74mz//c/ixP/D78K0PPwRE8Jt/5MuHv/2RP/j78eEH30RXxW/+kd+CP/Bj/2r63u/HB9/8Jqappn1SiHSwI0JDwVEO3m3o0IbvDFOux6c4b5ymeL4PtKUjcpgF6n2U5rmAZr3WMUJoxp1zzT7ezoENB1h6V+JhwEBSPtyHcTpTknrwBY7fGlBTaRTkNM9YS021Owdt3GmO9zkvNIgVpLcelU47NxLzF4eZ4ViLiGdajLkzVev5NSKDIyqbUo45CmcezB5gZJ/ZAKwVjobcMtaIaTCFaaOKRBs29+C73FuqjMkiEN/r+/2p8V2bSI/DirHu/o0SP4/nKig2UlSpACOlffB5W0Y5Gn8ilu7Y+fug9Wh1le4vvjdHesWhXy7PiWWNcC7DWKl5b/yf2L4Yq+JQL+XGjwUnM/TTuCijgDunDdwoVUM5jroyP+e9D0MwXIPen0/BlP9uyMhSQJz2aWJJx8h24NnnOorA0WV7vHPUVprKwzpN0mIpBbvX7fL3iCr6JvEoHjKA/OdCxcj1HEtgklCShn4wFpA8LKNt8nfLculxzhWwNYl1F0OyRh+6iL9L/byJcKzJCVCs/6U5DArydhdwbWNyxrMOGAXEB7jPfPIEezq1ddDr0JFoxEkQKNelluH04ssEY/3UGXZuSxZ1o3TSaVoDpXF4rDOUu7N1b5odpVZejHRO+feDcyQpzukc2DwKIIP/Znn2zNEOHPo9vrs+W5d8p9b8b/yBL6kIe8LQa5mEjIwiXDu4frCDkciAKwYANVjkri2Ep9VX9NEkPLwsBOeAvZv3qwFSqMJD/OkAwolRNbx1BFkwJnicXxa0hlo1nmNgMj2ETm5umpWv42Eb0YpDlIK8QyQ8sLxfU2NsCiBQgI+XQXsDUx0Hcz8yBhEMdLkQqPbyMKPcUEEIziF1R+Tg+VrF+t4ZixJG3lBKcopbdnBlr3soCgVDYGHQV2ZzQ8GhMs45OWOnfhDj79GD0FKCZCA+5rn40/l5a/tQbnV4QrNirq7I3ceUDg4MN7oZ8QylvpRRqxIMU/281PE7FMt8wvl8wrreQslZZkOTfPvmE5zO52ha3XrHfJrx1378N4DNx9magx7u7/9PfgFf+EvfQtsbPvyHvohf+Md+TRi/4bTxcf+WH/0/0XpH23f89Fe/hOv3n4fSNggB7/+lD/F3/bm/CQC4/doH/OxXvxR7qMo0bFOVfuDf+r/x/t9asbWG6z/xw3j/d3wJX3796/C7vvBl/JP/x5+IlLHz/3vD3/Nv/ix0v0JE8Of+l/8e/8zXfwI/+dHX8aO/7h/FD5y/D1/5qT8JAPjaD/3b+Nf+xa/ir3/tr+Ef/2P/Ar73t/8GfOWn/hQUir/6D/w7+L1f/wn8Zf/el792wh/7sT+MAuBnvvr34vprzzGPH/zK33ClQQ90Omjq+POhsf3dPZ92vRQZpKKiOlKWs4Ioac17Z6r9OPNZOcjProVgG+NeRiMO5yopSvbkFG3lO2BOFCHPD4fM+E4wHAFaquWkIs75i/M0UV8/TwUkWZVkFBhPRsiP4rFq1kRmr7gp5cyCSfQMGj4jynV/DSVGES+Vo+KkaE7KjF7aeaZBwPtGA2uxmkCub6ehMlpV2OOcjyXaOMjAJPMi1b4/TyVmtJhtPxSjB6c5ygbvo1KtOqIcofclFFADSaI8tR+6C9HuDobA/6CAG0IH2rrzkzsadZ6jMpRpgg6Foe33bzoksvTsmE5Ksesb92f2/kiq00OQ29B1X/zuMGxwdx40grRET52m6gbRaDdx3Qygqjj91WrtRax1RkdrtkdEX97ZqqFY7amq0XrrHXuzEp5ai/fdtH1Q72N5ny3QY498fsVSRq/XGxSKZZl8PC3aMfGsa79bOCTaNPQl9N6x7TvmaXaU0JFKSSMmO0lfMiJ6N2NRwwah/jVMKnVgGcphIhdDhnEPv5t02luzFkcvtPEgqZI2yGMzaIydHxn04dk13NtMJ9UXWH3thiO22GeJNTYHXTLQoTJQmNPz7usF/ZQHvzvwCZZ+uQO67d7eKNczcj53h+EleXXkD/dySJBD3tlQBkaWmjxzCsjhHHIPe+/45tvjer67fuUv3T6UX/qu4/UdRxZv65ryjMmAh+FWMJqEK3TUoWky2CpTbYyplIzCaZIBUFfq/T57yzDQ4p1qh79O04Ghx8FSHBiIPS5H4koYL9nDquSq8WZnQC7s/Mv+56OBxm9ETTfvrfzgmKwQRqCHCtlifZyqY2oJXBlArQeDhO+Ru59FejBPgMLQ/6OC7KIfuijXgQLmZWX5MId4Ldd5GB55xiOVAjh2D1KEAQ03Or+Nzi1JqYRQQEoobgjl2tMWEzcrAoug6XEvgp7jPlek/K5IkaXxA4yakSCaoWCH0nZ4j6VzjoQbE3SllogsNG3DWAzIbk87EiD74UoCvKGklSL42h//jYAqPvgd/zH++M/8efyuL34ZX5xe44/+zH+A/+IbfwVdFb/p7/9h/J6v/PM4/er3sX1hxo//7H+I/+bD/xXfv3wv/rvf9uP4937+v8Tv/PyP4C/8I38eH3zjG/infu9XcP2eCeU04av/15/GX/zof8evP/8a/Ikf/KfxvfPnoH/fij/9//wb+Mm/+BegUHzwO/8j/NGf/rP43d/z2/HF+TX+lZ/+9/Gff+OvoCuwNsXP/eInuF0V3/xbP4ftGyu+dPq7PQXd0AxNZncoVpRS8EM//MO49Q0/+fHXASj+zM//V/jf/sE/ha/81E/gt77+Em7bDX/9a38VqsCf/R//U/y3v/s/wz/7U3/S/tY3/OWPvg4I8Gd+/r/G3/iH/1386z/2h6HaDjRtSh+ihilLtxxBeWZI+X8ZQQtj40BfSQn5Nlc4FdhKA4PW+dxsOPLZI/KV+Zl9y24f/IPfZ5rVvaMpLhnz9RcNOtPhUEvup4MfoRzWh8qS8qT4OA7MJ15sH43zdQDHSuAWY9zPI7nk75/KSsjj7r4okBTNw2Et+d9CW8gVI5FRfJcVJNaRqxvZKmM9c6TCVyRZL8NBEOuqwxQzLdn/1cTlRQ4lAUx5EzcES5dYFwoEgQYKqwAuj2S0piDdKdDdoRkZHJQSMtR7rj0Svdr9lG//H3tvHmzdntb1fZ7fsNbae59z3um+75369ty3G7qbiwwtaoFkKGVSFINapkhVEqOFMRBjjFEgWGriQCcMGQqETkQspUJapSFYDGLACAaKBpqp277Q4x3f6Zz3nLP3Xmv9hvzx/H5rrf3e1j+6yqT/6HXvW2daew2/4Rm/z/cp96l1z4vPVQf6YZZEU8ZL2Xhzab8g5foyuRQPB02W8zbPLxNp1WH/xemRi1NQP3s4X1LvWz9YvjeiWaOlUzL1RWTWi7W/Ye1BV/XHFAQo20wdSn2zw96BMs0HKGReA5d52v91bRpKT9pc5FZKZW3PwaIZlfBQtngRqJrHtOrOhfM+r8i6A8rY5sVPdWwP5eDyHqaSi+UyWMzBDEGmGkJAAzBlsma5uJz3YlPVcVn+ZSqUlUk/12TslCEtz5gXK2DuA12vs9AJZraNq6Mpi2stlsq8FnKdh3nsPqGF9VDQaBrzQ5G5+H4h/xd6YTlGD9tyBxnJ+rnFR5fXrG+91IHlN/UmB/Z4fV+VTbPDC9Wu/7Sz+Kl4fNLOYuscVXHVpOHkLFH2d4Jsy0YIFXNeN1icjYasWzAWyAZmVmDWWFIcpr5v9TM1OqSCizn7GEfdmHmGAVVnaarrmhTDgqDB2AJJqs+kwre2J5ib2ArOuoO9ODuLs8ZYyik5+K4IVpmNvNqnRxbnqsqehXVeXuEgIlQNgFk5HijmOsZQ2iXUOhNmSTT1UkPhDdMYVOE7y4r5uZWKu47Jw4cK8zou5dpLWVmVgnmlYVcj3LXP16y4Mzx0q/lz+k01yGKKk8FQlc3UT62MUS4XmIZiITDTQ9nG/IoxmRdKyqaMTY1YLgatzEV1KO0EaTYHRkp+qPGtOiimBFeWylHX5TD0U9QzZ4WtGtGshUZmw2R0VEcD4OaP3ubPv+ureerVr+F/etf38eC/+BGGfeDPfuc38Rf+zJ/m7p07XL9xne/63u/nP/y6H+bo6AE33nPC7jt/jv/qx/8yArzr772bb/sbf5Vf+eVfwhih7Treen7Bd/2d/4b3fMcP8MM/+G5e97o38D9+z/fy73/Vl3P3+XsAbL7/t/j6//2v8lmf87n8zf/uW/j5r/xOXr635SNDbY8B8m2/Tv42If0HT5G+7LWMX/Mz3LjRcXLccrTyJOOIOfL4409w/xc+xGd83a9PRpr7Wfjt3/gcn/OOJ7nzlR+fI8w/9mHcX4F3fOPH+dzPf5L7f/BDfMbX/8a0dszPGq5evcrp6T1e+y3PYsTw/u94m87XRNQgE654GSWv8zzX8uSpd+pkrxdFPk9vjcjOhhVpDpzU5Vxbz9RlNEElF8ZYLnvnFZnAIg+WNoJ+myaZqMs0zVeSV+7D5f2md2fOSkshzMo5Up3PakxVB0LvWinWq1U0Z2qXKKaZqCuVcS3hxnnDHmTgdD+X8Sr7UmuSZ8r8Q8dyHo/JnCnPU1znOatXMxd1LCYxXy3zQ2ekwihzzlOmcQ4ssvh8aQ9hDSnVoALTM1Sz+xWhxPKjOTDia683JoNdkMIrt1h0tfdiuU9eLLQq0ydU8FIXLRyBiTCt6tqEkiWB6v5F8C8dyMJMzlXOZmpd5jSDNSpkZC6frJnYgoKoLI8xzo3j64rUR6ow/uWYHRqv9bw6drnMqzA7wNMQLeZ8Ws/28FpS4MQCpR1LrTnUvRpLb2aY0RwxKlGXiEykf4eGdJ6CU/VurjLh5qpH5ucwZX0rUZCiiypC5RV6ue4TY0oJTukdmUrrCgpIu64ro8zuNbNZL1Fi+BPBTy33mdfnJJmoitaUBablD3pehIlgZyaeq9dQ0sLqZ6eFjVDXOMjEsjztifLfMkJf2d+Vgbpq+9mezKLN4qcVlZLq0QUSItdrwEHgQpAis1heeUbXUTOLJZBSZHXNLEoWxDKtxaXTXcuLdHwOIaWz/CvrxBw6Z7PdwZTFW2YkhaxB8voeVSwz33PxkgdrrgaOqGu3/G76zMM25EPHgcwspF4HGdxPH5+SxyftLDatP4iCzTb7HAXWRaERsBjTBF/hFUJMt1kwh31fKIq7CocaDZ13dZFFAtUiyHmRIKvRl8pm9nB0R5ZfZvLlnKtCo2yqxXtl7c9UC/vr6+RyhWp0TZtQalR6shQmxQhMjVqrwbc0y6YKoHxoNuhwzU2lxRQFkmfDh3lIpkOfeVbakzFT2NuQ+vP8LPOdZye0EhhNZBcPzeck9CprbLnvwbwdGNRLEcnBWmIhWJCHzywrT+qFZhUyodjqXKRZORxkexaQlXpnVYivhO9Uo7q++2QILNckUtqpTKNW4GblaScKehWS09CZSexPY6g6d9lqQQ1n1UM1GLIcjKy9raC0U9F7vur/eFFtgy+EH/2hf4QIfPxjH+GDH3g/b3v72wlD4Iknn+RvfPv/fPDcT77qKc4fnNHv9/z0T/zYVPvzi7/wc/ypP/Pn+Kmf+DH+n5/953zoNz/I5mjDG59+Cz/ynn+IZPjwh36TZ//l+3nr25/hp3/6nwLwT3/i/wRJ/OIvvpdbjz7KZZ85346MISNGq+EqXKf2grwceu6cG8acaZyhdaW2pijjqriXyqcGTyq8qx6aeZXyt0MYDDIbdPMcFBa++sMUkJnXSv0yU+Mz7cOD6DvL68q8d+ueN3l5uQlmODllZS6Xz6ysl9OEzQb04lGmrEIdo6l30VJulTMXa3gSkQ/vbR42RKsR9ZClXe9djpm2adH5bHouqrU0B72kQCEnuNLBi+u/tPj60P3qy0x4hfKief7TPF51Puv9ZT7xUK/NsnCRrntIbs/vMYmlaVyWc/7Qul1awgdy+1CIf8LA3OTwFPlfxkfK99VAfIXeXTza5Asv9eOk3x5eAyU7Y0R7J8ocMK49ZtVerBJr8V617QZAqoGQvFiHh7vlYFxYZJbqNwsjvj7/4R4Wlm1Epimfh2laQzLd6PDzrxi1xSnTLsjVOZrPWbJ6L69HnmXRgeEsc5B8ztqotq4Bq1w8CFvRFtqNfRpnodbE8glgo0wPPs2PVFljJxkyoX2q/i3vk0VKUMtM717368HwLByb5XtPLKN1/xVt/vBTzrbHPMAHvsu0lg7noL7fJ5ixaa4nWVd/O7G0Vjl5WJO4fKbltWb7Fg4o0Q9OeugB8nzng8ChmZ5GERoT8c4khKf5r8fU/moS7tPlpk9OQbBJfzxsZeXFcy7k1cFYzz8czNNCTHzCdyVPa/nAcnposj+BL/np41P0+KSdRd/MeG5rbKF4n7HVtkIjS8hFI4KQs5SIHAsjQK9TIznzQlfh5aybHNOY4pQhms0PhXfksnGsMSWDo4cUJfMQnULxFSrDJIU1SjdvJbvIpeFqzVghWkehDWWLw1UiNNZo78kZorjMium756REKdq8eFGHslAuczRXlUeqBSCL2iVtsKvKclaO+ZUbuv4+g2RDTqJU9sXgLi2U5jGPC8HFQmnlQxazes5yrh4+Jrp/ZoU4G2i5CNxXGiOJEmFeEvtMzgGTcFK5WPOv+jQ10u3sPNs5a4PpqSVLeVx9lrmXVzU6sjAxQVQokBMzzYmIlIx5nq5fDys1IlkDHeUe2c0ZFJGiJOfgRcrzvlk+90NWaP0LNdq4zLBAnloPVN2VEda/tJsMh8YbVq0v1OKCsxbbGj78m8/y5/+zPzFJ97ouH33scfb7HV0JDsUY+e5vfyevfcMbeeZzPp+/9NfeyQ/8ve/jJ3/8H0+zR3XE0TXtc6E1t5kAPP/yGQB3zgN91PGYGOrU4l2s48jZxY6Lyx3jELhxdcNj11fcvXObxx5/YjJWTq5eJZN5cHbKiy88z6OPP67XNYYr5W/nD8546cUXefSxx8uYzZ87f/AAY1wZu4WDaaeVNs2JlM3xr4K32XJCDfLkYiQsDeCDHnYle5ZIxfhman1S22TUc/9V+rlYfMXQrHVss/NTDT5j/CLAp7I414zFxCIiTHDumhla3GpJNCNEMKb0Wqy1YyCFXEEdFlN6LdZnypNhNtk5k7OfYUHMMP/toX2RIdeNbPPkN6g/sjS+inMvhzqnwkahZCIXRuLixsU5qbqoBjsfHvzpUjrWExwUDrJ9Fa5eKf1r6wOZz6XoqSkDVksSDrJPeizrmPScNDtri1fRxzcLW3NhEU6G6MKQFFi+5NyCpv59ZhPV66p8zTmRohzADXMl6gFimaCKvJjWlCyeRaToXA6N9joHpq7xJa1RMaQX+mnphGlSsspq5msuvtag9GIADp9tEWBWZyoBCS1lqQ7qUh8I1pW2BRzOVS4OyhLxMQeQWFxDx1R3xDyhNTAlKU+MnpXERtVYLcWI07XrO6gZIVOcpbagMMYWmVEyumKmnsza4qL2Sk1TDXBOJXP6EKfEMoBXWxbZ0rbLpHjg9GRTWLSn51yMR1pk0A4cNxVV2vpXqIi2eq4SxtQgwWwbzSzA9TeZ2vO6ogmWe/HQQZRiYzLtmYowWcqyPDnE85hPNgwszN3DRMscIMgTxHpeDkWf1GdGSp/SWR4cQIeLbVKz8Afn1L1dbMwqsyZ5ZziYy1c4yYsRnb5btnSbRnb5tU6afmsW62VGLRzO4aePT73jk3YWQwhFAEphQxP60sw651z6+dRmq0XW5tIXqhjvQhGc5TqY0p+KeSOICOtVq4X4KSrMVCzWe7xxCtHI0BcmRlCDu7JDigjeeaw5bExaDTaRYqDnTIoBkYS1lrZpsUYIcYSccJWWWoQxjMrOlTV2qjWVGW+1N54xS8Ws752jCuoYozqnzs5Oj9pTE0vegXOXa01DGZMJjqOZlxgPe+8scfP14qlu/qCCrB+HAgeRKYMmVTAvBfnCGapKyFopWa7aTuBAJBwcswJdKu5Dp7MqpmU6rta1VhlWI2NiDNaZCSqbyVM7kYdDVN54Uk4KoaGK2sM50YsWt03mc6YeSZMFmtXgifoVIxix6oAWQoL6PsYkUqh1KQZjLdb6xTjWNao8jpX8YIyD3tuaxbnlMQs7Xf38VJsIE+TRVQbWQlwxQQBLgCOUIvrf+xV/kH/49/8ONx99nDe88c381r98Pzllnnzq1XzeO34Hv/a+XyQleOOb38wH3/9+nPcIgveN1tuQefLVr+FjH/4tPvTss3SrNW/5jLfyQ//wB3j2A7/Bl37FV/IjP/SPePVrX88bn34zz37gN2i97kXnOmJ2nD0YykQLNbKbABNrrXOaIE5kwZhIAu6cj2zHnqceu8KHnv0Abdfy9s/+bH75ve/lK7/qq/nJH/tRcs68/9d+hbZtedvbn+F9v/Refv9XfTX/5Ef/MSEGfu1Xfln/9lnP8L5ffC9f+Yf+MD/5Yz9GNfhS0l501/7FfTR7H8rasiCvXLtzJmqGJE6R+YM9AA+r2+n8+ptq91INYjDWTXNfofUz3G2+rt7Xav2WAISFobA0/Os7mIluXw0LiCFO5xgzIzyqTK+Qo1zfS8A5M2WclVhBU9rKiljWuOi/mFk80+Gh76V7ehlQms5ckvyUgEL1D0Sk1HApdDVTZETKpIU+wcjkqAj181Wemblx+GKOp3uWsX+4bdByVhfRgPJjlSfFIUzL9TDrt6ojJ5CYmSG7tW3DMhM9OwUy304q1G3xXGWyEkvHaxpa/Tkvna780JqRhdOWp2dP+SFEAwZVofM+qGulwrPr86vQStN7VQbQnPKk26Z2RQtdUeAuC5IOWby/fl+JQiifXe7RyYGtc7v0ppmhmwtvsrzzjIgSqdDqudZSF5NM6+OVS2F2Aif5nyBLmpP81RZ6yLCvDsOSCKoKhhzijAaSSXQAc13kKwzvSV7pA1ZdMjsRCyKVhYNdkRoSNUCeRYPXaWEzTDbC9CB13upz5fr/ga6en3nRxmp+zeIUpsIoO6tjWMBBF07QdOlJoNaveXFe/VV+ZQahPlR+yP/RgZjlrixk2UKuyXSJshdl/llvWwOIM6IsU8ZtchyFg7tPr6HvUHbqgXxi8TmVfa9krU7Mz3twFAP04bU6O3jznlhu++VarQRHVT5JOf/gesWGXI5jvc/DgbBPH596xyfNhvpFX/D5OQzDtAkStQGxFCp/jSSFPmJtZTUDaz05w9npuSoLa2iaBhEYw4h3HlMa6RojOOfY7nekwujkfYOIMAzDBLdIMRKjRmmdc1hjsYV9qSq76nQBHB8dkXOiNmGuVDwiQj/uirD1GHE4r1ExVSbqsHbdClMc2xiVgy/mSEqGvh8ZhzgFcLwX2sZx5XhD2zq8deq8pVya4BaxIlkbrkMxkB2+wFSsVccy10bsxfARAWfVKa+5qqmZtfZEgJzpQ1CDb1QnNxajZRxGQkzsowrrmBJjP6jDXiLN4xiLbnZFiM91UNrYVwV5irnqc52TXGoGq8NnDGC0NkCWcONZsVXYWUoB6yzrttUsRulVNaTIkBJ5LELPGiSOJEmY7DE4ogUkYHAI2tzXGFMi3LMhjiRsbiAnYslOWkm6FrKQvSOL0ry7BEOKiDVI1HU1xJGQAzYJI4AYnPVEyXgER4AUSMbhujVOwOQRnAHToOX4iSYVinvnyKU1hEmFszWrMRdSr4ZFEojqsFnrMDRE0VYWOUHO/ZQxFBoy2nPu+c8+AjPyT775Pfz9v/23+Nx3/E6OTq7w/d/7Pfz8z/wzRBKvf+Ob+WP/0deyOT7GO8ftF1/kW//qN3Hr0Rt80zu/k6/9mq8kZjDZ8Wf+4l/i0cefJKbI9uKCd33HO7l79y5PPPkYX/Mnv47jk6uklPjB7/8+3vdLPw+h47vf/W5+z7/9Rfzasx/n9r1zhovbnFx/iouLfUHxBMjw2te9hn/2kz/Cer2i61ru3Tvlm//yX+d/+9t/l9/35V/C7/99X8Y7/9o7ef2r1nzmZzzNf/pnv4Gm7Xj5hRf47//bb+LBvbsAvPEz38af/i+/gaZteemF5/mbf/mbOD27DwJv+cy38fV/7htompYXX3iOv/LNf4Hz0weMwxZw2pvSoNnkXNau2GK4DJq9yVrLHEtza4wjS2EmLAZBHNV4bbyfVL8pTswEmxchRw3oGGu0z2UGimEWK8kDGhkHYQiV1TCSScSw1w2ZVO5ZAyk5xNjCQBoRowiJISYkRlIOIAYjjthbjBFOjjvECJfbC2IYMd6o0V0bXqeMLQE+22pz8HG7ZyTT+g5vDdYYYk6M/QjZlISnVu74HMhkkvEKYLAZZ4AgxElsCc4IsS8U/E4lW/mk7t+kTeydCNYbQk4ql0rNG2NSJ8gYstF9llD6/alusjJMSkO0asKpDLBQnI4Qowb/nCGljM2WVK5lxKqTHHt1QhGSFMczJryb0TApRZX1TuUfSeW7mFAM+NIARAxjKC6mUcdbxanDFJxkinNgtWbzlJFVkGxK5kcN9xSlxu01Q54rhJrJEU85KROz1SDTlG1YHNYowVyOSfVCceopxjy5wBkzxKSomymgWEiTNJCgwVbVf2nhZORiQ1Bq6YSUlTVcjCXJocOHgJla8WRyYVA3xun4iOqpmgnKuQQCJEOI2GyIZLKzmGSQmIlW599FQxLVCcl4MqMGO6gZdSEGLa/Bqm5MCZxAkqaMseoRmzNZPJFITqVlmCTGSGnhkMu+Li9l5RWtA9RuqutWS2C0li/qfYxgjC3yv2T9xABRGU2LvUXlAM8WbRM2owik6K8JwSSUtadzkbM6Ybk4IjrGUurkdE9OiDLnVC6Mg7KxFmfDlCBmZbet86hIBDsxPN8aOAAAIABJREFUtOrSjEXiVV9rzmNXWTgFU/MUepnGUQPEdV9RMpQJ50r2NBbGfSOTbZFqgK+MR5zuVOs5SgCPGXERi7OdUmLeacV5Ejc5xlK8aClII/17vY5+Nk/vVvdpnpx7wRCZbaQaHLPWEEKcbcIMpDizvVYeBNEg11zSUIIQE0Npmmy0CQ1WIVwpT3a0ZvMXnjSa3k0Lr3iyV5dBI2PmLnVTHagprYMOnV4RePnByKePf7PHJ8OG+kk7i1/4uc/knIqwsrWYXYoDBnVBxdCjWqXGdyo9cCaEQMxj2QTq5MW0YCQsCy1X5QK0viNn6Id9YcBSRWScU+dT1FiyJhOKUDAFj5+imhzr9VpfPs0R/JQDvvElS5gIQSuojFFDqd/vSUmNgLbTLEss0b2hH0GEiGHfD4y9EvU4b1m16vwW35mj9QZrwHm1ClMxkp3z04byjceI4cGDc9q2Yb1ek2Jkt99hjFJkVyKIFMuzlpC3c6r4Q8z0/Ug/jFxcjqSU8Y3QOou34K3D+epQaSF7EkNMEMNYskggonDZmBS6EsPAVEspCtsTsaRYmTpNcfgSMY0TzCpGpUWu2UhrNXtRo4nOOB0gEWIOOGNprNb1RSo7YGaMAW9XxXkP6tzVZtZZCNkQUlaD3gSG7Y4xaCb76PiIxnmcJFIaMa7BJhDviCljBRqXyUYYszpuxISkSBLLEEcMGYP+LcQRMY627cjAbreDnHFGaBrNZidUMRir0C2TKZBQDVQ0vkT8rZ3IQhrjICfGGMjZkG2E5BQZa2rGxmphfjEaSJExBzqzIeSeNOZinEV+4i/eIgs89/l/l//4j345wxAQsUiIhW5dIUuSE8Y2ZFMY81Ikx4RzLQppMuQxE8MIHn1P2yAFht54NUrFNgiG/nLL+cU5dtVxsnH85M99kI88f8q2H0oT5xoJlkmJLFMWFZJWDZoamHr1E7f4os99A0e+JyQQ22EwDMOOHMEah9r8I3HUPWZcQ8qZfb8np0DbdnhrSTEypAAipNjQeIP3lhAj55eXhQfClPUby3Or4YcJIKO+Q9Z6x2L+TRFljZjPmYiaJc+lXtU4BxnGcZiMm2rIG2sZavQ+ZcIwKv27cxhraBtf1kLCF1RCxpCzsB+2DIMaIlZMCaxlmpWnNQYZA8Y2uG5FSAOtdxytupLh016eZxcPGFPhtE5qJA4pFEp9zbhs9wNjEpxrsSZzsvJ4J4xBgy7ExOWwY5dGZNSI9+bkiJASY99jMYXJWufeWYMzgm88GRhCDwKN9bpOkyGlQMyBMWacaRl2lwwxEogqa6u7notRTcZ5N2VCNLhdWhTkWjumjr+IwRqH83bO6JYMhouJWFwzrMWJOtBAcUZMAScmXSHFAowpKqzdCsVrLZEDgKRO50RSZkpQoTiC9YfJiCulCTmjzBgLVEmqNuPcSmMytwUUDiqTrjDFWEaUGEukljag+z3rnreFYKW2XjqE9y2SD2X9p1xInibnVDPNtTY+RArU1GqIs+6bYlTXn2sP3Dljz2RYC17lniz6SVayoCJSVL+CTYksGjDMsTxnQfJITvosQBIBY4tzWyCKRh0/KXBTJYnT+wSZx6kVT86WsTgqlUVTsiXmgBQ7IhNI0czzxEzEV1seaKal9FwMi1ZiRQamFHHOUZ1lcnUkSm2wmALnjoAGctU5UmeTGmSombEyp1JTeTljXH1GJqdM+4UqqsyUgLX+USZnpfb9M1JZbDlwDmOMk1MVkyJ/jLFzJmuSkywCG0VumhnWW1dgjDMTshQ5N5ZgT80WV6e6IuHqUaHhukQXjtDk+M1jLnWMTG3xEFVno0ElY2QmsSmfW2yMg8yZru/qOKbp97Gu9er41qycaoNpXHW+Cry57MPp2otgw5TtrbZi5e7gEDb9MIJiqYOr02fMYo5jLmvUlWeMs7s7vbNM8yQiGnhbPOd8faa9Wsf79qedxX/jx/+nrTO6ZlWcxEwIAykHnMtYq0I4BhiGQOdXpBTpVk5x6zkRYsC7bhKQ/dATUmK1OlpEjNLE+JgzE6Q1JhUOx8ctKUVCCGTRDJvCWoqRnzMuKcpeRKMd1rSaNcuFiMYJgkXwxBAZQiT1qiCdgxh7UhpoWoexCWPVyeuHXclkaoZsfaTv0oghrD0UxzcVZVbJKkSEi36vdWK5VUcvRpyxrFaCmEwKkcttTwqJ8+2ephnY9AlbHAljSwYyC3EM5CyaRauZSWNIMbG7GNjudmQyV45WNI3j7P4DLrZ7ovHEHBnCJTkFrh51XLtyRNcYGpuQppsyf7XW1BqHMQ5jFhK81FxoraYagjElxpL1lar4i7BXg7sIXCrkxZRI8cRSQZaGuRGRwRfRPYaRznsutucl+N8wmIQXwTkVVB7PuvNcPfF0OfHqz3uGKzdu0K0NP/6TP8v2co9zjsZtuHe+Y4w9TbxO1xm6VZGHMTOEUdk5ExgrpFHrIdvWE6Kw24N1FpGIpBFvhKvXN2zaI86Gge1+h3MWX2GE1CyBLZlVbU5vnMFbg4lCjgZnLePQ08dAFMG3hpwDrXeEoIrQ5EDblAxxGBEjrDYbVTI2k4cWs6rG9hbvDbnAza6srzA0F1hvuNpuGMeBPgY1lDIgibEHxCFGWQ1zFmzKSMwEIqNz0Apx2ANRYWURYnQEAbFqgEYxtOsTmhN4cHHJndMd213Q7I2EmTV2spzTbCEsICxQjJWyj4YQ8M2aN73mFg8uB852ibbxkDbEMRNyYD/uybFBnPbH7MdBx65psHZFTpGhQBR9u8a7hrb1xBjY73vu3zKEsePohZFu1dG1HSlHYoykklk0Aqu1p3GWYTuoYyKQS9ArxkgICTEW7xzWaebj/OIC33bknNhtL+hWLZ2/xjgOGuyyhr7f0/c9m9YiWJxxdL5lHAeONi2Nt7RNo7WAMWKt5f7lKcMYGGLiuruO88KmW9H3kbPzHRhYdx2MA8eblpQy+6FndXzCumvpRLN1V45OWHdr7mzvs9/vefnejvPtwNmDPSYa+hQ43V4QU+D68RHHvmW1bnBOcFmdkWblGHLAinC1OQEvrGiwkthcaTDG0V8Yhn0gMSBNMeiwhAj7ocdbp86kybS+wdmWOIzs+kuywLprGcOAtU8hOZaMf+ai39e4U4FrC/2uZF+pMGGVQeMw4kuAi+IEPLi8ZD8MWONxzpNzMdrzXmvZjSUlDZCtWscwBi53e2LQrD/ekpOh8Q3eeExKCgogY53QWjWLUskquEYhlP3Qq14RSwyZnApZE0IcoyIdvC11UQIxqzxJ1SAFyeC8n5y6aiS6BbsjAmEM2hZGrVKkwvVTwnuHGE/CkbMagjkWhA7VoLWALb2KE7UfbMoJk3KBI+YJom8QrCsOkwOMpR/GuS5NNPNb220JQralfUQMyltQnHODECQV2v1ETAq5dtaTshCSOgtOLH7qAZJBIsllxGRsVscjGUf2BsmhONN7GjwWDymQTUtiXwJylHoyDYa5HMlVnichxgFaQCxpgGQ0E9dkTyIQ0GBD6xS1IsXZj3FUR6dwM6hRXeTuwnZQwzuTs+BKmcU4jiWjqIH4mIqTajJiraITQqA6sLk4dsrybiZbvW1bFOWjDsewH8gTTaeeM4aBDLqWYiIOJeNk5qyV9w5jLWEcycCo2HO1zawwhjA5DNY4jo9OaNqG/b5nv99rZsoociaUcg5BM+pSZGot9ckiNK0nxsgYEylHUgiz810DcgVyHKLadpUlO6ak7LTWaZ1jVnvHGqOcB2lWT6n43lpnXGrJy3s0boZ/q4+XJy6I6kDpqXk+SSMApGynHtS26D1bSgBSXvYjrbqyZHCLb2tkkQ1EyrqSg2d5RQnQhA4rwdoCH6dmsGV6bMgF/iulRpes9yZDClNQo4bzZ91da181y+hrcGOKPOg9Z761uZfqp49PzeOTdhaxCVMyUmIEk22BeSqspWksYhJOHCnqztFoudOIYdKMlrEO7xOEoIop10VdmsxKwhpt0wGZlAKC0Lim1MK4aUNn0kFDUFuIBmrUVFBITQyhkAzUmphE1/pibCjso3GW5BzjkPDWIs5OaxznsKbAd4y+gwZHIo1zNK4BY9R4MNXnqRCOUCAtJSsrvjTblSkyWwvfm8bNtZcsmBnLcxhRiJR3VqE/aGbBGEO3ivhmg5BZrRu891gi+yEScCQUyjuO45RdSqlAFxLkIZTIW3H40ggIvplB/lMdSFIIsDqxpZaBNAntCkmyYmhK/d0YlZ5aCj03aY7mBQ3twtQXUV/YOUeOmVs3r2KNxeA57wdaZwlRldDN6ydsjhyXtx/w6le/iqff+kbEey4enLLuPHEMhCGziwHbeFrfcNJ2hDCwu9wXwaVQOnJJdqKxQiOaXWlcw8n1FWKFHAdcTnhr8G2DkcSNrmPdwL5XA8R6A1HrPdvO4azFqJlDHzVKa71FrGawXONomhWd95g4cqnYWhBD0zas2gZvDJKFlEatofQrJMA+bdWgNEpI0PkWax05Zf7rP/5H6axh1W60XYvJGCu0ODC2GMxJKbWleMrWY0RojMPkTBwiIQm9BPqdTNHAEBNDH4k5EQZtOo1pyNmwkYYwJkKoEdU5czAfmYPj4Qhn3QQipAjbfYDSiLqxia6Fxja8dG/Lg4stw7inbY5oWpU3YxC8s3jnVcGlqJlaUafBipDTQAhqxL/3P7lFjpnf8Q0fJfmEW6vR3qdQ5FYJMO0D0WViKI20jeCtEERorCc3gvN+gvwESXSNxTptmxCs4AROjldsLxW6asSwXrU4m+nWLYLFiqXxDTl5jo67kk1RjW6ywxhhkxu6rPBjEUfbKKyys5bG2cklj2jWMpuEywpz2u8HXOuxzrLt94QQCHFgv+vp+4EYtMbZt2Ci4aY/xlrLauXpjKdtPWNKjCGWMtSIs7pGu8ZzfNRx1LSMw0Bf4PvioF0ZrO8QicSU6IPWct26dqxZoGQmxmjNRgUabzHWcnzUIGLp1hvSEMhJk3anl2poQyFaw7D3avR4pxlK0agm47DHIpCEkBNZBNc6ttstKRfoX8zYVYvYdjKuTFYYVetb+jBoQKk4RjjBSS2H0L2HEYaxxxjBe1uSipr1aFt1stp2pVkKanZr1mMpqbNYW/potreUHpSMSSWZw9TsnCqfmCJiqv5SOdv4NMHFKEFNXU81N2LLc2gu1ThTMjmhBDQ8gsHYlol339QscZq2dIhhciSq4661Uxaxmh1McQQyMaNIgRLsTQIGC1FlpsIodQ3bQp6nGWF1ipz1JAQbleSr6hOcn94zm+qAaCGAFJihwZVnSAUlrozaOelzaJDBKDIkJ5IpOgEhY3VXmQJjRpR0SQxWMra0mLKLDNFE3kZ5lgy1yfuUKSPP5ZFZf1bYsRL9LUWmsYp5odgkYmAcBhChaRt1cESD7UvmZmssvvF0XTtlzFJMOOPJZY1rC5CM9bY4oooMc+V7K5ptFCO0TYuIsCvyu9Z8AoixWAO+UW4HZxwnx8caWHMJWUmx6dRm2O33Wu9b1h2gxIA5lz6RqhKctXjvCTESQq1R1tlVe0rHz1mtv9fEw6xbtC5bn3fV+skpy6U0B/WjSKbWtS7qbarmmpNpxbGvd5fiF9as4itV2tR/tqZThWluZ8evBDz+NYcs7nNQU1/ekWltzTWF0xiUvTXVRAuYicE+1xTh9Pn5g3HS5VPPR7M8JQMT5GFe2ZlpbHQ/zLf69PGpeXzSzqIxIzlpJMp7g4jH0BZyCmWjbIwQACQxDCODCN61iJgCCVU4onUGYxtCUEhqwmLE0jaelDJN00wQRlMiXyZrJs3ahpQoEf9awF0irUWw+xJpjTGAsRyvNiWao7DUnMA5hUJ0XqM03juMs4zDoELGlCqzpOcbqwu9Rm+NCKlE4mKJ1GYUJ0+ei4vXq06hjcXjq+xZqShhbx2bK+3EbhZL1MhaZRTUnkfK/GqcwhWSgFjLMA5a6+g8q7VgK2GQpn24cvWIK2X8yJBTS8yJy+2eTCRkVUASEiFodtA3DVAzMyPDkBfUzg4xht32Uh3UtsN7j7MWYmZ3udOMrrNUfPtq1RFCIsWEcZbz80uGYWCz2uC9w3pH7PeaqW3U0Br2WrP3yM1HuHnjKm94+nG2l1ue/9jzvMVfo+s8v/mx25xdDFy7uuaxRz3P3e95w1vfwsdO7/PBX/8QD+4+4O1vucX9uxe8cG+kOzniTW+6yf5yz/PP36HfJU42T3By5ZgYehrT0nUdziQuzy/Y9vcJseXk6hWuH7WM/ZaP3rmH91fwKbLbD3z43jljCHz179Ieffd6uNgN9NtzutaDcWyHkRBGbqzX5JCh9WAFGyOERO8M6xs3GWJi//JdVrHldc+8kdPzB8Q+0ceR527f5vz+JSd2TTCqyY6t0Gwc+/2xMsJ6rRtuxOKtZhwffWSF9Q7GxOV+B2I5XnUcr1ucFcYhMqbIkW/p00CfRiRqdNv6Du8FITAMkYshMg5eSZ2skJ1hfx4JYWTIlwiZNFh2Y+Tx4xN2p+e6BlBnIMfZcJr/PXRUzTp9lbIXHO1qjRCwBDqTaSRCFs4vt1zseq5tVty6foRzmvUMx2q8O+sJIeK9ofEa5NkPA/1+z+V2ZL3yNNeOWHUtMURuPnINxLBqDI0VetfhncU6z67v2e56co4ENKiVi5yQlDk+UaREiIE4DkiMrLzj2s1rxCyMMdI36mQebTqEzO3b90n7ns3JhvXJCdc3nRrGCOMwIEYdw2HoiSnirKVrWyQlTDa0TYvvVsQw4g0QB0xrOF6rE3nZb3HrDcM+Yk2i3RwBie3Znn0UQiO8NNyj3yVWRg3gR06O1MlG6FaGzjtOupaU4cUHl6y9JQyR891ItAbvDaHfcu3kKpe7kfOLS9Iw8GC/5/5Zz+kQaL3hxtWWrjWMIWLo6JqO6xuI456rRy3b/cDFkNgNA/fPL9QZImOz4ILhft5jJPOIy+x3IzFoxsGL1n/GFJGk0PzN1WOGccfRyYram84ag3EekiFFhbinDDfZsN/tCDETwsi+H+naDrtqGLcjaYhYlwgkhiBcsSuunFzHWmF7WWq1yv2V/VqzjMNuzxgjyaiRrnDZBEZZiZ1zhcRIP4tobdI4jjTe0bUNw75nGIMa/c5rNshqhiFHzTJntG4rFlRHTBmxDmscrRMkK8LDeUXn5Bj1OsUhGpJmaVNQGOy+D1ingZkYA9ZAt2oU9mgU0ZNSJsSEt65kSPPESh5T0rEsVnW/7yHLVIelgc9MJVqSYm2G0qfQFFRKTEllZs5IY4oey/psxmj5hzGlzCRzeXlJP4641mtGMmeyWAKw3w+0RmgaNVyHvYojs+5gGMhhwHvHmDND2JeATXFu08iQg+q57MjR4Wwkm0RMCnXNJK2DG3cY47UELAsky5A0k+hEEcbWanas9iKtmTAjQog9ZM0wa0ZIHRBnGxWJtZWGlQJN1UOMZo+tdxyt1lMgV2Ggwvn5BcMw0K7X+Ebvb6zFWw8C4xgIQTN5u/2elCPeN8UGiIhx5ALPN6SSKKj1dJGN84VDwhZ7sayfEPBNU2QadOuO87Mz2maN9w3WOsYI/TDQdopeq5DWyt0QY6Tf70il/rHrFAk1jiPDOBJKrbjakqBQaiU6zDnReF+QZkpAt9/tOLu4RIxhve4KKZY6zRmtNXbeM/QDYYwMfdAAo7G6P0OcMnLVQYshsPQMqx9Y7cXJwZzYw2uWr4ZTF32eS9Yz58JxUeRCTqn0lIVcbNP63mqfqY1aa47VSUtUWGscQwkslr+VrH11DNXJLQSJqZQ4kCfvW4wGM1rnJ0bvLMKu70s2vBA95lqmlhcqXQMNE7GURksO0ESfPj61jk++z6LxGm02riy2xLXrG4WV7gcuz/cYLL2PmvUpqesQFWrVNV7r6wqm3VpHjG5iflRnQVkkY0w422KMY4iJMAbCMM7MmAlS9kpM4dTBTDESh8Aw9kq84Ay51BU9cvMq2+2WIRVYTM7sLwNGHMaVaGVWZ9MWaK1CQA3OeXa7vrC9mgKBUSXpXcflbst+WyJiAnGMGmm1hTXQaEZB0KjrMO4hg7WOzaqlbRxH61WBDmodXIwB6zxN12rEfwyFAMgwjJF+n1ivG0wOeFHFue9H9iEpLEM0S0kypKBwuX4Y2ceIcxZrgkIarKXzHa14nF0jIrRdizGWGDQb0I/7Em0WhYsCw/Eacp4gdLawNY77S1JUpe+cJYTAYDXrZBpLynD39JS+7/HO4RqH8RaJDm8tm64rUD6FEB6vO5555g20xw0v/uodfvHXPsTvePopBMcLL77Ib378Ph/+2Ms886Zjbl17kovL+/zID/7ffOBXP8IbXvsEf+TLPoOP+sTquOW1T7+Z3/bMFd7787/GT71vyxM31nzxv/UOXv3Ek+xOP47EFaur18hp5P5Hn+fO6W8RxiPe/Lan8Sbyf/3zn+fjL97jsVs3STly+94pH/zYfY6Pjnn8yWvIOPLqzQ0ud5HnPvpbXL3esQ+GX/7gbU7P99y6tkFy4slXP0m3NoTTU/rznvaxx2ifvMmvP/tRfuOjz/Oam4/wB7/gLTy4fU7c9jz70Rf5iX/xqzz3/EvcaG6wl5HGCW999SM89uQ1NqsjyHuONy2bVUdOA5K3WOvoNh6xMIxnjHHLU4+8hs3Kc3JdjZnTly8467dsVg0uWWxyxG0k7Acuxx7fCGIG9vueiAcZ6YylW3e0RyuOHtmQwoBdBYyB3XngYtjTmDV37t/RTL+BbIymgB6OltZvq2b9BEfOmaa1PPnkI2yaM8ZLOB8MQ4Tt7hKS8OjVE173xDVWm5aLB6cq6NyqBKnUqHVGMBIQgbZp2TeCsR3rztK1K1onJGd57WtvMfYJ8oBvQNC2I3HsOV6v8I+dkBFu3ztHCnxaM0iGtuvY73acPzgljZHjow3HmzXXrhwTEwzjwNmZkjlJzpr1EqEfA3G3Y5VXhGbENi3OGfYxYDBcnvXs+562a3DrVmGvUbh/eoExPd4PtCuw4jg5dqQ0studgzHsTeK4a/EjxKxZRt/Ayaal32d2cWDI0AeDNT23bpzw2lfdwllHGEY2vuHKyRHb4YLbp/cwYY/1HTHuWTuhWW9onMV0nluP3+Du+Y6X7p9x9/Scs9Nzzi8T66tHrB7ZcPWoQ2Lkuft32Jw8ymNXTnjTU0dsd2d8+MMvEJIhBGG/37LdP+Do2olCsS8GJAbOx8SDi0uefOQaOWeGqNmcTduyWXtySqQsNF6QxrMbAy6MWCxhP5Bi4MqVIyWqsIa2McQhkIPBeIdfW7Brdn1gt4s4A74xZCsEBsYYiTKy9iseuXqC85b73GdjWwJjCYFoL8KubTAnK3b7PUMccI3HW4dYQ98PGIySg6SM95bdbqvwPgznJLo2c/WkwR437PuBbd/jmg5EsN5hBNI4knKmW60JMbDb98SoEM22W+F9w8obTBo5fbAtBHIdKc5OhHMN4ltyCuyHS0IKnD/o6fvElStX8N7Qdplu5RER+p3C9Y0xDIOu5fMHUeG9jWWz2QCwH0f6MUDK9C4TQmJQBDvdqqNtvNbKh4T1Due8chqkiBhDP4wM/TjzA9hELSdpmpaubdieXeCd58knbuGd5c69e5xf9rQr8MbgjcWZYy5z4s7921xxDVdP1kTJ3L13Tts4jq8/AmFHDjt8s2IXRi7OzzXDaS1jTuQe+n6nvaaTIwZH00AygW0YlVgoCITE1guNX9FYhyRIyUIeEW9pveANkxMWxnEyso1Vxvdtv8OJYdX4YidpQGS12hBiYBzHgsRKdI1yKWy3WzLCyckJYoVV15bsXJ7E7IsvqG3RdCv6vuf8/AFt13F0bUXTePphZIxBM91NDTAroUrjLSKefR8Y9yPISO0ZOQatod9sNnjv8V6zmt3K0TRWEwJJs3aCgRxYrTqtMy/wyzH0DPtLjo6OC7eB/mvadqrVC+Nax8sYVus1u+0W6zxtm6ZsdmVYbZuOtm10PcVUstSV+VodwabxxJQnYp7NZkOIA9552q6lW604f3DOOEbGYWaH1jnQmj4lHdMxTlEDRZVJWtFThSCKmqHTLHxNklRmYmNKprm0GMpZ6keV6oCiH2s2U4QYCuzTzMQ2xpgpAQGlXrjAqa2o7QhMzMC5QOBrvhvRbCpIIa6q9Z2KHHMI3ntWqwZfcbFiStLCaoCjtMqTlBkJyvqeKTBozXAr10ghtHoITPTp41Pn+KSdxZRbkEFJZkQjUPu+MJQaWyKPlsYBWSOgMaYScSyMWTGRxwpXHBlDYNV1+LYhp8zl5Z4QIzEG2qbDeYV+OW9pO1fYlBJiTSnghxQHjSK1grSOLmgRs7OKQw8hEceRsR8YhpGm8xytO07Wa0I/qvNqAAwilhgVSjSOIyFGUsp0XYWOZjwW5xpySoQ80K0cXasEOlpsXiIophaRG1IW9v0AuSE06kT5xrFZdVhnCSmxv+g5Xrd0TcMYCzyjwCGsGJpGWVA3HVq7YoTWdfRDTx4i685hXYGWhKj3JZHF0jSaUYxR4VE5RULKhJzJWBJCNrZEiQIpjSXaJhjnNFGZIjFpC4SZ5ltJIxSWKxyfnBBSUvIYC500pdXJJOV46rFHIeuYGmsRCzQKzRMU3nm8WRFj5MHZKb/8Kx9kGCMvvXSX3S7wgY+fkj2cD46T4+s8cu2IIA2usTz/kefZrB2f/czrecdb38jzz93m4y/cx21u4PMlD16OfPzDd3nLrRu86lU3OD+9z/tu32G1NkS3ZffSC+xP7+LDyNve/nqwj/DS6Sn37r7EB5+7Td8LH3v+PnlQZ/b6Zk1MiR/9mQ+QQ0Caln6I7C8veezWNXZD5FeffZ7z7SVX1xbvWrh7xubCcuvIc+NWw5j2nD77EfYfe5nPfN3jPPPMG/mZf/YL/NYHn+el2xecnm85u7/laHUFd9RyY3WEt8L5fmT8+B2uH605Plmzv9xx+eCcdtWy6lqN1Obq1vvDAAAgAElEQVTESlrkxk2efP1VGifcu3OP2x87w/uGExO5erTi3v0zxFvEa8Cj7Vo650gMeNdw4+SEmC057GnEM5IY+ksuC5OlEiAYsnEY23Hr1hGvGW6yWjXk010hMynwlE+UVfyEjuLM1GiBxojuC+c5vmqxkjlZrbjFESknLi8esN0JtjAaa4JeYWYxRTVOBJCkUNymwTeCNRo/FQGTM42MOF+gaSJ4WzJ7RqHicdS6Y0maqQopsdv2hKDyLKXEZnOCkVLbkhOnZ6f0obIUq9I1aSCmxPUrR8TjtRry3pLFkChsoUZr7axt6FpV6mFMGALETNtu6MfAxX7HdlSoW0grVq2j82tCiFxvLN54eg8mCdbAnbuXXJ73GNPgvSWzZ9zDeWfoguViO7JuE60TPut3/16eetsXEFPmV3/+p/jnP/wDQMOqs2z7nudeepn9EPjCf/dL+d1f8YfIwG//+Mf4nm/969zYHGGs4wt/35fwBV/0JQiGszsv856/8+08euOEaydHPPH0Mzz19i8kxMzpnZd497u+lYvLHY1ZYYJl4zzNIyuMJK70kbut4+6DkfXG0a085ES2iTGro5ZCYAiR0+0ZQmaIowYMdiOSs85DDMSctXZRyvryjuE8EWJiTMqBekWOsUSsAzEdQkdrL+mc4+Xn7hHSSLKZ87inWzmcNxgnhDGwG/YMPQzDDtcYNs7jbSwkQT1aPpA4u38GIuroZc06CnDzxlVCvGTdevph4MH5JZf9GYil645o24YrnWaghp22sEohKJxShNgPpH5kLFivISh5y8X2QnVP1yKihELDbgspMQ6BEBWu2nWq50NMhIvI5UWPoM5BSiWrIUZr1bKS54xD4ixcklHClNYZjDOcrK8iYhijsN3uNADUWPBZA79kxGbWbcsYI2MMnJ9vkSxcubLGOMvQ95q1KugeY6DtGgQYwg4xjutXVjx2/QRah+SAyZkxOOK257e96UlO2oaX7+944fScK9da3vraJ+hsS+aIlEfOtyPGO1J/wm4Yefm8Zx8iXSc07ogP376vpE4nHkmR7RBpckSs0HhHIw1x9QhGHEdNAwnGIbDeNNpfsJSbGAGT1cgfxpEQVTIOMWNsq6zABTqpDkrk9Ow+1lqatsUYQ4gK53XOcvXqCTEmhbrHQN/3pBC43O4KGtAg1tOuLEMYCTnTdB0xJe7eu0fOuv6GEMikIhsb2sbReq+JpaSCuFk1hXDLUgsMBOHk5AhjLLvtJcMwsj3fsytQ/KbxeGcL+7NMMMzax7T1gj0+omnsnOQyQoojw9ArAVXhqBiGgaFX8kEjIN6RUiqZcKetfYzW/dds/VhIFENK9Lstu+2ei8sLcs5sNms2664w4GoQLw6BPu0wKeOMUec5lySGtxjpCTFDChNi0ynL4pRZhVriUwh6cq3rs6TsJwcyQ6mTTqVCMJfyoAJZLY5dTMXBS6VesqtZvDTVAdfWNE3TTD+nrIRa1jpSOtLsX2FpTSniXTNDj1PZ3zGRWy0bMtZg3SGU1TAznGaEVdMW806Ds4KyUrfGKMIKpj7COi7FhvS6J2D3r3M9Pn38/3R80myoX/rFn5cFFVKh4L1jDDhjcE4ds5wT292om7fCbDCMw6g4ekFZu3IkhoB1jqZptTatOjklUqI4cyV7sE6VkhRlCrDb78t1W7q2pe00WjSOvUIfnKNrWxBh6LXPYChRD2cFZz1jv8daxdR754kx0XSeoR/Z7fpS82HZ7QfaVq8vZJqyecbkGPqe7U6jJ266J1hbSHrQWs3NqiltQxzO2EJuoZ8Ro+yId871OkqkIvR9T7/b0TZtqYHKNK2bMo8xZS4ve4YhsO/DxNxmvbbW2F7uECMcH63wxnC0amgazzBk9v2AiOC8ow/jVFg9jjp/MWZiiBxfOS7CN3N5uSWTuXXzJmEcGYdBlUjOdG2LbxuNBo/qVNZon5jKqpc0kmeVddZUTLwoSYGzTrPCIoW1ciQi2AQOjb6OBZrWOEtjtI4nxoj4wigaBpy3HB2vuXv7soxZS9t62iZydm+vtVWNB5ORFGialtvnW3a7PfsHPSEJb3r9E3hruHvvPhe7LRe7PQQhGY9xEbGZFCz9PkIUzRhbQ9M1rLpasxfp+xHJcO3qCrxVmn1rOL5yhG09fhi4erRRw00ypnHcff4+d+4/4P525NrRmt/29Ku4+chVHn36NWzv3yPudvT7HWdnF/yudzzNR5475fkX75GA173+tXznHxnYXpzzP/zUTdarDenKmt1+yz/44Z9hHCD3gZOjji/64s9nPL9DkxLHm5b1yvPy3S0pe4ZxS46RELX+7/m7pzhvuPegRwSaRhXDuvU8fnODEcN2n/DO4I8cpw8u+fbv/Sk++NG7hCRkwsJHLNCXh53GRYax9pU01vAHfv+/w1f9ns9j98KHQGDVqTHojSUZCBm2+5HQD6z8Cmu1RnYctKay7Rqtbwt7cmE6FPT5d33EtcJ3fY22ivnj371X9kznSAnN3nlLEuFy2/PgoldG5DCWyL0yQis9emYYRrpG17YzQtc0GAMhKQzfmJYfav5iMYpmFrxckANv2b+Hp92v4p3ng+GtvM9/Wall03uJFCNE4I+4byfHnhxGfsr9Cc7sY6WVkJJnaR9Fy2cffYDf2f4IZ+c7fvPsOj+0+2OsuoYrxytqc2rXeO7evs8XbP8WN1d3uH5lg3vrn+QPf8UX8NV//TcIMfIP/sJb+cbv+xA/8/4zNuPzfFH/v/LotZYnn3qKf+8/fyd/4K+8n7Nd5Gu//DEeu+b5lne/xFOPNLzrTz3GD/4v38CJcXzG/8vemwbrlp7ledc7ruGb9nDmHqVuJKEBicFAEKZMICZ2BHYIiUHBlAGXgVQcE1elUkVsZnCVgyMgQFBEbGYbMAhBMBgEAoHQDJq6JXWr1d3ndJ9z9jl7+MY1vVN+vOvsJskfl6qS4ofWz67qffbwrbXe57nv+7q/+Cuo9xa849/9Iro64G98wz/it//V/0wYdjz8mi/BTvb4vTf/PId7c2qbn59DCvTec+doi+sci0XJ2XbLstmilGQxmSKixCpFXWXHSd93GGPohn7M9WmkUFRlDSln8ozJQ8jx3ROm0wl1Ob6jyM+0oqqB7NSoipKqLNHjur8P0DvPpm9JXnH3zq1ctaMk3ieGIVBVU5BQjhbx7dqxbRpW6w16tJnOJyVaK+Z7C0JKLJcbut6xmNUokYFK92jim007ZmXz+3K9W+fPn8ygLERmCCilKIqKe9UYiUTbeXZNx8H+HiIFXLvL2UKlkMpidI6BCCXofcR5z2q9wbuATPkQLIU8p3p7F/IiWMkRAJSPuowDpVIq2/8EKJEzd6qo6AeHIC9rrJZ0vacfBoQ21FXFjRvP4VOkriej+pAP+otiOoJKYNM2bJstQioODhZM6vw8ePDKAa940QP83rseI4zvsSEqzpZbvupLXoX3Lb/3/md45mjL573iMl/08vtZni25u9xyumooypIrFxYUAj5xc827P/IcbmgIJL7gVQ8xqyy3Thuu39kylUuULXntF/9nLGY1wd9lOj/gl//NWyimmYA+rUouHexzvD5jOp0yrUuUkkzKmr7vIAoG5+ldXt62Xc+u64GcjdXGoqQmxEDbrJESqmqC0oYYwA09SmXYyK5paVtHEvl9GCNjT3AkJMG2Gei6jn4Yso1T/4V4WhJIoc8XhVVZ5AyoSFijqcqSEDztriWEwMZnII4QAlNoGJ1hQzfQNA1CCCb1BFtYnPNE70flSyEFY52WPB+E++AydEbls02MkSgkWupRGBhdWvEewfgFxRSyUqu1zueTc4hFdot571ltdiPoEAbnQEBZllTWMJtOEUD0+Xsox1q3GKFpdgiZc5NSynMQTdPs0MZgTJEdDj7DsbKYONaopUyuDyOONo2RCm0URVGglCKExOBcrmM7z0Xm+NT5sn7kWxSFyWdFIfHO03ufadV9f67EaqPPz2rD0Oelg7zXrwuz2TRn12Nit90xuH6sQYvj/a1Q3IN/5fdxgmz3HTy7bR7Sh+GFvyeANPr8XeaDHy3WESP1GEPL9PV8yfM/XB5mE+/96I3/wCnk09enev3/SkMVKpFCHBH7OTQcY2IInhglmBFL77IyqBUg8uHfh4iJEdQIaVGSFGXeFiVw/ZBfztYg9T1wTj7ESCnPbTNZLcy9hXLMP9w77MQI3kecS5mqN0qGUmaMr1YKq3S2Vg6epF8gd2YbLGT8lR7R2qM9RGtCaPBBYmKmkOayeoVKmji4ez3j56hw8neeX3ZZosBYnR/2haYqCtr23s8kMFZRl5rj7UAI+RCslCRFhUiWsrCIdI9UGnHBIbTOG80i21V8yAdVEhiVH8pOSZTJ2ZUXwC15kC1t/jeM1jDWjqSUrSckSVCJQcQ8WOuRLjZkdbewBkkOxTN+X9oIjBRgZM56kGlkzucBX4p7Bdl+tLC+YM6QWpP82DundYbBpDGjEyOFkFilKbSly8QB9FhG7vtsGW57R2E0Rmucd9w6PsEPhsIYBudZ71oSnok1NG1De5ZQVlKXirTpWa535BCLZeg9T37yJsQ2WyqkxmiLkGDKAl3lrdx66fKLhTz0G2uwJof5274lxURdFmip2DY9XkTa3Q6JRC4bApIyBR667yJlabh7tuT0dMPF6RxpDAcHJYfTCXVVAAHXezbLHb7dYWwuje+8YLnuaELElpYhwff86X2c3XieUwZWHYQwcHb7iOdvn1KYCXOd0fydF2y2HdcWM0prqE0ees62DSb1VNbgHJyuttw5W2KrimduLTFSsjct8TGwNy05mFek6FltWqZ1wSePWwgOSf4s+rELbXySwKjA/9/2Vv8PP8o5oEop7rvvMnWt2cacn3ADxOiJSmZ1Qkm0LcAz0vKG85yIDwmGnMnKuWEQIyhk6Bw+ZsvMOIpllVyNFRc+0vYDOAHasGkGmsFhjcFYTeqHkX2Qh1xjK0KIdINDCZDW4lPu4TQ2W05/P30jMUZu/PQX8oa3PM+XvGLB/lTxz3/tOX73z1ZYo3jxoy/ldV/z9VAe0oo5b/j153nbh1fcf6Hg1/+nz+Rn/+CI1758wc33fzm71Slf9rr/im+JeyAN3/tLN3jvk1seODB879e9iIOZwcQHePdvfYJbH3wfCMHdf/MlvOEtN/mKz9lnUSt+7Lfv8vaPdxRGsT8rmRpDYTV/5dUP8uZ3HrPrPAJ487tO+MovuMA7PrbEhQhacu3yIa981at44vmO3ZCw1vDuJxve+K0P80NvvsOLr1ievn6Lu3eOmV65wq2nHueLv/bbePbWj3P/ow/x3DPPcP2528wmisf+/L18/X/3XfzmL/9cbpxI2Q61a1vawQM5A37lcIrA45PDWM3BpEaO6tZ0UlGUGuIEISS7ps3ZGaVJCDabnJ+zSmGVIsjItSsXKKylsAKIDEMg+OzC8D4hidSVYVJmABpGM68KQkqUG4tVhu3qGBci3uX3g5aRqsiLVKXuvQcUUmpm0wm20FSl5cqFBRo4uHCYFevg2EhJYfSYe8s5/7KwmWwbM+BmcAO93+FdzsorbdBGn1N573XrZjp4fhZnu5gcF5sKKQ2Teoop65H0DSlFhvU2W/h8hsaUpaEoLEoqikLl90ESNE0eyJXSuBjG/mPPMAzEJMc8uyC6e92qY2esVKOVElxM+Ai4QCuzlVYpRVmUpJjzq+ddc+leB7DIFsaUVbDS5F7EaVkgRaJZbxlRQOyGHu8GunZgtduy2uacuUHR7hraoWO7a1itd1y0JV3Xs+17jk7W3D5ZEd2OPsLtkxUPv/Q+zlYNy+WaajFw+crDvPjhFzGfaHZdQtVzju6csgggTf7szuc1d06W9C73uJZW0cSG9XoLQhPTX4ACAaXJi7Jcc5WpvEoJJpPyfNHuXUSQK3hijHR9x2a9pek8RVWM5xCRQYEy02qHoT9foNSVRev8bLYmk4rVWIFWliVSQtd3ODdQlpqysvgBYtD4qLBdwI9/FzvC9oLP1VnWGqy1zGdTbGFp24a+I6ve92yIPldPRARSJsyoHCqtcC5bljP1Plu6SSPLYeQ5CPkCffOeqg2Zu+C9B0b1TJKhgynm57GSaJ2Fgb35lLIo8vK87xmix+osTEDOBLoQ0FJSWo3Ro5KaQJQVtiwoyoKYIkOvR6DUvQUdcC8axb33Q36/aaPQ47tgGDzSS6IcybvjYGd0zrrei2upUWRACJQyODdAk3AkopbnESmt5Pm5VQmdfwejAwyR+1hHLj3gIWZVXIqIVgalBFbnpXwIeenjfaDrBobB0zvHvRd5/nfy1y7MXxgrRAQZ0UKi5eguyFPr+H++AG1M8AIk7NPXX7rrUwfcxBofBgprqEb62qye5Jvz3oNJJ6bTsReQ3Hk0uIBQlhgCbgzj18WEJEtCzIqaG7JvXBkzksTGDqKYxpeQp5zYPAyoLGtP53W2pIpI8Dko7+6VYhcFRlskgugDRimUqWC0LiitM9WvMDlvByijSFi6TU9VGKzJErvShtLm0vH8wNEUVo83ZGBa11y8MB2DzBF/Xk6fEcld2xGTZrnJN+quUVijiWM3UCJjmpXWTKRgkBLlfa5mWMyA0V4gMvlu1+6QEoy2KC2wk4hWFdOxm9G5QD/kg86sug8EtL2jd4HeZUBRTUDLnGvoY0QVBW7I1ixRmTFcr4gRhn4gjLjuSV0SU2K3OSOllA8DVlOgabs+V6ZYQ10X48tDv0CF9Jm2Oru4BynQtF3GX8dxy68njEDSXGnicyF4RLDsB4g9KjUIWZCSow95UNufTinKkkPhaYdITJqqsBxogScwZA4KC6WJnSQIR9Ka6TRvo3vX44Tk4v4CWxTMJhVGOVySdC5SmkxCbPtI5yOFzhZnHxJFbPLnk8SkKKgLTdcP3Fk2XLm0l+2NMdtKTJe34kZmO6FVeYD3Hk7PNgTCqMpbvAiZIkzgZLPlt955l+OzDXdO1sQYKQrDlcM9CiX517/9IWqjuHB1QVVbPvDY86zXLbPJjOVqle02EibScP+jV0nRE5Hsmshb3vK7JJ9QsxmLQjI3klvLluu3Tnnk6h6H8ynDELizXBFVpGgit4/XiBg40RJVWXr2cc+e0LQdp5sdtbE8ceuUBw7rTJUcN445+yAg3qPr/r8zjIIRBZ4SpZbnNp3U7Hjyox/hzo0znA847+ldBKWpynxQ7LoM6zk4nLNZ5poHrQ19H1ivdtRTw3Ra5/tdCMKopE9qS3fUsd7sYa3hpOvJ1RUZzjMIyzBkGFHXeQyCWVkwrfPGtO8Gbh+f0vYDC2sREYYuYgpDlAVN77I7oCoBwcNn/4zgHPB+Htq9lZ/+3l/jgQce4n/5jh/gTc//MD55vu4bv4Pf/Jkfpms2VLN9fvTbvoNffeMb0WXFwez7eWT9Ft750x/k+dt3+W//6b/gf/uRH+Lt73g3Z5sd2y6yWq7517/9G/z8G7+HN/3LX+CzX/Mqfv3Xf5mf/5WvYX+RVf+vevjDPP17f0Rz4SG++z//On7tx76P9PKayuxR2TlSRF5zbUA+8ztcuu+DLPZnPDx/DVceeg1veNWvcHx2Qj29DyUK7tx8ntd9BfyTl/1bTo5v85pX/S0m5SO83v4Em8fgka/+fn5dTvid9z3OV7/+CzG25PZZz8kHP8zrvu4b+eAzZ5weH/PN3/rfUJQVz90844mnrpOSROpI8B4tJI8+cJmqKnnsiRuUdcnVgwsIsstkUmZFsekbOpdpl955+i6TFJPKVQZ//M6PEIVBGsOiUpQE/vqX/0fsmh1//tFbnK5bdsOAtYapKTlbrUAkXvKi++mHgbtnS5KWKJswQrBvZ+zNS7btWAKRQBGxRYEbOggKXRUURnHtaklIM2azMt8BIbLddqQYOD5esuta7t45RiRJYRTb3uG8Q0mBlZJLly5QFJLoIgnFxYMD+rbDKIktK8qqxAfParVi1/aEmAEZyij2ZhOmE4sIPfNpxYte9plMphWNTzxz45i269idbdg2ucKFkDDGYouSqjak6EgiMplW7E2nTKop6/UaKaCeToikXP/SNiQBbogole2HMXgKazndNbjekyl4kjtnW3zKdVjERIo9L73/PsrS0PQ9vfOU0wpjSnwaqHS2J9Zywn1qgRoc0giU8Pl+TIIPPP5J7t+f4pRlF2B58zYHBxPe9fGn2Ww6vI9cPSiwBJ6+cUxUkrKY8Mi1ObqseOrGEbdPT1lvO4oqIWcVh3LO9dsdF6YnnK4acAMveeXn8OrXfhnN3ac5e/oOqxS4ebQEU+IHWNQ1PiQ+9uwtws6xXp5w+9YKIRKnyxVN6xBFhTJyrGKCaV0zXZQUpcVIx9AH1ssNVVlgS4ktDNvNluVyg9IFhbFYk2nvm9WWqDRlXaKtxQ0e53rSSHp/4MohWiqkzUCbMAxorSjLApKg7zL0TjHQdZ6maSmMRSVJs22yO0sIbGm5XER8ncnt1hS53zYlSHtokyNFvfckFNvgKEuNNhXTKoNp/JAjPkIqtM4VG4JMd3XDQN8PbHe7rKL5cC8nREwQk0BrxdBn8UApRYqOrnNoJVDSEsdFvQ+Osii4dLiHMZmLcM8FZ3V2rvSDo5MBNa8yXG/s1tVIpqlmUpVMyzpnQ7sGpTVFkQnLwzCMOcgXKMNaixwpUFltvxdnSOmeLTXRd1mh9c4RYkRrTSTks6nIBG8l8rCrRkK+D57NejNCZGQmCgfPZDyvpRTxLts5jTUUhaKwBc55nPNIqdludqPbKy8mjDZMJ7PMp/Ce4CLb8Qw99J5+8ASXh2+lFPP5NIskKoOXlNT5j5I4/7ouQMJm9oXI9WP3MpAp5ZxiruOBwd1TUD99/WW8PuVhse3W1OUEoSQpjUW0MqHUuDHR92T6vDUyytB1juVqR+/yoGi1xGhJ73ZoU+VhsutILmaVyzjqiaEoS/qux3UDPmQUeu5Jg97lG66qDEWpKY3Cy8jQR3RdZaBLGAgkjK6xBvb3Z5Bqhs6BTCgr2O62aKkwKnekuRBQRlMZjTJ5SBEih6zt/pyu7RAxd0edbjb0g6c0IW/mBIgUsUZSaUXXB1qfC893XY+mZz7bywoacXzIkMmSQhCTw/UdVw/mDAMMIQ9QIQW6tsuWhphLhrXNPnAta1Ia0DJSGIk1OQPivONsuyGSuHzpQbq+pds0OJ+BGtYYos/U1xBybYLUknaXaYu2EiN+XiAwrJY7UopZjZwZIpLYN4SYkC5gjKE0hs4lDBFrC9CGZrfCucDewQKJZHs6goC0xBaKfsibRqvNeU5icAPd4Njtdrh7FtiRlHuvj6q2U4RKtG2L957Cakpb5MOGTCOZN/9Mi2lNPwQ2m44wJExZ4IfIthnYm0r2ZlOst2y2Pe1mR9v29MOQ60JCQOkSjyLFgb7LQ9YQA9LmQW++ZxFCUpdlfvD7QCUMly9OqOoio95dzhlEkdXU1jmC8wxufCmperSYSLZdz7pxHE4m9H7gk88+h7ElWpdYLZmWGiWy7bEfPMnkF0kf4YlP3EIpwd5ikWsXygGpNdqULLc7lDU89rHn0EpwUFcoIThaLTFJ0acTysJQWk3TNiAkjz2/Jt1Y4YaeECNVYamK3BGqjEJpQVVaUoicbpucU+kCZ6s1e/MJe/MJiYCLLltwJIxMeiBT1ECMPeNp7PAEKTSKwETnF/5m8Dxz/Qb4gmYZ0VYRVWLnO7rW44493udsblWXnGyP2G13RJ9f4lrbrG5uAyfL42yxTpam77l4OCccLVkuV1z4gTtc3Nvnwzd6YoT5rGQ2NQxS0bucBeu8p9t2nK5adCGpJxn01LiIS4Lbpyu6xnHr9hkxCYpJgZQJGQb6PtMHL16cIEcs/Fve/BvcuH3Ex67f5W88+SRpcogG5vsX+Fvf9I/HXHbeyO4fXKAfWrwbeOJD76CaTvjQEzd429vezld+7Tfh7CV++3d/n6ef/DCTyYRXvPIV/K//+88QQuJP3/fn/PkHPsz0wkP8wR++E4Cnnv0g070p/fYuxWTO5YM9jlYDN0/uMplK9mcVIsGlwznd1QMQY99ggl6AtZa2Hbh555S2eQbsG/nir/xGUkp89M/eA8By2fCxp5/lJ3/+rbz+274L4da8/11/AsDFi3OOjk75Vz/+o3zH93wfRhve954/BeD+q3s0jcF1njiWpBMTd093LHWPcx7lWvohA72eOzlhWtVcPNxjMS3YtlvaFrqhpd84rCm5fG1OUUsu7B9wcDAFleiGgZmZ8Cfv+hCrdssnnt6wbT37B5YX3begG6DvAn0IfPDjN7h7sqWcGrqmJbpseRucpKoNDz54Hw9ePeDyhSluc8Z0NidETVkorl2cUdcFd7cdRydbhjvH9O3AZtey84bLFxYsJvm5e3hhn4kqoJCItSBNNYUSlGMCo+16nr+94mzd0rlApSUvvv8Cg/MgO6RMlIWhqgq0tkxsgVGSoi5xydGteuqypjIVu03Hex5/mn/3Bx/Ce89sViC05v7Lcy7tzehi5OR0xfqZHckFBiV45MFLXFoESrWjH1ruu3rIcr1l1WwI3lOXlnoyJSXHdt1kd8ngiSmw9QOzuqaWJW3nOd04QuhI0TOdFNRlyYsuHoJ2XD9ukFLS9YnT9Zb7DudcWGiU1Wx7MCny4suXeOb0LmsX2LSepl9TVyUXL9YcLRuaVUM3JKpScHS2ZOgSi2nJ3qyki5Fbu8jzJ6ccTksuTAt2R2se/8QNorJYJTmYGKISzKsakubWcUfXe6q64P5HH6Fb3uLGB99D22xZUfHcs3d4xaMPs9w0TKqsbIatoN5T9H3g9tGSthuoy4LFbE6Quc5GRBA+stsM3NpsUEowtQXWWBb1lJDg+vNHGToVM81cKI82AQnYJCjkhKA8TT8gRCD6bFHsg2MyK7l6+TKFMTx1/Ton6w3L4ybbIcvcnWkE7O1PqWzJEBLd4LhcTeV4mqAAACAASURBVLDGYkXAqEQQoKzCJoEozBjdgaHrsy0yJdyQFckYoLJT+q4jFDYT1WVBWVqiSrRdGG3Tgs2uJyVBYatc7+UdWmZ6NaXNWUM3IFJkWlRIaWhlBrUoNZL0C40bwgh5yIvGpg3Z+mpVnjdFGAfTgFAKpQyFAOezIusGx1RncqpIgsVkQmErms2O7WaDjwFtEydnZ3lwjdmCXZYVrs8gQDvWJJVlkRXSEeyWlbrMg5hUNVVZoKdVdk6Njh6lLAnoe4cfAsEHOtegtMRUxdhDSraKqgIlDZNS4WPA+4SyJdoo2m5LCJl1EceFrZY5+hNizvD74AnEzJgInr5rsuAxWlqr0lCXOU5RlTXGGNpuyEPpGKhU92pPgOylE2NddsqLKz/QNDtciHS9J3hwLuRWA6MZxj7QT19/Oa9PXVlUEzZNl+soUhw3DHYM/gZC2CJEYj6tSAj6weGDZzIpuDLbP5ebg4/ZC+4bplWBWUxxaJp24Przp/TNKUmLDCYgcWFSIXRibzbDuR3eh6z2mYpmvaGcSBZ7NfNFzfp0Q9MFbGkp7AB+Q9M5luuBshaURQa2CFtw8twRh4sFFy9exhhFXUCtJSvrIeSMk5Ae00N31mfVbdyoyBjYn1vCUBFSwFaGylqUENRW4ipPN3ik0rziwZeijWW52zL0Gbuvlc75D5XtjJttYmgN66TQBQzbliJpHrp6lapUEGJ+GMWErSoCjrt3TplMJnRNyXbXswsdprBoUzKpM8Fyt+yZzEoevDql2e0YekdVTzA2sdwc0/UBEfdQQrJ33wQXHFqXpAT90CJE5MUPvYTox5Jc75BKs1oZyiovDgaXawgu7mW7ZQ5YORaHF4nJsd01aG154Mo+MeXhPwXF4aUyQ0H6geQdYWhZ1DMWJRxWUyQKKRNd3BFrBTHbnptmoC41F/cXGYKz3uK7HcbWzIoSHwZC8nRDJNzdEoXKPWcqUpuOg1pxOClISTCkgLGKB+5bcDi/gnORdttiRSKYKS46/JB7Mi/tqzzoSsnBYo4xmsE5UvLcOtnggyFXsRj2J3NcNxBFwmtHlBGLRFmDEOShtI9IoXEujhbjiFaOwgpO154YprzsvqtIJVn1O9ZNw95ikbOnpeXKhWnODmpF7wdap1itOm7eeo53fuM+u8mMv/ozZ5ytdqiyRibB9Zs3UdYwKTJAaBAeIw2ltVhbYLVmtznDFPlQIoRkVl2gKi1CeDCaQhfIGCE6fHQUZcmuGyiM5v7LF5iUlj4OLCYFxQemCNEAAzKQ+/PudbQJkQFOXpDQ5z2PUbhs6SksPsLQB5SXHNb7pOYuQ4gIXzKXFXXRIitJXRRMa4OPA7dun3Lx4kWilLRDR9t3FJVmGDzRZUjOqlnRu5Z2c4ZVmktXLnDYCp7/xHWOPAzR40K2XoY+EHwcsfMV5WQGQAoeQjjPnFSFRZKhNX3K1OjUe1IITKuSR198P/uLOckluiFvgEsDDx7MsWXOGSpRsB22fPLpp/iu//G/J+wC82nBfL9AC0E1v8xXtB0feeIW7/rIdT5x44zffdc/5pWvejlf9h//VX7xZ3+SH/6Rn+BXfvnN+aHtU87YpWzZb/qW22d3AfjJN72NR+6bMik0r309PL/qODCGSw8eIkzCBcV2s0HPD5Bacrpac4hmeec2p9dvoOo9jtdbdJV4+PIh/dGz/Oh3fzvaWl792Z/HdnXKyeqIlz4y5xc+/ii/+MQZ31z/BJODKyxPTrh765RLexMuyDPe83/+FBfmhv3qkO3qlAcOK/bvu4g1mmUXuHF8i7PViudXHRTwGfOS5abhYyenzCYlX/r5r2HXOG4cnfDEs88wLzSvfMkjFLXCWs1uu6PdNhinee1rHuXO2ZrTsw1Hd074WHiOo6cHEp5iVnHx2pyXP3iZwlQ8+czTY+48crw8QYjA8V3NetMyqERZKx7dm3Bt74DP/qyXcevomMcfex7XKWRxl1vLWznXRf78ffTpu+xPFF/wqkczWVPCzaNT/vzx69x//yGH8yl7tWElWop+xn0XLpFCy8m245Nrhzw+5Wzb0ITcFm9kwBSJ21vPzaNj3vf4J9n2A9NJzdRm10wx0ahCMk+SajpHJMmd5YZP3rrB4Fo0iov1jL3aUNUFqILt2Y7NZsN622aFanC4EPBe8OGPPUU7OIgVh/MFymwpbIWVNV3v2XQ75vMpD1yYcvHCjKgU1y7MuDSd8VCluHO24bHrt4lR8Pkvu0xdzvKyTOYy+UfuO2CbIheuXmJ1sqPZblnsWY42m5xP7xyl1JRK05c9Fy/PuaIkN24vecsffYykJXeOb1NVU4TUHB3fpSSyf3Uv33OTA1wwfOTpM47urFg2DiUiWsPB/h4U+0wnBRHHdrtl2EaqmYDYg9CUdsbicI/3/uHbqCcV+3uX8WqBah2v+byHeO7ODeaHE7arTX4u1CXBS5LwXL12FSUFQ79BxEBEjyRiMJVgUdW8tJpl2IoURCFZdht2u4arFy6hTM7ZSwL7k4qoAt5HVNAkGTnuB0QHm82WbugxuuDywSFWKp546hlON2uWZ1tEUiwOKlLoiDuF1oZyNqFZwSY2uNCTVI55nDbrvJxG47aOvhuoFzXzvTkiRIZuhwTmk4phcMRYgJmNMYKEObiIVIphcNx69ojCWppmx2w+5fKVyygpSE3Ex0Sz2VFUNeV8Qte3uL4j+oHSVhzs7QGJzbqhaxuMzA2eeUkPdWHwVpEiFGNMQBwuiD7XXPXO0XQDJy6Df1LKveF9O7Db7bh87XKmB1cFXdtxenKCc4GoBO1IsL//6jXoB5It2G22bDYblFJMp1NKnevX6ukcrQ23bt7Be4/zOctb2AJbFrRdpPMNqu0praG0JSerNX3XI1QWKILPncA+xEy6jYnJbAYCJpMJ/dAydAPOR57pPFolCiOZ1hbjcq2dsRXrZqDrO47ONmw7TylgUmiqUrO/KCkLw52jW0QM9eJSXk72a0DC2GfuU+Lu2RrnAkVZ4n3AOZez2GWJc47Tk9PM2dDZBj94TxKg0eBz/U5ZFiij8G6AITcPlEWm1n76+st5fcrDotKZ6mmswSgFZHQ2ZPKlLcb6hzHvVxpDUhrnJGfLjsE5CpsPRSnFfEPoAj94nO+QMbG3KBkqcgY2VufdwdJA6x3OBUqtmJQ2l2EfzFiuloh1T4qaFD3WwtA3EDSTylLXit5LjAEZI9FJog8kPaWNmt3QUCSFGySrZcM6ekTU+K5HKZjNKsppxXa74+Rkg0Rw9coe9I7tqkEogWpzebwfHNZkC6hUBq0Mz966Q1lXbDYtMUWszQqsFJoUAlJCPanQtaE764j0KC0YiDx/tKQqSoZhIPgdWpOHYAS9A9l7XMgkU1VAYMCHrCDKStGFge2dBqQiRIeUiWGXiBtYb0PelKktIgp0kYeD0PqR3OVwviWISAwyd1u6XPqrlaLbteekLjckcANFUTHWD9H160z2SpGYPD7kguCUchlzgUGgEUSKKiEwY84gYRQQEz50GbogzPlSQgmLsZlgqJTmYDFHSsPgO2KCSlX5+4qB5B0IhbpXUhwdAFLlz58WBqENMnmGxuVeMKlIIofoB98iMCAUTdcz+B4lFF3vkUrSDtkqlfulNMF7nM/IeOc8iERZWbRR2Y7qPU23zSTS2TTbbnp33s0ZwgBELlyoKIsC3wWGEBCmZFZprl68gFSalAK73S4fKKyl6TqUMixqxfShq/zRA5q70TOfFhRWEVFooaiKa0itaNuWvh+Yz68wKSfUhaQqLWVp2O3maGXYtvn3WRYFWmWCr9YSqw3BhfNDpFCCvWmBkjLbvaVkfbxlsJJyaignBUMIo/Usbx3JWf/z7qp7+YV7V6FEbqSLmVg5YHnuzin91qGMZDbLZNnBQ0yBKCJb12fw0aRAqQyWMVZmKFZITKyhlALnAtbWJEqiy7AbYxRSKy5dOGDsO6f1faYnk6thXMr1CkJm4qDv+5yljtnmqIBCT0gS2hHxXlgz5mslwzBw5+4xf3r5BxFV3sX+tf/kb/JLv/BzXF5c4P6HXsQHP/I+qtJw7dr9fOHnfj7vf/d7QUn2Lj/I8598itletvQ+9fwJy61DG82jj7yYjz32OB997DGm9YTP/dzP5k0/9bN84IMf5u9+w+v5uZ/9BV7yGY/y6s96Je957/vObb9PfvIIrSJ70wqA33zb47zutS+hOR54+uYd1puWh58Z+Pp/8A/5jR/9KYRMfOl/+fm857d+FpcSV2rDlfkhbRK0Q2TtEoMPzGeWL/ry1/H4u/89l/f2kSqwV2lONwGt4Uu/8m/zoXf8Dg9dmVIUmv3DGcNuw2o38Nf++lfxzj/4LT5565RZsUOMWZ1pbSntPtXEo43iitX4KwvW7jI+BG7cvsu66Whax9XDBfO64Natu0gFh1f2GYZADKAldO2O4CJITVXNiL2lvBYxVtEHT10aml3D9dUpy1XEVgJjJNNyxrZtuXKh5EXX9jk82KcoNKV0KGn46BPPsN5l2JkRBpMGptLSOsft1Zq291w5XLA3NzSdo+kDPsFiOmM+mSKSYLna0jaSui7YrpZYEs3Qsly3nG4Ci4ll2w4QBoySNCGrUalfcme9oVCaydSijeBgvmDbD2gh2SsqhE9sdw1nqxVNl9BYhEz4HhA6GxADSBFQUrJrB7oOUshZwShyhMSiMUZTTiomJXS9QCZBaSVVYZjP5lTlBK0ku64nInjOBZpyh98rcQhedN/l0QkTODpbZ9eIbwj9wLVr+0xLTTUpGPqe23daNmHgxp0zSgOVNUzrOU5KHvvwDUpbYArB7eMNx8vNGIWZUNkSgcQvZiwKi9WaoqrYnx1itcbHhr1Fzf6FEh89IXq6tsFKy27dg4RCWSa1JAySphmYFgJdG4Qx3D4KmE3H0dntTIFXhuX2JsfbNVpbVMoQn6IqOT1do6WmrGpiivS+wViLFhNqqZAqoWTCyNydOLicv1MaDqYl87qkbzMVXspE8I4uZMqpFDIX16OwCnQJ0+khMebcrVaGrhtQWnCwmHHl8ACrNHsHs6wMyRyP6J2j245dyzqHZbU15/AVpSWmLrOyJBSCQHAeiaAwGYxUTwrqMts5t5sdw+BZzGuElARvmFSKuq7Zbnfn8ZTBBTbDgA+R3a5Ddw6pJVqOfanVBKP1OXTPecfgPNPJBFPYsZ7jXh4yK3t1nWuT7p6cEBHEJGk7z3rT4GJCyFxbppWkKgP1pEZLQ4yB1WqVbe/GjJwCwbSqiTGxWzXjz5KhdgfzfYoxg3ivD3O12o45YtDGINWYXYwDbTvQDwHpczynbzq2MgsgIcUX2jFGYJV3DpA5yzlkYBMxE0S7EeBUFYa6zrTobOH1SBlRfaLtOvq+I7iAkVl9FTIhlETpgpQU3ucO8aFZ57hTSoCnafpzwE3vXP6dDHlp2g4DCJBik5kTQpGiRHgIHqQYoVwhAw0BXEgMYchCkxAoJYmEvwC++fT1l+36lIfFyUThhuK8R0YKqMps4YQcZpdS4ceewdJkpYW+J/qe2bQkD5aCcr6XbwQpkarEaEEMkZktEVJR1CLTBr1HqTpnOLRHysS2C2wbx53VlgjcPN0ijncYsaQoNfNpQakkqYTFvKI2hkJr2nYgJHIFRWG4OC8x0mILjYsDx6cb+k6xN59QTySbMORuKBfZk4p6sUD7jBAPvWAgF8nOphWkyGrXcLbaYSdTtIA4ZFlflRq1Gmh3GbpRVjaXWDuP0QqjJdt2yMAaD0oH5vMJSUhun6zo2zsUVVYwe9djzYBVEFAsl0uMMezNKw6lPMemV6UiScFm2aBVQYq5NkQphTH55m878AHqOqKFwQ0ZEa80Y+0JVOWUZuMQYgxwA91uy+zgEmEYCC7jlTGWMHQMo0c/bwm7bAGUCl0apIahcbgBEJ4wrJFSo2XGSJMiPnmiT/SDgygoijHQ3Q9ZRSvUaMtUdF2fEeHJU1hDoTReRrRNaBVRQIgmE/tEJpAqa3KvkGLMFkhikAw+QPCYGIkjgrsuKg4WBa4fu4jUBBcHjClHy2RgT80IQRKHLYXRFKbIQBytiES0VFhdkoDV+hSAspozDI712QkxBhZ7C6pSI7VAMUEJlaFRwbM4rAgx0g6Z+lrKSEouA3WmNWVhGLqeSVXmvisSVVkjpSMmwf7eFCEUKYaciwhTkki0Q4V3gXrsYuv7dbYo24J5rWm7hnoyo+scu7YHNM41TIsJVQVUGjBIOSeFRNc2aK04uLCPLQwKwaWrE/7qF7+Yam75s/fdYNfsCOc2VOB8aMxBVZEbvyEmLBHp8+JDCAix4WTVUxdThBTcPL7DtulyX5bKWTVtJQZJ07RIpZhUESHF+KIdKKxlUleQ4CAmBh85PlsRU6TtHTdet6AuDnjV72yQItH5ks5HpibDCLZDRAhFZXNtR98PJHTusRKRQhms1jR9m2EDJudanMvZHZVSzvSWFqXykqWuDT/yk2+kns74pf/jJ5iISNt0vOEHvpO/8w1/n6/5e38fpTSnd+/wwz/4fbihI6XEB568TXSJQiV+8Pv/CS9+5JFMr1yu+aZv+XaikPzXf+9beOOPv4Fv/0ffhveeb/imb+Xuyck5aOj6rWNiDBzu5168k+WWGzeP+Pgn7/L0nQ1CwBNPv437H30V3/nPfwytFR9+19t595+8g7MmcP+jr+Ez/8oX8aYf/SHu7jq+65/9C77m8BJCat75h2/lF//lGzna5oLv7/+pazx4qeTQfCcfe/8f8/4/+i2unzSstx2v/dvfwuHFSyAVv//Wt/LGn/wJnA9UpqAqLdNaUlS5c/eBecXhXs3zJ2u2Q1a1SfDRp55BacuimnAw3cMLeOr6CZcOF7h4wmrb0LnIfFZz/6U9bGU5rCwvemCfvaqkOJizaxpqJFIqlj6yComrBxNQAj8M3Pz4DTbbjkdffI3DiWZaWnZNz2NPPEcX4XA6Jx5ki9fNsw13l1tabbBVyedcu8yssJhKEwX0IWQSY1GwXW1Z9w4XI7XVlMKwWzt613PnbMntVU+KkUpFjo8VbYqEvs/WsmqCiBFH4PLlq9iN4/bxips3T3jpZzzMq/fnEHqO11uOjj179ZQHD6dEsoJS6EjXeprxOX64mDKtCz72iWeJHBKiYAgdq82SYXAEZXj1K19GZRQ3nnyGSVVw6eqMdnBsWkfwEeUUhSmzfVjleIm2CjkMHL7kJVx64EHidsvtJz/BR578OA898jDTSlOmCWWxz/7Lv5jl43/M5dd8PsfxOm/7t2/nmbtnXDuY8FkveQApBX/6ro/Stw6UQhWabdfhW8estFTzigcuLui6gW4IXDiYs1cX+JRQQtJ1HdvgmE9nSAHN4HBRE7wgOs1sWuYYg9IYZcEnVr2j7z3TYgLS4IXirAWBI502YyegJYrIwbxGiYIgIn2EzW7grAu5yH67JqZIZRSyrEhCElxPpRWqMIDkpOlpWj/CaCIHixkCya4LyAFcDHRdnxeZCurKUkjB2dkaWZv8e5hULBYTHrhvn0pptMqqj1KSqhAQ8zlq17xg1zdKYi9DEJLTbc9627BqOiZVxeGsRhvBvM4uFNQ9S2Wu6yFB3w45B2fzYCcpiWN2EQLGKMpiSooZZKiNJRfUOKaLAqstpb2Sv2a8B2HJeUY/LmGNhouHC4TYR0mVF9ExIlNCmwJCD8BytcnU4aYh5x9kXt5VFXtlHmSczzDG7bbNuT6f61i0VihtESLS7DqkSPm/iWxt1UKRjAKbnTJRJPowQtBSHry0VhhlSSnDzqQ0iGQy26DOgMcYI64fxvoKTXKefsgDmjYKn3KfZllMkDITTL3zdG2H0pJJqbDasqgqBh9yzrTLlR62EAzO4fqewhY8crCHljC4DHf0MXJ0d50pxEKg1IAOeUkE+fftQy5FiSmfx2JMeN+gtR6hfSOcUCnKwuJ9trZqlfOZzvkcL8m4b4aQz3BaZbJ4Alzv2DT9pzqSfPr6//j6lIdFUv5QxxAZhg4lJJNpTbzX+5IghTgqSZE+jNRLGTFWUtix+0zm+gqldX65mPyC9gKSCyigshZBZBCRciz/LJUmkti1HSerluNViw+evvfngBvTabyHg6lFqUDTOYYhIdOInB9pVTFBVYBVAqstYRxwpSkojMi9P3sVwQEI0pAHlQt7CyZFTzNk/HNRWEprSDFQKJk3roXBjPJaCIFiWmXEfhC5C0nkbIoC5rMao3Phb3Q+dxjd61CKnhg9vesoJmVWIl3uwRLJ41NB2/qsTsXAZuOoCotSAiUzyCelhNGZ7ihIebupDUHnYnclM75dInEuIZKgsJoYAy5BUVSkkXyrdFZDZfAE7zM9T2ZYiBACYSQxeoaY+6J8VCPlLA9fSuQ+oRgSkCElAkCpsYso02F9TASX/fDqvFw2jjTV7P0XMhete++JDAgPdVGOJD5HGPv/lNKjupm7wazJX0/oHHQXMZGSzzlOla2FMYKQGikiRVEgY36g2rIiyRKjDX4YiClR1RUCTbvNQ810MqHQBmnkCz1HMX/PzEpizKS77bbNuSckk8Jii0w+00Jki7IXNE0O7BujEbIghEi7azJMShtmsxnWGJJ33OsjjAikVgjhkDLDCzIYKaCK/PkRQFkoUiKrelLigwaR1WOpMg7bmkwOtk6jjUKJgrKylFU1Pg8ylEmQS+mRgqIoqCYFly7ucfFgwmdqwbZJ3Hx2y1PXt5yjY1+ILo6I9kzJY7xPtcgI8iQ0RWW5enkPhg3GGBKJzS7ll1ECaRRaZEACCKLP+cfNkLHnSEaUd4eL6by/tO3c+b0YI9z5nBqjFa/69+tc98JI+kvgvMtgAfIBQ6SI97lzS5CttUJLwqiGTqsCa9R4rxoiIsMXhM3340h+ffef/B5PvPNtaCE4brZURcnZ2ZaPPvYR/un/8A85PNgjDB3T6R7WSo6OnuMf/J2/SdN5SiFJMvC1X/t36T1jxtrkLlrgqaee5sv/068ef6fj4Wsk8pnJISnAcmWpSsM3v/4reeSBA0QSWGu4dmmfsjAUQvL7v/mrvPU3f5X7Dqbs1xZpS4z3vOPtf8j73vUObp6s2bqBN73hu9HKcOdky1M3TnG957jtcb3nv/jB/4u9N+mxLM3P+37veKY7xI2IjKysrMqq7qquHkiKZJNN06YFSzRlWIBkQLY2BrSRAX8Cw0vDC628MOC14C/ghQEZggANECzAbE4SKQ7d7KHmIaeY771nficv3pPVtFdWAzK46LOqrAxkRt4b95z3//yf5/f8KYXV/F33DzB4pC746LLj7tDz9//e32cInvbYkWQufFZSMttI9Imhj3iVDyl6mhi7gc/uWg5DT1PknsjLu5ZV3UDUSHUkKU8UMMfE/vKWQzfhRbb8mcIgEhgt2TUbSispCk3XRcpCk5JgmhKmtJzuDLOHg3NIo/jaO4/42tsXFDLSHVucn1Aysa0K3n3yKFvy5wwViSkwliuM0jxaV+wKQxABpTV7HzFKUBvFdAy5iD4pClOwshY3B5p6xWEYUcdAUQhe21ou7ya0EajG5rx9WZGco9zWbKs1L++fcr0fuLwbqMqS187WdMfIizvPblvz+OKE01oSRaZ6K+HQO8UwRQIiEx6toSktTb2iqAom57nfl0zjTLGu+blvPUGEyP7ZFWVtOT8/4dgNDO5AigJbKLRORLLQZ4ymaRSzjMRyBXWNGjsQgbIoeXS2YlUqyvoBp699Ax/geDhwMnrawXF5c+Dqds87r51SmpIQ4MXNgal3nO0aJgJudMgI621N05QYAV3I7g6hdYZiiYCMMmckiaytYZgcx2NLSjmhXxUFhV2cIDLDOOaULapFYbGlXZwFUJaZRuqXe1giZsE3La6rkAeBKWWY1uQCMaT8XCryuWkKI97NJGEISQCS4zAxjRE3BaY5kORIDJ445YFnCp55DiQfUUZBcrTec3t/pEprpm7EuUgSkt12jZeBpiwptMJH6MZcCN92A/M8EqeQaahNiTKKCIyz59jPXN4f2SE42ayYZ8/sPFUR2KwyWRip8C7iJsc4erzzS549b8akJK+a0nLPT4l5zrk3sdQ6GDTWaMqywqhcBxZjfuY77wneEZMnpZAt3UZjTO6TnsaReZ6IgbxZc5l6fRwGjsc2vx8iY+Dz31FQGI33uUZmXgAzMUZiCChlKMsqw1fmMYvYpDwALsLEq01sWuqTfAxf/vPk8gw0xuC8JyHQEUjZlSdSQisyHTkESCmfrUTu1DRSIKRAKiD6XJ2iTKb6C4k3CjdBUUgKuwz4VjGOAyl4Cq0pjEJZRYgRScKWWXSTyTPNGVQYQmScZmbnWDXVcobLD8sYc84ytw9DekVX1QJSoCwKmrJCieXZLTOtNqZAigHkK4eVX75vtYAoxUKtzW6ctMBtvf/ZZvEv6/VTD4tz7yjLAqsUUel8AEV9WbrpXICYmJcKhnl0CLJSI5Tm0A3YokRJxXGYEClRFCVt1yPI3YJIz+xGdJ9QQlNhOR7v6aeRWdTc7Ec+f37L7BxmKaCvjCFq8CKxaXI9hhD5pnd519IdR6xV7HYbukPH/b7n7jjw8PE562KgMpYost9820hu2juOneHxozNso3DeMY4Zu22LkqKsiW6P85JVU+IJWXmRkroukTgKramrihgSslDEOLOu6sXvPSFEZLVes1tX2R4rV5ASXkjG3tO3PYiEsZrtpqHQIIWkqkrAQdIYY7h4+5RAYJo91/fTkq2IJBfRSlOVcHN3zDjrQiONYvSO9pizk2VpaSrLOLZYbXIZrM8U2+ADQ+yxhcTahFSJ4CRVU7HvelZVSalVVuVCZFNXDM4Tx5zhOj+psCbf1KKPJK+pixXbdWSce0KwiyqZKKxEyZJumAFHtTJYXeV/q4jUJ1tCyN2Qbo5MSz9m01QU5ToruxrSqJn6XNCttaCy+XUTWoOSdL1jP7TsdlsOf6N0uAAAIABJREFUbiaM47KJLUGLbIUZI3OIFHokJIUkU9ekKJaupAhLZ5Oye8oChKqYJ8dhjFid328hskI3ufzfp6s1YsHFr5oNTbPOFGCTQ+Lz7BhToCoDJ+sVVVlwdzxCgnVdYxrL83EmhYgk4ieHnxxIgZscdWEoy4KqrrA6H0BP1k0ujvcTyUi29UkmBMdclTKOE8Jozs62r7ijFIUlhYsFcB3RSuUhTWqikIgkcEv/5zCPmNJyct6QEtSmRElD9aYBl/jFr3+Tk9PHlPaU/+UfPs8HKlheRwEiZtDNMlQLwGowRuF8otw+4K233+a/+a//C1588iPu9lfZwqzfxeqScRqZwoxcVE7vMjnPOc/Lqztm53JnXEh0w4BLWYwKk2OeZsrCElJiWGBPISY+vTwgkTSVwhpJ66DrR15/+ADvZ55fXtH1E1VV0ZQlSggmP+PSESEEm7KGKOmOA8ehp2xqbg/7hQ4nGMX4peX2s2e3fDg5KqMxpeIwTJyWa9alQWvYrNeIGLg89hgTKFTF5HJnV5KKMUQ8KQNmI4BHftkztryj+SO2DOgCkiK4nIm5ur5le1Lz83/lXcLhyLMX91w8fMCDBYDgfeK2ved2P3G7P3C+W/G1rzyk8JH+eMBoxburFbPzSC+YZs+mqfilX/gKaA3DgK4K/pk9gZioDgX3fRaZmsaipOBsnS3XKQWm5AlTVri1EfjZE2J2J5SFIKrED19ccRwFRhoulwOfSIb74Lk/7nl+eUNpYHe+46OXz3l512F0tp3dtyM/+PAFUjhKYzlZnyBVJPYzY4gI6Rknx9PbnpHEW9uSQ+vwyfDXf/M7fPM/eIvrq2f4KHn+7J55nHnryRtsNhWrxnBsBSkK3jw55Y3dhr0ueXnf88HnLxFh5qsXG548POXjq5Gb/ZG7w4GdTUypIETJOHj0o4bNg4JfeesJQwh88OkztFKc7U747LKjLOC10xqjNfs+EEOPnzx/+MFL/vzDT5kmx8OzNbUo+eLFnqcvXtIPnm9/+22k0ry8vlmoqAE/BZ483rGpEvt24pNnl9wPjscXDdtSsl4VSLmmfHKBkYGqKfn+0xd89MUN7z+7JknJH374jDAnhn5EStjsLBFH8kDMHcqlDsyz57ffP1CWgq+eG862BU++8RjdjRwPHvPz3+Tk7ff4o//tfyL5mT/+Z/87nzzf88bFiiePt7z9+mOe3nTcdx3nuxXqgWUaO6wteHzSkIB2ztVEP755iQ8QYkIfW+a6Rq80Ski2TU1Z6CwgBY+bRozK5fPrumbynnF0iJQY3cxM4MnZKdviLJe7x0Ac4bwpiUIRVpIUPSnMoDTKrglhZmsLysJSFg0qDIxuoqpytdL1zcwwT/joaIoKlQxjHxnnjn3XI5C5KN05nBd4P+FD7rbNLQW5r6+qlv7DMLPanSCiJpWCMY5c3x8XQSyTebVU+BAIUrPaVOhpz+NHj2jdgZv9FXMEP2eLYmlLBAI/jdzeJqYRDm3L3aHDKM2m1hTWLmyDLNqN84yQUNVZcCiMhOg5P90tvY8B7/OgCoLUjkiZz2phjrjQcX1zjVIabQ1lUxJjpNYZQjg5Tz/OpHigKAuMNjjvcG4mRAjhyDBkYmuSiiQqdAKFyGJwgrafuZ56nM/vu9aKzXa3DM/HRThdnC4oNtstEHNm0yicc0uHYY6zWFNiESQf6WTudZx6T4xTjrmY3BWeUmCcJkLIkZV6yen5rDRQ1AahJHrRYUPIAEmlxCL+C0qr8UEQa40xdjlbONrDwDjMaG04f7DF2MxSmJ0jURNC5ObYMYfINPRopdBKc7bbLP2HueM3sjwnSFhjs4Alcv3cpqnyOZ6IlBLns1g7znkr6P7C+1oWmpBAqCxIC+QiYGdBxrlMkCUlrLUUpgT2P+1Y8rPr3+P1Uw+Ldd3gfS6B3Z1sMtmxn5gX9G9V6uxtrzf4acLK3KE4TxMxBM7Odmij0TrXYkQkQ5D000h0kVpq1k1BrBLOTRRFHkSTKLlvR1RZUpeRs5MC7xTJCxKKAYEOiVoKfu6rZ6QkaDYNQiT640CpFcM0M0+O9i6QXGJjJc2m4HgY+eLZAW0VbzzeosY5H06qmrZ1mMqz3pgcwB8s1/cHQjuzripqaSmQCCVIJj9EUpLMc2Q/zjwbjnjnOT1fUxiopUSIrLqJ4Bj7PV8cj9RlyaPzE1xMjN6TouRkvUFrUCqrWrMP7A9jzmyWUBcFploxzZ77+xtmN1IWNVM74fxMO84EJ3n8sGCeE71PKCfRY67fmNpcrO6iRMkJlSRFYXImUGbrQIoK7yPtcaauK5SGY7tHCNhs1lTGIOOrh0Cmsl2cnTJOI7ObKCu9ZIUCIeatpUgSlQTBWWxhl94oqGuBVCU+SnyUSBmIwuPniapqKGyJdzPORU5OGuZ5yS/q/JCPIZfMFmXDyW45CPhsgwg+h6ljSNzd7Xl+11NW62yXdp7SSPqhRZqadnK8uGqJSXJ6WnB3v6euM3LbuZ4QwJrcuxQjhN5jjUakAZFShqikRNt3lHWdyaUpEKLjxdUdRWlZNRuKIpcXd10LCIqiIvhcTXJxUSGGDp88t8cDfgokB7udRamCY98Sk0fZisIW+TDQVDjX0o0tYxiZ5xmpBC5GotSARiKpymrBWwcg0LdHqrpGWrJDIOVtACpS6pw5SAiEzlbM5AXz1CIIlHXOzNRVia2KZfYTpAhDiBxuj9iTmqZQPH58gkATk+MnlRk5F5NU/pmE/L9DioSk8EjON6c8fv1NHr2+ZmvfxLkHQKApi+U1C4xTn7feUjEMLXVVMTqPT5rJw4ubnkM3cnl9TRDZtTDe7em6kT/4kw+5vm253bf04wVSSr54dkthFa+dNci6ZFevqIWEKPABdusVD05PKG2D1BYZE2N/oJ17NtsVu82GUmnu7memNiACHI4TK28orco0Pin4e3/rNxmcYJh7JiOpfM3Nfctv/tV36GbPXTfx/Q8+xvuEj5EnD085WzUcDiEP1yLhQvpJ1nOpAlHLL0PKVmmWjcVSdMeyzn21ZGR/6Pidf/1Durbns2cvUELT9z+h9Qoc/RAxSLa14cMvrqnKil9475TtquH26BjHgdc2FW8/XmFKy2QKxiTYpAl1uuZf/akl+si3vvoVUmUxRe7K7LuRsevZNBueH28Zxxk/jhRa4yM8vb1kd/KAjS3AzyjT8Np5yF1oAQ7DSD9NjPue2WXKdQiOtp+4uR1JCJ5cPCQEx93tHePoqJp13rTGyO2+J+Lpbu8pVw1jyHkokXJO9eVxoutHLs5O+fVvv0N7PPBv/q/vcXayzcXmQuO84fnlgOUKoTQhCZ7v71Da8q+//z53x5GYJJvacthFfvx8z/d+8DnHcWJMgcsQMUVDVJ6zWPGImpAk3g3sh5bj2DGO8MXLAe8cRSG5vLlhdBGjGr711gX/+Lvf5cdP95gEb7x2xuuPz7k83nA89rh+pC40f/rnn3Bzf2BdFrz7+JRf+/o7bNZr6hPFn/3gC9ousbUVTVnz9sMtoxt4dtdipeTNswZdGD578YJ/9C/+iA8+v2VoHQZFfCX4qITUoK8zvVwvB09PdoAwg+c5UiV+uNWsG8vZwx1f22w5f7DlV99+zvD89zmtPYe55P1PXhKi5CtPXuN+3/PZ00uuhhYfI2tbMMeR090Wa2pGN+KXvPccJYMTNIWh1JrNpuJsu+Phwwu6vuXu7papHTF1ycXFKbMb8obG6Ezp3o8YmR0Z2gqCdFTWMg2Bu+MtQiisqRn6kSQkjx5foIhcX17i3MRv/LX/mDgfedAUNHVDWTfsP/2Yu3kgqMA4OD75+IooJQ9OV+iUD99j9KAit/cdsxdgDFbnLGRpNFe3e2xhMdoS3EwXPb131FZxcb7BGMP9zURSkv19gBC5ONvwjXcecFJvED2M04SvDKKwvPh4xrvI9z9+ySdPXxCixAdQMvHukwsenu1oyoqYJDeXtwQSm6pACri8PiKVRGqBLbP9fho7jCkYOsXtTcd9e0RqwXbV5moGF5imEb8MjlordrsTjDV0x47u2KJ0FsSLqsLOeZDRpyeIJLk/jtwderx3FGXmY4jF4uhiXk4MU+4BtMaileKua/HBY4zNDhsyTdja/PtTSLTjHu8D0zwgZRaOrTFLjACCn0nHFi0lq6ZGkCF7uVgpn22m2XG77/Iw7jOXITMLcrIike9NRhtWRrEqi9yz6AbGWbDa7GiPB7quI8U8dEYyvO5819BUauF8OA7dCEIxL+ezTJ4NFCjKEJgmmEfHPE8UhUXrPOz5EAlV/jmXQhFcZBwdbZddQWkZBlWKKKnRymRXmNZYawnJ4+dA9A4lJcIqhLBLX2pJfFU5IrLl2S1b2yTzs3kcprwZlgqhJMjEui5y/ORn11/K66ceFhO5k0brHOhNwOzdok5EtLFIJVAhEIl5kyUkRT5HohSE4JhdzrUVxqBCRn9Hka1uLiXc7PNmMjiSA2Mtu/UKVWrWVc2u0VkJiRnHjbR4F/Eu0BQFxmi0zjSxk/MTIgLnR0QSvLE7IUZPEo7zt8/5/PN72nrGGMGcHJ9fjRA91zJv9rSCsjK5A1KpnL0A5DARTcDIApAoKSnLkpU0mRYrJZNPjOPEurEUpeT25oBWhvVmBSkS55A3b0YRYs7/jW6EpBEpq0jKSsySYUPm7WsMkdklHD0pRjZ1iTENZyeZIDr7mZv7I+MkWNeC0QV6l7cmXT+Tome9qjPkIZEtpVaCygpRiPm4Oftc7HzsJqLIOct2cEzjiJCGUU4ZHpJy9+R+mJllj58daemQnJ1jnnJXkpQBmyIRjdB5u6WVxFrJYT9ji4EoIs7nHETTKMY5QJqRSYGIWKsAnwtqU0HelOStcHeUzDJQrzRFkbOQfTfjXEIZjdUKv6mISqNxGCsxqy1GS9wwEoVi3eRqEec8dWXZVBXW5uqCcVxgNiKxqhuklMzeY5TB6GxJLG2BCzFvbFcNgoRInhQj+25CCoESmhQiVktEnYc3IRJlbdht11ilczeiSKzrGm9yv9ngJsYQGWZPCB69b0kcsYWhLnIRs/cBVN7fDcPM997/jIRkbSWmMMyTY3YzLuYskULRdgMu5aEwJbi/P+RtgDUEH5iDzyXjRYm2hqE7ZsqdylCctm3Rw4BSCoTEO0ezqVmtDHVdc9cfuLl8+ZOI4pd3lKw0pviKbpMHn5BYfl7h4sGWb7z7kO5wSd8e8S7nHiTZBhRCYDp2CKmQhcbPM13IWeIoDUlITmpBU5asyx1JKoxWuLUi+ECKjqubIzc3R357VYKQfOPth5SFRivBODqubo/MzmEnjw+Z8KyUQQhPCDHDslJAaECOzIPPB5HZ4QO0x466tBQqW6PFghsffaCyJW8+eIgg0Y4zZ+88xJSe/d2Bl9ct27rGGMXrD88ojWIaHIU1mGXDLZf+rleK8LL3Bv4fLSXLa/2TO3nGyCdikvS949PPrwne0e6PaGGZlhnz1caltAIrFZXR1EZTl4ab+56umxmHDKwaa8mhq5kOLR9dfcH1wXGqQTSaa1oIid//7CMwipACs48YKdlWBVd3A3ddh9aSqpCMMXJ333M4zJRmoni1FfE9pIjrZuoyl5RrJVhvatxiVQPFbrtiu1kz+ykj6aWAJ+f44OnGQGlydgZZkHRkSLnyZr8/Mk0u02OVZJ4mRudYr2qON7d8vD/y/HbPg90JTWk5jhOfvrjCB5DznjlG5pC4HzzFUn4upCRFQWE0wxC4nR2zz0JXoy2vn1ScrtaMfqYsFI0WaBl4ettx03ekCFoK5pQYcShRgoNp9HTpyKdXmh98dk07ZxvaMI1MQ8cXfZ9pnErhkqJWgq+8dsqDbcOjiy2Dn7l9fom8kXx2tWeaZ+Y50A6efp7p/cBtO1BbwzhOaCV5cZ0L1ldlyaZaYYVg9BnCMYeZRMg2ukV0UhogMMwGaXIvnbWalbGopLi56gl3nvKy5Wr0fP/iA3aqgxSAvA3qp/x6mUKzVnmDuFIaFz3GVkSRBRAtFbpUDCJyYrfsasuqtFSNpdYFlZJErelthROB2Xl826KVRYhEiDBODp8CIeRtdGk0KEvX96QoKauKBEgS641FSoWNPU1V8Pa3v4Wpa77xlXMEW/q7A8fDnk+efsZDI3j46Bxdatr7A9/6ykCzqjg/qXAzfPT5NTfHDOj6pa++RT95Lu8PzPOM8ANvvHnB6+fbDITxHl9CURq22y1NZTi297z/8XPOz045f3BKdI8R0vDWGye8voO+E/zw6XNu90dGBLML7K8PRH3HZy9v6CaHwTItcZphDOwPA7MLuOjpp/y9uTnfbDygUo6b+9kTvUcohYuBeRpxLncgpySYxvzckxKqZUjq+gy4STHiZ0eMnqapqOsydwYi6fuJGCOfD5eUhf1yc5ULGjKdXaoMC0zRLz1/+Zua44BbOhpDTHif3ScZfAfRLYKpIMcfBAuTIZLIcSXvA4IcNwgBHJFpbokp5s5JctwmhPye5PNSJptrqbAmW0tXVR7YyjITWnXK9tsQAj4kQoy8vLpmnCbmKZ+ni6qkKixaSSYPczuRvFu2iZ6YBJOLC48hH4Oi8LjbfYbCyRzXCDF/bssy953qVOYqESlIyWNsYKsrlDYgM7U0zC5HjJRa+CSeFDN5NsWwvFwJiUBqw6sntwdSCDg3Y0y2ny+hH4QA1ZjlqR/znyEEWkt+dv3lvUT+0P27X//pf/SdNA0ZHlHX1UKzmpEyZ5+UBO99DusmQOZAdWlUtmpNE+PscDFlO6eVtPsWay3ZwRqxhUAkRVnmTYhAEBaASQr5wyGVxKgMBPF+zrY6wCPQSSNF3prk0HkOq6/qIluvrMlf7QN2VXJz03G2yRUJ/+S7P+DDZxO1HvEhEy9TSpl+FSaM1WxWDVoaCA6lBFWVaVlSiDwYa4NWHqU1SRicCxgTscby/MV9riLYNFkZT4E3X9tRlQY/TXiX2K4t61WFUZrgc8l4YikQz/c0LJL1qmK10kQfqavcjxeJOC+Y58D1Xc8wOjaVReoISLSxeJc7DKvVCqkM/TQzdD1nJwXbkxMO+322oiaRc3XO41xavPP5pjxNE2++dgqwWBVAScmxG9is10wuw3S8j8SUkMLkrwOM1lSloSg0bTdhraKqNHfXA7ZI1E0FSWGNZb3WXF/u8T5bCE1hWG+aXL7uZ0TKeTElHXXdQATnM19L5leN1WqF84FhyhnLpimyENGNCKVZbzYYK2nbnsNxpCkLVrWm6wcKa1FGIRd9xVqBNJppmNmuVhhtGKYBqSR9O6BtPlSEEFhv1lhrcv5FQoyJOXi8D9zfHoHEdrOiqWsQib5vM768avAucBw7vHM8vjhHK8Xx2NP1A/uuJ4hMKF3VNYfDAWM0q6bOw+JyEP3nv+zop5nv/KtsCd5uaqzJYBbvff4sKE1RFAxTz3ZdY8sCoy33+wNlYTNNNi2bPyE5HHs2qwarlgLiGNlsGqQS1KsGZTRSZ+Hk0+t7Zh/44Ue3/PiDL/jjP/5zvv/hFWIp5M1Pe5k3PEkgRB5gkhCkAO999T0ev37B3/kbv8C33tlxvP2MIpbYusyKtkg5g2sVSmi8DxwOHd47yqJESLEUHudeLaV1/pzKLITI6NFC4Uj5YDB4/se/2ZGA//7/yAPlPMOhm7jtRqSx2LLMWdVpRilF7xN3hyPtMDENEZUSw2FPP8xEadG2yHAeN7PZ5Oyvc57/8+R/QArBd77479jUDZOPjPPM6bbk4fmOy9sb5AJS2Kx31Nrhidwe+pw/KQr+6e/9iI+/uMbNGQaRM5mLlUi+2iLGnKdcspxCxJ/4UUWGFxAF1ijefvOM1883DN0RY2pEiAiZsFVBWWlkFAiZrdwyOtwcOc4TMuV7RSKhNaRgESTmeaSfPbUtGeeRdpiyEBCyvTUlATFQVQXnp1viONLUJZvNmnGaGaaROWRiaak1MWSr8luPtqzrgnbq2K1WTFPO4Xz1zQtWJvL8tuPZTc+6MNSNZfARKwTbyrCuNcMcGfWab3/jTU42Nb/7hz/m9//4R/xXf+fXqYEvPnrBcXRgDVpMfP3rv0o37GnbO26ev0CZFRcPd8zDQPADiMjUDsxzYnu25dn1PS/vjkxjYG01qijZdz3OedZVzju/2LdMUaJIyBh50EiUNoxJU1nFo12JtppnL9rcmSdFzqtHyXV7g0CByv2qwTmeXd5yeTfSTyOnFw85vzjn4nTLeH8FIRBjPrCdrRW71QpbKcpCcnc7cH0/YExJs8oOmbaPHLu8IQqzZxhmlBIUZZG3OFKS8AgEtW3QWmBNJMYMz8g55izkJKGYxwHnRgKGEAXRTWgJVmcYnik0inwwLYsCK8BZhwqC8+2aEDw3+xbvwRY5f56SwI2eoXfczCPRe0qlsrBhMzCuWJc5J5UWZpbzbDa5RsGHvAmdJs/x2JFIGKUxWiEURCmyvS4kjFRIpeiHEURCqoV6KSIXTUNVFNhK89obb/BX//pfw+CYP/seXdJMh4Fj77gcHe9+6+tM88Dti5cIH3h0WjF1A26KdMPA/QQu5Rqqdy/WdLPj+x9+zv3dnouL13j85JS+9dzfH5h8ZHuy5e2vPOSHP37O4dCyaiTKKOqoqJoCFxPt5Lk9dqR54va25c8/fsq+m2gn6IeReZxRUqD1YnOsS6wI7DZbNpsNo/Pc3NzlLZdUECNKZFInvDrziOzaiSGfwXxE6bxI8GEGmdApv9/GGIy1JBLTPOe8OfneL2XCWkNVVvTDyDCMdNOS+ZOCpixo6hohQUSAxDD2C0tBczi0y6CfB5yQXO6A9AFrDZvVhnmeOLbtIq5FhFS5K1Aq9JJjTCkufeF5iBFIJueYXBaQvHOZnwAYkzOsLGwILQJKKawxORcvciyiqmukFIxDzzjNy1Cq8D4TzYXIz6eUEkYprDWsNiuMlrnCY3/EzR4hFdqYLzeMxCzMaG1BZB7GPOeKt8Ja4uJ0IkGhFMZksUPK3Nda2GxxbUqbzykqA3rSIisqmSGMPoTlsSFyDlIq/JwHeal03m6GsOQ483tjjM5U/JRy1zSgtc0Z1PiTr8351Mjv/OnnP9VM8rPr//uV3N2/8wr3p94sDv2Y7YQhgnBoozL5KOYD4DQFhmHC1CCRzFOb1/pFLkwPMRO0kBJdSIYpsO8mCgTz6InOsdmWVJUFJEJoiNB3R2JKREcOR5Mw1qBNLlh3bsoH80ITjcKFEYUnRUPne4ielE5wPhD6ERkjKgT8/YCMAbmtcNHjYqApFE1VQlTMhSe86uKZwLnI3W2f80KQVSSdD14s25EYI0a+UqeyT7soJVYVzCP4EBDqDmslUkI3JTarGi0zXnldr5CiQCpBDJko5UMgCZnrHIgUVUVRGOraMo+5520KMzd3LfvWEaOiGwLdOPJ411AWktPNlrosiEaS3ER77Cg3DXMIHLqZ0kpWK0hR5ZzpgjYWLlLXFd4HUnDUpaVZFaxX9QIG8UTvGMeRQgs2TUU/C6RO9G1GykslUBFI2YKglGCePMduonAChMIW+eYkUdjSsG4KrM5WotEkbg4HXIyYosYHSdvOEHOWUJvcVr3brWGA4TAtVSMT69UaCYzTQIiJqighc0oJDoZxJCVFCJ5xmiB4ojcMzlMUBZMfIWhEEhhbUlZF3qQuSqnSAklgmnK25LjvESKyXjdMQ5+P6Vrjg0PqgFFgVNamV1XFZr0CJfKDxYecadCC092K/thSGktZlKSQCG4mFRrTVKxPNpxsNxyPdX4Y2ILgcgfqNAX+9p/1rE8v8O8GogdTK6QWHPcH8BFCfsD13mOLgqoqKKsKW1YUVYawjH2LFIuaLiRd24EPnO92SEFWIYWgbFYUJxsCERcjuij4888/oR0m/vm//BM++/QFdzf3QMh2tXzryr8GXtFuXv1WQvLg7CHffO9dvv7OQ07qntuXkcoIytLmXMmcMyG2LChWNWJ2pGO/FA5HCmOXIcrTHodFhVZLhiR/ZDUKUxvKumBVFhgzAomHDyqIoGTJG1IjrcTUNcI2uHFCuxlrFMcQue0Gjp1jf9Pi247r55Z2nPAmUxNjWCi7BkIUjOPM17p/hBKCi20NyvL9j54z+Jlf3b7OzU3Ls8uOr79xzusXJxxmIMy8/9FnHF3kvXff5vRsw+tv7Hh6tc9grr+wq81K+aLWxtxzliTkkpK/sNqNr744kURkVVneevSA+85idZ2L31IAI9CVJk2JIAzJKMZ+ohs7jC6pbUEg0E4T++PEPE9s65I3Hu6whQRpGPqR+/uW0QUO04SLnkIqDIkkJIObSNPEepWJes+e3TCNE9vzE0yTgWV+8Fgt2VWW0/WKs3WF1YYrt8cLqK3irDa0XcDPHV0Y+PjlS5SpebiuUXFmmgTtLDh54xHb3QnNyvL09sgffu8T/su/8UuMKQsOI5rV1iJ84OHj19nfKYgjfWG5uNjxzW98kz/4kz/F+8ij8xOaBzsOx5Y3v/4OJ1d3bF/ecf/8hlVpeH6T81HSKJp1QaUUiZpOaJgcaRjwPnDXOVJZ5eGpKBHKIOKeqrTshxFSxAgLXjIFh6xzXm1TFDx9esWv/JX3ePbijvMnb/Lg9YdYXRILz9AN3B56fAh4Dy9vjhzCQKUlVlqC0EgSiohICqsU26ZA2ZI0RippmUMgINDGUDcaY7Ogo1KB1JLTTc4xC23ywVtnp1H0idvbO/pJYYuayUWM2BHdTEzZMfT6xYpVZVjVFatyRRgDf/b8c8Z+ZhICYzKd3MUsSIiQBY8hSdwsSa5HC0Ft8zCrBJxUde7GGwPTkjHz00CwBhkTmoRSktqUuGJmmkaszi4JbRSyMIxTiRtGpiEPLNZYQnCQAtZqbFmwqVY0dUFxesL6wSNikkyHe44vnnNMFQ9Pdzx8cMFXmgeM2xNufvQ9nn7xglXT8M6Th9zedNzcdoxzz6O3n7A+Oc1WTH/Zqq/kAAAgAElEQVSPEZKT3QprJL/w8++R5Mzt3VMSjvPThocXWx4/3vC7f/Q+T5+95Ne+/YTf+PVf5P3fe5+nNy3Pjntu9gc++vyKlAzBOcYxQNQZIGYrnJ9YlxadT0sUpWZrLGfrGlVaJu+Z5wmhNEnKfO7Sy8A3jbyCqgkkWqhMm49ZzPchMM4OrVOG2sW8gWN2+JBFe1Lu1VRCoE2Rt5HSMU4T41LRpaTgdLuiNCZv41JCa4Gb8ybx1RVDzt0ZrYFcLSFNhjhZqzk9O6FrW9p2jwv5fqlVht/4ZdAJISxiRCLIuNgrE+M80c95KaGW3J2W2UW02awWGBIoN2KNwdgiWz5jFgImn4ExN7dH2rajLEqqus4bz5QwUrJZr4jRYwS5mk7CNI50XcvY90QEZZnFZ+8dgoRVBqUVIYkvITFaarQQ2X3hA+Oct4JTCiiRWEWW4Rxiyt3g/ZCzlNZItNIYWy5/VhZN85Y1C0FR5Pd7jLkKhGxIw0cWkKHCWru8t1Mm2Ih8xssAPUFMuS87xsyGiPFngJu/rNdPvVn8zf/wl5Nd7AAp5hW+myPTmLG6SmZbxn46LlSFkFVJoxHITKrLBjKk9GglMWXeOvkYMyUzCqqqIoQJrfMGcd0UixJlkApcGDKdkMXfGi2FzrTVwzCyqgr8OCKVxTQlIk3UWtFNkXmK2MJQ1SUKj7GSQzuQolj6+iQ+erwXSJ0VGEKCmEmHh27KhDVDHlhSVl2EyvaKcXTcHw6Q8gdXCsG6qSkKzfXNPZBpcSl5kIpSa6SSOCGIYeL8dM3+bsRPAWsEzdpS1ppxcPRtQCrF5qRgGgNXtz1CRoL3hCCx1QqF5+KsxljB5c2emMBKjRGWbpq5ujsweY+bJmYfiEEglEWq7I/fnax5dLqisoLtOhemjiFx2B/oupGqWnH2sGZ/P1MqxXaVh9jrfY8UAh8tpdQUWnG6K9hsGm7v7zOFa7E2XN8PfPLZc8ZecH624bWHWworKGxB3w2kEFmt1jR1QwwHqqZiGBzeeUSC892WaXIYo1FK0I89/ThRNRXTmLe6pc05w8oUSJnoxp5xHglBoqVEqkyrzYXqAW2zhuJmh5IF2/WWtx5X3B9G3JRpY8PcYaoK5xxT3yMFrOtNDozb3N93dr5hs6oxWPr+yDDNDC4XtYcpIRWcn51DSpSFpLCa3nkObc/dfa4rePTaCU8evsX+5o623yOMQtkMA1o1Va4s8XkQb1bLINe1KKPQWkOSaCVxY6QsFUqRe72Upj04ur7n7OKUk/MTko8ZRBFiLqKPHm00ycVc6qw0tcxFuu9f3hIVPHp4ji4NGMkPPn7Gy6sDP/jgkqublo8/ucRNjhdfXOf7RMpCUhYc/1/3HSEgSZBhoeVlxZoo2axrvvr2Q/7m3/513n7rgndWCuFmpr7NHVG2QJIhC217RCrB+ekWYxR/9r0Pmb3nwTqH/fdjy35/pCoqTnfb/N57R1mVDN3A7B1Sa/7X35gIMfHf/k7D/f2BoR9o6ordrsEt1qrCFFSrFUnlzVhRWExpqesCGT0+QPKOYrVDFoYYHWHwtP09CosyJXa3oTAKd2yZheHOJ2KIiEPH/vKW9UngpNpQ6pqX00yxWWPjjEJgih33XeAf/M//kB9+8IL7wzH3PMZs6wlxea2/nLzTT17rv3gtpF4hwBjNf/brv8Tf/a3vcHn9EQFD8gpiIhKIVhG8w0iF0YbKKKq1ZVOtc9WO9KTgcUOgXFcooxhGR9vOHI+H7GjwksOh58XVDXPImRyxHBgu73ruDhOkmbabubrvqQrFu289oClKvvnWBb/4jUdA5OnzG7wYMW7DfpoYQh6khhnOGklA5fu+SPzRB8/5uXcf89aJYX1+ysOvvUdVlpzguP34Uz6/uuZHx5mVaXj34ZZ/+4PPGOSKd959zH/ynScwD/z2d/8tnzy749g71tWWTy+PJAOPTzV/67d+jdfffocXQ8UX7/8Jv/xr3yL4xNRPfP/3fpfD7Nh/ccvjrz7i7Mnr3F7t2X/wEd988jpX7Z7eC6Zo+JXf+i10e421El1Z5v7I/fOXXE6SB6+f8vL99xn7AVlbtH2b1dZwum0y3XI+8OLFC9789n/O2B744sMPefb0kh999DlivmO126DMmnlKPFhbGtfyou9odmd87c3XsXHmhx9/wnf/zadEAfW2IEYBKW9HIjljrGXe4MSwRCFi5O7uHudz2ba2OlN+yYC14B2gM9U7RVbrCqMk66Zhmmd8DNkWt+SVnHPMc8guidUaUsrdy4pFWBUYUebhQia22zVVVebC8gRKCKIPuddRKfZ3t9RVQ1kUjLOn7TsmFxApLdsxlu9XIa0hySz66hTZVA3toc1OECFyj3JKbIoV5ztLvV1Rn+4QCDaNor3pePnihi8+/YyNVbz3c+/y+CtvUm3WXN/2fPrFgX/yj/8F7zze8PV3HrJerXj3yVv4GHn6+VOU1Tx8/IgQEx/86CN+9PFzAtDUJeuy4I03H3D58pZPPvmU7XbN17/5Lk1dcnt1yYDNn33naeqGf/ov/4BPX9xx1UeEEjQWSguzF/RTFuuncc71HWVBYTWVyUTNs90GqQR9P3N9vWeeA2fnO7SWdMNxqUHIZzxdyqXKwZECWFswu0wiP7ZddokZg5aK090mb9EFCJXJ92khYwbvvtxKSpG3w845Ygg5JxfCT4Y5n0mn2mhIkd3pbunx8xRFuWzX8gDa9x2zm3nw4ByRH2/sjy1X1zf4tDhNhMA7zzAMZNEMjFaUTbPA6QK31/tlC5bFNqVztEqpLAQ2RaY3ay0plqhSkoIQA5MLTG6m6waAZbjTGJHw0ZOkpKkqysIQfd7yeg9zgGM3Mk0TZWHZbiqszhvY/FoIjFJLL2SiHXNncp6BNSoJTJHrOTZlgbGaqjDYBXA2zhPT7AgpO+8ub66RUqCVzNF2IioImqIBHTNAcYpIoRnHPUbXGUaZUv4gCck0TUgpUSo3HUzTnGnvUmXeQYJ5qdLI8ZFcMZRiJsh+9vJngJt/39f/r5vF4GEM85f+a6UkggFr8iZQKYsQil2UuBC4Pw74EKisZbtpWDc5KJtC5PbuiNKWafaEoLAakBGSh+gwpl6sZtkXbsqSw32bVS6V7WOKgFGSzbrKkJXgmcYRWwiUytbW4XCEFBAn2/whnB0mCHyc8XSUZc2D7RoRU1ZghWfucubI1PrLbdd2VXFWF5yuCvphYr011HXBzWEgBklVrrBWE5Pn7uYO7+Ny/k2ZgghUamROinpVUhs4Pz0lzjPz5ElGIfFMwtKYgRgFSoExicJWtNLRj3f0buD2eU8YI6IoMCmhJSiRMDHkTEQ3cvP5kZu7HmEUpVCMbgChKMqSqiwpy8TYz5AUxpQ4P9PNE5e3iZt97plrCkujC5JMTDHgQsSqgctDQ3AD8xzRMv8cjNOMC4lhmhZiVuL05JSLB6cYRpzz3A4z7Rh48fKO6D3ruqG/3PPs7sgwDFR1gVGZLLYpK85Ptnz9ayek6Dk9aZBCQoqURmFVyr56bZBqRURxf7mnWW+JfuZ+aIlBsV7VaKsYpsCxixyPLVrlQbYsSxDlguQ2VDYiS0sIMA4t3/2T5xzvJ959+zFNU7KpLSKA0IpJaWIUrOqGar3i5eULru/u+fxmz8lmw3tvnrOqJGVVU6UVg/M8//QlSktGORCmQDtoFDCOR7QukF5yGHpmd0PwGhkDtswdlCKAMobGGHo3MrmZ225g3x4pi/+bvTeLtS3b77O+0c0xm9Xs5rTV31u36vb2vU7cyMQ4DpZNgoSQAg5ConkgvPDAUyTeQAKRAE8gkJBQMDzkAcmSgQfSQmxCiONr+9q+fVNVp+rUqXPOPnvtvVczu9HyMNY51w6Oca6EycOdJZV0du2jWlp77TnH+I/f7/sswzhgj/Tdw65neKOjXtS8FWoqZVh35+QkuLr8CBBc7XoOzqGUJkwOFT3a1khV8a3ffYeT0zWmydRVA8YS8bz5+TcYEvzOb32Ti4trnl0d+NKX32UYA/shMPvENPpyinecRD9/OKQ/aMOYOUa6nvcY8/MvMowT7z14zC//0t9lvWr5Uz/+Od5+7Taf+dgdFl2NSIl5GEsEh2WJZ5uKWhleeu31MjxQCSUybX3K67duMcyOKQRkzrTLJVofFTc5kSX8pa8uEE1L92bHS+PE9bPS46uqCqME3pWhS5gjUw50RnO9vSaJjNSKMIWj+wt8uiDLzKI1LGvLkEDiaKxn3bXomOhzgQrcMgrlPb4WLF864SY4om6hqritMrObqG2FMRXffviYr37jIY8fPnnRQSwxcEF4ETF9/v7+Y4aCOR836iBkgY0d+p79MPDpT3yc3TCx3e5JsdDwzs/OkAhaWxeFiozUrWHdLQkpcrndMfQDSnhMHDCqYb1ew4nkcmtRxvKLT/4l4kng50//O262A1JXhDTjvefe3TMqqfnw4pqbfc/iWU9KcLpuePOVFT/8yZcQs+P9Dx7z6NmByia+9eADpNJ86s27nC9bpt1MGz3KJB5utnzwdM9+DFw8ueCzP/LPcv9jb3NvYeHZezzb9AXatbzF/XPJw/ce8M13Zl56/WO89vZnscrx4Te+Rt7v+Oa3L/nye094th34sc9+jE+8tuLB3HDn/gmLxWvkvGbz5B2++eXf5os/9mNcXl/x6PEFv/6Vh2xutvzQG6+xOr/LN955xK/+6q/zydt3OFn1LLvA8v7LmLtv067vg7/ErgqVcbp5SHQzb3/mR6i7ipoCt2jXLUqeIbTHdBbvE4/fPaC6M77+G7/B9vIhv/nV77J3mvX5PT77euKVNz/NK5/+WdykeP///J8IfeTP/os/D7On3R8wgF3eJq0+RnADNu7xPrDdFWDQ+48fk0jU3QItEj4GNlcDMWfaZYPJmqbu6IeJq8sbYijwIaMN2qQCAZKZ7U1PUpqbfSDEwKEvn6/FalUGVc4xe4fWmswFJ6s1ldYlvmY02miE2LO93jGNM03blk7q1KOl4I1Xb3N6suCl84ZhGqnEKUZXaG1YL+HO6QJbG7SCaSq0U0ekrhvazhbyaErMQ09tKrSo8EnRtCuWzQohHE1jcH5gGA5cXt5wdb3n9GyBoPTbbt2/RasUn/2TfwIfZn7r136H3/3GB/z6Vz4kVIY3TcP9j7/O4mTFcrlAW8Xu8glt03H56CnPrm/Y7Qaa845V13JmaoKL7C72dFZztl5z6/YZAsPDR1u+/t1LNoejnmM6oLVkP82oRnPLqqJsch43JSbvGMaxKKqOAQMtEpUSrFaLo1IKgi9qodu3T9BGUzc1OWdWJ6XmMM8e7yPDOCJk0Tloq6mqMsivK8myrbCVpaoM8+yoa42W5V4TQmQYJ/b9hK0brDaEGDkcihrHHgmv7aqlqqqy8XTFeWkR5Pi908SuWxX9Q+gZXIm2X13fQIosmpbF4hSyYd+XiGpKiW6xZnc4lIFhSkiRMVqVupGSSKXIMRXgzTQTvTtCCfVxlllUYTF4yLBcr2i7msvLZ1yPx3jlsZNnG0vOUDc1WhU3oZIFStOkjBRFyWKU4jAEtK0xVmFiYtEsMc05tTEsK40UL7Ih5JhwztO7kpi5t6hRpyuELP7Cohwpv0u1KbC/eXaMsWw4UxbErAk5EMOEj+kYjpOl1iMkWRi2e0/EkwjMKZNTgVFKFamURSLI2SMpnfWUZQFzxVgGA8Rjl3R68Yw3Sr8YbqaYMaYoVn5w/dN5fd8niz/1hR/Oq5M13rnj5McUaA0F8ytVieetlqfM88RhGBmnyKH3IDKnp+VkRArB/npCyopMmf5YW+HcjCSy7FqgYIX9XMTZlVU0ncboCuZMcIGmrclS8fCjR6yWa26fnaHrictnM+8/u0LmxLptsW1H12XcMLPbTzS25Wx1wpPNJf08lwy6BB8TGcP9+7dKVHAaCXNkDpox7RDComRFCEVyfLJec/t0xTjsmecRIcrJ6XrdYc1zNLInp8AYHK+dr1HKFgmwH6jrlvX6lBwirt/RNRXVUnF17Xm62RJikaafrlru3jnlcnfN4yc3tNWC++cr1NIiCBwuB1IQnN1f40fPHBxZJiptCKNBV4JxLD+P9y6vuOkdH32wpR/KidwQA1lkFsaglSCK4hQ66SzWSqpqQQiFYBZzwo2anEayUEgDWsK6tjQLw+ZyYPYzLnhGpwgxo2WZKraLBbap8fMWpQIv3X6VTMKHiXfefURIGp+OJevgUChOV0vunnX8yS+8hQ+Bx08vOUye22cLGmsYJsd2N7JoK9567YwsMk+e9uQsuP/yKc+ebOj3M8v1ktVJx2azL27NuiFET1srGmuZppmgIMTMzVXP1HteuXcXbRMhBc6XC77w1qssO8OTqyuCUEhp2N3s8G6mD4LD4VD88jmzHQeSUMgsuH/ScbJqiNowTz0/+sUfQitBf7PF+5mz89JpIGliMEQyNzcXVLVlXS+YnOfp5oZxnHl8fcmtk3POT044Xdbs93s++OiK1aLl/GyFUhIXRv7ynxtQUvLv/o+SOSTun625c/c29998g5gz26sbxkPPoyfPuLjZscBzenqLk9MztOoJ0TD2jkpJzu4tSZ3mP/1v/ia/8zsP+PCDS1Ion4XnG8BCVy0TfpEg8D1ozR9yKyqAmxd/fr5Z5Ei5k4hsEEJhqojRFZ94+3W++Pk3+Vf++S9weyHZbS44HPaApm1amqbi8nqEELhz+4S6sThpcNGS5My4uSRPjuWqRpLYHiKn6xbdtiAEFs/NbsDaDgnMfuD87BwCPN4fjh0PWyJMwG67IYaM0pYoXelnRIHM4HIgJGi1JUlFihPBe/7Wu/e52uz4VPtNlusGi0ORWZ2sitpjdZ/b65ZVa8B7qqrGJIeyhktX891HW/7Kf/bfcnF54PL6ACIfycaURMcRhw7lfcy/J6714p0/urFUearzkz/+ef7VX/gz/Oxbt5hdUbNICUnk4u9q15iTBRiB0ZZpf8DIFbrrkF1DFIIgIAzXuO0Of73FSI3QGiky/+bf+EmQkv/6Z/538I79ZsPq7BZ116KtoG6XOLXg8OwR0/VDtLaslvewQhCE53CYSEEgl4ph0/PoMJBudtR+pG41zemaKFr6MfPeg0t22547r6x44+23ePvtN3CbZ/zOr/4KDz74iN+9KF26GCO7/Z5nzy74j/79f49lnVieK54+u+Lv/s1fZ3t1SdM2PLzeoozgL/7Cz/P6536IX/zrX8bMM595pcMNI3/7b/wuP/InPkFz8il+9Ut/ny9/9bf58Y/d4bNf/CQ/8fP/Au+9+4T//q/+Eu+//5Cf/ok3mHYb/tJ//Je5dfsNVHXKb/zyf0518gk2uyuWccOn3/oE6q2fxp7dZXCZd770txkevUvYPOaH/8Kfh+sbfumv/c/8xu9+h2883OCdY103DCR+9s/8KF/89Ou8caflE//MT6HMLb75K7/G+7/1a5ysb/PGz/0cL7/5Fv7yfVLYYk7ugr3Pg699jeuPvs6D73yJm63jS7/9HrbtGEfHOM04lzHGElIsPfYQyVFQ1zVCFAiG0eXPi8WCw34giwL50KLcJ5zLKNuwbCxGRuboCZTecmU0XdugpebQj0UHFFLpiLnSk5pi6ZTlmMihDDJCgkPfE1PxJDvvsJXljZdfwU8j3jukgXpR0y5ahv1InIovum0FtTFMbi6xwZxZLpcYpXjr9ZeRIuGGHSklxmiQBnKKOD8zzzN3bp/QHyIXVwNCZH7oUy/x1idfQ8bEN7/6Du89vEJV5eTpC596DRUD7eIUl+Af/vo/5NnNDd43uNnhoyuJCVPzle98wDS48vVUNg5vfvw2P/WZ+3zwdMPf+q132Ow9MlIAfyIXH7GQVKosvp878IIPxJRo6tKvyzlTVxVt12FtVZ7LTdGZeTcVUraPgEBrTUyBeZ5wPpRKiSgbIF3BcrWEDNubG/zsyELinMPUdekD4hEETk/PIUFO+QUkzqgSh711tkYqwX7flyF2UxG8I0aPPAJWPnp2iVSGRWXRlCqSMRXa1qXbOI4Mo2PfD4SQWK1a7t47BQTvP/io+A2VJcXjyeo8IqSgqqtyuukiKSZMVRNjZJpHgiuOzhgytq6wbQO5vH6pJZWBtlvQNDUhePY3O05O1mQy01QozIKSVMo5I0UBdHnvEVrx5it3uXO2Yr2qjhWZ4uR1fsQaRWtbdmNhHERfev2xCKDZHnZ4H0ryTmu8T0QfCMEz+omUE1aVSP8QIzkVUKOuFWfLU1LwhYcxlWesjw5jK5SJxBhxcy6ni1kgawVa4qcMk8fWCi1qsshEHHMMhWaaC3FeZEE6njgKW1EpASHifTqyMIr7sfxTYGRkwXc/3Hw/W5IfXP8E1x/ryWKZlEQyAUShJ/7etLGbPc45XJBkIjGEYx45kSJMk8IHV+AjOaNUYp6Op4yiZMZrY8i5SMS9y3hfnI0hSOY5EAJkn8kxYcsJOLdurZBSM3iHDq6U03MqpE2jESLw9NnEwmrW3QKhJEMc6JYNTWeZpkSIkYXKtLbilfMVg5uJSiIXEqkNvVM4n5iGTFSWj71SIDQywrJusEoce1GatmowRjGHmZgCRlvudB0hJUIuJWhFzTgFmiYiSRwmz5gUdytbtBGUB+E4e+arPbshQMqobJhj4snmQBsDk3MM1wMqS7wsKGSjJd1CM6dys1OVoWsFKcOtZcOqaVlLw2GaStk/yyItTq4Us1UBhhRYCy88k94HQooQKrrWYCqJlOUmIYUk+kCSIJTGZIGyx7zPUYqugkPOGYNECFviGTmSUuDWyQnTFPApgzDEVAi3SMF+CrzzwSWCRD8MnJ6tWXYdbV1k2nVdoYUg5wrwNJVGCE2lNC/fP2VcO7RStG1FZ9bEnDgcPDHB4VDQ+AjQqvQRb58sqe9VkA1ZjOy3E49dpLaa83Vd3gfBiw6cMjWpjyxunbFYNEgEs58AifOBx0+vePDompPbp+Ss+fJXHqC1oK0FlZLsR1d6NRFikGitWHaF5HZ9KJP+HBPWaO7eOkdpQ8iOLDTdsuX1lyN13RYqXM6EIF+Ux7UxaCNwfmK338Gjj46Tv+Jwun225ORkiVVlyl5Xljg6Dt6TRCBVkm998JDvPrrkq7/zHk8+umGeyutNKRUENuUh8Xyz9wdGTv/A6/n3/KNEtFxKhTmRjoOo5BIhOD54+JgYHKtO8bGXb3P/7pKXXr1F7Ac2Hz3h8nImiA7wiGvJcq6RynK5u0bqTC0zyij6yZFTQhjNwc2YnFFIxhA49CPT4DCVIgPbbU8lC5gppMD+sCv9GCSjcwghaVpDVdfEPCOFxUiLd555nrBGM4VEFAYE/MrwzxFM4qdfH1FSIFNCa4VdNsg4YnWFkSWwH4xlyJLoLTor7Mry8ktLTs9WXGz6QrUDng8A8x+6Of+DfwJKSLrFmtXZKzy7fspuNzG7Ea0VqqlwfWDOe/qcyTLTVjVhmrh1tmK9XlA3LSFlPJJGROI8MO33IASnqwVIeSQjJuZ+h8xFj7Lb7hmGkdoK5m5iCluS7xFJEx2M84Rqa9zki4BcKXJSmNpwz66ZtGCzcVxNAfFspO4MRlnuvXrO7ZdX3H/9Jc4WFtFfge85vbMmW8nyzXXZ2IbI1M94l1g2EUFAiIqua/nEJ+/jpnOMtdydAkpJTk/OqJXi1WXCdJKFgdBoPv3J+5yfNHh5zeuvnaLrz/H2SnPvbEm+fojoN9w+qZHhNq/fPSedV1g9IfQOrODBw2d0Q8vpqWR9doq9/0nU+j67p+8xjiMfvfMdHr3zLo8ffMD9n/rT7J4847e+8YivvXuBixkpMpOPrFYtTRjx2w27Cj764Irp8CGbzUPq22vOP/5x6qVl3F4R9nsON4+IF0/BfMg3vvxlri6fsN05vMt03QKtKxpbaM1SlK7aOM2MfiblTPTlBEaIAjrTWmGMLlAzrTD6KDDPUNcGbRzLrsa5yNPrPd57jCmsgegz01ji6LPzKKWwtSUFXnhqYy4deSnB1sUzt2gbmrrUPWKM7Pd9WZMIhzSxpG5M0QC4MRJ9ZvZlc5ZlTfDiGJUHKNqfkBKb6z1CJJIvIJbtOKN1RGZBJBOzYNdH+t3M2M9kEt95sGHTJ+Jw4PryhjkLWq2pETx6eoXzkRhu8D5xuZs5DBlZAZWiznWRriPpmhotNHmxQFWa065l1dW8c7ll13tuLdcsbCRlCeK5j0+X1FUsay51pC4XmEvZ8Dw/PTRGl42iLOsseeQn13WFtQY3O4beI4UqlZ3aInXpqoVQIoQ+RaaxaB6aSrFql4WemRN10+JjKM+bLBG5wAaFEihpqIKkaVqi98VhLDSrrsRI3VyYFAnFPDucc5AougdVNlxoQ5KSfpyYJsc8e0JMCARdtyjQttEzz46QKGAuOHoEM0oW2JkQZWPjj8O05P1xIJ5BClSlqTuDkAIfHCkWCJsxxa9dGYnKZZBxuloVnYSUyPpYZzlqvWLpCBBTwkRDSoltPxJCYN+XDXuB3pQNdYpFHdePx7hozJBF4X0g2E1DIZ4KiZKeJCGGhMgJa8rrjb5wEKyRCFHioVJl3OTKeDZLTFVOSUWUKE1RZQiFlqmQUV0gSVFir6IU3YWARGCcAzGXykqhvx6f4TkXMB7Fb0kqHI9MPK6xJFIWRVuMBc72/R1d/eD647i+783inBzDfioPihhJKVPpqmTIRdkseh8Y5iKnrkyBuHS1KH1EV6SviDKZmv2M0hofIv3kihKicozeY21FSpFMpG40AsNhfyg0QynJOTJeO6LPnKxqsgiEMDD6xDCNWNtglCno52lESUulKyqrGJxnt+2JMWKVwuoiOM44hnHi/Q8uSKWmWDoTRtK1LUZ5WgNSVJysDM4Ftoe5TPWyxuVAbTU5QsgFEGGURGvJsm3w0dPPDpcSRkuSzmibUFKySAvaumYYArfOVpysl4xTZH8YceNUipho2uoAACAASURBVNsiYauK1rZonenHGTd5NoeZGDOzzAz9SNdUQEeMEaE9UdRsrm5KsdxYlp3h1TsniGMJe3SBFBMX1zu0tTS1JXrP/jAhlGHXj2ilsEZilGSaZr714ILTs5roEvu9ZwgBMWdyOp4IKcGi0Wil6IcZpQq51AdH8AGkJoQblFBIYWjtAmsCWZQonzGGnDNt2zBME/vxcJyURrzz7A8D03Q8sWxaQvRcPNtTWc1i1SKEoO8dXaewrSG4QD8MSCXofeTipi8xRFVOTiptyFKWIr5PoDzjtGUY5+PEEL7x4AkSwd3TFZWFfp65Okwoodnv9mhT09UtbVdxflbjXZEQP7vp6UdPMhXr9ZKr7RbIzNNIDBFTLekPI0oLztYdTVXRfPwe46HH+RlbVSzWHTEFGBRPnl2zPwzEKJHC8NIrHXYSuLnAnmbvmLxBENkeBqzRbLYzH14esI82xOhZLDsWXUdrJEZLrvxMvNgQp8CyWzAHx923X+XZbuSv/a9/n3/wf32d3X4iRfkiMiokx2HQ9wZW8Z8wtZCP2PtyiReHi/kFWq14swRFbLy52rC5uuT9h084Oz3l1ddf4k/96Cd55XzJqyd3kTER/J6qrpmdJ/U9wV3x6Nm2QIoai5IS7wKzc7x+74SEYtVU/Ic/fyAj+E/+tyVuGpkcSGtBTQw5slzUyOCZgsMhGZzEzxHvBq63BxZNw8XhGbVa8Mq9u5AS49Qz1JJby3OGQygQAyOp6oqzs455nGhNR1c3tMsaoQLzdY877Bh2nt4XkfRmpxEp8uarK1aLirdee4n33rvAWnN0hIU/MH76B/40XvQXy0JZSsnqZMX5rVPU7imqMSgtUJXBdAvmPEK2GCTkmWnYIaYB3zv6sCPompgz4+xQy0WBhbQWJ+Dr3/o2SI0Lf7os6IeJCMeI2oGp9+yoUF3g6mpP3VQYnZF4qumCZxL8EInB43Pgeogsz85YW8EQA0+o6GNklUFMA0rN5OwI2fHhI/ju/hrrEzFDEAJtOl59+RZtXejdOUpQGn91TU6ex+/ccBgmhqChsqi64mxhsabi6fXMs903WFeZeYTLmwmpBPas5RuPnrCd3yNKTb2yfOg9z77ziG+/+wxTST73qTtk7nFv2TD6JX/vV/8PultnLO/c5vJwQC+3tLffhq7jwycfkd/7kK//9t/j1t27uMM1UxzYS3j821/h/ceXrNYLfuKLn2bRVmSTOGtPySng/Y7vPnjM+x/tGX/zEW7aISpF1a740sN/QPOlrzAME9KP+N0F3s3U7ZqD75mmRMotttJIZdGVZZxHQg4oLYhJ4CgiewE0jUFgjhoZSd+PzKND6shy0aFEws0TIUNtaup2waF3bK53PNnckAWcrBaEJIjJMw8zIAq/IEWa1pYumC2gjf3mwDD0GKNZr1fs9ge0mcg5s2hbjC7y78N+4slmWxbIQlIF8G7Cz0WXZGtLzplnNz3TVP6fCImUkuZmRmnFux89QwpB21RF6O5LZDCmkkDyIXCxnSAKqiNl+J0Hl3ztm0+4urnG1AYQVFqxrC1CxeOdTKGPfb2cBbhA01RYQ6lDkLn/yr0yHBESXSvOlw1uDLx3dYHRlk+99QZGl0G9lgVIlwAhJJWR5BQK8Cwl9vuxSOaFIB9fp4QXnTOBYPIe74su4aRrSU1NPsloo5nGgZQSzXEgdDhMxBCxncVNDsgsurooo/xceqi6xApjWBBSxNYNIRYI3PXNHqkzRWGYycIXIqlWzM5xcXmD0oVCTi5xy0ppjJDEmPHH+KKfJ+ZxRgiJUAaLKnAXXUGEq82BaXIoY0EK3LEHWTbWAlJmmhwxF/AiCbwvHkApyj3RGElbtzg3E0JAKklXF5roetGQc0SmMjQWxvJse4XUGqsNQghqa4vKg8I/DDGgU8LIAotyEbY7T1NZMvORoqoZ5sR1f413A7Vt6Nqu9PxSRCrJreaUEMracPAeKUAbSa0bRBZMs0eIhLUVIQWMEqyrGi0Uw7RHak2WzxOBhaIqk0ckg4CiiLOahKBddaAUjz/c4FKJllodaJRCoGhMXf6OBB8jMUeUsqWKMTvmEBlmR4wJIdQxZj6XTXksDA6tvu8tyQ+u/4+v7/snsz8MFNixxLl4LBZLTBl4kBMIZVBCEhPEJBFKUplAEpEUElKXCZFPjnmKnJw0GF29KDZLWZLZQilMVbw4IpXVo3MBbQRGlS5DP/RMg8c7z2LRsFzUzIVZdRQmC8LkiUHw8v0lUmT2vkQqiJLtdo/IifUiU9si+d3cDAyD56RZYhpJzJ4UErdPz7A1xZkjM4d+Kl4dApMri/IYMz4LVBqRMlPbctNJcea6zyyO+f/DNFFVmroq8nkhBG1bc7uzfDjOWCs5rQ3jnIpfrFKsTxfsw57dfuRW17Bea55dD6w6w+A8hynSLptjfEzigwAMRnliClxejYCgXZW+Z9cWR1ZMkcM0IiVlgicFtZWo2nK66kBqbrYjq4Vl3TU0teLZzYavffshQnREisdRxITK5TSkyMATIRdNwziXzaKuK3JOTOOMJKNrfUSxK/ajozLiRYfK5ExdaVZNhRaBqMrpZx8jm6sC2xGioLzXC08SieShtg0YiZDQ9zMXN6lMX4+7/5gcg8tMTtBYuLWqSyQmC7ISx6lyOT1rapjGzK3b51SmQIYOvWcOiaY2xJh57/GGNGd2wx7vJSIZlouKe68s6A8OmTK3VgtOll3xkyrBnXtryPDw4cQwTrTdOSkNWCU5WTfUuiIhmEOGpDCqAqkY55EPn15xcXHDbj9z6BPjGOi5Q2MKrS0khwszzq2RMvH0co9WgtkLfMosF4mUI7spU20dFRGZ5uKJGmfC5HnptZdRSvJat+T6cc+339lyeROoTKEgxpS/V40rR0YvOnC/Z8fy/35DebFnSbzYKAqOcKzn33TcPaZAFM/vXoLtrmd3M/Deu4/YXtzw+c9+jD//536S2+sTwv4djK44+IkYPOM8gEqQFYdhJuZSj56nkd2NxtoOrwqhTSqB1AJlTIn3pEwQR+fWoQfvicpAVROjgByYp8B2v2NnKx5dP0GlGqvAaMluGEgmcdaclWjT6IgxIHLm+ulHJO9R1iJtDaFDWcPmasc094xupu9nhmFmc5AQM3pacbZuaYxBH4EKMX6v8fn/uP7QzfuLXTkiOUg7lssKu7AI1ZQFZaXpmgHTrFitVwgc26ePkNNEygHnQWmL0hLtRiqjMUYhqxqZBN9+/4IoFFMIVFozzBmRI7bWWFOGAHunCCFzmCMTDqMjVglCgu2ux7myCHHR8XQ7cuYFOx2ZY2LrIGaJWQDzyBgC1zdb9uPA3j2inxyLqiK5xJQyqrLc3Q+sKqhVmbr7HOiqNUrMvPPgCZubgd0hg1KcrCraytLYiv2iwrse1S652vT4mNBacHF5zePNlr0r0dYUM1nXNMCqucXZWvLq3RZrDNe9Y3Pdc/PhNYuza85uXyFNGShuBknc7/Affou82fDtBx/gIlQnC27fO6XpGvYXT3H9nk+9cc6ybfEx0UfH62d3ebq54rtPDwyzh901l8/2ZK0JUuGmC66fPKZdLDj4iBQJmWbIsFoO3H3trDhuhwnvNdM80CG4vtkxzhNRCJQsSqzsyue3a7uiJoqBylQFajGNNE2DkQofw5HcKIkBsrRcbDYM/UylFLLSSKPxx+dEImOMIcXAPM24vcPWmqpeI6ViGAeGYUIpQxYTN7siQZ+8p20aaqtJKdEfPM3coctcGasLOTLHGdtULMSKjGS337PdD/gky7pGSJpGU2lNih4poW2Lt3mlLFJrplDSPPM4sIxrKluxqgxaCLQqMfyQEzkG9vsJlSVjV2Pr4qGr645KK9LsyQhcCAwuYWzxENemQqiaSGKeB4QX5OBxsyJlSSIziYgQCsiFGSAVSUAWgq6rMFLQNU3xvDqPD5mUE+EIv5KUkyB5VGCEVCB5wXmGfkIbVeLxVuPm4nqcRkVMFGp9ypyeWbq6BgFSFVBWcIEcIrPPWFOxWHRFZdR0jNOMd4Fxmpl9UVnFGGkbjU+ZMGd8iAzDjNQBbQy1rZBCImSJj+aY8Dkzj1MZBCaO9NFC7JRZMruREDPTXBy4whTgzTgNcFy9kssJnkvH5xayAMZy8R9KmRFSoMo0FFKJSdvK0taWEMqwRAh5HJgmYpiZ3IwInmzLJjxlQYjl858pWpGUIm2tOV0vkLL4lgUQfakNxfTcRe4JKdMZQ2trUk4oLaiMoa4s0+yZXCBk0BlqXQCF+z6yGxzrrqy9xyGQDShrMap8toWW+FR6jFnIAq0SopDtUznlNKkk9xa2KsO0kJiToNUKU1UstD5+jkod4znRVMRych1TYuxLv9X7dDxdlfgYIIcSVc0JzQ82i/80X993Z/H1V97IldGFumgKGGJ2jrLQO8pSpcSIWFwssUynaquJqcQDpZAoocokx0VOzjtyDsfytaRtV0TvGacRY8piKKRCSxvnEpM8PzmhW9TENDOOM1k01EZSG9hsbmiahpfvrEGCcxGJwtqy2dhNAY2gkRLbNlxPE/tpi0iJSjRIA/t5YF13vHb/jAxcX4/M48DgMi56rJEslisG55FDRlUJLyFniTEWNwZqC4tWEEOmspZhGJligpxolEZry/VuoDPFdbMbPTFnXn/9nMN+YLs9FO9QU7PtD0UQ39VoIfHBcNiNfOGHX6HvB7777gX7PnBy0rJcNFxvex5f7aisZdlUiJgKoCMktKroaovSgX72BaRTNQghaKpIrTS2rgkpsh/64qdqLJNPzCEXqEq/5+G7h+ODIpMzzCmRVEREQSU1Siic8KRcNuIFKlsEuX6aEVFwbG2TUyaSj36m4oOzVcJoEFGTciRRvXB5nq+OWoKUiMkxzRNzACmfqzyO7j5Zpn4hJbSy1JUlpR6y5PxkWRxRSoEUpOxp69LjKqBaRZiLx297GIk50baWurZ0leXeyZKq0oxxxs0zbpRkEbF1RWNr6sYwTQPTOGJkTbNYoFpFv+uJ40hbG26frbF1RRKJp5snuJCoTYumfCaEkqisGGfP482WcXT0PpMC2MpwetIwDYHPf+Yeu/1ASiUis98e+B/+rdJR+Zf/q54UI9vtAEqyHw5kAVJVCCRWKU7WK37s828wec9hdFxsrnj57hm7tOXXfvM9/pe//o2yqE6uPCSVKYvG8LwLVya2zyf0Banm/4h3o+fUzuf/Kg/v8lh/fupY4o/FHVjiVUbIguzOgSASSmo+95lP8MUf/gT/zl/4SQ6Pn5TYtq2JPjL3PavViqpSuHniMBwgZT643mOriqfXA3/1XyuLqH/jFwPn50tOu4pxf+DZHLi9OmEeD2wPAwcP2lrOa8mtVYsADr0/emETV+OeVbdCJMHF5pK+P/DxV19BqbLY+ysf/tvEGPmLy/+Spqu42V3TDw4fNYfJ8eRiz6pd0DU1SpbObG0FSM12AucC4bDjS1/9gKfXB0IsPaP4j76n8L3N4vNN/fNvOXYWIaO14s/+zI/yr//Cz3B49FWEWZGiwgXH5AqRMibQx/edbGlWLYnM9uaASL7EsirDxUdbssiEnNjfDPzWgw8QKL7y2n8BZH5u+A+oG8Wqq1l3LQjJ5mbPZnONMZpKSqojbdDrmsMciHFmYRRdZQg6MQ4jaS4Jj0cXN1wfDgWTj2TRNrz68hmLTiFmV+LAJrE/zFxtekiJrOeygEsaco3RCdRMlg1KS2QOLJqaxdkaMY+IrBjnwMNnG5ZLS6Uq+mE+Eqs13cLio+LeiWJ0kjlIWhkwtWVKxaF5c93jXMKuDK0QkCsSgcRIVS24urmhkSW8tR0FAcH6xLDbJyqK4uBkueTdxxcsW4vtLInM3Du2u+Mpi4IoSxtIkli3K1zIBDKV1dzqTjj0W1S2jN5zsbtimiZSyMxeYo2gawQ5qzL01YpVW2OkwBqDNYXuWyKFmpCKL2+/PxTZuFFHt1vpSQmlj77bMsDcbPckL8pgQWlSgt0wMPY93nuqpqbpGoQANxfw2/NaRMrQz1OJu2WOC3ZBFvJ4OhSKJkErTKWpq4p5mog+0LY1bVvT9wfmOTCOgZyhqRUZSVW35BTJMdFYzeSKAiLlzOyLp/Jk1UJWjMOIVlDXmrpqMFahRIl9tt0CtKZTCVtJxphIogDk5n3P7DxTLN7Kk3ZJazve/+gxwziRQ6kZVHVDSnCYB/ppRGZVBqNGsu4KNVyIiJtLLF/bcoK1bBflPnQYShVm0aEU2CrTWE2MkmE81hmsQZviPRynkf1+hxCSum4Y+p5KVzRtzfPeYibjfInbO+8J3qOloG1qMuCdO57EFd/f7Et0cnYJ5xJuGkgpHB8PkpAylW2Y5gk/l5PdLMpJZ9dYqkqX022RSpqGUsnY7l2Jl7pyAqir6kUdwsfivi2E1YSPRcWVRC6k3aNaQmRQQmMqw6o2mOPpc0bQtvZYB/EvbpnGGObJo6TC2vrFRjLGsuGZQ9n0OhdpKv1iYqePG/Gq0oxHzUjTFH9qSp7WWJTSzDEyzzNhLN2/0buyibYNy+WKeZ7ZbnekWGLmptLcXF8Ts8T58qw8WVpqFXEhcjOU4sb5otwPb3Yjt5YNtlNc7EfSVN5jKQRumoHMya0VOZUTV+cDpMT5smEYHdvesR8co0u0dcVbr66ZXeLqaosLDlM3RDLb/YCUBqQqrJJxJolCWK2NLp5J58p7Y2pSLIdNUoLWiscXuz/aeuEH1/d9/bF2FoHSbYsROcHzhox8vvAQqZw7VoacI0aXI33vExGBQVIbixKSMM8oK+j74j8T2iByYp4PxJhougKLEVJysigOpf1+JMUSDQ0pUNeG6CashKqWVFYzuJYUMns3FWLUfqa2NekYeW2WDUqWRea425KlZFEvSDkyHAZ8H3j11XsYWchOOSVqnQsqPht2Y9n0nC5qTrFUpxZdJXQV0cZwdrbm+vGBtjGcnFn6wfPkyZ6P3z5hTDOD84xTJHmBazV375yUaOSDC9w+4IZATIq2WR7R4pKFaThfLrl3a4VRkn6OPMqZ8XDABQW0GDXRNooxRUQl0UZxGGc6WeFTINuGwzTi/I7FouO8rYpewpb4hhszt1crDsOep5fXxCRYLDrObndsNhsO/cBuN/PwYiCS6JYS7wUxOLSGpV2ChqnvyRTr66pucG5GiTKly0kQSRjbMToPOaAqXch5qmyQpKyQSiKIeDeVzkz0uFAgSUKWGLGQBcqTUmQKjpASjViQs2S5KLGlnMriPKVIXUusFYiwIsaZnDxJ6LI5zOBz5OpmW6iD7ZJFU7FsE03XUduKkDNTjOz6mZurnqePr5FKoK3EVrmcTFSSw82OlG+wtQU80UfG+Qb/UcLFEuNdtx1sez64uEGqCltbYnJoKcmyZ/ITJ1WLlYY+jOUE2wUkgvsnJ3zw4SOeXg9sD6sSa3o/USmLTgJBpK4UXVvTdQ1f+Nw9Zue43t4gpGZzsSGmjEuxuCnXK6zWfHB5RT94hj5ysjS88sYpv/x3HvDeBzckyvRTZIWSBd/9fOPGsYtQoKb5iBjn929Yfu/1+wZVgqMEkOdgmxfHjUdUuTjCbnIWiFyE4Fmk0l/K5euqUgiReefBQ55cbvjRL36OW7VGzRv0PLA6WVPZAi/wLpBipJ8diMxbH3+Z6AL3VmtOumtijLz1+ilSSLaHgSEk3rz/Em1bofQClQVBd3ipkX6is4Jx6LnaPqQfJ6Q3eJn4yoN3mCZHEiUdsV5fYbQmxUROZWH4xivn1Oslq8Oa8TAhPPgQ+PzbEhMVKkuiCngpGA4j14eeQ+hZVJJaWCpVPGBFg/G9t/GP1hd9/l5nhJDoyqJsx8FJRAzE2ZFiIEsY58QwOi4utgXwUBnqpuWN189Js0NFyTyNXF495qOrA1JC3dUIrfjUG68yHEa+psok/v7dJcu6RhvDfp6Z3cTsIkLVnJ6dcmddocn0c2TG8PKqwVaKMI64KdA1FW1t8LFMrNenFcN0itQdwziScuLOaced0wXXVzcgND5HTs9qXr9/C6OK+5boGcdIP0UWS4G1GiUaXHQlciYFda2ZR5gj+JQ5axs+8fJdDt4zLzKrRUPdKiY344NhZRObG8e8dQw+crbUNHi6puX+2Yqc4Wacefl8wTx4tFVUi4qbpyM6a14679BKsZ+LqmLfP0NJx80NXG4nLi4PDHFmDpFlFmghiAnaxZooDoXsmDgKwxVVJVksikpn9pGb/TXDPNBYjY8RIRVVW2OyoTk4hIRFW07omlbjXKDtFoUILhKVkoisWK7WIAXPNhfE7Dk7a2najnkoJ4umkkW/IyS7fqYfJ/a7A1ooTNty6GcO81A2GuOhdP9NRYyZw25gGEdCSri59Oa0MuSUOQT34h4SYzkVUsaiFLRWY2RFZwwVkRgmrJFI27FsFuQUOO1OSR0Elcgk0hxLBx9NSrJAu8gIo1E5omOiMTXGGm7fOce7xNQblouas7MlcY74GJhdgeQRM42WtFXD6Ceu+r5E/BAon3GhvGZpDcoWuubVbiBnSXN0Ee6GPXVVoZWkqRtEBltp5pyRMSCSBOnJOJCSfooMLuHmgKBs0CIwJKiMwprMOEpSVlxf7fHeFTVZijRtjZClIiQVWClplg1Gm9IrC5F+HEHkF4OBm+sDznnOTldUzbLc08bA0I+cndRIrcjR45wnhEhtLQu7LERbpVBSlmiprYr+SYHUGh8l49jT1vaYwIEQS688psQ4OvwcMcog5QIfPTGlo78xonzEVApblc8RscjthZKEGI7Po/J8koBSmkoXJ2Rbd2ij8X7G+ZmY9fHZlLG2KVHdqWxSlT6mXqTE+8AcyqYxpJIo0ErSdR21rekPA+TMerkuA7QYSb4coOSc8G4u1a1QXIgxBiqt0NbQGE2VAknko9ZL07Ytbp6IsTy7F3WNUgZkYj+VQe7pqkZJXVRzJG6vWlZdw24OjD1UMpFTLkm8W2uGw1FzpzJCJpTJWKloreW7D6+QskKpmlUT6TqF0Zl+cLgsEbotKTbniC4x4/EpsNuNSFVc0c/1KDGVbqdUkhjmwjsQuXztH7dW+MH1//v1fW8Wpfzewu73gRRymcKlmFAJZlEcPEIkpEgvvj/FhDOFwBeDRytJTOPxdy+VGMfxv9na4GMg+3LKI2VmmspUEwlpCuSoSalIpUOMEBJaKcKxgyYQ+Kr8so1uLgCdlEii5P2zFNRGUllLIkH0uCyohCmb3Nm9IAka+3+z96ZBl213ed9vjXvvM7xjv9130r26mgUaQEhYYAqBTSLs2AwuhyACETGGOIBDYggkYJOyE2K77DA4ATMEgokqUI5JHMA2iEGGIISEGAUauNIdde/t4Z3Oe84e15QP/92N7HxIoqq4+KBd1dW36naf7j5nn7XX+j/P83s8SlligSnIgqcoXDs4wFWZomTaZUhztg9iSWIzCRPN6NBODk1GgfcK1IKDvQXWKqbr+/SLicoKhvquqmqVJk6iKtbeYazYC/bWnhyh8Y4XPXKEypnjQ892zAwhsL+oGcbMyXrFFEZMVdH2PbtuwFrH2hmULrNqkOW/tUwSm8oRouQdtu3IE8/eZhon+jFwdTXJQrXSjFEJ6EMrSslYpckYUkmUlLDZQBELRir5XhG4VuCtJiMWGmM0RguogRJRxctE01gKCq0tigjItNDXNWHqKSmi0CyaJVpr6qoixciysdTeoLSl7yYKiuXKCWikFVuO9Q6lNSULfMcmhaIhlYzBEgO4lSGXjHUGC+ig0D7Tp0yIAvYxBSkejx02OyHRZhmolBKgKKYgBbklGwpSAix5DSBHdl0U27J3aFcYQmYXI9GKZXmIE3HKQtu1E9oKBKftBkqG528lnPGYoskpYC30Y4Uymg8+1TJNgWmQoUk/TmhtCElsSSnvKDlKn2QygOUF9z+A0oUnHj/j1q0tioKe8y1qto/cUxFLmQXBj1EI1f+dvvn/eN17Xtw9NH7s+iK/4B43tRSyyvKQU6CLohRodx3truNdv/kR3vipL+Ulh0eU0DOESYYizovKGCamSSa5h3v7nJ+dSz55zhHtL2uMEVuyiw3XTg6hRGIYRTFPQSAceaKpPN5bDg/XmMphY41rNNE4dt1AChlrPYfX98WiHRK2l77Cw701uqrJBWptyUNgmCzGw8LUVNoRdYLKkWNh0265tt2hCpw/c3uGWNyln949+vGvqYjqX30vP/Ytnw/hRmkq7zAkfFWTiyVk6c2qlxU1imUdSVNh1w1kldBGsfRO+iaT2JNXywrf9lKIraVDVEXJspx075GhWInokshd4mqQQcjUTYyxsO0ngWGQGWNmTD3brmW9WogVbtezXjTUy4o8W5u0MyydQSuLMTV5zonnBH2YCDkQcVSNoa6kPFthUbqg0LjaUtcFZyu8rVHaMaVIP0yQoFp4Kgx15dmrKw4P9zBDx9QXvDcyENWejKf0LcaAbzQuO5wuXI4TqmiyKaAKaQp0/cTF5VY2hXHBZtPSjQPdVGGsqFlRZYZxoqSM85UA5bQSm6/16KIIUyDkRNU4lgtPyZkcMhSNQaNMwVcOp+Sz3UwDzmhWjYfGc3QkVmNXLGGUzyKicBacVWJz1pBSpA8TvVIYZYiqJefM+eWOKYxY6xliIY6iKDaLGrQixUiYZGAGmlIEIANCTVeqwN1uWBQxJFJMxEk2w1XdYJRGK3nOrJ3041pj8M6SstyvlMyqqandTF/MkaSFqYDSrJtGKnxyomhFVALOiioRYsBZyRfqAmOcyFo6GyutWDYLjHOs1xUla/pK0VSWRWXpiyKMUiw+hQA5EkImhkwbevoxQilYCnW9AFNoqppFIx2WwzgQc8ZZ6ajUCMROYhxKLJMKitZ4Cgtv8LXDVA2LnEhToR1FBdOlkOIk4BqjWK1qrJY6Lj1HhPQ8eBNgkZaf0aQYxRJoDNYYWWmL1EooVWSP1GkeYQAAIABJREFUlYpAVJTCOXm/+r5n1EaUu5S5bFtyKXTdQD9Jt7BzE97I76m8QHZyTOyGAcjUtcfN/16lxRI7dOO9fKGanysxg6sctmiMtYx9pig7q4maHANKg7XCHRA3WUVMhTHI51DmwbFWRYrjlUBxtFaidMUwmy3kfhN6aU/fB7quFw7DUqioIcE4ToQomctUMkQZDBZtSWi6aXbiaKnksHrO0FozE0nzDC1UBIS/sL9Y4L2l5ESeOygNMmijKFLIcmcoUWhjCXgNlbVYo6lq2VPpEhmmANqQyFRWcW0l2VhvHauFxxpFPwzUjXRGWmuE2poLF7uR7TDywFzjcrW7YsqJi93ArgtMIYk9OCWGcaIbo9R2oHDeUnmJSZQi63SKacYoqTm1otBKzXVo/9+3C5+4/s1cH/dhMSLFqKUU9PyBFyJaCQEtlyIVFDGhtCYJQB+DQRdN2gWMHdFarIaSPUzEWFDa3iOjjUMk5O7e5vByFyg5IF2OhqqaF7Qw4CpLb0dKJxQw52q0KrS9ZAF9LfbFerWkkEg5kYomKyVTOwWVka2WWa0oK8X5ZseicuTUy9RHW46bo9naoyAbTrdXbKfI8WpF1lJ0GkLi/LLDFENpC2ansc6jneKJ8w1xEEqUd4raKgqG87Mt1ikWjWO1WNCPA94b6YTShlpbUrBUjWHbd3RdRDuFNwqVjUxM9ysWdcPBesnRKCjteP2Aacq4hYOU0Sqg9QFdF2jbgT5CLoYUE93UzcW9O4w1PHRyRCHz5LM3efK5C3LSKC1/h/tWFUVlui4hrhOLorCbBgiGKShiyoKT3optOKtEIpNmtL8qyOFQi3pstEJpQUznpDHGUjdeNioxSPAkJTnMojisPLpExkEoa02zwmpDNAFtLKkYhmRxyswVF9IbFLJiiknysM2KOE1onah8zTQm9tYrFEryFTFIVkZp+m6QCWHtONlbE4uinXHbtdMS4J92TCGzbJY4q3HaSr4kRKZQsFphrWEKkWF+/b3VmtVySUqBXGbFPGVINV6BMomjvSX9WLPTAWs1Y5zYv3bIfjkg9BNaS/nuFMQSZ7Rj14685H+4SeUNv/esYOFdFspZ1Jm95ZKV98QQudxuAcXZ6SklO5ytUe4+nnjuiu/+77+flDLf973/kLe+9cv5zu/8Xv75v/i5j1ENMzGU+bByt65hPrZ8jP3xrgbZNLU8tLMok9p4tNV0M91N3+2wShlU4Ud+6Ht572/+Dt/7D38IlKwVaj5kf/obXscPfN930TQ1Tz75DF/+lf8xZ3dO0Qp+6qd+gbPNxH/yJa/j+PA6L3jN5+BnWt8HfvPnuf3Y+xiGyJu/7BvYOzgkZcHw//rx/XzZc99BVj0Pv/R1fNrLPpPVwQnv+ZWf5pn3v4ebTz9FNoZsa1ICrxTrtadpHKW4WenQuKrmdW98FHLh7PSc7TCyWu2xMOK+cJdi8aKq6IcRnQqLuiJ7h4+J1PYC07CFOxc79FVhf2+fG0d7PHTfIXFM/Nrzp5RSsFqyluVuGOnuuz1P0u8eFTVQMPIZKVFttVaQwFhH7Sxhd8FHn2vRVpNDovYO11hOTpYYBdYYzi5b2mGALCpQCJmr3UAmsao9Ve3ISbFyHmcMN88uQGte596O0ZoUNZcb+bz7EGbq8sg4Rs4vdvK8UEJP7cNE1w5zL2wFKCoDfuVYWof3loP9JU5rrq42jCScsWx2isurlnYaGEpiz+6xnVrOL2UqrxFblHWiPpTLyGY7oM088U+JbhCL/nq/ZuEMlXVkLKfPnOKLqEW5RHKJLHzN4eGaUjT7a8/hcc3SVkz9yGbomKYJZQp15TlqPMMYuegHXIhMQWMdnCyWtFNg6Lr5NStMcRxWihuHa8lYTSPLVYXVltPbl1yESDsVcmo5Odqnn1pMVWGUZRwGxkngL5WDojJ7yxUxRtaNo2kc670KiyYXmFJF3wVun+7E1j9p0Jru6oqhn7ja9aRSxEYYAjFE2TAqTS4Cu1qvaxZNwzJbAZr0PX3bobXi8GiflAu19Sxqy3ESKrhSBxglgLw8Lx1VXc1VBo4QAttZoVNJah6qqsZ6zRg6jBJYVSkZNbMSpqxY2BVTHEhJwEiSD+ypvKMyjpw1rrIsvKOuNJVzOO/IysBscfdz/9sQJ8I4kLWSP3dKDLc2JCx9inSDWFW10uRpQhkhsa+cHCysUZzcOCJTWDeeynnaduRq2PKih69Lb7UVF9MwJmyzQJciB8cMp+eXeKNYrhsoCms9rjLonPHWksi0bc80Rfme5DT3Hmo5HCLwwdrbec1Q+FoGMCFEupLlOZIz45iIMWKtqO2qZMI40Y9iGzTG4SvLMExsrnbyejOB85nbp5Jn13IgyBmUEuK5N/NQ2BiU0mzbbt4vmtk9ktHakpNmnObnr7d451gulhitBQxjFAsj4MRcMtZYKu8xixqjFX27leotXYhJ0dSilKeYmEJgGAMhByEyR0UMmWnYMQwjR4cHaGO4uurph4GYElPIcm8q2dsWDdMUyOGPHB0ysCt02ZBzopu2ONtTYsB7R9u295RiZzWTloFxTKIIx1TYjQPeOSpXi4k8p3kfkoizC+D86krs5shamPSIUoXGLbDZUtRM5M+wqhwxRSadWPnCw/trSlhysWuZSmGIA5vLkfNNxzW3ZLcbZkKsYRxGQpi4fljzyANrVrXnvWe3udVOPHOqIEVKSnNLk5H5rlIYrXBGejaFKTL3eiLWXZCHkXfCrshJhKO7EKBPXH/8ro/7sBhypmsHkduVTMeUEYUQXebSUoWdewuLyjNmWqY91hq8qzFGQx4xWoMqQiLVsqmPCUKAq11H09R45zBFrFJ1syTGREzihVYmE1Oh5CiUzBRwTqbtl7szoFB5mUKull42BkUOJSjDZtcSU0OmMMfFUcayG7dU1jKlTD8FYoocHMmmy1mxCIxxYiwDm/4Knz05FXLMkgXQAgFZNw0nRwdsFy3l9hUfPj0Xi1ZV2OZI30vRurFg0Sz8mmodMbGgdxZnNY3ThCFzcv8e3Thx52wHylBVlhurwq07PR95NrJoPMfHC0o2Qu+jcHrZgpfDckNP4z0lKcZ+IJqayleSaXABpaAde9qQiHnBqq54+QuucbBoWO0fse172nFkO2SSTZzd3JAmTSyJlCcurwa6UVFZKNkSKfRdLz74Mkq+JiCqnvIzsluAGHVjUfouVVMCUmOaxJ6kNLmkObuiMDmwa3cYLcphTpHd9pKUCl2QPXLWVqywgHMKozPVlVQjeOPxlWLYDOy2LbVTrJYLul3A9AnjFcYlTJOw2rK/f8DY3WRMI9E4scgUqKbAVOTgWWm4//oJ7TgyRQmqX18v8Y3ndLPl1vkWXTRKK8ZpIJQoxcBFs16sePiBQ4oKhFC4fdoz5Mi69qg6sbe/T4gaUmbdwOk2sBlGQkrcd3yDw8MVqoxMIXK4anj5275WNkwho1SeF2lFiIn3v/T/4H3r32CvaXjV5Rt5+H1/SjZAygr1MAi2e/mcY/s3f4N3/fp7+IZv+M/5ZvV3ePQrXslXxm/kc8Jb760HBfi18ov8E/NDJAoP5Uf5a/m//VfWjDllCAp+rPm7PK+fII2RP9d/Ja+f/hQqKsGjq7uZRHiGx/lO+633XuA7448Dir9m33LPtfq2H/0BvvIvfx3vfOe7+bZv/Sb+znf8Db7qP/oGsraM7YZf//V38vlvuMG//5e+lve/++d57Pd/j4PjE978ZV/PE+//HUJU/MQP/l3uO97De83DL3st1/70m/lIukkfFtx67mne+97f56Wf+iaeeOI5nnriJrc/usEsPCcPLFg4z9hHzs5aUim0faTvWhwJXdV8Mpa9dcUUBk4vNlzc7jlZGZqF4esffRvKGK6SIoYoGyFrqKsFjQFd1VxOE2d9x0eeeZ5xc0nl9zk6XnF8376oqP0ovVtFDoT3+EL8EShIlMM8q6+FgiGrTFHiJCjke5/SOCXaduC33/cs+4c1K2+ovGMYwdYykf/Qk8/x3HNbdjnhTaGqYewzp6cdIUb2Fw3BaBbecf+1PVxtsd5w7WjNA/cfo5Vh2HWMXYfWmvNtRzsGYoykKZJyoVl6vNKkKRGTZ39doygsFzXOeTyJ/X3PjRsrfOUw0TF1iU3Y0U2t2LJqxJJpPN5DpS27fsfp5Q5VLEZFKYJWilQEfPH8rTO6PnB6viPlgqv9bIcTaJfRGlULDOvIO9b7NfuHNTlnuu2Wpq45vHaAVQmjM64SO9j9QySSODg+4GC1hqFnQnF4sqR2FXurJV6BVZ7n7lyy2W1RLnJyuKK/3VPIDMay2Y1sNiMH6waDkt7hRc1QHEM3UpQMDfZWHu88OxW4Ou8ZQ6a1AaMyR3vXyKEIYTsFdtNO1JQkFVY5FIZuYowTuqqlw7CLhCkRopR9xzQRo5AlcxaqYwriBGpchSqFzcU5YKRyaZSh7YrEcq9mb7mib3fEAZwRtWmvWVDXFa6psU5zcLhH13V0bUfbddw+DYwhM/UB6yRacH7VMoVOBkupsOuvZsdGBSVR+YU4HFQhl5FxnPCusF6v2K8arHR1CT9BRRIJVRT7e3ugFAtXkdLE6fk5bT/QB2j7Tp5JgpJEmwwqUzceqz2rqkbrxOHKUDc1Z6dbxiGgrMI5iVCEnMlhZLmsMBqu1UKWM1pTUqHvAqujQ2prMEUxhoJFFL2QMmOY6HYdzllWC8/BuiblBMmxt1wSk2K33dJ1LcZalqtaQFVG4Y3EWmrrMdrSAuRMU0vP7zAM7PpB3DnLBdpa+jGwa3vaITLFSEwSDUrTIAM/rTFRlpxhEHtpvZAaDF0k45xixLv54N32FJVZVjVTSHST1F70k9REKMzsNlKEPBLy3H8YAyUEoctrh9aGtt2ya3uU1lhrWa+XXJxf0PUTKUtt2otf9LCAcmpF23dMcSSMkThkUoAQEn3bk3NmuVoxTYG+7egGqdPS1uGswVSeoqAdBrquZ13X1K4SpXS2yqqZ4F6SDDWTEqfWNEq/YttP9yqEvHeS2d12hCwKsfeebR+ovedgtZzVzUwigg4SoxgzVbWHLolVY1guHAtdc/P2lhAzi8ZRO0UynqwNTZM5OVxwsNzj7KLn+dNbBGZwWzHU6wOGVLgaJoY0UbLGTJnaBR45uY7VisvtyO2znjFpgsrkLBEFpTWrWpTSxrl7XLp+nObcqlBSfeWwRlOUwcwPqpSy0H+1vacef+L643d93ICbv/7VX1AuLgfaceC8DYRk2A49XR8ZhsBu24uvXwVKSqSo50CxTGKddxLqV4WYNTkWrPXzpla+YFpprBX17q79LKFQRgnwQU1UuqAwtH3C1+C0xVrp1TNWE1IhpExKkRBHUIrKOozR9LtCVTn21kuszXRtT4gJYy2+rgHYXe6oV57l2lNZx7KuyQTacaBtO7xSvOD++zC1Y+p6al+hiiJEwU/bxomdFAgxo61hGEfqWpET5FjwXrO/d8jKGYwquIXHes32vJ+pZdK7d7XtmGJHypp6scQ3lspZllXFptvQ2IplI6pGnAphmOiGiS4I9EPryBAy1UKzqCvOt4Hbpy3XD5bsr8SW1U4JbeDTXvSIbGy7jlIMFEsx0lW1cpZaC9xoWXtCAKUV1VIUtDtnHVMvqmdVCd02lkC9XPKBP3yGro+4eomvHFeXdzBKcbbtGEMmjEBxxJyYJunwAoNShs3VuWyMkbxZ203SE6gFAJMzpATOGx68cUC7285dQpacFX0XsE5RLzxKwzhFxpjwJkrIuwiK2xnJvOhZzRz7zMH1Q1IM5GnAGcPJ9WP29pZkItMwUiKQDFMMNAcHaDIxDABS4hsjhsxiWbNoal5445i68WAgDAlvLN4pTjdnjGNhSpmsQBvL3n170E2M5zumLAfhNEa6vqOqPXXt2V/uYYzhaOkIOWHvHPJJ73kLr/37j7B6WQOx0D0x8gf/2VPc+AvHLL5w4F/8/HfSjiNvuO9LeOWL38jv/tUneeAvHPHgnz9iOAssX1xx9o4dh18hBLTnn7vJ2/+93+ctP/Bvc/q7W05eu2b5YM1j/+vzvOuvf5jfsP+S3375L/EPvufvcf+1+zkO1/nVb3uMp37uDAW8+X9+NUevWOFqzYdu/wHf+re/kavNBV/96H/Jl3zbF3Hz1y45/tQVv/v3n+b0d7a86Qdfibum+L2bv4UCfuGX3sHD3/W5hCnyzf7LiVnxutd9Cj/yQ9/Dqz/1MwE4vnbMk4/9DuvDR1BKJvkpFz7vz3weP/2P38Y7f/K7uP34LQYCX/A1/wW/965/xu+9991sukw/QXt1wVd+3TfzrrM/4Pt+5sep33FO5R2LheObvu3bePqZx/m1X/5Fcj+wWjRUi4opTIwpU3tYLz0vvu+Qdd1g9xfkMbG5vKCbJiq/5HB1yGNPfJibbQva8IqT+0lhYrfL7F3f4+WveBSVMx/44Ado+8id8wsqJ1nebGushqpZMvSJa2tY15mf/IXf5l2/+xybdiDlQorlj9TCWaIpMygIFbFAUoo8q78uVwKV8hFU4eToOq942Qv5nm//Um4+/TyXVzsCib7dcXrrAmMbAROUxNC2TG1GVRC1JiRDmCJX3Ybbd+6gjefGtWOWleMPHvsod863tPZBlo3nkb0NpjJcOzri2nrJojJcu7bGakMYJp65+Twn169xfHSMN5axaykmY72lpMLleU8MjmIThsLBnsN5RTdEltWaWCQL7W3N2VXH7c0VaShMMdOOA6XAuvLsX1uRc2Bz+5TKel71ya/AKKibCoDL7RVd13P71jmjknpxBkMcJk67C7QxVNrM1sXIZTvx3M1bHO7vs1otuew6lst99hcLUhjY9TtCghwy2jkUE9YqjNHY7OiCULCXxnG0t49fL3jqmefR1rPbtVSV4vio4RUveSHtLhBjh7EFkwwhJK6d3Mdm0/LEs7foxohymoP1goWzeCuEzoxM8S9PL6i940WPvpDDwwOmNEFlUUYx9hPttufDH3qcNEX2VxWHh2seePC6xEZSYq+qqbwDpUlFsmJoxTQm2i7w9LNnbNse5w3L/QUpwWOPfZTLy45pGqlqz/7eWpSUGmpriDFy8/SSbduzaQdCDBwdHOCsRSlRJmq34smPPsnmakvtD1gvF8TYYlw912ll4hjJIWKqxKI5wGhPN1xweLQiB880TuQ0gC5o64kls+dqphSZktgxXeU4PztHoVg2e2jrsCpzudnglyus0yiVaYzmYP8QbQpxzi0aZ+mHwKJZoDOoovG2pu96UJF6YTDWsOulz7VEiCGjrDyj9vdrLm5ekpUilMTUD4xxIinFUzdPyRmaqqH2nmZZkYeIUZr9gxVmrs1QiDqfElxeXLHdbmmWC45PjgTwFSbGYUAZT853y9Slf3I3BkqGvh+ZxgnQhBhnKqn4FO4Oqaqqwlkn3ZQxsmjqezGgMHcWVpVl/+CI3XbHruvYbrvZ6aNBMVdqgSkzuMx6qe0x0CwM3luurq6wxrFoGkqB86tW8rbOSra9RIwWCNK27THe0zQSSel3l+RciKGQEqRYsK4mpswYpRLmcL+iqsTimWPBmApjLVpDTAJelEFqRGuDryuss9I3OUnlGzkzxQgUjNYYbWbxwqPn+3sMcw1UVnPXo4glpWTpN86Zy+2WmBK2cigy1lqcluJ6rwzeGdaNw86cgJwzm2mgG9JckSKurdob1o3n/oN9pinxkdstF+2IpWdReZaN43C/Ril47vlzlqs1l9uRXORwN4xBrLbTREwB5+5GFQqVc9RVNbNKFNMUmVIiFTmEhjjJunbX0qy07GdHgQx5q+/9/ykEnLV85Nmzj+tM8onr//31bxRwc+e8R2uFs5aTPSEftaMiTpqQMt00MY4ZZQrbXcvmKjClNC82CmMcuRgJtyZFnvturFHEKUuxqlIEBVMMFMGTUBBEsRAHE42fe4KURgZAQkbTaJRKWOtmabzgrFR9lKRR2qD8BFamNSUXUZK8xVhDXWm0goPlgilHhrEn9gPDdgdWyltTzEzKsN0GfDKcnm3IOZNLRrpcFdZXNFWFVTCMHQf7S7wB5w+IUawHuWj8MLCwHoXi8qqjjyMlZurKzxjuQrWA2GviKNUiRgdqt0+lhCC1rheY4yXeQgyKMSYu+oGbVzu0MtRYKUgeCm2dKCgWlWNdeSwSru67TM5wtpPMRd/27IbEpkvokmk8OOelnHaayWCLIyiRZS3b0t1uonaOIU2sFjWL2mOdo+02dFcducDB4Zr1ytPECmccB6sFKUkm4uBgj0Jk17YSJg8Koz0Xl45+mrDWSfGw0uzajhAS7RAISR4CuRRClEwZIATVIuXretT0s51EFSmzjVqhDKiiUMVI95CxQMG5IsS7KrMNI8YvUEpzdtFzftVTdGHseyyGw9WayMgzH3mcRb1A5UwqmYgijRMGhasMyioeWzzL3v4+i72aOCVMLjhnSEoydNZ79vZXOBO4+YGbXN9fsNcsqY3mRlPjtebpZ0+5GnowigcfOMRoz61bH2UqBXU4cvUtv8r08pq3fugfUKaJz/3tBeMXDbz20z+bF69fzcMvepjaOQ5OOsKDT3PxV3+cw1d8KqtP/yJ+8L/6Vp78J0/z5z7vFfQ/+0o+eqvlm77l27Fa8SfUPyW9OvKmL3gLxhp+5Zd/jl98z//Ez/7cL/CrP/x2fvhHfowf/tG38dKXvpRf+aWf4ZWveQtnZ+ccfdMR26stq1XD3/jWb+SL//xb+G++42/z9gd/iq/+pLfwlm/+Mt75Te9kvbfmf/zB7+N/ec8P8/3f//088sjD/NRP/zTv+Y1309QOoxWH+w3bq5FHX/gATz39jCxKCs7OztBac3J0QLvZSO6Kwu2nb/P0U0/xgk96I9uLt3PfyUvYP7rBww+/iO7iGdp2YAiKlG7wya/9NH75v/5x/sxwTPW5D8mm+HDJIw9fZ7Ga2J09RJUNzbKhOtoHrcntgNYZ7zwnB3vUXhNMoarq+f7LeBy1tlx/aM02ZnJW3PANxinazY6oCioHcoKTa/fhh5FsNC57dLEkFahryZntfITUsrno+OjT56QQKVGUW6v03O1aZnHxY7KkWov1zMhQYYqBoiSDqqMSQELb8uHHn2Owlv0bB6hcGPqRZgmLF66hyMPdWanbOX3uCtNo3LKh2w4Mux770AHTw/cxjIEYoXaO/VdZ0IZ/NP6nXJbC56S/R4jSufbscAdnNW3fsb/wnF92tCGzH0cuN2fcOQ+0u54b1xpe80kvZFE1OHOHalERMahciMNIjJLbIW5ROYHWqGJ59MFjDvcqFEao3AuLRta3qq7JqTDef0xT1yxXzdz9JZbw44MVJ0cH3H98wO3LHdt2oD62HB6sGKb7KXMGzxgNzrLtRy5v36FZLnGu4vxsQ1M5Hrh+gNVW8mdk+n5gDIFumu5ldUYFMQT6dsBqx8m1Q/bWNV5lxpDQN45wTtSpNE3kmEAZppC4ONtSFHTlksvLK9p+wFjN0jtsFiXCZIe3mjFFcowYZ9n2gQ9+5BmWy3N0DdgEGPrLicuLDbtdi0KywdkYlL2kpEy7a6kaqTQ4u9iRKTzw0DEpTXTtyDREum4UO6k38mxWjsYamuv7KG0wylDXDmslxmK0FpspBes0+6saa5ecHB+jgXGQg5hfGF740Al9vyYmK/nabBg76e6ytkatNSFMaKNnp0Jif32ALo5YRlwFbZcY+4CyBa0Um6mbuxNFpfSNpanXOKtZLiupmTCe5brhYL1HTpEwDvRTRwoj7XagHwJThLp2lJRJI0xpmuMFlm3bM04dzmq89VLfNEykkKm8Y29/ydRn2mFAhQ7rPSkrAoqDgyMqb7jv+IhpjLS95DG1hmgh5szF5Y5xCnMOTEn39ZwFXB8eEkLk5vNnmLk7MqWI0lJRkcrcg41hYSGEyKRkj5VnddBqgzOGyoltNDvmjKMlxcwwDFBmp1cB7z3WGYyC3dWWYZzmIbl0EDZNg1aSFSxFhvXWOBZ1LacgCkqlWXUypKzYbHvImb3FkhAjVVUxjoP0uxqxz2oyROh3kRSj1LdpgaDllKEk6fc2llVtMAZqb1gsKxGikX1HjJm2H2j7hC4RqxROz9Ahq6VTMCXJSSpNjhlj1D0rNVriV2K3lM+kdn522RTZoyrFOEpt1dgKk6HMh/c853+LieAlTx91psSJxmiGEElBk4viahjJRc9Zf+lDjX1hmCba8ZKCIqSANwltLMoqstZMkwwXTg5PGHPG14kQC5dtoO8GjBb3hTFehkGpsHBWXj8Lj6RtJ4YhIN9eCY7FkDEaKqtF3dey7wxBDtO1b+5FTry1HxNr+cT1x+36uA+LqYxMEzhrWS1lA12ZSK7FJhpLYRwGHjq5Qc5gvEyuxjhIZ9GyJgb5QhQKuURikP6zOAlq2NaajOL0fEvdNFhrOL9zQYyBy6EnqYpnnrvi9ukFpITVshlyzuK95LxyUaQkh1BjZbrRDhP0ieVSlMx+6EilYIzFWSPAhEksSZVvWC0ci6UlJiF4dmOPUoVFJWHj08sW3fUstWcqgdrXNI2UCK8aj3F2LpRV6Og5vRwIeUvtLapout2EtoVnbm/pugmtI5XVaAT3nIum9o4Hb6y5cXiAs06sSF3PE7dvs6rXvOzBA0JyZOWE1LnZkdDs7625fm2fFAML22C94tbpVt4XFbBNYLk0eFcRUkaVDq8NH3ryFodry0M3rqOVYkyCGL95fk7tl1jjMCaji2JMCVXEZtyNkTYMHB6tUG3hYrPl2dsT+6sle+slL3zB4XwHaVIIuMWaFCOVzmgPxihqD7vdRGM864MlRRe2bcsLXvAIVmnKNEEWEMx6cR3vGwoCzxhjImZFGCectzR1RS6KcSrcvLOjGwJP3bzJ1bZDu4arix3rpsY4S8gwxiQTutPnSSljm32U93z0yaeZYiLbXjJKUbpCizJUiwajEzcUZ555AAAgAElEQVQ3z4KF1MPWjOg5FzveBTlohZ3LkJ9XlpKfxVhP5S1WQY5JQA86oowR1cEUVvUxH9ITZS4M1hp0bYhj4mwzEGPiV5bvxzhDCPK9Synxq+99ks9+87/L57/mC/mVy/fxo3/zJ8hx4qIcQnPCd3/vz/DQ/Sf8W2+ueWVzg9967Hn2X/gabj77OOuV4tWveAlPnvZUeyPkgsoF4xTaKP7Rj/04/TgSu8xP/OP/jc9502fzjl/+NV7zmk/mh3/0bQA89thj/M7vvo83/onX8zP/7Od461d8KV/2pX8R7x3LxYI//PCHpWdu2/PYhx/n7e/4dSiK7qzlMz7jM/grX//N3Lq14bnbv887/uX/ycVlx143UXnNi1/0AI8/9Zw4D5SAr0oWWw9AXSliJUXVRsPjH/4Q3/It3853/Xd/izd96ddzdXaHW88+wfO3L3n26TP2Do+IBl71us/k1lMf4saewus9Uizs+kycu8F0Sixrw8KAVQObWy2bKRJ2kYLBeMvV9QtO1ha9TVwMExdDi8qaha3BKR64cYJNgZQCf+vJz4JS+LoX/SxGFZZ1BmOoG43Wjkod0XjJAn/wqVs8//zA53/WJ5PLwD9/+wd4928/xfufvoQi+ZS7U3o1Hz60mvcrSibeC6dYN6BVZBgKbSx0JZDRTEUgF2oYOe2f46u+9rt5wxtezV/60s/lgYXh8uZtYj+hLWhnMcZilGLpKp69c4vaJo6uNcQ9S9aaHD1VVXF0coirhfDoreUX331MyZkvftVrSDkSk+LpZy/ZbnvGcaB2mte/9lHGqFAlMAyB/UPLI4+eoGJid7GjY0u/2+G0pznaJ+WM8T11CpJdWqwZU+LyakM3jVx89DmGKXH/tTXbyyueemqHMQpXeSpXSaIzFjofuHnzjoAZGi85yiGirWV1tGbReGqtyNZSaku9NOx2A9tBBlA+B5TRPPqS+9HG4azj01/5MGMIfPjJZ4jAer2SonE8h0c1jTcsqgXrxYpCIpTMkKVq6eLygsvdhhdcP8BXmk3XUbDUfsm6MdQnDqfFjjm9JEJODL3iZqW5XNVCnrSOXduTcmQ3jKSYOd11XHU7rHY4Y1iGwtRNWGvZdB3ea06Ol9x/fY+HP+XFOKPZWzcATNNEjJlyvCQryScfHXpyShyt92mqmlRGiZXUK4Yhc35+wRQmXGWp/JJ64clz1tvajDWKYawZknTA7q1XrJN0LYqKJARs1lYseH1hfXBMOSjkFKgXFTntiRXbZqx1VLYmhImcDDnL76/rhrYb52dypJvXylLE/ll5LzZjZaSgfgp0g9htx3GiS4F+7Mkq8+yd2zJcxElnnepRtiJjGOOG3UUHSjFNUpa+WNQcHCx54SMnjENibHtUyTxwtKJuaqHC5sTBumHZNNS1xxhN101cXF6ScyIkx2Y7EoNBm8ILHlhydLDEWccYCtMU2O56xkmGpzFm7pydUUrGVZ6UEolEtoZSDHcuBLzSLEWhMtZSDKhUcN5TeVg0C0opeC+uLWXkHhimHmMMJwdHgMymdruWrRJwk/OexXol61HOeC19qdYeylBjGAWog2QyjdHkIrRlVCarwNj3hGmkWSxQybBc7ZESc6WJHOJ27W6mghqUsvfUrL2l9GlPYUQVWC3WhBCJIVB5T712MgRYNRg7g3yyqIrnl1eMMTGl7b38/fWTa/fAOVophq6XTkGVyMj3XhtDsQYTkOGwswKZUUoOXAWUNpScmKbAOEWurlpSiJKJ1IZQIsYYzDzMXjTi5Kgby2pVoXWhH3qmaaQbRkLITJMmAWHSlCDqbixBKO3KkSkUrTlYLTg5WJNzYNeNKCdAqaupEJIixXbObvbi6jIVy1UttRZGYUDuE+fYDoFQFFdbUVS1Ao1Ba3GaaaNZLuYBnRFKecpppqHqOfpkyTES4oRCE3P8eI8kn7j+f74+7sPicukY+yTdenmSXkF7lwwKldP3wuqUjDMFZaXXJpeETpHKWLS1QCJGwBpiNBSv/+iG0wanLXXtcLZipSYSheWlxviGymiWPrO5GsglS6YLwWmnJFJ3SnIIiSWglSaEJHbXQaGVgHe0tWhViGYmf8022JylZNhoKbMVsUpUR3Qhl0TMGRM1um7w3rNcNVTeE5LgvRXgrUVXFVpbmpSRqLnMYEiJkgR9n0tBZ7FgTCGSi8I4SyqKs8uecYg0jfQj7RvF6fnI+cUVe4tDnFU4A6UoFkuLMjNoA0XjG+qZKrtsZFo2pkDWWpDhwVCKTHeskkyGVY5V7WV6mOXPTEEz5YzyMgXNsRCHHc4bvPFob/F7GmMKCZk41t7Lw3cMpCzDhBSl9LVeiP0BpYk5MIRpPuCLSlNXjpCFNnt11bFe1JDiTG2LrFfLuesoiTVEQVM5GqOpaoOrKkpRNDVYowk5s79WdP0AZsHV1Y79/SUpqxn0UyhxYryqpaNJNeAMe0aoedoprDFU2s/DO412npgCl9tLjHXkIDCCu8rNOPSgBdZjioKciUoIgTkZrDOUGJkoTGMCpSkR0hgoOqNCzxh2jFOmpAwktFfUxnHVCl11t92gDHizIIyBLxzfCnfg9Z/2J3njz/xl/uyN1/Md//RL+IIv+HcYerkvb59eMgwTn7LpeLgfefLZ29y8fcGDmytunW1YuIpnnj7nZa9+KUUpipYuTUVB3EcCT5E83N0xKjMKW80/oJTCZ33mG/krX/Mf8iff9Ge5c/s2b3nLX+Rrvuo/EDtcUex27T2reZlD7jlLrjUgWPRhRrBrDZebnpzhmY8+yyMPv2Bm6BRuXD+mlMLF5SVksfU4axhi4P0f/EP+9598Gy9/qGa3bfnTX/z1XJzehGIooVDVhpe96g08/lu/yFOftqYbal75h5nlENh2QaqA0FhtSZoZYBBp+8AU5UFfFSX3BHrOSEkGWZcZQ6gMbUj4nNDAzemYkgqRLNknbVHW0tg4owtE2aZA3Xji5Y4nnrkNeeSJ5y556tYVMWmMKmCYB2+FMk9oFQVvDI3V6JJZLA1LDwZLpQuV0aR+EmBZvrtcC3jog489jzI1r3/dS3jRC06o/R6VTZBHhnFHGnqsknyKraoZRlWRrWXbdxjvWSwb9pYN1hn6IBvyu5CDxXrJ0HcwBU6OVyyXNRebHSrDjWtHbK46uj5Kl18cCV2LLprNUIQ2mQLp/AqGKCXnLtM4zeKgQRlFmDL9mFF5nnQXgYDkBvyc88xZcb7piDHJukFFDpKfac+uSLlgqoqcEhcXG5bGYbXiYrujv9oy9p0cmJcrsJrtdhAbbQtxlhbCQUs/TTx76xSN5miaqGpHu5Nc/aLxeDdSmw6LQi0sprbkIL1rpQjevq7E5p6yxjmHr8S2N0yi3tUrB1mRQuJgv8bV0hmXskLpBgiEEAkRTO1Y9Q6jpMLAzXqntRZXa+rKcO14hTOG9WKBUaAR1kDtFkI0zIVuDKSSsKaSfJYqWKtYVA3KgLYeqyPTWNENBec1Ri+xFrI1aDTey9+h6wouiTVtaTVaSX7Xe0c3tGKtdgZQqJUipjLDQcTKlrVDGbBW7i+VE5XXVFXNNIpt1urCwdrhq4YpRA6SBy10T426Z6ejwFkXcdoSS0LrMjtVNKuFVPbseihFo7Es6gVWW1zjMSaTY804iooSU6CylsWiYm+9YLWsmKbC1WZHjpH1ckVdV5xtxeJ518KpVGKzE4ry0d4KV2nOL3umYBgN80Ha4JzCG1jVNTlX7C+8AFmiAJrWC8mwJgrjMBKLWNmVMuw2W4FYl4IyCjODnXJM92rQSjYCMtSynseQmEJknOR9uXV7w91qo5wSAi+V9zDMvYIlF8aZuKxNQGmheBqrGfpB1h2kmzMjc4EwiTvC6NnCGDMY4UHcLbCPKaGRjuSqEuCREF4Vy+WCUjLjKGtOUzXEGEjJizPCWUKaKKXQD0IkzRFSyMQsVtjKqfl90ZDF3hlDufecUsxEe40cFrXBKkvRSWpmZsr6H+XGpQd0mmQQkeZ+YqU13mu0NSxmer+5qwxbi9YZrYt0R+dCmCJjHxknsZTLIUzeZ62kruauxdPNKqczQr3txmnOVhZUlJ/HKRCzuPjICqXtfCiUA7Ay8vwqSTKZZZJDd1Ly7zNFUXmLN1riD9KfJfZapDYP5D7LFKlfphCi1FdlZL8e472G4E9cf8yuj/uweNUm8fyXSM5XKK1YLpZMg+CbrdXkaHg+dExjz2pZUfv/i703i7VtTc/ynr8d3WxWu5vTV9VxQZXtIgHb5YbGYBOQkggINo2JsSEB4twAyk2UiFwlJCF0EiRBipQEAlhAbIREE4hNEyQoF07hclXZPqfqNPs0u1vdXHPO0f1tLv65twsIUmwpJBce0rrYa6+5mjHH+Mf/fd/7Pq/Gh0g/TMwuYKxFSoFzMzFE2rYlZw4FRUYpCMHjRo+tq4Jb1hKhwc0TjYQXTzVH7RG7MZMISGmY5sA0eubgEULh4+FmCAGp9OFihpv9TIwZiaCqAiGkA32xoMKlFFS65+mtOkR/ZIyRCGyRDqhIziXvSCOIoUgu3G4i5/4Q21GgCG1VUdcFqHJ02uAmR/ARkSNZZ6YpsG4qlk2JqhBCs3c9bV1zcmIJIXB9NTL5gJkCd44XdAci50Xa8tYHPS/dbVke/Hyrdc2yrbi6GXjjwS1Jaj7ywophDpytGkSMjFPGUTHMieSmskmXASUERwuNSJHLXUFg55jo2ortfqaqAnPQ3Oxg7GeOl4p+jrgUqbThznHLNE9shx2nqwXrRcs4Jja7nr4PBznJQSInioRjuWhBFG9keZ8E63WFNYbZCXLoePj0hjD7UvinTEyCR29dYK0iuEIpPT09ZtFJcDM324iPmZxl2dAeApRfPF8g8oIUwb6y5Ok4cbP1aCSrtqJSNcv6bqH8TTN1XXP78TNEjNhDzpe2huWqozKKnAsNcJ4jCslVv0G2S/oocbMjjzvSAcY0zQXzcnxaSL3z6JBIcizh01e3PbZZoLVhzp55nvG0pDAy7felgiIQUuT68Z7xKOJzxOdA9Il971Fa8en5O1i8VPOF5m/xo9vP8dnxDX7rL/nTfMu//nVoHF//9V/H8XnDPHp+xa/8doZxYB4mbi5vuboZ+Kk33+POquEffOErvPT6p6kO8ltB2RD+9t/23fzFH/yrVFXDd/3m38B/+of+c3b7HT/x+S/yO7/3e/if/+xf4BOf+Dif+vqv47Of/Rzf/Olv4PZ2y+XFBdZafvf3/46ykDzPaARyOFCV4e/+vX/I7/q+384f/q/+OK+++jK/5lf/Cn7kR/8+OWfmOfAzb36ANpbPfPbzNHXNL//Wb+Qff+az/MDv+1388A//NcIhjDkT0SqjlcaYhifXE9/8rZ/ivq6RJOx0zcd/8YvUymJWJ1R1zfXF2/zVX74nZ/j0k1PqRWTpAovW0qhjpnsv0LsB7x3ZaBZJYE2DqixNXXOnspgc6LvEyTzysaahsRZhDJ7EzRgKedlouocLSImXP/YxmH3JmFWStnME56jmPSQBWfD1q2Ne/cg9Hj/acHs5s90GslQgIFGIdOnwMM5SQYKcEsYq7hzV1DpTNRVGgKCQK3NONLuJmAXBRUYXue5L8ZWC4M033uZP/Xd/hRfu3+OlV17m469/hHsnK149PcbIgXncsVgtWZ+foUgoEYkxUY0d5nhBoyw2SUSKaCHQusL5UgDOQbPZZ/opcHR8RH0iCVVV6JumQTWJtqlohaG97em3F9iuplqvkEIQ9jPb21uyn4uKQBtkSlw/uaRbrpgnRxxGtLHcOT1mnAZcBlO3nJ4qpmHgeud4+8ETtv3A0dGCrm3KhNDWvP32A7wPvPDSfdplyxIHJ0fYynC76dmNHtu2nK4bjqxA5Yw9WWFrw3sfPMLaJcI0XF7d4FIkaYm2DU27pLWCJDTTHNgMmeR7wrwlS0ndKJQMhQKJYrXoEEqz6YeyFuaMj1v2YyLGjJ8GtILj+ahsrrOh0ZqmEvgUGSfPojU0VYMSpchq6gXjOLLdjXgfcTEgtaBrKtpGHe7Hcp1k78hKlYljrTlardBG4WfPNI7MMZYIBSFJ88wYHM1BYujjpkj0EJydLrBWs9kMeDdjjUJLizEVQkDbOJgHKp2x6yVaaWxVEVMgBgPyQLS0VZEs74rvcQ4lAknZujSMfYmvmKcBYxRVJbD1s4iViNYlaqOy+ZCfDEhLYzROBUTIZBcJfsJKw/nJqmSihojUklVbCr9ngjkhBQiFUhotDpMyYSCXpm8Bqx0ikgAlTZnCTSt8KM9MKSUnW6jrhoikHyeuNz37/Y5FXXN+coS1htoY7p8VynxIqciYB88uzizqEqY+z4UgaqoKYyxKLokxFXhUU5MRrFYdTaMxcl32c7czQhqGsShV6qZMv4QoGdOzDzy92DC7wkEAwapZkIH3H14jVYlyaWuL0jWdaUFkZlea+AhJyiXWgsMUd7nsIBdehZJF2ZNypq0txpjispZtyd6LCedLxJGIGZ4pFqsae7KmqyuMKc2FHDwp5dJkTwnvSyi9VApyQ0qJZ6yOq5uZwU9MoUC1tC4wwVXbYQ6FTxGsKW63u1IDSYmQGV2VolPEAhZDikONLMjRF/psLkVQygIXDnnQMRGTR6iMkYp20aBUGUCkGNBClwnoQSkyB8c89dwOZdgiD6RTgSAljdICUxeQpBEWZIHZSQqJFlXyFP1M8QCnxCGpBnEAySkFlVYoYctVWltEyhDLNTt7X8CNKVOy5kLxLSpJbQv8SyuNQBxk3IGYIsEXYGJMpRMZUy57bKkZp7FMcw977RBKvM0vHP//PH7exeLbD27J+ELvtEUa51LxLIosiN4xDZ716QpJLlHeUoGMhByIQhLCjA+BfhiQSjJFS10L+tuSm7Y6iWxud3zwYKbuDHVrWaw0Gc9+HxCbvuQHCcGqW9A0DXfvtMQgcHPJfTHWMsyO3X7gdjcgtGUcSzbM5MrNq5GEyRNSYu8ONykSmQK1TiQpULp0kKSEquowWqN0oQkaUSE81G7CmMjsHD56jhYtthEE5xj0zGJ5hB0z3YkohakvXVijFb0LICqqShHEzL4f2fcJKRM+zkgSp+uOxbKghvv9wH6bOTptuffCKW8/2JAFbHee3X5CGU2nDUporkfP482O01WDNMWwbbREpIyIqQCGDvr9FGcaa7l/b1kCbJUp/k5SyehpM8ulRUvNhx9uGPcDr7/2ER5udjy82WGkojJrtAYRHVplqkrhZs+ilmhzREwRlyayyOyHgX4M1JWirlsWyzXDdod3PdEb0AqrDW2bOT9bkkPpQCpVPBxvvvVlumVLVSmaylC3FaiySDrviLFc4s5FUvKMVtJXIzln3Og4WTd85qcesesdy1pzsmjp2qpEYISJSkaOFkc44SBkXIxs93vG5Dg9P6GpNctaUVWW45MlaQ7sc+b0/oIsLMknGs5w00A/OG76Imn7Ra+fo4XE9zussnR2SUiRy92Gk/N7VIuG0c1s9yM7e04rA9OTxxADQST6yfHZz36FfpwO04aMc/De00tS8oiN5PTrF/ylP/KXmV+skFnwQ3/xB7EBLi8f8MXPf46/8IM/xOOHD7l6+oSzO+fcPTtidbTAGMud42PurSqmUOSvMkl00hSxi+Cf/sRP8rf/tx/ixRfu81d+6K/xN/5midH4d7//9/Fn/vQf4w/+/h8ghMD3/e7/gKvLG/723/m7/I7v+W5+5ks/xgcfPOTHP/cTfNM3/FJK4GbZSJWJUyYn+P3/0X/Mn/sf/3u++7t+A2+88WX+9x/5+zwrK7MQxCyIc9mYfd/v/gH+zH/7x6nrmgcP3uP7vv/3liaQgM/+2P/Bd33Xb2VzseHX/ppfyR/4g3+Q1apjuL3gi3/nL9Fow9Fpw2p1hDn9FI/e+jzvfvltdp8q/uh3H4x89JO/jF/x639L6caTeekXfSNf/JE/z+bqfSwRoTTH6wZhNZWpkEEx7meiCsQ0Y0zLYtVim4ZhmIg5IETJXNRKIzWcnL2AzCOjd6QkwBj8TmNywiqNUQrZ1Hz87DVubyc+eOM9fuan3uHi6pYn2w0q5cO9wTPdaSkicwGaIME2Fq1aKpNJ0RGTIGXF2ZFC5ESYPdshctUHggCbM22jefDOh3z5zffQ6sf5xd/0zXz6G38Zn/iaT3NvEbm9eJu2XaFtR3Ij49yTLKzWa+LCIKNETREhIp0CbVukUGXTFQVS17SrBaZakrNHNxOzNWyDo14tMe2SumlZmsx4/ZgoLGa9RknJzaMr2k5zcnqHtrZI4Opyw+f/zy/y2qstC6OhNThKh15pw/tPrksn3nn8OPF063n/4TXb/Z4nN7doa0lSYquW99+7oh9G3rkcOD0/4Zs/sqKfBjwVta2xuuMT3/QpBIEn77xFdJ6v/brXMJVGW8fZ/Y9xdHKP4eE7hAw//eFjbLvk3tEJdQ44UYAQcz8hIuiUGaTHjSP73Z6YBT5CGAPXQ8/Tq2vIAiUgpYnJzzTNitaUzn/KQMwsbcU0TkSZkUpglCCGCWmWZYLoHKYR9DGxHwZizBgtqJShs4ZFZRnnci22TY2xiqaqMVVR18zeoZQqNGKVi/etq8pEI0vmaWbYF7hXJOOip9aG1aKlaRsun94U6rETgCPl24O3ruJ2uAGgtguEMCxkid6oK4PViqNlTVPVuCmgOgutIstMFBJT16SUub2emWaPa4o/dLu7paorTFt8jbe7kX2/JwHjkJjnRG0Nx4sWliWHTkvFoq0RSXJ+fIT3nuvba1yeccnSyZp121IZjbWWIYwgIEyxFKvBFV+bsgfF1R4XHDHDcnmOFIrjo/JUzVFijeF00SAljCFQVxolLMdHLZWWBJfY7XoqbWmqkoW57R07BxHF7ALXu1tiTAzDwDw5VkdrrLHc3lwTgi8RVKpkWO73W5Zdxfnpsrx/dY1UlnF05BxZdEuscFR1TTY1/TizHXowII2gsZZVVyidUkpMZQqAKJfGvNKWlCHErjQLMhhpCMEdCoviYZydI1eFtlpwPJGmlbRNVQA5wRNDQGSBjRohiy/SJV9iWoSkaRsWTVOmmiEw+RkpFMRCl5XqGYwngqDYiLLAKEVzmOK1yxqhBZ3VNNYw9I6QYZrSISs2sWprTGVoFi1CSsZxIoVYCP2IAnXJiZACPiScL9FyxmhIICigQWUMbVMfitbSkHkG95mnzDz78uEDIAkiM4ZECAmrCtjGakHb1FijEQKqqljCVLK4ODB7x66fC8yH0qbIWRZ2ha4KcyLMSFXiypqqpA3M84yPnin4UtT6Yp/Z74dDxrnGGos2mqNFi1ECa8vU0wdwLjDNMy7E4vvNGa0lIkSyLH1PKEq/GJ8piAonA6Ew1v58S5JfOP5fPn7eNNTf8ut/WV62K5ralADpwVO3Nft+ZnIeT6HWrTqFkprdrSOlIhvoh4GTowXrdYs1gu1uh0MSXUGcL1eGlCN9H1kedfTzyDQXg75NZaHZ7m7IShKyJISAItC1FZuNo6o0i7pGq5rMjLbh0GWXaC3RViKyoW3rIlMxghwdIWvefXjLdnC4pIixbGhu+4GL2y0uBHwqRmArilxrzok5CKQw1GIixIyuLbYyBZhCCb5FRpRW6FQCS/0cEVrRth1GWxqr4EDPtG1FJLISgtk5TL2ibmpqWwKmrRWMbmJyDlsvuLNqOa5rvITNUHwP90+7Yr72maU1rJc1P/3gkmkeUMrQ1i0nyxqjM1qUgGRrDfWiYU6CzeUFy8WCrupARBABhSTOufhdphJYXNsalR2LrqOWZRN4eryiWy549OQp/TwzekfTGFLOuGHGKE1T1UglCDkTMzSyZhgntrsd65MjFImmKuGyQpSFeLO74mS5xKgaFxMhRm7HmXlOBFdkvTkGQozcOTui7Rp8mHCuTJRn58tDSpepS4gZKSJ3j5d0bcU0R6bRc3K8JMvIfpjZ7IYiq1bFMzu5AVNbfFY8fnLD9maHRnB6suL1j91HkHjv/SuUymQt2faexxc9x8dL1gvFcacQSbDfRaZpxiwU4zTT7z1KSV57+Yi75yfUxjJMA/up5823n/CJ1z/Gp77mJTa7ng9vJtrlimAhHjLKKiXZDHuqytKlwMl//d3kLNj8gf+V/+w7n3C5HfiGP/SQeTfx6779m1ierZFuIKuKYBRkj54G5sGxFoHVi3eR6xXf8zv/C3rnCjwoZyqtqbVhO3tyjqRD5xFKphZfJUctnz7IuUvC8T+3+ojnX8Mh6/QQyfwsOYODyYNnxeS3pO8ABD+mf5QUi/TpwLeCBCnw3FyPyGS1QBJpG0cWmu/8lb+a7/tt/wbNeMFbH77HO09uuXp6y7/2yVe4tyie27OXX+O//LXXKDJ/8nOvoIRi0TYgEp//yZ/CIzB6QWs0945WtF2DXrbsry6Z5j25qqjqNVfvvUe3WLCNZYMy7jak2bFs1oQcSNnzR97/vSij+cNf84Mcn5xwvb1is91Q65r16R0q0aBtRulEf73hycUlNJbtbstf/5uf4ye+9Jh3NiMigRIQcibkVGSoWlOQy5mTVcvZ0YLXu4ooZ5I2pWvsI+O0RRhDTBW3g+eNRyU3rqsTWlUoXbyg3mV8SCQyv/bf+rf59m//Fn79NxguHrxDp1doYwgpMM8jfT8x+8Cibblz/w6qVtw+eYJUlv/kC78dgP/ml/4w437Pu+9/iKgazk+P6ITkvYc3iFpxfLZioUwJcpcJq8Uh0Fwx+8C0v8U5uLq5QJsK0Mxh5na3RQtDV9UokRjmgb6vefDoKRebW0YfCv69D7RrxdFyWQoQH9nv+tJIHEZCLh3xfb/HOcccdckDlYq6ytS2AMJWR2tsJait5OV7d3n85JpXz1esj1rW6wqtFW8/3PGR4yOO1y2r86bI9MeS1Xfx5DHHJye8+OKLjNuJz/zkl7juA5W2bLc9j2/2PLzaElJkXTcYWTr4FzbHwgQAACAASURBVJtL6rbllRfvsmgq1gvJ2fma43WZKKUpYYXk+OiIp5ePGabAzd7hfaSrNU1t6GpT4gSkPGzwIhGB94l5mpAqcff+UYkksIsCEHMORWLYbmhURV01oDVRJK5vL0qeo12SItxuNiCg7QqQ6nazo+kMJ6cnzJNDlAjHQqI8OSph5bJQInm2HihJiL7I/kKZqrxzccXs3AGSY7m9HnnnwftgFOM00VQVp+dHXG53XDy6pe0arDUEN6GFZLlsyCFxfnZE29Vc3DwFITlbnIISCCt57YW7pDCzWlZYrZCH+2vYzsxuYk4eJTVGVVSy5OE5n5CHZuww7cjSsNuN7Hb750vZwycXaGOQpkh3x3kmR0GlNMMwM4WE0BJUZu4F2QhMlZEpo8n4lNmNocjWhUFKQYyuFATPpMJNfYjh0c9hIkoKckwofTi3qeQEDtOM1AJjFIuuQQLOzejKYE2ZSCMkfpyZ5wKESTkd7AZgak1dFdWXkRKJQCuLcw6lFcaUom8eR9ZHJ8zeMzvPZtvjU+LJ02uEENRVURf1/UzwDlvb51aGkBJSKtw8Pn+KCCloK4sUME8TSIFQmqZty98aHFoqYhAM00xWugwmijKSlCJtXWGURUTKpNxPSK3IBLRWKKMK/MoHZpfphwk3B5QuQ4oQD9NOKYkhEULhFHR1hVSSnMokcZxnyJnFYoEUogDJUuE8PNuCa6XR1hBlUYSk4BEH6KM2pdDTqiqyUJ0Zx31p+CXY3k70o6OPEcV8kIw3SFmT3IyLM92iwWqJVqawPVBAJOUiJ++nCR8DJEFFgQFlVXgAtmowCpQs+bZSwOgzIWXG2RFiYBqfgYtqpCxZi0qCUEUSnlImpmLNcKnIb2UuheMzsBVC8N6jm59XTfILx//z418pDTV7w+1mx2AldWURtSQITxQOVSWWXY21FmIsYapnGmMUQgqGqcI0FTFkUhQcrY+orCjy0ckfbgpFtD15Gri/XOFMJFaBrIvPrdmUv9X5UOiRpiq+DnvLyVHD+dmS66sJpWqyTM+njRCxnSB6wRwSw+RI0bFoKqSKrDpDW0uULZ0tazTBrdj1a/pp5naY6boWnSU3NzOb3rFxjhgSm81c5vlJ4ydKh8mH8kBUApEDdVWhhHiOEhYhIuWMdxUhAiIRp4gkc6sgJckCwxwyvduUm7Eukz2ExUgBMrCLI/u+wCBUhgcTCCOptECdSJTPnCw75tZwcz0z7AKCkaqBzlTkJNmME/525ni1QibNMGa2u8vSCTQV22Fkvayxlea80milQUkubydSDDgfGGfPxX7PclHTaI0gUMuEkRrvI3fu3iHFSL8fiS6xHzw+Bk6WgZQzutaEXGi4KTuMEhhTQEdCLumdwJiSj5lzZtk2NFXCucTsA9tdICvN7a4Y/E9PG1bLlhgj+12RwwyjZxhnMoa6Vuz3kf1+T0lBy1x+OLJoa6xRNKZmngPZCvZTT7doMErSScX5R19gmCaGeUZJRUweWwnu3uvIPnHn9ISqNozzQAyl2JLaIJViGgNCeEKYyUmRoi7xI00x+QcyxrToOXNnfUI/jjy6uCTGjIgj020hDIfo0VJxdLREScn15RZfabpQqMD1YTN4907Db/yNn+SD95/y+Xc+4HR7ycdfucPVzVOePr1kaTLf+rUvEo80p6cvsxMrHvWC3ezIAhpT41MsnokQgHjIKM0/WwM+bzz9bBEoEM8lP/8M6SzDs4rwWQZgLqnG5ds8f438qnGZ4B+Lv4dAQZIoIs/sEc/gn8/IlM9KRpFnZBIYIKXA9vqSD958QMWer7z7hC9/eM17H264vO759CdeBC3YiadFzivgnQ8vWHctmQgi052syAiOFmdlyisDIzMqWHwq61nTrjh+4WUev/ceb3zlAQ+ue9qu4qP3jqlNzRAlTzcz213PMEVsVow5sbCCF154gfPTM/rRE0MkmgkhSlZo1JLcrOnO7/Cl977EF96+4XLvUSLjRfHlHWKPy7lL8fl7M4yOy7jn1cYU4EIskvuUE1maItMSASkiQh5OaCo+4tkXH2TKcL4+JybHm298ESFHvvMbfhOmapFZk1WFC5EpQbI1lZFM0fHk4imrtmO7n9E6Mg09QgjcOCKl4ni5ICaBCZFuUfPKS2fMU0aEzH53gwDqqmEa4OLiCU+3t0yzJ48ZrQz7aUsicbRe0dY162pxKMZTAW5NERU958cN69WCSOZrP5KRWTAl99yLM/tEPOvoh4mcj5jdTPABKU6oqxZdmeLTCR5Bomlrjk7WLFcL2lqjiIic6SrNWSepmopKG0bvSd6zWlRUtUELSyU1c50wTcPRqzVtV5Fay+52T7NYsH/6mCfThovrnt3es5sGpIInw3SQJcsCAEl7Hj0uhcDQuwOQTXH//hlHqwYlobu45s5RTdcYrC1U6MvrLdebyL27Z6AMxytNgyqh4KOjUoZlbUgpUKmaefbcDgPzHAh+pjYKP0Vi5YlaIVViHGc2mxklJMu7iqqzLDpJVVnmmIgCpMmQSzEqRVnbpSyWhM6WZ6JVFi0VKSRcDEze8eTiimkO7Pcz8+SLxzYUu0vdRkKeOL93WvKcfYuxluWixhrBJz76Mm23QCB49923kbIA0GrbIojstlsQNSFFLm623PR79tNITpYPnzzkfNnQtsUK4qbAC/fOsJXhww9uCAmktGx2exBwdNTS1JaushglqWzi/HjJy/fOSqxETLz20ovlXo2lYJCihKg/vrxmnGdubnuGydGPE3OasUHRtQ22slhTVECrxbNogrI2ClUxbF3x2OqS/TiMQ2E0hCIn1ap4D4XIdE1NXRnWq654FAmHgicTQ0BKjTx4ra0UWKNYnZxAiqWIUrIUcwhub4cCECIfpk+GfohMAR4/eoxUkrrSRO9wskyOYohkkVmvOu6fH6MkNMaQMmyHiZjKJFUbc2j0xkKP9zXOheJLlMXDOztPluq5P27sy7pS7CwBLQVZJBa1LdeYKOteigGfn8WARFQjsKY+TOAaYnRMYzg8oxRdW9PV7cEKkkmhSP9diuW5ldLB751K71QW+nNOCVtVpJQw1hJDiWZJB/m2re3hNQmtSlMghIj3pYkqlcHHhNaSeS7TTG0txaRe8kEba5FCs9KKxgq0lriYmFxAIqhFS1d3JAljdGXyOc8ISiJBipG2bsr0NWcabZFKHiaPQC6NASFKkz2l8hGcg5jRQrHuOpRQyJzLhDVHDtQbkigFtfCZnEtudUlfKT+vXHOSn3MF8wvHv7Lj510sSqGZwkyYA1ke4hSQKFPwwUYXDbYLEYGnqYrpVilFzAqpYXYRH4qHxCoJFnIKpUN0+B5GCLqqopaeoAXJZLqlYXZVgSXEQHAR0yxpu4rsR5bLmvWqYRpmqrpGacE8J2Z7mELY4i+bp4IyDkEU0AoCrcVhrF9G9W2rUFnhppbRBeaDFyC4zFXnGOaIJyJF5ktvAUIjsyKGxJwjo58PCwiHySplA6eKTAwXDiCETDpgooOfS8/HyPIi6VAeXBjKdNQl2rpCCcUsPfsRQpqYpggHcMau9yijaCtJJHHdzyx0hc+5TOpSYpwzUQpUCmilcTGxnxONdRhKePscAjYV4/k4R+pFphGCSinapuSzSVkM1jlmfAzcOo9PnpfPTrBakVVGCUnICaM1jrJYh5Se6+CFTCXfsDaEePAz5gKgCIEyfawbUnb4QzQJKVNrgTEGozNyEoyjJsIBwy0OOUeSFCNNbYsHwJVOq7VlculCYp5nooxIo9j2Duczq9ayamqikQiRC1AjN0QfqEVifdxhrMTfzEzzxGafaZykZHyXDZw1BSnufaIfAi5EFAJkxtryYLWqxpoKBLgU2O93pUMtLDHC+ckpUXl2w0g5MZEUPHEMCAJSS7K3SGswFJpvSvl5OPuLvUXUDa+8eIzRmS99+S0eP9lRkZgCkDWmspzdfwlRVazvfYT9U8/N0w1TTNRWlfePRMqZkAv9tnT+D9fxATDzf3v8S58A/9wU8l/491d9+p/5fqKgzZ99aS6T8ec/7ADVERlEiggUGkUgMWz3PH54gdVzyfzbT6QETy63vPlejdSS6mZgu1siyfyTn7xh2TWcH3Uls1GV9zelFikiEofsRwJ74n4kB8/KdsjlQDCK22HCh0RlLetVi8kZ7w26d2gbENNhgwNMZO4vV5iF5PJ2x+bmGi3LpEIoQ1aaeqHYRcODpxMfXA64EAto6zBNzc9PeD5Uz+UkzS6QQmI/O1bKAKHAFgAhNAW2lZ6DCCARU1l/IoAs91JXN7ggePLoIRnHxc2/ybJZMN/2B0mtREVFMhpcySn1PhJDxtglWsEPvPa3UFpSNQ3yIAMLPmCUxtYNzcow3I7M0SNo0FKi0ExuYp4d4+zwIZOzAaERpiYHh9GWRbukawxznHA+kvYTGYVtJEth8LpDikxnBEYorrdbQgyFsOkSIYGPTckBjmVSoISiaVtMpckxEINnnBxN29F1FXVbs2wsMie2uy0CaGuFNBYhNcP2kqYucsScE7vdyD4Lhuiol5lgFIOfuNlOPHz/MZvNwDh5JpcOAClJaxRImGMsUi4pcC7S6BJ472Li5mYipZm6kmRMoU0mDzmzv3/C6apl2VZApp8mxmGm6bqD33pCiUxKiSmk52AyUuTLbz1mdp7RCybnmKYJoxVtJagbU4oHqQnBEUMpBJBbqtqgdKauMtthZOinQixHMA0TxIicCtkyHSYNWmiMKvaJFAJjDOz7gYubG3xIjLMn+FCIsgeflNZQ1RJtDZmIyBWIouipjaFtDKfHHZU19LtVkeBNI01Vs99P+Jg47la46NkP5XcpfnXP6DxXN5F+NIyzY9zPCF2yma+ue1xMSGUZ3ExlS3B9jOU5XJkacqKt66JMQBByxFpL8JF5nBBk6qoDKZjcROMNxiqmyTNMLV0/oqVg3S2wVVWKxehIlGsj5TJZyiIxtMUioLTEe880Ft+o8z9b8MTDNV0bSWU1TWMAcK5kFWedISoWXU1lCuW1bQzWKE7Wi4Ov/OBBFJqQyjXjXAGfxByJyTE5mGaHcxGlSp611CXfWEuF1pLKShZdzel6VfyRuUiW51iKNi0LECzlUogZY6iMIlXl+S2EZD8KnBJU1pTiRshSiGaYfSTlsuGqrMGaQuusjDk8OzJjFAdGRmk8giFFgZsDMWnGuVhWlNYoaQ8N0AOgMCWElMwHwmcBmAmUkAfKv3wOD6qTIYQCyCkxOwJQzyev+UA/zgcljiD9bJNUlHUj5YybHc57bMxFIUVCiMNE+UAsNUqXYUsOKFXI+gtTU6nimZ+yQALPgGtkngN/YhRICdZopFQHP2HJDi0vyQffYSGuxuLZKsqDZ2kCB3ihhCJVl+JAKj/YAUQBsKmD9zKLXP5Pyn/pFuIXjv/vj5+3DPX3/DvfcdifRaZxJIbE8XHxqklgmgLOF8DMnAPBl4JES03wjqq2heKWS7DsFDJ+mFkfG6w2THPRaB+tavqYsCQMCWUtVivGacDYCu9K3t/R8RKjBe89vcAqUzJwsmexWHK00gV7PSTqqsIlXzKnVOmICCQvvtLgp4M8VAiEUIyzRyhP2zRYYTFKsVhWPHpyw64fkJViuVxwd7li1Ur+yU9/gFCa4FMpSKQhkJndzDjOhKx5+60n5MMEbfKB9x7dstlPGCPKIpEK2Uwr2PkCiyAfig+hUMIgyFR1kQSkJFDaImWkthqtFSlGhtEhpC5duXlimifOT05RInF+1lLeJYNRBs3EYlGhlaEwHz3pUEAerdYHGlnJx+zaln4/EmJkterwswedAIU8THOkLJlFp6sTCucxMI2RcZgIueRntW2BFHifi8nflN9da8U8zSWDSZbFxLuSg1lVmixKdzalMtGq6+IHOCBViTEyOY+RhuW6oJmnaeZ203N+dhdlYBi3eOdpmjXOTbgwMbtSlColqKsi3VECuq5GaMv+dkfKCW0rJheIwbHsyvT55vIWFxPHJyclfFmDtZJt79j3JSP07HRVZmPRI3NCWoOta1KMyAy1LhLpLCFliZsjOUWaTrFoljRtzdX1Hh8CU5jxLnL3+JyuU2gDY/AMOfGRo3MeffiU7k/9VoSQPPy9f47NbsDvNrRHHVXXcLvPvPvOYx689R53X/04v/gbv4Xz+3f4tm/7VozpUKbhxz7zGf7hP/gH/Ik/9kdZLCzzULLDErnEMMTShEion10UcumwPjep51z8ys+mj1+11DyXmv4c159vSd+BQPBj6ke+6nsd4iIOvoxCA02UMsyQROJ0VfxMx8enfPITr3HSGaZxIKbI8XrBzXbgnQ+fEn3EasObf/J1Qgzc/fe+QMyZxhavEEqRwkSzXnPnuOW0bZlnz9XmEkmRti/XC1IIfOSTX8PdheGbPvUxqtpyu9/QDz1Ne4oWAasSP/zOLyUkxa+681mkytxbL+mMxY8D/TQz9xO5bshWI6LndG34H/765/hHn3mTz/34zyBlZgriq4r1f8n5PGQuvnDU8vr5kroKzFHgs8bESE4eBOymzBcf7UuMDmCkpK2KN0brck/OznHb91hb8Tu/5zfxm3/Tp1HXb9PUHctlRxaJOWQur/coqWjbGqEEd9d38Mmx2W6oqpbl8REpJ2SKJB9xk2PsS7B6v32KqCtUvUIhCP2GcbxFCU21WCOrmmQsKMH+coMRGasSWiuqusW5keBiIUsbyX5yDFPPU1dUG0shMFmy3e7oTlZUVU3YO/r9njsvnBL8TGUXSKUZUsCFmbkfsMaSEWx7j1aCyyePyDnTNk3xHcnIybpjO2uEaYhZ8ujdL/PC+THaOzLw5LbncrslpEy1OmLqy98fQ2CadogEJ6cnnKwXrLuavneoSjA4T5hmjDLYquaf/vSbnJ6ssVoTY6a1FYIiQzbW4EOmHxzXtzu2fc/JuuH1F+/QVBX9PKBEoqoKtGw7RpQUBDdwcrQqAKLJEXPizXefIqRGZIHznv1+Iic4PW1ROuNcQASBtYpf8qnXubracHm9I8TiL7ZVjXMjjYB123F8Z8XF5pbbyy1KG24GXwLUZaKtC1G3qqoyqUGw3+85WS9YLjruni6pjWaOHq1MsRVIBVmy39+gbYXShnGa2Gx3LLuWR482nJ51LBYVu10k5sz5scEIy9ObnjkEPnbnDJc9fUrIXLyXrVLoZcXN1S3j5OhdUcH0/YDWBq0KhEXkxL27p9TW8vTp5SH3ryZEz03vqGuDih4pJbataVtNcIm6rmhqQ1NpjNUMt0WBIo0sec/KcLUZISeM0WSpCX7CT47KZE7WC44XC9wcGf1IZct9iqDkHbpAjgl/KGac9yXKaY7MPiBkxofMNIdinzGCRVs2/J1t6OoKoSXbwTGMHmJAaxjHiV0/8/CyZ3AeSaCpOpSU5T4JE+cnx2gkp8tVkVAqcVinQ5EoKlnWFCnKPTbObLZ79kOBLi0WK5rGMo4j0+zQWrBcdlghqUzZZDrn8d5hbclkNLbCmIrtbs8wjCipmUNRO2ljeXq9IfiZeycrmrrCaMPOBfb7AWIssJbWUlU128011lbkVIpt5xO7/XAoLMvey1aGRCm0+2HEBY82Eq3A2q5kVE4jWkqWi2fUdw6gF1EgPDkdVFICFxPeB7KUzHOkH/pDfqNEaU1KGTfPpFhAPM9UOCGW6ImcIaeyZ0opl+xLYzCag0exqIGeUVafKVCU1kghS/5lDgihisXkABGUUhCDL7CfEgNQ5hw+HJ7k4qvAlIpEKngSyfMJ8Dw6cgJjDVpLpmk8FNSH15ZRLDFFHj66/TntCX7h+Lkf/0plqJWGqinTuFkIZu+omoJarrRmvSyY4lov2PmZx093CKDrFEYZCC1huiJnT11Jnmx37C72CL1CWBj2nhQc4zzwtJ85qStWTYVqIIfEvZMK5xNfeXjFzXbklRfvFiP4LMk15OBpbMUwOYxO5JTYbvZ8sLtmcbxidolFVbx0XVOzv+mpKk1lNTmVMNa2adn3V1ijOGobSIlhGvE+0dQW3QnQnqebPR88GrBW0BhJbBMuSlpdobTA6harBD5kPnqnpTY1q9OGy9uRH/3Hb/Pu+xtsK9jvC9xi0VSoDKPcIIJk3PkCxEkOwUBVK6ZUJEPkSKUty4U94MxLpyyJ0gGUFM+SFpp9v0NaxdOv7Mgx0doldbVAmL5kSyExUmHryHYbqVrFS3dzmRLLYrqvTMfeRfpp5umuZxxmXnjhnLpSiFQ2PI0V1JWlHwYyBUW+H2b6YSal4hdpmwpr4OpqYnfr2eCRskwYj86WKKNRIhOyJ+pEVTW89c5jumbBca2otMBYRXdyxJPH1zgfaGpbOohaI0yLNpnTsyV+9gzbgeDKpCXEzOgDvRtQZJSOLJYdbva4eWDdrVgtzwgxc7Pr6XdbrrYTXVNx57xkN03jCCLSLTrOTk7RUnN21iIVjEMg5MS7H1wjpWe1tKzXNauuozGW4D1SKcyq48FbHzD0PX0fMdrQri1nJ6c0WnGY5fEz77wPV5KlXSGF5PJ6z8XFjrvHdwrhL5XJkkGR+mt2+1t88xAp4Or6knFKHFnF1M+Hn7Pmkx+9w6tH8O5W8tkvvMELm1u+4Rt/FcqWfKf+9oKLh19BZzAiMzxzEx6meFmUqBeeexEPMy1RkOgFlx5J8C/ULwJxIOLycysYheC787+PAP4RP4I6NCJTziUfMBep7yHRA0m5FxCZKBIZ2PUjDz64oHr1DiTJbjcw9HMpJJuW6kizWja8X1u8k7x+7xylFNpKosxs9gMXTwIfPHnEk0ZDgNu9p8dDgpPjNXdOFtxcXfPT74/85l/3Keoqsp+2vPt0h5CSF/2W3ApEJfjer/k8sVsR3YrbzTXb/YZRSewcsE3HO0+u8AdD4qsv3qVZLtjfPGLub8r5zQKyKbJR0r9wyl5//aP85R/8nwD4o3/iT/Mf/p7v56/++T/LFz7zdw9RIAJE2bBIBUIVYIU4EJAzHCabiiSg3+0JMZBSZHYjX/zST/Ft3/a1fOOrr5LGmRwjUisMiVVrEVLw2qd+FTcXHzA9eZc5eR48eMCyW5L9SL0+4yOf+k6E1Ez7DT/+t/4X5gBPnl6yWC3Yjw8gRl564WV+ya/+XqqmQxvL1cM3uHr0ZerasHrho7z6yW+mWZzylZ/4G7z9pX+Kdz2Nbfnkp38dRy+8TnRlw/zjn/k7vPXm56jqlrZqOTk7pj1doZQlCE9TLXnh/n0evf8e/e0tummoVivqRcc+evr9ntk7hKogetwUQAt6NyEynBwf8cJrr+DfeEL0ESUSr91fo5Mi1xahJafK0tQLzGnNbBrG64FKC5pKc7qwhN1AoMBpmsZQm1OO757ggmPabjBZ0dqOF88rshBcXw+kBC/fX9PUms12QmqNblbkrBgnx9OnDwkhc9R1LLqKLNdIMqt1xzDOBTRUt/T7LV1TE3zky+98wJOrG773u34NU8g8uniKGzxiLNfKtp/wvkcqScTgnGdlNLKrOF+1CKMRStO1HVImnjy+YBgcy0ZzvQn088xLpyteeeke17cjX/ngMTEH2try6kvnxBgxleFqs0OahqbSdG1NbQ1v/8xj6lpjlaXRC6xWnK5a2q4jy4qpcaxWmq4z3L9zws3NhpvrHW9/uGN2E4+PDEfLY9wYmdxYIqdUpqsE2tQYUzNNgeUsOKoEIqhCNV9Y4skK5wOL5QLvPWPfs9+PXPkdDy8ukUJzdmzwOfDGw8d02nJztSFHyapec//cQiV55SMv0ihdojWyIklACTZXe/bDxH4OvPP0iray3D1eIYRkO+5xIXHWFrpr8tCPniAylTxMRV3GasnTbc8wTdRVg5AKnxxaOpRpWXUdtSmNlGHw/xd7bx5sa3ae9f3W9I17OtMde1B3S2pNtiUPkmxjG6gYi2CSgOMBGzOagF04UCZMBcSBDKRCoBIzVoIJ2A6kYsbYgGXH2NiRPMiTJEvdre7bfbv7jmfe0zesMX+s3S1ZmKRKqVD+Q6vqVt29zz217/n22etb7/s+z/NjslfjnWW5WtL1AxcXA6WUIBOvHK84Pu1QSnDtyoKht9jBMSaXU8aFYn/W0taGtpVMZxXTVtOvLSenAyFmZNVm3e1wIoCILPZKrhwdcjBpmDQV86Kg6weOiwGfYLPOSJimKnn8kSNKJfDREyKcLTPbNDpLlSSbrkOXHlM4XnjxDhcXa/b3FxSVoijApEgKGhFzEe29QIjAq6ennJ9v6bqQE3mbHFRXFxG6gUnbEEmstmv6ITJvK9q6yAobpbKVph9Yrnv6YUBIyTAOhLTJ4S4yUBcSWcC0LXn8sWsoKXB2V/QJ9bqFwsaEdY7lpqcfRkLo6UZH9JFCVSiR0JVCqByIRMpxEiF5ti6zwo1sEUSCc5k9rjU+ZoWYjxmPIgWkGEBmqazS+Sbto0eplhBHrHXZkxqzNxPyfUG+ZgsRMJvWOeEVMhpMyB1PklywhkjXDwQHMeQCU2qV8Tc2y1nVDt1mnc0p3p8dLf6aXZ/xZPHPfttvSYu6IPjE0ANCcXTUUNUZmuvHLXUJ607QW5iXBWWRu76mrHjl3m2kkmitaHRJCAqbLHH0CFGBkgjjKU3NbFoy9o5h6zm9WONEYuhWeBE533qcSxxOG6zfEoLG20BwlqouKLTGukTTlMxnFYNztIXBWkFZFSitEErz6r1jht4RokUJWDQtBwcV0ks2LnLpBhCRykhmZUVpKg4XezRFgYsjG9tRJLlLfc1ygKaocXZLbz3okknb0BhN3+fOfVtr9uoKGQ2TxZzLdccwjrSzlnrWcLlNjENP3/XEqOicYDN2PDxd8cGff4kHpytstMgUOD/b0I+RcecFUDJidNrJhRoKVdJqB7IgCpMDA0I26COzrCtL2TQxeppmQhhGNt02g+fLguQ9ZVNTyESpJe2kRWjQqaCtK3rbEfE8euMm0SdOLx4ym7ZMmobezYy2RQAAIABJREFUWkqtePKx66yWK+48PCcKzawquX6wwBvHatVxfr5hf39OXWr8GJBSsX8wpWpLfvqnP0rbtLz1LY/lRLjgOD8dmE0LBudYrztWqw6ZElXbsDzvMLrk8HDKjRsLYtxQGM21oyOapuTe3VNu3b5ksZ9QXqIowEhsdPTb/Pvx1BN7HM4rPvLMA3zMWBgpMqC6nVZ01uFsIPpAt95gveCpJ66yXK+4d3yG0QWP3zzC2YGx7+kdpKJhkAXdxYY3PH6Vo3nNtYMKoxUiFLz08j1GF7h5/Yhr+xO8g3XvqfYavO24ODnBObj+6BFDt+bsfMULt47RAubNVZ584irlYYNzkSZoprXEmoqyLknJ8/Ivf5Du7ILP+z1/CWlm/NiP/Agf+uBP8MEf/zEWe3v85//Vf82PvP/9/PMf+AGef+ETDE6xtVnOo8ldSUuO6lZpV0AicHEnfxRhd51yB/k178W/Uczspl2ffPyr7VC/sgH2V/zfB+A79O/IvhCRi89I9nak5NlVszkdUkSUyCD0nBibKKuWtz91g3mZoe2X/UgMDpMqdJG5ni56TKUojME7MClRqMT52pOEZ+0svnd4GxCl5rFHb3BtMeVw1nI4MyQ8X/yl7+CZX3yVD/z8s9jgqcsGKQt+6fZt9ts5+23DbF4ypMhib5/QX1LXkqas+Y/+1C9hTO50u51fR2ZdLf/kb0/54X/ouXvvjPf+Jsdv+9bxV92jBZL7H/jTPPbYI/zhP/In+WN/ueOPfuMP8dFXvovz1ftJZB6oBD7+EyU/8b0laxtYTQb+yF/qEZ/65nzKfeK7/sSEBy9nf9E3/WeSX//V8I43XSeMlvXG4mNESJjpx2he+noeffrXMyxPuHflD+Od536Xo/zn6Zj3vuHHee74j/PyT3U8ceMPMT24xi8//98ye8cv5mCOmDBa8zk3/2cu+g/wcPN9+A/+Ad791X+Qf/VP/yYvfPzj3HzsTdSN4V1f9lu5ODnmZ37yn/PEkwe4cUMRDPvtHDNtCKLgLV/2TfzYP/0bMG6YzOfo5Om2G7p1l/2TVw544fbzNFXDajlydr7ictOxWOxxeDAH7dEyUkXNsIGjx6Z065FnnnkVKSRf8eWfz2XveOXF59ifT1jMJiTZ4OwISrPuLNv1CiMi2yHy4LLjYL+h1qCVZztaJu2UMCouV2uGMHLt6j6nyxElDNeuXGE2bZk2JX23JvqIkpGQHMerC2QsODqY8fytu5wtl5Rao5LkyTdcyVLklO+F+9MZm/U2K2G8Y7NeEYKnbRrm8xlNNWW79dw/vkPTGsaYp11aRKYTQ1nXPHyw5pnn7xJi4Mmb19jfm1FWmrptadrsE19dnOHHnlv3Tvn4rSUxKKQcGbuOpilopxU6CvDw1JM3aBrD0I984uX7XHSO937+23j0yoJot4SYuOwdy23Pe975dtqmIQTPg3u38b5Hy0NC9Ky3HUlIqrrFDh0HkymbYWA1jNx7eIndWpppyfn6nIvVOUYb9qZXGWygW11mPm8tOV8NRBsxjeTKfIKSitPlhjc+8gg6BURy2WctFTYoYvA0tWbwgcvVyF7VEnSkUhCbkot1z6uvHLPQEy67JevlCqMMi4MZQzeytQkfLHt7NW1d4t3I049eQ0joXUAmzc0r+1gf+cXnXuX44pJhHJi1FUeLCSFku4gpEhC5dnREDI6h7xgGx/F5z2brMSZSVgapCqITDKtLFvMZ9aSkbSdED9EP7B3UtIVBSBi953w1EMZATIqQ4Ma1KVf2Wx4cj2xHx7brKGTkYG+GEIaL1RKh467xBLIoeHD/PPvzpMAlyaobcW5EEdhrJ5iiwipB8JaH988RKk/VUIbtdmS1OkUpTaFz6I71jvVmy8HeHlWlKA1s11u0KZGmyM1vEjF5FouKGGHTecbB0veWSVsTCVRtxleMo83WmKDou5G+G3JSb6VRRZ5+nV9aVuue07PV7sQ0MJ81HCzmKF0ymc4pdE77t3YAAWVZgBRcXi4ZB8c4ZJmqLg1KC0RKlDJhlGCxmOdpHul1eWupNcNoM1cxgLMddV0gKkH0CYLOQ0vlqYtqx3hUOQynUGzWG0pdQ0h0g8MHEFgQkuAifb8lEVGmAJGo6mlG9Pg8ue17x9APOOcoihJjTJYMDwPbboMPESFyCI+UYpdZJyh0SUzkPzHSjT0hBpqmhijoh910cvf/kFry/Cv3/h9rj8+u/+/r3+lk8bkXT6jqBmcTkkBRCm6fZECtkgKpsm7ZjR5pJLM6f3CNKVBKseqWoBVKFTRFgBAxdUA6kQ3fEmLcIJXn3un5674/LRRVqanLGUPwSO0RUXM4n+BFg6HAjm43Ug8UuqBoWowWiOQojKItDKnKdkBlFEVlGA9qnKsyuNlIrh0s8nR0a1lvPXuhzkD2QuWRPIpoezo/YAXYQTLbz9ybkMhSPTyCkBPHNhFcQs9qNr1Fa83Zec956JlOp0x8YvQDwziyGkfafuTB6Yq6VEzbAiUTbQmLRrFXzTiYPM0QEiiJt477Jx1ny46z1YYQYtbth+yfWK0tw+AYQqAfB6zvkDJlP10AO1iEklkbTw72SH4gkhDG7HTrEHVOs9XSEIWmGzMDM/Rr2rYkkjcEF+7ATh6x3A4IcUaKBqMNp5djRgcQMTpyOo5cbNY0swnOjgyDxQ0e1zm244gQmlWf+VGL+ZzCKO4+uCAkgfWB0HWsNw178wmL6ZS9yRQ7WjCCplKECEl67j+8ADIbSLClKh1nF2vqiWaxmOG94/RsQ9dlziRR0K17bt+1xLggjA5VZJN2YTSVUUTr6Zcjw5h9A0hFVRk2m56uc1wuHT55jOiYtwVazRB2wG4HmlYjK8Nms2G7WnF2rCmLgvVmhBRyOItKdH3uem/WFnGeTeZuzImvy4/3SE32UKoCpTV92HL7wT3kKUihOGgn/Ce/8SHWB/7MT94g4ZisLrny5s8l6oaYJE+95a1MJi0lhk/cepG/9z3fy63nn+fBwxPGYHAxgMj4lJgiMWX/i1KCxaTBjp5tN+btRGSu0muWudf8p58sNj6tIvzUh79i+/rVvIvpV3xVSonceUIgZX9KyocTACSIpLLfI3hSEkQkwQUm04ZrC0ldQjVEUgiZhYjEBRit4/zynPV6TVU3oBWrzcDpNlBIxZWDPeZXa+pCk2Tk2rVDCiVoK8PBfEqhJB/8mY9zeTbQzCYsquwNOV+OHM4a9pqa0miO3R7KFLzvXTeoZeT5Z17lS7/9J+htzbse++vM66eJybPsX+Bnbn0Lb7z6O/i93/Q+/uH3fRtRSr7qK7+Jr/6C38QP/vw38LZHfhdP3/g6envK/uStvPDgn/DUF34rUkq+9Evew7/8pa8H4Mbeb+Dzn/ijNOUNXnr4j/nw7T+PlHD9kcf57//L/47FlX32rzk++Nyf4+WTHwbgfe/6HvbaN6NkyVu/6za/55v/COcXS566+R5+89v+G4L+GG37Vm7Fv8qy/xjvuP6XKeURY5EL+YvzNXYvIKVg6TOf7emDp0A4+vhhqupzefDCh3n7u7+Kl16uKU1BoQ3O2t20WmDMHqauOXzsMaTKATmTScPF5Qlnl4mnNh3HZxdcXjqWq0i0sLk850E58oYnrrM3r4FEWzesxjXL5SlTPaFspxRtix8c1noef+xJonXMqsC1q9dYDz3bbs1B2yBLlbFDNpGwdDbRTFuefOIGMQa0sogwcHi04MrREYv5nMvjM2ZtRe8lZVVQ6kTXbWmF5CqKssjdeJk0SSi2Y6QSksV8QqIC65jUWR64XS/ZXp5zTGB/VpKkQZcGKWCqW7z3JO945PoRe3t7xBhQIqtsUhQcL7ecbwZOTzpcSGz7MfPpVO7r9zjW7hLBktVq4GK1RBfZVzUOO99qK5ApYR0czGeUhWHSFhitePa5l2mmDZNpjbOOy8s12pQEDO948iql1AQl6UeLURFTaLTQiJgwMgd7+BR55NohTzcNh9OGrrMsL5coJSibhoP5hOOTB7uYfkc/9ECg397GaEE7bZBKs7y8wPWOWkbOVxtWnaVtFdf2J4iUmNT7XNuf7QJbDNut5c52m7MFRpjWino6wfpIoxu0UWyMw9tt9twZnQPLTA52ikGwP5sQgEKuESGych3WCuog2NeG/SdvIKynD4bIYZb/OUfyUw72jxhdh/eZebzpCo5POyIZAVYVhg997Db9YAkh+zETgm5MPDzvmc8qykITY2Sz7RntQ7QxhJBB81VpmM2mtMaQRGLrLCcXa2KVp6BVNGgl8ETOVz2ByHHK092qLOnHERcSZscH/cTth7x4TyKTohstw5gVGvcvt/R2JCWoi91Bi0hZl6y2W+q6RgnJemsZhsyKVCLSNBl0b22PlvDItasMdsC6DIyvZw2HsxtoJSnLzP29vLyAgwlN22Ctw46WwhRMpxO8tQRvGXYuCKUqrM3oIlMpqknL/uSAi+UlJ6cr/M7OklKi22yoypL53hQhJM4FlstNPh8qxZW9lsN5SwwBN3QUJvtDY3T0wzp7tnf3wBASMY7ZVuNjVnDpnR41egpRoI3Z+XnhpVfuo7RGl9XrTVZNQsuMFBFGYL1hMyTsKqfT1qUmEVldbKhLh5aa0Xm6wbIZM7N1bzHBKJlfJwmCC7kQ1nK3h2RVzugCse8wRlMYSYqBohC0zQwg8xGJtGVB2xS0bUnwASE1KSUG6/DOZS/4Th1VlAUSRdtMEUJQVwUk6Icd33t3FlBG8fwr/+/1x2fXv/v1GReLs6ahrqcMyrHqtrguopJiGHoiCRT4GBjWFnTKMcZaYiqdZZFIosw67LF3GANrZ5nXFQAuJoKHvk9cu6YZhsA4JspCcGU+p/cDq25ks/FIoRFG4kKkKQs0CUViPi/wo+XK4QGJiLUOowzr7ZbZvKJUkUIbymKCC566LtFGkAicXJ5zcqGJ3jJtmrwJrCPeS25e30frhHMDLsC8neEq2G47jFaYMnuoopQ4LanamtIIkCN9DBwc1pydX7LZespyCkXibLNkOiuZlS1+SEjbMy9HjClJztF7T4rQ1lMikaeOSqrKoFVBFI7wOVdQuqLrLW4caaTCjiMITeciq67n+VcuGHxAmYq+77hz55xNn3BKkUQk+oE4DEhlOD1ZYUMi2LzROQlKaUzR0yVH7yRKJJQWOCcZLrc7GULW24PBjmt0aTClQRPYxoEX79wDBJOyoDKSQCJKyay8ABGJBGwssf3ItNVoExidA2kYfU9VSLpNNunH6BEi4B+eUhV1hvlWku04smhnSJnDd2IIdF3HI49cZ70aeO6l53DOUzcFSiqeefGEw6Mp00rh+pGkFPv7DcFrVkvLs/YhyQXCEKibOVubOFt3CJlB402Vu87b3rPpO+zgmU4KFpMpg4vM5zXXDuo8oe1LhmGg7y37+xXz6YyxHxhWI7YbGHAImVlqD07WvPTKimYiGLeOw4OaqixpyopJVXB5aVmuV/jk2TvYp9QtWsFgHTkrTXK23tJbR0yR2888Sxi2/MYv/2KOPverQWTPxbVHjrh2XfP4U+/l5Pgr+fH/88d49pnIg+MlTpWEnEWbExiJIBIiSWJMlEWRQd/OEVzYeRAEkmxiT/8WL53YGThefzbBryajzF/7tO+FnRwmv0ZOUJRcOTpg8D3bbU/X7UIdMuCKsXd5hIbEusjNm1f5+t/yTnBbTs82VMYw39N0m4F+44hJMoyJdTdQ1AaVAt1qy8NNj7OBaS2pjGG5yQ2a6B1aJOzouX3P7vA1NU+86QrL0fPwYsWtV08IKfDOx2/iikRRldw5/POUheSdb/p+Th9seNBWlKXm+uIrGR48wR/709/GaBNVNWVRfSnlV78DNYdu00FK3Pqo4sOPGb7jG6b87m8u+Wv/45fyeV/2Zbz40m0AvvPPtkwmLX/8T30nIPjiH1E493b+0B/+fSymNX/9f/1+nv3+2/z0T76f/+Hv/Q2+7+98D3/pf/oe3vqWp/nXP/qDfOtv+xJOTk/4iwd/jvPzc7RQfOd3/im+4zu+nT/7Z/4CP/aPFH/yW97G3/m+D1HzI5jtAe/+jX+TOx855uFz/4qjqzf4nH/vd3L24BYv/6P/kPPTNd918i0ILfnbv/Vj9G+TNM9/Byb2nLkzAMbLd3DtuS8nOUe36XE+8tLsJd76676Ra+3vRb+75BM/937qquGJNz3FS7dezk26GInSc/XGBOEs+Byg9thb38lbvvgrmMz2ePaD/4KLBw85364geXzrUKPGFIbkFZvNiv1Fi4gB7zyDC9y795D79x7y5BOP0NYNRVFkfmyduFxZ1gmmhaEoao4vAyYYpKi4XA2cL0d+5iMv0neWL3vXG5nUmlJrYtly0Z8xnZSYqsJawTjColXEsCWlSFs3SAEPTh5y9epjNJVCNRqEQipNAay3HcO2o5CKWTNhjB2XFx1SCOqyxRQFZS2YFiVFv2HZdbjOM3iLMhW6UNSVpqmz102ZivXlihAcvQuEkPEdVw9mqGSJHrTeY282RSkJwhJi4Phiy+WLD6nq7KV65ZWHrNcd88WU/SsZUyFsQEtygEttGG3HrC3zwT6mXNAtLcEHmlIg48C2W9FM5wSl2fYDelwxaUpMU6KUIYrE3dOevrfsHUxYb3tOz9coJVE6h5cFNdD1gaGPiG4gNQkRc3Ntf9rSlCV7ey2pKPicL3oa6SL4SPQ9ta54eHaBC4EQ4XBvysXlJWOShGjQXiHj7t6Z4O7JOidF+ghGsLno0FXJfKpRSuK9o5xrKlEw9p5xdDRKYuqS0a1wPrJcdQQf8p603yKlIu0KPmMUUQompqRtK3ofOLvYsDzriaOht1lm2VRTVhcrpBi4fnUfjKYbtxjt0KVi0rbMyeeSTWcxMlHWiqIIFEiODucoqXc+cEsII5XWlMZwutpglASb2K4GjhZTJouGJBpIiUIbVhdrts7zyukZ3gamxlBPMn9vWHe7QKPAfN4SXYO3jkJLpIoMO09sVSZWqy3bfiSkHITUNi1aS6Tc5ntRkhijaKUkJhis53LZs+oCx+dbYvRUjUQZyfnlGikknbdEJEJojFjRjz3brSOFRNj57ew4UpU1D8/XO/lknvThItcO9jncm7E3K4kxsFmN+TOpJUpDVZesl5cZZJ8MQmgu1xuCD7ggEFJR1gYh5M4CEOnGkdW6z5kLvaUoNFINIARaZe2MLgzH647g8zBgHAeEVJkDKcxOJZeQ283OVRiJMZBk5koFn3YhZ46QIk1t0EbksCwnsdaz6TaMLjHaFVIIGi1B5ICiosx5GadnF3gX0Cb7g81u8HB0dPh6OrndnT+2dsT5yGYISALTuqSsK0Znc/BPXQJ5yBBCfD3o6rPr1976jIvFSV1QlpJCFXniEDyVLrGtyaNzmY3AKz3gY0Amk03OpczFYlS5y+8DOgaM0ZxvA7LVxOjyL7koiGGkVA1JBaJ2bLqR1lhO1xv6MeAdKJkZjP0Q2VZZRmrI8NihH0Bc5C6PgKaqOLnY4iS0xqNEQVlICDEHrZSCGByrbcdoIZE43HNIIsPgcaOiqSqKCnywGWUgDDYF7DZgdKL0CWQiRI/FooPCIPB4tqsRJXSGc+fRB/0w0A+WspIII3d8xkBZagSS0UaczfHXIWQvmB1HiJbC5Ej/ulJMW8O8kNgBGi1wTmCKGlO3dM6ShGSwgbpuWa02hN6z7CJM5sQ0klyP364Bje1zcTqWOao7JEEIESn9LrU1IIWiUBqxm7ZmWaBASpUDEUZBoQylLpAiM/maQhNjLhNCzOlhhTaQEj5EXPT0zmaUAjkFDRGQMvvN7KgRUWYsQPA4Ejb6nAbrHKKLRKDQDd5m3lCG8mYjt3ARF1wOIUglfgys1lkSNa9aCpkPGVlCobA+M/IKcvJcN45Ym3bNBUlbCpTK3cJhtKy3W2QhSY2hKjRSRXQpkaViHDzWjvgQ2GwHopHUxmbvmICYInvTisH5T1FtOjarLst49JwkJNZ7lDTMFjOCtIzeIrVE6oQdMy7h4G99E5B45ff/L4SYiyoTHDMlmD/yVnR7mCfH7BJ3Gdm/kji89gZevfUoH/7Fj+WACrmb1CU+6SfYdWpzsp6nKAxXrsw5W/YMo8PZ7BP8ZIH42nTxk/uH4DW/4muPPn2lf8vzrz0rSK/9BCIn4r7hDTc4vTzBR0/X+91nXuTQj7gLvJEQokNpxcHBFBUkwTrmsymTVmArTVjAd73zEqE03/5LT4EURO/wo2Uz9PT9kD+/zjNGT+lKZIjMmgyNvth4tv3Ao48ccW2xxysPz9l2mmllmFSS61f2EK2kntR81GuUhLPTFfcfXiJLRVEYhvAc124+wh/9jj/Bcx/7ZT78C7/A/qxkMm3oYvYTik+5Gq+t/+sDP82LL97+Ny9dYveewN/93n/AxdZCDPzr9/8g73r3u/nwz3+Ap9/2dv7B9/59SPDsM8/x4Y/8Mu99zxfyg//8X/LNv/Pr+cZv+FqKoqBtGz7xiVu7FkDi+Rde5J/8sx/hy7/ocd64J7jx+Jv4oZ/6QdIwIk4fsD57FVMYSplwXZ/lpQHOTi/oBsvxxYZFYRBqF5ZUKnx0JJ/h1iEErjz+Nk5f+jgf/sAP0TvL+775j3Py4Bhvz1FElM6HxqY2lEXEjQPe50nmC7/0QZ792fdzcPMx3vcf/yFefuGXCc7m5MQYiGMg+EgMGusyE60tC2Lw2U+83pIiLLcdPkLlPHWjmBi5m7BFghEED8vNhkpCb/PkbnCB1XbE9p7ROmTKIRMJgZACbaBqK3RtKLxB9CtiEtiY8MEhkRhTQIRgPbrRJCVx5FTJRJ7ysePOoiQRcKNF6YxECVbhpEcbxeHBnMmkxTsHQmNHy6QpmU3r/JlOGWESUqCpIq3xbF3BfDJBtQMxRsqmzFislBicw4XAMHq23cBisY/Wef9XpqJta5pCkpRg6wI2RmoNtVaMll1oR064FiorWJRRKEkGg4+WosoHSx9zmE6KYGRHVdUgFNpo6B11U+Gsx449UoKpCnwMrHuLkhWTiYLg8K7LtgoRsN5ldM9FwleG6dEedSGpCk0YBVpIdKly8F2MFFoz2nzPSSo3qYySBNsTE2zHiB0DzgZUXdBddDQzgalyc2ccR0ytKaVi6Ea8tdSmwifL+XqZRY2DQ5JoygJjJNoohq1jGHqqQmNSbnQrBUUS1IWmN5Jh9ISY8u9oCaCIMWT+oVE71UfMSanWopSmrSokCqJFypxgKpAIURDIDGZrA/3YkYJCKvB+RKAJMfv/BxuolMQUiro0FErhux5hJItJmcN8lMnhh6pg9FmhUhhJWyu8FPQ+4IJHS4XROSQweIePISNCIgx2RKqSIkpCtPjoqYqaQC4SnQ+EXbhTSDmcLqaI1vlaDdshcyd3gPsQE951IGWWTu7uaSCoyionioaMPitMgTQggkQpgfcW52S2WSQPMWJUgSInm662A/0wgjBobRht2KkjMhezLA1Ga0IMbDYD1gdG6wgh7kKaJCkFiPH1/D7rItvBvx6+F4KnKHPyrQ8eYwqqpshn0pTf97IoKOoCO1gKozMzMqWc2KuyNDZ9yv1WJImW4GSEmLC7ICRT6Nd9jCkJEhJrI2kc0RpCUnTDgFE5y0BKmfM6IggR8aMjpB0dwXpEyucdofTOE5nPVyH8qrf8z65fA+szLhbvnCzx9pjSlLRlScKzjT2TyQQlNVoEytJwsKeJARb1JEuHUkAAhZA51ZJEVSpKabh/4Tjaz5O00UZUIYjWkbymmiqUETw4sbSV5M5JRVHULNoaQ+5IhJiIZebrWGdJQRJixA8WJExmFW1lWEx2gF4f0UZSNYaxH/HBsV5DCGB9LmCEEFysRkqjEWiUSjw8PUFpvft3npfiKeNoeeL6DULaopYWQfZqVk0NIfu7yrpgc2m5/8oxk4miqASbfsP5pUekxHazQWtNWZYUhcFoBcnm4BclUDIx+BVFpYhREZKkaloEEmUF43IkBot3jrMYc9eHQKk8INnbM7heUgiLaQKP3iw5CokkCmSSEAz4Cq3gicOWtq3xyaIKQzckXrx9j5Nzh3U9zltGpxj7QJSOkAJaSIKAmAJaecrGIEUkjBYrEkrCzasLpJKMIW/uRhXIlEhKI31EOo+MPVVbsh46hn5ECMGkrVFBMPrEwX4+yK3WmSu2KAyLvSkxJTbLNYu2xbQl3Uay2W4gSepqwupyRIjAzWtzykKjVI23DnfQEkg5SAGopeFs5SHZzJxThkrVFI3i9OKS0TombcO8rgnWcXKyoneey22HQNJIy+llQhiFj5FbrxxzfD4ljD0pWJCa7RC5WJ3x/Pgyi8mctjDEMLIv58ymE5TQ9GHETCWXlyNl2+Bs4HK94c69c/pB8va33GTW5nj7jz9/h735hLHv0Lpkz9kcxNNtdjw9zxOPXeENjz7K9Kn3krTGI1ExoGQHDHhfgop85Gd/lgev3iUJUMnmrvZrQTY7j2Ai5UAZn9g7mvDYG64Aibt3LnnuE/cY7JhloZ9SJL6ejL0rPLP8RPDJYvLTKkp2XsdP8y0myIBuJYkkyrLm+o0r/Nbf9hv4+Q/9LO7nei4u+l0Sq4KU9xmSQEUIRM4u1rxy9wHYJc89e5crR/sIH7OkbjrhBd0RUuR8WeB95PxyYHCJupQUytG2NQnN44urPIrgqgko6XLEejkhJsG9h3fpsaDgzU9e5Uve80Z6NzIrpty8coguFP/0hyPrjeOZT2xompKnn77J8sd/N8/ce8Av6P+Ct73j7XzJF7+Xr/mG38U/+rt/BTUpSJ1gJE9nyyqjEITI13Kz2f7KC7Vb8tMe37kY8KEkIQnJv15I5riC3IlOKTemft2XvJc/+Ad+H1/x69/H2fkFX/e1v53f//t/F1EIQkpsN1t+6F/8KMPl51J9+dtIwPnZhuc+cQuhNG/4/H+fh/fOaGcNVx5ZUA0lIUQ+9rEzPGxCAAAgAElEQVQX+dz3fBV/67vfz1veeIOrVw75DSnxkY/c4UOrFYVWNEZRFYYv/tov4B9/91+k/YJ/yURL7t39GlS7x63nP0rXD1RVxiyZJLh7+wyiwLlEVUlm05LDw2sMw5ZhWHHzyTcxfGzJ0I1EV9BOa2JKrEdHs5hyeDSnUiqnu+7tcXj9Kn50XGwuaeZzqrqlFAkTIwfXJqSUGDcXDH1H3C652PaEpJGqoixLvvRt1znYm3K22XLRO3SCUhum8wMqGVltR+pJxdH+Hi999DY+OZppQzcOBC842L/CsF2yHEfsqWTT95xfXPLGxx/DSMHBbILSgsGNmKLk4Kgi2pK2yVDz1crywr371E1B0cwIouCkv8S6kfF8yWxS46JEGUEKnrowIApM6ZlUimEsCEJTVQZ84Pxixf37x6SYmMxairJkVlc01w9wwdJ3kaP9GTeuFpRGYvuRoizY29+DBNM6N/M6Kxl8oDvtSSFRLSoWbUXwgc4nHAXdauTe3Rcpy5KqKimKit4nfvznPkZd56n53l5LMyvZrFZIBFeu7CGVwnuww8D9BxvqytM2FUf7FZeXHrTGeke/7Ylx5JVXjlmNI1WhmNQlbVXRlhVCCno/UGnFrKrwKdL1juzgtgQtCcbghjwRKTREHThbbUmDY7nq0J3jYtVRKEWpFa8sl+zVNdcOJhSmYIia7apHC0WpNMlkTAJKcuv2faJP5DlcZBwjSggmVUlKA8poTKmZH01YLTtUyqqUi805s8mcGAPnvWUmK44ODgjBslqO3H31nJAi9WRKqRX9NieOhiSwLtENFqlA75J2nc32jNKMNJWis47TVUZjHF9uKIqCpilpqxLvPOvNksW05drBAiEVPkD0EVOlXHgJSbQu49V0LhI3dgQfOZrn71lt1piiIIacXF/VV6mrBlJkHDKSh+SZTGYopRjtwGhzgjsIppOCcQzcP94yjI7LzYZxtOxpvUu8Bze0qJ0vM4acAJqbVgmRIk1R5OYHOWm9qAqsHRn6nsuVReuC4/MLBu+JYYdNs56HqyVxxxkWKXGwmLE3n7KYGSQxp+BWFevNgOtBlZpqd61ihBCzNSKl3CzzIRdvU2OgKJBag5A4N1KqgrLSaKMZO48LKjf3k0JGjYgGkTzeDgjAaJBKE0aPH6AsEot5QawS82YK5ClfSDD6QPCOuirzPV8IDvdnhJgY+owQQoLSgsvVavcZMLvkVEnblmiZZfY+xIyOIxflQiRSyOg9KXORKj7jiuSz6//v9Rm/NautJQ5brLGcX2QZiFSWsj3PEesIBJ6rR4eA5/xsi1SGspCIFFg0E7yIeBHYupS9eaamUnnDkiFSG4UsSu5tOxpTUtclN28c0ZSBopZEdobaCH5wVE1B1ZYgHDENnB57UJIQAonEdFIxaRpqNeRpilBUrWQylyyXNYnIqy8vCT7xyNV92mmB0ZZEYvQQfUJaz95eQySzG33wbOyGYTCgEpWp0CJHmE/nJYtpS5ICpaAUArvIBn0bHNpo6rLIY3vvCS6P8+taM46J6bxlGEYGbwkJ+tESg6MoNNOioTIarQXaJHw/4m1OQDWFoqlmOxBsoOs2RB95w/UpjZmRfC5sZK3ZDANnd9f4HRunridMa8PCWIpZzRAsRkv63rJZamxXcNpZurXjfLshxYAus6TClBKjBCpJrLWEYClUgZSGwQ7ZtC1T7sb1PXb0tNMF276DJGibmulkQsQzOscYBrbjQHSGwswQKaJUoKprrB8IG8vNvSMKrXIQSIxst5LldmShNPPZjLI1dH1PNw70KwHRIeVIVWiuXqlwyXLebzMAuYtUpmAxFxwtWpL3uWPXFKhKMjpHWU6o68RsAnUlsLrm9N7AZdfjRWJSGpJSeCSNKdA6cHZ2yXrVU1ea6zcPaSYNfjtycnaBlxpVKAplsDHwcLll//AQKQSrh6dstz3TKwuasmBYWVbrgRfvX3B8OrC8POXJR4/Y9AO/eOuUt7/1LXzhW/bZOnK0u4TpZIqSa2plufnmp9h/4l0ErSElFBEYiOIM5AYprpL8nJ/90Ee5c/ceEIhRkku7zOKTIiJknjIrIfIBMkU2yyVf+IWfx2Jyyd07J/TDFiElUkqC959e772uLBWvcf0E5Cjvf9uU8Vc+EiIDoEVKOVL/yhE3Hz3i9jMVjc7PSyGIyefXkoIkMlweBOttIMmWyQQqc4/oLTFIcIHLe6esN47Rej7y8bskmbh164Tjhx31XHI0NXzJFzzNwfUF169eI0YYH7zErTsP6W3kySee4vHHrvDCrU8wDApZ1Ozt7fHWtz6GaUBuY0YIxUTTNJQm8NThIYvFhDdc3yOFPPV69d4ltz/+Ic5fep6v+U//AvP9hsGe8463v5ui0KQQ+Zrf/h9webkkpU+/wK/9ReyCatKOIwbf/I1fx//+/f8HUZd8+Ve+j+/+a3+Zfrvm2Y9/jK/7pm/gr373/8Zb3vwmPu9z38HPfujneM8XfRHL1YrTs3NMWfC7f883AuySZ7PPJSG4e7rhzvGGl194lqfe8W4+8Au/zGxxjZtPvJmf+qkP4Lst9+6uWK57Qoz80Ic/wDd+y7dTtEf84/f/HN/6bX+QH/hnP8h3/90fRhnFbFbwm7/inVyrai7OTghmHzE5Yzo94sb8zZycHBPqGcfP3+PwQGG9ZTv0JAwah02O/cNHKdwm/+zlhNneDZ5f/ygJnYMZ0oAyWeEhFbSNZtaWdKsNujC0e3t0MXH37l2euH7I3iM3aKZzxtUFMXqmV59idXHC/VtrCtPy5ieO2I5bTs5HZrOWpip4eO8OQ9+xvdwyxMjeYkLd1Fz2lkIW/NLPPU/ZNBwd7eO3G4KKzPcnxJDooiWUgZmuaF2NSzBtq4ztMSWEiKgqqqagwVFVNcv1RfbNmTlSKSazgZfuPuTh+QX3j19kufXcubgAIdgvKgojqSqBqRVHh3OmSqK1wdQ1ISYevnqH/aMjlClxvUVFmM9mJJ1o2gopFP2qx7mRvSsz6iLbDkolmO8t6F3mFwoPhRTcufMQXcx4+d4pVWVolEb4RBw9CMPZauTWnRNihKmGoR950xNz2rKkKDUbB4vpFKUMyQZWp2vauqEb1yz2Zkxmbf5alGyXkvPlCau7JwyDpalLpLBo0WKKxP7+nKpuOFzMOBQRUmAz2szfrBNRRPphw7ytmdU1RhluXCmzNFRExtHRjyNFW1MWBqOyP+/m1SNSannh3ktY57l27QpGCvrVkqovqSvN1aMDqqbh5GTJunNMZxOcD5wuV/SjY2sD43Zksx1opg0HBzMGl4Phgi8QMdK0iulegTSaK/sFwYachisTj96Y03c9y1VP38PaCIZxxIbEECzeO9xGsNl6kttwtL/HYl6j1cgwBOqy5Mp8nmWlw8DhpGFSFDw4v2BaB/YnEwYb2Q4De7MJWimWK8s4Ria6wY2R5++cIKRkfzKlKTTTomDaFpS6QLjMaFQmT7fOV0uGwSKiQpmW45NXmbQVk6bkkatTFrMKrQSjHdl2BT5oUhxZLBbMpw3ebhmGLQHJEBKdtXSjY+x2MmTn8Ekwryu0SpAcyTQ7hEfeNKURCKXZbDq2245tl9ElfT8w359TYJhPaqaTCh8jq+V6p4ySuJiyP14Erl7ZBwRj3+Od42AxpTBZwQbg+kAYekJw1FoQhCIqUFqhi4quG4AsLXUh0PcjUgm0zEniQhm6fsRHR9sYDhctRaFZrR2X6y2jDTmh1GjKUtBWNd5apCoQQuOdo+s2KGHQssB6wWa7JYY84e+7mFmKKRG8J8UtpviklDqEgFSKEGNWl8WMYeuGgWHwu2JcYERgUpfsL1oKI3EhEVOeviutCCm+zjV1Y9xNdj+7fi2uzzgN9au+7N1p/+CAEHqmjeRgPufK4gCRHCE4lsst2+2YNfwhcrg/xePZ2J6qLKlSBshqKZlM6iwJ2QbGEBGVoCgVe21FowvkbEFYr/HbLZvB0yhFOy843Wwo6zn70znn5w8pmoqZEFgHvRcoYzjcK9FVgbeefjMQUmTSVPgYEGoXkiEF68uAECPTRUNZ5DAeZGKzXlGqCXuLXMSs+g1aFMQQMFpRFAWKiiQUfXeeOYExMTqP2km/pJQ47+itzYfDskTEmDdrGxFJU1aCvssSR1MKmkZz794JVVWwN1tkuO44kFLmDh5cvUJZV7x468UMbW5ryrLK4PoYWV5eMPY9RVEym04hJe7df8j9szW/8Ox9JospR/szbDey2DMk3XLZO+7cPeb/Zu/Ng3ZN6/rOz7Xd67O9+zmnT58+vUBDN2uDLCIqIAiIgHEUCSqaxK3iJMakhhgNJKEmSoxOMsY1agXXcZBIShnDIKAsQfbutulumt5On/Vdn/fZ7vVa5o/r7UYzqZoMVTPlH1xVT53/Tr3Pc1/3fV+/3+/7/X5ypbn+hjHSBVKfIIQiLRSDMiEvNV2jY9qNsuwdTlFpQlV7Pv/Fx9g/PKZaOpRS9N4QTjxuoyIlS6M+XWlNnidRSuEbpITN0YS6qZktjtk5fZblYhXByyKgpGM0iubqxEjmsxV4QZokDIY5V6/t0jQNo8GAtc0Jq65iMW3w9JR5Cl6wnFfcfP4co1EGOOq6o+uh7Tzro5Q80WRFhpeCpokdTecFhMAgUZRFyqpuuHB1n/mi43jW4HBsbW/w1JtuZJglpLJBpAmfv/+Avm8wCSgjMcKiBcxXntmiQ+vA6e0xJsmwrUCInvPnd1jbWGP/2h67hzPa1pKmGpMqVrVkXi0QJuJjzk1SNJ77Hz2k3ByztjakmTd89M4HueeRA26//Va+93M/TqIEV9/8q/zY111jbZzwzvl3kF/3dLxf4OQGylfR1B528aHm6Jrm/rse5Tu/94do2z4WW8pB0OAkAkeMPxBIHciV5Jabz1DmKakxrA00Nz/pBiqneeDBK/zpn332RMZjCMER8EgBSgiM0VHe6aMkybkQ4ctPBNY8vv7vzycdYlEpVfSR/I3XvJbXvPylnNmYcuGRS3zs0w/ym3/wodg5DrHIPYFxIpCEIDl1+jxv/7E389ynnWZx9WHy0RA9SAi9xzcNP/Lsh/He87YPnyEfDRmXKaJdcbQ7pelbHrmwYDabcnn3MtbDs556Cyo1DMuEcZlTO8f+tSXrkxyZRt5d5zWj7Q1KocnQeCT/6O5X4/qOX3zh74OXYDVBSAY338bNt78Y31u893zhLz7B0ZW76NoVR+J2XvziF/HIoxf5whce5PTpLb7tDd/Dm7/7jbzm1d/It33H9zzxW73tn76F4aDkH7/lrQjg/R/4Q/7Lxz/FC1/4PK6/7jQf+MM/4vfe+bMEFxD5Nm97x79msrGJtZafeOvbed/7PoCWit/8zX/Ps571dC5dusKnP3snz3vuHbz0Fa/lJV/7Yt7xU/+CF7/wpTih+K6/+U287Gvv4Ku/9hXoJGX36hW8FXz205/h9//je9g5s8Nb/uUvA/Ced/403/HGNzEcDumt5drVa/zMO36S+eyIaxcP+Z33vIt/8uP/hNV8xtnrbuDv/+iPcO7JGq0S7v/cVe6565MMJ4pn3P4Mzt74VWidxMag6/noH/48VT3n+a/4HobjTayNzNr7Pv0nbJy+ieODqyz3H2RUGmzTYW3g2lEF6YiXffMbSdKMejHlw+/9Da5d28N3gYf2F2SpYlykvPDZz+RZL3k9TmqUlFy+98+xq12Go4xTt34NyeAUXbPC+8D+pft55J6PccPODkZrRjfdQbl5HrzFdyuuPPAxKtdQ9XOGw7MEq1gbabSWHO4fcnjtCtV0wamzN4AWXL58kS/c90VuufVJbG2u0QtJ23vSAPWsYlW3CG0jwLy1zKZzso11kmzAMDFoLMca8jJjgmE2XXIwm6OMpMwT+lkVmXOlprOW41lHmaSUQ0NaplgfONid8vAjF0kHQwblkOWiwXYNXR998ivbkmaaG288iwyB6eExFy5co+kDW5NTyFRRd8cYAtfvbLA+HlM1NY9euAzA9qktTJpwuLJ0vaOvahbLFeMs4abrT6G1pxhkKK2pqpauqxgOJ6SpITMFAkHVzFkuFvgkIysGmDTF2haTJugkRwQ4vnaZaj5DqgFFmbA/nVKYhMJkaGERuaIg5drhgnsv7tH2gaO9i6ytj9iarOOso+saNrc26boWpRIyrZiMMrJBxihNkGnJZ+68j6ZpIxcTiTOB4+mMetVS5jmjwZCDxZTxaEChsyiLRpIVgaoKXNo9pu6WPPX8ecrc4JRnvqpZTJcoQCpFkeUgBE55lIZHL12DEFgbj5BCYRuHkYo2BFbtCuc68jSlyAt6b+i7hslowGiQUxqFCJYr+3N250vy3DAZ57g+cH5jC6Fg93CPxXLF5uYa1lqs8yxqx6rz3PfFC5R5hm87eheonKO3HUaUtNUSbQTnbzgVJ3kh+hXPbm+DMNx/4TLL2TGD4RpCK7wM7E9XaJWyNcnAxtAUdORSd11L01YUWUmRD6hWizgNjJlzpEWCkpraaQSekQhPTLsGkwzXe3AB56KfL0jN/tGctrMo9fgUD65c3cUFT9dH7nOiE1KlmRQlSkvS0oAUtLYl8YFBUaKNZlk9jhsK9C4AirpxVHWNSjRFlsVgNhxlkVG1PfP5HKFTAoLZbIHzDudgNm9P9nvEpCRaYlJzIjkPKOGwXoCI09HgLeuDhMGgRCYpVWtZrGqkkJTlgK6vaNsG2zoyk1AOSvAQXIsxmiyP0m6I4TUCEFLQdQ1ZlqK1eMJJopSirhuWyyUEBUiUjl7OokgROJrVir6zT6StBh5PQxVUdYf38JHPPfJl1SRfWf/96//XNNRHLu2zO23wvkdrQZ4cMR7sU2YGIWKKo7UWYyRKKboQZaIaTapSCiNPfCOCMs9IEkFrelwIyCTG77resuoaEla4rscFQRCCJnhUD1pHqPlsPqeqOxyaIATWQeeh1IG9w5Y01zFh1Udy3cF0hjEqglKDj8D3TNG1J1MUb6maeFhOTYYUMJtFWZpFsGiWJ+B5iZQdSWJpe0/wLWmSYpIIg8d5bN/ifJQRhCDoeo/ta4o8QWlD33e0XUual5g0BeVI04QkSxivWYQI9AESpVlbX0MIaDtHXhRorcjyAmkM5gQW3dQtBE+ZZ4yHA6SU8TAeAuV4xNhJrjtTkaQpRimclEgRC8LSwMaoRPjAow8fkJqMPLVAwE4dihAnmUgiBVAAlmxcsre34uCgom4CxsSJknQSoSO7DeFpuhpvY7KbxMFJIqpOUlCQFob1ZEKeG3yIEtbeWZxzeHqkSFlWHUiF1hJhBHXTkOcZw0FkNw6KFKk924M16q4lySJYvNuckOiAkoHeKjqrQPf4zrKoY4cMHeIz1oProuyn73vaJv7mQgrGg5I8KdjakE9IhW27ZGUlaphD1xNo8L7DO4NSELSiczbuuVFOIGAtJKkgSSRZVtC3LdP9fZTUT0C2PbFUOrU+ZLg+IEkzXF1z+doezjlSnVJXFu8XrBWaZ996PdedO8XR0ZJLl/dRSjGbHpOnEl2uk4izEFK8u4YKlxCMCZQE0SDCksP9wKc+/Sm8t0gRTnyTMYYd4WPhT5z9KQRJYsi0INNRPqWMZDabc/bsWdInneHRRy7y0GO7UXL6JbsjLoDwIv63MsqTE63xPvpjfPgSbSn+K0/mjSfxciczyCgOMJSDgsFIUc1XjCcDtk9PMImK3dUnOJAnfzgBhMP2Fa1bMa/n3HnvAwSdk2kYlSWb64PoZQvQ9jVZm9CFnqaag5aUacnmGUO2ljHaLjF4cgzoBO8082WL9Y4gepaNQnbQdY7Wd9grHZdrx2rZ0bSeNnwDSaLoifiXVEB6xx9y6P4T9/ze3Yx0znw5pWlqNjZ3EHnCj/7wj7NYVoDEewEiIl3e+Ru/yzt/43f/ynP6n7/9HfEXPBntvuTlr4t+EQGFkUwSxdPPlVjveOiLj/KaV30LC0+U8AYFCKxz5G94A18gKoKfJgSNkvyxEPCR9/OOb/gEo8k6JjOcv/8BnvGhD7IM76Bte/wJq/EOIXiuVtz/vW/izgf2eNuv38nPfPRX2X7Zy7nytrcyf//7AcGPnFyqjxcl3/umN5GcsHzvu+cefuhvfx8/+L8+iNaad7/9+bS+RSrY3v4Erv95JknKIE/BBIQU2AAf+vTb6dropRsWCZqWV33LjVgL1/ZWXO5rlquK4AN5nvFtf/NH+PAf/jquOuaZL3o1L/rG7+CzH3kPvndsbC1j8nciueMbvpUrD93JH/+nd3H6+ht43Xf/KB/4vX9DMStITq04fPAjXH7kLlJjSPIMPZowl5KN00+lVTmf+MBvMEkSNoYlSabIOglNCvUR2mj6KqF2UC8bdJqxddMmeTlEm8ApeRZMxnhtg+HQ0C7mhKphuqxYHlc0FoT2KA/CxYh+JaFvV7Q+QSYJq8MZe5cvo3ZOo5TEGGibmt5b8lyBEPQBUJq2r+i7lvWtMyTasJovov9/MGCyPmY4KNgoE7QYIRQ0vaPuHVonTMoBwVqGW4r1YYYH1obrWBxtmyNslEImeUnRl2RFitaKJEnp+o55N6V1jnKUszbKGZcpyTDheLrg4u4B1nnW10cUqWI5nzHzijyP/L9ltUCIQDubMp548kFO37YsDx37Sxt967InEQ7h52TpGsp7RBAgJCpJECogHGilyRONET3D68+ilGBjYwOtBHhHlhq6zrCsaqSWBCmYTyt22ynaCLJCIE3CfNVy5fJuxEElkZnntSJoaCtLlwXy9ARa4wNV7VhWPa7vMQgOp0ccHcK1xZLWObbGA05NRhR5yt58Sd91DLIULVOypCBREiUUbR9Ze9JIUh1QKsW5FCVAejiaHsfk0Kbm4Cihtw7vYtqsSWMq5qqqSVXGY/t7aKnprSQQeZTBB1yALDEMSk1263kkAu8snXXsHS2ZzipO72xR1SXOWeSJHPvUqW2mR3Pa3qJTyebamO1xDr2m6h3LrqVvamQqubZb4XuLNJBmCZvDIUJlBNOTaEGqHdkwyqq9bbDO0yw7tLEIqSAIDlcdVVUzrysG6xuIvkMHhxfQEX2I0lqU1gThca5DCMvGuHzieRgCUZoZHEbFEL0QFFIolBDMq4Z53aN0PCMFC6vGslo5EILOeZq2i/J/cRT3mzRIFgg8fdfjXIMPIQbUIbDW0XVt1PlkihAkSZLGd6GLIXRZkUU5vjEUiUbiMVqQpilSCTKdsDmIwX5BBJwv6PqEtunAx/NREAIvJEIErO3xOJTUT2QrKAlaR9Zkbx1db/EEtFR458izFKV0bFB0HVLGeOEgAtpopNQ4ZwnElHtxIlnNsoy++8pk8a/r+rKLxelxxWzZnci6QAhJlkwZDQdoJen7BvCc2Y66/FVrCS6abpVQJGlKFwISj1YCozWqjMWaVIpAoLKO3nlc2+BPQOAmiR0OLyR5mtH3NiawBgguUJ8cK6UMaAPVwuLpT5AdseM4X9YUWUKRJQQl8HikkgQE1sbN2lQ28vRGKdZZqjoC71UiqJuoVRciasoTAqtlS5oohHIxXEcKQEIPzjuCjxNGzwnsOkQMQxAQRAAh0YmMoQdJ7J4PhkO8tzgLQmvywSC+2NseYzRSQJHlyCxFKoXvLa7rkEBZ5JRlifeeRb3C9R6VpgxGgnOnG4JQNI1AhpOUUx3DavTaiLZtOdyboUrodcDLQGcttmloascwi/HLrVUMS403kqqqcS6AUHjfxQeOs0gZu3td3+OsjQ9V75GxbCAkCm0Smq49kWCkeB8IwdFZ6DsHOOqmjYmjqxajFSEBXMCfJMQVuSFJEoSQJFqxNhxgao1KHGmqEMEwm86wtsc6jQ1AiEEOsRAM6M6hJAg0gRO5RG/p+oDtHGUZWZmUkKU5eV5QVyuOjo6oI8sBgicEGx+CgpNuYvweiVEMBgbrIt/OOYeSce83TcNi0bG2tkmWaiBOzYSCIpWgNIOiZGV7Li9rVm3HzjilrmJYz/ZwyI1nNrghS/jUp+9jtlghhGR3/5hv+ouMU899Lp0oSHqAHukuQ3B4OoSpCPRcu3zE3XffTQjuS1ZBFxDSxz16EswR2dHyBG8gSbWM97XWrJZLxrlmY7TFrbec4WA653jZxJdiEDxeulkXnY9ShIhx0TIa563DcpK5AxE6L2TMTX1i4hj/hp4o+14bl0yGkqNpw2C9YHtrRFGk1F31V3J1RIjy1SACXbdiuVoxXy65srtP3Svy4Dm1tUmRxIQ5IQRKCVSwtKuO+XJFkQ8QUjIYFZhBxmkzIcdxeOmQDo3zMqbTSUGaxWIrOIESCuE7umXDbOXYny6pVz1+w6GkobGCZe1xqictD5F9z+LwkPWtHYwU+FQjSBCJimy3v4Ij+X9eX3oFx2Q9QtyXix6kF+DCE/uSx3+zEOWZ73FLVJ7zrP/w6wxvvw1sT/XFB7nnzW/m9He+ibd88+u48x+8ldEo5/ZXvpzrnvNsHvuhH2Dt276d9de/Hnt4SH7rrcz++P/glte9HhB8zS3P4sE3nwdg8nVfz3U//D+SnDnDwR+8hwtvfzsowfmbzvMT/9NbGE4m1M7xK7/4S3TtvVRVw3f97b/DDTeeIzEJFy9f4a1vextn1nJe8PwX8Ibv/lvcd9993HTzzfzyL/4K9/3Fnfybn/sJ1tfXODrcO5lG9Tx2ccp8ecxssQACL3zh8/HO8sgX72d9c5MrD9/H87/pexgMh0gC49zg+paAZ7C2zcHVB5HBcbh7kWq1IBnvcO3aY5xaNhzNa6bLjo31HO9lfA4fL3nK82/j9//jr3J4tMvOaMy8mLO+McC3Drvs6cQSU2oMCX0LVesIEjbGmyz7jsR7HApVrLFoAdFh2h7he2zfYb3DWodCYXuPDDGdMTGatm7ofARhd1XF7OCQ1WBIUZZIPH1bU/cdo+31eHC2AaXis6h3EaEgVcQbZKlhMCgZDnNGZYbJDS1TniEAACAASURBVJlRCCWo2o7WgcSgpYze5CJjOEwQWjAuB1Rti+8jxqaRhl4IEqFZWxtjkoS2sSybKKc0RjDMM4ZJSqph5VpWjePK1SPqro2YgfGAdrWgagQ6P7GO9DWjYc7qeBEnbi5iRVbzmit7FY3rOb1VYgpDU6+o65xExpTlrncgBUo4hI2e6vEgB68ZjUd0Xcfm+gitFAJHtajRRuGDpXOwajqW05qj1QqtHOubJUJKqqrl8l4sIAen1hAiBaXireZlxFyE2EglQNV0VE2HOGH1tbanqx2Xrh7R4ynzBABlDJ2zNG1HYQwySMaDkkRprLf0PiCVPDmYBzKV4JFgY+CS7Tuct6wqi/c189rR9z1KSTZUQdvF94zIDftHU4RQ5GmBEpK2q2JIEETOpghMhkNs7xDS0fuI71J0jIYFWaZo2pa+6QDIs4I9t+RgXpGmFusEgzTD+wCNxTYO23WkJme1aOIQIpUEETDjMUYapMxIE0lmAlrmVK2nCw3YgLU+qsjwaKGoe8uibtmbLZi5FG1bDA4vJU5pUi1YS2UMSBLgvUMKy3hQoqSI5xwExSDF2gbvYlJ/iMYojBR03tN1HUJBmoD0iq4LNI2FSOYihOiTrNsKIRVJIiMGK5EIJN7G0D/v4tlXnHgdlRKYJKa/miRB+IBvYxZIMSzQSpEkijLVKKL1Qkh5UjhKBlmKkoq6r2OKtDOslML2Pd6L6JmU8QzuXQxQfNzCEJutAa0kbduf5IPYyFGUFoGiLAyJMUgVk2eVit53L6JXUilJ03TRehJCbM6HOHH9Upv4K+uv2/qyi8Vzp0+xquYgwaSRrei6DuFqvA0EGy/7lSvLE7/SIUpLRsOCYl4xGmaIE4/AI3sHBCvY3t6K0wvfo7VkMh6SZRlN18YCQwi21oZxnuUsUimMjtOZdTPCeo/RKUUSKJNAoEBsRC9g8AGdgFIp0k9QRhFULNYEEmQgKzS2l9ie2B0Mlvkq0HUtSIVSCu882ztjvPNPcGoCkspaNjciTLVvV/jgMakBBQIVvYxKorXAmIS+96xWFQTHxvo46sA7G5liztK3S4zUJCZDFQnOugjxNTq+R/oWqSQba2uE4MmKL8FPH+/+AITeIoLC946j4wWjYcn58zfQ9z2ddUglmB/PY2pWYhCUzJcdT7/tDKky1F2PE4I8zTCh54uXasoctIL5oqFtO4L33Prc65itKi5cOuRT91yKIF/RokOG6DSLxRQhBWWWsex7VrZHSEU/86hpjV21KBm9MlILnPcMiiL6X4Xn0ctTNJDkCt+Hk+8pmIxHseCK1jmCF+RlykPpEb7rUNKgk4Qs0cymM6RRrG8U5JlmcWxJlGG8Fg9zR8fRt5lkjjIPUZoXYFgaFqsW2cvo0cMzm885ni+ZLSuOlhW9c3RXpkipOb8+4vSZDWzXslhWTBcdy6ojLwPbmWSYabxIOTycA4LZYoExGq0UWb4iTxMmoxQtFW3b8tCjl6jqjlERuU833Hw90/mSo90jVJJTpCVKamarOewKnnruerbP7WCt47OHMw5+7QKX/jRjeeMlbrz+POfPrzEYbJBVl5H+Knr9HPNukz9+7/v5zF33xkhv+XiMdTwcxio6brAQogRnkOfkSUqSKJIUkiTDu5rpwSHnbzjL977hJTzn9rP80m//GctFzUlAKcH3ONfGaVcnsELSuhjIk2UxEa2O5AMC6uQei9PEH3U/CcC/M/8caHnqU87z9c+7hfNbCj9LGRrN0244wwue8zTe96FPxWIzxMCWGNcbO8fLasWdn71EIQe85PnP4PDqPtZklIOSsjQoEeXSN58+x6qa8djeNbo2IIPloDpisXSMx2M2Tq9jdGC53jwBPt7ZPE2Pw9czUjMkEdG3WfUtXjrWNnZiNewt3zD/KNYG7KKOqAhpGANZarhxa4BiyVrq0TplspOyNz+MRf6JJCje5P91MNB/Y4WTsKDHy8YQkwwrbzmYVwTvaZ3Hhi9l4/1l++jWN76Ce9c3ecNLv5Ei0ezsbFGdP8cbT5/mxUXGdadTxsMhRztbPLS9zW9902t41jOeyhtf9CL+5Vt/jId/+3d48PJV/s7mJoOi5Od/7hcIQvBzZUn3rDv44R/8EbSR/Iff/nXeee/n+cBHPsp73vbPyH/tV9n97d/mF17+Uv6XX/gV3nf/e2nsIf/2J/8th1evkqeGv/v3/j4//P3fxzve8TMMNy9z/bkbeNs/fSt33X0XCsVP/+zP8l8+9nF+7Zd+me3rzvKud//v/NF738+7/vOfkxoXO+ZKcP4pPY9dusJ7Png3RTFgMnqA57zyu3j3H32M8TBnNm+wIe7/G1/0MKE8hyjuZ7J5PZONU5hkzP7BAW3T8sw7XsTTnv48lseHvPcPfpeLjz5Kbz3f+JofIvMjXvfKVyEI/MG7fpe73/1nKCPRSnK4EHQaJmnPRmEY5wlHiyVdrcH3BOGZN569acd81bI2MHz185/EDddvc9OpbbZ2FIeXr5AlaQRsK9BKMsgzbJYxa5bUvuLszhpn1obUnWe1WIG15EbTWMusDfG9Kj1GSM5ujdFK09WRXbw+GTIcTlg/OmK5WuL6HmTCqnIcHB6RZAYXOqyN/kajNNWiZX/V0gmBCYGubRkPJ/S9Y281p7YdQ6EJ3lKYjKoTXD4+5qabz3Bue53UO5azBZ946BKXDw75mmc/k+vOnMZ2DXZlObI9F64u6X3P/tGjeOc4uz3k1OYApwfM9ueIozk7kxHWOm45PUJpRV4UCAVXOs8XH9nnmbef4+DwkP39x+iliTkHeQEETq2XrI8HlHk8B/ggWNU108Wcuz+/Rz5K6Kynalb07SG51qyvTQjApcsR5zEeDXnus56ESRQ37myjteKRk7CgW86fYlYtmU2XcUIV4MpijnOeU1vrrK+PYrPLSjZOrbFarjiaLrj/0avo1LA2GJDqgmVt8WLJTTfsUDWRXbypS0QQHM9XHM0rvAjkqUab+J5b39qMjUDXoYXnrNBUTSCRMcH1eNbR28Aqn0cV0WKBNLA+LFkte2xv0VpGBMrxMcV4g7qpKHNNohSuh95b9u6qmYwziswQrKPrax755ILeRgRF1bbM2hWFKTl//QglAjIE1iYjRqMhZ3fGaCGRIoAMTLIBWntkPojNkrZjXgt62yN1TqYFpVagJdiOUSm45cZtkAofAkdHxyhpsFbQNJZ61TEoU4yxBBH9gsEF8AqRtDGYxwb8CRc0NSky07jU0bR1xHlpOLW2hg8hevyVQKrAdafixFgqSaI1WoBzkmrVAp7hKMVoSZYk9M4jdErTWnYPDhHCkuc5iU7pO8tieTJACZ7hIKfMNdZa6qpHGUHvepZdiw8SnMD3PaDwQrLqHMpZLAoXLNa7qNZKExAB7x19iAMO+oAMCuhpXY8NHvoY0iO8haAYZhlKyZNCT4OPZ0IvoMfjhUSrFNcLmtqC6GNSrXMc7s9jQewFUoP6SsDNX9v1ZV+a4+Wcpm8JgOqjobXvO8zJ1XY+5uqFkxtLKYWQkoNZHTehiHBjJUWUvAHl7hJtdITdKkjNFK01UsaOWKI1p5cxrt/altQYxqMRxiS4VQSBjkcpPggsgYPDY8YTzaCYkGeG0QAElkE+xqQKdIyJlpg4BVPRcC2CRJ2AWIMV1LZjXteEAFoJsiTCohOVRrlM5xgUDryMsHKj43cyAnwdJXtKkShF37ZYRJTkqhiSMzsp1px1COEZDUbkec7h0SFIhzthOCW5iumcQiC0AiVPJnY9m8NtlqsFy9k8Jl4l0R+4qiuOF1WUIgno+o6Ll3fRJqEsMwgWow1tZ1lWFYulpe0kR7Oe7bUNmqblYLqga3vO7oxAGlarHoLH+Y7lquLmc+fIS0m3gq2y5Gu/6laCNyBqisEYZQo+85k7mS1qGhcj060DKRV11YIQJ9HKnsCKrbVBTEdbrRBKxgjr3iITiWxiUehxhGDZP64oy4zhOKakNYtV9AWNSrSArq+RWrE2yjg4WtJ7SfCG7TVNohOGJibG9sHT9D1d51AWVnWPCILNjSEb2xOS6YK+t1RNTPmcLVZUdU/Tesq0ZDzQJIkHlVAagQyO4XhEXmYk+THjPmU+bzjY6xiXmtPXF/Te41tJ5x1ZAeNCY7TmaNnRH9WsFYbJMOfMmU20SmjaBUprEmXQ+ZBiR9LaHiF6VqsVCMGDV44xJqF65gfJUskrX3ALQnnee+8pPvGpe/jYh/+MF99xPU+++SbOFA3llmBkod4/5IGHLlPX9kQ2Gj+IkwjTv/QRQqCkQJ14drWWPD7sSrOMrq9pqilPunmTyfOfwsfvfIh7v3CN+mgZMRxOEAR4JEZotAIjepwPJ95IiThBdgTvnpiKCQTXhRsJBHoCMsCp7Q3WT21QS0cxWSNLh6SbiifdepoPfVhQdTGRVZ4kGyM0IhhC6Nk7mLN7VPHsp2xwsHfMqExoXUvVCu64lCAFXLl0ldZ2VL2h85L1suT0zoDVwxdYdXOaqiQpU+qqIR+WjIYDXNdw6eI19hYrimLGqdGITEfgdegClV/hG4ezlvUQp8vDzSEoxfD6c3Rr78N1DcPhgNDFabXQCq80QmeARMZ80yc8wf9dDdnHEShCxIYAARcCy65HhSgPfjygVgrxl6aRgfldd/OUW5/EO/7nf8En/vzP+ehH/vQkETnGtjd2QTtdsHt4mWV1C/c+cB+3P/t2Hnn0QQbDjNtuvZFr8z2cszRNz+H+HCc9nbW8692/z3S+hzGaD37wT3jpS7+eRx9+gFtvvZXP/NZvIXzgsccu89CDD3Jq8jwuHf1nvvW1r+Vlr3gFxmiKouTiYxcZlTl5orhw4QKf+cxdJKmkKDTPfd5zeMdP/RTzRcXqkUf55Cc/Qe96Zospk9GIYZ6ipGC57GjqjmsHDUK0lEVN8HDPF66SaMX+UYVKIo/up//VO/iev/X9vPqNP8qVy4/xwH2fZ/dwzoMPTzn83d9ifzpFScELXvR1vOkH/hH/+p+9hTM7o4h4uX6bj//Rv2c02eH7/94/5N3/27+jqo7REi5dmFGjo6JAeTYGiu3rd7jr3n3m00PWRgVbRcpoFJOOreu5emmX5XTO7sXdeJAODq0FG9sTsiwjYn0c49GAszvbeGuRQtA2HbKP8fyZGaKU4rip2DuYYyScmgxJVGQVzxZLkjzDhS5K6pOCwagkyNg0LZMMijjREFoyXy1oak2wPUIrkqFkkEbPVLU7Y21txNZWiXMBu9tT1ZLrtiZUfcOwKEnVgM35GtcOjzjWmlTBbNHQ1lDoEcWoYDRcQxOY7h2zbCxJmiB6xyDPYjhQ3fHw5X2ectMWg1SjjSUxASNTtrfW6VvL8WKFD7Belthlw2x2TNd2KKHQueK6zTW2Nje5tLfHvRcuMchLttaH1FXDeDyO5xeVc/stZxAGru4fkShBujkkTwyT4ZDpbIlQIwbDku2tDQ6uXEIqQ14kGB0VLMEKZBklk0lhyNOM48OaadOxWlTkKmE9L7hwbZ8yTzl/ZoRaz1ltjqmansPlilm1ou8CXduTJJAPM1bzFVpopKiwriMQ0zBr62n6wEgk1FXFPQ9ewbme1GjSJCHNUgSWSZkxGRRkeYa3Hm0CW+Oc2WqMMob1YUnfrjg8bqg7S901TMaKyXCL2WxB3/cYYxiPB+R5wqMXLjNMDYnWdL5nvJFTqhFpEi1Cte2ZLVb0HRSZZjLMKDJN1zmEVigZEM6jlEYnCaM0KrdcENQSWukQbUOmU7JhilFgu566axgVGTq00DuMlhgtGG5OUKmhahzLVUVTSiajMcF3WNeRmixmHsx6QhJorKTyEZ11dLQEIcnzHAjRmy8cXdsxr2r6vkfrQJ5Fy08PeGsjR1l6fOgJQaJVjhCS/ePIV83TnN5ZpJZ01jGvKhIVJ/3BNnRtzAQJCIpBRmctTS/jPd16unmL1tEm4wjEtAFF6x1eWLwLBE9U7IhocUIHrI/dXAd0Tcz71UbhvEDrhFIlsXHrAt5ZeqtRKgXpkcKR6oSu8yy7NlqjdBLNSh680nR9RVetkEZRIVgsKlarJWmWUA4yJqPhSX/y8pdXlHxl/X+6vuxisV2uyIsCpWOmonUuet8eh8IEgfUe+oBROnbiXARkRylETObyzkdtOIJlu+LxyGIIUW8vowY8AkwDd4YOJVXUn8MTUqzHD0/GRJ+YlNB7SSIs8w7yNKXMNKu+43lPvpEQLAezHus9SkSQrFKetdGELDeMhoo8T8kLgxGCIhsipcQGz/GiwxjDIDdICVkeWF/fZJIkSCVYdTVta0GkqKJASk+SSZRMeOSRXYoiYW0jQo2rZcNqUZ/o6T04h+tbFn1LkinQhq634GMhO5stWHWWPkgSbSikwfueBxYXIjNKWZJEM0AigiQVhuvWNzAmYS9NQLhoCu8jVzKgQCZo41Eqo8gcSaIphwlV03P69DpPetJZ5oslq0XHmjEYzYkPVWHbFvqOZlExLDTrow1Go5LMSFbd4sRoLbh5/RmM1jZ4+MIVFqsWR4pOU6pmyWy25IELu9EXkuccLpYcHC2wbfRLtp3FWcHmmsFkOW3XAzGFy7mKagm2axHSxwekaPnCpRVrRUoAOuu5ui8wIiBMwn0PX+TzdYPQCV4BQZEnhs31kjQRONczmazhQuCRy7uEu6NHAAuZyTBKkRQKpeMkNElTpBd0846sDOzVc3aPZwySIak2mAQyFLUX+FJj1hKWyxntyvHw7jWMUBSm5KqSlNkhwyIDJZjVOSBpQkPXrFgGgcSzXQRGqSGYlM1kC6kVe7MDDq/OKceK7Z0Bk9uXdMuKxKdcfdEOL/iWr+a5Rxsc7V/k03/wRzzwJx/hfdM9zpQpz33ZV3OoCz53/xeQdYRsf0nxeTKR8rFS1CrKfNNEMhwa8kKS6AQtIqg8N5qzZyasjxXazrnlzA4/+oOv4f0fv49f/50PMTtakElBEyKPydGjgiAISe8VVd2jhKMs0rjHWsuy9SAkXkYEhhLgQ0c52mKjkDz2uY/y0atXkcZwbnyK7Z0JT75+nRd81W188GP3/yXfosR7SfAWpR0f/fMPczC9you+7gfITq8xO16SK03oLN/wGc1x1XLP/FGu29nmBc96MmmZ0JuS1WLO2WWgtx3zespsXkMnmM3mfOGBPR66OMOvWsaqxyrPdS99NqdOjdmaTAhS8PDxCuumKAfWpTx04SLeKEZacfXjd3Pbd10mTTNW08C5MznHR8e0ixXl1oSDWXMSCgFfquD/360giEU7gJQcLi2FMXRIrIgSVR++1B14rR7AxT0GT38h3/yql/CqV76Mn/jxt/Dt/8NryZUk1ZqxHGESyeZ4TKoV41zSrlZMDw65694vMlof8qpXfhN3PPM2Pje/jemLnsrZu74PiSDRKXlZ4FxPU/dUiWV+1ECAxaqBENg7XkKAB+8xLFYv5m+8/vX8g7/7/Vzd2+PlL3s13/qGb+PM1piN0QDb99xw7jps19M0ESUyGg/ZObVJYhISpTmztcZrXv58rl07YrbsqNuOC489wvrGOsNSo03CcDAkEDieH1OvlqRpBk6xqgQfeP9Hef//+RFuOncDIQR++Z2/ysc++Tnueegy7ecvcjg95NTWOlevTXndt38nFw8XfPCTn+P7/vGKn/hXv4i3lqfdcIUbnvMgD+1ZPvOp+9gsBjz17AZ+WVEJQWUE88NjjmcrdrY2eeoNtzIQ0fNdjMd0iUM0nnYa+aaVj7K+u+99lPHaCF1kSBUlo72XTOfHPHa1omobsqzAK8NDD18keMG1a8esVjVPuekcN2wPcFJwQEuSedKhYjDIWS+HaCGxbY+dLaiaJSTRL9+3S3rv2D2csrE25pbtNfCBux+8wt0PXWZUppy9foOdzZTs7IR0uIYrcoyGZ77gdoospZ7VXLt2gO1rhpnmyXoNkdyGdT3L6QzpA1/9tCfTW8d7P/pJqqpCKsmN57cZTxLe8NwXkigotkus0jz8yD6HF3d58pN3mC8WTI8XXHn4EC0V9x5dom4tiegZFob8zBanz03YvzojyQdsXLeFdC0JGdd29yik4aueciu98Hz67i9Q1Z5zp3s2xiMmwwnpeqBtBUoVtE3D8WJG33ec3R5x89kNVssFSMhHgSefuYXWCqbHM64dLjg86tnZTDier1ites6e3WRQZuzuz2gXHaJVXLg45cr+jDObE7RIWFaW4SjnpqecxSjD4d4BfdMghOTawYJH9g+4dHGfnc1Nru1P6W1ge2fCYKDoqobTWUkIgYevXGIwGPMPf/DVHM8WLA5mYB1X92Z8/sI19qdzzpyacMO5TbrVktW8YjAaoqRhb/+Q+XLO1vYmg2FDmhmKwjA7XrE+2gBaetfRdpauC2iRcGbNROuO0Shzir2jGbtHNW4Rf5/MJJxbz9CZ4fjY09UV9aKj7aJdpRcCHxySnlQJwuY2ddtifcW4HHJmfIqL9SHSKEoZEELhg0G5njw1BCR7RyuUEBSZYbXw1LZFG0eaSYpRQu/mpHJM7XsevLCHtZ4ySyhshtSBJHER82BzjqdLjpcNjW3oBQQ0VW1xTWz8nz41ZH1ckgiB0oblssadePzUCasUFK11TGcV1nuW80O8d0zGJUYbhJdYKWirjrwcMBiXCJ3Qth1JakAEVnXMdjic1ifyUHfirQyRy+o8xgjKLGFzMkYkhrpbAYqusRxP45BhY2MLBGRFfOXXnaWzFb6yFEl+IoW2HEyPsUGRmIZCQWoU5VaKE57F/oquVwgB9z94GZ0IRqMBaeIZj1OMKbC9ZWNzyHiS0rWWrnXs7U6/IkP9a7y+7GKxKPM4HfCe3oWo4z6RQAoZI4AlIsaSAx5BEFFSJkQsLpU0BOKmfJx7w0knhBA5blKB0RopYuckkxIhJYhYcEatfNSiCxGDMoQQSKL3L1ewIQRGKoyAOhh0qAEYZOCCRAqHVh6tBSL09K1jHgJV1aCPFeEE9CplNDInRiMhhvfI6AFS6hhjIjIjEbF7p5UiK3L63tL2AW1SjhctywDHdfS1eevp2g4pJWliTs5nAWMUdd2RppJMaXzMoGSyvkHZdrE4lxIpNJDhgkA7AVKj1eOBIN3JLw/OKoJzlIOMMCTq5iEWosEgxYmXUEiyPKEsU/bCgmbZkCUpeWawtiPT+sRN51BCoFKFTDXGDTCZiTLZXhEEpFmBt5GpkygHtuXcqTV65+lsDBAJYYw9PeL67UmUGqqIqFjMG1ZNh5AS5xR1HUgLT+/g8KCmbhqs7ZjNYzpn1TqCd6gmICTMly2uc2gpCCEGK+V5jOXBQxDqCSi9D4HG9UyXS5RSOBto+hVSQW97nPWEKqCFplUn17VPSBKFDzW2dyihEdYxIqWTkq61tPUKncR0y2hYd7Q+cPlgTqEDRhiqZc1oOGQwLFBSEESPMAlKiBieoMDVMSlXJhohBQezlsMAs7YnMyu01ngcLgQSIZGt57A5wjUV62e3+K3rp4j0T3hZeClpYnn6V92G3y1YP85YH05oKbh0aYZtGhLxuODzv/3QliJ+8tyQ5ynaxGaOQlAkikQLRIhmewIs5gu21ta542nn+Pgtp3j4IcHsuMI4hxMxMqcHTIidXojyoLb3SB9wIU4WRYjX6nHGIwS2t3aY7JxhMF5nc74gHeaM1idk60NO545nPPMcH/rYfRGx4UP0C+PiAwqw1jJfLNi9dMBOaWg6cBpWwSJlYDjOyIuELDc8cvmQ2lnqvieRjrWsIEkMMpsgwpDjWYsYSrJ1x3g0wlUdG4Wi8nECvqyWpDrFecf06i6h78iN4QPHL2TJbfxf7L1Z0K17Xt/1+Y/PtNZ6p7332dOZ+nQ33XRDMwaMKWMRA9GUASlilZJATBV4ETGlhigYLGNSFqbKsqxELZMoxKQTDSVBZOpiiF1ACJAOQw/0fPYZ9vCOa36G/+jFf/WhW6uU4ooLnot9s9f71l57rWf4Dd/P52vkz6GB08WsXAeEYAo9Qne0jaWyGucjl09X5PS5DOkhF/15M8D/30Mc/sj5kHsUDIWy/rl+wOFl4gtu3A8fPOD6esWP/uiP8U9/8YP8+od/g9OTEx6/+Rpve+UVlC5C9a/9F/9l+v2uQIyUKnTAcWB56flU+DTved+Xoqzi+OyUb/6mP8LZccu3/6k/iZvOEVrzLd/yTfzw//b3+Zr3Pc+TN1/jHd/xZ3n2997Pl773i3nl7W/n+773nJfe8XY2X7nl9TfPkUrzr33TnyCkyJOLK27d3RBC5Nn5JToLtIAP/eo/4xv+2Dfwd//OD3Lv3h2+/Ku+ik99/CPsdgPLzY5+DCTg1UePqNuGr/jqr+ZjH/0Y3/xv/kl+9qd/pjx0CYGqDDKXTM/Zndtc39zQD3v++Df+Cbx3/PKv/hJtU/Pg+fu4MCKV5D1f8mXEmHj27ByVNB/4qQ/wh/7gv8CP/ej/ye7WggcPXuRjH/44m6styThIE8O+Z9tPCFkyvP0wsNwOnF90VOrwsWuJVJnoAlNfztm60ehKkVXFbh/5xKfOqbQq31MhSSTW+z37wROzxgPb1Yq2qQkhME4Tn3mjEC5DTEwxo6xE2rIZc9zMsFJSaYXSgmHY03Q1TWVJLjLFyJPthtv7wHbvET5webkhB4WiwuQKnRU5Jc6fPGWXJG1VMc5bjJFMU2B/UHBciyIRP33uNtpaTGOKAJmMrC3vevfL9LsNKZTzrWlqni0vIYG7vCQIyWbj2CzX8CnFfKFp25baFqfj/QeWzcaDm7AGhslzPF9w57kK7xLRTcznNboWtL5mGDxvPL0iyszD+7dZXu+pKsV+HFlvn2FrifeZ3RCZJocLE7pSbHcDox6ZpkjvHPuLFSdNh4+CR29ccXG9ZogeZaHTiuAyl1cr1tuKmAR3jrqDe1kjZGEUbPZ7ZNWyc5GL9esYY+l0QqQCG9kOe2qpsY3GaOi04WYcubhZAUbzygAAIABJREFUo+SMOEUGHTFaczQvTsLf/MgjhmGCVHzJ68GRtUAKzbObPdudY7ddY5Sm20ZqaxlHz2YMPP70BbvtnllrefjwtGgZhiuUgZwS3kWkkLRdxWzeUBSSCqU0ZydH+LjCmNOy6pkFi5mlaizzJjCMhnGc2O9K9GQaHZN39NOIlAqpd5AD/dTjsiLKCnSGnFjtPEJJjFJUVrNcTvgU2e/Hkg8ksZ9GXEzkEcQe0sqRQmZeO1CJYefIOdNaiwugYgHGaKkQ0mOq0rQXY0KFiFSGWlt6HQpILWauVz3RBeq2UPlTBCElwmcEGecHQkilge9TcQ4qfdgfkUhdtvYSmZADBBjdwOgcLjpEhpBiiUZFiZAVIU9s9o6MQNsCJjyZz6mVQKZMyJn1ekQbgxCCtmsQCISICCEYhpJDNFpgrEYaS4gJHxy2shwfzRDC4NyERqGlZrPpSRnmixP6IbHb7dgNDhVgygmrSvNPq/4AiFTUVbERqEaTXZla/v7xe/P4XReLVVPjoifGhJZg68Mudy4ofIQ6TAVLODblUgxKKSnKDIE1tuTWnCOnUHJbRqF1gdhMbiqNF1EIVClmjJTkmNFaHvJIJXOojEGJQ3JYQpZlWlFueEXRYZSAlFhtR7Q1CBVRGVIqxZUkk/NI9hQ6lciEaUIoWfIXSlJbQ6VAkEmhEFqVVIz9QK89KR3oU1qhpKDaOZzzbIeRJAVRCy7XgpwEVhsqq8k5FoF5TCAF865lNutYbdfFvagLWMBUmq5NuNFxc7PD+UCBSEu6WYV3ns7WzLqGozlEl9j3E+O0RBm42RS89c2qjP5ns1m5wARPVStSykxjpGkaKl1w7GF0WKtYHNcomdmORcSbMzRVAdZEJLO2ISYYB48iI2Rm1lRveXS0jcQUqOuKuVEFAJNh1rVF3xBLkDzlQEyRcYooY6hsBaI4hYwt6x/7bSamRCLy5uNLnC/WASSs1j2r9Z4YLVOMbLc79vue1W6Lz5YwZHbjQMyRSksqZQpMJSfW61KQ5yxAXKO0oKktZMWwG5nNmgLLESC1RmpNip6maZBCEv1E29akYEh5IquIQJGyOnRDKSsZEYKBulIco6hFYtsMRQwcMjfrPVop5lWD1gO70bPbrmhniyIP3+/IKXE0m0GVCAm2e5g1Fl0ZVjuH+cgDKpE5/hKNsAM59+j8hFmr+OKvfR75uOddi1NM+25++ucv+OjHP0sK4wHS83kn+v8DomIU1FZw/94tTk7maKUwStEYwbw2zLuK7CG4jFQa5wPtDL7ynXf509/0tfzSh17lg7/4SZ48u0DkTELgE4wZjCowokjGx0MTqnSSSpGXShFbPmrB2195G8+/9CK373ZYP1EvOsaqZjk6KlXzr379V/J33/9zDGNidOmwVntYfEilibBabfj4J97kHX/0fTz75OsErRDSsDyFs4Xi5dzhp8Cb55fskmSuBEjP+fWShEZVLUJLklLMz044VvDiUYXIie7kiKAM+7FkOC7Xa9x2y9npEaZpaOqOX/+l9yCs5M/8gWuqBFYp3MkvEKPn9O3PoW3LzeWW7XpP8C0f+cgzfEiH6yKAROb0Oy4XP8fFEeS33Ix9gJQjPoq3XlRq0fTW8PK97/livv+/LPoNaxQ/8Lf+e5ZXz/DDwG/+xof4n97/fi7On/L48eucnJwhZUUiE1Pk8vKS7BUhrbm6ucadOsbJ8aXv+1pu37rD9voNvuc//kvYZsajj/86tXvM137Nu/jMhz7AH/rWf5uH/96f46+fzPngB97PN37DFyNRGCZ+/Kd+guXNNZ/85Cd48eVXEEZTtw2V1bz84inRB8Y+8N/99f+W//Av/if8j3/7B3jj0SN+9Zf+KdtdzxtvPmEKCUWkMRala/7Kf/5X+I+++7up64rzZ8/4q3/5L1MpC0rw/n/wD/nO7/h3ubq45Ju/5Y/zbX/m2wgx8OTxY/6z7/0ejpo5TV3xn37f9zE/WpBTZr/f8ef//e/i+mbNSbvg7//g3+EvfM9f5Nv+1LdChv/5b/4tLl99FUJgvduy3GxQlcGPPSlE6qZi1lUgBc+uN4cIRy5tj9EjRSbpiiwVZp2IKZUCIAWulttS6EZIvix5GKMOMLcJqxSN0IgDsKa2in7c82SZGF0siiIFzkHKiX67J8XMrOuYzWuC88w6jTWKaYJARtSR5rVLTNQlgiIBI5HPVnzktUtsZZAhMgwjgULD1OSyyuwGfFBMU0JKWMwM9x8ek8h0tsFoTRARHz0haWZGc9LW3L11SiUrlptzehdYbid8gCA0Rma2mzWz9oiua3nw0hnOe27fOeLZsy2PrvZ4JGIzsVlf8fydY6LyhOhpbcd2v8PqmiQyy2FkcomXXyoqlrOzOTEkht2Ic4L5vKauJ3yQmOaEpu0Yhp7tmEgBtruBi+sr9kenbHvH44sbUoy8+PCU45OK1cXIndsnhBxIyfPKS8+xvrwkK8Wd28fMO8PT655r7blz1pGzwHuD1Jrgeq6XS1JONE3LbD5HxIlWgV/U9DFytd6iySgpuFrtcS5yudmz3/fcv3VCytCP5bqLkCgEUiWenK8IQbDebKjbCvV4TV1XzFpNjJ5HT3bsd44UIx/+1LNSmCwWLBYNXVWUDrNZg7SJsd8xOcnoElMcOV7MIQamqMih8NUvUkJuJ8bUc3m9p997Xn7xOSoE731wXNZppURKw2q1ZxoiGYMfE+e5Z3dzRVM3XK17fAzcOem4fdRxeb3H5YwLjjoqgiwebmNqdnvH1HtELptwV9MGZXQht+eM6wPO7nBjoLaWtqvQNrM4biBrKmOIoZBOhZCsbF/WUhP0+4ndfqCZNMbWpAjDsCs2AG05OT6iqjMh7NAannt4F4FgtylrqdoIoi+fW0oe7wNGSaQ1B05FplIWYQVdA5AZvWQxs0ipyyRXS9qmpe8HLpc7tNWEIMrv15LKFDd6W2mkKvRkdbi37/c9TduUm4IqjeFFWzEMjpWfuNmMpCTwfiSmjKnL3w2Dw2iFVCClJiS4XjpC6AtGQAgUCmM1tTUYXZ7rf//4vXn8rotF5xNZlgJQ6NK5iCKTfVFRxAQKTUoBJUtXk1zQu0KUzlI6INrJkA+rVVIotFAkkdFK40PAx4B3gRBjuagkULIQK3PKSCHxlShTy0zJO6lM6k2ZwClobUVXK0IYqKs5JiiMcZAlOWqS4RBILl0foyV1rcixAGm0TFirmHcdUpTsYlmtzRhlSdEgdf7tUG+iZLNcxIjMogFHJAiFO1yMjQIjDiSolJjGESEEyVjC6JAiMXjH5BxGa+pcMbkN/eA5v9mVPX48McFJaghjIjaikMpagfeC3ZBZ73qkCWz3kpvlnpvNHm003Swgkbipp55VZDJD7zHViM0BKRsaKzDB48l0lWQzBCaXEQhOWsXkRnYeTlxBQQ9j4OSkwRhJdgafMj6V4k4pxc12jVaKWddijQEVCd4hUzwUKQmfI5NzzGWRqwvh0WpiURdfkphZlFHUleXF2w3DkFF1hbKSy+WGy8sVKTT0LnB5s+RmveaNS8hixjQEkoy45JhrixKKGAt6OgRHzIVW5ryDcCChKUOYApNxRAGJRBpLtg4hmTyQM+PUo3Y9eVBI69FWIRDIKNBWEHyiMhV1ZZlcYoqeVrWs1z17P4ESiARD6Km05ahdFCJe9AQ/Uk+FgJZToDaZeW2wlWaYAsM4IZLAdpLeR77sQ1+HlYLmO38Z6IFM9gaRNTH3IB3y7Bj0Kev9U65Wa6A0e76gWhTirYKxnLfFgbpYdFSVPVCH5aHDqmlri1EKkUvOWBmDdzsaa3jXS/fYbj2vvr7kjacX5VzNgozAp3LdkKYQYBW8lW2UGlIsgmwoUy8QzOcdXaPRMoJRZGUIPrDb7KnripdevMfZacv5Zc/g/G9zYMSh2CLjnedyPeLVnCk6khC02vAP/ohHSc9f/WBFmCYaq6jbGce6Ig5rPv3mOb3P+FwIkGfPnZKMwuRE3qyxUrANCdXNMXVLTI7Nfk/o9zx89zvRdYVUhs/hgme3TqiExLiA3LyPyQ20bUc/CpbbkeubDXV9m+W23JjfqhUPSozf6fZOedtvjQ8pZ5wohXn+f70SEPw3sYef+D/4sg/8LJbE8Uxx/7mWqrZYbfiBv/k3aGeydMddPGyYGH7yx3+EH/qhv8d27dGi5fjomB/5hz/IT9uX0cbyyU8/pWt/nUqcs33yaYb9wHK3I0w9/VBzfnPJ5r/6sxgtefZffxd3Tx0vvXJEVzWE61/n5/7x/852N/DkcsVP/vCGFx/eY7e54If+h7/GV733ZTb9wJNnN+yHge/89n8HoSoaowkxgggYI6i7GSIFRAxMfuJXf/lX+Pqv+3qMkpyeLaiqispUxJj5lm/8FibnEELwgR/7MX7mp36Cp1dP6dqO0/kRVllIiu/+ru/iarei3N0kLhcqaYiJm+sr/ou/9L1YY3AxEUNCEkgilu93yNiZpbbl4bnrDCdHM2xl2YiRGDzGamxl2G9GaqNJWuNTZtjvSD6x2/TYSmFqhcwC7xMIgVGak6OGplFYC4uqpZ8mBl+UVUZKYoooa6nqhBEHKrWTCCF4OvSMIeCdY5oEKYCfAikm+glCSnQKBtez3GViEqiZJenIfjPifNnK0VlTaUNVK2QeMBKEzPT9lt2UGUew0jIMhigE+90Oqyy2rkFnxmnHboCzbsa9OwuOFx1RJTQanQONUSVqHQRNVWFNIAZP349ElYhklquRzW5kOSacMjQhs15donIgKchK0u0dV8sddePR1tC1DVkEbrY9MUdiltRW05xYpgGOT1sEAyEmqnpG07acPw0kHxingUygsYqurfEJ7tzqqKzi5bu36eaSYT3QzSuMqskpcXbS4XYrfBAEHxn3iTB52qamriW1sczqU7JQPH7qDg/+mqqpSVrCtmQY++CRWjCva0KICFM2Xfb9xLObFUM/8aXvfB6fMuP5Fj8GtLJoqcneoariKsxiVvRSoRTzBcZiuH3ScTSb0Q8Tq/UKFxJniyLY0loUFYUS+BDY3ezpJ8Fu8Oz9lt3gCFNi6EuERmtBlOWxdLndc36xZZwiZ3eP6ZTmeFEjVUNbFf3DoxDpRcamjFOaKQuGMaBNKm7rybPeKWpryKp0vlJMRa/mJUpUKGGQsmjeGg21tawnmEJk3hoUMGw9U+qZBhhcYkyReWfRUjHuJ1IWRe1WWmQoWeBwUklko5GiKttjlSWESN9HXHAoNLauUSIz7XdoLVnMWkIsQMOYIpWsMNqUldLya6lshTAQQyzaisqglSSFiRA8VqtSLCrN2I9IFKOL7MbAbpioQ8SYCsgEHyEEjFaQLFlkrJVorQkBxikijWfWdVir2G97Qgzs9gP7wXG16XEhoVIu1xo1IGW5T7dN2XSzbVcI4xmEkExxKmqY0SMHTa8ijQVbC37/+L15/K6Lxc2uL46gGPC+iDWt0eSUCkhCgfdTmSwdXFtljazk0JSQB9oiBWIjBJuhR8q+CFVFRpCQUiHIKErI1mpdTrZxLKuoRoHITGECkTFWl9GNSxirUDKhtSVnwTB6IJKSw0TPzH+OUKrI2RFiTe8UOUfWvUevi7Mw5TJNMUagxHUpas1hzSoLal2IkLWMRSeg7OGCFEEn6toy6xaQclmNOilIfigrmjEppKyo69NywseM95FjOaO+XWNsWbcFA4KS8/riByhdYZWkFgnvR5RWhJhxLrDbT9BFTuYVq+0Z6/XIsYy8894pTWsYJnfovCWWq0gMYLTlueeOcSHi3ZqL6zW9MCgtOb/ZF7diTkyxdACXXcc0RUwD5zcrNhtPRtAtDTlCnCL54JwyQqMlBdaTcvFpCFmoWwgaZcuENQXu37kF2TMOF2hdxLAhDChdQ47s1h4hEraO3Lp1ikChlUUpWabIVcvkt8znlufvP0Spl/DApGDa70nTRGUtLQ27yTMGjw+R86trNts9PsEwCKYp4oNHKVhtevZ9gQUpaWmsLWuvKjOGnpDB+UzeD1S1wG0zxhi0gjgOhewpBFEWN14lJEYrrvQNIXi0Kt+b0Q1oLakrS13dEFNppJwezfBugzGKW2cLQPPPP3vNbtoRQ6KlgFDuhQXXa8F7Jkc9azl++1eT+RlE6BEpgZhjhifks3di2xPGnea3PvQr/Nov/ZPiAU2HLPAXUG0OFwslOTmZcetswWJe0RhB09jyPo2lm1vqWnPndE5Ta9w4FUqeS6h6zgt3FrRf8w4ePH+LT7/+mN1mwPWx5EplwGWJ6z1KQK01RkiszCSVCSIzhnIdiZT18ZPjU7q6oh+3bKeB6mjGw/mCNKuQdcNRc4ev+8Nfxf/1i7/F7rUiqE6hrFsLKTAHKNdHPvopfvNXH3KyOCalTDtrEHqL85Gr5Yg0ku54jjE1n371NaQI9EiGnLlerwnBMa80y82aLCSrKbOdPDWPqdsWsmcYHZPLtLXi4YsbtvslYZrYr95LSonP/tIvkoxEqgryy1xf7nny+IM8/8IxCMPizi30kWITtmTi54FKD1PFzyvq/z+PDCDJIr21zpuzwpPKjZwycQXeKiZf4fCEIg7+t5xIMZCTwsU9603g8tqhpSiEa5EwRrK8GVltBobR0XYjw/oWnbYczcvD8C/8/I/yC7/yc3z5l7+XL33pOaQ5Zr6A4xTw2zWJcs0eheDJteZ08ZDw0vezJLF//Odpbh9TzQ33b89xLnG1KS7cl+6c0hrF6Bzrt90FMuEPfxX74LneOz716ILf+MgjUg6s1p5hGInekYAoBYvjI7QsEJD9uIMkkFZzctLhgiXEyDDtqZLiwXN3kFLggmfd91xer8kZuqMKnSQqCnTOGFtxfrUCWb7BMUSUUQgp6Lc90hp022DiBjVA1mW92K8jq6uJ8/UVKSSUrTGVQhsFvgDadoMnxMjMGKrKst1t6eYdXddgtKKuDc3c4AfH+XWPMOU7QBbsek9OmePZjNmsJUtB2vdopcgZdtsJay33nrvHrdtHOD+RU0AI0FoyryxNXSG0ZXmz4dnFmqZtWcwo92MlS9Sisgy9I7jSNN27DXKqMEry8tsecPfuKdGN7HtfYgouMg2eBFTGsl2NbLYDWGhMi82B61XPs6s1H/vME44WRygj8cExThNkMEIVFsJ+z8n8mMparlZLotJoAqdHM47PjskI+tGhreUf/8ZjxrHoGV56eIscwBqo6tKcFEnSDxW2bfiFf/YqxEBl4Lidk1+LRCDEzNwq7px0zBYzggtcXC/xKVFVDcJanjuz3D7W+ODZ7SYkLdWs4vxyya3jGfOu5umTG07u3KdpKn7tY4/4jU+8zku3bmNs4smzC04XHaezNVMIZCV4+0sv0k+RTz19gp8cD45P+cT5BZtxz61Zx7ufv0NMCZc8d971IifzBTlEtrs1p7dOWG3W7N42AYJpcPQuFxpoioctMc0UJk4WLTmUaXRlDdtVT91VVJVFVYqQI8/OVwQfCGEEJC7AOI1U3QntLHCHzHpfc3G9YeUitTWczOf4GLi4WdNUFTJI7p8dY7Vm3DkuNitefbwsBdA4EaaJ5+8suH//Nq8PI1ZLusbyri96GSUyx7N5gf+sd7zxdMnx7QVGwGaTmMbMNCj63RKhEu2sxhhFPw7sd0uUXbDerDk7qjhazLB1x2deu2YxX7Ddjbz25hXHp8dorRiGog0LoShPhMi8/PwDxmEkuJ6TkznP3VqwXG3xwWGUKJNWo0Eqnjx7So6FPJxz5rc++RjvHMO0petauvkRZIfzI34KCAlSuEOzNYGEiCMYjZYa5xWTyzjnydmz3a2oqwapJE0lqOwc7xK7oS9ajpjoZpbZccerT54ghGE6fPZIik96u8Xqcm272YxkpRlDZBpcKfhTLPeTpJjposvJZOq6RFV83+PSwbVuJG01K+7QTpVtQynYjZ79+PtrqL9Xj991sSjkYQqnNepQ7L012ROCkIunp9YCYUxRIojyIBKCp7KlU6KUoKpqQix0wJxz0VoAwQeMtex3xeMjJdhCAiYrShbpkD37nC/QT6FIgV1i3kZIE0J4coLRB3xyGFUKAF2ijwhB6Uapisqk4iEyJcxbV7koO05nVLas7BhZcn1NZ8q0RSi0EChdo0yF1AKZApri0JNSklPJWvbRoaNAow8PZQXlP4XIbrVFHvJU3k/0TqLlSNeqt/Kc1qrD2mqZrgiVqa1FJH1w6xSsdK0kUpbMkDku1LLNZkkWmW1funV+GnHOobInBogx4GU58ZdXa7Z9oNaGtjIoW5XIyLSntQKpJSI6jmaSB2dnuBjhgS8y7KjxzrMdJ+qqoq0ts1mDAGZtg1TQDwNDX9aMU0p4/zm3n6Cuy8rD0yeXOO+Rbc3xyTHr5UAgMx2ojslLlhvH5eUaFwOIzPVyS8ZwNOvoZg13jz1tbbBtx9b17HZbltdrBJJ3vHCvTLJVoGsNL7/3ZYzWpJQZXGQYHevtAAh+9hc/Tr/a09mGW7fPeOWFe4gU6AfHdu+KckBm2koQdM3F5YpPf/YxPkTms9I5jD4wDX0RvidRVCGVIoRAZQO2dgiR8Q7cGAjziDEKkmTfb7G2YfKJq5sdbW1xOVPLkgvZDCMBxS0H2+32MNXTyNZALGRRSU2iJvkl4sggxMv44LjcjFysexQSkX+bPvoFBYgAJSVt2zJfzCAHyAXaJKVGyIq6tlSVwZpccOaHFXQtS3EQ4kDTSF5+6Yz3fckLfOITz3jjzcvy6yNIkYqfM2eGEBEiAiCjKVPHlPhl8XMoBYhUBNu7Pdduyc3FEmkrrBRoBFpXbNYXvPy2O3zoNx8RCxS1iKIpa+BCSUQWuGFktXE8/7aO5Dyr9a4I5VNms5+4fTbn7LQDXfPu+mVmFiohSVKz3PZMY8+do2NcKB3m/VTWn+/ePcI0NW7vubhY8eTpktms4tYrDzjtbyOmRPN6e8gCt4wxI3URdata03YN6+s1s/kRVacQORBdT87x8AGVYk9mUTZ0fycF42G6+oUvy29NKg8xRn57DPsFLwM4eFDLT7kQ0Ei0bkrk4KAmqRtBSB2RNchrujoy9BOmKoofIRVto5n8hsePPsN0s8VnxdHdF/my97yLF19wbFYXfPRb/3VQkrmN1GZiJJBcYH95gc+JwUn0NFAWlRNBavpmDinSHbcc3TrCDxPDfsS6TN0Jbj/3Dt75zhfYLpe8/tnHjFEwDp7lcsuUAp015TwUmaEfOT9fM4ZMOpsx9RMhxKJc0A27ZV9olqL4NaNLuJAZ4xaRJCpLKitJ/VDcvUaQlSBHOKstEVDZYKhpVMveXbFoDPWsZT9MbJY9KSvIAdtoXIy4MSEmz61W4wZfcvK1IQvB1WbH2PckKdnvRpSUnJ4smM3nrKdrLi6usbbm7p27XF5f0TSWqtKMfmB9uSPFjFUaq1VxmaYMKnK1vD7QZmt88CxXO5CSJ8MGoyX3750hrMRlh4ya0/kxQsButWXyEWWKbF0mwfl6jTEdD84Kifa4mbFbB157fEWtFFWtmS9mHDULfu2jn0bXmrpRKC/ISaKSJuWJqmsRPrG+WZHzihQ9UhqSrPA+4Mcd0iim0bFaPymE1CkiVOZ4XuGnsprpU+C4qrlzOufe0YzLlFn2jvVq5PbJERfLc0QWtLZFqHIdny1OiNNISJ5d9uz7hDKS9XbA+UjdWN683HJ0NONsMefh3YcgEiF4XAYXI1YU9sHT1Zb1NGFEYFF31PW8ZFBr0CSyG3nn8yfcf26GyEUt1TWqbF8kAUozXyw4sobBe6pFA5NHRckYI2+bP6SpNHMlmDUd235PZQQKj6wtDQ21Ecybis+57gygiGSlOTs7YlF37PZ7rlZLNv1E8onL5Y4pRja7PeSEEIqjWcdsXrFZbmjrrmT2c2ZmDadziTFNcVcCZ+6EO3eO8H6iqxuIgk0/EaLGDSMPnz+lskUUf3HlUUISsmQcB9zgyRkudwNcblhUluVm4MnTNV/x7hZbSY6PGubzGmvgep2Zto6202WjKUqMsszvVKAL1C+GxKpPVEaijOfW2QLnA5t+5PgI2q4rtP0KdE6YLJA5Mzs9AiFZrrfs90OR1ceBqlIo2TE6wXQz0O8cwzhgjEZJg/ACYRJayVLI1RalNTfLniwVSlWkINiu9uQccMFR1ZaqqfHOM/Q9R/MFMSWm4Eg50FQV6NKTMqLYrKvmmKo2SEqkKUfBbhzLbrqUSCGxlSEnyawt7yVLTwXMO4uxGj8m+nHAeUfbaFKW9OsRkcAeIl5GKXIS+DQdeBqFB7Hve6aDwxFKRlEoDaqMjlIMBJcPQ6ffLxZ/rx6/62IxBI8+/HQBzoCPAVJESkHTVMxmHX0f8b6sGiqtqK2lMrIg8UMkuMTQT4QcaSqDUZrGKCAThcJUipk9YtgPjM4zBQNC0TbzUni6IkVt5zPms66I2glkAm07w40T2iiaumY+axHAk8dPyClz7+4tYgxst1ua2fyQleTgUCqrliknQhI8OV8TU0BLiTZlx7uyJSc5axqMMWRZOrJd06KkJoZIa23JS+pykmiV6GYVbVNyexLIEZqq5fjIoFQBfcSUmVcWVIHocMhwuuDLqokqMt4yEShd4hD9W1NcBMRUtCXOOXzwzNrZIbRcMeqJWV2jtObp+SUuJEJIgKK1FYPZ884XTslC4rwrk1wJWElIgjyBH3uGXWIcdlRNxbgL7DYjmz7Qzmtms4yfDGOvefT6nmFyzI+OqGtDdAP9buTk6BZHiw4/jmXVtqlROPZbz9lpQ4zgPIgUuHO3omtbzhbHaCkROTM/PmW1vOGTn3zK5XLLoql5+PA2xwg+c7XjsxcrZnXFg1uCqR84m8153/seUmmJmM8ZhOTZk6ekHJnZFlN39OslMGKrRDUGpmHkz337NwAJN/UEP5GDw2jJvJsx6zq00TRtTRKe11695vRsQUqeRGZ26wgv4GYr+bVP3PA682hqAAAgAElEQVT42TWvvvppVBbIAKTMNJV1481+f8iiJM4vNvSDI/uJCHS1xpjC/Q0hkWXFndMZs5lBFhUSn3jkeHp1Ra1kwdmbFiHLGloaHpE3n0I/+g3i/gje9cd49ZO/wuuvfoZpChiliCpi8mHKmwMCQRQaS+C4brl7csrxrKXSCqkV2lqaSlHrzKzt6FqL0AVEEUIie4+wGbJBTBpJokuB/+A7/yg//rMf43/5X3+e9WqLEiATOCQIRc4ZkVLJBmf/VjHzw/pvlx3VmHn96ad55zs63nP/Dtp7jmdzgh/Z7HvWrz/GZ3jXF38R9//5J9EfgegBKcmUh+9ERCDZjJFPLXv+ra95L6/+5iPcLtBUYK3i3W+/y/n5NR/91Q/T1BUuaWaNJoWArRUP7h9x+7RitxtYnNRFbDzsaI9VeVidPFnXWCN44XbLg/t3ufjsI1RIyJyJyYGE22cnjClz0Q+oxQ1f8vIt5vIr+K1f/02SEgTp+Se/8lFefXRJdbg2upxLCPYwAdRCkIQiCYWIh06vgtJZoRSAh1VvIcUBElsaVuJAGeQwRUyIz2PnlGvX/edaXjyds1ntSMkjtEBQ1s0qXXQnhT0m8E4wqw32ZE6jy3dh2BcYVD4u/+TGGBpd0S9X1LePsRh+5If/Ed//117jT3/7d/Cv/EsvMH/HCW6zpb++5OL8nPtv8wglMA00bqQ7OmHYFYn48ewWR7M5zVnFfls2LUQCoSK37t/lbgVdNeNqu2V7b+KkfYW4fwXTWMbB82sfep3XntzwdLPHjRPjMHL7hdt80b/xB1mvPe38Nu/4orvcPu1Yv3GN2+14/z/6IKNKJFkTXWatapqqYtIBGTMqS+azGav1mnhH04+O1x9fsd33rPee43lNZypi9mx3l5wez1lvB954fIWPiawFkcBMdAgl8W4ozUZZsXWJ2lqOcoljKG04vmVRzSn95Bl3EY0iJsPHP/5ZcsrUtqatLG2l6ZqK1a5nHCdSAKUtPk7cubtAq4ppCGx2PddvjEz9yNnZMabSaKuwUhGmouwJMfD4fMO9h/dZbybeeLxks/sM1ihOjmdEqUm+5Je0rkg+MJt3bJxktd/z2uOrAqfrarLVXF5tWH74DSprufvwDsZKhv2ARpOkZBKJummpG02KgTQpghest575TPHed93jqJux365Yra5Y3D4BVR5w97vif3z6+Jy60tx57oxuXlEpGHtPJTJVdczdWycM04BSnne99DyVUqy2AxerPbPOsltdI+oGoQwkjdLQ70cEgq41+BB582Liwx9/HWkkjalJOTEGR91o1uuRFDzzWc3d288xTgEXA/vtnuNZw2LekMg8ev0aRWY2b5G24miWqCvLdvDkJHBjWeFcjyO3ThbMakPXCBrTcP+BRQjDrk9cXEVefXTNdr9hPu+Yt6Wxd3brDtMUidNTqsZwclKk7mI8LP8ozXoQ7L3jpK25d/8ht1RRRKiUUCgUicFNjONEv92TQ6Kram42W954coMQkuN2Ri0ze4raaZg8b7xxwXxmeffbHtD3JdeXc+TFW5YYZ3zy9fMCWDGK06OGpq44PTrjcrliu9nR1jXzo46uEzx7uiJMpUH/0c8+QalC1m6M4PSoRamOcb/HC8k4OKrK0h0ZVqsrVpsRqSxdXVPVFaNXdNLgdebe2SnWGpKCLz89Zj9MbNegTxTrwSF0zWdffQpkqqpCCMV29Lz2xpqYItvtBEnw/Asn5BTo5jOEyMQho3JDzgFkKBNfF7EoulaxmM+x4pTgAiEnVNWwICGEJAa43g4EL1h0khwDySc88NTvIUeMhJOThtpaVst18SObiut9jx8iTVVz57k7OD/hnCNMIz56FvMapQ3+8ooYE77PbK7W3H1wpzS6J49PxUwweocLEWsVprLElA++5AK3lIiyXRQzQlhkLoRYxYFTImCYJuLB3axk2ar7/eP35vG7LhZTlGRZxuY5FIKSkGXkFw+7yzknRKKAZxSluJSxrF7mCKo8uAUfSVkRs4Yo2O39YcqUSSJgrMF2FaYxuDEgDysyQkiyackHUMZmPxxchRkpM/2wKRNPWdZMhnFE60JbRAi2vSflhEuaaTsUWIctRVgMxR0ZUySk0glMMeAzyCjYD0Uir4TkRvcoKQ/kVklTu3LBJTPvKqwpIBshwMjMfkp0bXmwkoe1XKs1TVOVVcrDGN81beH1iFK4KinJShSJt3AHvoUsO/KHQhd5oM/m/BYcSGqDROBjcVT6WEAIn3sevH16jAuhfC6x/P47t0/Q2iCUIkTDorFIVXQcpagEbSRujCy3O8iaplVoLWkWCVNZtBIYoTBScvtE40KgqtoCJzKGmW0Pnj5BPSvi44xHqgZbm8PYN2JSRmaJThliZrlcHsA8mWrtiX5A6cjRQtPQFUZLVXF6FKnrIrtWckJIGKaR7ZDJncWtHDfbgeW2BMtFzFi9ZRoGjo6LJ+h4bsjzGdOwwVYVbpyKC6ku72MIAek8lsy09yAyykhCTIUGLEHFjDaGs5ngi16Yce9U8uWvzMpacsEBFbdRDFyuVgipyVmwWu3ZbPYMm4FhmmjahuQ9q9WGwRcQjkiJoS95pxgCNsFuF6HWCG1I8gAqEQa6s/KdvjuRKw1CcH694ma9RYqEFIKYS4ZWkAv9F43MAlMJqk5ibQm/IzPI4lvUWlJVihQCZI1WCqkyQpQixI2BrAXKhsM6daIxmleeP+P26Zz1cl8qRSmKW/HzV2A/b9yVKUQ8kRQyR4YhFJhEXVM1FqUldnaCqjtQWwSKrqm4M59TSc2AO0zU4lvqiJwj++2Gz3zmVdL4FRhl0VURDMeYyVmirKWedbR1jQojXVujlGbyI28+XSEocK+zcISRkgPnoNygdWJ+0pKJXA1bbpbXhJw5Wiyo2qr8HwFDP+BI1AqO/8BPkrWh//Bf4KRTUDdM0jJOK0IyZHTB/IgICCrbcXTSkvzEfpzYTx4hJCqnIlHmc/VkydSU9/3bN2UhPm/d+JCBfGtI+XkbqUZpvujFu7wqL7nYXJJjesvXyEHinKU6ODfLlNFoRVMZoo4gE1lE3t7/CEpJ0kGNpJXl6vKauut44eEJT58+5UMf+hVeel7wvnsaqWuiUiAUKYNK0CiJbtqSA1xPBRk/lol7NReMfUJpRdtqlMjUmwXdrOZSrlivNgzDyL6bcf/ubWLKSCN58ZW7dKct7ZvnaFNBknSt5cG9M+yLLaauOD5r6eYVM32H7Y3i677+KxFGsjrf0G9HqO+Tkez3G3JI5CiQpmazq5FG4V3ibQ9P8DFTtw21lnjnWG33XG+2+GwYQ2BIB8iTC2SZcWGPmERZDcsghUclSa4rKinIMVHuOIIQJ2IqGUWjNcYKKlEhYsZITZKG5WqFc+GQJ8/knFAk5rMZjbQQYPCJUJBfWFPE3mMM5FFijcZPnkYburpCIri8WLFebvEhoUyN0JJxCoXo7CPT5BE4Uk5MMeF8IHqPcyMJUNVIVclCvBwijRCEiwuEzDTGQJaMzpNSpLIVLpQIShayREKUYnCex8/O2cy2WC2ISuNcRsoCa1IZrGm4f/cuKQdkDiQnSdqQU+R6PWCsQmvDrLPklPGhQNqSSMxmlnu3OtRdaNsZRccjyGFXvovbyOQigx9RSnC8eK4Au/YO7yOVURitsHPFbpyIUbBe7xESVrs1RhmOTlq6psZNE2e3jggx0FWWeVNhbHlu2W8Dxihms4quqzmNLRlZnplScaZuNo5p9KAO1zKRsXWFi5nHF2tCitinO3IC5wYqq6nrQsdUGaw6fAelwhrDUatRShOkQGlJp02JpnhXnqlyhkPm3VQl5+t8IpMYrAMtGEJAm5rKVpydLehqzbxtCaGnbmu0gkpJhLLU9X2ELFO3nAK7/R7nR5rKUB1WQLUR9H3CGkN9XJ4lYtaMIRSwiyqfpVZglKWy7f/N3pv8XJrld16fMz7DHd8xhszIjJwqK12u8lDY2C3bbSOgcW8QarUE8qZX/AOIHUgg0bBEILEAFmxYsEEIgZgN3WAwtru7VF3OyqocKmMe3vlOz3BGFue+UcW2VrWoZ5kZEYr3xn3O+Q3f7+eLx6N1GdzXuqGtBVIqJq3hYF4Tc8RGzcr1QNl4bdcd1WFTosIymMowpWQNHx9MihdXF2JobTVHRzNSymw3HSlGpnUDBGYzW7bBFqySRGEKGfX23hWSfgekiBeyeHZdYBxcsWPdxhqJiDYSnyJCKbIqdXT0Ae9GnCxxcp1KPH9+jbU19SQzjIEYioS1WENzWWRkWzLGRVE6tZMJMaRCcZ3W3Gw6tqOji4nRR3zIhc0hS+0dfGaMkRgp1jMl0VK8mVGGWCCOQpa7RyD2CpVSayAgp0iOkV8+v5jPz90s5lSklTFGYswIkbGVBgQ5ZcYhEVSJLtD7PA0tBchMiB6fIlqXSUwK5QuVcvEjplgaPmNlQQVrSVvXGC3J/mZvvA1IpTF1C0Ky2lMvnfNvsLxjv2HStrDfklhTgkrrqmzwLtZFTy+EZLfdoLVmMgUpBTGWBjhGD1mQUiKmgtsnFLN28WdK8t51rGWNMZqqGsvhZBRD9NSVpamKtMlIgUqeXZ8KpjiPCFGIVI21+0JbFbBJUy5WQSFTtW1D09Sk5CFFlJDoSpNEoq73MjtVokNSLMZnKSRSS5QQDMPI4B0+7Cc5QCJwsJyXjUjOjC6y7R22WuDHgNYasCASbWNRQha5gMjoxrLdBFbrgMqGeiKQc4vQJaoj9AWwoIVgeahLIyXKBSxE2W64EEFkplWLDyO92yJUS9UaQpBAQJmAzAoZiwTt8uaGvvf4CMiOyibmU8FiofFZ41xiaBWLec3b1hJi4Gy9Q2nLOHRc7XZE3dBvMy9fXOGkwlaKvBuRqUh358s7KGWZTSuayvD48VNmsxnr9QZjLNP5EqkkN9dXjDFhrMWHEa00SirWO1ekyTKD2NE0E+pG8fDUkE+XvHv6ftHv6wI5EW1NFPDy4gKlizF9ux5ZXW+5Od+x2W6p6jnb9YavH79gE+DRo6dszlf0uxEXCkQojBCchKkBZUBm/gv/h8h4De0BsmlwZo50AYBXVytuNlskt99l9lM+UBIiGhUjtpHYiUJXomwqZWkElSqXXl1rUnSARSmDUqVZEAjGscjAK6WLV1cmZDA8fOuAuycLHj26IFP8rkJkctpTOPeNYmkwS2TB/fwQnQzP5Bf0fWB0ZSOiKwUqU8+XmBiR2tJIi640d2ZzGq0ZxuJLIyXkHguac2a7XvPVF1/hOoORGmXK5xBCuRS11czsnKZqqHxgMZ1SNS0XV1c8+uKCXedpLQQB88mEymiyz9h94zVftKAzr18GLq8uUcqwWB5iJ1Pema9L6PO2J4lEs9hHqOTEZrtl3mrMYsogprhwRsyKhN5/VuXcsfWUe/fuEN2as6sbdhcjUhQwQ2RPgc0Fw15cVf9/uWqhVad9oyj2QyRRBkq3clQhkErz8Tt32XYjr1dnkCLi9t+MRE7s8x/LzEqojExFhZE0JJWBxGn/52VoN5mipcZoydnrCw5PAh99eI9Xry75J9//R/zat+/xx997jSTwxd/+faRSREDmjJUSbS1X1z1nV46Ls57LqxuE9GibiEGhleLopGYyr1GhYz6ZsckrxtUOtx3R04bD0/u4rkcbyemDEw7uTtFiZHp8SmVa0uiZTmvu3T8hyYHOeVJwTI8XDHnL7/3RrzGrKp780y+5ubxm/vCA7ejZvb5kdJHRZ7YO3FhTN/vIJVtjqxbbTEnO8/rykqcvr/jJswteXXlC7BCVJSXHbudQWtC5HpIoXsX9522SQikJWpfNYg6kJFm5FVbVzJs5xgi0TtRVg/CRHBQ+CXZXl6AtPu5HM7kU9bPplAroB0c3BjwlfsRWBkEijJExgbOW4EYOjpbMZ5Pigb+44nq9pbKW5eGyeDmHLWrfdLjRkVIkCti5SL8ZiDHQR49DEFNPawvszdYVKRvOXl0icuSt0yMkiu2m3PHz+QIzlFgBIRVyTz/fjT1fP3tO29ScHh9ijCZuRjQCubfImHrCyckJfbem79eMu4DQExKRy6sNk4llOq+ZzWcMu8jgPCEGMpG2sZwczzlZTlg2U1JS+CRZXb/AWIl6OXJ5MxRFydRweHhA8IGbsxu8D+SsyT6hl5mzTc/1ZmC7GWinit12zZ3TE05OlrSVYbOWNNM5u9HRyMzJpGFMgpv1FdELmkpzeDilsZaJ1ZzfdHTjiCSjjWW7Gbi5GojSo63E1BVVO2HbDZxdb1htO8bhDK00IY6FIxETMRefWisz235k6yKm1kyq4i9zqWw3D9opMgvW245qrxqbLWqUEhwezplOW2IsjcIQPGhZfP1I6rrizonCykxT12x2I/VEYbWmygJbS95767jETmU4O78i+cDr6xvqespsMiET6MOO9ToyqSSLecVsVhO9Zr0bQEQkGltZhPXUssGahsxQCO0iMaknCFnuq0ljOD2YIBSkXuBXnlsI2upmw3IiCM4jKM2zkeWStKdLJnVDRtKNI5Oq4p0HhwgEu01HDCP9oEFGpi0Qy2a+aQsJvFI1Ukh6F4udx3t6N+KkIiPZjgWqJHJG54AUZdOslcangNGGhCo0eRcYu74MjYIGEXny/JrpdMZh0KQUyRR2hzKibPulQlWScRhBCMYhULctMSW6vKOta168umZwAZcS2zHSDwGpAihFQpBCLsBFUUBXVohCdy+3Bz76vWZFkIhoqUqe875RFLDnCfyyWfxFfX7uZtHojGBEG4GtVfEp7hsO9gWnDxlr9B5kI/a4+rIRjBGySQiZyTkgrKAbBrTQSKFJGYa+FDDrmw05r0pBYwQil01e+Xv0pfAggRK004YUS+Fs24ZA8TJKoYnA4ErIu5CSWkeMNdRVxWIxw1qDtRYpJHnvuVSqNIDBB7x3BB/KBuRWxiVEobRlyD7uB2sFSGONJoyC7ZjYiS2IxGI6IaaB9dBhjKW2pWGusiZkiRRQV1BXlpvQISk0VkkkhbHEeuxN1DKDGh1KGVbjBqNNiQSBN/CgN3EBCGROKIrPNKTMrh/xYeR8PTKGQO8KMS7nzG474n1k0pSNX2UlJydHWCNw3hG8Y/vCFZKrHegjnL+Gbhi5utoyDAPdkFjMNG2r2G63zKYzHj54C6Ugjh0pJpaHB4DnyWpH0yimM0NYFWz8fFYzX7RMmjkxekSUaAknh/dLgZMyxniurzy2nVC3mssXKy5Xax6dr3j35JA7izmozGTe0iqLC4nOlwvxqBJ88MFDsnfo/fQyp8ykqalsyXTajTu6bEquKHB0PMNWhrouE8eqUuQUCeNIpStmdc2mv6Bpl5ycnpJi4PzlBWOXmc0rlAz0/cA/evwKJQvtV6t9DEdKxJypqpoYCiTh/cUU+/ExISyxlacfWy6/+TZJCGYHv4PRFhNA9COpVvz1j5/z6tHXHPzvx9jJgpzOUV4gqwOiaAjUVMtfAzHj2ZNHvH7yOWO3BlGaIy1M2XVnQUqCVjqkTJwenrBcTDFGYESm0hWNsbTWsFw03D1eYjIlMgZZPGSpNKTGGJRUuOARqaQ41jlyp9X83T/+Lh88OOW//G/+HyKCFBzlzS5bkiwyMSbIZajzb8S/DwL+TfUnPPric158uOT8YeL61RntsuPLr54RfcS2BtvUPHz/HvfeP6Cd11wNA1kKcLE0QapcZWN0pN2aFCXb3chmGNm/2lycv8R5X8AWyiIWdYln+fQn5aJtKmqruX/3hPsP7lMpze7ijLHrudC5yO2fnjFtWz786Jus19ew66kF+PWWf/3uf0vSlsvrzGy5BF22RFJmWhMx03doDu/gPfz40/+MbneJUh6REikpsjAczCp+/ZPf5u/8yW/xv/xP/5D/+r/6H3hxcV2yDnNBuWchiCUTiL2Od3+SF7dfVSlCgBDKOjHmojwQMkMs50jXO75xr+XZ65ZPhdqfdwEhypDQmLKtTrGoRyphi/ccRcwZGQxJGkQWyCwQQZAlSCtplwt2Y6QeR/7uv/LP8eOvXsBgOPzB58Ub/J1voHWNKihstiGwefWaz794yvLolN/7F3+X4+Mpq6srvnx2RedKnmplFFLC68+f8P0fveLj3/kO+r7BuDKk+vPvfQ/pIzlkJhPLyWGFNTV5s+avPv8eKMXbd4749Pt/wWdfbPj8Jy8YXOQPfu836MOWdT+ysJbD5Ywk4Przx1ilOJ3N6WNg1Q9879PP+PjhR7x//4TpQcXH3/0GJ3dOeP3FU569uuHDD0758P1D/mZ4m/liQSUtr76+4vxqxeOrFT5ptPTkUKR/2pTv9pc/eVoUOULtibbFE/eWO0Gaiq4b2HU9q5st69UWkBijETKzGx0peiZNVewcSjGmTPfqJXkzEkJgFyMxaxprMFbQNgJhJDomYhhYTGtS1XLeeW7OXxOFZDJtqLSg3168ibuChFKahCQjOJwvsFIUD71UzJoJSmtEhDBGsswlA/XihqPDKVobvDN7gmckJ4n3fj/0FHS9pxsc274jpEjd1Gjl+fLJihgSm+s1dWuoa0NVG0YXUCJzcnxIYxv84GnqGlvZPW9A4neJH335OXfv3qNqLecXN3z11QtCiDx4+4TDwzlPnl6CCFSt4HB2iAuluWqt5Z2TY9Qg+cEPPmNSW37zt97j+GhGbS1f/Og5Rmv0ZMrhoceHxM1qzUfvf4IiE3allrlzdMBqNbDQim50PLnY0kWHUJEP3lqgleL8YsPVZkfvEveWLbUVVE3LbDrhejWQlcDWTWEVbD2oyDgkZs2U5WTC4WLCtG2xE0WKET+MSKk4Pj5gahVdHzi73ODjiBGGoR/pU7EFWKVQAl6vBVopKmPRxuBGx2Y70HeFKC6kYbuOrG4GpJiwvrwkp8DaDftA+08RUjGtLHbveUYK3FD+jUOCnEOJNsNjtSWkyM6NbHcZ29TksGXeTllO5pweGJrG8M79E6KH7WYHPjOZ18gMB5M53g14P/Du+ydFsrrtGEfPZnRkaYlh4Gg5pRaFNfHh24ecbbfMLYy+3NMyZ3IKnB7NIAu6oUAWayN4/eoVlVFM24qkNKIKxKj5yecXTKY1R6dzrs5Hrq9X+JT2TA9FSomsYBhGYgDvI270LEyFj4EsLVprlLRopdnuBq5fXGKNZtq2xCARsiamxBAz2gje+eg9um5HNp66MmgxwfvAetMh9z9fiIlxHLGm1CduuAQBzbRmkiXLaU3OgtEF3OaCEEasnZBJxBzKdWoyMUS0EkXCTGJ0Q+kJZBlWilSi78ZUVH0x34LW9oxzpSn54L98ftGen7tZ1Ea8AagoVahuUhbZZtlMaISUZQuWb6VN5deWTDpZ1tApFUlSzFRNAymR97TN26G2NAKBKl4jKYp5llLA5ByLD0bcYhqK/E9LgUAWImn5mpJSIsRQYjt8QIiC2h98CT42WmO0AcoGMaVEXddFjokoABjnUKrAPpSSRWftIjEGtLVvABJyXzTpVDaPMZYDth+2JWMQ9s32iNEGqyV1XeI0pq2l8qUhVFIh5YjSioWwCBGRErTZxxhYQ2VqUoyleFVlX7g3K5VQ3BDIZKRpQFpSDpgcqSqDEJYQMt5XDKPnmkznHdWiJWeBsQ0hJEY3cnOzJaYiJZRCMmkm6Mpw58BjdcPJ3RNMZdlsdoQQ+P6nX9G5kc6PxFzRO88Xj16gFWhZcPJjhLo1JF/yLp133DltcSNEii6+H4vPpGkbrCwQkxQcwQ1Y26JsSwiwXY8IlagXioemRWTPs4ur4hUVoCZzhLb7zbFnDBvGa4eVCq8EMQVSzAQH89mUMSa2uxvIGVO1uNExusRms0VrzXQ2YzaZYGxpGKMrGzGrKrSWjEPJQzRGIVIix0hlG+ysppmVL/jmZkU7aUsz5R1Saeq2pR+KbGknbfEHJU/2shBBk6OVlnocGNcbQsw0VUUaFe8ezbi3eJejv/eI9uQjEOVdTWmCElMyNT5YpFF89dVTnj49I4YC0hldQopY3uu9BvFkXuO8Z2prJrbBKo0SYKRCCkFlNFapAlWqDFoIjDWQI2NwaClJKSAoESQgyankso67wJ3jKd/48A6zac1669iLD0BI0n7jJQVAgWNleCPZ8cPA5mbHGDx2rhhj5uJyQIrMSVORh8h/9z/+Jc3EoFTxIosE8vb9SKJsxnJCRk8/3LDtB1JU/Mn/VeP7LWerGyZ1y2IyY/SRx5+/oMuBfn3Fg5MTvvXJB1STpvit8sCwcayvN2y3HYNReJHJqud4MWd5uEC5hFAV19ueXd9zcX6GMnOWy5qcIhcXA6djoU1+9sOvmbcz7r07EpTh5aviywmhAK5uIQLWCE4PNe8+MHzw3gEffvAOL8+vyxmUS4mVZeINuSiLNz5H8i1UyjL0Rab+Zuu4txn8z0KjZfGRJj9i96HUMZYzKoVEloXsLGUZTmmlyan8UbbSCKGJDhKZZ9VvoJXmI/X5XvWa9pvfQLfa4uYrvvHgLZ4+f1okh1oxm7a0k4MSy5QDKSQWiwXf/EBw7+F9kIFXzx7jvGM5aVDsIHlEdsQA3/rmfarWErstxkqmIkJKrJWgcxltDcvFnEorHr+8wtoa7/R+gDilmhk++mDKvTsHCKV47+E91ps1q7FHZMNi0jKdtRx8Z07od6wuL9k4jak1f+sP/lnefnCXhx89JLrAxcvXPH30hHHbc325Zbo8YBhGtusNOr+kmTS8/d4nfPzhQ35lHEirGziacnV2xcXFmumk4uRkwW9/8hZRN6j5DGkkcdgyrntsWyOrmqHv2K5WXF1e8fJ6QNuWyfwIKeD1ox/z8sU12z7QNpbpYkZAshlHfvjXXzKuE1YZjKlJwReoUPLkvP+OpEy/6ZFXXVGM5Ii2hkprlIhEbmFHpcQw8qcy8uhGNj7gkATniyS3qtBKkYglvohEpRWHiyldP7Babcr9voedr3QqITAAACAASURBVPqh2FsQxJDRUnEwa9/kDJJhvelIlSItSvamtYb5ZApZ0Pc7fEgMYVuGQbsV0cPbb52w2Rbw2zg60NekWO7+o8WUHAVuN/LV9Qtenq8REupKclk7EIlKC5y17LZbvBuJAvQWtn8x0jYVtbZsdiM5QV1LKqsAQ4iCw5MWUiEubHtHP/ZIodFa8ezJDV8+PuPXvv02H3/8Lucvbhicp20MdT2j6xPNXnI9OMfF5SV17Xn3nTlNXQZtwUn6oedqu+N6LZFZoEQipQHfGXad43q9QwqBD6WW2m5HYkpMZxXzRqNlxmZdYnayRJK5M58ilcaHxLYbyFmx2u5QWlHVFi1B+VLXeTPStgopLMNNYGprKh1BZipRLEsJiRtHpMlM9hJRkWyRZFPkzTMjOcoZv0woI4ixKWq3nNkOMKZIeHGNc4ndbkApuLiOBbimixUip4x7sQaZ6LoB70ukRk6UDWFdoUxRtIgscCFBcrdFKUpLDJmxX5PYD+j3d6KRBmJR+ZhKozIgBYfHFmMVpIAgMZ/VWFOI4kYoiInV2JFrS8oKHyO7waGEZPARH2M5Ywm40WNrzamd05hS+6U2lFxnQAiFVAbnAp1siDGhksSlzBDA9YXBoZRESvmmCRdaImxRBcUQ2Ww6QhzJWeMDDEHgsyKOxVogKLnbIZZm0WpLGFOJTRvjm3SEmGO5a0V5nzLFpyiEKnF1xkDO7LpfNou/iM/P3SxGB9kUr07nB+IbSZLYzwhK0ZH2hLyQIzmnUuDIUkTEWF5Yo1UhHA4JufdB3YZOZyEQqWBLJUVWlWIk5RK/ocsIA7lvwGJK+0bslp6qCuhAFMkZxmBNkWpOmkn5PTEwsUXSY0yRyrVNhTGGvt9hlChyVmAYHSGVyWdIIIUkxIx3iaYBvdfYv/kU/IjzAanAWss4BnIoP0/xc/WktCOlIsdQSkHaIYWkXTYkXyq8kBI5vKKxpkyfZMQYzfF8hlYCaxTGKNq6REhIUT4nrRRNU/7cnHvcELha7Qgx4Xwsk9i62ksFIn4cUSi0LVLYq7PL0nBLidLFd2iMRSB59OyaIXY0TYtRmvjZc6QUPLgz42g243e++wkH7YxZU3O2PuP86prL1ciuGzk7v6YbHDdXG9RK4XykaStms5bh5a74Q0VEK00cPCTPnROFV5m/+usnpAwH8wXvPagYx46h6zHC8NbdE955cMrl1Y4QR+q6RetC4/RuQ06O2rbMmorQQqUtl+s1KRdYjZGKIQx0YYsA5rMJCEX0CTuB7W7AmhplFKvNFT5MqMOkUH0tpOiZTQ7RGvp1j9aa46ODMkXPkfV2Q4ieyWxOodtKUhiom4a6afA5kUXAtoq5nTBpavrNDUZP8eOIcJHnzy/56vmGaet4/3TOYt5wvhvQrmQoue0V07uPMNUMe7jk37J/SUTz9/2/gMoJRyEd/uD7f8XTx49JrsRVZAQiC0L2vPvWXd5/9y4fvDXjn3z/C44PZ0xajVUZU1msytQqc7TPOhTRUUmLrWxpKlLxzuycY1JbEpHgBQID2mAVeL8ljoHjxYS/9Uff4k//7Ic0+oDNZsdq0+/ZKmXIowCxt+kJCoHNp4jPgpw1wQv60TFfztFKMW8rDuaGixEevH3Mhx88YztELi+visyISCiBakifSTHw5VevCUPm9dkK/9zTthInMy2qSGzTyP3TCS/PVnzjmx9zOG958uQlXz19RVCZb3/wgMWkYd11jH3H28dvY0w526xVtPOa43tHuG4sUK1ek4zkZrXlhz/+guOTU95792OqqiEEx3tv3UXkgbE/5+X1hscvzkgxoYTa93vl8tXThoOHUzaf/hXV6oz37iz4P/egmZzKdhZyUUPcNow/0ywaXc6I4D3Cpb2PZK9KyJn/RLbU1rLUkl0/cDxtmLYtFzc3LIowFCjDsdIoKm41xDFFrlZb1ruBbjdwsjzm0f2/gxCC93b/AaqSWCtKfqkqMQef/ehLfv07b/HDxxtilMjKcvf+Ccs7x6ye/qsQEwfHh7jUc++d0wIraRravT+YYaCN+/f38IT2YMnd+3f48LsdTz/7krFzDLkuWy2ticZDhpPjBafv3+Hu3VOksXz3t7+NzIncdfRu5FcfvIOREd93PPrRY8zygO++91GxPehifZDBst313Dk+IcoEMlFXZXtXGcnzV1d8/uljotB893c/4b0PFZv1SFtp5pMaub1hsxtxjLDribst2fV89o+/ZHGw4IP37qOVQSB5fvEKbSpy3xNSBN9xcLxERY/tPXWMWK1IVc3Bh0Xy+8XjM55frPnW24f8/nc/4euvf0JEseug6x33FzWnv/XJXtaeIUQGP+BC5MX5hsEnpmbC4axmPqvYDD3rznG92rLZ7Di/XuNSxIe4t08YUpLIXAZRWWRciAix97wZSdtIxuAKoVvmIlXtHdmX92ZwjuvNuKfsFvid9orgy0BXUJRN02mLFpL1zZ5dIAVCZhbz5s2df31ziTW2bBRdpPNFGttYw8mdKQfLmnFwuEFgDueEGFlvunIuJhiDZ0yB+azh2588pB88m02PsSPRZfDlXHIMjEOg8wNtXXOzGZGi5DJers6Yzw85mE9JIbDa9Wir+OyrJ+QksLrkV/vRMWkWTCaWwY+sup5HL1fcbEdMKsX1Yt7ut74lZ1IpQRaFLO+zoPOJ82vHerVFasHD9++xMIbjI12KcwIkz9t3ThmGkZcXK1brjq4fWR4uMLb4USeNpVKBXFt8tnTDwOXlmhQFi+WUy6srfArMpjMaWzN0O/p+y4O7p8yahnF0rHYdLy6umFYLpm1N22iGXWC78YjGsBlGnBtR2RdPbBZM6pa20ux2W5TUGGXwOVBbs89alHS7jhAtkUDAs9k54gpWKhMF3PSOsXdIUTIfrS7fl4wk5vPiUSwVIymDzIkXV1dMbEOzmBS6ae+wTcOkKkAZFxJN2zKxFkUsYUb75YFSnu0QysIhXBevbFTFotRIZlNBO4PFRECek4LBe89VtyXEiFEaoSRdV4Bgjba0TVXOfKkgZeI4IJXgbL0rKj2rkNagbFOsX1pg9wwAhGQcA50rCwupSmxZ9G7vSEj4WN4XrSw5RpL3kCi1pIaLmw7nE93oWd0U73hIIyILfJaElIk+IRA4H5FSI6WinczLsiQldAoYXRR3UhY6vjKGFMtCAyGKiuiXzy/k83M3i7Y2hX2Qc6E67mViYt8EiSzIqSDFhZRl0pJ/WoikXCbGYu99CjERQkSmTNxvEFAl2Dvv/YPcemtuKX4iI0zZcqWU996mgust4yB1u+grMlEEUkBIJQ5j9KWhjbHk+0kpcSEglSQCxkfGoWw7fAQhJT4EUixNaZHU5hK8KjXBZ3wOhQQly8ERE8QkSGQICec8Spo3nqwybS2Tmd65ErMRi+k360yO5TOLqQSyxlCiRxAZbRIi9yiZywTcKEafMUYhSQQfCpnWpbIJCI6YBJsuElLJcvQxsu37EiUbyyWvUShdwuk3m44YI7apMVkwjB6bxP6ziriYyL1DyUg/xnJ5J89mM7IePSeLgYPplD4MjGMmR4VRFUfLA+Yh0e1BQSE6pFJordhsR7wv0QVSSJJPaCUQZrc/RANSKkJIexz1jrH3aB15eXWDWEvczmGNQOQaJ0dG58k6lLJWFmDB4BKxScQkCuVWa7TVVL7QSXMGaS3aVmgxoLVFSlkkI1Kg+0BTF4CREGC1RFfyzUpcq5J7lDNFHiwNOYSyKbsN09W6kG69R8aI2AcYi+IE3/vABH0/ICtQVjGd1syXnq+fndGtB2Ztw8HJAYuJZXbnhC4PiJQhlELga7kCocHvhzfCkZPgqy8/5+rqipzlfhKZyUJAEty7e4fvfOtbbFZPkdJStxW2lmhbIFCCTGUVTaWwqshO0x5ucNuHCFE2CzHmkgclyuZJkOmH4sclZgyK994+4fhwwvXlSIx575+7/bPE7Qv85pEZPBEXIlrXTOcLVhtH54vvYb31hKy4ezhlOZvx8ftvcbPacHFxXUife9/Xm3MlBVbbQs8zpsTTTKctSmeskqQckVqymM7JSXEwq7GVQhvLbDJHqkCjVDmHpGS5nHN8dIDrex6/fEXIcN175sslrZFcvr5mt+v59578PVLO/Gvy38eNntXqgjp4yBmdEsuTOzx6fcaT55elAEbuP4ayaU0iU9czajMhdDsqU3N877A0/vufEyjS+NuzkJ9pBvf/LezzJ8k/8yv2hUaRqmZSzPT7fLXaVsT800gfcsnLlEKXZpaMkgLnEttNz3pTivJ+8G9kR4lAFqWxlEisFvgxs9n1TA9ntJUGWX7Oy6sbVs5jchlMjWKHC54+SM6vB+ZectgYhMmsbnYkIZHSgNRl+zkEgvfMJhMm1ZTVKFgPHmVHptMJKYMTib7vS+RFSjSVwvvEq/WKzW5kpy+4dzynqYoPMntNHgNUAqU1SoJzA8O44ejuKaRICoGr1ZphGJCvzzm7uGK1WpGypt9sqKbTAlpBUMtEczjDTCcMCXzI7HSNi57JKFkcTNEmEeJAP0AvBJVKVKrEp8RUSImD81S1Ybtx3Kx2XN50xIuRibFYbTg9WdC2U+p6wunRIbqyBN3SjUU+fLffIrTGmAZipNtck6XgyasVuy4wdBERPW/fP6Cd3GUYIxerHbvtFqGKZHIYRkTOuJAYx0DfO4KPSFWykWOK+N4VT/0+KmuMfRn+KglZkhVc3mwZfWT0BQjng3gjgQyxfF+lKl6ptCvy+X4cIBWGgkwSXIEvlWI0E1UqQ9+Y0FJgqorD5ZS2rRhHj/eBmAMqWLrdWABQEkYf6EaHMHufZwooCU1lMY1kSANIg9RyL2M3dL7cubdRM97FN3FR4+CIweN88YD3u5LXN+pCvRZSEPDshgIvM0qw7Tt8cIix3MFnNyuUKRm4E92WnGZZtr8uJZzfcXm9Y7fZoo3iakiIFLBao5WmspLaCoYRYsz0vaMbAtveYUaHdx6/j5HS0qGkwhixjz3LBOcZfYU2FRqDtRpba6xpmc0ss0mFkeBCxjaG2bRka0afuNp2jIOjVmXruxvBuUAKmemsxm23dFIQgmXoCwiwWbZoysDAx0QWBbKS9zVJJS3zUw1R4rqRIDKqsoxVICaPVAKVFTkVCKCsNOPgCKNHily8iMqwWDQYYWiqAjwMIu+hOJLBl+amJZNSKHYLqfB73gY541IZlPk4kGNGR4sYPbnL3OwcvbMYlfBhRwiC4APbruTE1tailMbFklEuGTFqgyqESFJIEAN1U3O1HfExctPt4Y2xDAyMElRWFaUOxTfqY7mfq0pTaVP+354rQGIfXzciMhihySoTckAGsNpgVEYrhTucMrjMbtiSgJAFKYOWhYAqRalfpJD7u7VI/skZs2dypLTvBaQkxsI+GLwvtodfPr+Qz8+fs6j2zVkuxnKQGF2InxJxK4Ik5kSMCWs0ShusLrStHANKFcInUjJER2WbIktxpfCIuRRxOf00QFoJu58KFc9aSIUOlXKRmiqlSDkSKIQuidoTUsvfO6eyBofI6DqEKl/uYRhQShFjOcy16vc+rkDOexP9G/VWKYT0fgvaNBVKSkaXSoi7vC2oy4uSUyKkRMojIQaEGMrPcNvF3pbE0nGbNQiZcXD7n63AR4yxjM4DUFkDIXF2uULtM3q0Vmy64Y20IAYPAuqqLk1JcEipcfuDMiMQWrPd7hBCFqpVEPQkhA9lA6wK3CYGhRIKgcYPZQqkG0sbNUolUsy0tvih+jHjUsePf/LsZ6A8IFHIDFWtOVpOmVQ102lLVWvmjdpPmCIhCfrOkaXAh8RqPeJD4vWqJ+eAVoraGhSZ1+drfNo3lgo2bkUIgqk1GA2jvyEBXT8y7rffku1+1hCxbUVOgRQTk8mGpjWkkOj7VJp4YqE6SshZMZnWSJkZdgPD4JjPeo6WE6QsP3tVW7rtrsRITBqcH9hdbtDWEMNAZVuaakocdsScaeZTMpTA3eSZ2ClN2xJjYrfZ0K9XnB6d0K3X5C5gtObB8ZzTgwlNU/yal1vH89VzBi345vsfkTaJ5X/0XdJsyb3/+AUlxF0T0wboSCFwfTXyZ//gz7i63BLLjqoMN3Lkmx98zO//7t/gb/7BP8O//e/+O+RQBglSGZq2RaJYzC33jxccTKuiCiBCLkHtt8WSQmFMRXADOZZ+FRFRObO5WZOFQItykXz8/j3++T/8Nv/pf/6/kVBkkRGk4m2jFFpZ/PQiSRGCgpcX1zx9cc39A831euBsfQFZEL1m4z132prVesfv/433aSbw/b/+GhcTIt8qEAo52afAi8uOg0lHP/T8378jmU8Tf/x9xeBDydJMCbsJqJhxry6wlUGZirfuHTNta6atIceI0YbpbMKu71hdb/nhF8/oXWQ2uaRuLCdHM7qrNSGUYjoLuHN6B2My/fiamEZklrx4+py7n3zMj/7iC/70H3yJzAYly3kq9/Eiyhg+ePCAtw5atrsKM5lx74EGIcmiZDP+VKaR9+dN+hkaahkardY7YoDMLeimZLFIoXg/BZSPPNnCdR85XsxYzKb41wXJHhgxxiBQSNR+WBIQquDU15uR7dZx786Crh8IKZXGKjjykPFRI8iQIrtdz9W6o9sGqvkR1hYw1vMnT5FmxtFsynQ5JWjQxhJdZjZb0N1s8KsN1pYNk2rmJFnI3OubNWkbcGGknk2QMSKDozKKRTulWc7Iei8zGyU3NxsOD2oe/eQpL89XXF6uOJm1/OPv/SnvP3zIvbeKbNp5x0034LY9tmuZTmqmtcAYuOlXNKpBZ8vL8y1jirjdhuAdd+8sEUh+9OlPCMowryvCsqX1LWl5yPl65Hr0ZFGsFy5pvvMbv8rBrGXYXLHerPFpy9HdJVWlOGgacoSbG0MlJ2zaHtE21LZibi2qNvzo08dspOOtd485Wc6gC1xeXoFq8DEzikA0hap4MpvRmIrZbEqtMzrMUbZmM0T6buDl69dcrzdUtuJgPgMEwzBjYjVN2zC4kcqWgvDsbIXzAY9EK01jDIvFhO044JRg7D3ryw3BB/S0QeWS8aelJqP5p18+o+sHZC607pvO0Y2RzWbAh1gyayny2PVuV7aYSiKUwOWAFaYQIDtPyqLkE48DOe6oreF0OWPaVDRVzTA6drseKYtVZrPpcN5jm2IDSCIxaSyZxNCNdJsN1hiapiVnQ5CJSVshRWYYI7pWtH6GcwGrSwSWAO4c3SemuCdcCtqqxQXHndMiRxbCUNU1uhI0lWG37vAhMZm2pCBwKTFufOEDdGtCITMwrVpqa0AKRj+SoigbXpFIKTKOka8eX1PVe/RVjMzqhtm0xeWyXa+URklBkgnz/BznixQ1xch0pmnbCUZamkpjtcSNgf58RVM1pJToxwuEliznLcvZlMCWTEIpaK3l/t0jXB/wITM7nDEjcqdusbXi7s6xWtd0PnFyekB/dUWWmojkZgUxehaLGg2MzhFTpm4Lo2E2rfAu4VxgMi2b/LWSaKV4d9qgEFAVFUWtDd4HxnEgkEkRbq63hJCYTidMGst1t2S3LeA4KL7t2WS2J+NPyAJkirjoEEJhtWVwgV0f8Pt/V0WmbWvq2hJdZBwzq81AigPXUJrmFAo9NBXAo5aawXkQYc/OkKz7ns22IyMZXSS4gPMJYyyR4i2P0e+VeuJN/ShkgTVWSlM1FUokcg57qI3FCFEgZUKgbLlzfSx5lrO2JQE3m67kylaFlkoGqRWtBu9NqZFzJgtojCbnQipOOZEye0Cjoqo0BV2ikEoWifdeuWK0QlSG3MU9XfuXzy/i83M3i9ttT90U6Ifbb5SyLZs7KW5X8oIUUwHfRF98CY0th3GUZeKQwGpB3ShOTxYMvSOGTMqCrhsZxiLfiPumsakaAAKCmBObbYf3AbGfUCupICeUkAUXLfMeCSzKOx8iTVUVAI7OGFPklYpYXr5wS3ctX9ohZFCiyGFhL3WNpFim7xmJGweUkrigSUlQ1QZtFCEGxqEv28WYSyipBBcdVt82k+WFiiGhpOL2XRFSYBL4lArVlIj0fZGzmqpg2H1k6AeM0uRciKpdV4pDay2QUUqThcUKMCLhwogLP8U0K1n07dZojJRoWw7HnAp+36i6+PjGiJGaSmvGoS9TNCmIAbRRROcRueDqrTUYq5jYQjqUQNeN5FTksc5BTiNWW2xTYwdJLedUlaJpDXdOjnGjw9TFO/H02Q2rzYbtLhKCY0w7EAKfC2WrDA8yKsNxu+SgbfBKMowbpAwopWik4erZisFFvC/03uWywUVPPwxsdgNKa6bTmjj2JDSJhBt25H6EyZShj5ycHCIl3Fxd021HDpYt7zxYFr+etGijCUNPOipNSEzF+6KUxg0j8+kSs1jgoyMKqERGCKjaCikEta2p24aUMt32mmFzg7h7j3becPPqjJQFdVXTCMkf/fYnbLrM64sV//3/8Zd8+qNznny9ozaOjx9VyIliHFeINpVNUVwj8Lih4vrlK9bXW/zY74d+CilL4/zrv/IJD999wGQx5eXrc+4uFmxXG2qrUHNNDpGD+ZTD5YS61pTmY//e327K995hYB8FU8Lms4QUIzKBzxlywXhPqjm/+sm7GC0ZQ9n6kW/VAuXJ7Kc1+0kmaLa7ni8ePePqXHO12jLgioRcWdZbwbMvH/FgteIP//Zvcnw6pzIGl4eyach7JUSOiFwkxvgd24srPnv/EGsdv/m/epLQrLeOvt/R54HKWiamYTa1VFWJCphNj7hrlswaTZtKI/Ty2WuEsMzmcyYp0yiFzJluu2Uy0UUi/Vox+lBiWuYWM2/xn/0x41Vgu9vSxR2vL294/vwaRYkMKX7FMlXXSnHv7oTFLHBztSvN2DgU6bSUEMtkufSK+93izzTdQMliHX+WQlc+Z5mAnPkP4w4i/MtCM4SEMUWuX1QTRQooZRkYFs+6QKq8p0ULhBIEMm1T4Yb+TZEQhogjoasCdEjJ48PArvdcnm146+ODfeGemLYVx0enNJ/8v5i2Qb3+l6iaXArWLvDcdzx9coatJL/yrW9T1TVjTNzcjHgn6ZKjtoaQM5vVDWM3MlssONbTEi8iJUeHS6xa4K+2NIuGl49f8eWzKyZC8daDJT/49Ps8faHZupGH907pdxvufvSA8aZj2ATIiYPplPm04tMnX3JycMp8tmQ2P6CqNKtuge167i0sk2nDP/zzz7k+36EWECc1RlncLvPk63N+/PwVUibmtUDKzAeLX0VNKg7mp1hhUMlzHXfYqNDOEUMAP4JosRaU77l/eoB9a0bop8QhcLNec3Vxxuo8MakqprOaMdWcX6x59OwFKWdODo/44OEdKi3ZnL+mqjLHB0ekPmGrltZK3rk74523D3n29JJXZ5e4GAiD5/RgzqvXrxEic//uEUJIxrHHKMPB4ZR7dxZMtGBaWzah5fiDd/G7npvnr0gRjt95B+M8IsZCSZeaDz+4x2bTgSsyuBerjuvdyOOfXLLpevrBMfiBmCM70SFFoUAnIikNVMoQo8KLhI8lOuD/Y+9NYm3L0vyu3+p2e5rbvHtfG/GiyciIbKK6TLsKquySjWyE8MAWAw8YICR7gjxhDEOQmSKYGiTGSIaRMbJc2NVAdZlVWZkZkZEZGfHitbc993S7WS2Dte8LUwwoJQLVILcUiveuns5755y911rf9/3/v7+1I1Vl0NMEL6bE9XWHiwNJJkpVokxNP2yoZzmeZbQjWsLBfEG3t/SuI8ncwEoxMAyOlPIZJIWAGx1IT6kNwXnK6ZkRIrFcLNn3HftdACERCsZdz/LBIYUyRAzSKHy0JF/g3S57+uqKYCV4z2Kh0YWkiwOjhdEl9sNASBFd6JyfNzrKouDu6XFWTtxsiV5PedMO58ccxRA9g8+T9633KCFBTLyHpNl3I92w58DOaAfB2N1gtGbezhBCsdleQpI461lvOnwKnBwtmc9q3nzjDnVbcjyvKV1AzgyjHTGV5uu/9BZGC7jyWXFyaLFuwRgjy8WMcGdOlAoX4cnzl/RDjy4iIgpEUiAli7bhZhTcO56x2w/c3DjOzvcMfiBqxWFb0agcP9bM8/T4cFFmQN+24OJqz/JozmFdMwyesiqpG4VLFtfn81tKiRQSbZ2zL8tZg9aK1eUlu95Tty2lUsxCpK4Lum5gu+4BOJq1LJcLdtsdvhLU0lBUguOjhsJoCpUj6KzPed5VVXPTbbOnrxtJMbFtDJWpGK1l1A5XwPVmoB+zf1JIldf2JClNVnV4n+9BgcC0mcWhRSRnOCdsiATnGIccD9Isa4qyICSLFjnD2kdY7RzD6CmKDL4JPtLUGmME/cahlcSL7EXuJjZH2zbElAgJkpAopSi9wHuXz7VFgSDk4U7KVi4pBJUupunpz6+/jNfPPlkUgr4bbn+DFDloExJGSWbtgrZt2O875vOCfT/QWc/l0xU+TIdJlQ9rwcdMyGOVIzimTEI7FQJSmpzhlSLITcYe61xVaTmF3ZOLSURGiUuls1neh+mwJJAiIVXE2i1CSLpekfaJEAN1VeNcRiXnA2kkpkRRFxj1ZbdDSsk4vc/srxfYGBApUBaGFAXRWVzI07e2aacDVJYYJgSShnldoaSAlA8ZSt0yIKEoKrQs8MJOkJAJChQcLkSMzpLCFCLzwxlaZBpZShGlcjZiphf2DF3PbrvLry8S293Adu/wgSzDjFmWkCZ0vlQqTxmnPC+mTBxt9OQ1HdAmT6FKVaJlgdAVSQYkEUVA6pBlCYncJXYJUQqUEowWghDgEyY5Um/xzvGDH7/g9iCbPaw1ZZEwWjCrKkpjKE1JUSxRIhfi+8Gx2m1IPhB9xPrIH958inMjujQs5jPuLpdU2lDXBZTZ4zGrK4wQNHXNdrPl8aO7+NHhbZcnE/P7kIpcHM8y0VEFR11nSeo4WKRWHBwdsN3sCDbLmkk5aqTfb6jqmnbeIKRkp2AQrAAAIABJREFUsJZhGDg+PaEwJc6O6DKHd7t9n704OvuQorMMQy66757cxzx4yHq/RwrFG+++ibfZfyF0wXA9MteRw5OGr/2Dv4MvNS9/+AWfnO9Y/fYlZ/YF/+0/+m948Y8fcXI34TYbqvaAs3PBb/3WH7L1gigVMklikhQaHs3v84//83/Ex08/5l//7/+cx6cHfOUrd+gvA3bbEw5H7p0ccVAbNJ6qrDO2ngRRYApFSC77Hib6mR0HpIGqqNAiF+HCeBhGmrrCRfCh4+3HJ3z7r3yVTz874/nZdZbrTq8D+V5ME+FGlAppR+4sKkZv+c7HX3B9Y/n1b/0ix4c1Key5dzCnu5voh0h3NnCsCr75zgm//8MviAKEyFO9KCUiai72K+4/POGDd+7wr5ZrQkqYMiIE3L1zTKXvMnrH7KCh3/bE4Di5c8DBwZyXz8559eoLnvlAKQ0JQbuYo4zm19//kKoyeDdgx5HF8gRcYhgtxY2mmTW89Qv32G16Pv/pmu2mJKXIbHaH3/6f/hnf+f2P+PTJUwoSVqRMOJQFCUU5a3n/qw/wl1eURZ1x7iZBcIigEHI6OKe8Hr2mhmWd3JSNO/0nvlRwMJGTQwyv/Y0xwsurDXdPl6AEwTmiSyhd431CyoAyMhd4ymBdpmAuZgu6PQx+pJ3PuCIX+xeba7abPUoWbLZr2rrgnbffpaoEx+8Gnr644qNQcHzQ8tZ77yNGj3v4CU4J+s9+lS9+9AIDHL/3BseP36S6e5/oepqqRgmJaEoOZhHGDrUJbPYdF+cvCbpA1yWj6zgvDHOnKDxshytcvKLrO8anA97teOuNCukF/9v3fkR58g7Hj+6zWLQMw4bFcsbV9Yr91YpxtebZGPhdr3n46C6l2vFsHFEXl5wsD3hwUPMHlwOXK83L1Ybj5Yrf+M1fICL49NNP2bnAx19couQLFocV3z59k2RHZjKxWJ6yftnx/T/9HVx0nBwd8/DefUJ3gy8NvS6RpuTogaaSgYvzyOgHnl5f423kZj9yeFByerCk4A5KKVShwCR2HTw6mfGNt1oiiXZ+j3p5hB/2tDpwcnKH5+fn9H1PjImqKrl/9CZVWXH33mNCmqZmqmK32/Pq8hrbd1QaZos573zwHpurS3SSSKMJCq59ZNwO9H/8MaqpOTg9pdAae35GagtiiOy7EZ8Cs1mirQuMK+gGhzlseLMu+M1ffkQ/eIYhYH1EG0GIlqaq2W9HYoj0LvHs5TVVoTlc5qD7edsghOHZi3Mu1xueXa7Zd5anX5zTDz1NpRnGkV5ASIq+29LWDZWQDKPleX+GlzD0PTpIChOwdWC/GxAE9kJlb12Z43w2m2uEyVNSF/Lz9fzlK1yK+JCnY73NjcWX52uGwYLUSK2wzrNbf04UmrIoWd88z1CuyrDpNogEpdRoJFKXKC1I0dPv+uwzNG3Ob7zc51iwqiHEERd6RpsbfE5ous0O4QNVVYBSjD5kyGDGQbBYtJycLpESNpsNy8WCGBMX12dY51i2Le28RWhFNStxfY82ms2u509++ITgIjJJ6qahmEf6dfaA3v/uM4qq4Ec//gmnd5b86jfe5nDeZHvLeMGnz87QUy5lWVa44An9DXVbE7WkG3r8xnG0rBjtbXdLUpeW48Mlx8uGzo386OUl+53n+sYideTBaZsZDiHSD57lfA8qse06zi87pDK40KOFoKnK7DsvS/6P7z1jPis4XuhJUSHwNpJcYBTZXqKEpK3mJBIiZZbFy5crfvLFM5JMmKLEO9h9EkgSmlIjYrYMWZeVYPO6pCoUd46XVFVBVRrunihiUNRmjjYaFzJ4ZxgGrAtcrzuQknffvEciNzfs6LLk00eGcWS5aKmqKkfSBYdK+fyspM7Wq+n+NFqByzYZLzK0BgpiyiDHfhwIUXC93jMMEaMlZaGpK4PWmT/hAzgfOb9c0feWOGYSt7MR23foiQ/SLuYMfc96u8mfmfr5ZPEv6/UzF4tSZB+euD1wTIcMqbJJeN8POVMxRmKwlLWhagpmswrnHH035JtDCMwsm3LHfiCmiNIZbJNsDqcvJ0lnSuD8QJwSo7XSlEa9lpMhM2QhpUhKmYwlpkIqg3dy4Hdw7suiKIWcTxfD67gJxNTtkCJnIwkzQXViXmRiBvNkGqEghmxItylk/+MkcUuAnV43pmkuOXXtLtUwTV6yx0rJLCU1SmJUlrKqIn89Wk2ZjCSkUkihWR7PKE1B21TZK6dSDk8uc86f83mi630gTlIDlxwxwtlNx2g945jR5j64ySKWu0kxiteQklzQMuVOQkx1lhoLkT14JETyKLLkQU7Ze8Tc3Qp2ROBgzLIINzoKo9Dkaa13OV4hT4ane0garB2JXmKloN93r6NIjBLUlaEoCw7qisPlHG/t9B3C0bLD+/w+y8KgpMCHQNc7rtYrdKGpy5KUyJmc0XFvP04Apfx+zdYxb+coKUmbfD+JkDg4nNE2Y55+x8iuGxmHgRQCWivquqRKBh+m9+4DSkNb1czblrKpM5Y/JmTyuBQwVY00gtE53OhRxqCNQaRI8A6pC1L0eD/i+0wSTTETBb0LrPsx++S2A6qQVCrw9TePiPcOcAHe+fo3+d39c3ja89n3n/L212rGbs+rVy+JyaFSxCAJCE7v3OGv/dV/i+JuYvvRBS8++jRnVMWC0/slgx3p9h1XUvLNd06pG3l7OyMRCJkD2qUQJJkzu3IBAqTswYwpy25kUSKjgM4iUkJKGLcdf/VbX6EfHC9erfNTLTJ9N041zH+t/jOiBBGz9Oryasf11Z7CFMzniVV3xbYXdJuOuqro+hFTSr7/wycYpTg4mOUonOAJYgJhBQhIrq9WbG4KqjEyjPlZ+OzFBiUF931isSjoh8jldk8lE9pIdqMjbAZchKqqkVpiUNjBkqTh1fNLnjy9pqo1BzNNoQXbH1xnhH+wXF/egBD8yXc+RfiIHfKE/uTomNMH9/nuD66Jk0dHSI0kx36EGBBa0NQF945attfPmB0usOc7Lp5eA4kgIirdbr63Xtrwpffz1ht+K0m9lcVPE2L/b/woL4uBH3yx5fgNSZAKESxEQXKeWKTJ3igRUqONQaVAsBlEJkqNlIZu1+NcmAjYQNTsup7SwHxeZ1hWDDjrMNLz33/4V3j/K/f4pasrXv70nMe/2FM3FUWSHN85RMbETz49Yz88z7K0StEvZjmWhkA5qzhsa/b7NWcvz7AhkEzgYrVndJ4PP1hQGElTGkRV43xE+EjdtKSiJqQw5cadsrm64vhOzXwxo9ItRan5YrVnUANXacBGz9lqw8ubka+8e0zs19jdGf/q1YqvvHPK0xcDV5drkug4OqqIV9c8evCAFz/9AoKgVjWLRaTVke1NwA4Wc1yzmBsYDfflIQcnCxbLQ2azQ8oayuWcMYAdR8TQ4XYdxyctpjzGdZ6hH5m7SGg9KUrGVc/gRuZFSfSWcbPFBZvjpFAoscbu91k6uGxZ7zr67UgKgRera5KA6+UNTVvSWY8RkqbQmKpgZwXvvv8mL5694vLyhtA7ytoypog0Bq0iKY207ZJaFRgUvQt8+ukZw+g4qA1ynbMXu7HHxSwrXO9HXj7rGfoRVXhmc83XHj+iKDVNrUi7ANHz/GJNitekIbFcLnjn3QcczguKOtEYjZGKvnfY5DHacjjXHC0fYFRJ+PAxu8Hy/MWes9UNV5sp0kAaBpt9aaN3+JS97sMQSN6h5UixzXLPqi6pKwNC4O3A6DwxRYoo6MeRGLMyRsksExciIUWkNpqymtRORqPULcEY2maR2c06YhS4MZPjm6pFpIQI2c4ipUQkBylL1EnZAiOVJgiRicUhAwRtmrzFiuwlLyRHRwdIrRj9gHMuB7JPa67REhlhu9uilZnODIGqKGnqhqIo6G0gdCNawHKxYLsbMWUBfkCRqIymagRNW6EC9L3j/OwMXQruHB/TD47f+v1Psr3H5Cie1fqGqiipypLKFIQYCXakrmt0XWC9xQ+Os9WOstwjRFYM1bWhKHpKc4mUimGEfnBsdj2mVLy82mcpplHYLnCzvmIMI5FEiir7EEOeyu12t1aghI8KMUb0PoN1ilIjC4nQ2daTeQMSIwUH5QEA+22PHztOjheYomA2nxFjZLfNnmslC3abPSOJ0mRIViJig2e13SO2OWKsKAq8t69VIdvdSPCRwpQYo4mTwuOnT14wieiy2i9T4nDe01uFVg5PwAVHchYpc9bivM5F5LxpsNLRVAUgsONIcJ7ejll15yM+JMqqwgiDKvOgQxuBVjk+KatO4nT+qwitmWBKYlL5QV3XpJSoyordTlFKRz1rkVLyk6ern7Us+fn1/+H1MxeLSeaiIJdgihglQphbhRFdD30/cpuZIictlMj/y67GlFHqAkHb1phCopWkLEtAsO86uq7HaKaYDChMjRRZ8hCIBJEjOxSZEqh0DiJH5q6IJPv3tNLZzziRFcuqxBQ6+wm9J1gPSBaLOUYpnHXEkEl2PnqGSdqljSHGKRajKDGmfC2Xq6dMwpT85IMLHB8fok3OJIs+0M7ajJxX6vWmkQvVMBEkYzYYG4PUDjkdun3M5vgQ8uc1OoF1nt6PCC0YxgEpNc55nA0Mtwv+BK0JMeFCBikYnfMcRQoTDOhWYJuDUUOyGJPBLGLK/3Pe5TxAoQkxR3sXOksDx3H/+jsWUk6LfV6smrqkLLJ3z2hDWZQ5ey7GnO+TPGVZ0t7GNaSIUImqzAb8f/OeSQT2nUWaOWPXcXF1iZSglKIoS5TUVGWBN5pCZCps05boQiBE4O79hhgSQ++w1pFqgTYtPoUMy+lyATaMHmefA9n07a3jvHMoo4jBoxEsigJjJFoGjo/mtHXFvKloSsFs2bCcN2z3ueDRRYlWkuAmk72UlKIhKseyOSQQSNGhhaRsekIcUcowny8hWaLzVKVhHAfsBD8xRkPKsSuklAvLZJDFjNhvUQTKuuE/+of/If/64H9gv9qhrlZc/87v8f1+4He/87sZsiNgSIHalPydf+c3+fv/4O9T6Bfsrp9x8cUlJ8slRVFRL1oWeoEMI8k5dpstdw5PkSLlqT9QVQbnLCllMJEQGRSkTAlkuJMgg69MUYPMh5lSS8aUOHt+zt/8t7/Gdtvz0ccv6fbDNAi7BecIXvA5IoGIkigT6/2G81cV81KBVnz0yef4MfuMTa3YDxHpLb2Fti1QGhaLhm7nsH2PEIkgJCKNvHq14dlBxU+7NTf//hFNXXC93Wa5rBZ413K1tcTomVWS4AP/8vd+wtn1lmpxwNHxgsNZxVvHNcu25NmTz4gpYlqNwNCFmj4pvv/0CbUpMcoQyfTHlCKFaiiP4M6v/BFt9Qx1fsj/+L98j+cvbpAUBBGIwEwIQoS333zMNz54F7u54vOfXvLg3Zo//pOn/K//8o8gmWktirnJJFJ+zP88PyD9+R/c/ixlwNjk18k/Tnz8+QUffltyeHqPw6MneDaUSqJkBoQlnxjGgfXKs9lv8DbQj5raKHbdhn5kgp4Jjg8a5nXD6Dvs2COlYN9d5fW6PEKqkZerFYf9EfWDR6itB10w+sQXZ9e4oSMA3cqx3W4xZULNKjZScnB8gg6WwuUYJrFsOZRvEOoFg+1J3RUIgVE13bBjvb7gYn1N10fu3b3Hduh54+03QQrOXl0wm0vuLGuMFkhlsdHgXOTB3ZbHD08pqztErRnDBrFzlFUNbUUqDcPqkgrY+YLrVc/Tl3sCgkfHhjszxS/NTlFa0tSG1bMXFPOWN+saax37ruPq0nK5s8RoGJ9v+eiHL/jsxQUHjaRu5/zwp1d03cDX3z5gdI7lsuHdd97k4ekJN/s93/3+J2zEwLJeMKPE2hF56VksK56fX1FowS9+86vcv38fGy1OFTg78unHP+GPPvqUkzunbDZbGilZzBtmdUtpGly3Y9+P3PgelyzN4pg/+oPvERLotuWyd3z8vc+RdUVTRU4aTaUUcbPF9gPvPDpl6Dv+9Ls/4PMXlwwekswN0/feOuCdx8e8d3IC9wqeVBecXa85u9kQg+HqfEs0AVMICmnYrXrePLnLMHZcXqzouj3b3ZaTewcUQtC0NSjB5dMzbBdwUdDUBrxnsAP7COVC8/d+8eskl+nK29AzDls228B+dHQ7SyE0Jw+XnF1s+MkXF9gxMxY23ZbeO6QqEFHhxkglMuxNkejGkYAiipbBOkK0WBcQSVKoyLAbKGszyfc8QuQ4kMIojChJocB5z+g7QpAgFdG77CWXipA8Moy5CC1mCJUnQdLavGcImfMUjSbaDIVLk0ex0BobR3BZPUCSxJT9bUprhBGElJUhRhs6OyJIzJsKrQzX+x0pZV5E2zSUhWG7s3ibC5hCFwhZsNoOXK46UsqglLapcMNIv19nX2dRY4xh6B1919HOaowuiFHw5PkZiJwZ6bfXeOfQAsrSoLUkrTc5f9QYPn++w9mAtTnSp56VNHWNiJ7xeqTUuRAKIRImuODhvKUwmoRHSMG+G6befh46BO9zZudGcFXoHC8y5ibz4eEyE3ynYUMMkUjMEVTTOWjWzqiEwq/GnKcccmG6H/ZoLTldHnJy55AYAuMw5ixFPQ0zQkCJEucsAU+ICcGe4CMIjXcjZakwumC/m5rbkmn9T7TzllpV9ENP13uU0BhdTXJlS9c5Li/3OJeb9olIIgOgRpfPpSkxnaNzkR1ChjuVZUH0ETeRiVPKha0pTCbZh1xgkno8TE0jSXe2pusGhiFw66+s6jGfR39+/aW8fnaBcCTr9VMikQ+Gt/CXL/2B05QwpSmcl9e01NcTB/LUqu8GhBQEwPl8OkkpYSZqk58KqUyKJBeEMZEpf9m4HmLIBKYw0Z3cRHhMkRizF4IELiSwPkNeUvbWhJCNwsPocCrirCXGiI1xyirMKHAXyJJNwEXHYEOWcwG9y+9fihw/HGNA724pVZ7kY94Qp89BSvVafnpLiZXk/MQgBFWZqZshBRQJXcrJBySRIktTldYIBbNyTpo+y5QSgUzsCiHiXPaAZuprwtoBSKSQF6LgEj5lT5PQgM8hrQDiFmUsJD5GbiNIBJB8zrd8vSimBCHLeuNr8JBldODciNGZzhrDJNlQmhgDzo+THC7DN6QSE3UtTYTdNE2lAtZFRD9CyjQ5IfKE2UWBUgFEJlJGI5FREIeI8pm9WBXTdEWA1gqBRCo9+WsjsQAnPFJkyI+UirLIkSlHk1RjsDY3IGTuQArhaRY1dZm7ytoktIFILvDz1+szmNR7QrAkJVBNmSefpcaNAaM1bVkiS539g8pgVIESglLLXCClgEIglaFQGi/tJH+FGBJxDMgq5wfG4BExsFi2/G3zmHW85uir90i7wPZPv8du53I+aoo4IlVb8o0PP+DkbsO4+hjb70kCmsZgVFYPKCVZtDNKmYhuYHOz4fTuQaZNTveJkjkbKsVELvHyY3pLLIb8Z6XPpv5b9oogExBV8hwf1czmJfvd8KUP8rV68pbzmSfpOZcLOuszuZc8er2VSEanid7iYgTpqcuCg0VFsAk75FiJKLIy4Wa94/Kyot+tGe2Cwijc6Nl7z6tXK4ZywJscXn2zzhCDbgxYF7D7HVpCspZaOMa+ZPCRstD58BUlo02EkA9aw+CIBmSVDyOrqw1tEfH7xKP7n1KUhuHpr/HyfM2us/m9ZzRufgaBN+6f8vWvvMHQ7+gHy9X1iourNefXuXlDSrkwu+3gfWn//Atc4rVa9cvtOzEMI+fnV2gBAcWuizjt6PotWuu8ZqVMi9bGoKQhKcUYyOHNKfDgh/8Jdw4q1ARHKmVBulU/OE+MBWXhCMFxfvaKk9MFpEdUBvQ0yUYmrB0JMTEvK2SskDpipKYfe7hZoVNinwKXNzukUWRFrWawe/w4UhrFbr8m7DpCGIlCI3V8Tao8e/4KUxqStSTnsWUuLoSP7MYRLwSnKsfo2OGaIYGXjjpkbzzCkaJGYSEoht2a/bbj5uqG4EHdfUgsJMeHc4QISONxx0sUAtt3Wb4+Whgj6BxTBQYvC4IuGWNid73DDiNKRPaDxdrEwwcNw2hZb7eE5DlcltSppClawpD3g/V2zX7Yg6iQStHbxM2mox87RimQKaEQ1FpyMK9oKwXOUxXZoxyjpSxA6RrrC3b7HTomun5AKQNjjxsc2/UO1QdcOaB6SSnAdjnSabXbEJLj/v0DZKHZj4G6mSERnC4NbVVR1AXaVMxnNfthZN1bVKEZE4ydowwa3Uq6wXEkEscHM3CB1bbjs6dnbHc9/c5RzRt0pfB+yqitCrRMJB1QAvrLDh8sNo64cWDsEnVbMFvUlFoxs5ahydLEO4sGEfNEzg4e1zt8mLEfHFqXSCTj6ECCRjIOjo0dSFNjM9hIP4z0g4OJedB1e0xREmJiGB0xZMVNjJFE3k99zI3MW0+wDwHvc14fMuf7CiTeBUSwjN4jCdiQCe/KaFLKUx8X8jqshUGG/L2JiYSdt/G8ZijApUDyWdmUBFNcCYw24pXFWZun0ojsqxttblCTsnc65UapdZbkcyEaY6QMuRDMmdYeJZgggoGqztaRW7vRYl6jCoPzkTBOgEGlaes2kzT3e4yAQisqrbN6RxfZ/hMCYRzRWqKEwHmXj44JpNITnE4QYlbCaSVxYeqQifz7qqqwg5v2tBwVsd3nyVxgN62vU8M95Oa/lAqpsyokxI7trp/yZ3PzPTfhI9ooOh8ZQm7uK7IaTt2K0YREkO8HqfMeKIUELSe2hkaIfO4TOscl5c84F3ldlwcJ+X5JkBzWQdw7Yor4kAvrGAW3rAAffF73hULIDESTUyxcIp/FjdLEELIaDZmJ+pGsNBFyysu0BB9IIeIRYP2X30GcdnOZm4fWxomo/vPrL+P1/6pYjClMqPjbbK1cnAmZaaURj9Zm6m4Dk7QzR0EEQEzFQ2Sz6WjaCucyavvWE6i0zrOl2wdJZlx8kPkG1EGghWCMgsE6pFaIKBFRZQQ/AWWmY2vKnaIYIsMYUDp3ztPkzUvA3u6AlPXbArxzFMpkaQeQkkWoPD1zLof3qjw2xYXspzQ6Zx4i4OVNPy3CWbpKFJNXMx9QC60odPYDtnWBUYq60Eghqc0dErcPUKJUEl0ZlJSTll5TFjkkfTFf4p1HGShqQ1kZujEbkr1XkCRSRgbr+ezpy9cTSDt6tv3IGAIBSUgJ2YG1uWsWyZAcrRTjMLz2aQrA2xGkoKlnJATOe7yP2BAyfhzJvu8hddPiKdA6E7PUlNuolcC7/vX3jUgU02SyKIsM/WG6X1KcFr00/RvkdP9AGnM3LftDE6HJ1cW6cxmdiaAqFVoq6rKcCiUJIdLOatACLU0udFPAu4GiMBwfHdM0FffvHqO1ZrAeG2HVOTZ9R/AjrU7UWtFqhRARLca8EWmT8/VKQXCBoEtS0mgZOb7X0lQzkmxgs6FRioP5HC8F2lS5cIqCQiQUkWHYo1SaJuQ1ShtGOU6d0UAKgb5ztIXCmAJLmKbb8B+792G5Qf7KW3T7lv47zwm9RmuNCJ4QI8285Ru/8HXqWWT/0StcvycVIm/YMk+iEYnFsuV00bC7uuTy4oJ794/QWuFTNuMrrXHBZchNzNIcP9GQQ8oEvhQjUt7S0hKEiFTZhG+7HcfLgvmi4tWrzYTfnjq2KfEfxH+IAP5n9U/QIVJIBVqzcwNPL244OJjRGEnXd/TB06SWKBNFnZDRk6LhzmFJv3fcbGVueJEbUNerG87PJGO/wdp7DFrRdZ790HO9W3EuDcdvHmO95fLyhrZuWTQzTk80636DGHbYZDmXls21ZHF6jNKaYXBYkXDa43xPIRS7MRCi4Fvzf8Gu7/n8sxccLub0LvJeN2CUIPSBzc7ivCeJhCTmQozMt33j4Qkfvv8m59c/wAfLxeUlq82Wzmb5r5gUDwnxeo37i12TsD/G/1uBOXjHZ0+eUpcVo4Wuj1R6pN9aCmM4XNY0jUGXBYeHc6TSbHee1WbIz2FybNYdtVb4unqtsjAmA7liEgSrCdWAG0f+q+9+j/mPv8f+330f6fdoke+pptYMm4T0nsN5SVVkFUAScLXbc7PaUCrNODhW+47lwQJdQFWvGKyHMJJKjS/3DJtEUVScPLwLKaBioreOn/zwx/nZf3CCDJGd9dQkVIjsdo4hwEw4vNjx6uWa1bbHa8O8Mhy2M6LxBBUYg6fRcz777AVn12s+/fwCvOTrj/86pjnhSFd4v2Mc1zQHJ6T1wOfPXtDZAV2WhGLO/KRhb6Gq5hwvlvjFAX6z5+z5C+6dzJi1Jd5HUpC8985Drq63XNxkH+iHHzwCn/PiPn92wWYzcL66Rt5Yvvr4K1R1wflFz9n5hmG7ZgwDs1nL6WLO49MDHp4umDUtr64uGfqRYdhjXUdTFiznh8QoKVIGWCzrApkku+2W2I/QW+zaEgqBrBIiBsYBjk9OubpZMZ9XfOPDt3g/SLyH0+M5ySeuL29wweNFjljJgd8KKRTaCEYh6bq8F8VW01lPN3acnpwik2TbOX7w6ee8KK959uIGOaupZhW//O4pR/crJFXOtKsVZYKr8x67tby6WnHxas31+Y6vvf0GJ3daZDIUUiOaRMRidx0ijjx465A0Btxm5KA5pLeeeb1AkhjsBqkETXHI5VXH2lt0JWgbiYma9Wpk23uigFfXV5ydXxLRpCDZbR39MDKMlt2QCeA+WrxPdL1HSCiKvB66kAsvYypUM4OUcF1HSB27bszZ1AKklqAkQZppMiTwXhKURMTEiJ32QyDleBORciMujg7rLNJEZFBoaXJwfZ+bztF7EBGbEm4cGQcLMis9ZGGwCYLLRFWlCoIb8c7T9zuULCY4ViZxhpCVTfPZLMNvprX/9PSQpm14+eqcrMstKYuGw8WClAKh6yhkLhTloqVynqJpSM7Rr9f44NCmpmhqtvt9bhgbTVPPJuV9Ivgs/4zo3FycGpuUJcsg956RAAAgAElEQVS6RQtLJHMxnM+Fl9KS9abLcs6imAimTA1CkBOgsB92WDfSNA0pJrqux3mPMiURMU0mM5xwMWsQgEl5ulxVNYlEWRqapkSIHFkihEIbUDo3rr1zJClJRLwLeBcBwXrTQRKUVQbPOG/xsWO93mKUQmn9+jwpFYgk0CHDZoqmhBjwPp/ZhBCE4IhaUpcl3rt8jpYqS3Wnwt8Ynenq3k1T1EASEm89LkbqqsrTXqFyoztGBjuS/vyG8/PrL831MxeLLjma+hAk+DAQwpSbFhX5eQqIKmKHW69dPvTZKV9FqS+DUYVS6FJn03WMpBBIU7mZUtZH34JuhjFR+8i7dw9oZxWr3Y71ds/dg2Ok1gzBQnQQPc5JvM/j/uxIE6QUcc5OvgD52pt3K3WE3CAyWmcJaIwonbPvIEvG9/s9RifKRYOSOezYeYuILmf1SU0i4VOid47RBlwgdx2FRJFlmCGCC5796LHWcb7KRVAmWyV+70fPCT7gJ3lDQrzOi0LkwNWUMhRmEmtipM5OyOj+L4+dENBWYgqNzQAhpRRaZbBJjpISSKlJKufjSJkPACmN+fMXOU/s1gjtTAExMU5NgxRzsGtjNMHIaRPgdaZRXmx4HVdyO+0ojYRk8vRKSHSp6Lse20WkDJPpOcuThVAMLr4elDg75jBs9dqIhRACayH4kZjyhKMqG16+2qK1QMgN3nu8T9mIbV2OWdEapRVSqvz6UgHnOGupdEnbFNy7e4wuDaopKeqChycHfPXunNYI/DBwebPGxwNSDOzWHatJAlxVBq0UXe/pR8cnn2+YG81uHFClIlmPt4HDR4948OCQUiWidOi6ZFk/YDd6jpYGazv2NxdUpuXwzh32+xt8ilTzBXoBafSossD8wscoU8P2fczym+zjJ5Rij1BbbFGRhMPEhE+Cv/Ebf4u/9te/zQfvn8PFH/IHv/8JL15cEnVgcSARSVPIwLwuWTYFhYJvfv2rXK/WfPLRJxweHvDg0b1JkmzRWiOTYrBDPsDKbMgnCaTIQdx2klbHeNsIEMzqhidPL7hzWPHGgwWfP7lCOM8YUu44C8Gvpb+JQPJP+e8yrrs94N/7u3+bD755h/XFGQ2Kfh/4/MklQkSeXwqur695tbqgEIY2Rrabc3TyIH2W18Ts+d1uLqibR/zqt79GcJ7d0y2kiHeJtYv0yrF9fo4pFDZCf7Ph7NVl9khrw04Z+mFL7yzLWUn/0TNmpaZsACknj3Pg13/llykrh3eWdvxjFqdHXIsjqoVBSRBKsessP/nsnKFf53DkBMWUatEFuPfglPv3Wpy95PmrHd/69of803/+L7i8ugThpicBUpych5mjDtPE4v/pyrPb219/uYjEkPizP/ssr91JsTQVqg0cnsDBcsGD+6eUxhCToveOiAN6UhywfWTWllzvPClCWRmCsJhUUKh8YIxJ4uiw/ZyX1xbnEyGAj2BU9oa5zvLT7/yUrbUUTUV7nBUVe9ej6ppvfvAtnE/UyjM3nhDg0y+uWLYFyyoRkqDrwbvAs/Nrnp+tuL7ZcPh8wXtffUypLevdyBevHD4MfPJqiy4lR2ZBoT1FIXFS8/mzM9a7E1Ic2a5vSClxdHjCtXVc2yeUGLQqEeUBO7fma9/+Jb5uan49zRERwvmP+PTPnvBn11eQFAKDX2yQrkPFxLwqUcHw5IsVJ/aSo1nDR9/9IVeDoG+POD0q0bWh23nCCEfLQ0SR+Ge/91P6vqcbe6qi4O7BnN/4+lt0Y0c80BwfP2T5oKVUmsXJkv1uYLzpaYqSdz94FyEixITtRzbO8+qFw4cz3v/qA9qmwjrH2I+MznJ58ZIhWNr2kMd3HgEWFwdmTYlRisFOYd9S4VzCuYjSJXWp6cc9L8/W/NEfP2M/WBYLw+9drFjMGr7xwTu08wNeXZ6hpOTewwUP3z7iejuw3jiOj2ZsVzu22w3b/TX3HrbEUPDi1TUHs5YP33/Mt37xPexgefPhnfw8hEi33WGl4/DgDsNuYNPtCSJx8mszhn3P5fmK06MDHj045d7hkmcvX/Hk6hkSwZuHR5zMTzgbN/QJbj66QBWaoq14+WxLaxLGVBSlplosmFctOkJVKe5Gi7WWfj/gBksc9oSxAyF4tKx59+Q9pFZ0Y09i8gNWDSJodvuOs5s1Y4zYqOmGHUM35qiHSjOfFcyqgqKoGVzPdr9DmYbrVwNKRtplwxg8F+cbgstrSFELpMpTp/XNjs4bUgr44LLfLIWczZwcUQRQsN5Pyqa0ngYAcqLW5gJKCp8n/5D9k9Hh9uvpvGeQSqOLRCE1oBAy/xu8ixwslxidrS9Kt5AS2802n5ekxPae68stow0kStDQ+54nrzbURUnVLBh8YLvKWczOOeI+Kw+UKKjqgrIUOeJiPyKQ1EXDdrvCRYd3EYlGTKAXpHjNSYg+cH29ot9vEVpOZ1dFu5gx2pFGV6SUGMeBEHKWoxT5LIFQQMRogRIaPw4IBMumQRmDDzbnCyaNkQ0Z/Jgnhz7CECPr1ZrgXSa11gWk3MzyLoLMURRK5zNnGses6JgyDoWApm1AJDa7G8rKcPrwDqUp2WzWE9MikVLOOt1vx/w6wROHgbi5QSCYtW3OlxYSZ8G7BFEiZY1zAz50rzeKqqpyjZ/g9PgUbXKOprMD0Y95yFGWCAT7ricPjSRSLpFC8OLVzV9oj/r59f/v9TMXi8eHc5bLhpQS1ytHtwMlzetQzZRyMKqu9SRhExOgxn05sk9ZfpnNxJNEVZILSyb99CRdu/UsIgTeKM76gdIHht4y9IHRrzO0RuaOeAw5Jw8EKeWsPJU1sVgfETHliUy69UOmadSeb1yfxx65SLKgjJokcUBSWT7h4jTlzHKGos7FoHMW7/MmmZJAa0VRGrQyGQyD48s8sykzMlVomT16kD1p87bOMi4ypGXfDVibpSu3huG+7yZZQi7I26ZCSYkbLD6EqZDSGaIjEs57Nl2X31/itaczhIBPIFJExvw5vCbQ5i+UkBJhGKfv5rYAVHRdn4m25CDWmHKnKNx6n0iv9fxKyNfadzF5AqSUiOhe/1k55FiVGLIEQ6kcHOucJSJQSpNVqylDaqZgWTH5VyEfDGLIstn8V3f4MIAsMLJEyAJdRkqZMGZ2y/TIE+YYaZsmg1W8R8qWw9kSnzy6FCACcb9n3O94sb1h9Rwqo1i2LSJFmplBCTKgSClUzJ+v1orD4xnzCNv9mqoqGLaSwVmIEm0Mu77j5VkGBrnBgZS8865gGBzXVx6RIoURWLWDJLLpnUgoIkkE3NijiyXqb/0Bsqzxwx0+O9jixYb3xIwYd9jLz9DRoatI8oZ3336bD999THrxlIjk1XqP84JZ1SIFRCFom4ZF2zCvCsoCBmdp2pqFW+D8yBdPnvDwjccAjC68fl611viUwU6vjfcpT5hj8nAbCjzdYy6Bloo3Hh7z+K0dr56tCP2QpbbpVrqeiDIDGEShODmc887JAWe7K7SN6DsN95b36Ls9j98SeH+Aje+hEcjR0nUDv/MnP+bit/+UfZebDUkmNBGZIpcX59z9L69wL254WTXEEDApokTOj00+EfosaU8yEaKn1DrLzgrFYdFmX+TlmhBgu8my0ELXGC353kefE0afCXiA0hdUamTe5GiHXxoGSm348U9ekpBoshxMCBBagMv5azebLT/+3HF92XF5ueXzJ9dcr/pJ556LrwxAnW7u+LP5Qf5T1Uy/um1U5SU8kTAqUFWRemaQZcT6PAlBFDkWKCYKJZk3JZeXG5LwbH/hv+B5U/BB+icYKZFRkVuKmcCHFNx0G3Zjl9d+IrvNjmgt42qBdYFUKA7aJUIJVqsN+MRqNxI3lso8o60LOmd55QZUoYimZLvvWNYzmrJk1hhiiIxuQEvP8UGFLlpkUoSgWB4e8GbIAK66VhSVxNtsFCgKxf07LffvVLhRMDrN3aMZUhVEYUjCc30pKLWiLQraQ836OjLenCOkYXAlKUqUG+lv9mxtIERHSD1L1WEDFEIxMnn4a4mRktEljg7nHOma6ugead6wO1hS2T2FUjjToLVnMXtMDI6b1S4Dk2JkpGdrd1yd73BRUQhJVJ633zzl/kGLflOiyHTEVxcbXAxEmZBG0seO7dDx5NkZTVUQgGH0NLXm+PAYbfJ+lGLPMOR9bZCBHs/Q23wQROCsJyY4OjBENxC6Ad8PNJWmnhUsDjSVdDRFQbQjm6sRnxLXN2vOr7fZEy80SMOw64g+vI7TSiLh+4B1jiRr0JHR9/Ru5IuzM5ZNRaE0W9sThSKsbjAisWhMloaaFu8aFlWNMgZTGupKYozg6PQEgaCRFRrJy+2ah3fmfPXth0SpiEpx9fyKFC3bzZ5+dHmaXBZoU7LZ7XNzNstxqIqCIAWmLDNxMkC0gUrlLLq2LZjPK5rSUCjDbAY+OHa9Y/5/svcmsbqt6X3X721W97W7Oefsc87t761bnasqMsYuC6ezicKEKEFIUcQEiSkjpggxhBFISBkxAoRHSMSWSESIQYYkBMdN7HJV+Vbduv1pd/t1q3tbBs/a+5SjRNiFCB7Uurq65+y797fX3t9a73qf5/n/f/+Tmrpac/7iGpTm6GjGrDJUxvLs8sDNLnB+3qH0wNe++i6bzYbrm5Z+8PSjKHzmzZx5MxdQHbBazghObAOjd2JXiRE9SQtDErp5TJMFRcmfU5DnfDc4sXegcD7ivcc5hy0KQN/lXRulGDsnsRBkyrJAKZFsRjVSFqJAM0q8CUVVc9tT7kcna4/RAvnTWmw0WlQW+07WWMUERUVNNiUQPEYiYyQH25SypwoZpQrKwkoUEdN+yAqkLU1SXIkGUpRNjQ8RcR5JLFbwkX4UuqeelHBFYYUXEdJkGwJbFqAthZE8aSnS5DylsMskpqzEqIBEnkj/1awmBEsGQpwgfMZIPFxIpGmal7NEtGkjy3+erED5IPR+5yDGxLVqKXVP2x6ISX7umGWPqXUx5ZRqdNZC1wcishcCAScllRl8B0hhnknCmMiZ3aGlKAoKa4mdRCXpyfuZVZrk+a0o7hB7SghR7Ek/paH+mT1+4mKxbSNtdwOZafQ8baTgbtMuUzs37VMmDrNKiI5AViqFmqIS7PT5k1du2kAqqwhh2pgpyCrghkgcoDVRpBGFYbkoKYqC9epkMo+P7NuW6F95o0T6KtQ9rRTJp9sTxlgj06YYp5JFumu34dY+ZMlDjFFupghdDNwSV1GKHKYJCAC3C06aqFTiCTCT5r8oBeIDUz6d4g4SURYlZBi1Q+npe6BYNiVm0VBYy/HxEVVVcGhb2iGw22/xbiR6R1KamGB0AVNkmsoIvStL5p1WEvw6jhJNktRUsJLR2mCtIsbAnRQNKeoUIjGWqaj4oUKO6Jyl6FNAjqicsVoRneO2vTWrKmxREJ28BzKplGspxwR3WviMIYM2U2EhH9PTtaI1pOTl+5MxRuODLIZ2IsXmnBlcJkbxH+qgGMaewY0oBhRSlBfWEFIQf4BR09eLnzGE/auF3lj2rSPiyRq0MhTZoFJEGzCFniZHFqPh3vE1MUScc5SF4Xg5J3iP0pb79445Xs9597V7lEbzta+/K8qf3qNTIpeanKP4BhykMdFkWFQNu3Ekq0zVgDFC2JN7CfzBkb0n6ZGhPzD6RO6u8V/8Pv/pW1tUdcV/N3yDoe25/uADyjxSlVA1K775/gk/937B7uU5l3vNB08vCKnkaDVDZ0NRzHj39YesmoJZnUQ1YDIKw9nZPdq+Zbfb8v3vfZ/j43usj4/uvB2S7WemB6O5KxhvPY22LMkJvJeGjioMo4dvvP8QrRW/0Q70bS/dzkmkogCTJGdzdJGqKHl0eoo9bBh9pKpmlNbSh4D3HmMstR4xOQEFWSne/9bbfHq+4Xd/94MpR1WTSJw8fptf+ctfRfst49BRmZIheFrnCTHznR+85Pxyjx/PqeuKgRn7tsfvRiJ7xhjwLvHixtKNkbP1nGxGclJ0o2ys9j4yNxqb4WLxS2hdcLT5TdqdIXoJXVYofu97n4jPU0kTLOkAMTObzzg9mvPDDz7htzdbvv61t/md733IH354TTcMQqSe5GS3U8EMokT4E63uU87ldHzEtKhNza2UbzNaNU3jKUooqxWomjHoqVZNaCVgn9JYmGVWiwpbzXAPvixw1m2kKkvpHWbJZzRJaJI/+vRHhFBgbYHVhsNmy8svLmh/8B71rGKxkBiHruvJgyYMjiJoTGEY3Y7762MGH/nhkytuhsCyXjCvpNHk/Q6L4mS94uy9Nznd7xj6jpubnnZ/YAyRZj5ydFIydHB13WFHS9e28pwzmq51WKPogmNWlzw8OWI+q0nacn55wztf+hLzWUlRKJ598jHBFBTBkpInDBt8godnx/zs8bviOyoUqpLJrbKWqoj0h57PPnrOLHuMntP2jrop8N5z/eRzuhRYred8+StvsagLPvniOS8vNtx88Zw3H55yTyfGMtAs52AN83LB6zPofeJi7OlS5Lvf+YjoFIduwKURYzRVYVmuZ7zx+B7r9ZrNbsPpsmC2rBkGx4efPmVzGGnKipvDgdFHVvMl83nmeL7Cu0DbDpAy906WnN5fMWskwzV4ee64MXDvwT0ePXrIo4cPZCNsMuPDM6wymCwWkAeLJTc3G15eXJN8oiktVW242h7wLpBDxOeMT6BzT4xw6K5wIbDbO0xl+dHnz7h3dMR6uaCoFToq2v1IjI6H99ccrxcYpbBFQqtMNziGPnD/eMXRYsaLz14SssJpw34cuH5yw3xd8fajMxZNRdNY/ODRyktUVFNytjqiKkqSsZyerii1QqWId45iVkvhoAtSDLy4OKcbBl5/6x7BjaTRiaJhHFDGY63hnTeP0NpwtFpgtSK/dYytChIGNwS0yjx8sGaMiX3rcIeek+MFUZ/w7GKLc4llU1DPLVVlWc1WKAzd2In/8dCRssAKM5kcPEVZ0o2eJ88u6IeR05NjxtExjlGKolL8h7vOk7OAXXyQZk9poSoq2naQCJCxpx8GnJMmvTWWopqx34+yp1LQtQOD87RuIKfE6DI+RtmTJVH69H0nU78kzAV/2wBTSSZYRUlhpMKsrKEphZyekQaHGz15WsM6P5BintRUMlSIU0Z3XTcE59FWT8VxpB16YsxYU4rSLCUUCquhtJaqLEgp4tzIvJYGW4wSPeSn/dToRaVltJUVNkFOQoYXX6kRxU0MWKDUBlMY/JQXThKlRIxi40BJ412UXQmrAqTpZ0zin3RhRGkj9P2Y2FxvCTGRk7obOtySVuczKxFtLsnzQ08xdm6UIvT2gaLA3alUpudCDFNmeJBpqVLUZXGXw5umvbUx+s5vW9hC1EUxU1cFRfHTYvHP6vETF4v96KRzksEaJRk/TEPDu8GhgGNkYpdQ02hfjszUQJomjPJvuu0GTYcUnSATQgnBJUvwrTGWshBITNNUMmnxQbxRSTbcMo2QQkR8lkkKCK3RVt01y/VURBktnysyThnxa2UJUeITJB7g1Unnu6lnJnoJoS7M5KWbClFAbs5pIRL4yy0YR02SLpnmGZ0IAdTgGQbpynkv07PFfEYxUbJ8EhKY8x4XoOs93geZaKLxITMO4ikcY8Qa6RyDJoYsHrq7aIxpEz69gbfvkVJCOLsF2ij9x29ko/SraezUIFAZIhGmaJHbt1gbTWEMGNmwai1CN6U0MU0kxaxg8jWmlO4aBEyiZKMV2ihyiHdvQVkVMuVMcTJgm9v/hZokILLP1ZR2ItdyO/GEPEGMbDToUqGsvEbwAjiyxuCV5AspnadeqxS3WLn2qtKitCZOksphFBIcgCoU1jKBmjQqBaIf0EgBaZSlLI1MRH1AV1a8C4CqZToPHqUKjCohB1QpESqjlmsq5yQLNQata3ICffmQHHvc4x05JpTVwIwQEtebnpQjJmuSSlxdveDTT0s25zdcXXv6MQmox4JWBYuy5nhZM6s0Wss00KAm4JSmqksWec711Y627SiaGUUp9GGRLE9HyhMQSUmkTvqxEnDy1lWlJfjMejnj8dma5aKa3v/8Y3pIROqeFcE5hm7AD4EYMz5ltPcUymBNRXKgYyT5Qa5VI3Los3tH3DteURuLz4mUNQnoAzw6O+NscUTubyjKij5kNqNjjIFczLi66RhujikLS5dh3zrGTcvgWlo3crN3hJRZp8TDZUPSM5xLbK4czkV8HwiVSJ4uHv8tkYhf/aYE3Huh3emYuN4LOCGpKZsUkXQv5hWl1fTdQNuOjH7k/OWOfpQmirq9Tafp+5+wQvznjn/ZF/3Yx5W8tmxU1PRfmRwbboeb0j3OKFaLmrI2XBgtdNZ8u6ZEVJa1M+WMGyO2nPPuo9cotlvprlcGbUqM8hSF0PZIAvxZLef0WhOGgDKarvNc3xzIMRGR3LjSZerC8PnzC9w4UhtLe3CsjGLc7ghugJgoS0MIiRQiRVHQK3hxcwBrmFlNXRVUZcHgFWHMHHzE58DR6KgrS12W1AZKncmIvzlHjQuBJy83kAJBeVShGUfHcr2gsQW60Jja8OTiQGXkdzqGQCLRlLJhLJVFBzi0PZc3O2aNwQbLZtfSdYZ+u2d307LfbFlU4n0PKWMqS6RGRcV6MWOBJvuKZBSbFzd0XeBm10kgtzWs6oJZXeBCJOsECZqqlIIviye/Li3OB15ctLSj5+xEgylYFImulwkbCWZVST0fSAl8GHFupLKeYfA065UUW4Uhhcg4hrtmrChUAjonysIwmxWQhEJdVeLx2ueOPgW8C/S9NEXbzjMGmdAMTprS2oq1ImqFRRGTkNM7nzg4TxMiOoGJiaYR3c9IZkiJIcQpPkvjUqYdHMoobFFwsz1w2LcUVlPPF5SlprI1trDcv78SyWMI2MJiUiYMnrbXqLJCW01tLSTN4GYUZaYpLUkrhhglv1Rr5k2JNlbiZzRYrSAnTKGnJntBaQQC11QFCVjPZwyLmuRGbFPz2sMVKkuAvS3AFopF06CUpe004zgyZpkAm6ImxUx76FFlQcyZRSOB7pU1zKo50YtKpmxKsoLVGDBa9jX9IB7rB/cXNEXF9fWO0Tuu9obrnSEGhVKinCrLhlXjpmc3jEPN6AKbfiD4gI8wjp7RBbyXxn1wDrTCWFlbTJSgeaVFwSXqsXjXtM85i38vJdkr+TDtUwUQJOabNI0jExoNJuNGOa/CCOHfTbRPrWTab7SeINEZa8RiInso2dfaUqwsCVnXss93q+ct5DFN+8c0bXRyygI4RPZLWhZXog8Sb8akxpvAMOQsgwWl8DmgtaR4S76WNO+zkn2UVvpWuCVDGfHZkKc9qMB4JvVOTHevkVMi36r1kjgZtNXT1BVQaoqAk69NOaO07BlzyneWpZwSt3A6sky09bRnurXSy8zlp8Xin9XjJy4WlY2UhVyAKt1GYyAXI4kYmQolmTfmrJiSsOXrVZ600pkUPCm7V1O626niHysu1d3rmMLg8jhFd5SkoLi67uj6Ea220t1IQi8tyhIf+jvPXYhT/IRCTvq2wp2+gzFi4pWPT39WETWRLUtjxYeVJ1kJ3Elqi2XFLV2VqdBKOZOwlFUx+ezk5wgxopUQvRRCKrXGTAuemrx2Ei8SUyCnTNv109fB5eU1RmuOj5csZgUniwKjaxbLOaUVD6Ugi6VoU1pM2VHBF08vBEKSBBij1UTBkqSh6efLdx2h22mCRgnZKsuCV9xu4NN0jlqKptEnvAvTRSGvG7qeQQs22hiDtXLpaaPF6+hEJpdzmmBG4Y6iKXLeRAwZpX5MDgx4LxmWIQExktPkDTNq8pzKptQoRVXXsthpgQa5MVCXpYBZtJLGwzQhvc16ur3+5k1BaTWFFuJXwEwktUxhBPDU1JKJWFY1ep5ZzSoxpc9LmqoQqWKK+Bi5ON+SdWZsFbrMWCMo8LKs0FaKaG0KjNGU5RzFSNWAwpCyyLON8sScyCkQlYNSoSkwhWL+P/4NKRTe/+8Jh47i+DHEn2dof8THF5e4IWJtST9u+NW/8/f5X/7XI04XUJWK0wdLSltQasVy3vCl14+4t1aTsqcWQp0f8GR616KAqql46733OH95zRefP6WZNzx6fEZVVbS9QxtDnO6NlBRZiW83BAnPkY52YlXWbPYDx8sl777+gK+//4iPPn6J84FXj5FMQGiNYejZXO64uRg4XO4wOqCaBmszlW2IoaXUmUBBTKBGj/eO+sExP/P+u7x8csV3fvgJRhmi8nz3u3/E9eW3+C9++QW+2/Nf/tYZ87KmqhMuRd77N96msJIXKzRhyNrSx8zQ9fRj5NorxhzBdVTBMXrLrg9cvrwm9AMfPbsEI6TjF3pGSIk333sL37dcnm+5fFqjdObyesQoaaqknIhT4XX/aCn5pSrTLGu+98NP+ez5DSk4VJZiTTo/U5Nskv3Ln/80i7ysVf9hEun53zY10nyR6XcMmaHXlBU4P1DmRCoMSSWMKol6+r5KE5PlaKExFiFJagVYUY2QJWxcwU3X8fzZnr/+7/1N1rOG8nt/QIye1jma9YJ790oWqwUA7WYvMJ1GszQNzgbGELm43PDki3OBaVULbFVTz+Revbi+pLYFdbVgs91x+HTPZjvgRs/ZyYqHZydklRn6kd12oB+EGOgDPD4+4eRoQdMUbLuOQx9InSWMmS440gHSxlHXBV98+APcFDF0slzz4sUVn37xnFkz4+H9E+rK8txd8+Tza9o4oLLwJHebG46Pj9i1He3oaeqGh0dzhq5nMVswmxUkW3OiLD/7/iO8j3zw2XMO3cjZ6Yq333kTpROm0gyjIgyey82BpvAoA8tZTVMXPNYzclY0OuDuw+v5njTCxsSzl1dcbTs+u/gR+3GkUZaqKpnNLjFasZ6VPD6dM8SEMnNCTDy8X3J2VBG8wZzOSQ/vMQZP61rGriO6SDsOtP3ArJTr6fzqhiuVKAGjDGPOxOGALrSacOcAACAASURBVArQJWPf0iz3RBe52XbUZcm8tDifhdqiNLa0HDWWeakISrH1UCzWnDSWoyoTlOKXv/0es1mNNpZu22KtweY8gaMUWRs2PkEMLKuSGnBKcbKsMEPPN7/yJXShuekGLjct1VuJt958zIuu53LTc7kZ+QtfOqGxiqubAR88Y3egC5BNlritMbPfD1xc77G14ezeguZoRs6wqGpU0rx4ek1MEVsYqsLQ1A1NU1MYhVbSFPTJ0Q0j3U0AOvk4CVOUNFYKiT5Iozp5B9uRZtZgS0PXHej2LUVRcmFF+lhaS86Km+2BsrA0TUQpjU+KsXW4cWS5mrM+XrHddcxXRyQv8J3OO8q64ex4ysFOsNWRze5AbUrW85pZsWL0gaapWTaJlMepcS8N4AfHFX50aKNZLk5RRtO3XvYq2bDdt7RtPzXBFN7JpLWpyilIPktWs7L4GCRexMmQYn+QSI9xTPR9T04aq0u6cZiIrlkmeSGSnRd5Z12gtGbXThEfLsj6GyN102CVpiylQBsmZU9MEefFk6q1omlqQnQSyZYS1hZSxAHzWqxb3jtyjOjCSjMjJaILxAxFabDKTNJUUd34kCdKvNi67NQgL0tDDFGskcYQkp72TpJ7qHU5LeWasfdkMra0lJXG+0hKMg1ECUV1HJM0Q6pCYDaTMo6cyTETk0KlqQmpgPSKVB7D1NS3dtqrJ8aJWSJWNDPF14l0WKlbWKE0DffdgB39n+IB9dPjX+XxExeLsjcPd3IkqbcmCt9Ua6WUhZyV4W6SM01C4FbZpESDzqvYB61v/U0JZQQyo6YOSApSXBqjGUZP2wscI4eAUpH3v/Q6PiSGcWDoHYvVkt1uL6HyWYncSRjqjC6KDODu3PIUMq5kbK8UYXCYwkwdD4WO0n3KSaacZpqyhBTJbpLLTjdfioqQE3H6ebV6VTwJ5RSRNU3d9RgDVhfMF0tR6U5T1VlTTFM/eZ26tjRlSV0WvPHGI6oS4ii+z6P1mvmsoiwzRsv5WWNRU6HsEvz271uenl/y7GIHSjpkLghNtKmKO1qX+rGiTCvxFhmjp2mFLKC307ycEyF6REEpC1vMtx4EPUGP9OTZFJKpUuoOUBMnIlZOkeQCTP5Khaas7eRdSEzuxOk6gu22nSa00yRUTZ5KK7IV+RluibJKps9RTX5LQfFDuvM93npYjS0mKYdseEubqcuS1XI5xbKMsngXCl1EjDY0fQUxs54rrFVsD3uMUqzmCyBRlpaj9YKqMBzVivm85mQ2EeeU+FmbpmDeSC7jOI6MvicOhqwj0UpsSvSSczQOB7yT7l1UGYxmRoOpS2yeCv9xhx9bSt4g9gPj5iVjt8emUjp5WfPk+QUXV1u+/ZVHrBZzqrLGojBRsZgXnB6XoAI5ie9ERdmcZB0Yhyj+1wDGrlgfHXN+cUnbHjg5OeLk3lKKRaXJRoCYKUWykoaENGykc5kV2Cyd89F5VFY8PjvBFIY8/f127Qlazi9GiKogVQsoK47nC8pmSa4KjI0kH7CLGVVRSuBy3+Ndz6wpeefLb/LOs3O+++HHFDoRMng3EBEAQ0iZm72jqRU6BMZhIO4CMQTS41MKrSmVQWvLoilZ1aBXM947XpIqoQir1uOLOYkCfCDHkRejQ6eS5ALf/3v3yDnz137p59ltB77/vY/4Z7/2mKurHZrPUVmjszQtghG5UqMtwTla3xPI3Fw6uj5jM0Q0OWsy4ZVmaJrO343c/5THX83yAP/bubqb7koJO3li8tREmqTiZNko3Mb8KKVEWo7ituIXRUXGqkRIioREfCSXiE7zb//1X+Af/Nr/hhsGjNF854MnFMrxb/1Hv8usqtn8/b9JrxRhCHz02RPWZc3j9TGrRY2tEm1n6Q6ey33LAJgx40rDt77xLiZnVNA09YxHr61oD47Ll1uePH3Jzc2eQ9C8fLElDQOzuuS1kyNUUVLg2VxfcBkC133P4CJLbViuVhgi11c3fPp5y/rBI7LqwGVyyNzsOi4vO776+gn3Hzygma0Zx4GiLPnk85d88Owl5JJSzfmlrx2xPFrjUs9hiFzddLSjI7vA8f3Ae19+nbquWKuaebVgUC2PjirGheX+a/d44/XX0EXFdnvD+cWevhgZrWepNLauCApuDh276xuCS+yHDZECrWoMCh8Snz4753q75+mLPf2ohKY5PSfmteUb797j8cMj7h2tqIqMiyPDmFC5YfQbjo6PWVYP6PqB4arDKsvJas49u2LbHThsW+qyYV4vCGEkZ48pLMfNHOUqxhA5uEhZrVmtG6KLPL/sp83tgRAdL296alMyKw1n92ccvXbEh0+f8drRI3J9D4PjVG05bma4HCiUUD9rbVjN19x0L1mva4Yuc77r+OCqxyjFfWuEpOwd3/r629QuoFLJ3geudwfS2NM0DftDy8lrZ9T3DUedoq43lKOnjJl+TLzYben2Aw8fP8BYh0HTOcfVbkvuMvfur1guj+j6ke35Nde7nk0/MI6O+WJOUzekbc9hf8lqbvjW1x/x4N59xj5w+OKcolKMg+MPvvcZz59vKJcNf/7n3uZ01TBvSlJW3Azi9R6GTGh7hsMBkxK9iWz7kZwT7775kIcPTvGxJ4weGxPrVcPbP/MYS2bfDew7R0Zzc7MnJPjsacvu0BJM5shk5iendLs9wXuWs4qjo9cIww2Vzrz7zjuElLjZbMke+rBjdIlxjBx6L8qWDcSocAF0DOQQqLRldAFcj0kj7739BqXVlDrLZM8WKGWxhWHoW+qmYRhGumHAlHO6wfHiXBrqyUsxfLUfcDFyc9gxOlFhGTPDDYGoB6xVVE0jfsysGZ2bADnS1E8u4bQA87TWjM7jU6LvO0KUPYa1hmzsBBITm0yOmRiEKRFSFj5ElIlkaYScn1IiTOyLGKV5VlWl5DkGRy7zFCknU/dxossegsMWlrqoQKmJYj8pdpSZoIIG0KCFUG4MVJXGKE0/ekKYsj2B2WI20UmFP5KiZxxH6mkarpBp4621ME6TRybLlVjSZC93u2+3VlNYKz3BGETJpzLeB5maGyPUe5X46Vzxz+7xExeLjS5vB+i3VpYfe0n5izFMkIP0Cj6SJc/mTjKoBHmutIwnjVakINICY0tyTOSYUUY2GtqoKXNO+uazUgLZV+s1o3M8e36NylnkBBo2V9spH1CkskVViPnaFhQ2342+RQJ7e556IoFGZnXzY9JFAC3eST3hjkMQDX3OuFuoh5EMxJCd3AQ5E/2tlE6TMjSzuWTURAlGz8hU0QHnNzsUMC8buqHHhUmDjhSxCXBhklH83qdkH2QamaJINa0BrSeoTKasSorC0ncdxhQsmhlWK0zWqOwxRrL8YpacSZVhMVtwl5R3u89UMtkKQXyUpq4wk+SgKisaLcVV17ZEFWlsPZ11pqkbbh1UaTovYzTz4wUxiG+wLCvqukJpTXCesipJKbPd7RinAFwf0+QPlM2qyou7yWmIga7rpilyIR22lEV3P8kmIVOZ6Z3UWt47/So76PZtvp14xygZiEOfGIfA+aWQ4G6tEuLplHPxSZGUpSpKYniVlXUnM1a38ipRl86bBqsUegp5X84q3nvnESfHC6G2IoCiyigKqzk9mVOVJbNZRWEt230vngijMVVFagdu3IApNI98RGnNIReMPlPcfMYP/vdf5w8/PGd3gOWiIMUdzgUerVY8PFlz/+Ep88qiiCyXC05WC372m/d4uJhDkAxUNeVeub5D54w1NXrK/TsMW1CZ97/yNoddyw8++JD58pyv/cy38KEn+0G6lqq6y2V0zkvkipeuZ+8TsTAMB0elNX/ua2csZxXj6FAp8zR+ItKZDDWRMDi2B4XLM5ZHJyg8MUQ0HkfNg7ffR/lI252TSwEitG2gLEvK1THVcknCQCxROF57/Q3unRxh9EuauuG1114j54gxClNWWKUkNqeLFKXBTOtErQsyEH2mf3lDjImZKSBDiFconSmrGlMUvOUzWY3oQrGeC2zhb/zKt+i3G+y/8wsMasl//d/8Q37ru/8tzcziQ8aHxPFswaN33uE/+c//A4ara37wu3+Ejwld1PxP/+Cf8Aff+0jk98RJGfHPk0//lNVi/hd87iStmqQZtFlTD5H1WvL3fJh80DoyL1dAJqmBypTkWu4VdacRk0VF5N41Qz9SljP+8l/8Fv/01/4uH373Iz5dn7KYNYzdyLPdjptdx1b1/Pr//Nscth5FQdmMLJoZP6gvRDWS4fh4SQye+w+OePzmGZvrA2VZ8Du//Qmjl5yxEBNvvXWMyQmdDW0PuydPef3RguNVzVXWbF2mvzpgGXjz/a/idhtsafjFd95gu9/AYs3N5oZtmzhaHfOL337AzfWWEBacvX7M8XLBx09f0KiML6748MULPvn0U9p9QtcDLgbePFmxXJcs1xa1nKGKkuX8IauFYjnT+Dhw/eKKouh5+sELnr244oOPP+Q7j+/RDZFdNxBTZjErOV4UqLJidIF76xknywWz2QK9rljhmVlF0VhO33+HspzRba6Y1Q2Zgnb0lIsZ3/AjMQWZHA+KF89eUsw0J80ctObjZ8/4+NMnfPT8kq+88Qbv3D/C6pGPX1xBWND3Ay/UByIRPr6Pma/xRGaq48SWYFYcLZZcPPsQVVpOHh5TzipK25COao604mE2RA9PnjxF6cQv/5U/R9s5Dlcdx8sl5ljR2DlpzLx49hIXHQ9PTun7lusvfh+XFMPxKX3SfO/jz6lquT9fXuxZLld89b0HbLYd264FpfnS6Skvd1dYGzidF5ho+PQHn5OUZnNoGcfAdtcSU+Qv/eLX+P3f/oAv/t7/JZJDpfnyW/eZzyrun82olw0Le8xVeMnmpuPx2Yz3vvwmbZ+YHd3j7/7mP+XZ5iO+sY2cHc9YVp5yqXn98THbmy1uVIToON+ds90lQl/y0ceWp+d7Li+uubra8bWvvonLgWa14nG5ZrmeMQbNi03HcqE4WZ3w+F6DrTSmgBASL65KbnY7zq/3/Mb/8UPOr1pef+2Us3tz3jidc3S05nJzzcXNjv3hH5GiZj4ThsHoM48ezTmarwlZ8/bDh3z5tTXOjXz8haxvdVOwWDbkZPg7v/E52+4j1rPvUzcWpRJ+TDx+veR6IxEv99cF+33PLjhm2hKC+Bzferiibfdc7HvO7p2ynM94dvmSualZrBvy6ChNQGvDF+cv6bqRs5P71I2hLBWVDjSV4vHX7tGOjpu9443XzrCqxMXEEHp0hgLDMLb4ZNk58dDprGiaitPFkqop6d3AZr/n+mrPi4s97diTIlgKGmMIMVGdaebzOctmTgyOm92G821PBgorEV0uHgh+gLogogla4VViHBL91YacI2VdYYxELSkyZpio9IjqKSWIXmxU83kt+44ps1rgNpKtbSdlldUWneUZW9hKmuOFxlixhwTnsBmaeUU1W+BcwGYI2dMO/RSL1rCcLRnHTnKhjWWKTKftO7D6jj1RVJaiKvBOJPzaiFRaq0yYsi1HH0lRnoUZ4XWkJBTe7AO6LP/kz6efHv9Kj5+4WIwxTRsTOW6b2LcSRT1NdZQSb52xVjbuSlEUlvbQvvp6pYhJOjAT6wXIqCASAGtADIcAog3XTIHaQIiB7XbD6D0hTlAVrVBJJJZ1ZTBaJlMxJQpboJQhK8+tcTKlJBAXGbcIyVMxdZa4ozuipJBFSeEmkRxyvjlOsJrpY0ppkQmCBKiipsIYgnd327Y8VR5GyzQRI113bMZiCEMk5UShp4B6pSRQON1SRUtmTXkHZLnNVospolGs10tmsxmbzbVIMzN47xl7gZTkqCaf56Qvn2Sxt8XibR/g9ubO0yYyhkCcwmK9fzUJvQXVeD/9flXGde1UMKk7uI1WSnKNskhfjOrE5K3FZK+VvisEk7W40ck1NcWOCJJbpCh5gg0VtpykEBqbpTN3K2f2zt+du1yHhYB4YpwgOrfSVZGxQDmNv7XQTSeJsjYGa4vpep8mZJNUN5EptYTl6um+UFqIYUoZmUrnDGUhhUaU33FdCU66WC1x2jJO5vnSWFxUmKToLrwgyZWQxHaHA1KoyijfqohVCdAs9h1oze/9wTN2/1oBdHx28ZTLfstAojYRE60Qf0uLWZSYQhNCYFUf8/aDNe8+XnNWLSjLAkq558PkM7wFN93KqmOK5Jgnz3HAFgXro2OcDzz54hPmiyV100y/2yDXqtZYU0DWuMHjXEIXJYaRrh8J2nKyKDm9t6QbA92+578q/mOSdFdQRuGTY9tesjlcUnd7vBU/jQ2Z0A/oIFTciEEFSGPEmpI4Rn70h3/EB9/5PpWBuU5EbSFW+KAmmFUgtgPKKmKRSMGRVYGaCHFEeW+NToSU0HZqCkQjcAsfKazGlPW0loDrBumIG3nfpGhWdOdbxvaAibCLIxfnWwiZSBAAlYL18T2+/Yt/nreXJVk3nP3clwjUfPfpAaXsq6bdv6we/BcVf/+vjjytqZkYpOkkCgz9ysvIlJerISotI38m5YgSSnBO4GKPCw6UJbmO3/rDp4yD47urFXVh+bnWUZuSnBWDC3z8/JyMoi5KTm1DqxxdjCilWM0aDr2Qo9unl2x2PbvDgb6PbLYH8R1ZhVKJz57kO3DNrFnRVAafNGPXc3F+wFjN6WnNMAQ+++JT+nYkxcT5dodzI48fwTiOOAzRdXivUYVlGEYudh27PnB18MzWNVW1Zr1IrJeJ6DPDbqD1jkWj8DGwubnk+nJPZSzzZcVyWdMP8Oz5hnvLGTNbsJiV1M09Th5UrO4f44Ki7SXg2irAj9LQMMAUrN1nT/fS8TIETCE01y5c0O0ji3nJ8XrO8bFk5aY2UNZrlI0E1WOy5mytSTqRUo9zUGTFa0drkjKsZyVFodG2Ybjs+fzFp8SQsFaznNW8FRvswbGoNKvTObPZgqZMeDXgYqLwcHGxpw8bDruXhOxIITMvLetZwenJitmq4tmTLdfXO1LwKK24fH6g0JocMm13IE0E67puKOczDvuRD764ZgyRZRk5Wi2pyoKPn15z/fycq+sbnI+oQp5uz88/IZvMN790SnaRMATKpTRDF3XD2XHF8VfeBBRVYfjZr7/Jo/N7sucgouLAbFFx/+RUPLVzqFaWpq3p3Zbn51foomZxNOMbX3kPNas4XdUslAJToWzg8nKLwmJsidGKNx4/ZDUfCH5kGAREU2BYVgsW8xl9O7Csepa1YnnSQPS0h4Hrq0ueVzsUHqvFwxZzxpYFVd3w6N6av/pLX6cfPUyB66XWaJ1Zz2dYbZnPZsQIpkjMS4tRhqQjIYha4NB1bFp5ng0RbKmoC009sQh+5effZRgzV21i3/Uc9jvmi5JHyxMWRjKeyZFl0fDo/hGL+UJkl1H2fEW1ZHVyNEkxHY+O11RFgbURHy2fvziw2Q+88XDOl994HaMsnRvp/MCsbtgfduTCUuqKk9oSp71faTKVsZKlnBzEkqNZw4maMgJDwiqFMR2WwLIyGCpUDtRVQ+tarFLMigZtZdrunfgZu76n7R22Ujw+babsxQatC66utOSSI8OSwXmB61UV66aa9pVi0SimPZQpZD/lpmah94kYxSMYs0PpKb8wB3J2siIrTbYZQmTIIwppYFZFpCg0VVFiS0sMDl1airIUKW52KBNJXiIyq6Yi5kBKIznFqSCU564bp+zf24a5Ep5EVdZiV8qesqyw1uJGUYb4OJF0teyLxtERgqcx1SvrmRJJ9E+PP5vHT1ws2sJCli+/3TDfxSwgnkS4nabd7mASZVmwWMyJUaYJMUZsoamqguOjY9w4CuUsg3OSP5hylBDUmIhIuHtZCGUJH6cCJFNVFfNmMaG8Fc5ndruOXT8BXgrIOYgJOmZ0ISOmnKTwAiXyOJigLWbagIn8a6oJ7jTcUgxr8QmRqYpbr6WeiknuwA9xkk1aa8UEPRVhavLWxRDIUZGTgF6MNqhKU6QCR0Yp0ddL2LYUjredeWMVWkWZ2lhBLA+DE2mogt3hQNf3EDJ6Yqa4FHA5iEwg68l0LLj9rBThbir2SqILTHEYcngnAcEpTzCafCstNuQEYxhlijA9sFCKsrRTgTGFhcc4SUIzLgeyy3eS0jjJXIuyRKFw3k0Pv8mgndKr4m+aEt7+vchmOn95j7TS+AkydAtWijFNPrwoeU7GiO8xi1SkKAq01bjRUyrp7CktUklFnPx36e77FIWVT0iBshTqnLFKIDzyLaXQ1JpVVVFUDS4MFFXByemSui5ZVpaq0litBFygNbaucRm8logBgfiK9E+8EDKx1ypPOk9F808WoODNb36J2fqKZj6nC5FPPjsnxoxzgRQDpjKcvXbM2dkxFXCyWvJv/vwbHK9nrJcN9dEpWAvjlhSiYOFDkAI8S+iuD5HRB0wh0so4gW9OTo9RStF2HecvLjg6PmM2qzGFYd/v78KYY4iMQfxmpfIYH+l7z2ACc2/41vuP0cnw/f1TkaooAI22CZ8G2sNT2puPSH6DqUooSopGUzSGNI6oMqKDhxipyznNa1/le5+d84//4e/w6Q8+5aSxYCNHBQzbZ4TQCUgpRfo4SnvKS7TLolmwbzvCtI4sF3NBpY+Ret4IVVklTIZsFMoYkWmTcdEJga6ymOnaz0nWgtQ5VPRYlrj3/jP+0r//lP/hVw0q15AcZWn5hW//In/tr/zrzC9/iAuONx7dJxdzfv3//JCbzW4CSuW7qa0sQJmfSHv6JzxSTPQjksuVBHqSs6bUdpI2KbAVuVCUocMHx8n2H5EzdH2gnJWkMLLZdELENY4Pn/yIIVuKmAQ0EROfPHnBdr/nL+47AWt1CV0aNu0N5y+v0MbgImhteO/t+zw8OeLiasNHT55TFiUnR0fsNy03+xtSViwWC5bLmqO2xw2O0XmiuqJuSr541uCcY791zOcNujijaUoOVwNVIVKsTz67pB0iL14mFJ6qFglaaWY0TcOz6+cYU4AytAfPcmk4WdSkyU9W2Mz95ZrHD9esljMOh5arzRZTzCnrivuPjyUu4fqGd96+zztvvUHfHzh/doPzCWUXXLVws9kJ9GhWsz6ZUdk5i9LQ7g8cNTWzuiJ6xQ+eXeLJVFmTcsmqXrLbvuS69zy9fIaJicW8IRkYXUblRG0EmFEVhsXxgqaEOA4UOE5XDQ8enHK5aXlyfs18VvPg3hGF1tSLGffvnWC1om23uOQIUXN1bdnpjLGezWHLbL6irhrGnNA68PZ7a3ojIefjdk8zqzg6qRmCIQXNqq5JTtPuB4ZNj24KqtKybGYc9h1p8JS15c3Xzuh9Qj29YHuz58H9OcdHM1bLJf/uOw9oR08fC+LYk11gGALfUZ9ilaE2My7jgavRYYDdZcfZWc0yRQ7DSIqO7W5kfbxk3B8YgyekRN9rLjYXfO+H5yRlWJ0uOFoUMEAwCv+iI4VAzh7X7dhdwlVTs2wK1k2FphJQii15/vSGtutYHlXcXx7zZO/40csb1k3HTBvqasazZxfEkKiKgrKsGLsDxkDdFJPyRFHqGs1EwVQQiLgQWc9K3vj6MT5lnm+u6cdAXdaUBhaVQVtFQJNSjbYR1TuGXeCHL88pbKTrAy/OWwiJ1XLBfhjpt4mUW/qHnncfnvDag2MOo+dLswajEm03Mjp4enUt0/Iy89GzluubjnfMipubkbKRidg4BDCRN84eEsKAUp7j4zn9mElBU1nL/ZOCwh54eb3l5WbED5qb7Zab7Yb5Ykl36KESQn7yHu8G/sK33+fByYLN1UjMmaJu8KGlG1tmtpbp20xyFsfxQIwjla0orZ3ur4rs5picKArDvClBZQ69Z2g9u7bAp8g76gSMpW17NtsDysDR6hRjLW4YKAoj8SlRuA7r1QJroGt7ht6Rs8DPzq839L0jZY1S0sgvq1qK9X2H90GAQdOQI+VM78QmQc7U088/jh4fRsboGOKA7i1kg8kGHUWB5oNQWsMYKYoSUsRkKEwJAUjgXSKQhH0TwRg72RAyGY2PgZj8BEX0hBDw0dH1QUjxVk8wJhkmhVDIszNGfAhQWKKP/0+PnJ8e/z8dP3GxqO/8YEyyvARJv5KjTheRmcTNKcUJmpLxzmG0+mPh71oJVTVO/5KhsAowZGUoUjHF5mR5LaTw0tpMe6FMVZaCdDaKQiu0TYS6wE9ToJT9JDmdAC6TlzbljMp6QsJz20Ah69tp4lRdyA823RxMOYxMEscMWeIlbgtJonxemnIfRcRp77IjUaAioBIxCDBIT4TBbAwmRMktuiVKhjRNFuV7M4Wam6xwk0G7qqQ4dz5M8HvRhpOh1iUqaHKBwG/ujtuCXn6W2+mafEDd/ed2agi3RaEUWDn4V9PV6b3n1WdBYvIqTt5FNdFnp2LBTDAOrQCd775eZSnkY5BNZ45C23p1qCm3E3RhUFlId+pW6nZ7LjLeE1P9ROcVJ6PkPcm5KEKOd3CilGRmqr0hBE9Q6ZWcVPuJahvvpopay5RXvKqRsnBCOTVQlFN2EZOHVGt6U1A1AzFHisISYqCuC8amoK4MdWkoJ51/LntCzqSqIilNQEhrRGkqgMhzY0joLETK+0GmzMMY+Fv/eM6js9f5wfPv8OzpDVYpVIyMIbKYN8yrmsoajpcz3nnjHo8fn1AUBmU0lEix7zXoiSSMIakgZGK4uyLylLV15+8tRCKO0ji/53DYE2OgaipsUb5qGKUozRij8L6fcuPTVBAHXj875vmLlttABwXiX8zShErO4bsW5Q4ctqCU/A5zbTgqAzE5UnIYlZgvMgVzvnj6nKubHVP+Mj5l6tLghi2Hvp0gMQofo3xOlo668x6fIj4FVIwUozQCUsq43mJKSzaZ0QutWaax4ltOId3dSHf/TH+WQtITjSVlyRSNuUAjr1/agnffeszJLNJtDvQ+EGYJ7wM//PBjDoeWyc37x++9/w8LRYVIuUN8RYS+K02z4OYFUDX5Fo0h5sCj6CrKuAAAIABJREFUF7/K6DL7ec2i1BAybetQSrMoCm52e0y5wLmBX9pvKYzhO+WKy61MkIpCkPgoyxBHQugxsmATY2Bzs6e2Jdt9z2bbY63H2oIQPclHua58YOxGvDWMY8T5hMuR0QU6LXL+MXj8LvP50xuW6wodNFUlvvPL6x4XIiEoVPbMozSL/BjJcc9Nv6WsKsqiIsfIxaVjv68IQRQ0dQnWiIewd2JnyBTYaS3yAXbtyGbX8eBkya7teXmx5bBt6cfItg/83+y9yY+taX7n9XnGdzrnxInpTnlzqqxMT+UsD7i7XbZlWm7AMi1aSDRSL0AMYskCiQ0LFvwBbJoV7FixYmPEYHAvUGPLott2eShTQ8735p1iOtM7PhOL5424WVI3i7KNvKhXyryhuHEjzjnxvuf9Dd/v5ztGwaubDcgsYR8ONVWpeXT/iH07YoWgUBqJJpIwNlNMrVas6pLp7IguZbBLd7PnEBKxkIzDhEQwiaweOT89xpqC0lhSCFSVwShLVVqq0jNMHqUldVNipKJelJwc1zmqxbfEMW8n+mGgTxNDGAm+52Rd0fYDzmeoh7ECZTQEw9UO9oeBm63AOc1qeUTVlFBKBpc4PWqwVmCMYhhCpuHGwOEwsZhhGicrixUF62WdqZYxZ0FrDau6RNagvWB0kRDuUxUlU1DISiMbi0AiBslqVUCC60MPIhCkZNd7hMi5sP0YCFGy7yYO7YCymmpp6Tvww8jqdI2Igv0w0XZ7VByJXjBIg9CaugIZE8po2m7gxeWGtu8JYsGj41OaqmDhKuraoLzAFIr9ocV5T2EaAophGjk5qqjLkqLSaCVxfUCgZqVRousdu7ZHUBCTxIVcB5gZNpfVYhItJI3VgJ6HfSPOe5TII95+ytmd3eDQaqJrR643E904Mo4jw5QHsv3keeMscNQYmkrnYPqNRM81jLEGqQWHaWK/H4ibiDIaKRQhOby7QqmIVolD62n7QKELBFCVBetFxeXmkjF4StlQFprlogIRaGoL2oCUDD5rvaRSTDHRjZl0r40mxEg/5KG6kgFVakIKEHOtoWVuXgqZN3pRinzvETnqY/KOKQRSgNIaKllQWIUXoFVCppDvo1KREEwqYY1GaU0Y83BPzfaqorQIoXBTwJaWeyJLQ8VtbSQSZZnBPoeDxU8B7+dhscgby23bMo0TUgiKokQphQvQ9R3Xuw23TFJSrl/clInLYfYyJgQhJdw0x46Z7DZPMc61EaDyayFEtl/lu3W8q2tDyvaqfA9IWaprcvwT8z0iexlvQThprqMyIf3Hx9/M40duFn8IRDOTToWa5Znc5uNFbGkz/GBurLxzHLyffYFyxucGhilwfb3LeTQp0ymVlJSlpCwLjClyeGoKdMOQiVtVTVE2+JBmiSIE53AhEV3EGM358YJ6kT1Pl9c7YpAMU8CnnGeWYi6vrLF3UQBqbgq8zxRSRH6uzG+6c42aGw8AZA5anWtBMUsvv0qMknOx5HyWhHify944G56FkDRVDodVUlIqRRg7xnGiHzNIyCWNlJnsmUIg+BxcX1QF0U8ZPiJlJqrK3HflOI4sB1ZzixRCRMaIQqKEvoMOJTLgR4vXg4AMomCuO8XrJhKQWqOMmSWbr+Wqt1+j9dwYzyTVlCJT71FKYkR+A7wNvA0hzD/r1tcXsm7vTtJMLj5CQmg1b5MlyU/zT/1Kly9fNxIpiXnrmbdwt/JVIcQdjVcbg0hibiTzOZySZJppYUopkr79+QERI44f9riKmObGIqOutcpI7tu4l3T7WuaLJ5NelULZijj/O60l60WVc5usojRFptu5gbygKbK0OQhSgOiyxyMKuGkPjH2iLsCFwH/y7O8jpOB3f+ePWNUlzxZf8Cf/z8d88tkLKi1RIuAc1HaBFgo/ed59fI8Pv/EGzfoEIRwIT3QDGEBkWqlEoqUixDFLTpRCkwElw+Dys1TybpAQU6KuFxhr+fijJ2xuNiyXa9587yF93zKOQ45asDnjchjyYEXi50Y48Najcz59ckNKkf/a/Q8I4D9X/34eTsWIHwP9bqTtdnz/iw3DlM+FIUS+8d4xV1cdttTUleFkfWC1vObJZ5/Qde0Md0q4KbFYVwy+58VmyxgiUiqG3iFSpLYGIRXb/YGyapAYYvSMbsrhySIy7FtsYbC1ZhgHalMTpGCcG2KJQBlD6j3a5tzZ/+aXf5vRTWwOEzIMFGcOF7OiwkdFqSdEDFij+fpb99Ds6NCMKZC8YecM3/veJznX7q5B5Ct//vXdfKXMWaU5hieiUx4iKpWBYN47lFQUZHK0NBYrJdsw0k5TVlsoKJHs9j2rquJedcSXz/dwOCDCwH+w3yKE4D9tCpLMgddaS6RNJC+p9YJ6aVFaoqzChcB209P3l4yjRwaNC5HL6xvKQlLpgrosMEYyTCPtUHF9MxBipFlafMiDgcViQUyBza7n2ff2lI3mflXiFYzes7lqaUrJw0e5ETBVg1QqgzQut6hGcZQstVKsj0ourz1X2x4fcnFXBcFxO/L04pq2bWnqBcerI6ZwTUqR5tmS7aHnervjwdkS0gteXGx498EJpMTVzYaxTxz6gSAE3QZePQ1EKfj5b76Xz/9Dx7XdcLxq6Nt23miAT4kw7lg1FaVKnFSGrZbs2gms5nS5xNqCoe/ZXl/x4KTh0emaiMjbq1JTVRUkwb3zI87vZeJl7wCpuNkd2O32lNZSSMHU9YCkrAQuJV682nJ+ZJl8y5MvN7R7WK0anl9fUOp8l3r2bMPLix1fe++M06MltbS42lDViqNCIpYl3o0452j7jsM0oArFZrOh2O2p6gppQFpFrSuIisPW80d/8Qlt33J+oim14t7JCcZazu81vP3wDW52e477mkdToJaK4X6kODVsthte3rToxYJKS4Z+oi4U7WFgc9HSjQcShrqpOF6VfO3tU3qX6K93PL6/AApe3RieXEfWYo2wJSOZbLlaWdzoaA8dry5ueHZxA0JwfLbi+NiyWha89XCJrQTXVwlE5HLTsu8ndn1g2UQUkaOioaotUeV76fOLLVFKfIj4EOiHnik4RrfEmmmOh7FUVc3l5Q3OR7bWUJeWk3WC6JjiyOVlz+EQ0EYQPbT9RKEFKTimoWe38Vxebdm3A1++2PCnP3jBvdMFcoLPFzuO14Z331iysgX3myUBxxQDb91TrAtDlxwH57h4sUdESb3MyrPPn3xGUVis0YRxwrvAyfmKfdvy+OyYx/dPWTcli6rm8f1zkDkr92azpzCW1ULjA2z2HX5oWSxq9t1ECB4rBdLNerckcZMj+omwAS8864VEWgPWYZWkKsAH6CZH1AqF4tXlgd1hh7KJuixYVMsc56YMhexplpaHJyuUUry62uTry5SElLi5aum63NSJmxapJaYoEUJx+eqC9armnTdOKJQkhkRKuSZSJqG15Py4zE11UAxTfm1SSmx3MI46cysQTM6h7YKu03ifB3JBZDjP1Cd8cBkumCCkXAe74Bm9w2iJUCHXX/F29QCRAGr+MwKzWkvK7JPsh5wpLmb1mzEm5ymmmO+XCRj9HC8SMv8hzXnqP47O+Bt7/MjN4uHQ3n18qzS8UxuL15EDwziQLVqZ9hhCIIYwFxS3W6tcRrdj9mIhFf62MYuJ5xf7GUijKI3KBKaUsIWksgapoDyuc48QJ5KEJKEuK4xSWFPQtz2MOTajODWYQqJ0JhYaWyKR9H3PNGRAxjCOKKkoiwZhNOM0ZvorkeOjiqYsOTlaUFiTA+elQpQlzs2Sppjo+4mPPv2CYZwYhohzIfsRdOLdd96kKEpC9Hg3MQ4DhVVICV2/IwRHVTzKBU03zDJYTT+GuwBWYzT3HpzjnWcaegprMTpvMzab7V3mYs59BKfh0HYcDlOeVslECG5+/bOXEZ9IMudUfpWGKmRudG4bQ3IrhPeZKpbmNxM1A1y897MkNpFEJJKLb6kyTGiIDjV7jIiglSWlgA/TnZ8wS3IT/hbYoWaOqpjR4GGWFKccQJuYm3qy3JiZuJpmKZ6QWbrK/HVyprPKOaNRKHFnFC+MJqqYvYZzIK4Q8+R7PpRQd5LinHUYUCI369bm7KUUIy6EebsiEZG87ZwhO0pJkkzzpE1RFwqjFdpIpFSkKDhdVCyaBoJnchOHtsNHT7ASayVSK44WNZrIyb0Tumngj+//d0SfKIIjDZHV2vLh2yeclvA7v/8pa2NpVKDyLb/64W/wc7/8DT78lVOUlSRzRux3pMMGeXFNlBFpcsZapCfFhEtjPgdSyvS4mGAGCRmbN/k+BJJzJKWoqoaf/sZPcnVxzSeffsHF9SX37p/SrCvGaWTqHDJKxi5SNopFvWS7m/j9f/6CX/uVd3n7nSXHqxKuc9OtlCdISxQyewBFiTQrfuGDGmsM17uW7z59weaVQ5mC/YsrXvSO/aMl3/hgze7lJTYEzhrF6KcMPkiJzWHkO9/7Lj/3e29yHiOf/OAJRVHwE1+/x/GRxalTpJQ0qiKGEZRC1w3FsmA87Ek+obXFlhbf5utsucgBzTFGkOC7cfbzCUpTU5oaH3dgalpf4z14n7PBxqlAaMXyZMH7HzzCTi94urlGIlgut2zba558+TznXiZeb94F3NKT/7LHx/9SRl32c6NLRtcjVR5geZHf44u6QIlM+1M6MYygbcELarrYU+++YOd7nhw8v/lb/4Bf+Im3WLiXvPnJI77/sqUSEvs7vwMJvvb2e+x3l0g2aCl4uF7xh59c8sWzSwrjkQi8SxAFx8uGZRNwLuJ8Hr4tqwYfe9CaqBXBZJ/8Z0+ecdRYzk+XJF3yxZeXHMaB8OQ5x4saLUB5Tzh4ftBNWAWlVpwdL0kp8fGXW0QU8OSKRMAhiM7yll7yfHfBp9MT6qahLiyvrg74EDk9XiIXDX/wp5+wXpU8f3mNlDeUxYajRaKqLFaN1NZyvzlh2geuDxfsD4EXtme1rLl3eh/cJd966wOOz07Z7Xs++sFzvPccrvY0pebl5OicJ6UL3jtdIJ3hybOBbT9xfXPAjRNvfO2Eo6qiQpMKQyDyyfefc7xe8LX3H7JcNuymlsPnn5K0ZhgCl5cjo4tsdy3bcaR3I0++eMXVzcTJSWRRlpwfP6KwhmUVWK8XbNuB6BPLuqIuCr53c8mvfusXefOdBSE4lLa8ePqKfhw5Oir5u3/nA6wo+fjFJa9urrl8+R20UCQr8Tpyvlpz/2TFyVHNmw9OOD+pOb9/n35wfPzxM/Ztj7aWx+f32T79kmfXey63Lfu+I2nFn3y64eG64dHxFQnBZhC47mOmqWUIEKLg6w+PETLwf//PnxNi4t7JMXVV4yPYIvLe4we43uH2Hc+ubkhS8f479zBK8ud/9oS+jfzp86f8Pfkhv/Lh17NvM0Woa8ax4/pmT9t7/vwHe5z3nJ3U1Nry67/8c9SNRUiPQDG5PBxnk0EnKQi0Vzy695ByVTFOPTeXW37vzz4hhcC6UazXCwoN67Jh3xkuDgeeXO4xVtHuW5paow2MXc9++5S3P7iPHxPPvrzCSskvffgWKytpB0VVGkxR8OmLju1Fx9lpQ7MsGeXIdXugXjX8zNkjpAaUxCjL1YsNPnpOTmuEVLy4PrAvdjTrY6yUlBjeuVdhHp9xtG6whWLqE+Pg6PsDk49cbUaC1IQIVxdburbj0VvHdJPj8mbH892WGCVDDPz5P/sOLoIXiniYqAvDYmUoraEs8rawGq+wumaMJbt+JFy/4JsfnFNXFaWRxODZHibGUfIHf/YRUQuWR2uKIstNGW7QpaIpS+wQOT1d8fbjc/qxYwqeMUl6l7h6tePly8sMYTMKrQPGCHxIPHhwH6kETQHeFVS2QMvZspUEzkXeev/dTOUPgeChHTztMCCVYlGXGKuIPnJ9fYWcM8a1znAxJ2FKCVwgJUXwit1+h5scx01FShGpJopjxer4bRCKGARXNweub7a0bmKcIuuTBdHDi1ct/TRQVUtG1+ODy9EeJtc2KSWsEhiVvZ0uBLSps+IPQT/0JBKHoUfEhJy5JdooXD8Qo0Mbm+NIEH8NvvofH39Vx4/uWVR3MHSESHylr/ihI580ZODBnWRPf6WIJ0v3SHPe3+y7Im+HYpqDR1PKwb1pzkmUcOj6mXQKWmUZoLyFxAjBVWrnR6hwk2fsB1KK2EGjtcZYiZQTghEpJJMbaZoKU1coYBh6oh8h+DmwtkBpxa6b2Ox3vLg+zD4Vg1SKoijmsNLZ3xc8zuVN2mJpsjdryhk4m12LtS4TY4PHe0dK2QPoXMIH0DpvCorCzEHFmsLkLW1RGBZNxbvvPkAljxsHCmuzN29y7LsFt82SlBKlBA7Ps+dXfPd7z/Api2KTuI3xmMWEQt6BaO7kuPP/Eszyzll+PG9d8w5PzNCKvF1VWr3eacx+zxw+m7+HVBIxx3AIATH6u/Mh8TpG5bVcj+xRRMwgnoxtDvMG6FZyN6tIiTH7WG+/VgAxzBLfSI71kAKpbtMlb32Xmbw7BUcMgUhGZ8u5YL4NoL17T0s5E1Hk5XoOrhWKkAQi5p+c1OyHnc9xpMhESSDFDPghRqYQGF1AKg0iN60Zda3QVmVvbHwt1Qgh5YBiITFKIJh4uRtxfiKGL/O2dA9P/+E5te1483+8Ytt2aBEJzrE+W/GzH/4s3/zWt3jjgzcxjc4hwuEVYuhhmEilzhLM4Egx5wpGIkbquUnMHsUQI0rZO6n57XmXI0siwzgipaaoCh4+useLlzdc32zxBLRVmRzrXc7uDIkffPaKJ19uefr0kvVpRds6jo4a0nU+P3wCLTykLFUd+h439DjfZax6UpwullSVQWvF/dWjDDG5X2EflEz6KV0XCEGAkggDaVZAhCHyE983vN8kPhctIQW2h54xeHbdnrJQPDhuIHqwJYTA5dOO43XFqqkwQuAmj7J5wivm81iS1QhqDmi9ndKmnMWCWR2z33vGMQOArNYEF3nw4A3ef/99juqI9AOrosRWDfu+4NmzTZaDCpnlUz90/NXceP8zVf8LPy9ELl4n99oaKcjXt9KSoihQUhNSYvKRKCQqRS7e+y/zJu8P/yMOref8wVv8K7/4Dd5/vMLdOP72+YqfUUf4MSJ/93dBwG/+g19GTXvC08cEAb/6rbc5eXzBi8stImqmfuRms6cfJw79RATOVgX37wn2bZ/9o9EwTCMuRnQwBB8ZupHkI+OYMMWACD77k3UO4vaC2SsQedCs87AzRQ7jREwRGcScMwsISWlzzM0QRzo/MkwTnQOlRuqioNEQQ+Dl9Y5IxE0T61VF9DBNHU+e5XBtYxTWaJqyRCAo7EicH3/aBQ5CIEJPFy9wn90wTgGroDCCKYI7jFzt9hx6z+RgqTRKOq52jn0/IWSOr5FO4Um0MkvHdocDnsQUPVeXN4xjoPWO4+OaCo9MWWHRHTq0Srx5XkOqWWlL1zrqtcp+XG9IJExpacoFKUkub/bsDiOLusFNgj/+i88IvsNIgZYF7f5A3RiKUfDquiXEA90UUMpycD1SZllbO45cXb7g2asNy0VJXVR03chqdU2hFTHkAV237Tm0gavLLaYsefio4cx7JhdoipKz0yOUNnSD455J6FVBUivaYcpxJSFSL2p++qe/RvIB6TIxc/ACI8DIwGJpOW5OUIUiJk89KwaM1ViV+EDcR02Bly8v0FJRNwVFpZl0gYmRrvQ5Iw/NcOi42re83A4URUFp4JmVlKXi9LjEas1+O1JVFWfnmUypRKK2huZ8yf2TGiGy3x0iVim0MMCINXC2zrJEUt76D2NknCAqyfPLK6Yh5nMD+PZHT2mqApESpRHZix0SQUo+f3nNyVhzetrQlA33jo4Zx4HJT0gJldHsrGK/b9l0kqYosEJyMzgu9lcsqholFJtdi3OBx/dPKCvNNI4EFyitBim42HQoo1FaocqEipLnr64wWmUP3RgoTL7mHpysOfQju3bE6Syb3O1GdsIRPLg5k7AuWyQRoyVVaXhyuWXZTDRVlTdfw4REcnZSE1O+b/thoHM9zk0UXtH3gRRzDVNqzeHQ4VJEGI0A+n7ieF1hZf79IDJNOwSYxhFrNaXVhJmo389Zs+PkmSaPMdkkKCWzqkmhrMZ5x7bdYSeDtSVBZEvW6EYmFwlErCqhBGYLgJISeVQTY2TygUSitIJSK3RZZpQEksZIThpN7+Z8a5mBlJuTjsFNVOWSru8YphGYI5NiIriQfYzMziif8NFn6M5X7hNirikzxCfc1ZFaZ+sYIsdnSfXjzeLf1ONHbhaFyHLI1+vEu78BuCsapeJOM3979twSIuPcEKj56zMIKd1RUpXKF5+SAkR+E44hoGxuQGPM0oo0b9rUHHBvjaYoczHgvEPPOTZTzCdw1w0IJZGtIM1bESkVMQSq1uUQ3ZAbETWMKPIbmDYGYyz7tmMY8jZCSDlHgQgMeb2qdJZNhuApygIhYByHDAIZckD5ZTu+ruXmJkBwK1fNr5FRXQbbqLypjSHNDY+gLC22aNm1PaXRKALaGBZ1pnAN45gXWCoTVEMIOXReqIwRHwMuxTnOBG4x+/lNgnkDOD/A2buZ8wfl3WPOljUxN0z549vmMgfm5pxFkcQcyjrTTYVAzx9zS9Wcm+xbi2GIt9mIQBLomeKaYkJajZQSi+SwP+TPzW8+IWS/EVKRkvgKdGcGFM1S3BgTRqksD5S3uv/5OYgMN/lKGihK53NoftL5BUhwS4+9Pcen6KnK7M0KPjekCYGfPFLOfr6Uz5Fbb2gCrDJorSmsnSV8ntYNuBQY+gnaDJsQt1vVFHHBI/WcpZRgSoH+y5ztWBhFJDF5x8tvvoOUgukf3+TIgBTZjolHyxO++be/xc/9+m+gC6D/mFS+hWqfQzdANxBPT5BDR+wOEHJwr3MeM3t8Qcy+0gAqzpmh8yBBzp7WAM5PWWKtNOvjNVHCftfxyUdPSSnx5ltnlFLQ1JJPX274/T/8mJevdrg+8tv/m+e9d884Oz2CT/NrL4VCxoCOmu3Vno8+fUI/tWy2eSotyHS+KfWkJKlNg1aGdX/Eg7Tiy+s9Z28c05QlX3zxEus6jJcZTBNLtDnirZ+sqI4aRPRYE3BhxPceHzWtyptVYTxJjmy2I8XCEPsBT2K1qPF+ghBwfcaQKykJ03Q3YBEI/qtv/xpRwH/x3m+jlo/5o9//Lg9ObogpZ46enL7Bb/4bv8Vv/Ku/RLn5mH4YOVlZmqMzvvudkT/4o6eAzeqdGUqVL8a/mq3iv/RIKTcxJsO5hin78EghD76kxk2OIANJQVKJSlgIZBCU9xTNmvunj/mt3/rX+fWfv4cMe65ZcGYKlqs1W5c4zAqAX/vVn2LtBlC/wM12R9f0fOMXfgKUom8V+3Zgu+0YJ0c37CjrkrpS6BQY+hGiIAbJq8sL+smRlEEZy/c/fsHm0DP1E41I1IVisx/wOG72A/3k2PU9nsDB+QyhGBxjCAgRsSkTsas5G3UYJoKA80WFF5YoJaujOt8/VCL6xKubkd4F3n1jxdVVRxtnIqxPTN1AUSj2o2DwAWsS61UJO8W+21C+vMYYSZKC0+qMq+9+yqbdUtUVb71xn8k7ZPJ45wkuv58XheGPv/OclLJfy8fA6VGFsSWffXaBEdk7PqVAUoFCWsZt5DA5UpS048jl1R5dBCpbY6JFRMfZ+YLHj86IEe4ftywKg9OSly93XG/22FJz/94pR6qgUZI4BcbgiXHgbF0j05R/f51j1++42B5wMfH4QaAoLcPQI+qa4+U9VlWBMYK6KkgRZDKE6Bi943Lb0bvIi0++pKkLisIwTIGudSyMpVlkiq4LoKylVp53739As6go5q3/0gisLdkctmx2e3Ztx8nRmnYYOEEgA4RuyPl2UaCAcWhRdcHyeMFPLY4BeP6ipfee5bLEyMi9RydoEXjx/AZQFMaQih02CgptqBcFX1vkkPftruR4mNgdRsYp4kOkHSNH6yX3T09zNMK4Q5mATharc+3RD4F976irEm0s+65ju91R2IrJdRA8WgmOqpJx8PRiwiEwyvDW20vu3W9ISTB2HqPy1meKEMJEShKFQsnEG/fWpCD47HKHlVApg0RTN4LrOXoCoSl04M1HSx6ypJ1GSm2oVEnXTST6/BoI2GvwDrY3O7Z7neVpCLadY3I9z66uOVktWTYVUmvOlg0TPYUpWfSCwTpWRyWLUnK6qHE+0k+BTbsnpMShy/YaozRCFXRTj3MDm90OQVY/9J0l+IGXFzt8TLgYaMeBdV1z1FR0bUuaHCtruXSB4CW9nzLETRoObiSlgC4tVpd5WlwkKq3vrFSgcDEPdq9uDigtWC8qjJKMPoHKFgxjJMaUDL3PwLfZX51VVO515mIMVHWJ0prCasYQMq9ASLSIyARINQ/sBVc323y30ZqUEpPX9EoS+y7XnOQGf7moEW2bpavkOrs4r5lGyzQFrNDESmWKvNZMLmYYpZhztUMkhmzr6bqBoe+J88InhFxPDV4QfcixaCllKm1IDG7CuUDOhPzx8Tfx+Et5Fl9vjl43gtz6+b6yecmfnjdVKU8lbsmbYm4Q5dx03G4FYZY+irxlkjOWXUpJUdhMq1QKozKwJs5IZx9C3nSSaVBKQF0bQgy0XSImgRAzxXOmYc4gTZCSrhtIqUdIjVGz505GxjH7I5yeCC4gBBRG52YxzJMSH+enm/2NMSaE0ozO5QIk5mbPaI/wWU4aw+sNKimTHjMYRSBxd9EPMWQZK/PlnfZ5S8qTC4pZyiCF4OiowVpL3/c5v1CrbMSfHKumRJuCIARB5qiPxG0zP3v8eB3/kWk0+XeXN2/pK6tGuA3cTrfqgTubVCQHg9+NDhApm6L1vGkW8baJm4mN4rWf7ys0ndfnDjMgRwS0VCidw1y7Vt15EMU8ucr/Rs6Pcf4Ot383DzhuiVwhzl5J5kZuPkeReUIe5xzFnOv4lWNesN6a3dO8VlGBA7oIAAAgAElEQVQS5C2xU77eQibJ7IeVudi59fbG/BoYbaiqgvPjFVplScyh6xljzCtL0t15F0Ji8h4XI8rcNt2CgKIvDigUf3f775FS4v9Y/ffcaItQWf4Wg8BFTzvCyfE9qtLi+z3JR5Q7kMy8uRQCjAZhQEtiugXYzL/feNvwcPfa3zbqt6qBNOepxvlaTilngzoXqKssOwlfXLA/tKz3K9KiZFlprvY9m/0e8BTW8PJix4P7a8rKIgVzxqpAhEzwPRx6Xlxc07uR7W5gHB3TNCEk9OOBgMJKA0jub04Zx1Nubg7cu7/mZL3k2fNLppAhV5CYfODbj/aIU8/PXWkUEmM81kNcZjgBMl88cn4s58c1hRaMfcc0jhSFxU8jisQ4ZgmR1ToT8EREitxsfXE4Ioqcf+WRfPrkc1ZdhwCcC9y795AP3n+Ln/mJx/jv/SFRLFA2wzD2/ZaLzfXsy/3/X75zO8hTWuAj86Y5IKIkBWZsukIVJg+KyN6bJHL66un5Iz785s/zzZ96m0YODP0e5RNh7BmngS68fg9Iw4Tre2xd4bynmxwnq2OaRcVWjCgrqaoaYmLZnHPv3popOnbbPSplHL0Qmv3hjG4YiFIhbc3Z+QmvNjv6Q085BRoDm32PE5GbQ8+uHXhxsWUKI11QMPuJBTIPxGZoVmkLJILdxuGRFNrijCQly9m6otaW1rV0PuVmQ0iMkQipaA89SEmSitVCsVqUXHdAP9FUgtN1xbMvR643PUYmykqjC8lCZQjM6EaKQrHddlxuD6jQz37/BVWp0RJeXu/wKYHKSolhMqQYuNrt8pAzJpJMLE9KXIh0YmJKImfGRsfNZYvTkbryrGxDCBPOB4YpS30PfY8kEr1kf2jx0VMZgzWa6BzRR6xWCA2THynrivWiQEjDhoEYO2xh2e8G2iEXxKWUeAFCSY6WFVYllotqtn4smaaJthsyzAVBofN1NI6OFLL6oS4Vp0cLbnYth64laolKgbPVKX0/YgtLVRckLXAxsNnuabsB7yJnp0v8y4FDP0ESFNZQlAatIIyBz7c7puSIemIpJ4QwOQc4gdXyNUPASIYxMM3k1cubnioKFnWJLTVLq3FuRJmak6MFJ6uacfLsOs/oPHVhGcZA1zkiiWEcYEo0i4IgYN97LrcDRRsxZqIde9pupLISHyN1kSndbgr0U2CUGTxoleZoWXK8ylL4vp2wJlFUmeLrhgP9KGhHASmwrsEITX20YBpH+u2Am6Dve5yPRC/wItJ5x3pRslgsudht5xxVRU3Bss4ArxgTVXlE8pq23xOSxVQNCMlmsyeOZAuR1RmS5hOl1ZysjvBRsY8OkGijUTJhFJSFZbUyaJOIEpomZS/noqSsaja7A/tDS2kE4zgxDiPHi4YUJ8aug5AIRPaHntIWNOToIiHhaNGAsvNmzAERq0v8FDBFJp5HdFaFJNjsWpSCpswkd58SgZShQjHRD55gFSHONiFBJqjbCiMG9KhIaSSkHPkVXI7Z0NLiwsjQTzSNRiuTs8xnsIRzWaEltSQJjfPZd51iompqEokQJhAKZXNtKGKil4qyLNh1PcMwUiiFLQzIrMrrDkOuubREyTk/cs67tkbMeYoSIQXGWg77A10rc9xHzPWKTxHtJUSDsdWstJtwwZOSQGhF+Guecf74+NGPH52GqtRdYS6RP1wYi1wcZjlEmqmhMxWVmJsLMiY5N4wSoiBElwsfmWWnzuVKQSsNXsxADcmiXhKjn+EteSs39NkbGUgM3cjNdkCpgFRwvZ+zv2ajmNLprrG7bUOySTdSaHFHrvRhgCQZHfRk2EbCkzcbuVCSt9vQkKmkUgqsVmitqYxkUVvGMbE8aWiahsWi4cXlNT5EyrKkaUpESjMwIG/UpJBILVEyb1Am54gxyxONzdEYu7ZlHLK0ryoqYphwIeKSzvKJVCHihCcgUwZNtOOI6yd8jCgpqGwmySYBaJMLn5Sw82ozJXnnVYyzfOB1Y5d9hUJATFn6w7w17Mfs75RCz69v3kJNzs9xGAKj9WtP5EyoFVKijM7oZ24HBrnpdD5PAgUJ4V2mnsrb7eec5aYkWlvc5JAiS2tvRxoxzvLklL4im/Z58hcCac5zBFBzE3lLqwTQ83MJ8xZV3UGA8n8pRYRWlDZvlOqmwhpFmLMmm6ae5b25uev6PcEnlCqROj/nGB2LZcmizujqk8GiheLk3jHee6621yilKKsqm9J9ou96gg+smoa6KpFF9hD+0v/0r6Gk5J1/52P+8f2E855/+Bs/yXJZ0nrBdz7a8/f/7X/EkX7F0//rvyWKise/+C1K+W1SegbLY8TRQ9T2BUEn0jDA5BAMoDOlN6EzBCoJrC1yltLtkEEyR2skfMzDg2l0+OQJMeBGT4yJ93/qLfaHlv/zn/4Fo7T8m7/yNk+e37A/hExfjJEw9BgZOH/YUFaavsu+OJEETWWoVxpELsaMjJQLjZCWECTL5oRlVVGWNgO4FLghMvaCn/n613jrwQl/+M++xyQkg5gIInH57Bl/9F7BP5WJf/RPMizj3skxpTEUtSImR7lQSOlYMFEhqBmQ+xLfOy6v9ly+es7jB2cUhcFNIyJlmq0yKm8pUDPRNTeNVbVkMwS+/ccf88ffjxSqJkrBr/z63+KdR54q/gUHY1nWDd1mC8LghWMYrkFMd5KpeZozX1evP/zLHL8dDgD8W2oxf9/5cUvJ2ekJVV3w3Y8+wc2ZqVqY+brN9gLjBSoonB0YgqAfPMaW/Mf/4b/L3/vWz+C3T5AhUBfHiHLPOPaodUV6dYMkoaVivWiwKtGu/oRU9MjhPTZXNxxudhxevcBFQe/yPrU4XyFNxHcTz19cMMSJzU2PtYrH99dYDVZplOj5Ox/UuFgQQ0JOChEFy/OaanGEVhmscX1xkxs6I/N7IhnaIHTJxdhz02158eKGw96xu2xJSKLI21Y3Rtxhy81m5NGbj7FGcv5ix+XVjpcXGwYf+VsfvseuG/jy8gapLXsfubjYI4D7RytsLBn6a5pC4kR+b7aAsj1aB5gU0wAHMRB6z+4wsTpaEmVi3+95dRVJcgCpOGlq1guLsgsuLza008TkPSJBZTIxNDAyTIH45RWLOis0JDJHlew2/KB7Rdc7qvI599dPUUqxHQbGbuKtxw85tDuaZsnoHdvNZyhVEFOkHQdSEizqms+fvOCmHWgay+miREnN+nTJ8YM1w2Hg299+yrLOAzTMJatlQ/KRi5sdrfPspoFKGSpTcLw+QhvJ0aJEpkitJQ+OV5RlTecGvnzVIWLCSMPoJBc3Ld59jvdZdjm5wDSOgGK32bFeH3Fyssb1DpkE5UIBif6Qmy1tBVe7A90gkb3nsNvy6TBwaCdWZzlySMQ8uN5uOmwtKItIVWuMbtg9j7RuYn/YZ8hZqdnebFEysxEePzjh7GhBYySfv7zh2asLFqVGWwvaooXgfJVohx5JojaCB8c1192BKcIbZyvWy3NEguAdhz7STYEpjNiFQU+RbjhwHfe8/JM97p+7DCYZB7phQkrJoqozD8IIrBVoIdiODo3mfF3nGAQNWkEp6uznV55p7DhMLT/YDGjZ0Q4tMYWcta00yyPL9bYnhMj91RIpEs93e1TSlOMEQmS+hEi8c/8NqkZhCkm3P3DdDdz0msk5rtuebvKkpxNVaShLRUySGCUyKerCEMmxXEYrjBIk77Ba8/D0OA/jfERoj5sUq6P7CCSHvufxyYogNYMLOFcQU+Bqd+DB/XtMQ8/o5iZq7BEi4oPhsOm5uNnRDxNMgWQTq9WCxuQBVmMNh3bHybpCCEXyAe8CwzSyb28zyxOLpuFoVbEoNOfnGe7jg2S3H+mHabYo1DjviD7hhsylSC4Q4pylWGQPoJa5rnr4s19nHCeCiHcwvuQyDCvGrNZzY1bdrZYLTk+PM4mdOMtZFbkxN0Biu9syuZH1uiEEMw/cU45rMQbnR/SRYrVYIJUhxoSPAu9GIKCVYRxyHQCLuyztlAQpwv/ye9/5y9+0fnz8lR8/crMYmHMIufWiiZxzB/MWKhDjnPKTgJA9i0HkVd6tt0zITOkUzMje0eNmuehti3d2vKCpSoxWbLdbrBacnN5nHEdevnxF1/dMbsq7p7nRMQZe7z5u4ztyrqOLt1um/PhlStmLAaCy4Tc3vZKEyo2pTgiVm03vPIl4t1GJSeR4D6lJRIbREwcPQnDoJuL8ZkEUnJ4c42KG6KyWS87WC0SKLFYNbspFuCksxlpqmyfP0ziQYqAoC4wpSSTa9oBzE4tyxXp5RNEksAWTOSF4S3do8X4HqSVN10xdz5OPXnLTB17s9mghMegcaC/njagP2e9G9qQqqTBKz/LJ3BjfZh+K2XtHyo1IlhTkMHPjBYL87283drc5nGIeJGScNNzarO6g+/OWEDFnUt7SRkWcZZjcyXaZparZyxKIKSCkylN6MXsov0I//YqdlJRgnKbsB5zR4THkBxPnmIy7RjDmDWNMaQ50EHffJKYw51jlz4WYm6O2H+n67NerypLJxxz6Sx4mrKqaRV3x8NE9irLi+fOXXF1d0bV7hmF+rD5PTMONZBhG2m4kCQFyJMRI2/WAQAtFP4HeD1z3G5b1km8MmbR2cbMnhoYQIi+v9mwPHSIZ2n3L4zcqFsUDvvz2d9m8eEpzuub0vQXG/OLsO/OkZZZPqbLL/sopb/GDnwgpzQOBhHMRoQ0pKhAepfMQyU8S70Z8kAQUgcjkR7SVTG0OArZ1YiLxp999yrpMPHmWgQ9K59WdQ+K9pDIFRit6AkZKnAtUdcEvffg+H/7kIy6vt5RlAUSGrsUoQ6MjRkkWxRpbara648t24M8+u+Sd997jvbffIIr/lYihLKD3kmaxwBQWa+Hsnia6ibHfIbzh4LK/7XhaYTSM0qHokKLn9PyY42XN+dGjTHRVmUqsK8M4jux21wghqcoKqU0u5oInALt2g6uXiJT4/f+9oNL53Hnw8AzlWnbPr+gPE3HqmYae0nfE0JOCg3lbd3f8fzWIt1t78foc/qHP/4u+FvFDn8tKhOyTPD5a8+Deku9+9zOiD8TgCX5CK4WTApUSlnGGS5VcXV+TjhRNs+Rnf/odmL5EyonkZmWFNUiZqB88wAZNtBqtFcasMH5gfPhPMM5Tf/o2V9uW0Y0c1wXCBcYUAUVSMm8OtWC9LBCm4d1794mFYndxkaf5ZZMpyJPDOY/UmuZoCT5wc7Wl248s6warNUfrFdWiQvg4PxZJ1JJ9N9K4QHm04N56gRSCuqiJ8zWBLPBR8dFH32Pbed4oBGEKfPHowFU7cPXxUzo38pNvPuQHz6/43rNrTPDZJzhmKvhHLzfEixtKlyi1ZnMY6ZVALCzHTcl2XzA6hxKgU+KN4yP2jeX47AhI+MlRKcWzq0sCYo78EWy2Gy5uNpi6giAohMJIRdcOJAuDTxwOB653EPpEWVuaVUkIYR5QJfwk2G86xikS5cRxpbh4VeCDxwdF141EHEYPFPM8eULS9geOjIAhEnTAL/NW7y/+5COSjKyqmrVtuLzpOD2xnKyXVMcaJxy9n7jcHAgRFiuDkYndZkM7eKazhugTSQqkPDCNz9gPPV887VFCUBWGh/dXjD4RYs3Dew1n08DV9kCKSxZViX9wyvKoYXXUYOf70eX1DkTgMAzc7CaGGLFaMvWJaRgZ+p6T82M2bcu2bzmsF+yqkv3VHnu6ZhktBk1U0LuBn/3aeYa+yezHK7Rntz3i+XXOGr1/vGBRZ+nfmw9PETHw9vmCe2dLBq/Y7A50/QGjLUYqnB9pNyOfPdtk60dIVAUoNBeXW168OmBKw/J4yegiN11HO44YJVhVCkrDYrVkdAsuLg9Mo6MqBIWWs3omK6ea2Xf38SevqJuSN+6vkIVmwBEBZRIFGpLhs6sbSjFydpRrlkIbrNL0UdCPBw5dh3dpDnKv8d7Tbw/Z3zyKDM476llhWCQFRhHaEXSu8QppQUqKZY1UAp9eRzesVyXWZPK5kprKlHnoGCasNWzaw0wYFaTkKYuCutZEP4PatGEcJ6bRMwwj/eDox4lnFy1GC8rKZkAjjsKUpMmhpOTR2QkhBqZpIOBo6obSWqbRoYzBFtVr5RIaKSxGe5IPuGlgd9gxTHCz2UOK1E1JAvbbAedy9ERIIxCp6yr71Ec31zlZrWJsXuJM04Qj113t6PISwEiSIGdVmzyER4GwBipLiolN26Jlys9jdIyDpygKjBXs2z3DNNKPOXO4+H/Ze7dfy9b0vOv3nccYc851rFVVe9feVXv30ensTjsOjh0RbEAgkosQFAiJBFdBCeKGC/4RCFIkhEDiCrjLFYowEQbLJk6wYrvd3e7TPtXedV7HeRiH78jFN+aqcttt2X0RfNFD2tpVteaap3H63vd9nt/TZvwUb+1C253HmCp5phREKXg/IZWqTXZZgZJS1ExopRXtwtVppZYzMPCNe81Ptz9T209cLP47v/hlSqpRGCXP0z/EbYfEzObaZKoks9IdqVKVnHG6ZelaDrolicy3P3/Mk8cbvvDePVZLgR8nLi53vLx6xcV6yxQEPjUUCZfXV6w3mzkQFKy1LBZL9nktRgqMBKX1bOythE2lNQWBnIE0GVBSVo9hLjWLh3oyV7lYLXCLkGihoAhiTqQUGUOk95FYRIXj+JFeRiiJlAKlgFaGfqyQm5AyQl7ymx9+hkgFkev3VeRMFxXMIz6qzk6AyLWgeu31zLckUJ0lTkpODhWxBK4HgdSOZnUH03S41tLZieOF5EAkhm3P9dUWayXjZiSWKkcS5Aqa2RdrWTJkED4xKzir3EztIyzEa4roXOnFfSE1f5SYZ/Nz8rcS0r08MeeCEvJWmy60gFxoTUPMNZxVqlrE+1DzG60xdd+VGoy5hwjt4Tj74rIAewKkVOZ2irl/XakkJVdqaRECWcobeZLc0r2qHLUWiBU8FCipFpb1I5bbgrnSWqvMtjZOanyLLDVPCarR/+L8sno15wiGl8qS8hXjNz/CqErFVFJjmg3OGhSS6DM+AWI7+2Jn6mpMlAKrhUMpQEy8uthQEkin2VxfMvr6Xf36b/+AV9dfRFvN7314TkmVdvvxkxue/sp/R9e2tI/+HO988BD16lPKg6+jWofwn8PuCZM4JOeJtu0QwmKiJcvI5M/J2ZOiIaXZS0qPkJYYqn3OWU3TaLRpZ19NJMZMSlSlQNYQIEZBmGCznvgX33rMzTahYoNBV7O/WLPe7DhanvL05/8J/+RXP65ydimIBT56/IxhuOL6esAnj1aS1eqQtm3QZUJIRfEvWS0dyML3fvgSfZW41z5D5UtC2HHsJj67KPzCz3+dv/fv/yX+26MbQph4dH+F1prVwYLWGTqdMc6yi9UbsrQWqxVjzPNkuvozKBXulVJGG4W1LU13SC4QUkaJDKlKqSSSKdSirFOKTlVpt6QgfI8VmkXTwQrQA2pnEUAsE1NIr2X7t77cP6Za/HEF4R8lY33tJfgD//baYZBxauJLd+/gE+ipIZS5WPIKUwRCQVCOhOP3v/8RUt/la1/7GZadYpX+BeefrUkoFq3GtQ2y04iLG1Qq0Fj+x//kb9Fpw9/+6LtsfvApd98J2K7h7lfe56F15JzYfPaU7vAAc3ZKEHD94gWfPf4Mh+S99x7SHi45//Azhhj40he/UHPlUj2P8qKw1KBlfb99Cqx3a2TMrK+uSRSk0WilEEbz/NNz1use11Tlx/d/8DlWN5wcL2mdxDuJdA2PH18Qx4Ag87VvPKIcWZQWLKzhF1ePUMqgrCMJz6ff+5B/a/VF/qv7f5POLtmOPbubS2LwfP7ZBY8fX3L/zopOw2/+8Dnn24GUE3/7Lzzk955e8hvfu2bXe2zpWbiWV083/N73H3O96TFacdhVcnccJr736oaoNQdGslmPlF1PQXLYdhzIjqZp6acdTijaxnHdX3P3wSG5CJ68eEmOhcOuY9loTu4c8exmRxaeZXPIZb/j6ctz7i5b7tnEej3xyfMtXbsgxUgqpcKkYsI2mvvHC+SUePY4MwbQRLQUCA0XsWe8ueHk+C2eXqz57vMbLJqllixlw9UQeXUZeex7rtdbjroGYzMlCN65c0aRsC2eu4f3+cq7jpdXl2z6HikDIm158cLT9y1DicQUeO/ucY3+0YWPnjzn5vd3rA6PiCWxubrm3btnfPXRPe4c9Nx/+15lAaSEUQZjDU9fvSDyDhfXG4Zp4vp6pDjH2YGjH0Y+fbkhxIQPIxfrA5ZaM2y3DKNn0XUkAwWLk4offvaMSKQ5aDjNLc5ZLvuJFx/tSKHDxwHjCq1LKJGIMXF6csLf+sIDKInLm551n7m6GVk1K97/ygkXN2s+/OQFTdvSOMfdOw2lJDrdcnxwyKa/RJSpgl0STGNEd9UTt2gtRkpco8gR3nlwxJNnl/z6Nz+mCM3X3z9laTUhRJ5eXTNmz1sHd7Ea+jExrkfGMWJ0y8Eh3Fk47q1adtOEj1uO2iPWwRNS4HTZ8d5X7zP0A02n2Q4TvQ+Yojk5Oq4wqzSQCeioIWaccYSU8SESfKDfJi7HgV1c07Yt904FVmfOjju0UrSDrPowKXl6vma9Hvn0/IZhCgybwqJbcO+0o7ET3V1XszmNYUobxmFi6hNCaFzTIZUlphrHEWItAguWEjLjkJjGoXqmz29wzZzB6xOX6wqealzEakEqAp8Fu8sN9+6dsuw6xmmL957FgWHV1nVDKStShu1mZPKJq/UVrjV0XZUkX11umWZ5ttWWo9UR43aL07oSTMm4xuCcISaYQp6b/aC1Yui3NNZydHxI2ypWXUJKQwgB2WiUEuRUo5E2m4mcCm3ToCSEuCVJiZILxmEkeM9y1TJMnqvLLWPIaGUrb8NA21leXmyYpsDoAyUm4EchbT/d/qxsP3Gx+P1PXtXOxhyYXolGpRIcKWhZ/Wlprnecrp2RMvtajNI1CsM6lLW8uN6wG0e2w4i2Cj+FGv4qNUWoGfjgZ0lbDfqsC7I64cwiMeslSfOkp+Qadi9llYc6WwlzUoFQIKVhH8VAzjjraJtKdPR+nH9PYbXBmRoHUHIhxFylK7PnMadE8HXMr6RAq9p1t9oSc/XnqNZiGlPZh0WSkqEUSSqVpFf2u2OWVSol0LJOsYyuMhikR2tqAHUSCKlYrBzEge0Eylhc0yCVREvQOdLpgs0RP3li9jXL6Te/j0hUzTpVJloHw9VjkSi3EtG9m3H+8NWXtD+fc7mV/tbHztTTUj/QXnoMNbS8/rUuTN/MayQXyhxwX0oNXi/zY0qpuUdyX4nyxnRwpoKWW8cl8+vOxNTbgrJ+gpzSTBOtP5Nyzzh9wx85e0RrPmT9u5LiVioh3xzgzD+XokrTSi6IktCqdmRTrpJXJRXWVY+emJ9AzDLoxul6zKZAKQlVJEVCTJkhZHyBHHeUnFl07SyFrTvg1c0aqdTshSyQK7U0KEmM9Tysk20IPrLdjEhgItIPgf/z92/Qao34gUfblrM2c3AZ+OWf22GNQlqF7jJlDqKXGlSj0UNBuQ6dJoTfNx2gzLKWUiQ5F/o+VCm1qp3KkKZaSM1NmJgTUs0ePgmKgrQgVSaPuZ5P847d+QklYfrg9/ln//dvYIqAIrDa0hiJwCNJqKxQQjKNI1NIxDGRCaQScGuFFYrkPXfvdHz22Uu+++HIZggYDL/0Vz7gL3z1HqRrfPD1GCkRkRLbTWTbS2RIWFuDo6UUxFZjnEXqOvGv8KYKL0qpHsM57SX68wQ/V7hUmeMzMiBRFFEn17/w1xJNo/iVf1w4v54I8gC77BguN0jdUeQlyAyyRYhmPnD3x++fwL74ow/60Snjn3DLQNASvexI+/efPaRIEQ0KWX18657NuOHdh1/kg5/9Rb5lMiJXmfri+A45ZXSIiFDIGpQ7YLpeU3yq8lotOTw+wN4/q6TgDHmaUCFRcqSomjvLeoMsGTN5mqbFIAhjT871GDNaIksm+6lm/87HoCgaIXP9QKJwducOOtWiPwlBFJB9QKuafdcdrmiNxElom0Ok0bRW1OOPgllZtDEUHyEnOucQSpJEQs73hJTivHiDk7tv15vktEGgKOOOOFWJ4aO3Tri3OgQZcE7xy3fvMM0T3BMJ31gd8da7E2Pw7G5uyKnw/qNDtl6w8xFRIhrorONmPfDR5+fspoCIEmsb+rgBCo/eusPZ0SE324H1bssQI6UEQhFsvWAYJpbtosJCSmEIkeubHSsnOVkuKVnx8uKGf/evfp0cJi4vt4hSOGwNUSZsU/H6WmqO2gWIxOU0ICgcNo6YC09frmmswfiItoJcAr/z4dOZO2CRaHphcUayixNTLAxTIIbIBsmrix6y4Or6KTFFks6cHmTGSfPqYs22n2gXlvXGE/PIevAILUkl8J2bnpwk1uwJ4pqrzQ4/RTprudz0fPfTFywbzdafs5npywfLFafHJwyDxzWK5BXJG1ad4GBpkDlwvDQcLhpCKkwhEv1IyInFwYrloUBEiXaKMRbUDHJTuQJFitaMKbO56vEhsWogpolpkAwqkmSVfq/GzNJWmN3lzcSr64ntesPWWfSNxcfAYuk4WCpWreX0cIEELq4GrrfX7IYdThsO27rO8a3GxwwxUXwma8nTJ1d0neXk+IB7d1YoIxFKc+QsRoMUlm7pGOPEoV3S+4kxCRwFqwVt5zAkrLFIKWlSQpbM0aHD2cLVRhAKXKwvSVmQhSOGiEqVDF2HDgVjNEJ3DFOmTIGDwwXtwjKOvmb8ZQNiwWYyTDFxcb1DlMhmM9FYV6+5swcph0wcAyVCKx2HpwqtJYMfZqkn5DKQcybJQg4RI1RdS7aaUmrGrNKCGOvabdm22MOm8gUiLJwlz3TQfvJIJTk+qEtvI6HkRMyFZECtJI2RNFqQxno8LJsF2tTIsRSrrcs5hRSF9s4x2lR1VCqZGEes0iysRUqFMRBMQZoK4FmnLFEAACAASURBVIsxM6y3ICTONcRYG/TVWtOgVbWW9Nu++sxFQYqIIFUiv4S2UWit2O4GjFK0TV2DxOBASMZhQ8kRrTJaFEzr0CeCkDOZul4qZX7OudkvUXTLBqkKcPmnug/9dPtXs/3ExeKnjy9mGE2ZfYgCOR/QpYCcJ26SihoPYS5MxJxzpywle5QovPv2XR68dcZbZ8eEkPj0s0uGyTOMFQm82xSkmhDSvy4M5kKqpEwsddonxBysLqgHpXwNYRDAdjvNk6a5+LrND6tFjzGGtm1q1z6MQOHu2R3ywnCx2eCnCFLRWoUWhaWrF5ZcNHLlOOxajJFoLSg54qcJbR3GOppFgzCSVCrpKmeDkpa2WWGNm7Xj9YTOuaKTc5qQ1NiLLDJJZrSxNaRbJJrGcu/eHXQZSUmQEGRVQORaDBaFBkwJkDw/+PRzPrxJNK1D5zotzDkRc/1OqkcvVvmvmEd1twvI2TM6g0pqUchtQVbLyn34/Juhm3WTuhblWr+eyO0LOaX3RWsl7OZcSCVjbb2p7AvHWx8js4dyniK+ORgR8jVsZf/Y+U3dxnGk20zI197J1/OS+fdLlbXuZap1knj7jPU9pVRhK7M0L1LjJZTWbwxj6v4zxlapLJXUKckYIZHS1e8yJYySfOOrj7h//xhKYbudEFLz6vwlOWWMaQgxcr3eEnIiU70ECDU3PCL9NFDivF8olBJwj3eVtjgO1URvDM4o/uWTEVMi26tnkOFf+8b7PAqRX336HNM2uMbx9tuHHB8sWb13F5QgppGQx/ksbLH2NdTJ+0SSEVSdHk6hhjqLoqqPeS6QYgDvR3zwNKrCqJSoskslqx8Uk1kcCb7w/j1230z4nUcWwRfeuUPTGEKojxeqcH694+JyYJwSUjQ1mkL4KpEOEh8niqqSJFfFsRydKP75t57w2YtrijGc3lvyb/7s+8DEtz96wqZf4Yzm+astwgBWgtIs2hUuJDrhkcpQssbEQoOHUvehVq7ueSNBWeR+oQOQC9K6WvCXXD3IpXBw9w5bd0TSkv/gH+xojOKf/28N3/zWh/zMV075ir5DnH5Aa48ZKWShUcLi0NQz/3VEUT2Mf0zVKMQf//cf/dkfU0DmlNl5kMdHNJ0hMxJCxqKJVrLNI+MocO1bfOmrD/j7f+/v8PDdBZdPfg1RCpaMlpEkFNksKEAuAb3ouL58gUfTWsWq1RwuJPrkEC8r0CpPIynkKvdtG5LI+M01IidW0tDeOSWnhAwBMU10XVM91b7Kp4ukXltiwgmHMpYQPMN2x0HX0Sxadv2OXAqLtsUuV8DI4dLWTqOGGEfu3j9FKE0WtWBVOWOdQghXAUyl0DiBbtpKZPVTpT8ri4qZMfQcn57Sr2+4efkccxRokCANSqpKtz5V9OOEcYL72sAcy3O9u+LULnkvTgxjj4/36BpH9gPJdIwlkKKHUDjsFuwSPNtuGceRFCwFjSJQCBy0BlUkH3/yjGdP3mFMicvphjgNrHcK7xPvnCxwznCx7nl5UaV8RiSUUShj+fqXHrC5ueTiZuTz51tiqA0rH7esDhpWzqJyYghV4radBvIYuLyeiFlw//QAKSVTiNxsJooutCh6P0JKpCJ4FQpWCLRNrMdKkj5whtEHfud7z1i0tp5bOdMay9OXa4oPUKq1QOsFU4q0bmTLrk6HtGKXatPz+vwZy2XLwWqBtJo0AUay3u24We846jpWx57PX9zw7OU1i85xfLDEUli1FpSlnwLDNLFsWyiBo0OHQJGRSGe5uYm8DAOu0yyXjrvLFVOf8BSkTjWjNylinziPV2ipmKLAx8w7Z5rGWkSR9FPg5TrjU2HTez55ukZpiXaWt+8teKES/ehpVKazFi0cRYJG4kOqVOxdzziOdFZilKJxFqkEKy0YpkiK8VbCmVNg1ycwjhQFToEkME2CmASLznF22DJNlrZrCTeC7AuNMaQ4EqaBLESFic0k8FwK/TgwjRPb3uNjYfSJ1cLQ6Bq9Y52m7SxxKvgc2E0D221AoJAy8eLyEnHTMowT/a5nueiIsRBSJpVEKQmK5PmLVzSdmyO/JFJqOmeZwkgWEqMtnZI1B7IzxOyIuVpevA9kMm7pOFwscM4Rs6ffDthGI2QhOEihrt/6Ps7RXFW9ZZQmxoSVCiMFqhEzY0HjfcDHTCrVMjX2O7QArQTKGKSQ9H0kxIgfKsCmaS3GaowxjJNn0/uKCkgFZwy6bYBMiJ6DVUPbtRhVpaZ1XZ1qmoFR5Fzl0E3bcHl1gw+FkCVISQqRlDyHBw6l99axPZ2wyv7JCSlrlqSPkaa1hKiIIXK17WnaBaloUJGcIiEkjK7SVGWqHQqhKKJmXf90+7O5/cTFolGqFiWijtDzLGtkv75IAlkEtQSRGGtnr9lEKZmmbchB1kmMlHSNpVlozl9tub6phLeQE36sPj6dKk1Szu+4hsrvPWm5UlClpOwLgrmwkXKWHJRCDBVHLcWcB1fmaSTidk1k9K5KPXMk50TIBrsYuLjeMo4RKRWrRmENHHbVgCxl/Xyi1LBSRJ00brZrnKnFojLzxTEHYpowusFoy/HhCct2MU8cmH1wnlwikw9IMXfsSyYphdKOFCILm1EHDe2xBTwmamKhZgxJIFVqlVICLTIlRfr1jsvLLVlppKxY6Uwhl7nUK7l2fIpElZlSOpMxqy6++jbn3QxingTOU7hSymvpqhC3kz+ok1YpRDVJl0KMcTbFK6ytMpecSr24k2qRbHQtq8os/pyL1L00dj4QauHyBwYl4g/9eS8dTWkvr937MGsRWPgRAcT8WnsZ65vPs59G3wJ23pim7otNmGW788zztpjdTxfVHBmTaodTSUFjDQ/v3+HBWydUX+quUuRUIGaYYmaYquTFh8hiuZj3WZV0ipJYD4oUE1rX4uFg2fLBP/wUITRy4TBO0bQLNjvPsqmyJxMiJcHZUcv9s1O+/9kFer3B6QvG60vunJ3xYNVhlaT0PT5EJl/Iud7Iak+hnoxKCvbjQFlD2chTqXjtuajNucJoUs5Q9sdJnSiLVEEtysHyoOGdR8c8f7FlHDJxSiy++wG/pCO/mv6PWYYeudn0TMNIzBmtaxyMIlaMuNKkEBBJk3RhLJkSIuieyyEwxMLRwnJ6YLm5POdqOzApwRSWkCMfPdsgrMQsHFobzk4XtCYRikeqghMOrQOdqh6gJAXZR7IQCGcrrjxEhJQ4bap8O1M9tcAvv/UYckY6SVGVtrk/uDujePnsc66uP2A7vY6dSVhS0shcUKLSn/9U248WgG96GP+UTxOnzDhGVq0ixAopEHOsSiDTh8L9h/f4y3/55/lL33if0n/OgbtEGVtRSNOWLBxlLubkVBAlgNHkkPg7/9ev1xiYv/41YomUMjdbZEWNSalmeXnNDURVyIKSijg3CRWCIEqVdsc0Z51KBKJmQZpqSyipNg+nccQYg4+BEAPWWlzT0o8jOmUkgqkkBj+RgkcZS1Y10kGnTIyJ7dajhMQqRbescnTnHBFBTBHpHLYkpjgiZyCaVg5tFY1taNvqcZdkggw416BNofeeGBLEjHECFPTriX7nMc2CtuuwRpCNZhciUSqkk9w7WpKs5q46JJUMyZJi5rB1QGLyA+PgWTaCL54lAokLf8PYj7x4NSGQnCwNRisudp5X1wMx1fibGDzLznJ23PJrv/0dNn29BwkjIEta4TBo/JRJIXI9eYIvPLrfIoFtlOjGcHbnkHGYSLGQgyBluHPasR3qNUZKkCUy+Qg+12xlLemcISXNeagZe9rVRXophWkKWGVJYSCnQIwWnxJOREpJZAS6aVg1S7IQvIgJMXqEFKxYUopgN3hyjogi2A4TiyNTqddKMcXI9XaN8ImdtZjGsR09Ly92tKZlsdSsh4ESBVJr2qVjuxmYxkjZFJa9oSmS9XokaoVWtQktRCWo9sOaRbPAmQVZJkoRaKnpVhp2EjbTLUNhGAesldx1ikUrWa4WSKM5bDVWQL+JbPuMl4FXmwGfIjEkGlknZYXCEDIqSXRKDMHP6qxclS1LRz9Erm62hJAI/QA54poW18xNlJQJISBMbWoYKdBaMGXFdphQzTytop63UqnKqYgJZ+r02aoGVQphnu4LURBNmnkTmcknRh9RMiNV4eZmx2YaGQbPOI0cH2TGwSO1pmkUq5VBoGmcorGayXtKqR4/lEBmQ1GFUBLrXWZhLcdHC1LJlW+RBY2xKOmxRrBsHEIo1ttMCtV7V3Kqtz0Nofest/W8dk6RUqRRtlqmZF3mxTkyS+qaLaiR5FQJ2DFnYs40xqBkjfFKucZjVCJ+Be0poRiTp58m+qEq/Bolqz8w1fzslDKtczTKYBuLEALXWKJPTNN427SXM10+1dw0pNYzSb+uExGSPfAvpbrmFlKRUmEaA1kze5UzrltCDkRgM4yMqccHgZQRkRM5SrqFxooKQKs1smQa4y3U8qfbn73tJwfcyDpFlACy+r8kYl48F0TJSDJJgJGW996/C0Lw4sUFw7jjy184ot/UhcZ1v+O3v/NJXVhmxTBVdDaikApoXf2PSsoaIp8LOUVKmUErQoKY5Ya6UlMUpQJSqL4hKaoXQqVUixAJ2dffVaoe9Ptip8pQLDllNts1YqxyA6fr4sxPEh8kYwClQiWj6oHLq7HSQcmkFJimCedaJDtSSJScgYSQkeOTE1onCKln2ya0ErTW3U5rpZQ0bdXEpyKqRFEVhFD4ojnsGu4cddw76vCTgtgirCLqRCqR4lW9IMmCjxDQvPveQ57cCPqPXlGo4I+cMkXMRY2YpZt5poUW8XoRmat0UMwVVV2E1T/tQyXeHGpUDWctJEspyCzIAkzWwOuoC6kUSim6rmMcR3zvq6RMCGKouXF7b+J+gln/bf9a8nZy+OYmZhlyLq9fS8i9PJVZ/iBfNzmo3zu53MJC9q+5n9Lt3wtUj5M0uuYH5RppIkQl/CpZ8z717L1Mb3ohqZmgkj1xthBzqGjryjjk4tUNU5i43qwpJPqpwoNeXVXwS0yFkiGkLZRadLemRStN11qM1oQ7FwgE7z14hxJTDfUNNYLGtpKbXc+RO8B0kYOuRRfLwd07xOWC1TsFoyVWFL7/uz/gO594Hl1OnJ60vHP/BGssQxigzFNAarRKqiNNtDb1RhvHuTAWxBQq3lvOiz4tybEuCGN6LXa2okOJEaMaOntEIxq+/sE9Ll7tWN/csPiXf5X/MPwc/8z8U0Jua6dWJ4oWGDFnV5Z95KCsncvGIchVChsEZMF2OxFLYtEIVtIipsz/+62PKULQLFqG8Zhdyfw/3/kIIeYIEQQnnaVrNc6CUZpV63BOcvfQslyscKpKGouEMEuqffRoqTk9OqJtGqahr4WRFPwb6ocoWVifd4SVgVxhBAjouoYXz15wfbljGgRniwXGGBANKaoKCZMVWCLka3LvHzhBfnR7feL84Z/9SeSoe8BNKQgl8SXz+JPn3D9s6HtIOcxVZOZgucC4wvuP3uXP/8UPyOcfMlzvsMsGZep1AFbzdWWHjKCmiqs/ePs+65fXHN9ssEYhlha3HhnIiCxQBYIQNF3H0G/IKVb1gqmTxzRNt3J0H+L+RoV2lpgSfvJIoDs9Ypwi064CnBaHK6QPFdRldUXQp8hu2PLqxSVdt8BZU8EOJM53G7Sx5FxlxyXVfLoxZRaLFaKzbIQkX+9Y3pWIzuGTpZBYNoZsjmF5hLMdJ4sVsk1YLEl1UDIyDWgVUd4gtMamkclPTMNI6xxSKFxaMBhN5Td7hDEoURBTJPlIAHZyIJGIeIoQrEfPMEwM3QESsEajnOWtu6eMXU8qnkdmidQL1q8ukWSapkJFRgpjTnjtGHaF4gNt2WFF5tHbb7HuJ568OmezG9jtJho0NxvPR0+fs/MTPiUyhl/44CE+BJZnD2gPj/j13/gtnj29YBwmnNQY47hYr1m5jiCgayRaWa7Wnmk3cXBqaTtDwwJTDK0dGINgPQRiSmAlzaLll3/pF/it3/wmjz95zOmdhutXE8lnUg4EMaHtwP0jX71XGCSKnAUXF9ekLNDOkWOgpIK2DduhJ/pQ+erCUDAM40QokCfP2Humnac0km3Y8eqmsLBLWpfxMbC+uMa1La1bgNc8f75msx2YTCVGHi4cy7ZFSMdNnxA6YxuIPvK9j1/gnOLsbMVuSPzwwxdsNzu6ztItGqSAl69eUoBuseBgtWA7jlBgioHdMKJQDD4QS2FxsEBaSx/7eo0cqh9+O255sb7B+4LR1Z5z7+iA6AvTuEMaweHxovqy/UTbNhQBWz/RWME47HCqNgG0ViwXS1xr8WHCGYc1hrbRWC2wSqKVpDHVxvDk1cDFVc9HT27YbTdEH3n70T20ypweLTk9OeR4mWreaZ/pTpYcpJ7RN0xTh0xw2FoWBxYhFeMUiX7irbsnnBwf48eJECZiTihrESyYgmc3TGzHHZNMXFx5Bh+43gpiqvaTt88cSguu14mcoR8n/BTR2pJLvWYIalO8PWjrZFGAKhKjNUZbhj4iSkaUGZJYSqUQa8GUAkkLlk1X/fZSVow7Etc2VUJqq5WjaWyFhsVI2+qawZ1LtSVR7WHBJwQGKQz9UKNuipjXI7kwDIEQE6nk2/tvzHW9nf3ImACRibkwXN7MsMPaZLNWY5TC50hMiZwFU8qkUri8vKlrcirddLcdQOhqoUJCkfN7gywSMRZSoK4bsv/x956fbv+/bj95dIaOkAoUiRK6htrnjKACbqSu04IC+Jz46PHL6uejxhA8f75hCqUewKnKJGMqCJmQuh5owWeELNjGkHMk5YAq5la+uJ/17IEwRdTJV8kSZox/9UjtZYcSbeZw9dosoZRI8B4pa2dFqdcIeiFrZxhyldLlevDLus4npUCIs+wyZwY5IIVA2fqAXAo3V5eUXLswtViomXXPb85rPp6EPFO6jKiTNKM0WguQAe8zQhiEKGQ8ShrClHh4/4z3H55yNRwxbEZss6qFQqMpAky7wrravVmtVhw2DQdlx8nTF5QwkorGdRalMiWDICOKIGeDz4Gc5P5bqDt8niBKZqCG2INtKjDm1usHlFhup3ZyLuZzKZBhmvztRRTAe8/Q96yvrlFK3kJk/Pw4pSpUJ4Q475u9BDST0lzU3k7+aiGW52JUSoFSVeYXgifGVAvEXLv/OZWalWmqvqLWx+K2YfCjklOEeO3PK68X50LKWRq777zVcHofJihlnqa9zniEfX6TQ2rQxXK4WHCyakl5pFk6Vqbh9LSjJMEwDvgYeev0iBASg680MoCYqmRXG42zjvPrazpr+fTf/l9RSvKgHKKU4Hq3Riw7TOOwXWbIR3z08chXuxWrk8JVP/GtH75Aypf0Y+KdOy3vnLS442OefPqKD3/tKW1reevtE46OO95965im7epkRivUHDCdkuLi8hUxBZRqAMUQRoqoPuDJZ7yvk+V6hdAoJVkdHqCU5abfkUTmL/75t/jKoxOOu8zxYsGjewuePD7n8qJnGj0sJw5WB7TOkVMiJo8QiuxHEAWlHaAZfUALiZM1+kSZOo1SJM6sBmkpnpmyp2ml4vjY8OC/fo7Wjjt/7iEiCi5veqYSePedM3wInJ9fELxHO8dJu+JLDw+Q1IZQCvX4EdoSYmQTIcfIcHWF14qr6yu6ZkHjOrK1+LADtugzi0txzvdM9OPEbhSMu0v89gUqb5HJ0HYDXTsirCG6BUW+Hke+kX7747cfJy99s5B84+f/SLg//BTAqnH86197j4UT/OPPKqX6wd2WtrFo03L+fI3rTjg2Ap7+HtvumPXg+R+++QE5Jf6LD37Ag9M7kEfUWBcPU5nwY2AVBK1uKnVTwMoe4vQNQdVug3GWmCOkxKqpkQmESImAExQNMXiUECyXHVnCuN6i0RijsLarcUJDT5wzE42ymCwRXUck05gOQm0GiUZz74vvkfueMg44I9DdCe3yjOx3pLglZtiOBpMdpgyMw47tek1xgu1F5PDmnKurS777g8cMU2F5dMSHn7xidXxA61qMdqxWhWNnMAvF1I+8etGzy4b3vvou0m+wISG1oTjH4ckp2+2GzhSOOsdRY9mMhd/6/ue8/fYxB8uGUmpRe+ULMflaWMeEMg2Hi0PW6y2Hq0WdUmx6rJKEcazFMi1FOO69fQ8tEz/88FNyhqPlgpXI+JRoASw0TcdCwVd/5l2mqed6nKonOwZy8gxj4NW1Z/QFbMLqhs2La7736XPu33V86eEB8fIhT+4eVi8zijDA1eaK1WnHFx+8x8X5Fb/9u9/BF/i7/9Ff5+L5cz757Cm/8e2PabTh/TtLXt0M7CYPJbPsGlbdiu/+zrfZ3GxAGC6ue7RxqHaiFIMcMjJEnIGulfgJhjCQdhv63chqcch0sSbl2tDV0nDVd4RhIIs8swXAxEQfMzhHax2uUfTDJZvJgAIpd1gpaLSiaw1+9FztBkpJNK2hnzwUzcIKxu3AZ+GKKAQHjWO7zjyTa5SIdMdHsI18/nyN0gprFSfHS1zbMk0jGUFnFyAD11cbzs9viKE2x52rsViLpeLBg1OsnvM1UWzX1Uv37PyKTT9hli1WHmB0JMeM3yQ+Wb/g+OiwymoLpFAb00bA9dUNo/d0jaE9OiS5ht1uy3S9pnENd49PuLtY8uJ8R7eytAuQMTIO8K3PLxACjo4PWC0MZ6eGe/dPSNHw9OU1F1dbGq2RSvDp9y+IURA1SF04XOq6lpgn+MuDlu3NllwEmyngrEIKSz8NXK03fPzkhmGcyDlRZvtU41pOjzsWneHdt+/WfGrTktXIePGczXZgnDKX20OMBC0LWguOT1tUqytNPc8xWUgWrWP0HmsVzkn8NPH500u0bTm/uMJaxZ3TIxpjWXQNrW3Y7QZubrasDg7wKbDrR0TJWG1xbYOPie12CwUa2yClRClJDBFnHcuTFSVHhEq4OXIqpkSRgutNhSv1QSKFImVBTBkfAkabOsUeB/zkMdYQgme1XNA4g5SZPkeKdGila8M9ZqYQySIjbZW4SiFg54kxslroOW8a8mFLTAkp6z22Hz3D4OugoiRy0RgpKVrinKbs7RQ/3f7MbT9xsZhvJyTUxYWs5tuY9lOY+l/XKJyziFJojObe6aoeFAJ8SEwhsetH/BQIqRBiRRojJFrNEqssZ6TuPLmcJYCvF9912w+Y5H7WlUDk/WOp4eZ7SeU8pdrLWecK4DY+4TYWgz24pFJIU6qfW1CgVClBztUDWbMQJSrW4jSXPIe0FoSqkyUhJCVXBLUQgpQjMXpsiDVmBIHRBqUg5urZrP6VveuhypA+Q7AeB17cbAjjhHKWxiqc0UilaJcrGmMwStK2Bms1CM/nTy5QylCoPpta/NTFqZiLcKnkrc9z/72WXOMuaiE1y9akgDLPF2c56JtL1jfQOOx/pcz7p3ofmWUOryeTt0vUN6Z6b8pA/9C2L9gQr4+6Uiez+/zGUipkxjQ1EyglgRAGJfZZn/Pz7DW0f+Dp67NKoUBUOe3+E6YZyvPmlEYI+RpwEmsmpzWuTpxzBWoAKKFvj1ataoNACjUbQeemwv7UUhqzF3SrGaGdEtrMHcVSvXtWC44WFSxCjtUjowX/09/vSOWY//S/Hyuh1ApOuxWfuMDB8ZKzlUCpHt22yBQIUXN27Dg4amlXR4QYeVImfMqcX+2YfKLfDiy6hsPDBa5p6dqOvlVQLBVEUKerMVY5N0LMaoMq15EiVTKor53sZWs4PeyY/JrOWgSJm/WGzaVnvctkIXj5cs1f8bUZpYCudTRGzQ2qWSWg6/eUi7j1KeWcQNdGkdK27sMcQdSCNeQaB9Lqgk+RXQ/GGlSrK3wqJ7SsMSEhZbyPHC66GpXQarSsjZBCvpX0CDnHyGjNslvU5kRJKC05PlrSuRajDZ/1J8Sy4tGp4tk6MfTTfAQKTNPQRINRokqMd1tcZ2vEzm6A5FEz/OpPTByfj9W27SocSUo265s/8pzab/+7ND/y8/q/EBMfP36BlbCZAoss2O0MIQiK1rzz5Q9499FDPvjZ9zm7U7PaFsuG3z5/SMqJYfo2w7gDXaf6JRdKkdXrOY2IXOV/KRY26wF8pv3df4AyFdcvSyb5WKW+ZfZLz9d3hayT7JznHNXZVxx9BVVpNeeLVV+wkKpeL2JkO/YMOdBpSzN7uf2uJ4mAzlX+pZVApEiK4H1EiTo9aDpbF69TBUMYk8hOoqTiwNa8woePBFPMSGPJosU2pl4zhMLIxKpzmEWN2InZsUATwkAZBii1ibq5GXm+DeRhx0Gj2C0du64lZMmr8wu0ySh1hJwVFrFMSAnWNmQVMdqiZ0XN5AM5F0bv8are82IqbG/WIAbiUYsUqV7PBZXASyKmuthWWuODII2eLgyM00CZIkoZnLN4n2lbxT3dEKvWnJgLcljw/sP7HB00tEbyc994xM+kRCyCaUpMQ6AfR9pOc295wMWdFllGwuS5d+oQcUk/HvPO/XVVGbUKNSUc9dzvWstBZ/j88+dsek/vI8Zq7t6puYBXu4mYEkpI1tvArl+zCwOZBDKxbDqUgH4MIOHs5IDTZceTi6GCvERVqSSgcxZTKvU8hkhKmfVu4kuP7hG14vGzV2zHiSQjgYidpZQpJVxfA85TTJRWk2NknAIJ2O5GjDasmppr2McKmMtZ0Laa5cJCFkxxYNvvyLmg5YTRguvLG0YfQTmsUxx0Ve7Y+4lYKjTG95kQwDiBMZKQK9V8GmONPhOZxipAsd5Oc4NYo6Wic7oeU1JjQyLmhJGQi2D0nlIEzjikVKyHCV0EN0OkLz16PSJKIUXBOEX6cWI9ZRYLy/l5VSg0dkU/jkwhVslqEdhGUabM1WZLKBEplsQYKs1z5gtUlZRg2+8Yx0Cj91CbjJDQtAZJ5SFcbzc1vihHSjGQ5yKYSBGSs+MjjpcLppAIqAoOlKJGvonKC8il3CpXKAkfJXEKlJRR0iBQbN7OvgAAIABJREFULBeuvrc7K4QQGKOQRuFjJvi+NtEFeD8hTM2wTjESUsRvt0wxMw1+bn5HwrbS+sdhrFYeZ6paqhQGndBaYptaYLfOYXUmhLpvBRWc07q22lVKHQK0VlXJdSpMMSG9xEgIU8A4Vz+zql5KrS0h1n2dY5zvPwkpa054TnViaY1FaFGvMaHgQ7U95TqhqNeQUtdvMcU/vaXip9u/su0nLhaJNZfp6GDBgwdnOKvpx5HNessUIgiDQLJoaoTF+fmagsDPE6fsA4iMFpkYcj3wiNXDlOQsxayexJxn3eAc0M68nt7LH+W8AMo5swfgSDH71ISYOyLyDVnh7D3b67DnjBohXmf7pZTIFJzTpPDGtElA27TzIn7OhwzVG7UvNuRcFNaTId4u0EpFRSIV5JCQQtIYUwlTrQOqRl+qgjKCySdSLHMRXjtF9bMmrHYYY5h2FZoyXk/sRCGlESEyy0W9IcaUGXYTORfuHR9ysdkRZ59ZjlWmiZxhKKKGxiMUGbGvvOr+nmWbKSVElogZMFSVlfN+mT9nKpU4KuturF42VeWimVkSPHsFhaiH4D4hJIu5hJ8N8PC6cJdzVV8XhRJEJqc5Q3E+LGWd8+7fci3+CyilaJuWyXuSzFUGlyuIaC+rYy4MS5klpaLCcFLKWF1liOUWqvMHJ4tzLwNVRJV0KYE0rnoRW1s9kHupKpJYqBlJut40rDMoqzg6PuToeAlGMpaCEBqXMpIK9SDX6VXJhXbRkmIiRk+aKW3j8ZJhDPTeI5TCNQZjFE5I3n2rQcravWvetXzryee0x5azk7YurO6eIMaepusoucbALFVLeHDG5CO73chu8FxdT3z27BXWNLQLiAH6Hg6ONNZ2rA4aYsgMvWe5MuhZcphSJKVCSpLtsGOaMtt+qh6vPmB1Yb31FCTf/v1nfHMGC2x2++I48h/nVLuWWXL/rOVwaTBYrE4UCZ2t+VrbvtJlxSzRlAaErOe5EpCFYjsOxOQpsTaB2uaEIgr9JqBlpO8Dnzy5ouTMnABEeXVNTpm37pywbA0Hy0TIAx9/EmmcRCiJdY6ma7i+ukIqjZSaXKtOtJY0TuFjYoqJf/T536Bk+F9+8df43jd/yOMn5xQhODw+5T/7L/9z/uF/8z+jbUOWluubARO35G0gc8OhgYf3l/UiKdR8w/4xU8NZJ7A/r778lS9zeHSEc45/+iu/Ml/b3jwP/uht3/SBmi/r3TFnDx7w7x084OWzp8TRc3J6l9N3H/J3/+Yv8fCu4e5ih4gJHTJNa+icJqM5OOkIDLjSUAhkUZDCIA1QRoSItaBLmc2zLSqAkh6tPUZqjlpFyIE4JrbeI7WkdZoSCzkWyJn/j703idVtTe+7fm+3uq/Z3WlvU72rynXLvS25wUmIUeIEFBgAovEAoTBAFkJGCIFgkCCYgJQoypgwIJlEYCJIQArEQnZA2MZdXHbZZdetuv1pdvd1q3lbBs/69j63DAxqQg1qSVf7NPt8d+213vWu53n+XSmJaRqIXmKRUgZyIo0DMScaV4vxUspkrdGuJhwCOSWmOoEzqFI43B7oCyzblra24D1xOBBLJUi3VWASQ9hinMb0CV1ZqtoR8sRqVdFpR912LM7PKDnTtvXsjiy5Y0rDzYc7LGAWlqA0j18rWF3ofU+lz4SxkDRD0PSHA061LKyYdWgNTVJ86QtPqayjNeJGS9H4HGhdS921xBCIGvppz7pr0Fazn0ZGH2m7ikXX4kpBTRPJB3JUTCFxcXoOShFyJJNxmdl2P5OmxJg1m5stIUamYUIpja8qxkkyX30MhJRY1A2DDyzWNY+erskxM06Bp4+XWFMRS2GcRiDz6PwUXYDoiemEn/i+J8SQuNzveLQ840ufPuOf+YnPE4tjH/ZMvSdMmVgyWheWbcVv/fGHeC8RVksMbz46ZfCer7z9nD9695K6ckQqXlwPRJVkYBc0VVcxDj1dbbDWUVU1SWuurjdkrXE2i6O7dbzsxQimroTC37YtWmsuzlpuh0BnJdNYMPpECoHb2xG05o0nD9htDrzcD4QQKMUTYyBljXENq9YwTIrtLrJYaG42B2ICZ4U+nItmmkZCkQbC2gZnW3a310BmtW5x3nJ1K0wepRVtU2GUIQ7gw8Rrb55KgL2WRjAMA/vJY5zm5KSjqSrQiuubPde3Sn7GTuiZ06SwFiorjdPgA2eLhkVb4yePjwciOwyW/bBnGGQ40SxajIJ111A5S/KejY98c3tgt9twdnKK0RqnFYduoLKa1aoFq8mbicNwoG9bSobdob97/z86P8U5TaWQjF8Ui67BmII1hqYSaqy1DvdMYrYaYxkPgefPtuQC7dJQGcvJYoHpJNbLxwFjLDkq/BS5ujpQkLxfVKKpBGXsgyeHJMOY0qKt4uRkjTGKxaJmnALDFAgzqBC85NIulgtCmMgxU9U1zjREH9luewYfcc5RNQ1QiJOwpPSc1TmTruingj8cACTnWkv0WJzr2VJE69tYK+Zqc32zbGuapuVw6O9kM9aIE7/uFuhZkqooqJxpK0s0lhhlaBiz+HRYZ9nte2KS58E14hOyOYzklMSbpG7JMUKR+rgU0ZtPQ+ZVB/3vHt9Zx7dPQ82GxmnO1ys+8+YTus7ip56rK8cweRQVRjtikpycy+3EYQq8cyVW3YRM4xRGQQhKsmzsiNHV3BxksoKMoRhpAlFywmVe9HKo+y9FnBULkI9gYslzwPwxQ14Rw9ywaEELY5HG1GjZVLTR9EOPD4Gua8ghoJKghtZqHlycCg3AidYv+yAbTy2bpbEV1lQATNMIqDmAW0TKpoJ+d8Bqy/kM93dtI6YQMZBUwNUGH0DHhB88/Ri48YM0FyXz+tkZ56sVXVcRVSD2FUVl9v6GmEVDkBWMo+fm0lCC4s3XH1I+Mnz9w+foosBKWG0xed4JNLEUVLnX5h2NXoRWWmQirMW5f8ZdieKQg5nRL+GwF6zSyBUSh1NBiSGlo3HMke4p2YzqFeTuY/f2+Lv577QSYTRFIbwzdXe+Rr9Chy1zQ6ukUZ+CJ+dESlnsrrWRuAkt6OidIc98XkfDpGPcxsdcVmezETWfy/3lksJTaU3dVDhjcEYzhQmrLe2iwxjLMIzELG5gxRlwoJxmsepYna2g0ljtUKrBpBFbAto7VIqYIpPWplsyThPTODENEYtFDwmlBz7/i7+AxH4YfuEfZxTwuRdC8X324/8Y82O/xzQcWP7e53j9a39R8gBtBVnQr5ISJSXe/Tf+JtseRhw/9jt/meXmkWRqzhrMVBLTGPg/4j/kNz/7d6lcy1n/Gv/8N/8DKQhai3NWBjRFHG3/wWf/Om/HjxiGyE9+9K/y/cNPC6qkmCNyBBB6T32Dv2b/Y8gVWmX+y/i30eaoC1N0S82itdhc4UwmlsCydQLOoilE4piEWpOF+urDiDOS85lzIiZpspWu6Nozulpjfc+v/VsPiAoe/WdfQ2HxthDShNMWbTQvbntCrHh60VHXDf0wga3QOaOIVJViHBO5SIOskEB0rWFPpmiDMooQZeAx7a7w+w1778kKFusV/9y/+Jf4a3/j7xAwRCo6bSiz217JhbN1x9OHKz42jP1/bfTmwcb8vD15+pRHjx7RtO39nn5kUnzLZ/z5LJmdryKMSim6ruVP/dM/zQ/94Pfx3rsf8n/+2m9wuz3wPZ//Ht76wR/mR75osYcPGV68RJkFZtGSg2TToeHiYkWceoyHEpIMiYwiRAVGYZXDyxQKVyp06UXjrOdraWUwJ+ZPEVOgsrIXpDjn5qpyl32qUOi2FhOOGCXvd1WhshhHlJJRtWW9WqOVZlJZEMkpUhkHTYszMoX3cSSmRFM5VG3pU2QaR3bbHcZa9AS2dWin6YcdlR5IrmFKnv1+BwneeOMJqIGq7qiaiqqp6TX0+z0qNXhl6CdPReLizXNOVi0li25ucXqG2mwpVt7FpEIMI74PuBNH8plxtyP5AFGzT4W2caikxKafzBhGXls/xlaWtJVnoa4cVsnw6mS9IgWxuB8OI1o14nqOn5EVx367lWZZGZp2BQnapsMYKRJTFMYKKjP4gX6KNG1L1dWksWcKEEMWyvX1huQhBE9Wnqo2LKMgFbqrMWSWjcGsFwQ/UTcVbW05Oz3B1AsiEzoVfMmEkjmMgRQKTz73GrEPpNGjdyOVgkFBwND7gnGGxemK5uWBfm9JQUxdggqg4I0Ha5yzXA2R9y73HHwko3A603WGqrF8+OwGUwpvvtay6ByPTk6YYuFr719ye7Nj1ThWC0eFwtWGISkubz1NY/ji51/ja3/4Hle7CTt7FohxnOK1kzNWy5rdfuIwwpufOGUzDPTbkdRHyDIIzXFEOY2rHW01xzw1htrIwD6mxMv9xBgijbUip1FaXp9l4nZ7zThFmmpBVzUYpUgxEJNmZyd8TJiS2G88w5TIJGIcCD6wOUTqSmG0xjY1rqn4oU+8BrnwwcuXEvmxPKHrWtIQiNNA1hpY4H1mcp5FXaOKEqf4E8t6ecLJyYrYJ3wfGXYTudLkpIlJ4ipq69BaUzctCSQTOcv7Fw0ny072Vxx14/B+JIaIz4VkLdkVkfy4BqMV/bDno8sNrml5aB1JBwbvyUWG7rUVMCH6wjB6+mEkF40fE0olzs5O5O/jKENxY0lk/BRIqUZry/5wIPpIDpL7XC0qjLVSG9QNzhhud7eUDE3d4WxFWxdSDDR1zaKrUDqzaLWgdkWJOy4JHyMvDyOHfWboR7Y3vdRr1hBTou4cxmi6ykHRjGESt9OSaeuGRmnOTtaUEiF5oGCqGq1rhjBQiqCnfgoMWZIFjK6gAoLU1hpL7/ccjf/SINdw9BGjEnVds1hUDHsZ0FptRcpEFlXb/5de/rvH/6/Ht98susitL2zffcHXn19jTWG1aOVBVRrthGq6qBxQxArZwZ2DaiziXkehahQ5i+aoHPnNSiHstYIp4vBU5gm6Vlq4HzN9tLyS2aeOk/XZrakULZQIBKJXQGUsORbSJDSarJVk4pXMbggUNE5JI/vyxRZVCkYJfO4LvPP+rUyE79DL2cpeW5TKGCvnWOY4DMjys2o1O25aShJakFVmzi2cO2GK6DqdY0iZ1hjWbU2hMIYRYzNWVYTecL30XDxoIEZOT9Y4pzmxS2LoKDHRLSyq6Xi0OKdkw2a4ZYw9q7qT6ZGW6+aKI80/iykz+qmMuM0ZKRBTlqapqSuMkpdR0a8gunO0hUJTz/TMeydQuXdKiUZCz5qoI21MUEh991lyFQTlu/t9KRIMOyO2ORdSlKmYGP8cm04ZBBiBJ8iq3H3eMAzS4GSx3DfOYLWi0UJjm3telIIQwl2DqLUmpDg3t0f6s5odUF/Z3Gaaqe8PQGEdl3RdR9Y1Q0wM/Uj/4TWlyNSvMkbyC1VG2QZrG3z/OzRdQ0yJ/TChgfXpKeTCNA5QCikLAv3g/BQ799aDH2VC2DU4q3kwhrvrFpMMLnZ7jwI2L68Jzw5sbq7Y+g0lZCwKneMcBSMTWoxh8fARL9VANxVsVWGMRRcIKTGb1JIKHFLmt/7ghlS2vFEafiYJxfPgEzB9bO/4ldt3+NA8pxT4YhqZyn1SpyDMx5GPuCkb5ekahfaCZoVUoGp5elrTOMfmMDHFgTxFJnWCsopFa3G6odc9Rmsen51gZ9e6UgpWG1ZLoQQNfU/T1TiTOF0v+MSTz/H7PxRxVvNf/MIX5oZv1leSMcrgVY/ShpVbUrsaszRYJcOHECZCzHzvF1+TaB8/UpLct5wLIUHtDFob/pvfnh1te8uf/rM/yf/628/4D/+VzI//+Of5mZ/6HznsdoQge+P67ISsWrzWOFv4zGdW6PUnBUnPCa3KHRlAzRTsO4r0TJfO83V96wtfZLla8PLy2UyvNpiSUSUTtRKIf/7eny9y/34+yfpRSIG6mODhX/hJFsNX+f43HvBn/ruvUD3b0H3wh7T/+/+A9QMFxZlxxJ/8ATb/2p+DXHj8/I/4t//nv8rp37+CV0yfjkT025//l+Gzr4GPpFywFh6/UcOLxPaLfw+Uof7jf4n9Tiilrq54revwwZNjxCqFM/IOCCHMVOhMNAbnpTgydYPTjsurPXWlcFYxKc3NzZar6xtOa8PFsplZ4Yqzi4qYNcVAURYXDdFHQbMXjgWSo2pffzwPxJI4tWp5d03jSD/0rEzD40enFGCKisvnN3z2zUfkMXJ7s6FqFc36DDD4MdARcbrCP7vl+fMbxjChlaJ2smc5V2GMmU3fBLGJH0jjPU7TzISpUUrh/RarxHQrjoFVtSSWTL/fY3LhrG2Y9gMfbl/gXEXbSlP29LVHkh2LsBWsqcglc3N7S/ITy3XH2fkZ4zCy3dywtEtOFieklIghYteOMAVO2iXOWAKefujpVmuMcYwp0XQ1b77hUMqismjCdO3otx7SRFO1+Jy42m3JYUe37EhT4LCb6Mcr0Fe4mZGSVJbIh5RwXcP3nndMVSaFivrNNT5nbGX40vc+4C//3E9Qdw1xTKgQqd1sJ14Uuxi52u1xWHJK7LxnjJn3/+gdnl31fHC5Y7VqeHhxwle/+owPn1/xqU+ekkrhN7/yvuTVTaIx60PkZjhIge7hrS99ki+/9QmuLjf80v/2FdCOaeo5PTmH4vBesnWTSry8veV6uwOlefZSs9+OMoAyBlcbnLaErGiMRCldXfYM8YbPvvGA3W7Hhy+2KGPQ1lHPAzmtMova4pYLYlzx9rvv0tQ16FtKCkjqj6F1S1bG0ujElBQvbjdCz58KJ/WC1y86skrcbkdiKmJYMk187b1LYohUjaZqKnZD5GZzzY0/UGtLZQr9R885bANX44jTBjvHRBgj9dL5SqiR1sDmMKCdYtUYXmyuudls6FxDSRUpZZoWkckoxQfPb6mbzOKiI6dM2PcYbUi2EIdA281xWVkG3En1EqPRWD7ziTOUcbii6aeJXS8uuJVSnKw68ZLoIJcaw5K2bXjxYktIYhKTo8iEnK3xQ+ZwEHf92hTiFBmiRxs4Oeto25o4BYIX34FD30MpnJ6ssJXhsBONPxpWpxofera3vTCGXI0fR4b+gHViXpdSYrHuOF8vycsl/crjfaIfDhhdY404ajvr0FrhKjub8wFFjICebXZz1nZEq0JlJ0ATpoCds9GrWoZ9IRaUivgYSDnhnETJVXUzG/9lCpqmarBG3nl58rzcXuJqhzGWxkmzmGLC68JdQfPd4zvu+LabxWGSieGDszVvvH6GVYmT5VJslKuGdrXAOovNnpQj7777kqvrW15eXQOGMTJHQhSCz+IaZTJ5pp6CuDJBJuWIVgalxJUUZGPQMy30OMU4VvrSnMzxBuoYdaBByQs2lox2woHPOaNSRjlpdRqquWYR6mROmagUaW5mdEZs7imA8ONzithiIAo6EmKcjU6SaJnmAh+grh0xTljE5r1UCm2NaB98RJdM1VS0zmFdws0bUEEJcpekaVJrS7VYoCsJf+0jaGXBWJJJxOwZvEUZTSmaVDQvbxNXN6PoTIwCA0WLhtIqcdgkCQprrZGJl5UlIi6ieQ6m1/OmfmzwZkRtXhsxxjnUPkv2I8coknxH/zXWio4v3Tf6wD0ldG40X9Ur5nKkGau7773LSDyCgrM26RjHcIRdJKbDzjinkmiD2ZGSI/XuTn+o7prXO6rpt2gmy7c2iojBzbHxNVoz+QnvJ1l7s0bT1TWgsNpQWU1rNJBEp2odV5sd7Hu00rzx8IynD89ou4rJj3x0mdjsBm63AyjDFDYoO8eLzJt+PwQqp/mffuo/5+jV9Pf/vVNyzvwLf32LNZpoMhcvG6ra8NvLX+H2R3+XqoBuFaa2JK84XbWcrhryNwf++O1rvvKHH/FL5dcwJ7ISx1xQ2XP+oObFZuQbH21xg6IkeJ9v8O+bn6MUJJ6Gb9GcFrBGYkd+0fxX/CJ/a752ClMSRZm5yc/oonAGrFX8lfbn6MdMtI4np+doZTkcPOPgqaoa07VC+zSAEi3WYr1i8oHNrhcTEyfXv6SITwPGGpLPHIaetjXsD1sur/Zc/8wJWit++f+6xBmFRUyQcjWRDpGooHKwrFoq7Tg7qbGuEVqakcYnJ2mqIuLsbJxokyDhqYX+QJLz9VsW6hFPLi44PVly9dH7fPT277OwFkeNLpUUskph2jW2UahuiVl15Lmpvkuq+Vb94nENF3CqkJTm+77vy1ij6Tfb+fsLSRWhn2cDJFQ5irmPjWMBjpRzgzKGph7pn2851YXaFvaHHcNw4NF5h5mHUWRNiRlbLOgyD9pmLfl8enLKUuxZtySuGhKB333zk/zws49IwaPHQKwvQUEKI2iFqcUhO8YkjtxzPM7xdJXWWOew1sl6nIePxjmsrRj6CWsqnLFMPrDfHLh6vmH5+AJ3sqDMw6UUMj2w2+/xfuJk0c261YLVmhKFuprGncgmlAw2ZO1bTEp0phJ36HhkYhQenJ5CDqTkxejHOZzV5FwwtThRClAi7op2lIGHArpuKTT0LFnDIWXWiyUle2RmK0rupq6YfCTGjKqhcpUgWBTGaUJpRVN3aC1uo1o7YpEoAawwXLzPLJYdIUxst1eCnmqF0pYyu8AaYzg9PZcA81woSnMYRvr+GlDU1uGMwdQGV1ma5ZoYI5UtLGxL6zp5XyRhHTXLlrb0+MkRijBqWmcoSjH5YV44BasUTdvi9+LQ3HQNutYEP+KT57AfRVpgHWSDTRmXDMrV6GiZrgO3mxt0ylSrVlBrZRgBUwo6R4iRtYXzZcPT7/sUhylzvd1hTKG18NannvLsckvlAuPk+eTDM067jq99sOdqf8P20LPbjzy73FGfLvj+zzwhBM/2dsd+inStoRTP86tbRl+I3kMuDPFaYhmMoWprdkNiDAm0vK+mYcJnybgOjUapTNdZVrphc7vHx0goDSpqnqxWPH1zzcvNlpfXN6hS+OTFSuiURobui8pB5ZiySF6McYy54PuI96Lf7DQMUxZ6o83UypBT4dB7hjQSS2SzT9TGsIxSvyg0/W7kxRSx2ohuPUbJdFwuOT+tZbjYe27n91+xE9E6lBajmJQyUxpo24ocO3II3N7eUorm6uClJlGGWlfsRxhjxlqFD4VxKCyWjlwifpNmt9AR7wun5x1cLLFaYmuMRiQYStacTxlfEjfXO+qmxiiRFdSLmqi10HqtwVYdGc1h2kl0GdJkgkEnhWoLSjkocNj2bK93lKKYQiFmyfkEz8l6KYjxTFGfQiBMXuoHV4NSpLSla1v8OM6xcQZjLPEm0jRgrLxLDXGmnNYcxpFpGIhhj9aaqrL4aURpzbJbiBY2JXIM1LXDOkfJhWnqcdaAkkGbDwZrDD5IPJ2xDl2EqYOGuq4IQWJAdvsdOWcePLrAakXxou3e7fcYl+7ACJSi5EAaPl4Pfvf4zjm+7WbxJ3/gk+BqDqPnmx+85NCP1LpC3tAKbR3KWHwa0QZqJ6jjOBZSGHGumelUM83PQDHyEBorrphQCD7J5Hw2q1D62CjwJ5oEEHtpZTTKHF1Phc4k5i0RZbKYViSL0QajDcVATAGlNWFuOE0xQmGtLa4kKi3NZ0yayQtsnmd0zRpL23WYOJFSoWobqrqei5g5PBZLzhljxaAjFYVWFjdTIZ2zNMt2tpDW1DPd1BhHSOImaWxNiYlhP/H6kwc8eeMBp2drpgNElwhKM2lFUQWnDSY7wuRJo8dpxZOmJ04bfv16CxSaFOdA1QVHbEc8V0GlQpnCTPmVv7mje87F57GhOjbC97rQGSGckVxVCsZIYybIM9iiZ2oqd26hRkvu0rFBS3dNI3cmNffNY7lHJ/mT9IXj+rn/UwVakVO6R6LzrOF6xdTo+PWo7TpqE52xUn/eATX3n328DjLY0BgrWZJHR1aJlGE2ehEKrs8jfhLtZ0oJi2Xdtnz582+w6ISumJTG4/GbA13d8trpgserhu1JzWEY2ewmwnQgZ4WrGrQ1VLVE2rzcbAk+MI6e/aEh58xv/OE3KaVQ5YhpHF1UvPxgx3avaeqKly9uCAmmYaJpFG2tuVgaLreey4OYJzgMFoMzIuovWGpbc9q1XA57ictJkFQRmfGck/nxu1PIxxxPNd/hLDmVaV4v0uQrCoa2zbgKDmNmGDJtC6tO40MmZQPUM9VTQn2LAadrKrdkGidylOgZlKJ1mqau73KxrCs052u5V2ROlysWbUtTj5SSeXBxQS5CH9cYdLWcc/NAdZaz84ZVbVmsOg4lkQroZIQeZGVdjZue6CM1isY6WmNBe8gBqwWlP+wHHjy45S/+uR+gO1nwv/zDX+abzz/i/GJJtXREl9nt9gQsdV5gfCHvFX7XIsq0jH5FXyy90jxWOQ5AlCLFRC6Fs8cXPDztcOUashUdb5kHaCpS5ma9AH/JrO7Wt0FiTt787Of5oR98i785Hgh5YnPVY/6jf53/9h+9w1e/8Zw/+1Pfw89+8QJHknujLWp3i3WOZ+ef4q/83N/i7/z5XwFzdKwGM+eCldxCyZTk+PU//WP8wbrm36ktwTV3P5MqWrRzE9ze3tLUFYu6ARSJRC4ZoyzGVpKIQxGNeZSsxjBEPANdbUFFeU9ReHyx4LUn30sct2x2l4JyF1ApckhOiu8YCNuBQ9szTUHeIXPQd7teYq0hTOO8jqFymq6tca2W/Y8kTpbaUbmO6TBSu5rlasU4DDLAjBGjxMSkKMV+u6PkwsoaSoYUI6k/MKWIbWq6RU0cLf1wEESnMjKQRKGUwTUKlzLTFDj4yGK1Yhh6jFaieU8BXeTaqdZic6TRlrZqmHyPNor+cEChODk5wzrH7fYGHzVDyty+9z4xRRbLJc460n6QLDfvAUXMmd24FR0h56A07//B2zRtQyQyDAM5GVzbsN8PvLzcoJzl7KTiQbvg6cWKrAsYhWsWDLs9ZBnOhWmiHEaI8oyn2w0KWC4X1AuJmen7Az5MdFWHMoqXzwbdG2wCAAAgAElEQVRIAR08WhWWazEgKZswNx0a30/kkjk/OcVZh4+etO3pGodpNW17jtGF2gCq4lOvrWmMROpgDT4P/LPunFIScbwlBzHxGwaHVYGswUfY7UewFS+2W4bB887719xsezYHcdPNcWYIGM1wiKzac955/wofQFGhVGHqPWk/URnN2UmLaTUndsHVfs/Dlexv+37gnfc82zhhTYPWjudXPVc3keX5Q8Lg+fIXXufhScdv/pN3+eB2Qz8deLHtmXzgbFkJ6jQFKqW5vtrw/KNL2oUlTsL68qowjj0XraKPmdttEFOZlaOpLZ9anPLN5xuS0vzw59/gZrvlKx/s8GNC28zgAylKYP3X3n6PWCxaO9540JAmxT72dHVN62qwlmQrYgI/wnJZs1q3hMNI7j1VtCilCSEzpcR4uSWVwmp5inUVrgPalj55uBnJGa6uB4kTK+IOe3pxipvNsPwUYQhU1qCBcXPL7U7YPydnNc5MhElYEtLTadqqYlFDH3aEohl9RmtD6xZ0WhFKAD1hc5EIM93y4nKDUbBoGjHtMZZqURFjJKSA1obT5VqG0kpouaXI13efPxNgZR68Ga04O+1wGrrWsV42OOeQ6DSpcY0W+dRhP4hmOCfGsWc4DPgg+/7ZxdnM1Ejc3O7EZ+AgjWbjHGYGbYy1VJWT5k8JY8+HxNtvvwdKcXqyZtUtWC7WWGfR1jCME/u+Z/RlNv777vGdeHzbd6ZrHVkbQgBSIvtAqQ0ooSTGwYOyhOyxTlOCNAXOaDQGZ5iDWzWTF7cxrQwYLeYgShGTNAh3heasSxRN2REMukd+7v6Du2gG9KyV496l1RihiTqtcU7jKsPtNs8GOjOKlSAXPWsdDe1sfBOLoqvFah0rjpaOQNHgRwk87doO4yRyIwaZzmtl7umxzpGyRiuLVVByoGksbWPnogmhg0WJ/yhKcrliUijtsJLXzDiN7Paafso4XVOUgWxBGbKtyFiSsuBaMGDyFSHO0y41T1qTQc2FDrMO0HC8gOoOsc1zGPYRhYAjpY27Rp47hPc+hmIWkM2NpJbsMqPumrBXD4nXyHcUhmOzdTzuXFOL0PmOGY73a+P4jUc66z2yCLzyb7hrUv+fjgJ3jeJxbd2dr1IilXzl3F89L1k78Q5NlIb2vunNOYmge6bemRzJGfY+EAPc7gZKkjV/cwhMITOOA01V47RoD8eQ6IMneKFvANSNuHAKXJyJfiKnJBorLfqUk04c01rTUSqDKo60nTg5WXB+vmTVOabSEIq4PTqtebiA00PP69Molt67A37wjEHyMGOUc2orQb0FfLpHgu88de9Q21euWZnj714Z+hyX3AxfoYrGWrmXKSkKGqs1Vhc2mx05G3FUI6AxqEFclYwCVQwhRhRga4eOSYp7I0paM9PdtbnlSIJs6htaV7E9nKJR/P7bt5JNFcIcmyOGFlonirN0Xc3CKapFxUSSl6etxCl1UZNiZDqMaBStqbBIULV2GWcyPgjquI2acrVj0V3ws//mb/Gpn7jkv/8bS7qqojEZpyLWdfKMY9EmYilYsrCi7xrDea2/0i7OjyRaazSO9ekZ3bKjWdcsHy9BO7QKd0jNn7wZ95+rizSLDx+c8YnXHoEf5+gSR5UKn3hYsTsseLk54HmAA6L3aCfGWDknPrEU99UQPCXKvqB0JpKFkh8DSjlCHKkby7JrMcaRjeXO7dRWuCSUcMltq0RSkBM5RdHUGlAIHTfGJLlk+Xi9ELRJFzLzAMsIS8FZBUaRrQwrFDOLIjoaZ4nZyYBHG7ySgVosEiOUxhG0xY/jfNmKuOm6Pe0syTAKtNEoV+O0kSgLY6mcIHi5CFVZG0VllESyONHyWy00cLIgyTYFiYwq4JwlZ0dRgZgLOWq0AV0ClavBCOsjRXGB9cNE04puHV0oSpgXKWWKCIg55IlxGGnqGq1k4FmGICZ0QVFXlcRmzeZrOQp1UhgjGWulIHXGzU7pEe8DCsvJeoW1mk3vKaVQtxofRwqBdtWibCU579Yw5Ti/egw5jxiryF7eFVMUNkf0ipAipURxCR4DhzHiiiOkSIiZzU4imqag8CmgU8AZzbhXGBWxen5OtKZG43NmP3gSEhFltCEcJkIpJCURUE4VjA0orfBFtj9TV2ALLh9QJYtDtbaoHKnrQgyyV7SNGK8lNN36jGE/0NpCPyyZQmYat5QkLpaJwjjK4OWPH68Yp4QxNdYadv2BaZTreJgmeu85PVugaxlmx1KIWhx3TV9IOTIGRT8ldkPkT/3Yp/nwvUuubvcc+pHNMDL4ArNuM6fC0E+Uo1ZYw6J1qNayHyfZN7TIK6xrqawwwT71+ISQEs92B3ofqeLIupOmZbVwXN0Wnly0MGb6fqIoqEw1y4KKGE/lRCmSySvqH03O4GNmGEZSSeiQOTDT/EOg0kreqcNEHyTvbBgGid2ZdrgslMn9fk8hEiqpZ/oporKhpICyikM/ilFNCJgCWkdyLc/i7iARHbaqGaZIUAVVBDXtfRQ/jJgJwZFzYfAD+yGgjSE0UClLKlGYbgqMmbWqKVNVVqRXSYaaJcnQ+Zh1aI1EuFXWkZIhJQhJcbJcSMTZPIQsRe6LuORKc6mUEq1llOe0EAlBTKaUkr1zmtI8oNfkotnvJKsz5oT3kSkEAWW0nZllZY4Oy9hKmF3lKLqylhQhlsQ4yvCoMgadMlMMeB/mGI/qvl747vEdd3zbzeL5+pyiE8uughS43TVoI/zjGALDGJG3kwUN4yBh08UcoWvu9FGTD6hiSX5GD7MsrBjDx9CeIzrEjDgdlU3I3wh1QUsxoIu88HLJ+Cwv7lIUpSgqp7GmwJyX01WGjRYjBI1sUimLFisOAW0dB6knyArOlo62rqiNCIzbpqMfega3YLnsWDUNFHHfyzMd0lQWZy0+eLSGOMnGWtcGZTLGysu5lEJtK+qmZu8DRtdAnDWDDmUqcgPrhwtWZxXKGYpDhOVKoTGkokkFcpkoTkpGcubl7cCH1yMGsQuPxQo6mgaUEr2DNHpzfqGwzu4K9yPtV8+6vZKkJNWvaAblEMS1cGwQ5iGBUTR1Q8mJlCU38dWm8IhIpiRxCnXtPuaKKvewzI3c3WndrwGtZnRS7OI5FtFzFZ1nevCx33XWSDP6qq5r3qzkHApVJQJ09WrjCPfN9PG85uJcK7mvxmjs3ICruWG09iiyVZg5QN6okVAUdIb1cslbP/IjrBYNMReudwMhJPbDhpQSPnlSzriUWReorRU3V8AZJ81O094jugqM1ix+Vyjb3/OjP4pWggT70eNsxzfe/5CmVjxerzlp16RScXMQdN9qxe32kmkqVKXGGkdxER0ifdSgC/tenA7Plg3v5vnavmJS9C3zgOPFElQZmb6qu+unQM3X65UZQFWJ5XaIBoWlNharMi+urkFZrDEoIjkrQrofauQsujFnHXWRNRMnTyky3XWVZLZu9ztikqefoqjriu3+Syil+I3fexttxREzx0gIAVtVEpuSJH/VWsfJaQU5zM+O0NQXqwUpF8Ik2rpcDMMQGEPCVmL8885jaZz+9tf+CU4pTs5O+Zl/9wM+94XC9vZAiYWvf+V3aKaXpN0Vhxyo6gZTEucXlwzR3vfgx2fulSHa3bMx0z7bpub73/osTXyO2kOTb2nn7NmQvTSZd4MXMeYS6rfElVQoIopPf/ozfPkH38LUHrNaolRFUZEf+/IDnry+5B/96td5NnyOpyc1Vkf0HFmSKfyn/9Sv3d0fUha6VZmNaHIGv8foB3z48jlOV5w0K9TYk/KAKvN9UuLyp0rBnZyCgslPYjxiK2bhLZk4U5wjMUSMntH++R5N0RNnh2aLIsZ+po7PeYZoQdJVha1Ba4nQibMGe5mERuWzmG74lGe9z1EGoUlBjLFCEFZJROQRZRKNkkpmXukyIE0adn4iloLTihpw1Uw/86KHNkoGk0pDnPcFi+QdR5t474MNu5vMyUnNG28uub3uqasKnxL9ONA0cHV5zdnJiqapWHaiK0oZrFIYI01giB5VW7pG9sHovfxZVtTWYK04Ji7rU2JMpJl6sdnuyUkGs0M/sFqvuWjW+Gliih7nDA8vziQ2qqsEkS8j0zRS1Wt0taQfxDhk2XaotKckoBhKybRK45YVSml6HwQx7xSjHzFG45ygG2PvMTbgnAVVMYVATInXn3YST5E02lqC+Plj79ymMxRFVVUopyCJzMNVFeNuizKK6NM8FLQkNwkanw0pBjJblqs1u2mgpEAqCh/FdKeqLbWT4h+Q7OcYcdZgnKJ9dAZFhtlVK5FkwxTIRKxpqBvHy9vXJRAei3GacZTc65gL1/uB/TTRuRqUJoSJRJIBi6u4vt7w8nogpsKu3zP0kZ/+/FPeWVd8/f1Lplx4+PoZ7TAKEh6FJWS05TBNwhZJmjffPOfBg5Zf/6336IcDIXq0cjTG8dYXPsE3nu9oFhoXQd8qQp/ZVCMP1y2rTnG52bDpM0/OKp7HgakX6Y+thWnkqhqXDM5Y1os12ziQoxOK8FQYxsBhitQt+BAYponbW4NuwdmKzUHYL6DJ2XLYj1IvJS/xIEGRgget7uLTlHFU2sp+lxXX1xtCzPhQ6FqNUxqtK0IpeL9n2TmUcez7IM9qZdAafJL3WY/c+6V2+BTZ+wMFxX7vhbpJwejZYNHKeigxouoWHwopB7wxkhFujTDasjRXWika50gZJh8lim4S2VbX1iw6Ye8N40jwEWMqSvFMU8AncS89RpNpbe7kXnp+T1irUSTiFHl5ucMaO2dhW1ojjt7WOAEXSsZWDqWVOPnGeeCvFc5aqqqSPT9GUgwUp0k5EIYBpZRoF+fc7u8e35nHt90snq5OUHUR63KdqTcN+33AT0GyXJygABRFLmHWfkTi5EEVtHHkGMkl4ZPk3+RZi6GLTI5yztKIUOZpnyCPx+PjdeiM4hybARQ5iUlOmifHpRhK1kQlCzpg8QnGKdP7KChkPjYYQl0bQ4CYKUbfD91zZKgjlU4YDLE0hGCo2kocway85J0x0qCqgq1rXFULkhAHYo4SAr7oMJWiEIjThEZxul6wWi04+FFiFnwiZ00uDYmaMWYePDjlyWtrtCtsR5k2V6agUyJnmSDnEsgxEPcTcUpcT3tSiUwp4ooiR00sCjuHuYr9vmyUOR2nTndX9xUKsOAYmvvmTWn9LTdkbq7mZq1wjwSKbvEYn3G/WXH3eWUu6O8dR7WWIuH4/59/MSME5ZVznOmuRyRE/8lzOn6/aG70PXL46mdzzJw0966p6l4viVJi8PNKUZ615I62tRgSaaVmVA9iiDAH6SqU6BmcCMVdypyvOj71xlN+9i/8GRbrjlQy+2mgaMU4bPF+YjOO+JDw04BKUUzIkuhDS5xNoFQ1D0UMZEWcMp/0GbImfaqQSmJ7s6WonserE57f3nLY92z3isNUYNjx/nvPqVpwFfzOH32d3ZA4qS2Nq2gbi9aRhDyKKRWM1UJ7M0I7ebXTU0V9y3P68eOIih2L5dmK92O/P7rbzh5K0uSjQBuUNlIIFjEsEJddgzaarDJKhspzHmyhbiWzVCtNXdcUBcrJZMgmychcrpd8WEtDeLY+IjoGVWA/bGkay+A1Kicq11B1S54+XpHjgWmY2G08MRaIHmsUBx8YQ+T2MNFPnn0vRYnSGvfRX4Vc+NX927SV5rTW/MT+QNc1fPKTj/jq177JN9/5BtPtM56/2HEzHDhdnREofO7NF5y2gizk2VDofpUzA7avNI2qgMmcrOHw0R9SDOTdjtplvAeP+vgnqHL37xVgFBiVSEVjqgrXNAzs8FWDspEyRepmyWqlUXHgag+LpeWsqci4WauYj+RIVFagErkIVR80uUykMkE+5ebqhpINlbbEww7vd+Qi74iYZG80SkmxnuaCVmkpTLI0iqlkzBHxSOLWXCgze0Ha4JjFvCojA6uSIsWq2VRtduRWioRY76vZWltpZlMRqO6iS45TrPquWbTWooqa3bDjPCjR9GmkZPCHTEyQI4QgsRR+2DHFiM+KVCzokVgyu6EnpQiq0C46XG2xlZVbmxTaWEwTeXl1y9XzgRhPefhkxbMPL1kuliSj2I0DF7ZjO0xixmY0SkPJkZwjtatwlaapaqBm8g5rLbkEMbAoYs6kx0SYPLEoqqoFrairlpzhNu3FdTwbpiFxsoJFU+MQtLNqGg7jQC6FZrFGK8X2smfRdiwWHTFr+m3Pcllz0jiid0QyBYfRmmE/sWyWtF2F9yPb/S31oiZFK7urEpaQWi/JaiAnGdC1zUMOfuLioiYNntErsnPCdMoAkTAG/DjxcrNh2XasTxYymo6JmAq2MdjKMWqP0W7eRwIxBZzryDHhpwMViqptAMcwHMgl09YOrR21MzgyKQklX+XEtO+xzQKta1KQ0HSqihAzhylSyHQN5NHLHqg0hIQukWVnqZ2jspovrZ7QLjuuX24wrkITMKrQdC1OV9zuD7y8nRhD4mZ3jR8i++uB89MFDx6tMEpzuRt4fntNDjDtZUi2WKy42u0Zh0iYNOvViuWywVUNTKM456pIZeB7Pv2UD7eer77zgdR02dFqx2LhGEPm2XUvjUWpuLw8ECmgNT5CIgolPUsUVW3MHB4/CJsmB9F7Z2gby3LRsOUgpokBnIbdwbN0msXCgbJsNl5MykohWocPkf3hwHLtyBSmMd0ZKk6Vp3YNjVL0cZKMxagEXChOBtolQSmEaaBtChRLsAofZBet6gqnDaHAkBImF2xlJOM6F0iRmCW7NEbZE4suWFOwxRDjbOJXMgmotSKnQj+MpBhpKktMCTuv8773jFPgMAUokeWy42EpGMpMBddoK1Fg/TCK6/5sGFjXNU1jIWXxGTGKbjbFOkziqAp69rAQLwtnLC+vr1FFSVSQ03TLmlIKN1ciWSkZ6qYWSYGKVK7G1B0pRZZdDTmxqi1FacDw4cur+dffPb4Tj2+7WezDnrPlila3uLOH9I3nstrKy64kQcJKRqmWYdiz3R7IpRBTwHsvEzudAcuqrkEVusWJOEqGTM6S3zIFz2EY70KTZeHJOdzTIo9fpLE8UjZUKWirWbenOGdwbkYxskRa+JnKM/iAyhKxkecXflO5OR/NgrYsO0ELxyGQUmHXw+h7mYBtZIqqraGyivOTSkJ6rSHN6ObgEz4kQlBQAnmmoXR1RXU8t9kye9lsWNQNu3l6FKP8f6K3pCSaNKM9LQM6bekHePLknLayVFoadFvVVHWHUomw7iAZHj/p+PB64FevNqRscEa0Vco0UsgdGzUhXqFnjSBwr9ErxzgKdX/Nlb6L27jH5qTYz2XusOfvH8d+1i9qMcKZJ1uiX7zXIx7pJPeGN/L5x6xFKHwr/fNIH4VX8xCPjf8R5eWunsu5oBFHXF75+UCRklDyckpEjrYe6o7enEtm9lq6Ox9KuUNfVWHOeFSYymLv4iPk32IBbdDM69o0eByX18+YktCOffA4q9EhY1OiiZGKwqQEebfKUFctqkBQgZQLlbYSEG5mZzll0UgDlQwUDfrNJ8SYaC9OOdjENCY+99lPcLKoIBS2t1vsqoPWcfH3/i5f/d0PhO6qIOUIWaahBiP0rCLaYOcsMSaIr17nGV0+roPjUe4vG+oVZLG8ck2V3MeCPBvyR4qnTx7z4KJiv93NMS3pjmVgzNw4JslZyynN2XrSJEzzQEopBX0veHASQ44UZaL98tBjf8liSuGdj7b3a0ygSapqT4yGrqr53rce89rrTzldtUQl1N88SdFtHBQFh8mTCpC0MBu0QTcNpjKsjKIxHTv/CcIwoXLm4uKXaWrHf/Jff0hMhtu3z/no177E/83em8Rqlp73fb93PMM33KGmrqpuqieSIkWZlhxDkKxYhgELUAJB3iTZGMgiEKAE2QUBEq+yytbIIoOBbIIAcWDBCOAECAQZEmIloiJRMi1REltNNodmd3VNd/qGc847ZvGc77vVkpEFV1zwbKq6695vOOc973me5z89ebZBrV7y8//gz8i10LgNVhl+8tck1LmUwj/6zzs+/JZoh/+9/3jiZ38xcuBhKCXn5975H5Drh7z3278AGU4WPf/Z//IhqfzVqa6q8E//ccNXftMRK/zc30v8/V+bePDgn3B68s95P01kW3HWoJbwrX/2y+xC4uNvP2P65f+Gl/du2Ng6N/e3bIPw9F3id34eVMEtnrH8qX8xI/7CanC+4dHfueE1bZne+w+I012qcYfpwny9xUArBdEZmdl8K4TxOJCau0C0MTMtS4y6EgqliwwWqpX3LoWUZtdjtNC/UBhtMVqjSpTvMQfZ11qpIYHSFK0pCiGtGnnIaKWPQ06t9F+ia+WZXldw3uDmQWffGVKqLLseDkO0JFreoiCUngOlW8/nMxcxUtNRqGs5WN56+BoPVgFlYHu9I5nKkAOpaMZceX51w1QNV0Mh1InNPktUQioyILMGVJX8VifUt8WiRauKtkJ5nYIgjM6KkV2KifFCdKlNb2iVINbGtLhGM6RIyoGr6z3x6pr1siOlSq57tBYTpM1+5OnFgDeOxjlIhSdPn5PzJEM27UEb+kXLddyxuRkgJq5vJk79UqJlaiaXSA4Z48QsqzFilnc5XIOzvP/Na0oSKrF1FqUrMSTunJ4QwsQ4TsIuQrEbBshZBk/O4vuOQqF6RyiVaRpZrVqGcSSViFGGWAzTOLBcLtHFYq1H2UKrnDxzlcQxMaMq2SpMIw+XMA6kIuyOWiJOV+6ceJTVOG3JKdN4MSQhZ4yR2kOyhwpjGAibQN5u2FMxzmO9FWOcSbIYW1fxTrP254xxQD88FVReCQvlepi42K7QyrPfRDa7HSernn2MlJwIQaKIUkq89ajH+zWKIhE1VZGmkdfPW07NfXZj4vnViK0K0ypUNFAMY8zspoG7/YIYBnwzO2tvJ1SqBBXRNbIbI/F7QjGephGlFeu+xTnFy6tJ6KumijY9K4oO6Krp/R1UqVxPO4aYcU4JOKGgX3TcO1vxwdMXtM7jrcZ6iUbbDAN3Tw05Jqai8UrhXWXaBbJTvPbwhLaxfPidT5hiwriI1ZWiDDFXVLH4WghU9iVTamZqG7Y3I0OUeJTeWaxW4i7sWwowxoRCdIFlt5fYrpox3kIDJQTGcZSh52zWF9IkVa/J2BbWbYuZm+uchGKfYoRa6GcWQH+6RGtNCGF2bJ6R1V4aWWsNqmZCLIRJsp4zkSkMEnNnFbtcjkMZAUCi6MKVxjUN6miCaMg5kVIQIyxEgnO93ZNTpvV+Ht4WcXX+K0+gHx0/LMcP3Cx+7U+/Ryyy2badxzpZiIK+ADlSY6TtM+2qCiUCqLSkmMhJU5RA1cOYmQKkfWK5aFisFZXCzSZzs6lso7ikouvBi2/eaOcPUytFF4zSYs+LcLLvP1iiKJQgFJPWFZpW07UerXt0Vnhn6HrHbj8CQk0ruXCzHVHKoW3h3tmSd14/pW0MRWm8XZBQ5MaAqUxXN2w2gXAzYq3i5KSl6TwYjVoswTmCcoRYqciUdmGVaEkQ98rGWfbbPWGKpKzIRbMbd+IqNztdamPRVnOznWjbJdvUoSbPdjPi+oYpTAzjRMoQo2iBpMc21Gq42H3Ek4+vaWwj7uBkdMlAAWWpyOT/9pY98tFmqttMUTs0ALNG6KgGnX9cac0hNoO5R5Am74AQi4PYwSn2QAk7Gtu8EpdxMJs5XHNpJstMWbhFAl/VrB4ayQN1+Qh0HajMCrR6hTr7CsX08L0Pfz1QYPVs3nM8KsfC9vBZa8rEmGYd3uFzCUWmHpslOYeuOkGf5sy8zVAYJ9h/9F2WgwTv1mEUyujM7d9tB0pRDJPQkrwx9I2jGsXzaSJMUYpfrSk1oxW0zvPn7xSmKfDXPhC9HzWTYuTdz7+DHp/w/NkOxxV/+0t3KRFWfcS1PbppeedOx8s7C57evICiqKOmJDC+oFHkQ3NfE37piJuKmVGu8urOP2vN5qtzBBDLXM/XwxSnzKjwbLBSKITo5wGJDKB6L1P+aYpUCr5xGG1JOUGU85u13DfmQDVGvWK0ZGZKjARwWysURL/uaBrP/fMTmj+xxBBJ777JME1sJ8lW0yGRSqLUiaIlY23lYf/8BaOe67VpYhxHbNvz8mbHx5cDB62lKZGz1qCNwVvDyilSAXqPKQmjkdDmMc7oCFxdbPjkkwswjnurhVDoMzRWjLCWnSPFSKmCZNXb2/OVlVihKhrvWJ+ccc+vef3f+iw0D3nz/3gfa59QZjOSA+20zDe0IOEah9xz2joWqzXrkyVpuCBXjTViWHV+2tKnxLvv3Of51Z/iTxJ3lg0lpxmpq3wwvcnXP/gSn/2Dr5ErmPUln/vMJRUkCkeBcZabzcSdkw5z+T7/8r1v0vqOM7Omf+v7/MXv/QG2a2iahmmcaNuGs5MTnLVUXUW/mCsxSqt8GBC2fStZgk4Se52xgkLOg0XvvcReHGKDFLN5jcLaVijSZW5+qZQgwzKtZwr/EUEs5BypteBnR0c1OwDPG9ec9evYToMgt9ZijUZVhZ0Tap1TYOdmsVa6+RqLtjBTSyVmGdjoDqwxpFg4XTaYe/3siKp4dLagIuhorXl2M71HmKLsz4ehIIpYhBIc5+Y5TJGbzZ4nz66x1rFeL/FNZTfsqBWsE9rvMAyUJMhk13m8dxgqV1dXDE+vWZ+v6RrLxfUgmtcHJ4Qp8/T5lhAi9x+cE1OSTMH9CGjJqUuJ1foEgKvrgWEaeN0r9ilCqSxdw9n5KdfX1/S+EV1briw6y2rV8+T5FoyjakG8DYXryw1GaRbLTvaZEBnDyJ28pKLBWeyk8daz2+8xCrpmAXhiluFEngJKKYw13NzsmIZEchVnIQS43O0Zs6J1rRT2ITFMe6jgbEMqUe7bpLDO0Hi516y2R4nE9mZDjJUpC3KtkViQZiGGPIZKjpmYE143aA1RR2pVjJuEtpWmKzDAtNZxpYgAACAASURBVNuTQ6BfLlku1zI8IVGSZA8qlVis1njrUSWy8EtqrcRTS6HHZ0dFcf9OwzglrrZ7ckp88a3XWDSCToesyRhaAz9TElfXA9sxcrndU1KhXXjurDqs1VxejZRo+PHPPeDl1RWXm0SsiqvNjv124MVmi3MN1ng2Nxt2+4Gcs+hkrRa088WO3ZiZJk0wkZADMRvOlw1XmxuGmBhzIiZYWIMzmW4Bp53lnvd88HHitfsnnHSNIK17cXuNKKLSdAsjxrO50px0bMZIiAlNpWrDg0d38SpSM+yGiXF2J46jIZCoOtFrx8e7PSYm2mVHoELMEuFWKnkaZbhUoChDroVlU9mNkmNptkoGQkb2J6sNN2nAeydGkblgbYNXoHUEpch1YioWYx1Ryx6Zxgo1YpmE9aYUlXywlRAtb4iUCnFKwtZQs1yMiFayvzjXstvu5ueoOvpDOJ+x1tA2jhhHUp5QRRx1S1JUAhh5Pmst7vQhTJJ7nQvbYfhRs/hDfPzAzeKjeycM04hS0DQa66QJs+JbT02BHANNY4XD3YnbIVpg92kqMgHMma3NjFFBLnReY+dMQ28NfedouygPsFpFN1UrOUkY+yEqwejbBajnJkUhxccwTeRUGKOiSYYpFlrfzkYvYKJMSEDQoJQKNWeU0WKZPgReXu5oW4s2htVCoa3F6w5nLctlR6Mq+7lA9xox/amFOIzUkMlGzGqctTRKse4dVikabfDO0nhHY8UmORdDUYZub0hVApQVStAiB+0+odSKrukxxUIT8OsWkyNqmsgZpiyTbAW4udn67tO/4HI7SaFkZpG90hiVKdK7MSstj6jtXzah0QeagHrFRONQlM7g0Ks9lZrRoIM20NpbtPKAFB0jMI5I4Sxkf6UR/JShzP/fwnzlNfWxefz093g1juNQDB5RiL/UOB5RqFmr+CrlVf585fVf+fwK5kKNGc04NLDc5oSqKrmQKNHKUmRimCvUjJrhhBIiNQZMypLXNybKlEjGMpYCVlGy0EqMPZwDed+YJ37rpwS5/fIHMggIZSTHSBkH1r1imnZ88iSS3l2w2wa0VnSqYOPAxeWG/TRR8myVoqvAk+Sjd9ARcdbzteawNj69GG7L0X/D+Tv+9xxLc+gmlSJGaWG0hloUtQTGoZJzQYuoTpA7mPWhcm7r7QJ85brqW9MkLbELKNG6GgOL1nJ+2tM1jpIkt26KHUNMcn8EiCUBE6Z1/Nibd3nt3im7F5potNAVx8A4TtiuxS08uuvISLyFJtILyIbTmq/xS+SS+Wn/W4IK68JX/8efZ5oypSqmWPBO42zGOk28XPDn//MvsJsin339AfdP1vxv//T3+Z2vvsf1bpCiYjYW+PX/vuHX/7tGmoH5Anzhx9/lV//Df583vphoF9Ccr/CN57/+1Td59uQpqioiGY2gbwZx6TvcS1/5Dcef//Ej/uF/+Z/y9t/6AsPH/w9RtzRWqP1vvpEIIeNWLb/+v/4kn//MA37lZz5P2m6YsrAy/vHX/wHUyt9+/N/KMCQsuPhnD0klsxknGmf5ZDvy9e/e8Pf/7bd4be3RXKF15fqrP87V778FtWIypJhJIRNVYruZEap5geVcxLl6NrWappF+bGjbhq5rhSXQNKK9rpJbp2f2Sc4yzAShbhUEldUzFbqY+bljZoduq0BLo1erQhklkoCcj9R4pZWgi4ajzX9VCmkBoKSKMopSxbSp1ELMyIBHCSNBz4MWaYAFEU85iathEs10KYk4CiKvlcJZLYY0WmNmLYWhokrGzREMSutZaqywc/GY0aRkmVTF0KKrDB69Fefa1mpSLugq6KrTGpxDKc00Cd3WaEVIlXFMmM0AWWh/ShvGKRJjZkqRMST24yjukZ0jpQS1sNlFjDeziY2i9SK50BUabYQpYUQTX2siZI1ThlIquykSkYHrfpR8ypoiKgqqpucGHoT+izbsxlHMYKpkDacpUlKhGkUqGZ0jIQU5Z3WWSVQtURco0AWlM8qIo2dKgYRBqSKmQ7OxaUwFbS3GK/bDKLaoymP0LNOohRILIYnZ0T4kYko4I3vtsNnTeEfnJDN6SomMDDSDCqRSsbqVoWGWwVksFZQl5Mowo1hjGAj7gYTQjFO1OBsgBfEUqIUxZ8pxlzaE0ZOLNMnaah50HqWSnMdqqRi6RgldVFWWueW1BytUKSjtOF1YrIXt6RJTHQ8frrAm8/LmghAyjXeULvJGf0rbtjTOM44tFy+vqcpRgP00EaNlvei43gQ220pVhWrEbHHZe15cbplSYgiZYSysG0/KEwtvcRpCyiwaoV3CXCuK/SfXu0DbevrGkGJmmCKrZY8JlZubge1cBnWNp8YyuyQXMbQpVaLJNHijsKbyWn/CuN/J82EeqBtnb98zF7xWWKtYLlqcnc26asVZN+eKy3Ms5jwbt2n6tmfKQYY+CoyWvaCUArZgMuRYiUlM4BQVXeaEAW2PQ3dtNcYaQhTmUEoSU0ZJpCxN4oHRZ2ylak1KmVTLjB1oqhKadkqJlAMlZxrnjvm/uRRykfvYGdmn45yFO04S91M+NWH+0fHDdPzAzeLf+KnP0Fkn3PIwkVOeLcuF8oYq1BwIwQg1pkjxqGfNltaalGdKQxZutrWK7Y3o9pzT5JwYU+XDp88Yo7iDOtsQE2x2kzg8OYP3lrNVj9OKRe9xWr7YlBUhZarLM+XQ0vpGtEL6tgDSRnO9v2HYDZwuZHNCb3l5dc3q7JxdgY83Cb3L5Fjo2z3WKKakCFNhYQv3zxeYThFD4cXLDWOQaex2X3BO3L+MkjBl7zRX60aKVm3QuhUzgRrFDh4lNIIhUFVlJIOyaNUQcyQmxev3PSvbYs1A02UaNH3vKb0jlkLbeYlfyOC0pbGQNmveW7TstnvsjNIV4ziU7JpXkLhDs3akls7N02xEI82R5ODJb962AAdUL5d8bLRylkKmHkTcc5zCAQk5FPBHl8w5YFehOGQ8aiX6oFddUwRnhFrEpIJDhpu6/fPWFOfQ3Oqj/vJTnefc8B11lYhm0RpLLonb/EaZxL+Kv8pfFL5ppKhUh2zP2wZTzgdiblMzRlVi9RiruHPnlLN7d/lwUnx3GNE5ozOgLWmolKxBdYQc2edMtY40BVTMopNVlZxB+wbjHI1WM/1DkGNnLGfLJVZnKi31VKOK5cce3OFP37/k+YvM4vQxg7rEFEe7cDhf+c7zG15e7GhtR9GJrEa0tZRiZiMhaQxTKvSNZnIaHYCikGjwTzvWHlbJvMSYvTqlwVS3hiqHRagV7Mc8N9Ma7yzGFsYhYK1DqUIMSXQuSuFm5JlaMWhUqeQkdL/DkCCn+XKXKs628+rdDVumcUvJI8Mb0kTceSFuyKXIxDgXAzOL4Wy54P6Dcx4+PsM8WJKQArQx4jobwo5cRdct+hP53o1zKC1mKf/XH/4CUPmlv/FCzLKM5HPFnKlG7r0QCyEWyBMlFlSjKcPEnTvnqG5Jbk9BGwwzcnXIon0FVT/cxdo4NFuefPMJ/ckZ95pzBisxLaWCpKJKc6WNOOsycweK0gRTWJ2teHyWOeM5m8sNbtXhhy1ewbiP2JL53P0VJ02Hsi396ZLFyrFTBVWh+06HAt798ufJKuNVoQ6BHDOmsfTrJf/kt97nARvuPX6D1056+vYKrCB2MYsVoEPs2WMIlCJNRygzNbSUV4YFAFr0M6WQYiAh5ivFWmIMQqWuhprAz1S/mqREzhS5d7Wbdcga0zh5dmTZq4T1XrFm1uAohTavZLsqRU4HlsJhOCl703q5JCUxnPDOorymbTtiSqQQRednJWpmNuCWgrBKkZqtQpdKnWBMlZAUKWf2+4EpBMZpwhqNtaLXlYxYaX6axgsNk0JJaW5sRVtt0MSUaBvHqnGcPlxQqeQUJQC8dxwYJEobWC/IuZKzDMEK8gx5/PgBMSRxiM2F83XDNO740/efoqwmK8k6Hb6/5+7pGmsNVieolc1mIACX7z9l1Te88/oZpwtDLBqjHVVVdmFku9+jdcvVdsuyXaCt4fvPr3h2dcO7j+7L875WhnFAK8Ny0QoCNEXqUJmmwGK14tnl5uidcHayYrfdUmeDq33eoqqhqoI45IquOU+RqhSusRidqDVinGa57inTQAx7sppHsNbNGvZI45c455hCZhwCVTmmHNlOUtuUVFmerNE2YbJo/E5WLbUorq/3hCHhlaVpPKZRpCDP+5wrkFj0hjHCsJ+IJWFty8lqRSkjUxzFdGeK8/k25Gy5Hka0qvTGEPcBpQ2hQIwRd1pBFZ5ejCQK2yBUwjtnS7a7rZwD28ma9ZoQpjnuyuCKEfZHMVxeTSgKtrVUE/jGt17w5OWOP/72c8YYOG0bksr8xBv3KDGi8sjqfIlTkLRjP0gjsvCO114/YdyG2TVb8v/SNOIaQZgLlZCTmEsFw5PLS+w86Ek18/D1e1zejDy72IKz3DvtUVmjrGK5lJia7TZyUxKpSMbwNEzkHGmc4vLFFdt9IMSE0pnGG/rWE1LBVvDGYHv4W194lz/6i+/y/Y8uhMK8cOiiSSVh9Tz0KZVWZdat52KzZRoCSlvcqqf3hmlKbPc7colYK5rFcZqYQpD/n6UZP0g+FBmlAs7OvgnTJM64anZCDRO5VpTR9L2lZi0RJlpLA63EgTaVTC4NsSRqiMQklP84kyScO0TdiQPyMCaRBGhP0/bzs7hgqqLW2XE5RHIJmMbinEGZVtZgTPzo+OE8fuBm8Xf+9fc46VaCSoVESaDcwDiOKKVpnKfkiTApnGtYnSzRRtM4R+Mb7p71mDSSS8TESg4J2yhGV3nj8T3unnm2Ny+5vM6M+0uq9hIboRKxNlxsCjEmnFcsFg1vvnafdWe5e3fBwnt67wm1UDX4VlFCpTOO89Mlbb8g5gTF03pD3yl++1+9x4cfveRnv/wuD+6c8VtfeY/f/aNv8DN/84vcubPgrc+sMFoxDkUcSk3hW5+85KMnV+w/ec4XPv8mjx71pCAi5O1+y5Mnl+TJ8/DBGZ99+w7USEqgVSZQmWLhalsIQTPsA9fba2LU7MdI2A64McwFRgbXQGMIIXG12aP2gXjZU8qGm92OtrRo4GocGWKm1QXnKhmF1Z7eObJLdE7zcrfDGo2xnlwjqYgmT9h6UlzlkiS97Rg1IUVEzlI41SobhriDHvR+6sg8VWqmjc44kzHihFhymVFGjo0o8Kmm7dAkmtk8QgLnFcZZyUk8NHSliB25/JYULvW2OTvSPnkFEVQHiqlQ7RTyvY6aTPngHE0XZ81RSVGKQoTidjhPh0b6Vncp5jxVCRWUKsiEvL1QAQsVbTMFTSiGPGSmqNlEy//9F5+I6U2BJorwO4aJqoo84CninKYhXb7EGYOtkGNm0pnkWhqlMWGk5Eismst/5wEGxe/+7rewjGKEtGi4a3tOz1qefvcJH18kdldXMFyz20+43FO7RnKTjKXquY0ohaoCVYmDIVUL2lkq69ay8Qm1O1wNadwEpb5FGhVzTAq310GyNhVFlWOjeMAcU5Qi21qFM0JRl9nTHIOgK7rM2opa5ozAuXE6Xu9X8e55vWh1XHeisYab3cAwJt77hz9BTpm3/5Ovk3JmGDIpKVIawBSqWBDz9PmWn3znjHU/sRvBKsudpQQ8X1zdMI5RTEmqYiowxcyDBw+wruK85moUd8vvfv8lrVY8vntCax11ChSl8CtN7zuscuRBTJJYVMpYOTk7JzpPMS1VaWqVe02Mp9S8gOUeyPPad4sF6wfv8GjpcV1L168J3QK0p8gwHFsUWcm4pFSNUnmewRRQhbZv8E2mlCt2L16iB89UrqgonrzcMoTMa3fPmS52vCzP+fC973GvTTzb7zGxsL/eorTi21//BqEElo2DkpkiLLolr9/doXY71i5gw454k9ndbFFeDMimYkhV0aBxi1ZC3lEsmkaQoikfnZpd02K9Z7+PaCXDLUWZv49BO4X2cl8b3whtaz9hdUZbOYW5FNHGKitsgQO5oooJDhXyJFr9amVBjdN4HGotFguU1jL9R2Fnc6OqMtoIwddZhbENWmu8cxjrqaWSQ0RlAfOVEgRAaahKsR/2qFLwtVIyDDahcjwaxDnXEKbAbjNTk7XcjxUl19qIaYWxds6WK4KWoaFqIoVMZSqJm2sJ8nbOodDy7HUV74wA93NOMSBZwV5KC2MsXddhTCVEL1E7ykrhWxxN42kXDXXWVuWpEsZIVoGCaMuuP77k8vmesKgslgNdVFizxFAQ4d4gVvxKkaeKObH0fc9pTOzDBBhOTk9YNA3XF89pGsc4x0ykOQ942TrWqx4qhDSQc8C6guo8KYFzQrct0VBVlqzNsD/q0AFsY0kxkFOiFqFjhghZCUoTQmS/H0nFsGgdIYrXQVEB3zhynA31KBKl0ji6tuX6akMYI/2io/UNMUZOFgumKc4GOYWYEo3rwGtapWmc5mqTcNaz341sdxPNonDnfE1NjnleQN97mqbh5Ytrmsbhi0Yh+s1nL6/AVE7O1yxPevquRelIMo5xN7DZBqjgu4GLl9d427E+7dkMA3lrSXnk7tkp4xT48PufMCXNg5NTWitDDzsO85pe473n5/7m52haC6M45q694/Lyhs1mz/X1QKia65sbGtdwfrIgpsj1fsR6w4N+xTQGtruJ/bDn8UnP0ncoW7l7b8GdRc+3v/uSu3c7VGNprMLpytnyDt/83lP+5P2PiKWwXjg8lmbZcrO94sWLLaoYlHEYO7BSlppbxqTYh8TTqx3jzF5YNJW2s9w5XfL9Jxv2w0hdGk77jpfbaz653LEdIkUX4hQwamDZG1aNRxvFFCGOhY8/uWRbokSzUNgNe2ryTJOw3rRTtI1HVcPF5QZjNI1rqK4S5xieXBJQsdrhncI5w7gfYaatj7FQhj0Fi2ssB0PHm+uEdgpvC9ZofGdxjWHcV6Y4G3TFCW8MuXp8o1ksG4wxpBgx2tK3HSFFUkrs9oOsEWvRSnIYldKEWnFKCZPQOaxt2N5sKT/KWfyhPX7gK/Plx+coK6GabduI3TaBEkdCqOTq8J1jN16Sp0JrF1Slebm94umLp9zs19QoE2AN7KbKvbOGEAJf+1ffIaTMdb5mrBkfTzk71Thf+OqfPGe7HdinCa0sOShKTiyXlq43dK6lqkxRkdPFOVbNGitbOV17urbFIy5Se2OpJaNK4sH6LldXW/6n9z4kUthsBnSBi4+f8+zZM37vTxNae9b9CU17gvWZpYncbZasf/ozuLXiezcBq2Hll5y3D7l7t/Jit+dmF/nqhztWLbx9fgptR28TPfDaY4trFSEE/uB3RnBLfvaXf4rT+w0lQzVGnP9qodGFWiN0Heb0RGygOURZnFFTEKRmFvPXDFVplHHEac//8F/9I0LecXZnjQaZEFco2qDI5FwIQQhzXddRSqZtO2qVwFYA5y2d7TBGBNLTJCLpY3OlJKcr5Sz25TNSdNBgiLFoPqLLtYqgOqU4N6XSZMQkJklaa5mK5ULO4yzGPnRp5ph5eOtSWo9UBmkMX/27/Eyp4pJZSkWrVwLj9W0TqOZmNkwTSUe8tUJ/BqAes87UrRAPM+syBcnMQj1DDCAO30sZ0RT2vUeZicfa88brr/GL/+6v8Oitz4JfkLTQRarWJK2oOWK0ws6aJ4lsqDRVo3IBEtEYsu7RVuGrRm/T7G6m+Ojt36CS+dX/4tdIUWFdBka2W0WzhIv7v8n3vv0RPPgib9yB68uOxUJhzUjvf5vSJBQRXQymGqiJzjcoBRORlAtTyjy4f8b1/oobGyhp/pyKGaVlbvI50lnmUynnWh2op391r8lH6h1zwWoJuogWlwJVXExFxzyb4VQ1Iz71SDOl8ilr7oNZUo0VaxTDVFi0PffuLvmw85RcePPRfazVGB+oJaFTS9UB7xe8uLjkfFF5/Oghv/R3/xovPnzOuN8y5C1TrCzOWgqGD77zfba7AZML684Tbp7SenHLS2VPKZVvfeVPoBa+VsUFcMJhfMvly2tOW816YWjvn6F1x92TFbFYSO/RqD1fvnfJXywqVxdhRlClp8yzgdchxqFWxXD5hKd/9i/4+F6iPbnH2q5Y1oAh4GsW3ZEBsqEUyY5TBXSueKMIyXN/eYcTc4qOnre+/JOCpk1LlIEf+wlH1Q58y9/tO56/2JPvn/PGX3/Eow/3RDNwerWCAl/64rskEhrPdtyRY2TRW5Znlvo1w707b7BYrig6kpYtTV2gVKTVsleEm5Hds5fovpf8r82OmjO6b9Heoyik8ZIpZq5uBnwjyKAxmqZxGGtovKVVBoOiqJ3Ei/Q9xijiTL7DC+q6Mg0hyjk2VtA3mWMpcFbYH1ZcXduumZkZiC4nJfqlxNoI2i+6yFIKaT/MpjcysNqDZIYqBbqKBnM2bapVBlk5FbquRWmLymCUYtF2DKGQU6Vf9mISFxJ3756xWi8YpoHtZksp8z5YClcXl2Sy5Cg2Pc65mTWhOIjQrTXkXhD8UirGOtZLyzSJzq8UySAsNdN2njDuZUijIR00SQW877CNI+ckjarR3Ox2vLy+khgp35KD6Ld8awSBN4Eff+eEH//smhAyN1cTm6eJzfQhSrU419D3HaUmxvEpaHh69YKcFCEIDXRpWpzSxG4g54hKFeEiZKpRWC1mYLv9yHa3nR2dNdPkaDz43jAMmd3NhPMF61rszOCQqJzCNA3ybFaiPdWzM3TvljSNkbxANOphg88jY6mEHKk5k1OPdobNdMlZ31CrEvdsFWnrBr3SdP0ZBnj+8iUxZfrFmuwhhIFpU9AGtoNQuBed4/K64kuklAHnNA/vnrBYOKYYIGVKEqbWOA1oM4hUKA40VgxSUIa79+7ReGjn+JdpHCBlhrjBVM3jOyuwBpcM/X1LUQlnEiftGd5aQqoMoxjLfP7Nu6RS2ZWANRqK4uULaWJf/4zDu8zH3/yI3Rhp2h6F4/evnvPOm4+489oDvvavv0u/cLzz+ik1VJ5fD+ANX7hzn77V/P43vssuRKZccBaefeMjXtzsAMW6tyy6yhdff539PtEvG7Q3YBX/+x98Bestn/vMKQvvicWBtRgzcv/kPo/OTshVJE9mNo/JMRBCJOdEpaKtpxTYbkZ224nryw3hQUvODb6CqZXvfLxhYYB1i/ZWhgf7QJgKmzJTfkvlaZyICRo8jXcooDWwPofrFxFvHH3fMIaRFxdb9lPk4aM79Iuezc3AsxtxeLUKdIaaJ5xpyCmgrLD8Ssl4W3EPzsgpEafC9UWh6x3L1YihoWDIpTBuAt5YdAn0WkEza3+dwabZb+FypJbKNHsz+DmHsiImhW3TMIZJhubMwIMCk+BiOwgaHuU5r/WPaKg/rMcP3Cz+2Xc+oVRx/nLWzcV/xTcahcEaj/eKrtWkmAh1hzOWVePp9JKm9QwjEgaaC7ZJYIw4qbUBHWCMjilUnr24ZDMorJOft6bBK3GabHt5ELim4ls4WZzLBJxETZG2MQxZqFQRhcqK7RTw2rBcWFLVDEHxycWOnBJDHKmqcr7ucNbzwZNnVGUoiNB3akaMf4nSFZULuhq67jnGJhrrsHOWoNGeQmEfwmy9PKFN4gP7DG9axmlHKlk+u1VYU7h4viEXzdP/c0e/1PR9Q62WkDKqVDqKUPBy4eT0lNPlEq8dY0wk3UCKUqAbA72F+YHlXYvVEphslWM7JpSqEp+EhFfrKlbHqt6aydQqTm+13jZECkVJkkUlVFFNSjIxN9p+CsE76sRmZMkYPReyGuc9zoql+C1FUBCRQ2yGc2aeeBWsOph31NlUR47b95PJ+cEM5/Y4kB5foT7O73UIrdXm8Lq3xjpm/m7WWmkyXuVOfvplj9RVpbUUQcemUSbKElA9n4ks2VxKJSqZi2ngYohMv/EvefDgfc5Wa/Z5BAqhFna1SGZRraTMjDYUVCm0RaFLkWmh0mTbYY2lJbGcGyxrCs/+ox3GwO/95j+noDBKtGhoxWLZcPH9D7m+uOCbX/8z6hsN49gTe4X1GaMdtkAur3xhZT5FLYVZM1ihcRJiXpDJ5u05uj19RzT21evyl4G/uYusqGMPWWeasZrpe4fzfnulD6+pji8oBkrqWLxaZY8ocC2CTiujMF5hg6JzlrN1j7OiF26cQpmCsx6rO4iWkC37FCkKTs9WnN9b4TrH2eO75LAihYFcC1OulFx5fP+UcRgZx1GMVCr41oJSLL+xpNTKZ157l1LEHEmo1+KcOo2vo6xo4KopqFChKZSYyMXimnPeevd1zv/wJR98eM0hueSWEXBAdWWdpknx/MryfracTIbHyxFXBHU79OxFC91ModG1zlpLaT4VcOfUkzbf59sXl1xc77BWU7GEWpnGJNRkaxh0ZvNix3emyANXePnRS5SZ2Gz3KODbTz4BI4ZfqkhQ/IvLkW7jeLnZk7XnyZWiaQq7mCh6j1WVJstgpjlbkhfi9JhrpnTiqJmKAiOTbNtLQ/XoYZmZEVKsNk0rOj3J1RDGQJZ9yM6shsP9q4Ba1JxLNt/T814RgryutpZaKinIoMdo2a9eXdhhnOZ9Yb4c87ZQysGFuuJ9A6USgljwa2cPLasQy4poq0rOQr009ijLVdFSSibGyH4/oLWdw7ELm+2WQsG3LQojesecOT07k89QBWGzRpDCXASlqLUwTSPOezCI9i1lqvZkEs2MShz2AkFG/cwGAdpW9oeDXk8j9M0kDq52NvVh3uerEtZByJFq6mwWNPMPaqVtK84p7py+JiiF1iQipWpyuz66b4sTo6WQ0CpD2RIHTeMbSiqoIlqwaQxMeWB9sqKqSr9o2W73DMNATgvGWrHVstmJ+dzadcS9IIqS52jx3sGM5hot51aXgrdaTLIqtI2n1kosE2PJglTndLvP1UqjGwyWUsEahXWtxJsYyZbNOUlBrxs658gV9koRYiLWijVCxadoGisBFAqFSUUil65npoUu1CJZMazNRQAAIABJREFUxtY50cW1DpNF6zbGLLEdWgMe47xoLsNEqpq+X0jcQ63YmplKxjgLVTNOCVUjox+oyoBTmFrw2qKNx0d7HHj295dQVuyjCDnffeMuSsEuwhgyD+7cwXuNSSM/8WMnKANeKVxn6VtHKmBtZIqat964N2ccK2KuxFSZYiCmyjgGiQ/pGm6uNgx7jR0SJQbefv0hvvMsWiPP0X1kiiPTRszixlhR1dB5Q42F3TCJjMk2TKMMBxZ9I3E2raU1inXnuMOpyBdiZBp2TKXnrYdrLjcDVVVqKoz7SKywD4G2dawXnovNNTErGtsyTjP9V48QA1ZrijEUA9o5VicaHyLjNDGG2Q3dg0qyP4WQKVWzC6B14rPvnFOmwtWLQFaVGBPeGXRRkuNZMutlQwqGzSQ1VtN4lLbUaYI5Ha2kJLIiIIWCMsJzHUIQTaY6SIgghETMh0dyxeoZxTSKOhcN1ii8tYyz+/+Pjh/O4wduFhfdHd79zJqTXtFq4Wy/3FZiLVQOrqgDzi7RXcRb4axLrpNoEdqqaZvKeaMJASjguo43H3q0rry82XOxGUn3IrVIjpGxmqfPthiamf6nscZKVIWRSqnMhiJ9b/CNEQt7wGNwwIP79+l7S9/Kg8o4w+Vmg3cLSjwT6+JawfgZIfKcNB5vhY7QLiLeN4SUmeKEQ+N1i9aFlAxTDtQ6oFXhQbvALiwpWfYho5ctnbOYaDBKSdixURSV+dy7rwt3fZpYLnp6Yyho9iUz5cIYEqGI81bbndGvljit8KUy1IC3kmNVciETBcWrgJZYkC99+Yt84+OJFy+eyrnTooPJVbK9ZLItysWD1i3GNN/4QgmNIX4KoYPZsVSZYydwaP5KlV2iioSCHLPQTGCm60hAssrl2LDlWUyvqhgaKQ4Fg2QAUesxw6cwC6+rkOfrke45NxNKqGIHtE9or0p+8ZWm75gl98pGVeuBHinmFBlBvvTsRKjmZusQyyEDCikWzGzRP0Nmx3pR2hgxnbBz/mC0nsY4Ht055a13Xuf1t18jR5nWJyUZnTkFconsxy0xJ1JNUuxUQRgJETZbVBnw/YKihK5H1VTb0/YjumYe31dkNJP2KOVQcUfXVD7z+ARs4cNPLnn7jbfI8TkpOQqKjz65ZBoTvu0Qu3fR3qmYMQZQGcnOU0xDYNG42RhqpjVXaVbUq8318bxLtIo5NDUHmLHeNpHyo3I9tbZYO2sy5oZICmV1e/0Ol3BGtI9r+vDz+hC/Is18QYr/HKBdNJzdXfKFzz7mD08aNJVf+YUv4LWj7TyVym6aUMpyPU4YpXj3c2/z8DOvg1vh1hFXCrpoMJJJSM6UKGKiHGe30YNuF8XZsxOolb/zs1+CWSslobNyD9oqlPWIwjQ9pURKGqAa4rRHKc1VeZt33nnCH/3xB7O2bnY0PWpspeHRWrG+f87n/vqXeHt9g+/OOH/0BVb9/yuOnYemvGok/tmCErfjgxa9aVfcf3SP7l7HePGSkHpKCixdI3IEPd+zCr706B52q3hxWXmx77gYAyVZdvtMKpXf/N3vMQ0R56BdiA5RuwVtU/jgexsWfuL5x8+oKrOLE0xi6uCdxTiDXXYYo3DTJFFEM8MgxkLVRorH+TtNQbL2mk7Tdx3r1QJtMkoZjBMHbF0yJ6sV1CzDIi1uqYtGzF1c7+R5oRWaDKTZTVVo0MbomU4tRjXMA6hSRDPv7CFLVj5TrsKyaJyX9ZnEuAKg6BkVT5KRl+eQ73nuySEiqtREiBPUKlETSIh7LZGcJqjgnCPGNO9z8uZ6dqyuRTT11nnJmZtnbVqDVTIUVJ04mKsKGJhCIG5l7Ymj5mEIByGMoBS+ETM4Y8ys7ZShF4B3HtOKpb5k7crdYLSSpr9UMeRBo9t5PRdBxrvFch76yPAnFzEw0cZS3BxVMu8lNVVqdaQcMPMXG8MAWmG0aAcbZymzEU2tGas164Wnby0hD5QIZQ+oStM6iYyIQfTa1VAz5ADjWLBW3ChrVWQMdaooV4ibPZv9CxpnuLvuCVQsGlu9nKu1UKONXlPKwTFV0TrPoDRqHjplDI3pGVPkJu1otOGs71BuKSwSr9kNE5fXO1Z9Q4uV4Y1VKCPfwQLOeGJM8uxFcvj2m0RFsdvtSDnhu5aqFde7AcgYDfurhG0sQw2AQVeFIbHqHN63KAUxRUKG/bRHYzhd9Fhj2O4CN/sLWq9wrkVpw27YkmPkxx7dp1B4uZV79KTrWHSaMVa0FQOaxUlDSBGUpmqFJ+FKJlbLdgg0Rob5zip8afDrhtNuxTAmtmOgbxRf//YLbobMkw+fM+z37DY3/NxPf4HpZmQzDIQxM2z3YBONW5NrYbMd8UZz97Tl4b17bLeZ/bSldZb1ssFYzeXFNc57UlXEmikus1SOWjVZQetWFFUwznJy5y61FLy1uMYTYiDsk6D5Gu5Pp+z3G+6dLVj6BbkUhjCScqFWTUqeGDIvbp5J7Nu8NmOKTDET6Fn1DapoapRn85R2pOxJg0dTKDpws0sMNdB4qaMLkRwG3NBTkkRmVF2ZcmIcBh6ft8RaGVNhuw2Yojh/o+Hh8pztVeDqeocxFutnNllM1Fw47RbkOUvdevFwSFOCLCkKw3RDTFVq2rY7DtB+dPzwHT9ws3h1M3Bx05CSonNSzE9R+NC5FEoKUEemopitH4E5zNhUhr2YNWhdaVtDmN1Qfes4DR1Ww/Ww52afcElJC1P1kdInWRqKqjJVVRb9Cm9FzA2iY6rKEPM8dVWC+FhzcKqqjKniaqWxAo+XebJrteTATMPIovMYWwXTR4kpSUqUKg9JjeRcZa0xRmyswxipKqFNpbiOUg8TYUUJmSFn2lLQRs5NxTDGRBwFRXFoGuMoJWO0onOS36h1gSC0xvXKs1p6nJFx7bKKq6qB2bZdywNNKVDywL5cNnOUxhxvcqD+UVCqiAbnU1dZzRq8IztTCo65ij9Q+tQr3dBRhSjymLlYPxTHHOGlXGZ33ENRf2jo5uOgSzxW//P0VatDq/ZpukKp9bYhmKmpt1XMqwP+etSZHNxJD6Y1R1OcKg/nOhdLHI0+ZB0J0jAX4zN1rMzNh7hRHhDVw2e5PZ8HfWeuQh3T8mUpeULlkbUTo45IxtX533UGDY2tFANVWZSqGCUTaJM9pteoUlidLECLS2GuCmxP196gSuLxw3MKhkFrqjaY6DAosBllHd/92NCcnWDMjnbRoKwU3GgtFOPjGSxULeuuvoKUpJyx2h7Nig79323T92q/eHsNP30l/83HoSk0B7optw398bXqq+/wioPuvAZrhZIKRdU5o47jv5cqRf44Rq43AzFZjILdkBg17KYiaKkuaF0Yh4i3YrLhXCtrKIY5z9FKbqOuqMM6Vwrjm7nYqTDreY0SXeG6W3Bo6pjXby4FWydShayEBkVtqHmBUooQxE1vnFoePX4oWYIzWnG4424HIfJV+9WC8/unvHYSMM2CxZ17LBa9OO5pGWzo2zN4PPlVic5tsVzStL1EVHjP6qRFx8CJtTSpEP0ksSalsGgb2s7DNpOy4u55zzg5fvHOVxhiphk7Zo8vjFOgLK5vWHSy/zeNYbX4/9h7kx9fsizP63PPHWz4De7+pojIiMzIiKzK7OxKFeoWotQ0jRAFajUSG1izghUL/hYWSLBEILFBrKAFCMQgVXcLVKAulFRTmVWVU2REvtGn3+9nZndkcezn/qIaJJQbcpEWehEhl7s/d7Nr955zvpPKCtqEZv+hA7RqINVGpJHnrNS6okO+Eh/pyGd33FQiKVb2dgBJNHNCRNkp3nlqrthaIBlCr8Ypc4qIFTZBn+uTyy3WGpwYgtMSq3h1mnReA6vF6GBJ8nuDJ1TfXeqq3324vwaDUNY8VjAPFPoHJL01SlM2Qv0a3V7f99YKdl00uRQd8onX5mI1ixBRumspimi11vCrU87ZVbw2tGG2Zj3X1HG0Ns0orOXMCtF3TJ2I1XbqgUFiDHlFFaxx+jNnjeo4504aY6hFKfqaafnIBKlOndRBWR2qqzPv3bN1AGiEVBdMM2szzjrQVGfptrJkzrR3a/1DA5lb1XzY1jSUHJU1lFSoTQejIo7gHEtOq26/avC4lQdE1FpLq0ZzZquiMrk0KGrss2StiezGUufCm5sjwVucccwt443DriZzkjUCRWTBypnVA9N0Inj/gPZVaxidp1BoVaN4llyISyYvlWHb6TDBKKpmXVjRIXVRP++VBnX4NOiAwznHsuhQyFqVi3i/RsEUpbJbZ3BBCMFxWtJDdEwGfOcf77kRkErOENYmP9XGFAvLUlaKq9Ld59g4nRaOk7p4L6mRUiFIwjnD3SmxqdAHR8yVVAqd16M4t9XLQRzWQmmZloVStPE3YjlQuD9EUjb0/cBuDICDajkNhqnXvafmTE36DHwINFEacVzqOuBpXN8esK5jmlVT6myloLXWu+sD3TAi1qhhjVOEs2YdfHvfsQmFKVX8mnVsHFgHnTUE0ft/f1pw4uidDsU3ncUYdY6NuagJ4uKIkll5ZrzNkWE0iPTMi7JZtttB6+NSEVuZZkMpBmoAk9luA1jLpjplsNCwXY+RglRPFUUoMRBroZnC0/2WmykSa1QdezUgggu6Xs4slkZTuUxRttp+9GA8pzjTjFFHYLN6H9SCFUttum/91gj1N/v6tZvFd3cvef3DVxjRw9aJ53IjOmktOmHCVOZ8IBXPMVdyyZrfEivOKpSo+SqVYoRgBbEN2xT9mdrCVDL1EAi90HWGXiwpG1JJ6wGbsLZx6LZ4J9wdD4reiOPmLgMzrSW8s+x3lRAsv3hzC9WoYY41BAutCr4Txr7De6HWwvG44E3BdQ5rA9YIvTfEZqimses8nfPMKdGs48nGE1MmzmDE0PeVNsyUBktWe/F4HxFRzUBZGxZQCP/2/gjV8PRyx8W+5/Zwy9iNGDQo2hrLNE80seTP7qnPr7jcqq24d55sRDUuRgNiRTzWCCYIzcLhcOI0HdUkZT08H4xG2tmSxFCbipu1eHk0GmmYh+iMxqNL5Dln5zGmgvdC9rQgOhf6rZkHlIMz8vTez/GAMH3tWkNj9RMeqXXtkS770ND+P9AYHgmP7zWsnJvFr6OJD9TGVevWqh4KvNcYKwKqB73WeIqK5pxptaoG9EwNM+fGlIevV5qXwRlhjjPH+3v+m//+f+CD//2P+Zf/xvd59faa4zwTF6V7VBSlXGLCiEWsUmM7H+j7jtAFQt+R28LV0LPtAmEINAPOev69HzrECj8LbxDvyabieksIljYlQrfjydOR/+0nP+bLuxOX/YB1HmMauz7wLhRqjZxTGawDyGA8a/IEYgypVPpOGIIwLZpzdx4ynJ/q+yX0irsqSvLeoOCv3jSz6g077xhCeO9JmjUrSp/X2eDo/BeuBEJqrasDJSsao7EC53gNaQaMME2F0/GaJSbeXn+H2hp//x99QcqF06yZapejI5fEKWV8g6kYjIdvPw20JdJqIees2XfOUZvheDxpaPyqVzVGaZTWGD5wv8IY4dWbt9Aa3qkbqhE1IJlTxa2GRjLNtAjGb3VAVTPWCft94fu//x1ccEp3N6JU8aZ3wK4LsTZh119gpaOzAet7un7LB8+e0fcjzQpCw5ayvuuZ1labc7Rw+MHv/4BPP/qEvenJvufy8imtVsZaqKZxTDPzvGBOEd/3XHxwyU/eXvPjH7/m3/jXPuF0n/nOJzOpFab2e4reV0NJjZgTzheunu342as3PH/+nL/z/Rc40/jl9YHBF2x15FmLcz8MlFYpxxMeyxILhyXx8uaeuGRqSVgB7xw+GOKS2V+M5JRpuRC8ZZ5mZUIEg7MdYhLj0LOsAfUlZ25OJ0XW4lGzxpxjux3VbbgoLRPAO0sfAsY2UopYq+6Moev0ey46yLQrqufXovBunh/GS0Z0jZwRRmM13sWucRDnNV5X5sT7w7vWFPV3ztNqoq3NT8kR3cWUZnqmkZvWlK1hGnE+aQC482uurzZttTZiUcRbrAXTsEE0I67UdW9/zM7t+7CyOvSdjTGtTtJWXVeN0biGZSKmNUu0qeZdpKzNoxqFGXN26xQaZf2Whpz182SlulHBtIKxFefcevQYnNW9wRq3useCFQ0MLzlR1rw8K0JuZi1cK1UKYqpmXTqLcyp9qCUiqFmHFac6+7WBtr7RVtdynUrNSF2Qeom1jqthQy6V23s1ODnWCqLREsubSK5wmmf6rsO5npgzp/lE57QhT+ug9Ommx1oYvZCt5d3xyKu7E3MsPBl6nl0OXO577g53GO+pneV4zEqHrQXjHU92PcPgKFUngJvNsBr+gLgNDchLxDbBjhbbC5jK8WIh2I5vc0nKlcMyUansxy1TjBrOXhujEzYidJ0aUc2psNkITy8vEIv+PDlzte/ZbwIv3xzpBkfvPEOAWhNTgjRH7lNhdo7gLKU0Ys1Yo0BAWQctnfMgjjk3UmnkZWJJhS9T5PagjvTbNzu+/eGOzVB4sg/AFWKEu5i4aB3mqRow+qGnFcPt6ZrTITMOG2JJ/PKrt7y9u6NWFI3LcP/mjnleePn6HmdP9MHjnTAOHc6qThnTCL5jCEIqjU2vMqcpT9TS2ASLmMqcGvNi2ATYDyMxNe5TxBqYTxGMmls1JsQlPvn4CprH1bf0g2OzH/R9m2YwnlQjFYv3A/OkZ1+wHTkn5qiGaMEaYlI/CKRireH+pOh758AgHKZELIlvvniOf3tLOJ7YDz1SHZXKfMhQYbvpiK1QqfTegUW7Ysn4vkManKbMPOv3jWlhXhaurnaIbRhXmOKCD781uPlNvX7tJ/Ov/sFnpKq24q1aTLMEWxA8DUtaecnBTIgdKVazk27fHZmOiWl+jTg9wH/x1YTxHopQSCt1q3J/rMwpkTIcTgWZKnuxdF2gmkRtjpaEKSdevvuSKkbtd9c8l8t+izWJZVkQMWz2ia4byMsBqY7N1hGCpXMO18BUz9vphPXC8+dX7H1PnO5wWMZuwDqLMQtXuwt2g3DZKb1tqYVUPU5YHRY1a2ocM8+fPiEtiSUt6mBVI713zBgOi2hD2zJiKz/56TtOUyKMHgLkElkWy6vrG1KqBDcyp4VYC5vhktHt8E0pcdIlxFmGflBKTi5YmlKJSiV7Q8ZTmqUW1JkKgDUUfOURnVkAtT5SlrR41ym06xzaG7aHyv+s8Tt/XVupos6pLsugjUOt5SEX6zwBtrJGdxilH5WiBW5tUIpGb+jHywOqVNcGWyfdq+slj4iiUhb15/l6M/j1NfwgtTF/NV4DztmQZnV8Pf+y59b5wTBnvW+cP3e1nX//cx5R0vPHBIsFFow3uGw4TZmXtws/vS1c3yamKXE/VWKsHKc75jRTWlkn+Q7TDLZZgvf4rke6QJpOYA3DGHh2+YQgDmcb/UYQO9ANDh8s4gb6zYALC0yRiyeGRQzX797yf/yfP+PFByODa0iOvHl9T4vQbKUWlI7YVBtWXVkn/4Jdc8SMAe8Ebw1LeW8NwYN07vEBnJ/B13M0/6lrfU5iDM4qfVtNnbTxatQ1g4pVn7giM2cqcHukq54ddo1ZsyD1lwKT8K4HLKH3a3QA7MaOnAtjrxmKMR1IS6TzHSU3bq/fcPvVT6jynCVWYoqkOIM1CJZaDa9+9UqHPBlEHLbv6DqL88K/c/kf44PjVz85QmsEG3DW0XVqoPH6mNh2lbGD3m6Yp4wx18xlQWhsxw2te4KRok6wtMd8z/O617tHw2KaKH3MqD6Klgi97m2yPq+CwT6YSKlrrGlgKnzvd77Dx9/4mIunQh3B7y6pVOxpobmCt4WUK2WuXOyvKP6ef/zjyI9fZbrnH4McsFMGCrElslkpr9WTY8bZif2up99d4vsNNQupJW6PC69iwhvLhshgG9+4uCCEjtvQaSFUHd0U+Xn6inf5QK2WkDImQb1RrdG0TOQU6WxlOwROpwOpgTjLdhzxPnB/f0tcIvvtBUYMSz5RvcEy4Z2nC4Ijk0rUyIPzMrKW3vekXDjcL5ypEyEEjn1H33Urpb5gjdrTp6QuosuaNeacUyRwZUlYK0r9O81gNCQeGrkWdpdXgHB9c0vNkRdPd2zGLTFmWtOGR8Qo0uEEFzxD12ManJYZZz05rw1bp+ijOEcumVw049E29RxoFEy2X0Mm53mmGVnppmumo7UPe54RgwsOaXa9FXrQDENPjGmNFZF1cLMifKWQc6JUtd5fcmTJiWYqIXTkBHe3J9ywwaCNg5P1e7dIPwzruaP3uS2QbMZah3WCmEKtWVkZXinEKtsoOBlVn2v1T4xqKOSCNio16R4SOr+yUXQfEiuUXPHuTJOHbRCEgO+3xFx5vuuptRBLIgwbRbOMat7SXEk1c3tvSNlwPydSySyl8vOv3iEIxjhSLvwwRYYQuNoEttuei8uR7a5nHxz70uiVvMVm6LGuJ6fKX/z0K15eH5kqXOw9/+z3vsG3PnxBzoXbu3u8FUqnv0sqVXMlmyGmhGSDd4BdmE4zi1Q+vtpwxNCWhrTK8T6BFXIqkAtD57E7R5XCfNLXoOscnYec9IxfYqaTyosne2ytLCVxiguds2xD4FRnPIAN4AOhS9QoiHdQNTJmSnC6z+rIaRyHHLktM3tTOc0z3gYwlpvjiV+9nri/O2C94e2bG4wR+qFn2Hr60HO58xhbqS2yGwdc5xh80Pgl27Hff8ThrnFzP/PLV2+5OdwRcyHGog6nNWOdymnK6yO0RM3q6GudnhVP9hu+8Y09IpBmRaiLNYSu0PWeyxcXlLjQ9Y6dE1wopBSRYNmEERFPYKLSGIIihx8968lVEAEjlWVSLX5NGZw62ltfoFmsF0I3kCrcH0+43rHfbTHWkvKM0OgGoVbPrne0CreHRKGyxAXvChcby26/IfiBN2+Uio7L1JqZS6GJIVXIMZNT5s19oh4yU8osS9KIkYcDurItGv3lnWM63uPtPz3s/+31m3H92s3i4RiZ54h1qiNw1pDbAiRqNSgrX2itUMqEHRrihN3G0ZnKJy8+1YBdafze78wghjwZYsmcTkeWVPji3cy740wrDW8V8frZl2+JreA7hcKHLhDcRrnSthBcT62ZVhPeb2itarahhSe7nu125DgfyEXYBEUWjYCtjeAdySgxtPOOofOkbWAIA5u+x0ijSsfgNngpGKd5WV2Z2bqBZATvHpuwru/46lcHjIHdztOqxjxU6ZAa6a1wtQ00LNY2xs+fkyJqXdwLnz3Z0lzHffkmKVVKVGODJWU+enrFsPM0L0jtqC1RcsUsCScK63vRMGFTIZ4qX/z8S3IsWKvF4MoowiBQs4I5K33HyhlZXGmGrT3ESLR2NphZ//1eMwSPDZxZm0zQ4lxNY9p7dCbN0gRtJIzRaXApj0iRiGCF1S1sNcKprO6BYEx9+PmEx1y5h8898/rW5vLcu7zfVH69kdOfN3G+H6th0Lnx4/0ifIWxVoT03LS+b7pzprt+3YhlNVUxDooWMs+ePuHFi6d8+vkLnjwdWWLieFyYpsjxOGDErBb3Te3Xk4a0l3ru9B2p32BHjzGQ80IjgjdMB9XSkD3VO5qcON5B1yopV25f3wGNMJ346mdfMM4DtVfd8SyWpWTc2iZbDBRoTRFlYx1mNUcpVRuwzlktJpeoyKF5j1753h5yjhxR99JzU9keu/jzelrvuYg6WZZaKa3oszQr1fKcxL7+f2uKyMpqMnKmrr6/RtVt0q5rQjOivHfsx55/8T+7xwJPL3YaVp2VyeDcSG3C4ZixtvDZ5x/z8WefI5cbbMx0pdCVBE3t71tJfDQE5pTISfWTvlvdo8WseVRC2FxQV5ogVmjBs7TKdvB0XsPfi7e0qvS+rjliKRyx2JoezAfaOthoDYSVPvxw3xumRNp0zfHVK/yFxb/I9N5jrVGXOwyUollyK5ohPAbdv/jwCZshMl2/Id68wZ/UsMEXjYKIJpNKo0yJ67sDNVXGsJDigXZ7w/T6LX/0y28ixvAvfPBTmoFYI0Y6TDO4TlnXwTWCFTbbQOcCn1pHk4QUIaQFT6HzgtREb3V9i0nsh8oPPr8klQvIDYlKJS850WrFeUXOpFW8FWrJlDUiJ3QdrBbwOa8069ooTy8wInTC2swZasrYBi4VjZ3Iir5ZZxHj2e44b6YaP+P96hptVso6JGPJ0pjmmVwKpergLs2z5sK1pjmvs2NeFjCWebrXgY31HH9+R22Gm9sDpWQuLndY55nmZd1v8mrC4jXz0Xl679dolcLY94ouOlmNqfQAGLoOsapzMyJYp4vLilLMzsM+NWA7nwHamIbgV21iW2UfqyyiNcqZLpotgiiKue6ZiFLqcZbsDDSLOM84bFf3bMH6QF4avbXIZoOV+sC4sSJM80Ff7gKtFj1HRNHaVCEuhVwXpctbbTq8tRgRqqy05un00CyWs7HXqawuul4pdynpUJqq0RvV0BDSWXPaGq6BuI58PJJgzQiuOlyfZz1Di1LU60qX3vYdFce4gZILKQe+/fxqPYdU13WYFz2TxIBFTXKKal/vk3A0hXI3k3NGrAa038ZGEY9zlUTiL1/e8OrdUdFyY+i7jlo1hD54h87eDN56isD94UQumW3XMR0Kf37/jn7scC5QagJTqDURRO/3dD8RNhqfUHLGO2EISjeMq8tRFwLbUYOVMg3nBdsqhspSJnJObJ5syEulpYXiBGMbr94caRSutj2XXSCfMmkpvIz3II1gNeLEeaHg6Izh4+dbTFU9rLWWuutx3rPdbmjlpCyyg57nph2Z3AGcVSkKOhxJNRFk4MneMXRXxFQ5zYnjYSI9VZOr7XZUlLM1TCvEXHh3O3GaFqIYNsHz9u0tYLBGaLUy2cDh9YlCpevuaLXSdQ7rlApsOKtQjnjvGDeCSKVywluHEIip0eaItY3BecQFukHpviKGliviDNv1fS3J4WSk9yCuoGpYlXQEo87mx/vyUGN2BjPFAAAgAElEQVR1XkhFuNhtdD8LYEzm2aVmecci5OrocyGVjDGOhkb/LLOusZgyuVaN30iNeVFUfRz9WmsKqYyrNOu312/i9Ws3i18eCnkpOGvxKWFMIbeCmIipMIpnM1iWVInlCPao1JFWMTWznCJpUaOCrrc4GnYAaYGu1+Zl7D23p4G4JEoxTKlws7vj9nZhmfWgT6YSQuPZ0BG8wbk1xqHA5V4INrAd1OY/OEsfhIvxCrFV7W7WTXfjDa1ok5BaIU8FXwv9ZsvgBWMWaqvY6qBGcjWIU/1jax7rRWk0VC3SEHJJ/OrlNcPQ0Y9bckwMVkhVef7OVja24pywGTvkqVlzdDzd2EPSDMTZKcpmU2HwjpQaoQ8Mvcf2GqZqaoZuzbeZIyaD63oaeTX+Ef7rf3DHu+uZEAJCIUc13DBu5Xg2cKJutrUq7edcwDcUYahtPYDrOf+wst/viDGu9CDz0CA9NmyaDaaOqObxY0ad/TAaXg3r15WqyKeVR4SwnU06RC3Py+pm2d4jNzY9lJXmeQ53PW8+Z0rjIy31rKHRnq/xvn5Gf+322CSu/z3HfpxRzvPXl/XnO3eT2nSelR36vdra3LDaQ4s42pIpCBfPdnz07WdcvBiwW0dJ8CRCrZnTdMI6i/WOnBuH40yplTD2OumvGpNRm6cf9kDGSsUaQ2c7/qu/u2Ad/Fv/8Iw2KiUxdD3JLIgpiHF88PN7/vQf/wV/8M//HVpO3F9fs8z/E2IcYuOqSzGKxDmvlOcKrTRMLdAHaqsMnWXsPPenqPd7teo/0yIfm/dHk6WvNXN/BWVcjfw1PkQMeWUOyGoktBKkgfYetZtVS7Ei1Xz9e6aUHxv4c59pGqfTxO2f/RL754J3lh+tjaTmkBo6pw6a09IoFL7z3e/y/aSI32k+URt0YcAbLZLVNKRT9EV0rTrr6LuO4B1Ow02pbVBjIKP+S6w07W0IatLUoNaZkUZr3ar5SlRjOA2XiJ/0TlWjFPQ1Esa0tvrlaGG63e/wYaTvO2S0tHHh4vIJwfcrQN504l0Fb8r67staSlT2l3v6oSjtrwbSfEIaTKlAySxRbeWX45HqhOFqw2juuX75BT/9xXcINy/5T3/090CEvxH+hDRFsomkpA6GlcZudOSXX3F7e88X8iWjN6QysN8NlJyorZDEcohaiEzzhPHCuNvSW8PVYWLY7sAYpuNB3TxHhw8dpQitGoYQGPpBA6utkGvlOM9UDLU5RbBXO/tKwwZHiyt7AKVDYi3zynRwVi3ATEq6j65mXKDOj2KEHONDbI8RwXQd0FhyRpzTKIZSSSkpKlYbLSaFLQ0YsczzTCqK/Ly+vtdg9XShzWZUquUyduuwRveJrus5TqrZjHNSu/vjASMHlpQf2BOt6pDOO4t1mtWn+2+lVdVIi7XqrN0KIXhC6GhNh5jOacC2E42zMsbQD2Edilhk1eNZow1n8J5aMt6r3r4ag2lqrVRJSIlUDDe391zuLhAqjsh+XDVqTQv5OVXmOfHxJ8+VWloFwWCkUI2yjc509bzmb4Zu4HB/4O2rN0qJKw3vTnz4/CkpFZYlq+64Vqx4ptORZbmjH9Tdta4aWecsPqgbfF21q1YMrRZqW6DWdWi1Eu5FCCZRqgazqDO4juK8D6SUIC04lM6oZ64OI2iNZ1dBWT9GNAYhqVO6s44k8jDgzEX3rZTgu59cUFplWhIxg2nC8aRRWbkW3tzNHI4zIha3mjDlrBmbtEqNEWh88slHpDkxnSaePRn44NlG93HbKAmcWO5i4ouXN0TpSClzNVRePNkyhi3HuwU7CCkljnPmdmmUfOD5k6eMoyEeGjlXutHhm9CqJ3QgAUJnmGJiOxS6fmQ/dEgpmCsD1nN7D713DF0g10wzhmlakGZwfQ9VcE41uUFhOJy3HOaCtZU0r27EneGQMqEMYBKpRAAsFtuhGk7XCCLs+y3tcoNdy8icC7U0BE8umSkaej/g/UCzFqLj+v4EptLEkBEuNh3zNHA8LZzmRJNOddHG8O7tkZh1jJnSQoqVolsBlYS3ht1uR8pVKeeitZMTi8FqbmbvVA86R3b9ke2mp7OWZYrc27PkBoauY7ftKPOJYBxz1Wc/dro+F1ZqCTrIqCXig8UFi29WHZqzUIthu98RYyKnhHumDSYFzAr45KRZr8ZALkpRF3FML3bUkvnly3t+e/3mXb92s/jk+Y48J0xT8XspjZKVTgiVJTfaVBAEb3vEqC2z0HDec1oO5Aq1WRCPNw3bBarxeKukqVoylkyrhTlpKOhudMS5ESNYWeln6x9r1VFPUQWLtSjFoqjTV26GpUX2XY+vlSYFFdM3sEHNTB7oO5BzwrVOJ/4tUSs4BErUQ7OClEYqPXVa6H2iNoOzPdbp1G83BrrBr8VbRo3ZE0Y8rRpM0/gN0wxzVupM59yK0lel+0XNTxyspTcVMZXBwhCEMAaoBtscshlZSiZNYIvFdiOpJrxreBe4utzjZG0EUfdQEFrOj1Q/q7rT05TOewPwiE485NQ9UFC1MMpZqWVaSL2PsK1oIufCXdYv1eZJRFY6ojwgcA9OpivCdKaHnpG/c2bhGa56n2r6SE09u+ydf872NeDqHKdwBgcfOJF/hTLK+7RG3kNoHlBI89hrGB7oqOunabPJWlxSH2mX631qtdFMxtiG8UbXakq0CFKd0tVEN+NUEqlUUm00LKlYaHa1KE+IcXgfELGMg2CtpZPAzfOIWI15CEbdJDEdbrOlmgkTAAnczbd04efsP/iEtpyUWjdHTO/0fajtoSkW0ey+vGoLBS1gzmjtuclvD3fo683aeQ093Lf/l+t9cwuVkp7v/XvPvp2Xo3lvbX7dgOisx9U1rIWXPlo19zDitNEEplW/g1U6jWqyzj2lNqcYS6qG62NliYY6L5TjRAGk6j5UF82dOh0XYk7UWnGijZenUUzHv/vH/yYG+A//4L/AuaBmEavjrA2erveYumZEpoTYRms9Rgxd0fU5dxuse+9e1fOirg9RHcZoS90PW+ywZby4gu2AcYXQDSslsK6vQqOt1KbC+b1pgDboxjm6iyus7Ml2wpZGTBkphXo6URFympHQ0W02dOMJEXhzEj4JI6zNiRFLq4LxnlIWpevHiERDWRLXpxvebj1zaBynwOlmTywzxVSs8zjf4bzneDgiwTIuYGrj5uU1424GgdN0R5pnrPWMQ6BmbXqvLjdc7CreNtyqETxOk1JuV+RDgsdUjdZxYpRm1xrNGGwI6uZZK1YMndfcTBdk3WOEh+2j6sJarK5JJ8pUEK+64r0YrPfYELQ5RAv6Vit5XjBNDTusMZSmDtIpZp49HagVcjWUVDkdj7RVf2tDWOMfKl0XOE6JlDN5NSx5e+NJtXGctSFbcqVk1faWUjTCRdQEZ1rSOogD09Qop9aM9Z6x1w21loxzBREI3pNLorXKEDNWLH3nsNK0wbIWaw0xRWqpyugJQRHsWhTlF3Wmy0W4u5lwdPhgEBMRaeQlUcj6vsbE8XDiww8uKDkjxuOc4IKjru+9iEWsNgliHa4LSGscb291UNUq1WR2FxviVJhEh0m1VdyKMsUYMdZgqmXJKpWxYnHWqamKAZqlVEOpmZoXjGhd0cpqNSuObIVUCs3qeVgTNARbIC5K9zTG0g+WVCal05+jTYJFjBCcxxt1cpdm8N5x0vYOLxZMIKdEK341V8ocjoZlsYgzWK+Sk+M0c5oj0lRGkNcBbMqRU4xQIaB11OGwYCyMawzIkhLOqQSpYXVwUaGIcIpRa5feUGolJh0kXWx7WqvElFgWaDXRB6FzwrLKVzqvGsT7mwXnOozzpByxCJvOEYKjVIi5Ejy4wRJkdz7YibNSq71obl/KhiVVrnqPtZBc1UFAKRTj8M7iTX0YbqTadA9vWWmkxtH5nmoqS85MJ2XMDIMwdIFKodTGaVpIi9Z4d3Ok1MJ+4xn6Do29ET58vkckk4FsAvvBInVkniK3hwmsRxw4cXgqxyWRmrAsMNvC7d1MXgdJS6tYUQ2kseqjcHO3YIqhZoPzjn70DHvHfMq85cjVbmTsPNMp0ryaPkozxMHQjGU+TgzdhmR0z5dcyRTiUpWx1xrWWKiGU4lI8lijQ0lrNE6DqsOUnDIu6PoX4cF3wovoM26Qi2BwiLHq7r7KRH57/eZdv3az+G//63+N23cTORWssRhj+eKrO4oRppz5+atr3rw74mXL9z5/wbNdI6YIIvSbkb4X8imRYuaU1eDi6mpPLY0UF2JaePn6wP39TJVGKoklRX72pWW/zSxzY7cJfPLBBbvtwEcfXNH1Dq9tJo1CFp2yn06JEBzPLjc4x0orK2zP/Pe4MA6DFoNFEYFp0viC7W6LWDTPCqCq42UphbKiWjFm4pzZjVusKD0nOAem8t1Pe90YY0LWw9fYyiIN0wRb91QM18BcTmpIYzsKwnYYEcAZpWFaa8k5U1PiZC2lWfrsyLVQlgVJmaHvCWHUIGdXMdnQrKd0ge999zl/+k9e8uc/+wVVwPWBVoRWsk7UjRJlmjGIW4trra4fEJpHq3NoTWm4tze3D2DQuYi3a0GoQ4SK78JKGVobwNI0VWF1+WuVB8e+ulrX69+xaiCbWqu3VleUaY34qBWN6XokhwrtIT4A8765jRb6YtTBq9b2MHE2ZqU7rgcWsA4hIDfVFxhROl5rDc56St6nPRoN95aVVlnVoVXv42Nm27nZzTVTpKN3lU8uL/jdpx/y2W4gtROli5SipjLv5plpSZyWRCoNn7MG3DZDyoWckmZdBYe/2NJSZIqaWRQ6x/wv7am18ef/60/orRpKzM1R6gi5MLuC9IFnoaeZt/wn/9F/zofPLbtd4i5Fhs4gVTXF9qxlLQnEr7pA1NQnLTTjOcVGzI/utHKmqp19NlvVzDb0gHHGUL0lZkVGaDpc0GauPVChT0vm9rTw0dMBMWdNmEYcGAOmgYgeNiWvw6nVvdasKHVrjZQqfdcxjpq1F5dEbZa7+1t+9xvP+N7nH/PHf9gxp5m/+d/d46SjiSO2zBwzJlji3Bg3F/wrf/dv871/5jtw9wXbqkhUqSvlUZT+Gu4GalFEWowWT0oNXM2KaHS73UO2Z2vgKoClzQVjPUhAgkaU+G6jLoMnnSg7qYjpEQyuVYLAgYYTs/oyraiXMQxhg7WN5nUwYk7pEQ3BUJpRpEKqrmWAmhCxbLuBz7/5Da72CdkbwtbRtz0lZYZeUYZxPlDnE2VZMH6D22/5PLzmb7UNr98OfPsH3yL8kx4DvPjGx7QYtXBNqiVsDfph4Ec8509++CVPvv0ZH78Y+csv3nLKHUs8cTppcPW8FM2fZEe9L9z+7BXL6URpFbF3tFxxrRCc8ObdGw6HyPPdhu2u4+rpTAh3+j5URY03Y0/nPKVGnE2cpiO5NLb7PRdXVwQWUorklIhxwdDwIjhrGbt+RdY8YoW7uzucV1MX3w36HsjDmIxKYzomco6kuDwMlmo7R2JYNWSxhi5YlqbFVlwmKOCwlFaYl4Wbu0zJjb73dENHKTOneSJnEOvxXhi7Hi+V3lWasfzOt56CUTTIOm3eDI2+C9BW2qf1NCpzTDp46npKKRzuj5RSVm8y1SxjUESnyUMhvm7gagSzDntUm6gNTM513RcLqVSN4mmqszobqfW+8c2Pr4hJB6mpKQWzoO+YwbDperZdz9svX7PEBWON5je6NR5k1eIa9ONmZSQYa9lve5483eOCKNtgSTgau74x9h1GtLF7sn8O5jmGipgNy1I4Hu/pB8fuYuA03eFt4HCXNfNONtrQWchpNflZ/4mlYZOnZUXs7qbC3eHIvCS64BmDwxmoJWKNo7W6Ro5ZUko0I5xSgzUsHqAcF94eZm3gxNF3Pce7ay4v9gydVXdhb/Cy6ADIGLwYNntBLgf6Ty90INXamtW6unzXhjUeYyx3d3dYZxCrZlIpVXIulJrUYZ7G1SB843c+0DgwdA/OOXN/uKdJIZcNfXA8uzBKdxagRKaTYY6JXCrLqaMXwfk7Ytxyus+8uXnF7376jLfXmdfX7wi98OxqQ/CGw8s7nj+55OZ4x9ubG5wb+OT5BcM4UFtjKOpUXqsOLsYnPedBY2PLHBeWJb33+wJ2xjlLSl73zR5Op4VAY9hvCcFjbaHSuD8qU2W3GemunA4G7g1D17MPA2lZOOaFpc2MNmBFGABD5nC7ENvq51ArTgqdNPrO8vknezBaex4PiWHoqWTmeeE4FVJM+OAYxoC1Qs6Zaa7kZJjnyrube6Y44yx845ML7m8nliVzczdRKYxDv5phNa7vTphXtxynE87dUepKQzValzmEYD3eecbBETrL8TSv53yj6y3bbWCZE9MvDjhv8c4SDgc9Z0KllgbVKMXdGEqujJseQ6ZmuLl+y3Y//H/oPn57/f9x/drN4t28cKqFQmG78Qxjx7d2l5TSaM3wrU93HKeJ/+snB5a2cBN1+hisoW+JFx88p7OiB4RviPVsd54a1c0qp8ztmyvubxNI4Xg8cXN75NWrhaMpiF/pQ0tmYca9aGy9YWxqYuOHDW1Iyp2vaoF8set1EmYMvvNIhhIX0jLT9w6DpU6NNGfmacE64aOPnrC0yJKi0ousZ9ztyTEyx0Unu7FqZIATUlxIy4Kpekh2QXDOErzQdwO+6yjLRN0GqhiMc5o7FRzLdIBa2FzsML2jy9poWKdaiZozKSVtHL19KC5oBmcu13xJfREz+pJTM94YGoWf/uwrvnrzBreiewsCzmFrobJOUhNMMaq2p+mzVEzhjChZQtDGb55PiFhiXCEZY9dpUV2nuasezdR103vgtWoz11bjGufUKTUpvfB9I5KHq501kIpcaRF7/tiqUZTVJGG1ZZYHMxND6DrVAbE23qLGBOqMt7r/rbmJZtXf6HBNG8+z+6pt5055dYAVy5IaMVVKaiRbsJKUAuI0oDmfqV5ttWg3BumcDk8IOFGUeOzUEdjtewwOS6BV6EfBGsvpNK3rQbXA3ivdJS6Z61OiSuPi6VOdkuaIIAwXe/7+k1sw8Lf/4Nur06WleE/Fc3h7TWsauWFapXLgh78K2K1l/0RY5sxu3Kwhzg3WokCaPN6boii4P6+LZWaaZ953rX3vQWLMihCCmrl4S1oaEB8oqO+jwOcrp8Qyz7Q6PCK86+e195rKNXCEM5q9/oUP+avndTcvy0qFTiBqinF3PPLm5po/++6H5Oz5a/9l1WasE8T3DCMU38ih0e83BBrc3iKSwQdsEWy0arZlLdiG22+BdeC0oljuHJi95oR2YVTt9IpWYyxYiyGD6QBLM4rWNLFUwDjdA5oItSTqitRb6zA5re+KzjxY78juyVNsv6XInVIfnaOguqkqAQGsnTT2J66079LorOfi8imff/IpT8JXcP0r1APeYkyhnDIYQ6knao54LM01aJFBLFfjnr/85Tt+73vffGiQzdVISxqHYdqIywmTMrVzfPr8GT/2rxm7LR88e8LuyQ5xW3JN5HlRnVZQhMg4R0qZ1y/fcn84cHs3kbLu4Xk54m3Dfxl49fqWzz56rhQ2r0OgLZCNR7wnOEdK614PVIRYCvPtPclYnu9HcnVq/940u7bvB11DRinAOWnYdTKWKkGzeotSSDvXs8SZeZoQEUo2HO8TxyWuDVZVE6UlMk/TGmth8d1II9GCI1ePa4Zghf0gvDtGvnh3Ry2Fjy8vGC623L5LvH6beH17JItQxEJ1kDK5RKoRHNBqZhc8Qx+42PUEb+k6RyPhfWAzjlQywzpIDf6gKKrtCEHpciJZTwfjVM9b9UzyVjWI4UzTxzy47ZaSEUQNZGrTKJk17kHzFCulRqUAF0erhq5r0EGtikZXa9XltWRMW6ls1TD0PdY7Gsp2aqbgejV8a7VSjDZZmmecOE4V52ZGr7KAJeYVOa3cdx7rhJwqbm38TEuMO0WLW51oJdCKZRh6jDiedBuolSBNaf5ZEcVmNC6qlEJJWdkDy4FWKsNsWeIb3t6cqEboOqXpVqlqCmbOrs8a2SFGMKJD0zMpujXDi72n4lSHjWFwG6wXPZZFyMZQUd17yxp7MZdMa5W502K+ooPZUiomKKJqJRKcGk0ZAmLW8Hep5FxJqWGMxpPMUdkBZh3GarSJnqfD2DFPkRQTGIPvLMs8UZZGKmWNqelXWnhb6eCGzWAJ/VOshQ8+2LK5CEgr9N5xWE6c4kwxKgFyNK7GgKUxR0WePRpBcWZatDVDulIZhhFXDK1To71SCjFmxnEEDCkedUAUk0qHxFJSYp4TXQikpDp3DIQgeCvEFHm+dxgKrR5wHi69BemoRmnEy3wgpwnf93TWkYsliFc+SJ1Jc6RmQ61QiErMTpHaVD/70YtLBMPt9TWdNLwrFNGs2CyafXl1sWOee6X270fm/UiKeo6LE6ZZZRLTtBCdsLvY8+r6LUss3N0rC2HOlRRn+r5nt+1pzjId73HR4SUwxYh3Btfg9XXk7vZIdR2uFKw02k2mYek3PaYUBtMIXqguUeoq/WkKHlQrpPzboMXf1OvXbhb/4f/8S3KbVQAberz3dHYh+KCImXV0veX3Pr6g70QF5euk1DvHT//iJcukBh65NnZ7z+FuxojjdIrc3R/55ZdvidXQjVsKleO08Ef/y49gLbg2Y8fN0yuuNiNXu4GWBtLoON285nD6BU4sm7HToOxW2Q+BcfRsLkas6/C9VThJDKPZk1OkWqF1KH3QWt7VhLOBLJlalKqx3B9pRk12vPP04jTA2XsMo2o+xNKoKvgV4XCauDvcM+47bPK4EBQlXBJeCvFw4vD2Bh86NmHH/fU9bnTapDktDsVZ+r57oGUK4FpDzIq8wYPWyRlDMQb6AffsAoLju3/9M/7oH/2KL65fY2yl2IKxjSYZmkXODFNnlGpgYI4zjaYbIpDTvE40UVqOObuaOkqNlKIHqx5hdWWGCN4rmhfjogL6lTosovbXtahhiXOPdNSzjsYYQ9d12iiLrAYOBis6yW9r6LUIq+6wYMRq0bIGBuWYH5rHVtX8xBkDrWLd+hq0uqKba/6VPKKbvpnVAl6n6KtpPC1mLoeBzbORpxc7XC08e/GEeToxZ0WnazGEbqRVuLu9Z0kL+8sNc1qoBb754oq/9Yf/HN/665/xJGTyUqgxkUqhOseLYjRH7pTIcSGq/zQmnO3e4ZPcME7Uka1oqykWrKl0fkIwvHj24Qq/RcR56Efqs54qYPoB0xx/+IPv8yf/wX9LyR2telw34P2GVG6oRSnk4ixSHMZoCLcBrHePetGihVlranpzbvsrTSXCYihVJ9hiLeIcLFERwLPh0Jk2fEYYjepQ53lBxONst0ZzrFzWpoXh+9zWc7N4RhTfb1Bbq9p40tQFUAq3c+LFi+FBR+mspaOQ4x2tzlA9x/sTthVKi8R8onR/E/t0Q/nVa6UlOItsAsrGr9hakZKpMdOSIgGds9Tgae+55jq3okpngnKtmJbArhoRhC7ogGKaD3jfYWyj1owRdVYVIxRjMKZi0a1tnYEoWmCgf/YU320Qt0GsBxZK76hikBUlzjRqgdF5TKtqAkbh5nDLL7/6Bf75zItxAzhyW2gIkvJqMGWoRpssmzI2F775vGPzwWf8g3//f+Tu+mNM1KGAe/0WaZlKpRhHa8KUIvH2xO9/75IffXFBDgPTDPLyKzqp1JQYxRGMZW4ZCY5YM1IqFzExlsalh+LA7bb0/hJbM+nTb5ExiCTGTc/2ag+AnSeMaZScWZYFJ0LNlRACZUkPiKA1qz62OUDXiBhtpBsgLug+YgzkRFwixiq7IuWMdZ55OdG7wnjhcc4yHxu2eV682OGcunXGmB4cUq21pASHKdKbxpILGcNhSbw9nPiLLw6Igw+vnuODI6bEX/7sHd3GYoeBbsn41hjHgT/9s58SS8WIh9K4u72l6zpaKbRWGbc9Q9dRS+b/Zu9Nem3bsvyu35jVWrs4555bvDoi60g7SScOnG4gSxhLWHSQaNBB9IBPgPgOIPEpkGggd+gCAmSELBq2QHbiItPOOiLei1fd6pyz915rVoPGmGufF8atkIBsxA5FvLjvnLurNdecY/zHvzje7IneUXNlzY21L5yXhdw8uMBSKpc1A5Ep7phSJIbKsjzaGaiOOe7wzhyfW1sJDm4OB1JKtm+nwKsXN3iU45SYYgJ1aLD4p90usN8lpmhniNSR3SZmotNbJgaPS9FMcZrlTQoQZFB2GywFumbmacKJY10zrcM+TmBxcyDdqOc1E6eZ6Eyfn9cF7xxdOtoqVQIqgfXhnd2zU2DJmfufnGxPQUfMB2StNpHxnt6amZEM07jd7ogI3EwT0cHhbuJXfu0jfNrTW6eXTM2Z9XJiSp5cKu/en1hz5vF0HgCp53y5kHMjpEQInuM8jVrAQNAa05iWGaul1mqTs+BN99+VMHt6leF2aVRqVaUN5o6EIdPBGqjWA/ePC7VXpn1i2s+oPqCjEWujOVRl1EBh7MdKWY01JN60de/evjdNtbc9uHdY1gtvv31Lp/Phpx8jWgmSScGolT5kXj4LSAvU0nh+e+D5ixvW+8LzmyOvnt+SF0F75s3br/HOcXs4gFxxSHywxlDV8/7NySjK0bQMXmAKnpYL58tKTOYD0Lq5Gj+8f0Aw+U+pje4E2onDPLObDrTeqbFCNtBPgp1feW3kS6bVFYkeDY6miVYqoRd8cOyPM4LndC5clsJ+Z8aR6/II2hHxaINaK2/fvgWEEA5ccuO8LhjE6tnPR9NR0zjsk+V9+kichfluh4+RXJTlksklU4+eKUV2+x3f//hIXgu5mUHU+7cn7u/P7G/2xGQ6/nl6Rq+Npo00veAQd5Tc+fNv33HcJ/CV4y4x+8j7b85cauFw562Orsb6mdMNvSmvv71n3iVubnfwsPL6zfpzdCO/ePx/8fi5m8Xgupmk1E7yew6TuZC2UoYAO1B74M3DiUBgf2hmtNgAACAASURBVJxRlMfTypotF3AKDi8T0FlPSl7L0PZZXlJIe/IFzhcTYq9F+eTjV7y/X+gi7KZICJGi8Gdf3fP5m3v28xC3K0Bn3mVudhNTcPSgXC6Vt3WhNTP9iCkwp8TDo03WYjBq6mVdiClyzG2ENq/DdMCNsNuGOtMsTNNEV2tYdFDMUoqGrmGbUOmVVjqP9WJ6ukFVE+3UobeMo8mSVrkJYWQfbW6XttNlf7YDczfhYyCGQENp3iZXruvgsHv8tOPbdyde/+QrUjrw/u09+11gdxw23sMhsIuzSlIBNX2FiFFDZbz01kChntas4Wp1DG260qQOeqWJq0MI1nj1SmuVUoxDn1KCgVx+13RkK+i/G3YPPzuBdM4CZM2R1f5eXvPQKdqfzZXPDVcuuRpFlFKveks3qLKbPlH7KEhGg/izZivY++2KjqnlgHjpGM2vtQwamCdBq4I00hQJySi2znmmmBDgMAuqjdubHaflAn7m1W7GtU7PBTkEfG24GA0hl45LAe2BPkVim5n6ZizgroG4rav9mQ614YY7o2C0IRFhut0PKuxk32FtqA/oYY/uZlQd8XjHZ5++4t3br/niz37Es2d7M6aoQ//XoDvFi6NrM0rlWLtd+6Dw2itv7R7b0vpuAzjoU31Y15slv00Irxd3XAAbDm7xJk9mONtzyvaK8mTbr31bvNu6GK/sBzVNsfvQXoG6LPzuD/81/upvfMqvvjrw929XFPhrP/xLKB4fE84LZVkQrdTc2N8+46PbI6oFt5voRHD+OhWgK027If07HVMCLJTYjUU7DCU4HsfnHu9z3HyWCiB2f4ZBwVYMKXcdUUeTYDmYbJrfp4+u3cRm2/edvMO5kWtZK+QF181zSaWOMHYzBDHqrE2TO5WSlS9ef8uLu8jLGOjV4Xwav1MBh+uR0EfAN7aXpmnH0c/4FPn6IvQQcCj1eKD1QtAw7knFL54pB+TZB7j5Ncwz/ngk9g/xoTFX8E3wAqlVxBs1uveGv6zUWpmaUnu3hg6j1y5l5eH+kTkltIJUo116EbxhA2gLxshoBsSVYmtxPwxjsog1V31jGzhUDSCrZYW62v3ehdoqbgTZa8f0a90cm72A68qcBDlOdDpeKo5ACo4QJkrb6IArSVbER44hkKtlR6aUeHG75/yw8Hh/ptSO84nD5HlxEJYQuYm3gBInz/53fpklK8tSBkPllv1xx+nxRO+Nw3FPmqx4Pex37KZIFFhy5v39AyEkpmkGEU7Lwvmy2tpVY2nMMZCruXxudMvelVqN6u3HhNtuAXNolV7IOfN2tfD5lCZcs+bicq68Fbi9OdhOMu5f7wUfPKHL2FfMwGme4sBJZWgvHdMcQYxiXFsDKuIgBRBn54Z42y9CsEXQymoT0GHis9ZubqUiBqaqo5YVF0akyNiqNiMkBv1WmsOr4NRMe9zGgNFOXS2fcz0bEFFZceFs08Pezf9MGZNlc2vHeWLasdNhjIYZBOU1gzhjmNRRI+TV3NBDtAbIWcMSnXt6Lrd5toN6pY5G1jRjSs8G3ppjutGFe6h2z9DNZVfAaSYGO5cVi2jRsacbOOvGOdtNcjLO7xHNbBE9YvpU1YAGuxZddHhEmIa4t246z9rJuj6ZfhUlRD9osI5ajMnkQ+Du9tZywH2yRrZkAyNHM2usE/v9dTFKsHPBnJCx38trZl0zuVaCN62kc0pZVnAWD/bwmFmL8niy/TI4NSATZQqRGAMlVwMzvYH7yXmIkdLBx0gphW++fYf3gd0h4aOn9Dqm8jpqkIY4N6JhdNQiDTZHeCB4R2kLZjprJ+OaM8F1EOV0qoCB7dDQlpGh7K15pVVFeyF5uzfcsx37KZiBowfnbcKda+dSlMfLhff9glMlhc40eWieljsPZeF9MfdhfWzMacY7T+sK62pGN2JSjZwzc4obV+gXj7+Aj5+7WZwnx/19I7dK9AslOtDCpgmb9+bEtLw+02rn3CpVO+elUrsw3U124HuIB8cUZ14934MEVBulFj54fsv50vAznC8L50vmg+dHvn1/tsniHHl53DNPiRcvbvBB2QVPkGCLkgvee/bznmlKHPYRtJNzQ/C4CL01cmk8PlgQ/aKVUldyXvGucD4pKQpz9NhO22l1NUqZ2EZXp2bFShxRD3hKM9e5nLPpOkZFkk8XnA+4UfjWocFI3tNWRV3jfF6I3tuh5x2lGm3DOUc5rzgvtC5431j9atOFtDdhc1M6Decb025Hfrhw+TZTZOHxmwdu7va0L76it2ZonhqlsMtglbUtV9CRpkhKabh+mm18SumK0uVaLAuREUpfqrmoNdMyxJgI0SIYnDMXyBijPV8tFgOSC847cjGb9xCtYba8LWv4nJg2TzZ0cPxXUWKKgxLar5qg1kzo/0RRHbrH8V79FK6ub4LYJixPDevm6roFqGu319LNPXWMa1SsEHh/XnjMhdyF4JU390YXza0O105PHNS7FANpjpRmB+Duzuzz85t31J8e8PuPIYshxNLoqzkNC8K6mkmKd/ZeWxlxJirjRnakQ0I00oo5WZICflBs0stbO6xV6QLuzXtkP8PxgKZkxi9S+Rt/69/kf/4f/jf+wf/+e3zyasfp/UJP85ildlQ6YWRyIXYoBe/HtMHcH40OKmOybI5uWx/YugLODrzWyWrrZZOK2oUZzSTWZDkxIKC2wrKWMYWzgkZUhrX9U9Zn7XYNDd1mZHMazVNEzBTK2z3dKmhuLJeVlx/c8pu/9hn73Y+o2vjwl56jTcz4gc6u7SyGIFfCfmaKwxU4zOMGwtwrsQ/sMEppl4Y207h4H+wzDdMKgF6aLbQxCWQUaRbtMehoY3AavO1DdAMEaI46zHQYf/XJ1MYmjH2MZz/56Bm7UPFecb3A6S2/9eu/xC9/72P+gbMCOKo1eXatrbHtqpRS+OMffcmnn33KLwdHW07E+Qi90STamvJWdKLgMbBInGcfI598+jF/8CdvaWnCOcU/v0PmCS8RaPiu7HNHdaHunrP3f8gf/egBiUd++P3PaPlkJjJutIB2Yw4qnrArNs3BOWvItVFFaeK5OZ+4XBbi3Z1RCrua8YwLNt0Qqxt7q+O6KXFdEVHmGEaEyFMhszXffkxrNhik9YZ0SGP/18Fu6MXoYzZ1saJybRWJgcf3j0QfmMJshkooLa82fUXB2zmxFMdlKYhTDinwe//0x3z1zYnX789mzOMFbZ1PP7ohONMX5rJyWRunpdjEoGRUlCkmnhf7DlSVen8hhNWKdh+pvTO5TusO9bMZlyxG3xPNHKbOzc2B24O5+orb8Xh/4e39O3bHHTc3h2G6U9lNB6NNumr7KaZja+rMPXfkt75+OOHU4Z1QquUj748Xo/7VZhTY5M2J13twQmmWRRvThI69cYomMfBDhnF7e2S/31k+ojZCjCyP5h68IU0uCNEHpDe8iwRx7I9HWqv4YA2xdxHB4dwRMAO+LU7KdJkbaCloNeOsXNt179mcvnvL0Bu5GXSnCKorvReu/0YEVcdarJHyQz6TcyG4fgVVd3PCcB/BBYsQmSZz1J1Soqk+SQjQQXu3nzNqtVor8zRfazcnjsPODTCuDXBNWNczrVX2O0fXocNv27oexmMDIN/YOuYMq7Rme7D3AbftS44B1I5s0W7v1ccAzrHmM4gnDHCvq9EmHW48h9K70YRFArUVWi3ElFib7buoPEW2+PgkjWjWAKcpje+605p9/hS9TZrRKwCq3eyUondjCqrUppTT2UDzCARjkj2eC4foKU3502/vuayF73/4nOPs6bqO1/KIBlpZnvT2ePJSiFEHw2lbBzaNM+mJQ0VZl0JMkVJPg01l55ob0Ta9q2VabhIZX03r24xFIQIp+XHNR8O2LqzZ1kWInq4mC4rzYExoo9XOkpXTY+bdYyG3yjRFpujw2ojJEyVQqlGUp0Pi1juLmxE70QMV5wKNzPPbBCr02mkiHHa/0Cz+RX383M2iAk0dOvK+XD6TgqFAOrLNQJhjJKaICkTt7Cbj1DcHJWdyriQJqEtWBIij90YZltOdSnQOHxQXbMKYkqf2Fees6J9i4OXdnjgJOx/oKtdQYycQ3Jh3DT2fT2IUlujIxYq9II7oPfk7BwDqaGpxFj2GYf9teT3inW3gA7ntTdjdTnjv8S6MwsPE+5vJBAgpOFywbKjWOksfpU4HhtZPHTTMsMR5T3Mb1clE+84JLgbECbVZ0xVqhyZmdkMlqgUS75Ly0UczvTu02saxrtnytXwEHXEE0miAtg0XdngXxmTTGgLnHSFuDRPg1EwUJFwXRe/ZrJwbzLNZcYsHVPHODrOrs+kwwTEqasWJGzlofaCPi01KRJ5iEBz0a41t1JDequnO7J2iwDTPg864xXQ8Oal670cjaBSb6OO1mWwjdPqaw7ft5KMAtryszZVzGOmIY63K6VK4u4mmOxtoau22aXo1q3IXHHFJPDw2vCo3IgRmtK64y0J7/0hvlS7QtJgVvHpEoVwWemuoN/pmbVaIbygrweH6DsEztOSINP7m43NDn6vpixCHOtNkQYVWcc1DXdFc+eR7H/Ps1S1hP0G3aA3PMGca34k1gU9OtH0UI3aob5OAbaL11AWOQS1b3W2H8b+8u/yr0UUdNKe2TSHHOvrZ3+FpsvgdGrEVYeO68J1J4/hfL56vv3nNw2UxXdP4oTqjelatNnyXCXUegtJipzmj8dHHyhtUUtXRzADSO24AKKI6RP6MsPth/DEOaev0uH5v6kdBvxEMbBRgbXsbLokOeq3Xea79bb3WwtvDifD8bk9yZUw6lFYLn3x0wycfvyTEmXU5MTlrZEWwZlHt3QQnfP6jL3jzl1+iv7THababsbfBQlC6dAOfOqgf31mvuHzh0w9f8M//8Gv+y//oH/DhEd68X8n3ivoLXSt0T3CeGC/s4wfsU+KPv77neHvkh99/aU6hvtGDH021XDVWINdYGucd4s10TbzprCeUaU7I81vbh+p3nJfVClDB9gCHA+34lIZ+2RZWULnuGzD2o2DFvAz6f2/d8vN6MyO03pnTdGUkmIbL9qq6ZivOC7g0EXYzumRkTEU9inc7cjUQbr0IXs3hMXjPVz99x5v7zIrt4S1Xci58fT+xT4HaFs7nlfvHxut3D9RyGeY/gRQCp6VznIzZI2Pq5oPnktWid+g4P9PEcz6fxsRV8ZJxXnm22tkYk6dVo0q+ub/nJitVEnRYlkbtBec6MZrMoCPk0q25iRP72cCsdTGdrYgjJmdaXBVKV5bLikNYLoL2Sg2jBulqbsR9HbtN5bA3w6ZyXim58OzZhWd3t+z2M7WZrOR8Wuw+cVZ8+2jZizvviIMBc9jbPRucGaqFWG0qF7yBV32waVyj1YyIGy7bA6jpSunCtvvYNmiSGCdig1m4nonK0KzRryyK7bxrbbgwd2tejGnjcS4OINcTUhxAktA1ITIyaVs1ALe16/1cxzkn0VNaIyZ7f20AWtEPoFRsvTscrkY65jHg+gBVR5CrOXsbXqZquLqO6fh3+B3DyA6QjdXTrruWajeGlm4etmPCJxa74oeruncekW6NZg+YBnUA5WMKWnunZmt0Qxguzv+SS/lAOhEcIU44Z5useIfLtneZR4C5V9uWas2xaDBjw9xIIZrvRHRoUco507257z+cO+8fVz68a9zM1qyaPtlA1VYLSsaHyPEwsS5irqPNpp4yYj5kqzuGTCbnjA82WFHpCOYu2htjotvp3bTQ9rnd06Q42PR4CJkGmAqM7x9VSjEQfc0GTjkXzfRm1DO9K8FDiJ79ccI7z3p/ohVoriDe2AY7Z7TevGIAezcjQDG+L7vJ0RrkrFxyJ4bvIsa/ePxFevzczeJ0s+PD/e56aHsRUkysJbMsKz99fU9TMaRmmki7wCHBUQrr6cLXj3VkGQm8m+n9NefLo013pFNq4/XbzLuHlfvzGbwVVY+PhVpBpXN72HF/EoI78/mbC953dvuJ7caopVgOpDO08ngQdjvh5mB6pygTKXnmOaLpgVKVIInoHcRI087ds3Q1S3He4Z1ye9iZPXxrBA93L/esl8x83Jtldjd+pk+w331HY+gDd3e3FM1jMxBubRvGd3j/2gq/5x8dcCJcuhUfoXu0GQUtTRZcGqaIeNPD0MzlTVWHs55nNyUU5RgDGgPn88LnX574oz/4MRKSOSXmjOudOO/QZllZnUprgrjI+VJNDD+MQcQ5Hu63rX805N9prqx/U6MlxsQ0RaMmVxPR92FPXZsZ9YgI8zyB2Pu3LDpPrpUUEzBdp4sxmV138IHT44lS2qA55fH+xkYvEGLk+fPnLJeLUXmdFebPnt0aYr1cbBIcHNrh5vaGsq7cPzzSWscP2iZsiKTHt0EpHFM+r2KT3N54dXPDzc0tP/wrv8IPvnfDR8MsJmunqHLJSl4quXRev33P/enMw/lCb51Z4MUu8fLDO+5e7Ti9+RyajhCSMA6m0WCrmUb4kaflxPK8LOOo4Zpj+daoJa1XmjiyC/z7n4N05dF/TsAmvClOrLlyyY/4XSPtQesF1+HVr7zh0xcrn37g+cf/8JG752l8Z0bvEedJwaZnm7187+0av2AFwZWEysietqJ6rJHtob3THEbLHNSkaws3mnTRnz1AatMrtWqbPKNPE2CjE21Fm4z+S64orU18NoOiUZz5zIcvPmQfI45sIIILvJhv8M5cZfGOQsepNZe7myO3xz1S1wENW+HUzSaS3s2IyXl7j2GsqdbblYL9H//un9nE6mZnDaBuukX70rxy1R/2ap/LqHOCjjytUuD9t2/YTJes6NrouQJd8dExHQ+8enlgks+hezqOrpnj/C2/+8Pf4MOPPuJPHv8YQsM1NW0xghZzVt1Hx3/3d/4Oogs//MHf5tVxT7mcED8h3Rw9fR/uk63SZ4/4AOsZrZ1/+4efUMt7/qf//p+yOwTy+Z63Xz0QUzbkXoWQOofQ+Ct//W+i6YbT45/wzTeV1iL+8S0igVKFpha50HulNUPr18uZWtomqbZ1NMywHh5PPD7cMx12zPsDh/0NIsLSLkSxJjWEza3aWayHXQXcyNKbQyRvRfYASmqxWKMwGghqMwqYuGuqU20rrfbxnGpaYu9xKbFPibu7Z1Zsa0eeH9CRoWcFtLDHIeVizJ1sU7gujn/333qNOSLbFKKWTuuei1ocRh+SgVobqo7cVkptOI14Z8ZOcwoGeg1mhhfHmldaF9QFy0lVaCWSksN7R87CZWl0FR6XTrsUSrlQS+HZsyNzciyn99fpRWlnaJCrR1XozYpMXRam6Hl2d2Q3TXx894HpeJ1FlYgKp4eVx8cL36LkVrl/vFimr4yIBIT9bkZbJqbIumbe5csAKQOrON5+/QDfnI0NU6zJsuZdzJCnw+PlkZpXghfm/cy837E/7gx0Knnof42wV0plThPRm4GbiDKnhPeBUkzje3cTAeXmuDOjK4M1AMaU0ltjJTB56wiT2PnnQrhOtcyVHKJ4vPfM0Zg9tRizpTUDS/ow7FIG0yMEcs44sSmrDsZHH2CTqDFdnI9Ms6cqlGZgQ2+del8tK3RM7kB5dnek60QZuaEuxGvEjkgZIK/gojWj2yTQpAJCCJFlzfgty7F1go/UNaO14ENEiPRmWdnRO5RAU4fTZntJURskiOJwJDETHgPwEzHMVLUIiv3OPmMdAOOGtdW20TaFcl5ATB8sYJpK7bjo8RKudYAC65phgKZOYE7KPO1pNRit+GQa+MM8s1Q7n/7S91+Zz8Lpkfv7BRfdADmWcc8rrQM5W152CAa4oiNCqY5zLlJa5XQ+oR2maTIAPgRatwGAdkhRWdeV1ipdK845op9Go2u6fucUccHuxQFg0cxHwoVILdX2folMMZBbZ83NorNqR3tlv4t89skNIQjaHWWF08jG/vr8aPmjPnArkNuKnyZrfsXAgtPjyu1hjwSr41KCeIHO8q/sN37x+P//8XM3i7/6a684nR6tgQkJL57eHWuNLDkQzolc4PXbC+dl5fL+nuPs+OzGQ1u5u92zm16wm2aePYs458h1wWE5N7Vk3j9Ulux4XN/zeF44PV748x+95bIKYZr59MNn/OD7rwjiuH84s9snPnp1GJMuE6Z3BDdF4uTZHbBDMTtKrrjJGxc7eHou0NW45QpR1bQ3s+krpimOYF0lzuZolbohsRoj9GaHrQv4OIFAyaZt8MHQy9a7OQSuQssNnNC9IWpziIT9TOuNmhtTSnhVtFvD7SZ7bjfs+HtpFj7c5YpmGiIY8epoTch0o3Dcn3j45i2f//SB4M3YRRhUSlXypVJ6Q4cxjKgVod6bAxrd+Oq2bxryK0CvY6MZh6CO8Oh5N+O9sCwPxo0XIQTHsiyczic2F0hxQh7h6N4PqkkfbnljCimCmdhsk6CBCJopiLdGvNukybkxKeiNr7/6ylC81q+ObL2bkU4desZtsvD2zRu27L5Ns+i93RrWCNtrehG2Mt8RB9rX0VI4zpHf/Wu/zfc+jITLA643Hi8PlN5xNwFqIMTE6eOZ+9Mja81McyKfVo7HO24/eIU8f87ueKDXgnpBUsDRkWoUX69WgPZhJjBFO7i0gValSTemtEJdKq5ZcLXIcMBzlSY2BQse8uXedBGhUy8ZtOCa5/LmS9Z331Dev+WxwpGA883MIIZx0Dada03xTofVvbECtp9vk7KNXrod1tvjZ3rA68jxKj69XvPt5yrbc+qQ2BqAouoG7fXp920COvSJfDcXc3ux7WXG//eB11/f86d/9AUHXdl9asXwP/k//tCoR0Go2jhXoxnePdvzwasX/KXf+U32L27IGF3YIbg2EPM2Jo2tXTU6gpiLwugk/vZnP7YidB2TUBuNPn1R0aIIVBUfIk3bMDVS1BtAsubMN199NVD6cY+yof1GhY0hMs075mAhzXRvMJUTWN7xG7/6PV6+vONP/7gj3YqIbb8TZVA1lZzPfP7FN7x5dLx6+Qoef4IER6fjkEExtoaobdNLFTqeY6z87g9/nb/z3/6v/Hhd+ZXf+lX+9b/x27x87qkinE9nXv/Jn3L/5sTf/V/+HnvZ8/b+Pcejo7sJT8SL0bbF2KLDOK3SVYjThA+Nulq32LDJf3KRgnJez8yHI9P+yO7mjhgCcnmPrut1OuqcUNeKd8F0aKp0H9A1MM8TZTVdpPiAH/lvqmqUe+/QppSyUGslRtPUN+2sywoYjVBESSmyLOugBGa7b3on7W5YcuNUOoi3IssLpdta7+uKiMenHcqed+/e8s23J9amrPmMqOf2LvB4KcTpht1uYgqZye9oOiHeMaXI4bgzoK1XnIzYjRjxCNPQlZ9PF85LBp+o2rjenTZ8IIYJmRUJkMQMR252O6ZkjXOplcvFZBhtnAPegcPOylbM82DNZZwjSnCJNDniFOgdfIObeeKzD5/hnZCXhcvjij8mylppTUlTYJoiOS/0puzmHdNsuZpiQ2J6N0ro+/sTTiLrulJK4bKcWXLhi7cHWllpdeXu+R0vXjzn408+NBZDsWYmryahKbkaSDrOTJU+mCzC6bSgOKbdwfY7LagK9+9PLDlbPJBEalPWeqZrI0kgOsccI4I5VVqkFOSiOK9MyRgy3onVIli+cRp5deYGbo3oPE+E2HHbftzacCZ3Yx9VJFrkgbpOjObMnPC8eP7MJDzVzNxaadzfP7Jmy8S8nFebuDkDxXpnAIfjTHZ+sMPK0MxZeaDdjHfcaLBhq2csAkZVcT0izlF7o9ZC8xZD1LoZ+REhyHAt7da8pBQJTsgahimU0LI1VpN3Bqp1Y4pZLmS4Or33rlTMRbU2G0bYQMByS/W6D9s+FrzDNKudphU/GagstZiLuZusEnLesrG1IlhWpSRn4GEzsDB3a9xbMS2kqLBeiplBpTb0yubN0FqlNBt8LOcL2hqfffYJzgnLcjIjqWIuvmEXSHMwEKQFgovk3GitXM8Hk2FYVmQctOFcO3XQwRVjZtQOa67UXlhKxflAd5Y9jBP0vQEwwU1450A62guTT6yXytoKH376jJ1zRDlQtbHoSutKWUF6ozcDQYIPeF1Q93O3JL94/L/8+LmvzPndiXXNJgxPRmcTMX1N9IGb2dGiMA93sPMlEUTYTx4ne1xK7NLMnCL7ozfheU2WaaZKLkIvFa+Nw7zndvY8JuGLz7/l1Bvv3q0IhX2C3RSZoh30+XTCDRqpSwwufUJiIjKZFiUKs0Q0Kn7yTFPi0gt02zBNc9fNrbNa0VWpeGdTnXzKTxS42g3pqo3iioHZ1TZu23yMotq005qwaIWq1GxTRLVANZo4ow+MyUSufaCfo5jtDqU9IYkKrsmgQQpkm5KAR7FxP4NvLwJ+mrj0SlG5mmc0ge7MLMCpoabKU1G9UbTsD0+Tmi3QXqSbpEqN4hEGcl5ypXlnWXfjrwu28TncoPk+tQ3iZDhQ2jTlqTG01+u9U3IedvNtNHOOEBIuCKZDXX+GVlZbvVJJZUytcl7te7nSKE1wv2kyRSyzD30yUbEsxdGoqJXh9t106wWc8HBZ+em3b/lHf/Ajvvg2Ma8rUSCXhaadeUokF5imhoqytGjGMj0aXbQZtUp0GNM0AzlsmqzbwMiui7Nr5VCoOpqq7X0NzQIO2QUzIgieP58zvXZ+LR/GFXZo9KR6xPWKTDtCnMEJXh1Lb0hLRA1UvdgEfUzCZUh3r/PlcZja8T9oVd5E+FoH4itPy4jr7z01/4Ms+p1f+E5LqVvbub0C18bPsi37IBA+sYvkO/8ZldTPPudYc5vrKmP2uJ9mdtFMgv7D/7GaV0UXmpq1u9Fw7OneffOWXYo0AXEByXl8tzC8bRA1bRF1y9gc76mNKarI0BJi2VzDXGJkYNjk2G8j03GFR/M5ZqUgjrIUvvnyy+uUvxv/+PpdP/3T9FA02OjIEHFt5TjfsZ8nUoy43hg4+9PlEIb+qfPtV9/w5k1Bv/8BriuusLPrNQAAIABJREFUN7pP0G0/6JgmVjEDHucc6hpeMh8eJv7Zi/+U2jr/3m/+Hh+9PHCcbIKWD44P/Geczpmbrx94+9MLp3ViN0+4VqFWavK4ZOCFjFwQ1YS5BQbEd0SX8XkrvQttAF8xBqaYmEJEMJ15FEcLgd7sO3POMSVH/840whqcTq8GvlwNP8Y+uukXtVvW4DVj0I09XT1pFsAjoaAYUyUM1sb1sAAkBhIg3uhhpRWTwCoDSMyAw2VlQXhfO18ulVytuJSunN5Xains2kptnWnq/PT+Qi6mfXTecXOzR7UxJzOGidGPCRj48X6WdWFdK13MadVMzrC4hLUiLjDNjpCE3XD3nuOEc45dSgB0NU1TV6U2o2GnZDTq4AOtjolYb8QUSbESlkCMntah5LHWRyMkIoR9NFfG8RoiRhWe4myNhY/W8DSjDotaYxS98Or5M0JMPD4+0ruSy47aGs9egtNGzwvHmz03N0cOxx2X5YKQEA3jNrTNrGQzCpLhpm5GHUq5MxlAnCbTuQ6H7fNtZM2VXBsSLHJhLQu9N9y2J2p/Ol/GemrFDOu6WPMSg8eL/W7vlVKf9k4/mAylFFpvJO8puRiI7cXoo4OVsq23lgtd6hMzCaEN+2Q3ZCghCjIkOIdDetqjt16wmcRk8FbtfW7O46qos3vB9nqLk+rakTHZnaYdFq9h6845TIIzKPZejaCrwVlkDqa7N7d5ux+rjuZj5P45oG5C+dHcOm86vO081Y03azzz8Z2OCbt3bK6uqhtoHGw/9zqo6uO7HKClSVTEnPG92DoYrrJFOl6NPh/VEVRoKHXsOehgEHXFB2sWTRdqCgWVRnCBlHb03rgU0z0vq32vazbGzfL+wnRJbGaB3o3zt1fbI8d1FOlX53kEUrT3vh2iJvsRojNm0DwJdXhitN1kbtHDc2LBooBqqUAzHWxplNr44t2ZFDq3yRsjZtRiTsxAir5Fs3UQ85j/xeMv5uPnbhb/ye9/yWVZ8T5enS9jMC2gjIZHEMKEFbZqh/apCj7ApJWeT1zEcf/gkKDc7A8IK6qNUirv7s+8e3fmUh2XNXP/eOHPvn3k4X7h/X3GfRn586/e8uw48YPvPzfaQh1hoJMjuALa2E8zU0o8uzkyTR4vHT8ylZwTYvTsdsnoGmKREOt5IfjI7UcH6lrIWFyBB9JhZzQaOrV0fIqo81xyHSHgFSfmWBcItNpp3aidpSo+BXwyvaNDR7bZ4I+L4HY71DkmP4rEoXncpmqmnXqihopzSO1GLfACYo5qM4FerfA4HAOHO0f5qSMCqqZRxCXc4LXXoQ8RtlBlvTqIqlqR670Vz9aYbdTPoeEZp8eaC5tJjqqNAObpwOGwt0nDQNFVzRlMnIyN1uG8os1oXVvxsk0GN/OZLTJBdcUTrwX/tYmgX6ewiBXY6o1CAaP4G/borhvNDGyfdH0LEx5GA6pGC3WWEbYJ+e37L6a/Ac658JM//zGn15F99OxTYkpGXbx4cF7hdLH3ILA/7LnkTiBSmtAeTrQkSClIh+4FTQEI1GFs87gW2nemTqJmEy9OMGdMZRcnJJn7nhMhCfwXn/4hqPLf/NFvmb7R27Wb9olUQGdFdiBhh5PA5O948eHnfPbpj9F/8Q95f/J8/2BOqudB+xU/qFwVa66lUeWCDGfUOdh1KHlovvqTa+l3ziS2WZj3Y6A2cj115DPKGA247fqII4i50F61steVZ457Im4UdsOhL4bhgNfRPu4jNbR7azIvpfHBiyN7D+tjZimWz5Ym084EEZxL7J0xKc7nM9Mu4YJDsYgCy7lQWKtRs7yj0VBn97hzpo8pvY/o0c7f/fwzHMLf+qWfmFHOADs2+yXNo9gBWltwKNa3ezPwcMKldn789RdYq2luc4KY1NbZeu21Us8XtAB+Bs6odHBmsjDHzm9871M+/+gTfvz5Twwp3gx4nKeJ6abm4Pn8z/6IP/j9z/nVX/5VPk0TUhoyzeDrlcbeuhqGOMAa5x20ykE7uv8ML8Lf+MGPoWSoxdbR7PilX/4ABH73tz0/+fKet+fCs33EXy6oc2iwZtF3MZdYJ3iZjXarG90/mZ7JWYPbmnKzn8ApKc3McyKlQO0WB9AH+0B7v7ptllpx1dgfNikxAwbvZ9xkuYEiYgVgN5OIba+qCuK8ZcXVMgAyE6hNKYKLti7FFn0de5tptcCHQOwGNKxrodTGdJgBT80YMwDY3b5kfrnj+PFCrebAiFYm55G+okumVaXWjnOZXDqXpZiLcR45nGlGu3K5NKOJOaH1FfGYjsvvzY0xzXiFXgv18YGGktczlwukmDjvzVFY+wlxtgc4gd3Oc7jZk8uF+/sHahPU7cmlUtUmNrRMFHjx7MCSzRQsOjNyup2NklkMcyE3M/pIPnF7nIheyXUBInOYTD/Z1SI/1oUgnfuLlaPew/G4pwF5yfRqmsKO+S8E55mC583jI+7LB3ZzotTCcT+PwtzoxIfj/kpl780YQ7VZ7ROnSPDKUdTqggEs3BxnDr2TSyHGMFgZFuvknRv6czdo0wbK+G71QUOoW52A4H2g0sceabWVU0/wNuGvtY091hGc4r3pGts4y+l1GG+5AT63MUUsLFs+7sgT9s5C1J330Btp0IRFddAZhVomA5ScUFu3fOkQaP2Jsg2ONsDi2gZAO87tzd21bkZ0veNioBUD6o2ab3T4Xi2PMTg/6OJGt/ZqE9RWK8E7PLDWtsHf9pw63MyHXMH2f7EJrLbra/c+dP39qVFEsZxmAbxRpHu1n3dsGGDN/vYrid4dpRk1U9ti39eoNWI39hox0rqx2TamUG15lDQGQ82zjLXikIPt8qVaTmGc9qYfVI/0RmmNfKn0jjnA906cjKpai+ml7Z/WFG9O8GkKBO/xT9MBa+I2Nl10lGJU1/08I9qYgyNIMLMy56k1Ubt5jOx3wlqUH335htYaKa0DoNfhdQDQeHY8mNmaV1rp13X3i8dfvMfP3SyecLy7rEivJLFYAHO9HMYetaEqw8imEJxnTpHjIeKkcbNLxBAIzhvlcBLmcKDmSik2ql6ycKnC568v3D9ceP944ZQN4djvdoQ0EdMM4jktQGuoRKbJMeHxsuIxFKiWjraF3T5ZmDxi4/la0Vb59Puf4oKjaGXNmbIuzN7z0auPTFTOaLBKZnd7wHsz9im9IyHQCkjOBG9mA9Cvjp6tDwqPd3SnVDc0Kx1kTI9EHbU2mhPTY0WPi9Gs2ps1ZYRh2iAwuB02wXAB3DhOXLfGAYfIcLESxVO5PYxg4W6ZYa4P97JeRtg6WINonHwLXN82D7n+TMcuanoPQ7Zq7VjML1eUcit+Ba6xGZazOA4Lxmbc+jADkcHAk5+ZMFoIsVXMIShrM5S7ZzUh+giojzGMSeRoMgTT9I0JrRPTbmyTkn7NZxwTSMYWqVybre1zO3UYrGn0MAmCc9BK4/Zw5OMPXvA7v/IBd1FhgjkmdnOC4FhnTwbyUjjfP4Ka8ZD6xi4I+ynhxKNrpwWG0x8mAuepeDidTjbhGqYCMUykyVth1QpS26AGGYKKKpxAc7Yp1vt7UIheICZ6XagjgNw5wfcJxLF/YaL1/XFP8o6ldObdhKOxPmRqU1wc07DNBU8dqsXWLdaEP80btxWk12tuTb1FkuDsELHGXmxys/1dsYN5o5huk8jamxlJjfsS9KofUjVUtGvHi+l3ai3WKDIA8FGYIGay01rn8OyGihl/5CbskqMnR0BIIeJjRFzjZp45PD/w7OUdXqC3cgU9tEGvHTz4aDTl7d6yNTyanG6f9b/+Z38ZEeHf+cFXBtB0/Q62OgrBLduzDbt/FZw0pDUUoXtPFSWKo47MVXOcUWSYY7XWkaXaFDvM9H4xUGnQisLs+fTDD/nw1Qf8yeefM4mOie3wZxxPuZs9y/LAl2/e8O1p5eMPZvzjaoWfMz1QLeN+m01f1en4ZmZo18gOQB/O10KSUfj2JaNLZp4nfvD9O5gTuhb6t+/w846ezEmaNtaEDqnooIwqw5ofMcMnD75VUoqUlm0OPQXC7oDvI2t1nAFVLTdNxQp4l2zVmVNvA+8G3crMhQTGPliva1PEKFxmKGLASpSN2lYMBAuDXqaCVjNtM+pdw3ujGJ9bZZt4N+1M0Vs278jQTGni5X7Hy+d7fuWjRimd+9MZT+eDZ0fqsnB+/8j5Unl8yNx+sKPrFvfQ6d1Rc8dH98SkEUdIARfMJChOeyCyirmP+jBT1zPt8R1JHHldWS8V8ZG4m1lPF5zaVKiU1YrEmEj7PefzA+/2idYDlxp4WBfePlxsx82BIKaLLbmxlkILyjwFWh1GK06ovXN//8iyZHbTgZozzlVyyaT5lnMv7A8JdUKuhbJc8Np5fxHQgtB5+/Ydp1wI4ilL4XGpZIX3i4J6drs9jPbss49eEJ3j7mgGUq/fvmNZC8ebnQGzYnFf67Li3Mx+n4jJNHzPDnHQli+mV44e7Y28FmJwV2AaESY/2XTzeMQH2zsUJXQYqJJ5AAy5zDQlNDk2Gr5Xh/SAFzMEzFWtcaugKRFGc7quq4Ee1w3ZzGI8pn3TvtUNln2srQ+TGmNAaGmsvUN0BmCrvU4Su6+3ydFmWdPpI85kMzIzaM45samcnTwsS6Zpv9Jka7Fw+VyVUtug4Q9dvHMWS5Y8TpQpGAeiNiNstHGuMMBuVaA/RUuIG1OzbjR1a+bNe2BjHXUFrf0KlNttbp4OwXvM/X2bBFtTvun2EUWafWi7ryree2pVnBvMi95Nw4wMZ/vBZBJz9y51ODKPCBcn5pavoxpwCHOItG4Dgq6dUtSAQucotVFb47JYjExW29PW1ii5cTpZbEUdDAgnpiG2iC291l5dlYb5TOxTNFA0CA1Ba+X5cWYOkeN+IgaH99Huuyo0CZQG37y553RWHi9GN1/yivfCYT+BVnzck6IQOpSl8uR08IvHX7THz90s/hu//QrnPiY4R/A2ag+umJYLoRez6Z7CAfEORbjkyldfPnA+FVoX0jwRoqP1jATP519/g4gyhxHsGxwfvTjw6cd3hOgJzqZ0r9+953TKHA5H9tNEa42iwxp4cO0Fz6sX38OJFS5ePGmOuAC9V/JamI47glWLaC4WUtoix5R49BM5r/zzP/0Jh/3Efj8DZgH9+e9/wWVZeTivJgwfM5Ob3cyUIsf9TBiNynI+4bDmNsbI/ePJqJ8hwKDGxBCIztN6salYCDbh7IaglWL01mm22IkYHTc3O1KK5lrmHSkYLaLkFdVKmndWfIrn2YfPicfIs9sDU3ScHs2QwwTWeUzSbGLZ6VA7Lz54iQi8fffW7MO95V9N0zQyjWBZCujmhOlR9VdevPMBJxYk60SopZDX5Yo0bjTClCK9P7mqoZjDa+9mUsD2/FjjuYnRxeyzY5ywo3W4xPU+KIajwf7Oa9lzAJj9tRsUkevIaztQxu/reGYZkzMnWAi0bm1QwknlxatXHG5u+Cd/9FOKQhdlColyfmRdV1QdPiaO+5mbvcOLcrxd0doJofHRpx/x8Q9u6C9v6XREjYKj7UJvlWU/cVkL7ZOPieI4iiOKEGUgnXTWnmjiKPFAq42EEPxoaOOXIMLy/BUCFGcHVVgndAZ8QjVYaHNq1H/xj/n9//P3+Ht//5/x6598xJs3F96fV+bk+PjjF6R5x/vzG2KeORyPhOiJk0Pbgdor33x9QbHMPpv2/D/3Dxl6NgMVuLJE7XDSjZdlh/S4MN5HYpzw0ZD4OI+9prXr9e3NzLFKMfpVCLCumx24ARal2PqKmMi/lcqzG89/8J/8Z+yPK4f0Lf/5D34PFc9/9cc/JOBJI7ybvpoZgXjSvEf381h7GcpYRPtByXKRzUzCcgxtiuGTOdzhxPI6Vak+ohLHge2Go2anBYcfTS5xoqKIBAOv6gXE0990qJXW87UY3Jz/WhkOlE44tcLnDw8c7gpJMq57XIu4HOCF4+Pf/B6f/uT7yD/+RzgJtLoYHYt6ncJ6L0gVvvzia370pz/mr37vSHs8m/PuZpgwiqy+dXLKQLANCNso6D66633XByjlQoTbZBOP+5X+7owIhGk2yq6qNeeB4S5rlLGmnZJXWq3XzM7erAl0znFqyuvXb7i9e0HQCPWe3hspmb59Y9z3apEhDqHmMsCVSHKeIFasAled9KZZlzFpjCFydGbiVWu7UlK9czA1VKBtzsgNcitIDExp4pASNReLexp0Ps3NCvZLoT4sJBn5db3zB//X7/P67T0XIlWVr7/5GiExJWWadzgsVijGRv1psuw6jI522M/EFMlLtqnDmGT2boPeXJW3DxfOy0IIypzgMM0453n+Ys+z5wfOD0Z3Fefw6Wy1gAj1fB4AipCmjuaMl8AHzz80wzl/IYUDh52nq+OUK5daOC/VGunWjU7oHF/f3xOnGZcbLVc+eDYZaEqySAA1hocTx855lnbBxcCLmyPPpg+oTfnrHz0zWlyurKvpwWs1WUnrxaYluxv7HrQxJaPBBtcGQGzAqPhP8UG4f/9I10AtFfF2bS+XdUxfuhmWDEqlzkfEOdZloaly2O047A/EmGi9UGrmki325lQyrhnQ1hSKCF08WjJBKinOvHt3z7v7nxB3E7VbM2WyG6PP65js7ObJogq0s9/P5tIePT5GvFrTKVKZ92ZCt+RsDvAoXU3T70fMVel13Psmq2lijeFG0T/L0JwWY/SEEMmrTSvrlc7ZCAJOzbmV4NkyeedkJnetVnMKnQxQS7GZeZY4cjZdr4hDtbEsC60pS7iQYqTWQoiJKSXqmAyGjWUywNZSbC/IJV8ppn3QZEOcDMRWxTtHG+wbpV3PKNc70KA1Nmdt78wIR1FjaRnKTmkXfLLhSW+Z3c60pXnsKcEHO7u0Imq5xdtQLQ1NpfMy6p/RCFczBrxSYlGcmOdDqRXtlnk8hcDOB25SQHScp4DIRPAeF+0a9r6dmeaSjwqldAOUuvk9nJYLtXe6d5zPQimNdVFciPz49YWmC+7/Zu9NniTJs/u+z/tt7h4RuVRVV3dP9yw9CwYQAYkEBNB4kCiJoBmNN+mAo0wH3HTWVaaT/gfJZDxJOstEHWmiThQpAw00ggaJmMEAA8zaS22ZGRHu/lueDu/nkdVj0qVPfegwm+mqyszICA/35+9933fxx84eMsprdI0UbRn07vMRbQPTtOPh4czr1yYTG6bAmhV8ZVmV+7mCL4zDV9EZX9bHFx4Wf/Cnv+zOjDAlo53sxokYZ0IwB8Cmwl15MGGwmH4wRpj2Fm/hEyANXRttbQhW0GpHzZp3RrPbbIZbpmRHK3aTF1HWvNBq5XpvOUrUjPNGCXlyk8xFsDW8c+z2EyF5QrAtHoMnjYkxjZznE6WBxJGmwvHhRFkL+5QIo8NkMQ1XGsUF5iVzPi627g+R4BzTzWjIVx+eWy3ks+lnPJbN824zWoL3vm8S2oW6qyZAIAbbCBaMLlCKbUd9jGirtFqI0TH0bRoi3Q3ZsTRDEZMmyIZ0DeVMffWGP//zV6zFEcdgyOFajcrYHQOtdnjwhkJab9Zpl9BpgWq8d3F4Xy6ZhHSUXzbr7os2cPtfP+FC4OJKqXpxIXNd79iaUVClb4QQc5F0IpdYC+1uaJs0a8ukgr55clvukz2v94aeo3bjcr5n8vWtK52qYpQ2MJe87jy5vXDtmXN9APXNtGM+BP7qpz/nL6uyT5HJcgeIITKfzBTg6ubAMDXmtvL6XqEJ/sWJmlfuHu559pefIRr46IOnTNHCuYNzhGC0vp98fOT1g2VpxgBjyARp7ELA4ykVPr6bebMsyHQgOsfV4BmjZxw9x+dHVJUf/Ot/S0yep/sdrTUG3yzDMwzENOBa47Rknn14y/MPnvG9X/8m//rf/BUIPJwW1kXJeUHcEdVs+iwNyKL4UyP6PSq2xVmLcDyebdu9IbR6mccfH28hvoi+db5s28Vt27h9nkYLbZo5nSp0uruT7cbaB8vo2aI2bFPZaKs587bPaWNtE73mmf/hv/9H7MbKBzdnfvFfXlFU+J//ux+wCwPXgwVc146Crud7vvb8Gf/Bf/x7vPvhc0rNSDG9jXTabS2gudB6MyhaaFpNZysJxCFb8PbD0QZC58wYhs1gJlnnWBWcolSjOIkidQWJ9hzFUPzmTc1Yq+l6+tGl9za8ep1Zv+b7IK99SrdrVlwwlgLGLKgbyNLNeLS1yzW4ns8c749ovTZGRy4gkEIgef/4mfcsztYBgLekyliAPZ3L1UE9iulYOm3ZbbpBLY9OSfQmrlqjRDGS8kbdbRuVDdsR1U5PE63MxzszWGl7Wm3Mx2bxAN4APBt0G85HUt/8ONcpoj6aI6OIhRwol62x1UftTWijqlHOYqfTWy/VwZ1eT+u6GHipdt64Vi3GaF2ZTzOCuZOupRAdtJZ5OD3gY2S/PxAOI/U0c39vIdvjNGHsjMBa4HQ+USqEQTifMk4Lh0NimibOa+Hu4ch8XhhT4snTG1Kyjeh6zngf+OYHe0pbeXL9lBAspul4XjidM1SYQiTjKa1w9+aeWho5N9ZaWGul1cZSKj4m8loZnWe3HzhMkfNp5nDl2E17wBr46BNehLWsrGU1cMcHxJk7pfOOCQjek1UZezTE2pTShPO5DznBs6yNX5yONqTHbJTTVTmeF3BGZx1S4HAYcSK8fPUKFUhDZDmfUVV240BtC9OYEAmdBtkYYqQ1x5QcIXmG5FmXiAtCXoxRFYbYgUihFUXbwUCRptTS9bYaaOpo7gbpx9G7hq8rTSsFGMKeitFhtcFuuOb5s6kDosZWaa0yTYPVPPptzUEQYxANg1Gt12XF+0BrmVXMsd3SQz1FK65Vaq5oawQfKNhWtGqjtmpZwWLmMrSN+QGIOczihFqq5R461zd8dn9ttVp/1fWwPUzk0hdsxnJNe3awCGmMlx5iSAZUiHSq974zZ/rPt1L6e++7PuVisLPRXodk0WYpJmN7dZMcYzlV85AohWVtb8V6dbaTWJSL9KiNzTDP9axeq40GXmwRSk6EFEKPPrO6FKLlChpDzPKyN4dVM0IzpoH1OVZXSjWHbDMGjCjaNbnGRnDem5FWa2SbZfsm1Hiy5mWx5SuaHKqp42JM2LemCAYCONNeqyhXhxHnbLFR9xZH1qS7CJeEamMudhy1+cs2dZ4rJzVHAW3K0t26VYEC57KaOVKCkitlqcQhouWtG8RXjy/V4wsPi88OO87rA2uBT+6E0hY+/fQF9w9Hlly4ubnm+Xu3fOuJp1ThzYMyL5njvABdZ9BsCJrGieRNiF4aFBdRL8TBMSWPd8rpnM1NTAutenbTNXI8Eyh4ET55czKzFXeilkCtiSnYULDf7cnLwjKfGXoIK6qEXljQRhhTp1JYQZxPZ5ZlZh8S0xCZUsIHRxw8afD4EBh3k20v9B5Q7n4qXRdgsQy7aSQNkVIrczEdXxwSs5oTlqqShokgZtzy8OoOVLm5umEYR84oIY40X82yPVvo+TgEbp/fMA0DNc9UhClaq3TVi1Vzlp8EyvD0lhImUkpoPuNCxEvEi6FOzjujz1VLtvTiKDnjgiPE0HN1DNVbl5V2nq3AaP8Z1UtRBS4UQmvijUrhqxX9pl0z0L+3dMqFNvuz0ZdtiFxXo0huw/WyrlhR7XoDNVv6zWDCCqFpH2svft519Ky1izZJGrTmLnmLmzHOptXYcqxU5bKh8SGAVmrL9hqah2Z0nCgru93Ab373m1wfEsELzSvHZYbm2MWBNc8s2YKmqcVCfIfI+7fP+Oijb/A7f/dv8u433kXaTDvbMdmMeZ59v1yom6BoyRaGvGZrkMXxXe9ptVFPZ4KAuAoeXApcXZ2gwfe+/ZysRm9yzZNPd4g2pgBTFFQC0/XE4fYDxvQLXPa8efOSp89G/vrn5jr43Am6nmAUkkTyOdMoiBTSMOFc5eYw4tzKm9OJyStzlb7JfuuhmzEPvSHw0B0XzdFW+2JYu8arEUNkvxvM8AEAZ26YzSjP9lx2Y/dA02oOtkpHgi3/b3NcNZ2KBY3H5PjTf/XP2O0H/mqaePHqu+Rc+N/+8R9TRNmPMCXQweIs3kkjf+d3fwt/vKP99IH8cGeaT2caNnvW7mTapGtkTa8bkgc9gTbKuiIizK/fmK4SOx9rafgYmN1CaEJQIcZolN0wmI5MMy4OUIO53VXMAMmZi6E4sfPfmRlTAz75+DPWbzyhygMqRkOvWkjLSwanTGHEqSKu4kT7Ne621g5VG2A+/sXP+OEPf0D7B9+gSiUmh6iD1WJb7AjES611mx0sb7ncttIpa9agbLr2GsTMYSrgrVHKYtdvxPSPTSBOnRlg1oFGKRXbdhjPTC+/s9aZ3bMbEEcaRlIcaNlon7jH19Vq7SkojnKaaWULRTdKclN7xS4F00Ut2czUunuy84p3dOMNe5tb+xO7M+pGwfdxIsUJVaOE5VI4TAd0L6Rrq6s1r6RWOd6/wfuBm/1IrY1zyQwxMHhHW2ZKFYY0cX0z8MMf/5h1hevbK3a7wHpS3n8vcporp+ORnFcO+8HcSw8HvBN2Y+Bw2NlZ+8x3QKai7YpPX35GxTGfV5wKyQdO+cxaC0+uD9wMe25uJmotpBDw3vHOs6fEGExvOQ08PJw4n84IwqvXrzmeA7gDS5lx2pjSjnyGT4/3toFXx/F4xEu0prgfo2WdqaWivnA7TlwfJsYx8ObNkZv9U6bDwDBNHVAsRgv10nXuSgqBeV148+qeaRw536+sa0adcrje8Zc/+ZTzcSbnxm/8+rdY84y4xajqq7kdx2T+Asv5SEyR3W6HF2F/CByuJrQJx7uFXFZ2u70BL90gS1sl19KHrgDiiTJzPj8wpoCPiblBaRZFJlGQap+HIpS6kKIj9PgNNw3kllGp5lugnVasyipWE0/Hl4iCd4HMYudkiCCO+36vSQEzzxkGFGGtBZdXRGFMCXG+D5I9R/YtBkgrkLX0ei6X+ptGPr9EAAAgAElEQVTzihlPCc4bEFVKNhppN9GJKQK29dukIuYybm6827WzgVTibWDzztzIa80oEL3lTgsCrfahyuiwYxJUfb9HNKI31g0aKLXY4CRmDOjEQTRZTc6ZzQPYfKis/q2lYLFdmfxwMif33kd5Z0yvoP6yQUxDpLTCsi4XN/ucF4zeb87r0pkmznlGscHPXHwbotkGf8DufNaneHH4ZFmL61rsvQ62edWmFq0k9l5QLDdWer/TavdRc2jPEzcAq/YzzQbYc6m0tpBzxfvuj9HlHb73HIfo+pbUWC9xuO6simJ9inN4v8c4Gwb1PZwWTuczSw42bAf45Yt7cn7DV48v5+MLD4u3z/ekszloXjdPrpZvt3/YcTobB/00Z+7O1nSncWTcDTxxe6DhpPZCAmMa8cHhsaFpLoXSGvO84qh4iaw6o8vCp6+OrAV8nBk9PL0amMZEihYrkHyiiaM5SN6oioNrpMEzRaOCem+xDHGQC0fbqJXG8S61MrqRugu2LXWeXYq2jQoCWokpkWJvELr7aRi6XgrjoocgZnJCoLVoRS56Cnpx4QzRhOkqME5m1hJHh09KyI0gRuHwNLbsHZoFzmZdKGumAoHE5islzuHVnFwlONZT4W6+M9oo2yC0beKUUi0YXTdjDOmU1GbUzkcKp3JZRiC9ue0l+SJMNsm4bfv6lqh/xfSEj46liBXODV28/O72qBUAOl2im3+8/Rz9Z7g8/zZQ2et4e3tkL78PKN1cZHNfe/uhv/Ln7f1q3cK3O3rbN12qSmnKORd+9slrPn0lXO0Si2ay2rl7iAXVwlKyDeEIks0EadiPvL6buX/xmie3E14ydek6TxF728tsuoLQdX4bza7HvIBAqAa4BHutfouN0Nibcce4OzC0CvOCC57AjtoSKQ24OKCaicHTfGNpM+flnt00sksjzs84cYwp4hPM1QY17wpiEwxDcDT14Bsxmmtr6cd307/96kPe+h/y+Q9A3lqMoZBSYDcmarVtIA5ya1Btm7NFnKh2EySF5vQRCdbW2Z/dBU638x1yE55f73jn6cjVYeQvBs8QHX/r++9TRRmiNRjHOkODpz7w3ju3jIcD6ithOiAh2muuRlmuTXDNTDBsTdZNUaIZWamI6VNVCUO0BrdTofAWuZNI5n6r9KB5zP34cnICMSIx2QCtj8BJ98XC9+8VUdp6RusTazIERDwNDyXz3rMnvP/+u2bI0K9B0/l2IEi36045PRy5e/UGmiCtwmrUJRNKFaAZy0A8iNpmUbf/bRf25crs/y50u0OrP1XN8EigiIWLN4RQ7dyuG41cN8OtbsqwsRzoJj8Cqh5HYskV50y3uzEkTFu9XfMdSGhC85EmnuYczXuk2XmEQuwWlttwuT2BOfT23725PG/v0dBM+0BE8L1BFnH44JEhdNMxo7NqU5oD1YrooT+r3QnGlpmSuUj66E1njiMNntfXB0p1pL01zOucefn6RKmV08NCazMNYUiRtVSCd7x6M3P3sHZmRyAmYRgC0pTg7dwcp5HoHSkEVB1zLuSm1PPCeV5Y1pXdOHZq75vOQBbG3URZFmpdLQMwem7TAfE7cgbRRvIDXDn2J6M6Bh9YFjOaytUa21obx/NsAfVNEQx4cYNn2I34BMdl5pOf3ONFuL0acIvj5evc5TKBFCI409jlrJyXlWVdGcbI3f3CmitxSOz2Hq2F4Iyl1JowO6VWM3GpdQFvDfJ5WQiSUCkoxiKYjzNNSzeXEXJeOtvGzm0nWGxUq7hkJmsqPe+wYSZV64qjsyA6GBajXDY0iqOosXEajtDZ7149WuqF3dNNsyllZckLTe18od8XVBvUQoixa3K3TblRbKPadt0uU9P40TdjiBAHo2maZMOkD65vB9c1A1CbDTvnOWNG845aC3Je8Z22baZUDu8tX7h26npXmtv11CNFNmOW2kGo1jWPbhuqyqZ/0z6ivC1HeewZuj/0pfcI0fo0kRXvU39+uFio9dbENMbN/CW6GZjh4NafbUZquVRYLF6l1UqIrvcv3RhQtrLYLr9LpHUzPrvxiXNsR6H1z6Z/5dEkSLa7qKdp7YNb3xz3Xo7W5Tpa7TPHPrMNUgPLAmdzaAYDy9iMK821lQ5c16r9XNAOLoHgzHyn52xC607yxT43K8wEp+zGwJiGToOPpOippfKDv37JV48v3+OLbxbfO3BdE97bBWYV0GIiWm3M88yaK8kHasukwRCWaRyxU8roj0YJtOeUwQq05kLNjfu7zFoUwXN888CbN0faDz7l55+85OH1meHqwO1wxfUu8u77t4zDQHKNMBgnOqWJmrOh5N62ei7YJsI5o6vYskYpPb+KaiYNZtkNh+uDYUvedYfz1hEiE/Q6wQKEO9VSxNwXcabTE+/wPTtm06+44LuxjBpC48wZdX+wC3vcTyDCrsXO0EpW8kQuW7zoBWjmvtYriHZapapRuRyWe/Qnf/Ij/sUf/Tk/+vELPJHqVrrWvG/0tlB7c7cS1xvL1gzFpZvMsL1HK5y1F07f+fNgBWor2K1yOSZbPwh9+NK+xdN+TJy7IHsNo3Bctn5Nqapmfd3RNrbPBHsPrjsu2g2hPZrWXIZH6SihvZbW+qDZzJp8G4Afy2cfYrYf7++1yeP79EHIpZBS4vqw451ne+b5xDR69GzOhyk6iyXJA3FwHN69ZRpGag9AfvLslt1uR14r+c2Z5mZQM4mpWIPUSqEJOOLlM0GcOQNiw7TLNmAkDwUhq0er5Ynm0hCnLEuxDVVtED3jzY6yZHN4jImCNag6n6j5gSz3pCExDnvefepY1sa5VsbJMb9qnN3Css7ghJAcvp45H1f214EUlOgc56L9HHgcEsQWpr3R387D7eudfthPmmbALoJwcxh57/k1enqNAw77nVEOiwUXB2+NnA3USllrD3Y2LaQTTxrC5fxYl7U3Wonz6YHf//u/x699+wlPrxx/+mzBieO/+M9+B+88SaKFhJfFtsyr8v7Xv8bu+gpJgtdrGwQAOgWSko1+NVtkS6uKa94aSy+Id5dzPMQeNVC7uUGwGjL0/DCcs2vfrjhcq0hWLORuQOJkDRxmSe+w+tINQ3GqeJT1dE+pHokT0iq+eggDcpr59V/7Pq9PMI475uP9pW6JNnO0FqvFAA8PJ16/urOYBYG2rDYP0XDyaJ4gtO5A81gA/t7Xf2bXL/2f4WLKs7kk+m2g7zUntNJps9j761E+9g/9sG/xJpdC02ljHWBq1WiCjsIYrU1sWsztWFs3yNmaQkVdpIoy54KWSgxWi0SV4ozR4tUibkoxSuxG7qr0euy622YzGnvVhnamRMxdJygYndV7lpIfi6baXOnUkcYBVFgfTjiUq8Hz89b47GHmk1cLXhzBN/wpMA47nAQKlVxWgqucj45SlHltrGvmeH6FA9Jo24LjqXA6L7YN10Zwwu2VOcdO4568rEzTFjHgiTGZbqx090wsH6/VyjSOpNhpy2oB7sH5HsZu9XUYR2J4TQiwi57Fz+x2e26uDgaeROGdpyPH85GqyloqFgt1TVHYyQAUqmayNtx7nt2ozHPlxWcZL453no1UhM9OlcFDCuClwQLvvfeUVoQXb04U51juV07nOw77Pft95Opq4OoqkuJEdDagrbWxVMiL0X6dd+Y3ECOt0PWPdgaNoyOGHbUVWmmUbBswcXYPqwLaNa3HIsQUuZtn03MNA9KU1w/3ZkyFJ0Zv4NEYTVe6ZEp9YM1GT61NCKPrAKjFVtXV7pHn+WxzYTQ/AC8mmwkOUjDq4DEvaCnkJaPVPrPNMMqyio3tE7csSOcIPW6hdQq5iCNFi+dIySiKBRs8olNopVN6bVCKIZFLYRgSoQaW1SLJjHVvLIsNMNS+dWytm8rUTWO7eRRsvYcBibUZ1XfzMXBipkKtVpzf3GgLm2Ggk80kzSJGcjemiX0hIE4opRKDMAShNLHrzPU4Du1xKs3uM7na8Fqbkjd3ePHdd8fjXOggwowP1tsYdbcDUO6xZ9r6nbcfmwGN1aqGug2MB9RdBmwDGDxF6O60mJM7Sl6r5dVujKVe/2wg75teFQT7TDego/a+w296UPuUO0inPULDarOqgwq5mvxjAxGkNKLzSLREAucCT/d2d/tqWPxyPr7wsOgEhgFDrr01++NosQQpRHbDFd7ZoDPnM6f11OkLFSGwnB5tyXtJQp2iUhlcYhw8417M3a/B4Tpxdb3jXh1hUF6/nHl6c827z/ZMyfHesxt2ux2lzYz7wLRPjNOhu5EuNCoSTZey5TpJ6eYBrZI1I60S40iIAWQ1m2YaBI/6zrN3Rnkw7ZuSUmAcBnPd7M3iOI0455jnE7UVnLOCW0vewLyeSwjB+e6e6oza6ExvJc4Tgg01W/5itanNim1H6YMEpHlKyZYRiCHRrVXEeSQqP/3lZ/zxv/kRr+7OPDns0IB1NJctm6GLdhOQS/GDjgR1VM+9tfq5bLQu20D7bvowqe3yBB09s8FMtu2PPGYZWg/YBeftV+mKHbHcsLW3J07oOsLHIRX4nO7Rnl9/9cc6NcZdJl7tg4od1u2b39pUeg+5ov0z1BRR5ygKt+PAN99/h7/7u7/BebljHweOdw5JBZ8a80Ph+KoRxsbzrx2YdjtyKRyXE0+e3XBz85QPv/UBu5sd5PvuJNopzU0Zx8H0lN50M2XOxpyrC9BpwE0ZschTj3AUIVclz2f+qx++h3eNtSxUNcMhdX2r3ipCtZDmEC278dwYY+Dm9orBnxnHyIfvJz57eeJhLYQwgD9TtFG9GajEEKl1YcmFK8wgYkgecj/Jtg91O6ZvnR66QZtKPyE3EOetcwoYhsB+SpyOlSTK9WEChVozvoM18zpbU96EU5uJQyDnTHDCOCTGcSTnxSidNHKutE7jfO/r7/H1733AO4fAtPsxKLz3tSu880yMeBpucKRhYs1CGhKoNRUVoyYrHhdNA4xf0VLsfWzGKQJaHai5mdp2ky0U7KIFcsFozs3Z1pbNqQ6xIag50C3bzNyaN4pRvypNw7ht4Pt5vK6Z1oQqYllluWfF1cJuDNzcToy7A8eHB5IzHZWxFR7rvr1XbDvRbfVbB17oTdHWyDnnOsvz8ar+w9/8s146jHolanpi08P0eIC+wW/9mEQgghVPbPhlYy30Fyeh2ib3sg2gO+06yyeUSgiWs+uDvV6PoME2p62YccXF2qpZnEYt2Y6vs+ZV2EyiHdFHQGm51xhnoGItxZqqrl80x9M+kPZhcWgGCuVWUQfNCYM3PerajcJiE4I6VGa8BB7e3CFamYbIX//0BX/6w5/zFz9+baYmO2EaRtKgeEndidJCx59cHbg7z5xLYAqe+zdnHu7vuX5yAHHcPSyc5wLekVuhritv7jyH2x05z9Q1M/himjR1DOPIMh+ZJtjvR25vnhBS4uH+Dl0zzifEOfKSWZezORfLYBTa/AB4QrRr8mYfiUHYj5n9/tocyjFn0zyfALhbZsQn0rCnVWU4OG73A0EGzmsm7Qae3CopjPDRFdIUiTPFOT5oe7Sc0bJwfrjH3zd2T29Y54aEyDjPvPzkNY5KDGZEknPh6sqYSOYlUEgCkwrnEAl+JOeVYRg4HPasy0LJSoyxMxwiIXge7h8oAkmDnWMIuZuc2N+U85rJuXGaj6TkGb1RANfaOM2K08rUHAMga8P5wJwX5tnAOsGRc0VPpsOvxXRuWg2QWpYZ54XD9URIkRAjV0MyV1ZnXZkfHbUJZyeU1Rr+Jc+suTCfVnOTR9jtJqtjDkKyOn46902vM+2cONgddjhn9P6QHLsUCKrs91ed/ggxJVprpDhSW8OfTuRSLM6k9uunDyCtWixZpZl8RIVWLHc6BHcBs504SlkvwLZDTJNM11OWRpJuhtddm61GSHc0tWziVhsi1dyB+wBeSrNjZko8xp0tPmqrOHEsYqZbKUXmUjoqKuRgQvbaNd92G3TQDETyEvDB4zuQ0Lx9j1b7HFbNG1aNowOp0nuzbbDu71VaM48QbLFg/abR6Ln0Vu4y3NbaFyc9Csvyqf3FAEgJ0AwE9L7/3m6Ok2KilYwFvAgqtoX0fess8mg+17qzO918sspCKUptR5wLhJAoebnU8q8eX77HFx4W11LQbML1UhecU+7vVuZlRhvEYY93kXGo1jiOqRuEGfqindJTirIuJi4OYaSsGc3ZnETXTK7wsNDNFxwyjHzj29/k6bsLIST8NOKD4FyltQfUwd3dmRefZcrZBq3bdw6Mu4gfPflsmjPvE2HanO2UfbymW/n1iWJkzdn6GW/ukwDVCzH3JsVHcMKyzOAdErGIg/mhO21K17IIMSSCH62wuJ7JI0JuzVAoOpWzCfMp03TFq3He0bXbOvcFbtcliSoZRb0whETJnW/ujDPfslLENk2twtV+wasj2yGw3B+UIgmabYRzy0aL3Sinvei0ahSRGIy62VQ7UmQm2V23broANcG7RRNYNIptDttlKGvV/hzi9hlwoZHZ0OfQ1imnfRjcMpBMfL5RIazgO2daGe1Wz7ZR6IYCddNE2GcozmjHMUQI2h31LMPpkulIN03pYEappuEK0QY38ZVGRr1nXgOrDrz30beIqTL4E/kEYxwQ77h7WFlPSvQVdSutCVdxoDbl4XTPtfdcD5XBzdSmuJbYqNqDd7ZtakBZoDXs3iNc76YLdYWEbX+qEkW4bSbIR254r2bz4Xhqw3bNDZqH84mwCzRxVArhtCDq8E+v+L3f+U2+99HX+cFv/FuGSTm8f8Wf/D8veX10/Pu//S3uf/QTXj9kFmfuxTuf+OmLTziujjF6lnlmrT/k0z//DM/btOHt/zrlZhsI+y3HrM83AEF7450JKRCkoPmOaTB9cV7OBB8YUrhQgiV7zueF43nu2U+2dXTO9wy5yprNFGIcI+MYePX6TK0DH79I/Jbf8dE3Dux3v6Dh+PB7v0YUIXhPccY6aCjXzSGTaQhZSt+wdXOUamh3FUUGT9hdYTdKj+/65A02/h//4F8C4OUZtRhF0nX0VsRCvQWj/1S2a8FMmnARnCMchV0y0wYzm3Ab+9OUJxtaL/DwxgAsDQ2VhriMd4mSwddf8M33A3//H/w+//h/+V/xrXbzv+6c3DanYneh0dauBXYScL5dBlfnBoK34Vad78Y79rZbH5K3v4OzAG6E4ALqoLRmOisFRNCYDCAr1Ya3DvZslvqq27ahWRSPGIXOeQ8U8nxivrvHDxFppo+1w2qjtSfge/TO1oA5ZyHaV+FgyH/ujYwaJRZt+OA6fTh0m6A+uPbPd6PHolg8jvZ60893p6bVrtUayYg1sgGjpbXSyCqWY5qVNV6Dh3WA0+ljRjzv3EwUJ3z28hV3P/sYrY5pCsynxloqLnp8/KUZtIVAGgY+fO9rfP2j73IYE0MQxmR7uzR49vsRxFxbFeX4kHHBM7fKUht3s4XLtwpU07vXWlERbt+9IQCuFRqNsNsz7RxFM2MyE7yrlGhNGQ6wLrbZHVLk6c2EuBXUZButCau7odbGbbqhVDN9iaPnVDPL3UL0gf3hwFIcxzeFJSzmkixQTydahv2h2SZtHJBx4JvP30G7S+f3nViNOR25v5/55MVr25qFyM3hmiFF5tMRGFA8VZXkS9+KzdSWWc533dQF1mW2bZXzPBzNCXs37Tnpwrr02CEXKVUpZQVxhJg4n06E6QoRz2evFhxw++Qp3/noGhFFa7ba3zdQ8/XerjPxHYCqFzfgh9MDuRQzMqExju8QQ7jQ77VkljVzPhfWtTGNOwYGRCpxFMrYaAyUeUephfHDxH4YWXWhlIxXyyEtFaLzEBpVhdOc+dkvX/Lm9QPx/mhApDZS8KRk0Rzrmo3q6RxrNoOW07ISQ2KYJlJ0XE+2IS3F5D4xxs40apZR2cwp3aeI9Ptf6zeNUgt+iJfab7ETZrJSG0xD7PRIxzSEixZy22RC17cGM1Jc5k6fbGIMgBnoFFh/WljySggB71wHRGBZCzjbzNVmQ6v3kLp2UjdAS4RhPFCb6edbd513/T4hwdGibeFLrZe+B6y2KTZM2i3UwK2ylot54pLNYG9pWwZk38z2BUEIk/VRmzu1h32047bhtrWWbnhjtGZtXRIhjVzPVMRuLM3qlXdi+tUG2utjrY2QgoF/WoFqMivncfLEBs1mLuEXJtdXjy/d4wsPi1Ubx/sTd28WXn4ym46omIDYi5BC65s4Q8KGcepocsV55ek7B0IwN9X9PuB9YAyRsgpFEk1hXMyyfTyeqc5s2Zd7E4hPYjd21/NqcB6JDpeUYfAMbWQJti6PY0SCo5aVvGamcUJaQYvRuwQouYcU9w1Ww2ze67YB86G//I7uY02P1m6sgNCWbiMuDkrrw5LRoCrNQlR9wGnoxakj/o7L792C4Guz4PPW3WBswOmuqWLGMqjlI0EjV72gMtbjNTZziePdzMsXRxojTQLqjerWilp/64GedejkMaB+G962h+tUOLZcIDWto5nKcOHBI5ZbdNn+6SO1c9OKbc+70Uc2G2cnj26GmwGNIfRGfTFqQ+v/fVwXbk6qG2+lbM5fG6VLhNA3wtqHw6o9w1L43GvaNllgRVJtvduLsgmqrMe1TKOgK21dGaSyC4HkIvHgkW4tPj4ZGd4foGRyaajzhMFWZ7dlZJoOOBxmBCloFLtxidDEqIuuu4o2aRDM5ZZWjY6nwIJtocRs/0UrFBPvmz6ko4xi2XPGn+432RSsqY49JDwmHk5nfvnzX/J//NFf0KTx/HDLJ6/uOXrlvJyIxzte3BVOa2U/JG52E0s58/qcuZkGUhCudoPpTFp3v+1HWDYgYltEvXWHcM5AAlsciZmsiG3gRYzOleJICJ5hN1FK5eX9Pa00Yoo8HBfWnHFuJKWB169fGgBQCjEGrm9u8MGRuzV4rZUXd0de3s9UXlDzFe1N4T9f96h45M0rcIJ27VGqK4oShr0Nh+OA9s3/du4gRs9ypXYP/E7LEWfUizX3SJ/WN39i/65qoI1IHxBt2+QKSDM0u4niMVOWDSgIzvH05roDMtUmrGbI9KMfgqJimzDnHFotI1VDQtxok1w+s4t7vvnRt7h5csNnP/85wbn+Wiyz8RGttlOI4HEp4WUwpwsqHjNNoOeuNhNA08ThgL98cwUK3765s+ewt20nYy0GxjjsmlPTdxsf09kdq/SmzgoItqERe9utIT1wXpwdVydCEs9UPSoO7weci1yy0fpAavlvipZq29BtjVgqTUwHfjlPu8mSFgPonPHAPr8m122B6h//LoITayqlGm0z167riYGqoLY2sNrsFHWu31uVtXbNZPDgI1kCpyzglMk7WtrxcFxYzkpuUJqyPpxY28yyNO5moYrj//7RpwTvSM6Rkm3sQzAGyW7a901Hw9PYBUeMgdvbkWk3ECQxH1eWlrkeA9MYQR1LyVxdX3EYBrul1ELtUQ5VbfMk4lnmxUyAZk9rzobAuVD1iOApuTDnDD6g0q+DbqDiMKMoXD+3KXD/QC6V6MzRdy1HRApDytQi7AalFaGtcD4bZe44Z9ay2EDrHIMEcs3My8m2vinwG98Tbm/21GXBY/END6cTLoDzidZzd1tTWnGEKKRkur8UHFPaAEyhZbDwd9OArqWw1r7hWQo6JIrCvKz84pOXzOtC+vgzdvuBpSh3xwVKYz8kxmmgdc39zfWe/TTgtXB12BPDyPWNxUkJNiwNcUBEWNdCzis1CIfDNeKEeT6RkvVb87JyujPg5bAbkdRQGcx13QVzvi2V0TkqFu3gnaeupk+uTfnasxu7nLyn5Mq6LIiYHIYOZC9rZs2Z85xpCud5pdRGCBEfAtIqy7Iwz5U1L4isl/NoGGJnaJsefplXc49HLkZ4x9MZ54WUDGCSVhHviDESvO/aug4E917gYpnWGVQhBssWVXDNiJZaDUT2nbWUW8WFxJorrWZaW9lyKp2zoS34SGvK2tbuwN6ZH33wq+0xRxIxmnvJhRBCB5f68lN6d1jtvoHvvgbBd/Ae1LkOcAnSPC6Ffu9/1DBqa51t15jnctkgClt27Oe18w27f3scThrqTB+LCinaAFjK1gfb8QxYHJR2/XMLylpy79EMkKeKgRPRMtq36LMtVumrx5fv8YWHRWtmlRDswgJhHCIiSvAQ3bYGty2Ti53KGBzewzgGfDC3vuBtAzd5T01QxExipsnsp6fJ27ClyqmZZX4cB1xwxCCk4Bh2Dh8dPoGow6mz/gu1bDDoGyh3WW+YK50VsLZdlV34rUiHwu1vG7XJgmGtGaT1QuO5IDtyaRjoy4NmAwD96emZhm8dSXoj7ejMhc1+WTYufn8V25/789oTtv5762Nz1bcRzluTkZeVXPtUuF2MfeAxKsNGEzQUjO139JFJ4KL9QfWiA9C3Xrd9o/1g//HH99dR9u3PbaOFqm3+Nnrdrw6o23ayth7PIZsi6PHXaeNzm8RtALfntX/Y9HB6eY39M64bwtff5XYM6EYkYpqU1p34RK3pvnx6DYK3zMur3QjzYhtHV22QXAu5NdIumsNsW6nZNJKtu/8aGpjJa740q61lQ5M7oOBQxOBNnPRGCcwdt4vOBTs+6guPa1477v/o3Z/RauMPP/vQNjLO6IkeuUxsTQzNbTRcTGgcqWHitGQKUO5fc84Lr6ncnwrfee4sG6kIxVWW1WjkgjIvK0ESV/uRFB1lqW+dH/0zupxdl9Pxc5/rplXZ9jQhBIbQM7eakrDgdJ88jgNaC3EYmEZzi4wxMQwjV9cjTWsfID2H/UTwZnxi2Gwl7SJPnioffviMwzSgDf6TF1eIC+DMKIemhuIj9sFrPxVVLzpWwIZ3HLX/v3S2gKI0KaAOp7XXo+155XKZ9BP6cfAQ33+fUbEv15pK1/I2hhh4791nBqwoZgrTa9B2XPupTYrJKFudht5o+AYinracSSHy4YfP+eDDb/LxT356CaHfrkqP75tDwXt5pEGsWjAAACAASURBVJhKe/xF0v9+AXPs3zs5l//m//xdUPif/uE/7V9/6/scl+uxcxHYYAbZpi/fdcAXamvXwfSmSoMBbtq/F+dweNKoNHGEFC/Amj33ZsTVQcCOFrnPfSbtcjbar3z7s9DL56Xby9etCm4qT7mcMm/XS3GC602XOOnzqVFzm6u46mheCH6iBqG57nIbHe998A7NJ67enVEadTkxr42H80qtsJRGLpYpfFweWGblfjYa8XY/FCzKaUwe5/qmOIzgvRm2tGI0XRcMPBFPcrbl9zFwtYsWL+U9a/Y8f37NLiUcxsZoapELpTesTYX7Hk5eiuDVXRwiC3beZ4S1bya206tmA/9CCJ0D3CyLU6HOhVyraQe7uYffcvLUGQZWDLQQHxE16iIiNEpnvgQiAUYzV4nB4UNCXMSF7ZqpSIy2tXee4GIHT0GDsw82RtOPRXut25YnDAMumLGOjwFfAr6/fu9WXAqUrATXLA95DTZgidV85xzqoeE4L5nzuqIKx7kypojWlWm34F3EB3MQd1iWZPLHXmOUmjNZlcO+kqKntUzsqTTzvBjDwPle4qoNTD37NQDqlKxKrhXNineNtla2SCm8Ad4hOLQaq8yJObei3XdgczMf3aUPqa0SXMR5x7oaY+mwt3xIRFjOJ9suioHmTaTTxu26ucheeh3Z7vUGFFZjaIijVe0GM4/fC9JvmXbBhxBQOnvjUiFMdkSvfVutM9250UmNlNb7KVvI0TBDulrtv74DMtR6cXTfapE5zbbOlqrW02Ff3/qa3nSxsa30rbfN1r52jZG7AGCCZzPicY/XeavUKh0oM+rt5o5aisWjPA62cjl2LvjH+992H3d8/rX046+9n5aup9/8B7R1RtrlhT+W0q8eX87HFx4Wj28qw+jZvzvwzjPLSgkh4aQ3//0M8q4PUF3L4YJ/y9rdLpKSS7dl7v1Cz1ITteyu3X6wrVFTds+Eu6DsDxPilZSEOESG0VseYdlawEIaQhc1F+PvO0903igj5m8OGB3TRRM9b5bnIXj8dgU4yHTb6Kak6LZlFKiyFrUiFkyrk5vdju399UGpD1u5Uwr9Bqljg1hTvehxGnYM3VsxEoqSc70Yt2jfKOVsZhpNCkKhdbOgVqC0iAeevbvnO7/+Lv/Xv/gr4g4027pB+naJUi8XtYoh8lp78exDl78gPjZQbGOM2xpb+tvZAuu7Qtv48jYA24+43hx2XZHJ8nBButmFDcQ+dAto1UdUrfUGkF4kpTd17vF1CGZvH3ueY9kst8XMaEQMEQvem+Ab+rDdC3YfwJ0zQ4Hoow3mfUtXsSErqA2yyTvef/4OH3ztHQ6TI+pKK0IJsG7C/9I4vTrS1JxTIcNqG1NfK36orD7C1cgwDWhe7fLx5vwGK1UfBzvXTDtVa9kuGHANtBCyARK2mHQ4HP90/wKAP3zzoRlptAatUE8zpAECaMk2YE+J433hXBJ1eMLf/BtfJ3rPp6/foLrjRz+550c/u+e3P/qAh+UeXTzeQWkLD6cza2ncLY1lVxlD4Ol+5OenTOhb3k1RFyhG0+yDbumNdmsNj+vXjm1IQ/B8+P5T/r3vfwMo/OyzV7Qys/NXPLk+8PRmAszaO0SgKcelslYlXX9IGHzXxoEvhVZWwiWqQ5Ew0ELg7/1Hf4fbqeIl4yv4bQDQ2sX7oQ/anRbsHynZrim+3+lqv7ZFm63M1NnkIV3bI9YAqcB//c9+G0H4b//DP+5RFfrWjbhfIFT7efUIlaLSLfIN8T7sIt/9/ndoKaBzJrZAbo0mlSZKEPBqbInpdm+IdwXVCnVBC9a8rzOuKr/1/ef8wR/8p/zLf/7P7VJ1egGnHDZ874aJ290B1kxbVjP1UkFb7rUBwLiwpp3rqPgFOLLxaWvynAhmBtP6YNmPRQfpfBM7Dv3QPEJGj8PXxYk0usfF01vflKZkg2Yf+B2AeNtqXp4dCBtE0b/QHRe117nNHOzx0VGr7XVs76d/T90Mj/pr3ShzrYOXY3L9sHQwUAS7KB811GFjmfRBVoH3nz/hb/277uKeubTWpQjW7J3mbFRR58m5kUu1jVB3BhU2l0trhjcdudHibNhDK1oXvPOs2aKLXK7UOTME1xkxarr71nh2e9VN0baYBXpebsVHuyfmUmkIS7bRuXbAUx19y6K0udLWQq7mDHl6OFukhjftl8uNJRtTY6lKw+NTYl0WhsGTYiQEo91dDRPbYfXe5BtjTIh3ZGkUrSyloFW5q5UpBXYx8fXrK4RKawmcUJrjttrA5YNHTHZmWrTeuGsn1MRkjboHA7ai0Q+RTuFWLoyZemMvrpRCcI5/J3zItvla18Xuyd7OntyU87xwd7R7wmkpnNfMmgunU+NUe7wyzqjgtRFrIzoheg/BM88Ln3x6ById+F7I6wz9uAQnfHx3R+laXaNZgu9047vjAw0lRds6jkk4zysWK9E4nU7c3BwQKsMY8OK6yZb1Brk7tUqPm7k/PiCIbcmQnt2s3N5cMUTr4U5BLc6iNqPe9yiOlIYOGhug7JzDh/3jZWuUrI5jm4NnXnPf6DWj5/rNzMc+uzVX0JNFlwh962eGda0ZmIuYRKDlwhCiaZfHLqERh7ZsV8aGHvnOngoJRC3yrGTEWS9i22f7PXEYqSVT+ntSjOpPB7AFaMWKy7qsl/eNvcVeq7nU1c2E5wLCiUWvTOPAxUSsA/OqVgNid20FyzVFhLW4Lo+w/y5nAyxCDN2wsSISbNjt28nS2SXOmXOqF4/4gEuPwP9W4/7/HNO/enw5Hl94WHzz6cLh1jHtFG0mgqZ0a2qBorbJ2kxXnPeGfmrrRcEcs5xzFgNRV6I3Ye0wjAhwf3dHUwguob3QFC0s2YwapCr7YWBXPDUbMuNFKGSyLt1BLJjtb0dzcs6oE3zzm2UdzTUS/c/ZCnhygZRGlvlMbg0XHRI80uhOV3S1cR94xNyhbDNUu7mDXoLl7WHGEK5tCFBv/vtgtVHvfKdxFl27A9hWcTYkydCizSEMB3Mu+AChO7RKnm2InQ68/433+d53PuWf/JM/I6au18Ec6qRTSuxhxUJwRlurjxfuVkS2orRt3z5vIqOXr4ENceJg0xuaa6kNMb4zs2C7aTa8dyQfO4VUmZdzR5NtWL68StFOWaM77EHrW5xtcSjeGn1xZpghYnozkQ4EBE9d82VQdx1ZrLVS1SiwVSv3ZwubnuLUF0kF1KMkmoP5WLh7caZ+vfLht5+y3J0JkhAP2jIOJbqBnM10J06GFpdTJbdGwFjAK5VyOjMddrTNotp7nChrviNKpLnYoxYcrjT8LoGaE22JM0KBOdJQvFjXUvvXnQT8dIBB4HTC18ZyOhmaK54mFQ2OMFzx4ke/5JOf/ZKPf/kJ+zQxJYff2ab+eGy8/OyM1MQyZ/76F/cEr+xS47NXM7lm4m7itkykAgcfsFAc26huKKMFe/ZzGcyQop/bKq27xTlaUaIXvvbegb/xa+8yH0+oK7x48ZKbcc/1OBAls5Zsjc+8sq6Fu/uVeS3kT16yu54YR08Q4SpEBu8IMXLOynmpvMkLi2RCakhyeDfwv4+fQC38/sM7iCQUM42iBXAJ7zJQyVVpEohNDKERBbGAa1oyNF8sLsXqQ6OuYpoW1/jxm70NCrUgztu2t9EHTE/VdUOlTEeHRelsMLLD6Dy+U8mQbj3fjOK14XYO+7NLFuhNq3htiNoGCembv7LwfNf423/7N3CuXUxgBKEK9vq1McbEYRxpbBTbvgG9uN56zJKmAflxC/tWL1A3O2XeNuPpDI7tm7YfENis77fB62368taV+e3vskWGdLp+B5Zq7XrHbnphBXljm9jDfW7rwOf+8rjN/P9+XL7+9vf19+0+951qBke9qbJv08/VVLB7iijouuC3CtiLXJ0zORdOiw1x0XnaeUa051rmbEu4ELiaRjKFu7JSPExxxxgSo/Od3pdsG+VtsLFCCS4a0NGcATqC4HODtUAuLMeFsjZqNp2S6AaWmD6uVHMjn65Gdrc7q+fJstUM2bHPyDIuG261exul0IqJ6zVX3tw/kGtjXStrLbQKp/PKXHLXUCpzNUZOXgvURgnCeZ05n3MPi8+c7h9wAkmCmb+oRXPMKrTSuF9X3n1yzfvPbvnaGAmuYsQpZ/KRJlQVO7Nroaq5DPthy+y10yklZ6B5VVLw3FfLEPYxIi50Lb1DVYxlEhxr3pp+o3SWovj9zuitPdEArzzzVwz7kXEckMEorSJCXaA1oYVgevXa8KqMzlxAH84nlrxyOq384uNXHM8LD6eZXBqfvTIAbJ4LJS/kpVGzcF5mzvMJQYnV7qnn05Hrmz3f+sY1u2Fg3EXELeTaaEtmGJTkI/tpT4pCa5YBGIPda89zY83ZsgZVqLlQ1kprBiZYRFjldDzh+3Z2WTKqjrnU3nt5cL4PcJXojYnkveN8PCPYhjJ4x2GXugTF+rJ1zX1rrThnoPG6Zpx3jNNALRlthXMpRhnv/ZaoI+eVJqad9EApGYrig8MFh0Px3uQkqLOBNkZyXazd7Pc4Hz0+qHlxYCyJ2vut2IEF8eFCHRW5VETrtTqIVko29of6R3LKVsf64CrizHCrM99839Bum0ptSmmlHw938W1ALOkg9h7WeXPOXVbT/MdkA/swuLeWCRYXkkvpm0vTpS7LYhh1n1l3uz0into2uZC9zq+GxS/v4wsPi3/0r/6MpzfPGFJgNwkxwdXtSDkeTSBcDRU+L32Y6PbGOReqVoIzq8+mhrZb9qFHtSHeImj/X/be5Ve2/Lrv+6zfY+9dVed17+1m8ylKIimbkmOIcgzLhhTYDjxJRv4DMgiSv8MIDMSjzILM4gAJgvwLgTIIjBh2YgGhjQiKZFmUmq9ms5vd93HOqdp7/x4rg7V21blsOgOOOOAGyL73nkdV7cfvt9b6vpaymoYjBJZlZS2VtXRefXxkl4SUR65udoxjYD8mppyJPRKSZRwO4wjAOCRSFIYxkVOm9Mq0mxhyotXmrlBWMKVs+q1aXnE8HglBOOz3HkgK0zTQW7emLGZAHMHsPNZ7W0TcTao3D1x1t6kYI7U1Wq+kbNPP3hv38yM5DV4Q2YIVJDOOo5+Tdm7ErMH0QFwAMWrP3W6iiTl20RTRTNBCrEe+9OLAb/3mN7i5/jbDkFE1UwbVjlbIMZr7njefrXZ7XYHuFY7ROm0jjNH+sdR6bh6B85+3xcb0ZxGCZXNVXzjO4fLOuBtyssJ+KfS+ME0DosIQsxVQTjWtqrRSiZLcLhtzs9WGCbbNTKe1RnlczQEMC9puzX+PWvCsdCWpl8ENowt687y2Ql36ORYmT9DXxRa0mFFtSH3NGIU1NEr6HI9F+N5ffMLj/YnbuytqWdlPIylnNMyElAhd0CWBBvaxo9GstMMwkK53LgZvZ6fbLpUQIxM7erCCQlTpdbVGs2IUR1Xamojxirbr6NIoHUMFwmraptb442+/z/F+5nd+99cJvTJ+/h2aCGusSBSyNOAl/90//Z/4znc+4YMf3XPzfKDNSgqZz7+44/mzPVd3A0sYee+dGya54wvv3vEbX32Hd3/7GcfXnTcfPRC1MfPID1/f80/+m38GKRK10nuFXjbyCnlI7IbEcMh8/OmJVAWVSm2L4SgKX3n+FdbHxL/4v77DfJp58ezAi6t3mYdHXlPZH+54Z7wCAu9/72NaT3zlKy94fpX5+OGRl68Wvvu9T6B1rq8mN4mAHs2hshWjEw8/+A7sEnOK/Pd/7bsowu/+eSVmIY8TWRNr+ZAUMy0MhDiQxx0kaGkmMqIEM3aIkaaJHiANA7SK1mK0w3GHaAG9INr2aLcnO71PlVwjstFbkWRUZJQYRqIIY5x599078hApa3c3QBtW1eqsDmcj7K7vCFloKdD7QGKkR288h1uEwnU+snv2Oe7efY96/4iWGdFuupRdpqlQezWkSTBdmWud+5lp4I0v9lwZSm5N7plyPESeHgExfePTw5HWJ+RzHPoievP4mQZONw3QNjQSyrqgquTRqMwdN+iK4YnRjr+CvP0e4rbGOcvhM8eT198019v3ichnoMi4/Q6bUBHDkybwKYUc0Gi6ee3h0vQDqsJpns3+P5jsQLsyDCOnunoMRzXL+qVxevmK07wwPyq0wEe1WB6iFGMiyJZ3K6DRz09DeidW0xaFkDmVhY9ev2KthTwMvHj+HilllvWESGcaItM0MI4jvTWOj7N/nMhpbdTWzkgEWB7x4I1qCsJhSAxDJk0mQZncmErzYPdpFiYJjEPn3ZSs6PVYrN4aIQ9muubnL0ajTVfXhwasoXv1eDQdlRfUn376huPDiXi153q352o3ck0l0a3x7sJSC6WuRCy7Nqa9zSxdZ1ZbJaVsGcvOeNko5YcBVqm0biwsNNAWu35pGIg5k2pBtRElMojpPNuy0BTeVGepiOUTLstCV2u6ajPapsmjO7U2ex9FGYbM4zxTUE4xcKwrEgd2hytSTDy7vWU/jXzzq++Rg3A3TmZIYwpLiDAHKHTuT515bdyvJgkqa0VaY1qLmci1ypvHI8vpxLwUTk358NNHWu2svbO0wjTusCzAgfl4RHtjvx8Z9onrw0RKgSlZpu00mHZ0HDK7ccD5CRyPR5a1IpJ4uD9SW6e2zjwvzMvM85uRZVnZj8EiiCRSWqXUYjKcwYaxvXWaQCmGzFICq8++rq9vbX0OBm4Mw8Dx+EiKnZv9RIimcR33B0SEeZlZ5gUUympGNTEGa/IcYS+t0/ojW8yaKqTQngzezVzmzfENIsGyJ30Idh4kxQt9XkLg2fN3KGWllBXgvH5qV2ptrLV646ekwQx9SutnXaYtX0rzuqw50yD468zzzKM7uA55dCqruf6qr7O1WLQXYoDOOA6klFFNZ8qv3Fw5W6H7QEW8LttijQxk+Znr6y+PX4jj524Wf/f3vk5XoyvGGBhz5HAlDr9DYAIZUJ09/NkjMnxjTc5hB28uVL3YD/TaoXVatdiMVpV1XZmXlR98/Jr6WHn2/Bn7/cA7dwOHXeTF8xtrPOLAWgvFN7ON0hiw359SIE/X5qTnn0WCwd/qFJgQzRRkXa9JMTJMw5lfnnI0QPHMMlKMNAXMiZSTZfM4hWijplporDJOGTT6QqQMOZKGPSC0Wn0KXY2a14I7/Xn23EY1cGqoOB+dAHM3q2aVaBpNNTRH4mjxb1q9gTPRdFM7tyKw5eM47mMLxQZm+qZrYbkmYG7Ngl2Dx3hcDGxkKw9tEnUuUpXiOWSb89bZC8f1opY1aVbeVkDLBYXYKIy9ITHZMEKs0Cjr4n92t0s1CiYRJIXzgta702uB0grNBdpdO12eTPQdgumASHeUz4o/o/UFhE42rIiusFJ4qI989OkrTvcLS5lR7TzmgSCRZV0orZppRB4JmEYIlF0QdtPA9Ytb8n4kXtn0XcUNCR5mdocDIZjLb0fYT4khey7llKB1lpczfT2ym0biIIYIIJR1pRcTUDx/NnF3MGv43sU7ZyU1QCI9GCXvH/7D3+Nf/eGf86+//V3Kw4KOhdOqHJeZ3SyMWfiz9z/k1z5/YNg17k8P/NvvFR53FZpRiWIUOiNXUZkydHdH1KBePNr9MoyJZ3cHnr+44vX9j6jNitcYzI22Nbi5siidkANJ4YNXRw7TxDe/+IyIcP/yyNENbxbJvHlcOP3wni9/7oo07gkR7m6uLPOqwMNcIHTCEKk98PrlI70rHzzA56/3pLG6NtWfj9ZZ59nvy0BZO/lmgBzQaO5uvcu5+EdXu8FDAQKtRDOPUjUDGzeYOiNXAuIOxN3bInsEDXkKak1VYAuetqard7vGkZXbwy3TONKPJxsSdHNnNHqR2cJLCLzzbMeUO/jvsKff6MBNXIuijSEHfv/3/h7/z7/5Nh99/3171ptHPzRlPOzY3d1iW0hwdAgzYvKBFtIuo+6zxnpDHrnEhZyfcUffzujcpUnc+qmzIZA/yxsV/a1DsebJT24Ao4kpZyOa7mgmb73e203nUwOtJ5fqZ38PF+Tzp79+/hl9+w9Ogr/INJ98AN0opz4xiWw0Lzmf07YsNnx0F+fqVPLqXEhRIYdNZ6QcDgNyZWtybeNZ3oC4DGBrsrp63IeZ1cmWszcMlNqYrgdWz8RLg4JUfw9WwJdSicG0auaCaWHfebTQ7bUWqlNRe4N1PqKqRIFXboqRptH2wmLZmWkc7D5FyTEiKTCk7AYeViiPOROjOW/i46hhyFR8SN0aOWQkCG/m2RhC7j9wOj4SmnL/8IY67ai7PWW74GK60hA6rS5QDWFt9QEJgZBsEKyqnE73tu/HZGYjT2751rqZyMyzDS8Fz+pdWU9HDtPefBTEn12/S0QNrQpidUwTyGl0Jsxo1y8IMZsmstVm2r/jQsqZ6WQSlqV1Wh5oBPp6snv2CCswtwIoH7lubRiy0S1jQKaMBBtuSwiMajXbrkIicDVFOoHShOs8UK8vxiz13Wt6t0ddwQb+tVFK5f5BOc6mt61t5uWrk+3XzRyfb68mxiEx5YHrqz1bvmPv9vmidMZ9YkTY7/asZWUtC61jucXFZi/OdmVdLdpBCaylsJwWzLBGkJjMYOi0WPPY4QyV49EdKZBj4n5p52c2BGH0oX/KZtATc8OZqsTY0ai+Ltozooaj2B3q9Z72LTqsX+ig2D1iJAGrX7a6Vbudi9mzHYchkaI5xVpEhw2QosupJNh+H0Kke33XxdB8gDQawllqdf3h5rx9qTtba9A6pVlueasVCe5gDed1aJuNnR31z4tnOOuygwgS4znPk2i05A0x/eXxi3f83M3il758zTgIIkqriknxIiLGIQ8ajb+fdq7fNTRpy8PrtZ2pRSmZ3qW01aaCrjMLyRZ/swe2Te3LxxvefP1L7IYbxl1kuguEpIzJNp6cM+oT6t7bRh5CcNG3mFOo+mZqN3U3UbNaFg9qPP1xsMBdAt6Ydbc3jkSJhnp2m063VhivD0jYrNS3os8pncXs1oecAKOKIiYmt00aWsy+Wai5RHld0JsvcipnjV+KEVHT9eUgRpMroL1avZ6FBJyWxr/4V3/JP/+XfwxsNu1WrIr/zt4u8RRPg3CDiLPHLgWQcfvts20N1mYNb6jBxbxn+/r2PeLX+y0kQE3c3p+In5FuDoCesxQJphlZKkZvCy7At4YtxUQMVgxq90BhaWy5SfbZjDPP+b3hU7Lu78sNcvy9WRi2WvSARPpmLx0qkUgIe1SUZSn8/t/+G/ydv/2b/JVfibTHmRDNFKH3Ah4TUBdDYWNvoOYQbE6nGFV6HBHXCdSy2n26wOlBmSYgdf7yz37CssJXv/EOX/jynr/49gek/Z7d9YHbu5FleeTVy4Xru8SoRvVaWmNZF0LIHO4O7A8j6/2J8uaB3AshJ+KwQ6RCVvSx8Nu/9nXiMXIbB8abO3ToaBHm4wMhLez3E//bP/8h6zTwlXeuKWXluJ745EdvLIdKBhrK3d3Ib/3KF/i1r73Hj370isf7R6LfA8XRi8P1ni985XN87Vff48+/9ymvT+rnx1aMJvAf/Z1v8O5t4nj/iuOpsLu65fXLlcdPC3EINrWuyu60MobE5+4s/+onb2bGodFaoCDmbCtCioHdFHh2vSOnjPzK56jayO++IO0DOY5IHAiqjNONBba7XjTLCEPmR/dWSD2/HdkPATkdadF0KllNI6kiSDcLdHIwlKtW+lpwA2E2UwUzwAFPV7YWQiGEYqvX2TDF7svuNH8Qcj/y/OZd3nv3C3y0VuY3L908yZfdAAFz5vv1L+64kteEVl0vWuhBiBqRYJu13ZOdv/E3/yY//OD7fPDD75jU1aWxscO7736OL331K9aYeYNJ39xSlSj1UiV3Q2+CV5Db+hLfqgv0p/7L+bMi2xjK4h02beG2joTzKv/054OdHRckxuhMictCdqbmbpasT1/5KWIZFH4a8Hz79bf3Z58tqBnsfObYLmH314q2CWxsbHs/m4v2k/PSL/m0EKyAF3EUK9KCOYQvvSIxosVQqeNpNZ1ih4d5NcpkTIZCrQtjjrz77JqcAmM0jV1OiWnce4W3NdFWaLZmzWopz1nmmXleKZvx3KPp1VLKpJTPg4HdNCJYAHruFRmE3f6W2qE2kycYHdmjiroNSsdxR06Jjz99SSkVLVasp+zazdItvgsoYsODpXdSEPYtM8TIlAKcFg5Xe7oYa8nc0yGmjORwng8M776DAK/WRwtjj8IQIq3D4+mRtlRyNIZMjOZ4qlqxOKlIKc0a2WQmLWkYfH+x/btrp2sgDsL+arLXjfbv9/dHooIkQVdzsG3aaWpSBYuZMoSyLgspJx+cRqadOZ0u68oopuWroRmyvs9M48j1zY6IMMpgUS2xUbaswdWihVpthJQojkbVtSBiiN1xLrR1RWrH4mKs5dpMsu5Xa6Z7F5a502rj9vYK7ZW42xoci7WYhr3p27RTlltCTNRatuUDsIG3arOMytY8X9polq8eZ29CTBZQzT6YlE7O3hIOhx3kRlaLZxi2yJq9+WQYBXUEDuymCQWvLcxRtTWrTVu3hqt3BytOFUU4LQu1FCQZUmeyYPv8bTbKs6TkjHwzwFnX2SquMCBqcirtnZWtwTJWVx5Hjo9H2w+e+C1sfhbz6URTM3Bb58LjwyPjOLLfH6yp64Ut57pWG0fllBnGfKZ8hmiuy6a9tSazdrxesnVv83wAM8CqpdkgVyENhp6vSyVimmntF0aZ1LdNGUMMxBDoDlj4V3xdj74GNFLiMwO7Xx6/OMfP3SzWtVkmuBd/ALXVizFFr6g2Qks+PbiYlcQQ7GFz9KlnMyYpdQt/tsmKlkaMBl0j1qS0KoSYTfzbISyCVKhxRZuQVgujR9J50mohquK0AIv9IAYSxuWvtVrRKME2clWWbhObabenaUOi2/g75SOl7Bxsm8S1Ws6UU+wjAJZdA1CqP/zNFqXkWjsJNvHvHsAKX4UINAAAIABJREFUxn8vpbC5lG4xFMEbKBFB3aK7a6PXAFSjfKqY/ksSKQihVY4PR169nkG6N97GtXji53emzCiXImlDWs+0CbZFYJsaXQqKt/SL2//00nxtzl0/vRRsi8r5N3mRFvACaft55KwJwcEFMCrGhnA+/eL2vdt0a/Mw3RDajWZhToiXe/j8ns5FsP2QaWbFNkh3J+vufBaI5DSy22fXHkRCynQNkDtDDLC3SXeslj1FSiZGd+G6xOjmM2q6WRFizEx7c88MGri6nsiraWCogZCNrpMC5BRQHal715WqApZ/FzfbclGnrCmkSF8aItE6Y6uaCSFQTgttWaBVYugstUMLpBjYTxO7vOPukDjOlXwXCZJYqtBOlTQJGpV1rRxzQ+SOZ3d7Pv3kgeN2fyhvNT92fS8bDGLxKCJCyoHDlMnJRP11VRfoC/Oysh9Gnt3uQU0HGzeUWsw1kNAs9FiM2i5BCEMypDIYmpcFpt2Ou3ffZez30NbLexksAFq8YQmt0RA++PEr0jBxdZjYT5d2RQk0EaIKqkblagrHx8rSGjfTQJZtkKVPGghbo7pPm2W7N1U4WwF4PhhvnzqCdnZT5vr6lk+Hn7D2l+RoRY5oR1SsOB4z4xAJvSEk707CpbFRdfdWYDnyuWdX3OwG72nUJs50Gspw2HN1ew1s69Q2TvaWrV+eI/Xr+/9/nMN1fmqB+Fl/2Zq4bQC5nQf1q7BxPeT8Y6qO2W60X9Enmtm3X/On0cHuY6mf+qaf+rHL6/2MvvJnfIS3f6fZ1D/RS/70sRXS/tYBd2q2jNnQM5ot3iWXbuyLuFizqBB2k5nH+FCMkhlTYrfbkYKQxEx4cspmHnJe5+11QxCqWCOXYianyJAHqth9uht3pqkV0431ZoVqihHBkL1aViQE9oedUZmbu0j2fn6NQDe1a8iEFFn73r5nNbRSg9UZNEM/y9bse5avOS7a+h5zQlp3LeZmsGET2CmY8cfG+ulYgz8NAzGIGYDkwQ2BJmP9IMSQyNFpqNFdbBF6tCZ0yEY/DB6vADYraW4Yl8QaC9uXTB8W9nuLjsgjNRmdGDGUJ7qmdYulWmVgSJHWTIuuujU0hiw3XC+m9qT21skpksSyTlGx2iJs96utpyGbjCPmTG6NkiLQKN2or70pSSKlFjsnKBpMQrRqJXRoTTitxaIfjivmQ+CMHjFUrfX+lvuz0uxeVcjZ4iIkBJRIbxNlyyDVQEcYhs1bOECPLIvp4tw+wgbcrXp+YqdpZekXo5kQrbFG9fw6IoKuNugb9zszRpJusvJgTv8pBCLF81eVPibi1iz6ngO4Rq8SU/Zn1YbRQcyBuVYb+uRuGsVGpG/METGPjZIrAvSkjiDaPmjGM55fHdylFvUMb2cJOOVtQyF761aXF1B1qqlTQde1kLuiyQbspmm0Z95aYLu/trpzy7y2++6p7Kj5+ZVzXbXd+613b5rlvGaeGTSKvUd31+/r+lYd9svjF+v4uZvFDz848pOPH9EeGHeZnEG1krPRW0LqhviRzgXDdnPE6DbKwY0GwpY5aDox0/wJZS7W/ITAWmaWtfDqvrLMlf3NnpwgB5uMPHuefe5qS9kmsEcsONYMVhoxBaa9bWyrbk2Ta8eCb+BqwmGbtpXL5Elt4YxBaMloJbVW1KfXvdlmOA7ZH2QsoBQopVFr4Rgsr2ccB6z0ssVzc5gKITBNibkWjyI4l41G7VNfbNum/RNEMhoMEUjBDG9KL+wD/PijT/jg+z8iqHJzyJ7149dEI12NG5+yTUFbM3qpOg1po+SajfRPFVV8trACzq6B5uYVrQBI0S2kNyRvq5G3AO3kTnxGc8hqDWDv2KChGSWqdPWJsjeR2ukkuqPHrW+W0SbGrr1eePM+vd6akVovEz2bVPZzg7ldk9Kgl2pGTap0GawY6Y3QOvtd4N/86z9mPZ641r8C62yTSYJRVkNgGKIZLNZmxjQSkJ0v7qWwywNX11fEnKygWxUNkA/CMEYohX7MfOPrLyAoOivl0xNf+OKVmRTR4AF2IbPbF6NEerV+PWT+KjeUWhl7ITwUxhzJL66t8UKR0RoBWkDSNVo+otQTj29e8vHHr1hLY14705C42u9A3zDpwvvvP3JwJOT1w4m0KGkQDoeBY1lZP+i8fP2GQ+jsYuTenWVLba6d7aynwqtP3vDxLlLrakVddyMsiVztEv/2T/8CofPy9YnaYPyu0R3feTEwToHb/Jz9MJAyrP1IcQ3EFKGSqA242XFaIvM8M+QIMfJ6UUqZkZcP3D1/weff+1X6q/dpx4+cOg+a7Q8BoAlNA/NSCLGRxk5gQWslujaO0AErZoNOhFhZeuCTlydevWn8+pcOPC73JDopu8kKdp9HgSg+KNuaLtfXgXpwffOw+kATW0GSwjgFvvYb3+DVm9f84EcfcDdGQjFHyqjKkBLD7oocE1DRPAJCpZLwhrEvKBZVUz/5Ht/67b/GH/3fX+aPvj0xl5WwC+SQWGbl+vaWd959h8CRvmF9ZxdsDEU5L/wXi/cu8I//9h/6Z/vMksJnWy190vxtaN4T6qZ+9icvTdjFFqu7o6k7O1x6Ox/8bG/wKeth08/0bYC1/RxPEMSnxc0TR9Sf6msv/7b9XcR0/dv0Hs6Duaf6dMFs79XXtd4VfN+KKZ3ZD4iwk3juJJ9S/nvvlqPqn9PWW2NoGGvFDEV67wQ8VsVBTPX+XwLE7IVgCIhMXgxvA0I/FzHSN8nB0/PazPhCtfnQQS7Op+6GiuDxCALd6Keff+/GhrjNTuBaLA4kCuYG3Ls7TAt5GoyiqJUYYIjJ2E0bUisW0SkiaNVzhNHalFdv7oldGHYjeRyYhpHdYGv01XiDEM1gp9UzNT2K71mtMoxWf+SUba3o7dxwR7nsO+LZwb01eotIHLi5u6b2jtDoOtBaNZqijihmwNLdxCbmdEa7rJEyh/QyDq6Js3zmzTxkXVbmeYFg+Zqtm+5fvLiv3TP43NMo+JNlBBgb0O/2A7vDyIBQS6Do5hdQ0dAYxwYSaA2SDJTqMQkYHXTLz0tp4PRg+sDereFpzfaD07wgTuelW+RHSltDJJyOJyRa02axPRZnMkRrCi2Oy/63HlfLFuwGNCzVnpfWjR785v6RUqo10p7zd1pmFGUcR2uW1BogGzx6vEerTGNivxsRhFIe7dwXM8obp8kM9zRSFxs4puS5i8kN8npB6H5PRIYYvV6yeqN3Ze9eG4YUmoTD3Loi4801IsLD/SM3+wl5dmtpAr35mrCjlr4tu0ZtVbtfuzeLQYDeyXFjfHWPl3uSbd27uxmLgTXBzZcUM8tBiTn7UMju9bjF0bTt3hfPILcaLoifS+2IxPOaISEQNFLXclmnfnn8wh0/d7P4/R+85vhwNCrMg/HuVSK73UTOkcMeUoJZbYqWo9Ey8gBDjhcusyiqK1s2UghCjgHRAM3oCzlGM+yo5m4Z6Dy/HunSWdZGk8o0XJkjkxpZfNsodzujs5RSWJcTKUcO13uWdeXYGzmZkYy2zf3EKJ/DcADXsu3GA2VdKOtC743dNAKBulZK6fRum0UvtkGmlM4NV1mLWZDXQozN+rTQydncD41uUNgfrhiGkRgMNVnXmTRNTsu9FCFnaqX/W5TImAZWEq1W1G32W114UOWPvvN9/s9v/znrCZ7dHogxny3YVRPahU9fvdzqJnehFEd9N6dD3DBAQPDso+Ab2mWR3uqjt+mpVrCFEKwoqA2ieINmzbaEiBkvGnWuVRP5m/26NfnVzSjWZohRc2pPCoFUGylGB0pcJ+kT69IKm0jcdDRy0TwGN6MISmuddV0B4/VP00gj0rpQS2cauzFB3GgGhb4K07Tj5atXfP/7P+TlT75MTiMhNXpfbdHW4Pl8nV4Kui6m6jqIOQbPhXeubtnJCNmcM8GBj0cFsc/V9EhsbuFeZsq6EkpnTQFSZEgHe5jLkZ4zYR8JUdDa+MffeY+SDS3o3ZComCpMgTYryEDIgVrNne7q5hm3z6548WyifdK4uRuoD7b5vnl44NWpMLfO8f7I9z60AcbjcUXrkbUk7nbXdOmc2iOfvnzF8WhB9jFGo4pjCFttRrE6ziunefVGX80kBbuOWZTvf//7zKVxqp08RKY4sZwg5xvaIhzf/Jg4DDy/u+L5M4tqqFVZ1pUmkdpW0i6RCTyeVoiC9pUh7djlgSimM+4dCAkZ0mWjDQFCRHpHpcNg2qVv/YdfI6RAf5jpx0LMI1Gd/qUNeiGGA+jAGJTnNyP7SdkPjb94/zXX15mrw8Tf+/KH5yJ5o0OK2ETWxremv7LcQmu2ojqyHaxIj80avS9+6Yv8u393Z4W4+o9jUoGncTsEs8RXBFUzHEF189ynSaOvj7z7tfd454vvkfIIayNH4Wo3UZuyTwPXwwQ8etdnxudGXffK3NFq2WJfEKIqX7u9t4Viq2jOf+YCm/mh/UmOK/6hXFO8/fz29TMa7P/SUazqxc12LK9PwZB8p6T188r104ji1qS64EqcG72hv9vUa3tf57d5QRnf/jBvv8p5Dzy/f28ouAzhtoLq0sSqv/ylUe3dp/RqkVDbEE99vUaVcjLzjUEiiWgcYOPpAuqa9EQkotWulwxqzXRp57MhPhPpPnzTbs6RxtyLhKZOScPW92bO1lECWSwuJqRgZl61X1gr2mlbrAzW4G25zNZ8OpKnkVIK0757tIqibkIccz4PAsHyjHv1zN1g98PjMiMElmUxRo9EpHUONVjuYVTysGPaT8YKoNJLc9S6o2L1hUq3WBKsAdyerdYiBMtL3GoQkWB3qdg1jjGiKdGasQ+q2rilV3PprKWgXUkxW4RUM5peiOZcG0Kg1MowZcbxypq+UpiLG4eFBCEYgtaqNS5Yc1KbrSutWcTX6/s3zGVhWxpOy2qUw6UjmrDom2C6NGd7bGZW27J0NY42UJsiei2U1pw5EXh4nOkKQ9iRg0UPLWWltGpNkgSOS+Pl6zec5kpvYr5eIXJ8WNjtJkJIvHp9sjohW4O+1k7tdm6HceB4/wiYWdT11YRgTqjjMDAyUEvjtK4MOXJ1taMs5dww1lJ4WMz1vj+eTO9YGzFmy2L2IdD9wz13dzfcXt+wlsJHn3zKMOw4LjNlbex3e3b7PTEmss4MWbi5vWIcJxZ36x+mBHREGwEhx4vBVQgOpNAt2qMZarfMC007w2AmP6aNPdKapQlY3QLDOHoN2XxvVaMqH/ZuwLSapjcF26PQ8/Be1Ybw0SnuNjgX1sI5ymRzxK/FapQYkteF7bKwqWtm/T7NeTC2lUvJWlU3eExnZo/VXGYmuDlD//L4xTt+7mZxECHuMykHhkGAgVaUVleyDgxMaGnMdaG3xkmP5ggpsC6FaTecJyJBbINSqhuOGHH0tDbm2ZyWVAyq/tGHDzzcF8ar90nBtBYxBq4ON+zGgUDFypVuNJlWLKhZO+OYOVztCVlYlhUtlkMXxOh8qBWjMQab8Dvqp1p59uyOMQ+03qnurLc1HDEOtnGqPRBRPKoD22xFhJwzKUXEuY3z43J+oLoqpzf31PKpndshEVPgtL46F0eCME6ZcchoN4FxzplpF1nqkdZWm8AWE4jHmEg58ivPv8hf//qv8uHHnzJOmePjjITMWhrH00LrgRRBm0WKSEhUn8Q9Da/d9Cy1eRCuCto3ZJbzpm8TMrCFqEEyqkTvlSFHhmFnFJHeicPANN36MCEaX757RmIQ0mD5SDkJQ85M03g2xZimkevrA2VZCMEoWTFGsmc1DVO0CZjTdrcgXTNwsCl2TEIIyRY/sUl39yllV0c5y2qGQj2RNNB0pmmAmImxM6WBL79zxc1h4NWHf0EvnZvrA9AYJqNcr13MBj2YsU0SLJQ5Z8LNSNeVT8pLdnlPaN3dOiNIRVplrY9EEtKLOf/FgWk8oLlByHYPhkrVBR2iufedLC/NppqRqVjYdVVhEDM4YnkgCjy+fMWyVCYS4/4RrgfeeeeOr//W1zh9+33aXvjkk8bpWKjMHEb4wu0LSMKPfvLIF54d+O1vfJ4ff/qG+2NHykIKGeTz9Fq5+5Lw+v4jXj0cyQPk65HleE+pym46QIdXn97TiiLFNKY9dlIeeOfmi7y46yy9U+ZORhheRAKRIBNhnxlvEr3Cx69f8d2PT9QVllUIoxLqp2hbud1dMYw7psMLJMDpOPN4/MQL2kRZf8hP/uh/Zx/NSKm9t5IkkI8ny+Msi9Ex444QR8qH90hU0jASxx2tLRZkrgnRSIwDRSr0SuiBm2nH3Q4oJ37jd75ijVnv/Od3f2Iow9m8yhqtmAY6QuxYk4r6RtpQtXvcJYuwdtr9R3z1i895/uwAoSMhEWMyqlPvVJkYd88RHYgVhtqNYRASTZSqkFr0qAZF1orSWdPIQ0k8PDbSUri+GYlT5E+/82fc/eEtv/Nrf90QAhdIBrKtndJAjBrfSU+awAv66KFgb28s/rWzK57Tu7a15aJZvCB9lwJjQw23rixAtpD1tTtdbDeapfzmkOwShe3oGJVZz68Jobtpzxkt+/dui0+GZmfo0tZCOBvqnO1yttBvvfxS8Yaqb+gemL7S18ct27O1hrQth82Qz7l5U9iVdV2o1T7zUgoP89HWx5yMd6OGagcv1lKy87QZz4AaCtXN5r60ajo5VbR2aLa2kKNLGjspCTnK5XVCcC2XnQtJ9oFWNxGZhvHsG2Af09kdwXCp3hRd/WpHobZKqytRIseKSVmwvWmZT+x2uzO1VEJkGDOqlegAt2H+HTpMcaSWylKbXfNgCOBhN7Aub/jxm49BI2tX8jCaYVRXUnQDO7Hms7ZCWY3WKU4tDiGSBnNKP63GNloWMwTa3h8i5NgQOktRUOHq4PmA1aiG0hTccGQVYT3NcLLao7kerRRjQMWcSNFkNLhceJiMJptGq3Fir2YaFiCMmb1kbm93jDkzn44+YAiYf4QNY0tvnNZqOkqMcfUwP/oAdECJvH6zRSN0Si2sZSWHzpgzo2sCH+pLSl+gC2M2R+L74yNlaUy7PVE6OZbzPV7o1F6oPTMNA1/80nscHx/Pa8FxMaYZBOppZsgWibVpIFs153Wwf085s5ZO7asZHwbLlN4frskx8SXtiCppiIQUGKfhjBiGEB0xg7UsrIvlC+b4VRDh5evXtGr6ztaMBjy3O9ai/PgnJ9b1wZA6LFM8BmE3ADRKDcwnm3YY1bSxGzPjNHB1MOAlpxHRwJuHE28e3pCzreun9cTNzTVhmDidThxf33N//wBqrrjLWkGN4QWYuSKOh7icZhsUESzCZJPvpGR1hRkOKnnI5wFW8NzFeZ4Riabx9yESaiaQvXXbe9zRNQ9mEhlTJ8pw1jc+Pabd+Nn94JfHL8zxczeLX/3Vu7NeL/iE2xCb4BOS4O5tnHnS4BNTtWK/tXZ+wIToGgzLwWndnMqib5I2ael87SuNWtQQHhFaXaF37p7dkaIQpZt2KQSz79aOtnamO+YhM+1Go1+sphdMMbJFbW21RtfORgFVlN00uRGPNTTNDXrMnUs9D/EyUdmcX21jMLQxucah90YMwR86zlQgETO1EYf8dyTbDKMFswpm4IPHi5jRTiAT6GGw6aVTenpXhhDZTZl5XfneR6/Yj4lWVlSjuZMFMwxIOdGqFUghXs55ddtlC7K3bMJpGp2a5A5hQXxCr071te/PyfN5fMobYiDnRNoCr72uG1xn0/uGZgYzeej9rEdMQyalxLqsZrHuKOLp4URvttAuYbHfiQXZh2Ewdy7FqM7qPHzVc66jl2cWZK3qVA01i215GxuwWA/15jf4UKNChfvX7/LVz7/gt752x2N98ABmIUd736mrZZYFozCLwJgybSseQmJ/uOVwew1imkIN/r47ZB0v+ImYtuEt3ELEzaUcbeiKtm4kthDojlyZgYZNDQmAT4RjTIyTDW1IkfDsilc/+DF//pef8i/+8H1OVMoa/NoWYhTy1QP3pxMffDjz+HBkXlc+/OBjaomktE0RzUXv+gbm+ZEmlVJhXTq1RGrvJBFqV5ajFSc1Nuim1VNVKis//mSmaiVEYQyB5ZPkqNHMj3+iRkeP5lS3GTI8HGeGUYGR1ipt/ZQYAoddJGVhvxs8J8rMXJrCUrx47sp/+4df4TBGTnK0Z8AHR2W+R3lEUiAPHp8jjdDNiv3SKFjWnQ0fCiKFJtjvOc5uBgOo0cdRdeMaWx83lzo8skZRUDNY6MF1t2qIhhKItfC1r32Rz33uzpzqmmkVu5i7otZKPS4UhBZ3tP5ghUAKEA4EKugR1YY0iDJSl3s4vUGbZYsh8PBwolXlgx98jz/7sxuQb/nnreZG1DtbDIO1Yv61C57GP/3jbxKA/+Kbf3K+p7fTZlP8TTf99C7XJ/9vDVd7ssae159tj7HN5vy9p7Ly8vVrpt2Oq92e62kHzjwQ2do31z57Q7ZRXs9MCXnSVm5DNJG3/8Ebze4NwRalwdYA6gWFVEcJzqYPtoD53eN/VxtudV/XNhpX9wJwLpXjUuki9ByhG31PYnLkRxl65/b6BkQZghCDkIkmW1M1O/7oKY5q56+L0IIVk8NGS9uo0WrLet/YOHRaXa0hEfv9MUZDtdUobkb/tX1xGk13h1p+pzFK7PmKKZ4pmzRl9a5dJRBFsPCLgIZODRdabIpb3ZGsoVWl1+KIojXB2u2z9t6Z62zrejXK4hAzswin1+bwGENmP40M3iQplsPYe+XhdAKEqtaQtNa8ObbQ8YgNXlJO7AfTrqUwXmYYHWJO5GSDqclZBNr7Ge2vrdFLI2bLZ42tM2BmIa2DDtlqqtZIOdjgeJxotXNUa/zezCfzW1iFFCI5JOiw1Gq5ggjTNJqsplotlwfTY9a6WkTPuc6w/agPid1uMMTdb09dBkofaKqsbTWXTN+/8fu/hYR2yBrI3nwNaaC2E4oaXTN4SLzvYcPVgehNCzRy3iiMgZs0obvRkFLEG6INaXekrBTX2dnzO42DG+ucjLkROiqN07qwnkzyNE7W+NRP3pwpvjHGs0P8si60rg4o2F4eg5LHiDahdQFN5N01tSnHow3f9/vJ31s/3wTmbwCn1YwT11JMcoN5YByPJ1tDQkRUjL7rLvQ5RZMbvbbmsHWbEExDImXTpg+T1QFWT1rOpYEa6bw2l1psDQhitGgbIVmtC5a/qI1eCq2pr63GXqi1EYJFgAXBavIg50ZQVc8uwa2W88q9oaPb+dhML9d1/UwD+cvjF+f4uZvFm1ujYm7UmS0oNKaLoU3XRvSg1FabU6usIRly9n2wm+CawDTt0G7ujdoaeRiY8sBFX9YtF4kNHBLWZaG1yu3dlemvxN2XYmAaJ9s0Wr1MMgR2+53RXkrFglyNGmBNnuneNhqFqtG4YtzcoWwtq549I1jo7PYQBDf4UZwiszmHhmgOal1pXZ5QVU0YDkrOG6fbCpSUR6etGNWvt+Z251sIqmtZiJZbqYIG35ibNUpWqHSPzzAOfa0eGBzcJRQ5W3VvNARKcz3ppjeIRvlMkd4M7QwxX+ilQO/uNKZmwjJNA73XcwEY/bqEc7bc5pBqjqgheCGwbfatot00lq01Hu5PZgXt9IczPQKLIdnui64Qkm2mdsl9Gt/rtg9Zro8XPzaw6F4QKbUUe58hmAYUYV5ny7PKk20SvdKkcjwV7q7e4cvxwLPPPSPdB65vb9DemcbBI0E8hsGLLzBL91YqRKOWjrs90zChwbQFBC82O4jYRPBnZsqdjy0KQMx4Z8MvovCf/eqfIAL/8/u/yQbCBDALbac9h5SdFm50ropwWmHtkbV28pQJKEE31BPurq/54MOZtcBcAkOeGGIkjIrSqKsQUuLmKtI08/GxsBwXQjGAuHvBX3tnLa4pE0MKtg0+hs5paVRtpMEm3/Fk09IujbU2hMY0JA7TSO/KaS6UVskakZRpGrkvJ2iV49KJofHs7pqb2ysEYRCBMCAh4yfc7qUgpstpFkvTQ2RdLd9slJ3FhGhHS/XmdTu5ag5+rSO9nQcTIvZ8CsXQMVX+8s01AL9283im8bxNaeTcM+nWRmzGSj0YAiNCbzNf+MJz7m6vydHYB6qOSgr0WlkfH/jo5SuuXyQmMSQnEgiYVCBoR1y3hmTK8ZHy+ACtEMWGZ/OxEBVeffoJP/7wx+ZLH/RMI++9EN0ShrOGrp/NZwD+2Q++hCj8l3/ljz9zFwcvoj4zYdbzp2fTam/nStX1Nf78bj9rJgoec7CuzCc7x2OMaMrgDZClt9n5tcbQ88f8HIat0dm09VyAUrMX8cnSk/e8IYyd7d/lbAu//berI17bXrLdd08aVLwZbk9//TZQoHOaF14dV4oKNUZbq10vr2a8bNfWEfOIUfczZmgjIoQs9Oz6bczaXqNAMrTN1srL+a/NzTlK9QGVWrOBudWaOYyYb3WrRlAO4YxYIrZvbayP3r12iMH69M3L4Dwv8dd306gmpuNki78SQTxf0TTcRm9vvZ2NR3qwKAJbjw2lDCEQxJxHS63e7JifwLSbyDljTq7m+GqaM1jdgMzOiaPQLn/Y4GMRDKUPYnubn7vuJlUSrCgXwU1B9IxyarL1VatRKZMb5nQ1nWrrVge10jyzU0k5254SO6VmGp1TXX2Q7ZusNwi9C+vixXuw+ylIwjxtfL3ozQfv2c+pM4aSeENha7yvyDQClUZqA6oZquWy1t6o3WLLVAOjXgYzeUikbjT7KEZDFH+OeuuEafTrbvVBTOL6WTMaAkheExX/rOYJaK+QklhjvcmVk2lFj726FjExpsjcqt9HnNeQZS1uLmO5ldGZYqVtTanQ1BG7IZ7fU/Qac7+zYc2URlQTt9dXxpzyYYzlfioNMd1tbczzYvIaicynmTcPJ//8RqmWINAvRoGigbJepEI2eDF2WIgRrUrTxjhmYvRINo0YP0NA27kGjT4U0GY6zRT8CitY9NLF2GbblIxefRmP+jTrzJ7wtzZyAAAgAElEQVTb6jt7jeY/E88XZGOjWdli4MQ2kPrl8Yt3/NzN4sP94jeGOZ6ZlqqSs28AanRF0725ha5P/lpTHpajPbDRivFWC0a9VtMsZsso2iYfIQSiGFdfRRmHTIiwO0w2WanVYHWfkq1LYz0ZwhFiOG/mIrC+frDNvFsRILLSWiVmm2raFN+alpSyNaChnhetlJJPYX1Z8k09xuwuXK7Tk2CblQjalNIuyFurTomBc7GyLla4GPwPp3X2JuPpjL1cLoJcCqcUrElQbJodtVE08HA8cbjK/NVvfI7buKf2wMNpZS0zD4+PzHPj08eZYRSS6yNq7zSne4aQXOfXWbtyOhn9o/VOzCPabTpljaZl9bReQR7tfcXormHVFxqfpjff/B0dMPMDOz+7afSm2xdKVXC3rrUYfWw7I9u5GkabQHa3pR+cY78s1Sfgdo1y9jgUtv1TkWgGI2tZ0K6Mw2gTVqdeqZpWLJEQLYjCEAIhjixZ+e3f/Ra/97d+k2/+RqIeO0N0BNqLwLAVkj4lR7YNzSjLvdrnbsvJNVb+fmM4f3b8frPR/7/noRRDEqNyXnSlmDsuQJ/dGMNgH6P0SSdtv39bpz98ya8+u+Pu736L3//732LMA1oWSmlosXzLpIH91TP+lz/4VyzHzs1wzT/4T75JK4UiM1GUpFaI7YcdP35zwz/6r/8H/vRP/hQNC0PoNDqhLvSitDEyAlfJ0Nhj79zeXvOtb/0HvPelHW09WcB4HojSUUlIGszqH0VbNfqLIxwvbm84HCZS3lEqnGaj1M3ziePJUOjoNM6AofOf+/x7RGa0rzZw0EroRpluBHqItGxxBaKK5GxodCvgxbciNG9ktm10WwO2h7g1M2zSrvyjf/m3APgf/+7/atRgn6znnJAQqI4WG2pja2LXdtH2yNaSzAwJxjgwyh7hNRFjEBCh9kdOpyN/8Af/B//wP/1t7q46bOZc8RWxczZcCaJAo8yR06mRaUwiSIvULQN2LhwfZj45CVMUpscIsUISGtERgGZOssjlHt6eXOGsfbt8xYdqqueiW33AuBUX23TpaZSFbGjeWw2meFNtf9uLcP3sDoDkTAPVwJTHc4G4sV624Osz/dSfrTOKuBVMT17vLWMcvAkLblzW7XmOwZr7rQk8Y5Jbg8E2L3Bjs+3aRjN76uoRByKkmFhqYRgiuxoJVXm8X329hNNp5jRbCHxpF11mxRD8bFNKxtGaLKKjwK2zGwdiFMZow7LR7/MmVtie5pVaTdcVYnQjEr+/a2E3DTy72pNiMJ12bybj9XVIMUdyH1OyNZBDHmyt8sufQiQmYV4Xpzlz1qIngg/fnFKvncP1wWKjuumWp2l39g7IA+eft49ue/g4ZFpTXr1+ZF5XlrL62qn0yWQzSQwhbQApcThcGTKj6iZ3jS3/b7u3m0ATZV5Wems8nmZqrZTWQc2Rs1QFIj1FSIE+5LNBWxQIvXO1RIsjSlZkT4Szu2uMA9eTexD0Tq0niMLt8ytCiNzNe+g2HEAwbaR2tEVOhwNdKwRDRneD07O3hmC3c1ZUsMFPhyCd3lZHwKB2Q6MDM5bd2Zk9f7N7rNfmtJy9FurravFJQdiPIzEk07Vi5nw2zO2oGo25dmv8gwR6EEQty7o2WGqzeg84cyBFLW+2d8ZsTdw2kIghoh1eeOPWeiengb5v8K6xt5Z5PSNim0Sond1Vjd6s6kHyalTtdUPNQkTUqMH3r95YOZrMbOjTVw/UZlrL1o3JEsV03jnZcGSMgQZMhz1c73nvxSaHMVZdEGNsgbAuFoVzXn/8/XQ1V/7alMd5tgF5Bnrg4WHZ2jy0KU2rIYje4A05U9aCSHWJvNWCANmlUdt+E+NW17Zzc15bJbhkStyV1c6Z3T8+GQPB1gbt58ZSVcgxYtqKXx6/iMfP3SxaQ2gLb7nsp2yC1e5uSjHZApC8YNr0cNFdj9S/TyTSilEXNIC4aENEaKWRolGvWrXGqtcV8dxEtulHL/4w+fvD/v088Qejmzp1VhxqtwKBi67tjGrZoh+inOt0qxfcrl227/cGsJfza1t/YJq5M2Tjv3sr+Ow8WINLv0xu6cFtwNULju3H5fL7fbAegrlZ9RgIkgwlQMkhcjVMPL6wPKz/988/5MtX7zKXlddvTlZLRVuIqnR6FetDu4XzSjB31uYxAjG4b6MYZbT1wOlhpqNkpxS3ZTVkSqzpTBLQpN5gR6cYbNQhm2CbsZHlQ6mas9w4ZOQ8h45nKoxtzGbPbkihNVkxBHZ7y7dS11mGnEzLEVczdQmeSZkT42D3yDbJyjmzxXX05gG3ycXXxqShdyWFhGSfqqqdrv0w8NX3bvjyswlev0Kr0B0NfzpMiGErGm3BXas1nZIHoxrit0HwKloc6XlqGfnvQxXVUZGth+79EofwpKgOemmy8YHGVq2b06JtDO20chgS0+EGDpGI604l0mN0kykhhGt+83e+zve/98jHHzS++te/SetvaHpP6IHURzQ3Qim8wzf5wpf/gO9+/31e3y/kKqQk7DQw1gBRuJaITIlxjLRT4/b5C/7GP/j7/Me//4w831NqoE835PFEZSBy443vA9oWQvPJZVkIywOSzIxGyWi6QyXRQ4TsQfK92+a1rPQCw67RZqMq/1e/8j4C/JMf/LoNlIIZVwy7HYTI6c1rQ/ux9SEGQ+e6D7UuPb2eEavLtRAkmgZqa4rCYAMG6xUFSbZebrLEcyexXTPU1xDLc4xp4vH1I8fHN5T1nl3ypqTjhZQNVY6PK7UKsVUTr4RIC4YWbk6hTSu0E7t3X7B/8ZweEqUvDFEpQekB1tPMTz56xXd/+IZfeydxYLUC2lE5CabJ7N6MP50Xb3fxll369GtRsXzK4FRQ2RZ4u3/FP87Tn9mazQsldHshcZdXWysSON3R7t+urjFyZCE6OnR2VvTB3saWOR+yMTYuDeQ5POVnPaOq58FecIQKkbOsQb2ZfDp43Ng62wRfSXRvImx4Crspk8fMzbOMSuArFHumvXBvJCtgoyMJwci7aCW0TujdzndvZ1qrdGuOCJGQnMq6NeNixkml275a1nKmzrW+0eosMN32YaWsq7lOhuQDU8uC7KqcVsvM627eNHeILaLNBy/REEmNkb7aezRpi3CcV9sjRWjaqa1wWmZSjOQYfQ+xzFpjPGVi8tgBjBlkzqt2XQ/T6ChjofXCvHQe60hyN+LaGqfjiV7VmRUWbVFrc0d0q12GcSQKjDkyjqMhc8PAhOkW+zJzOq08Phz5+KGxdGFeZkIILKtpKOdlQ8m65zInVA11fX635/Zqx+115mo3cnezJwZrtJIjRXFspFGQ0KjzzOlYqRWOpbE2NR8IjwOqzaiaY5oJEti5Ti7FCGr7ZMLM3VIOhHFHbCO1dgZAJHB6OBJUGGOmYrmUPXoeJnav5mBa/eM6Q0rkkBlipiwr11dXzPNM9L28qNBaYz6d7BqH/4+9d4u1JcvSs755iYi11r6dS57MyszqzMrKrHJVl7vaxu1qWza23NiWDW0J7AdANsbIQuIBxBtPSLaMbIHECxI8AAIbCwuLm61WG4s2YAss1O1ud9t1y+6u6s66ZGVWZp773nutiJiXwcMYM2Ltk9kIlYRUD7lKleecvdeKFTFjxpzj/8c//uHp+24hzfouIr4nZbH6xEyy5xmBk+0J0zgxT6OBKI0bgpUMxdApcJsTfa9x5ib2iGjrj0a0Dl1vZk3aWoXokZKIaIuUfqP9RMX3zFNWCSqOw6GSfdEYx9RqtQrDyYZQKuM0I0mJFl8EKouDfBUYrzWu8i0rbuuQLgcqi91aPBE7dc8tJv+vYrWbruP0ZEuaJzY7R62Bk34LFFxUkmKcJjN2E8ZpVLmq7uykaSaXSipKXsz7ydZZQcGiX1SBztR52k9RXe91K2ngMpuTqs6j4AM+arw/zeq1EYJn6DbWA/zj1w/j6wcGi/OsdYAxqNSoVg2yc1pbOhTrcZRSxg+BGNRQpL3aQ9D1HbXmFTBUbVfR/h17rw1BU0Wy10UfdbgLlnYTEesP5TTA987AgoEua9mhm5NOeW8GA41ZdlYP12IObRSqfXZaiONMbtFMWTxah9HAiNbrqUFLzkVthPELU9UYGajWrNdaiFg7Ef2SNWDQf7pFoqT1hHa+Ns4OT3EdTiY6dwDnqZwz+8Dzn3qR115/mV95822+8d132W5Ut1+kUFLB4diEnTpqScH3geaGFZwVM2O9grwWvwsFj1jPI0FKwlVh23dmu1xIUui7QBe0L5VQCN4Mg3TU7dp0QTwkrdUL0fphWr2iWEAntZLmWcFiUPtwUNe02AU18dBmViqlIikpj2gERGWxxqiqTYloA2AqSK4mhVEDiBijBZra+7OOBZFEDVoc/+T6ikdXBz7/+m/jk5++w8Xzgfq+9u7sqjcCxLIgpZInzZDXWklVa06riBmYoO6MivQWcFGdY7G1hJtgsQWpDYSINo1RA5B69J7jzwBOgxD1nHA3jutNGpVPLnj0wXs8+uD7dA5ympgmZZgTkETr4PwsfOqzd/kgvc0/+aWv8eX/8Yr3PviAd99XJzfnZiodM9f89p/4cYJ7wnbTM106Lk47Nruel168YNMFvve9BzzZZE7KBkTofOXBd77LX/sr/wnjH/4xTnaZd96/zwePMtvTM0KZuL0RPv3pV/jsG6+Q50QIcH31WAkaP5Cq48H773N9tefy6ppUK2OplATDZuDOrS27beTu8+fE7Y47f+B3W8+pyHc22otLB0qBlTjdIIM3R2S3mpaUWlXSrimuNtg6/AYesfpl/Y+Czybo8sb+Oxq7r3Ol+ibttkw/zoKIFRi5UqiHkd1px9nmgvPdC4zzOwSXcHWDj5VCIteeL37pn2F3e8tcEj54XAx4SRSyOmHSnPBG6tO3+eLn3+C5T3yCb/3mN5E+ESYAoZQ9999/l7/zc7/Cn/lX/ji3y9+nsqGGE73yPIAb9b2tjUBbz+y8VxHT+hIDQ60fW+vltfrjmLTJfRiYfchIz9u3eX0+VrkoVKf9CQtCR2/npfLGItVqSu058l6BWlm/IFj93XIP2vMoa5sN1+5/OznLnCzPsa3jxRQIYERmA46y1k3KsieaxBStS0/jzNP9Y20EPqsr9JQSaa7MUyaVQpozj5481RZUwZERLk629D5w5/yMLno664e3G9TMZc6FsdRljpaq2UnBMZdKStZWqQPxLKTd4CIhe4aie7OrWjbhYsBtAzAYKVLZ3j6FKuSkJngxRnyvIJOihmBXh2tAndS1TYVmfbahW/ZAF3XvzNn6tLX7JlBkh/fBgKYG4LVUHj16SLfZEoMnl0LcRPrNCSenzWTDcb7Z6fNpMryzYae3zeqJZ1MzqcGOZqTybGSrc6RpRmIliXAYJzNUgjt3b/Hcc3d4eR6pNdE7x9BHzeY4x5iEVDTCeXq5Z58Lj65Hpmni0ZNLvv3gPg8fX+l5EagVUi7Wu9dTq86hWyennG577j1/Tn/SMzx3gt92sMmcODjrOl453aiItAuMaebqcM2cMofxCsmZ6CPTmNiPB6p4htBzdXWtBCwd0QWG25HgPL01fw9hByZjFMsA55wYxwOnd28xHUbGnHC5kqXy/vvvqmvmPKucOfQ457i+3rPdDnR9JF1dM8/Jsn6ezUYz4pdPr3SsS2EYdmy2W9598IBaISeV//YW0/WbDb5Wrg57claiI8isyqgrrbftfCT6jsN44MnTa6acwHm6GLh7cRvnIiknpjyzH1XlpF21KqBS2ZNhoHZxAXg5Z+7du4V3nsePHnG6HTh7/ox+GLg+7LUWsVT2h5GeSLcZmNPMnJSImMpkxBI8ffSUmgs+dIzjyDxlcxjuFLCJZz6o0ZD3mdh7pAZOT07BW/sVF/GoKmG6POAcXOw2OA/d6SkgzNMEeOKwU2J8njUmwpHSbM+iOhhfH/bkWui7Xuv6XdbSr1wRNxNCJB0OSlg5Dy5Ri1h9cm+lWRZXfJxZ/KF9/cBgsessZdxAjNX2Ob9af/ugbHaIR/KGdfdcjqXFudUkNGVh/4pJRtrLeU/stUVE7K2upG0YWq2v5nlOFyrn7f8OTSRgxgDG+Kw1iJqRUAaoLpnBVZ0PqvPWRsCuyTWqbpTgjrJXQs7VCn31vWoxbtIbS8tXKctQlCJmjuMsPlXWM3hjQluyyXv9zqMms87r+UVRUY8wgAS8y7iQuDrMHA6Jvjtlu8vEIDhfSMVBUWCY0ohYgbhDpTfF/r30vzLTomJStcaYNbbLe1mMCmoLkJ1mFIpUc9fXfKFq8PV+hbA6DYK2AlGJsCxBdrsPwQfEpBp2S6midRG91euICCUVxEWVSlXsnXpHc9Esn7buQDezqnWqueg5uSKIqAECokC5Fm1S3PeaQxhCx+1NwNeOciVwrZIK4ajRtOjYSRVSSqt0w7kls65GTiYVdUYQLLVvHwH2WsD7oadILAgTmywc/UaWtyyfab9fGE2rbUFAZk42HfHuHa1Fc0Iualne3BLnOlPnwq2zW7z00sRnf/Ql3t533Ln7PCcXhblWCoWaYBq3PHdxwhc/+wnGR4/5p0+eIEEDzP3VROlUbtZ5DZjwjmETKdlxSHt+7h9/m9dfuc3Ldy44z9eMVGLs6HYDNXge7Z8wTnuGvucwz+Ssz2nJBWLPyUWH2wxkEbYlkItm5aSPTHjeevdADDO/O/cKh81wCgelFU4ZsFGFYr1xW6zN6mLKsjKwOnahgfKFKGn3sckpHdXmg7f3VVsr/QI6103UN6lBw7K+4Eth2FSee/6CV19/lS9/9R36ADiTxqHtbm7f2rALRV1KvSP4gqvgiSafVYAmccNweMgnP3GXe/du887b0WRGDl8dMQieka9/9ev8o3/0Oq986UXIe5wUnOvXLHmDhHLTdVSHyOq92nDdGMc1ewdWwts+U9uY35zXXkn6Nctnz/MyZm3RlOZ6rNmVJWe4/L42Kkr/a2vVb5XYv3FZbm3l8eHfWYbUspfF5JIti9rOYdVfsJyv8+pSuxpAyLL3bYYe6cFv7Bizp9/CTuryzO4utF1VFlXcbGKki5HooNakmSsXdT0tResC+w6s7UUQrRHPRVULXdB9O41thIVExpGIIZBjUs4za3ZJDn6pm7ftk/1SW6lZaO+dmoPZd3mn9ZHZgtJS69L2qJEGoDJUMdI1hkDXdwpcYxOGr+uhDrM+e6VkcBERmOZMKhmo9F1H11lPYtF5pR9rrph6xdFKZQQ12HI0dYboXlcr0UoShqFf1gfNcMIwnOh+mRJ4j1jdfQxiGV+4FTecV+HOhWbzxufPKVXY70cET65CStl6LkZShas5kUxh03nPeDiwH0cODx6TRLM5zJkheO6enyvZ2nkKlVLU+ObObsMmBC42A7fOzzi5qMzB43xPPagz9KZWfK64oC2wcI5ZCnNJuGylRyEas1PV8M154nZLcI4hKklzMZ0SQyTauiq2719dX+GCtzZabpG/qv+EGbqYjDK30hTnONkoAMmdGfUlVa8d9ntK0TpQcUqSuVIZfCDNmVwK2Rf6HpKRVcHIbC+OQ55xeOYxk9JMsFKZlp1upE+8zsyWIWsS2KdXEzF2XF1dKxCetPeptnOLlv3XmGSekoJ/WOKf1m9yO2yRTkmPLkTGqOVgLcgtBeLGanoXMjiS6kwtk60nmk2s13VRxV2Os60rqvJq/RNDuMKHYIkXNffL2boWGEGq8leYcyI4dZ4lBIud9NkLcbDYSIF1NRPKpjTEOSrl48ziD/HrBwaLLXAA1HQkapapBcG1qgyxNQEt5kgaY2NGW2bMHEPBegChMg+BkhQWTFMidpHgA5fXe+ZpZrvZEKLq10PQYmYXGr7QFVwzVFh0rC5azvThWu/QpK6aSarVTF0cNN16eykI1qDeNznLsayPZottANfkX77p8FUTa0BSbN9Zd7CysNYtG+GY53z0HiyTcQwErJhYCsFvNAsnleoSwwCbsuHy/hVPHlyy3UZevH2LkjWrWEVdY11wvP/BfRA1A9JCf+1PKbT7Vig5M82F4DuTIMB0UPlM6DttL1BWoC1FCL0ndg4fC+PBFteWCW5leE574o3J3PRiXGR2uhGAVDUiKrUgVKvd0iBit9sg1t/O+8DQ99S4GtvUmi3IKAybztgxrSfUmlRHzhM+OLZR2cDYRfpOayClFuac8HEDOVNQyVrfRYKHUmaVJrmgDqaCtRSRZc5oX83WV0jZY+8U3KoTsE6QigbBUitOPN6kSG1aaNDT5lyLYNq88GYwovJX5NkaKzRLygpIkDXwavJo5bMrJ9vIyXDOIRec71QWI0KHztssSr6EMPD5H3mJW7fP+Js/8xY//c/9GD/xko37MFDniTLD9pOf4/EVPHnvIW9+/dtEr5nfkiqhj9w62/LgMjP0jj7CZrslhh7fdXzlrW9xmUZ+8sd/F5/95Kv82lsP6HeOT736EudnF3SbgZwmQvCIeCjK/ldXkJQIvjndOpzrCJ1nHK+RIuAjh5w1myyivdNaNtehsmyTVnrJS51UG9fSGBPn8cv9aOOu69mS6b2BHNQUpmXMwsKXHIEbWmtrA0zrU6/E1jIfPFUCm7MrfvxLr1GGP8mv/Hu/QHXggm7kLgyc7s741HNnnNcP8GgQJ5JAtLbH15bt75EYSdff4tV7X+D3/N4vMefCr7/5TRIjdap0Jmf8yi//ItdPr/mD/+xf4sJ/m37/PZU+uoo6OKuRl/ZafAYsrsO4XGWTmq2/lGfepXLr0ED0M0cKR8OsLROaMYSSB8EcGhtg8+vjZUHXCkz9MSPQ7s3RuS2ZzRvbgCz36thsR0Fuc7u148hRj8d2Tvb8NgdVBKRaKQIqtdOaIK2RC3iG2NlRTAbqBlWEeCWqilTOb19oZkuE6LxmlQVy0YyYKpWdmXpp/Vqr31eSUs1URIzgsssuNseVuNC9zy9k3Crl1ctu+7uOTSOFnQF//Wyw/XP93JzVBVjbWK2GM00pNJmLYhfVLMVhtezBL59x3huJzSLva/ddosP5gJtAKHR9VNlji2VKpn1YpCJG6gUbHy23aeZ0usY7K6oNQffzGFcHSJFWcqLkjHSdKhaiAgsfdM5KbQuM+gnX0lwmsdYilXFe6+nSVEmlcCjqjpuTupJSwbnAVIVxThxmk8TWSpoukTrw6FFiP2Ue7ydwnouzE3pf6FB/CBcj718eOMyVq3Fk10devthy1keev7jQFirBskq10KXMEAOng1d5N55ShcPlSNdpVvh7jx5rBjurTPFkoxLY7aDqsZPTC5r1VNd5nGzpYnNeV1Kl5GputFZXm/Mihy4lMxfhkMsyp9ThNFJLJeWtxoQOxnmtJ21zpdai7VcQpAjj5SVTgeuDSY9BS2NKJaesreF8MOmz2POkSYir6xHnA7MZPSb7s6nXQlDH05oL46zxw3bTqfpNNOaplr33wVu84xFTIqlHiGPoIl0nVrYTyElwbgQn5uZbwAW875jmcXHuby3CYlQF3GazwyGUlIy0dosjbJ7VZTh2Hd5VuqjyU+fV4Zxc7flrPhKFXLNKpYP6VfS9Xs8qNBScr1a3+PHrh/H1A4PFNGfLmgHo5L0RColTowBZYib7uT5EbSNQUqRlyuxovtUzrourHkeYDolpngmho0PrPkRUxunDuhkLYgAWcM04xiQ+FhS04/vmBOqcsUUgTqzWRgFliwicP7ZDd8v5edbN4NnamRYvuKPMgm/5B7s2ZxuMvqdZHB/FnVgm0zUZ1rpRIQXvtOWA1Ep1lVoCZXaQPNvOc3riOO0C4+SMIVUpYQWryensWzI1C12vjqMxeEQCE1ofMPTR2NVCHjVr7LwjoMyoa8x9cAwxEDqHD0LyunE284aWmXROazEG60vlnBnt1GpZR3Cim0cMjlyg61ptYrVWHgXv1CxmGJr1d9tYCzmDi55hE43prdoqpGqz5hidHV8D2812o2DRqdPtNAe6foDcc3241CxkDLgIp6c9cWjZN5W2ar2gLBPLYbWpNo+cBXFtZh3f6EY2qP07C1h0WAqkBa1ipIjNqxvB6jLh7FlrE7FanaIzEHsU7Dqbi9Wku+I0MyTqRgCS9D6bpCegLph5Es63W/rzE55cfYWrKTBstnQuUfqttueoFTm7zeGQGfdapxSDp1bNFg8xLL3lXNDnbtN1arG/O+Gkf5cA3Lpzhzdev804FuIWXvnkPba7U4IbNIhrhJDVIxafydOkC1ApIFpbGHvPNPaUVMFHJIhKxzFzoQZE7NnUiWpuiscAAstmiSxN35cBtWN4juSM7bjOWbbq6FVllVoaWbV8xIBDW2G17q2tSRp0ShyY0sjF7XM+/6PPsd1uISdroaLmDtvthpOhJ4ix0TgNJsVq0xqolYgjUutMV6743Ofe4L0HT3nn7fd5cDWBU5c8J555vOK73/4G3/j2E167FXnRRSgjJTic+GUOLnMT+NT55c1rtznd7E4+DAFv8GMf8Y7f+rW6ddcl2HcuaGZSfovPLKe0LNzrD41gOX52jq+t/eC4prKRMcveJKu5zfF3NIDY9qV17jmr1fNHg2H7g/cG8tfJ00gqLNQ2WYqBcVU7BK9tqoLv1aUbWVQOreeiw4x/nH4+3nCy5kj5IGuyvTkPiVun7pLVrXZZSmA0sC2u7fM6p0QwZY0nl8xQWxslzcA2HwAlh9BAV2SRm5ZsZJ3de1X4cKQkWq9Ba70dXVDVQMXaWvk2E616vt0723ecqYjaPJGWFWtzxFpBlXZPZTVRWlqxqDXmUioTg6f6o2t1UEuhqISGRrRWW6MEizVicxRN9DWw8UHPz2o/g0Pd0rtIyppBbZna6+sRXOTpdeZyP/HgaiKj7aq8FNI8qewwZ54+veZ6nLk8jBy6yCCFtB3o/YYwdGQP1+lAyjPbkjndbJChWK9AJXtzVdVHzsLjq2vmWcEiwH4z03eRTaelPNyJNrUZDSMAACAASURBVPpCl9QARczPwQczI6x52U/wDlna3hRq9mQRdqwxZqmapdb7qI7+VYQp6c9b79c+aF1rm86lCOMexqKZ32LOprlUxjExh0SI2js5zR6qPoPV9rWY1WyqZDXkGbP2Y6wV8jjrw1MV5B4OWgKx3XV00Vz0i/6uOcor0NKWb7CSMmebSDfoHC85mtN+1pYxRcGtD1ruk+ZqirBKmpVw7ytAQdyExzPntY2ZJnGEedZ64a54HEoiRR9M9adNHFsZURf1XOd5Mkd9PQftFVmsNEDXkVYq9vHrh/P1A4NFT1wkpzlVSFrQ67Ms+6pzZemr533btFvmDm7s1q7QmTzDB2fF54EqhZO4scUVa4hb2WyD2kr3mh3qBjV2mc3yGLHePWJBqHdIVebWB3Xra72dXAgcDgdijBTfAnDNjjSmUrP8el6HwwFE64zUiMY2hkOzB9YRKLXVMqrEzwdtyBu9Z14smFmCubQOjJ6DVwcwzXAp69nae6jxijGTtWs0uroP1kC+Fh7VSzabyO/58de4fT7wy29+nyfX1+xOOxDYXxbSXEDUoaoLHZuzM60hkUyqia7riaHjbGtyms2GedaeQH1UEDcfJoLVK1arHfShox+0zYX3Hn8SCS4yJ5U7SOv3B3TbgXvbQRmoVPAeck0468/WbQNdH9nGgbl0CnZFF53oYNhsGAZdyLzTvoFj0l6YKUc2m47zi1OmaTRZbcT1PSWrlErbZBhr78xCuipLK7UqEC6Zzke2sSflSucC3cbz0t1z5qsnfPCusKUxY0KlSXMghu5onmvbE++DWZ/rLIhdZ4EfJkuzt7vVlOGGBeRxaL08S8doQzNp3sGfe+c5zTy2rGPQYvMGWlpQpYy8MB3U5KRQcF1QmXjQALugIMAXTyVR5hl3esb2/A5vfGrLt773Hu+/8aM8d1I4PHxEF7YMW0+dZ/7+P/yn/OIvvUmtI5vNGWnKdE6zHVf7GZczU0m4uKXrAsPG4Zk58/D8cy9y8dLniOeOey/sCWHAuS01CYFJs5Qmd3Ze6zdLTgz9icq2XSaYymGaEsWdIoMGTCUVhq7TIPNoLAWoQfN4obaAw8CAybSDN7t/KeawaaRScMvt0EyV06C4AdCj+wioDbs7Nkpxtsa0fox6/z16HuEowE4+Uk5u8z//zNeI4YxNf8G9W7d5+OARs1NH5Rhg6Bxd1+OyZkcaqM4UXKkEC0ILCQRidwaX3+eP/YGf4BMvvcj1k8f87M/+XYJUigvU4hhIXD94j//gL/xlfvpP/FH+7B//NKfyPpIqnak8ai1Lls7h+Mtf+nm9ntIaD+irHs3hlVrRV7FprTLPI2DdRvFo3WzkS7sf1eTgPqqUqyA0Z86AX4FAi/bdmslbb5Es7oPewM6Hvtfeu5A4rHOmSesrz4BFVIWjMVPLft2cI81MrlGNzbStiGYamlxSnKMzHJRztt51jpTVbTpEbbydasEFHetGJQVTASGY5b6AyeqrHpw0V90r7OLaeDX3w8Uwq2VFj0gCca2BkJV6eLcQLG2/1tpADf6D12OWmq3mzUgcu1fB7k8DXs4ANWKZuSOw7G9kMvV+tD5yqwuusAkDXfRLGyUrcScs+ll1LdXAHIq5eDbDuVKt7Yx3VK+lFq01i8OvOLr9Rxliren1XqWjaHZJfQHCUnLigvavjMvaJDi6Ze3WuMFqg73WMWrdr4GeqlkzodOvtfENBq42vSp0QufN0K8SRCWGqWqLjKtcmIHruVCzth6rpTA/vuYwJ673iXeeXDE93XMIkToWpg5icGy22kf79HRnGTLhhRduq5IrV9I8mjLMk+ZCqZlpf3Vjfei7qC7t3i2+E6E1lre5oHX3GlfEGAkOuqXsCDSr1kpQzN3UgStF65TBSIdTA//GznhHydlKqnT9b6qFeU6m6sHIAK+lELky50QWbbUyp8yDR08Br26u00yu1uopZdKke/bl9YFpTox5tvUuWKlSNak0OK8qqDQnvAvmrApVPOMo1sNc3U9r9eDUJwEnSM5wmNrqYnPY41xknNW7YZ61DKfoQRuW1TrpXIxYvqYZgikRtrrbt8ne3OoBk7EqAaL9tA0XGKEaj9rTffz64Xv9wGBxs9U6I7fGRAt4qkUYx4lcMrAxuZ0G4nEbTWpiTKmxvuKC1kM4T0l5yUAtLTdctFrDkWHTs91tCV43l5Qmimims9Q1QziPrRA3E0Ik+kCqWZ3aZDVRCKEyzRnvdXHX3kTKooaW8j9KNqSScKie3TfHq1qhqnPa0iQaMRZIluuoRWuEdFPTvoWgVug5zct3C2IW7tV6ArmlsX01CYK3Or1aExAoJTOOlSqeHo/PM7HruDjd8eLLd5m//A4ex3g1aq/Hrmd3uyfQU5JJ27xQ+x3TpIuh1tYooyUOxnE26YUwFw3ILke1W249rISKS2op3Ud1x6ul0PUWONXKnLVGoNZKmAPj5X7Z9PuNgquSZkIIxN1AKTCXivORaUo6ZrHn/oNH7HYbQtA6yz5GtpstD57sVXo69AxDx+GQedxapjgPeGLUFhnjYVSJqwXLl1d7QgP9ohLG5IXBpE1VPLgJnwr/9OGb/Nhrz3HmXuX0ExekKSnYLYWck35XxDT+uoiG4Bm2g97HaI2k24rqzGimBW5tE0KeSagc/cOyRB4Lcp32l2rv+6nHF8pUezV3okmzzOkvWDAoTt0nc52Y5gPjdCBlz5gKcXOOj44uqrNxT2Cqmf3VgXAoDKXyxiv3eOu7l1yVibMqPHz3e/TbE1585fNMk+OdB9d8cD3h+0hHTwJ87wmDJ12ZlXZnZgQhqrueZB4eCnfGa9J8Sc6n5pgsHPYjbAbCRjOLJEfsewqFOR3worby45SgOvo+MHQVfGbYbHExqjlAFwhpgmTZHbP1b6Sna73BLMpb+vyxBhNVKks/M8M8pYFzA6mtdmrtlyn8pZ/8eT1GLZoFcWu1XDVwudb6iWWt1+/XDHRkLLf4W//TP+TqyUNcnbh8fN/a36hUKc2J66cj8zxrc3kXbA1zzN6AYvWWLdJ/Zxko9Skh3edik/nM5z6N/zudzRWrL68dWw+//qtf4Vc+/Wn++T/0BW7d+QTy+D3wmsWjOHW8/NBLPuJnWBal1Yo/i62PCJFl/J/5uA2Pbwv2sbGQHbAF+VofsLLbuCW/upgXLd9XlWBZksIiHz6/Z36wBJvtSwVWcFOX91gezoK7Vo/X1h9tV7Ia+ujzWkSQUpbm4C1Y9T5aNqIgVc3o1UANxHpINHdmt7CpzmrAFVToAQ0cuza/dd1s2bG6gEUjQ2y+O9+AkYX6LaPXQHRgzcSL6DkcjZ/uvU1Sq7NfLc28kcaFYq2RxPZR7DJowaoduwWhVcx13XrEOlrtm97/Ko5SEs7qNouiZpC1TlnbQegYNDJOAXKx9lACXhYTN+2XacDE1oEmJleworXRUr0CAls4atNBBzUWAgXUgsqsZRlvWeZTFSFbyw+HWIWNziMxqToto+q05UFtTdUFLq+f2FF1zkmdtUbWOQqq1nECEuHEG7gPAdf1bF/aLffii2+8zJQy+1TMTVOzVldXB+ZUmQ7CnDNzmnl8tadkYQg9OSe6Xc/QRx2JWuiGHZ1lo4JXsOFrQaQwFa2/nXIim4mgs2tLJVFLNrM6jeOikbje+laqz4UZRgXPoN3f8EFr82spVvZi63aFcZzsGTbzsapDKjZPW7YzBGEIXtvRbDotOwlKQtw97ZHqmOfCPCfL8jrmVHj0+Jo5C+enA1fXIx88fqxrgY8ktCZYE9jOHLgDzun+0DL+1SvNFiTQFUFqxqExuZoC6b0tVVuddRZ7ePQcnT3v/dCjxpXZFIKOaczMU2Ky8rBsEum5ZIt1VU6dzDhRCZW2xmk8qc92XDjrYN4eStp/nFX8YX65j9ps/7+8/sN/91+WxjJ2XaQza9wuat+lGLUOJsva4FwwWUUpbLcbPQGTkzSZSEoKBJpUpG2q3pgwRGUysQurYY0I2urR40xm5M21KgaVaHjvFllqyUX76Pmb8hTQY2B9dBoDKUuTUcxowDdFyMJ8iVSGbruwlK22sAWQ3hYosSCm1ta3p7Er2ENkDWldUHt9Y8jB4EALMgxo1yoEcfZZlRU4j4IaHIdD5stf+xbfefv7PBqBKng5IEUY+lO6fsvXf/03eHI9M6aqtYTOcz4EiqvMc0SysN3AyfmGy6sZfME50WC+VLJMWutVtwqm5yu63nEYJ7qhp+s75smkD0mdsM5PTzk73dGHzOXTa2oflCEjcv/hU+4+f46PcLhOPL5/IJUJ31XOT7bE0JFSYZoSwyaw3W45PdnRec/JNhKD5+GTRBoT2177hucys0+OOelm5ah4SUS3BcSyGsq4qtuuZsV3uy0hBsqUSBLpfCY4TxbPfkqc73r+2O/7ST790j1ubfdcT5ndyQmm3NKaoZwJURdIXTyF5m4ZQiCEQN/3i2Pu+nS2edGyTbIGy+5IDm3vaVmMZqQATgMdA71LVkxUmqQtJDBTIlms6N955x0ePnjA40ePuHV2i5QzV/u99rmcJ1JKiARc3FKnK0pxVOl58S78g199m8/+xO/js598nrvxkhIdl+Or/MzP/h1+4Rd+gSKewoaHj58yjzN3T+9y79YJPjzm//71R9SkrsK+Rnb9ludeuOCP/KHfwSduR/r8iMsnlzw9FDZDx2c/9TJ375xx6/YG0AzEdDVavVDkakyM+ytEKqnM9MNAt9nx9PJaTROS9pva7AZOL074id/7JUo+UOvMX33hPcDxb7z/gj55wtJ6ROV7gVYb7VxjlC1IdG5xxbzxWrIta4bkQ+0e2lsb8+00w1FwlBjpKjjpwFcSEznNlPGaen6bp/4Vvv6Vt/gnv/R1/uP/8m+w7T1dm2v9wPb0gv/lf/jPuSNvMZQ9znUqR3ST1jBiPdv8DC5SsuAlEF3humx4b7rHT/+pP880XdF7nUfZO0JwnMbI1ez4t/6df5t/8U/8AZ4bvk+fHxMKdCqDaNH8mnFqryMAWGyxC8eYsAFve2/LrdR8s5l9M5Ba6hGPvqLVMYFbCL4PPzMsTqTqyi03jn/8DLVraIDv+D46py2iGnl6XJ+HwDxnSi0MfX8jW92+R7TIzI6//m41t9EhU9v7Vd7Y3tuM0tb3HoHMo3MstRi5d3OeeoN1C8ARaem544PeOPYy/0tdgvZj2SVezVhabR6o1F2JVX0mpNalB+wi3G73p9Vb2z0rbvU6WL/LLd8NLK7Xuoc6A4htjPyaNbVzcc6Rp6QkgV/vuY6TSXClgcCVTFzHiuXvTVTd9nydq7KQgu1cBFnW/AYIPxySrfFHA+sfesfRz1oMoj+zrLNd6zIXjRwRYa2VPWZHnD4ziweBsNT5t+tbTqm29mdKeqv3gMY9DiUmQoy0QKYBm2yk0Dhqb8tihGpK2dpk5aUso6myck4LyNc2GuqXUGslhEgIkWmayDnTxR4cZJsbh8OE4Li8vqZkPW7oO3UrL8XuhSqLPLAbBvrB3Hml0vc90dRlJjxWsoJ2PWoYI96Z0/x6P2rlxpzB+ueKb+PucLT9X2PQks0FPmWNIbpeAfesgO0wJzKew5S43B+YSuHJ08w4jaRp5jAlShVSNtKiERW1IKUwzYnQdVQH45TIxXwsnJXSiLr7zjlRkiryggHiWiubftDMcqk6220tolPyRUTrG+eS9V4b6AaNu6NblexOVBqPc1zno17iH7/+f3lJevTRgcf/y+sHziw+fnpJ9Dq5u1xUWoc6hIXkrVFvYJ5Hur5fLL/1P4FaLNjCwFGoR8GygsVFwmmuU23TUECpLFHnW61dq1cyli0nYtTeezmrNbFIY3SFeUq2cawylgbUNAA0bbwTzbi0wkvnFhOcdXPXgOzQJKzLHbEsloMm6dGaL+1bJ5ZdcG01xgIHafb4mpmS2qSwq+WCs3ESjF2O0TaBxvRibluJbV/55CfO2ewTNQtlUnY848l15PbzG27LKTWj0ksfOQ/qBDkVkwa7TNd7njvbqYTNQwdMKUN3wTzPFFHJhGOn/ZLmrIAcKCWoQRaWNfbeWpdETs/PoU640OFDx/7Q40rGidB7x8WtHVIHUp7oY0/fBzZ94GzX0XVbus7TdyrvTLkyTYVCwQ8wV0EmISdHMgmFc9pHsRZHkrbBV5MVOXp6uz+VcVQ79v0+k8qB6JXJG+fMfs7I3VM2p4HTWxEvPSfdhi5GC/RR0xsflvqarsPm3BoEqnymyVvWgHDJQBw/eEdB6WqWsUy3o1f7ueN/v3gMIvzU4wtA2Tz7svU4YFlt4XR3ggdOdyf03WCBpQLK1BoUV8tSjrMW7Ivg+shvO7nH+x/MXH/wLs9dRFIf+JV//L8yPbrPFz/1SZ5cF956/4qStfXM5bRnWzf84Z/6o7zwhcJvvPlVcMKL957nhefv8urrt3ntFlw9fcr77zm2u1PObw/kmplLYZor0wSpCsEL0atR05TUjTEOvZpgzSMhBDof2PaDSsT7HgEOaaQehFJmkIoX+De//8LNLNMy/rI8d22cj0WFDrSGTI4/s96S5S83Avib67bDsgGiINEHzQp4AXxBzFSJriPsTogXd5HtBa5/CYa3eXj9cDl2FQ3+nQhpTqRakRgtR4FmQsSpGy8V7yyT7bKqOZwwz3tcH7hz54Qv/Pbfzre+/S2ePL5P5z2lJASnLVoRvvu9+/zqN9/jd7wRuVcKvnjVwLq1PcSf/nt/BIC/8Yd/bh1D6y1qKZcbQ3VzcBRUCKKue8eT3gIxdfb1S+arZavEr89cex+sgXZ71pYSsWdIlo/697HMVIPjo3rGj7gE5z2xC7hyc9/5rV5u3TRvvNf71X2x/c7fmHCrW6iqPFUOiYExm6msvgMsY7HIaNsBPuocTf7XAv9GfjWjHD2uWJa0AQcrx3CrJNV5QcxOWBZ1xYdrOo8dytug3vAIMNCzAnP7v2sAUqXdrT6yHpEO7Qk8XodbQK/7fWtV4+zcjvZ9GlBmBdZH57nI0hdAsHoNLAZoho7XcV9PYb2W9b6ux715327en5WQWuaP6BnIAmq5CXbrzbVtmQl2Cgs5tqBiWqCBoCYyxTKuea4rOAIYJ43RjKxR0k3PM5eb+5ADSzB0i0oLPOKrKbEaIFbQH5ozp8Vs4Oi7qllkhM4y531Q0up01y3AOYRIrerT0K5RUODe1FR6/4JhHat9diyydNqzZY7+WlGwGjkqQdUIBdHaygY3q1dyU/TYGmvmBfAjICYhFckEL2x62PSBk62uV1UCufYKtKejODmrEVQ5qp9VZZf2l9ZYSOd7SkUdiK0HaiOhctIWGZfXB5v/fpGHb/reYt91g/NAv+kpWcuAqpFuWqPsTf1QLR4vzCmbGVFZ1FBf+c37fPz64Xv9wGDxen9gMwwqsxRlG7x3RLG6sVLpojCPCSFQjVxugFBJP5vYXhuQi2CMfZt8qwy1Wh1BXvTSQt932heQJm/URahkdadSuakGwbVWimusa9G6hNTAohbvSq3MkxYXx6B9axQV2sNj2u2WVVgXw2o1Jdn2kxZU2IbrzKpfhNB1mjVcFnPr4ycrU+pNV19LWgKEtsiWKoTg1k3eqzNt7OLK+gk4c5zKORN95fbFhhI9ea4cnC7bh5qYp5mLWxu2/RYvjulQqCFw7hQsjjh72DMeYecGst4aXC2McyFuNxwmLWz3PhDDBo/2sypWHO/9oMGMnxEg10KuhVS04S6Tum65aFLbXBDJeDp2wwahcjgIoGMXoid6Txd6W3yKOpZlSJNQfSF0avmc5oqSVbpAdl3AuUghL2xglUJOVrPWZBkF1etL5em1khRdDFpjdzgwpsLZyYbtaWR33lOvCn2nkp3aessBsoD/lYTQANZxnBk4Zun1va0GY5Wo6hueeRg11tC6sOOsjQWw//UL7yGwgMXjKLK0gznd7KpAP/TEGDjdnVIFhr5fzHqanLbUTK4zcdL6xklmHqbIa6/e5et/+6s8efcxt+6eMXeRf/B//Tw//iN3+PQrLxLdyG+8e6VuudFzNY/sa+WLP/F7eD1t2foDeM9v+8zrvPbai3zm87fpHvwG3/zGzP37kc3Qc/fOGU8Pe91Ivae6TiVY4tkOg27itdI5TzcEhu2GaeqhqglSCJE5Z/wwIN6TLrWupNSENgRag76wRJI6Ri2M0uGz57XFDKKhljvKeKw3Tj503wT4r772eXDw53/0V2/c4hWLeqplwWq1BuaMiEQKJ5RuB9sLKlv2s/Do8or3HnywEFBSTdZcocyVXEV7i1pdbHXVrlfXMecUXBZzvywOcplwfsvZvQ2vf+YNHlxe8ejJY3x0uKpgUfM+le9+7z1+9Zvf442XP8ULXqBUNZ0gf0RC8XhAZAHYVeQmQfLsS8QCynAUEK8tFEQEH/0CKBxurfG24E+OnrtjZYmDpRXKzVNrmWN3gx5YwCLLodeM19EBlnDfmSTUAM6HgaLNkwWUHGX5js4RVuOWG2oE2jXfHK/jw69/HAXzKw5ZZLbtehxYrffNcRJYnCPLUqtogNS75X1NEdSG3y1XYPm3NhYO2p1flroGthroO76OhmSOH7clgL95PtLea9ewEAXLmCtwa8Y1KxhaFU03x98ydfa/xTTnQ0SBLCDt2dNvY/FsRvHmEi7LfTj+2Uf9/UMHOAJ47RCugeY2n4/2nFZCIs8cu53f0jv0+BrEaVeeVq9mIKxlrVuWP5eMVO1D3Y4jVie7Vkysc0ZlkYHqbJQriDQC34jVRlCImtS0M+v62HCWzQMrb+la7LABlCwK3lGkIEnfV0WzjBrzKDkqKIlQbCyq3av2/C1zS6pmWUWgVZfa+iLOPrPMOyO1qvpMCCr5VIIyW12sXx/CYAo7Vwmd0zjEHId9aI6zjg6/xK21naspO4rkRY4NZgBYQbOYVXu1hqh9si2LnIu2hXvw+FJbTlUQ58g1MwyWLZaWLVefkNPdljTN6gpr91jrkbV1GVKtpjJzPY3MKZNSZkqZKh+DxR/W1w8MFl984c6SXYuxtVMoC8sWLLi8uH2Gd57c6vwCgDBNe1YpXiTUwDyaO9NRsKUOnB21atYljZkqBW+Zy9a4PTpP7DvTPVecKzxNVwvYdM7ZBFU2pT3kzq1ypFaQLlVZeEHbgjQTm2qMiAYNKwu27ElWn9jGZXV6sqACyKJ9qkLblJz+fd20ra2Hq4vdtrYAUdAwNIdQO2aIgRA2BN9RSqXmoku+q4jz7K8r33znMU8uR6YxMKfRZAnQDWoSNB4qj/NjNKIK5DLzNHZUHE8Po8kVBs5OTkhP32F/yOxTZp/VsVSy6vGv9tdMU2LOKpM9OduS55maCpuTM5x37A8H0pw42Z1wfnaKlJHDfk+NoUUlDGHHMET2+wPz+IQ0JwoFwkCyhrQOlcXkNOJDJMYN3kd8DHRd4KTPdH2nzFpRBrxzQTPFjExpYpw0A11qous6okld9nvt2xiDsn4K9mC33bDrd/ggbE8HchV+9LOf4d7F83Ru4MCsduVNbuP9Mq9a/6BgLqBNttM217aptDndiBLNHtQbAS08ExC2DMUzmY6FTVw2Nwv4jnobrQe0uiXnuLq81DHPmaEbGA97Lq9Vhtr16ig7zROlZs7COTOVq5p4en2fE9fzzve+w5tvfoP9ow9IB+Fzn/sU+xT57/6Pr/Lgas9UCrf6AtLThY6BwPzwEU/37xBOT3Fxw8OUGN/9Pt98+oSXzztuXbzEFz4Xub4+sOs2RFf45Ks/wsWdC7bnW23ILQoGxTkolZgLXey0NqvztiFbvS9QxpkqEDef1f3YAkxxjt/cTEitvHqtNdYhHhsNHYEZuRFesTycHKu6DFyyAptWlvT3334ZAf7859+8EbytQLSjSqZSQCK+ZMrp8zydz/mVb8y8/f0HfOu7v8jT99/j7/1vP8dhnCnVsYvBpD1JG83nAHTkyZGiZ1uzklJECioNbHkqTyS6AFkUEHYRXIHxAfFsQxh6XUs9+Ooo1SGhEn3l1772C1Ae8pO/88/w+gsgKVGcgvAlqFqm7bOoTF/hmUzWKr/WELuBo9Lm8VGQfKMeUOw7vF+zcHYODeQsizcsALI5EbdzVJDjlr3NLdk0WZ7DJi9c+vR6v5ALbT/7KHDawJj+3dYC5RcVeBox2t60zJElyF+DViVxis291SSrtZCoFgAfZ8ZKzeuJPPO31uqiSYBbza0CDj14PpImLteNEpjLHGbNnuhFaWDZXE0bsdpIGTmaI/p9KwnaAv/otb5WLJuDc5ScTMFhAM6yTEtLISCY2VjJWQ3r7CGVLNaC4vimrPNigXfu6Ow+BNp0cFy71wsUbaBLwXAb/2MVib1xBXc2R5p50bGk/cPZ6PXZaOe7rlU331uKyR6P4hJYy2VuypLdMh+PiYU2HN4AfhWHC/HI4Kv1T2Yh0GLw+HhMfBxdT/tcIytsXLLk5eqaMmccp/U5beRdI2DsC5ORvkrKqImd9hutixdFKQqORDCFk41DtJo/I2sCEaFSk6rncJFqdeDN4IgG+EVrwT2wnw8We2r8WIosIDTXarWIHsekM0RWqXLoOo33nFK53qmbrbbB0fVmnjRrp89wXYBzpcne6zJvvW/PWLW1LCAE+zyNstHxLAdaGVYthWLOpv0Qma6u2R9Grg/afmOa9DpyzpSSyVIY+o6L7YY0T8w5aau6EKiTttpr5Wl9F7U0ywvb4Nl1PSm5Dz8TH79+aF4/MFi8e+eE1tsuLCxuNRvo1SEpGJ3YVXV7DN6KXaxXXuNkY/QUa2bf5KQ4RymOYeiXzcKfGYDqVleqBuBi163BcjX76CaD8Y6ONVO5SEdwNxbfYCLqYhnMaC0UdJHTJaX1dwKOsj/gYndU5L8urmvwoGPkBGLXajJZGKLG3sag505VzbqP0WQsCsKbDEsXMwAhxl776GTNaBXnuBpnnjy95q1vf8DlPvPkUJA6+2t/hwAAIABJREFUcfv8tgKJ/UStcHV9YBgC3ilDHPrAtz94xDwVSCBFSOLp+yfcuog8vB65uh4JxXFy0muhdhKmuWqx9pTJuRADnJ1u2d7uefJEGaRhc0JOlceXTxnThFCoIuz3id7DEB3bbSCNwvUoTJPKKZx35LlASSoxURqZLkbu3L7Nq6+8zG4zqAV68JzsBq6vDzx8/JiUM05g0w10ncNHzVIfDsL+cEBkY3Ww2oMxdJGTYWPmQTMlZeKwodSMJJVdnMYT+s3Ay8/fYQgZSXuQEec1GBFZi7sb2e6OGG6VrRiTe8TuPrtY6jw9lnosv2GBiy1Q+yhAecR8/pnPf3P53X/z1desoN3x77/2Xb69mSxGcot7nojwU09u8a995zahi7y1nfmPfvQBOExGIjg3KRtbK//S303c+vK3+M633+e7f+oe8x/8LFLhA2+Zg/wcIhDeuuLkL77JPAp3nz/nW//F5/gLuy9z/+k14+9qphL6XL30M095/Ws9v/MLn+T8p2/zt9+YEJmpEhm6+/jwEM2IVv6zX3iezgXwgb/yYw/47m42aRrLcyjA77+/48+9fZeaZt4aJv7K62+BY3FIPIre+eu/9pnlft4IrH7L11HQ/Ww2wK33a/2lW4if5RxlrWUsseJqJVRBmoHX+cu89ZV3+e//5s/yzd98i6vxKWWakSKcnu3oNpGHHzyhZKE4XYtymUlFuP/kmufOenLJuFKJ9BrckgloY2jNUwvZ9QSXCTVAifipcOd0w27o8GgN52imkV0jz2rFVcG5zkx6jDRpjPZy2fZQPAMgW8C8EIY3gIO/OfYWdN5s2tR+bi8fFjOXo4fhxssbOKg37skxZHF2YjclqIuh0fI2JXsWwNjmi18zBMf8wfp8Hp9/vTE/nENdxo+C4SV76o/qHVFi01U7BJBzWvc7H1aTF+fQUgi/SFeP8OfCgDZQrLhsBWHQjuHX7I3dy4L1GXY3c2kLCEOO/u4WALpcvQXADQys9XwNUKzj347TplDLYKy3WG7cblnAjP1Z5ebUE81g6fGPwRnQ6m6tBUv7hRPM6XUdl/WA63MtouhKKov8tB7t4zrQsoK7I1JBbPodv26SBuv5LGSUESTOyJW2tzjrx7vIho+uHeRD33NT8bIa1B2dyUICiCjAcK45v7dxdKrcOTJ0auC2XdqiiHJH66xvhmOreVMIQZ2523m1liR1JVSbI7vLyWqT9ea38osQHH3Xm+lM1nmRtf9fLVXno3fqYoqSMLmIrTRlieVSVgfsWVaw1W68N/JbSqWURB86hsWBF/0uqdQQ1OFUHNINWqs5pcbbAyrtHUsihEjfRRyaDVXSJBCCPqtK4qikc6lP5Og5qS3ru7aucSyWS3in/vM+KGgO4ohZy09C9GxunSEXZ+raW8tCPAloW5CiJpNeWp/LylSy3v+ka78KEJqjstMepuKQAsFF+u5jk5sf1tcPDBZrEmUMsiBWzI+DeW5Olc0ptDGfujBo6rsum0DbLNQaG6RKU0gtC2YraNZ+L8pMtEUp+GANSLV5vEpJtLl7s+heM4nrBtQYRf2adeFq4G3oB7UDl1Ueui78ZWW1bMN3ZvDjHEqV2cKrjlWoLr7p4GsljWkJznH6Ph8USKcyr0yPCNTU/GzUQdI2KQDxkVpUVlUpqm93jpwL4/6ai5OB3/+7P08RONue4H3m6nLPmAvf+f4D3rv/hHFfl8VTZiGK52S7pY+Z8yGw6Xum7LncH7hzfgFs2Q6V7aan6yvjOHF9SHA9IsDzL7/A6W7L6dZTa6KWxG674bAfee72c+y2n0TqxDge6IbIZjOwG7YkKcw1cRjBpcy/8Jkvcna65dHlQ95/eB/cHQ5F7aa9V+nww/sPCV6PEboAVaXP0am5y9nJBu8cp2c7DtOBkiu73QXb7Q7qxLbb0gV1FRu2A32nEg7JCR8dQ68S6Mvra3a7DVWu8D5wenGX7WbDJ25v2SLUvTYgb66/y8uCynYvtZmvaDH3+qYbGZGbGQx/FDi3Q65MqM2C5XNwc8Nt89vCNPs2/VlOefl9Y3alscLGaIfg2WwGtidbbm0nuu6JBjgmpRMaEoYvfelFPrX9Ak9OXuS/PfsqX0/XeAebGCkVZtwCLL93rY53YT8zTolxSqRpJjoFRd5BEMcwXfHmV94mDBf8vuELnGxnRBJEBTYt5ATh3ssvgdV79P1TYqhrFqg9lgjbbmC32cBu4GTbE7onGtitw2kDrWRXtfH1HwE0qq0BuEUsfAQJZPnDQasS1MzR0b0DkFxuyB+bVMuNWp9dHFQZOezvw8HzjV//Bl/51f+TR1eX+HFDnTNdF6jTxFQO+Fw0m0TQLKavVGa+/mu/wUv3PsvdfoOrhdBF010WqAu/rj+LGhD08Qypnnr/ff7sv/onmabC1375n5BTIjghu0rXe+aDQ+Jt2NzDEanzrE3FvQJQbcZ+BJhN3rZmTj48vsuEts8c19fOc9LSh7gCNM3MqzN0KZWatDQgzWkBQbjmJNiOqw9FM2JrMlHXngkLSH1QCXo96pmXs5praEbPDsRq4gGrwqDF8tJq5X37/U2w2/aq4yC67XctmHVOSZ1Ghuj1W01X0M9p83P9+zSNLL3Zgl/6hS4JV5Fl3dH1SP/UJvFa/xkNcOaS7f3FavDV0KeihnALwBPNujtAnJHEHF1Xy2bZwDg80YcbpFnL6LZxaQqbOWe87a04DWjbJrmucwJS6GKkhriMvSCEGG+st1ol4Al9WGqopOYjIlk4gjZrLMBNwNaWaqEZ8x3FOe16muy0gVl3E9QeA8ybUsebr2Mgpzi2Lp9XyaL6DaSUFnCv584yTxfw7Y/JgPW7xY7X9oxGaB+fo7Q2YM6IF4Gry2ukVrq+PzIwtCekPQc2x9s9qCI3MupSldRtGbr2LK0EjRgoret88Z5hGOiqLHVwc9VnVtcLdd2episO44GT3enieuobsVQSXd8z9FozqZk7MyYU0fXUoYt/COR5wlv5iYjgfNC2vmLJjKqqH1UxFY1ZvSeXyrSfKUXn49CpH0a/6dD2G7MaOOqlIlLZH0ZSKqRcKCWzPTlhTsXWAr2/uahqpLf6Ti9oCzu717mqZN85Bc7ByhzmlBGHmQDOJtM1WWvS0iGq0IcITtuS4LAWcZXoDYBT1BhNhK0M+KBOv2r2V6hVGPpez9l7Ss6klPD+qMXYx68futcPDBaF5kSn/9Ji3RZx6cPpRfvNNBZUWwLoh9qCCaszWXvVFrS0Yy/B27HGnmUB0sXMrz88Yuf0C9dFt8lR61Fkti5kbgkoa00fApTOwN1RTkcXGUWD7YRvhPHVDF5WFjBYHdzNDUd8xdeb37UYAZhrmPesMro2JkHHZ7ZMqGubgQjbTU/fd2zt1pwMO6okUp6I4rl375zYaQsQDf49rjoClR1bUqmcDmo1PWfHxcUJt09O2W5GDlNm6ANdJzhOSbny6PIp85zYbE/YbbYMnXAYHePkiKdo4/Og49d3A32M9DEQ+0AXBlxN2ldLCiF6DnPGHSZycWz6EwIDfR/x0dP699we7tHFQNfpz5zAPE7kpOM7RHWJHXxmOOvJ2eohRNuBlKotUxzCOGXm2dN3HV0AtevxdJ0n9wOeSHC9khl5Js8CsjHDOVks/I6ZbUTjZedW1vY4ANL5dzM4OH7KloCgEQvLrLsZQBzj0+OXiPBXv/wqq+T1wzVOf/EbLy7zVgQFEC14BKuLLbxy3fHX33wd2+H1mfERvLX+qCOEp/z4519m+1bH3/1Pf57vvvUbXD18xFjhcq8udalWivc4ER5fTez+9C8TJJMPE6fOUbc9d++ecdZ7QoVHtdJ1nj/45Dn+9a8GDukKPwxU31l2RJ/xmUywzP1f+sZLUKFaQf6SiW/ZAe1lwWvThr/2a29ArURzDlwG1nttyWOjs/bIa0Hj0f12mmFbVoCbb2k3fnlHCzDbV2mWYf11NRBencnsKgiB4DqVWxPIs2OaYOsE36vUqcyFMqm8SiwwLd5ZrlB4+7vf4d23L3j5ExPRVyoHpHpCs8Nf5lKEPCPiyC5ATTAeOHs+8iOvvMjZnTs8uv8eG6ud8agk8LU3XuV3/M7Pc2sXFge8QMGVbKBxveZsgVADD89SIDqv3TIXV0BjGa9GwBjiafLVIsUMTJpuxRmwsLvjeGZtX7+r1c8twPQZcHhT/rd+LoajmnFuPmPr880SFIMaC2HM/43aQXf8pAv8P+y9Xcx123Xf9RtzzrXW/nie9/t8+dg+tuM6dtyvJK2bhIomtFCqtAgKEqWkFG64QUhcVQKJRqJcIlVAW27agioVBBQk2oJIVajbhqhJ0+LYSZzGcY59zvH5Pu/7Pl9777XWnHNwMeacaz3vsYRkVOQLr4tz3ud59l577fkx5hj/8R//UdvusNBMBWv1UEesOtzz7EowtwSpqtbTTVVxKdFa89SPWynDSgFqKECVuKVWP4p5wDnn1iIqFupmDSC7vr+VyVpqyVzbN+s67bXta/Xc5edq/8pTlnmq/863xmyp7WcFHLjybLlt6yWDtQR+qplpKn1TfWhzLjWYLR+y+BRt5bQ5dqt5KFFT+8ZtHmvWsvWkXOz2twsIb9XSCh9ae/X5bl92ztRAERa11RYkru5Vbf6HNl55XROCr+MlsgjztHu49rn18t6RpSyj6um1l2ibi1vsq/IcDcMp5QIWgBWfMZuvWcFNV/j87exMVbTFxt7aSJrS6raz9ms5K6I9rmgJiAqnOTKTcGKUSqNh5kJJrxTPDCrMyT4vFVGdWRMSi81RrA1aKnYbKc9eWnGo9dTVaAHunE1FlWniMFnvwyrYlKINiHOWXRQq3mKnmYrjNEYTnYuW8ex8sCwsmTEvWXCXnIEGGKsgqyUwKiVZs+k5hNAVgMHqG12wUieHY54nNKciemd7PMZEUnPYQ1Hrj1JYJKr0ZU8nb+CbJsumT3Nq49ra1fn84U3wveu75vqOg0Xjn5u1q/WJKeaS8TGDnsmt8aYdXPZeKZmIap/qwW1Bom2uJpGdS/+ygizlZH37pCA9Ug7E0C3KqdVIVlSsGkvnHb4gsmue9vp56jMZYmyNYKsxtXO8ODXtfeVd2bjd7WirGY2CeNXv78SVvgXLAWfG0C11NFSDufxcBYS0cOkLiFTYMQmyGT6rQ1IQh2rgdH3k6U0C3/HB8dp6Bp5qZm5gu1Fe+dgewfrndUGKEmKPD57dpkNQ5jiTcByuZh7c60k5EUqMnDVwcXVFTAPz0CMqBGYenJ/x/pw4zDOuF3Y7yyAOg2M/WN/LpHA4Hbg+ncpp7phvItcp8kun11sACPDOW98ii9CFQHAQJPFbPvUiYb+h703BNHSOfb8x3r94xmkiayJ0nqHfMk2R66tr5ngkzplpmrhz95zgnLUhSIk4BTwmTd/fPcP3PT0TKSoSBkiZ48WRg5640+2J9zISrBC89tUqs9jQVKgCAGVt6jLPqlr659VDvIIIKwdBaVTk5T71U8qLVxHKh50sDAwQmvNXM5TNMSt3i3mhoQbnoRT9i4g1QS6gBFTajrWtkGkkn17n8w/P+dzzH+UHP/vHefXtG/7sf/nnef31dzjFqcVLrji/T68PPL05EWRGRXmae8II0Z247jsGr/zzf/D387u+8HnubC95evEO4c5dHEI4WiY7bzzaGf1FKOqbuwFxjnw4mqR3CShScziE4EJhHhQGQ6q9Dsv4xYyjOExIU1Jsk1OGWytAU+fsQ55XCVlcRehpIjh1fuMqCFjHmYniEDkMgWZgMz/mt33u4/yBP/Qv87VXX+fXf/kXOR1G9vsdcxxhPpCTM0pRttpp7zMhw5OLJ7z73jvMD3rwSsoHnASyBDxq/RNFUWa65EgyW9+3nCAdcU+/xo/9zk/wsz/2Bf7e3/9ZDhfXDAjXV4n7Dx/yR//wj/LP/tjnuRvfZ5qt4bWfbqy9j6s958x5n2P8UDxdaaZag+cC+NUxMdpfVd60dzc6lBW2Lw7Hao5qDdUSxGk7J1pfvKyWCaCqEa432ErEpTznrfMM25+5BiQru1WfsWWUytxbSZHWRn5t/hdQtDiLQqOQVnGNWltfgSS7XybPM3OcP+RzNeZgTKgudF47a7WxaGCpgXQl0+prMFZphCx1uinmNk6qMI/xdgDTgsLUzss1nfRWgC01GJYGbuVUug+WbMg8WdmJ61zzNVRZaIjSlgxdCHgR5tNIrTps49KCDZvHOWbmKbZ7eufoe28U3JWz0qyzAjVIWq0B56QBFOveLRUMsvEuJTSu9n4stFS0ZdvXAEYdpzomS5hP8YsqIL+IOpW4jkqXXi+H3Ox3XXEWqJsaZ/Fp1HpbaqlzrQFZDdyo+63tn9vzutkMt8AVyyRra8sibZ7MbzGK6TLG9XtUwEak9qsuNOfy+wYCerc8qxZ77OxMcE5IYtRTVWVKiU0fCHf3lk1TFoXv9h2XAHbxJ21mY1rEYayli/mUOc6gSswzx6SkZNRMVuJPwdXMuyPnTHCO/WYoAnI2h+N0xOEIO6OcGmPO9sKcTG02Z2MFHKZToxXnaHX4YHXGqfi5PnhC11HbY206oReIWjLxCikK0tlaEsHq5JNyGE3Yb7/bEeeZlCJHibYGxLK0zptfkEsCyYfOerxqJoqCRiIZwbW9GitQIBZwzjHhwrdvC/O967vj+o6DRaTwyQtt1IkHad3qyuFi5+AaZa1nm3hak91yQ8vwSDXgRRyk1DC0jVs+2wCRGoBqe/2a7lOv+vm+HALNLZYl6GsUVVnS9apqC7+etO2U0GbkDO0RKOn6ipa0YLE4qS2rWtzB9njFjiyZ14I6Ko2uVnt/udrjR1fPTS7UU08oqB85ExWOp5mnV0c+uIi4fseVTjj11NY+N8fIzWHi3tmWPjiG4Nj0kMQhGuiGjrP9hoBac/aYuXhyjaD0nTCEjtMYOZ0yHzw98O7FjIrH6cx2E3n44A4xKdOUCCq4IGzv9ux3HfutBS3HGfKoiI94F/Bu4HgIzOMNSWdUTI11miJvvP/YULjkCaIEp+zPNtw53/Dwzp0S7Cq7bcfDe2eIdEg/oAK7YYNTh3cncppJWRjHSOc8D+9s8V1A08ZUWLNyOp3onLDpOvo+wBQhBCR0iEKcrAlzSqYw6TG1r1s5O0MNlrnKeYWoFgf3Gb+2BYrtgFochuqELe9ZFflrzWzLyoEswVP581qwTzFfpgU5eusj7PAvn18dMXNG7GAS58jiS7CoINajKYtHLh/jnPDpj3w/3//bfit/42/9L1xc3vDkyWVx2ARRV8CmEqiWeUYUzZGLqyPxTHnpufv8xO/7ET796Qe4/BbHaWYfPNE79BjtwbOCekq5FioO3faI6yFmfM6EZBSaFCNZcnluIeBwmgrFCHBSZMqtDtKLR1ZMgLXT1qZLl3kDuFWCptXFKHu6bXvl2diT+ro1ap8crjNwaC6Kyhzf4WMfecDv//3/DC/9+utcPv4W77zxLsPQ03eJuROOs0ddJGRP6byBqnDv4UP297a4oIhkavZICmAhxfHMGoEzVGcLFBFS6OHyTV68+yk+/1s/zWvfeoNf/dKv4YJj2J/x8U99is988jlevBOZ37vEifXC1RSR0rBZVfkT3/dlw9e+jWNQ5ehrn9vqZLVsmNSgztZ47ZloVLRlSlrEoDQgxlgZz37mUjPWKK7NLZTVWWM31gxka1beqjsrBdzQwJJ1KE542cftu66+c+1bJ01ooi2CJirjXaFmlueTkhHXLM25aoGKKsklpIi8pLgElKEAlDlZRuI2u8Ac4FSc4BhNWj901sy874qD27Lf5QxyYmUh1FpNC7aXUo9F9Kc6oevgZ/l7OVOdM8CGBVyNsao6ZqvzqtTETAOKNWemufRUlqW+co4RgmeekwmxlM8Vil+RzFm3dgGlhUMqwYU3J9hpOX9rkFf8nnoum6+z7qm6bP5b9Yrtr88CScvvhAo0LdTTxu64dfc65w1CKX7VEixb5tW1x2lVlSXAQldPKvWokuVnEZy6AhRZ5kgrYKD1PfYMrR9jO4u0nXvUxvZWj9SyzreDX+HWl6z+V/2+JeA1YKCMVXl9LMJxIoK1AXKl7lSL6qs9t3PeygnIrQG8OI8P9vnbzVDYERWAsbOuitFVmmsurdSq32bCLpZhnyezQ5KVlMSEbE7ZwJtCP405GjNESt2/KN1mIPgev7G+kDkZdXo7dKiaorz3gZwyx8kA7Tnmtq+zCtnZ/U5zLFoLlvms4LBg4Ldzznqhe+jw+Kq2XnzMeTagbJSZMSr5CGnM9D7gdSWgI1bH6KoQYF1TIgzDQEze1Pwx++ii7fGUTEjN11IwcUtQXbQNvnd9d17ynUbyf+E/+uNqRfc1eCoGZ0UjaRlGtXS990tTeQsKl+ybYEjm+nFWcWQzFrUxPVlb64GUc7u3Yvx2L345uOp9VUtxcq2hXD2rlBqh5pcvhr4FZ+XbuiWebAFguzda6hbM1AW3apNR71ucbXuVttdWI+v9ygCXp6xDYXVIpu4pTow2qh1JDEVSA61ICaZxZpwjsdQNXV8emDQzdcKM472LkevrGclCkEznlPNeGYAnkyeGgNLhUsZrwvXCfEwEF9kE4cF+xzSf8L3nOCV+840nXN6MBO8JXth2wZ5e4TgeTbY/wW47cPd8YzVcPtMPnrPdvoxd5s72nDvbgXv7zpBan5nyBG4ApNTf2FhdXx/JKfLKR1/i7GzL1ZMLUMXlxJwTx0LlEPWcbwObwTNse8AVrEvog6moVjq0K1leVdM9885xPFySfEfSzugUOaJkvATOthuCU2KcAL9C6aUECFqoXdIQ/Vwdp+LM1f5j1Uuo624tQc8aSFgd0MtBvwZKGmxDdRXadqoORXnNuqZSlVsQUn2PamNuFgcce6EvwZdkNvGcWRIalEkd7z+9Ij15l//ui7/M3/2Fb/C1b3xgCGlORPWgaXmGckDvOs+cE5//gd/Bj/7ID/Ov/Gt/gE/276HHJ5Ajc/b8/S+9xuP5yEUEInBMMGdymiE4osJNzGQPd84GHt0/51MvPeSs99zZOjYlK+GdBcyDmFBU50v9m9ge9j6gaZm7OvaIWGawBDwtaC82wa1/1lU8Wf+7Mh4//Y9+LwA//cM/C9QqzGIZVnZHVIkkUujo4wE0IPvnke093rgUfukrv8F/8ef+IldXl8xxJB6U2UVCUsTDSYV57viLf/m/4nOvTNy7/AZkh/TnJHeDVw8Jc4QK/Utih/psg6xCwtPPR2I3MD/3Q7z5RPhPf/pPs72350/8yX+LFz/ycR5uniDjG3QB3Gx1kCQxavlcanCaTaRRPNegRT1Lbo0VbVhKwGR12bcWNHWP1QBkubyU+rvVBymsfl5i/txess7ifHsKanNoy2fXAHf9+zXIYG+quxIqO6eBQ2W+l+Cj2od1cHfrU83urwMSqU9tJ0f9nhZwxiXoq3amrmNdrWkVcqK0fSgO58qAtMCgPI4BAbnRfU2NtgBYQgEiaIGIZTlKfeIzAGvZbjTxEgRKr8Ml5k7UPVJRVcGYSLHQc11RJ085QZPwty8UvNWXazY2gWYxGp4P1JANWRqrl0FESo2VZeur/1DUVQuooYoBJNWeLwbAss+rGrs6L1KDrxVFWLUwN+qgaFkvdjDcArpzVmoDxVxogVR7LqUmsE7fCpm4HbjVgV+C6nX22gLz1ZvbGtAWQCsmoJJSWsDJ8h+nNn5VhdPWeUbUrWr1hfVSr6rGNKRmtfZWjBCjYUr5eSUU51x7znme7AnT4tep0qj6ijLPMykm+mHDHC1LLxhoYnoE0AePL63LvPNWfiBL7Z/R0m2u7Jw1IHROyuXhRE6Zm+PE8XRimmYOp8RpTLz7wTXjlJkj9H3Hbmf9yff73jKhXSh1iAqaTQTOO4ITOlf3AFYW0wgWjqubG+KcGGfrLX46zZymaLWVmL8zbHvLqIvV1gsGmvR9Z7oDgy/1jR5UmMaR0Fs/xZwmVJQ5G0AlpexJUaOoKnhxpkxfwIHj4YAPAS8O7z3eWdCpOfOX/uYv8b3rn+6l8xP5f3/V7es7zixKCM3I1QyFq6hncZQr8keq1M1qi5aCZXMOKgK2UMLWfP1U0iKVh6+l6F51QYGrobb+PgUpkYUSSzuQivNcuO/N+CxgEpUCJGJ8baozUzbAQu2w1zkxtb2ai2mHHRYAL16jlPsuTdobMbEYLydWKWfPW57BV2TZakUquknWkp3NiEtkhbnU6m22WzrfE8aZFI+4AGfdHWYyl5OJEXRkLjyM13DvbscwOHQ+ofPEJx4+IhbFi5yUeFLEOw4yYrUlhpypeFIaiPOR+3d6Htwb2G56NMKDez2X1yNX12ORLLds4PnZlkcP7ljQnc2BfHpxZJwS05z45uEDttueB/fPynfPxJxI2ZyBeZyJMRJnaytxtu8Z+i33TyO7ZtS2uGR1cOMUOR6PXB2FGDNzKgfUnJjSxP5sYOh6drveVL82A6HrCA72Q2AIAzcHZxRgd4N3js0wgA94FwjFSDtX1STrWi+BYTKE33s7ZOwFtvjX2ZWaG6zrWQpIUhtIrwGHBaPQttgsK7RCWJbVdQuwqM+3Fqdc//52epQKyVsAtQpIVSKObE6ABpJPuDyjG8/bbz3mf/rr/zfHyxuee3CXPnTsO0fnjM53FYuiXaX/lDGMIkQVtnfucvbgAcMAH7z5dTqUzWbP9eGaDx6/z0kyhxHilLm6GJnGGZHItgtc3Zz4+rc+IEqAaebOfsfHHt5lvwk892DDft8TfMcLjx7w4M6WT758h/2uI2LPojVAT4rHEPFMNIRaAjlpq5erFDqKymDd5xb416C0HvAW3OTVnP2ZH/kHNi3ZxqMKpYi4luHUqtroOnN03BZRZb58j/T0HR7sH/J7ftdn+PF/7sf4h//4K3zpy1/lYTeAQqJQ433Hvtvx3KMd2/EpPRuyV5I7ItnhxWP9YHP7htSVAAAgAElEQVSpSQMRy8ioJkQFlwPRbTnMiW/96ld5/Y0Dh8OB6Gd+/u9+iZc/8h4vf+IB3WbHdtezldEKdnPE+5lPbBwuHUkuWMCkiSBCUsvg1AzgApjcWrIlY1uEN25zPG+hGi1OXN1PhZb1o/q7UvbaLeEVqW3D7BnKXnOytBa5tV9YXovezpLUrKI9grS9XosVlpYr5RZArXNi9bd1BmYhoK8c4tsvXykqawkeliC5nm3VOfelXZCFKjYgUgMZX35XA8U2J1W2hmZfVCp9LbczmuJw1udPudbe1sjc3r1kcutYLdarBdG3Om9ay/NK6c1UYLoNGIplZ9tYlOeq/kA1c4myyMSZGB+RmlGepth8kVqnWbOfTgQ3l8xVsQO+gIzNTlPqaCvtHyCBOFNsrqBCLu00UkoG2KzsfP1+qYyZVJuT18GpoikDwaZcs5WnsGSX2hqlMl1skVsWuXyeeyb4lBoIG6gXfJVFou0fyyLX+bZfN2Gf5YObZ2T9FpvkbFmwcQGNEKvllVq6VOe5tmgpIysgUvxIKb5mnddVwF3XQtZM8BYGRS0gwApA6MqzW81fUdd3jj6YcE1rg6XW0zkrRqdMcyvRqIyxrJkuhMWnxbJ6HuF8MHX9h+c7VJVZYxF+Ua4OI3NUxrk8t9qaOJwmJjLzfOLyZiLOicPpSE6lLZiDEHqCc+x6zzAYyO6dlRadne3oz7z5iSLWxiMa5XiOpvR6itbS4+L6xOl04vL6gCJ0Q08Qh2gkp9oqA2JSttsN283A/Ts9m96z2Q4MvWPTOwNMNZu+tnM4MnPOTGqasledWUF7lsQ4jszyYZDve9d3z/WdB4vOF70Cc4IUYyu5ooJaavdtozTJYG0HVN2kzpmTvXgFtffRQikN0jWFMmsEWgyiCqEbLMorvPBh2FKbrEsoDVyF5kQ7ZxlH1Qo6rTjwYtzrSqMx522iCyYq0WoBaiuAcoA75+iEpnTVqBZUxBFT0lvgQeI8G7WloKvBe9Tlcv9yuIshSPXocVIk1HUJSkMwZS1NZwQinU/kpFxfXDEz8vTyinc+GMm6IY2PQeDi6WRBrLMC6W++9h7Heebq5sTNzcR2v+E43TCOStft8cGR88jplOkHxzBsEBwXjy9JMRKGjpiUOZeanZzYDh3PPTzn5jRzc5ggRh49vMvv+B2f5d03r/nyr7/DsBm4uLhG6HjwcMM0nbg5XCPScxqVpD1KpvcTu8Fz9fh9Ju24uDlhdIeOFx7dI6bE3/7ZXyUDL7zwkOAyFzczm84zVIqEwBRnPJ6HD+5ydr7l7DxwZzMQLxM5X7MbLNAN/hKNIz44hmFHxvH+00u87xl6O9h3+w3784GzzZ7727v0wRG2IFluHTbAgujKytlTGhBQ/9YoSsUptn8a2vchE1rLZdZvYXU+3/pt8b9XzwFLVsWC0tVNozDNE/M00297UxMs2i+15m/oB3RWOu2IWLeofb5hAvIN7GXgpZef5w3e4dU3XufmeIO6CbwJCL2wGRjnmcM0oskoZrNmBoTtIIyHA4/fveL6InPnle+ji0d2Xc/ZsOOP/dBnLbjKJ/IMKYkVx3shHkZ0GtF4JHcOThvSOPLVf/JNbk4zrhOcjJDgwVnP3btbdvsOJ46NH8wxEYehwdaDU9RqWuaUOB5OOOfoe6vbTWk21kToifNsYIQ6cJ7DeGScDdgIPnB3t2foO4gzEizj552hq//ez/9Rc5JL3fI6U/TvfPZX+ImPvk6aM//g7U/yX//aD9j+r8h9VsR15I//Pv6Nj/w5eOM1/tHbB+RH/gycfdISL77Ddxv+zM99Fh8/w4+/+A3+7c/9Ct5F3r5+jv/4F38UXVanof4oqPDTX/h7vHLnKTpn/uqXP8HfufrtfHA58/iDp7z28LcgCF+7uMfz41P+hcsvcpjgdPmEn5F/H8QRJNN75aX7ZwjKeXfgJz/6VX7fc183FkjogFLjJDO3+LmrhW112kIo0UR1LKxVxxK8PBuCVYe+Zm8q0EIFL0Va8AMr0LDQ2VSVtGwe+38NUMvGqvNVQYL6JKLy4b1LDX9KcLkGcZBb/1e02ZO18wmFAcHiGKdCl/OuK5TQmr2yzM3Szkmt35mYimk9W+zrWfagZhwRsaReXoG4xTnPWe3QV3M0l0bispypavYCcfg+ANLa7thCl6Iwu4xBrVVTMNE3Z9+7joWqkkuQq8UZRWRRaa3TUh7PgGzzAwxgVMbTRBVCMWNsv3cV2OF2natztdUFhK6zNRFXFEgskJCyZlKpnW0Z5VVA37J2dc14m59UVeVZBYwl+KxlL3WBVxZMTrn83YGzOjEpz5RyRopQm63RhZaZMRVfnPWetNpQQaT0Oxa7b/DO2nJpXq3IEuS3QLz4SwXU6rue2nPb5nHZbM4JVYuwnXFejOKoi/0xNeO63gUp/lOKBmDXNqJzqvXFtgZqTaTt21W/SfH2HAKuq76Y1ecjWPCNEjqBqmruS117eV9OVpaA1to+C+bNx1Tm2YIp7x1Rlp6mTsSa3Gcru5hzQktbkxSFlIyWee/umVHaXeY4HgjB04UBxw6XrOQjl2Arqgk35ZSMll0EDo/J6pVjShyPI3OMvPvBE1LKJoKYIWoik9kM1lu6K0KDG688fHHLEO7Q98H2jbe5HU+Jq5sjN8eRi5uZ4xSZkzBNN/zGN99jjolTzIxTZJyNRtt1Pef7Lf2mY7/f4FF6lM4L57ue3nvOBk+393RdIJOLPfre9d14feetM9TkeUUsu2WbKSGFt3L7yLOrHjatz6H9sv29K2IyqRxAFSGqr08pcTxa492uC0a3yCZ7rVBUxnJBIevBVekz1fku9WLtY6X04SqU1RJctia+pS5RS16/SlIDDXmuds+Vg3gxUgu11b7rUh9TADFEqvRrKo4LKAWpqhyg6niIbxmNOnSqJsYjMtNq4TrFRSFPjq7b8vDRHhd6VHpcyjx3Pzb/JKZM33uOUyZGQ6I228DFxWOSCj7sEAfTdGA8TZyOM9vzHT543n6n54P3L3Bd4PLyyJSqOIGCZG4OJ47TzJQSopnLw4lvvPEOx+OB4+GGzgdizPTdwO4scBojNzczjx6eM/SOYbMvBnnGSaLzwjjNSLDM7H675ZMffwHNmZtH90lqLTK8KPez0V5cVoLHQIZ4YNt1nO+2KHA9nYg5c3M05dub44wmOyDPzzb0HWw14bzigh0kfRiISRlH8L3Si+D3HSEIkBqVdF1T0lDWW05hzUCvd8izbqU886+1My9UP1PQW/ep/7yVlXkmq2jL0QCSsmpbkGI1DiWQ1VI/VvyqSgFSUQiQiKgKQT3qS5F+suzx7/zCZ/jE07v8j3/lDaNz1hFRUJ1wkhm8IztIkjCJlcxm09Nz4Ol73+Dn/q7n9/zQQ+4OmbjxiLtGto5NP7AdBgTL1LhkmZvZKa73uG5D1Ex3NhA3QvrEI04xQ/DkPOEyDOrofEZSxIWelCPTPAO+ONNFyKB4J96p0XKcpwsdAU9MJetQaGd939H7joziux1DjMRoku3D0NF5h4pHZekntw4IROseqmujZD5y8Zl1sa/FxKDOMefM03ff4Zff/DLXx7SoBNa5LkGAq/bZ1RrUpTb12UvUFcDKIymgaYbNnnzluDkeubo5WL9FgcNp5MDEyx/9CHfv3Wf64HX+wWu9KW2qYjwUA+aeTlv+6td/kJ948TWAIqwxNzCtruT1M4m98Pa1XuDo8uMzAMqza7+twXaL6l4WSuA6MNRbN7p1n/qn1rS8OabPPHx54S0cB1qgt36+Z2fi1t+0Zu8W2ulC4ZWW0atCE65QflwFpcpnNaGaVQbLsmcLCNmubKyemtXJpb9aFStyGE3bgdVxVipgLp+N2YosWhApaZ/deqBmLaJsyyfXOlDni50rg5pSbmUt6lbMCbWs0Po7OXFkv8wXAtlbEIV35h8o5i+svnQNdK1Be/3dUrbiSu2c77sGFNR5aWvYSQuUGyW9nu/1Gcva02dAw9sLgAa8G5Bly6k9WZ17ofCnPU1WNOdbY7rMaRmfmuNWW4tmjyLLAjYV0foctLVaM8xaTVP7HQppniv23gRnmi8o9bW6BNNVmKesvyzGZpL6nRVqWr9mPIswbwMHKkV10VdmeVa0JAV0+Q5qD1O/Xx2lnOy5UgWDcmWkrcCpBhBZFtrKebWVDllSPS8UbhQt91VswLSxawWclkDJfEeyaQ2IOrRw4o1RRjuvaxsm6YKprOaSfCnnYE6BoQvkrMwxL3XeamJqmWRtbgDEWU2zwhC8MQqKsk8u+hbBKbvBE/zAbrchJfu+cZ45jHtiykxxZk7Z+lqLs/0inUX2oqXvYmaczDcM3rHpQ8nIU3yob3cSfe/6bri+45rFP/+n/5h2XVc4x1aMvvTzKaGiLAa2/hxCMEpPUTlrfwO2uy05Z6aTKTx1XVeyL8FohzFycz3R94Gzsz0xGgodCo/bnFtDiOrP68O4HSBq2SGj55hjOM2WIei8oapzNIXHrrYRKJst5dQypfWeNRDwYSWfrgX51VoHac/QhAWqGNDq0F8LAhiaSTmoKciuJ5T+kRVtVIRpTnQD5ORwXgkBYhIuLiJKYP9gz2YX8LtAmGe608w8J+ttKcq3Prgkac/QbXnh4RnDAO+//Q6hH9AiA328uWIer3jjtSv2984Iu55vvHXB1/7J62Qcb775Pk+ujrgQcE7oeognGJO1ShARcjTXPmsixRFUOd/u2O23vPTicxyPJy6fXvL9n/kk+23P84/uE0LH8RS5Pp3wPnE8XHB5eaAPPednez73mZcZOkfXDyjOgj1xTLuB0zExnka6INw937FJTzjbeJiFD54c+LVvvomGjouLE/3QcX115OLpka7veeWVl9ltes62jt3W4f3IMOzYhR3jMXGMkc225+5mz6defoFh45i4JhAWZb62RioyXZ0xoxfeOsg/tA+lHQyyPmDX6+7Zd3w7x2DlnNU/V/Xhb1uDpaZw2BzIUv/ifKV02/t88FjZYcRnR9AO7YUkCZki7uwu4RMvIvo+/+6/+Rf4lV9/l6cXT3BeSBrw6QQuIN5AnzRHgnZc5ZkXH53zykce4PAcbuBf/ckf5eMv7ni4U9Js/UTv3Tnj0aOPEIKhlZICkUjsSsubGeZpYthucd76ABJ6UteRUsbjyBfvMx2viQwMwzkxJ25urnDSMQwb+k6Y04y4YK1l6h6WIvghSowzcY6cxhNdGOj7jmE7WHueEMhYb0209OdC0TkxFURYMGctxkrPMmR6u9nS9R3itdB8pbTLsR6ySTPHeSI7YH+f196b+NM//Wd5+80LLj4YOXaZnVdcsP27P3uRF1/8Pv7qX/4PkCe/zqZE7imOdJhTYUWp5nx5cfjYMYcTSQd0Tmh8wu6lz/Dmtec/+bN/hS/+nz/LLgW6veMkjh/4gc/wp/7DP8UP/vbPoB98lXx+jQseuVE4TJze/CYxOqJsLeCWTNZo9dZFEdKt1IHWy3O9tBvY8Qyb7dnlvP59LmbaUTNZto7TCmhZzolnedgsfxcxJ3B1puTV3nQiBiAWZ9i0MMxZboF7dSLd6gG1FjWsHd3l/xUwBQo4Udg8eYmgKyOnUuacc6W2fekrnGLpG1fEdYBybmrradfONGi2LBcBoRQjcwE/QAjBrURirM+iPaNFOaECvSyZyrVCeAWBVdWyR3XSmpO+Wg9Q2l5lZCksbdmI0PersXCE1kux1kbrksGrAnRVVbYEd8YWMJCo6zoUba03LCqq530mFGc8l3YkawpdLuvK6KEL02jNLpECBNW+wXW+K9DsxFlNmCiJJVNZ11BbO3WdZAP3pADRMc6rAG29pqQB3llTcV8WCrqAiSSRb9cSsvQzXdc6phWbBsyW1fFvc4sUX0hoNZSN4VVKilJR+y2ZR8tWWsa61rXWNWFKpLpQVZvftQZRFqGyVt8pBq6371Te6731V45zvPXd6j5ejAnl31bfGGqf0ZRwzjfmF4Wq3Oa0xdzFFlSQoXNtLFJayhR8UbavNOT63lSTFgI5ZrohtP1ku3/RJ/CUvrH4Iihjz5bVMtBJLRsfk/mCKVt2NOVkWUs1ennnfatj9N6x227x3tN7W3/qfKl7jgVIyUxztBKRm8hxTDy+vOEwZi6OkWmaefz0gqwlS1/aimyHQBcCv/DLb/G965/u9f9rzSIamMZU1E4NrUwpNxWz2uB4niecc20jODGDHbquKNnZEs8pM06z+SvFcTidJpPJ9o7gA94H7twt/V3SsSEtKZlhiTGRNeFwrbYIapsIOzijliJcB6EzvHuarbBdqAX0ji70Rc7eFVZRxgfoXNcoFxX9TynhvG/oYDU2ufT8qQdrzolpHOm3G4Z+Z68tNAjnPYuSqpTxTGbEVj0kfRFeqdkk54T9eY8mwwk1RiCRBtD7wi9+6Wv89//5P+LiOiP7B+RpLL1vlOwzKcPFVSLrRAjK2SbgCGhn+dnpZJ9zttvQd75kGBXB89yjM0LX4UNEuy2EiXGOdMVAbYeePAnzNCMo2yFANHRa+4A4z2GaeHJzxetvXdg4e+X1f/hL5DkxTyZBk7MahbTr6FRw2ZkCGMrEz3G233Gn85z1PZ/79Mvs94Gh29ANjtBZnUXMkYvjyNOLA4+f3ljN12nGb4Q8TQQR7p3fYbPZMM+Rf/zlr4DzbLodOSYePjzHB4U5EXPGbQfOzs743Cc+xqc/taffwHQDmbkhyQvNyJNK3R/Q1NlYfoWU+qCFNkPL9LV6iHL4LKIg9fCl1YzU9VevtSMgWg+vNaDD6t8Fndxt6p3wmMPoquJkTDggHkdkjvjNlogypQPxEDikkd3DF3jrW5f8r//N32YchfF0JIfE/u45LsPhZiJmmKZo2WixdiizBM6Yefp05Kf+9d/NT3zhs3TzzOtvvsHV1fvc3Tzg4y8/x7uHS27max6/+muEbuDOHWvHMvRber8juYAOA9IHThkOc+Tm6IizklMkFBU2uhcJd5Q7W+tTGlJke2dPcNYDkpzYyI44J6bDEciEridnU7gDyzQOQ29OAuA9SJqRlBiql5axz/NiP3SBveuK3bM6yaXe2xy06mQ5DaYQma1PYS72q4p4VSc/eeXHfs/v5uY0c0iRv/Lf/gzdtmOjG1KKhLtnPPz085w/7JiuQY4zWhzUGNZotRBFmXNEmU0dMh1tQW7v8Ib8Fv7a//43+b+++IvEcWbaZo4H5ZQ2/PwvfJW/87f+Dtt0zUv+HeT0HpochA259+z7DX3nyNpBtjrr3glj8uCDBXLrJtSsAquatrANZOtaloDtQ9lDkUVKH0p/zboX7AMqFbKWOxglkpZ5aP54be2EFqEWCzjLbWpOpuzNdfZ/yXZm0bb/qN9k5UAuAcRqL64C2ZaF5HZg0YIpFWI0pzMEZyBGoZ3hYDyNqCqboaMfems1VN5bz+a1Haj3r1d1yuu4ueIkZxJzEbPRnDmejkW23zJUfdeV9xaxHS09l8WRWHpOWhYytSC+0l6X51DaSKuSMDZQFYvRrOg8tdemZE3YUUfXh/Y654TtdlNonLkBeTLnRuv13jUFcs2Kl1IHFwJJhXmaLBibY51oxmki+FISUoAhG8uqvl6YJIU+2YIQMGEPKAGXjZVqoSn7UjtXQOMqoNNqDaUmwCyj3Orkc8b3pSl70XrIqQZ6EefttSYGUwJ7bB9mzaa2KcFqWrX0Ms0KEsp0FVqwWn+8KuomQL/pcFqCVVeooW3rLrvDfB7bAaIm1rKUC2sB4D1CfZ0sQXdV0i5nn+ndOSr9tvbzQzxCV3yyAlIUr1ecUbRTqqVI0PuwBH91/ZVnyimjrig2K/T90Py81g6lgBmtQqsGsL4mAmpdc+l9G2Pz5YLvLGueLQlQW/VUENEorcWeISQBiakoQWdUhZh9sw8pr9bICpTRAmKFLrR62uqv9x1oVUmUEn4KnE4TIMSkPLm8IiajjHq/lF0lKwxvYljeCX0Q9oNy9yN7Aymc7RHyyyawky0TGUtbkHmO3wsWv0uv/w+tMxJVrSzFQkF1xdC6mk7ODMNgLy+BjRVJ6+r1nmHTk9JMypngXTO4MSa86/BlAxcPoRyiLIiPODTl0h8p1I9uxgPqwV0QJWdc7JRjUaH0TNNkRrC01xARUowlG0lxNCBJXgQrVlfKiXme7FB3y+fGGBupAywoSDFxyqM5FoX+akIDpU9NbTgkrdXvcnC70uxViywyis6GsgtCKFTVpLDd7Pn+z77CH/ojPY8vM/35jsNNZk7XNt5TxjvH1ZMr5lkQp/QbyOo4FoRNxpkcJ8ZxJqmn77bsBztgTuMJN0/M88Q0z0yjmrQySppmpnkkZ4dLUEVqdvtzIJHiiZyU3psSZe5CFS7Du0CUxOztQDDbF4qzVjIsBem8PGVSHLmMwinOfOnVb6GiaJLCt5d2EEwxWsA+W++js41HrwM3xwMiQvfBEec9ThzjOFqGtOvJKdO/+R6bTSCNMGdldtB5zwfvnfihzz5it98zjQec01s1unYgL0YaSna5TnHBA+u6bpediIuj3BB2vb2eVoBn25ol013/KMKC6ta/r95bfyfll4fTxOk0Mk2jyfZrblmKPgRClcnHIUVhjpzJY+b84Z6vfPM1vvq1t/BnD/gX/8jv5S/8Z98g6iU3F0ZbHFPEEllC76x5s0omickvxjTzpa+9h9885JXn79ENG847zxSFV9++4s5ZRxcecP/FPVNKnPKJOUGaldPTKw6HkVffuuDiaIIRh9ORt5+OXBwi71+cmgS85sxu4/n+Tz5iG4RPv/gI5zKbHkLnON8N9EVtbr/p6ToTEfDOo2GAnFrwsOl7cEsrH+883oXiyKxUcAsYRclWiBp1nBagFMchBBQliLcaSg2IKD4XmjuKC4Kow6eRF4eZP/SHfy/feOfIb7xxjfAzdh8dcZroXM/d/hzSZM7NKjjJmptsvD19sS2uiJXECek3+PuP+OIXf5Ff+sqvkdPMfuiY5pk5Cz/82z5JPI2kw2Pefvs17r64Yas7JpRJA4zCeEz4oPgu4cklCM5IDibcs5ZpXF31qW7X9C6B1e0Xa7EN9rraI0+bDV9nzgoOrxbU+RqorT5Y6zlTfq4UNG7twg9fzz6r0TGXbBgY/bZ9Tr3X6is9S0FFlt9VoGhd3mnUY4tGvA90/cJ06bq6jz3B+5aNa2fNrSG0tVizOeuMq3OObhVomtBMAbDEAoBufa/i8NLGrXxNqdlHbQqgDWArBlt1sWVrZoSd4ULwwaioBQzzrohmqbXW6IfedBTcItqiauBsLjxAy55BcKs5YJXVKoFnzoJzGXEBH0wxtb66HE+r77bQa+u6XavEV5VMAxpoip/WLiUT59iYV9aSJDc2VDsxara4rnWkOOtlZZaWDzFFpulURAGt317KWnrmWWa/LC1T2xwGBDEROGdtJmwvOXDaxr75X4UyWYTgLeBVA/8drm28KtZKrQNu+65SWitl1e5bGThGZ5QGkLbFUwF5tNWSWi9qVzLnVfchm30VsTrE8n5VhaRopWzb45NSXgJwCpCidhi3eS3OoJZArrJ+U6vbFVJpfF96Odl96+SwzCWwMEwkkXMCHyzY1RoPLww9VddMj+JJSTESd9mPmpFU6a42XlUcKZcgVcriM8qtPVbMihJtLUq1bYsxqrrAirE01Alh01sLG61jbQOXZQF6pmjK/ERAE07mZkNrJhsEdcb0i2uD9r3ru+r6joNFza603yqIbXaNZ45m4jzbB/ShIHXGwQaQouCJmtLW4fpEjMo8nQhdZ4IaakpPIcA0jo0O0fcD3gs4LYpPFpjt9lsLQudj2ViOmCKh60zuOpWi4uAYuoGsiRyFLAIOujAAhXKiVt9jdT6hHEapGfis1cAstUWt3hEa/WU8jYQulIDUnnMcx1LnKMVA2oEf5wmKI6OdEELHeJqAaMYOQ3+ytwCy1XJoQmOiG+4ZJzzOCJnQe8bDzHxQHp2fc/+ucLg+sd0LYXMfIRPHiTRnXjzfIG5gSnCImdAHBgdDJ/gpk6aEuMxmB6++8R5Xh4njOFsftShcXpw4cE06jYbMyowDurCx9hQqzOMJ55Sh1JeOSUmkojzo2OyMEuxyRzxE7m4HtltndLvTTIwwRogkkIltH7izH/jCS9/H3bvnfPwzH2V3d0/qzogp0GmPyoj60cYwj/QxkcfI6fpAUuWQEnpybDaJ4IShKKk6F9C8YZwnLg+XxJh58PxzjMcD108uSFkZ7pxxduecB8OOs80On4VtD5lACF1zJepRXo3iImASG6qtsKJmLYfIgqZWoYpFLGMd6K2v9vv6j+IU+2qEG3hS9nENEFYZEc/MEDJBHJvtBsQxxnlZ286CFAcM4vEKkpTTPcfX373gZ372n7Db7/ipf+kHeX5zwU/9yZ/iiz//Jf7n/+F/4+ryEtcLGzYkNREBHwRNiaQTPghDVr7ypa9xfRn5gz/+Ba7feZVt3/P8vTOcjKT0Al4CPBkJ24Dbd5zGzM3NDWf9GbLZ8/wrwr1Jefetp+zPtjzYKmn2HI7eRHVkYIpGwbrnJoJXnJ+M6n7IOBGm65Gh6y1THVw73hOReFLr2+prXbIrTg6NNjTHsYy99cLSInLgtSDltZFqua+uDtlKusqxKnQYhUqdmk0CJBk0I/PE9uYJH3/hh7m8fozkK7IYKJecklxm2AzcuXcXThd2902Hcx0hKynODWUHA4s0C0JCwtZEQTZ7ePj9fPmX/hLfevXrpGnEdQLq6ELHk6cXTIcjb37jN3n9nufcv0I6POXp5cjl1RHHiRcenuHE8/DhfbZ94GxjkuleFO9LYJJvQSYtUFz/VOugarar+q1tLWddgrxyPtVswC2CqWDOTlVDFWn7te2zGrCU6ap7SOqL6n5a4kmbrpUzWO7+ofDS16eR5Xt+CPQpTltmof9JWVM1gFzesL5fcS9LFjYXFdIKNK4zAtbs74MAACAASURBVGsgq1JOgVbGsWQeV2OhoKUuywmF7kpz/tsj+QJIoKv+iOUe1SbK8vO6v/J6ImqAL2rtZZyuy0tMXTSnjCvKrjgB79FQg8XahsPCAi9uZfOElGlZNimAd828azL7fXO4YZ7mwopy4KronDSV60ZFLUEBFDV1qrbBUobQMIji28RxBjGaeaXAHg4HsgqIheCp9C10pYwlTjPTPFsWT6ALnu12g3fOfDAR03RwkNLI6XAg+IDznj44XNiiqtxcHxmniZxt3ucYSanqIJj/Mmw2IHBzdQSqwJIJx9W58lJE+7BASqnAjJaMk0NE21jYsi3KmE1R1YLNEDzzHE3UBvDBMZWm80bttRGuiuFVBNHWlysBmhbWTlmvpVVDTolY6sxrn9Y19XQajTnifVgEjnT13MXeCFVsqGQ8y/mdVu1bbE/FtiyMCp1Le4nqN1pyJGclS6QqtQp1+JZ9umYUpagFFA8W8LfEwrIJfXkO5y2QnlNuyh5tf9VsekotCWHSE8WOaVX01npTnA8l4VGAbi0qwUVRNmuyQLUTYrE79e05C6qB3vWNxSMxMvg11PS967vp+o6DxRQrv7qKlRV+eFrQSBFaViVU6GZ1umlZfDEpOQk5C2k2lTFDGAXNjnmMK8Oe8MGZYqgT5qLS5Qu3IM4JJ4rz5dCyLspAUTorzXcr5x1K0b7TspGNpy31BDfteKDWHlZgp5gHXR1kUutKCgIo0v5N+/rNTTc6jvPUZu2U7E/L8lSEbXVIU+5Rs5dVpMQVA1nhu5wjN5cjj9+74K23npCc43BIjAn6weowU4yknDleH1Ecc4RjFvqhYyOZ4IV5UtIMfafst8rN4YanFyPXh9moSGpGOWlEiSUTYY6XimViY1F0zeq4KnQ+oxCZ45dUmWejKItkpjwjCUIe7DsRiGkuxdZmjMQ5ksLhFHHdxAdPbriaEsmNCD1n3Q6VCT/MOJfxYjUFIo5tP5Adpqo4CNs+40TxztZJFkGdBUL7NJB9ZuPBdR1+v0fJdLuezWBtM24OE0OwQu4mFFBricoaqH6rlHW0gKjl4Knu4m1v8RYCuQSKa4dt9XqtDu/qFqt7rQ9oLVmJbxdz9r4jODP4vjgWtXuDioCWg1MgqrVn8E640cTXX3vCgwcP+L6PP8ejjWe+eJ+PffTz3P/VrzfAxMZaEPW8/PEX2O4Hvv61byJzwqllQLpuw53z+zz34ke4v32HLnge7M+QfGQaT8wTnO124Dy+1EFHc6Povee5u3dQcdw531rvqCnhshKnkXE6oXTMBdkMeCQoZ/fvEedEjtmy11nofaDvHb5bACEFpIgbVITUep7mcsgXOmJWECU7E8upViOlVU1rFU1w1aFZTaguohlOpdX0iKNk5GyNJc34MPDuk5HffPVNvvKlr7ApUL+KK0GEQJZGk5rJBE0GE+dsNSeths5BFrRQ+ZN4UhYO1xOvv/ZNrq+eFKqTA7Hs6tOnV4ynkUMeiP1d3LCl44Y7YnXfLgfunG1xEth1Xekli2W8XVXjreOwBBzVmb+10LUS+55d6LeBkGpra0ze4BtZ9kNr1dTCxJrhX8CVdusWB2g7ylRuP2t92a15bF9hHfQ+u/PaN22f284SWT/dh/OpbV/LM2OCtCi2NpDPy9cow7PYI7ClslBh7e41uKs0+RaksbJpzzzRQo9to27j7J85x9YB+sp2NWrxal5vf0KZI2U5r0VRt4zAYmtXc6mO2jKrZag+dPOameHWvWoPPfv/8hw5KaFbZWhbfV2lDlNswfpDWvjYgvYaWJi4lgUgfehsXMRA61QUbhpLpfd4B7PRbUxBs4Lz3dI7GIU5eWSecV7ogrcscwgWuG6txKBmDV3wRKnBiQVL3ts5ViwLmhMZSoP4YtO8R9XKb3DSAkATds+4smdsmBdBoGL8TJylTE9MqbSdsmyftWg1mmNSA9F8DegL8Oe9a3tHxILVqjeRNWGJ9ELnT9bv2pU5VBaab9YKsNhZUFXOta69ujUBjbkFi9VeNNXWaoPq/i5ftwIT1Qahaoqpapk5alu3+m6tGXNtzyAizHMqbD7zf72s+9YuvqvVLFqP0DlHqxEXaeUrrv19bltDMnY+IMw5N2o2RTnWzhU7X8y/K+JsWsEQC0pVakJZmx9hKsXCXBX/cynH+HYOyfeu74rrOw4WY5zpfKHbFSNqRcK2xLuhL6np2wdnLR4PYeGhB+8Kp9vul0oBshnzXJT7qqgEhuaXTVgL3g83J0M4qzwfUigcSkqxodB5VtI840v2r27yaTyZBH5xjMdkbTCm2eoT+mBV4yklE7IpPPFmDFLGFaqPIXqrOg2EpEa9DV1nh5oa0uTE4Tox+XitB7CQNRJ6G58udAVFWgkQVBnsLDg65ulUgkY7qI6HiZubIzc317z/3mOuR+XqOOEwwYtxHInRlGXfevsxc6Eu9N4TJBC2MM2RmxOIcwRRchy5e++cm+vIHJV+5wleSclqS33vTFxmNEqMJwMR79QyrKXoPaaEU/C90JEYR6HLHhcc4qG/u8H7jkk9ZHMAhm1PPBwIEvDeaFDjDL/66uuE0LN59U2yKpdX18W5LkbVCS7Y5267QHBC7z0+eHb7DT7Aw7vn9H3HNJ44HE7MKeO8NcEN3pGTNepNyUF2zHHm+nBDUsdHnn/EvZ/8YcJwn7O+w4lRfBanqmSdsH3gXCqIvYnxRHIToVjXXi2HzDo4XIs+2KmTVsXtiknNN7obLMXvz1jhJQS9HYjamiwOifgC3qSChGpBBAulWzKPR6XfDOzON/wff++X+eabMz/547+VTz6/5clr32IaJ/zHHE/f/4A0RjrnCRrx/YxIz+/63Cs8/9w5r7/2TeIESR1Tgv3ZfZ579BwP72149OglEGXYnCNZefs3f5PDeOCt44FwOXDneM5m0+P7ntlNyAn8UbmOEQ2ePnj6/Z4QPLugODKqDu9sL1bBCwcMfaArAI4U+i3Zah2tx5mUtkGuZSysXYGr/nqhShfQqSi9KQKdzXPWUtOkWLZR84dUA0NpQZBIJSitmSKF+bZAQ1Klf/AcF4+FL3/1N/jrf+NneH7nzKHSgKiBdnE2VWHBoVMkOwzsMZ44bqY5t2Ql+cA8HpFNz5iVt7/5DX7hF34RyQf2/YAmU4glZ+J0YE7w4GOf5pOf+0E+8uLIrggldd3WaLdpMmpaNCGRKScUh5bWDlRlbWRxKBuwsgo6Sm1Z6QjQHFJXHF1ZBZep1i2W8yRLZQfqh9Z96+NYJlKqMyjVw1mcsLx6ohYE2GYtZ95auvXZKE7a3rSttopEoQUx7bere/nV3r4lwMFCb3Sl3UKNaCsIIQXIaMBUoRtT93txSittM5VsXAVI6uvqZ7dxq1+xnk1Sw2kbi1sqktDOzb7rbFiLjQq+uyXedluIS+v2MOXVrEb7Xr45lOz4LVyhZFTXU6QYyHX77za3ztuJTV6L4NmYdvstuh3a96tl6DUIWs7u0kaCVS1tmQ8poLqU8aywgYiwGfqShbLaUxFhu9tSosO6Ato8geBcz3IW1NVVKbwbrKbO/rBhoXO6Omdlbu6d76x2r9YMCyh9A+2lCANmzYQzq2mPMZFTYgidrXepgW9uOg0tWATQ2s2wel3a5gBYqIgpNV2Ivncs2p+Kc5ZxrZk6o50qKRnjxYlnjpZh1FzO3Vwyd6t+iDFLYbUUoZ+yNmvwOYRN6XlLm0drPSIrGq7NfSzsj3W/cOuvXdpU5MVWlJVmwLi7bSPsviYk18SmAFXXBJjU1zSF2TNXgvSsJuKUNJU1JmU+K6EX8xnVguZi2FiYAGZXY4oNBKobJgNjtLpMAXKcQTPGYnUNz7FWcwt9FqUAo3bDlLVRbq13L03dFyiU4luG8nvXd9H1HQeLjgXNsKvKP1dDb5vOBxYnClo2RJxU8KQpqGm2wDB0hXIRrUhdxYyHSfpi9RelmDuU+oHgTZRi2HTQRPpT6QdlIhFzPJFzZrvr6XvhFikp+EaryGpKV84pMU50XWcBaAWUxKLSdW1jypnO9UWcIuMKJafWd9TiehEpfQutnjFppreosCA30gr2xZW8Wu9t88epHaxSELA0lxoBt3DzRR0xevq+5/xsx6N7dxhuJk43Txj8nsl5IplpPuIibDpH33eIUzZe6dKG3XOdNW6dEkPfIZ3y+OKClHfcPcv0wfHci2dA4vXX3iSqp98N+CA8zTMZYXNnh2fGkYiTZZdf/thzHI8TlxfXAMQU8Tpxfr6hSvmf7/cEHziME9c3R06zst/vSPnENGbylBlCoN92hHM4O9vy0vPP4cTxznsfMI6RDz54wqxwHTPzyaDCPI2g5WBXQWJms4XPff4z3H94jubE9WkkRWEYAhnhGGdiPCIpcHl95OLqxOl44PHTS3J2qHb4XtjtPF0uDr6s23evaFa6qnPwfhGq8TRVtdqfq1rrrEqojZerg1v+nFVXwWA5GGER32ABapwulGnKGn7Wx62vPU6H9nnDsCuCFWPJxhe/JSWyJOabTBeEYej5hz/3K7zyuc/SHR5z+WbiMI7EMSLTkcN4YMaKa4OCc1Yvc3j8PjdckXMkiiLMiDgOx0vefecbvPnVyPtPXkP7jgcffYmzzY4zf8a8zfz83/9lhk3PKy89ZNf33Hnhee68eEZywtW7N7z77lPeefeKs/OB558/Z7Mf2N/b4TvP/8PeuzXbliX3Xb8cY8w519q3c6lT1XXpUndbLRlkIZnAFywggott4IUIniAgAgJ4gAge/MxHgE/AB+AFiCAQhAJCsggsWZaM1LKErbDb6pbUXdV1P3Uu+7LWmnOMkTxkjjHnPtW8tF/qoVZE1dlnn73nZVxyZP7zn/8UGRjSGRICs5wIJ2W8uebR1Rnn5yNFCyFUxiERSUb9FKNHFa99Ug3ODgjuJImjp9azLcZoaqBY9pwhEodkQcmiSK1oMAAqL4sHCHZoRy/grSxAQEVIIRKLN/AWpUanwhXL0n3tybntI4kUmYlVkOrOc1SYKhIDQ0pOHTSmRU0FihKzrzkUgrVBClGZ9tHo8nczRZQUTSSjZCFNkQSUkBnHgZ968wHffvuCq/yMw+3BnI24uIANUGbIlrmw3logJaD1BFgW0/3TLaJxLyvXgvXqjkmpraJm7fHbUPNSs7MXarev2010v4m6o+1tY2z2Lf1R+j/SMgfdvWmBqntPazbBn8kdqBYcENY6zNV9vu8sbYPk5iDee/51VLD6OxNFa3V7hgKY42hKrXanJlzSbEgLWmoTW4L+/SrqIlcemulK1yuu6tzqBUWcZudOYYyxU4K1qp//tZ/dlvWxdxhiE4NpjvN9u9nslwEyZSPkYX3jqgvsxXs0SFMpt96OFYK1EQjidYvuAtwrKfNPiAEtpbcGaaCP4hmo4md0SpSl9Vxcm8MruFLq/brQL/SUxALy0EGM9q5Qi7e5Emc1qLNH/Osl31eNbY6+/WfBnXVNcWpvbc/TFG5bcNj6K8Y+CKKNPdYovE4BTsmU45ONeUsa5JpdCTV1EH8cDJSXIL2f5AqIOtMir2sK37d5KffqaRswNs8nRCIxGNAwzwspBsIYeyYyVyUSeg20Cd0N5Jw9eVAIZqJJ0dboaV5QraSw+q/GZEpuh+0Za60kVz01UFiQyfqHDuPYe3OOPreLCxhmr0HM2XqSLrO1aJJgtGPU1orZJPNXrVzLg8QOZtg6iENwUccMKmR/tqCr2E4u2VlrqzBQ9HNqycVBBAteW4LFQAr6fjMQQjk6Q7CWSllakigwOxNHMVG0WhzM8cxpEZyBVNGSDRnw8TWbFLpdXpYT6auaxS/t5ycOFofdtCJ2FUOiS14RJW+8O59KXxzto44eOXjuRdR2ita59kJlkcg4TkzTriN4h8OBu9tbW2QxdnR/GAZijMy5ZXXoimTDmNyAR8Y4kI/KcrD2HE1kx/pQGRWjITpzzaZkuZy4vbmzg34TzA6DNTVdakar1Vy2w7Apw87HA/3k8LN+Ebln3Oc8d8QL6L11whgpCod86j8rgJbaM0o2Vkp0BLiUQi0L4zSwv3hIHCfujoWbuwNvff3nONweiBIQSdyeCjeHhc9vDhznTFHYDYkxwvXLl1ydj1ycn6MV5tPMaw+fMA2BWjNLrry4FXINvP32u4gqH3/+kuubE2fne64udtwumaAjUpTD4QCi/Oij54zDwBtvvMbZfuCzp09JYgZMxArwX5xuWRYTsxlH4cH5hJSFN97+JpLg+vCZGama0DKQEEQLu13kG1+/IC+Zb731EAkwusjD4TSjIVJKJQ3RGgcvM7kUyikT7o6UXLkMwv61M6b9GWlInO0mUoh87YGQqhCoSBLi+WgUzSrEOfP+Dz8nhIVpmFDFG+rGNSgLwakWrebEHNUhRmv4Ps/rKY87ll79lkPofbss+FwPz+47rvhhd0Ys2x9872jPhgTZCv+siDe0HqeBsmRKLizLLUjgeHdCEdKUiEPgbIhkdjz+xmPe+/TA3/695zx663V+6S+/xZsXl5TbOx59/WvsX3uX/+HXf4Pvfv/7jLoQh8CxJm6fLVw8uuSn/9q/xOuP95x+/R8yIeQAUgu3T6+5fjwjl2/wjXeUKgmZHhJCYPf4kp+avsl/8PO/YAfl8Y58vGM5Hlie3TFrIZfC1dUl+6uB3bTjfALRzPP3P+H5iyNIQbwv6MXVyNWDHVdvvstwuUMHhRoIcUdByFrQfDIxmRRJQci50RMt2KjZEV3POCDB2mMsC4d8oqpwyMLtIXNzKoxj5Gw/8uDhA3KcSLuJIIWQbJ7ltDAESLsrhIxQrCvQYDRpEUgetJdUGMeHvPdnP+Ll508Z64zqnhIyKZ4IRSlFmJeAhiuKvEDSYv34lsqkxlzQZCtuEqPT5jAioSLTY5ZywUuP4kINaBRyMipsDomzYaTM8OL5M54+e8b5azvOLy+R6qJjNJRhbW+wHiaA7nuY1FF7fcVxcBGo6ora83Gx9Rwtg3hzO5OXwinPpBRJaeTyfGIchBHIBdIYrD2H19nkoIQK4pR41dopbUXWANKc2PuOOe64t6Bq3bFy77Fbj7eqKxBkwXDombs1hu0pi00Q6s6073ALSAXqtuzBALBIshpzsXPILmoCJKXOlGIBz3w6uQiTXcsEjpxKXcXZJK21RV7Vxf05KHbGRhfU0aV08Dcg5mSjPQrTRoDdzO3h7s7tmfkGs2eXAbRoz9jbHttQ/QDR0bNginTp0URVy2BY1tSetTodrpU8xBApYoFPLSYzFKK1owk946XUxv5pb+Cqm426HmyaTIykejARXADGS7zGlBAJLEtTEzX1druFiQT2mlBnLzXWEnBP+batz+xOtjnvWyAjUqoyn2arbYyN9t/8Cp8/sRYINFVoBRFTr22ZagMNejc/H2PpIAFNeVWFJZ/snYNAMp8F7+HXe3p6bbQqHYzI2mpW19p9qEhUhhjoKAJQyoKoJR+gUoqg1QhptWZQo2BKqFyej70G0Z60gs5eY+5lOAzAnpxnalXScIFi9Ht8PqMopXrtordBQrIFYc60CVjNaq2Fcjh4UA6B2IMuy/it5Vnte6qg2ZlIqLWbKJkQLbCdZ/NllwJLVk94GHhwWqxl09n5uZUBZfObhxg8uIc4RFIMnOal13RKEIaY3OYYsFVRlnlhOWXGaWfP5utKMV9WoYsqqe+pBsxENfsxjCPTMCDiGdyAiVA1JMZ3sEoTkFJXTbZlaL53AT7gq8+X7/MTB4vzrF0it1EwgjQpbLeGDamiIRWbrIavVXpGw1RCW8ExBEe+TMmtVrvfbr/rqeroSFVbcGZgN6pjfobkUhDUqQHmHNvm1d6vqXqA2FSrGp2llVpadtSLkauhbQuZUk3eOSasH5saYibuDNjJyIrWgSOD9peuO7LJQK0cAHMqAi2OaHSC9d3as9/L5zs14+76htu7E/vzPedXVwgVeeL1YhK4PZy4uztRw5M+viGqCY7Ub5iwBSaBnJIhzoeDCQipCAWT9o8pcnu64+nnF9RFuTg7Z39mLSiK9w+6PWTSFDm/2pvxyEoMgXdeO+/rqGhlqZnrazsw97tEHCAEC8a17Lk5XKNhz5B2XJw/gHpivxt58vgh05go5UhehN3OArVlmclLNuPWgvw0kuIAVU0wxydYHNE2gSKbn+hA6+5sB0U5C34IJG8Y7ZNoiGPq9SdAr1nDWzG0jHRrki1i6oENBGh7o3+68m+jeqzrwpfB5mfNENfanB2vPQkrUtxQ64o7mpuLdIEOtcxRiCNZzYBHEdK5iRWJt7ypy8zu4Y73Pv+cP/reR/z+d97n3/13/grvPL5gqJl0eYY+eMTtxWN+/3e/x+efvvTMiDIE5aBKTCOljtydIvNSmRBqCcRUOOUjhyUzXr7J/tGJu9s7lsWEjcLzp+SQqNUAht2YiFNgITLsz4gp8vTFgR99+JyvvXnJEAN3Lw5Q4MHlJQ8u96RpIMTJRLrygTAuzPPCp08zDx/t2e8HgiSk+fdeB2S1tlbvklUJrrBXarV+s76/kcjpZPbh5ubIacl89OlLPv38JR99/Jyvv/uEs7M9/+T7z/j+B5/xxpN3ialwts9c7BPvvP6AlALvPHpAGLLV3daBCAwXl6QIZyIkIF4MhAcXfPePfocPP/iQk8D5YOqw1ETQyny84/r5Z0gazV5XF6jq2WyMloqgNSGhko83VmM2PuTmaeH7/+i7VK/FsakUJCmLZp6+KLz99tv83J//Bl9/8wHx8AmxFhDLoEtXc2xOSFuzbNa227VNFny7xlscJaVai41qio5PPzegZ87ZRShMLOs0X/O+VqZhNHS9VqZxYBoT+ykhKLmavH90hxVVdrtdz+wCXbRCWZ09EzgJXVxjLUloe9MCgwYJihgbp/WxFDyTgIuntUFpmTNvOVBZwRxVNYZE+1nFac6R9ddlHV8XabOzzNRCm/BOrVZmUYrRnJsdsjIRD8IkY5k5u3fYnOFancqobke81l+lBSWWQfBXQl0ROIbQg/0m7hFi9Pdf1xZYtrJlc6AJGvk574GcYmPSzmgb+xbUB1QDuXqWBitrKNX1CZqdRNBgtIktMXAdyKb42qodA03IdRUIcnpzURdMsk9dbByWpYnFhE5zbgqSTemy+0ebkoQ2HCLWQqMQiWrCLLU6lbEvHnPC0zgQa+pCWy0QqxRvGxZQMaW5WloQYQF5q7XOpaCS7L08aGsg5La3p4gwJXHKsj1FrSbWEoL14dwC4cu89DXeRI9Sy0zm5m94wFNXEauWawhei20srZaVVvBaO8CombaCEdTb4Wz8q42yS1NylSZ5XyEkA90NkIs+78XFDhO1RjdGJoxTambY9NgOG+EytPl2Dqr4GJmmhs1ve65xDJQSrT2TJwQUoVEdamnlCphITckMw0jJ1n7CXwh8bbTM4n4UY7g4O65l2afdzoVolFJG3z/rzxRd6yoVaydSqvc1dXE1tHJcPKu/CMMw9LpDVSXPBtxqNapscbXV1o+yM+7CCgh99flyfn5yNVQKTRzAqBm2cbtCXc+QbBAVO/VAhOgSwO0wBVNragmU6jRMS71HVDNFDe0KTrcMIRCj/deyLK2eJYg1HA0SSCF2AYmqagqcxYPcjhJLR2SATjvIpboyardWLpjg7QOK0bFU4bYe/UeiK1caEtgu2kQG8M1hwM46As2otu0SnZajfrhtAwqjzIbOuM3z0sehauXm7sD17S13hxN3p4wSuLtZLKMVA0spnt2NQOBsvyOiHG7vKFSGZAf12dkZucLzu5NLbxvdCXcA8uGOawrPnx04PF8YknB8VKjXL3n38QVPX1zz6fM7bq8z+2ni9dcuGJJweT4y7RNxEFQH9tMIYs2bd+kly1G5OrsgpsRhPpBL4cHrOz7+dOH25R2yKPVw5O23XyOKIkthyYU4wPnZyMvnL5mmgQePrhiGRKnw2WfPOZ4WSlwYRxAxKXkJgTkvjMPAxfmeIUam6AZsMOfjtasnjCM8ugqMQ0QJnGZTakshMaZI2mTP6XNls7tmSbxGohrC23tmOrhiDuVmnwkI1RzoTcaw0dIa0KKy0uloe8GNvrtUxNAyCK5E685Oo0cbpyqQcedVhCH6IZMCiWAdc5YKVw/44w+e87//+j/k3Xcf8x//h/8y757vvQ/lQjzf8Q/+6Sf8L7/yq/zq//mdvp8Xd5DjJBzu7viVX/lNQqyW8UgDYBnM29NLfvjhe/za3/l9/srf+uu8UV9wevaUIe2QeqRqYnLAZ4yRFCJlGUjB7MWDhw959+tvkFByOfExO0oOnF8EpmEmhsT17S3HmtldPGJ/PvHy5QvubpX9fqLWhY9++JTXHp8x7UwpV5q5FB+zZsBkVWUWmkNQ2O2sJvLs7CEq8NY7rzFnZZ4LU7IeUxcPL/j6ty6pZcfTZ7d8/vSaHTu+dnnO6XTLzcvPGaeBlALz7Qti2LE7zewHRQehEkn1CbtHhV/71d/he3/6HkOCWBajI8+FWoX9oDw6O3E8PLfawWWkOphVdTFySPDea4tQlpnx0SO4fIv/41d/n7/323/Ib37nj3gQBWREtRKkcDrB7mziP/sv/wt+8ed+il/69hnnxw+Q+QBSKJ7NCbrWzPW13UAV1hihqvbAcus4NLvYAjaRwNnVOYTEeOEqllim5nR3R14Khznz+c3C3Vy5vn3J1eVgQkHVe6OpItkQQYmB3TRY255ibT2GIYGEruDZzjXtTk7ogjG9D6E0+Y+NDWhv8EqmtNVHLfNi51SK3NzesNvtKbMFahLtHrINSNVq9Y/Ho9lvB5PaEaXV1F8bCGDj6yCWr1frK2y2TaRlVQ3AizH6uWQ25TDPvX4rhGACc37wCNXNRlydYv85xDJSJjJSrVdf9gA0JqfsWXbPQDHxQKoFtLYOYozdUQ3Oiqklt6TY2szcY5jq4hrNV7C6qbUHIWiviS2lYroIbU2ugFyLWlIbkgAAIABJREFU+apnOUst9xzdtoZV1cthtjVgbdTtiA7DWo8TN+PdAnWzxbXFpjZNDSxU1z8QCFUJm9IWrW28vI0ramrGNFqn7zMF1dRe396wARA94FW/z0pvpp8x9FKHDkyCC9esJRC11QiDZUhLo7ka8H2aV/+wrYkYoovcOT8mjpRGoWR9/lbL2ZZIaGPAKrgIlhyw+Wv1/M0njAZIO/usg6rOTgtivQ4bYGKiPm1fCzmfvJ7f7Y0Ltk3D5Nc0an8LzFuNZ9PuWIVyA+qBZs+4u68oAloty2vbwILdwIa1IEKqIHj97CDs1DZDu6flD0YDgBqy4e9B9RYfiD2HoaFdFZbaRkYJ6i3U4tBtmoixpNq6U9fmKFo6UKNVzQ6VBgCaTWoiPqjN3cnnQvDn+ipY/NJ+fuJgsXqdSKC1AvDltXEAUKWJn20LvUVWQ0ML2LS6+ANd8an1vbLNa+hG7QWy66Jq+2Dd/8oG3DOJ/iI0WgCuELYadfzZVwelURhsQ4eObmo20YpO7dCKlShZqw8wAZ7aDLFjlQFD7lW19wrU5tHT0Cf1MbFrN6GB/qz+qEHWupJmPyyxKLSaiRCsZlEloMwsubAfzcmrIbAU5bCcqHUhZ6vDSiKcTgu1VOY023xgMvp3dydKruzPR7QpO1bj7T8/zNzemfGoIbAsgkrlmGdm71FFMEP24vqO5LSNUx6oIhyPJxJHo02kRKmFvBSyZBCjRp7mE8fTQEB4+ODc5lzNiQ9i81JKpS6VkGaUyJwrebH6UTtTrV4rJROuMbTW5J+TZzbKkiFXSEb9XGbreXV38xnjIHz6NBKicLabONvvOJ8S+zH1YMEOkY1HDP1g/KIZbFkAx0HV6oPWo7qtMfmxv7eiLdJuZGt89QbWn/Pahdr2id+5HfB2MLmh94yOk7lYyW+2TwnKSQvv/+hTHj54wNe/9jrfePMh9dOXqBYiIHHgo6ef8Yd/8I85zSeGaHW3jpUSRal15qOPP+ptARphLahlYk+HG374g/eQ9IBdAEnPkAgaEoHBvcNq91MXhfFarRCF/W6gzgvCwMOHVnc3Jgw8QljyTEjJanKlsD8bXRG3kOdslKcARO9jVWt3mDrVt4U1nlpogYG6oyxY020JMA6Ri5DIVRGXef/2N1/n61+/4nSCZ9cnnj97yNmQePP1K+Z5YKmLqdNKYB4TIQxEgTEpQSpZ4KDwJ3/0p/zgw6fc3J3YpdidgSKVQuBrb7/BL/7iz7DcfI7mGeqe6M6+UqhiDZcDanYwBObxIe+995zf+u0/4A/+0T/m46efch6sM9lcChXh7bff5uf/ws/wr/3Vb/PukzN25SXlzijnhGZDldpStKyB4Y/79NND1z/WJb4Kghi2YnORRnN4olguLrKj1sKuVsYz5bTA5TFytk9Mw9iBxQBW74kFWoO3OTJxE1cB7Vuo33ndzw0Z8OdrDtarO92PJHrZRls3HhQ1wSsJgZQG6+ObfE21VjqNxdN7/DbA0Z/JxV2K3r97O4dLya5abUGujmbrWs1/q11Tb43TgzgFLdUzDOpZo7oClmKBWctKrPR4G7uUYj8rayl938RavdxCu/0RiVQXdGpUt4hlvlvbAmNO2oEnniGqrb9gsIBMKDShkAbouDveAVv72usSdSumsw6c1uagVI9O2tkqNMVOqfdnvAWBbU4g9H+z9eK/2A/udY5etfMtq2dr0dd/Ux31deimeeMPrWRdxxVo6azuswidNmvPGbqgT/vYHLZz3q7bGsI3ElPbh/dAn2jlPxaIBrK3SOssgSF1IEFrZaixn5uDA/G4zgS47XDA3VRRGyjqM+qBao6NAwY5e3Dmze1XDQshFBBpgfuavS0qPrfBWWZb0FZYgZBGpbTTMUhAg9fy9bYdLXnie6Otf2dv4QmWei842vqzFizea9WBB3xNAEyd3aCbY77Nv+/FRm9vdOBufb1OsLTWIR0poe+X5pW08V6TpVZ7qqEBDatAX6h9qVlCRiH5UDcQJTXqvAeLMW/e/Mf6SF99viyfn1wN9ZRNiGHb+NwsrG0+Rwt3m74pq1EEvPBXcLCjK2hB29iqloUpNfcDyPfBPcUwu6xvBW+q2u8p6sijuECOEBnuGXWwrEvdHOcNcQMomo1PDS5T3MRttLFtfPM6pVBCN7YiyQ9Cf9mGBDrKvt3oZpD8a7lf5wkr/SN6gXVD3yUKg983OqXjPAT252eUqhyOC8uSGRlY8sICHE4z73/0GS9vbqiuHhZTYpomo425kuOSvR/gELk53CELfXyDCGEUuI1cnAV25xNDGok6MqRMGBceXF1xNkFR6+X27PlLlhJ4fpeJcyVNI8+f33C8y+zHkbOzPfu9ZW0vh0wcCnqcqfXEi+sdosI7bz9GgnCaF3bnwbKgGeZT4XA8suTC1cMHnE5HjidruRFj4OJsR0qBcRgQYIiRGILVCtRC9nrVkjNarcXKi8MN87LwwSc/QEtkXoz28fZbl/z5b73Ft7/+iCdnE1orJzuFXY7c1k7LODRZ+Pb9Xrzf5nvjQJiRlr4PvvBpm8a/7AmD5th0XGal8RTdqEL6p1F62vebEl6UhDdZsrqMamsOVYjmXNwdDrz/w/f5q//Kv8rbr11QbmbqXJB4YDdMFBl5drvw0edPmSaTJ88ZFDtoQlVCLJyWYxeEqlpQgUSkUClz5sUnn1FyRFKizjNEa69B8MyQqGVsegbfhQSKkk+FUayu4rVH7gRXoeYJBYb9HomBnBeeP/+MR49es76vx1tKKTx585xpGM2hVgFKO2tZvLdYcIn7Wuz+IoEUBmsbM2dEmm0pFKwVyXGZCQFSCFyd7XhtuKAifOOd19AQqUtBb24JMqLBtGmCChIfklHqkgkKeT4wBHgp8Hd/6/f5wUfPiGTOp5F5OZFEyFLIEvnmz3yDf+Ov/zXqR79NrQF0R9VCrAsSK0WEomZXE4G42/FieMJv/+6v8X//1nf45MULGM1sK4VjLlQZ+fl/4ef5T/+Tf5+/8LMRXnxGfnoNJJYYCRSiA+dFei7i3jKGjUOL9Nrctd5ON3vB1n3Ezpt6sixVCUY/jSERJCJDZAyRfVQepgGVkcIVmosBeVWsP5kooURaNZwp2zanlPUZxOqrEuHevhPEguAODPrvrnFlz4psX9rc15X6GVpWCmF3dg7AsFW9FKeL1tW+a1LG2mq+PHALQl5amymlbfeqJhRn2TnTCiglczwdOY9nbQbWTJN/WnAXB2uR1Bz3eV6s1+w0IRSWZeF4PPXsVBPPAdjtJgsYg9Met5msZqM8WxdCNQVfH90mJrLMM2kYjGkT7MwNpI0ts/vtpsno4HiT82Drp+W9VqjCFRtDZHTgOHg/5ZalBNBaepCgWok+r1YHvqGfus9RvdawldzIBnyutfR/T7Fl/gyNatfRRr/29a21UrKaHzE4MFBbsNJCGL9vLmtQ4rBbA6xbgB76KROcYmj2PcboSs+sAjSC71ezCRtHh/sfuT+fW8aFz69gQbVULP3pgZlRk+O6BpIzD0IBgtNRnYZcV4DE5ib7/nQnSldGVg9e/Zkq4uJsLTjzPSNCrgVqZckO9QjkkmiUXPq1II0DtRZyheD2KgShhoxKITOjxYEbBhv7XhZiIEsxCVE7M1rA6rPSfNyWJW37397T1liQSBvcQETq+ntAB5B60KqNteQJkrqKqOVlcTAn9ucJPgZaqxeTWRmLPZLv3bxYgO9quOjiGX/W4FhW3wSaFgKb9dio16uaqnq5zlefL+fnJxe4GUfvoVhNNfOeI2ooHCKcii2s6Nm4RudZC/Ntkbcaro66KR25aYeZYj0Z7yFr7Y7te9FznWIqpVUhxqGjb4aQFjuoW/CJmkpCQ/H8MbabkDT4fTaLWe01e1Dn6rCNViiyBgSN6ldlRWXBffIfFw/Ithmy3PsdxQ8135xS1QUILKgVhKyLZ84iDx+cG2I236I6sBtH4IJ/7huvG43JD1WthaqFNCZOxwrqBfcoOR+Zy0LJyuEwczzNvLy+YaZye/eCp89uef/pU8Yp8a03Xuc8PaDOiSFmZF843ibOpx0//Qtvcr6feLCb7NzQwrJkTgjjPrHfRb7znfe5O2bOx9fY7+DBdAv6iI8/veagme//8FMOh4XD6cgyZy7Pzvi5n32XRw/O2KdAnpXT8Sln40RFOB0PnObCsxd3VscTp47IjSM8uNiznyYeXZ0zpGRzrAvjmPi5/RMiUPcDp3lmrkoYJ15/8hqPL85Iy0I9HCgaiWmCeiLG2AWetgfX9tNVbX18tTY6ynYNONXrxy0Q7q/PIPa/ds9GWbv3ux6wtv33alPuXtchqTtcNQpZA+U4E4Kye3hFHUf+9v/0K7z9+DHfvroj1CMvrxfOYkTLyPy1N3n28pY//r3f5e7mmt1Q0AVgXOuONBPq7Fk7rAYiCTlHasgMVljH9fUzPr0+sjsXogwmPOC09E5fCeZQqQNMKtaXcCqJysxSAvPLE6oFwg4JO6os1LJAtczkg7MnPH9+x+1t5ezyAfuzhC4LKRWoM8JIHJPV7Ip0xcUgkTgMpDRyPBwMFQ7Wg9HzEC4QIoxxQCtcTudIwWpmX8wcPOsr+aXR9iPIDjQUcj7rvdVOVEIVwi4DI0OAXYoc9Rt89OwPmZaFFJSYI5UApTARCCFyRuC8BPSFItNETSdUrT9qrJEaqvVHLYWyv4QnP8V/9Z//d3z/vT9hvvuc81GoS2U5F063lX/7b/5b/Ov/5i/x7/2Nv4x+9F1u//BDZBgZdgMhmEpgyYXC4o7wutbCj1nPfX9s1mhzoJrEe/u5uQGDuCqqZ7qyZ7iqRJTKssCSZ4ZwIIVCLYLoiSEmpmln9ZqUrl67OmbmdDXaoXhwUJYtkOhZKcr99/B/3wZeXWyjv4PNZ/EAwlTF7X2Li7pktw+Dt3haz9bFn09I42j3a/9chDRMljWoDvi5fbm8uPAyD6PJzbMJd8ynkzeBj10AxQcXuWhnprWDkmCqkoTQgTWqoScx2nPOJxNjK8XG9XScmeeZGIVxGhk8O9fUMlUNWM65kstCHBLL6cjheCSlxDgMgHBzuLO3XxZOxxMpDuz2O2IMHA8nDscjecmkYWA3DZ4VtuBqnmdSsn6xPgFmM2M0FXARA0WD0e6js096CY2pApG1rm1aoquni5XBJKfV7nY7v4cB2dlVUofoipeNvqzeK7CFCroGM30KAgyjt1nSVuPaMputvtAF+YKL2+kaPIizvhq7q2UOrYSokIKt80bt1FqtdYinJFXdJ+vD5gFFvF9LXOrif9/sVfU7lcWAM7X/yHb9JrjS/Lv2DqpQlvKFM69RZFuGUjvAQ7/nj4szTNyodpvd+iu2PQqepPBnVi9Hij7/21rD7MJRo6v353kmaUQkknaRaRx68L197u1/pZR+PXsXoWFSIVhd/JIXo8C6v5ergTzbjGzNBVR7nef2/c0W6Lq2sLm1FnXCXDJLqUw7FwKi+C8pWauJVgUDYYM0kb71PqZiGs02DdY2pbWQqiZF3ecFBRUx9VotaFmcPuzroIEldQUcvvp8OT8/cbC420cs17wiGNX5yU11DLAgBGvMLmpo21qX56l/CYRqtC2zZ77Qg0tpqyFNDeVrB7Fq+1ljpPUN6c/YkWvvk9UCrqpWs9KrptXodo6N9UNdVLpD3ahLW2lxq4/cOAidI78Jb7V65nV1lgxhLX0EXv20YDWG6Giu9oO/jY90XNGRP/Fead5vI6yguDmApbBUM0CL02ZVq/P1S0fWu+F2NQkTcDAkd5TAEhb208iYIuf7HRm4nB5a8Hh7Q9bMOOzYTRPH4505dBoZY+T8fMc4mmz/sixkUYiVIpWhKhwrhznx+ms7ahGuLvcMgzAMkRQjj64u+OzZLRe7I0vJzCVzfnbJfky88+YVF+cDA4GgiSxv2rpbZqcxC3eHhXmxgzGESAiKSrW+iyLsUmQYIyqGAhpdOZFrRY9K1MREJVaQ48zJjWvNGXXngFrM6W4ngB/ZK6LZ5jj0ubba0yaMo+saaPmLnj339d796hV4KQ0F5z6Q0oLS7sC2PdEQ2x/zqVQoGakZHax3ahEDWD748BM++Ow5+/0j3v6pt5AcocAUR+asTFJ4+clL/uSHT/n+Dz83IMMz7qVR1sqKjFNd1c7ro2IwFcogitaFF7cv+dFHn/HgnR2P00C+m6nTCkqpCqGs9JXmIJnyrKDJgsfq2XwE7z+oboui1z4VxilahoEjt9eF+bYwxEuX9jbZ9RibXqKrD1flcHPHslxzeX5OjAMln1AsGPCyLB9T0xU3uXMbkxqKBbkxIsnGgyDUGIhi4lkhqK/VQCiROEymghgmliB89Cd/zPNPPoBQqQGyFEI1SnjOygJoSBASkhY7+KsFOlmaLcAEfSQAO6o84EcffUQ53gLWO04IhHkhaODtrz3hz731GH32PebDC+LZDglGNc5F0eD9tdT61vaa3K3o19bmucPWd8A9kGUTaDXkGwhNYbUaqBVwsZhq6n8vXpy4uc08uBy4OBtYlsXUE7Vwc7hhzoUwJoYIKQopDe4cFpsrv2NTdDQ764+v1eZAPHOyOUv6O7kz2DHQTrMyWxCG0fpxNhql0DNEZh5a3WGzCRumSbU127IPgljGvSWA8LraNqaajTKpLXhfM3sltyyNdvpyfxU/81SNYTCXvOmHJt57rVIWA0iqburMEMZxZBiGTbYDB3xCd6pb+46mTj4OA5MHXe1nxmnsNkuv7NmTq02P08hFPXf6eYR7XTADecnerL0Bz+v665nADcsieAawAccxGj05iSmt5pIJIZriqNdpNaGglFovP7tBdmZO3CyPktu8FQeSzaeJ0TM8LbvXplotm6pYH1IL7AwwkBRZBf9ibwbW6uzoPoey7iCxTDFqtthQZ0Sdxt+AdT8zOkXX/2vHRveTxPpL4wFjq6e0d7LeigHpgoRgmbn2Lt2f8z0Qhkb1b5lDC3bEgQ475TwI9Hs6GaCvwbZRI8Gpj7ZnzMW0sWn0V7zHtG9kwBINFvvae9VSSePY1febAj+IgQntYG/z63tHN+Pf1r6JVq1MI938m4ZKrRmjYXsM6yq8LUtr2VYPrlq9cru937d93Rl0nlio9k0r8fKvW39WoeUNmkZGy+yu9PHmw2i1Post4F4pzVt2gtnHleWg1nsYx5hQp/P62pL6Y7zhrz5fls9PLnBT1ZXYmlKVUzx7QXAL0KLXOWSnAqgjIquYTHN2qyNNdl3rO1TVVJ+iy/2qrghH62+2rZO4B0htDsRmwGCt0dJXnWW1xd3/6v9vFFP73XrvcLc//e8l92921AiraQz3YC8XJGl3aY7zBgkS6AhYu96aeG3f07Uuw41qobryZnC0p9AE02JMaC7k1ujbjia7RgwuyuPD4EGpFqPSDa4QOjotIUhgl0ZiSNy9cUOuYI3OA6KF03Hh7tYUJ0MYICjTlExdsQbGNDEMgXk+AokQTswu7//w8Rl1WZiPVtey31+wOwddBh5fnRHHAQmQy8LVxROGITDF4mXjESRD2NsBExqC1aTPbUyDiNUIOn1Ruh+ojuoHR/rc+CUDO0yYyQxtPZyopqjie2JGkB64uWWnyGo8Vxlp+oH1yiJkDSqdZrwxoVsnogsm+U82R3FNRPgJuV15m3vagX5fdAQgYv3/NFjgLDUzTQNh2nH34sTnL47sx4mr88kDwcpIpYaR4cEFh5uHfPj8wJ99eLQDMDutx/tPRqxFRlUo1Q7FGIwuVkVZUPZO/bw+HXjv/ae89eQdHu33zC+umfZWuN/quHqBxPY9o0CsiA5emzQ64yBSgFoTMjhFB2vtsB+iBW2SqRXmYQCyUVpzIbCQBptrU8O0ObZnMHDB6tksIE0pGUrdGAFq9yt1AbEgUbQQNJDrQsYaa5dFOb2cKaeZaT9S6swpz3z4TLm63FPuTux3A3MJXN/O/Nn3/ojx7ocMo9GqllIZa0SHkVwsgxixgChH63UlOaIhUIIxE9aMnwuXMfLx808Y9cighjIPIfL8pvK1t7/OX/qL/zw/963H5A/+AGVCU3Xl6OT2sVLV6G2yUbm7hx2v/ofN58a5/UImfuOsNLfVAnIQGZw6XyCY9H6UwOWlMA7CNGSGcWctNkok18onzz/n+YtbHr3+kEQmBbGecMD52d72XAdl7D+jcK4Ajda8Prfb6lryuvf9eW2/bcEgQUS9JtADFaWj8tvToIU81SOENTtUmecGTvrNqovi9DNBXVFSvL9av3vPOIZgDnhxIaz27JZh8cBOVoaJqo25CVbJBhRbg8C6+Z6puq5CbfdzB1uncq2pi1GI0Vp1NDXnJhgnHkgXz6gBTHEw+nQaPIB3loYapCBnkzvXq+1vglvzslhjeR19Lmw+qwc/Zl4c6PY9LxrW9/JnaAqTpeQOdtg6scDFgjK6H9L6srYMW8uyGqa11qK2bHdVA4ONgbXZF9jv23NEhNCD8ry4mJCr4pov5SIqQlcht56B87rqxBTBq2fB7vtU+LnFCrZ3sRPpWfRWT2fAmDpgp+scIiC2VuK9SAfrG93WtdhTFZ//tmTuM9k2S6k7ULqWh0rbP5sNjZ2MuX9rjeZFWyBZvJzKnuOzT56y5MK43zGNI3k+uW1YS4La/gtNlLC9W2hn71pq1bKYbVe4u0ARo2OujATTBtGNWJ2tZ3/kHpQa9Xi7NhTtfWMbgCASiNB7NDqxvz9b0yOh362VmjXbvH5NxRMLK/21uoiVzbUjGz781Z+jNMum67N/FSl+uT//DK0zqlMwW7Coa01gcMMfWmpdvSYAk2r2TdCyge06VONjq9MuSi5+SCVUXUFqg4D23M3GaW6Ng4GOluCBj31vG3y9YgW/0BB0RUVWO7VSMNrh32moLYigMbKbJVrvq4onOAxdagd0KyBe94x0vvu9WhK9dyuzLiH0MLM9b9i8WncQCF7PUPtF5NU/1QKq5iyJ7+LoVPno1NpuTFzxTBFSHJmGxDQopxhInBEkESRRJBMHy3pqDUxjsh5UtSCSqEmoS6FgMue5OpWpBm4PyiEXr8ep7PBaWQlIqWufo+bAOFVLgSF5qwetqAsDtYMsYrLzrX4BR65zLqQ4mA/ocyyjQoGoto6XsrhPIhjdeFOsrmvmrB1wazZ84wiL/Hj7+Mr3X12V28OuO3gN8dP7ASWvrCvdHAqofvH+/r4qFiyKWm/ImHbMi1qLi92Os6vI4GOKghRru1Ik8P6nz3nv46fMy+J1gg1NbY53oFXWdHfR915VvLWMrdiI8KMPPubpNx7yrfOIykKoLfBw+iawiqWvNHIEyP6OLch311Vc5l8ClsrE5xKIIRGHkWkUlnIErLamuTCrLbFgexiSZ9WaEFellMUk2Guxlj0r5k8Uz74AiGXag1a/utXS1bJwvDsyl4zKwpwzh0PkbCqcTkeqFg53lZfXR87PJ775zdf5znc/4/ZoYEcQ9fY2QkqR/RgIUqzmMFgPsb52VEAzGhaUSggVOKIUTN7LHZ8o5AyXV494/PiK3Si8WCqyi2gpqDR7bZ6B1cDU/m73l9krwX0LlF4JFNfR3v5sHzwLAKR2u2aZA8uCnu9HzqZoQgoCMQUWAjXAbjdwUUbOdgNSpcuQaMvkbRByEbp97da5gYL+3ea8drGo/tCNPreCo+16LZsWRdpFbH/cu7KNi43h9nQArdIVQQH6qvK6pP5MKrY/WjbK164veRrVFxwwUH++dsbcex/xgGaFG/27LmKmLgxj32tPzSs2iWanXpnc2rzK/u9OLW52CfM4G3WtGTCr71tVLNscKBWpoVGP7H6t7EKtnliIBK973BrE5sRXdbvZFCTVGRst6AFvvbFqN/T6L//d4sFeozdbCUag1Orquys1cqWCtoDAqIKqZicNCLbxaABobY67eHkBsHj9aoz2PVN0rat99D8iwlJK9wGCA/WN3tkyl9uREfE9I+JBvQc7DXhqcaQH6ZW1BGfLiOnjvHGyiq5ZRlFdbcfGB1r9ofuU2JYV083hYj02aw+a3CFrl9r+spcGtvq7dh87KJYlc1oykgZiLMzejzU5faTlyNraayVG7T1UzYbivpVlU9fMWlv67h2ygkV2jbX+Ee59pXQBKiT25+6/+8rste1cHTgxP8WD/QZuNKEsfwnd3FPbQb7xFfrYq4Ne6ibFf87GpBmTdfw3UekX5+Orz5fq8xMHi8up0lTCeqykavU6fgBZ829zIGJKvWbRjxZzaIBhDOx3ltKvCsdT5nQ4cXtzZNxNTNPebL0o4xD9sNs4harUurgjHvpmacqgxjhtlNI1UOzqYP2tmgXtJ40t7UY79Y3ckLUtUmwUkXtX8Ut5PxndBgyrOcA3WKeN4AeTO3EddAOnYtzPoCpe4O4PG/zfe+0CgVb8baiiU/Gqv18QpJrha4eA8daT9R7zTHGphYYytQPhOps4SZmVNCW0XFsriSkyjolT3TEvC8tyQKswpIX9mTWOPp2s96Xq4kZxT6lHcj5Q80DOwu5iTwiVlzdHrp8XcqgEqdx9cE0KgYvLHYcrZYiRIdhajHEwRy9W8jyjzsEPEswhDYEhCkGUIUXCkJqfZoigCGhFqvfxCpZ9DHc4TSe7QqbNXyQQGr0s+prWH1Mv6JRq9fXV6yRks2Kao6y6rgXV+9f5AsixGvHuvvl1zVa3bLFunGyn1mildpVHc1pVHN3EhECSVRUwV+X7f/o+f/b+R7z99mv8pX/xZ5mf33CaFywAixAL9XTiV/+3X+Z3/8E/5Xj3giEKOF3O+jIFy2vbl7SAVV3BuKgSSZBtr0wB/tf/+ZeR5W/yC//RXyTtCsu8+PgqSAtnbPeFaFmA2mo2ykJ1aqsqBC1Wk+ES4aZw6DQZEoSFXKNRtakEsdrAcbeOYxvxlqUWEVKM5Gx1YLUqSy7Myy2oUEZrTpxiRLGsiZbm/EUQZQxKpRIHE1062++5PV8/pxdAAAAgAElEQVR4cXvk6mzgbJ/4cz89MmgFeYsXh5kXz5/xllxwvf9Fwve+y/Dr37NAM1SKWAbxVJVH+4mHV+ccS0TzjjwVYmzURWGMO6oGCjMaAjpFdCrE+YREQ6slCGWMVAns93umSVBmFiDGwihnBFWyzijVBUhWB1RoJlX7nK92bZtxasHY5utuY9e9BOaU2Ly7CmG1mlCy2z+8NZBMZF0IoowhgwS++c5jQnxCXcyRbbU4ijUPFzGqlGLZbhEluQhKew47z9bsEkB0dVE279XYNauval+lYOeVbVbf9+pfuwphqb4uUoSyMgFUTcFZvH7NggJbS9bmQixIErMLpdVIV3MNa7XeerkuLdzxsS591OkZKtdEDmKiL8HOFUX7e7VRKa28wkGDlqFrz4GfbQo+dmvttiBIY/uI3FsRKa1nY61qfXIj/TxNUchL8bYf/j79/Dd11NbCAFnP4hgiKUpnGW3tZbebODPFMzu087XZDd0+qQLBe/Bi1MeWURIQCQYrCiCVGNRatPQZaO/ka16rs5B2/m82nl20LyVa+2iPan2UlLBLPXBHrM90o/v7QdR9/laHZ9/zQC5a9qudR20sSuvD2YR98HtjwYdKG3PpcphajDLawQjPjIUQ0eL+UV9Jfj95ZWzdJmg7H72tTYfZdM2kW0ZtDaSasujGzfJYp4Vcbf0LSGVZ1nVsB2flrTffsPVXnLY97fuYaLdFHkA5zbcvfqq3k1jbehgw1Z1YrHZwY+eaeBsG9tQGHoiXJPo+AaguDBaVrny6JijaO9r7Nk/O5k5par6C1UeGzd4Du17O3otT1gx/84UJ1gIk5+qgn+tguD9f8dYvXgdpfu16DlhdrLFq7kX+X32+VJ+fOFhsRXE9te5GYKW4qVMd/NBwnn4UsYNPhBRbCwrhdCrMS3Yn1hbtvMx2WGu1Hn8xspPRFViNbjENkRCEXI0CYsEM1Ix/r1g7hODoTzFjG2IkhkZrWakbrQ4idONuxqIZmIbErB+xWkuCZZqaM+92otEt+qYIPnYbb2kNQterqqpnJPyaFs24g7K9u32svjFb/B5sY/rRas+oVl9nNTbW5iPP9i7DaJm6Jg0d/DFX/rli6mCWM41pIBCtVixlDsykYWSWQi0zZa5kbIz3+8T+HCiVMSmXlzuE6A1mM5BYTiCMSBiRcEkYbB52yYxo0UtKNTWyfYocru8oQEyR02JgRJOIQM1WzQE0W9sPwVXXihmnELSXr4gk5tPi9QKYmpvgdKYApXqNis+103zEa8KLi6tgYTkx+KGj99Vstaz0aVtIoR80fRJls7I2WZZt/YkBI/fR+rYHtfkq/bAVpKw/s9aaYM5DaMX79jPVQZKo1qNMxWrVdvvE9ekFL24+Z7dPvPvuG8zP70yIIJqQRiAQxgvGt77FT3/7W3z6yQt++Nk1x2Wh5W0a6g55s/ZrbxdTRUkKgUIhGeVLCi8/f8bL6yNVRnZxpLXjbsqQXWC4H9bGDFani+Hr+d4JGBtlyp0NEcuiFqvhbXnbwiZTsknXt8PSatzsWtJ8sBAYd3tTn5wXsgsWhJgorrxXS/HrZvDDtymsxhgZxonL84n9w3PGeSHVzKxHKDCkPQ/OBy6ePCaz4//9ez/gl3/l7/Ph0xtiEIYxUhZBYkFFOS6ZZzeVl/mMh97PVHSwAD1Uo8KKoDqiFCQm5OKKUCpCMMKH2vtXhPkwU+YTQc4Yh4GRwecKBgbMz0yOhJvN2ZAVu/1sGYW1v61s1oitl5V+uk5edSdFWtAp0ca+SfuHNeduD77QhMmK1/rNt4feEqDVwbeApgF8nWjS2mRIc3JX50s31FBbF3jZhA+a7zWTSYweHHttTtDuiNsv+17sjnPb0M0BLd0MtFYXaHC/rDFytOmo+hng71g71Gc2zC8UmtFsz087X9q69zFua99IAZaoJxA3TB6fHLtOq3Mrur5XBwDcOd5SWJuta1kJ1EkzNi8tu2Vj7iUluq4hm7+Wm98GGaGfYz2DtW2RVZujrG0C+vP051qf0kJBuZ8Z619vQTx99bfwwKV8gXZJe7btz2+XveLtqtocQZTQ69i0tR9o/nu3h2CRJOu49DusqTd7nJUqb2VB1andfrbUzTi3wKxRKLfv3bJfnvUVWpbX7t/E6pWWtfSMr2BaE9s1IKzv6HsmyKru3bKkxnrfBEAeNFYXAdzOqy3uNajrwGtPANj9eg3ydiLUEyGh2v3cJvqmplk5J87Si0h6SVbjm7nNCQ5qKl5itdkrbP7sY7RZdz4+YbMO++/I5n393ewRtbsHjdbdabAtmH7lvdt6aGVYdqE2UL7Hq6w9eytAIXh2toFUNbcSLQNAGihjSQ1a7H//jP7q86X6/OTBItCc2eKp61akDc2BFSB4htFr6BxhqTUbWagFZmoy21UrMQYeXJzx9htPUJTD3R3DlBhSYsnmKsYAIia1XQqkITBOyVXKxIUl2uKU5mcjiCmvLQsQu9jNccmowqLF6JDeFHlIgwchK+LZ6jKbOpXnOkmxVVmv2b+GPK8ZxQA5cE+soO2WjgLi1Mp8byyNIqpOlXDnJljfm+WkJG+grgVqtsxvkOC0FhhlQrGm6SkE0i6CCpIwYQhHsIc4cXNzB7NlTFSVXCppSJSSOR0PVpshC8u8QErMyzOWuTCkxBuPH1BD5eOnH5JPGc2ZcYQx7fjo/R0SlIvLgd1ucMWtytlkSqtzVmYtlKKkMBJlIKSIUrg7fcrzl5kUz9jtBrsm1rcpDY4HpERdFnZLIKWADMHap9SMJOPeDzIQJBhnPwrjmVCKIgSrrwSsR4gFk9SR06kwTSOVjNZCCEZrs/5QoyHGpVgfwA1Kbduk1aO0NYPXi7h13BwE98816wuJz3urZVmVg9fPq2I17V97P0ARR+LdwRUTmKhOWWzXW5ZsymWLBfPDfs9nL+54cRgYpje4uoBYBmqYWeqCco6WhbrckuR1fvPXfov//n/8v/jgvc+4SJFRRqqePGAP3WkTcYfH053Vs4G7OIFkAxLUlAZzzSzLwepFCNzd3TDtJu4ON7Q66XbId5XZENc58dpmm4t1PLZ1QSEEoj/fWt8iXcX4fg3RmgFuAgKrkJDVLo7jyBAiwy7RaqXuXElVtdF/Wt2oXX8cRqoaVez25hpECDpxxwmkEMOZtaDhGUmgLI/408+f87f+m/+WXRIup4EqmSwnW2sZHlwmTsuBv/N3/wCJT/iv/8YTXtw8YxExVVANzOUpcAWxEPd7XpSv8b3f+ZA4FkQLUzAVW+YMEV5753Ue7i+RF7OTP41K10oE+upTCzxCWLPttlbXjGNbrWYCA0HakbS6tfcDyI1jJJu1rf1SG6d289FNSwRdzXkDBNU2y+ZnNl5LSOu8NWlI1j33ajlDisHKuIJn49QUuXMXj7FNLlSCt0QI3sbn7vYWRFw8A8iZoEYhTJ796XTFEO7t+yhlExCsz6RqQJjRwdlkxN29VTXBlPbzuYGosr7fJvurgDQhpm2rCNYgbK10aNdoT7Opd3rFMewBZaAHqv3sZrtv6UDbev37+7NP7ivrpgU5fc77vfnCz957LuhjUHzPvvpzPVrZxvn9+2tgtu1rh58L9zrM6bq27a8r2BLa9mo0T1r+ag1It1lR+56DMA2k2DxDs3WvjqN7bv7+mzEXubfmGhjeAppWr9rAubbW0DUD14KZxn5qz1vQTfZxXWuNPloVE57x7ylroG7LZWMPfLD7urAX8fkvm69fCape+f72zzVQhraON1NG75Pp/lybl7YfO2sI2x6mEhrXoIu2l9bLqEJI9HEvxZMug/kAjWpstdTWDmP1JTZg8GaP0vfKKsZkVF3t62Ol90pzo502X53uvPqvUiMRiGIqxCXXDrCGus5B1UpuzIMmDqktO+9D81Ww+KX9/DMEi8pmZYEf6vfVFwFHgqQf1o2O0xaoON9duDseAcsYhVyIi6Huy1LJNXMKVs+m6jU34tcTyAuW5sYkhlMM5OKy1aPVrYUWlKGkIa2WKJnipqJNc5WmcmabNFBLU2Ztxlj738Us/qqWB7TTcqOivDqdTmugIVtNZKQbu/VQaf1r1u+vVNb27up1URo8OxSNXtZQtOq/F/ywiMGoMHlZKMXFLjxzGGJmGgakhhWJ8sxomQu1YkIhIZGjoEV59vkd81wQieynwM3NCdU7rl8eiTES48TubORst2cfB3N8oxDSyLA7Z1lO3C0nWtN4SIxjRLQSgjLuAyEmcrhCbl9S6oKBhonzs4FhCAwN+AoDMDLsTQzJ8D7LbpzyQilKqVaHNo4jwZVMOyVZrWi9lOzZIFOkXWY1GXRPoicPFFN0mo1m1jrUVz9bz8G3zsahUF0rotjMbVVT9u2Bjj+jUZBeORhfObxW50zdWQ3rAaBOg+qH4tbpVopmAw5QRDOHw8wPfvCUy8s9r7/1CGqm6mDdZsgIC1CI+8TN4ZbTMhMipCAcSrn3LP2r5iv6PUVxNcCMeOpCpZpTH6LJ7g+JqoGURmIYmMY1894PYl8H1R3PrrhY2378YqDdtl4L3IKwmaDVAX01m4B4ztSfvYEAvYi/lC7A1T6N4tMQ8kbFbwHrkEaSOvAjgrUCAahIMSGCcjwQ9iPzNHIKhQhMydotNIc7eaa5lgpFuLy44slbb7HIx4jOqESbZ62EMpDrkSqB+fbIb/393+E3f+9PIFhD9eL1UikkBiopQKkzx6WwLM3BsLqXHjBKMae6NpGDda12RcSN0rQNa0F6BkWRH7eVNuu7gyoeLK4BxcZx2y64dsHmcCtr8Ib2b7dr3g8mts/zimO9cSKlqf1p7kFYyUbdXHLLeNo6mcaBXCqHw6GPR3KV0GWZ7feRjvav5xcuWmI2Yc1qKYhR4F599+p7I6jPE81pdccubmiyzRleR2P9hzZfaActxf2A1twdWLPwPa5Y86/qP1+3AdHmFdaBl37rFkeuzrtszKqN/+rAboPFL362AVGzubSygP+fn1dVs/2ba2739f3MaVtN96rONmEDq7/gv3c/O7R9h+1yXW1Fv3cLbliTv5X713v1Pe7Zo3t32vws9Hu17zRV1LbXaSUMAuqgstR1bGE7Xz4eLX5FjGAl1vNRBPNPBFcPX8d0Czh0eucrZ534NftCAffj2g11PWe3wfQmKP1iALmeAf7P9//c/l6/iNz7nm7/bXOv2v3l0hkp/Wxhe33dvuoaXHmf8l6rWDbPXNdMtd37vv/RHmW1ob5/Wi1vpzNv5q/NOQa+25nbwK82ti0pswETnMJfdQM22Ytv/Ni297f59a8+X7bPTxws1mrZL0MxNihDawngJm41TLYIgiMKsDphChCMhhWwPnmV2tUaU0jU2RzYUcKqgsrqSJ/w1hExoJqhWiZMVbm7aw2010xBCILBqe3vFpi1dLrFosFqLVMlTKuD1xDURmFpkEjOk4/BSrGQddfZod36I24M50pVdYMagsucC4Xae9N1p5iGxEs/eGJKaMMZvdjfjEA1eX6p7GSwOh8x+xEHIQyRMmO1FQrkylIreS7EIdGC/RBMEfLm9tZti1BPcDplShaOC1wfb4nxwKyFPBd+8N6HVA1UDby8Xii1cvFwT4pO2S1wtt+RBmFeTsxZyRWOc+Zsv+Nsb+qEp+PCaZ4JaSCFysOrPUOcCEy88XBkvw9cnhk9OQ1CCDtO+WiZrGIS94LVE9VqzdFDDOz2BWpmjBNpHIkRCxxDgJCsSfmpoCU7Ai+EMCAaqDUQEVeRVe/JpMArwYiwUjhe+TQnr2eOu5NrWc72aU71uo+2Ige+fjbewsZnWa/n53qjUNn2tP2r3t9LsNq6LEJQy6EEnQk6U453pIvI+RgtQxEzskTMwYchTJTdwlJuOB+EQ4ostRCTZbrFaxLbe/fDoW4OLHfastr+NLn7TJ4LWiNjHBmmSJLBhFcajX3jOLUhKl6g33qVNjvRGmNv7U/fh7KiqPTA/35gsE7e5udk/V1tSnbFqEq1C9xI399gtV2iTT3V6fKlMI5jnx9B0GjUfcGCiEikUgjTOR99eMv3/snHZvcoUK31hUhzMgJhwWqCzFiaLx/U+zzaE51SIlTlrlzx6cvMb//O7/Mbv/H/IJIoNTJMg7U0KSYeUqtSJRJGzNbK2kewdiEPW0M2jsWXm9xzEBq18H6rgJWu/YUxvzf4ztTogdrWeXzFid9O2CZQ+MJV/Z4NNDFA4xUP0X8utMbzEjbXajSx6hRpq6875ZOJgMTQs4G1KHeHI/MyE71Hn3grFqWSfE/X1mqmsxNsXRj7rQVJ2tfh6pmutDoDNez56r33hCAJ7XRV6fPRnNBtcNTC6SaCITR2xLY04/6fTZnVzqXVXrVYr19dmgPtICprs27h/2PvXXotO7L8vt+KiL3P496bSSZZJOvZVV3dUrfUagkWIBmwDQOCB4a/gWCP/IE88tRT+ysYBjSwIViABMstqN2SWlWlqmqyqshiMh/3dc7eEbE8WPHaJ5Nlgz0QB9xA5r33nP2IHY8V//X6L5ALkpUtgC63GAyrHdiXZ17MpY0S07SNQZlq63u4poLwNjc7CO8F37XL49HgIBTWSKq2UB5ZxpBhrqGb32v/SmkDw7nVQ6s5dybMqhQNj2vNkO1aGdfHW3XlQcmp60zzeH11IVNUiUFZfmNNjgqzllyX3i8Nz4ztKM9v71InhQI6+GOH6d/aV7zTbd8pbXrDczw8s+gx9U5d4WsEMqXR5WSTeWO5mT4utYRc1V9dlQ8osX5elm7Hkf2oXt9RFnZHRcWN9bNC9lZynfv86cpcY1BtMrjLOwv5rWMm7bmKlYiykGSaTKzeSLtHcVrYIFJLcVxGEKjIG/3UcMg43b85vpbHVy+dAW2z3oSfDNK/fl6tt9U2cWmhr8LVi2sgWIYF5mqeRBUqrvxDemmEQk4gzkEqpAClrs+ypMJSVxRDqSU3auyNIE4La2tZAJnCrKn4GmxVrg/Owj19KCUTymIVF9pmrgUoSBFoPek4907q2LEtmCq4bOHZ4q0Me2NtPovVoTA6DlbaksvhneDFCDWSxBKOaDmHVVD4YAA00b291tEe72CaQsubVDGlD11LrRyBJOwnx263Y/ewksU8b1fHGd3B9XFPTJl1NQG0pMzDEgnB4xPkNUFeOewDSbOFoa42Xs6DD3tQ5fbugcfHhYhwfbDyG6KRtJyIceLqOHFe9wQPIWS8X3hcHi2sL6pZ9hEO+yOqCQkwBbhPJ0Qz66zMKRvRAdms9j7YBrwaaUmtB2S4SnDRFYBn4To16lnKfG/DqtC+HA6RLZAZrac1vKqClgrQ604qRekbmRdHoDve9zKMZnxWbWQugK6HBCmWB+ZAz0zB8a1nVxx3E+uyMoXJvNk5IJMDDagmXt+9xmnkejdzGwL35xNzVVDGdx+gUcMi0gRK30DKrz4Ey0uOEZaVFOspUtbksGikAl5t6w4p4T7Y5p1b4kzfUKvBqO7erU31x6V2sWFOrn3cIHKRP76FZdXP2/pX2gbf6/jlUpetFN2WjLi5gJ8EPgHeSgS4wOPdLY+vfmvkFJqKRd7+GW1LnTJWGy7GBceESMAYIO29V2fKz92t4/kd+ONTfvD73+Xjn/+a81nw88w8CZojT51CTpzXiPqAnwQfSllC1VamR6AUgO+GCCljanJpUByKgjT0JFXZaZ8NY1XBz6WSWM/RftoWHIp5Pn6n/bpZ0HWzdkbP8ts8zVXpcCLNyAklJwePSGolDNSBqI11jJHdfm9F3Z1jXdfSuh42XblkU+5jmuVtuXO1rWLvWskyLpSDbOEhjYG2GWypodHdL7EBnfqmctE9wUKnTx3Vm/bki9+2crJeU5Wn/lld1sr25AvQOX7+Nq1Htq2h9suFYa+3cWus6PvxZROG/q/KlOjQ7uEeVeYMXTrKlhFI16s2bzJArP8/mLo1V4YH1lu9TWFU+ngXQ4gpHkVi65s1IDegf9NU3Xzfu2E7D6pTod+Pzfhddtn4+eVj35AFTR68pb2bxtY29D24n3Zxj2HOjMrQ5TNaxM74Q7r3rculHlXW+qz+V0J46992q7zZm+qz2zBs5OS2K6oS3BQ4VbR6izdyrb6DfWXlWXJjQLaonQsOhjbhteW3Xk6NyghbZfd4Ql0xX24g/Ob4j318ZWVx9Bg2CwjbxSgi5NXAj5T6QArNUgFFQBaUFaQwyQkgDvGl5qIAhXLYOVcK7wJaQ10xbja1ot4WUuKaxUOEwoZqtMLVMxmmGTRbjccMeKN89s5ZErqA91brbzlDLnWsgnh8KKGSroAdFeYZmteyhMuK9xebNTQGPAUdrGPNOl8V3+LljDEaAHGF8U4hxbUBFMSUXQG8y3gnXO+vmKc9irLEE4nV8tEK0lClEUTsD3tCMJIb77IRfbIVUj54Y2378N0CeI35SpPy6vbMy9tHnj0JTFPg2x+8hxPhux++gxKBhA9PjGFTo4XereYxci4RJshJWj07EXuWd0Yu83g2hsqff/ySNSbO6cR6Xln1hExXzIeJ3TEgmojLI4Iwe5gDrCgxWy2qh+WBHDPzzgMzj3f3BOdwXvHONQ9g8AEfQHPG4fFhQl1iXZfGajuHYDmcyw53dSA4qzFppQekgZMGicZNUyzPtFoGKzNqY7At/3LO5qGqecCU+/adoU2tZrQZwfG4Tgelsq3NkamwnBdjRF0C2SFuIifH7Ca+/dEzm3drxpEheyYFfwysrCynlV/98g5ZEtfzxDR58jlD0rb5tnDBqtz1VlK964iV5BGxdZeScPP0KcdrZ8rRp/eIcxx2u1auIqVoxBE+lHDQopSpEqbJTDdiVldfw82UlsvY8sOw9ZiH/La+ZscmSyOZqmCmezjFQHiGaTZPdgvRATRXgF5CdoqiGEJov7eoBBF2zFhR5MzCCcWzc56cI1N4zc3Va9692RPPkRhXFDtXFLyIscNmC2vdT7uiIAYkSCmfkZhkIoTAZy9v+eSLyHvf/0P+0Y+/z//6P/8vfH67wkHZXU9cz3v26zX7dObVi5c8fPAMv5txIZTi1UVhyBRa9lqwvEZgmEy0qJAKzEyxrbmAVYG2AZKGnOoYmFiuRBH1cJt5PxpaRtDawtpGoNLGuJ9nl27XkAg231qOXh0na0kqxkBfirufSmgpCNM0o+qbV7HWS3Ne8KEQQ5QaeDWCNKZtgeqm+1JLGZRQ5TJBtSysChxlCD1rcL/aYZy03KecqwJQ5nWTPwPA79hy01cVHNbfG8gWC3cdB6nWp+zdql0x3ODDDl7R7lEym8/geXJfohRuAOn4OZvn1DDjqgRtvcrD1BtvcCFbx3uN6QB2gwuvrGqx/Q7v25T0L/F2DQpKDwd885WFHjlhf9tJGS0AXWvzB6PkoJjW3+tAt+7qGAB5S5+Ww5U5P/a7Ea/U7hjfb6so1P7v7z3ulbUvx64oa7jIAWWrmPROkLaOXZljmywhhvu9cembfeRklDlG2JYRcwa8RZZIu67iYmnzV8rcFpWSlmD7Vd0T2mhoyesrbK72ZLeZA3VvaZEzl69Tx6TkjzcDQC0zptv+rmuhR+JYX4955lqiHcQb9k01OqhGirQ+lxLpV9tQ89pBqrxXaJERg8L+zfH1O/4aYaglXCRLs4xUsF1tt6rKbj9vBIVDNnWyqldA1chqTOFzZYJS8tZcm0PLOaK6UDc2X1hOXTCv5LLEDloojKJinomplO+AUsMxLYhAMBpLa0e0Sn8SrMBtjPYu4q2eWstBUqPHF9NUEeB0Pr8BWHxlNC2spMFbuGjwRi+cUy6bdW7vczzuCaGUl5BOaJJTqWmovV6gD0ImsZ5W668wgcAvn7/m+ee/ASccn14Rguej6ysDEekRzcrLV6+5fXjkFx/fcv+oLCs8rJnHdOZ4dcWaIsvjGRSmaYf3gVTaKwi73R6Pcn93B86j3pQl8k8IUyBmx+SV2YOTmTAJE4rmzG7yzDvPqhCT46oo3ojjHE9M3jH5iSCewz4wTZk//NG7nB4WpvCM437H8WrPDs9utiK5Cqx5KYq2UeDv9jN+Mq/SsixGfKJGQJHzt1BnuMO5mkBuIO3qeDAgp6Zoht2E94H72zuWZbE+CYF5DkzOQUneXqKWPJ3uP8uljhZAmEyhCUUY+8LKmXIqtN+uhZ3qQLdvf+diXKj5d6HNjbrpj2GW49ypXh27rgPXeowbY14VFxLZP/BwfuDl63t++Ytfczze8IPf+7Z5b/ORh3hLfnkC5/FT4Hsf/jGPXwh3D/8ndw93TAIpamFOLPiuyIHyVNseikBwAqcl4R3MfsIIalYeT/fEJfH05sBNumJd6zq0nTUl3/I42zsVRUyjFcnOMW7WpnOOdVnsOieEMHE4HHBemGQrFnWUVRegs3lie09Sd/yYYpGLdoETZzSthnYNBDQ50UsutGgLAXRBVEnZEZnZeQ/rc/b7j/jgO3/Mi8cbjvwfHJ69xy8+/RWoErIna7JwYuzfO09mvvO9Iz4/EPKJR2+FpH0Cd/8Kud7z5LDjZlI+foyAYyUzIdz/6hW/RflsnvjH//i/5lvXM/nFz/jJv/wZH3/2mpyUv/d3/ha72RPTQlpXgvfMk8m6nGINakCzGZ4q8KhhU76Qc4k3AvoOfit06oPRlRXX6gReArZLr1BTxIe7ViBWjw3JyMVQa3m2+G1IuStUvFOL+nizLTkli5wo5QR289TW6tXhaHEruQL3Mi9SrOYFUgkB66zCRblxNq9b1MEbOOttHza/KYgQJv+GJ2B44/LbCN7LfbX3SVfIez5qLrlroyyqbW+tu/AOtoiKBp7prKp5bENVGGRzrzQwTr8t0uKN3hmUvFbqYeyBL7mufvc2gqNmFFJlzN3qCrd2pbf+tAu3bRuMKRtDyKg5tetsBPLFHHcUDoA8RH5BZ7z8HYrS+H7ObedRxUCjl71jOTtqKS9bRM1n2mSpGT0NE9UVpaVPeli0neuKgVrZHJcAACAASURBVDRTjTO0qT2mEFz2V42Cr81yzUDx5tGi1i5sEE1JH/4vVUvBWX3LWg5i7CPNNp+Cs+iuxqJc2+Nct3fUPqHnRY851+I7rVYqREKlW0151MqQrpvrKhawZ4g5XqqBQrpMrJaRlDqPRvMgq3n7qwJYULUZ+NRqhqZoRmdLC3GQE7X+p8/d8Klg56cMupS9cxvt9I2q+PU9vrKyGIKBnjF23w+0u5cbTC6W/iw1Ks+uq1axjBa2xGwWf6nJstKnqYD3q1lpnCmHlTmrMkW2DawwPlp1AFsMFn5Tw2Mh1tj0IlhMiJfNNBu5Sg0pJWFFeVtIR5coDusCGd5ZREsNLLpEo8a322ZqP3MTts45shOWc2RdrDZU3QT6YqobcxHmyZX6gB7nPUkz96cT//anv+Szzx9QPFdPrpmmid/eGAvoJEbQgigxCu88e8oT9aQsPK6RROb6yVUXNhnimsgxEUIgp0RMkYfzApp5dXfi4TFzvxaFazmx38/t3VQhrso8O5493RG8t8T6bPQoKXumycJ6Q5i4u7tjnicOPjD5wNXBFOD581IcQe3c+TATF2WegpVQEZsp8+xIKRPTys3VgePhwG7niasJqIeHE+uaePfdd1lzYl0WnHPMc2i5rCk9J4TA9fGA92LF0VU4P57RbDUa52liv99z2HucgFQ9oMzJVDaI2o/S5rSyFo97DUMZt8cxHKTmOFRTfyvVUOZM1oZChuvrGgSNnVG3/GK5Z9JrcdZnVsA1hZnT+czDcubh8R5Rx7NvPWO/P7I/zIQpM3uHph3LOTPPB3ZXN3zyVy/4+NdfcPuwELMSyqaybdfl6im6VemDmt6Zs3mmRGBZk1Fv50RhvCGlTJgsWsE5bWCsbbaihVFwC+q6FZ1iSLKHusIMC9K8O1vwOIBp7WBOq6yroKX1PK0kSJVJYMCrsgtWBjup5QeKklmBiXmHokVS+EAmEpMysQPNzM4RpgOvHhdWubW8WRyinixG3R5XRdXz9OmR73x4hJcnapkLjxWUTj4hYebJdeBqfs0vf/rnvH545NWdlcGxuQKnZUVc4P0PP+Q73wm49ED2VirjcJjwQQgxkGqKQA3TdlPLS2pzGdr8RgXnq1fH5nUHaRWIbddGg+VKIcXS1vMyzDWtk6JS+l8on1uFQIcJpJvzNpNUxvPrJVtQWQvGVy+ddz3vp0YaCLS0iQrnq0e8l+qBGpIqJclLqYYkQcTj/LgndfW2m5rYfD+qNkCJjinjgTT5UfetHnHdAbEWmdO6tZ5x4ZUZPV71Djp280WLyQXQa3mDcd6UC6r3aZRpzYNGnSPlqvHzi96QoZ3jHju+39hzQ5fZMbCXty8GIaHDhcp2rr3xd1G6G964ePDGs6hbWTq2eZRFrRUXY8Smn/pCGeXU5e2bAtbO7X3cGLeHZ77N21YN5m2VDGNEm3f9HS/bqcM12zYzdP+wFobr61Hnn27aUNvRrmw/63h0VUbR9h7lk4qBN3tAec4wLS7HzNrl6tbeFD0tGmR/lXEtl72jnLemwsfhvEXsDQbgynWhxXjdDJvjAhzmfK1DXnqDQbg1JmaTTYa9W6SAl+Fzk0niMk51Q9CIE1yecE4HbNjzp3+Hbeab42twfHU21CogBgDWguTFmPNaqFvZhCjn5jKJdBC2NfTRlt24aosQ19xc521SUjY4V8MRcgt3UaSEBXbhqZJJKmipx2g5WS2TcpiwStKEk577tNklBuAnQglZlUL64wpVvFmgcvGM+lI6RMTuWz2iGytjzf+QiECrIwe2oHwBl5f9ry4TSuachfApa8qcYmZZM6flFQ548Wlm3u14cXvidFpwPnB1veedm53VZ/Oe4CYSynJ/JgThyfUREVhPC5od7z17ghdT/tcY2U+OP/2bH3D7sHD7aMQIxDM771BJnM6Jx3Pk+RePzNOOb30wc7UPuCycH1aWDGEnRrrhAs7NvH69ZwqBw87hnLCumfMp8fo+sjs4EM/5HHlx+8B7z97BTyBTZFlWXrxY8W7m/Xc9OSd++8VrVF+hIiyFZvq0RNY14T/+Ak/iyc01oEaQEyx3yIkZRF7vHxGxwtQ5JnbzxDRNeDyrRmK8I+ueKXhjKMswz+ZNT6XwuivKPECMlpvpi7IA5nkKwSPF25eyeaxdBZjZ5ngN3U7JmCZ9Kaxd/FANBprxoOc8MawTwUJNAbSUlahCWkRIMfFifeD29R13t488efKEefY8ffIe3nkeT5HTOXPPLeAtfHh2xL3jn/6T/40/+9lvefn4ONTl7RtgZSjty6iSD9imqar4SSAVw47YGlVNpPjIcrpnfTyzrKXm1tkRJm8lTLQSStlaVMOdVI+s5T261n9OzMuL9LFpVumNF6P2zRaojKReG2BUFIT6rGalpee45ZxLfrbJj5xTA4+XoUAFRiGiJqxjZMkeNPPpyzt+9qs7XpwW1phKyKkYeYYTxHnO58z1zQ0//MFHfPT+nuWLhSxXzFoNY8ru6Ue8Tns+ef7A5y9P3L34JT//+afc3Ua8T+YNVzgQ+d//6f+Nhnf4T//kT3h/esWz988ENxXgnI0VcXYIgaiAlFxwlcYAGFMsSmSvP9uJMTqr7DZEqkatmHxDSr+LNNILY+fbAtUKrGhGzQ7Uq/dnrCHW8FnHtB0WSg3z7EbSpvTkTglvF+Zyv7rvWb6zgTwDSik7YlpZltVqcubMbjchzoqk260EKcaRnr1oIWXruuJ9sGgVZTBk0uZZ64eiEHZFpCtJrY9tox7g/AAo29yv42EvI3noIYHOrzkCX9o+p3VMNorZAOrLpl5B/UVLmpfrTUWrNnVsS19Tb1P8tgqbDPrFW8Ia6zOEzTquR40GyaXoelvHDH1LUaTy9n2bAjMqeToa8ob21uveBqyltt3OrGC+N7OPefV6jgpiaxOX8yS3BaHUgvJFlZLyTly26e3K2MYAp+YJayUbqiEEGgFS1br6HlXOq8ojVRawue+XaR5KL3c0zk3Vft/aD+bNZDOGSh1jqEac2oCa1WEfGadEKh42CsNoXUopVxKY2N+tvmB5N9Heh228hpMVuhwqqS+bUhUoubCK1/vXlekao6mWvXP0+tLnetlDXfAs53PBDj0k19I2rF+Wx5PhYe836yin1KoP5OL9ryzlG4MFF/Pjm+NrdXz1MNRUiwIrrZpmra1SwPEYHocUNlF6rlS1pTm1hdHc4s2CUye2eTwMZE02SQuRi7humVfNeLwxEmIW/NyAH60QaczRSG6KVV8pwh5t52s2Xr4Yc/MC1Ps05bPWHyrf55QQNSt8zW3JuYTRhlAEau4ixtUajSYgajiRK7maNaym5ZAAIiU8pzRGJBvjYtkknAjH2fOj3/uIw+GBdUmkdbV/S2Z3PPD5y3tevr7n7rRyPB74WBI5RWYXmKcj5/PK/jARJuHpk2uC93iB4By3dyvz5Jmmiav9np2f+Oj9d/jg3VS8w8IkVuib4DgvkdPjym8/f2Sa9txcw+EgzC4Qz8KaE9PB6P+zejKBu3sjm9kdhJQTd7dnTmfl9X3ETcpumolL5Pxw4m/8wXc4HgPTTnh8PPPLj+9JeeJH3wkk4IuXd9zdnzktCRcExHG4MUKdF799TvCe999/hxwj5/OC4AjB8+TJldX4iwvLeWU37cgu8uTmaKGn3iZCSpHglCBYrc5aTqOOsVSrnxSAWEI9Jt9ZbtsYD8qKGwAt4LTXsEo5k2JEvcdpyU1znmqZtgtkc1/vXQuHbOFaUr2WVbG0Debl7S2PDyeWuHA4HEnxxOlhARxhslzitJ5K7q6yRsc5BT777Nd88fKuGEjKXHc1Z+ECOLY9oWyirm7QxZLbQAG4FoYdyTGSkoXXrnEBCYibbNOqgB2xMLgK1ory1oiCqoiRLmlsbbmuhFDaw4UxrEe5bsbu8rj8bPTgdi9CIQ9oXg1t/VQ9HVECkiKSM5Of8SI8xns8Rz59+ch/+PgLnJhhLDkpMtjyS8RbBMY8z6Dw6tUtT8ST1BGSQa0kGT/d8PLFiZ/+/DWffn5it99xddxx/2oBZwzFDthNwp//xU94//t/wt2j58NpgvyAk4mcssmmbLlZzgttRhalzBpVfm/wuU6DIu2lRn4UhWuYwxX8VmNiJfXq8l/eAKQVhNYQToY1ZYBIGmNn1kEZUmlEJS0kWGSTz3oZRtk/B9zgodMt+O9ts/JO6xpZ48q6roiUsjxOymouhEU5m7KdtLU5xgTimoI67gsNwG/6oXa1jtrUcB0D0JbtJG9KSHmndu/Bc7DRA/Timu2hXLSp9WdXQJqCNWgK/Zy+Rse+3Sojfd+uzxjbt/U49Y197J4tFtE+Zy6fxXj+5d/bPtj0iTZ96I1j9IjWXEcdu/6NC8rwjTe+UKybovWWB268h4xK0vYhY+RL+7bpZyOGG65pz2j60DAHiwFgaIcM008u3mFUGC8m3dgVb4zEGwaGi34pwqXju3oefY517yr9RLpxctNGwTzlZU8fFeKsxVCTtTGtjqHH9Sb1NlV29Rqp5jiwtKbC/p2yhavWOZW11UaUolDKsCbanlzSb+y+xVjXbiINV6aYrK5jMUZa3jOF/FBZzmeg11qvMimlxKyQUyStKyLCZAQfaBrkqev1kL85vn7HV2dDrQW2i6InQokHylbLbrXC0C0+vpAp+ErsgaNGq2e1KHA3+QJ2bdVVtrfcrFiu51uB6ac5k9XqTjk8PhszqJJJY8qAdCDhvZW4yBWQqJQi6YIPA4oE5l0oQronMrfk3Zb0bJ/PcyfKEF+ZFbuHYWgNVa4m2YJOATRZ/HgrH1IAa/WOWN6atddlB5T+IJviLfDD95/y4w/fQ7Ny9/DA+bzw6pRYloV33/suD+cP+NWnX/D67sTruwcggBMelwfuYiSRSI+Rjz9/Diocdjv85Mm//Jj9bm817/KZx4eV5WS5qR986ynXxx3XV3OpmeeMtl9hN094txA+tzy942EmzBN+Cpyfn5HFIS4ifuF0emQ/TeycJ+VExJhbc15J95kX96/NyOADf/mLz7g6TLx7s2O/8/zoO0fzWiNojLz35IYP333GNFk9RlDWbGU8/PxDsno0W0H4ZYnEFDmXep9OhOB3TGEm5TMpK0tUzuuZx9MjmoVnz57wJMyIwHG3R5yxw9oMrLtOZUEzoWu1JwsBkhvDVF1RLD0VNOH6pha8eeunae7zrO63TQmyXbYy7+Vs1KFxVSN+KhPbOatvVdmGs2bOqzGdvnNzwyyOBy+cz/fMc2AXMofDzM3TK0SUdYlI9Ewk8tN3Se98h/Dj77F+9jPyg3kFozhUHU5WGy/XQzJD6An0ZXXbdpmM1RMPSiIDx/0zdlffYt4fmRyEJ08I3hshSM4I1nfTPHVvIqlYT4sxSes61JJHbMyoguJdhVclr7GCl1yBTTEYSbfSV7DaQEED0EP+hXRmTGlKqJSxh0SXKRUg2aWljE9Sgk+2jnAoiTgr8SEieuSzT37NX/7Fv8cBk4eHxTIUJ+eQnPApsn96YGXlX/35v+VbH93w3/zRFcv9mUe/4BL4M/yH+7/ik3//G17+h7/it5+/4N/9m59x+3qx8NMInhVxwpIcT54+5YfffYebo+N8PpHSwpKmYmzLqLOyOGta8N5ka8quKSKt2Hq2MG1TbGr/1VIiWqJPxu+6jKzKV+33auir+KYCKam6M4pI6oYC6EEw4gbvdkN4ZQuQ7dO1E8XUD5tcdz3EXEuodDnD5l/OVKNMNVzuXGDPxNXVkdPpxMPjIylmEvD6dAYRDru9hdWvtofFUr4kSGB32JFiZDmbvErJ+mK339ncrcA0W3hyI16j5M9+qSKjRlLUel9N2S79vZmzlaut7MUhdOMQKrgaLVONqFrvB7FEUFQDTQWytR83YePlpqloG9K8ONquh1rCgq44fJliRTckoJScct2MNRujVpUrNI9Pyy0fFI8xouBtyolgzMyjIr/xBLa/pXZbf4emm2wV4uYjVO2iiLIHDu/flbnLMS/3FCmEtr2tQCNUyuN7DYrllymToyxUBbI0g2ddv7oxkvW7iFDI7qTJ0dHx0JTTwZBQf3+75/DSqFANLFr6sBsaB7OApTKU/sltXff88vFoBgyBXlGkoFy/lSW+YNZG1qU6KGx9HtQQX9uSSjkitf0650SMq5XoKFFMFoFha6DnplofukIwo9laFVMiZotoaNVG8opqtr6nkEmq4lNGxLObfevy5AzPV5IuvTpgURCpYJnugc9q3A3LtNpYlvGqqTC1dN3bzC/fHF+P46uHoVI2ymIJ7vKrZhX3CV/zUqB72rorn3aeG622WGHpGiJUw3mMdU5sc0Y7WxraGAmrfG1/S78n0kM5q4dzo8bVzVKLglmKs5cvaYJEK5TtgEGbIJKyqQxhStXkJ9q+N3ikg9wp11GFnCvhauW73L1L1ifmGaAAfgvxBbKypIiI5cWFacJPE8ebSM57sgqnJfLBs2uWJXN/erTeEWGa9oRpR86JdV15eDyTU+a0WCJzRjlc7ZmmidN95PF8Yt5NTMExBRPqp9NKXFeef/6a7AL4ieNO2e8CT46B/bzn+jCVkE9lt/e4m4msStREOMxM4nHq7F8xOpxjQibPk8M1KSaW00KQickfiNFznzJLOqOsXO2fYJQniWVd0YdETEpwE5OzHEh2kcyZeQoE73hyE/Au4N2+z4kaZiUnNHpScsSYWJdrkIndwXOYS/K8w+p0OimlUgbPSFsztu2ua2dE7EQIedgwa2je5aY0zJdxI67bdgM5Np5eprp6LCGwCOlRcTVlSri6nslZ8cnCmO8fHrm6umZ/PHDc7Ywtt+VPJXDKPO94tSifffKS/+dff8wXz+/bghrzA6U3tBk/KgipXjURIYuzNSFSahbC/cMrHh9fF3KUuegdtgadk01P1b4MPuAE1pibJdTInYwgyqIBCkNzkzsjWOt/W19WCzMX55Qz3Rac1J8GUrbeKPu85yr362iySXN5o5zRZIprFo8ky+V03jWDXc42XpNkVHKpZ2UK0atXj3zrO8/4h//g7/Of//2/w+Ov/hkqE7vDE5aHB+5ev+Dm6gN+8OMf8Trc4D/+hF99+il/5e/5/OUdBMcuG/FKCHu+++Mf8b3vvsfOn1hPd8Q8G4HNVOSyhmI8FJj2WGVIJbIS44oXb+crqPMNsIv4YstQk5G5aeq2FkrqQSPdEFfhayd4KUvDztnK5hEwDoumrKFxLLdw5Y1wyY1y37T7tqZsLnTgSpuX2hBkXa+qZ3AO8Z7JK9eHCcv3EWIlxPIzzgUrqaG1HqcZE3f7qRlAzZhoSkj1VDhXA9TtyNmifnyr2/qmR671j+vqbg1bN6V33O9yU1AMT5vhspaJasbiUlLDVRKO0m0padunbU/M7X2a0lWUyfr3ZgzfgixbHlX/8f95aLvX1ttdxWrzsMn2bl/mNYWufNb79N+Gc/I4H/r3m9vqNrqheqXaIWWcRpbV1rYtp0RX5BjeR9q7o0YuZXY1t5nrY1syNLB/IeHpCuJWURtDnLdvW5W+vqbqsr+ck11RvViT5SZVeR3r6NYQ5FzWRX3nqmi2sW9htsM7l3ZUvFc03vZ81Rod0udlHesa4dPma1Fy6/20vrjmoecGWTG+G8Pc0zrmrq0LxcpLVRHTKyDW54Ox/udmtPLOlMkgdOfLsP/NswnTqnhXp4UqLMtCzpnj8YrciLvs+pSilYzKhnFOpxPee+Z5xnvH3pkhvabEjEaTFNPvXFPfHP9xj78GG2pqgjmX+GxbhvX/cdF1D6PFRicaiwQUK4TVCmtrH+WsuYimfmisLnXzsFVlFbSFlkIJharMpRfC641/jKDCntPc4Q6zho/YQoZFCE1Ra9TluW8UzbrTXqAosUVyZjpQdhdgUzvVV5E10vrZ3nvo41xD6UzZzCmjmgrAFRwOH7zlzCVTIt85XsNRiPGqPAdmJ8wOct7hp4Cf4Xxe+PyLV6QIh6dHRDLLGvnlwwNJ4NNfvCSlxPHJgWnnuT/dWaijD8ySmWVBzoLoxO2SePn8Bb/+zQum3YyEmeAn5qunIKaAv/P0CgmOg4ebqz1Pnh45n888+YPvcDVNOBbEZXxwuKx4tRCJlDIpOmI0NkhRJUvtA2DNlo84BbIoaT2RRSyMV0FjJGpmyamNX52fUX0Zu4jzwvFmLjUotZcXK2EUSzy3cWyC39l9MoV2mhpaad87Xzf1rkyVSdA30FbsNrd52xLfpRd4H59bZ4k4CwfJmvFiVk2C3cH7QHCe2/sHPv3sM754cctHH33En/7dv0dcF8vJ1UiKkKP1jXfCYzzx/vtPeX6b+eST5/yLf/ETjscJP0GOStZYDCLSQEafzw5jjQLEsrFEMqIzicyEhdfcxZX/7B/+KX/8h79vhojziayzre23AIpmlVexmoo5o+JwtXBysy5Z7UGAEKQ4fUawpmgu/SgFeA+GpjeeWzzo4i4NRCUnsg5T7QLXjUAj+Gnj7i3EJznFTRNCQHNCieT1kZQTx73j2VG4mmaiBiZ/RlNGYyZ5R549y3nl+nDg9z8KvLd7zq9PETdPyPMTu73j6ofv80/+DH76b/+cf/Z//TnrurKTA0fn0PiKeQqITKAemPjv/9v/jj/44RWPtz/n/MVzXq+evJ7Zv/eUx7tH8lmZZCYl5eeffcZ+t+MH3/6Iq+OO89lyWuK6IFJBSLJokWJ5n+dQcoIL2/M0gVqIU49UkYbkW/j/WDpg8GBv5kUFPTKsL6njriOqp+5mW8+vp0O6EqkyrL8Kxs3jPXrGaghbnxftfhniGgviN89wTlpcokLMK+pW5tmiCva7mRoa58SRXQlrR6iG2spUPno3tLUtQmLDF9B08mEOduOmKT7OO3zjZCyRCVlRrd41y9XzLiDeckcRY680rgEt8sb351ZiKrW25kqbTCd+a3mBcrH+qtOEvgb7C/S3Zujzt/1sh1YDW8cssDXOtr33wuBQV+8G3F/8/zYf3CU2yJUBtsmPPk4tH7UqLUM4vFJwjXZl3BScEoWk9czLvuh/b/qlYI08fC7Dc0YDgbXNvdGfTT4WY2uuOl5TuEdlkzKfq0w1Y0itk52zFi/V9v4C5HJN1q52XIYy2h5bRqGeNJxfN0hbIzVqy/d+KV0uhc253mTsH1NIaZ5ZBo9hVzbf7HMZZMjGGDW2lb5FXBqsdEghsXcXispf5oYrBGBWxxxPwUkJrXKyYMk2NFqi5qR6lUuN17Kuptm3KILzEhthnhmeLZfazhSur6+L4yFSjQ2IyWzjZ+jKsnF7bNmmvzm+Psdfy7N4eXThMe65Njm2YpVBaNAF9KUwlW0YCNAEik1wP9RvGq1Xsm1PXUldMnWLRhFila25UrEbwQYNz26PqliW3aO8nwnsfu/L2PNtP+kb7WiZPE3qjQrDlq2qlxuoJBhtb+/KZFMoXWtLBWbdCqxMfm6Kp3NWwoBU6lQiTJPn3adXqDrCbiKlhckp3/voCesKV7PndF7xcyBMnmd5Imbl/mFF04KmaBbyAOclc14S51PCnTPLeo8LE8KtsTROjpevDuyDw2siBE+YJ2KMHHY7ZgHJK3MIXF/t+d4HT9nPHi9GIS9uRskE7FqZQhGIGJutTQgDIuJLHxsIzCrkXFl1KzKwfgvJBsmX3LdmoQRiqSUoKOTYx3kAZOYoqTu8lpIwPU8qV4Uq1xpHfbKaccQs77UEQfHnl4FXalhytaZ2L4dZiOvGoAopxzL/zEr6uD6Sy3tM08RhbwRD5SU2aLKCdfNgFxBQNtk1lo2dvmF1uFRn6NvBWg91M2IB06FsPf2NP/ox3//eh5AT66rMB79d82Xmb967gD0XBgZJreOEGWJK2E9MUqIACsAv7R2t+Vr1Cd0q47395T3V1msDCfTogRZRUCzUJjMK0VUb72IVl2QyQbXMjoSUGpDemUK95EeyLIQ5EKuCUsYoi0djIvjA/jAzEYmvX1rJFlXEJ85r5tUXyl99cuI2Z+a9cj6d+fjVwv3dmQnQUoM2+MBhf+Df/+wXXB2+xbc/2rO7eRdZlLju0DVxvZvZHXaFJAuiX1lj5v7hnvX8iKophofDzkKfcyRnyxHOtSRMkVtGetEZtitxiJWCccM4133iYs7XURmNJqrtu75WoLEQNiHdpCjjJ2UQ6936HGgKYT3XkeVCKR1mST2qeCiRZTbTNI+rBDDPsfPSgHO73m3zdOtVVaboxfMulYbN51U4VNmnNk+rommsy6lqDEPtt8I/UBma3WL3zH2111A+YzbNTRT04KKyb0vt376XuZIPVdvZlJreY8OeuMUU7UfZADYK2/DDXj2j45g3ubZFLlWHtt8v+3Ls8S3Ybzet/T2cX5vd+BLe9h6DIuVEWr7upm3DX92jOLSlYaN+f9WLfhuOGpnVDP5FLveF0hDW8JxRwxnWFhce0aY1FaXnbV/p2FejetqvGX/CdkyqgWa8hYzzoMjoUfVVqhx5+zppBj7GXiy4sfX90O7K97TplLqrd6UXGAjgpImaupL7u3VMMSqktHtU40bxsqq2MejfsMXfly+pvS0VV0jB6Lb/eZPZ2Yzv9U4WEQAyeUYbCyJMUyg5lCWCqM7WL2vHN8fX7vjrh6G2RUezzDWBrxa+1FdVX5CXc0RL3tF43riQ6uc1eTaXjb6Fp5TnORVTOly3rtRjLKyq1VrFuDg6g1jd/PuG3wVBoxQvMqZayX0txl7Pr9dv3uLNdx86dHOmGwRQeekmRAZx38hTxvuL94Msr2E+Jn1diSfvzHL9XiYcnJFTFDKFKQSm69A2KmUChQ+eGNj98Q+esayxk/k4EwynU+a0nDkvK/POQF7GEZNyOifWlHh9/4CqsjwsOO+ZdjOHw54gVv/ydF74/MVz1ph4cUpkVQ67HU+uj2T1fOYeCF44TJZvKsGsVTlaCRaZ5sa6OAUheGHCQqNUZoIfN84yP7My72cEF2xacAAAIABJREFUsTqBQHLRSn1kU9hCNo8U0sFpZT1z3rW10AHpaNUs34mxpQFIzeXSwo5Z9gVX5tDoYK/hzeMcwPVdcVRUKkujluTYCnVzyX1SlPOSiDGizrE/HjnMR0IInO5vrXxMNiZesLwKEbH8igyaFE0ZyVaPM0dFNGA+80gpu9RXYkFvqlqncz9UUGLh9VVqktM+eHYS8STwZvFNKZWNp6+RlruGUIu5Ni9BK/ROX5flc6nlS2q4qHQwYOu3Wp3rOPZNvY+Ba9b/PJRMETGilKrEu0LINc6FRkNuV6OUosYOvIaSJ5mbYWMKV2RRPn3xKR//5ldEjTgXjTSh1gtDTFl0M+88OfLOwZFevcb5mUTCzUJix32auPkA0uGGP5HvcffygX/+rz7h05f33OB5THCOK9/96Nv8o//qv+Rv/63v8v71iuaIm4883SmZa+aQLGw/OjMi+Mz10++wxsTj6Qypk/jsppkxFDc3ggdoxcyLHI4xmr9NqoGAMrfs+s70qM22ltPg0a7IrVzbpHFZXwaiq8Le94u6ZsuCKj8zbQLV9haDS9sMdLg5/fIRFNVol2IuwDnznvYQ21bJzZizKQyU6EDYIq18Rp0z9e0qoL0M3xOp85Q2H0eluwUVlvld2+zKmss16VCk5a8ta0IxNmdVWFdL26gsit3g64mlRm+tEVwVER3Hoiq6w36GVEXKwl7f8IQNQ7Q52r43fFR/ViqFEas0paqo3uNNpeLoYVy/5HfYkp288fTyo94+FwKGSxIb26+r8aQ+pytvYz/Yd8N9h+fX0g5jmCTjfvTGW3S1WoebVmKqml7R7lWZi8s8rH1sVWDKPaXnwI4Xj+8wKsTNYM/w+/iupX8u+6B/P8yR1qn1pfoeWU0z2oLBpODBnjrQ+yt3iT8oqaNe1LqryILmoW/fjXJiS+pT9xgpGLqu6qrAdeNFNRRLrx/7pX1Qn8lgaLK9pdVcZItT63NMLle5XXOJbZ90zpNiRnzNTcyMsqQEGw7pZha90yL4KPUzpbcvxtij6b45vnbHVye4aRNxK7THLXdriemTyb6o0pq+MVlhsmHiX04cHWincxOYrT0VdEgll+l3qcL/bZaMTajFcD8LZd1amnpYa3+3qixSFlZfBK3V7XeTA+6NdvS/+7VOsym4l54KkcYeWUVHbt+xfbYOdjOhANgiQKVb8Xs7i0XfFyisgmZTDlKKJc/QwF6KZ3wQdmHP5BJILXNic+PmOBHjvtD6m7I+H2acs9IX52Xh4XRDypn1YUG8x/nAbh/wIhx3E+flzK+vhPOycHpYSQpP37nh6urA1dUVj3ePnFdFmJixGpDnZeX2tJISIOdWXmI/OeYQ2IeSeefN4pVTJHiHVVJIaE7MO8uNk0IUcS4TNZfQRY9ANsDjSu5bTLUALps5UjFum18VbyIbtr4+pxh2/EvvBEXpaDdpn116WFqoywCIEGPbzTk1kOyDjfpa3m0KRtSU1oibHNkpvnhzUvHwtI0nm8fLSwGjaqBHVYxgpkOHQRYMcqDPenvbrOAsGd+uEe5fveb8+jXy0R7vPSnGDeFBK7swABMDCDVxX5q3VgYwU/MmasnjDqB7v27eYACwLcLhAghYnbzcBlKLzOrAuXoxu2V5O8bmlzXxWCrrSTEiOMGpN1VJ4HyO3N6tLMvCIYASCsBQkx3O4MgUPPPsgTOxKvLhyLTbc7Wb+e7q0Z+8IO8OhKeB9995ya+ev0JWwREILvPkyTV/+OMf8Pf/5Efk+09YX74gZWHeOcTvcPPMmpRzXmBN5DWx2x057vY8uT4UcKgs62o1RgHUDFBxjUjJndW8NqOTqpJjRBEjWqAWpaacm9smI1itRsRCLS382BuZiPaiE7Q+r+thXEcdVFaZvwGzl6c3sDV4wzfKjDSgqpRUjXEt1/lQFKKeS9jngwh4JyyxEGANwC27XGoTUxiUa3TC9j2t3m9uDZfhu66/dMNH2hhNbD8VLV7NUbkSYYn2PC3sx7GE+gdf5FcuURKuFFWv8qGEpjaPU02nki0Biw59zDAW49G9Sxd/c9Hfw+G0rL8ifx3d8zVIqOEZb7tLPfMtbeLtz91e3mWjKp1AaAh1bO9TxkLzxefjfC33y1T2n8GLXnf3Qcn5kpfa3Fu3H9LWxPDW1RuO9r0O7H1ye4ZwuQ/9jsc3BbGN35coxv03Gf4e+4g3+7IpZh1Tldjddu3lPKt4d3zz+lm+GOqupGKK9JuNhnav2uLx/vUUHZp0cfEwvy69qeNno6J3eY/t2F5+b2OZczc0GW51lvJTyH7MgLRVFDclrOxFTVYXMFSNMqq5VC4YiIu+ZL1+c/zHP76ysmj5Cn0DMkGhqEsbAf2mFbCC15pS2y1eUnIMx4m3PQp7Ut30BkFSvf0VFL5tU+lgfWxf3/jGe0ppQGc8o03mntMhHfSLWW5EtBFMID2SdGxFDXEdrSz12VtvqhZLi9Sewog2ShZY2UDsOa79XQVkA6iVHCImPEZ4o6qkNVqIWZhaaKMWQOMw5rkU+9hFjZxPKyKxvPtCmHbokktZk4zVtFcQzxfPn4MXVOD0sCDiOF4fEee4u3vkdD7h/B5wLMvCaV04LQuz93gnXO0DeMeaE2tUUjQwfnu/8vo+sq4vOJ/PTCFwnPeEEJiCENOZV49nvARiUmJlZHUTHmWaTUGaJmE/zTgR9oeZq8OMd8o0e24ExIsxS+JwyRR09pMpAzkDRvqTyuRYopFQzPMMMZc6hoKffJ/jRSjmlI3x89IELePPIviHel4NEDRr9LhWlJGN742ZV+ZHLqEg6xIJ04w4j+VDZitJcV6MsTXU2nbD/CxMnk6snMdyPiN4bm6uzQtZisG7svfWcBQt8qHN7ExRyobPYqm5mUs9VHHswp4//qM/5KMP3yXHl6haqYBKf9GRXWlUkzV2f0ul6p6ahipr3LkIuEwXJR3op4u+1eGSEZj259X9sMuIJt9UWzmdYRixAj2jsljkoqsbaLVmCyl5FEjnR3Yp8e7Nt3jv3e/y21//BtSRkq314CDlFXUejZm8RtZ14ewekXyD10B49iMkJFJ8wen1ZyyvX/Gv/+Jjvnj1wKefPSeeTyQy83HiyfFA0sg//+d/xm9+8XN+/IMjf/MP3jHigsL4/C//zSc8ffeK7314xaTK+pCYg7Fh5iWTqEWbsZqkWoGvIG5qyncs+Z3eB1Py0tajYF43bXN9AyDLr5V9T9BSHmaEVm858gAa+91Mho7gcVAmxrHvo1Y+H8C50EM4K3AyAUApdwMx18LaBSBmbXmXSZWUpYTYC0l7XJvlhdc8SsrT7B4bP2nrwhLlMPRIU4rf2kPa1voYDVTLWOWciUtmzcoaE1kTabXQ4f3eGJ/JyrqsZLTVRE1xIa0RRXHija9A+vK9FF2CGbgEKQbhasS1ljdCk8raWQYj6ZBzeKH4pFrKQGuvDX2nv3O2bHtog21qr9HmSlOcNopIfzMdPxgVozJXLpWltz6vC6O3arobZYJqAJBmDNie8zYlw44aCj4aS+q5FS+1MPpBFlaM8iYio13/1kMzSiUhq1df7BkVvzEoX01ZK/Kl5RMPzyzv4WxT7orZsNeNDpBxeWzSEFwx77Xx7vgUVYNJrenDdQKV48JuL8XYU+XO9nmu8mGMyvhbMG4ljdMqd0qrbCwrPhxCVXW4z9g+TDn0vpbaGhTOMgTeu8Kk2vc02/tc+z3XUj/eZFhXGq0TdJBW34Skfr2Pr64sJsyaSF8M3Vre8zdMvtgEHqZ5U2SqUDFP3ijELKStX1M3q54L0kJTGOLriydQS+5XF2JdltajMOTboq3gvCzcFqZWLL/mQu9AkN6qzpa6mey1U+rGPGgBqlvg3BZzHuVgKT9RBVbNpyrEPmXNOfG4cpmUTb31LaBJOZ/uSTHjwmTewbMR3MRl4bxEnA/mMVLFu4AjsCyL1eYroC3qimoCCeS8IMB+J6SHBR8CyzmSo4VgzrPlRaZpJThjPT1eXReioIwX4eb9G7x/wrwTy6FLB9aYOcdEXE18BCckMg/rSkrKek5MfmqgQK5mro7v4r0piOclcv+YET9zpRGZHLunewTlfDpxWiLgLSn7YeUxRc7rQphmVLHyGi6wrGf2O08IgRwj67ry3ffeY9p5druJaZr48P2nPLnZ470R6YhT5sOEZCvtolmJqeTtlbEYAaXzvky9ccM1oWrsnRTm0RF2tq3MPs99ztm3w/nDPGoW1NIAHwSc59XdHaqPzLsDYfIcwh5QkmbWGDmfFm6uDwZoYw9by1kJhX0tZo8SDNxjSfQp1dzFgOIQWTdLo1oplUS1fueyiTh1xmKripJZNZH1jnQOnNw957QyJysdUlkn17gMhAgVVFHxvgHhAbVJkxVlLDBlMXjb5MxTbAu+jkuNFqgezdqn1YxjtSDteUmzlWTMCR+sb0aInnIl5uqW9zHXRMC8jwq+1Ncz8hxnc92tuJS42R95+u5TVut4fErErESB2SlBHY9ZWf2Mm58wy8I9L/HRIU+/jQuB/emG/+l//B/49MUjn392Z2RPpW6oSEBT5L/4B3/Af/Knf8Qf/d2/w2cvXjEvr4ivHwiT54uUOOyPnF3mL37ya/71v4o82c9c7QLTfmK3g3duJkLYN8KKKTirDVpCwJ13PJ4s122ed6CwLkszdFFlWQuDMyAU/NS9yl26EubR4mJj783NWhT23EhgbG3m4hncyvUW/dI+dA0o9bXYn1THzyZf31qd64BMyj5jdoCEklt+o4X4W9hyvaEVvLa8TqB49q19IZRC1/VBuQPmoTXUPFvoyui4Z2kJL23RtGVd5Vi8997an+seJK6QusHNUYjnxMMpsZt3nP0jmcznLyIPDwun88LN02sOM7wTdlbeyk84HCEI6xpZlhOqZezp6SU1gmKz50o1LA89rn6YAXXNt9drgLjKLugeuuopcjV6p/TD246Kcbdem9rHddxpcoPh3NFLd/lZi2TQKr1rSHb7sHzWlSIRhs/r5SUaqpGelHeuhsqKb5r8oikmuXmHtv04/t2qv5TJL8MrtxY0eVa1JylzdOjXi73p8mjyu2AlHfq6dHBTGd9mmBsN/rX26njvtgYHg4oKQ5kSIQ/37U+0c3rEan1OIRJqZC2DR23Yh8b+6T8tYqA+u2JAu6yH+zZuAGo46Jb4sZ1X2to8oFVQaX1WVXZLTza9trRNpWNJrTmPNIbTtv9VtneppaA6pk9pbeMi4lqe4huMxjb5G+ZW6IRW3xxfu+MrK4u2IMei4nVrrnZwbYBo+G8zOctvVPf2cPfNRlyfdxk608DaoGBeSK8mEMcLm8xqO76A5sZqadtzBRqjUiflO7o1S6TFIRiZCIPDUXkzBFsHAfhGS7dnloValUC7d/msfuEU1V7PrRKZVEHeLV5FSBRBYiG23kIvXaH5csIUjAAjqMP7UPKrFM3OLLYFKDhn+X+kRE5KTkqMCZfBh8r0KSxZkIzl+qniBbJkLCzZ+NlzUiQXQCy28Tvn2O1MiV1zwjsgCTGq1RoTYRJh8oEpOIIvDH1F01rTAQmO3WHGCcweDgdF8CxLYl0npjWyrBPOe1NuxBdGrskAXlZizKxr4rSsrBpZU2K/11LDs66BjBOxEGDXw5s8o1AuykaZdF6k5Tj2RaSQxfIMVcilwm71wFSVkPZ/gwBtXtdSUN3IcAGA25qwObWukZQemeaJ/cEYicVbwYM2X3LNU+kAw4kjofjJEx8zr+/uSr7cNoRO3jKvt3O85sEaEKk5dykpOMe82/HuO0f2e1/muG/XNSMVUmo0DaGdw9rKdT3AUM5GyrJVpIVr0TY4O2kEpK3b28ZfZdzQwV0GVplkFh0o+N+89n28RgbA/mmXaZp9a1vd/AWHZOXdJwc++ugpqBvepWEDKEAxKuAm5jCDPli5llLixU1wDBOke7JabUrBsgJnD+sSuX3IvH5M3N0vPD0IuzCzzwUkSSblyLffvWZKwit3IniPzo4FRWPm7kGZJqu1aoqaN4Ois3Hz3rEU67UrbLs1FFVq3hKlPzSX/D1srtZO12HOSweXuZZraII09fOcw08ey1vtngcb6wrKKliv3/XIjTY3GI+ikAxlK8zIUAF+n5u5AdmiCJaH15DVft+ueKSci8LLULO4PnnrIa2QurJjtnk+nOMAda55YikGScvfr5EpxZBVAa5gshtBRUiSrWZijlCU3t3sIU+EIBxmx24uJZAwz3LwVirFNQMopvzWhVLWgHOuv0dVUmD7nm+Ahb7vtj25yLtKDNcJYuqaqvtcBehVkdsqHxvRUtZoxQNNsI4ntY+341SGeqOQaQEPb/NS5iaAhr64+DlK+oZ7VLqy2NrU0wjUVTxBe9/60Fqrt7bDux5eT5tToEWmWv+aMuEbHpMmO5saMGDAjZdu6NaGzUbNv7Zv6JvNteN3o0K+KTcGY/HKJhuGW7S5pZffKVUR7ErkcGj/pW0XF2O8ec9NZ9SH9zFu9y4yR9+Y6OOr1/cVqkGFIr8EHfphiEir1434uHT+2K0tgmP8sO5HbMfvDbZpHXtJW5vKC3ccPbzDN8fX8/jKyqKT0aPWhVHTC6uAdX2j2yyPNwS866urnlVOrJuWHXUXGCByE4hlo5W6QW/zVLoQKO/QShBIy2lpHjkFo/JvCLABuDRYUaRJtuGdRwt1URIuzzOQMxIA9AVcQ0BSLCFqhayHJlxzD9vKqb6sAfpsbWzPEwjTjjAVsoSSZCyACwG3t1yhtJq30U9C0oUgRxAhawQSwkzOHlXBuVyIS4yJdY2R6/2+jZ/3AeeE02r06inZTuG81TNEtViUM7K4IryL9VscSFVULRz1xh0sPHKfuXs8o+wsLElLHgzCFHZMYcfVwUJ881MjZRHvbX7qgamUp0i5ALpsz1ujFWO3GmSCBEdcrBRHjLnkAzkgE9NCCA4viRRX87KJMyUnZpRYQKE2ZcBAsZQ8q5LorxkHuFCVHDHFOVd2wZLeLtKIJeo8ufQeAFZzr25i49dSQWNV+EDUsZwjD4+LeRl8QnVlt7suYNXyMH3obKdUJtYyP3MWlrzw6asX/PQ3r/mznz3He2OURQTx5hmUnG1NljVVSZta+EpZb4jgvCNmAxqxFA6+3h/54fe/xbOrTL695XDYEaMaS2eZM95POGf0/hUlVpa2lHpuZm1Ek0VCW8Nj3deeU2xrbbS6Olc244HsJCOlrIV28JtT8XxCWlNZ6wVgafUAy1tyVou8LIOYmeydnD0zS0Q1IA7CvDKHDOotb4xUyIE8OSdSUFbN3L56zavb18jvHcjPX+GOM7/86V/y6nzi7uE3fP/bH/D6YeH+3jw8a61FmSMrO07uwK9fL7z6F3/OP/y9Pe88u+JwtEiAgwPRzHf213z0/WtO3194WBaev164vj4QgPPdLcv6wH7/LlOwWqY5J5RUDBvCbrpCVVnjSsYxTwADuY9QyiU1GMaaclPAq6d39JopndShWtuXdcU5z5pgWSLiA25XDCOFyXhfAG4uY+bVitq3nIJxA6vb1GD8VIBOitwAmHlm7PdUre0ijbE46xg108soOOklpXI2hTGnwvY85L9vPWKjx6nM+5bLBsS4AXXbULL6PPt+Wa0tvV9tLgpCVEf2M+EQURI+O3wI3FxP5s1V0FRkcikKnrKNWSzsyfM04ZwvpWzq/lu9X7kD6WGNaC3dJdsQQCfSlOlmHBgtpvTcZbuX6+UOpH6vTXlyF/evnheLhCqPoMLmKjO0lTDKpZ9cAUdan1lu6kpusqoiGWODrmPa9YbNYc8f4vvHca4fNVC+/aIaGKuS2D1rrp1r41t+H55f8ZTlrnY8l3JFXkKFlBV+dE9ZnfODU6AoIE09L7cch7t6valKZW1Lkcu9BjZlL6kKSF8Tunn//qx6bjcIdCXNpr8a0RpdwalvXQ0/9p7Zcl7LhSI9NLVGrzUoOkQS2chXjzbt7/pba7PUmVW9fm0nf1PRHuRjnzzasXnb/3Tbz62LcvugRdth5TbGdlV8OYZGi9h4eRfonlXrse6RLH1X5rfWufQ7FOFvjq/H8dXZUAd5YXOlUE8PwsWEuW3gI7NVVZDqJLOinl2QNDhczrVNPxfA3DdZbWebAMs5g+/LbVToehz70LasTRFUBoW0rCJtF3RPgRMDumMoyiYRm1FIa3uHFhJrj2tJ6E2RbELONmVxUvqleyLqBaolgK/0ddski/VItBBCtM1JChHCgqu1r6B5oIJYHphmU+KSZsJED/d0EILDyVT6eyFrQjGv3n4n7KaJeZpL+GUEzby/P5LiQk6J+XAwYpUYSVFJawGkLmFQzDfg5L3He8+yLGjOeL8jeAOYH3Bk2u2QQql+d3vfhkwwZRiByTuc93hnU9zq0ea2i7UQIBGW85msmeCDhVcCiz8XsGBW/1jA0uPjg00ZzaQSphUFXK45BWWe5czkDIh4QJ0grdC6EW5MIRCmqc0VA6gJ5+pWYC+TNDXFZjO/KrGS1ilbNro8hL6m3JgHa9i2dwbUXr2647A/8O7NkXl2hGkiZVgfATmDW5j8EVRxkpuVP6uyxMgaz/zqswd++ckLPv74M6YavqbZgDYOSQLBchc8tPzZWGowtpAZsW1aNSKExtSaljPLq1tiCAQfEDxrXG3+ZrU5XIF2URab50SqN7LIiQpemhyqoaMJ28V8yanI4EbWSJpSW9dqipW92e6biEjJ35OcyRpxU0BzNs+5gHordeBkoiKjTlBS5V2uIgeAoILKipIQmcBlMg7dCb/67W/4d3/501JNxRgqK4mIiAdv3zzcPXB7+4q8+4C4LHCc+Plf/ht+/tlLPv7ic37y8Wf85sUt8VTqkDrFu8RyUvxh4m//yff5gx99wMvnd0YwlDPneDIPuIDzE/e3Cymu6JTQlLj//J6Pnr3H9XHizi28vj2xm/fsDp4pHLAasCfrA/U42ZFT4u4xk1YhHBI5lbpbYqGaFOORAfZMjSM22WUhUhIGYFIKXpuxzZFS4vFxQfzM7WPi5ct7Tiv46yNMHo0nRJT3JBhg3wnOZw4uM0nAT97yZV03lFYA56QKY5vLKRtLqIlsg5wxJZx6Ukqs62qkWtNkhj61/ct7X9ZYbl5RV5QLM4z4VhKo7nm5KPd1bVUZMe65tly07KFlzyp7UtYavdDZxU2mCuI8p8dHUlZT9H1VKhLOOeZ5YhcEd7hCNXM6LYgP4Lzl/ObMNJVrkrEpn89rsW8aaZrD4ULoisHQ5q6g971ZiuyzcPEOtLMqeNfqo6qUkN5tzYbyo+YG29ikHDuuqEqVwv/L3rv8WpZc6X2/FbH3Po97810vslhNNtksqeWWJcBWA7JsQzZgDQTY/5eHhuGJRwY88NADeSIYEmBYkm1BbbfcVLvJbrJZrK5ivTLzZt7HOWfviFgerFgR+9ysnpCTGtQmWJl57zl7x47Hen7rW61/bSXLcpsjq9qJWzdolw5tdEe/aKlsvtWRhBXhkK7WpiDFM9DSXrdlVj3A1Az0ukLu40Abn3zN6651nhOSaP25zUP/ktknddp05di4bVflqe+VUhKGFDJURs+pWx9ViwEHhrqf2sBylfviA7UxOdBaVSFoY9ZV74UJVsdLH/Paaene4b0s7Srwp9rnS2uQoKEUcEdyDYnscsXtMDHlQ3PBHYWl2nrr9gxkrvr9ng5va6RNVp2hGe5tf7dNm7VZ7Rl3diWUtt3dyeyM6jXwIaWtcU+O1GBkyz7WAG/p69rnuO7ZNSNUm/be3m29BrqCj6/tcU96nEFnv72+kddvBUMtdVMboqlnD1yiiFQiD3qN1lqZSfBN7/3lqkMWuvPkd3Ona6zGv0MgAvU7MSCDO2WuFPv3+o28HuI8mho0rBxZE3euN03naXUoYRyGWr5S32WIVX7aO3fGunOprVXohaEfxnOYIG3eQJBxOKMXDjVToZVpzoV3LqVBIJHQHDY/3FbHBYIRDEzjWCF/iZQTy9Ec9RgHxmHDFLbkNAOZGEZgZJkzRe/MOM8RCZFxn4BASjDf3ZHSFVCIcSTGEY6Lh5FIdzccj0emccM0RabBamVyihSUGJNNQBbK0fbCILbWpyUDnXL95fVVjdzC/nJvpBcpV2dwJIbInBZIiZxPbc3HaUNeZk6z1Vzu93sE6y0YmudttW/bhxdNCIcYWGYzyJ4+escCBinVgm2HgxmhggTfg9HsnJoJsBYZ2epAQzA6/FK4vbuD0r8XY6h2jDW1N2M8VFbcLk61KDFWBwgP1Yj9rBjpTsmFXDKFQBwiMQoQSYtF+B8/fMS0CWwme/fr62uEiYuhUIige0ol8Anjxsapqb7XkRgGPnjrGZf7J7z3ne/zP/+Tf00YlKEEU/BSkMGMHDtLiko3sNb7Xuu9p3ELoqRlIQ4Djx5f8N6zDduY+OTTF8zJ5nC/2zJGIS/WPsFrBlNKFpwCUsqM0wjF4IpuQLthjdgZKWkmSGSqDc9dviGQ6zmSCssrRQjDyHbcoiRCmG3OZcJayhSCFMaw53B3h+rMbrcjhGgtRIKiWHYLDIKN2h5q4d8qUxEoUZEshBKAEeJICS+g7CBfUnJg0IWcBAn2fNFEjEoswiZMvPXWU9559g7htTk96eJdPvwHPyT95Cd89M/+gu12hBi40UzISsjVcAqF3Rj4m28/4G9/9zHPx8L3Ho0ghUNWkoxEInMS2J0YNRBDYMfE/sMtp+M1rw+Q5gJpR5qVw+EVt7efApFx3BKHwOl04ub2jmka2O+3XF2duHz/LeIERe7q2RaWYJBvsocZpJ1tzxlU8wh3xGWsP1MYwsDz+ch8umHYXPDus8f8/C//ipcvX5O0kMPC4bjwb24Wnj255MP3HzNI4UUubLaXXMRUDWht/XglBsYY2IxT68GqFPYXe0pjDTTEwrAZkBA4HI5oKYSxO1+qWmt/LCgVZWgWot7rr+h6xB0Uqx+urVpHbJo8AAAgAElEQVToBuA6Wi8ixAo39We5xomI6ZTq6K59Ai1Wkx0oyLqmvj7veDw1uWltYSJahFevXqHF2hwtyepRhyrHhnE0+R0iQxzQnMklWyayOnqtz1t2wpSVIyBmdOdy6o5iKYQ4NGRG+yz+TtKIa9xJsjlyG6PbIvYDz/6zgqbSHABdW/I4/K7eSQXU+AZaj+c2JO02iet5n2/x2jttn9WSLDByxixNd2irrWPOrQUazuv7eHMM0CGN6u/kY692l2BQUunz1ebD75erWyd+5rRmoByW6k5V3cNAKHN9bs+odRSF1Xp3hHCv/fOa7ta38V5p27qBRd8qNhZniHa2/D6T7tza320sua1nnb32Z4dv+qSZi7cmanNyl5IM8SWVtdxbvrUESZ0PSi9n6o5sqcEibftCQmg1gxKksTx7QsHHVpBGLpd9zdR2WRxicy5LTkjuLbpisISBt1zzjkAlOut4H7v/We4FmFLqzrg73m1uawmTl0ytA1kuu7wm+tvrm3n9Vq0zzhZWWR2mqsjVYRhYBLCfqfqd84omz9CVCv1scMkVVMugZw5dNJpvFwpRAiKxRtdcOPT7eC1SqUJOvadX6NnBFlmVLpiyRwHdOcQFmglDj0aet63QmmnooSHx6BgVfnTmKPYD5gpEVGpT6vqcBkd1i7IaC4ROV4wYW3mN0uZUuLs7kHJi3OxIt5lhmMi5cDgcWZLNxbIYbmraTBVGWohR2O8vEAaDxAZT6stssK3LSyM+SScTzNv9wDBEluVECAktoc3JvCi3t3dspxMXF1sePtgRRFFZKBooxZi1UlrIKVWYs9W5xDgYhHaMRuFOQMVaJuTFaudKbbAexCLeVnNYmKahBgdqRkAGhujZXkGCkUS4s2hR+kJJfh9z3gaPiObchbwbSJRa35jQQM0OrPZIDTyU6sSHYM6bqjsLNXraDJ31QTFIU14pQ888r69QgwmCRQwHAYYINVNaVBlCtBqxIROSsN3W+lWxVihXX12R8sz+dy+JEgHrtzkgDBsr4pcUiQRKUobdln/7//6UL14deHlQilqUPgTLbmeVGshYQeK0noX73YpNXLCkpTq1PWNAMPkxbUcm2bb1Wgd0gLoHvEbmnNSjHg0zPIoRmoSaWQzDUCPBaxjTveHVWt3iZ0xrbd2iaCqEmKqhYXCsHDCIoxqUt+RsyUvEHPgqb1wetJoQFxduj7EQHQGZqRnaQNhEchCWZJIpSGQpHkALqGaWJDzYP+C77z7l4YOR69dfEqaB7XTJ8+uPGPUl77/zjNNnV3y6GdCnD9kOEykllpK4unrNnBN/+hefsMwzx8ORix8+ZTsKJcSawcyoDJb9DiAlIgR2m4Cm2fphVvaI0+nAtA08fHxBKYEYJ+IU2ZaJuIsMIfDkcs/bTzfc3Bwox0AcA0MMbIL1sczqZr00x0fXewVo/TK1bS1zlErh0eUFPAgM0wbiyG73AWFQCBYYKCXxxz+9Q5fC9955xoN95O72ZDKQpbZBKY1p02vJUl4sGOCEFU60BKtgVG5yZ7PdEENYwbtMTxnTqPUtLLmQc25MoOvrPGOyCnDUP/86o6v/XM7/3RwON+C6Ayv7rckocYfAxuhBTOjonjTPKMLNzS0lmxxw9m9FGKMQh5GcM2kxcrRxu2ljKKmsHDk4X9j+11SSGZ+oBTRHgJphXteotWxI3yOG/DSIbGndLnXlDdIUuQW9PLDbHZv7KI8ua6oDQYURq9f1dUfLAw1rWGW9SX3OKrvrg3bSI3eE1k5i/VaxhrZvjA3tmU6g1TD2cd/fK4JKYVmV8bQp0fMl8YmpPoitef2BJwSgBwD6TK7v4zPrAvr+A/p3WiYXPTsD+d55cLkg2uvPPVPoK97fzHfwvTG15dH2OW3vr21e2zRzf256BriNq469QNuX/iX/d7n3/usgJ2BB9gqvLjmvtpDU0iCtZ0NQDRZw0bxaz/4+bS2cY7p6iU0uyPk8r8+Tyy7X7n7sPGDhaDz7nmCtrHKds3Nv37LIPYny7fXNu35jZ9FY87zWg2okwloQmLCgCUtxP4f1gaY6hKEaFl3IhVijw2vGyHvRUn+YBMOMl1rHErDoi2Ori5pxL2DRE1g5Z+02PeKBwyFo0VsnLznLeN6LstiQzg+C1SuE89pD7c5nfxeXTj3d35xy7b/Dn76WKcV61oRgEcFpGE04B4tQLSmhEhkGEyYShTAIlGIO4hRrFm1Ak1IWq2Ms+TXDMLDZbpEIx9tTJVmA6ysoBHKyd1tKNpa8oFBmRAbmnJgXa/q+325ZinJcEsur1wb/TCbUhk2ozplwuD1YdD1aTc6SEvPpyOXDh2gWllTZK4Pw8MGCFmsJEoLwulToy2A1Mylli2LHoSZufE9ZNue0LNXAUWIQwhAZh4HNdlMhx/b9kqjvZuPa7TaMMVCKscSKCONoBrRHEY32H1v3WutmARKpQVntsJy6R8lamQYFr41TiQ2e5PcVoZGAULeciHBaTozj2Ay7EKweN4qQ00JCGcfANAmXFxfMp8T1yxtEhO99/xmKKZ9MIGhgE4VlydxcHYlDYNwMpALTeMH19ZEHb+25Skeuvnxe2ZEHEsUi1yJAqnUJck8/1T3tEkADSKTowiRbogq7zZ4f/OBDto/eJywv2I4viMOGrKA5IWQGAgz1HqIMVEfdMK8WrFIqexsIEa9EMaMtEGRTAw2Camcg7kaWgEZyESIJQmEpMxQYhokYIqnMIJbBTBqgzKbgC8Y4LDRnPg4DmkurUdMmo0ozyhzuG+PIUjInVUI4EYpyl05sbz5nefEJp1cvQZywIzreGhk2HJfEo8c73n7ymP0ucPPiBcvwhAs58vP/+//k1ZeveFqEz7cb/r3fe8rdceHmLvMXnxxISTlmZZML3338kO+//YiXzxeeX73mwcWeadd7bmptD2OlAQPLorx8fWWZo3Fge7llV2BejqTFWtOUrFzf3pDJnGaYNnuGbeR4N3N7Slx9ec1Jhffeecg0RE5p4WI/MsUtOnBWY+4ZuUbaoaZPSmU+NQgWxKh2RrFsP+XEgwtjQtayVKjcBf/J392TSkGKKa/HjyYkB1IYe7S/1e/VTArVcC9KCCM5pSam/S8qhqCJQZjGTc1arwztCkM1aKk5ovfLN9ZwOzfGXCe1FhL3Arktq9Icj6551t9ZZyvtl5apaO2bVj0QQ9OF9vZx3CAiTBtzNMdpR0oLS0pshxFRM3CzKq9ev6pHX5E4My2REAxeG0QMAl7HtPJwVs6SnXMjxDE0QUmFu8OBzbRhHKauIwMti69Y7ZWqNhTIaKlnvFegrvaQVv3bzJoqNKSOseReSxpiqIiOmscq9qUhGENzblk4SNU88F6564zSek+5k2M9IWv9Z41iefZvfVmdeP27rynuNK0+5x6O1oxd/2d3XMSzel/jGRYfg++1VdmDQgMUNmeIhm5aX+t+tn4VpQbiOH+/N8YBzQmTbpPVkdV3MqhwcNrrM4OpOjxug+o6s9y9Pw8G+X6tgtycy0JNSMjanQQ6vDI707DWc9gCLP21msMetNoL9s+4GmNxdv+VDLCg8aotFxDGXIMBpntQRWNpiYdWa5jPW9zlan9YtVd9o6qym4xq5cM2XkcG5jrXzm7dM94d+q4Vpux1ng5rLWUFJv4aJ/Lb65tz/ebOomlYZJUdVEItMaiRonq2nFXrTDS4gKq73CF9fqgAtAhFSi+sV2005A2jLeDZPa/1aLVEmBBQaIK3+Zf1GQ5RaoOiP6tdVRC25tp+v6a0a7aCsELYdYVeUELRVs/m6gCcDe7rZGGfQ39fr8HpCsHrk6rRsBJE0oYgDLXWpiYRzRBSrXBac342k9Xp5Jys/irGSsiQUc2cjidSUa5fH5k2IzEGro8zEChYu4nTvIBYE3DBnNa5YD248sJxr2ymDXdzjXQtCxQLPMgYK4zLahWH2LHvORfmeeaQ7khJyclIZGIQTksClDEYxKlR7cuCUOEgQBy1RfWdjn0YAvPp1BS1ysCAsGSlnJa6Bx1aYes8DgOpWF2nvacyxFDbAphzGcI6q2X7K3m/OJFa20DbjybApUe3RTqVdvGAxnkmGjUjKNY+kL5zSz6hg0dTtRu3MZKLkubCaZ6ZthOatZIemcMuIaMkltlcKqSQqqOVlluKDhS2lKwsMXN3e+TR04d88erA8ZiRSIdK63qXajMgbF92I9DOv322oFV+VNhLydze3nH9+pa9LFUBWpP21p5HnRpecRsjhMAQa6awwqLWyj5I6M6G2r3agVkZpFoBTL1PVl2FYopd6zpmNdnQaq3r3NmNqlIUk4WelXa2Ze/NattktWfqUgcdKYjVsorN1TCMIFvmRVnmGc+IOnCuiBJUiUG5O93x/NU1d7eJzWYiJyVsJz799IpPP/6C+ah88vxA0iOn08L1XeJwZ+cyCGzHyKNHGx4/mpiPQgwTscLjtTF+KpK1tXzQAPNiLWc224l4UYNY41BhwubTpqQG/5wLJQqahVkTd8eFyycX7BG2G5MlSY0zpmS1uaes6rTdEeqtkvr2W5twvZygRflzRlN1KqOt5TYqmygcq7zPGryiabVCNSO8bnyuWrPgfqaqnimuC6V143Antttr2oJl/h5hFRz9ukzhGn4GvSfw+vft5auerN7duSypc8baMa3Gaz+15yig9jWfE61ZfVy2ClYTrBUpEAi1brwUkxNdvufKDH2fSVFbTMn1dK9HxiCrvrbuTOPaVfpn3QZo33fCD9tH4j9vH+/Owtpx8BNqIqsZKzZHzqTSjF23tGmfa/Ps46nkHmcZQDyIvLJFsHddDeTrDAaTif0Tbbxtvu791S0g3NnSWlNXxXNxh/X+I5s+uj8GadlHf0Yv9enSkbP7nL+S1LVpP/5rnMTmh7qevPc5VSrDrzsgK2d19dHSaWDvPcF+pqu94/ZkW0+XO7rah7jUr/f3Vi11n5w/pXpgq1XzJMH68trK0t7TPutO2tl0tqHV+wltNOtMnycudPXuBlXv6Bobn+AINqsfFdabqsa0+1Fx59o/Uew8qren03tBL1/se4Gwb69v3vVbOYtOgOKb1w7nquaO2nPsTOnZ95s4dCNJgZrxaUWvK0XYnutRuRibA2UGownhVrCORY/7vu7AN9V0JrydnOBNSIY0WemMmSVn4jjgQDqTqqsDov27fpk8WcMIuyPUal/qg5qyqGeyCzhrLdEJCLRGZ2om1SM1VWmXUkgVG+7KWep7hyC9VkoimpU4BEPmqBKi0ZujQzW2lWWx7NrxrlTnaCCLZaFuDwfu7o6ULEgcCVLYTNHIbWrmZBxHjmrQ1OMpsMyJkgvbqe6Txcc/sxlHVEPL+IUQCOOG45JJpdK0qxmzw2z9IYXFKNs3E9vtluubQ81UF4NeLtGgtk34m5G+marDJYFpCoRsjm3JuTIPZgTY7rYsS2Icvc9lZpoGtpsNTx5dEKIZyCUvLcMxDEMz4FLNNHj9QQyVsXLODXLb4Bu+x2tLmSWp20YVkmZZ+Jwy6kQxIVpWdiks5GqMVSdYlSXdGdmPwjwfGedCSSeGIbLdG8nOzfUNRRNFPfMOQTfEoRBGa40yn2YE5Xq55eY28Wz/mMCG7WZvxEoCUqQ636CVQVRX542VLLAx1kNWksEBS6KgLGXh5csvef75x8ybxOnuyBBzQxtsRsuUe2ZpnXEJ1Yl2kpsYrCWLkxyJxqqo+8/c3msZKvqfNfREDHY+SzEHO4WM5plQ8N4HhFj6OQ8YLBwh10OdSiIyEBBjM8YCDl3XdoUZWNBY6yXTQqCwvXjEZ18e+PjjL1mWo81vKYwkclCyWPZ5isLV3S2fvXjJ1esD78SBYYCf/sVL/um//IiP/+rXHOdMnEZyCZTDibQsLAr73cSPP3iPaRopo3CgkKLwYLtnGiLOH61hhJIoyWSBDLUvZFHurhdQYbMRO+ubC4YBCickBi72W6udvsgtw3F3l7m9nVkeX/D+sz1bDBURNyOq1idWk9Xyej/ONl8OLdS1jat1LexsOdmQKyAlmREkAWRLprCcTAeFaKRBOQtZQFJn1lQn52hGXpP25oCsdEBjv2yG4QrBIh4woAVC/auCO6Fdb8KburTpxOAkFOvPr53KlQEufYT9OT2z6A7L2qBrsF9/oDufel7T7xmtKDBMsaIKtUKPhGHY1rVY3QdqHfg9eFp763smtFYouFjQzGW0rwCtxZTZIOfBXyr+wA1ZVkgfba+V29A8SGzyzdk/UQ8kWabG248YrLxCL3MfBx4UrGiHUveK20odJvlGQV7/s/nRbxrVUte2+Brfu1aVl6s/fFYrk7S6LXf+/LZv7t22OXZl7QgpNsNi9eI1QNpu2gIA9kI9cG//CU4co1prK/3P9vI180mf/3VrEvU3q/u2InpaL8mv8UdKJWBp76FnN+uypNSzXydU9ey3zVFbT79DLN1hZCWy2qI2/WXnzXdnG68Yx4MlB1bn1YWdm8pZvbVlu7c0Z9bd1fp/1b6kdRiNe8TnWftMngcL6naoYxN/z/a5bui75d31fc+wyqqOxPt/fnt9M6/fss8irE+eKwncqTlThHLvBv0enl5fR0JNgbkwP99AVj9UoSW1/sevIIMJhVKMEdSd16JkjyI6jt5sxDa2KMGyQquNDs4gVY+YR5Bt4GfRGtaRYhcMyOrX/st75DfrSHgToefz1TIcrfDToTqdJc0cyioOquXrVOuCUDiABKZhRwqReUmknBliJOeFiLDZjIiMjIPNR5oLIcD0eEPRwDjWvoJBudxfoCifzbfsH448fPiUcdxQtLDZThzurs2gE2F/saHobKGmMnB7nTjdHbi82LLd7MhUYV6U3cagQSUle++g1SdXcrHWF07X9vDhQ5aTEUbEADLANCl3B8vwnU4LS1FSCdxeH0m5UJIxVILy8NGelBMxBKZpS6iwjs04UnLmcDxStPAgRY6nAzEa/GM7WcuRYUwUKRTJFm2mC83Wcyj0vW1QU3NAc86W2cQYD0NrGWJ7ZRyNrCfNS9uPQ91H85K4ublhnq0ubNhsGMeRUjKntFTnyLK2RQs31zc8fLhjv58YQ2Q5LcCMpsEMnFrPOQ4bDqdbUlKWBEPcElJhf3FpiqnAdhNZ0h3H08yLL27RLLz73jNKUqvZVIESyEFRMkKs7Kjnhmszput+F7H+lZVxn2EcefrWE3YbQfPM3d3MMAmDRLRkwkVgGAf2+12tdzCnSrVYBisFhmFj61sN9pQTDtEtdQ/lLM1AdliSjasSRpjpCwih9mlL2eRbL7GoQqJG0LXYCXaDVoJYTWc2+VPI5NL3SqpBmRY9roqzxKU6vZBOixk+20d8/Jc/59d/+Qs0J6ZQ/RByhfEJOQtzFobNhgcP9wwDvHx+w8Vb7/Bv//XP+POff8nhNLPfjYQpEMKOORc0JYYA293A97/7LvOcOR6F6zuY55GkmSEXZMScUlGkSO0UaL1YS0qklBjHwdAL9SyknJColLIgIbLbbhljgLBwOByZT3B3m7l9vfCzX/+a6cN3eP/Z1pyvMBIZCVGMTbnBBUuDPzmEKqXSsveecZUxVjlZ59dbmbgSUEFzoIQMg8FpM1WPSNUZ2vfvX2fUuEPViSdCJS+qvUPR7rg6m+m9jFrPLqycNznXB1IDMet6pjMm07VPoB1aqvRsgqmuVY2QdL3TToEb+tCCWKz0tZPvGCQuMA6hBsbs+7l0pm6HYq4zoHEY2GwMNno8Lb6Ruwx1y7pRPHZjf13bl0vxvHKXtZXf4ByWe57diZW1stT1cv3uAW93OrU+LUiwukrOdbSWus/cLtH2KjbfwQmFVhBg1aq/7W5a2/d4gM/2SGlGdlvPN96i7svsjsibe1N9LnGHxsd2ngntz2me0Nn9vg46asRfXWqu57t9tzQP5t74+s+BCnVcj/NrsnH1z56tlJbKE7rDIff3iZ/bM7IovXfb1b+rI1Q/6HdvH14nM5T13CmuGFqwxT+rq3uvLm0/kvYxD/Yais9tRF09u70EnnkvlZimB35YIWNs/E58s7a3tdpensBu67cmd/KVWcsWn5vVuVScOOecsdbnowe0zuft22rFb/b1W2UWrUal7/y1GHGB4eQi93TdeUSmUuCv6wXNMKtKcgW4b9EiJ6mptL5nh7NGLHrK3u7jzKlNbFaP1DObBaU1y/HneQ+YWnvpWUHHhK+zkYMr2lWE5SxLKg5/WUXTRBCPDq3n0aNLTcdpo4hXzvH1/s3z2J7dMw6ByICIMBWbkxBHxqhMtVyuk/pIM5xiNCjVWAWPFGUM8PTxRSeewXrLXW7eM1bAcWP3UsOvp/0elYgijIMSwoRU4pTy2AyNKMowhHXQsWVJQxMmpToDcobyQcQyMtm2se8XQXh2edEVQw1MpJzpC2/vFcdIb1br9NnCWGuHcjV8YqWqb6yldX2CCNMYCKIklBJDi3SrGiPnWtn7Yvle9/pGqWQ6q+UmpdxqbNwwm2u2M6dEiJXBE4jjyDAOFVYpZ8FGpTAMkWmMBCKnuTCnRIxWnzlME2gwBlsVNmFpZyuIsuSZq5epklpUGpe4I25mvvjqmi9evOKjr54T6j4borUTWUpVpDUqChYRbka6G+94pD/WAUesDjSw215yc3MgpiOHY2YoiW20OT3czSynzPXNyfmcWpAp1PM6DIORCnUd32qi/KRElFCE4qyaDfJVDXYUMAbdhUiIgTha/1FrjDKhobDZWZBjOc4k9WxmzyBBrH1Ueiw9VhbXnsEoZ4aESIfYhzEQKMSYefDoPcL+He7SdVW6lc5fIaigIXBKytNHj3n37Sfs95HXn8+oDDx9/zH/8D/8Aa9ev+JuWTjoxLTZ8Ho78fJq4OrFFYfbhT/7xSdk4BQKu4dbLqcLOFr20mswrcl9OZsvQdlOE68PBw5zYcsD9hdjdc4F2IAYmUvOGTSxLDDGgWnMvLq54WIMFJQ5ZUpWSspEuSNIRgitJvH+pcAwRkK0IEjRbLV3pbLa6tBknGmBYAQmqgh3kAuHRUCybceiSC6EwfaltBp62xceFPUlsyBmAKpDxbqe3Z27+n3VMyr5UsqK2TQ35+1+XWFDnqwMcqXrRP+9T8g5UO3cARD3AM8MwP4MP1P9P338K7u5ym8hLSZv/Ps5V8O5nncPIGttDVLmufVXvO+GNNieD0L7O1sNX+1FW2v61samfcWy/xltjo8jn7yC2aGK6/fQ+uL+DbdVlA6rfNMfcwimC6G6Daqz12rFgBBdp3LmrPsbCN3BDcH3SmnBD2BV0kL7ju3Rtfi4t9Zrh7MFlc/3RmMbRSq8sAcX1o5Cn59q+Dc6hvaB8+lRUO1BgpZYIHP/GDdei1rP5jaAtjF2BFvb+3UvroMd953Gc3jx+md9L3twsI2j/cr33VpzaDu7pne6o+wOqmeJbVv0OV6Ze3b/te/nO9/vVT8XVszJ63ZtDb6pYHLHRup7pm1W8f3jiYc2Mbgd6X/3NWnBGlmfif6ubQ5Xtm47SzVrr+3H67nzcdfPqLZWHt9e38zrN3YWU1ZiZ+LFzVJvG4FqZUKUZhiCO03nae1CtjC1rGGsK9RCkO7HYEaKw/pa0a8bph4VFJqjoEG/fhOK1aKgxh5YgFAPfodmC6hlo0S81qIK8lVX3jNHpj+ALOeCweag/379WScIakBTdYNMfbjA+UPWdStNKVEVtgutRnbSa9tCCIzDDhEhV4cGlKyFQiYwGWNk0FZLKpq52A80DHxVrDFumsDz+qslZYQNeVnIeWEYJzKQdTYm02hkBmbgBqaNb0WtetbqX0spZDwSX9CSDU4qgsSBGDetZsyEoFZCm5pJqHtKRZhri4QQRgyamQglG1unN0IWd54TIQjT1rUgoIWczBSa6wIFEZZktUZDDHjGwBlR0dW6SBeXvm6hptHW2cdmFFVl2Gm3e7Zys9n2IIy0xbDvAtSMvmW04OLBA4ZxZMmFX/7qY0IceefdJwxTsMyMKhTr57fbP2bazSQSwzhwvBUGItvdQJgip5T57KtXHHLhq7tb/vLLK37yF58hmknZFEAWZdxt2U07bq7v0LJYAX89CFkt2JJz/VGwbNA0wRCUeYbTaeGzL79ge/mY/bCHYA3bd9PAGCNpqey8h4Vc3Ii1Gt39foMEuD3ctT50QxwA4XQ6UlTZ7ffsthMPLjao1mb07aBJ6/umgJinQxp3FBlZlhObCEM+kdKREwNffPYaAd56+oDd5Za0LEjqjrKEpTpLFZaDIjWC78Z15bywHqFxIKWFqEZykbcRzYFNLDx+WBi2hbs5EXJBULJORCkEMkWTZWjTkfl0YggTbz28QPSOP/zD7/Gn/+4pX1295pPPXnF7CgwR5lLIc2ZUoaQDn3w5s3v0hCdPv8t7T98ifXbDPAZyHWQzOIL1vCsIucxsRuXxd96B4Ut+8fFzXr5e+Lt/6wPmdODFi5nnLw7sHwgXlwY7FRWmYSLGxLQvfPjhQz769MhunJhkYLGqTWPhLVIRIgbByjmhweSJE5AdDidKORBDZLfdEMeBIU6gJpe0yguDmCbL6IiCRKIOLA7HX0y2LwV0gUM6uaVt7mA0CPucEseT9WXdThPbceDickcDc5Zcg5celLJjniskNjfZ3R1gJz+5L+u7IrmX3dSebf3rrrUhr8X1pLjlZg6CcHZfAZxv0UMsa6hry1ZVBljby9p0WNLQSjCsn6nVmtMerXgxvWqv5W2OIqz+tpqRUomo3NHOubYSWjmYCBWmUaHr5lIqaj1BVVsvOmei9hpv1s/WDk1VhKHW85/NU5XnudSsigSihJphXo/cbIdU/Nyv/K+qs+tr2W9q8KjvBvuvW1RuqKsUUgsA9M+dBZClr2NYOantE9odrF6B7fBkWY2z3rmSu7ijhGpF7NTnqxJq6YNjM1ZuSbMbpX6nOXrupNX+pP5McyqckMf1Y18jqtPhTruTFvWktK6eu0Er1fMAACAASURBVF5kbc9445dvOEirj6w+2+5QP6BhtT50j0nWNxDpY69TJv1muOFo+7rLApcVfmtCd+RUtBH4NXsYsCL0gGet3aCWeu6bnvOHV1IrQfp6reYQVtnkapJmRwHWc93WjM5bIGoQVM8gt8SH3r//t9c37fqNnUW/PCrQjsu9kMl6A/gGXstO/76cbXK7KukWoSitOS/aDqzwNZtrtdcVVhvx/HPrGg5Zb1r/pOuaqlz8UHfYSBV6/dWb4lxDXqT9dzVAbw3iX1VzsrSSbfTP67nsuqfE+8fO4RHtA/4j9eqILg6k6iE/9M5a277a5K/X2VimjeLRXP+dsZVSs8NSZ7AUBQksyZrXD5V5NVWCElIBsexlyoEiRjJRstVE9ghfZ4lUNShbStbwWkIh5VCzExbZ0loDJrH2S3Iq6BA4HBYkZGIwGGpKC3Ew8g2vG/T1i8GyfnmIVeBGUoXtmlCusxIjhMH2rgqxNoEu1UBp61szroornbXiWq24dkdxHVRRqpKvwZFOhtH3iUXyCnFVcB9UWwJsSYXTnKwOM07EwTIgpUGoIEQhjiNoRnQhDsJ2s2EzRIYxwDTCFJgeHYi3xnZ7XBYjuJFSnS6FQbi83PL08iEiynyKnE7HujukkicF9tstQQKn46G32QGiQCkLV6+uyGHLuDW4qaqRrnhmqxQlDLWPpVSFJBGp8LIQbbN7xvW0FE4p23adZ+IoJJmgKEOM7ZxYnUk/slIpTmJQXt3e8fFnNzzebfjgqZF5nJLw+vURRNjtdtzcZnZby3AOsVoOpTQIfJdIVZXqSh4IlR69w/ns54JEIWXYbgYePdqzv9xyfXViCuaHimAtadRansynE3d3M6qBi+3EUZWnjx5R4sCrw8Kvv7pFk7kEVPbpjVCh38LF/gH73Z5I5HhKTMNAEpcKAa3tIJBQzYpcgxkTOQWWkzm1xpwdDOlQs6nqmCnMGCoFkhZORbkrgTBECBEVg5gbP6DVC3uGrmVCqorwo6OlkIpymiOjKkxWIyohGOFMbfY9RMv+WsZ7QEpgEy1yH3JtBaOh9x1bQUdRg1la/b4FcmZmKAvTNNp6CVA8sNq1TdMZpWcJRAyaHlYU8l13vgl/bXDLOhZvs+QMhC7NvRa97aPqFEroPV2RtX52a127DOpfrt/vG7bv6H6dq62Vs1XcYa5cAX0qKizTzqs7fX7fN234nqnE90KzDWpGBTHjeTV/S9XlhtiwewU30uu7rf9otkOdjqKF5MHpNsXSMoi5lOZII6FCj0FWnAUeUDTnkGa8ex9Ae6zWOTESQTmbYVm9a7cRikNH763ZfdvHdIO0z3E2v32flP7P9vvOZr8eje0abXtoZWfQ58+DA83OEFAVnBC8OYtas/a1NYoLRRUoGtrzbTy2MGuIrf2bNgZ3Plst57mJulqXro9XPtFq3vpY7s+Wtr9LG8P6krO9fm9Sz2+Gbzbfw6YfVphmWT9f+6L4vN+7b8uRrxzflSRqTndbJPo7Njta+vuxDizxJuS4rJ5/PzDQ96Q/ZXXevmavfnt9c67fyllsDa5XUQqvUay2Lg4L9UipG+TnSg/46zaJrM4CFs0umZZVWTuXiq4ozauBvhIM6+e4cvZ/O8nN2WZVM7wM3mj3cmgkcBYFFc4FelOOVXH32sY64OqDWVuN9YHr3w1+8FeH0XvHu7dognVd51GaIlZWggJ6v6h6yLUsfZKbcB+IweA5pTZRFXtZcoGYupIRHPa59JRI/fkYg2V4tvsK/zWBF+JIg0yIzVlRJetSC9ALRc1BC5UIJmIsikMcCTIwjX1Zc0pMITBOI0Gk9tiqcxpWwgh4eLkz9s/1pkF6hm4FAbxfmmHCfqpCsq+Ht3XxgIn6muRMJrfzsTb0LDt9XvfS961nmWxcBsk1SBqlZ5EXVaQ6IQ4vKjFUtouAhkimELQw6EiQyJ/9/FO+eH7ND3/0Ho/2OzY6U1TIMpIU7m4W7k7CbnfFfoLtBIdTYReF568OPL89cdLIg4sdf/bVFV9+/pyf/MnHfPXlNXdXRzaeLQ4GwdxNA/s9vBUfsOTCl59/xXxarPdVNsbSZ08fMk4jn3++cHdYKAlSDEyjIQ5e37zmn/+Ln/Cjd/d8/62BzXYgEsg6E6U6HhEGlBgK0wC3d4VffnxFIvHjDx4jMhBl4vnVgT/5xZekXKHxXCGhcPH4AU+2I//+D79Dycl65hU10iB6w/dBBqQsXL16wZ/+6pq3Hl7w1qMnvHW5Ix/gnccPKFG4uZv5/NMrfvSjd9hMhRhHooyEKaMyIwRKrUGxHGax5Eq1tlSF07wwH09c7HfkWOyD85Y4znz86yPXy464e4snTz7j9dVrVAJFvM9jIMpAUOW0FG4PM3enwi5syNsn3B2fEjYTcWP9Si8mg3ymStqTZTFpkJXL/Z44RZZYmGNhu9lBmUkl29yIvUSZzZ2OcUQCLMvC4bbwYL/l6dMNOZ1IOXN5qewv9xSFvChjUBgSy11imkZuT/Av/58vePz2W5QxkMQcyEGDMTXSLfsQhVjbJ2ixnrIShAcPLgDrHXtzfcfdXWZeLMhzebljHK1NA2rsxm7ADbG276l6jKEiDphAhClOVvNcCqdUrAyrQIi11rkUbm5vmVNu7SEUq4sLIbDdbHDolQiVmGkFg6z6omSQ4I2bbF848qCLrg65DxIgUgMoPYPpLMEiUg0413GlypJV/d1K/pyXg1RDT3rPZHNUqizzT6oabHfdB4+VgaGChkj9UG1lZcakt8yytXAnsWZYqx5zA7T5ttJyF1U+a2OO1pr102D17Xmp7Y8UUNvrWTOe6RARpqo/xrG3Mmpyv+p2DQXvFedr5TJ83QfP6su8N+56nOeGuKKtvszJPXyZ3OHQGgDr/sV5AHmdTG4O8r1AZDPQdeV0tKt5AfWfbsf0Ea/rXT3gaWOrX1HwRmPeaoK1Xly9Fz4X6vtoNR9Nh1qtcIxjtQnombQ37MS6Xywi0MYdVOpmqTKj7rnzdTAbtpHGIGi0++faL3L9FS1G2hZqVNz7byvSYNj2uB788/PakFH0HzpMXbXPrf2/G732+3K+burnz+2ItYMYO2y9umrNsfeezr4nV/N134lbQ3Zbi6e2vgKlGONzWdmfddiqLiX6Tnc50ffvyhZuP1uHEr69vmnXb+ws5lShgNKZHFkrs1V2zf7rB6MLkRbJrBuskwJ049qdBvO1elay1WWt9pYgvVm5djx5+207pBWaeC4l6c5OP0C+uV1olJUDopw/3x1lqhA8e77QGNE88llV/fkRUctKqSqT1MbtoStmd0Zc+nac/PpVtGZ4v/7qtaA0KaHNNslmlIlBdopHcLuWxpv/Wk2WILVW7az20V+6ZrnSYrVNsVAnwoVJnXMNTHEibELtI+g/t8dO42hZxwF691fhYr+1+3stZ13/cjKnaV3v6rj4+/TmUuGRa6XMvfkzI0xofdvOLl3tVf9MaLU9IsZ86vexsayGoEpw6j3pCjdG2+MxCKqJpNafUShYQmSsZD81el4iqpHUpl7QoOiQmPaRL69e8ZcfP+f3f/93eO+dSw5f3bHowlECh0X54z//NR99dMuPfvCU739wyfvf3ZMWIWnh1e1rPrmauT3Co/CS//a//+ecykyaZ6RALDCGodahCiVn/uqzl3z68jVD2bLdTdR+20RR9sNASZnnv/4SRDjVGuAwKBoKUYBSuLu94V/8b/+Kux+/z+Uf/g5xCXxneGzZmNkYfMtgWf0hZYYwcCiJz26fk+aFH3/3EUMY0bjhxfVL/uj/+4hl3hOGyDAsKInd7pYffOcpH/4IMyKLncu81MCKFIIxKrG53PB7P3qbH/3N75OXmXR7xdXNDSMb3n/vEgY45BPf/c67bMYLXr+45fr1wnYXuLhUlmWx81IpYQonEOtuaSyAdX9kRdNImQtlShZbyhNFT3z2ReHf/vQv+Vf/xx/x1asX7GIAjSypWigBCJkY4fXhhldXL7h9dc3TXUAePODF9YlfffSKF88PDGLOQZZi767WUkZUKQSW5cD2csflo4csu0CSgMqWIAcMqh0pQYmzMA7CsN1YOx6J/PD3HvDLXx15/tVrtsNEnISXX3xFkZHtxYbtFClLRrNBgDdSePvxlh//4BnDOLEPyiYOhMFkkEyBkmSVRVoF2Zo1vap9D4Fps0GWheOcOB6OpHlhf7nj4cM9QubucKg1z4HdPrLbTZAzuSRSWmrAZiInWIKx9IqY4ychGqpBrA8vIoxDJDPw+WdfkvJi6xggaWYhWVuXypIsUlb2klYbrEIymzy2oFepJR0xWqCjGYhitUyqStEFISKV8Ke3Rey6wrax6dOcToaMUAtemD7IXcatdbjb/9WoXtt0ppNrjVatWbBWMuDw/jXjvipI0R6AxTL6oco/e6/Qx4ydwcpHRX+57tg434CIoLW2yzLYymkeKSwghciONC/c3syoZIpGMoHjvJBTZjNtqrNixHlD9P7DgTgY4dU0WP36qbZdApgmI+nJ3iJpDUugZz3RDpVtvtP679oD1m5PFA9evHH1wLXP6xuXrufdnbR+XrwJe/MNzqKk9kPfCvfv7x8Nev6NNdLMnUvtb9nG0j8XVvu0zlYBcMhptYHcoWblwOr5z9uA23y4A7aas5WNVto4pDl567lsPqDQmNeaQ8X5nJzV8K3mwuXUGiUQaiLDUFMVpxGqnazr8duNpLjNW/d7LbnwIEWv3z4PZgNoKP2efr+zZV5nUlfvoHX8rObX7UVVg1J/3fuu5qO/d+jmJnJ/4trnv4Y/6dvrG3L95pnFlVMHvjFCi6g4Na5vkzXEYHWTFtFBVoZ00VVEyQRZzlb07xHhJlRbBMvGRPZoqyAOmXQhVPp4WxQIPzidiOLMyat9Zkp1MEJZFaTXKNzX1S5AzSBRITiNWnwVIa7KcZ39Wked2lUPt4TVPLrzHYSg/vnzcaym2eakUatXgbsSiPdJiEaP2DuDXYwroeSGja2wr1sl02/1EKWSGHjd3RhikxEGS6s1AEUJQ12jXHCK+fYOAhKFcRwsslcZS42tdKlwpi6UpRLwCL3o2qO35vd2KWy1pqkp1V43WMdTI8tW17naGzVC55HYtYzz+Wg906psbNFFVWM9bQELMbJ9rU4ChRgD81w4nWaOtwf2+4n9o4eEQSjLkWWeGeOEYlnHLBFhtmHHCajZoSgcZeZ/+Sf/jr/x/Xf4x//5d/n1F9f89GfP+Vsfvs0ggZgWRhHe/eEHxHcLH0wDlzthOQn5euEa5QfvPeO9x4n/9d98xj/96eccX7/iYhDKBElsTufbRBgGQm1XkRYoWVC54foAmzpJS04kBZGIZN9DylDnMi6FEhWC8HQa+aOf/YLPbw78wT/4D/hP/97vc/XLP0KPyrFEUpkZY2YzRDRHbu8yD6Yt/+Xf/zuEGHl19QWlJKZwzd/720/5L/7Rf1Wz5Mo823dUEywLzz97TcT4WyEyxUjOB0QC0ziiJfNnf/qK/S7y3tM7I/mKI0PcoLlwvE1kxGLs4cTdYWE7bdlvBeVk7XcyxFjaugsRzZkxgOL1woGLByP7h4XxEDhOgXlQ9qcjqif+4T98n2V7wz/53+FwnZk2gWNekDESKIgW8jwSJoGi5GVEY2B8UhgePeMXn33BH/3kIz799AWjFEZ5wFAORJ0rqQxQIg+HxCe//Ij/5r/+n/iP//BD/rP/6PdIn/2MME6EaV8NqSMhK7qZyEfl7osDh8PM9V3h4eXEdpr48e99h+2057Qk3vnOdyhFIMA4BKKMFArjGIlD5Be/+pxPfvkJ//gf/SGbYWTOJ3PQwkTJAWSxIAqxNkD3AJ+H0gSCQfqGAXZP94gIT5aHlCJ8+slXvHp54HCbePT4kidPn7IsBwTh6uWRP/mTX/DgwQPefucdnj55Rs4zqbxmuhBy3uPdE5cCUqzecQiBNFv2SkJAWPjge0+bbEtO5CMGe41RyLmQV0yYLj+KWZCWJmz1cwJamuzuMt5lssu+aJnPpVRHwxxLbzRfSiFGy6oWzcRxy5IWJCbiaLJKc2TQyWR8Q57E5sCd25h9LI2RtXoW6zpr10suF60Xbez6KHSnR9aynI7AqMxQra+wM8H6OCJiSAscCmoB0FLgciNQRlBlLkfGrXJICzkFTjdH5mWmIAxxIC0Hg+MHGKfAuJ0wEpZCWixIWlIlYFvp07R0lJVIqAHItlL3NMS5bi/lXDe0X8Vu1XeDXM+cg7JyhHJZzVuze/r9aiVEjZFW5FH2mjQFldZCohoFrTbY73Kel7Sfd/tj/cS2on1v15YhbQ7cE8P3iTv+FjxIS7cfXO/G6rynktq+9uys2Qyubz2AWxpRzrmDuR5joJRVWxzpCCXHULW5pzRb0O1QI+2rf1ezOdI9Fn+HI3eH0Wwle26uz7jv6PVnS3VmWa2/283SzpusakbptuR6K1bb5WwsQGezOPOrCWrzWdrXe2C8eGu6leHodzF7Z4Vkc6ezfsrncM3NoOh5qvzb6xt1/cbOYmNx/JoMlptBLoQUVpExE4AN9qk9QuMEL76FjWjufAP7IXHf0AHp7VDLOoO5dgy70FpnNWF9gP1wroR7c966Yu9v2Z3idrWv+ffs316fca4oznOb/r32zo1Fz/6jmFHufqa/9f1nno+TdqCbaLwPz3Whs/phzl5H07O6YOvuCjzULKMZK33dS4VqLctS+yFZFD02iFSf7yBWv5RzMXbEVTR3HI2QJFcqfheMEoxkYBwGNqNF9Ifoo+/R2PVcruen0wp0WKfJ4r4vfA/6v8/uQ1VQHgCo82fCrhtU6wy017e2cvOVsm9Qsjqu4J+VjEyFTRkYNnBKC0WFSGEM1m6hBFOIATXikQxRFiAhAvOdcHNckGwKcNbEkmbiWPsg1vnKS+Kjn37OX311h/zOU95/e8NmnNDB2F1T2BAv9sx8zOdf/BV5mFgCxlbZamWgiDIXZRom/s7vf8Dv/vA73L18ybIoP//lxxxPiWGcDBaowvE4931SLFoZ6tlwx347DRyPt/zpT37Bs/2e733wHof0HE3FoJBZSFprNkWYl8LzF1dohONBOM1HM+yuEqdfXhMGGMfA5WZb2SsNklZOs5EAVOM8Y202SoGcMgHYbCLTJlJChCJotn6mhGCGPrHWjgEhImFAZbH9HHZorSvzNjgZIQ7m/BCUnOfqQm4onCjbwACEbKdf2FDGd3n3O5H33/5jvvrkK1JtZZPVYtQJoYyZJQglCKfjHS+fv+R6G5k2d5xefs47zwIDFwwCX3x2rLU/VZaKEijoYHvzmK+5m684Hm4Yx111aHz/BsuKLoWbm5k/+/PPOByPvP/+21w+2jMEm9tTmllSQcjEOJixmkNtVWLBgaurAx99+pqHTx4xhIF5zqSSoIDokVTrIaMzDRavpz53XNb/ljs7oyFGQog8evKA7W7D7c0d16+vbS1rxi9MkWdvP+P19ZHnL1/bXgwKJIOMyskkg2ptyl6YxgEJHb4eBjvx6XhayQuroVUKS8osNWvYzemVg+AyuZUo9awPanLSIZlO6LLMi8kAr2eWeK/eVmrfSCMNw7N6au2FUCGfqpNGoiYmV47BysDsAs3knazeRaTzbDV2OtOnqr11huvwItpIcepENOfSDHw56+nojlJVft30rN8Pq3k02FxBg7LkYNB3PIQWCONEjIHdNCFaWLQYAZYYairnbK2LJCASKSiLJqjz7M5Ng/Sd774VFPBrLlkxt57ZKec63Oe0f65/pgWkq+6xqwdPzCd482w0HVmzSc1R1zVpnWLlJ9U58WCDsgLlu8jXtsbNS1i/qqz0ctOnde2aZ2mjXrff6AH3sPq8Z7nK2Z45v9yZ6Vnu9tZvyAgf4xqhcH45ykd9HuX8FRUq+ZlPOta2B5//e3tynUVrnnsNrLjeX9nEPaLvzittLPd2ynoIZ3PzBmv0SqDcf5f7H/OlteCT2fRu9dSXOnvuGunm925IuEpUifZ1PZsbZ1n+9vpGXr9F64xec7WOmvXD4JEgV4UdeiFW6NE1Tz00HmHrwlDe2Mx5DVFcyUmPSK6jSusNKQIlyOpxitdFrKFMUo05v2JYQxV8fP5G0pSx/061wkUVvH5QRMnSY+BnUcZ7SkDx8yfut7YDWSq7a6ALYB+qP/t8ts7/WcSUdKzK1rOEIh1eIWDEBy50MXIQiuHmzWCrEdxloZRcDerKJitixqAqBjByAVEYghDDUAll+roECWSNwIAqjOOI1/XYewulmLEXZOB0WkAs+zkOta+mlFWjV7Fef/c0iYRuuPiqSYuWK87Gi8jZmvpsetsSEMY4wCC+C1YzXvfEKgOpdZ07tEux1hAVyls8GGHOhsFR1KKRuiGOd0ybLT/7xWsOp8x339nw7tsTZFBGRIUQEjIcmcaHLCVDKAzAiBAvR95/7yHDuCGlgd/93hOGQSF5ZDCw2QT+/t95SkrvsZkGJlEGlC9PN4hETvPMr758wb/7s5+ip1uCZNIIQwkY1Dhw8WzHfDqxHJUhCsucefXqyCCRBw83/N7vfJeUC+O04TSfiFE4nI6kOTPPA69eHfj0+a+ZsDY0ReGYlA9+5x3eupz41c/+nP/x5x/xt//wD/ju48CH72ytD2VSZs2GXIsRVDilRIyZdLxANJKjcHOaefn6lovLiSkAJ2sp4tk8i1WVZmRYcCOSMRiUoFzsEhISV3djbVNhtXAljEC2ur0CyoLEDUjG66ukKvwghTBkI76JG5b5lu3wmOPdkWFSxiBc392gAaRWNQqw2WwYLx7y3/0P/4xffPScTz7+nE2AE6A6tICFulGXhbeePeD933nEXA788Z98xt/4g0teffoLHk1KuNgRcuRzXjfyK1FjyskKcQukwu/+6EN+/OHf4umzR3z10QtiLAwEC4xEQywMo6L7yJNHE9NofRo3oxAYKMmyMXEA1Yhqh2BJUZMN2w3XV7c8vz7wB3/zfUhHI8cqNqehRIQBKGa0s9IrbtC5o1EtLXNQ7HcSkq2rQIwDD55cWDb4aIRPucwUVTb7LW9dWMbtbj7ZXjqeyEsiTNZHMMZICLVB+93RHEmC20MI2vp6FoUhGkw/59R0m9Y3aDLDZchZ4JIWXPP6xAbzhBZgymo1f97gOuXEEDq79BBDywJkzNk0v6gGKVSQYmUHApRwqoGflV4rXT+5oaorh63ptGbQtzeiWdj1I1mLOWGthxwtw+CKqN97xXHgtVC6Cg7DCpbsrKr2HAs2B04pg4HzEY0MMfJkG+gwx8icq74rShwCWh3xWkBKAGunJIOhX+i6ImD9W+1Nvf/xPcekzQ00woJ16w/pZTdtnulGd2+3Qt8x/T+gb7LhnkE9z35V527lqPn8ezDEvlv1ZSVI6vEHD1x37decqebU+T5xB6uwLuGwx7khYHMWg9sD5jylylilaA1KdztH189sNpB2n7VNj+/ZlfPSZkFq3aG9t9uOtP29ss2aXQDFW5vgU2telcEolVUooDpc6wx5t9t6QmP1eXyb+55WC+5Q59BvCjgRlK81nDukfpV7n/Gn3kf59TG77WfzF0RIuZIxtYCANGg8rZ60v/P6Xv6DNYHTei+vx/bt9c29fmNn8f7Sej1D+/29DXq2GYVVmn+tLusG8iyg0g7MedZMz4SGOyN+82Y0rKCfNpa/7gVWY7wXhSl+0FdOcEU8tbYMNGHqcEw3BOxnzTmtB+3r+k6uJg7nhAwSav+4dXHzSqBAFVLQC/7vzzYGpayC0NtRuGJUlHuJxkYA03DrNfLmcCfPAOfKRhiDwW5idY5jrMqotiapJgjDYIoaWcNDOyGPYfl7fWBXrgIMlbkwNnY/8/0N8+8ZOt9D8V5Uj2psnEWj19Fqm8pq1H/NznClpb3/Y6uhrR90pWtGaY8CinQH0u8ZxKA2Q4w1wu6BCI8NaAsrxGAZgXEUigrj6HNsPSxVA1FAg9U3fvViJgzCg03kchuJAd595xE5G5x2Gia2W+FwmxF1lkrhO88eMA47llMinQrLnAl1zjMDSx54++33efrkA3aXn7HIiVdfvuB0nDktM9MwQE5ITCiZz794wcurO7a7wOV+y6YiBeYsLMtMHGw8xijZtrPNY4wokBZ49923+MF7T9hvAi9vT8R8ZCMXTXp4PZRle8yAttYsEEJCc2GZF1Ja2E7CxXZiICPBslohGJTK+oAZmNoMZIccVaMmGNwt5VwNdCWI7d+SCki23VhcZiwYK6sbCyYDAjBoJhfheIT5cGI3HXh9c8uDy4n9zgidiljWSmtUd9htOCXhX/1ff8KvPnnO3dVrRlGr1Wr7y55lsigQQ2C3Gbm82HJ7F/n5X/2aP//oC15cHTnezsb42Yw8P5N1v9YzdDrCaQkQB8YYCLHXBstgAaHD4Y60FB5e7thtN2zGTau/K6WCN1XQYo6HBjM3gxoq4HBMHOfExXbgyYMdaXYm2NAsQz8zHuFuItBPS7N/3YBUoljmrNTWKikvDINaG5hhYjllu5NS+/0WtrsNcVZyMvkbg1gGRotBaLGsODE02JdWw81rorOUNoxc/1JKaS2DerP1c2l93/nSWit7hpJQD1n1/4Lt4VIZpXMoTR4agZiXD5hctixfdxhCO02FkM2pblVQ1VlcpYVWf3Rh+XUG3xo62+qtVCnhnJjD5au071VnY12fWXWqG6trBI5/vpVYIJRi+qQ09JHtIVG1FkiqFbIq5GJMtIoT2tEyoS07JtaTs+Rcx+nInnNlXu37cx3Meow+b/19TG/0fYu4EwLWJ7Tfe/3ITrC2qtW9r7/dofH19Nlodrxae5Pq7OCOYmMqXjsl/Y3cGFnvgx64WWX3VvvAGYHFxy72p+s6s686YsBtPa/zszNjWWlp7/x1dk8ds5z/tK2amyidoskcxhWxTDkzaru8Cf7O6+MgfVFMH3Xbto1Iv+aMtH/3eUGcMMcXQeyawwAAIABJREFUm2Y/OKS2v0wTIn2kIqs99vWPOw/o9M+eZT79T7dpzm7Z5V0/uXr+yLWj2O55blzpved+e31zr9/YWXwDfurCa5UyssNvyjjcy+q44PAjsk6qo4WsnmG0eztjlTcuP5MBZn03I98M7tCMdPtI38gte+n/E+nOVxWC/aDXDNfqfe/jrM/rEZoKOJuXptT9ANXifodAnAnk2n+riBsbK4dKVwcT8dQnWdaTcb4+Up9bSjeEwWvq2ktVJdHhQv370u4ZKvwYlGljK2Hj98zYuZOWgaUKuiUpoeQ2nr5WPj/aBIiIVAKdDumJMaIVXmmOtxDUSEGChLqGwUhB4ptENFZNJmc1GG8s02o6oEPoY43O26wXUjMYVnPd6OQts+BwxDU5gfMEDTICyqK135cKPSrtLRYKgxSmcUdOMx/++AEhBPKSSHOxetL/n703a5Ykue78fsc9IjLzrnVr6+oNjR0gQBDgohHFGZOMlEwmMz3qA+hZH0BfRM/6CDKNSSbTmGbGTBqKRoqUSHABQRC9odHd1V1d610zM8Ldjx6Ou4dnVmNkBj6oHzrauu69mbF4+HL8f7b/8RZ6FHCQlqz9lufnlyz8EYtbA4+2N/ziow3f//odnjx9zuXFFUsR5OwA8eDVnhlC5JOP18AF0htBiRfPanXCFCa2HHHnlTv8s9Pvk5zwrR8+5/zFZ/wf//aPefz0BeNaScFzcnjGprvmZjtyfXXBZThnk40MB6uBw6MlJycHTOPE1cWG84trW9sWhcmic9lD2GE4f+T01iH3vvo1/pN/8QNeOXX48w8JG+VqvSWoeTG9OFKYTPnFZ0VPkIMt4Tpw/uwKVDlZHTGEHu87YrBakhburDhVVMD3vZUvmCJdNvJsNTKFyNU0sOh7PFMG4I5OnAHPokAhiLMi9CqpmePzfN9uhGfP1/zZ373NzTqBn7i8Hvn6a6/yzbdu8xvfvMVmrcYUOtlcvlzf8Bd/9g4/+/kviWFk4TXPaI93Vh8l8x3hvCkkl+drbs7XvHH/Abe++oD/9r/7V/zVX77N08+eWH5jioZusjJsxhu1sNrJMsX+t3/1b3n4y3eQ7X/AN089NzeK7yO9F65eXIN4Hj36jG7RI/SAZ7F0jHGyxgQqY2qRF0msRqJLyq1bB/zNP3zK04sNX33zDncPHU8fj4gH9caeSdyCM5IS5l7eW8BFwcryTUB8Njzh6P1A1w0kjWzXGxOf4q1cSNdDNjyN12szBHjBO2E46kAGQghVfMeYIEHX9/iSQ03KMsvkQ+dcLk+RjXLqi/qWS5P43ebTKBlFRmPGmlZiFeu+yRKd+bpSMHIw74hjqoBvq8Fy/YEYFE1CPyxQjWjx0kour6SxGkFdmqV5C/TrXl321gYE76dffB5ATrn91bOSH5JSzJ5ZyWQ2amBehJnUjFlZLAyuTc1ITan2dzXQqCepQ/Fs04Znzy8Yo9L3A52YPD9eOvpFP5PpQe1fLyX/fmp33mykNSUmlvwtq5pphodch7nd2+2WbYLCrCbUfaLAlqLs6NzXu4p6vaOdMkfsUm5k/TB7hFuwP4P12WOlRYnNa6Z5xPyc5je7ZaP013ecFcSqlKqF85bvjFXWrktZMbbz51IyhX/A5Mbc/ILfSg3pti+1kr40/alay7bMRx4FbVeXZFzmKsdBefOyNgvWqMQ0xVAv7V3JGNjaNhuYZ0xgr5X7X0svzLJLpV0jTWpMfv+CPduQ1Hkd5uu0GcVSjmdPUWzn5k6FA9WdqDrafrKXyfOqGAQK1pwxoDbjW3F7+bb5Y47E2kdiXx5flOPX9yzuCL9G1XNFEXGtJlCPGcC3lhfJHptyP8gzyCBBKRoOdaG8lBOYlcgyiduJmfKFrRC1awrgkLKOyhvV/31N0i3ifVYOa65ETnT/vPxN2QuFZX5iVTrbOljl+SKzJb1sLt6ZAJP9++eXnVXv2XPXvvg0TVXh8znvT5oxajc1l0FarQHmiu25bpVGDCOOMEVCiJbkn0xxdM7hfccYtoxxynULHQeHCwNRuXkW1uWyZTQrSrn94grgKUXVPYo3RU3NA+pcZ/ToUfGZXr56LpoNznqiuISzldM1jHvaJKTvjKPdJ0w5jCnnI8RszS4bWjlXURb9YKFq3qHRgGlKBuJ8lxPRp4jzwhRGQGuIrajYJpryZ/TECCl1bJ9ZsXXJIazORzTYM5Oz0gIHk+d7Xz2j1yVjmPjTnz7k//y/P+PO8Q948WJLnODbb51x784BV9fPiWNiMwamFFEX6ZwnamAaN2xDYB1Oubi6Yr1+xrPHl/z1zx7ydJM4vtdxeXXJz95/zGYbSAj3D3ru3T/l5qbHn18TpjWRSJcCpMQrpwe8+uCMN9+8z2a75f1fPGJzfU2MOQQJYYuyTDCM5nUSUd7+2c9JseO3vvEW9/yKFx9foH1Ht4p0qqTkieJxXYfPnrKIzYfuYMVi4egWA50TlosD1pNt8Ba+FnAy4ILHTzGHx3vr/97h/YBq4ur5Oc8vNngfeOPBLabNlRlIpCNEzWRaAqKEOEJwiO/QqJlYwryPKSVWhz3rzZbPnrzgT//yH/nk0ZrRbdlO8LvfGUlJ+N637xHSJf0UIa1Iruf8xWf8wz/8HDdZLiVixelFPUkSMQVKOBUpKzMOFgtBfM966xk66EU5cj1CZEqJiBEsJVVcMsN+JBEHiwy4Wl/wyScP+dnfv428cZdxq5yeHnOw7Pnlx5/SLwZkAWe3D9hcw/OnG3BwtDwDIKY1IgFNll+cUiSSQ5uS5TS+eL5hPcHZ6QnjdWIbwWs0sjMw9kwVVIKFvmfFq5GEVb7aEpbMTGxd0RrGnHNZiUyM0xpPj7QRINmTF1PMxGoJ6QRPx2JY4rueEExerNc3uL7DiDRilseevvN1A7JYEQsXNeItV2X8vvehpEbMh+UMpxwCvx+xY9g6ERNsRiP9UolstqP1b37CarUElM+eXnCzmfjmN14BAkvviSFBNIMLTlDdmtEhs1ybhybviWIh5xU4atmns9xsFITP+1zz2GguWdBqlSnFyuKtWgBmq1CV3/Kem8j3zVFKWTGPtQ6nyexx3DAGYYqOj59d8e4vHnF6Z8np0RH95EnjxCt3B45OjhiGHt/5Gh3jnOA6j9NECmaamaZpp5ZcjJEp7w/OCmrOSkYBJQX0ZxlRQH4ByEJslJtdfFGUV4pStr8/SQHkuXv2sESD9Ruckvfwxnhv55ReLgZ0mW2gFMWqjfh5+fg8HFQVHp3/FrUc86qsFSUy5Hx6hVKSw9ZLiaLKjM3OV0KlGfdQ2YBdNX7n6A8F1Zjnx9yfbchlUea87+Z2l37JnaDVEdIoqrnfhdLHn/P6TX+V6Kw6SnUeN86DPF80mXdcmHP9Wu/xjjFizzCzOy75mVqmaJlf87g4kboGk1nF5ufVR+Q5W9tp7S6GA1fOYX++sLcumo9aufHl8YU8fv2cRUqoUxFmu7HSO6F9qtU7NqtxurOAbPK/rHDteATzRG8nXwlI2lG2sueoeDPnNuVrqtWl3Mk1MTd5UZkpjFRCgOYGmcKwtyhnITFbfOZk36KQNFJXZqGiRcBna9pcY2fuo51uadvT9ERttswCbb5E6Psecr8456qXsH2X3VBII0XIj7Txqbu2gOvtHV3Ed0WQWXiqFZZOpgymAURzHbZMRV76mmxR1ZI74WZBU3hTxKyLDiFFjPHWOVOmizXL5bARCeDnTIryZoYDZ4BVhObLdNn2juraHtb5nRvIovNANucJ6+04lyexO5LU4VQYp8g0RXRUDo9WNbzDgFGk5RvUlCiZRsX7CGqATsh1vOZqn04SGpXNCI8vL7m8WvPw4XOePXvGLz7+jM0mklT4+3cfcvSk5/rmGo3O8gx1ousXLIclnSghWY7X8cHIFBPuwDN2gacXz/jsxZbrqWe93SApsuwczvdsNyOfPbtg3Gy5udnmnNZUx/pyvYUnF6wny6t6fn6dDTmOlAzWerHSMSNWwgIRXry45u133uevfvIeXr/Ka0cLrm5GdLRRCDmXw2miS9aX0dm6vnmxxdHz4sLISY5XCs7hRfDV+5yBfu9Zh8D7Hzzm4nqDypDzbyNTmADHmw88QmBwSyvO7QSnSpc6nNcMbw1EONfZJM4lErTrMEbJxOpwyetv3eW/+C//Gc+fBy6uL3l+fsE3Xr3PV9+6VZUG1y2Q0Ywjq1u3Obp7l+AdEEvKLKqxykQVA1AhJfAQw8T19ZaLywuWXeSD9x5ys74hqoV5Ri/GwFsMTiKWd+NAouV0HRwccHp2zOmdU1IK+IWQfGA9RoIGnPYc9ANOOk6OYHA9i4URB6WKTLpZ9mVgbyljNnZBjTU0pWDytRaUDSb/cOYZKBZ/k0q7K1ylKmZgOKeAmVIDGIqRTrCQZU/lIqx4qNC8d6hLmdjDIdIxTpE0BaLR+XKzHhlSMlmtmZzLSc7lzhEsWUg5qKEKVUdq5Ed5p/1jptef5XA5VyzWGqeKuEhKnpAgqUcmMqC2KIcpjFxdb7i4Gbm4HhEdkdWAAIPv6VyJdlnkPUnqXtcaNFMF2WQNZJaTrbydFaR8XQaEzrVUNMxAkRm02l+u2ZaLlywD/5Qjk3SOOpKY6n3MWGDvtlouWKgRQPXDMWeHjtXhit574iYSQ2C5cJjzNVXCNkFRJ0j1BNp7+8wMXnILy3ua/M+eoxzKa/u7NN1Q5mlRMKSuiTqN527JP3PKRfPFvP9oVRYtuXC+Zi9gcb637oxSPn8HLWTdZxdllMtqiOSOwjI/IJlQ2nlW3dPnR+RIhjxr2ja52eM+KyGKaFNDdAKItNW6siN3DpHPRuDyfdeZsdmnmaCo5LuGjBmLQk2a51JtXtbai1F6lxW1vFT+V5u1sI87Sp8V1aqOecEku57gvVHcUcT2vmlwd/uc3Ed5jIpn8d93bvncN46QWbEv7ynzHJN5ndvUeBkj773EfF2d6C/Lvi+PL87x64ehzklzWd4VhYgsGDOE1bqSipykTOpi4KrX5UnpxFUFUMFIEPKEjmrKXl0AUn6muuFXwZtrmYtvvI5Qrc6zdTDWG81WvKykGTUjsRStUoxBUdrNk/reM5BJe0peFg7islDLYZvF7YlWhljBwsjGmHPfXAl7sL5sQ2jLprGTd6ggOSemFTa+gCQnRFVimrKFNiHNf1YwuSQ0l02sWfhViFrdKecTznd4yZ4DjQaYdGLInxX2NZ+czR2nqDMeStJsZRfR7C2TTJEvRqWtwmY74fB5fkDKZDu2F5fs+EiSAMlqp2kGWg4guuzByyEwDPld0txxaDZPzkRHUvJUxfKWBDKBhRFbiIB3ib6DoB3/5t+9w9V25ODogFfuHfODb9wGHfHSgyi+M0CMgCfPJTHgbHT6KdeqE5KGmkgurgh21+ioGVZpJjiQjovLyN+88wlPzi95+OgKBF5cjFzdbAgxsA4bxg9GNAghKBfXa7ZhYuEHetexiRMblEkTqxCZVDm9c8xms+Xp+pKrzTVvnr3O5ZVy92yZ87Y8YRx5/mTDdrM163DJcc0h4VfXGy6vNnz88HkOMTOjgvWrQ8VIeTQbHIyd1rHZBJ5/+DF/8dd/z8Fi4Ft/dI/LzROmYJbglMdQsbIcCawoswPdgiyULibOz9c81Rvu3zvi6OCQxXIATUzbiZQCo4/QCbfPeg4OHSpm2Eh4OnfI0C04XSY0mkfd5FfO78qWDcHlNsUMGKoGgmRv+2Zac3i84vBkxVfOI+vzc37nR1/ngw9/yflGuQyKW3nii4BfHpDcDVECJ4dv8OZb30L9X0BaowghColAtnAgmtkb3RZxsNkmzq8nRq+88toKQiSkxCQWRh2qbM1yxQHOCs736pmi8vW3HvDD3/4Wv/f73+H6/V+wOFiwWh5BUE5vv872ZuT9j55BUr72+m3uHC0ZE4zBlDSf12LqJmxPyKFlOSfUd6AdTJvIdhtwtwbcJlgeXZZBxTOAzIpGkZYtqBPmeq8lB8wMN60F3hacquCkb1Sccg+br17I/VmUx2TlOlRxvsM54eBwaQpVCqC5jcnyBnfqA2dvCDoTssSUjQhNmLpk8owyJpb7CjmpudUybb9hjnBYDH0FmcvBauQ6MQ9M7zxJFxwMA9sQWAwdiKdzME2BKU41F7/0bXY0zvtbI/pLjcQ8KBnjRlALa67lk5JSiDk02bukTApVtkYLSZzVnxp1g0AyQ0gBlWUMzR+ez2n2pmo8zNcrttd7B70IR6sVr945wLnOWI6zlylEiCkQg5XJSNlQEoEpK2OlpEbNtKEoFzMmKJhHs3yX8la5mXWsVeu11UhR8VG+v8wYaIop7/O5Puuep7m0B2ZFtCoze4ZjbT6fNcB5QIpaV8+rymD5vmAZuyBlnDLvoTQKZG5ZBmCpLcORX74oYpI72UlRUHQmRVHDmSV3M2W8uF+SYkY7xVBDXYNzv/q6lFxnuKHT2Ttm3Zfrz2qynSXldJgE2YlsYakVuxY9r/Gm1/5uFb7d9qYS0VSut17K41fWRMGmeyHNVU5QWYh38OYMuy2/k/LMgr/z+DU8HfsKnoXPajOXs9Em37mMmcmCPRIfyrjmK3fmUO4zhR3q5i+PL+zx69dZ1DaAxn73UIWGZEnaTsqqKGYhZ8pd3uxztIFh4d1QS5tYjbeondD13lq1JdtsZg+VL8K+WFKcmJWqrX1YnpXzNCT/Y94NGibMctKsVWpR6qoFMVuzM4tatQDm1VGtyVUptvukElZGBszBwLLLlixxc5hCXWA7GmFZlrqjHBfhh5qnMAQlhAhO6QdvrI6YQLH89uxxceZlUDLg0uaR5M0/g8uySVJy7zKwK97gYvmbm1UsnyZoXNnk0hy/77Tk/OQyERroXfZ2il3vywadSqhsTnzPD6o4zJGNjKaoFtEsyjwmMiuFpUWtIcGAaqoA1OpvGnDyDiPTEOHF5YYX1xtOZODkFLzTTABkobj90OHFk0ah5C0lZwAqNlT5kiW0k7nUTP4ir4cya3POQHJIZwQOXaf0A5ycHpDiwNFqicZITHDnbMX1peARNmMg4umDWWtTHNnqhkkT26g8/eSKUWEbjWETNSX/tVfv8OzFhuubDdv1ZHl1ybq21KKznFupu6Blc+VaaSVno7yDy1tZXouFsEUB8SBJiNPIdnOJxntVlxcRfN55nDMWT5J5sbv8vPV2C8k8uk+uJ7plz6g9wUHvEj2g4ohTZFh0fOuN2/RDV3NRVCBMnhQcV9fXbEdTLhWQZGahkGIOay/gIBGb3VHAPL8EC4tysN2M/PWf/4w/++mnHHXf45OHn/Fku8KtjtEcwkxKJBGiwPZqzfZqW/vMWILrEoJkfS9i883WorDdRibpOL39Cme3jugePWPMHjpJiuZ1U2QnItUjmIDFasHxyYqzW0cMd47o+oGVXxpj7WLJiyfnXF1fMwyOFBx0g4Fwl3DJ5pmKs+dIAXpZGXOYl9FlIKIevMORcK4zOZ7BSlHZtPaojbvMblGbStka7sAYZbOxwrm9vaPeKe8hWfZm+4WB8yq7IWqwHMfO03dD9mAMVvIlWKioGdqgzUcsnhGXQVUiVZAoyFwegrJeMkjcU4JeBlMZ/FWyHNvOTamxvGMTacqi93jfcet4BSRubjYgjs0ULI0ghlqnsKQelFIctUSJFsV0Vsgp/CKuCPgWtBeFrcwt+6iyM1JE2fy+u5FFSoWnVVfeM0DvakHWpCrT7ftxbLy8weSRc2YoLYyyQsl7n5Xy0s4UU30Hl/fIVhkosrg8o7S6oveCOyATyeyOX/29CI/2yGJ/pnEp/86oouyvOx699tj7bMYHWhXY2vdF9yllDLRVICoCy7ip9LfO71jwWDlPS7SUXV+UX3uG9Y+mkhJSMMKMlShttdjGTGqX0U8xIO11WMrM7WX+SX4HzeBO8rwWVxhYhT6z1Tts/SBCcg7yvpdEbewSZszOkEtVawSUKahNJNnOINLM1XaeZ6VO5rEra72upKJMFlD3eYb7X3HUb6W9TGsbdm/VYPWyRsvPtvRd7vvqZaxgswBwLVOn6YGMajMmELV91RKYmefe/vz/8vjCHL+2shhjrMCiTNXYLJK6/dVkZdtMKnbf8fapbbz5y6RzKJFNsBYm5MnFXmimNpNO7R4FNJRcACEz2yUlJHM7igj7AtrWbompV2bryPxuNRyzXYm1BIV9qQrijaRFcttK/8QUsmIoswWvXAeEYJuWYmxttgabLaN53855ppA9Gw5ThksSplA9OypWNHx9o2y3E87D4aG3Gm05THQOg0xos6+VUK2dMMm82E2QlPyjEn6bwDtEO7POe7O8W58rxAST0rlMDoKaVsAAuU7gNgYkllDZSOc6650IikdxvLi5ofcdy84jMRC3E9L1dBJJURmkgEfHTZgIusF3HYt+AXFj8yp68KDe3tAF8IT67iUcWKdoiosIUSdUtkAHfuBqA08+Cdw6cfw3//UPTAhOS6Yp8uLmCk0DE+CDhVduAUfM9TcTmoyIoxNF6Ji2kVEn+pXVkzQAp5lWXPL89nUcRJQucxoeHTn+89//Jr33fPr0inc+fs7m+gVvvnGb05Njbp8eQbBafCkqkgIiys3kGAO8djYgzhThJ896FkfCpht4+2cf8j/8j3/MhUaeXg9sQyQmzxQD20m5uryh7tF5jRr5Q0AieT5br7rKh1Ss17bGSuSAKWqmTIdgubBd19F1juePn6GTzchYCKhQYsQArySSKH7o+NuffsDbbz/l+iaRPFxPI/ITuD6/5t7ZCV996y5/+HvfpV8siWnDzTpxfXUJKc/TrDBmH3IG1GLrWhvLt5gXo1hpnXdVIahmBzVj0KIfOOyXnD8/54//4Re8/+icf/3jHh9G/vAPf5PvfftNwsUa1Z7LzQ1dP9B74a9+/Ff8y3/5Y0iXuJxX6V3KIbcmIZMD8YoGZwXgnfLu+x/xv/zPPyZedbz98/e4vtzWemrVIQBotNy3EvIdhgheefftj1h2PV+79yp/8BuvEeKGy4tLttcTzy/WeKd87SuvsFgtkc6hGlkExXWB5CDSIZQcmCwdxZl3zgspOS4uJjZjZLn0TFPAebvGdxbyF2OooZCVX7lQt+c454JZQwg7BdNrGNVL7Ngz8J7hjBI11k6paQQ03rKY2MR1meGN7KbewzvLN0/Jyn9A8bLNoHoYBju3s1JBxdiGCGGa8jpxuwBKa+DX/JEmYlKmHSbvJt9PlRvZZi+j1j1FxBES+K5nsVziRIgx5dDbnPtHIZrJwDJ7W8oi91YciVTJh/rck3l/9S4b8ua9RV4ChAVZzvu7ZqNh52eIUr0qAr10u2C6Gcf921d2bwpRTUPiVs815aG2USSXRAELTYU4WShrDXUtZHsNiE/R3tvl0hv7fAYvK8Qz/NjxGrXv5hziOrt/KmvW5JDLNhJTWmIe92I80eb+M3pPbV5sUXqaAvfQYqa2rTllos5hdv5uJ2ZRnir5Sf6weBNNWSgRR5Y+URWnckF+hVnB3Mdpe97L0l/M67B8V2Ce5bSGHQNFba91NSX8EsxjbNi1Q+gRB92SavRIKWWPeZE1yXKyZ+6eHRlkSt+saFNLZklRi3eUynmQ2j6eDSapKprz+xaEXCOc86UzJ4jUdV1urc0z9udhmR+zP3Gvz2cHNBng7ba9jIs282tvjdZnfqksfmGPf0KdRRPabm9xV78/edNswobQWcGz/JPWqiA7k71aUWxaU1dQsaS8ZCmxH3PesFp4RJEA9qBKYz63WavA37EF5T8Kf1Sd/vPj21/qDQvttn2thCnM7yW2wdg9XAbHRZAUUiBy+JVDc22oskEyd+2OVyZqmkFqMvHuqjCyXD4TVB4RZbESlgeL5t7WmaldxDK32RTOOexV8jgkjLE0ToEuh2WR7D7iPRORPoeABk10Xghb26RdZwYClQ5HshwqLQNhPiiHN0UTs8prgug0F3C3cKYnj69ZLQfunEHnHZMqxA2RHiGRJFroqusZ09pIJrRHNec/ujKGKedOQqeATga3xOMk4ZMxTcao+M6z6DwSV0zBcuauNyMPn90wBuXeuSOMwNbqlY0eYxt01v4yp1QglIggFiCeKNd4UdzgIDmEkpdpeWpJs8daLHxYRZCUcGKegW6xolPP9ZVnCsonzwPn28St1RKhZ4qe0C9ICKdHC7bryLQ2l+DxSaR3g+XexQkNgaGLnJ0s+fv3P+Gd9z/g06cvCCHx53/+90hKFnKqubxDyvU5c3hdIZGxTcLCwUTN8q+ZWq564/P81OiQPiAuk5skRcTyxt544y4/+t1vs/CPSToZNb5YmKBqYft1gIU6axK++8YxK+94971LLtcTzgnDsudk4Xn19jGvnh3Td0Aa8VWYZSDoXA7lmo00rYWqyC0RMWKRLFs+l+BBtY6X88ImBa6niWkrLNUjbuRis+bZi4mbteBue5Lf0scFfgC8I3Q9ycEityYWlsN8/ygAEZcS3iuBgHiI4Yaf/sO7eOBmM2XQlGpouGnGrTzTTLLs8E5Y32x4/72H/Ot/83/RX3+Le/dvsVp2XGxu+PjxCx7cv8290xMClne4lYTL9RMVU0AcFk5YwnRJc5jcNCWePj1Hfc/qYMH1+VPEGVtnGLe131OyNVrYEQsLZqzytcj5l0F3XnE7f9ec8kZB2LugdomI4DQTjqE1L17r3JjBdfG8GdA30hPvfVUcVU2exhTRZCH8psgVBmjXGDoT7JCMzeNdAKMpOWWXmgFzBZDZA6CSlTbnsjxxxDHvMSESdPYqStOfHq1zXdXhdd6rPKCaCCqI8xl0C7lSKgkzcEnbR1Kb16iHef4hswJDIqXPLzMV90oyzO9r95m9j8UbOj/BVUBLZZbdJwwpLVMBcVZ+yHdmdI2FFfelMgZQCo/P/AzsjMmut7g1HpQbtPPQ2pBUaXNWiwIlVW5SjVK2R+f2N+R8JZoLFKeuAf4m9BDzAAAgAElEQVQllHB+ZgndbV+rYJ92vCpGKt0vNO9Tz5rfufW4idR1PKc07T2xvGz+WZwTSJ6njbwqz6l5pMxffa63KoNM2XkZqaydFoasSMaeQqynuS7L/TJGghnoAdRqsCZXQs5TNnaZIh9zqY8ynlrmfH6KNu3bcca0E3ie7o3Cp1Wp3jttR4Eu1+0MZN0HoKR4teNo9y1yBF4OG927pn6yO+935Gt1HDRrhC+PL/Lx67OhZiYqgVzOoRFeRfNSsnKUF1wrLIrSloVkyu46W8NZONRTZ6uGlxxqs6va2b/NgjJLcrHWlgmb6sLaUdzs2533K0QvLp9TN1CoVrhWwbR7utnyqKYMed/NIAaIIdci7HKAqmZroHMoBpAjZUOvN8/CdX7Xuc3Zwli8TIbR5rpazXs5Z7l/kGtFOaXrnFGW55AvG5OGTKGEmhTFvpirBKRTppAsrCrGull5IAXofZ8LLwdIQojK8YnQ9T3TaLlom/HKykxI5tfHE2PEdZ5EzsGRiHMJVQ/qYDT+RueVN9+6TYqg00hIYw5FFNI04Yeejz7b8OTpDc+fJf75H97hwB2hG0HDlk4cTJ7UBTRBp53F6GvAuR7BM6FMEnBhgcqGftlzcRn5xdPAatlx60Q49MKDkyVf/YMTUnDcrG8gOfPyIHTJkWSCSUw5dcCUiArdACGOhGkyVsZuIkgCOpz0TGNAM/tpO7fBGFp91+GdY6vKdDNx+fCGF9db/qc/+Qnvf/yM62ulXwycdspi2XHn1gH/1X/8W5zdOeXiycSnn75gdI7j0xXhasOnjzf8wY++x2atnF9G3nv0AYdnJ7z77oe8/8tPSb7DLQaOUwDXcbjqmUJk3ES8c8QY2G43KFoZC33f5NloyqHGLZiySStOUekzm23uJ5SDVU8XhJPjM+6cPSC9eEKM5jEvrGzOW4iwaASHeaGd8A/vJx7cPuK3fyvy0aMrPrsc+MbX7nP38JB7Zyv6wdZVGKMZKVTBW0kBA9g2J0toYlnrJXSwhE853+X1nL2NMSI+5+ZlI0ixWoOQQk/HIbePV3z07BnLi8jx4oA7R7D0W9JoeUq4yMILvfNcbzrWU2ZXTWaJViQTRQiHomhyxOTRztNphDHiPHzwiw94+uQzzi9H8N5ymrOiUSI+CuOxZHCa0oBjQgg8v7zgz3/6Lu+98x53z055/bX7hBh5+OFjvvPtN/hPf/+brMcbTs4OOb11wjQFdPKmvGsCCYRossH5mawE5wgx8fTpc5ITprDG8gk9QkS8GYZCCPjO00nxGKa5XiHUnN/qESoAqACrCoZ2gelLf7d7iewpI/l7Ia/jChdL2FsGSSKM07bOl6gwjluGYUHnO6YwMY4T/dAjzjOOYwWVLo9B3w/0vsMPnqTKdtzupEKUbVZhhyHR8v+yoKjt0/pmmiJpKgXSXY26L6/Ydb7JNZ6BfZn3RUktDJM488h1boFqR0qjAeHgEToGr5Z3DQ3TaQH1BaTOinZpiPceh6WKtArDPG4NYG2UzzJKM3jVuk/Xz3yZE7MHTWuprna8TVUoRiAyb3BbR9iMY20IZ44uiqV9OTKonWNtexuNeUehVEhavJPQFTKYbGTXbKArOX7ihSkVI77bHa/iScwKiLSenzIWmT28ehhRi9rADNdCzm1TfcnbXb31n7fWMq3prvKQlfjSQ0lfWocKdR7We5FDbRvHqEHO1nu7P4bkmq4ZhmoOiy8tKHtpZtCdQ9KxkNPa3jm3kG3zzrVt81wDK7mDSOXLcLl0Ta+7ilVKWsN4UzIW9KkolLO2V/FkmdsvGbYytm5U2NrfxVBQwuypSnYz59gtNTbnSr+Msy3cuTXI5Lk/hxNm5bI2jbZ8y46ntfmM/cd9eXyhjl/fs5hsszEdr/GOmS6SrWFKKLmIdUPIfxfFURuxUZTNHfsItLMuaqoTvizMmdxUy1ZOmxTcSK92nczfN8fnhoG0f++8Q9uO5l6qddKXTb1cVQk9svdllrHVZp2Fws6TKGtvtz3Zjii6t9Bni4/kRhhBRAS1sKCaAZTj7c3ylax92l7b9F2BSrlpLubNMRfdFp/DYij5iAkVq9vVqQcnPHwyMU0ji67jYNmRgKAWKpRhNCXfQzXkPdnYRJFohBkilPyYEOKcZ6re8hxJrJYe9Y7jowHn4NZptDYEct+rhXKSUKd1k7d564r7ywwYviM60OTxKgxeOFjBMEScdCY4o7JZj+Z9TAa4oxTIFkliBdpd6uo8wlmfLboFRysL11UcCVMkp6gWwpUnis+hTSUUqTDL2nAJvrd6e4dLz7e/csbZyZLLi8D55Q2v373N6fEBt08PGE6XaKd8+NEjYlRu3Tpm0MhnTy7QSfl/fvq3xMkRJvjls8f4x5/y+NmWKcG9kxVBPR7z4m7Hic6DLCR7PUEklxJQM2KE4j5FqdgvywspuAtyiJx5oEqZMsWAaYjCo8+e8967D/nBVw64urrOtShzSLwWL1HeZEWRTul7YUw9d26/wsH1wPmHn/H4kyv6s4HDYUE3KcsumVck7OVRymz1tv16D6UoL218M2LN16XyDxnkWaja1c0VId5w/17P8bMFT643PDg85ehgYPBKIDF0HVGTeTSc8MmnT1iPY32uWZ1dJjYyo0/SRMTmscshugrgFdfbd70wxySVRpd3wTzCKqASrO3JPvMK3/rG6xwtHWfHAjKgesKwUJ7fbEkhcKodXjuSjpgBIG8KhfSkgIySkqAJ7x2np4dMZY9wc41ca5OFhZXPWqNjyatTKcQN2YhQc4BMWBkl/L8/JLANSWu3hc/NP2r2piJj209b+e29R7OXOkULUyvP897TD70VhM9ePRRiDGY08wbWnbfQ52IArV4EodnfmvbQvkOTBy0OPFWGFDbG1CgUL2HEpm/a/hCRCqg1kxWlFLJRxIwERnZmXq+UWUDbtSJl+pVf6ovUDa8BuVSFuFUcd/0p7X1mMLu7i8/3Krm9+/t4BcL11oaGDagrxWinCsk1z1S7X2sT38f19flNf++0qRpm5zcs5Vy0zvdibC5yJtU6wHs33LlPAfFt6Y/SUNV5nFtM9qswUavIFeP6TiQ01LJBZb6+tEq0Vbraz0rfNd/l+VJIwe2E3OX7I9zAyAoBC77U0rdS0yYqZ0LtqXlOajmXHI6dz5nrJ7dpRHZulGme53mdlVqL7QBluLwzbr7WJLcP5z6d+7HtP5iXg8s1X+s63jN21X1pZwxn+V8aMRtIPk/28fJnu0uy3mM3L/JlGVK/+RVr5Mvji3P8+myozLmFZbOsU63ITSwHyea+VtlbBEYJgShzUhprhZRVBDubS93+qzApN5w3Cq3CoJyntGeU+np27i5g2Bdc9XWKsJPGH1I3grIAS7jQbOFpmaZaZTJl6eUzy0MqbFuAy983QZ/5Bpmifed9HSKNUpjftFjZ7A6zQgGKuKlaoVIil9DQ5v/GAzwPZr7W1edoUFQMEKhiBCvMoDPphHRW04wkSOd5fP6C9Tbw6tkZtxdLeqckGUh+KlIfDWUTDyQVki5RPIm15bvoAhHFMRJDMGr4Lm9Y2iFu4pNnG5bLFSeHK85OFkaQMo7WJucsPC9GtBM2USAqvY54Y6Ex0EnKzGwLLGuzI02B3gu3b/U4l+gwK29SSNEZwE5Y6FKynNPkM1GGE8tlVAXvGHphvR55/Oyaj55dMiYlboSz4xUP7h7w+itHBIzIxOWwSFHFFUtpJeoxy6VKxA3CgfP8wQ+/xs164i//5n3evr7kwe2B02PHyaGy2W6J05pBEv1yhSjcXG1ZHqx4/Y0lP3nvl6SgOBw//PabTJst77z3M8Zxw6JTSBHB41Pe2JKiDoZcBzNGCz0sYeDirCZeSvZ5FMkK5B4IiYL4CMUAkZeO5W/Cw08e8dN/fJ/f+c5bqM/rQy00uDAaeddZPqx39IsVV5srPv3kBa+/+SMOTzt+9vMf8/ZPP+H7X3+Nh5/eYbHq+N3fvMuiEyOHsRZTy5TU8CNXIx4MbUhFuloZ/hoQLZINDnk9NnKkG3qGhXDpE6PaePfLnseXE9faweGKkC5wsiCEG7quY1geMCarpSnJqHtik0mMKtusJCnGShnVEXF4cSwGz8nhgErOoS4WbmnbVl4hh0C6qXKWqEbSFFmsHCcnS+7cvcewWPH6NyMSEid3TtGwxSlM11ukVyT6vKQNkTnnM/tIyX1KaEx4Dw/unXI9Tmw3gaOuZxOSmbNK/zXlFsx4ohTFsbJe5BN2PRV5M8hejpeBu74EcigybE9BKmCx7h32tHyeeTTKtZL7Wa1B+X21nmu5mon1uM51/Tx+WORauHl/TTlXs2j8Tuh9Vw1EpZ7gDPxSA4SVEupVuqFOW3FILglSBrjsweq0yS+cN9lUicdqB1m/KBCVSK79qV2dR6nkRtLsL9oAe53Bt+yMgZLirneiYo1q+NzTSspYsg+Ed8fzVxkIPu+zskfXvc9ObDQJqXtqMU5A0+eUlb/flrYb9aX27ioA1v9dZ2kempQQk3ma1fJNO+/BOQZvbbDw5mKMmRdGVQYKTtDaiNp/zehUz3JtT+N13H+n5o3qd2We2jTUmeeBImO1WU27fVKUz/0+0522lh8FFZYHtGPZkN2Uc2uXVE0Tc6wWY0bpCcmM2Plmsz2lYtDSNvs/P1sk54/uclG8tBiRTF6XvY/OPNVzHFqeH5LmYPeGTXa/P5Q57NWauzu3Z6xu/8xj1I5A2cl07p5sAHl5XemOQl/eqfXP/Kq1WI76Xp83lb48vlDHP0FZbCVisziZlUFRas0bW5uNmz//boJkX1DPq7DGqefJtFNDp2nN/lGERzay1HsrFrPfKpGqJa3x88DE59tTynWtmEup0KVXW1FVAMvCtBCO8kpK0kIVnSj12VINAyq3mUk86t7USt5ymloo7P47FCuRlZewcD+RlC1+UHJkds4tG4q4nXvV/idfKwllQkUYg+Uida7DO8FJzPUcO8tbEcfRAayWPUeHvZ2DlYgIBSGpkLxY2CmCRkFLsrhkxViM6EYksPQg0oHPtvEEfSd8/NkVZ6eO1dLjBeJYmO5AvGSyDMstiFuFkFh46L2Q3MyIaC4LoZDkFSDaed/kTtlm5LvOBK9uQTpj0kVQIqI9is+hWHZzJzBNkafPb3j342esk6I3Ha/eDqyGjtdf0QqKjM49ZuDgrW5anIA2T9as+EmUZT8wbidurq4JMTFtr7nQS8LYc7hcom7i7ukR0+R4fLVmGwO3jk85OD3g7OSUaWud/rXX7zNuEwv/j2zGkdEpWyyvM6lgteqilQroelBlipCiAb6UUg65FlojRpm08+rJazyRwcysjNW1BESNKJnYRJt7VdCf+1wFpLNi9etNVrg6xrBlvFauN9dc3xyS3IqhsxIaVnZUiXWPn58tuZxKSydfNtp2c9xdePbD5TVZyi4Mi56jgwVPX2z59OmWGIXDZc/TpyPaefrlAr3BIgB0nvsnp0cWxljfMTNqdh7zgudwRBRR8+QEhc45bh0ecPfkAAu1nWY5W0z2uetKqLs5T/KYZObhMQYefvqEaTrDL5VlhCMHK3Esh47oAtN2Yq2J1dCbXIspK2s0uovm9mcFKpkH2E0wbie6kwPSmJWmAjh1Hl9HBthqxqsYY5bzmYCmITdTFEkWZrcvr+d77h5lPEuYZOkiu1+TP1/m3c5kVpLK7EVQy1cqaQ9zEXFb0+M40mufZYqBW8TlHHAlJlOMwjhZfVmxvMZi7NPS4HbCte81LzWUmQi6Ak/R9kraPbCmW5R1Kzavquc/yx1js817VOyxeo85jBvL9S5B06Xf2/4rM3DX61tSIdzOq/1/HntKfr1Udz1npR3FQ192uRkrNL+0fdkYtOcImLL0ykSZb7Dv+dn9rP2pdT62ZTGMcdyj4vA4YrC84JvNiKqyWAiI7QfelX4Wy5HfeecS7dTILNltgxlemra3r932zUtd/nKf2mdNqPDeRS/dS4vr4OV77o4HWR/f9QTO5yUKE3FtR+3fRvlt9orappbhv4jEWbtqcNXOasklPbS+ps3ZGfe1N53njo1Ewvq89Si/5MXPRmKaLpXcJ7MiOK8h6hPa5tbGvdRnsvNyUn9Y28t7lP5tjBA6P+XznCzt8ZIBJB+J/Qt+Fdr+8vj/+/gnlM6YN6SZMbR8VZKty5zSvIjJyozWMgYmn2RnsVTgl4tya5wFtMva36/KPTGdw5SfEANF/hXhYuGWLie5zxIopSastbl1cekXq4xoedc25yKDmiqY045yuGO1TCnTNZunIilMhZkNpfOO3rvM9Fe20jl1HZGsMNU3B9gBIbPAlvxuue+8I0bFkWsfCuCUcRpxYn3mnWffCjiPt9U1KgvfOYfrPSksEHG4zgSS9xba1PlFZlSPbIKx+71xdgsRx6fPbnj/oydcXlqJB4/He8F3wvLgkDglNEwsl57To0AKG04OjwlENumabYhsxi1MCd8tWE/mrbp7NPDqvRUhbhnDDTejEDsjihF6SIk0Zmu99GiKLNRyo0ZxXG1gO46oOJwkDofI0RJkYf2pmZ1VUkLVWchfnvtuMvbczq+Iqrn8kKLBE4IHn5AhhwZGuBkDB8dLfvibb/C7P3jdSmwwkJInpsh2e03SSNcNpAQvXlyACKfHxyyXiwyWbbxThN4NrNwV/mTJw8fPePbsnNdeOeTBg/u8eb9nu05453lwb8nltfLx00sub0Yu1zeowPPzNR98Knz08ClLJyy88N+//QuOhxXLlSNwxPlmZIHlYYYMdlVhGDpCiMQYzXsYjZ3U+97y19TqQBZDiC0jN1txcyyxppmqw2U2Ut8JLgjDcsXxrRNEOzR5m8vSAB+UyASiBJTr8Zr/7J9/i3Cl3P3aXTYy8R/+1nc4vX+f+wcTP/zuV7h99x4qyrMnj41sSFNjKZAcGqhZqQmzrKmbZgZaNVqhflhlgGLyLiWr4RZjZIqJq5stn3z0COk6jvstX331Ht9/44AHR8rFRaQTCF3P5eUN6+sN948dh4ueZxpmGUZCrQo7Q2cgPqpD1dNh9ehOTw753d96i+++dZv/9U8/qNT/KrkmY4gkTE4mUawGCkhaICnY3yqk4BhHx8/f/oR33n1Iv/CcPx/5+r1b/OhHb9ItBl599QF3zga6oEjaICr4XIDCwoUT6iI4T0rewPeUWHZwGSOX51teu3PCFK5sXWXgZ9LPQFjI5WtMEWwiMkr5JMjsimTFJpnCiO5xpe2CzTnyI8+plK3zkbxXNERARSJnTVJkzuUx5Wo2LDjvcc7V0hoN8mJ1sKKEPW63mwpux7InWLFHut6jCcbtaAYkhc73OdKjgEN7flXJi4aYN2Il17VFKfHgVcxn5TaFXNYjJUKwGq9dVwh48rNy7oIpiT1JlbCdcC6xHJZ5fwtoJr2x/tdcs3IOI90PhSypKwpzLnBeV0Vx2g/DK0cLlF/KhWoUmIIz2nMFqYRFLWVNKcFRn6H7c2ZmVJ3r/+Xct1YbEsmpH+w8uxzFgOacjYFrQo3xEFJivb6x6KOYcN7Te2PIjlNgaxTSrLGw767r6Jy38HWKIjNHcrjSH2Ch2c375Z7cU/qwMch5ky6vPfb6st7kJSxXwkqFiu2acSpTspbWcs38zUfhKKwKX1Utq2UjL8uiREoz3t7esaXgbMq8lLZpHu+iR5o4md+/pjs1WK84HVQTIQV7RMzLtrEdQOMoaYDVpIrESLWVt00s3SOSqwVoGR4EyeWg3a7yVtrDzMydmrXedtnO3G7HLxsRi7Fu9j6WU2bcvL8m2nmz78WniOdiAKw90o4jXx5f0OOfoCwy10oxbcqWqDYn0Arl+XPVOSkfigXjVzymKqVlYmal0wkvK4zlCUZ1bZN1Zv4SZK6tJAa0qM1vF8PL71rCE2qrmw14N9E5A4mieNJ+B+JzSF5MiHdMIbHdGACIYWIYem6fnuS2ZjGTpMmB1LnPch875/GdDWUJQxCMSAIc3hdPpYGYpCGHuRoAGPohC4YcFlJqhMmuMJHyS35+mAISFEJERFksHHjPx0+uef/DJ3z6VBGvxggogcOh54ffepWDg45Hz694+NkFj16sWR04VtrhO8EPwtE48vjRJeuriTt3D/iNb53i2HLIXc4vX/DT9z/lchuYJPH+O58SYof4juPDJf/it9/g4Djw2995QFLP9Vq53kSc39L3Dk9mYROMkEUTnQpbhR+/9wm/fPiCMDmgYzl4fvidB3z/67c4Wig3IfBse0kMwsotOTgQmCYLyxQHLoCDzZQ9o2rhQGYV7PCacNFjHl7bIMIUEQLqHEEgcgFusLnTeXpxxCkh3nN2+3YdjSlMVVE07CeMQdhGJV2O/PVPnvLw02ecX24InPPotUOGbmCxGLiK5xwcdGyicHmTcNJzuOrYhohGT5IFKW8Qh8vIvdNjLqMSxkiPx0tP8BP9MLDQkruRjUA5FzTFyDiZUp6ihaaFGEghEWK0chjarNk8r1IQ81IUYCOSmW8dp2dHvPL6HaZx06yD7PLNc7tu7epw0TNOW67GA44mx/XGPLNv3bnF8WrN8aJjKcpVnAyIlvzQVLxhRZMVild7R9A0iyMEy7V0zJT7FbRGAzIGBoWokeFw4OjWkoOV52ad+NG33uIXn1zyJz/+iItR+I1XFlw+HRlcT9c5FqsF3/7eN7jzpz/nww8eUUWNmrxTJ4ytJuQTQWGKnqSeqwt4+PEIKeK8eX1JqThyM2jWGdyKIsHubzlSxsp4M96gDu7eP+HgoEe54fTOKQ/euE13eMLZ2V0Oh45eJkK8MQUgknNUzRBVoiM0f6dJOT484mYrbKc4h1JlWvkMX01BqTJeq7wrpDBzKFru/8bAViV8S+QnDWCl4q0ygypgLN63QlZRdIh2m6iAKSPNEGJBm4gY82l2x80Py0aHGBumS/LeIKY8lNqMljtt5GCFrn8akxHWUJ6jGUS6CnhLm2p7y2cyEwGVFxLI3s/soXbemD+x0MYUzeiTcmkR7x0jcHE+8enHTzk5G/jq67fwDAzdEu9TjpXpwSmlBp1qNmA2IXPFKNuCVtVc4oq99QY177N2OZ+zbzfjsg9edxWhArBL1+wqMe0h0nSkNNgaGyPX5DjXQc2n77ZvX5nKBnMwAqpymXMsVFktFigWiVJzJVMihMk81NOEOg8JbraWL+y9w3lnZEFF4cD4fYoHstZCzspBahSqWbFmlgM6G2deDt21OV0gIVoiq/JqLMQzpf/Kgqs1HeauKe/XGnBmfaIs1IpKmrbMg9Ya1F9a+/tHyaFOGZ+2J9U1kqOxZBd7Sl5LuC4bNbTOCVUyA3iRTnsKVsYips/PJFcWVWbPiCnNIcD5Ou+KC2RWwFqNMzXjpVp4IBoZVdZFlvnFSGLjUyIJGnGVXsbb2txn/myeH61BZtegYH6gZruxt9DP9xZ/eXwxjl9fWUTn0IvKDNd6vOyoE2FP4O9bHHY/axe71vVfaH2rcqfz/SswqIsw7balyuw9dNpuCNIs4gIW9q6fk561/bjepgCv3Z16TuyXYm7KX3dOiJ2gyeGlo/ezmBqnmAV9FYlVWZ47TUkS+fjjK5bLJSenlkuXokO0FIaOWQksidy5J6TEzDedoBZqVRjG2nFRDPCWIs25wgVA3oyKtzQZOPCpAk8vMCw6ECWEwNA57p4d4YeeqBNM4LwROXQeDg48x8uOk6MFcYoEjUzJLN3LHug66Ds+6g3E3zpbcefskKOVI00T7vCAOBoxgBfoe8mlCyzG1DyeiscxLIxx7sHtQ7OaqpAw9tbPnl2xvpk4WHiGpeP0tlHCxzQBi7zZ2vhYSqIgmYin77MlPRqwyyZZks6KfJmHhdDFJlLx87js7bGwS+9tzscMFm1fsE0gxUhMES8963HLs+eXPH1xzXo7EnCcXy84Oezoh8T1zQZ1A4uFQzVwdTMSEjmkCcI0sUGYEDbjyAtZM40BUVj0vW1Uuabhcjlk1jpT3KzguJE+mEctk1skhSmHVTV7ve2BWvFC5kCBxu5o4a7C9eWGZ4/P0TcOScnK8ghG0F/1pAJuULyPPP70ivc+eM7i7j0265GHnz2ldwtu3xJcdNy6Fbj1YGWkLqlYcCu8aYRDAScZvJc1gDGxdn7GPrWAcVO+pigsDtBofbLoO3w/kK7WrENiG+ypJVQdbK0cDAvcauDDn3/C1c2Wzs/h6nklZ7noK8guFm8U4hR59OSKzc2U2Ymtd+3atCPHqH1vcqNY8CUDqHE0QqkpKkGFbvDIIPzy0yf0iy3erVieHbLIwFNJxmqpcz4obbiXU7ZJWS17lgvzQseQ5lI9uc6lFIBV5H0DQApgVy3flc+aL1qwLuXjsofs7jv1KPtM85XunKe7Jzff7gbVlZvNxB3z5fO+WTzWZeOyiAED02EKdF0J73eod3RdNvq1oEuZm5WBY/tR6SyBWv6qfRURk/EiQueE1PkamRIzOU+IOYdQBCuBEokx4FhQgk1DTDhNtgeUfcQ1wLEBqLWtdcXlNmoB102+YL1mJ7OL9utf5THeB/gzNrHr5hw9+6Ck0cz5y3k+tde1M0KkvkHlFsie3uRKfl4uJF+bOCMIbWTebEvI3ulMVN5lJlYbOkdyPns1Z7Zlp1azt6Sx1LqWqdlrYJ6PtIpFMxnaHxUe6A4eIL9TXWa1W7TiharXlbUpeyun3E/K3NSsqMjOvWqJjZf6bveoWIwib8pzKJ/UPp5XqtZhbdFbvWMey7p6ykd5Lpexrae7hkEW8zSCYaNUW8es39FsYfkdZy+h0lxiayeVubI7150KVWHP37kd5matU7kokapGXmbSeqdzbO8t7dlZV9rcs9zZOsJnb2eLH2dyn3mMdm5Vrv/y+MIevz4bKpotkFIHGzIxSyMMXJO/1x66u2POxXChhvaUEg4zcZ+i6mZKbwoOKxN63hTMwloWzWxSsnNndsLmzo1QmW0SPvAAACAASURBVNsy52XMm0sJbRGykpTPtw1S6Lu2jWVltlaTIq0TnYNu2VMsewAxjqDK8+dXnJ6e0PWmJLqCU1VxuXSJSkKJXF9FxBnpATKi9CQt2lywdldHqq91lDSZsil5LK2OmdFnzAru7oZb8oHqPTpTLqMYyL17e8XZrddIWE6iU8FJoO+tnMEUIlvtWeKJlyMXV9HyAsXuE6an3D+7w3e+dh9P4vrqmgT4PnL39pK7t19FfIfve37zK0cowsnxKUM3kMZr0MjV5Y0pNWJhf+OVcHI6MGenJCIjEVivLc/htdMzXj89w3fK8VnPdgr84zuPefToOc/9gjunK16/d0LfJ2LY5hqa5oU08yG4JHg2dN3A9bWy3QSGhePkVm/AaiyMsdYOo2GnSk8vc/1L2zQcXWbbS2E0K6ZI2X2wfDIBAi5tOVycIJL4j35wj6dvHPD3v3zK+cWaH33/AbqdcAGO7t3GHwywveDO7SPe/+VTLp9d8MPvvcHprQPCdot4T9d5rq49IcLx2rE6WLCdEttxoqdjCiErs9iGXskE5jUdbanknEsL90atLmFZg3WrTpn4Qy3csGw4XQYZTx49592ffYT/vd+i2MfzjpzlTvGcGznKSpQXl4Ef/93bPPjKfS6vLvm7dz7mL//uIceHHb/73bf47re/wh+99j1ErknkGqEZfUcsPy5l2SBqimmG2jg8VuolcXW9xfUDnXMMrslTNtRDRVMKTJFpvWF9szGl18Of/PRDjg9u8YNvvc53Xr/D1aOPoE9snm+495U7DCcH/O//7m/46OELemfFwWMGd0VREG3Co7JtYnAWwvaTt39hnnuxnMzdTOQGUJYxUZMLFQQmix64uba/P/z4BV3vGfqBTz57wd/+4wecHB6y/KOek9V9RMF3KXvGEpGE0z7f3uV2W5mTbUwcHSw5uFxzcXXDNCVjBhYIubRQVyj4syt0bq4Qa23AWVEsob810FKLCgct0Y0pW1ogaj5V61jV9AMsHHD3mFXuuT1KKUhvzyrpAK2ykuV/YWL0NcauyltNJXTZPtvcjPS9Vu+TiOA7I5jyMnsZLNQ21XlRNuNYHp2oTNyl9a2CIAlczmV0TiyHG1tX0nkSHSENFA9JF4X+bMnJ6g6LxSIbCEaiJMvzjpB0m9dq6S2pe+esfM1zr37mXF5jc/vsBdQidKouYTl+JQqhegmlqALNPl+9K42Sp5oZxcljlT08Qt0XdzyRklWaYqVgni/lBC3jWD+Zx99XDDEbtqqyhjae9VkplzyHC7cCCiKK85aT7IdFDS93zJ726umROTSw+voUqDK7yJFZBaklQZp+U7Qas2ZvYu3O+h51TVbMNOegSjWattrlHBlQ1purfdIoTTsKCs19ZefvfXxZZXGeYvOcl8qMWlFfUdIka2ylid61mUvsSwOf57hWbJyNpqrUfHK1PYUsu83gkmWTmyMCVPfCspu1Y3OktL/8D6haXdJsJVDZ9VqX1eAwXB7TPLY7aqDOIeKqLt93ztXf98qXdVbxonM760HIMq7qnTmdTG29lXnajtGXxxfv+PXrLCrV4th8WgVIK2T2LXowW1ygURDLpC3/uHJ+EciYgJ33nYwB2mdI/b/+JnsTsNlw2ROGzSn1/528QyET0szKYjlStDCFziW0hNk2imd5TrX8p/bv/A5CZc3bbNcc65ExgkZTTHy11Ak4n2V14hvfvI/3jileEWLCu4SyLRDIFmV+Xim5UPKnnHOZ3CO/s3M1zCfluk6Fur7tp5gmfNfNLLZ5YztYdgzDAjf0LFToVYm6YTslbmKC3nH57JoPHr7gr/7uEyYiZ8sDem+enVW3ZuFPiAFcLxweLeiHJc4vWPUJDWY5FQfffusMXMfNjWOzViKOYekYbq7p+hXPQuTiZsPlhXJ6b4WjI2wDURLqEjfbxJNHkTA6pq2SdKIfIl/72i0ODjp+8M27/M637xP7wcpubG1bCwJjGEE8iCep2EaQ85xk4Xn89IonjzfcOltw55UT0mjndF7Y6JbilWqPAsLK5BYxFaasnWr5b8CAE2d5RTox9I7bhyu+ceervDhf82wdSZvEb3/3Dp988IKL88i9e6/jjhc8fP9nnN2+zc1m4vmLZ7xy94hX7t0i3UysDgZWBz1X45pxhL/9yUdcbwJPnq/ZbgLOLQhxwzSNeV8ouQ3kMEOzyLebfDf0uGTeku12tJA3X+SBbUxuT1GUPM1FLW9rdbDAuUwmNFXmo925qWpjoT23bp1w6+SQoFvGsAHME/b/svcmzZYcWXrYd9w94t435YihANQ8dbO6m61mS6RoMpNpoZ1opo2M/AH6ETJt9AO01lK/QGtuuCFNksmMRmoykc1u1MAaMCQKQCIz33TvjXD3o8UZ3CPuzWKr0CZigYAh33sxuh8/fubh81c73E97bDYBm+0V9ngJChniCRMhRjzRqjwigRFQeUKo6pEPAaUQ7g4Vv/zoGpvzC1ydJ7z1QJuqFxXoNN/EBa5Qcagzbvf3mHb3ON8M+PjVHcbxMR6djXiwCXgxZcQLKVwzxIDNmITeAJi1sXtDE7WNc+7kB5lDIKDkjFc3t9pUXCljn79jMpgTVRMmuStpLsrpfGCENGJ/P6GUivNzQtnP2E2M87OAzdmAzTZhf3OLq2GDRJJ/W8Ha+qUTXLiaDocxRQQKOEwzahXFLIHU26DWfxVQe48UrSVyF/mkCY8ZLx1OPp/GQEy57PuYWRKaYtfyO36l8aueLq4F7AbWjkdxUwSpa72wiGyBps8GKagFln6TrC0cUtH8tBTViBfl1UHaKJApM7aeRGAUrTCtRYDQQjpFAZJ82spCd6SXpaRzDGkQGMVWEA1gjGmDB5fnmKYZNzfXCCFgGKIKznDBtsFB5lipwdZDIZ1a2PxbGK7rZB3/J3VVGcf3yABV+NlcWQ2L2uoxe+ifGZtsDUyPMSXUV90MC92+aNcAyWslnzsArWC5Cjc1g8dCyXQMWuIM+8uFZ4QgmbvMCLF6ekme5daq2ob1gq3OU1wa6OQioSqLkFK0Zxehuvp/1eqito6n+iH2Xv/eY9nkkTZbu25tlboMJVWeyPGh3b9SWFaHRbWowOYKjVwkn4sCFS43LgZm35M/pM+kwcykUnKjufG/Xrky/K4mGzMvn/blp6P9Ia+ifqQn5rxUkqHzFj4se07qBLSwbagRvc2fGo6bsmuXdP1arYrmKa7aLsfDVm3u3Ko0t1oaOmv1HTWQk+NmPTLGfX18lY4vkbMYWhiUhq2wlYxUxivNXMXKYPKIPuwCinkAhamYJ1HvrKFpbCYiMAN15dImguUTEWkYZMXCCitfZQ2nkncWaz7f3eMjbPgtjjluM6AQju4nACkG3Zy1WQddEGvfWSvPYqkzQgMQBcQY8M1vvodSMvI8yZiYkVm8iody0AIEwHa8ANG1Pj+A6Bw5ikWeOaplmBFJcshy6a1+DC6d5Ujvtc0sy8knNzJRkhYLcRC4WtXHqWA33YMIuGHx+qSYkChgxIhAwN/73rv4T3/ybfzX/+BPQMQY6ELgGghTvcPhwLh9dSu9ucIWFQW3+x1++qtbbLdnON8kjKFi8woYU0KKhESEzbgR69rFCIoRV3GL8+053n6DMEBxlsS+luIWodziZv8ZDoUxXJxjO44I84w6FSAOyBxxqAWIN6gloFataEoFIOlLmYII9XNlhDEh8BnKVPCNJwlvPrzEMATsbna4v5/BGHB2thHLGqDtJdaAlX+kZLYog1IYSSy60hDbQoJFoRyHLQ50ifnxLVIc8U/+2S/x0599jo9f3ODNRw/x858+x3Ax4vy9K3yODHx+j7eePMAblyP+wx//BFOp+Bd/+SE+/PADvPfOA+x3ezx/dY1xe46XN7coqHh1e4vnr3aIaYMJB/GQFhlrCNGNHHMpLtgFigBmUCIMiJhzwf3hXvd1Y3JjikCSYktS+EboRilSvIe54uoq4c03z1FLxjwdQEXxNHQCJ4TBZiLMY8Sn0y0mFPzlv/kFnj2/we7mgEcXW1w+2OD/ev9DPL+b8ed//gPJvzoUmVMwxm5KDWS9uUoRFRBqjZIrVGdMJYNpB0ZFrhtM+RybgRCHIDkwlnsTJF/zfPMI24snODsHSkiYaAbxJb759hPMN8/x2Yf3CMMWqBFU71BzwXyYUecMcMGQRuRSwKWowSECtWi9DXblo1bpqxhVuK9cNKdqKWg1ubdTVBiIcYvC0rsxpoTz7QbbM2BICW++9QRxiPjolx+AMOCtJ+dIsWAk4OHFBe64Yj9npFiQkoTGhQA1UEmhILO+c8mYDjsQMS6urkBJlRGSMH3LA+LOuOdDhtDjFq51LET2RgTnWUcKXRPevQgNGzRUGe8VlA5yTRhuozIB037K3R1TMQUFqsywKZ+M3vNZpAIaNpsNAEaIG91jWfqPVuCwk8qYkQJiCBLuD0aeqxeUgoYuxxCQBkLOQXPeitL5Ni7JwUpeaIS0WfJciuz3WYVGAoYgDWdynkAAHj96gDkX5Jx9qhSbp4F9DU4L+8t1ERlCziscmZeGjbbI8gyZd1m+ZziGtpy2QroG8neKaZUXpvu81NaDUo/a4RO69XWmyaw0mtptp1p91KZMUSe8u6LV4Rlz1b1jcxJ5oXCE5aMxGV8XT6vlKIoBDi5vMaRQDluYeFfxvGgl1jafNiYbl+TYUrcEZhhsy1IRHZe4myx3ckT1Z5cKZKnHeGHr0XszexyoTXvXsVJ7apXvZ/uSoJEFMAVNlVABPvq9CnjmAcy96GMxD12v1HXKoofPc3uXGZ96XDMnhqylTtO1quUa9LEhi/NaSKunSVaQypTuWspx3qmu08KwBnhE3XEIt3j9mRk1C+6aE6VYDYdubFXzPSUFoukDxk+JpC7BipB+fXyFjt8/DLUjKqRVS6Wptm6+SkAQYmQEtQv2EWRRiyCHxT7SogtuZkFjus2Ks4idV8FO9BoVHNVK7JZ0s2r5a3tb1VoIaV4+vSpzVQtJq8zVP2GXm4fFNlsnBsiYoAnRTkFkQ4uQLMRcqkpKMntKA4xhsCqLhaWCoRR4qAgDPMzUK/cxacECgDmDWKqdNrbJEKuiwUCIXKlZ7uOWv2IEyEJQYfMFt0p/6MKOa5FCCCEgUARzQCXGvu5BCJjuZ8QDI0YGMCDwQQl+AEKR9gW1Ka0IEYEZ55uENFQMQ5H8nTQIgaQMK9DBlQCqYB4whoSwiSCSPM5KRfCNIwZEPLk8x9M//I6sV0xinVeCV1FxqIpbeaNORCXMlRAwIHIQjyNrMYrKYMj40yZiDDInroxxjGBYCI/hTydEWFVhJlFolZGoCQXFijZ1MBeGB3z8yXP85oMbbN6egLrFP/0/P8AHz54j54pnX9zhk5cHXF4QNtuIcPEpnpyNuD4HPkyEX5yfYy7Av/63z7ApAUgRr66v8erlNcJwhvPLS7y8zthPjHEMkoeUxSs6pAhQQEhJijQVMQ6U6hPUsYogUmuRHL8E21UIFDCOCcyzzpNEKNUWBLJgFUNKONtuAMXHMQ5inChFhCndGwBU0Z4QC+NwmBEzMPIMTgFpMwAMfOetx/iDH76Hs/OE69/eIYaNvqcuDDvmgSA0oS+GAYyKIVSkiwE/+eF7QFBpIhMKM4LYazx0MjMwlYoHI/DxR8/w859/gsMMXI0DSp7wxpNLPHlDmtzfvLrBJp55YRnb+2b1VxYrxgQtMCQbXcLKpFce1KMXsT0bUErG/nZW6tcd1OhQT9hKmTW6o6LWGYepYhhH5Cnj2UefIUWhbSmNeOvtSySKSAjI9zMGAEO4QOAKrhM4kKyThrcvJFECtmcbjOOEm9tJ8vRgkSvUUU0NCl4oeD0fONYhjLa5IoHjo6f1/ZjIPF2qE1i7tqXacfoQhYUWoO0VR5uTItWCNzQeZcJWdQNkqNV1S4l4gRaqAUwB3e0nxBgwpkHhWDFpASauMzILL7YwwNBFjYh3Tj2O1rfRm4QzyPq8qUGx5BnFsTFgzrPyQg3D05BwAwR3hl0Dis1zEQLZyIcqeqz3sgrRXSSBC7jUKv0Covx1RcD6VTOJwAT1UjQcc2VE8Od6JbUbs42J7D+yYiXkiqvcLHyxV0rsGV/nBhKYx8XajgSIQW4RbsmQPFBmDTlUzxdDQpF1pk0hga+7RXXUagacogatpdLVZK+2Rp4tZ1WDVTHhTvl2Parjb2Q4Z+vZyT+L72B98OKcvKIzCvTr1a+LXXOHRX+vzEMUZurwq3uHt3rT+23teT1mXk6l+7Va5WBV7mze3MHBPd79/PkUHAzve1jYnNqXlwYX2yMqW9kZu8eWmy2ax/aa3lg0GoV6w5fsYYtMMDwzfA8U257nPqxaYc7ag9lpX4sk+uvQ1q+Pfz/H7x+GCsAtHoAsuq0/AZk1ZyEYEdXdtNhQgibNQ85+rzGOJiywEhsjrnVR2nixQcwCTe1p+33R/Je6L5ARaUso18IlIUiDVWNmRO5Z9BGurC5mEWSgJfXDpi/koqi1NpB6BojUsilKY1PKCLvdAbUyxjEhxqiW/ojzIckYmLXlgIzfejAyog4iSwP5cCZQ16p8Vp2MbdzchPeUklca9NVhETxdWNNz03SQxtLDIMyPgRATuEpF10DSewxEoCRVQAvEus1ZliHgAGtsHxLAhbUfZADqpHMmvPN4A0slsGI6U6nKjAHUCQTG5cUFfvXRS/yLv/gI91PFxfYMf//PvourDXA2zEBg7PYVsQKVgijecQ8JQyREjLo+M2AGjwoUBggRMSQpZY7ZlTkgItaKmCZUGpGLwDPGiBCk6A3VChSgBhN0DT/Nqti2iBftRUApJquoAlOBkkW4CZFwdjni4dMNhniG/+Vfvo/3f/kBSs7YMrCbRzz83hXu7zKuX1Wk4YDdZcIzZA0zblbBmzrjo3/53IslEO1wdrZHYSnYsykRRBFnaYOKooV1VEHOs4ZGESgGzU9se4uZvBT+4XAvhVpY9vI8z5BtIPiishUKILkcLP07hzQqfovi2Sy3ndCLijpVzPcVb1xdIdeKDz+5xau7DNSKOd/idgdcvvkOxqtH2GwScjlgE8+gIrwIfZW9ip3tZ0ZEihG57IzrAhBCSgiCS4GQEmOeDwgwY4l4KIgCcg547/vfwG4M2JwxqGSUnHF32IFiwGaQ3BiKATUm1BBRXKgkZC4oRQYZg/YyRPDKg+ZRqCyennEzYJ4nHHa7DufacdrDA4WxzAtMmOeKPGnrj8MBFAkzBtwfrrH7VcEwbnDx02f4/PaAR9uE73/zIcYhaisGACx5j2bNT6S9SpmRAjDPM65v7jBsRtS72xb6Dm0SH4IKm6q1dULsQmjqtMa1gtZPvl9X0vsaDbTQU1IctZAqe27ZpN7kHEGJzhR5UvbRay6ANR5qfKuqAG58h1VZzH1F1aP3N96XS8WcD1IYK0WMm9GrqFKAtPPQdhg1F+z2e9RStHUSmvC70NhYSVVnLTXjozARUA1u0AWkRJf1ijX1YDF+nZvxn9ZOQxRUWt3bDquFoNhBpOFvdREF07fqObYIdO+UmPEWBWCKSFdywQoiAcucWblmilIf4mkGj2OhXtIomkDdlJSGw32BE8+XNVwnSN2CMMgQagGXoB4cuTel5OMBE2otYgCigFqKj0m8+DIGi3Rpy7+KQtAol6ZoG62UudcOLn1ItRnBa21Kmz2/DmFdFD4ymel14ZgnlMXlPS1cVjNq1KjOvs/UjLF8Fm3/rcd6ykt8FCarilAxpV5xtWgbE8HuxYy6fxvsj+brT67XRuHLDX9NsSRePtMb4RagZsM3KNzJlcfaG+59Q6gH219vOFU1ysyUYgvl7rzISjNa+DmU/6+z6b8+virHl6iGipMWWT/Xc0Hjjev77PDNtdxwS4t3f03+PhUuYXvJKmvZIEjVzX4sx6GkSpRMrzUF8yjQejkkEza8cFRHwLT+4ZK/mwDA7J6DRlDgShxg3sSmzBW1yNj4A5HmSqqCq5YaCeNToqa5V5nz4vtEBhsLGVDYknlr+IhgiQVWmYy4HYQIVwYVE+ICSmVMU8YQA1KS3CMS1yNA5nIRIZSpAp7crQMgCS0JLuwZ4TdBWMZWYA25ne+CAEyFMWwi3nrjHNNUMY5bpDSDKaDo6wpngAPmIiFVlQtARQnYIHBRz0ozVGjxABXMjXHXwBBh2PDIub4yV21pwlGUoY6ptvDJBTpKrzji3tir+CEnclFcywX39xN293vkqeIw7cE1I4ARQkJICUSEmSsOXBFLQcksbU06PBpCwIyCAyzMSISIyhkpBZQStPccEJLm2QaVp8gMLK3wVclNiCKC9J7UtQzOdNqka1XmBnLhxSyPAKsnM2CeWlh2gx133FeKuNwfCh5cDtgOwO01ME9SHGg+zGAQrm9e4fPPXmDaZwxxg8oZZknWLdmUK2tHYBU0oaiuCfqZzUtgc7QCW0qQSHC5UkGtBfOcMc9FKqNatTqKiEkKC5mHiUi8svOcsdvda4uPHkk6L4fmqPRMOs+SxzjPM2o+VhRPH0bI1Ddp7w3QtZDwaO8ukgtqYex2B+z2EyoxhjEAsWqEVnCWILgmcHPhmiuSFlQCmic6WLiX/e+CZp8j8zumYRuqn/N6j/GCk3TndR29CAlcsTBv4/KB48/2n+bFPSth2IDDvCgpbx4HyXnCUrokgUenp/n3jPSwhiFXNiFdCuIQBSk2RQWkIWlkRkvADUhE9u7mCXGWT7Y/ACCgyXhtbl6l1U/ozlgoR7x6ag3X47WR0yaYStjlWvReHy0c0ga/kk9cbmnT6Pm0KS2e/7hCAOa20v2MTvHQNne9X+G0lt/7L9j4q/aqlfQDeA7Ysoenepc8+lSpZIhaDZ1bQUGnMRqtYCGM1BQgo4GeKrNQBP2TCwVn4e13iPyuzdrmfEpJWsRC+DyX9yxe0l1rIoRV/zS4yHs8Crz7Sr82r3052j0ur+oD3oLE1lY9d7ZGROSizmK+/Zt/1xx9btw9ZLyrG0uHWGtcXB7yrOdm616oHWyYmp9VPmt5reZpNkWaRaZzQZpRO2VR6Ecnm+sY1/L418dX6/gSnsWqSNIorCdMa7GP5vaHMxeQEY/G3QxBneGtlTgK6E85slG7t4+9djl08T5yi7uOcpG47heUKZgn1IU2ALy6eWFhxYpNdJvSx4PGgPsx9/Hji9A34awYN+axs1AToGaxhFbIJg0hIuciPboAjNoWQYgSAZxQ9G8biIVVHA47UCDEEDGMAxiSd0YE98RaXkPOXX8rnVgIokTM06xwSZhzwX53wGYcMHBCiCKQ1FlgEIKG9VWFY0xqPc8AJ2fKFQyEAgoBuZA0sTVGVEVwdfzw4keEu90OVxcRf/9vf0PhGXGYD2BmTDWJwMKMShUUCRFmYTUinMEcPCQuhIhaxCIPZkjIJAEkW4ismACJp4dRfFxcsnqCAEJFrmq6UEYNw55uboJCWuWzs7XKOskzN3c77O8nHKYJz1/e4cXtHg/GGQ8vBmzSiLvbCfMYcDcV/PyDa6QkzcFv5h3uZsZ2GxBowCYNUpQpAhwGXJwFbYEh7TjmfMBUIoqW8edaMFdR2GJMXqEvhgQPtGJGJLVictIQUYBLRS0ZwxjdyBEjCd5V81wTypRRtFiEVYVLA2EYAw77g+NmH87ElSXsiRkIjFzEW5lLxatXB0yVERJQSkSiisP1NV59Ln01U9hICJ2H/xIIEubKVFFJRKwICYENuv8LifLMRsMAoBbkqnlQLtc0EZBLwctPb/D5B9eYdhlxG8EYkMKA3aHghgoYsqe4suBTKSjzLAYAF9SFRhCz5rb2Qprg0v3tTre7eL5Ja+e6YMpNIOpIg9Nsgaww/kABtWZXPAhAihmEiCEE3N7vQRW43F7gwYMz7T0pOcXEFYVsvbTysvIIImAgQkoRQxpRivQoFCO8bBwx4lnP3KUQt/QyMJrm0mle6G7p+RI6VmHz1/PWlL01E28KQL+iRyIOdRzOYLschr6fFw+bJ6k/mJQGkmlvTQh0D4ILg8tcJcvlrKUgFzGElGBVryUsNecseY7jRqJW3LBloGPJX2RGqVpAySbDbVK9MM+19ztV5+89X7TrxsuJeVnZxN7lIFrxdxdGu3eaQNrhiCnUNsLWCaBbkNqtg+ZWiQdK1v60YrQW0pf3tbC+JZYwmufMjMRVU0YsmsjfYrhK5JEfQQ0qrFEPkv4h3kTrTsuaEzrXSb3JssdSGmA1HRJJGoH36wsWUdHaHhhIiEwpUHCF2hW1M9yUa6FaTqcaptwhykpDX6eswBXW/p4+5HO5CDbGJi/ZufU+RVdozU0GZgQyPHbZzRCkLtdiafZp7+fjMTLEg9g7U6rd1+GaGNyo+w4vvtPI2gr/ejmz3d02FXOXG0o+Rl+qHl4r+rh8H3m/SY7L/W1GLfNeilG4+ruass0OXx8jGs2q3dx+B2p8fXwFji9VDdWQwTxUDFq4vNt9nSGBAClNrxXYlBAuGK4xBCyfbaGSq4zD7uWkjKdnMKbwGS6GfuOvkLdnvo3Auz37GBAmZfQEjCRUFWg5f+iIrwnAcv24WE6MEZEIuRbEkNxqI7fF9o1O2YwhYD/NmOcinolAnisFEuUrxlbhTL4bUErG4SClzTfjgM1m6zM2+YQUxuJdM8VW/i+VEa1UszJRChUxVpydD9IaJBYvulEyEMKAiIDK0vXbiiChshQTsnWLAKOAawaF5AWPKtAqu3qyuQqUUQXQecI0A/Nsa1GkGA9ZrQcCEFBpRohZvY1aaa4UcCgI5g0tQEnK2Dkr/gqhlzBlFVaiCO1FJPhGmMHSRzMywJI7GWLR/WLWwbZRzENl53LNmOYMhoRqWCjwfj/h5fUN7nb3uJ8mhDRgezHirRqxjSPuakadM+7mGc8j481HD3BxlvBiv0fZZbzcMxIlnMcNhgRsLyLSOGLDFYgyh1qB3W4GoyAkQhoDSqmYHRO7qAAAIABJREFU56JhUBLCC5YeT5Kf0HAkBMntrFwRKYjCydr7icmrEMYk4YopROTMKFNWZhRceq9VBN8YqYW16IdiCBpylsEMJGKMA+P5zYTrA+Nmt8dcMzIXjOMG+/sJD6/O8fTxQ2w2G9zOE4aYMNcZDA2bUS+MCGbVNoIwY2hOkecKGaMnoAYwCmoogmNqbfVy5DVgoAFjGFDB2JUZjC1qmfHixTXmbQTVAFQxCgUwxhhxeX6GFCM4dEYMItRQWynyrkI1BQvRDaAQVbFchlCZUWylo4CCVLUTgU/WionUg6F0KwCFClIKuN9nHA4F+cCYdoy7uwqqGZuNhO0Si9JngiQ4djSMMeUZJReEQMi5egVZCR1jgKJTc1OK2vj1UKGLlIbzCQ3NDe7d+ZZO4C/SdVpwIXj11tWxPtUUIHun0ag2Bjvryn3/bP9um5M+3+RBPp4797Sd2vNB+rUyi3IoFbC7SBVeNtK2iqLe3gZN8BVa1pTnll5ieNaKVLDuk6BKvlUeBYzvU2OdHT9bw1bOqlJjxuHUlISai+OEjweai1ctR9bgK9cJ3JRzV34FjvYK47v2nCuhJgTbivWCsY36JJ6Y2a/JMbp0+t5eDWjzAMPvjTEgxijROgwxsHJBrRn7GSgFWviuIOeitFpaZ6XU8kILdK8N0kYrWjl0gzFBagaQFljrZhEQGkxJW7con8soCK5EkCj1rBVZj0HSAaeD3wkx6/j2puwsoktW1+V9rND3IcuTbDjki9D25gm6Yedf751rx1FfQZUTmVb7toOLKXOnvt/OtR3RbCU9nmABy0bvjinM6zyNfl7X3qwshvcuDbusUl1ecYONIvNxTq5sLDGUrA0xpzy5Xx9fleP3VhYFCVsStatfi9XumbAmv2p32WohkWhJwHKvBkXSEqntsNAucqK9du0Lkw4MDXmkow2R9d0hnA7LcmbvDLeNh1TRI66SV0cm8LfiLpXZE8xDJYdPb9Ux72Xl0m9/GV8RgbfWIvluMDm15TJa01eiikCSpzEOCcMwAigo5SDkkQFClmJDU/V8S7HKSQjn1dWV5k8EYa5aVl16LpqVtaBWljwI39QE5oC5SG5hJAs3qxjiAI5i1cyFQUWyuobEYFSJ3dcebAgFmaXwSUwJXAuYCwJLHztgAJcAZsncClyhCasINCqRMU8ogSpQNwMGiuKVYUYMEbwpSsS0GiMHDX9VD5b1f4tRxggGpwiOEtIbBw3TgoZMooLCjKQ4UIvk26UwgpHAtBfFA4MUxtFYspTEA9njthU36sOeChdwrQhhwDiMyHWWIjLzhBAiHjy8wjBucLXb49nHn+Hliz3y+QZTPSCHGTlkDAxsA2OMDC575MJ4cL7Bfh6QVCjYbBKGMeDBVvC2Rql6WGtAwAZnW0blCYUZdWagBgxBBf9AUvSCmwGhCV4qmlUNaSbZv+Nmg9u7O8mPMtmSCSkkzNMECsB4EVEyYXfIqBCL+O31Dp98/Bzxh2+jFEZA9fxbaON3g+c0EfZ7YKrX+M/+7F38D3/1CZ4/v8OjMyDnO5QU8Z//F/8J/t6f/QgvvvgApe4BvoD0zCwoLAVeNK1SdiAVTDkjarsUVos+MWEIA7hkUbADAxwwZ7E09Ok2gQjz4RpXj57i7TcHvPl0i19/dg8Oe5T5gE+efYqrsxHvvPsEBa/ApYLqjDGOePvpI/x0+AyYB1QWod/CsYmNqatgFEgriDLABVkFf1dgesKnXgVLOGoKShJaQCI4sGZOxhCk2BOAIZPsc87AUPHBp79Brde4uDzHD7/zGA8uzvHO0yd4eDlAijsZTQZQMgozYhK+EFLCZrPFdjvi5UsRZslbq1TtD2jCvXMcFzA8QsNzcnqhaUXoXQDvTIC1iey9YVAjzqXa5L9DkhXqhgbrE/f0HocjL0j/rg6f3etk/9fawkaLevw0nLnkbHqP8zKbWYgRMYqnn2vFOAodKiWjVvUea7heKaxFiZS3Ke+2onXUNq8DsLSSkSpMdlXTuzVoguYSFfu5A5ZuILmzlbXyIlcNwVcFuCj/S0l4SBQ+lAZpOQOW1AGiRppM6VvAujZh1+Al6RjkHrmlR6Zp/XatFoGdNZD3tAn9hkUISXEQpZsn1Shde2uDoPeULGstbRwkhN2MA0MEhgThWUygeAaCGPdKqciz0OE+LHma5FzALCROC/KBtX0CNbWVXPYg11kIENpiOGZRBwQx8gR9l663KaG8nKpAipdz7RWjJm84Ai2gRWiylRuhTH5TI0VLE4DKV12YMbXcW1ciTyi4sv6dIUZlz34cNn9T5gFWoyeQO+WtKa9qwDAFk9tcAEhfZZhh0pSx7ptmNNE9Td1YJNRV6Tcfy8K2J2yiJqv38zV64y4YIiQ02doLYJF6vSF71mkvB8FbAoDohn4lWt3XugThr4+v3PElchbF6t5v2UU4oFsfls8YJ/Xm6GrBAJFveDm93Az2M2iooVs4VPBpFlr5bqVuE3ajJJJKhXJ7UuKw3LA+Zic8TqFg5N+VP1NaIQ1RfaMZcbRX2VTRvqNQ9De3f2V8mgsNiqFrEGxDY6dMohTa2NQazNFUVFiTcU7R58BkX+JFU2gR6IMzoxqCh9yF0FuTG3wkR1K9mWx5FQVDkmb1XkmLpRAHkfbXIwJUyE1uOZaQT5YWt84uyAguM1ifMfgTAaRVMI0hmbXTmJgVVjHxUBRgYwfm5QhO5C0xzBlcTI5fAYSk72vLzUDsvcgM0KCrpeXfvWiMTKzH9z4E2Yh/tHliQAUhIajwHhEp4Owi4jvfegoQ4erhBr99do1pOiAfbsE5ImAEaJJeeyxFEqZ5Rs47UIhI51ciVEWSFgWIUlUPUQsIQcKCAa/ECpAqeIZ8rDmLjJa23zN8tTzaGpEIlFKUIrqQFigApaIWxjAMALHkVTKhaD+5n/z4Xfzdv/sjXN98gLkUKSqjnL/kqp4vVZSIMdcD3n7wBF+8UKGFGJwTaiEMmw2+9WSLbz8MePlZAZeEGk3osV1ttfxMmQIIVqreWvnIXDNnQ1Rn3DFEVz7YBBFI4Z/DXUHZZVxuB2GXNeD+UJA5gWICCqHyiBhFKSx5jwcXolzvpiwjM8+3SQXcRGByRt2EFydEMsjGlo2UdAKgXCxagVFOEKnhh8SjT4FQSUSwEBgxM8oMcI14dHEpDdkzI1LEhiLuNAy+Oq2SDzIzRgxIHFDKjBTUe+UGMQAhKN02A9ZqDoAX4/LQNDTlyqfKjdJ6aL/9TXpuwdUcJbpfjg/7hKkSvS5xdJ+Ga/Xw5sU9S+XKhMuFd6BrFm+LG0Ba8Z9cnzbhr5gyo+kLRof6Ko2lVmQtEkMUEENCCAmlAoc8OR90BQVLUQ8+Rps/OT01/OsLnNg71rB2GKKNnwIjMhCSpBSEFLHfHTDnjFKBUnTfl4r9fi8GyyFgGCq2m0ukYUSMCeCCyhkhiSJGyo8ExZvnm3VzG+wtRLIbWq8jeJpGiLLns3n4dUJSOMfeZ6HVJ3Cjw4QmbXT463KVevoNX2prYeCyTJ6dfxGAYTD8DVKZmhm1KM9Wg32PYroCMKUWRWHQFTuxPbRcNVkPoClFrLRJ8p5N6AI81ULnYptCeKDlzsNlDRg9szEaPTO+a8Z4boad5imDGpw6+dEJXoDzaYJ7gA2nm/LW5MNFuhCMS8gz7kYJ1A2UXAFnXVvDd3u2cvPBavYf2BfjlPfdsERCiWFRXrpOTmRsD9LqSVYVeoXcplb7OLu9amu5IHpsI26wMDmHCRIRY6kFynDY4Ws0rryGun59fBWOL1XgZnkY1lNnSfdt7YzOaRG1nEa9wTnKv9MazLaZ5Rlj/2SI5+ZzVkGI28ZkhjxtLQyOWDX6ktCh0/+cUvV/roiqwYJadZwjocaebeNZCnQOCrc0uT1sCUvSr6rVrM8FpY7w6azaWgDN4rTmfDpubjt44Rk5skz5rJsQ4GXeKWpFU8ACUaonQ7fAnlahVtcvkM/WGaj14+ng5z8c1D2+OBVenHehkDQkxODlwhPB+jAaEYb+1nsiTCztVs9xkf2JVQ6Or0UTVnvGsz6a4qhKNKl4prnCZ6MUyylaoGIcBy2CwojaScGrvVEQr0KKyDmjr4RbiqzRrM6pkLp5kY3YOKKM3NfFUZ698IqdMpyuKrmaxdEKarR8B32V/hJjaGHaBBwKYxMTnjy+xNtPL/HsF3twFYNQ0JBgUS7kq8yEUivmnHF5eYk4Rod/BTBnYNgEnA+Ms5TxfFZ6oAyQ0bz/lZuxxekb7DsNJFaAxPa03W68GhCctxDqnCcMA/DO24/x/rMdYim4ubnH7X3Gg8szDFGKUVCUXnrTXHGxJQxDQC5V5xqc8cr7l3u1R7sV2QKBPNS2ZC+12yjEcmP6myoAYkbEYjeqcAbkzNgdCg6HgpIHVDUy5Co9YpNJLEZbunXJrKGvwYpbUQubdaSihpeEXj7pxnJ8boGUBhT9xQQyJ/XcCWl2zuk89w/r93jxe/+J9VBMgfU39YTf3tW9w5WVbgsaYjUFsvOaOUE0gb4jOt37xXCzBhLBvHhSvEqMOLUUlFxAsbWusndVMt7Tv4wb39Lxm9fE/hbBvbTnbC8Z7e94XBte+34KCXmepeKyC9/2v8CrVEadBZ8O0wRgQowaUZSr9lwOTvv7cSwWUH96lVUTLbjNs1UNJx9DU5T0DLcPLHH0+OM9jixudeQif4nBNNvwSMV8TfUJMTjPk69VL5pGUauus3quK3vBkTYW+dNyLEUmMF7Hq7nYMBtvaPwOWhW5ww+wtlcx4zB1cmCb5prddKBswOT+vJrwzQBg5/R3N+L52LuXnzhOhbja2vZzdWPHYoC2B/qVNieEmadI5ZjeAMSdh7p7P68A68+yk9Y17TkZ4t3B12m9PdvTDZOL2pMdPAhrptNLWyYGm5a8LO7nbMA90sc06evjq3J8iZzFE2zQlbz+fAu3E0VOrcWMrjUAiUCpm9cJy/EXxGPod0DacxhjhHh9zPIhjN88Hj1yy4OVim/4lutgczDXPuANWqmFkxqDtt8BEVx7EYMBoMt76b/DtLIsElzBlDHBC5kU5i4Ps4GVOMAcC0HDPfqeNiEYExcmECFWeQsthW5SsFdfaeCxhWQJryTqKIvPn5y4FVRvnWJhD7lOCLwUMNxTpQ7Q3rO2hFEDjFm0zfvn8nF3X6HGyIXwrnOzfBEg+TLQ3Ktj6tSYaiuCZG+z3kK1FvGsuGDHHsZEJ96zGIiv+7F12Q6G5OdJCR9pch+iMNssEUM4O38D7//lv8Wnn77Ay7s9mAPGDePy4RabywC+m1BmBnEElxFn4zmeXg2YzjaY54KX17eoIMREiBGYxgGbccB2I+OU0GLLzSMfL1duxN3G2gtP3ayb1ZlRSxbBIBDOL86lWNI0AcSYa8acGWdDxBAi9ociYwdQ6oSULpGYkG9fIU8zQthITp8Kix5KCSiQGMgFdQSKV2kCcizYhxkXlw8QNlL9tWpIX5OFuOF59Zpv65XsF0sZNbn9hVmLQTGDYqMVzBWlMHIlPHg44k/+6Lv453/1BVBe4YNf/xb/96ML3O3fxNNHZxgTgBRxeyvtYb71nTfwrW99hl8/u0GsEp4kHl2lY7ane3SznyYLqLBBkRBSxJAG3OZ7LfAkz5tMXBmgahV+BX6xp3v6f0VAzRkhBezmjA8++QIf/fYl/oM/+i6++c6Ap/OE+bYijAlDqNhQFeMES37vgzTgg+fX+ODFS6SUUFAx5xmgAVGBGVC8zUY1r+5aEdLZVsuHt4m7FGLeio7eoGt5YOunfMj9yoG0EEULrTpCgaVkdsS/1FzZCZpNQVkqEe3nIuSta2BnAmqo/fvhSthCSHd6LUcIyY00VXvqEsxTGNRrqN+vUs3WaF3QNIhokShoyqB3g7VQVS+2I4MpGqoO3wfsebeLVrOayuFwdlYvdNMUu8QzNpuIcdT+s4AaoQKuLi/EgFOBnCtSHPHy1Q3u7+4xjBEXF1tYKjR5qJNErtSq/Qap8c4YpQWFhH23JvYmZ7TFb3KJ+ZZCMBpP3T3B+coCRxQPJKqnO9fNv93bFtmo7npd7IG+svmxAiH/r3mWPKuRLfpc0N7aTEvVwRU6Nvmnk3m6LwYQ8pwdvmKgI4Cjfk2U2qKpOcyhwY7NiNfnvbaqo+yKMvn8TWHvTb7Gq40muIm7Fp+1hwn3e8dD1C1NpFsgWsrDvbd/YSzpZDjPEfa1tLQkGbvQ4tbT2kdu69iNp/swrBppE+ZMoOzQR9dzHXVh8GN00/P3ruYHo7ft/QblvvWJw1uHucScFl6PiKOxfH18tY6/Ec/ikukBba+0kDo7FgzN+IErNUrAT1hB/Hn9nt0fFsRJiRBXzbcLTfnoxgNAwy1t/C1sqZ+ThzNZSqVOrPGGJngcW3t6IcVHd/xbR5z7FjNWAECYoLw7HMFZFR/NWShVktlrlVCjGCNCJLd6auaGMGSl8MEYUTdfEIEs4d2ZTvVr9m0jiqY02jhCjF2/qnVQ1/KwtTFB6iivpVPi3RNlgnlHpE0tY6s2tiI83HlJpCGAFWPpBLiV4koEC+ptOGLzrmL180qFgHvM/H6YaIBujDAuB/bcjyWETEipKkzXOkMKfETkIvkmwxi1D2AEQgJFQsmM86srUCIMSStxgkA1YDpUcMkgDkiRAErIRYrscIhivKCAyoRaihYwYa946w20lqZ+AEs4H2kqKyE6xojNZsRmc479bof9bie3VWA/ZZxrr85aNfS1AJGkqM/5NuHiIiJQQaAqhYQA8ZKwzD8EEXhjqNgEwlQSuCYpugDJussFePPxI7z73lu4enSJD0vx/C9bHqtuqgurBW6WnmIDjf0g5c2N1ihDdYLYbp4PEWUmHO5mhFwRArArGb/8+LeofMAbVw9wfrXB959eYd7tAYp45/vfwRv/6jk4/AY5V0SCepY74cQG1st8R4PWfJ1SUdRgBqKmkNhc/HndU9QLlo0OAAIvCgHTnHE/z9gdMh5//BLjdoPvvMMINeNskzSXOwMhonJEKUCMA549u8ZvP73F9773BopW7wwhasEUo3UylpYX1dFdGx+1sdVOITFlvlYJT+sbzfeivv3sPYAmcPX9+3pF7uhYCeV+rt/nPTqcFJKWdNA9jqt3L3gr2KuQs5+Dww/MrvTlmh0WAJqREfA9JOGZARwZzAWHwwwiYNwMGFJCDBGFJazcYDMMGtIfsCi25GNVZb+d7BSLTn6w/ogSAQK00F35eahWyC0AUUJmibLyayEeEt4uOdlXl1tt/zMhpYSziwGcq1bjJsxVaJ5V+ya0fEnlPhpW6xZuWE52Pz/zXFmczzoPq08/OcaSlZLMKxzvcKGXV45UobUSYPuiGmtseX0G524IMG8hrXC0D7k8Gjnz0dmFF10BVTTEGVgqG1IJXVpqcahNHujaehEBtZhCyi0dqYV3HRlb2GlCf60fd9OnlvNU/NN76/ohE/SU7hhc2e5dwc2VomCpNE3h8tsX31YIrtmu739eKJ8uw4SwhAVBC7RBczfhMiMYK5pvkT5a7RQCV1pVg5Z3k97Dnpvtynm3KU7Rth4/12lnXyuMX93j91YWe8F4LTjYOQ91WykBgJUNVnLKXfU2eZG8oVdM5IRU1lPyaFbgBZEKhIDoHjSp6BX9PiJCcTLVKamROoVQ8ub0kwjpdyiw/fmOefQCiHub/J/euk0dzdFRrV4Soow3xdhZn5RYcQVV8UKmGDGerZbUzH4qLBkx6BUX+y5DrMmwCq79GMXG341dCtoAcEu/hTMCcGInMG/Cleib7f1BYs7AnXm5h/Ui3MEMBBbyQ7TyDAoL9gpeCzjA2bcpvYEtmBSL893Hj8bk49FCAGRNrHG6si3QNypufFtyAMiV2GU4LAEcgGQK5yAN0atYiWMM2G63KDzh/CLh7H7As8924BLx6sUdhmFAxIAhjdgddohU8eCyYrMhxEjY7/ZgaCGIOCCNg7SvGBJSjAhBKyqui2rAUJJ8Lir/OYNjFZTEoyOVM0uuiHEQJWDOyLkg0IRSq/cYJFQkFIQ6gImQU0amGTEQtkPC7d0r/NX7v8YP33uETTrHYa6IaQMrvAJiUIQ3m6614lALPv/kt3j/L36OVzcHoAakKiWTeGI8/81zXM47zKUg6jNmuHCjT7AgoeACzGJ1FwzU9hlEyFZpq9QKFNaqz4JzueyxGRO+8e238M3Hb+AXH95iHBgXlwlP37zE3/rxWwgomPASu5sCutng3R9+D//xH7+Nf/o/E252BblGxCptXxaNrA116XgbCJ6KkJhzwZwLhkHawVieUQxqBPFXktJE8UAbXoMBimKo4CK5bjECYwLG84iPPvs1Xtx8hoEO+OMfvos3330LQzlgt98hV4g3smSkcIEhBDw4P8Pbjx8DhxmbMCgND2BiTHP2htNSUIqkTSugrTaE36yFp260ME26kfml8rUQYHqBxs8HrIWcUwdb9++jC6YIrJW/Dof8tz7Mj92bhe5c7SqK2/gb/T0hpEGK4WQ2hbDzXDD7fq61StsTFiONGQAvr7ZgZhwOexwO9wAYgZLTYGbGfn8va6SKnH2jbw9llTerCq89TKkzbPaGwKJra/mqxKMonZoXW3kSr2cgBEoAAcMAMBXs9zeIMeLqckTFiHnOuL25E7hqQHXVGJ11w3VmRqa8FMYXK3SCXxntQJcL2OvH3LidoORKUGb4C8Ro01INDCDkSgYvZCaBZz8Hav/74+rVqo129+SD9D2m1C/1pFN4dawkViwVAuaMXLNU4IHyWTXqA1U8vcEUD1XIa5uLpQsFLUi3UDgUUGuFYy0/WkGbvuCS/96tq1VE798JHMPD0hGNMVZommAnq1j6iqUPUjEllFQSXFNuaGqT0QpZJ43/74WVhg/d2pfpOC7fDdehGUR7+Bn+iJKo6Vlq6GlytkPaEoo8ao6V5/mYX4MvvRHeUb3nn0cj//r4Kh1fyrPoFq4VAelzAE5dk59YSDILpLLKfk7kWm8w8Rw1C6pvFNG23MJjxVRER9IQAwaIpGwFwUvBABCF1Qg7EYE9zUmUS7j+YdTBrto8jPGcPtxrJyPReTUFymGygFEvBBA8oLZjRrKZtVG3jsMvr94DOl4PwBQXtG8tmFULWTXSYBqPCSsmHJn13t/rSNAg5oTS4+KaCuKqiAKVaI07Ng0VyIncWk/d80XD3JbP9u1Kum91rO71obBNQe2FHj3RPR86itcIe2NeNlJuXxak9FEwWwE5CXvKtaJkBki8xFJcpmKaDggx4fbuBve7O2y3W6QwAokBzghUkJKsLZeKPM+Y5hlTFuXQiozkPCtuB0xTBWLCsNU9bUUQaodwViCkVchv0HcrPHwuIuha1caueim14gDMEPchSBRLFmuxlM5JmKeMN958A9/67lu4uCLsXmQA0ldUkFXYF0FL96vgl+KAy6dvYrj8BClKS4bMwExASAGb8y0251tYtpoYUUxEl7kaU+fFTBeItWBy/jyvRaiW51krkKcMDoxNAi4fRNAwoDDjo2fXqDXiT3/8En/wg6eYbjcYIxBTws2rl/jF+5/isGeETFoVWDzCgkdN4DcUPBJEXF9pnnmuVt3SHmOzmQHgRgN0bmbwkW+LpyBoH0ewVm8mgCniblfx/q9eArzF1aM3MFJBGkQwDKJtopaCu7sZu51UXJ6m1g/Ww7Ioeqix5OGyfqczbK3m2J3x39fhYMvnTgsudr73LL720HUn5tXpjgasBKXXflf/ZWaUTgFY09k2vvYNwzW5n1SYa2F8S2GNO1wxr5LCulZv1ZOzVpEOEeMmtGcY3tdtGBJqZW3XgK6Xn7MN92ZwZVUIGu2zcMClxKlzBjq86MIRAyGihdZmK1+r6RAxJJSiTeu1MFCKo96vPMHhuayqTNSvBDoagUYSu955ZiiTnq+S9tHD22DuW1QQ2g0A7cWWRrM02BkM7A3mxZJLayXRaHBTcjQYuget4sYS5L0eQieuy58NLsuvNnnHisYRpIJ06Yw1AEkoPVSGKUWrbgbAqoOv8NJ45iIewORCHdPa+NJ08HWUU8vrXe9FoxGLtXIYwvf5ScA4/IxeauE1dN/R8biXnRpuo/fkGe6o93QhlnRGBlP4LYzUYbSiNf2QbQ0cMt27e7cHu9DZPW/v7ImurU9305KO1ja2Do4LYfYYlF8fX5HjS7TOOFYKlvJ1/0djQP1lY2LrkAwGA5aLtCrCUtS6XBx5lVjo7UH7EIKLN513VYjES1C5SjgOt+o1xXimEolamlJAkFA+9zwtiDZ800pVr9fBC91z+n+b1hJivgHrcgN1eXgusLlSUv384uj2Yugs4zZ+mXxZWi07CmutNsgHqlYqZQT2kFezN+mf+n1vhMiEl+KEwjxsTYjShaD+aWM87R0ytvaRU/jYH/25ShZSqiFp7ons2UJXiY20iXWTtKUHYwitdxgBZrE1vA6dtdIEht4wYMxIcLSN0/L/JEcGSEnCo3KexdIPwn6/Q4qXyJlAYcDDBxHTNIOGgFCBbWIpow4JCS4zcLfLiOmAs82AEIFxiNhPBblmBJacvVJmgM46KGvOmvWQsPAwy8VZCCsCO5c/RfpTiyYpLlkfRvEqppS0em5F2kqV2TzPKActEU8F+1wxc8HlxRmePniCnz/7AGnYCvwdtrJetUqV1XEbMQ7Av/p/foX3f/YxynzAQFI4pTLw6O0rnJ0x8nynHlSoYBN8bTwfhjuG3OMUsNobtrASycCw9bbIBgIgYXWZpEgMdnvMZeeW7KuLKzx9/AApzfjisxs8enimPdECzkfGO29uUDmhBmkdIlUtaCEILRTGE/SgeaDEM58ru4IHaK4i9Y8oZ9fiJ82bz2Au4ExIcSMCnpTQBZWCOCRwAm6mV/jki4Lz8APEMWBigLL0hqREoAgcMGNfZ2Rtq5MhYbY8y1xiEHtCLeqNItIWGQ2yvSJsE7duZfGXAAAgAElEQVQqlguVfjE3pS8dB2oenl6A7Ajxa2i8vY9Zq//y+poJSRYx0BGD/gWrDxCZUtCidJrgaYJlo3GGr/13Gw9p4YcmfZr64L0KYQxKXpaL5E+HGBV/qnti2Jq+B/E+BgoIcVlhWxCydkUshK7GEDQnwNpOtH28kAjYZ4HZ4BBMERP9Ulo9Gc1Wvm4SKQsdrQBQpd1MMA+K8RsGjOYD3BXhCp2RgBYC8VLBU/lDZYJiDeaNTvpSt3DvVlCa23q0CUO8acX3alP8urV1VOUOD5bo1Iao+KF9jR0vXC5oSm1PQ5bfOD4MhsyarcDsfNHDiSEGJcnXLhrFIe9LKWEzDjjbXgEkrcNsaKVWaJUsMGorLKdDkRZWLfTRq1coTyASDyADXiyGOrgDYhw3o1RTjPoQ9bXC2PhC/7PBnVrVT0N/cFv7zgAP6vCJbW5lER5qOpmJVm0dbLE7A1DXzqW9t+GT+gTbo/06On6tz/e42Z8zGNk+6685KJZj6L7Vftof7f6vj6/e8TeSs+iW2gX2rQmLWccszA5OLJZoZAoA44hJ6yM94lF/BzXr/WJzr8fRPywTgIsTnWUGNidePI4jjPbrFZ3d0Z9/Hf4v5s3mEWzzNS+c/d2/iY1xrb1vjCMq0ApdWUgTHXOUpivKCHprvV4/PRNuSqMThtfv+XXohPJB/SY6WJLOsvfIdudpLeLZcI6p4GtDxrxwEVbEk3yZBU3tIi1e3Q/XBC6bjwzl2EO5JKRNhO3y0Bf4TBDBizSUEVwRYkJKUQQSVY6IC2qZMWy2GIiQUoB5U0MwAYaRMyOcWbiWCi9MXfhMkKI3KiwaexFPPuD70kNQ1vuLurPcY7P2zQuINYrHoUpfTSpVlFQAMUVRCIq8q6KCKWAYIsYIoBaUSkj2dsM1auMhIqQxYtgSbm9vcXe3AzMQOGI7bjCeBzx9dAmuGYdd9nVpjKvbZ8agbY3XjJAbpjaprAnv8rMXOXRfBal2WjJwmKv0U0zB+5zd3u+BA+HifEAtFQmMcdji2998jMcPN3h5y+B5UpykI0/WAudWfzd5SKUjhifWtrkeP7Og0av3e76LCXRM0vw9RVycD7i6HPHwcgRSxIu7ezGGMKnxAdjPFbss/WURJMojePSIjYkbrNHyiHrPzmkArGhCJ0gZsVrziPWfS49Fv9YnPoc111q/uadapwe+DG3scZz9XCnVQ9/J9zL78yeF+y5BS1BA9zkB6AKajbYuWF+vPHOFNdX2+bJG7VALNXWvmO0dNprSKbvKI0PU8en8zDDVw4P8ey130IrJsO2FYEpd80R3OxNAXeagdfPr4SZ/L1eK7R3cnvHnVzDSKbSLptj78+Q82Xk80eL97bBIgNes6+IeoTmuK/dK0mKscNltLVPZs75XTtIF47/9i7u5ccuFZZYokJqlrVa1Ru76CIWIlNQI6XAy/tylCzVgtk91I1/wAr9oMkPPr5pRs1vVTuxrYb7Ldy0+d1qppob3uirtM0cPN8WxCw7zMbTvtUgQ+Za922Cta/Q76FKb4yk6voaHvvcEFWvGtN/xKSxv+Wvc+v/xxq+P/7+PL5Wz2B9EtCpAKYgYwnKjWR4jYOcJQO3CPFcbkxkUVpuuE+pBVuJGQjQDw0NSreQlc6sS5sI8CZORs1qXq7NI+49A6mlrmY7o/9XS/coFQdS/p1nw/bsut/STpEYluv0bnImTC2T2NnNaVW6CAoAuv4ZcoWqwlwH0Zb6JWv6pyVTex2wBi06b6YYt69MTWUj1R7118R5Y3pbBgfwhos56241/cXQWbbtnKUwYzGkBR5unE2HLselaZ3Qf0XvC6u+oxZeMop4QZDoYGwF3AQTclrdnRCowtWqrwiwZUlCFANSaxQsXz1FqRYyEi8stbm93OBwOOOwmhJSRvDlzwnYziEeyVmxDxFRm7KeEzcAY0ogQJMdUwsvEm0NMqIkQdzPiEJCiFLmplT2/pVaWPRWKC3ymUNnc7V/PiVI4hQCMm4hxExFCQoxmba7Y7SrmecKOCDmLZVoUVMJAI/7g+9/Ct9+7wsuXH4JpQKlBcJ0ZTAVEFRQGzKWgTBmf3824m4HndzNEpUqYK/C977yLP/87f4gfvfsA+TDh5S67V8IZPDV8Es9CJ8g1aUO3RMNtVneSZvxp8/PqOMNMCApPcAVSwrg9w/n5BoUDIgMf/fY5Pv3iGlSB/+gn38W734zIVJFLxu31hAeXl/jeOw/wi48Zz59PSIFQKIBKywF3+sYqrHbKUOz2jVXUi978i63lrSjXQc+pAC70qA/xJhANAILYMbRPFocACgnzNIPmjOmOcX0R8ezzWzx58gAJBSUAzAE1F+R5xm8+vMbn1wfkv50lX62aFzNqv8+qbXiUfnT58Fgo+irM9MqWnHSYuOSLJgwuDXENjL1i1QTH6sKZH4YLRq9PlabtcEWEw7qgcb0QZwJ+f96MfAsFpTNIrQVJcC/qLRUny7+0Hnf+DhM8FVZW14lWhTmEdAk9DtRCzPvwTaPDjedKq5equWhNlpd5xSh8jTrAl7n3puo7DKxV5piCRBOlaHhdO34UAKrwvrkkAczBFTVbXWO25pl0Yt3+NmWsdrikNM/e48KxCfadAE+AGkKW2sUxHzF+b7jQiE7jH0sc8LlCYFtrZ0xZKxAGP+VBwmts/RvedNjqP5f8sjOK6Zlgff6YECIhqYRZtZ9iiQWEPncOyFVykvf7G0D7qPbzIUA91V2RK1dy10LJkkAzSzX53hvnc6zN0F243+H9Xur/ZiyWTmmk5zLaEDQEuR8WkXEFKapHMMMEAFb8crrVy20nTeILmcNy6l3/7A0WbCtp91s0V3+9ozHd/KXnssJsIdv7WRwNDDjqL7vE1fbdXmb7nTru18dX4vgb67N4FKLlCBM7ARsQgrvEJtbcAkJA10lY30OuLDpitauqaBCIhfybIrIu2kggyXkJ7AV1SDeoWyOdMcB3TaCIgCr5NT4GeXlTuiQ0xAjnkZLTbQqb0zGccHTNcnJAWGwuIhJvE4RxBXTFVRgd0YHpczI+fU9fIIaIEEpTmmXOYRFC2Y9t7Vlhvd9ySIypEyQRnSCwrVp2m6wv1yo7fA2HEMhh2VunXxdu2kKE0aRdP8xKaX+aAgdXqOX91XGnL2MAQPtGEriYj4HBXI/g1IwhzQu5wAn9vSqzkrEY0xNwSIinXK+VEJMMKsYtpEdWRgjSL8ws5cMYwTGgkAhNIQmzZkRUJsyHGWeD9B7c3e/lHkhYzFw0LJsIdWagTBhywjgkUDSBvIV2sa3Xmit08Friei9uCIMu2kIljQmxSuhRqRk3txMqMoDszC8y4dHVOc7PRxxe3KByReGMQXvF5VzBnDFuRtze3eHu7g7vf/Bb/OzZLV59eodnL26QMSNH4NHTS/zpH/8Ib19k5PtPcZgOOBvPmlLfMVcGdA2qKk+n8pmWQj3BLNikinYr4mNHrQWZdigYcHFOePpowA6MS4oYKYC44jBPYA5479tv48UXL3D76gb3r/a4vd/hdl8w52oythgTui/04sV6iSTlm72wq9Gsqh4+ozm+z6nhL3Xr6VuvBkDDgWVPFxQUMALiEIC54Je/+hTv/+Y53n10hb/zJz/AN94apRfrVBESIQXG9e09Xt3sUeestkMCtEG1rEORYmV1aQDr95Stga8HjG4o/edG4xbeI7Q5sp0zmt0pAb13oyvA6OegRiFrxdG0mtOHRHm0hTsl3EHHVkrR9jXyt7SwWHnvFkLx+gguWDYjTweLVUsCyWESvlBLXeAEc/MYhcZqVmOR3p2eD09NQRCjQ0CB7K85F815ZAxDREoBKSWht0FazZRilE4FzQoUzW+UqqwFAxIY1QshxTCoME4IQYreVGYEZkQKGuav4e6Q9lHUW7w7fLE+scZnbOsvo586POx6yTpcjjH35NHg3HhIv66Ld/brbSjn3ROW+ZK999Dwy3gZdB9IkRbhg32LkP75U3utG7zikyowUfZrjBGJAE7SNqRJa8IL57ngfn9AKRUHzkp34XiRYgQFKb4l+7WT6VZQbfvXvLsWXh1c/mGGdtvu6Dea6GTFcPr31drPl3UfmVLeRR0RWTmK1fqY904VMSZYUUS5zWTfANawbfOCvw5zjF65sreo8ryU1Uwy83Gy/9Pd1vBcuHU9eV97wXEEwuIONmMy+zbpDcgi6zSP+F9rg3x9/Hs5vpSyuFaKFoqOIa3m4hgSWHjE4mAhjGyWbDQiLUVDmkcxIEjhjWDEWJ4vVgY8+Aul5QAAqZhI0gehdB/tkDcEaxbeFTMpVcLiTAnEkvhbhIqNQwxE7fxyjo3Q0msUMfuubf6U2t8C077apirgJsg5U9H3oRFUV4iUuYYQFww+xlWVLFTkNaHDcn2FCNvcxasbA3XCqfUbKYAKeLx4mp0w2XgXCkYpILUiQ4llCCQW7O5Nrqxxl7NllUo7ZVP6+6kg5PIAoyAbtNr8GN5rrnFKTaN1XLb8V7QkfJW2G5wsr6cRRye6yhdM4bBnpMIfO5GVqrwRTBWVdkAMmDMwX0+IYcQ4EOYBACdplYKCXc54++oh5sfAJ88+wK4wtoi42x9wyBMYhEcPrzAzYS4ZtUhT5CkDNSZwBcZckVGwrQEhCvOyATMCUMQYEENCYPGWmfBmClNlAqp42EopiCyehVIlb5GZUbIoYilFpO2ITanIGSgZACIobPHf/nf/Fb731kNcf/Yc17fXGOIZqFQcMqNSBmIE0QbXdzPoySNgc4GX77/Ay5cz7ss9QDNyjnj89DH+9I++hfcezdi/eol5R4h0gcM0rSydxYWG3jNeayuJxcwLj2NPF4qer1WCrcwrY3gs3twz7HLE47cD/uE/+nP8b//Hr8EVmMsErsBf/OxDvP+rj/HFzSt8/9038N7Th+DhgPOHF/jv/5v/Ev/4n/1r/I//0z/H7pBxARIsDp2wDlW0fcBKjxOaF1JpFmv0RNTnGFpvSAUriioSmHEpSG6nTF769EVKamGXKslcqngDNgHbYUCqhP/1f/83+NlPf4Pv/uhH+MZbV/jD7zzAdhvwappx2N3i4WbAO994jM93e4SwAXPFnA9C40KSRuqoHsJmhZMM79b934zO2JwEN0Wtbv1Tm1dA1jw4bbSq01zNQNLm7spSlOanRXPOQhCPdx95c0q4Fzok1MfohOGa8DqXNsGcVdFp9AkdLoItGkH5pZdebEyBucfddqnYCXayJjzDeVvD96Y06I2QfFfxFnY8KkhofBOkbQG4fRMiI4QYMGpeX84Z8ywtOpj3IJIw9RgjYgiopWKeZ1VS2b1V9ywGLxtjDAkxBGxGMdTknAHlndY39ubuHsOYcHVxiRQDSpEQaCuE495jsiiQDg4w2tzW1ZQOw5UFCqIJyKXqOqvyKEssz+bKHZxNAV3yYK610RNfe7tHvadm+GaRt9ZHZe7WZWn1IFOgqMkatleK9qCsXn24eat7oa7xSKswC+R5Ri4FHrrMcJxlrqilYsozamFERGzGAVdProRnQ9awlNJ6RnovysbfuwGgz72jVfuS0u2dytmVFJOZHNbc3iBrpPUwOtNRBR8ZEeWqB5Xah3TjoW00/Ujtnqslq2zZFETHrX4Nlb70MiMYyLpGDGltIY5X8rVlZq/H0cuTLbJA7vT3nwCM7A2Fs1hUEECt/60vg8gLXYKOyj2Cc0I3aofvWKP718dX6Pi9lUVDztdZAiprYjEBphh0T6/uJlds2laEJqVLbgRW1xfj6H5vm3ZtGToeI3X/Vg1JaMUbxDOjRbx9UEvPGvk57mhDb4VfW+GO8gVPjek115fKW1OymNGUNCM8RBKSCw0FRiNI4NZfiyFCiwmx9qwx95400mrBufuewNDf2IHIQlJVgDbjQXe9rQ+jeT7Jw+qEabP2xGrvkqlYUZm2nqR6qvTvVO8ES4899z6v4OgLTA0y/TI4nJmbV5TNumhrsQ4P0rEtUGZJFGXtWuhNXyHXiGkkUzCkD1UMESkmECouzs8ABu6nDAK0fxojBGAYhenud3NbCyLsDwe8ellVYJUcEgZAQYSmFCIqMbgwqkZxtXYqbfymMDGzC8+8XtvAqDW7cAEAVAkpJu9zWXLBbjfhcJCqrQwhHsyMXDJuXhTsLzKuUBEqgwYpbIBQgVJRckGpjGk64Je/+A0+eXGDv/zFp/j083uEPGOqBYWBcdzgG28+xptvnOGT/Usc7ifEMMA1KwhDtUqxbnjpBObj0Od2zfHQcbo3MHWhR5WRIkAo2N0x9jXhbNxgd5jEewZCKYQhBfz4b30T777xCE8enuP+7gtQYdzd3uL27g6VpeKthLXa15eYbSKncmedU7cHWGkfM8whEUg9+2h4bjf3NHYhWK1pugsShBSBlBjTXLF9MOJbP3iEh2dnqIUxH2acb7c4v7pEzqKQp0jIuudTiiL4lG56ntd2eh0M7ioerUSttSeig5DyjTVPMeHO8LyPdqhFBE/rWbjOIe/H2fNMEbaCf71RHfM46JhJhN3mEbUxY7EuCvLTwtZKYOvXLZjS4gSp0XUGe1GQJc9d86dGrxw3umdM6fKnjCdwn9Mm6xZjkogJnVspGaVk9XIRQohiNERGqEHrJQdsWQrkZGv7oVV1ocIxRVHylRKiFIAPFTfYI4agRmLqDJS0aHnEWMoXggsyS+vp7LuA4cqLGVUab4TXXViHL5qX0vboqYO5SnQLH3u+XudVXp6l1feW9GqR0+oEcPW3/OGcft1P07/U8bRACUOSfrj2bFUnQC0Flar3/rMP3t/fL2bRaKvSpV7e0lSjJpOIwujrdiSDroGka2eKzAnacnKO3dnlGjTpkrv3YbVGjKY42f30/7L3Hs2SJEma2Kdm7hGPZWZlkayunmk2PTO9wxaLhQhEVkAOAAQHiOwB/xA/AEeI4AAcgAvIDjCzsovh09O0sngleSwi3MwUByWm5hGvalAjkK5Deknli/BwYkRN9VNiqt7b8a2n5nfwLhPgjkA64shH9x/xuVXLHr7WxnR99Yj1jrzaNFzsx5oHvjm+ncc/SVmM4eIBInYQShTWxhhut9aHiMydHQUNB6vPP46QxlCL3raRWCN5GoCz/XCdAbfGyLkv4g4qzGoCZy5RWyRSDyj10LUevnXsVYxj0N/lTXywj/YuByGrPluexBYU2TVYZDC40nAfglLgYoD6fqahHUHQGEgY2gZTluway1hHrhja3JiVqqkXa82nK9oRHaiO6WctzBWcdE+CeVoY0DqQhBV4iYNneE494N072dsHoHsvnVmTcz0+MXFO0ytjg2JitFBDKek6GQAiC1AQNK9W8pRwfnGGyoy7/TVAYqGt7vUgbDYT0m6B5QDhJlbeu1pwfi5109AkLEb+ivLQKovCyAJek4sxXd/WVw7jG/uJPn+y3yx7Xyh1LzpBwm0O+wWHvXjzk1SbB0OzFFeSD1S11JRyicSg2mTfG8u4vfzsczz/8At8+PEr3NxUnCMDk7QuZcL5ZoPzLSGlBuYFgHrJIt9Yge6BpwQh+YDs06mlgQTMGGafk4bm7+8a7g+9ZimBgQa0AvCc8N67T/De+0/w9pMLvHqxAPs9Pv38Je73CxqzZAxNOj6rtkc+Yuu+MZAZvpBZfyRgCFk1iz7bvdS9oiP/IX/H8B3w7NBZgfihAi0nXF5O2M4ZrRQgVWRKmDcbNKrivU2BipxfytrrbYyRCtaGEzXGnI91ns+rK2IH1v2LVzkPWF/nf1iNjl1+DW3g8XsElHYwVixCBiEgxnhxJLATwoIjwx44s9MJ9YkbdM/Y1/G1gWuaEkjxvmP5a141Oyf7sjXUjrsXNmfxSALQEgpS2qe2JlsjKGGeZ6ScwWhqDCRkypZUFaU27OngSqgXnW82P1LqhZHQGrDbLyAiTJnECDeJ5OyKL9Q4aLXyOPSHvc/uodZ11g0E43f95m0bRxnhnuPD20OdzsKvvRj8MCGRp1mI4an3HQONwcihF/KaWGnsX+QH3VAjNO/1rh0XkOO7RAQr4togRoLDcvCxEJGQXI6YcbljLt33H+gsfo88LAzNChcdj4Ivobg4Yj8xzqB5jSNfGcWJfeMu18P7aLgmtMPPrLBGxB9AT5S3FlLeH7t2Nbfr90VDgg4Er36zz9SZydGjBsPHQ3Q9dv7N8S09vnmCG0QwomDM7Aouf3qaZ2NIFhYx7jcDbMkNy0SVlpwlfpCMwRIglZU6X3TrfRBg44LpYROusIa6RNM0ixtdw0SWQ8Hd/R0uLy4xz5Li2xbmEMbJLF6XLPkZOy+S3vRwJCmD0ZWldLQ2bCGL85G0EC+cN5w6mHuCmvUh8oFGhtAYlUgYp/82zkkKi9pj/9f1BbG+pn9Orojp89nqZHZGOfZZ2unKkgo9onifgRMT3mEAEIA4A3BvnGb2i/fDEnd0xuxhvEFZj0YOuc9q8TVQg9SFciNAB969HEdvZ+yx98G9E2M/QndB6OFy8h4RlrVWHA73ePT4EvM2Y7PMABGKhl3Xxtjt7lGXPc63E842Ew67grIALRHO5q2Ez0GeCRZlo1HDvJGaZAQJl97ovgobLwOXBO2frqWEJIomApCSjoImCY2rLnn7PpX73YJlWSTEiCTTK0BAYdCUcfX4Av/899/D248YX37cUDhj0xjMM0pbkCYJO0tIuDzf4jsfPMPLfcL2+YJS7oGlgJCRCdjv7vHxrz7Cp+80LLs9KGVN9W51Gvs8dvoKfyhS7mnZN1rfLUV9UH70c0IFcUZtBLp/gXkGpjKhlgVEDbUW7O4T/tf/+S/wH/+LH+LyD76HP/yjnwD1Hjf/x99hymdAI7HOk5bRsNc6kAi4UQ8JK1KznDY16X5V4+OUpVQFQcA3Kf158q4AsDo+CODDlgTJ91oBbsDF2QV++Ytb/OWfP8d3nz3C7/7gCbZnW+z3Dbf3d0BKSAzs9/doDaAsdGlgz/YNRwPV0ZgD4unQpD0d51r7KtZHioJkpSD1n1jKx4RfnH9S5z8ArxJqdN3Xwq/saKqkuzfjJGAfwXyXazzyQXRebrxap3rVfwxjFyWLJTRiKOjkFJ7e5eaqhT4Wsq+r7320xvpWAG1XL0nTlIbI+UIiOddY4kDmaYvZrgWj1AWoBYReyqpofdFpIpxtJpyfaTIUiHfwsIixrHHD/W6PlBiz7mdsTbafLLWicEPRmsyDMmJbHzQU0fh78rwkPcLErgtwHBHcd+FCShgr2a5zGw0RozLSP3D8xWgk5IcYjVwdv6xlePSGmSKMNXkMOgUd/Y2iXVmqXs6RiD3xC4dH+zowembJw7DZzN7WWpvIkL4/xInbEnX5GA0jKg2Lxjrz8rKtSXC4FkefO70e4xbARWAfu/DELvwJ4w/estVJO2tzIdtfWAXwsL8P8CRw/fbojCDdDWSGjODQCPzC5qMf/Zyt0bVXGbAtRx3HRH40KInAg+ddeWU+cfWb49t0/JPqLHZhuWI+EFDJDBewtFoPa4blG4qpL86+HU0BqFnOlPl2b0YMmQpcbgARHeZG5ckEzlIWpKSJXUgSb1zmK8zTpJa84vfF7KHSzqSxnqIcRzhiBl8K4YXSiraSEjYmUdGyfiAkXTlmXP07DWMr69LCS3zg/b3rOTCGSlbeJACKfin1x5zykgZ6sD1EMRx3DOPr7ahrLmqqSQRi1MfIBbCOMYXP1sAh9GPoqzFcdrnYaWglaDtX1jGx2n4wO4EXXhZA2LO9HivYfUzXTRrH1whfkjXMeUapTVPlq1cuZbx+/RqJtkDKONtucDhoIggW4DdPWRJG5ISaRZmjJHmDKWfJQlcqSm3I2TIVhvpl3LPE2X5Dxw4KjKyPbEJtJVhM4MjYZMmIVyVstBbZg7QcCorOBeeGxJN6I4Gz7RYzGqg13RNBqJjFM1j2aFobsZQDPn35An/59x/i55++Qm07zJmwXwjb3ECNcXl+hu+8/zYuL7e4vdmgtQUpT2i8B0M9bqHdFu0gtGz/dJqNx+Bts/v9hEleiAeXAWACM+HsfMIH77+P3/vxM/z1z15gd3+PiYBCDa3t8T/+b/8eL29u8Hp/wO/8F38MpjO8/1tbvPV0RsoSYpc1fGstbk/RVw/l7yFzzNRpGpL8Y0pKLy2EchqwYvPQAMx934uxZwJ7fVaGJNPJOWG7mTFvtnj//cd48uQcpRH2C2OzzZimc9TS0FqVhFmWKMqBeOBrptSuxp5cLpAa/YZZOOKZdlhtuFPzGf81nnHquv7uY9owivBnNh8l/WkNstb3xvs7Txva4jyzP2d1ql9Kx2MSQ2tH4n2oXdJs82adsCEON9l+T8D2WzFqPa6vOM+z7L1OecxSHNrLrK53UroVIYO06PCoUWGaxPBk+4YTZczzDGZGacqHSlHlIWGihClvVXdn/a1npfZ3G8QPyrTLJpK1mAhdYTK6Mc+WCgg6Eb55NPS+5Po8yWldlUcTY8C7q5Km5A/KIp2415qjoaKDt9pkJffbrI6hYxXDD+DeCRV0aoJA9n2e0NrFgJU+QTOjQ9/D61t6sgMgMJHuMe2Gid6m4zG1C8ZcER3HdKxlmMnO9Wc9FHHgl2Pkvx170NCcqJiv71l1BJbptUfu9CinjpF13Yb98/7clXIrc88A6+Ycp7/jxRujhY6HkyLLcrI55qHH9/Xfxuz3/f5TjOTN8W04vrGyWGs9ygQZaxeJ0ARqKX5uUIUGiw78nFknAd2XBA3lbOxZzgZhbJ7KWChsfQ1OCzMzFFtoily0ACT13igRDmWPRBKiInsa4EJusKYO47FiWC5M1QPI3WM0tK8jOn/+wKQ846kxEIRU4/IiX3oBPCqbAbc49mGvE9meE8uE1hzsdYWuZwglRUXtoXV9gqlauGnO2fsj1q3mRoLetr5p3YSHA7V2HIoq8m3smwN94Y3DHYaHPJSHpd/xuWsPuIHPOG1Cp0kz6QkNprwCXQCk3ADp/DYGdHwAACAASURBVJgAsHTlPTOt9IVhiQpkF1nDfpFGNxaPd84J83bC848/QykS3pOJsezucHtX0JBxdn6ORhnb6RptWVC4iYcHQFkqXt3eSxmFpF6kIiU2mCrODFAtBTsCpikhzVLqAprEqdWmay+hh5ZTF+BGz62DE6Ks94qw4NZQFsZyaOAFmDChoCChoM0AZaCWhquLM2Teo+6BDWWUekAiYMqXkviAAdCMz2/u8Wf/sMMnn+1BpaG1grzJ2JeGeTrDs6dXeHQGfPThp9jtq4KSCiKJUoADmV5rztBahzsdPJw+7B7A5HX0WNr81yZ1x3ICdvcTtnRAwgGlCrNoJIXE+XaHd997Gz/6yY+Rz94G0PDBH2Y8+9NPsaF/g32tYO4JeWKzXPQqjRNBQo1VgfOWNkaFhJjlJAlpcm6opYlKQ0LXSbEwEBNL6egwKf9vul/a6rkCYAK1hKXucHt9j1/+4iO0D97Fk8tn2C0LXn34Cvd3B1xcXiDnjKUcpFojk4SlEiCVNdWbYkCD5L0Ohgka2tYB2Zrvd7kTQSANv68NRQ4a1fN2EvxFcXbKkMAB9BkiJfPur98Vb27j81YAUN7H6kE4oRSs6DXnDCubccpTIizWjFxw4M4sYel9DKXTqvccKTOxPz6mSqRZoxqmvBnkdK0ShlxrxW63Q2sNm81GFMecQEiYsmRAxiRzDRaM0UpBwgQmYCHCoTXU3R5okknTsmvbnsc8aWi9tu1QqpTwubvtoasKzrOt50Sg3BULy+gsJ/o4Gc5h5tHrZKN2UrM+nvto94a/kzt/feAQau1yNIYSypYbDPPR6XlF765wkDcmluPwZ1OXdye9/Y4xOlghkiy2ZmBpzChF99tbEhunUfa4iehMJ91CQLkjH28jW1tH5cwaZO2z8lEur4Zmhy/6k2eaDU/2mnGhz82vswQuMXP+qfWuVBMwn3sEYVirz2xMoBW99mrFCH3tCic87Ff5chovHd697jszzJy+PtjXf5x7Ct+ND8Q2pXD/ilbeHN/K45+2Z9EFkh6BqZkiJdFA/ZqhCoYpjnqN/U1JQ0wtO2oiASA4VgLHl/d3x7/rzwYiLE22h+RRb3cXtOpzsvaFNlg2qWZKzIn3xqxc3k4aLTOwMXKMGRWLU111CfTwb+7B6Ielwu5WP2/OAJJOKtudF/h1fRP/saIWr3MPQ3wHjIbGtkAFrAsshiQyMcF3ekQCMoa3bVRKV5/De7tSHQHPwwK9W3e1vehjbha+OA56mf7tFrVhPGLGdp+fJmLS9pqkjKx7YWttOL+8xM31gtYYF+czrs7fwn55idokLf08ZVycneHRo4LbL677O9U8TDmDIN5I0eskeUKbJhl2sGRXK4w6JVCzcEX4WulHDFDtnXYhwaIgaZlGtFaxXwr2hwVFs7MhNQl9UwPMxXaL3/3Bd7GdFxzudyiFRWFVDFNTAaWGzz67xvPPrvGzD7/Ezd3eYJLXSK0MPL64wJOrC8wZ2O2KhsQyxHtr+wVHsG08R+bkFJhfLST9HCMe4uRz+IdIIgtaJaQpI6UZiRKYyI0wRAnYEn79yQv8xV//Cv/Z65dIzPjikxd49WKHwkDLjMwxvL9jwEh38RjhCZz3MljqeU4Z85TB9YBMhEYhWMroWFIhh/dEgR+yEypba7VioYZDrfjosy8xTxk//sH7ePToEZb9gs0Z4/xCthzc7xYA27H9/vI+1r7ny9Ykd55kM0FBgRrb2ZWjcb9f50k+TpGfxUGIYxqUxlhvsN/fZYl5CU4pa6cn7CsQFCmd0epk/C2OGTM87Jr7o4P+50oxm8EttmPFw/0eXtMAfBWAle/qI44SogQsYMokEaGy77qXmpuk3lgG6kGjFQCd44QGyURcubq8EeGWPPSwBQWPkkWJ6NYQMPKUbIOLjglpJkvJotlqQ19gcf5E/nsWSaVH1j65hGGzt4Uw6kBz8Qgk5TyPIaGcdAQghqHX+yPNn9QO+l9XHNnnY2wSD59YG8bo/PL4naEdmpSmoXuKkxmG9ZqmSmImgFJSz7C8UWQE+/9dn9WIlBM4y/QmDsrhGoPEKKwRixx7Er1vK74+KI/rZTy44Awr9Arfw42mrA0yROeOj3yQABAMG6Ht1gX95FDKlHslzNFgJEazh41WUbLZ99jXGPK/agHrHlvbB4/jsUVQNt8c387jnxyG+pBCZnH9RlH+20APffGlIJCH8EZSD5BBmyN6igoKueAahVFnfIQIpCKYV+HRGAwJy8s56T6Z3AFt6FtcbERSCyuG2xy3T18+YA4bg9i17jk83dvArIMgAqBbI8dzfU/IiYdxZ/h+2kLQ0JneceqIeIzM9xSTNUAT91cy9wQ3DtdN+V51OCqKp7062hENI45hGT5PDp7CXdRAOFYWbHA647NERZ2GxhkKYMzOuDXteOylXav9pPraSCvECTVmmWVCqQVtqdhuL3F/d4dSDqi14upii3neoO4rpkTYbiacbzM2s0ZJO/joAsOz9BFwOBTkiVCnGZSASgSqIqhmqaKOhKz4y/YnNbDWYDT/m8+vMQAFCrU0lCbhtLvDAXd3e+wOkrpcvFCy1zSDsDTC47Mt/tWf/Aj3r7/Azd0dClWkNKFUqbF4c3sD1IqPP/0Sf/uLL/F3v/oU1zd3IGbk1JCYgCLK4o9+/B383u+8j7Op4ZPdHjlvMCcJrV0rgpG+LDyaLXHJwM/69QQe1thgVKCuJJigdCCzFNyi4Sc//g4+/nyP55/caC05Cd3ExYT9/ga3n30C7O7RzhJ+9rc/x0cffo5WgJkyKqrSJDmNHtOb8q2U0bhKvTl0PSnylZxEaZP6esFDOPDUMM++R5CdpbVWAQsnzLKyDksFU8MvP3mNVoHf+d7bqHiKX/36JW5e7XCx2WKpksaKW4/cYEdywpuFXFd8AvAafGChT81wcYJvRE5rK73pEqTQTdY1KPecUu6S8d+V1uXqNUc+YW9T3tJsAnTsfH0iyIljXrfWK6OctaFigid18YspzrKcs9c3w6RxnFb9PdV/KwbuivQJI2Xo4fBMQPcMGm/WBUZEoETIWJd00iQnCp5LLViaJvSSTa7WInlrA5hTKKlCnvyLPTJC5wLV92A5r9XDsIcZ1+RdFPaGEizm1OihqRLjWCNIZN8Dp/TAqyEbsf+xgTTi6pMGh8CX+kEIbs4j5Yn9fBtpIDy785dxLbTuRjtxdLkoik1zBe6gYailFDB3PJkTawiyYkEy5b1nq7dtI42rzGmtiEr3MC46ZmaAjkbqof8Y5fE4BjZJNH4FjnAkAJUpAXdp8jjjMfY+oKtgg8LL7O8wz2005tslVh/VDCPug43tc3qzNRinR9aSGd4CKxnY4KiQUuj76DBaK6B+rnWcsF5f4/HQ+TfHb/r45nUWv84IYDJ3DeyjB82F47jIzUrnQD1wxzXrNOOhA3zuxHh6Q35UakeFIHFgfLboG9A09M4BghYa5qoLjHo46hgGCRd+62EbvFs2GMkGTn5oaL60RInqo8C24NgETmckERIYa5VRNotyV/JNvsf2+bBjNc1HU9mFnV1g8xABawTZUUjF7z42cbyGZ0TwdILhaWsJjL7nIrzDxgkrb7g+072fWLeL+yvCSztTPA51i/dbM0aaMwETb7TJNfoBwAlMIQRSS020WtG4alITacdhWbDbS3uaZjeVddVQloKcScM/rc09GUU2z1JrIKslxQRKrMBH7mvK9G0fMoN7qI8JthUdOg8IikWtFaXUAeybzmqh4ZQyNpsN3n60xe3tDvf7g+45Ua8VZZR9AVcpUF9s+HjRqe4AsYHwzjtXePfpOYjFW4okKfe/zgwyhiV+xTyvZjP+7tZcP6fzT4TaGPf7PX70/bfxVz/9HOmnJEll2HA342xOeHIxA2lGnRNevXqF+/tbJAYyEoqHQX9lT1wpXOt94NA6XSvMotgTIPuFhnWA7rWx+ceo3LjSFu4BCJkSlgVYasO+FFzfLbjbAbwQeBFaJZDTQzfsse7PGQHPqfE1Fuq84OT67H0yg4F3ZbxwAGfUGyR/jD4GfqSciPt14YGrz/3ZqjOZCjFcvhYVUb51ViVtNfAbDY5moOiKaJgnBLEZzsmlMSyuN6YrP21186nuju+iMJ5R6WFmuJAjCxuN4Wq9T5QIkb+LHBMlY0rJQ6ubKXJKr1YMvpmsNWVGvYeNu0HHDC8WQZSThPA6xzDlSQk1rgn33vQuroZGpU2QjeGxw7kTbOdImQPYt5mErEYnH3JK8W8P/GZtOeU5FHKTRbOe295rU/QkmsLDmkWyoIasrrbtpbJEztTWZZVst0mYNJGglfex3824YiUjRF5G3jPSsszNqCi70WOFL9ZDfdKA4/90TBmvI1uvDm1GhevoWWEI13Nyqk3e/oBhsOY/BKzXdlQO9eSIx3szjto3yMWv0QdcSvJ4ZjQ8fJ1S8eb4TR7fPAy1wdNFm1XwKERUV5DwflKGChcuHK4B6wbkwJxcWAyWOASpGpU9YUidaXVlpgur2LDOzMTrJT96kdMGHPYL5nkTGGNQsnwBsz8qhf0dA3MlwDbJH4Xtxo9R6Hs/A1h1DwVgILdhZdmBZS/UsScNUSOGZQJ0rzBGBckbUkMafx/LzpBd+LE8tytY+gizLjto6+MbrZPmRbSp9BDOgfl3Bi7D2EGCXQr71V7rQjwCqfF6a4v/1XvX3kIKyQ3suaYgdRypXqMWPI9BGMTPxlkp9E9Oh4Y1WxY9eYy3g2QPIbMUKm5VsmfO8wa1VeQpY5qB/aGgLAcQGq4uz/DivqKiohYraA6kLJ501G4VV+gkQt0SODB6ZRi3nCu9U7NBl/C1pgkldMgbM2qRInnLwlhKxW5/QCkCMlNOkumOCdSA1DaoKMgXF7h8/DYev3WF/fIKpQEZE9BkX13lgrPtFiURPrn+BH/z04+w21UBisygQiBqaHMG1Yx3H13i8cUZ9ktF5YwJDIYWQA7032l4XOfdY3cs0I6s7uH8yb8QxUfWWkZdJrz/g6f4oz9+hf/zb36NTz+7xXlKKKXi9uUtfv7Ll7jYvsDHz3c4xzX+7P/+9/jFh89RSLLfppY0j8IpWCmvSRAaatVC9DpUNjpOgHh2E7T+Zi88juFa7StXWPHulPTZxqsbg6Yeat1aEa80L2ioaCnh6ul38N3v/zaunlzj5WHB5TYjEaEcClKeRWHVbKzm2bf1Z2tsAEAk6zWCQUVQ3gMBh3ZO+zHW7D4xv/0DD+d5AGPGc8yjFw0J2jz9G/m1tVUOM6CM9Q1P+Zes7ycabOs4jRdEsNwVGPkvhjVG6DYqwo50Q/ss4QsN9/aDB7pHeGZ8LPlckMs8yVQqvLYpPdZaJBQ0S7BoooSLs3PMeUblBdFwKOPTUIslQ2mO5/OU0FrV5yfkKYts8/Bpjj0AWL3lTOghp32kzMgdZRunDuCHeVI+4gYFyDR5MlAEObUyeHdFNmRV16zUnax6XU57xvD6qEt4gzp/s9myIHxeGdRMBxlw0dA2IO4rdnznkEv6Pk0aeq8RXaVIGGrlpnkgTIYAy9LArYLbXjFF8xJMpJEQglEs4RbL+NtUWiQEh+0f2hGrMYuwnh0/jJOmxgT4NRiu6nPVaSOiNdbspUFBdR6lZ83YEOZYLg35G0Cwfeq9XZCaw6SZzI3HaXtjK8VIPGKhrhzq2jQ6ttKXw77u4zHx3AQrOvH5Ju2n41mtSzqw0NU6eXN8q45vrCwm3Syr6xNGOE4UDr4r+pJgdAVvxYwBJFsc1M9bTDYHogcgoZKsFnjqcM+VD/eeDeJd7g3KCwzaMoORejgsJARi2Ejs/xo40T/UfwUw9K17GA28+PK3lqwO1mL01FNrm5Jm4w2AHRSpoHdJYwKRxqdzbxdR3KthDdJ+cdIacPa7jXqCxc+zzpFl6TbPXMTS7P/InKSVMWGwlhkRpXE01hZ7JiC1OIYIU8H9uyWricq8lQcI9KWj3Y3Z6/nQwV7vHjWLMOlvXWiG+9bga+CCYo1ugVOuDRHxWotWs5BdSfyUUHkBcwERY7u9wpQLaHeP7fmZZIwDY94QtudZrLUM1CYNlzqDDUU9nJMy/LpUVDqApwkpT0JnJIkAMgGsAKK1hmzagwKNPGUpddAMmAJMjMICrHb7A5bDgv1hwaEo8HcDgfR7yoQDE1o5oCx3uFv2eDItQAMqSGq3QpJabDYzbu4O+PzVa9zf32spRq2HlljzDkhfU2sopeHQyGt1uRHKDDrradLfDMB7CXU2k0wnQAcOwapPSguDdwYhe66uNyLgFz//HF++uBHPLQt/rblhS4xPPr9Go+f46Od/g/fO9/iHn3+GL768QwIhg1HcunB8OJujcIIlzNMS9TGxesjgc5Kz1J5jBdwWys4s42Cgh6bex8hzLIkGQTy4jIylZbSpopYFn3/+Cn//979ExoIvP/sSd7cLHj+6wuV2xt01g3JdlQTqKdxdFijNeEF0VdIMhNutLayxzsMNGHVj42rinRYcRPucBTpZlS1qTVZIVAL6/qRuvGOWEGdCkJmAy6Jk5ARIOLc+58ggwP2c8LwYGmltCJ7BICsjD457Pe1Z3fPyMIIbuFy8rGvGQS6Qt3dQppspsGERUhwX8SwlzaoL1kymVRTB60NBmhLyPCGljKLlMAiMKWVsN1sAEqp6qIskl4LQTZ6S0FUTnlbL4hLeaFroS5PjRGNnawGMsygzxi+4S069DIBuBwhYSX53ld2730c1oh6VviR7gAGSUIy+yb1PAwOwEGEyWSrzb/jgeC66bG1NMpfa+8doHBuhzlzczBiUZpnbQBMW4gog1hG2eSaVq1NWfGIYBwBTFnlVZHxbrUADSmUJKT70pHzTZlJDZh9DVv7fWMKWjTFmkCcwlHYZaAlJazhGHvng9vH2dWVeTXbYYevADSWIco/RU7xKm3riMKEnQOWVy4ym61JukYR6hJ5IJ+IQpRifD8UtupffcEu8x3is9ZJaV6zXJOBjFRToyFv8WsQfzVCuq2YlcFf65pvjW3R88z2Lk1j4AWMOTcGs1bZLau2Z/Z5IGGN4yWnAbIw3paTKBgbipsCkbM9J8ueEzKQ0qmXRqxbPxb9f+TnxyXuOKyd6Q13wWJPgDCZeah4/NQrHvZsc80fB5K5ey3EU/Lw9q4d1bvv7Tx6B+ScCIEV0T1mgDE4Ma93xQR8X6SYhDY0f+wwApVaYpyCORbxutMh38EdBnQtQaNWtDvrZOkICxDoo4VFgAFaETassRvrsDyenTUn9LwzR4vOt7SPNWAKeQb88MS/iKakotQ5ri5Aw5xlvPX0Lh6Xg+vUtZlrw7jtXePHqBvd3d9gQ8NbZFXb311jqAZmAzQaoSKjLJHtsk6zFxiJ4M01AShAlWkIRUyIsZp0HgzIhp4SMjGmanT5ud3uxELOkNj/sJZlE4YJlKdjf71CrZHUVYaiWRQCJJA37bd1hThmtLLi/22F/13Dx9hnu7hfcLwfkxJiwBW02uEqEOu3xxz96ikcXM/7irz/Hxx+9Ej4EwoEXoGxwcdHwgw/O8N5VxWF3kMQJNINRAK6oHqXWFX8Bk9mVKKDXvT9SLFbgoc+5znVrw1VSP5VBnJBoAk/ARz//EPevFqBKuxo1pArU8zNsqYLqNf7mL57jV9tbtOsZ0yL13iolcKpD+Rgn78AjoHRtIcV9LXWiayBJ6pOkADqRKlrGl/Q30tvcg8JAWRbtZw8bg4KaUhq4NtTzhLbPeOcKuDyb8fiC8NZlxWe/2uN8Jrzz6Byb7Rn2hwPOpg0sZSspqCIFZEY0tlZ9T4+GEvKwRvucnGJ74lWz0Djdt7i6UPaxa3/lgyuqHfT1Y10GiBAAmIEksO9xj6UC5BbxzpuHsuLYaj8+3yIeQlKvrqENSqHJobW32/saeeSpwVjfYyIt7I/0cUfXY1zRBmHNy61d0TjY9BnrrSTW/s126xhiWRaUUrDbHcRotZmRp4ycMlqtuL/fybuJkadJM+4uqK1ou63ge8Jms3W6avpj05DIWve6X7F7D82z56WHdMGlTO5tyZZBVUG1JPtQHsga6hqiknycoVkuXU4QaiUACTmdCQ22BsYC5orWRHEwbOPr3MorxGfb96CktygjG0syGqhyQV3piJk3SZWRTidR+xDiF1GrxncONICuPMGU1saoB42YSCFrrxqSLQER50kMMWpoKIuWQakVt3cVgGx1AAhTnjCljLOLc4Ay8px7O4vwrKZ7KQeAGT5bZnaABfeSzIMZLoQPybWJCFUNB4bT1uvM6aWaMYZ1m4nNW0LKG2V14uWN+5sBYY+tyX51WQvkMhXo8z0odaz4gfp51vke1pny7qHCAcPn3w0moKOMv0eKor8/0EeYdyemN8e3+vjGyuJhv2hNwh5kV4cUyhVEzRdZLCtxZAGBMYYHXsYcBIws2Kb8o6f2jiYssbTEb1Ex7F7HU6/qQjV+NsEBQDwWFJUAY7ZjPBMp8zhSfPj4PaZw2I2JIKA69IF0LFS69LFbh8zEe6hndBTGxSGpBfl1XUmTtqWY2jhuavS4e4aHt3B85xjyYkfcbzkM0AlDwaljzWzjOaLeh/QQDZ28t49LpEu9IKBt/Y0Y4Ae0Xj9Wv9P44VQ/DHAfw1kLx7IJIzeGAJDC1QpGKCUsLWO3EFLe4mwuaKnhyWNJI7+BAAlupEmRGqYkNUHdeZ4YDLHA5imDKMuuPpaaaACQckWCJBZgajifxQBh1vEGCScSpbCDI2ZGSrofsgFVQ6ITOqAU8JNhIYeH5YAvvniFw3uXMLnCLaFSAy8Nv3y9w0cvXuOvf/Yan7+4wc393sMxcybkacYPvv82vvvBFa7Oz1AKUAsp6Ta0JKCCWT2NroDI1zbwjH8kYaHztfXasB96iBOjYkFKhEePz7BrDWdnCUTic0opodaC+fISb73zBD/8/Xew3Ge8/cEjnN/con3xSlOA0AnaiWLZAIe14/g60YHYl+RiJY9YgC8NbV97wWnEiOHJzAI5OVXkJiGuhzKDd8CnX9zg6mrCq/09NpszzBP7eyWqoz+UNTmGr8mg1MterdUYRIXlgTXnl4aBMmA38CIDtkrP4HU/x+u8yHj8KYQGWu7NrB5ufpA3BCU1EJV5LuzvKZzFsY3roYkYLd7sPPFhWj/2Mtri7YCQ6PgJQlfklx9F39iY6+ttj1eAlhr6qmPYxHhmY5OnCTNIAHeVpCeVKsAS1ZLIIiI4KCwZUr2BYApMV1jZI+wlC7tmTVev1zgmGBUowgDafWjjPY3HKeB4fTcaiHHG9p93TCHKnB3ZsQjFpaBClyCKhSVUIyJXkl1VVDzg2Z+T0pgqQaTKEdEpw0X3uo9yzK4zeg13kN0Xr5e/65JscdvxaMyAG/mmeUJqDZwzJi05ZcYrZjHy1KVIdJKGrJIaglVnDnPV+9ij0yjwb5uyVXiu8SOGhwYz4cTkB0+cZQhlkvoYBEBloy9Tv358jiRkrMqz2j9K3/IQ3SiWjp780MmOKYcTJ/rlP69CoNdRU248+/8gX98cv5njGyuLy1LU+kxeyN6kkE4/AKDUBTkTUg6vGqUVQAl5EguenwoKpoEGO8eACAUiWPkLO5LuWVrj/kE5ok6kDx2RYaytcv1dcKVRLtR/ghdp7X00F/w6W+fa+ySFZ0fGTNAQ1ZWy2L5CyQII2fqRFLTzOL6gXmPQ9qK0ZsDM2mT9N3HSw2s708cxk3Et15gsDz8hjMtXKYty/2mGwvYYfnhGo9eyPyc0+ohg+l+z3IukOdEGw7Q4Mdexjau+DN7mU/3Sd1rIIIGGcN5Fa04SAWki3O8SbveMmTY42xQJY8kZCxiXU8J+SVg4qZCryEn3AbGBDEltXooInskTyjAKMqhZIW1I1ExqADZgiPJnkQC1VjQNB5W9Rk1DU5NmZVVLNNu8d64BZAWVBaUs+OLFayz7M91/QgBnFK4o+4ZffPISP/3oNf7yH17i7uYWS12cxjNJge/f++FT/LOffBfnZxscFkarSRqPhjZVEFWAJYuizbbNuySYegjII8zxMLMDUI8AMJ6TZcMAL2BkPHp8gUKE7TZpqRgpSl5KQZ4mXDx+hO/94C18+XnD42eXmJ9vYBbpbqBYgYlwJgJTE+D+v7bHIsGZJdOknyeJ7DDPldGi83zSEC3qnsZuTBZFkdGw5YaUE+6WjENjfPHqBhefJ1zfH/DW4y2IKpaliPJECcwFHcQ3yc6qBkoHUQ92f4RXp6avL70O6CMscyMUjCeOo7kGTQa60bcadQWEAPi4y/dMGeaNWlvjKQLKsOajotiNDrFP5Od70yLaDg1GOD0oigPxjsdXYDp7Twyd7M//Sla34pUMC882QOnrSN/ft4dImB6lhHmWfdyLZliWGqoAzROge71qrWL4TSJDJ5LQ0tZaxxWB/7siZfIyiaxwL5Dyx9Y48DLj3XLzWjG2PvoIMZwubO6il9k5DOn+WjCKesK0oJj0LxUbEi8ZJD8FDEGAKX1Gh33+0NcXW+SHJRQz/tWVau+XYZpIw6zKrGay50AIR7oGmSfUxnkM248016fGha4oi4nALKGkqgP6UiwLo5WKZVnQwEickXPWcPqukD0MB1XBMt7mmbGNb7CvcW9WckI4jSOZcYR51INblLbMLGHjCKzHrkc4OPQcjHg2PccdM76/7qN97qHSnTcejYrTaJcl6zdFTnSsKMbzX4393hy/+eMbK4tnV2ceN5+1LqK7zyl58e6LfCaeBSsGTTT8b6EHzIwpT8cKBI/ELtbEBNiGZj2ixcSAr9yA1TUIzzoh9FfXikckqWK1ssgEhg5EpswYUozKRUGZSKAUlIUIWgLSmuZ5eL4vSYptJognRn4PofrhVxnrCmX6er4H8abx+X2AwkdavfP4YxSSzkxTt8oDfVgSdeH4dUdUvgyQDHPGnVFZCNh6+EHs57rA1nsVBPbA0XAYkDMQpC/iwG1tHsmFzEFsXgAAIABJREFUvbY37MvowzUKbgNE8BBTm52eYMBoR+qPmghUYVgrwA21Lri9v8enL17hyeUW33/2BFMmPP/sBUq5x5/8yffw4vUdXry6xy8/ugElQJw4kg6+ccOyCGtPWzVUQMBHSgk0WbkxWQvbzQYExn5fpe8poRTGUhq4ESoD97d77A8HAGYpVbDc2LYLOr0wJOvwhggVBZtNxtXFGbYXhLtSkKmCKaEw8Or1S7RK+NtffIgPP7vF7e0tlmUP4km97IzbQ0U9FHz6/BYfPD3g3bMD5hmYt5DELAwQZzBmze4aQ/ii8UtbrhPxVTzDZ1jn0PGig2//x/kUpQnLvoFog1LuUUtDrjKe+7aAEvDRp69wf1vxv/z3/xcuLnf4+V/9Ei8/u0ZCRm4Ni1qVjwzYWJ9j01l8ma/ktyj7TRIOHSpjnjNqlVRmeUo9NExpWZJM5FEbYEZi8kLoLW3BRJhTQ5oyKO1xOW/xh7/3Af74D76DP/vzD/HTT26B+Qa/+1vvYJ4lFDDlCWZYk7AsA7LQBd7G9WpIPXxfc6wxwsQUHMniQCmE4amCImMo681KKfX7ndFp+CGHRFBxFqwRIz+NgNja5VEDITkNs+1j1x74Rw5lIUbwGg198TcjlGMfwOroxNsH8MQt7SuetQajvqdrRajOV8M9XRKNXuym++g9kRIzuEmt2WkzI6eMi0sJ0ay1onLD/m6HhAUAIW8mpHlGSlLK53BYZP5sK4fJx2CQJR2LVivq0t+bJjWWU6+v2A0Kvd9rkGyj4f20chLchDdqofhWG5aygFm281ACDnUHBuP8cot5miTLtZYOsXaTWrEnNdB3WdUH17GK0a/uvRXeLIa/pJlH5dYWFBJe0a6SuystOkYIRmSTaRRWoioJHs5otBBHT8d3QED2br+0t8fdrf5MDQWeEvJ8rsZMSWxWawXXFQ+xPmjm+D5kDNtLQ/JzJ9auF+ojeDS6Y8Qwvf2M7p00ehAvuBghqvIo6YPshRX805pkRLc5ifuyrQ2nDl/WR78HmaW08pCzpBsFbZ7j89VzrbkQWDHtKW+0/Y2K95vj23t8Y2WxLIsybJJkEiaciEDQvRiAeiKOrSiDYNNDPGpBsJvFYSCkbuHyZw3f/ObViROublechpfK+QcUywhA4m/j9eSL2r2FUUnASbmLzjAkRsR8HacXEjtjI9vcrGAljp8MlYDfZoJXLfPEPPQl6tfZx2QFOBgelto9kydaR8c/sdOHMMWgsn0F+D5mtHRiLtfhr4NCOF4IBPqJjNMSyay9uWCgJWOC3hl/Nlmbjmj1BIwaBsQexeM5DXsl8BBqLdfqHpbEyCl78oXHVzMozZiuD8iJME0bnG8TnlydodQneHm3x3YqmPIeNAG1JA/XURURTD37Khok4laNF+ZRsqyEgK5tjQfPyKiloi4FpUkIWcqQ4u4QkL3U2hOfmND0PidQy6i0iIBPl0jTOXLKKI1QG4FbASbGs/eeYEkz/mAh/NbNHdK//Qf8/c8+QylNlZSEnBhLrfj1F5/h6YcX+O33LrHJomw3LeLtAB19rwhAuif59Cr9Ou93n6cR3At7VG7jOpWWQWkLHj95hE9fyN4+uaeAidGKKCnzTDigAvUMt/dNvKScUUHIKL5XamjriXOyhLWfrgTLKDADrTJKKQAklBfoGVE94QxDtusQNKS+oZSiGV7ldwMJknuhAJRwtzTwbsF8tsGUN9jdEW5fJfzJT76Ltz+4Q84Z97s72StbCrwEjs0DkScliuO8Vpb01aBBOet/3UADjdRT0HUkMfTB1v8us5RXqEGBOxH39x21c/VwNK8lGfH06K3o7bTGjH1c9c/Bm/GP8P51774OnHHIdg50w1e4zTy+D8myCJ4FfPJw3taYtd3a7f7SlVEvPtvlOQsxEjG4MpayoFAFUkJOYmDYnm0dnyylouwPYsiAhK9SSqgs4auHpejLuufPlBVSo3FSo0HfRy79ksRGZDOgtBZ4qn6wGqdipOg77lOaxGI5GdtlbNoGtQL7Q1NeIbJ8d1uxo4qchD6nLP0VLMNqgw5ewqBMMDcYw+i8yBeN8EjY3jTDb3CjvhGIfWzhHHQ9hqJf/vx1VlWP3LUIMts3OFCHvcPOutQdEZWV8Bi25NjYN91+0TyTOREhIaHq9kWT84ZP1HTrmCeuU169dsiFYH+jMshwRdPH2h6h0XmuvLLud2UbS125qsiDMNYk1/35tlLWobHxCLot8JVy7KtlXO9/b2c8N4zGV/CZqHDGz2+Ob+fxjZXFumRJFKEEKmnWpZCzMZecM5Iyc8+8F1KDiQKZYNk5xaJmqbh7fSNndiwZF4tmUhw9i3CGblafddz5+nrfN2C8xg476deGcFKExRJ+P0XoHovuj+rgwDNhUn9Gb19yS9JKX3OwNugXpEzf+xlaMCjoNh4RNAITWfKI2C4DfWF8aQQd0Wq2NgR4SFKYO+lKAD/DOJ8CV6sxjVZfHDObeI5X7enjgYfHJ7RGAIIoRib4nabWuIvIFW+KbT/BkHlk7S6kh3E26yFbZsosglTBOoFE0Fr2NCYs+3sshx1evD7g9nqPV6/vcHaR8MXrL/H849f4u5/eYkoVoIZEGS2JktsYvjGfASCJF2eaJszzjHkjQi5rgfVpmpC1YDIISLMKelScX26wbTNqA7gB+/0BSylYFrF+t90BFWrNtTAdfY6ExBbwzJg4Ydnf4fp2g9t9w/7A2GTC2aMtkDL+/C/ucF1ucItb7Hc73O2rGkKq7LVl4Onjp/itZ+/ij37yLr779iWevjUBaDjsq2Z5LbJHhLX8h5MiSyURZtjeEV1cR3M5TmwE9Ubv3BlT6GunQQmJ4zxjt1vwW8+e4Cc/eYZ9Aj59foezNONQgGkDLHWH/+5/+FO83le8fLXDoQEgCe/MD7WOugnF1mip5iGw87As5poRkgUwk2QllLI7vewPWX+MgjXtvaxzzThMQDZPIABC1pDLAyolZD7HzV3B//Sn/w/+7O9+gf/mP/8X+G//q/8At3c3+Hf/7meY5o16S+L+6g7fozfarGPR+ECwLIpx3a+Urd6FbnzUflV9+BBxQKTnhwYN/Me2CAwWd+aTsgGQiHZTNeyG0YiqgN4NG/HaDsYkL4D2wX8+VuKsVYT1ezDwQbt2VDBP9CEqq4MiOfJe68voDQotCkq4PasrIKvEL2ZsZIAoy6ta0z2Msk5ra+BSsbds3izJqqTMgoS3LousvVZl7IzfXVxeuKeulMU5dWu9BBDVhkSEzebMu7E/7E/gYmGu6/OWJIkbD2GvFD1XiZAyIc0bnCXG4yzr8LBvKGqwa6XhsC+oS8WyAHu+l3nT56WkmVx13VqElG3VadxccbB56qJR9rV376FGgQ24wEJmba5DeDubxznUVWSEdajjCni4pe1OcO+64iPS3wYa4f6MEfMAZqmW3xvYIls4i2lUt28w6fMTAVaDOACEHp48esSNBzIfe9adtzom0oy0jiEMMynGa5YLg5A1ss6MEX0fLPmzuTXJ16E5PrxUUMAlpxwdRzToczb+HX6z87bm9EKnFR2raGjw8V+PS1/czh6ODP5fqcC+OX7TxzfPhupplRlmXatVhRT3xSCfo8BAYFANUKtuyhrKBAtWC5ZsBIGii3oAL+i0Sp7yuIss/+uL2BYHHV3bOxgJHb44BgInIHq51sTuIYWEANpkPCy9dlxf5FlNe0jGYA06dSjDjJ68mEBu+OzjOgrpmjDU2TJBEq9JtmE79COOz6BpwebotCLmDPW4I6EDp0IX+nEydBinx2m4dv25E0NvpwvI3q4H20Krd7oAW4Mt+12E1BhYs7pEQYZ/Y0sWo54zmCVWmHRrFftaUAmYtxlnJSMnAeyPrx6jvZfx1tUT3Nze4+XNHT795Y2JeXQxIGosGJoZtSGlAixjWOUCAucmyWpgKdxlHEopoR4aY79fUKsAGUbPohbp2vvs46ZtqBX3dzt8+NEX+P33zoCLCe2+4lAq7soBt7t7/PSjj7G7X3D9co9USdJ8QxSYZ29f4J/94Cl+8sP3cbVJAKoWeQbQXPyrfsgu/Ic55N44MzjhgXnr67QDX0Zfz3698R1WTqdgrrWGTc4oB5YssiR8VMrMMnaHht2moPCCXSkAA5NuuDlBZadpi49b7+BOAZfRuQAlVsBpDyDMm43uSa3eD1ur3WATny7JkFAbCFKXUUq+VBz2B3z2JeOvfvox/sM//D62c0POk4Kfcamu+3N6beqqIv90AgR1DwEhrtGV0tYv0OewjtGASntLOFAHh6c9oCgCGjHHw5vDfHZuNv5+/LyHtlE8FJHSW308ot/kGBXPMGi6zs14PAqIr3vjqHCGL0py+h4dcLKBN45G8P1ornxoOQ1A8EtqSRN+C39dNKOvrwHNjwDWSA4CLHy4ccN+v1uNw5joxmVzGJsoblZQwk946Y2W0LIaLBtgRq1sWycTIdGEWhNaZSzqCTRAH8E8a+1CUxrtfNwDz8yo0fhBJMrJqbnhMO+I2y3s8yj74xj5Zx0jN/4M09z3gdr4GQ8e6MZ5tz+sK5xKCGSJZshg3TFSOMEFVi2Hj0tsY5TlRismRzvY1c5yH5cOExztwvY0t6IhphxkLwCcyphr4CvijtW6tzUYOjGMd/z9CG+HsTAeZy5h9pvHIev3jobxkemIR31s6zfnQW+O//+Pb+5ZrIz9/h6UgM2cQYlQas9kx8zYH8Qyl3MaijuDZJ+LWEmkMG7KyQPirF5OCpw1Z8n4VZVp5GCF8/DEgdC5ow0KBBsYWcy5xf0yfYbd2oUfhwUpJ473pMU+9j2B4TYSxWuIMaeutwAW0gjdj9ItqXLDCOoAgHqq0b4fSe8FezCGCAgYM4WDqhaKvxLEQh735kjfR63IGbJ3b2QaA4DhcWzHeQpMPeKMB1W/hxmKCVyCZiQ8qbwPnToGVKQzYPMTn33qGMAeC0343NrzRuFAsEQi6NcF6MqhviYBWOoixhmWgsVMjExiWSwKEKZ5wjbPuGp3uNg2LDvGbsfgtMHbjzM++PEVfvbh5yi/bmjtGo3FI2mzzqwBqU2yGhNVUG0arURCQ5SQa0UiRmmSiGbRPR8pJSyloJaGZalYlor9bnFlPE6rhbP2vsONC20hFGZQkr1yHz3/BL9+doln715gcyDc3i14dMa4vn6Nn//iI9zdFuAg1ulEhD1XnM0bPHt2hfefbXB3uEVOW3ACGE0BX0NjQkIDqIhvLi5r40Os6cgRhe2JkPORpLw/bHvhwvy6DkFGC6Tp+Al39wtefXmLu+t7pARRqhLhsDCoJrx1zriYZswkJT/MqNFAXj6HDQRELG0NI4zLK9Aw2ACi8qIENEkmqR6IvrfI+QuRY6CcLR19C2MAgCQFfwUDRea18A6ZGJebDYgy/u1f/hTf++Ad/O733sXZ2RY3N3fYbHKvf0rQZEkN0LTv3vwV2GUOPBc9zG7gP1gd/mMoMW9zphoHQVN7BXq1GYwPj560r+AaY0MCzRhN+O8Dfwknj9qOICTCKZNdD5z3/qx+i0bQh4BkPOcKzmhxOdk0Zjpq0GhACmH96PI9Pqy1qh4yuDJq2XKZJORV6gSS14SOoJghHpysbnWJaoKWCLLXiIHAFKqUSMpIqGyyvW9EhClnz9jLDRL2GJQDE7rCS0zedqXOgLcb0wAAFXwQmjfjkyiKneZIPZDEwMTi6ay1umdKkqP0MHtm8Wa6wmc1d8JcW6vlNLssZe8GBT2IQtZo9rlT6gj9UaUtKlD6t5ZxrazpDtT30nXcYUzLrjHeyjquce2lY4Cncxg9qgzLIyNKdRvCbjsdDudMGXLW3ud1gItBgZJXVO0ToVSp+2klVpalqnEgozXgsEgt5fOLLbbzBG4NKYcIAQpjTz1/hY3XkfLYE/v7OK/HfB0dcfLwa20kpO894iyMubbDDGTe4vi+o0QTb45v0/FPyIYqYHCaEzazbCyvmlZZUr4DjRdkAoiSFOwGnGnmKSMhg3kCN0meIGEeEv6UkqaNVkJOGj5iySidv3EPWbWCuY07E5ZrO3da6wvH4lwIvoOMkcEcKYwnDvco2rEWjA4mtE3xQlvoAIC0YnCM0aKq4ZKZQMRYy+BjHEF+ngiegKILNW1LO05fLYmLRBSc8qSetGKvcM36Hhd4NI7C2OZTB4drOos2ZdiGMdLAyacoLUbg6c/n1bmHGzMAx3Q05uh1iOxkEETR+27PMouiGgBRasGk9UoNNJilVOg/4Ww+R1oqbqqUrbjeVdzdH3Bzc415Zrx6fYdPPnuJL764Fm9V6ZEBfW9Lkz2Sui8nT2koyyL4QrOjloIGoLLRkBZFzoR2qLIGVSmcs4TNttUYRmVZwpsIVh0h54zNZsbjqzPsywGHZYPzy3PM24Qt7zHXhquLBLSM21px4IqcEmojYEo4LBUff3GD/adf4re/8xQ//O5TZEpopei4pkjxq+k1jUln1QTugPs67Q590n/oIdqm/hzpcgNqQgXjUO8xbQrOzzJubhlIrPMk77+5Psg+LM4KOqok6G3Unx0bEtdfJOOv0WEYDK6sBj72pC3MjN3uXni8Gu8MVa5TxA/LPGUQAWVfkN1a3jDnhLOzGXe7HZj3YJQOZkfLEQChJcqsiqt0KoYwyv+WLh++hoa+HdFg5BF9zfUhC+1w9hB4d1orq8bbjbccK1h9jEb+SboGwkTYW/opCjIAgS5NFh61ZXzkP+pQHiMK2+k1e9xuael6zk61Z6iVgzh3few4/H7qaI1BIqgGRSvaZIi0fiH3+bPi66UUcG3Imssqp4ScZV0tpaKUhuWwQEL9hc5TykBKmFLGPE+YN1MfFJZoCMKEloCl1M4MgkGhe8xsTLSQiq9PDnUNzSspZbSYySPjLTySMqT8RwLmNA/8zDK8mkHFlF4bb1dOGw8GISBsRzE6g2TNNqOe8M7k7woUcUQf9gRzIhgPisuJwD3TLHcc6fPN/fE2t/46MmVWVbEhg5dOvE2T6iRm+3bsw/0FR8oqeptijcFYB9KHa02yq2c1fX6tTedHjA5C80JPrTYpw8aCs+9u70GpiUycZ59P8g7a/yrRAjY2GbY+FIboJTRc8o9SFAMu6ph4fI+/Q5/ZcwIdG6K6s+FhnPXm+M0e3zzBTVl0vwWBOYFbwpyzY6x5Bs7mGZQmAcaqCCIJ+KqHHUzYZkpoewmtkn2PVTyIiaSA7uEg99oCBSDlHgwQdDTeLcJ2Cw1/mTudW+0lQDbzW00jGOh3XNcXQSLZDG/MYvBqRoCE8F7TwPw7axMpPL9bVmO7hMmOwtWYhVvcGgFaHJjRNF21PgvkSVAaNWXw8iLSLA3mgTTlYVB4wvhUhkNsQOrZkg6qYsaOW9AkLFCZSSw6HNmBMROi7L/3MePhQgJATG4MGOYVhBqKZycFr/G6tZXQz4XPnhZbNCNP8pB4DAEZ6Yq6EncEr06BQng2Or/WZJvTHDwkKFEeyspUZtRWZK14Su0GogWPL66wzIzLC9lz8/IVYb/f4/LRhM38CFeXM379xafY1wNqmjE1xsQVFVLWIDMhawKEWnvGv2nKmFLCPG+QUsJmIoAbipbaKKXqXsUG4oZMhM08wezUCUBtY+FwmzfA6KZhmRPmlkFccXEG/P7vvot//jvPsJknUCZcnTds3gGePn2GQ73Dr7+8xd/+6hXubwmpCX22w4JfPP8SN6/3+E/+ox/inYtzTAeZn0ZAI0kwUXTsknrFonA8DvUBuhLIPl+nvNdREK4VFlMI2AFKA3jBfkm4fHyFd995B88/P+Dl9WtsNCveWU44227wnQ/ewc3tHW6+uJaMpS3p/lZJcFMD4eUso8qBF0gyopGnsQIgAqs3Xfi5eJlt73k3Xvh6q022e06Sgn6v3u9JE2E3AAsXJGQkFlCVNg213uOtR28hTwm39/d49eU93n70Lh69dYW8JRzuKqZpA7CA9NY6X5znyZWKsJL7mk/AOsDb8YcqvO7FSR082t5we26OBiQWT3uz8Qv0sFaEWJUG33tmwNsyTa6BVxMv7CqGQ/8YKrav4zv75YEWgdU7RNYE1dLPR5kpf464Fnqo+jr5SIh2YTNckcsBGC915aKPs02GGIdC0XV9risI6/XnCp/Iumkm5++EPua2w8xnsEntV5973cs5+XusRQ1lUV6fCNvthPPzDZgZy1LQuKGWilYL9mXvSp81aZ5n4ZPzjJyAs/PsYr9WRm1VFZ6k68F7p2OtHhmTw8o7WPmNmYdMbpCXcGLZe92AAx9AJJhpnidMU9bEYkW9nbLlp7aelMemvWrIuUUaVUl9LTUqc6ddwybMEtUCMChT6MkYidFzVfQsq/0HC68MPAUYlLJABM6fCeM+UOmbOgmaKFVmdGIiNNJ7m7adZMQt0RC3hhbW2UNG5taslJJ0ymoPD0I8bDOMfbM1mBRvTbmvOebZFUhmIG2yY5LzswlPHm8BEgPGfncHELBjyWUANq+3lprh2vMBBEjq9jdXMXlIwuXKsPKTyF8Fm44YxjGkPtP5Mvd6ysyM0iw0W+bNk/P44zsu7z7tN8e38fjGyuLjJ+doralHT2q3idUmZOACwEUyoyJb5kxblRpC0hhVk24IUQaArxYIAXNwbYRg4SAICiM6kXNfiPDfu0JwUnHo2mUHUyoETdB2RtMJ3NpMREOmvsGaa4vLGIj3TxUVZxq2wkOIAUzBNAURAQEpOIEpjnKvZ7hklqxkGnagU2OiXvdJxnGzPpK3sa0WsIUK+3x0HG1P9eb1Ag9hPgZGFG7UCsg2pnG+mAXINmgITscWYYhHsNPftwZB/TjyjK76gjDXds2abvwzQvpqKLUYuA70aMpzL+PR6fMUOLT3dMW2t2n0WClgIslwuuz3UuCcWa3rwPn5Bg2ixB1qAWnYuO2bE+ufmYBUsGmiElmnjKwhJqUAXqvL2yiGBvNIQQtBt2prqwsixwzGJ3QwUhVQcbY5x2Y6w/4AnM1nePLoDIUZL272eP7ZLV68vMZf/vRLfHm7YH/HoCrjNxPwzpML/Ms//h4enW9xfj5h3sxoZIqqhkNRg3lzPeR6Zcg4dZxSFB46PFyso/VA3wamJhAS5pxQDozr1zvc3R5E6UUGMfD40RneefsM33lvi7tzgGrF9e0e17d7GzgQAYktjFIBFHhIEONT4N/Jkggaq9Pyc2Y068nIOplRoFGASwE146EI4JyQSOqZEZIAy3aOuuxwd12w2SbUxiil4lD2eP7JK2QC3r/aiGJxVIIA3bCjvM3oiDjyHfbkVsYJja/Zvmw2Ru4TYvRptMl+P3S9MoUavkRHiqO3MYKwoHSeopO+82cFkFwxskE35Yy/kt5i6H3kN/aM+J5jiz7G36Kco+NrfM+9tpfD3yi7+liYrKHjtvU39/u82afGJrR91e7RjNCVQxFp0rrj17J6fOS62sz7V1X5knDVeZp7aRltioWettZQa9VMwgBBspNmNbblnJGh6VaWBbWJ4ZYog9VdeBSRBFmPZElSIjaKIDsoOMwS9dFBvHoCE4NZ6FdCxgWPVd1zntVj31T2zoa5IP01A21KCZNFeZnBs8leR9Z7E5ErTazzRDRIK2+3y0bHWafmPaj/1NftWqmLv5M0sMun8PC4vl1J4XF818qqjaNhG2vVcMT1SaPRI9K1rCe5WxIOyVjnZOPNTk9NMRGRGB3kIcKoKrPUUgZ59EbO8FIvhqP8vd6eEGY/tK23qy8SOrouJjb0eQzXiCGlOb+2NWtrLB4xeuGreNub4zd/fGNl8e7+HlPSYtZKMDllAUG+XgiVFwdLptgBQCxAT0Qo3LTwM/t1tTa0pWHK5qGQ7I2UCNk3DMshXkE4AzkV4jN4AQFfMDFvHGtogAMiWK2boFi5IOs24fUev74g7dr+ziigySVuB9THG8ql791LMTJIOaX17rJHjiuogiSYADyjWB+HIHT0HyIcRbON7ScHjClegK4cdoFmY6yAC8GXar8587deq0BvHZBo/YhulQrjumYwnTmu94xEAcQAi+ezg4hxuLsgMI+K1fVkv2gN3jywMWqC4xAdgZ91OMZDRzSgWJdqq2F/ijJogmQwpXNsGuPs4sJDjHKuyPM9Hl0Rbg8ZxAfUBilLwQSQ7EfMFVIHtDUc7hYkIuQsoKlMC8yLA85u0QcBh/1eLLylobaGXW0otTOZyn3PQsfBBgLE0jvjCsQH7A57fPk646Nfv8R3//V/ineenuGTLz7Bi/0t/uaTj/Dxp9f49JZxf0doCyOhoTBwfnGBx289wfc/eIKnV8CrFzvcZgBpwpwzMs0ewmYsxPenrgDNevyPwMMJgXvKIm3y0n7zrNEk+6ZS3uBud4e6K6gLY0ozNnNDOQALLdgvBdfXB2D/GufnhA/ef4L82Wvc3u2OQ8+NV0WgH3/XayxM2M8F3alpOLJnNk0TQEBlSbyQySqSMqacUVuRPbTB0OBKXWvIzJgYqLni/Mklnrz1Fpalgu7v8fTxU/zX/+W/xL/6k2fY3d7hk+c3oJy8fpytPzMqUG+xnztSaNfKot/Rr/UspGzWfrh3oUJowhSdZnJCFYFIAyNfCecBwLxxA984XuvB/NbpSDvrivEJ/nCK90U6NdWJgvHvpMdcbh7WpNHB+tn22YyjLEPTES33d5rSGVvJZPvCjoGjDNmKd67qWj7k+YmePjeCkiVGD3JgDVjZJM4orxliyIhj3422SUJYp0lrtIoH73x7ppmrGfvDAaUU7HZ7APCSGzlnTPM5MgOlHNBa8aiRqCwORm3qOQXWc9XvG8fHQZffSXCpRqpEa+RAStnxS3JoYtKcsN1sAIv4qtU9asb+sq51hvDwVptNMmC4zJL6rcbZ+YT2g9Hnt9OctN2/fwWv9fkzOoGWAUNfZ+3UbSt+7u0J7+qKYL9nrS/Sim6P1rpOS9Px9+uszeilMcRIQZ4VfbOZkbN44w89+VUTAAAgAElEQVSHBQAwb88ApdXWGg57e29PaGSlt3rekICD9DsN36A0EpVm9utSsjB/u1p+t+0zg6Hbn5qiWjiOGSw6BG+Ob/HxjZVFC8F0WEJaHwaAaVc5JbFmAUfKojMyEzzKtLz4DkiFLfumcmEi7Ezb3xUO0gQIzlDJW3h0dCtPb4+3Tb82VRyIxCMxiP1B1q4lnwmlkfn742m4FP3K+GF1iQlY6oCw7xVSyx+SenRUUHP3LtjDrfaPC8nhTcHCt2rHkRI+3AUMRTKH3zt4o/AjQ4E6dWZpl3u37JrQ16P2fYWedVoJMzB32pMUrV3GEKtb02L7Qw/JQgt7yu9IKF25SEeg5FQjjryeX9MnEY7kxg2jvSmLQeewNCxLw7Iwrs43yLSgNUucALifY5gks3xagXW7vgGNtExOdQFw2JtVXQRzoowpE6hVg60Cwld0ZWMgpyUTaIOE+dwvC16+uEate3z58g73dwt21wv2t1USI3BT+pZALUmlUoFGWA6MpoqwleeJdahYw+BOotZxNoLAjOd6D756btbfRaWSaIyGhgJODY+uLvD2W1c4//wGL292osQwYX8oErq/MG72jGlbcX2/oCKu4Q4MI1iPiiN8pjo/wWo9O+hWfs4MVDXkyR6dXuwh8nJ5phmSqPNfWw+qRqYkHCYlSXtzKAUfPn+Bj797jhmth2cr/Rqrl0d4CjTYmortENrtq3LF0X1VR3pzrwJ1vmeJg1zJC2Dc+uUA/ASvXgPLU5EskS5OSqcgt77ekBTEof7b5cSoSBy1LzzkaF2ytVWNfa4ERw9ivJ77ejLFMRYdp3A9h5dIo0Lfu2x/iPetw73Xv8fgWzs/8lRt4vEr/bA9aYGh9ndQ6C+JJ7wAcE9mAqYpRkvJI0TRaqAk+7JzIrQUE9D0tpoC21ftStEKBz1Ai0HQ96PpFh7Psta3nvS1anyKJXrADR68WpMyeFLK2fi7cGKR2dTXXOiHjXmXf504zLjRSeR4nuOk0eq34bph3enfKHIJwTju3HOQ7SdGNIITnNoUvHZM9LUj/1iZkLX6NGJkjDycgVrUi72IAyANZed6rgkpZdcj6k4fDxFTn58eGdXxnzktjg2k45oLKFXnusdErUv7rO98c3z7jm+sLG7nje1HRmcgfY+aZelKddY7wnIgGiyGYviQUA1qvUaWha9ZGCqDvfxF9ndZOmktSGtKBY3ZTv1dwWI1AvUVUw0LWTG+KzXhaZ1R0dGPQ7/dOm4JHiwkCgE8hGE6pSz4v8IVZNy5A1mGhs9onbEIIKJHj7mfjUt46JeBJ0V8pMDjyKIbcSiNzM4s8ifBid7cToW6RaUzTtGxy7W/2z/ySSY9tCEIIu/7SJ7DfhTZO6XM2fcjGYbQ0Bulu7gnj3TsHDARVCj7h/6M2P8gaIj6/g2z6BltmiXWe0KE1ha0VrAUsXjPSeqLlWWP/f6Aw1Lx5PICKd+Bm3nsRe0gSlJ6xovSJ8ybhDwIHXYSrJVxWA6uQJSD0Mk8TyDKmKcMJkJd9jIvTcJAWbKED4oaGQJvezRiEG0AytiXBb/+1afYbDNu9zssu4LyuqHcAvVQ0KqGXNEEUEMtB7R6QKuM+x0AJKQ0SdQDGmotuqcCqlwTPGvEijaMg5yCDn0ZHNP1ACaO7rMAT+1wW1BY9hu/9+5jPHv2BFcffYnlo4ptysg8Y1kKatmhMOPwesHBMunpMyeivqYV/Pg6bRZOrLRodIu+xMT4Jny7AUjcUBskwyNLsWiQ1Nishb2kRvdAdT4gIc3KK/S/iiZzyrKvuJU9GleUVnB/W/C//5u/x3bT8IPvPsF75+dSC1KZT7eGV+8jBevXCIZUCY+LaeAN5HuQjdxsIEYeC7/GOUQwUDpgQlAYVnN8TAIjo4zevq87xmgYA28c+MRw8fhY6s845ZEbXzQ8Zvjc5ddabnDUDY/KXXXeJ3th+6tW7bCHrLS2hwCpjcO6kLv3g1kVlVGJWCuMDx0SidH3qcfkXK1JMi8rWM+1oVXgUE1GEKbtRpRB9TTWUoZQ1WmasN1ukdKkIZ66J7IFjxAgMlKxihkure2DguRZe4PsNKXk/2XvTXpkSZI0sU9Uzdw9It6eWZlZS1f1NGZ6OCRAYA4EhheC/50nggMSIGYOXGamp5auNZe3RIS7m6kKD7KoqJrFq2J2A5WHZ1X5IsLdTE1VVFTkE1FREdgCFTlQS0HKWc+863myZM4lhumComu/lHYWkog0gow0DNIOqpA6egjgimIYQPkDdRvR1Y4l2M9xCocJin/TPq4Yd1kbxbbt2JEi7z8aHlsHDNHhib9k3RL17+XeEIc5B0Ae2UApdcmNqmY6r1oPuFYtT7UWOYfKjBpUFyXCdGi1Gn1J6bhq3el7WG9byaAOQup3e/0ZT/YDINDPnrU12r3KcKVmu3kSG366fnDX9zYWr8u6ya5lCkyKOIv3IKeiBb2TC3eCekT0wVpYZUxjHmMgK0jegXqWRBWSlEE+LKudsxLBWcGoCpIiG4+hBe2SVdV2TPV1T/BxXIQeXjbl7TPc/2IhBv4Gd3fZjwZETEEZMGvNsD8rhkoCa+FmOX4WgEW4RLBoDrME2JZjp1Dhk9m1UUyJdEBkoJ9aWg7EiAA/RQXnizYQ9uy2MbNYKaUTTBriLwYbKVhz8Y6u/9YT3ngKOCaibGQk9jnxO0n+sVZFxiZRgqWBH1cgVPWsn9GgzTWRJCExKFpNMa4RuLT9kq3H3ACZORraeFMiEGdUtMxqh+MBAHDiGasbc4zDNOP2MKOsK/4hf4dTZjCuKJmwJhlkrgDnGwmBLAvO5ytOpwMWFpCTKeF4nEGJcL1eZGxTxZQTpmmSvhbG+XzFtay4XoUFSkFYgU72nuYsJuvxIIf9qSy4Pq741R+v+NU//h7/0//wt5juTvhf/o//in/47h5ff/0ej5cFxMCcGUiSbvyrn32F15+/xG//9B7recG//e9/gZs5ITN7rbICBmrcIdJ5duXXwiydVzaOEgOtI59hw09tjNqegk0wodYMmmXH4btv3+J4qHj5+ghGAaWKuUh4JyXg9nnCizd3+PbbM5ZrBa+SXIb5UQ2exjvuYAi9BZGHpTaDUcG+8V8i0JSQdC1OOYOTgNnlGkAjxImRpow0z1ivuqusGW5qqQoGJEHTzMBaC671im+vFdfrir/5mzf41//Nj/Hlm1d4kzPmSqCUUBcrwURYC9wA2hg6ROHcX1sXXOv+/QiAVT2dKTgrLKGUTSr7upM+xHlta7Nfs9YdM3aN1oA5SMnfHQ1Ge7rJ+dZeTKS2B46tPTcygpFjxnDOLYFYc276W/3XaFQmajJwz2iLJqPtNpi0Nx1GpBken8LYkQbB0OydNs3ASOpYFmUPUB0g6qi7nwCjO2SWv33OGUXP4ibDMwFDWIh0SgmUM9JBjSM1/Gq5YllZjbIJ05TATPKzitPqw/sLGOJcSyljmieknAAru8F2/nAnvM/7r/2tkljExJbzuSefUadjZUzTpIaoyAcikrOWJFnqzYiZ59mNFjA0SQ9jLaufxyaCJ8QxnZYSIZsRRqSnSFpinKbfZAy+G2b8OhoY2J/D0XCLc7+38xxxkcm9fSMpXv1uLqXU3+9G39D3Ya1GY58AIEum/86xx3KEI56fJSJMU4uwOGIGkWS9raqXazV5L8akvgYmEf2oiDtuTL9t+7rZydfvowFbaktURLYG1DDc25F1B76kW3RHQL9ZE+Tvp+sHeX1vY7HWAk4ChNtZXtk5kOQMkgEMnBW0xBUHR4vMLeQBzC30A2hCsrTsXSMA0E1uVS4MRpIYb7DvfCYH2AEMEEl9QumFt2uFYPd2puzv0ZttAoXVs2gL3S9V2GIAjpQMytcMRm1/TGe9edL6bAYFeuHTj4FgLnffIfKU03ChS2qctZ2v2OEmIAxcdt9Tu8fmRCWyKpZmrbkScBuYwq6HCBGyn6qULPFOE7x9v7pLDyY0wbm9k9EO9Xd0RRB61GjbvANx7FHgqTFoN1kdiIYedSx6WN7BqT7Ne7vhtZt/37mn5ilklh2jRA3IcJXU7QlApoSUC+Y54eb2iL/7+Qv84du3+OWHIg4d4/mZMCXG6eYGj2fC9fyI63X1EKPKwHUp6pDIbqCUClFyq5ydLKsALSGNzjs68m0mgwBkBgCpH5gggGOqBc+evQbRLb79+g/45o9/xPJ4xd3pgIeHBWsBCicp+k6EF6c7fPb8Ob78/BaP54LH81tQyThNJwF9UwPBBmRColml9f6a2wL1HmyOO0q27mhkQoisFFaR0Pu6MoAZ8+EGx/kYnEUquSpQrgVTPiJB98gYYBJH0VPb7k0x25rfva2/l0U2FH2xOHTYZXGF7vgxsC4LCkPAKlHYaYCAUtKdZGbkuSKnGxBn3MwT3t1f8B/+429x//MVx198judzbuWTpowKtBIB1FLV206L0zkSfUP/fnzdOkSQ1YyuTSWGSzNglN1PARva6Q/7uiSidmhqYCD2FtrzTWsN4w13s54Pc6dq3RqWowxB5yrZGlzMrUB756zt2moRQpzQvbO2SXA50Qm6J3RaeImD1EAV7z/pYV0z4jq54kpmmKOPvLORyoB5cLwE+W26yXblPBGTOrVtblPKSNn6IjQgNSS5FiQCjgdJ5lRKwVoWrMuiPUjO78bzJW4h7ZKrN6hcN2mLor9SSAzYjGI5Ox1K4ahuWtc1GAWqm6gZdw74SUucwZy9BAeFQ3LbfYeH/gyqNMrMpicD/wzGjUfnjHQA/Jyg6XujSVt+zcRh70zEd6Gv4ffGMuRJthqLPyUfTO+YQ2Bok+AbIP34elwSHRYS5inHWw6H1u9i9TXRKTj5Wbd93XWqdLSwvmtGfer15K7TPo4trKPQOmy0H416+HT91a/vbSzmdAPj9GSyQas4pyQCJbPsfJhXhADYYVsvTJska5hg6z7FOJlHVYsx64MiELQfbMZNWAMG5qNgcExP7XBuZXhyi5SE1ZMq0kqmr3qvdjQWu35G4lDztvpH1qnN1TxbEQyQGc4YhOVgrHq4inruzCDrvWxaHDwhCNy2QFPXT2i6fdJEAX2nux3OaOx091H/qwIFEY7xnGV7LCrD6Glkrlt62/sDlHImU1BF4bkncR2kHzZ7TViGHQgVcMtaQJSQc/KsimYIG7iAedcM5BegO8tKBpiol5lqZLryoiBomX3nwJRLC4sJoTZEYFTUGtpIUpg6pYybE1CvQCkJP/sXP8L//Crhf/3f/oDf/eERX3/zAYSKVAuuiVEfWGqGUQIohd+B9aplbQxs2xqBAie2nTU93xhASySbgbx+hSRcV6HTSY5a4mFZ8e//wz/g//qvv8aHh7f4+tt7PK4J6+WMqjtu3gYn/OqX36A+Lvj5Zz/Hz3/6DBOtuvMOLwwvyZ/EwCpAo3tbiYHG1uctE7XxwR0a8d72XYKftTY28OQtGbUA03zEsgC/++0f8fvf/xHiPEmoKYnSrxUf3q84P15wWVYtuC3lbAiQjKSBzg7s2JwIKue4JRED4M4lQuCvKmUxcrIwULk/54RnL+4ASGRJKUVCjvMMqpLY4rIuumYZKCsqEZaasBbCelkx0xlzyjgcEvjAKOuE4+mIw+kEZAltW2sFlyYvGWKwaOK/Jsvb8umuzmjnHsKwpobud/DIZj3IK7iMcwCben7oZHNc5sCGfxqPULvdM6paXY/QlLVv8iw01Q+X3QgVwwJdco3ufRyM4a5fJj/aCoj6LmtZo7i76XLV1n+NdDaDWf5zI4DCC0cDYLjG9VbDmAD4GXKAfbo8N47hYPMC2KtdZ211MYd/N32J746TobSotWqNxaS7OASuk9yrGchTApAIUyKkWfbdVg0tTEX1umbbLVouxtzfBHi9SDsPv7drZrV7YwSDOFYkwiXlCdCcBsbKeRbt9/j42MC+ro/DYUbc/a6arMqdKrpTVZmBqTkPnU4skmOsrzvK1aq8Y5sChLzRb053W4/RSDRsoN97KZwwRwxTz+ROuG7uA19UZd5ObnBP20j70MruGMc2+tutLrgT/onn5T4pr8GYJjtKYcmPbL02wzARYOYkQGA9XpIoOukV6wHNt+KLt+G2GF5upUkGAnrfXT5QyNBsAmAQ3Bb47HTbB8mfrh/A9b2NRU/SzkAturuoMqJqOFHHJC7UVfBoOxZiaJ6u/iUqjLlK4hYK2VLRFrmwdQPgxvRjym+TByLsWhiNhWIgLLSoOttS1O8Gj0oMx0U0NDqDrf0SbKXOg7ZdJgqpKSyhPeXagRBujXd9IF+aDRhswUxY8+O3m77ZMxba1u+scP+UAwu5gckOPW+v5p2ufkOnzM39xibSFahHQY74dwMNO28zTNPxn51Ws0vOaXEHkHpakIKUAMj88Dv193q/ASeC0YYgZUIioNJ1kMI5V2bumiWwGCAkSaXcOZOSAIUkNOdacTkXJGYcjjMOhws0ChUMCYes5drsf+VP8dzK7qJgJ52bJDX5Qob8niyBHsYWTjlSnvTvWWpzZlVylbEy8PV3H3C+JlzLBecr43ItOF9WlCq7lsnCqStwc3fE8xcnnI4JU10wzTcASHlJduS4ViA1QGurL/bdvORtKHvKP8xjJ2fCHy7zmpPK5x0ALEFQBoCC6/WC63URiBhkI0jOiDIvmkLdGtoL/IHjYZnHZvTV2suzvZ9myLfwd/YyGNM8g2vFgQFME/IsmykHOoBLBS7AWldMOeGQDihcMVPCNB+Q8wkJjNvDDCLGs+c3eP36FX721WucpgyqRc6ggX3te3iTg8S9sTbw3k/Qzu32Gdvuvps29rWuQWsv0rpRu4eJ/VtsaXbG2gDu5Xfyp2lsI/4evKEx/KvxlgHRfqjdrlwAgq6SY4fje5VR92BbZzAOeLE3kMlH1pBoT8vx3XF8Y0RP/1lIItZI0I/Bx9E+ozh7QzK2JzXE0A8ONLDPU5LSQtaI0MdKiUnjVTOPgoA5J4foiSCh2wriKzO4FD9ryGpEtjx8cQJ7hwQZcSIdIcanpkCWNZUkNyUReT6Iy9LCXaUca8U0yZq3nSQzZq2wvJ1BTSbYfPzkJR1auSubi+18Gp3jOooYYrw+ps394aA/nSNDm/vrt53Dtf6N9LU5GFbMTh+e/kzahbMhxz5wjx+js9WcOp3jKOoU17Ut8ioi2EiNTRs6evlyFJz7mHYztsYCw0q3L+JursiwmAMfkQ6frh/c9b2NxVLOYfHr7p5BbGbwYtNe27Y1TAk1xrOzL51HxLKf+qKV0Cc3igKAld9IXWVhcRHU9mPJPA2S7rHt4DDc7Sdvbd4sBACZYhl6vfSZluzEYvdtiE8sKBlMM5QDgHRF0NHY6i89LTbjd957DgYhAQStaUk6FyYTBk9QgwchXIPsL3+ovd0I5Rlqh/BK+zp+Ri3BBPcSxf+wMLNe4rBLRpf5DRWAS1RYrGEx1I3VnmsGeg/TooIadZvF5cu5iv6cQxToMYy0dq3bRImTxTzG3e6n86XRqe34sBo67X3wDhJaQp4OOJPsBlnY5XyUkO0P9w/47a8/4He/f8DlvGA+JJSSsRRGIjFerJA1qyeTLJbHp6qBJ1aARB4yJfSwcFtPVe4gB80QDUoGYGSu4JrBrEkGGFgr8PrVKxyPBb/+3R/w22/eAjVpHcKKicTbeXs74d/925/j5z95iTd3FY/vzsDtrSzzxDB3iWVGBUiTYJSgpCPojgzY1kRUeM433YAaz/QP6I6B38/gugBpwnX9gDfPX+Lu7hbT6QaMR9nh19JDZC9iPZPCBhY7snq3reeWyXZSmbqWAtnDbSwkOFdSm9uc2aTJuXMBjXOekAHMxwnT3REpEQoKvvn6Aw7HjOfPT3j58oTLWjDRhNevnuPh8QFAwRdvXuLFq5dY1wWHmXB+vOL5szv89Gdf4u6UwPePWOuKtUy6DpSnumE9gcB4vEtBMQJxBvq0Z7nbSITujDDgoXUmNErpS2fI1A7C2ZESOdhXKsOnUMfVQt702acSeKkU6Xc2OIQDyieiL0agaezXngPQFeQej0Y0OdhTPO7GNn1lFCLnO32B077xO7rneQhv3TeomzxuY7G52qjMvv2uQ+1vZ4nuO8MPsYZcnD/4zwZVBJPITo18KHOgfEPkNRvt3J/wlejtNJEkAkxZ1qnuHhqoNtnvipI0w7yNhmMfNVQbzXlbU0LWua9VwkpLrVhXcQraGVqQhjQmAmnyL9SCZS3IKWHKyTFOCnJOURkSsnOKYyXunWMt9L/Na5hlcfolm8+6nVvV66NxFJmjRX01XGaSkHyObTX1MlnI28v3TWSYZY+lzas3V+Q9Cuvc3mFRDIIBNLIOvOH96ARKZBl226pZYTIl0DkoBIukkK5LZrlijiCTCwH32NktNjpxwylt8uTZWAvXZK0nrkNr1ktUGRoKPBApZrPz6fphXt8/DDXP4a8AAAHYAmyx1OSLL6UsHrQha5pkKGyLntHCCIkkBTXAyJqWtBmN2oOwIO38GwDNFlpF0KX+PEKT+XZ/M4osa555xbzgOrVzGu6JK5LyPRYrHS8zUOR59lAA8rMebfHY88nAYBBMfdibeCijgmsK2gwMuFCykuujl6jWqpnOTLGEEM4wxaTg2meZWwhmu388n0oOnBqnhN84ACiCz2sftttpdcti1ECQEwiqKFlCoiNgSpOGCLHPQ+Xm7W07daFfYAdVzjOadhxWoqWfZcQzek0W9qAIOhfObdaPqFy4ZU71XT1PrmOCl/0hV+KWFS8kaiJI1jSujGlO+PLLV7g/X3H593/Eha/ATEhpAhdZdylJOKAkM5D2M5nhKmfS2vmxeOLTCmArX/muaq8U4vSTfUSiNFcuSHYQngjMK94/PuKxMp6djjgdEk6nDFwJ6+UK8c4fcMwHfP7mhPl6xbvfv0N9OePFsyMKrsiU1DyyM3VCeQNAzAZ5gyK3GQ1gCybDAE8a4J7e6IywkXbz2iv+rM/UNMlcriumBFRMWKq1LUxQNSxt0sKmEl0x8hhC4hSE70zGqpPCeCdgA9kRt7WhWUc5o5RF6noBWj+TcZwmvHhxAlHFslzAmbCeKz4sH3D3jPD69SusC+FyLjgeElATHh+ueLy/oJQHXJeCh8czyrLgi88Zh+mE+5sJz+8k+6SdBbPwKq8TyRzQPTkbRQePnVSweWp4jbV4+o6H3ECry5Ig35yw7EAVvg62oM765o6pHeBjIDEC59I4Mtwo73THourQCNBM7vc6QeR5PPsPtDBO06NA+L6LfjDjjl3WyzEQ0siFeCQgSHNK3bqxNxGN4ebWAzMYg/zeuZru6/m9Is4Td7RrTubtzu7YMKncNAOwKlZg3/IRnmD/n/KPO8/006Q8oB7URFbU3rCHOtJKwVquYrxdRF9MU8KUJhxPJ0wpaaJzBrhq/bwitaVzRp4EspV1hSTS0WQjwQAwwwNgTDlhPh5kTLUCteCyEO4frliWFasmk0opo2i2VsNpy1pxratjn2nSMkpZdxqVzlNqcjGnxvuiTWxOTObqDBGc5p5V1uc4lFvxi0wYtwyvMoHDsww7T982IhofeMQCRL6KI5RhSV9GPtmLLulk7gAC3FFlTnmzbkde7NoI67sTAQ3X5KSPVMGaeZqRiLzWso+xCrKARhRJZvwCi5zTtEwyGiaY09GihZLWNGfdYGgQrN/5lc2VQPc2PW6sNywKl8Uc2un0LMyBuVfD4NP1Q7i+t7G4LMtmoVB3gAiyQFICkQDjyoxFD3Fnrf/Wnm3i3uoqShPsAh3QXQrqlQ8wvrYBO3ZD0LKutsXLZIZn34I83xZgCmcSibZGYbzvqctATUpaBxGhT5EGjp53FDD15wuhllZnWCWDHX27ImiaYRda6D1oJEqplWtIKpArinqm4jib92sQqs1dtwOZEObUh9Z4wPsjbVD426C+ie4I/kYHgihQE1YsypIVWqSY5t2Mqvjuvn0bq/XKQh9tztruaQhdMSkZ2jeMkdTYfGoX2pwK0kcjkJ+uVOHc5qGYc0Bfl8K8VBIPNihjKcDDN4/48vVz/Ju/+xzvL1f88vdv8eF6xfGGUQrA1wJCC8U1ryQTgZOFolYkpk59jHRqc9jmwgCWYdesSqaCUWvBYQKoLpLhjQBk4Hdvv8Pv/vfv1LAk3MwHXMuCOjEyEy6l4IwL7n+34u9/UfHjn7zAT756jsf7DyJnbL0bjQzsVt0p8jCy9n2bQ5svCjUAg5J0EB4yxNmzFNvq15glzeBakTPA5QZIRxyPhJuJIdLxCMbZgiY0ioyQ02goKl3D7vKsWRBzUmigRlHlCcwVaZJ41AI517hWYKJJnWMLUqoomMAEHI4Zb14+wy9++gV+/NUNvv7mHr/+zT0qz/jizQ3+x3/3c6z1HpVX/PYfv8N3354BZFxLwfE04dWbVzhNCfNc8MXnN3j18kskAu7uTri9OUl6/mURcGk7MBFhRJ5S+e/u6sZh8MKTinLa8QBbq+1eO/NmoaB2HKJDcaYbLPybTX60e7frlzVMOLTSGSz2HyBhfHqgI0bWBLliPXJjb5Dd/hlrNkHlzXUddkGDfoU7BmSM8P4Z7aL8UgnWrDY1WKNegoQdhnVm+po1yRfXUH4ihQfDYMwci9fGyPPhEOJXG4OR7b9xu1bmu9uxAzQXGaltyAqEG9YHW8If9mQmnc6rpOGZlp+3HR43/UxEmKdZM0e3LKJlrSjlinffPkj7Gg2Qc3KjoJaCy/WKqjr5cDgIj0yTJMiqQ+g2ACTCtVSc30m7FiGQifDmxZ3mRFBjq1ZUlizF67ricl0kcRh6XQ9Aws1lEgAClrLECQvYK+pnOesvhk0V2RgcbtFQS0npU213mj1XnIXCmowwnd1jr2Y4tvbl8z5irfGQZcrejHXXKRTWDlQ3Btkh/UreEwI6zLhtszVnBlV8d2XGopns2XeqFwAJSxHnXkoqu5PwCXPVaJCMm+MEyoRDylWlmPcAACAASURBVIrHZb2aE5JZzzcygLJqxLj1v2776Rd1Pz2b7c4Ymua3KAlLWsm6ofORwIpP1w/i+t7GosW6j4aGXy50Fdi728GTa7cbg6CIHmEXBqnd72BvUCr7u3nyzrZAvWH9XUBFBxIc6Gn9Gz97GUBvkl24ZMYJBwDYXi50ai03zx/HRdi/Vv6Wm8pmjJFu8WInqYFCjuBo8GTZLpofI0EUBuzGNUCugCJA6o1l8ns7Ggaa+S6vC+ow9wpiKrMDksYDA3DXZwzCMFFkDblKbDcIZvUUM8PreprRGQjcfh0oHEt7tHvbbpL5nJ3e4Yrdd+AwKLTxcsBloLEzhHv6yOToZwb8hvZIicO14P7hgpoqaALyqgrlkPHi9S0eHhZ8/c1jUGCkuLyCFCjluBa4zYiN1dinE/7Kc96X3hYT0E4EruqhJln2xECGhEMlU5ZW9w/C729e3uLzz57jFz99jb//lz/G3emAy+ODJJ1weSF9YOt3UNpcK/ZBQbs8sgBNBiGMPe5U93zHjSDUzGXLxEUpoxRxpl2WFW+/e8CHt49gLlgZnrXO5KH1ypeufpAo7OBw439SXpPPCRkJFSSJkNASKwGMRQEuKd2ZGTMywBlTSrg5JPzoxR1mZqRVdkGfPTthnmc8PE6Y5yN+8fMb/PirFSBgmkRPvLi9wd1pxpQIUwbevL5DToSyFiyXM2qV9O9WD5I58H+UK8ZXzLAQxgbeBlnEzfR4om52a5At4+XOd/EvprCWTW8NTzBamCKNz0eBC8Tcye17C1/vX9/OvEUda9JUxt2MMepJxqNsisBvK3+aDWWyhJ2XIv814df6EcNb7SW2NuJOSf/C+KOfbw59iJfpikhTvzcS1SVt97QvoJH21hEbRsMGOw7qKEOCfDPdErNwdp1QI4oYyMRIkxhlc85SVkN5tzJQ1xUEK9ExIbPI4vNFzpWnrAaAGlESBaH1Gq0nRABLVMW6VpBVeVV8Y/iMiST5zZxxzOoU5Iq1qDG6qoFhuQk1aszrK7o6bdE1FCmSCMStfNa460uQCLI2FzESyCdKx7mZ1O6KsrKfs7BjzuOe97aNv+SyiCoM4wK3ZWRJ8SjoHnNum7EZWujen731Ziyuq23LEgpXcF09KaPUB83q+IPqlwypaSTlZyhNvp6TPmfn+iVyRdZNtX5z0EHcLY4Os4rqIXe2xFVt9xAaTnG++Qtp/en6613fP8HNkLkUiAzQrjHkM6c52BK6PILXs9+VUeMiFpSNMhkRfEcPmIQxUcji5iEHECUNJN81k2c43EuwWmseRz8MjSGp5VtmTGsX8EVBfbiMtB+FnylgAzitdUAXrzwkP7gP56RGPulROybidIl6yrEGjwYMELvORgeYcNB5GWj1MWFqXsC4mxPRRuwTiLbBB6qMTJGNBmN7j4mhoW9gKY3iL4qAUpSnZ2WyVsN46tBRC7c0JRsNhdiXfk9XB+JCk2CETmG+Kc5Xo4qPwwJWW3ryOCZbH/oOC6dCCOvligLClCfkacbheMWHh0dc+QHffLjg7UNFqTPW7x6RiDBPwFp0B4EENBi/2pqt0HOhAds5VtUhmIJJaQyLjmdYjQa6XniWHKVJijNq9CRKJWRkEDGuKCCe8WKaQAfC3/2Lz/Cv/8UX+OmbV0g3BwnN0npTUlB+y7vWj6ChO/BiYMPGbWuKdb0Sh0Vk86vNFduBGqKp7J1EQDV5dAVokt21tx/O+NlPXqMy4/HyG5QF+PbhfXPkBEeWgSbjHeFqq5sG5CS0ziYv9NGaVtQqcliKhifkXEBcMSfGfJhwnCc8Xh/xd3/3Y3z++hV++tVrHDIhVcacT3jzIuOz15/hMB8AuqKsC5hfIacJh+koKf8nBpcrmAkVM0ACfBMReF2wOqcQUAllWbEOnL8Ruvp5BXogDqGB1JzUNWaCzrMFGv/KMyYnzcjuJgrWdgN7AoSohYb3XYKFV0WwN8pz78MolOOo7auQ3Es+b/pp8xnamUbAzi01/vRkMNrPPwfMzNhqtxFiNt9uR02Qn3e1T3TVA8aRHPtwfuwLb40toDP+fZ091dzgCIrPdyJX5ZS9bnQgOfgfvgNU7DKU/+SPxhMU7quOGRK1YxDQTNvMoreMbrLrx1g11DAnqVk9aT3Esq6oWuIip6YrU8qWokGzKbPKnuRrAAColDbWoEZEhkjPDzlJ7dXTCay7g6VULMsKroyytJP4ktm01Xc105CoNIWgesmOhbA6zpLUGkGBnqvWNPuxLEejuxAuhlc/ydbRcFRd4Mak4bBhXjd6om9OmyL/m4Z1LDe0Drn/xuUNOR0YMax3MCa9Vf07y/vmOWsVgkn4oEgm9MsVWDR0mFmMvUtlPPKibSZ1lhfn1URWy5E9lJ+UlxIm4YfU6GIyxNd2Vfmj2dMsiz8w7qjGMHqTriYbbCF8un6o1z+hzqKEasSF9LGp3oR39ZowgLnwnQN/VbEcUvHaO43fEofmRChZiuTk5zMU0LHhraiE2BUsq0Ahrh4utxldEECtP9YZW/TDOP1eA3nx7iCc7BUbUjWB6DrGdyuCQg6KcFDTfgYzerjaoeiGXXplaOCnn2//OxgMrcP7IYoGLjaD3WUe8vZ34Jx2Iew089jvvl/ybm7gxhRybNtx3gD4jCW1L2YQCVsFRfvEIujDV+IQybOomnUSKedGC3NTtpuxhR184wZ3xOj0sIZ+EmFKEwgJL+6OeDiv+PDAWIqcM2OSXT0mlsiARBJWt2Po97vEaGCK+t9H9hhZRR3aYuxkAtKEAqkTJaABsPO5lStuTzNSyTgegDxPuLs94vZmlvNAlzOIgFOS0hh77MDqOfUvjfc1it6SGLF13ucGjccoPA8M73Go3LXfqCV7fdKPBiiXteDmdMTLF7c4HRKuzMg5oZQQjjxQ0NoUWdB257J2nQZPF0POvDy7O2KaM1ICTtOMKQO3x4TDPOF4mrCuB/yrn/8Iz+/u8NmrO3BlXB7OWK7iaJMi47KLAcguIjiA0iLmGyudC3QMacLlIs/k3O8k6tIMmLWNM6qNtpJMHqpRNBI7zEWkF3PYSXzi5ICD9TibbM6/BlpNhjYnFRrPbBrde9H4hb4xyJ2uFxtEHHbNbei1B85PiZ6/5BJWD+0xI5rfHW/Fd0bNsyuSud23s3bGNreGwCh76MkxGn26fjXlrZ8HgyH827djc/Pnzdy4i8rocw9ULeskJYiMd3rjQGSRrjG9R7JOF6C2XSka1ws3dUTBeERq7wFRP1rjD1+Hdp/I3ZRbpwh6lj4ROCdUYoBqM0yJfc2DTdJJ31p0F3lB+niZYVFNZ9R2vnDr5Ih48SPz0P3ksFa20SM08B4Q5ZGGVMfvot5/4uXGM1uZpU54/elYtMvy3vouOKfHdEzmxJGcAqlKZQIULbcEO34CPcsI1zdx/JUBLpLgLOk2Y1LHmGGRVjXI94Wbr9Qm33ZWaLv50372BOoN748R89P1176+fzZUFa+kC8aY+KlwUCvW3IR1Q1+9wogLWL0SXjKggeB+Z0w9TCOAk5hET5LAzJoEYjyTQO1d3e6CKsqwe0XYLgDXOymew6TB48T+d5eQZhizADz9NNupsV7BmUwxuhPgCXoazVuDrlaZnRZ2GoGZNSNkAz8EzfpJrNlTyQWs6AyLZ2+7VybQuisAqjbWBNoBaPs4SiZoVCpxjtvOcmxHPGhdQoz4eFezq90TzzyOXNyHWJPW9zS6wIlcnY92BhQuCzGWLlq4INC5zMfLeL//0OckKSGiTd9CbTWMCBW1ErjM+NmXb/D89oC7+TvcPxb86bsZ9/cLLqqYcpYwJ2ZLogAHSr7UgpfBeJcD2YnEYOnYM8ynGYqJCIkZ85RwuJnx8JhQlysmEOZcME8JSyUsa8WPXtxhKoxKV6SZcJhmMAPn9Yo5JUw5o+IARkKlsJOLDhfBgJIZjuwTJx23tSuyQMK3EORDNy9hwTXFZ5/tnMYoCQkZh1yxckVKGZcr43wuWFZGQcWKgmmaUaskszDg0dUtY8BggGU+lfqIur5rC3Gyna9pInz2+S3mnFDWBc9ujri7nfH65Q2miXCcGcdDxk+/+grL+YL7b+5Rq57zO8i55ceL1XqUWos5XSXlPkvCoUwApYvwkRqjpTBKqqgsroF1tQLloXyR0z0Ku8b1Dcg3/YFhbo3VyNaoATKCo+uYNyfyIpRbOi7hxgdtyp9AqYMO6q4nPo/REDZ+cyoKrmzyswZW6nYzdJ0x4MmYQAxbomQW3qaUT9cTB7L7XVc6BihrxwDac71OhOrsERdE4zrukI6vdmfASLvU3mLvpu4ZudxBGIBp7P/4rj0jousL7T29lQmsD7gz0/mN+/9cBsHPREtiEuMDoUuaMpgTlmVFKQuuy1XOpE0Tpqxn/IqcOyxFwlCnKXs2U66EtWqyHCI4j7M66pLsytvYpK5pBVCwFouzubouFyMyI08NRIq9npUHq+yQVtlzrJVQIbkQxDqJWM54W5lbd3iLOp9MTycKR4PcyOrnQK5w9jDOd5gDwDYCFA9R6nDitlWby26G0UJrBr7h5sAWCd3k2VM81uBI/52RzAxDGVEFSsPBhtumWfjHj3UASBPAJI5WOcYBMGeUIjSXQBg1Iqvs7rKewSWSMGjWGFcROTLmdjY/0MmYFq1ffSQCNTr00npDj0/XD+v63saiH/q3PwGYERavZa0hDE3vZUsIoww9ZBc1ZnMhEpgtfySJDIZFaElarNw7AZ5uiqhlZO08egEkys8qcfYKADsvb43KgEG1OB268fhH/Y5ep5xNEEalWioQhQpJhiunjXm140Q0UrRLzxSQ7rTIGRILGVKjVuliIV5mG9TK8JIN1n8rxqsezj6UK3R3EADdjnBX6gRaBy7eZ0I48JjxTbA6GJpwIIB1q0tZa7+ztNmR7ikmSro1s3+Z8C/OzE3kEZoh7AqZPITDmyVNkw50dIvj7N8Z/2ZXDMa1BhAtVDaQ0nd+LKlSImBOCTfTCY84o6BimY7gI1CnRzyuBaCEUlcspSBxVaZgTDljPs5gMNZyBVPCdVUe1WWRLPV2oEttS8bHTAGxS24ZCcZJ/AiqV9wdCbdTwpRn1LpgKQVLZXBKYALqYcJnP/oCr2+P+PmPXuPlzS2Op4x0lXDHaz2jeooeSYxlujiuSWbWzKTygZ/5ZStNwD7H6h4L39k6lHdEh4vPNwEbMUsAzSsYjMuaJWx1PWM6TaDHFVjOeHEsSHdH/PGe8O7tA5ZlVTlKUnM2GDNJwbTU0yTklEB1DUBcBlhVq68r47e/+QbECaUyXjy/w+Ew4f/+L9+AGXj9/Ba3M+Ph8QYvXh7x+esZUwIyJ8x0AINwrQsKKjKfsK6EZbVMiQcQMlLOuFwWlAqUS8XCBZyAtV5RWIDszc0ReUqoa5Hzx7AwUpNrGoPMgIVMiXMLYaH1MsLuAfWZQ40PsDNH43proWh9yxtHKG+lXnuDNzA+0noTdGXDiRwaiOFo/Q4mAJVzfR9cr7lTIZzZ5x3Z8mT/bDTRiLJ7Gkgt8fNaxZFI4lyx/viuiUeUDHTcc8CEDu19Xsve57bIbY6VHtjO72bOKzSjuZQfaQa7ge9+d587naPvG42MoOv3eEziCjQCAuxF6VM4U2gDSUmOzdze3QIArtcFa1nweD6rXCdM04ycMg43JxCAy/Uiht4qNRRzSrLemLHW4nNksqyyJsmBGIMl9zgM0HOxLE4eXq8yrjWAfuVVO8soyWoIKcvGU1VdUvXsOcPOILNvKBAHg3SKeEmPFdRtxEi/np9e03E9N9kIFC7ddzYeC2tn1kgX6vsjvqGI5RpO6Q2ivp+7yzBiCYi+iWPpjGPKAAtENDEJAlgOk3fwpawWyZElM3iGJviTMldcJZy5lAqiVQ3KVVCf8/sOvtOxtLPmTbaa7HSdqDxl+LUlBQq89SkT6g/6+v7GYrwCh28X8aAnoEZUSm3hRe8oqHnYwuexvb3Ldrc8nJPCogV1D/vWejzcHQ03jvcm8xu170KXmqdtVIC2QEzgCm0ayAzn5cSCg2eTjU25BNI2TdiE7/Z2c+MijWMevbymW01smnCy/roAMOsxCEXzXNl7xnd2fdsI734uq9V8gn1ubQHjpHcCWBtqYZf9/LXbgiJPCvyDrm9Ogu393Tio3W+djV/tGZnuMQzgUJTT2H7bYWxqbOgrevqGt4Sf2+9l3YlhUcDADKxXAnPC8lixXBkvnk2o64zr4xVMExgTztcFpbIYAImwsiQ5yHlChRSVrkMvnCt42xsjq68LcxZMBMoE5IzKCQkVoIp1vSKljNOc8flnJzx7doMvP7vBzV3Cf/t3f4PnxxPKsuLhfMXlcsJEBcirAlo7u9XTIWj1DaVkPbCDw35+4jhi4iyo7GtrrH9uh5fqBAJrSBojpRnLlXG9VjBlnG5OWNaWMc5ka78brl9ZdmgH5aakKXAFgYmxqsE4VUaiipwJz24TXr26AaUjrtcrEoC74wGn04TluuBySUgHycp4vmoWRzXYuBIu1wvyPElKfWKUuqDWBRLyCmSaAEwAMTIyrusiEUuVPQkaAygufzkArSAjOx7ao3Wc2kERDYZd+zrqi/HZ/t1diwZ2hrmOUTJRRrerN1IpLvj2UDD0VaRR638f4jh2Vefe2zR9wcMA+it20x2iOzJ7+3sAii7r9XM33naHv/l7j15PGrc+tu33NlvMW2PabtiyRwVqOK7ihrLu5rDJBTQIPEaBjMYioI7ZHcPWgJHezT7nmtUWsq6bvNSSFmtxOifKOByaI75UCVO1BCWkeRkqSx3ZEpJlmUJoRpuN2Q4EwI0Oy8VA+g2ZEVOFxtw58AN/21lLqIMz+HeMytHAoJxd9jbjfF+Pb9d3WEJqVfF4w97la3tgCp10NwTDI2M5jr0+jX1o89j4qPV7eA7odAtzyw9SNSO9YOQUou7k3wp1dnDLnO9HAVZJniTTzIJt9dWJEpBZI4nYj0xXO48YEh3WMF6G5kfgvu862m7cYAZ5gssdBwo1DPjp+uFd3z/BDaswpqYjTN5E0EyJ9BwLBFibAVUta5d4nKx+kLUtzbVdlPbdn+uXvtcfCdaXPeuCIBo1UqbCbA5T2uYddA/hjtDpSklgu2ii4pA+DkKQZJmzg1clom+JUjDk+pC2CHLGz6U/Sj9qYR5RuJkys/55uNceHRnN4DGQAxUWPk4aBF0Dg6My7abDW+i9VE1tB/p142ynvmy0Dbg3D7EBTNfRZpDGumofYa5SipZQ6RUEeYNGhwgCGtDwUVsJot13jeEy2k0/CkDxLmVPVefKO8xdBUcvhmzZ7l3J1Yr6yLg7nvCjVxPuHxnHFwU3pwl/+O07qULAwHW9eg1HKX0jwCOlDIIctLd5W5ZFFwAF/uNIjo2hmxIw5YyXL5/h5gi8fnmL63nBd2/v8XhZcF4LjscjXjw/4m++uMNpSjh/WPDyeMLL6TkmLvjT+0e8e6g43hxwc7OCdOEkauBDdsTDvKHxnQHp5hHeKmzZYTenUgsH8pntDNMBNA6AR3bHxeNeIAI00QXXR8b7+0dc14rPP3uD63LBP373LRilS3DZHDnRCaDvNcRpn5iCJ+GRRIRnt0f87U9e4faYcZgY/93f/xzPnx9RS8X9h0d8+9098pzw+tkJtRRMNaOuwJWAx/MVzMA8SUKOpRYgMfKknuqLJFLImXCYjgDEMVKZJVy4Vpwm0QtUZedbwtds/car+jqOxwSY2eKy4IMkAnjXNAjN1fAM9Y+ORvhwNdncXtn6I7T3HaSP6iibm6rjIwm7M77iJvPieVPPMkptDXXhyNopn37n4V4/7IkdHv7wM2cui+Ur0x/JdWWfh0Bo0bI6MeCJ8PqX9eCawzSOY3qKlKn2ER2mX6xf9jRhq3s6BwMiPwTiM7uRZ1zF4/MNEwO1vdeiXcwRUMN3MQRUdtAsi63p6fauym3XzRY8m5NR9VoK5xJJI7iuaxF+YUY880G6O0nsKdPEFU4SIi7lTZTqKsdiqVzjQXZ6tfJPjeQc9CvJsQexZJGK7gxaGzEERmkz+r1t3bX53X4fpgxAT2uhZZ8syoeHnhd8WPDGvExMxIAWsSRH9Bovh+WqBrX1vBn0fZbQHmvFqw60roorWPMtUK06LvLjJwBAnB2DmBpYapUst0abSuoIGJydkOzyzI6kFBMCjKzhwcIzImKq4laVGR4pZPikocI2RjMWh3m0efpkLP5gr3+SsdhAfvwCG3Dk8icKdZaC37UUpJyQ0vY8kC+1kLV0x4oBEPPbGMMiCAXu7u/B3lZgxXbG73aVrQuspvS7rnZtQBN3NGXiSh5mgwmAtC0bisboYIgGFRjfMvYQzP2i3TNWxl3HOO4AVaG2AzqZ4KRk/T/DjJmnvcPcbFCk7t1jP0yRRJDWxoaOF0UI9iE27XsngANLE5p7Yx/p0/1tY4jfhyY8PDl42oxO7q0e+IzDOQpXgI30nTEa398dxPdvKWTp00x8AGaeQAykmjAdE169OuDmFqDTFSiMcq44X1dcrgWFVwmBohnX64qynsEVSCzh5XmeAZLAqWVdfC48zJQT2HMChzUI1S0amjLPE06HjLvbCVQb4AQSKBNoIixLwXK/4O39FRMn/OpX75CmBefrIwofcDi1RAusP03pWphzdEK4kmXz2u7lZFNFX5sqM9dEvDPWoUMXXth4jvx9drbV6i0SKhV/V60FmRKOx7kzPqylqJj9uxGP6912fK3oTthpynh9d8BXn9/i2SnjkAk//eIVKAEPDxfUwxHL7QpMwKRZF1OSMVcwQFVBKkToMjDNJA6NteouNIM4I6cZqIxSi5/l5SrnoC15h9HWDr89ISna2Bw07+0K7wrnbtkHBg0zGIBZuAbc2CVXi5EGtk4N2G138cICHv82OWBgM6gq0zdRBOyq2/A7B5liO0DxVU+OdtAPHwNtvUEGn8foOAvoHbbrOAL0uBbt3f1O/ZNdCIDb1kPsF/c4hLf99VF2uquNW4rG605i0NFRhgeCBGNJfshuSwPt0cFnubal/umWb7toKOgxEO8HwFz1XCp72QwJAc8BQ0HPHDaGMnyS2IxZ0Y9EACWRES3Ch32nx8smEKOrGm99tIzDUe+DPGrAHV1W7cFoyREfyIT3uRdi9E+/226TZ+0YDdVd4M/bmqDwbMwT1xv+weEX+Mvui/wt+x1NurucVrq6dNrhFZufrcTZ4XnXZcaXmkHWZYbgZnPoJrZ0pjFRm3ZCs51ytbG2pGAmf6oZf2wlrAZdpnSS3qROXjX5Hfg1Dj4Ko44cwcn1ZzXAp+uvdf2Tw1DjDg4rh8QFXUoVwO4LmtUrozHtJPVe1pAqfAPa6zZkb9yhkFA9QnYBwS6Q+zIFWjvQPUWQgrTYN2zEQBkT0vTjN2+f1eL72CXlOoBoBfSe2TYiF/w1GD4NSej7AXJPNaBWqOrKHiDbmbz+LA87LRmsnr/msYwKvBn7UGPDBhXOTgINUJIBBXTz1dORxCtLvEP7sf+0+1kTMi000DzaxT10DdAkzerG+noH/07yIMz0PX6uoxpYTp0Can1h9AWCwz3NqoUVbI8KcRznaHxGpdg+UiUR0KDtkBPY67PJzprQqBBjujnggCPOj1ccJ8bdkUCY8OWXb/BvfvEFHh8vuH+44Ddff0ApK57dvsD9/SP+06/+iPcfFsyJcUyEw2lCoYSFgff3opCkPmJF5QxQBpKUUCA7a0cSXkmUUDlhWYHzecHxMOOXv/ka50vFWhl5znieEp6dMmaseHtfkMqEr378Ep+9fgacHsApYcpHTBUgvqKWCaAZBQJ85BwGucc48r7YDKZILXlIMwjcQ2q7GBYKmPrQHAKkTIvxp2fb1S89cQW5d16S/lSACogS1nLAdCA8e3aHUoF3775Bmgh3pztczhWVF89SW5mRZVJRwJjYsLG+uwKLmWcaSlaQcAXjJy/u8LMvXuHFSca+Xif85jff4N2HK755dwZTxctXJ9zVI+qpoqQETUeLRMDtzQERrCRiEM/gVeh5OGSnw1IvsnamhBmEtRTH2hLGacTbylVbG76r4iisl5lhkSGCzPZxBC4K+rjpEOuDturyNxr2/h1a+Ji8v/Z1BZWp2MPE2jv7PrfzOgzW8gJJ14W04c26YIpDHRN4tFvF+Okda75zjicubvd2H4Zdr5hkZ9y5caPQnDxBR404uZs1r3cb5KzpdsMTCEAdpm9ZQHPUlcqPQgORM9WNkq1e8YgBvccdAaazwiO+Zm0QhjFinZAg4m2UfRySgnzpGQBIVAETxmihSKVktNUyFpqKtIH7UsClYCkMXFckShIODkKaJtcZhRnrVdcjSM6uEZCyZjjNcgxgnuQs3FqKYP5aNbw1yDftYwVruQQhABkBOPCoHa3ROU3zbKao0z5zO9fJlWFnlYko7MoK9zBHqoY1FmqqOQYIRz0ME1o/GqmNr6rLCoA8H4PrVNbMz2w4ilAUl1p9XQ4772aRekZ+fU+xXYzQL3lj2GjwD0UGgitIiw2Rl6mRdWJnTKvRHgErKy9nJvnYaiZa26Tn9cP7queukC9W7T9r29GgM6w0Sm8Zeh9h5vI5xCIzV193FtHzpIz6dP3Vr39C6YzamIVsqxqIYEvuY5jnqd85smdViQ6JcfZ3uOCHn9mEerjXhKI26szYnYlk3dkLQh36dAxJ9DY9ic14f9/HvXNkeztlyQvYbsN47A3+12B09Mqau7e64qYt7ba03NJt/L4BDXTKtguttY+1tIIUewX6XcIALEzx2U+0jKyjgbW5PiJImmcbiLWD5L1w0GLn2KxYbQRQjjUFBWwpMvR9DOmNl4Xa2Hsj/WM7BihTnPRdvu+TeezNp8yTKQ/XVc5fBKAmVbQpS0gpMx7XFe/engEAx5yR6IqlVpyOhOMM1AfCn9494LtpwXGe8exwwiVXvDtf8YES6PIomTeJxF9BSUAECShyqH8nAwAAIABJREFUR0v4l5mQEkPQiNDheAKePzvg3Z+A2+OMkjSjWzng7jnh5jhhSoxSrnhxmvDZi4yffPkGHz6sePv+gukgtaJYjRDz7DuPlwAcRvAopuvG2TOGs7W5aeGOxnuJjX0CJFaebZk3W3tVEXqqCZQmFCbNDJpwdzrh888/x2Vdcbp5h/n+UZw8LJ5hK39jdlQlBdmWyIosyAyKjcTQSwDOZQHmhLtXdyhrweP9ikorkCtONwnpOOH5yxOOfMDxZDub7bxKKcXD2Zz3Api3s+hxvF4vtgNB+zJ+39kWEc32/h5oCLgyAGvyi0b5wgZYx9CnpisQZV14X5M17f2t31uH434Uh3SCmcHJAFkAzdywYn8Mg8PzfZft8+Ys2j7nj8Q54n4sHr5nxt9IokEWju8Y6TW+c6SBy2HuscM2MqN97om7Rs1rfUdz9tBH+urQfU+/+Fw0frVQT7vZI14I9o8a5wF37PCEd0xZu/+6yRA/PoBAW9fx7YwZOX4hx1zrqhgtEZgI0zTBdseqhqrW6xUAMM8TUs44HCZQJsmgqrX7qBakauflJHSadWtSaikDEUUw2HWfkaCWMhhg7DtfFS1/hc+NrdnAx5KAqIb1Hoj2Efgw6t8xLNjaE4oSwHYWMISYk+orACwFttXBAw1vBxKyy2TS0xmGjFnf7SGx4b024xwZwj5TrEcmZ2xtBxkacdzejv9IB2Ybb+RPnadhFZime0pWSxi1dNawFjQhVAORdv40JBDU1uPfT+G7T9cP4/rexmLHPMytvET304p9bhnNLTczLmtoU7/qjEETxqV6qQdWkGfCs1so2q8IAKOiJYJ41+QFm+cjGEgpeRbWUamOYUlPKWVy6+pp5Qn0C6aWMjw/HCQ3QFRjOesdxTQIlpaRar8vo/HaPx+aZWhNSum5eAbld1eiSi+j38Yw1to8NYB5UmO/Gdhpl1Z/buexU+opwUoOueea1eNnRt0OuLI2o3Nk2w97pu+T71oN47YxtX5ClBPBPaTmQRXHyBqeVKsEO/SMNDMD0QAPgIxJjPN1QV0WTCvhRBNe/eQNnj+/RSbC+7cP+OPjI7777gO+/c09fv3Lb8TjfDOh0gHzLeOuAut0AmrFT3/0BokYZVnw6999i0sBVs9mVaVGF5vHUnaikoUc1gTmhLICX//xAd+9/YDjfELBGbc3hOe3J7y8m8DrilMi/OLLz3B7ewAR4Ys3X+HrP/0BS7lgPt5hzrdSDxJFsr0pKMoKpkoposfUKxwBv4UTjXMfPhAlaollSeuL6dyTypGmtH1GdrhFPk80CfCkCwqfURYJ981zwTFn5MMJ9/cf8F/+8y8b6GU5W0SZYOfKiMTILVVS3SehgNRkI4D0bEoh2YX88evn+NmPPsNhmlEz43CcUOkeL149x+fpCAKQUDDNCbUskPPVgHiEyekqSSN1vFYWiSGFtRM1QwNwGW27erbTVcOOSnNCNb4f58LmLYI953ubDDeWDRjaOwpsR8ZmhhCMKxhMG85GhneklDy5RdzdievfAeWu0YvuO3s3lH5mFBhcZA9jLBt6NPkkJXPEOOp3qCKYdiM3JjAxirMYF36f87HRIKwPBjg409y4ZJNL/Xv9QdbSKzuQ0DFlDf1wmg5GXnjADCY3rGrbmW3jHXiIGeDkSbk6jBHkt73G9BcgYZryPo0ycUO38VRCA/QR9MeQQNeNnhnUaBnIY+e/LGIhSWSITFXDER0vWVb5lEApI2eoMSe0qFw1sbX1IYEwodaKh7PsOuJBOnKYJxw0rDXnjHww3hc611JQNJtpYTHkEpI7QG2d1NoixnLOKGV1nuIoT7iKARv4e5qCHk+EVBOKlv5oMjwkChwuu6cEHBW/A4Iedn0q56hpUmNRZU1CcjlcweBSkVNGouzGEhSn1Fo1AylH9pRfnLHRju84l8hlZbW4GoACUij1Fh0o7pBTJkicwlnQHq8Zo+w57e3tvcvEzl1uKKvrPcgRsrVpg9vBwcwqA2TTpJ1PVjk3brB/un5Q1z9LNlQT4NET6B4ZZmdYtytoPDKu7dgi4PGbcGs0VmDovzdIbX2agt8q2CakCK1P404haYHZePYj9it6bsYdwn5M++DBjI9OmbUvBuNlfDvagtwQOBKwN4DMG7TXTxvHfl9NOIVnmi8OQPMUpsAH7d6egK5g7SD+CKyZN7R+qk/xno3xbp22YxXcoJIYt/27nzJAmYPUDwBBnwp93n7e6L41RkewMo4l7mT48wyIdyUFxd+364WN9QECaUoNwlqAy7Xi/eMVD/dn/OGb98j5O0wp4/H+gu/OV7x7vODd4xUXABMzaE04nyVc/OGhAlxAlbFcLqhccT5fcS2seUcySMMgm81gnlHoxo94WRMxpkQ4HWfMh4zPXh6wlIx5lh22lzcHgBas64LHSnh5vMHzFwfUVHC+Es4XwvGGcbiT8xVJ5QEbqO2UY1sq9vfenG8u6nnTdg7cePK2guIehRgNHM7qrU4AkJB4AtUWQp0S4/Z2QspkG7BBXqCFUlI4O6MsFJe3iQSXcynj4fGChFWBYMWL57Mo7ypAbp7EoOiywQYBLDQ1YGpec2m/1urnN53nd+Si84Pf4x/DkcfgCLErpXAPgLYso7Gu85NMdu+DHoLUVwvwapcPjI/iuu29+DvNb9po7w3Iyjrv7x8/6/pjcigm5gpf+Q740L9mHu+0+URHx52K+L72eTMo/xwN7D7vT8PCAwH/gr5F2uvfVmuZuPFc90oAlnRkY4Q+Mefd34j6k7rP7I6q77Wkb7AzZI6fwzk7G7wB74+QwIyWrSPLbo2GgRkW3LYmgeZECWsnOmJb6QzGuhZUK7mgkQRZQ9JF7mRYFubk668Zh9GhbvIyZjy3/thz3r8n8AebvMSoO592zozrde97iwIqbM4woV0mmylzONSWIIvYk1JJ3UqZbXc0WRRqgAz+i3jYrQObPtktRlF/lBofbcSpdLAh6ifa7ddtj2GiDAG27/iovBje2f/WsCmHw6JhyeyL5k/XD+765ymdoVcEuIAss2RC0BaJMXaM96e6E6rVvuaIfrqzIPo468JWxvOdo1AAtgPbQVlbAhB73gVYx9istc0+MtYdQ8U8n08ZOiN41a404JL68xyDaSTAxj6nIIyGm7cnR1of9q6ndvGeur8po6Rhcj7NClYH7zO3PtkYYs+azjMl+uf7/Bcp+7qlYwwTeapdViMwoYXcRF6xq9oZtkHpdQah/aQGTLe7g0LLZijaoXZrB22+WYGBA4Ht+VoxEgjis2QQMqYp4cWLI1JmlHdSrPnxegEn4PlpBlHFNBd88eZLgAvev7tiOkx49eKETMDvv3mHd2/PePfuAUupuK4LFn+ZrHVJYlIRFjf0W99RPswJN6cD/vZvXuOLVzf46ovnOGSA14RSxIB5dvcMhRNyOuF4ItzeJrx9f4/7h4rKM448qdIuij6Tg7RVAY+RwwFlmJcUvO8uQ0bnkQEqM6BMpsGAVvVnMdIe/RpkrasGZlBhEE0SLUEVmQi1Avf3F1QuOM0zHpcVdSnIkJ2L1ZLIuPFYOwBo/GxQKlsfEuFf/eLH+Or1CW/ffQtKGYebA07HA4CEzKQlcghIE3JO4FpgWUlljC2ks2qxVuNn34mqVTPR6pozo9hE6rAuuwyY3NYidb+bDaQALhqYUa4HynPUOcCwXtVrTqGJQTaBGo/E380AMWdZcyT9GUCFcIsVd29qZmsshH63brQdEFZAKt3hPlyU0fi5o5F96WQAzMC0/tjuXoR9/PHfdw2ZeFnzqgNM+otzJLZVO1JubKPwQa089FGf8/Ko7Bhhv0P2o+GR6BQcHdoMAERuCEYjR9ZH3+HI6yPvgMKtgxNx15ANxd+9IRHsbRw6ZtMEKURDIRiQnT7R+6d58jGbw8pet5QCXlvkTyI1HnMGEXkSFKFBO4druMps1k5/udHc6J2SFoT30HB2TNEMddql0+jsdj090LH7hDUbMwNrrahMKLq7mUmM42nOgmdIHU8k8i+DJCKgKu6hJtcZQEaCHAvhrhvV9Eb4zJagddnqYafwZW/EKfMQwUM+ETCuGY4+XotXgP/V0Uwb7rO3buk3Pm9ysp8LQvRWemSKrfVxzjQktsP4n64f5PXPaiz2ly6IUZF3gtJYmbrH/KL2WLxMUTal0hp1QxGmSFkWNZGHSPhiMkWhfY2JcKzvTffGGO/YFwX8QCfM9gf0/+/aedtATuoKAau22AGrrM82YaCd31WkFpq5efu+1m3PJREgblYTu6HocxVlioIUoj5sbXyhCyXao6/d2vMQ6//G3ZxxII0m2qmnrgAsW3NReW0e8Pb2umx0af/131obzOxJkTqBjPBeriDKeo5kp+tQ1cyy65NSQjokTPOERFLmoNSK8+MDCAmJM45nxulSUdMBpRR8+LBinhJevzjgcMj45v0jmK64Liuknh6BLBFMBSShzVMU0TEQYNlQT8cJr16f8Pz5LQ5IoEq4LhXn6wWn0xGHSUNWa8G6XIFakDMwpwmHOWkoX0UldT90Xui29lkNrYjrOltlO82tnXH9mHzByFq2vnqlGltmDcFPio2rGtWJgKwp2de1erkWxxzU2o1gKxoeHcS1z/TVhylhnhMSVSARplmSqdTKmPIEIsZaVvBSME1iuNpug4WhZdJzv4lbw4OhZj99F7YTUwOIG+ys5mwMn+labgCHN8u5FwE9IPJPN+KSYYmLaOhI7IeFzzrP6D2tGseA/qKhuwe+tFE2vaNkaU5InebUKbpgNIZ+NGurM1A2yNjHHGg1jrlRDv2l5tH3VWcc5qKjpa3FXk67uth5n/V/6+JrOq6tg573XE88ATlaj9oOIFF8k7U/zKXLkrjmn9YnH6Pj6FxsrxoXinUwOX0jn5lDzrvIbWdU6F/VIUOwfWeP/ki5vaaQnjmUEjiFJYM9AxJ+mshbSHqGkdQQ9WMp2NL5yUs9N1xrlygK6Mu2fPza+77xRmgRliU0VcZaxRWwrBVF6zFb/diUdV1WWTapFZHQ5s0Ibw5bSzxnfGg4sVMRgSVtk4JUhoxzb+Xq2mPUjcfmrzGYGv+Gt56iVPeev+zqHUX2/qFhNhXFG0eJ+Ff1pOafK3v06fqrX98/wQ0IxNVB/yYm3BaJJ7ggFy4NHNsuSjDKXPHad61NAUtmYMAXX2zLQCiB2g5X8EITyMOOLCFEFPCxL63fH2fiFtYavDtky/gvX3zWlo93MD7bjpJ5BwNgNAEUXucjYVNuvcjeE+BEtDnD5S83Jb0RDA2Ig1o+LpERuguSWhfjix1W7iW4cUXXQEalbaHe7XOx342mfr7BydJ2kxgtXBq0pUv28JvYfuCrYCRsd6R21kY3zAjCtucRWh/b4FyXuEIxw7i3dkxJ1QqvwWSJAq4Lg+uEUq64LgsulxWECVQesFwK1nPF2/sPeLxc8e6ewc8Z7x8egA8Vf/rjA+7PC2YC5pxwSAmX5aolnCR7Zqy5Zn1k/VPClQjLUvFQL/jTn97jxbMDpvIB9+8q0pRxc5cxJ+Ddw4J5mnCcDpIF9ArcnibU1wRCxkQZgGRftVIRwnMSGqQwRulRFWw28B2NcBM/FT1Ol57XCCP7OQ18NiYZavMxMCYMRiWsRVLa5wTkQ8LL1ydULh4mZgBBktyQJ4YyEGgy0fwFXQ/teWb8x//313j35S0ygHkmULpiXVYUJlyPUg7lcj4DFZimCYCApGiQVTCmnJvMdrnQQC4b/TWENsU1S63vcS3uRS88BQpN5MV7bFe9G3pvVqGf6WZkN8TUdEE0wJs+Y0Dr4zUAvnlp6ySwwy22LmUN1CETdGek1v6z9vzYlr528N67wDV6+w6aySq5zU8hRuS46+UaduCdj/8yoLcXBsdh18wMFut6y/LY6/zqz5qDOPCO80WPLRDWuhtVHfC2HnDjz2gMBCzQRbsw0OpaONDo1sPHwivtntav/UvGr2ciG8kAjskGA11YDBcvXKT3mJFIgTC8Fqv86f2wuqyUJMMq5QSqFWVdUJlxXa8gAFOaPMFW0t1GkOj+KilVJbgg7dCPyA0FrnpaTyOqKjOIa0jo1XT3Hg0/Qrn2roFP8yTfHVTwH6YMBnA5r1hLxeN19cdTEueq4bqDJQwilf+JfM1EjCTyUIHTeAawBvmhmLFasUPpkjc0DtMintwJYGPs8INh0b65fh2Mz2Dzd+TnUVYRhsQ1Huod6BC0EkcHW2XPQdJ7sT5dP7Trn5gN1cKWWDz2AyDow2cU7Ggq/+48TETpjZ0DyA/vVVBvvGZP2Y1e04c0dJRUgJqni4SXx9C+vqH+SvTxBCs+Xm9iq/jj4nsqpDNZmunRsxjbcoK2umxi9JogbQZLfHrs117fpD0JzdgklfGF3D6rqqjNByngyRIUhPMKoQfBfm0CgrtmNxs4nTOCNbOW3UhtvMNgu3FG4N6AX8+HEfy0vvRCs6cZt9Avevp+StS1u7dLvXG2BCXTv5PgEY9EbvyZkpDwoRrq4Yb5oiLsVQ8ATSjljPPlgvO5oNSMUmeUsuJ08wp5WnA8LTikFW/PjyA8YD7cgemIh0vF81eMfD3gfL9iKRVlkVIXtdQG7kDN+UPUABXaWeJpXnF3M+NwM+P/+S/foP604HSb8eLZCccMTJXw7O6E589O+NsfvcGL2xv88QL8p//8B3zz3QXztOLZzYw5TRJGhFXXPkBVCucwpIRPVJnOf2CUGhPUNA9oGQRMC08cgR8pG5Cafj2vR2Xc2pF3lbyA+YysKfF/94fvcH9/AZgwJSBPE0CtfmXKCWstcjbU0ukbUIioI6w8RlhmuSBnxulwB2bG4+MHTNMNKE04PzyAQJgPB6RJDLyUJ0xZdw88+Z+mtk/Jz1IZryO82VLIM1es6xYH7DlN4s9uSMPn3XIP89PjDXJAJZclpyGApMhSpNTWIDNe0NC6hJAduweFUbbGHVDr3y6gNeOFhJ7muIhnOZlacpSRZiFXhnIUtSLuaPKh6bm282Ty085sx/FH+dR32+gUdfc+7bqnRrpy249pzlj9y+ZLn2khyik2oLs8to57/eaGIBgtTC++O/IsBrkvAEJ0RQ2tKmUY8AJd3D4zQyaR7swx7/KG9cHGbf2hOJnY6gMr3+P/2hG2TskrxnGG0DqrO6U5PCGhvpS8XxAclUSv11qxLlcxMEkS58yHI5gt0qBqfd3m/CEizNPsuIlBKFwkAVcyTEaOZ0aHi9HSHZ2AlDer7BGOHt6ZAMsi3BzZfdimJzWztgMoNSyWtOHpSMhZjmgwCOvCWEoRZ+pZE4iViloLzqXAEn/1Wb+rYlQ950mkB60ZY9b/rAmn/Fl3DGo/devRdJMbWbaW26ABIk3C1HaJ4yyXkMSq/QzyJNDGJWbIZC3s3q8lQEhAKkvcAR/u6TdA4ujJX2+bFONa+XT9cK7vnw3Va6Y1AOY/leFBcCNyjwX+XMjmblinMjiH201ImTEIyBqr+lPFMgBo7T+Bd2OfTOB0C8hXyZ+5WDNW7bS5e/vO51V3QRAW88Zgs/GC/Deh8Qh0wi3fd/0Nnp6xz6Zoun1IM6K47WWGTg9KAVrwe3i8Nd6Do9AdE1zuLY0Ap3tvBBDasHdx9GTHl2950X+KNEebCWp0bvaEv5OrhYGg4y/m9lAPLqMXMQpedPeMvOHKENEYNZ4RxWN/yZk3EkUKhiUKWNeKy7UAWDGj4Is3t3h2IDw7vMHLVzc4PTvh4bHgw/sT1jrht797j+/ePeKbtw8CIi4LVm1vZzV09GRmoEqo4/my4t2HK+7PBXmSGlYLAytn5McC8BW/ze/x7dszfvt+wS9/9yfcnwtOx4zjnJEPVRO8NAMqcmADQmNPnubvrtsRmO8pvB3+Hmeg+8LmiQGz7CkRcibkBCxLxVKrZBx08CTNUGjDk9oMbx2lgXFqSgccTze4OR5RygqgYk4TpumAQgW1rABWJJowH3THgMQo8FA1BWMjOGgA8Gl6upGl/9uERvF4v4t8J1snIjYG6P5lu8t7Z2McUgXnloXVMQG+YUlN/mwdmWEN02ZUu85Btjym5FRtPQrt+o+PqKInPx/kn8vLbm6GhlmlunvtxivontHA7wyvxnljX102uhePu/v3NE183rA0xz8o8L6t/5CN86n+RNzgk71d6J3joAPNUQ88dbGNu25HaPSOn250/TAGhuvdfkff2tIaheP3HPAYc1hPvFlQ5kzJicCcozR1ZyZR8vmokGyXXCuuy1XPNmZVl6avyHVVZEpSrNgRxUnRnBysNZlbLdvhHkI/NwxQMPqf3KFXGZdIajPnqlFmDMwE5DljYulrrRmlMpbrilLNaSZ4WOiTYPuPqyYY8nwJqc2zz7fyBpEaXnGxs6IbQsCnWqPSCdCvceNI2hnr006dniv3tIitqSgv/XPWuRne4buew+aMz6fRwRfzR9bQp+uvev2TzixyJ2yCIuWYEZB9B8o8SvIsHHi3crXoUbZfERQ3YWm3mwfW+gQI/oqLhYCWbAfm0UPXp/h8NCCeMhhbbLoVaQ3eJRfIlobTrAWE8XHQcW3heZ+JwdzXIIr3xBDH5tlqYsgdiu4B2q/bGBqWETdE5HM0Gl8AiXezsnisCG2nA01IpM07Im1F6CeCZtG0lnvj78n+tY8aX2gf29y2BAAcvGR2VXjSbPliAEj9LkJrH/SE4H1SFpsglZvM6z960zx7bzS2df5tF3SzhsA7czn0RXlMNvjEAElpwvEAXA9X5ALM8xFzBtalYMoZ0yRhndPpiC9/9ApEjA/vH7GuK54dX+Dl7RE/fX2Hf/zTW/zDrwj/9U8ruBKIJJGOAIQJzFr6wxKOmHEESF1UJHz15g5fvTzgcrngvZJknhJujrd4uFxxWT7g//xPvwUYeP/+/2PvXZokSZL0sE/NPCKznl3dPYPBAosFCAiFwsNy+QP4/8/kgUIR8kBwISR2FvPorldmRrib8qBvc4/snmoIpg/lM12R4eFupqamb1NT23BZL/juu2/QT3cYDaATyQHWqzNZMcDEqcoGmeE9EmR2wZCJzoy+tlSgYKZ3G+bRJSlL2t/QQAUaiBs2XtFo4O27e7x8ccIf/vwZP3x8wKdPj9hY9+4MRi7+4MW5iNDB6EuXs9MGy+HaYGybBKAaSVrtH394wrvXD/jN2+7OyR8/PuL+JePlqxPQO7axybFCHIMR53AkeZUQOxGbG7Nm/E02QDEm3PANhMbqWkJeEsHZSNzZMweyugaBskMB5QO5Z6sV8z4pd1SBQ0fQfgfC3XPZafKT/M+QAdO5ngYhkryRFc2Q275SOs+Dd3vglLq+yDpjIIEXdAkUbFXjLdrxQ+YV3bNzy+XvCMq5PM1FMPSfHHYsz6YxWLOSbu6Ih69OpseO5PNxhkiU8Q8ZT1JSWm5G10mPHK/M7PsrRnx2AvN8JL3q3GDGOcfqkz/D9lpayUny5WisYbhnRysjLPgwOEULzxAVfmZA9yo2qSRKjA6WY4V4YBub/qdHJRApn6mznIoTFQuQNCMBdia1jo/kOS8kVhzlMukHuK/zZSnYNcBcHVjC0ACZbVlqWoWZ0ZeGruge2wBaD7NOmWpDwxgsq65jyL5H6PPIcz1QlocJfhQOOX5iJTaCHWYf5EUPRsrx9B6y3Kkske1H/6egMu7HO9az9TK86rhDsZsPtn3vTqu5SSpy7+v167y+2Flkq+eeRbwdZAqlBZZKfAypkqU6qRItM9gOukXQUE7HAZISTIJXJZY6U8bsqRGKDzGYTP2JsGUKAZH3HZY0Hl9FqorYnU0Eyw0DgGi6B618nNe+9LvBODmE4kyMw9/y5crGpIKP303g6YWA4lab2DlkZvCQ7OPSVuXw9eHzGpNXe6VkANZ00cCtVXSkhBODsSh9Zng+3O7i1J4ZJZl29vsimWOfhqdV23hQ56O+xwd/12fy3Npzs9HznEGTG5lXAuyAY4vmtZZhrIa2OaYzzG1pWDrhvGjFt77gtHRcPl/R+hloDf/0+z/gw8cn/PDIuFxW/OnPP2Dwhu/ffYvfvn2Jf/d393j3zT2++/QC/8d/+gOAJrwo1TkgqzkIhidAAgQN4A1EjOXc8R/+9ju8ebHif/8//4hBwJOmLS4duFyBz49X/Pj5Aa0TBhacTwtev7rD3V0HiLUaLKFpQihz6OBsoNs5YxmXM1WEoYYwchHGhTsO1tZ+Cv23nA7OMZ0wpcusxsFgjHHFeelYaEHvT3i8DFyvQ8i2kQfAiFUyaFv6M3pr2CCR/UWq5MgB0joTHYyHT4/44c/AXSOvPvj46YIX6xXL3RucTt0rmV7XFb03LIsmmpOtJJpMgmTqub1rBkMydswA5ZQGtseUYzQMW/L3/HpmVdBXpCYDOK/XJZVTAj/WlwVjGnp51o2iYkhVWPKKqd6AHd3SqCF153KgdaUk68TlIZf3LeDlBhXvDd0MQ4Yx+xF5PLZPcJf+7n3I3Bn9A1r91vuSp+PYkSx7gtedPUwnJhmVIFXLu+qr6iiyPSntDgXC5XsMkKcqqT/3Cpukfmbxvjt2an7msN1qbNs9AVtpvNg3ScLsjJpkpjPSOJP9NOmMmL+xo9sMo/Onyy1j7DRQIGRaomVzyAiErsdsMEuRrm0MDAw0phL4CBhTpVWzZRA0Johnndvk3Oi4d7rObUxLTc00a3jTtv1IiuzECV55yNEaEpiwYmMDvUljzfZyql3Dw9J+EdkIenUtNrSa8TvZegUn+um2ow0fxoPpvWymJVy4Fe5yZDeNBYbZ0/NnGalNs8cqnLMTmkV2c3mgPEkVhFhDkUH+5Vz79fpvdf2yaqgqpK10cKV5i4ZIrnvPTg2A3qkoI+a+cxLKZQpyIU2NsmiUCYJ0SHlyiLITOseE51UvQmZAec+LVUzGttyzcQtr9r44Y1jTJhwNP4dO09F4YQpdD4nVd1xJe5QwaTJ14eQtE8oNsTqgEkOk3ZYLAAAgAElEQVTz4E1mHTkzFZ6Qspu+Topj0jltJILBcGHB+YB5Hlv9bjQUPQaOSJ2NcBw1fS9bQNFQvIcQ+nX8SG3HGEKJsDv+1hLxgWG1Gxi7QVVXfZOhw5bC0w7b2KXJTIrFsWP4LUfJpE3u1h+ScdoAkJyhta4b+trR2gJqZ4zLBR9+/IzeF3y8PoDoSZyJE8D9gvXyAa9fvsRvv//X4LHh46ePeBoP+P0fgR8+POKHD4+u0bxgBck5VKAlzRMrfq/oRFhXwuWJ0NsrfP/9Pf7h77/Bx4dHPD2uWPoilTs/fcby7oy333wPUMM3b1+h9wXXhyseHx/xx//yHp/vzjifT7i7X9As1We0Mg+ArLBh3kM6UopqMm5vXQe+fL2n/5Ayhq2UW6oOkIyHTc7pWlrDtnVcLuJIv37R8c1LYNFAGm+sq7Ayhza/pHQ6GLhuqyjuBqybHnehzw0eYGr4h7//t/jtu4a7Lu9RA07tNc73C3rv4FUOCT+fTyKjIXt0GGYBNQMBxh/MDGweckmIypJjb2T7KiDVHzz9kefVxQMZmbA+B22M6wh1OiuL6T6fxGdSfMkyYkwnUKnYfDOdSzvzlYAxJJo+Bb0G82S8q9waXLbnjTGwbddoPg0kEkeMv6eiZ+kKuSQ7ascB/L7Km2RdXQUOGCyoNsYIx1VlfTnSwvaTgTWWzKWtvXXYdj/kTIoSgDAaKVSgz+/oKpyHsE2CQC3phGz+vCAWJ8Ofy7mxZdPoPJSk58PADj0UQeic1tr83Qz8hDGhJee20HdjjHJ6yoy/3vuzzmL9hKaZ532bNtC0CkeE3jqglUHdwVOP7XTuOAHKBymtHnHGo83FGEOqkaZjOkLXabC6LTHWxI/hRIXtFe/bkRz6TIs9osxbjCUIPMbWOxpLmTS51XzP9rauCtOBjuYBAuPcG9Cb8+aJxEbcRuCQsbeHQFTPrzS7rKXFGEQQs3h0Y8BC76xyy4IB7kwjtmT5e8hUxsoHN4y3ZGfNWWDtBo3lBZvBKUPC5c54Nujy9frrXl/uLBYjVsi3Rj3sUwTUOiLPHWCs11UEe2tYetul2N26qEGLp4RQMwMjOz7yWzXwGybi74BZiFHC2Iy7Qza5gQqeYOdDojelLtFmqgYEBedKM5aMMCnspHT8NyIXG9Y3WdVQSi8mpSuG4t4gsHGUVU79Jzth1pCPpeBi71jvVZg+T25fYWp9MlTYy9dblC1Tnwswe0GPS8k6lln3hCLt3TCDYTdfOodKr7vAQsZP+e3ASskYyAZpflrnf17Vtkjv0RWBkJSG7a6JP+T9sEZ2l94BbFgvK562Jzw+XXG9briuGy6XK1aWPYtgwn0/4f7b78FDSoWPpwHegIVP2Abjj3/+jPefHvD54YJAdyhukBiobtwlbLCesbReV/zj//t7/PjhFT58/AQQcD4vuLvb8PrFCW/fvsJYGY9PsgUJ6yrO1onQ2gmNgNNyCqODm6acR+Vcd+oAyfxBKKtYMUyYUx7JtFUn0oYYjmD8Lhtxx9gglTPDeDUK3TY781JMxHWTCrCEBQ3Am9cvxLBe/pPWP2FAmvMFcq+UqT5GFMEALpsYK16ciyWIdF4aOhrGOtB7x93phLvzGW2RSqxMwDaojpGgxlUqejU5brEOGzIAsBXmGWlBj4Zu/1VLrM/StzowOLj2stIeZsALesxXBIvyvnqVJRMcYRzd4nA4LZQsggSTteErKL6apm27LKrjmHXZ0TiywX/rWdMXPMFkXWbYeXouDNJ9Fk7KL0ptpXFwNWoPxK2i4MY8ZvhhbXnDNpL4DTGWiht9TJ2DKASm7Q8zpvM8JgB8kHs9lWmMpjFkUrAAltkwaoGkPqZ2MC9UsdP1dLd+L/1zwccuY8fez/oCXLNC9BdfYdf52sbq32VIWQOZVpcgGC2xr3nwwNhk5ZFIjqjorcPOGDbH0ooiOk+ROB29dw+4mF3JLMEtC/BQog+jR5f9Cd3MCdtsMijRO5xkDuZ2FJlFRDidYi8nETCS/8sqqxOWVR4myZLZbmZl5c0DLhLctRHBdNKFFdv2YIbWRNdzsCCm90COzIEknn8+kC+sFO42i72Xssm4HY7p6/XruH7ZymIisCB2uUijRryVF+CpRLZBeQCDzBBRQlJh1pSwPYXTHBZm338XxrX2pw6BuVq8E1tBjpFOQcgpTq5sgNhMd8QziBQm6FgiZcaY2eCDG0JySE8ryjY7Eubs2f3DlUh9npTriGxfw2S4+gu3U1mPrrxKlZWI/SYjlHkbWhp7v3rQZBypopdghNRxV7TZH4pmUx6h2Awn1XgrhoPBqCk9AtPs9FI8h1COxWG/cW0TTnN8LwvA4kccOOHz32nou/6z45iNntkYZHUK7J2j6Ze2ZC+JRdjPdw13fcHLN2dRyvhGjtS4rGBs+vfAsjRsQxy+x6cLHi8r7pYzrtcrLp9WnM8L3n37Deif/zmMRGogXlSRxj47GWiDpR4RdYDPePzMGPwnfPvqJU7nBdQl7e+yXvH5I9Bbx5s3J5zODTzkbMft2kGnO1BbZOp5BdoKhhwFQejYbGNfpk42VKvhbhFux5XNUfNAiZ01OMsBrxaX5mvDBqoUUg1SDK9Md6IuexJ7AxNhXVd0Irx8seB6JlzGhsasRxoSVhtHiBZf77PClqTGAEH2UVuW2+nU8G/+9bd4c5I5Xjcplr89XQE0tN5hRqwcVr1f7Y9sB3Y6soqnLoM4DO6CdKBa55MVLnM4Oe0Jt8ED6S03Enm651927cxXdi7yZQYnmMsqhoJ7fDntzA8E78ad4P69AR/Us3vvwBib4T9aHTQZOjuVIzkeiaxCrtlYPOhB/qz/rcTHMHxVXc7TvTzOWCUMd+9o5TOPpbcWMJe25ovSfyEbrYJmnO4jumOuHFrwCIDNEUnS3rs/KnCnK6/5B7GNFGfMpdrtbrw37ubA/K13ds6gzfPY07wFTX/aVN9nChWnwRwru288qzxqZ7UCVmG5YWkdY2y4PK3eVmsNp9PiK3KbriSyZTDotqZlkbR50HC/ZqEFYwxcr6sCovimKQ23CBKrRJ/5ra6eeZSaI5sOkCI28s5wG5UvV4hdJgHabdPzjS3TrNsYyE9r3MZw+wg2V8lZz3TENxZXhjnu8/jyXKU9DLlNC2pWu6oGGHI75vSDcCiD5u8270cS0HF9a8P/1+uvfv2ylcX8Nd8vBCwbbinW1NXAaCHGE7FZ5MOMNPstG3dm5MuHKSBWY0Pv085ELIKwyLeD8exGNg8LwtQlHu1MVuPieYVv3vNQ0iHN8DG8JGN2d5E5zyzelts1qe/E4IcOZI5kWc/FqK2jqSt99u+tPiLdofhVeQ6RZaEaG3Mpds4x6wn8w7s3xnr84LM/H60tGzSHh87f9jX97VstF3wAai6HUX1rTEVZHDiS9bk8IYzWOtZ11TQ5YB0rGjWs6wajw+vTiutlYBsnXNcVHx8fsG6i7JYGnE8N2zawbas7EjHXA3KC8QHN67OnU8PLVw2v3i44nwkv7u/RO0kEmiT1kkiizWMA2wY06thWdUJpgHj1cZEelWGrbBPXJ1SF0TM86wFFhhS2q6xSrjlanyPMtnJVzciUOsZ6tn3TCnc6TU9PT3j//gFj6J5K2/MNi8z7SNV+McpJ6FbjDQBal5Lw2zrAi9hGlljRBgFoYG5pnBug+4gT2On895keK19P9vHNL0p6MRKtHHx85UBIMnbsq4vqbBDOTRwZ0OkNmt5Rg+inVvaiu+qUzIAE3nL6YYXnCPg5cHTo9N4Ym4j15HjquMpn6s1RsHPmuT7ILHtp0/P0HBzle8JJaY5Te9ozZR0h1+DjfnY4sZErzhjJ5vc2YlxzE96vC4cyK/HexOHxxAEtGCzM3v48vtwFA9WInsaejfwspnbdJljnNmaH9mgcdQhpLqYqpgT4ES5h2xn9hF0gxzKb7GxYFknzNV5bt03tQCeAoFmWntZtaGCd3X/vuhe7tyZwqINZeEj+CgQf6Sj7O57UuYCOEeWZMBBJneaQ8aw4GdtWnGdPzcxCOzNihqmAOBtqOvcGA+/nDIYDnr4j5Mrx83XlswRUqLaT5UlAFQ/vZIxS7DH3fL1+TdcXO4tR+dMclUjnyXTcFsuZUqXVsvMXjlpeOQl+GekhFKHRdGVu5O+IrjKfedqWt0HxoMFpBp43EgZfGAqzU8QuFEpag7+eBQ4Vb5P8zIhgVk9PUdVzI2O8CCVTOk2Fp0sz1XzB/7eV2WwEWd82RHkmxmNMHhVM6aBt0lRAgYNSkYfow/Y2ipKYFwSsS8O31TTwNpIxMY8yG0c0P7QD9ZYzqnsbys+Tcz3/UoSu0ZA9n9502KdUU3ciRDX5auxsHExwM1jLa6Movr2BawU3BraV8XTdsF7FYXy8XPHi/h6fPjxKizSwXgcYA9f1gnXbwOsAyQmmeHFesOCCR1xweXgEWFLOSavG+YIiqZplACwujh3pvpwW9FPDul5wd/8KHz7JPhBaOkBiiNydr7g/L+hrw9hkxWvbNpzPC4g3DNq8fV5ldUxNlkM8mIHI6ftRahaPCXcqArypbGy6vIizYAan4k/pfeNRMSC0EiMPKRZCkj79/vMF//mfP+mw1PjgSKsySQHEUfTJXwQz+VmngFT8XHrD5WHDlQi0NDRBFTotYCJo1qwGtBoGb8q7xkuIEvCUPGnW/uwh4+5sACc5VBFq5BqmA48oNuEushslAwWpB4YPEv/N/HB0+dMpuhVOgrw/hu0JzEbrcWuZt/OqFCanSc6LFabNMio7g3MgrsyFVT5MxmKB5EAO8MFv80VEWk9EebZph2lfWO7DyvozEHvBjB+nMef3KDGGcpFX+D32mYMfN1/prRkBNt2urphTALI253gmihMzdkhMPG4wTJPPzJIdo50f6lmecPYznH3vf/qNDE6F3YPU6pXsKsPvKeOZb7dhP3bOxdGzKqUBS8EYoKt6vXd72atoylmEIlO6lRllOYbDgwK5b5fVks4/j22FVEfrvUtFVQ1ojE1WNceW+cLOSdzg2xaYQW3a3zkRj6+HG91T7McTm0PbNTyp2bkNSxEV/m0gjFQYMpQE5MzRpGuKPVlUk84DoFtv9jyXswsy/RaZudORJmc46YEqm34qeOW8FsMqULvOCCG8a+fr9eu4vrwaahJElgJ35NlYIRpLP7AIftCElLwfnPbYOf1OqwMkLFEdBlPOoyhSjEhhHGq0ihJMK2WDHWbbpjPvUdmnf1JxYMr96Q4y7DA3UO+poM3jsPGxCQZKzLTDq+4RlcHCVwWSAUZmpCtSA+W3GdLA2rkYSZa4skrqYOc4mQGRnNm9U5r/tQ3kISjRQhBlm2XXDiNtBs/tZwW/N5x+jmDyyLzBVcaYCdHmMKXKUdAFTTRz9PfPTRMu77pVZEAlY6m0DUS5E8HpNobvnd3WAR7kUVAzFFsHluUEahfctxOoNTmHqjecTx3Xh0c0GlJNlQhaCgB21hS4ATQqbXMUIeDRsF6ATx82nM+M9elJaBsNrGnE21XSll+9WABibFcLLkXqkAxc9sAQSSbDmOd8li0/5URkBYuUEm0Mktuwqk/5sr2RTm6k2xkDNtufIwZKA7OdUtnwcLE0WMIgckPaPsRADePAhkgANgtuKT00AKeFcDrJftXWOgY0KLGxFk5gQA24XDk401PCDtwZs+8jF97IL1ZZl9soYgRhVBTbcHo/z4d8v23M7uT0TnakFCvHbSYUlPMkb/Hw8UU7vkfCV8joKueZuezh30X98xASTHnP3Gxg7yCdET/95Aly5JK3Pp8iJlZ91HRj7tBWUGwst3tVnDvYaSwHw85vzdkVVUjDnY+9eI15d015ZNDmomVUiXNHc940lfk8HnJa9ZzGwQXdybEuTgvtkbmDnx0nJtePeGC+Qs/ecgQqbE0L6cWxFNWJkEqhGgxLY7b+7cgfAOhafdkK8jAzti0WFAqedtFj0vNj5XvTCt8MVgeW1bGVvlqzdFKqpMt1jDzUHkn2QH4+61nAjuERvA+YfULOI2FNJJvQLNA01emUpmJPlLnIHXNOtU1yk13aYkck9cmfpRv9vUnO5Ev0+G0ZI5AYvfy8/r5ef73rFziL8hnOTVUI8gzruTKy14UHy8HzROjLUhkL0d7unKtESKHIzAgXhjRDjpoK/7S8WJqjtF5neeeJCY8M7f3YJ2VxbAf5iOpnKMPQJ5yUVhKwR32Srjx6NS+WqlZeBi3Dlh3raa9P+remeYqWGqZB7flkTMlTyZHXg4bzUZKugPWH6lzGNcA7mhGnw4zgGLsMcWdJItJKKnzRY6Wv+uDPFYrpi/W5e1cVUrI100+KMwtWZAfPvYmoZmfOKWXFneHhGI/thU3wzf2LHpWdvGYE2plYY1thizmPDxeZky6OyuW6YqyEfrpXpS2BiQECFsLrN+/weP0E+oHB/ASAPb0IJCtT5njkVbjBWp0VV5zvz/j3/+Ff4O1LwuV6h7GJy0losiJ26nE4PAinMwHoujrP8IgwNdjZLtkQAaKgUEZNK/uej5h4xmFSwmmSswG2o4nZuFE+aGq9DQw5DmQj8ADGuoEIWNeBhyeJmlsyaN5bJq2owUMA0GA5osxykPZgyBlfBLx+8xrff/cW37xroPWCdZUVTGqCh+B3MabaroANUByTYsyrVZMMHpdpmIwPSnNwyHq0Y0lOco2tP1a8IxzU+p5qCjpixtTbT0THrd3i8Cgv7+SOv299arpc2ddqvChzw0rDBnPZjqHIspQ+kNboVHiySfgMQhNs2bDOczjJ+mZzZr8Nx7u3knRUpsoj58nfSjA6/EX1mLy/MYT0eNaRZDo46xzrKTmJdaV1em7i/xDJBCY9AKzw34QzEwn2Xf+57SdStMcVh2XMOmh3Gmq3x+8a7GYjUDgowg7Gq4q/G7psD0vwQMFflgtZRlKifYozhNnnSZ/VWIQFWddVUjVbm+HaywY71mddY79j74vjbr2uUbW0d/TW0E62P3p4IEgHthuT8UCWAQXVRKARLlEeEkhooiWUGB+InUdKiDaHt3GOQsN7HXN8Ucha/0Y6L7f7srGXVNwbf/uwbkFA0zOO09SWMUv6+Hr9+q4vdhZ7i1eDdlIUUX/wBBNioEOrXcmz/n4PSbgjpGjNlaWsqkUVrNj/w6CBPS/lL2wGu/anoMwC1wqwMKvjRFRSbGJ8SQcmYbpbaQOlvRJcHVjFUZuc5G1skI3UzccHH3OMjQ3+ZKx4VBDkhvZIOT4MLfm8c75MJbvUdAhnRm6qo71ovnevO+4Gi+VBUUXRDme1xgZYlb0p5MCIYduECbXmZaAz6pwGdD7MqYh5jjkokW4uVAAXpxm5z0iv/cpGek1hm9bGoz9NBXUKV4W96Z4GQI52YWi6GlER4My5VH6MwDfQJxi8fVWMvQPUCOu4AAS8eHnCC5zk3FHmqJSChst6AtGCy7bi8fOTpn+eJD30ruPjh0/48OmKpyuBsamleVbcX9EI2JLxLDDJgcdgwtNl4OmBcWovcO5X/On9E1pb8OJO9rAsHaAhSq7xAGEFLXcYg7Guq9BcI6c9PyuvNz3IPs9JOODzxSUiu3/AZcxc6AQ273PBAfaqfNnhN2fD63x1S006S5VZnNA78PnyAb//0w9YlIYGGN1lEjA0GNYa4dQWXMYGs5lbWlVt1NCIsfSGl/dn3J3uZE/qkKgvb1c0rEpfDeJ0pgAeA5HoajQZ2wWMwk1WGue6owF4OlVZeTrALzPS8RQmSwGeUG7jVMt34kO10Izmpj3iR8aWy2UEbeSxEJFUkD2Y+/my94xnsyFuxrI8GGm7YZiOFMAQHDia9ebm3mbpVXESeNinXR+db3fj+8auFswpJpBXxsxYMB0Q1Zgn41t1ZwzCLAI1SMsoEAe/zxeXj6K2zJG2v8tqxuCyRWWew5KN5H9Q3Terc8qqXFwPJ9lq9H+0kj3rnRzoswDi4UWh38f8rsGd3i0BRGS9kIlob+tUJzo7M3u4joMqm6OJJ5z0Hmn5IE0b1XGZfts2edlldDOnscKV5bY5b1ZUpvcOVq9sjOAnUANTC31BJEcCkaTPook9wiOKMLUmvJ6dW7Ppcop2DSDF4MkC+gn2wQMDJCn/EDpsKqPswBOTHTWIOeEfiQ7M8Up4MZmTV6JFHkSb+cgek0Hziq3TdJr3GvwLWen8VjZxkvNoLWWgrfohkgH/z13N/Hr9da4vdhZbn7V+nugwCsJQUodJ9/QI4wLUmgiUsGpNRTsjFMP3hrFhSpWz0DGFOwkauAitQtReA+ArPB495iTUHS5jCFUeh8CZ8ZS4i2Io1qYpBSoOSpECqCIIjpxZ6WYYfbT+PRsREKM9PRgG09zi9D3PRZYqmJneBLjRApf70VQNFDDqYeluTB7BxDGXpJaLFxJKMontHEC9sVuP1OIKxHpUxvRzUfKE/bEADEhBp670sr8CtVX5y99w4W58wPFkPKOgjfIuBy3GsIMmzSBFKqoCodkuOaQxnnWTVS4euDstYHRc16scrdDjYOLeCD9+eMD7j4/4/LBqb9VQqdDY4IWSjR6Y9Sy6dvLjCjy4sg3wkLRJmR8Ox45tvgJPs+Puvds/E61m6GYo52dsFRdz2xT7E22ncVay1jUjnSJn8oItsDLAA+gLAY3x9HjF4A2n3sWJJ/jbVz2HjCB7P7tlUzDUKJBAhMk+ZmAhwv0imxQHJ7XNxhfGhQoTs9v4hUYtCOW8kBCxZ/tqzGbm2xmsgRcgDBMPcJVrTkzN7ZgQM6Q/b4AUeglW8U/rw/DgspYipcydVKuGWWDY92VEm+W/jCqUpYN9Q9/Vdvf6wgzcomluoOLwdgxJv+452e4Wnp9pwEBIbOPPUZ2eQ/ien77ySDJ1U4PZGZw5fIb3toNknG00tcMD17m85YxXZ8sUVhrHc+Od5f10HYi2mw0WW+YAzuPVxuOOftLGN7Slr/aP2Fih1FztmjzZ8VAyO2x1NqExTCzSivmyR96yEwYzMMhXLh0O7dhqKBhF54ESp052g457We/ZmcNVx9RvQQLBR/GZsZbuUwRdcltR+4ETIs32DjkRtq22QOTJMsVpdD6twY7ZRjwiAUoTf1uciRXyM9j86/VXvn7Z0RmUiXkmavm0/cfUZK1uWwEeA0+XFb11SUU7hVYip6/hDJyj9WRn5ZUox0RqvpIWywqy8GReWkTDjWmQmMbeMUXYJieteR/xrBkPt3V7Tp2N1KP6hjnI9lyHqylGed6ek/FHKy5ujPEB+DlAFEcEMNjL/u/2Q6TCHr7KlX62yw5+9euA42WlKp94XAUGp7m15yWyt4FbhiNWkhmRkui0lg+ChkXSEn1yMtRtbjXaJiu6rCsYIgh9DyRrBNnTmrXPEXOfcQpmLJQimyqkbZXT1VCUlfR59P7MUDZcWQDFYEr3vA2bCRXMofTrfBA0rW0AjYT9hUeHpyLyIF3hGVj6CTwGTn3B+dUJ69iwXq949fIevTP+8Z8+4E8/POLpkQFaQDwwcFXAux9g7MwmwMuZW2BQGzi1gUYrluUe339zD3CDbYNmZl2+sGIHUiY9B2ckPXMojuxe5AMXQzGlZoexn7471SQjwdAMJB5QnCc6YQ2jipFCUU6V4cTn62YNIMhe3gGSADcYgzYQM05gvHl5wvsPa/CxTvBylr082yqHWGMM0CAsDZAjATSttAmPn08L/vZ33+J/+Pe/w7g8Yd3kAA4ioBP5sTC2x3kMD5Ul/AlO7OgAd5wauZOTTQcRtVWOxD68IwNzpv9sNSYinlZxJKikxec50X1xnMzJi9WB8luee85dBS2VlXx3GKM/YzyXSC10lFnAxcG2sXGSZUmeww0oTv/p24pAVl7ajYfNkPbebhr+dQUt/W0DJApZVTAF94lzEMBhMqiHizh5MjtaJZU7UFXgO4I5O932PbUb6cEKhxdboYRGnROlb7JiQYZbrWfACUwaDDevkwq4uRqKdJ7u7DwaGLP9wnsaZE4yLK8oZrmfWnXHNTuXOvz4qM6g64zkLBZ45/tUeWcOvM+rqNZJzQKQ97vhHRPcaR84G/9oSrTJWMeP4nkkOC0TCbY3vzcMTmndQ/omEFoHqCs2VV5nfICRT86YVtlMRiVYMTtzUPg2H+dQmRRiYrYe2Z9NTGMPR0Ed6xSMsZkeUtiG0ndjND3zXMxV2eJhDqmgw1Yh572ZRzIkskckcA49Ds4wocFe4yftxy1A1Ydbkm1m63y9fp3Xl1dDXbUsPgAzDgAj+DThg9G6bjBWI5WZcVoWWGrB2OTctJlZKAkRuHNQHZycZSTRolbfz5/WjmhnTesyz4ATv2c4xOlo6X6r/O9ODR0qjWowAaJkGm4zBbMwoFWM5BGGcMGRCipLecp9wJi+RIQ2tEaaXjHk0PAJtvo9VujySqunV83H58XL0t/03cE++EJmeLGe8aaV0JDGVdIpcrNptWcvcK0bEejpHHC5y7Z/IUOWUq3UEbfVaTuwYK8EpBEvcivQlHE6zBz70MSG4jJOuWVjmhT+rWui2yNln1PJSoPKZ908tNaVl0S5ETWc704YPHC9XHC3dHz/7Ts8PnzG+88rHi+bFLliTakhBqiDxgLGFe5om05lqYDHY4A2xrhs+PzpAffnIcqdGNgErN67Vj7MTgRb3XUfRtCafSEp2iJWUKqanOSTBYkmSzU7AGZ4WpELxyV5R9Fxcgos8poN22rUm4IdWFfGeTmBaMP1smJZGr559wL3J+DjVZxeaWZFA+Pdm3vwGPg0Bq6bBODu0HDXN6xjw/W6AW3BUMfq/u6Mf/k33+Jf/e33eP9Pf4gUSZhBtSLLCl9VzIYQxzBt/Ee8Vlffk+GWns+pef4s4tmMUimcUdufDdFhFVInBpnTqqDzWFfzwzg6DPUluVLgnxy0vMq44z0fy9w+Jb0WMoWVliS7ZqDm4ebgR5KFSEU1UETKDhczCEdXXSxQbAMAACAASURBVNVAmiu+8ZLxlY0h3jR4yi3KY9HbCXezb7tztgbf/C1eJvCtAWa4bd703bzabI5iyGOoDskGfKL7nQz5+Zc7hQftOv4dJgOGw+F3uEeFp00wzbYCxMaYJ+nnDMFsgiOyKPOZ8FWyX9h+iwaoklIoTRAs34g3xuANrYuu6osEJsdgrNcrmBmtN9mCozJ/uNPdQJoGPjZW3h+gzrpNSm2fwQA2CUSr3apapOIg2ah5XJTO4L690hy0TIovrxirckmqwlqVRjtyLsm2BMPpZKZAkwJmY5MslW1gU/gbsR5R0/MgIr32AF5LteU8XtOdZg8q/PN+9xi0ycKwTe1+mHJ/Od98vf7bXF/sLCbbyQ1oWcwJY4w0KimVrGwvkRjdERWRsF9rfdfHzgECQLQUYw55BYKScL+5tyiU6MajCDSz96xpNgOPcuEBwNK0cntEmg42jyEALzeHGb3zw+7spfOLKOWPJ+Y0oVEEcerziOHNuTRcCuwh0OZUg9BJKibV0S6GsAI/7yuwPveOyx4luS0xYjtC8arz6OfhGe2kRsje1HGWvU9qVJpTPyl0NmMgGTYR/BDnfnPjZIvImT4zrFoeGGMQwJsbdC5ks/Km8HVcSM6KNuHU4xiZPhAri74GwVnBp7nReSSjE55+TwAQmUMp5xgSBlrrXqKc1xVjMHo7408/fMDTRc7naw1483JFbyd8/rThug4wXeAagoNu0AiXdcVpabh/eYe3717h29+8w/094cMPP6L1xVPTN5ZiOwD0KAtyhZJswsCbGn3Dyrqi0lYOrNy6fsrQm50+u2dOxxibfq97T4qTmQyiZVnwdHkEaw4DeODN6xf4n/7+v8MD/R4//vABnz9/xrffvkVrHZcr4+HzEwgrzgRsvOG6dNz1BQ0DS2fwAgxNt7o+rfhf/7f/iP/4//wX/C//8HdorePh4QG9NZzv7lz2GpxurByEJ8YIRzFWC48drUZ23PTeQZtxOa/OFH4pNF37cSPlwFk72mM46xQ3AA/mfKaD67ZNToEeqD3xdtMKt3NBorV4RvHH5t0n5ePVJWP1Qfi7Oo72lvTFz+JKxpSKcex+hbeXf2dwCcrmUY2bS5N2h3ZgtOS82LiAwClmnM7wER3TkN9zo0BgyooMdV7NXmhJntrzc5G3Gmjct5W/F/hYjGATg3p3ryuhh8fjuE3A5mLSvaq/qOVxA0ir2xEEOk4vPVwdu/Hc/v52+GwG5bkrB33E3Er6fWrE57oBjeUopTEGroAfen93f+e6UPhF0/YZ6A0g6pAK8oxV9dz1STOWmuj3RqTHDS2y5WqBO+EWOFw3OW6Dd96tnAUsGM3yhsIRYw4YoTakKuqxySp3b0Ijy2kBkTjD63YVp3irAUtW/WyrhwyAuozh7l7k+SCxtbcV0AXOGoSY8MzIQXDZ9znAGoRlrd4Nf19oa5LPKtc8rKWwmR4OexIuM79ev87rF6ShEiYRiypb1cglYxBIypI7QxyEOglzzMJ/MgrDIKgM6qtsxzHiQwXTKEWus7NYQKHonjPzT32r5kmvaKNwJrF7briDXVgUHUF1DLEtJRmqGfDdX/trVmTC3NAKshE7bjMSynhjrvysNbZh1vfy9B3Ph/Qn3e0Neo/2Kg15ylvGldGOg2ZjjNUT6yuf5TjLJHPuZlzZarV3uaNFU0gKJ4eirYEHMVqmmKTzgBuLk+NTFCUTZK/TTCy1RekyxdSTcy1Oo83VcPyWPmnTfkypDU0jb2htATDw4/v3+OHjD3j3puNhOeFyWXFaTujU8ATG6ryw6b450mNrRNHeEfDitOA3777Bd+9eg7YVlwsidZNIVQynFfCuhrGmoTI5OeZN9Du6S+jixIe3eOVLVgXye56Cc2Q8p4qlEohgMK8gnCEHUzdsfMX7P33Ew+URdwS8XIB+bnh9IqABnTrWtWF8hqSQEmNpG8ZYcDp1vHwJ9PsTmE94cVrw7t0L/Nt/8w7npWNdV/TexSEkwja2CBQojJ46vAc+FnSLjAhnosgWK32gMFqT+YzGW05kvlfv75+ZAwDHBm2MgbF3FmeacLjtqpEt57LiunGkum5HMLhsKjennuO+yaQw5KOfDNKtwjs7R6b8dUz9kwSXeztUznKei/yfV92sqcBaYtDdo9O3Q53Fh+BTMVSnLIrZYTQoUlMESAYJ2zpzxVjpK+mnmZ4qTJlftE/T7UZ7NkYvLLan3QoNJnpE1aHJADFeqPrtaP5pd+8wO+WGs3lz/MBxdfDds4x6jEx+JXS4KlP/pfWO1uTcXWYpYlMzrSCZMhDnKew50WsnkiOami54WIrqtq3YCBhjQWsW+CPxv1VHdcjxZZWug17rkFtyNAe2TfUA6YrniCB+65J11zSribaB1taKMwKYWBzK1tDPZxCkWNoYko0wWAr2mN1DekxIa4wdpZn9oXNpvxXJQtCzfsmpxQ/jcqXLxWFk/28qNniDXr5ev97ry51FymS0cxPgrOOyWs1TXR0ShjYZzshL+9nIdefAWp0Ob2dOQgEHSmUCK6cFmCNL9h5rQ0fCzYVXKOqywpWNg2y4Tv6cZUz5P5T3rOQeMKWPKJMSFUbzqLpeg6vhMM/M/D4AbJsp+1BKs2NdImMKZGnZcHtoH0Xkfx8pDkU2zyEYXkVRjGuKiVbjswq8SItwgyK1uZ8fjdg7oJRgCAjHkFQQeb4q+IJPGN0JXTYlAOnbHM4wR9nHbvBwPTbGAiKc6CLRsLViY6l41/taKbSZU5WeddfVQVIlMlYQSQrPtjEYQwMhm6TxjYHL9RHf/+6M0//V8P6J8XDd8LANEEv6C3UGbwMNoVDIjrVg4IIOXhn/3x/e48eHJ/zL37zBv/jNC3SNWg6NlFrhGANTdJrMpR0/UejVHZ8UMhqBMQ9A2LPJoAyaz1H/vbGakVayHtIbe2MhLllpUG5bNoyxgtodtu0JvHZso+PDp0c8PDzizx8+43oFLnzCj79/gLnQy6nh+3evAQBPTw94cXcH4oZtbOCx4X454f7+DgsIr89n/O71O7x+0fHn9x/luI5FjJdtbA65HTofmQe+y7fIcTFuRnoneD/jQBGnnzn4E3MRj01GJs0p9Pv0TkD1yPT7swaIOgNuqMN40gzI8nD8yZICL6sLpAY6HUTC5YB22yduYzEjlQFPz20TzVbhmWQpkcsVS0NzHIHLeLMcOAxWTOPK0kj+T3tH6VZaGaoOKrAkdRrP6ue8XWOSaVnn+71n5javKIZjK3Oc+Ts/O2Ha96GZzmZX3jp3iRYLLDRL3gpvm++XZ1rBG00LgwKb4pb5sB9tSN/L21VSG5OumoMpwjv98PlYkQzos221S8eegjDZdvN4swvjZPMkvcvjmNd9TjPVjv1+4rxPlJmw6dFN3Wwcs7mI0BbZu3fXLZApRw6tqwTitjGwDoJkNwnwrTU00sKMiTaGZsmBTP9UOiNAbbqOpcnK47ZtuheWpGorA5drrvEg7TSy40TE4Rt67AetOo62+Uoo9Y5GCxa1b7fNUoxZ6u/xcLw3mBGuuJ90YQN0L6JsHfHfiCTbijlSfXXsXrBmsiGRaWYKlLghfjjvX69fw/ULzlkMoftzptdXsbS8UhUss1JJv03VB2enLf8wq8kcwTTFOr9J+Tnre2d4l4dTkJKn53gSELO4yPwTvxHL/p6dwp1fdOGd+zbpSzg2DvJ4qIBT8GETyThMBShOiSr3W47K4bVHxa6HeJDqfGVFnd9gl3C1ab6Bw6kr1vMJZ6dXPozQlA4Hu9G2p/pwUFyfTdCaw2/R7kzzPp9T9Bt43khycPe2VShb3v+YplouK+ageOy2YucGAoEzXoh1D+OKz0+Mpytj3awQBunB8xyGADOgkVmjmgHgug1ctkc5XYUazqcTPj0+RAoys+x51rO0WFNLOQVVds69zacaA7cKTPj7HHTsuLP2PJJgfWTONn6Ez5tTcFKEharTXBLbcThD3T/ZAz64i3HTF7R2wvff3GEdYkD8+f1nEDWM9Yq7M+HlfQcIeHm6x3npeLo2XFfCCsb93YK7c5MiYgvh6bLi1Jo6PCkFSo0I2zJQxplTFpVgs/HLqOdX2r2EsMCzfveCB/N86G/utt3gg3ke2Nq0/ogKzsNpyXw0tVUCAEeyN/jMcEbp76OLOY07UFH7STI9QVxg8Kk40Df50VvO9NE70Vv0bc0fr4ZPQrLo4+DxMkcT/M9dc59VZ+WL0u8JtsT8roE5tzwLiRtw6DgrqmdZf3vOC6TJgSvN2d9Oh7fbirnJuv7wyZ+ExeRVpAr+DFwg6HhCSn3ugDd/9vwzYgWYZowc83wa2F5ftlb2vYl4U52jOLcVTFu9a9TQukTxzRnry4LGjLZJNsUYGzYagO5dHBiW3boLIBrJFNoDNDiAEvRuBHATmbWw9LVanyYnWY5hAlHUTNPFGsuuIV0+HLx5H72FMxvwzVkIGb6knzzgTm6XzvLFj0Qi8sSRsE9lXmfZZip1N5vHgvLr9Su6fsGexVpohlE38N/aF0R6gmGjvPdFfimEnVYIStTRjuzI1mF0qoLBjNvsgUabYQfSThAepdwMts3v5PIpBL4xP0SQZGlHdd+f+wNA2neV2rDHyF5XHGka5LC9cI4j7KKIR5fjd1ByLg6cCAaA4fnnrpw52LusxnkALASB4/AGULdlAZexRAU7+c0N3BTJZaiQjJGGMMpWlr0zC3UQskEcRqGbrGrYx34Q0TetOCluS6mDZasuuvYlBVpcAFce8XZMuxjYMCNhixv2Tgx3MiPCsAn0i/AeabIZsk+q8FqaF2bbwwZIbNGCO9DVQamy+c//9AHbQji9POO8dazbI54AbFfFXQO2oQ4yLVoJboNZCI0kSNKp4f58j/Nyxo/XFcsieBJOVqdqaEXf1nSVtzoDxsJ2fmMjBvNWjckUWc8Oy9Fqt0+ot2u4ycYfpb9tFgldHZZhK5o6z82AZIhUY8ZYN3ScgL6hEeGyXvF4XXEdDXd3L/F3vyGAGjYGfnx3ks9PD7DCS8SM+1f36B24XO5kZZGv+M3392it43S6w4uXZ3Bb8fHxitZlz3de3dm2IalWPv+Gz5RGquMYTvvq+I+qB9wIdpudYJKWZ1w7uQZH20HcHrQzmeJOFVf5y4hSzVP02nhKjJ5jwSOZLrcDCvl+rlwZ3e3fkUCTceRx2h4glQAt5THwZLgYKseStDMj1+FC+i3LAJOBB/v2E03PmSD2phmLhGT85WmbVK7dm8eZvxWbNTlvhY+YYcV8eMeTqbo1m47Uv13XJwEKq+5oPTrRaN9UCsN4qbeKkoDL6C7RWW5ufqus0HibXJ/kbd8ZTO4fXHz0RWVtemteOTTnJO7PK4ytOgjTGPJM7AI1JnM9CHQDfwTkehb2LDQCI/OdqzBP9kehrRi72UbQlXzW8xFtcaL3gcVsB+2PRywmXNch2nDV84lJnK1Fi+OcFvPOGsYABjdsQxy5bUhqaGtSKtFW6WrAP8ujvGYv+nTpclySkHsDQ1JbB4vdwCxFeNaty99a7GZsSc7Cji1krNcnp8um6O2dfDUUWkDOgobzlZ3EDP/gOMrMA0MUmX8M8qr34siqTEsOaFOnEiPOQo12NPB4g/S/Xn/968vPWUz7Tszpu+UsRiqD5n6TpQHA6Z3SEnc17FGE2NK0GmVhxlyAxhzAJPj0nj+T4ApY90LSvw9lc690aREfs3WSEOD92KHwyHeDWSFPh5O6CxP6HNq8jMEPmxVmJoaWaJ/HUi/mwEsoLz1LkFLH3mkI6jCNA2Y3aHa+V+D3VrDgljSYU2uZwiCjCb4saGpEO6yakhpq+FIFYqttZlD64bsKfdBfjNtWqaQ9n07wxt7tbi6GRCvDeQxU5X2hPH3a39kRdQM9NeLzYDhxAkxTmowZd+ZzBBEpDbrMqyhicdJGRAn1/L4PHz7i48dPePv2jFcvGHy94uOnR4wLg9DBaBi4gpnQGntUV5hoAOgaPR24rAMPDxdc1zssywkAaSRVYL0+XcDMWJYFII0QD5aS6wBY95sAhi9RtkyTQ7gzdOS/XEG5TkrMUSPyVN55rrzjPHdOO+TzNuDhKQDDz06UbYMDDQ3r+oSnpyc8Pl7RTwv+8ffvsfSOpS0gdFzXDdfPKgP7ABGjnTbc9TPevHqBMa7grYPWht5PAIC+ddzddWzjgvVxkz0unnJq+7xbGJSCsBhbkWeK4xbp1paaDZPdsBWexNPJCUkNIwJw8sam1n88q/ysMguZl/NM3JI3lh41zRNPn/HzsXy6vdpl3Ye8qcZ+ZIwcvOUyx/5OEgxHY6uyMP1u+EkzcHyiQwRgXNcioygCWLlEWAa/OpkWoOOi++YVhfm8bjfcuTQc+tHvG28eba+4PR/eHpk8iH5y0Gbkke9gz20lZ+yweN40V7OzmIdpYvaY1HZ0xnMDqb/irE82zG6116uq69E+cz9TH7d1+L5/GRdV2jAStgnfK6X0oH5O9sdzARweA61HYDOmwN7XQFbTUClr2m83fiFc9aiJbZgzdgXzwJUYvTeclwW9i1PUeheXcBOZaWmYwFycMbI0Cr6yjnBVe8XSZEWzW2XXDjQmLL2pfl7AgyQbZ92wbSseHp+wbUOK4airCiK0s3bDYaRsG2NbN+iyKKgBvVnBwIrn1qQf072253YMxqZ2hdlldnTMQh2NCEO3vBj+S0q8yRrjI44+Ys5uz/fX669/fXkaajZ9lThH+rUIGhdoXJjGzjKS37b0NsLxKNEuxrqFEK5OQupuqkLoQPA+5SyPqHzTMUkEJiu4eFa6FzzkJXvrThjrGQMDKHvU9qt9Im158K4MfYbb9tAENImrFdAqSNMo2EyUBAMOmNYFwF9+JbPn4Ld5zNFLqnUS8P4EFK52eg+j0xrhPDaGbi7SFa+c4ouJtliBsbRVfdclnv7p9FyNOCOeoz0jZkQdRXGTd1fGmOnQuDD2L0n3dOD/BLuxt8Ng2TOR+Iz13AoaYeZKhqngkJnx4v4F/tXvfgOmD3j/6QkfPgDbdcHSCaMNrAN4sSx4+ZLw/vMVnYDTSUqcL6cFy9bwzbvX+O3v3uDl/YLffNcxtktK940BtCYV3qSS+Yh5RMLPRGBsfDHhbJYJNPVVn68yqBYzsGmZYNE+eHKY4kcCSPjZYGyNsA1JRV16x/nuHndX4Nwavv3uHa5PV2zrCgaw8YqlCyytL2it49P7RzwuFzwu7yFO6IZ7PuPlqxPuxob1csX2eA/ouZo8GJuvWEs7Rh+Gz5yWmqPMPNGK4dFlekzADfmbcV/nhBMQvhc9ek7twHmVJh6zlRM7A/inbI9dahXtaQbJUYztFBNc2RlQ4z4cSF03dEdcZFgEHqg0McWpdBys74X+80BS2ts+67cjBz14IXq9qRX5oI2wQ+P7rpqtDjRjhWf8zjomzSfnm+k77d/VmY4v+t0kaumFo0iT6T8hH8roTroxNxu4n6/dvTBZSv+zQ7+/pheUGAwexx8lXW3jTb+bvVLmjmy/bvS9W4FM15iyBjK9xLhRbQ3je4IXHHIdkp7ZDZ0hq4t5XNlW3NGxzlly3IV0cgaC9afOHBNADYyRxiKFdVoT+SqZMyT73Hngab2ibSIPe2sg2rzI7HlZ/FQATmMkorKHsozD5s7HsmBlABvQBxBBEcvBA4iuMFVz6uJE9n4nDtwmR4xt69DVThJlLfmhYra4jNR2TW7Q2AWQ0ciD6+67MySjTwYojmKawm0MHzvDZIPai9kJtPdRZVb+/bkAxdfrr3t9+TmLm6UMJJs2/d700FS2ypZKWo3TmWlFoeyFlqXpeVCKIHv79At7tZh0McC0FQPS7QeF0s0Qyimc8sdIzhM1ApqeG8NhjJOlYrGZAfIKNRSBmPRFwY+BnRnDo7PJFTKsDf7p5fmiJA4k8dF+kjzycNqy0uQALr/L8Z4rVZ8nS3GcR541vtwjNw7Iz65kliIv5XWTXSw+WtlTybLqY1jbNHrGzYodmMlAANsRsOw4qwsorQi3iBYDtFVHwUbluDW8ZwNjbCUl16KhkcahjeUAgEVFZ9uDGQzZl1D2Rh4ETGpgI/SEO4dZ+VM+rU2uTecRrHxMAGOokuzgQXh4XHG5Mjoxzp1xfwd88+1LgNSfG5Co5/YEetPw+vVLvH3zEoSBbV3RNsbbty/wN9+/wd1pwTaAz49XDK9OPNLcC68OHtJ44VVRjj4nZvRNQZC9oAie2bZR6CDbNPKmTZTyZ8FvNeD2dhCDtZormfJkABQFUDZJSMQGBqPhtBDevL5HZ8Zvzyc8Pjzicr2iL2d8+kx4O4BtXdGXE86nMz59WrCy7FNcFkJfGpZTx93dHfoQB3TbAFAHkaSy53MjCeRpTIaAss0g0zSzB/ki8DFZ86RtZZ4mKeCQZ2IMC+SgtJ9QV1Z+JqxWnCpDFA5NjRM46B/kZ68B4fjOziu8NTNoKPVhbZtDmmS0yQNrV3VHnN1aqXEbm7J9LWTCOxoO3nbDFPBacztMJXxUoy07sihTtxsXG1y52QkP6rjCSWXGXyIJ5mRMwnWqjc30ctxPijTDNI+WqASfCw44zW0aotGDpCvrmG5FF9J4fV59A1kaZHk9NLrtjw9FOcvtvPocDmxIHtOxo+K42BB58AfBGAZ8n8yBUZ7pjec5zVM6LYmaU5oAUXzZ3GlDMx2V8SOJfAtk2ZwYHAGbqc9h6iBFL0xmpKSt1Gmslzv/ALHP3s5G1KMvmBWsodtJvIJ4tNx0pdZsOrYZM1lpOEnjHUO2SDRNPQ242efIV/v0nywr7ZiQroVy+Dx0zOTHjK3b5g6l8J7ynMOi51ASNLgcjrbtA+ImtNu4wRcqCHWvP4W9JjsC6vE+ho8Bo1GlTV2ZtYJSpbjf1+tXd/3CozOAzOxZhJiQFAKE19kQY9UYP68RVUEHwIUr5buuUGqvOYobL2crJL7GvrvS8k5zchLW9ovJec7d2FOzcpssoVCa7IaB/6bpWKaUSoB10l/TyPxuifjn8ZoRYsZdum/4yJ/6477TSckU1cYJ5snYOoZYjTZVPsSB1MH1backBgbCyI6p5kiBVuUyMLzaoM2i10oqw8yrromOdlqtTsLPCYCZj9+MDrjSzb4JU11Ihpf0basGUqjA9hEe2UaBa6cjU7aKi6LXy5hUaWkJ94wbcBgsaITHTxd8fnoCesfd/R1677h7oYp9dPAAPrz/hI+PAy9enfD29RlvX9+Dt4HLwwV39x13S8f2tOKyAaMTJAPVFGV2VoyvqzHnxkYycrOxPWHG6XtehbBgzBzVzCteeaWZfP9UfY6Q0jhzB8ksMk5DMbDYnVx7+9zkjMITGLg/4XxesJxOWLq0s143NGo4LQvuzoSNB+7uTliWjt4blq57QjmOBxIyznAHnFUWGa3Nad4J5sIOXNqa04/s0+VPvBWy41CiBT5uGvFJQHP61+mcKryy6sEAN2fiBDqAyVF2uktwTU4Ym2xxuZ90QOb5Hdx1bM3lM6Xf9HFzbnIjrnLyyLMMs5+CR0JfWZs7BAYms+DI3U5ABBlTmQ9rqR5rI0Bz8rMS5E4Pt1bvju5bupzRbNa/8U6W6yEHHHQ1kqXg1C0JYrCFXCr4SP1W3o9aAT5pXMece6wj3H8rq4gme3ay62gEySGd+Lq+a23qO07vFuw5Iujci8E4N5z/PHjZaLUi8hC2cN4nHgZ2pl+s1qUje2YIdILCLpX/+XYTYt9TF8Fq/ex5K8ezIzwcq1UMh43Hg3BwZ5Xs6A3d59r6kK0R3bJjBIZFg3KjKz2TrDIyNCBoTp6CqoXwQSMc1CwyM700tbvV3XOxMlqiC286bOp6os3e1nbrc7KJv16/rusX7FnUpX1Pj8yTLDnUEsGVM264CFAYT8BZLMJgewOYNB2OEYnS3k4yjGvDu8tajpUv/eQRApukTQKAIYe2VhmgpdOTVgzlnHZt+krfESxU+nczNBlpRISBrawYlqhMxt2kcq2L+evMiCX9a/rd9vHNz+c02JrCstcdvom6kEY2JEMB5x1IubIWiNzZ2rhG78tqEGzq1LFsssGUJqWYaa3pWEZaZfHqmZpyaOMdkwI9wuMs8Gr6DsozYZDBFV82GuwZC07Ir7aBHMlosY35E/Yn+vMgR1JpHj32d4a3azww612jw2VZ8Oa04G9evwJ4w+VywYcPH9D7AmoLto3xp5cN718C3737Fr0RTucucuPVCd+9ewPZnyEjv1wvWDdXQ2lu2Y0j0y85sayilmPcMTkJ79GGXNO+Eswzu79y5kHu3encZIfRtuMt5Bsf9Otyz2jT91EyTqeTrLYP4P7uLMqfpeCVHOtyCgeDpWjKyQrZQAyNoavqmKK+0vWRkRP3anVkdjxZsGKWPpXeJxz5eOvvzl9tmr9DKoyvLicKbORp+0MjT7k4g9D38DmjLPPB/o4ZRqBsJJMfSm3/Wel44lzBMKPA2suyj/1+GOWG073BNMb+Xn1370hxQnQ47VX2HAUXq9ypV8E1x95rc7YIsfdSn5rYRUNeh/DWe88Zj7t3wWVO5mctc8bk7TyWvD0gVkyCzqOfcIay3jC5tU/dRshtx6tJ4fyMagBDF4dDeMtBvoUPmwsLDNBUXyIHcLLzlceYRxwkwvVRDllQ3tDCLHM7u+twbgMvObNnDhIa7ZqT5jgDtCBhytbhBuR5tTaAQ9zGrE605E6ZUoDOvx/fk8dJJHvDu6z82VnBeVW6tS7prkN4fjh+VQ8bOlhpiOQ5JkS1VN+zKM82HTc1yTDp1HG6U3xqzYuhq9NWNG4M9qI/wa5daPwquNzAYn+Bk/2pD28ETavzeZWgNlIQ1CYyYdk9cZMTlSe+Xr+u68urobpCtZXC/CuDcmlfKDEkg9bSD00xVoPEqh2GwRvRVzOOqzIM4UlAykkPYbZ3cqh3uAbRQ9ybpifl9FKAI8caDSHMbCz66FTB8/Bzlk3JCfQUoZaLmr6HMAAAHrlJREFUaZjCmBlJYZDhBvMeXF5GQZ+bt1HGOCYhzabaLS2IixNZnSIySyfBDFV6M9QzgNVYlbQPE14MblHuP+8HqE3E6qO1ebQqkcs5yxpRw7wZ3VMtQGoItjj4msLZ+qnI7HxvXqWZnii/U1ZMarGEgRHwycMV9tlwsHvDNuSnVbJk6zitF8GfYPHxkxyGTBtw+XTF5bri8ekJnx9WnE7A6zcn3L864ZtvvsNle43vvn2Hh8+Pwu9aOQ6DsK0Djw8rxgCanVnlcOfPWWnXAxy4sFhR2Ym2c/p6nZ+2ZLqPwNQs0+zeoM3ljzjPySkxI4Aq7bkBl3EKW0mpMGtvoqS3DSQVcNzYlECdVA5dlgYaLHLJjQytpqfpR62zB/fCMdw7jQnByC7LvJIkOl8NplK467i9XSBD+7BS8mX0xdg2uVjfTNM8wZdo1BwSnZfRptU/vfKqcmSnZCMmBtecF01n5Oeze0tF17mTMl3FT3N6SS9lvBxc+6Bdrthc27kVKJw9ITFEbXZjdupYguF8/5/em2O5pT99bWg08FhOSrvZeXtu7PN4gocTnQiC5W46i9Cer9tBIo0wZ95kJ9KKiZVMBR5R4AWBkwKnj6fSR9YN8qsIluz8PrfiMgcns6ySvy110uDV7qm+X9u82V2Zf6GZSK+3AJXxUIqRHQaZy0MJR0d6stx3/TfJKjxPG/squyFr5TKZNONcbAE533BL+JSnxzRPstrNYh+3hqWfwMzYrhd11obqgKZ7IRua8sU6VmlH6wREmn0Kqrk925w2hcX02Y2BywarfOp2E2lBmkaghSb6BNZtlbMlt032QDaB0ceWUCILrQMYBKKot57XV/xcatzSA/HOzYpPX69fxUVfuuz7P/+P/72/aHFXMmudwyw6LyfdeCuRFStrXFKVMEWCMoDTvaHliuf72cgGyJ3U29dQwUE6BjN+ooy6p+UxSrXW/CnvhiM1/zYb/zU6Zc8gGevx7OCtOAUlSuv32QVPvX80ZB3TtLkYCD61dqyE/c7BTo5UHuNMRzaGo/v5s2iTjBATTgSPjPIYsU8kRJDDC9i5eiIg53mw+QmjEFqwA3pw/W2YV6WLxvX+fNn7sqp+8Ls6ehlHf+m1N3TEMrCV0CNnXp4VpSQ0mHCTYJrHNXTP8bxi2oi8Yg43gNvA5XLB0/WKcSWMQXh6YGA0bJ0xVtnIuJwI53PD+STnKt6fT2gNGLxCjuwwA81gmWiGalGDfN2itdkJ93sgPeokR51tJbteJrcMH7mPHEwRpzz2xQgdVHhk32f0eWgYWb9k7doxDxK8ENtM9qY8PT6p/Gxe6bT35jJJjFApud5pHx+04mLZ6ToqrV5Np0ozTht71P3kdRTcsD4i2r6Xqfu+VTa5TEFJKc1ODRJN743tfNmKH+tcuO9RjDWb8waqQsJhtD9uu3+W5SCG6I2HDtq96VClOTp0DgOkXQAx6/CjF2banWXN7tJAFRG5QznPG0AHhXJuwEBceEj4OY6AOJzbSXYcwnzDYJWfRabbKpEHSeOBhKLo+0iP1pUyIYqSzUOmm8IhOno/0+xRQODWylm+vAXO/YyYf9/rVtuG434KxKcxlGKDO/hGcSINNgl9zeNNKdrWNp4PKBiM87nRs+0ZWAi54/J8Z+dEaRejP3OihI7l+XW9Yht2xEWM8Xw+SdXTZrYb9F0APTLTmAe261qOjMrXYNajYQTCpgsf43qEC93PmI+mSOftAlK/j0gcyNYa+hLHtQHAtiFV46/zzYY+htghw4RcsiNM8O3NvEnOEP7v//zjwRi+Xv81L77++S9W1b9gz2Lq2BQxKJwO/XfYWWcWMzPmRzhl9kZeMZqFYXGYgJsa14zA57RtJU6Dx5h3b7hQyIBkeJPDYHtNWm+lTfdlKIwVe82FgkLjhVBc+SdF6hgKQYl8N53795zz4c6LP5IFYW22tEOSVGzOSPQbzRDq3r/czk2jA3AFsjMGqbq8BIryqAD8ePASkQ/l2nu/rSyLwaj36PgZm28/6kKFImGP60wbs0ORf9/B8YWXjTkAi0+j20zD+3ftlWrBHhk3+ou/Z+W111UDGq1hu3RcHi64XiVV++myYQxg5RXnfsbptABgrOvA3anDz5Vi4YhbtOsKiRNfaf/PSbwjXIf8AWyPBaemJRK6D7cYT8anIy/FO46djnjWOJ+f5wl9iSFFFSwyTI0lYKK/Wbvnuzt5xQtnqQGXZOYcSMgQ+b9G4jzP+wF42NPM88/v52puwyERCzLg8rmrsmW+b+3tjWbvLU+B/+bvc82CqG2Ixpp/F4M38YXkoh608Iw+msfl//z0dWSERztHWJ/4AqhnA994btcy12d2jtf8qjuG8dPMFyW9fHK0nneIpVXRUUkouF2SnNpdA9P9/R8o2nrMMFY9/ZN8bU+bM4vsnCSc5KO/dkyyx9OtVbtDZ/JgeuYfZAorYdSmTd+zyyp7SOZMx5AaPObLqm+srVQ+0fHE0xhAxn9ApXP2dwzWaZRlHAGLSUMPQexl3JQxQN7GpPN7l2PeWg0gelCJdR/5iN9Iz6YwWxGN0EjPdxw2z9F3g9TVYJbFGHunjCwJvaa/+VYKtdtkmEp/KwM00ESto5md3jTIDAk0u9zLRu4OrYxYSgrsz/IuOP9nCr2v11/l+vI0VI1okIYHmKpgMbWweV6/nuOVDKucZiopSfF98hQQpk91eLKR4O+GDN8pGnNEsgLIn3awqjVuUfn8ip0oGQ6KpDK21nftVYNe/pYVMm3QhCipA2S1MwgpIysUQTge8PbDoQ6Eya0qQC2PHKTFUfJxHDDBwUW5eou+l6i2CRU28ltOwpkei9Efr6QQfmYWAntPRyuoP0dpzp5T2uo2Kd/kZLU8B/ZOSG4PAjRKNHhbOT63Cv3c/fl3m/9Zkbsauxk8qMpZvziQon9p+j2e2zZWOtJZGITz6YRTb9g0Kr3pataJXuDUz2AG1nXFul5wf7eg9e7yoelRJ0FLDpHyYFxzSfc93WNHgm6zRKvK0zQZXzNOtDnK+E7Pgidyyo55ciTte1GbudMKq0WsG3U1uqARW8L1soG6rXgNXUWEGwPWE2NIVVoVJL03rei3G1wdI1R6T05FAdF/q3L0FgvPBsLc8N5Zqi8E76S+uMKR56UGPKb2/L0wXMJQD0fIV+0nGI7gcLnk8iMPkmYyk/ccdREw5ME1C/wIccWJCF3FCXaofsYETy55D5PXNybt+RUbHxmyDuDpM3qKf6w6rKltnaWd/OPU0PNBNk5jS06Jf8QKEZuMs7ll0YyFNjDjlw9+O5bRdpahOQ9234uL8MHKp+oad9DcCU1bORBpqhW5OjYvCzrrfMj+XU4xjEm+SZsTH7ONPGyxY3qQ1bYgZZ0LzdgpMu7Q8a8y0XgoUXaau1t0EPov3Eqkz7oIEfIFpRf7KDZKypRzOTKN31fGE6/2ZZHZUFkztAr6GAObpnjaPmcqcmlgHVJkiXS1rzU5f3GM4VVUB9WgtMkq3w/Pma1tLFrHgYZjNWSkpe3Ly7IiytAP3Xph2XHSclO7XVL5bY8TUIgL+xMLjnQ0Ke3fsla+Xn/968tXFpUxnK05CTN5ADL9lWTtjiUaGAHSJDTmdD35PAZFeJ7jS1bq6V5ZpSwUawrEOjFBn5QZJefW3pyK+9RIY4Gg/CbfLRXQjBb9Pu0BOkotMWckhCdNw56U3HzNFkIRtNHubqUkCdKbUc8J1vRFoCLatztBfdCQRr9tjg1OV8tTn3UvWFxqUIY1qHdjbP7kHLDgI3xZqwFJVYOYxlojnjOO/5KVxvz8frVIiYOCL/NzOxzz/msYmtO72WBhS3OUt1qXFd0BS6eSvRkvljMA4LoO9E5Y+oLWGxoBG0uUEtxr1P4IzhsCIEHpCudZVFrVRqq8tkPHZNSImBO5dwhJbm+yQQw6C4pkw/4m3SPm2fabMuRIEjmEWQJPm89zTrOOIJSxe3Wuov1jej4qs2Joyb/M8mmC3/8pttThs/t7+4lxfUMVDuN73GifAd+nFY5hiP14j3aTcSSvbgWjYoyTbOMMv8Gk8ke8BA+4MieEzcRRxqytpOBm1THRk4+zGP/7MfpYbqmOCefHgazKJzxNhOsZk18/o5/57yNZOXAQCMkOWQl+TfNnz2Juf5bo+Tebr3SvzHHQRA7u3ULuTef8xm+BP/YmTZcBMuEjyxnOgRC7Zy/Ejbmn52XpbdjZ5BwSCXOA51ci23y7pI/eDHpGAzPeb8P8jPyasmwqfNMcVzIoNgdRi2kg8hRjo0WGrFITyLe/SDuWwwWp2yD7Y0CkqavZqXc+i1oek8mVAMzvNrfCrQp/FiGOao5tAGOIneuFa0ByPFkj+D5gEWIHuDEETVbxhOqvjuKv+/pFaaj7dCtjlKQw2YxLWTL3ZXJmDJDuFYNW66sKi4wo5YWkhG+aMWjUCpPYKwQSpVzgj7TRqhym9ERzFNXKKCktbPv7AGbdUOx9InmWuW1hXjNaWAXKGN6qPheKKwt5yxlnwM+xzA6dPRdjk7+6Haw6C0hEiQZ7dlAI+dmQiPuRLGK/lXY5RVFLW/s5NPuEeUgwajbMjLZK6j7tBE4gQZ8vCt6ig/IqkR2CQGFUOPJCxTEzenZICVrMYO4yHxCsibKTMrVV3G2zs/ekv7/EUfQup3nJc5UV11GqWLmK80NaSXaiEd2nY8wt+2SBvPdxXYF1JayXVfc3AGDGdrdijFUjpR2EM3gQBg0VBw28cVjz0xWb+mOsBbZE4zZzh8GO+hKiIEiiFZoeSTLInFlCzTR0luKkSEeFeXYUHNrUn9kLeRVqQKLQYzCW3oQ3GkmRhd7QT4v03TrWdVXDgeRcN7iZgNm5crCyIV4KOY4jUbFj3TAyLAX7hnQ2e6EYM7l41h6uLNfyfEpzVNrw8R10LltrqcBuOCZHUFz7PavGP/O9EPLVoUEZrM/7PMakC6WVsdsTywBoCqLURmKlZG4v+tXiProqUCqi2ruzs5hs0ugq6SO9ZxVBY7Uf4eNOjsdRoPAoGHprnOXrEUvzwdqE0SOJMRvHeESIz4MxSW8cX6G3QeTbT4hSBV1Qwi/7fM4Ob+j0uJ/n3ug/6ySTawfocBwV/E1kZ/J4JvoCR9YVmfcQOI8tudkOivGbjcIwJyPEYx6v6WTf4pHoJY9Vhh/HRQn6szDJp7Em2i7qJOF7IpEjuI50B6XxhtwK2vf1awL4egWYNJgaRWhaa2AC1rFhjA00pBaN4M0K0ch2jaEZOuvYAKidp0ciLaOD2YqY6YogiVMZCoQTXJSy/0TvDbWrrLiMPKMBTZ1Hs49OmZZMN43hdQugz4kNkpTARCuO4xv66Ov1673+q+xZfP4SwrU8aRrZQFPmajSV4E6EREkAMtDbYm/pVbYgw/bvZYUYkRJ42wzWIjhHCkLEgTGNHApl47BiOKYUINWgFNYioWefiI73gh3tfSPSzJIMlUo/N9BUac175Oq1d8yinwJa6cejyy4I5J+y4OZ/pxk4HMsBbNkod8UUAt3fS0orIHEL1VOaOKcm5tUSt+eowO0fSfr53FC0Y7gYWy70khTDPKwCqylOLkbts7jhZOSlZ54TrCLzc2GmVFlUf3uORijjVBs0JTinTFnBFAAYaMBmkUlC15Z6Y4zGaEtHXxpaO+Hp6QF9ET5aLxsWLApXFN6RFMk4/HfmW8GHKsibuAgeuc0TVXUdpXZHg3U+LG4xy6mw6QzuMPKMJMPBOQCijCH6yM7YGLIvulMDs67oEmHoGWAPj49Yupy9SMuC1shxJWnPDVal2gZnsOQxuYzh+oz+soPVaHyHO5hhp3hkLnPiuPqJYmRkFtjuPTiPHok4T892IzS3kdtNq0P27DyP3p5OjtnbjVA2M2ZPX9u1gi5zDeejlbn9PTmi/KBmTvQxLPlulsb2hMDpRxLB5FH8PmcO7NrIzg7SeK1Pyp/R9pGzPzt1t1YRp1EiU98sT0VXhDHvMJCHehxWX3HPMA1py1K5BQ9BV0YfHsSAHj0AVoO56vVbzrClE8JGk3RMdlrsb3O2HAs8t1nTrzMfzGxFQfQFs7cuC14zOAqUAJMMMP4JW4u5lXvGLjf7SUKIEXw2cvDVHBGTxtqm2ZUihzIucvA3xrrjL61sbDRj7966mFEyYGLhIGSHp2aT7DmH7u+jRn6+aGuE3k/AxhhbpKg6fM3OUGwSlIBk4KybnLPY0dBaw7KcyrsbRwFItVLNAHK+70ToRKB0xInPUZERihGSrCHXZeYqqygc2xA6NX5km6k67+a0HhEDEXnGzdfr13l9sbM4Rz+NykzohVAHAD0KAmaYQoV1ep+CYE2xNzWGYjGcAC+1YuoxCfcbVtgc9a0GSjUUY4AhFKthGaP2VRUzznUg+ZnSwNRnEn2wVFxj6GiwGkkxEGv9YO+bM21VBTtDTr/b3DjEFBG8ihAugsVS1SruNEJlgsT2Z3IejzZOWTkEukAmfHcoQHh/qHvN3VipFU9BeRzZPNJx2vcyWC2UkNvXQ9JDCB/AhmrszU5fubIxkY1hyqvIx3Q8U7nZp0xAQziKBACNMLjpZvjcWDQydC5cHc8GCatrTCS0bhjQR7ZtYGySGdBax2DdW7FesZwWrNcV6/aE82mRSnDeJiDFjRnMsg8vIE/7UBJxhBw4oPcJvxGAirmYi2g43bCkxNrcVtILg2hO0Ys5Ok7Jc34w4PPrz+hFk5t5GoYw1J6PddG3967l0Zvyngo7NuNp28u5DGeiw+gjjLQjsAkhU7PjCSiJp/FmngxBXOWHG4KG5/RbzTaAj62k3RYY2YHIEtf4jbyhPKDcB5vNp+KKyzPKNtJq5jmQprORs4rLDOSjFwwP9g6ANqf/qlYg/wvlNZfEjpQYvcLZQH7S36yS/O8yCSbnKyQlvWy6nl8pnAIOpPtpj+RcZe3pyhyZjQfj10lmkWQTuTOW4Ng5BBQreZWWZ75uYOhqjqSYVLvmBux5pS5Gw7HVKzlW1g7XBqYxzkzzbPcVBp5f4F1fiWmdVrPEdT5FrjZqdsPwoEOFSzJSqo10ALvKPqppREmGy7eolFzbmaufVuI7mPsk+2Ybct/UbQw7vEp7uwZUJjOlA+5dfhFa0+CSjXRTem+mQRQnzTLdojKvNBT6y/plmB7Q9w0+TnOezKLYJqHv2txv7GfX0jQ2RgRnIzBY7TPvyHQMR/kks6W+Ooq/7uuLnUWJ/HAINSd8+W9o4YsBPbSYEvGY8iRVcxTEGe0xwA0DhGYMpVE5KQCwhRGmAk3O55NQHCGXfg/GYbAb1K52tOOSAmLCwqOG8jal9qA53GxnuO2cwSrcJXMiG7b5OTiCIoJpP6pgofjNxKbdy6Lc0w44wwmMtKqbV4t672VuZf4qhCZMbeN6Hl3PApihZxdaP2YYyUqsR56VWGZlaW0wMwZ0o3fCUx1XmgsF0sZuAs9jk0XI2+qBKDtXbBzP+qqCCkErUy0r0sk48LmLvysdxUG5gApuhu01l/OZAE2vtUbMiBY4mhskaSyM4vwNbasbPScFUO0KQ4zRu6aesG5YZ4hSUOO0Gb57c8NbOlSebpYeNbCODV1Cj3rO34oxGNerKIeVNhATzqcO1irJ6yYpXMyMFy/vECukGeaYGwJ52nc+K/AoZUs23ufS7QA3SZ8Vums6lwLfoOFHqDCS4qSURu0GSqx+E+xIrEIEHhk3qVHO8LZfdgakDcgUbkykRJDTs1qU4Pr0BAawqLNI1LCtgl87W8umrqsjmXxcEKkM0zNkPaBPViADxVH5/9s7uyW5URgKH2HPVuX93zYZo71Av+DObu1VqvZ8qdTMdNsYBAhJYNjteQ9uaWl48Qzt9aduRagbP11nKh57oB2D8OTNGYTxO2q/yNoRG1BCpzYH351KL6u2/tHakXVstQKp6lrqKYDMNeN3x6xeyga6ZhPzRN6UdY51GvlsF3nbMwGaDbhmJ8Xq3P5V3aKqGBNh0AFlcZ7dL9VA++DcAbm01Ipd9H0aiTESqh5n9nWnXqOsdblwjg+CfdytAdSYsSqfN4FaX4N2h/QYW0v7G74pRxd7XBTllzX+DwsUrvfJxtJdUECvVMIxY2/6pubV247Lxh3SaXrMpo1djFI2tPKgSVtoWaIwWsqt0UZ6//L2G/83EQLrHFJYWxshEAkNO1TwuN2mq3wesIh5ZKuvOSduCwpWlSdYO1/nGdJZJ73OPLCZF0afsfz5Rk1tRRQ8X2XmVs9WU5+5xNtnutssdTxfsSe02yxVP3l9DfFVZxL5g8qyj70+zMe8bNPDny7RR0OeabBkJYVdIDPlXNqx6GW7pf5a7Xa6XTTxAEuXuU5yo++S2OTG5SOAHeGr8RwvebzGA8V46aEp1K2twG25GTG1z+uFyJ/Af98NdW4NQ6PdxXuIvq3vBCLKH0dEGGGzWMeJVE1BTmi++6AK1WF6OYdcXxu+Ijq2vPRlHN4JJRp/p0JoM0S6DKq3BNQcjkMP+wBmGrMNXWWA62npluGyxEplW4tkXdaWfBwO157P0sXrcqC2XGN/bstMGg9AMQj0LHuL4KLXscgsBuMmsxfFvhsOaudrrc98yXHO+AFLjk95/imPrc77R0upVQsDVVbuwLo8M2LtVbo7i9UoDn/GNOPj5ZtlCY2Xb7hhEQf19XblMvPB2wY+f93czWevA49YDoWle5j9nhuY3fEbmWh8cV0DIl+49IZca8gYIrhsF7f7XjudjrEOks+ZoJWOiC//Ku1T9qcjI5eeHxvgYjiPNqvFYHKZlpfw7b0t0Qn1mdI3ZaHHL+26OtNbHYzuNLqewUmJvp89zT58MYRroEen4pmzvbsslp/5uMMokCt3m975NMSfWsHbVO3TQK2uMCDVZl5CNl4vs8n1NBRLgprR7PX7apWH87LXR/GEI3lPpqbXCqnof2r/GWVCkaP3PeQu33ZOon+eS4/Pay2FkE271p7d24Vp8U3X+ofrc0mHzK9xkYfyOd+h8893Z6J2w9QB5fl+Vh5qXaPplvgO+rEN+j19Vc32fUnjzXl8m62qz98S+kfaM1p91gR6Ql4f0ur4xNvCyvc5o9We4J2qpPfmOr89MXX2bwosWdamu4AuOe2BAKk/q8qrY/Hr1QJ/z3MPlr0tTz7UsiK9xNZmNyXufWBL4NVO2mS88x6seEvD6zIUTpQhXmuKFrz8sznt+CkLpnvgOI6S02fZ21Px/XwDeIDrC2pjrNtrYRaLi8fCvVKCBvtYpr2O1u7mtQ3neF1Mnq05Lb0+zRbP1Ep9voyvTfXWRkT+SP77zOL2d31nYdW7NCVYDSvp/QjiYaJha90tTT94VHyCQNZMh0DzkNLojKsFD7m7EySfm2BxTaODtDJFbma+l7hy1sqtUMgoy9i8028R1j3taszEbEdNV+pAPLdZzprDeQzWWl52yEikvDu9KZCQSM5serovl+ubUZh1hZn+jT87jMsX5eFKaH92laE0TVU3FijXtFmmlwGsfCelDtIukPL8okplKd+URzauaPM4B0ANIdh9CjtJRjA0I8516V2YJLIOsQ7Hszj3IjmETau7qXNdD58BBeaw5VhSzAbT6+velV7Mci5rE6LAJSsaPJ/1pMf6IJ41wA3Pr0hcC6x35O5hQ+PXDQgwvx8zLh87WF5j6aSMgfk8eQ7VFjipMqpReh+Y01EfVkbfb9nfk6gOsO0GJ1f039e4pgKqEptctRl5n+Kzuo3+5lPGsHpaUzrpaMRh992AO2d6PLdPy1B9b05kYNwDP64faxfaMu04/voC8GV3aXTgZXTM2MTIZ/8VGhZN9vV+REmrCy97WUVQ/GW0ykPRhXqt8yJLHfr34d8X4yYO9cbM3zUOSUA6kVnGlfNqsCGClBIzgVZcn1ms/djLuOtvd/hUMRR2hpp/v272731mZj1Em3ysOZVldNqeo60c/gXSsCtjqZdD4pM00ELGmsvJ6qZb+7MjXdOz+R6dZ0Hj5zn+o8vipWy7XPc2/2nZfRVBzUsEUqWX+X05uOfz/btPeTgDanvZPqWX7XU3rnO8WfefpczP2ix3Nk7EaxJvdVnTj3t+L5vdTgvfYO8Xm/kRq3g0++O63do8UBLwek+hqGquYloDHHz1UA3e90hAuaE3UAAas+j/xgmpdqnr+xykO92p72lEnw859vRLrtsfY4yc4XsmIvBscl3XXLjvdSbxrTfm/Mb8Br6fiV8/fwFDMca9xoNrADpNz39bxif0AobcKwA91/nHbZGbt4/4JG2RFnj19lDtOoWNpesy35hnH1H9yLm1UstVoyJfbSF/MvJxNooQQgghhBBCyP+WfYM2QgghhBBCCCGEziIhhBBCCCGEkBM6i4QQQgghhBBCDugsEkIIIYQQQgg5oLNICCGEEEIIIeSAziIhhBBCCCGEkAM6i4QQQgghhBBCDugsEkIIIYQQQgg5oLNICCGEEEIIIeSAziIhhBBCCCGEkAM6i4QQQgghhBBCDugsEkIIIYQQQgg5oLNICCGEEEIIIeTgb5c4pZI6VuenAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import random\n", + "import colorsys\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.patches as patches\n", + "\n", + "\n", + "set_seed(1)\n", + "\n", + "def get_ax(rows=1, cols=1, size=16):\n", + " \"\"\"\n", + " Set axis\n", + "\n", + " Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central\n", + " point to control graph sizes.\n", + " Adjust the size attribute to control how big to render images.\n", + "\n", + " Args:\n", + " rows(int): row size. default: 1.\n", + " cols(int): column size. default: 1.\n", + " size(int): pixel size. default: 16.\n", + "\n", + " Returns:\n", + " Array, array of Axes\n", + " \"\"\"\n", + " _, axis = plt.subplots(rows, cols, figsize=(size*cols, size*rows))\n", + " return axis\n", + "\n", + "def mindrecord_to_rgb(img_data):\n", + " \"\"\"\n", + " Returns a RGB image from evaluated results.\n", + " Args:\n", + " rows(Array): a image.\n", + "\n", + " Returns:\n", + " Array, a RGB image.\n", + " \"\"\"\n", + " index = 0\n", + " convert_img = (-np.min(img_data[index, :, :, :])+img_data[index, :, :, :]) *\\\n", + " 255/(np.max(img_data[index, :, :, :])-np.min(img_data[index, :, :, :]))\n", + " temp_img = convert_img.astype(np.uint8)\n", + " image = np.zeros([config.img_height, config.img_width, 3])\n", + " image[:, :, 0] = temp_img[0, :, :]\n", + " image[:, :, 1] = temp_img[1, :, :]\n", + " image[:, :, 2] = temp_img[2, :, :]\n", + " return image\n", + "\n", + "def random_colors(num, bright=True):\n", + " \"\"\"\n", + " Generate random colors.\n", + "\n", + " To get visually distinct colors, generate them in HSV space then\n", + " convert to RGB.\n", + "\n", + " Args:\n", + " num(int): the color number.\n", + "\n", + " Returns:\n", + " List, a list of different colors.\n", + " \"\"\"\n", + " brightness = 1.0 if bright else 0.7\n", + " hsv = [(i / num, 1, brightness) for i in range(num)]\n", + " colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))\n", + " random.shuffle(colors)\n", + " return colors\n", + "\n", + "def infer():\n", + " \"\"\"\n", + " Return Mask RCNN evaluated results.\n", + "\n", + " Returns:\n", + " output, Mask RCNN evaluated result.\n", + " [Tensor[2,80000,5],\n", + " Tensor[2,80000,1],\n", + " Tensor[2,80000,1]\n", + " Tensor[2,80000,28,28]]\n", + " img, RGB image, (height, width, 3)\n", + " \"\"\"\n", + " # load image\n", + " device_target = config.device_target\n", + " context.set_context(mode=context.GRAPH_MODE, device_target=device_target)\n", + "\n", + " mindrecord_dir = os.path.join(config.data_root, config.mindrecord_dir)\n", + "\n", + " prefix = \"MaskRcnn_eval.mindrecord\"\n", + "\n", + " mindrecord_file = os.path.join(mindrecord_dir, prefix)\n", + "\n", + " dataset = create_coco_dataset(mindrecord_file, batch_size=config.test_batch_size, is_training=False)\n", + "\n", + " total = dataset.get_dataset_size()\n", + " image_id = np.random.choice(total, 1)\n", + "\n", + " # load model\n", + " ckpt_path = config.checkpoint_path\n", + " net = MaskRcnnResnet50(config)\n", + " param_dict = load_checkpoint(ckpt_path)\n", + " load_param_into_net(net, param_dict)\n", + " net.set_train(False)\n", + "\n", + " data = list(dataset.create_dict_iterator(output_numpy=True, num_epochs=1))[image_id[0]]\n", + " print(\"Image ID: \", image_id[0])\n", + " img_data = data['image']\n", + " img_metas = data['image_shape']\n", + " gt_bboxes = data['box']\n", + " gt_labels = data['label']\n", + " gt_num = data['valid_num']\n", + " gt_mask = data[\"mask\"]\n", + "\n", + " img = mindrecord_to_rgb(img_data)\n", + "\n", + " start = time.time()\n", + " # run net\n", + " output = net(Tensor(img_data), Tensor(img_metas), Tensor(gt_bboxes),\n", + " Tensor(gt_labels), Tensor(gt_num), Tensor(gt_mask))\n", + " end = time.time()\n", + " print(\"Cost time of detection: {:.2f}\".format(end - start))\n", + " return output, img, img_metas\n", + "\n", + "def detection(output, img, img_metas):\n", + " \"\"\"Mask RCNN Detection.\n", + " Arg:\n", + " output, evaluated results by Mask RCNN.\n", + " [Tensor[2,80000,5],\n", + " Tensor[2,80000,1],\n", + " Tensor[2,80000,1]\n", + " Tensor[2,80000,28,28]]\n", + " img, RGB image.\n", + " img_metas, image shape.\n", + " \"\"\"\n", + " # scaling ratio\n", + " ratio = img_metas[0, 2]\n", + "\n", + " # output\n", + " all_bbox = output[0][0].asnumpy()\n", + " all_label = output[1][0].asnumpy()\n", + " all_mask = output[2][0].asnumpy()\n", + "\n", + " num = 0\n", + " mask_id = -1\n", + " type_ids = []\n", + " for bool_ in all_mask:\n", + " mask_id += 1\n", + " if np.equal(bool_, True) and all_bbox[mask_id, 4] > 0.8:\n", + " type_ids.append(mask_id)\n", + " num += 1\n", + " print(\"Class Num:\", num)\n", + "\n", + " # Generate random colors\n", + " colors = random_colors(num)\n", + "\n", + " # Show area outside image boundaries.\n", + " height = config.img_height\n", + " width = config.img_width\n", + " ax = get_ax(1)\n", + " ax.set_ylim(height + 10, -10)\n", + " ax.set_xlim(-10, width + 10)\n", + " ax.axis('off')\n", + " ax.set_title(\"Precision\")\n", + "\n", + " masked_image = img.astype(np.uint32).copy()\n", + " for j in range(num):\n", + " color = colors[j]\n", + " i = type_ids[j]\n", + " # Bounding box\n", + "\n", + " x1, y1, x2, y2, _ = all_bbox[i]*ratio\n", + " score = all_bbox[i, 4]\n", + "\n", + " p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7,\n", + " linestyle=\"dashed\", edgecolor=color, facecolor='none')\n", + " ax.add_patch(p)\n", + "\n", + " # Label\n", + " class_names = config.data_classes\n", + " class_id = all_label[i, 0].astype(np.uint8)+1\n", + " score = all_bbox[i, 4]\n", + " label = class_names[class_id]\n", + "\n", + " caption = \"{} {:.3f}\".format(label, score)\n", + " ax.text(x1, y1 + 8, caption, color='w', size=11, backgroundcolor=\"none\")\n", + "\n", + " ax.imshow(masked_image.astype(np.uint8))\n", + " plt.show()\n", + "\n", + "if __name__ == '__main__':\n", + " out, img_rgb, img_shape = infer()\n", + " detection(out, img_rgb, img_shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 参考文献\n", + "\n", + "[1] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "MindSpore", + "language": "python", + "name": "mindspore" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.6" + }, + "vscode": { + "interpreter": { + "hash": "b56013b6fb53d0f81239d581af87f416e933cb7b39a0273dacec5d2d78018631" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/application_example/maskrcnn/src/maskrcnn.md b/application_example/maskrcnn/src/maskrcnn.md new file mode 100644 index 0000000..a6f7d92 --- /dev/null +++ b/application_example/maskrcnn/src/maskrcnn.md @@ -0,0 +1,31 @@ +. +└─maskrcnn + ├─src + ├─dataset + ├─dataset.py + ├─model + ├─anchor_generator.py + ├─bbox_assign_sample_stage2.py + ├─bbox_assign_sample.py + ├─fpn_neck.py + ├─mask_rcnn_mobilenetv1.py + ├─mask_rcnn_r50.py + ├─mobilenetv1.py + ├─proposal_generator.py + ├─rcnn_cls.py + ├─rcnn_mask.py + ├─resnet50.py + ├─roi_align.py + ├─rpn.py + ├─utils + ├─config.py + ├─lr_schedule.py + ├─network_define.py + ├─util.py + ├─eval.py + ├─infer.py + ├─train.py + ├─README.md + ├─maskrcnn.ipynb + ├─dataset.md + └─requirements.txt diff --git a/application_example/maskrcnn/src/train.py b/application_example/maskrcnn/src/train.py index beead12..c215e93 100644 --- a/application_example/maskrcnn/src/train.py +++ b/application_example/maskrcnn/src/train.py @@ -25,12 +25,12 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.nn import Momentum from mindspore.common import set_seed +from utils.config import config # when use maskrcnn mobilenetv1, just change the following backbone and defined network # from mask_rcnn_mobilenetv1 and network_define_maskrcnnmobilenetv1 from model.mask_rcnn_r50 import MaskRcnnResnet50 from utils.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet from utils.lr_schedule import dynamic_lr -from utils.config import config from dataset.dataset import create_coco_dataset, data_to_mindrecord_byte_image @@ -110,7 +110,7 @@ def train_maskrcnn(): # It will generate mindrecord file in config.mindrecord_dir, # and the file name is MaskRcnn.mindrecord0, 1, ... file_num. prefix = "MaskRcnn.mindrecord" - mindrecord_dir = config.mindrecord_dir + mindrecord_dir = os.path.join(config.data_root, config.mindrecord_dir) mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") if rank == 0 and not os.path.exists(mindrecord_file): create_mindrecord_dir(prefix, mindrecord_dir) @@ -149,14 +149,14 @@ def train_maskrcnn(): if config.save_checkpoint: # set saved weights. ckpt_step = config.save_checkpoint_epochs * dataset_size - ckptconfig = CheckpointConfig(save_checkpoint_steps=ckpt_step, keep_checkpoint_max=config.keep_checkpoint_max) + ckptconfig = CheckpointConfig(save_checkpoint_steps=5000, keep_checkpoint_max=config.keep_checkpoint_max) save_checkpoint_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/') # apply saved weights. ckpoint_cb = ModelCheckpoint(prefix='mask_rcnn', directory=save_checkpoint_path, config=ckptconfig) cb += [ckpoint_cb] # start training. model = Model(net) - model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=dataset_sink_mode_flag) + model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False) if __name__ == '__main__': train_maskrcnn() diff --git a/application_example/maskrcnn/src/train5k.py b/application_example/maskrcnn/src/train5k.py new file mode 100644 index 0000000..c215e93 --- /dev/null +++ b/application_example/maskrcnn/src/train5k.py @@ -0,0 +1,162 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""train MaskRcnn and get checkpoint files.""" +import os +import time + +import mindspore.common.dtype as mstype +from mindspore import context, Tensor, Parameter +from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor +from mindspore.train import Model +from mindspore.train.serialization import load_checkpoint, load_param_into_net +from mindspore.nn import Momentum +from mindspore.common import set_seed + +from utils.config import config +# when use maskrcnn mobilenetv1, just change the following backbone and defined network +# from mask_rcnn_mobilenetv1 and network_define_maskrcnnmobilenetv1 +from model.mask_rcnn_r50 import MaskRcnnResnet50 +from utils.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet +from utils.lr_schedule import dynamic_lr +from dataset.dataset import create_coco_dataset, data_to_mindrecord_byte_image + + +set_seed(1) + +def create_mindrecord_dir(prefix, mindrecord_dir): + """Create MindRecord Direction.""" + if not os.path.isdir(mindrecord_dir): + os.makedirs(mindrecord_dir) + if config.dataset == "coco": + if os.path.isdir(config.data_root): + print("Create Mindrecord.") + data_to_mindrecord_byte_image("coco", True, prefix) + print("Create Mindrecord Done, at {}".format(mindrecord_dir)) + else: + raise Exception("coco_root not exits.") + else: + if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): + print("Create Mindrecord.") + data_to_mindrecord_byte_image("other", True, prefix) + print("Create Mindrecord Done, at {}".format(mindrecord_dir)) + else: + raise Exception("IMAGE_DIR or ANNO_PATH not exits.") + while not os.path.exists(mindrecord_file+".db"): + time.sleep(5) + +def load_pretrained_ckpt(net, load_path, device_target): + """ + Load pretrained checkpoint. + + Args: + net(Cell): Used Network + load_path(string): The path of checkpoint. + device_target(string): device target. + + Returns: + Cell, the network with pretrained weights. + """ + param_dict = load_checkpoint(load_path) + if config.pretrain_epoch_size == 0: + for item in list(param_dict.keys()): + if not (item.startswith('backbone') or item.startswith('rcnn_mask')): + param_dict.pop(item) + + if device_target == 'GPU': + for key, value in param_dict.items(): + tensor = Tensor(value, mstype.float32) + param_dict[key] = Parameter(tensor, key) + + load_param_into_net(net, param_dict) + return net + +def train_maskrcnn(): + """construct the traning function""" + # Allocating memory Environment + device_target = config.device_target + rank = 0 + device_num = 1 + context.set_context(mode=context.GRAPH_MODE, device_target=device_target) + + print("Start train for maskrcnn!") + + dataset_sink_mode_flag = True + if not config.do_eval and config.run_distribute: + init() + rank = get_rank() + dataset_sink_mode_flag = device_target == 'Ascend' + device_num = get_group_size() + context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, + gradients_mean=True) + else: + rank = 0 + device_num = 1 + + print("Start create dataset!") + # Call the interface for data processing + # It will generate mindrecord file in config.mindrecord_dir, + # and the file name is MaskRcnn.mindrecord0, 1, ... file_num. + prefix = "MaskRcnn.mindrecord" + mindrecord_dir = os.path.join(config.data_root, config.mindrecord_dir) + mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") + if rank == 0 and not os.path.exists(mindrecord_file): + create_mindrecord_dir(prefix, mindrecord_dir) + # When create MindDataset, using the fitst mindrecord file, + # such as MaskRcnn.mindrecord0. + + dataset = create_coco_dataset(mindrecord_file, batch_size=config.batch_size, device_num=device_num, rank_id=rank) + dataset_size = dataset.get_dataset_size() + print("total images num: ", dataset_size) + print("Create dataset done!") + + # Net Instance + net = MaskRcnnResnet50(config=config) + net = net.set_train() + + # load pretrained model + load_path = config.pre_trained + if load_path != "": + print("Loading pretrained resnet50 checkpoint") + net = load_pretrained_ckpt(net=net, load_path=load_path, device_target=device_target) + + loss = LossNet() + lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size), + mstype.float32) + opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, + weight_decay=config.weight_decay, loss_scale=config.loss_scale) + # wrap the loss function + net_with_loss = WithLossCell(net, loss) + # Use TrainOneStepCell set the training pipeline. + net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) + # Monitor the traning process. + time_cb = TimeMonitor(data_size=dataset_size) + loss_cb = LossCallBack(rank_id=rank) + cb = [time_cb, loss_cb] + # save the trained model + if config.save_checkpoint: + # set saved weights. + ckpt_step = config.save_checkpoint_epochs * dataset_size + ckptconfig = CheckpointConfig(save_checkpoint_steps=5000, keep_checkpoint_max=config.keep_checkpoint_max) + save_checkpoint_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/') + # apply saved weights. + ckpoint_cb = ModelCheckpoint(prefix='mask_rcnn', directory=save_checkpoint_path, config=ckptconfig) + cb += [ckpoint_cb] + # start training. + model = Model(net) + model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=False) + +if __name__ == '__main__': + train_maskrcnn() diff --git a/application_example/maskrcnn/src/utils/__init__.py b/application_example/maskrcnn/src/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/application_example/maskrcnn/src/utils/config.py b/application_example/maskrcnn/src/utils/config.py index e2daf39..3cc7edd 100644 --- a/application_example/maskrcnn/src/utils/config.py +++ b/application_example/maskrcnn/src/utils/config.py @@ -28,7 +28,7 @@ def parse_args(): parsed parameters. """ - parser = argparse.ArgumentParser()#(description='config') + parser = argparse.ArgumentParser() # Device type parser.add_argument('--device_target', default='Ascend', choices=['CPU', 'GPU', 'Ascend'], type=str, @@ -40,13 +40,12 @@ def parse_args(): help="File path of dataset in training.") # MaskRcnn training - parser.add_argument('--only_create_dataset', default=False, type=ast.literal_eval, - help="Whether to create dataset.") + parser.add_argument('--only_create_dataset', default=False, type=ast.literal_eval, help="Whether to create dataset.") parser.add_argument('--run_distribute', default=False, type=ast.literal_eval, help="Whether to run distribute.") parser.add_argument('--do_train', default=True, type=ast.literal_eval, help="Whether to do train.") parser.add_argument('--do_eval', default=False, type=ast.literal_eval, help="Whether to do eval.") parser.add_argument('--dataset', default='coco', type=str, help="Dataset name") - parser.add_argument('--pre_trained', default='../../maskrcnnr5/checkpoint/resnet50.ckpt', + parser.add_argument('--pre_trained', default='../../maskrcnnr5/checkpoint/resnet50_ascend_v180_imagenet2012_official_cv_top1acc76.97_top5acc93.44.ckpt', type=str, help="File path of pretrained checkpoint in training.") parser.add_argument('--device_id', default=0, type=int, help="Target device id.") parser.add_argument('--device_num', default=1, type=int, help="Target device number.") @@ -55,7 +54,7 @@ def parse_args(): # MaskRcnn evaluation parser.add_argument('--ann_file', default='../../coco2017bk/annotations/instances_val2017.json', type=str, help="File path of cocodataset annotations.") - parser.add_argument('--checkpoint_path', default='./checkpoint/mask_rcnn-1_117.ckpt', + parser.add_argument('--checkpoint_path', default='../checkpoint/maskrcnn_coco2017_acc32.9.ckpt', type=str, help="File path of pretrained checkpoint in evaluation.") @@ -65,8 +64,6 @@ def parse_args(): type=str, help="File path of pretrained checkpoint to export.") parser.add_argument('--file_name', default='./checkpoint/maskrcnn_coco2017_acc32.9.ckpt', type=str, help="File path of pretrained checkpoint in evaluation.") - # "file_name": "maskrcnn", - # "file_format": "MINDIR", # MaskRcnn ResNet50 inference parser.add_argument('--img_path', default='../../coco2017bk/val2017', @@ -80,8 +77,7 @@ def parse_args(): parser.add_argument('--img_width', default=1280, type=int, help="The input image width.") parser.add_argument('--img_height', default=768, type=int, help="The input image height.") - parser.add_argument('--keep_ratio', default=True, type=ast.literal_eval, - help="Whether to keep the same image scaling ratio.") + parser.add_argument('--keep_ratio', default=True, type=ast.literal_eval, help="Whether to keep the same image scaling ratio.") parser.add_argument('--flip_ratio', default=0.5, type=float, help="The flip ratio.") parser.add_argument('--expand_ratio', default=1.0, type=float, help="The expand ratio.") @@ -130,8 +126,7 @@ def parse_args(): # proposal parser.add_argument('--activate_num_classes', default=256, type=int, help="The activate number of classes.") - parser.add_argument('--use_sigmoid_cls', default=True, type=ast.literal_eval, - help="Whether to use sigmoid for classification.") + parser.add_argument('--use_sigmoid_cls', default=True, type=ast.literal_eval, help="Whether to use sigmoid for classification.") # roi_align parser.add_argument('--roi_layer', default=ed(type='RoIAlign', out_size=7, mask_out_size=14, sample_num=2), @@ -219,7 +214,7 @@ def parse_args(): help="File path of pretrained checkpoint to save.") # cocodataset - parser.add_argument('--mindrecord_dir', default='../../coco2017bk/MindRecord_COCO/MindRecord_COCO', type=str, + parser.add_argument('--mindrecord_dir', default='./MindRecord_COCO/MindRecord_COCO', type=str, help="File path of MindRecord to save/read.") parser.add_argument('--train_data_type', default='train2017', type=str, help="The data type for training (it is not necessary for other dataset.).") @@ -245,6 +240,6 @@ def parse_args(): help="The data classes for cocodataset (it is not necessary for other dataset.).") parser.add_argument('--num_classes', default=81, type=int, help="The number of classes for cocodataset (it is not necessary for other dataset.).") - return parser.parse_args() + return parser.parse_args(args=[]) config = parse_args() diff --git a/application_example/maskrcnn/src/utils/network_define.py b/application_example/maskrcnn/src/utils/network_define.py index fc39868..6ef90c4 100644 --- a/application_example/maskrcnn/src/utils/network_define.py +++ b/application_example/maskrcnn/src/utils/network_define.py @@ -156,7 +156,8 @@ class WithLossCell(nn.Cell): self._loss_fn = loss_fn def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask): - loss1, loss2, _, _, _, _, _ = self._backbone(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask) + loss1, loss2, _, _, _, _, _ = \ + self._backbone(x, img_shape, gt_bboxe, gt_label, gt_num, gt_mask) return self._loss_fn(loss1, loss2) @property diff --git a/application_example/maskrcnn/src/utils/util.py b/application_example/maskrcnn/src/utils/util.py index 1fa3429..38bebe4 100644 --- a/application_example/maskrcnn/src/utils/util.py +++ b/application_example/maskrcnn/src/utils/util.py @@ -21,7 +21,7 @@ from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from pycocotools import mask as maskUtils -from model.config import config +from .config import config _init_value = np.array(0.0) summary_init = { -- Gitee